
1 The VCF specification

VCF is a text file format (most likely stored in a compressed manner). It contains meta-information lines (prefixed
with “##”), a header line (prefixed with “#”), and data lines each containing information about a position in the
genome and genotype information on samples for each position (text fields separated by tabs). Zero length fields are
not allowed, a dot (“.”) must be used instead. In order to ensure interoperability across platforms, VCF compliant
implementations must support both LF (“\n”) and CR+LF (“\r\n”) newline conventions.

1.1 An example

##fileformat=VCFv4.5
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">

:

##
:::

INFO
::

=<
:

ID
:

=
::

NS,
:::::

Number
::

=1,
:::

Type
:

=
:::::

Integer
:

,
::::::::

Description
:

="
:::::

Number
::

of
::

\
:::

begin
:

{
::::::::

environment
:

-
:::

name
:

}

:::::::::::

Samples

:

\
::

end
:

{
::::::::

environment
:

-
:::

name}
::::

With
::::

Data
:

">

##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003
20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3
20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4
20 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
20 1234567 microsat1 GTC G,GTCT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3

This example shows (in order): a good simple SNP, a possible SNP that has been filtered out because its quality is
below 10, a site at which two alternate alleles are called, with one of them (T) being ancestral (possibly a reference
sequencing error), a site that is called monomorphic reference (i.e. with no alternate alleles), and a microsatellite with
two alternative alleles, one a deletion of 2 bases (TC), and the other an insertion of one base (T). Genotype data are
given for three samples, two of which are phased and the third unphased, with per sample genotype quality, depth
and haplotype qualities (the latter only for the phased samples) given as well as the genotypes. The microsatellite
calls are unphased.

1.2 Character encoding, non-printable characters and characters with special mean-
ing

The character encoding of VCF files is UTF-8. UTF-8 is a multi-byte character encoding that is a strict superset
of 7-bit ASCII and has the property that none of the bytes in any multi-byte characters are 7-bit ASCII bytes. As
a result, most software that processes VCF files does not have to be aware of the possible presence of multi-byte
UTF-8 characters. VCF files must not contain a byte order mark. Note that non-printable characters U+0000–
U+0008, U+000B–U+000C, U+000E–U+001F are disallowed. Line separators must be CR+LF or LF and they are
allowed only as line separators at end of line. Some characters have a special meaning when they appear (such as
field delimiters ‘;’ in INFO or ‘:’ FORMAT fields), and for any other meaning they must be represented with the
capitalized percent encoding:

%3A : (colon)
%3B ; (semicolon)
%3D = (equal sign)
%25 % (percent sign)
%2C , (comma)
%0D CR
%0A LF
%09 TAB

4

5. ALT — alternate base(s): Comma-separated list of alternate non-reference alleles. These alleles do not have to
be called in any of the samples. Each allele in this list must be one of: a non-empty String of bases (A,C,G,T,N;
case insensitive); the ‘*’ symbol (allele missing due to overlapping deletion); the MISSING value ‘.’ (no variant);
an angle-bracketed ID String (“<ID>”); the unspecified allele “<*>” as described in Section 5.5; or a breakend
replacement string as described in Section 5.4. If there are no alternative alleles, then the MISSING value must
be used. Tools processing VCF files are not required to preserve case in the allele String, except for IDs, which
are case sensitive. (String; no whitespace, commas, or angle-brackets are permitted in the ID String itself)

6. QUAL — quality: Phred-scaled quality score for the assertion made in ALT. i.e. −10log10 prob(call in ALT is
wrong). If ALT is ‘.’ (no variant) then this is −10log10 prob(variant), and if ALT is not ‘.’ this is −10log10
prob(no variant). If unknown, the MISSING value must be specified. (Float)

7. FILTER — filter status: PASS if this position has passed all filters, i.e., a call is made at this position.
Otherwise, if the site has not passed all filters, a semicolon-separated list of codes for filters that fail. e.g.
“q10;s50” might indicate that at this site the quality is below 10 and the number of samples with data is below
50% of the total number of samples. ‘0’ is reserved and must not be used as a filter String. If filters have
not been applied, then this field must be set to the MISSING value. (String, no whitespace or semicolons
permitted, duplicate values not allowed.)

8. INFO — additional information: Semicolon-separated series of additional information fields, or the MISS-
ING value ‘.’ if none are present. Each subfield consists of a short key with optional values in the format:
key[=value[, . . . ,value]]. Literal semicolon (‘;’) and equals sign (‘=’) characters are not permitted in these val-
ues, and literal commas (‘,’) are permitted only as delimiters for lists of values; characters with special meaning
can be encoded using percent encoding, see Section 1.2. Space characters are allowed in values.

INFO keys must match the regular expression ^([A-Za-z][0-9A-Za-z .]*|1000G)$, please note that “1000G”
is allowed as a special legacy value. Duplicate keys are not allowed. Arbitrary keys are permitted, although
those listed in Table 1 and described below are reserved (albeit optional).

The exact format of each INFO key should be specified in the meta-information (as described above). Example
of a complete INFO field: DP=154;MQ=52;H2. Keys without corresponding values may be used to indicate
group membership (e.g. H2 indicates the SNP is found in HapMap 2). See Section 3 for additional reserved
INFO keys used to encode structural variants.

Key Number Type Description
AA 1 String Ancestral allele
AC A Integer Allele count in genotypes, for each ALT allele, in the same order as

listed
AD R Integer Total read depth for each allele
ADF R Integer Read depth for each allele on the forward strand
ADR R Integer Read depth for each allele on the reverse strand
AF A Float Allele frequency for each ALT allele in the same order as listed

(estimated from primary data, not called genotypes)
AN 1 Integer Total number of alleles in called genotypes
BQ 1 Float RMS base quality
CIGAR A String Cigar string describing how to align an alternate allele to the refer-

ence allele
DB 0 Flag dbSNP membership
DP 1 Integer Combined depth across samples
END 1 Integer

Deprecated. Present for backwards compatibility with earlier
versions of VCF.

:::

End
::::::::

position
:::

of
:::

the
:::::::

longest
:::::::

variant
:::::::::

described
:::

in

:::

this
::::::

record
:

H2 0 Flag HapMap2 membership
H3 0 Flag HapMap3 membership
MQ 1 Float RMS mapping quality
MQ0 1 Integer Number of MAPQ == 0 reads

Continued on next page. . .

Table 1: Reserved INFO keys

10

. . . Continued from previous page

Key Number Type Description
NS 1 Integer Number of samples with data
SB 4 Integer Strand bias
SOMATIC 0 Flag Somatic mutation (for cancer genomics)
VALIDATED 0 Flag Validated by follow-up experiment
1000G 0 Flag 1000 Genomes membership

Table 1: Reserved INFO keys

• END: Deprecated. Retained for backwards compatibility with earlier versions of VCF and older VCF indexing
software which rely on this field being present.

:::

End
::::::::

position
::

of
::::

the
::::::

longest
:::::::

variant
:::::::::

described
::

in
::::

this
::::::

record
:

This is a computed field that, when present, must be set to the maximum end reference position (1-based) of:
the position of the final base of the REF allele, the end position corresponding to the SVLEN of a symbolic
SV allele, and the end positions calculated from FORMAT LEN for the <*> symbolic allele.

The computed value of this field is used to compute BCF’s rlen field (see 6.3.1)and is important when indexing
VCF /BCF files to enable random access and querying by position.

::::::

Whilst
::::::::::

technically
::::::::::

deprecated
:::::::

(INFO
:::::::

SVLEN
::::

and
:::::::::

FORMAT
:::::

LEN
::::

are
:::

the
::::::::::::

authoritative
:::::::

fields),
:::::

END
:::::::

remains

:::::::::

important
:::

for
::::::::::

backwards
::::::::::::

compatibility.
:

:::::::::::::

Unfortunately,
:::

the
::::::::::::

introduction
::

of
:::::::::

FORMAT
:::::

LEN
::

is
::::

not
::::

fully
::::::::::

backwards
::::::::::

compatible
:::::

with
::::::

END.
:::::

END
::

is
::::

used

::

for
:::::

VCF
::::::::

indexing
::::

and
::

a
:::::

large
::::::::::

ecosystem
::

of
::::::::::::

pre-VCFv4.5
:::::

tools
::::

rely
:::

on
:::::

END
:::::

being
::::::::

present.
::::::

Those
:::::

same
:::::

tools

:::

will
::::::::::

incorrectly
:::::::::

interpret
:::

the
::::

size
::

of
::::

the
:::::::

smaller
::::::::

symbolic
::::::::::

structural
::::::::

variants
::::

and
::::

<*>
:::::::::

symbolic
::::::

alleles
:::::

when

::::

END
::

is
::::::::

present.
:

::

It
::

is
:::::::::::::

recommended
:::::

that
::::::::

VCFv4.5
:::::

files
:::::::

include
::::::

END
::::::

unless
:::::

that
:::::

VCF
::::::::

contains
::::

any
:::::::

record
::::

that
::::::

could
:::

be

:::::::::::::

misinterpreted
::

by
::::

the
::::::::

presence
::

of
::::::

END.
:::::

That
::

is,
::

if
:::::

there
::::::

exists
:

a
:::::::

sample
::

or
:::::

allele
:::

in
::::::

which
:::

the
:::::

END
:::::::::

computed

::

for
:::::

that
::::::::

SVLEN
::

or
::::::::::

FORMAT
:::::

LEN
:::::

does
::::

not
::::::

equal
:::

the
::::::::::

maximum
::::::

END,
:::::

then
:::

no
:::::

END
:::::::

should
:::

be
:::::::

present

::

in
::::

any
::::::

record
::::

that
::::::

VCF.
:::::

This
:::::::::

approachs
::::::::::

maintains
::::::::::

backwards
::::::::::::

compatibility
:::

for
::::::::::::::

unproblematic
::::::

VCFs
:::::

while

::::::::::

attempting
::

to
::::::::

minimise
::::

the
::::::::::

probability
::

of
:::::::::::

downstream
:::::

data
:::::

errors
:::

by
:::::::

making
:::::::::::

problematic
:::::::

records
:::

not
:::::

valid
:::

for

:::::

earlier
::::::::

versions
::

of
:::::

VCF
::::::

(END
::::

was
::::::::

required
:::

for
:::::

<*>
::::::::

symbolic
:::::::

alleles).
:

1.6.2 Genotype fields

If genotype information is present, then the same types of data must be present for all samples. First a FORMAT
field is given specifying the data types and order (colon-separated FORMAT keys matching the regular expression
^[A-Za-z][0-9A-Za-z .]*$, duplicate keys are not allowed). This is followed by one data block per sample, with
the colon-separated data corresponding to the types specified in the format. The first key must always be the
genotype (GT) if it is present. If any local-allele field is present, LAA must also be present and precede all fields
other than GT. There are no required keys. Additional Genotype keys can be defined in the meta-information,
however, software support for them is not guaranteed.

If any of the fields is missing, it is replaced with the MISSING value. For example if the FORMAT is GT:GQ:DP:HQ
then 0 | 0 : . : 23 : 23, 34 indicates that GQ is missing. If a field contains a list of missing values, it can be represented
either as a single MISSING value (‘.’) or as a list of missing values (e.g. ‘.,.,.’ if the field was Number=3). Trailing
fields can be dropped, with the exception of the GT field, which should always be present if specified in the FORMAT
field. If a field and it’s local-allele equivalent are both defined they must encode identical information or one must
ignored by containing the MISSING value or omitted.

As with the INFO field, there are several common, reserved keywords that are standards across the community.
See their detailed definitions below, as well as Table 2 for their reference Number, Type and Description. See also
Section 4 for a list of genotype keys reserved for structural variants.

Field Number Type Description
AD R Integer Read depth for each allele
ADF R Integer Read depth for each allele on the forward strand

Continued on next page. . .

Table 2: Reserved genotype keys

11

2 Understanding the VCF format and the haplotype representation

VCF records use a single general system for representing genetic variation data composed of:

• Allele: representing single genetic haplotypes (A, T, ATC).

• Genotype: an assignment of alleles for each chromosome of a single named sample at a particular locus.

• VCF record: a record holding all segregating alleles at a locus (as well as genotypes, if appropriate, for multiple
individuals containing alleles at that locus).

VCF records use a simple haplotype representation for REF and ALT alleles to describe variant haplotypes at a
locus. ALT haplotypes are constructed from the REF haplotype by taking the REF allele bases at the POS in the
reference genotype and replacing them with the ALT bases. In essence, the VCF record specifies a-REF-t and the
alternative haplotypes are a-ALT-t for each alternative allele.

2.1 VCF tag naming conventions

Several tag names follow conventions which should be used for implementation-defined tag as well:

• The ‘L’ suffix means likelihood as log-likelihood in the sampling distribution, log10 Pr(Data|Model). Likelihoods
are represented as log10 scale, thus they are negative numbers (e.g. GL, CNL). The likelihood can be also
represented in some cases as phred-scale in a separate tag (e.g. PL).

• The ‘P’ suffix means probability as linear-scale probability in the posterior distribution, which is Pr(Model|Data).
Examples are GP, CNP.

• The ‘Q’ suffix means quality as log-complementary-phred-scale posterior probability, −10 log10 Pr(Data|Model),
where the model is the most likely genotype that appears in the GT field. Examples are GQ, CNQ. The fixed
site-level QUAL field follows the same convention (represented as a phred-scaled number).

• The ‘L’ prefix indicates the local-allele equivalent of a Number=A, R or G field.

3 INFO keys used for structural variants

The following INFO keys are reserved for encoding structural variants. In general, when these keys are used by
imprecise variants, the values should be best estimates. When present, per allele values must be specified for all ALT
alleles (including non-structural alleles). Except in lists of strings, the missing value should be used as a placeholder
for the ALT alleles for which the key does not have a meaningful value. The empty string should be used to encode
missing values in lists of strings.

##INFO=<ID=IMPRECISE,Number=0,Type=Flag,Description="Imprecise structural variation">

Indicates that this record contains an imprecise structural variant ALT allele. ALT alleles missing CIPOS are
to be interpreted as imprecise variants with an unspecified confidence interval.

If a precise ALT allele is present in a record with the IMPRECISE flag, CIPOS must be explicitly set for that
allele, even if it is ‘0,0‘.

##INFO=<ID=NOVEL,Number=0,Type=Flag,Description="Indicates a novel structural variation">

##INFO=<ID=END,Number=1,Type=Integer,Description="Deprecated. Present for backwards compatibility with earlier versions of VCF.">

::

##
:::

INFO
::

=<
::

ID=
:::

END
:

,
:::::

Number
::

=1,
::::

Type
:

=
::::::

Integer,
::::::::::

Description
::

="
::

End
::::::::

position
::

of
::::

the
::::::

longest
:::::::

variant
:::::::::

described
::

in
:::::

this
::::::

record
:

">

END has been deprecated in favour of INFO SVLEN and FORMAT LEN
:::::

Refer
::

to
:::::::

section
:::

??
:::

for
:::

the
:::::::::

definition

::

of
:::::

END.

##INFO=<ID=SVTYPE,Number=1,Type=String,Description="Type of structural variant">

This field has been deprecated due to redundancy with ALT. Refer to section 1.4.5 for the set of valid ALT field
symbolic structural variant alleles.

##INFO=<ID=SVLEN,Number=A,Type=Integer,Description="Length of structural variant">

17

One value for each ALT allele.
SVLEN must be specified for symbolic structural variant alleles. SVLEN is defined for INS, DUP , INV , and

DEL symbolic alleles as the number of the inserted, duplicated, inverted, and deleted bases respectively. SVLEN is
defined for CNV symbolic alleles as the length of the segment over which the copy number variant is defined. The
missing value . should be used for all other ALT alleles, including ALT alleles using breakend notation.

For backwards compatibility, a missing SVLEN should be inferred from the END field.
For backwards compatibility, the absolute value of SVLEN should be taken and a negative SVLEN should be

treated as positive values
:

a
:::::::

positive
::::::

value.
Note that for structural variant symbolic alleles, POS corresponds to the base immediately preceding the variant.

##INFO=<ID=CIPOS,Number=.,Type=Integer,Description="Confidence interval around POS for symbolic structural variants">

If present, the number of entries must be twice the number of ALT alleles. CIPOS consists of successive pairs
of records indicating the start and end offsets relative to POS of the confidence interval for each ALT allele. For
example, CIPOS = −5, 5, 0, 0 indicates a 5bp confidence interval in each direction for the first ALT allele, and an
exact position for the second alt allele.

When breakpoint sequence homology exists, CIPOS should be used in conjunction with HOMSEQ to specify
the interval of homology.

If both IMPRECISE and CIPOS are omitted, CIPOS is implicitly defined as 0,0 for all alleles.
Each CIPOS interval must span 0. That is, the lower bound cannot be greater than 0, and the upper bound

cannot be less than 0.

##INFO=<ID=CIEND,Number=.,Type=Integer,Description="Confidence interval around the inferred END for symbolic structural variants">

If present, the number of entries must be twice the number of ALT alleles. CIEND consists of successive pairs
of records encoding the confidence interval start and end offsets relative to the END position inferred by SV LEN
for each ALT allele. For symbolic structural variants, the first in the pair must not be greater than 0, and the second
must not be less than 0. For all other alleles, both should be the missing value .. For example, CIEND = −5, 5, ., .
indicates a 5bp confidence interval in each direction around the end position for the first ALT allele, and no CIEND
is defined for the second alt allele.

If CIEND is missing, it is assumed to match CIPOS.

##INFO=<ID=HOMLEN,Number=A,Type=Integer,Description="Length of base pair identical micro-homology at breakpoints">

##INFO=<ID=HOMSEQ,Number=A,Type=String,Description="Sequence of base pair identical micro-homology at breakpoints">

##INFO=<ID=BKPTID,Number=A,Type=String,Description="ID of the assembled alternate allele in the assembly file">

For precise variants, the consensus sequence the alternate allele assembly is derivable from the REF and ALT fields.
However, the alternate allele assembly file may contain additional information about the characteristics of the alt
allele contigs.

##INFO=<ID=MEINFO,Number=.,Type=String,Description="Mobile element info of the form NAME,START,END,POLARITY">

If present, the number of entries must be four (4) times the number of ALT alleles. MEINFO consists of
successive quadruplets of records for each ALT allele.

##INFO=<ID=METRANS,Number=.,Type=String,Description="Mobile element transduction info of the form CHR,START,END,POLARITY">

If present, the number of entries must be four (4) times the number of ALT alleles. METRANS consists of
successive quadruplets of records for each ALT allele.

##INFO=<ID=DGVID,Number=A,Type=String,Description="ID of this element in Database of Genomic Variation">

##INFO=<ID=DBVARID,Number=A,Type=String,Description="ID of this element in DBVAR">

##INFO=<ID=DBRIPID,Number=A,Type=String,Description="ID of this element in DBRIP">

##INFO=<ID=MATEID,Number=A,Type=String,Description="ID of mate breakend">

##INFO=<ID=PARID,Number=A,Type=String,Description="ID of partner breakend">

##INFO=<ID=EVENT,Number=A,Type=String,Description="ID of associated event">

##INFO=<ID=EVENTTYPE,Number=A,Type=String,Description="Type of associated event">

Whilst simple events such as deletions and duplications can be wholly represented by a single VCF record,
complex rearrangements such as chromothripsis result in a large number of breakpoints. VCF uses the EV ENT
field to group such related records together, and EV ENTTY PE to classify these events. All records with the same
EV ENT value are considered to be part of the same event.

The following EV ENTTY PE values are reserved and should be used when appropriate:

18

5.5 Representing unspecified alleles and REF-only blocks (gVCF)

In order to report sequencing data evidence for both variant and non-variant positions in the genome, the VCF
specification allows to represent blocks of reference-only calls in a single record using the <*> allele and the FORMAT
LEN field. The convention adopted here is to represent reference evidence as likelihoods against an unknown alternate
allele represented as <*>. Think of this as the likelihood for reference as compared to any other possible alternate
allele (both SNP, indel, or otherwise).

Positions implicitly called by a preceding <*> for a sample must have GT set to the missing value (‘.’) and have
no FORMAT fields other than LAA present. If LAA is present and a reference block start is being defined for a
given sample, the <*> allele must be included as an LAA allele for that sample even though the GT is 0/0.

Reference blocks were originally introduced by the gVCF file format¶. Unfortunately, gVCF has issues scaling to
many samples as the use of INFO END to encode the reference block length requires the reference block length to
be the same for all samples.

To retain backwards compatibility with with gVCF, the symbolic allele <NON REF> should be treated as an
alias of <*> and a missing FORMAT LEN field should be inferred from the INFO END tag if present.

An example with both FORMAT LEN and a redundant INFO END is given below:

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Sample
1 4370 . G <*> . . END=4383 GT:DP:GQ:MIN DP:PL:LEN 0/0:25:60:23:0,60,900;14
1 4384 . C <*> . . END=4388 GT:DP:GQ:MIN DP:PL:LEN 0/0:25:45:25:0,42,630;4
1 4389 . T TC,<*> 213.73 . . GT:DP:GQ:PL:LEN 0/1:23:99:51,0,36,93,92,86
1 4390 . C <*> . . END=4390 GT:DP:GQ:MIN DP:PL:LEN 0/0:26:0:26:0,0,315;1
1 4391 . C <*> . . END=4395 GT:DP:GQ:MIN DP:PL:LEN 0/0:27:63:27:0,63,945;4
1 4396 . G C,<*> 0 . . GT:DP:GQ:MIN DP:PL:LEN 0/0:24:52:0,52,95,66,95,97
1 4397 . T <*> . . END=4416 GT:DP:GQ:MIN DP:PL:LEN 0/0:22:14:22:0,15,593;19

::::

Note
::::

that
::::::

usage
::

of
::::

both
:::::::::

FORMAT
:::::

LEN
::::

and
:::::

INFO
:::::

END
::::

can
::

be
:::::::::::

problematic
::

as
::::::::::::

pre-VCFv4.5
:::::

tools
:::

will
:::::::::::

misinterpret

:::

the
::::::::

reference
:::::

block
::::

size
:::

for
:::::::

records
::::::::::

containing
:::::::

samples
:::::

with
::::::::

different
:::::

block
:::::

sizes.
::::

See
:::

the
:::::::::

definition
::

of
::::::

INFO
:::::

END
::

in

::::::

section
:::

??
:::

for
:::::::::::::

recommended
:::::::::

behaviour.
:

When base modification information is present in the FORMAT field of a reference block record, the base
modification information apply to all applicable bases covered by that reference block.

¶https://help.basespace.illumina.com/articles/descriptive/gvcf-files/

34

0x33000000 l shared as 32-bit little endian hex
0x2A000000 l indiv as 32-bit little endian hex
0x01000000 CHROM offset is at 1 in 32 bit little endian
0x64000000 POS in 0-based 32-bit little endian
0x01000000 rlen = 1 (it’s just a SNP)
0x41 0xF0 0xCC 0xCD QUAL = 30.1 as 32-bit float
0x0400 n info as 16-bit little-endian
0x0200 n allele as 16-bit little-endian
0x030000 n sample as 24-bit little-endian
0x05 n fmt
0x57 0x72 0x73 0x31 0x32 0x33 ID = rs123
0x17 0x41 REF A
0x17 0x43 ALT C
0x11 0x00 FILTER field PASS
0x11 0x50 0x00 HM3 flag is present
0x11 0x51 AC key
0x11 0x03 with value of 3
0x11 0x52 AN key
0x11 0x06 with value of 6
0x11 0x53 AA key
0x17 0x43 with value of C
0x1101 0x21 0x020202040404 GT
0x1102 0x11 0x0A0A0A GQ
0x1103 0x11 0x203040 DP
0x1104 0x21 0x300030200040 AD
0x1105 0x31 0x000A640A0064640A00 PL

That’s quite a lot of information encoded in only 96 bytes!

6.5 BCF2 block gzip and indexing

These raw binary records may be subsequently encoded into BGZF blocks following the BGZF compression format,
section 3 of the SAM format specification. BCF2 records can be raw, though, in cases where the decoding/encoding
costs of bgzipping the data make it reasonable to process the data uncompressed, such as streaming BCF2s through
pipes with samtools and bcftools. Here the files should be still compressed with BGZF but with compression 0.
Implementations should perform BGZF encoding and must support the reading of both raw and BGZF encoded
BCF2 files.

BCF2 files are expected to be indexed through the same index scheme, section 4 as BAM files and other block-
compressed files with BGZF.

7 List of changes

7.1
:::::::::::

VCFv4.5
::::::::

Errata

•
:::::::

Clarified
::::::

INFO
:::::

END
:::::::::::

deprecation
::::::

status.
:

7.2 Changes between VCFv4.5 and VCFv4.4

• Added base modification support (FORMAT M5mC, M5hmC, M6mA, etc.).

• Reserved all FORMAT keys of the form M [0− 9]+ as base modification fields.

• Added Number=P support for fields with cardinality matching sample ploidy/local copy number.

• Added local allele support (Number=LA, LG, LR; FORMAT LAA, LAD, LADF, LADR, LEC, LGL, LGP,
LPL, LPP) to reduce the size of multi-sample VCFs and enable lossless merging.

48

	The VCF specification
	An example
	Character encoding, non-printable characters and characters with special meaning
	Data types
	Meta-information lines
	File format
	Information field format
	Filter field format
	Individual format field format
	Alternative allele field format
	Assembly field format
	Contig field format
	Sample field format
	Pedigree field format

	Header line syntax
	Data lines
	Fixed fields
	Genotype fields

	Understanding the VCF format and the haplotype representation
	VCF tag naming conventions

	INFO keys used for structural variants
	FORMAT keys used for structural variants
	Representing variation in VCF records
	Creating VCF entries for SNPs and small indels
	Example 1
	Example 2
	Example 3

	Decoding VCF entries for SNPs and small indels
	SNP VCF record
	Insertion VCF record
	Deletion VCF record
	Mixed VCF record for a microsatellite

	Encoding Structural Variants
	Specifying complex rearrangements with breakends
	Inserted Sequence
	Large Insertions
	Multiple mates
	Explicit partners
	Telomeres
	Event modifiers
	Inversions
	Uncertainty around breakend location
	Single breakends
	Sample mixtures
	Clonal derivation relationships

	Representing unspecified alleles and REF-only blocks (gVCF)
	Representing copy number variation
	Representing tandem repeats

	BCF specification
	Overall file organization
	Header
	Dictionary of strings
	Dictionary of contigs

	BCF2 records
	Site encoding
	Genotype encoding
	Type encoding

	Encoding a VCF record example
	Encoding CHROM and POS
	Encoding QUAL
	Encoding ID
	Encoding REF/ALT fields
	Encoding FILTER
	Encoding the INFO fields
	Encoding Genotypes

	BCF2 block gzip and indexing

	List of changes
	VCFv4.5 Errata
	Changes between VCFv4.5 and VCFv4.4
	VCFv4.4 Errata
	Changes between VCFv4.4 and VCFv4.3
	Changes to VCFv4.3
	Changes between VCFv4.2 and VCFv4.3
	Changes between BCFv2.1 and BCFv2.2
	Changes between VCFv4.1 and VCFv4.2

