
followed by the three 8-bit integer values: 0x01 0x02 0x03, for a grand total of 4 bytes: 0x31010203.
Suppose we are at a site with many alternative alleles so AC=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]. Since there

are 16 values, we have to use the long vector encoding. The type of this field is 8 bit integer with the size set to 15
to indicate that the size is the next stream value, so this has type of 0xF1. The next value in the stream is the size,
as a typed 8-bit atomic integer: 0x11 with value 16 0x10. Each integer AC value is represented by it’s value as a 8
bit integer. The grand total representation here is:

0xF1 0x01 0x10 8 bit integer vector with overflow size
0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B
0x0C 0x0D 0x0E 0x0F 0x10

1–16 as hexadecimal 8 bit integers

Suppose this INFO field contains the “AC=.”, indicating that the AC field is missing from a record with two alt
alleles. The correct representation is as the typed pair of AC followed by a MISSING vector of type 8-bit integer:
0x01.

Vectors of mixed length — In some cases genotype fields may be vectors whose length differs among samples.
For example, some CNV call sets encode different numbers of genotype likelihoods for each sample, given the
large number of potential copy number states, rather padding all samples to have the same number of fields. For
example, one sample could have CN0:0,CN1:10 and another CN0:0,CN1:10,CN2:10. In the situation when a genotype
field contain vector values of different lengths, these are represented in BCF2 by a vector of the maximum length
per sample, with all values in the each vector aligned to the left, and END OF VECTOR values assigned to all
values not present in the original vector. The BCF2 encoder / decoder must automatically add and remove these
END OF VECTOR values from the vectors. Note that the use of END OF VECTOR means that it is legal to
encode a vector VCF field with MISSING values.

For example, suppose I have two samples, each with a FORMAT field X. Sample A has values [1], while sample
B has [2,3]. In BCF2 this would be encoded as [1, END OF VECTOR] and [2, 3]. Diving into the complete details,
suppose X is at offset 3 in the dictionary, which is encoded by the typed INT8 descriptor 0x11 followed by the value
0x03. Next we have the type of the each format field, which here is a 2 element INT8 vector: 0x21. Next we have
the encoding for each sample, A = 0x01 0x81 followed by B = 0x02 0x03. All together we have:

0x11 0x03 X dictionary offset
0x21 each value is a 2 element INT8 value
0x01 0x81 A is [1, END OF VECTOR]
0x02 0x03 B is [2, 3]

A Genotype (GT) field is encoded in a typed integer vector (can be 8, 16, or even 32 bit if necessary) with the
number of elements equal to the maximum ploidy among all samples at a site. For one individual, each integer in
the vector is organized as (allele+1) << 1 | phased where allele is set to −1 if the allele in GT is a dot ‘.’ (thus the
higher bits are all 0). The vector is padded with the END OF VECTOR values if the GT having fewer ploidy. We
note specifically that except for the END OF VECTOR byte, no other negative values are allowed in the GT array.

Examples:

0/1 in standard format (0 + 1) << 1 | 0 followed by (1 + 1) << 1 | 0 0x02 04

0/1, 1/1, and 0/0 three samples encoded consecutively 0x02 04 04 04 02 02

0 | 1 (1+ 1) << 1 | 1 = 0x05 preceded by the standard first byte value 0x02 0x02 05

./. where both alleles are missing 0x00 00

0 as a haploid it is represented by a single byte 0x02

1 as a haploid it is represented by a single byte 0x04

0/1/2 is tetraploid
::::::

triploid, with alleles 0x02 04 06

0/1 | 2 is tetraploid
::::::

triploid
:

with a single phased allele 0x02 04 07

0 and 0/1 pad out the final allele for the haploid individual 0x02 81 02 04

The final example is something seen on chrX when we have a haploid male and a diploid female. The male
genotype vector is terminated prematurely by the END OF VECTOR value.

33

	The VCF specification
	An example
	Character encoding, non-printable characters and characters with special meaning
	Data types
	Meta-information lines
	File format
	Information field format
	Filter field format
	Individual format field format
	Alternative allele field format
	Assembly field format
	Contig field format
	Sample field format
	Pedigree field format

	Header line syntax
	Data lines
	Fixed fields
	Genotype fields

	Understanding the VCF format and the haplotype representation
	VCF tag naming conventions

	INFO keys used for structural variants
	FORMAT keys used for structural variants
	Representing variation in VCF records
	Creating VCF entries for SNPs and small indels
	Example 1
	Example 2
	Example 3

	Decoding VCF entries for SNPs and small indels
	SNP VCF record
	Insertion VCF record
	Deletion VCF record
	Mixed VCF record for a microsatellite

	Encoding Structural Variants
	Specifying complex rearrangements with breakends
	Inserted Sequence
	Large Insertions
	Multiple mates
	Explicit partners
	Telomeres
	Event modifiers
	Inversions
	Uncertainty around breakend location
	Single breakends
	Sample mixtures
	Clonal derivation relationships
	Phasing adjacencies in an aneuploid context

	Representing unspecified alleles and REF-only blocks (gVCF)

	BCF specification
	Overall file organization
	Header
	Dictionary of strings
	Dictionary of contigs

	BCF2 records
	Site encoding
	Genotype encoding
	Type encoding

	Encoding a VCF record example
	Encoding CHROM and POS
	Encoding QUAL
	Encoding ID
	Encoding REF/ALT fields
	Encoding FILTER
	Encoding the INFO fields
	Encoding Genotypes

	BCF2 block gzip and indexing

	List of changes
	Changes to VCFv4.3
	Changes between VCFv4.2 and VCFv4.3
	Changes between BCFv2.1 and BCFv2.2
	Changes between VCFv4.1 and VCFv4.2

