
Integer
Signed 32-bit integer.

Long
Signed 64-bit integer.

Array
An array of any logical data type: array<type>

2.2 Writing bits to a bit stream
::::::::::

Reading
:::::

and
:::::::::

writing
::::::

bits
:::

in
::

a
::::

bit
:::::::::

stream

:::

The
:::::::

CORE
:::::

block
::::::::

supports
:::::::::

bit-based
::::::::

encoding
:::::::::

methods.
:

A bit stream consists of a sequence of 1s and 0s. The
bits are written most significant bit first where new bits are stacked to the right and full bytes on the left are
written out. In a bit stream the last byte will be incomplete if less than 8 bits have been written to it. In this
case the bits in the last byte are shifted to the left

::

to
::::::::

complete
::

a
:::::

whole
:::::

byte.

Example of writing to bit stream

Let’s consider the following example. The table below shows a sequence of write operations:

Operation order Buffer state before Written bits Buffer state after Issued bytes
1 0x0

::::

xxxx
:::::

xxxx
:

1 0x1
::::

xxxx
:::::

xxx1
::::::

(0x01)
:

-
2 0x1

::::

xxxx
:::::

xxxx
:

0 0x2
::::

xxxx
:::::

xx10
::::::

(0x02)
:

-
3 0x2

::::

xxxx
:::::

xx10
:

11 0xB
:::::

xxxx
::::

1011
:::::::

(0x0B)
:

-
4 0xB

:::::

xxxx
::::

1011
:

0000 0111 0x7
::::

xxxx
:::::

0111
::::::

(0x07)
: ::::

1011
:::::

0000
:

(0xB0
:

)

After flushing the above bit stream the following bytes are written: 0xB0 0x70. Please note that the last byte
was 0x7 before shifting to the left and became 0x70 after that:

> echo "obase=16; ibase=2; 00000111" | bc

7

> echo "obase=16; ibase=2; 01110000" | bc

70

And the whole bit sequence:

> echo "obase=2; ibase=16; B070" | bc

1011000001110000

When reading the bits from the bit sequenceit must be known that only
:

,
::::

only
:::

the
:::::

first 12 bits are meaningful
and the bit stream should not be read after that

:::::::::

remaining
::

4
::::

will
::::::

should
:::

be
:::::::::

discarded.

Note on
:::::::

reading
::::::

from
::::

and
:

writing to bit stream

When
::::::

reading
::::

and
:

writing to a bit stream both the value and the number of bits in the value must be known.
This is because programming languages normally operate with bytes (8 bits) and to specify which bits are to
be written requires a bit-holder, for example an integer, and

:::

our
::::::::

numeric
::::::

values
:::

are
::::::::

typically
:::::

held
::

in
::

a
:::::

byte

:::::::

oriented
:::::

data
:::::

type,
::::

such
::

as
:::

an
:::::

8-bit
::

or
::::::

32-bit
:::::::

integer.
::::

The
:::

bit
:::::::

stream
:::::

itself
::::

does
::::

not
::::::::

explicitly
:::::

store
:

the number
of bits in it . Equally, when reading a value from a bit stream the number of bits must be known in advance.
In case of prefix codes (e.g. Huffman) all possible bit combinations are either known in advance or it is possible
to calculate how many bits will follow based on the first few bits. Alternatively, two codes can be combined,
where the first contains the number of bits to read.

:::

per
::::::

value,
::::

and
::

it
::::

will
::::

vary
:::

by
::::::::

context,
::

so
:::

we
:::::

must
::::::

know

:::

this
:::

by
:::::

other
:::::::

means.
::::

For
::::::::

example,
:::

we
:::::

may
::

be
:::::::

reading
::::

bits
::::::

using
:

a
::::::

BETA
:::::::::

encoding
::::::

whose
::::::::::

parameters
::::::::

indicate

::::

each
:::::

value
::

is
::

6
::::

bits.
:::

So
:::

we
::::

read
::::

the
::::

next
::

6
::::

bits
::::

into
::

a
:::::

32-bit
:::::::

integer
::

to
::::

get
:

a
:::::

value
::::::::

between
::

0
::::

and
:::

31.
::::

The
:::::

next

:::

bits
:::::

may
::

be
::::

for
:

a
:::::::::::

HUFFMAN
:::::::::

encoding,
:::

in
::::::

which
::::

case
:::

we
::::

can
::::

read
::::

one
:::

bit
::

at
::

a
:::::

time
:::::

until
:::

we
::::::

match
:

a
:::::::

known

:::::::::

code-word
::

in
::::

the
::::::::

Huffman
::::

tree.
:

2.3 Writing bytes to a byte stream

2

::::

Byte
:::::::

streams
:::::::

cannot
:::

be
::::::

mixed
::

in
::::

the
:::::

same
:::::

block
::

as
:::

bit
::::::::

streams.
:

The interpretation of byte stream is straight-
forward. CRAM uses little endianness for bytes when applicable and defines the following storage data types:

Boolean (bool)
Boolean is written as 1-byte with 0x0 being ‘false’ and 0x1 being ‘true’.

Integer (int32)
Signed 32-bit integer, written as 4 bytes in little-endian byte order.

Long (int64)
Signed 64-bit integer, written as 8 bytes in little-endian byte order.

ITF-8 integer (itf8)
This is an alternative way to write an integer value. The idea is similar to UTF-8 encoding and therefore
this encoding is called ITF-8 (Integer Transformation Format - 8 bit).

The most significant bits of the first byte have special meaning and are called ‘prefix’. These are 0 to 4
true bits followed by a 0. The number of 1’s denote the number of bytes to follow. To accommodate 32
bits such representation requires 5 bytes with only 4 lower bits used in the last byte 5.

LTF-8 long (ltf8)
See ITF-8 for more details. The only difference between ITF-8 and LTF-8 is the number of bytes used to
encode a single value. To do so 64 bits are required and this can be done with 9 byte at most with the
first byte consisting of just 1s or 0xFF value.

Array (array<type>)
A variable sized array with an explicitly written dimension. Array length is written first as integer (itf8),
followed by the elements of the array.

Implicit or fixed-size arrays are also used, written as type[] or type[4] (for example). These have no
explicit dimension included in the file format and instead rely on the specification itself to document the
array size.

Encoding
Encoding is a data type that specifies how data series have been compressed. Encodings are defined as
encoding<type> where the type is a logical data type as opposed to a storage data type.

An encoding is written as follows. The first integer (itf8) denotes the codec id and the second integer
(itf8) the number of bytes in the following encoding-specific values.

Subexponential encoding example:

Value Type Name
0x7 itf8 codec id
0x2 itf8 number of bytes to follow
0x0 itf8 offset
0x1 itf8 K parameter

The first byte “0x7” is the codec id.

The next byte “0x2” denotes the length of the bytes to follow (2).

The subexponential encoding has 2 parameters: integer (itf8) offset and integer (itf8) K.

offset = 0x0 = 0

K = 0x1 = 1

Map
A map is a collection of keys and associated values. A map with N keys is written as follows:

size in bytes N key 1 value 1 key ... value ... key N value N

Both the size in bytes and the number of keys are written as integer (itf8). Keys and values are written
according to their data types and are specific to each map.

String
A string is represented as byte arrays using UTF-8 format. Read names, reference sequence names and
tag values with type ‘Z’ are stored as UTF-8.

3

	Overview
	Data types
	Logical data types
	111Reading and writing bits in a bit stream1
	Writing bytes to a byte stream

	Encodings
	Checksums
	CRC32
	CRC32 sum

	File structure
	File definition
	Container header structure
	CRAM header container

	Block structure
	Block content types
	Block content id
	CRAM header block(s)
	Compression header block
	Slice header block
	Core data block
	External data blocks

	End of file container
	Record structure
	CRAM record
	CRAM positional data
	Read names (RN data series)
	Mate records
	Auxiliary tags
	Mapped reads
	Unmapped reads

	Reference sequences
	Indexing
	Encodings
	Introduction
	EXTERNAL: codec ID 1
	Huffman coding: codec ID 3
	Byte array coding
	Beta coding: codec ID 6
	Subexponential coding: codec ID 7
	Gamma coding: codec ID 9
	DEPRECATED: Golomb coding: codec ID 2
	DEPRECATED: Golomb-Rice coding: codec ID 8

	External compression methods
	Gzip
	Bzip2
	LZMA
	rANS4x8 codec
	rANS4x16 codec
	adaptive arithemtic coding
	fqzcomp codec
	name tokeniser

	Appendix
	Choosing the container size
	CRAM History
	Contributors and Acknowledgements

