
Encoding notation is defined as the keyword ‘encoding’ followed by its data type in angular brackets, for example
‘encoding<byte>’ stands for an encoding that operates on a data series of data type ‘byte’.

Encodings may have parameters of different data types, for example the EXTERNAL encoding has only one
parameter, integer id of the external block. The following encodings are defined:

Codec ID Parameters Comment

NULL 0 none series not preserved
EXTERNAL 1 int block content id the block content identifier used to

associate external data blocks with
data series

Deprecated (GOLOMB) 2 int offset, int M Golomb coding
HUFFMAN 3 array<int>, array<int> coding with int/byte values
BYTE_ARRAY_LEN 4 encoding<int> array length,

encoding<byte> bytes
coding of byte arrays with array
length

BYTE_ARRAY_STOP 5 byte stop, int external block
content id

coding of byte arrays with a stop
value

BETA 6 int offset, int number of bits binary coding
SUBEXP 7 int offset, int K subexponential coding
Deprecated (GOLOMB_RICE) 8 int offset, int log2m Golomb-Rice coding
GAMMA 9 int offset Elias gamma coding

See section 13 for more detailed descriptions of all the above coding algorithms and their parameters.

4 Checksums

The checksumming is used to ensure data integrity. The following checksumming algorithms are used in CRAM.

4.1 CRC32

This is a cyclic redundancy checksum 32-bit long with the polynomial 0x04C11DB7. Please refer to ITU-T
V.42 for more details. The value of the CRC32 hash function is written as an integer.

4.2 CRC32 sum

CRC32 sum is a combination of CRC32 values by summing up all individual CRC32 values modulo 232.

5 File structure

The overall CRAM file structure is described in this section. Please refer to other sections of this document for
more detailed information.

A CRAM file consists of a fixed length file definition, followed by a CRAM header container, then zero or more
data containers, and finally a special end-of-file container.

File
definition

CRAM Header
Container

Data
Container

... Data
Container

CRAM EOF
Container

Figure 1: A CRAM file consists of a file definition, followed by a header container, then other containers.

Containers consist of one or more blocks. The first container, called the CRAM header container, is used to
store a textual header as described in the SAM specification (see the section 7.1).

::::

This
::::::::

container
:::::

may
:::::

have

:::::::::

additional
::::::::

padding
:::::

bytes
:::::::

present
::::

for
::::::::

purposes
:::

of
::::::::::

permitting
::::::

inline
::::::::

rewriting
:::

of
:::

the
::::::

SAM
::::::

header
:::::

with
::::::

small

:::::::

changes
::

in
:::::

size.
::::::

These
::::::::

padding
:::::

bytes
:::

are
::::::::::

undefined,
::::

but
:::

we
:::::::::::

recommend
::::::

filling
::::

with
:::::

nuls.
:::::

The
:::::::

padding
::::::

bytes

:::

can
::::::

either
:::

be
::

in
:::::::

explicit
:::::::::::::

uncompressed
::::::

Block
::::::::::

structures,
:::

or
::

as
:::::::::::

unallocated
::::::

extra
:::::

space
::::::

where
::::

the
::::

size
::

of
::::

the

::::::::

container
::

is
::::::

larger
::::

than
::::

the
:::::::::

combined
::::

size
::

of
::::::

blocks
::::

held
::::::

within
:::

it.
:

4

File
definition

CRAM Header
Container

Data
Container

... Data
Container

CRAM EOF
Container

Block 1:
CRAM Header

(optionally compressed)

Optional Block 2:
nul padding bytes
(uncompressed)

Optional padding:
(uncompressed)

Figure 2: The the first container holds the CRAM header text.

Each container starts with a container header structure followed by one or more blocks. The first block in each
container is the compression header block giving details of how to decode data in subsequent blocks. Each block
starts with a block header structure followed by the block data.

File
definition

CRAM Header
Container

Data
Container

... Data
Container

CRAM EOF
Container

Container
Header structure

Compression
Header Block

Block 1 ... Block M

Block Header
structure

Block data

Figure 3: Containers as a series of blocks

The blocks after the compression header are organised logically into slices. One slice may contain, for example,
a contiguous region of alignment data. Slices begin with a slice header block and are followed by one or more
data blocks. It is these data blocks which hold the primary bulk of CRAM data. The data blocks are further
subdivided into a core data block and one or more external data blocks.

File
definition

CRAM Header
Container

Data
Container

... Data
Container

CRAM EOF
Container

Container
Header structure

Compression
Header Block

Block ... Block . . . Block ... Block

Slice 1 Slice N

Slice Header
Block

Core Data
Block

External
Data Block 1

... External
Data Block M

Figure 4: Slices formed from a series of concatenated blocks

6 File definition

Each CRAM file starts with a fixed length (26 bytes) definition with the following fields:

Data type Name Value

byte[4] format magic number CRAM (0x43 0x52 0x41 0x4d)
unsigned byte major format number 3 (0x3)
unsigned byte minor format number 1 (0x1)
byte[20] file id CRAM file identifier (e.g. file name or SHA1 checksum)

5

Valid CRAM major.minor version numbers are as follows:

1.0 The original public CRAM release.

2.0 The first CRAM release implemented in both Java and C; tidied up implementation vs specification
differences in 1.0.

2.1 Gained end of file markers; compatible with 2.0.

3.0 Additional compression methods; header and data checksums; improvements for unsorted data.

3.1 Additional EXTERNAL compression codecs only.

CRAM 3.0 and 3.1 differ only in the list of compression methods available, so tools that output CRAM 3
without using any 3.1 codecs should write the header to indicate 3.0 in order to permit maximum compatibility.

7 Container header structure

The file definition is followed by one or more containers with the following header structure where the container
content is stored in the ‘blocks’ field:

Data type Name Value

int32 length the sum of the lengths of all blocks in this container
(headers and data)

:::

and
::::

any
::::::::

padding
:::::

bytes; equal to the
total byte length of the container minus the byte length of
this header structure

itf8 reference sequence id reference sequence identifier or
-1 for unmapped reads
-2 for multiple reference sequences.
All slices in this container must have a reference sequence
id matching this value.

itf8 starting position on the
reference

the alignment start position

itf8 alignment span the length of the alignment
itf8 number of records number of records in the container
ltf8 record counter 1-based sequential index of records in the file/stream.
ltf8 bases number of read bases
itf8 number of blocks the total number of blocks in this container
array<itf8> landmarks the locations of slices in this container as byte offsets from

the end of this container header, used for random access
indexing. For sequence data containers, the landmark
count must equal the slice count.
Since the block before the first slice is the compression
header, landmarks[0] is equal to the byte length of the
compression header.

int crc32 CRC32 hash of the all the preceding bytes in the container.
byte[] blocks The blocks contained within the container.

In the initial CRAM header container, the reference sequence id, starting position on the reference, and alignment
span fields must be ignored when reading. The landmarks array is optional for the CRAM header, but if it
exists it should point to block offsets instead of slices, with the first block containing the textual header.

In data containers specifying unmapped reads or multiple reference sequences (i.e. reference sequence id < 0),
the starting position on the reference and alignment span fields must be ignored when reading. When writing,
it is recommended to set each of these ignored fields to the value 0.

7.1 CRAM header container

The first container in a CRAM file contains a textual header in one or more blocks. See section 8.3 for more
details on the layout of data within these blocks and constraints applied to the contents of the SAM header.

6

	Overview
	Data types
	Logical data types
	Writing bits to a bit stream
	Writing bytes to a byte stream

	Encodings
	Checksums
	CRC32
	CRC32 sum

	File structure
	File definition
	Container header structure
	CRAM header container

	Block structure
	Block content types
	Block content id
	CRAM header block(s)
	Compression header block
	Slice header block
	Core data block
	External data blocks

	End of file container
	Record structure
	CRAM record
	CRAM positional data
	Read names (RN data series)
	Mate records
	Auxiliary tags
	Mapped reads
	Unmapped reads

	Reference sequences
	Indexing
	Encodings
	Introduction
	EXTERNAL: codec ID 1
	Huffman coding: codec ID 3
	Byte array coding
	Beta coding: codec ID 6
	Subexponential coding: codec ID 7
	Gamma coding: codec ID 9
	DEPRECATED: Golomb coding: codec ID 2
	DEPRECATED: Golomb-Rice coding: codec ID 8

	External compression methods
	Gzip
	Bzip2
	LZMA
	rANS4x8 codec
	rANS4x16 codec
	adaptive arithemtic coding
	fqzcomp codec
	name tokeniser

	Appendix
	Choosing the container size
	CRAM History
	Contributors and Acknowledgements

