
CRAM codec specification (version 3.1)

samtools-devel@lists.sourceforge.net

7 Apr 2025

The master version of this document can be found at https://github.com/samtools/hts-specs.
This printing is version 563e8ab from that repository, last modified on the date shown above.

license: Apache 2.0

1 Introduction

This document covers the compression and decompression algorithms (codecs) specific to the CRAM format.
All bar the first of these were introduced in CRAM v3.1.

It does not cover the CRAM format itself. For that see http://samtools.github.io/hts-specs/.

1.1 Pseudocode introduction

Various parts of this specification are written in a simplistic pseudocode. This intentionally does not make
explicit use of data types and has minimal error checking. The number of operators is kept to a minimum, but
some are necessary and may be language specific. Due to the lack of explicit data types, we also have different
division operators to symbolise floating point and integer divisions.

The pseudocode doesn’t prescribe any particular programming paradigm - functional, procedural or object
oriented - but it does have a few implicit assumptions. Variables are considered to be passed between functions
via unspecified means. For example the Range Coder sets range and code during creation and these are used
during the decoding steps, but are not explicitly passed in as variables. We make the implicit assumption that
they are simply local variables of the particular usage of this range coder. Other than ephemeral loop counters,
we do not reuse variable names so the intention should be clear.

The exception to the above is occasionally we need to have multiple instances of a particular data type, such as
Order-1 decoding will have many models. Here we use an object oriented way of describing the problem with
instance.Function notation.

Note some functions may return multiple items, such as return (value, length), but the calling code may assign
a single variable to this result. In this case the first value value will be used and length will be discarded.

1

https://github.com/samtools/hts-specs
http://samtools.github.io/hts-specs/

1.2 Mathematical operators

Operator Description
a+ b Addition
a− b Subtraction
a× b Multiplication
a / b Floating point division a/b

a div b Integer division a/b, equivalent to ⌊a/b⌋
a mod b Integer modulo (remainder) a− b× (a div b)

a = b Compares a and b variables, yielding true if they match, false otherwise
a← b Assigns value of b to variable a
a << b Bit-wise left shift a by b bits, shifting in zeros
a >> b Bit-wise right shift a by b bits, shifting in zeros

a AND b Bit-wise AND operator, joining values a, b
a OR b Bit-wise OR operator, joining values a, b
a or b Logical OR operator, joining expressions a, b

a and b Logical AND operator, joining expressions a, b
a++ b String concatenation of a and b: ab

Vi Element i of vector V
The entire vector V may be passed into a function

Wi,j Element i, j of two-dimensional vector W .
The entire vector W or a one dimensional slice Wi (of size j) may be passed into a function.

Note that string concatenation with the ++ operator assumes the left and right values are converted to string
form. For example “level” ++42 will convert the integer 42 to “42” and produce the string “level42”.

1.3 Implicit functions

Operator Description
Min(a, b) Smaller of a and b
Max(a, b) Larger of a and b

ReadUint8 Read an 8-bit unsigned integer (1 byte) from unspecified input source
ReadUint32 Read a 32-bit unsigned little-endian integer from unspecified input source

ReadUint8(src) Read an 8-bit unsigned integer (1 byte) from input src
ReadUint32(src) Read a 32-bit unsigned little-endian integer from input src

ReadData(len) Read len bytes (8-bit unsigned) from an unspecified input source
ReadData(len, src) Read len bytes (8-bit unsigned) from input src

ReadChar(src) Read a single character from input src
ReadString(src) Read a nul-terminated string from input src

EOF Returns true if the input source is exhausted.
Char(a) Converts integer a to a single character of appropriate ASCII value

Length(a) Returns length of string a excluding any nul-termination bytes
Swap(a, b) Swaps the contents of a and b variables

Many of the input functions here and below are defined to read either from an unspecified input source (such
as the input file descriptor, or a global buffer that has not been explicitly stated in the pseudocode), but also
have forms that may decode from specified inputs / buffers. They both consume their input sources in the same
manner, using an implicit offset of how many bytes so far have been read.

1.4 Other basic functions

7-bit integer encoding stores values 7-bits at a time with the top bit set if further bytes are required.

(Read a variable sized unsigned integer 7-bits at a time. Returns the value.)
1: function ReadUint7(source) ▷ If source is unspecified then it is the default input stream
2: value← 0
3: length← 0
4: repeat

2

5: c← ReadUint8
6: value← (value << 7) + (c AND 127)
7: length← length+ 1
8: until c < 128
9: return value

10: end function

ITF8 integer encoding stores the additional number of bytes needed in the count of the top bits set in the initial
byte (ending with a zero bit), followed by any subsequent whole bytes. See the main CRAM specification for
more details.

(Read a variable sized unsigned integer with ITF8 encoding. Returns the value.)
1: function ReadITF8(source) ▷ If source is unspecified then it is the default input stream
2: v ← ReadUint8
3: if i >= 0xf0 then ▷ 1111xxxx => +4 bytes
4: v ← (v AND 0x0f)<< 28
5: v ← v + (ReadUint8 << 20)
6: v ← v + (ReadUint8 << 12)
7: v ← v + (ReadUint8 << 4)
8: v ← v + (ReadUint8 >> 4)
9: else if i >= 0xe0 then ▷ 1110xxxx => +3 bytes

10: v ← (v AND 0x0f)<< 24
11: v ← v + (ReadUint8 << 16)
12: v ← v + (ReadUint8 << 8)
13: v ← v+ ReadUint8
14: else if i >= 0xc0 then ▷ 110xxxxx => +2 bytes
15: v ← (v AND 0x1f)<< 16
16: v ← v + (ReadUint8 << 8)
17: v ← v+ ReadUint8
18: else if i >= 0x80 then ▷ 10xxxxxx => +1 bytes
19: v ← (v AND 0x3f)<< 8
20: v ← v+ ReadUint8
21: end if
22: return v
23: end function

2 rANS 4x8 - Asymmetric Numeral Systems

This is the rANS format first defined in CRAM v3.0.

rANS is the range-coder variant of the Asymmetric Numerical Systems1.

The structure of the external rANS codec consists of several components: meta-data consisting of compression-
order, and compressed and uncompressed sizes; normalised frequencies of the alphabet systems to be encoded,
either in Order-0 or Order-1 context; and the rANS encoded byte stream itself.

Here "Order" refers to the number of bytes of context used in computing the frequencies. It will be 0 or 1.
Ignoring punctuation and space, an Order-0 analysis of English text may observe that ‘e’ is the most common
letter (12-13%), and that ‘u’ occurs only around 2.5% of the time. If instead we consider the frequency of a
letter in the context of one previous letter (Order-1) then these statistics change considerably; we know that if
the previous letter was ‘q’ then ‘e’ becomes a rare letter while ‘u’ is the most likely.

These observed frequencies are inversely related to the amount of storage required to encode a symbol (e.g. an
alphabet letter)2.

1J. Duda, Asymmetric numeral systems: entropy coding combining speed of Huffman coding with compression rate of arithmetic
coding, http://arxiv.org/abs/1311.2540

2C.E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol. 27, pp. 379-423, 623-656, July,
October, 1948

3

http://arxiv.org/abs/1311.2540

rANS 4x8 compressed data structure

A compressed data block consists of the following logical parts:

Value data type Name Description
byte order the order of the codec,

either 0 or 1
uint32 compressed size the size in bytes of

frequency table and
compressed blob

uint32 data size raw or uncompressed
data size in bytes

byte[] frequency table byte frequencies of
input data written
using RLE

byte[] compressed blob compressed data

2.1 Frequency table

The alphabet used here has a maximum of 256 possible symbols (all byte values), but alphabets where fewer
symbols are permitted too.

The symbol frequency table indicates which symbols are present and what their relative frequencies are. The
total sum of symbol frequencies are normalised to add up to 40953. Given rounding differences when renor-
malising to a fixed sum, it is up to the encoder to decide how to distribute any remainder or remove excess
frequencies. The normalised frequency tables below are examples and not prescriptive of a specific normalisation
strategy.

Formally, this is an ordered alphabet A containing symbols s where si with the i-th symbol in A, occurring
with the frequency freqi.

Order-0 encoding

The normalised symbol frequencies are then written out as {symbol, frequency} pairs in ascending order of
symbol (0 to 255 inclusive). If a symbol has a frequency of 0 then it is omitted.

To avoid storing long consecutive runs of symbols if all are present (eg a-z in a long piece of English text)
we use run-length-encoding on the alphabet symbols. If two consecutive symbols have non-zero frequencies
then a counter of how many other non-zero frequency consecutive symbols is output directly after the second
consecutive symbol, with that many symbols being subsequently omitted.

For example for non-zero frequency symbols ‘a’, ‘b’, ‘c’, ‘d’ and ‘e’ we would write out symbol ‘a’, ‘b’ and the
value 3 (to indicate ‘c’, ‘d’ and ‘e’ are also present).

The frequency is output after every symbol (whether explicit or implicit) using ITF8 encoding. This means
that frequencies 0-127 are encoded in 1 byte while frequencies 128-4095 are encoded in 2 bytes.

Finally the symbol 0 is written out to indicate the end of the symbol-frequency table.

As an example, take the string abracadabra.

Symbol frequency:

Symbol Frequency
a 5
b 2
c 1
d 1
r 2

Normalised to sum to 4095:

Symbol Frequency
a 1863
b 744
c 372
d 372
r 744

Encoded as:
3While the maths work fine up to 4096, for historical reasons this has always been documented as having a limit of 4095.

Implementations may wish to validate decoding on <= 4096, but we recommend they use a limit of 4095 in their encoding output.

4

0x61 0x87 0x47 # ‘a’ <1863>
0x62 0x02 0x82 0xe8 # ‘b’ <+2: c,d> <744>

0x81 0x74 # ‘c’ (implicit) <372>
0x81 0x74 # ‘d’ (implicit) <372>

0x72 0x82 0xe8 # ‘r’ <744>
0x00 # <0>

Order-1 encoding

To encode Order-1 statistics typically requires a larger table as for an N sized alphabet we need to potentially
store an NxN matrix. We store these as a series of Order-0 tables.

We start with the outer context byte, emitting the symbol if it is non-zero frequency. We perform the same
run-length-encoding as we use for the Order-0 table and end the contexts with a nul byte. After each context
byte we emit the Order-0 table relating to that context.

One last caveat is that we have no context for the first byte in the data stream (in fact for 4 equally spaced
starting points, see “interleaving" below). We use the ASCII value (‘\0’) as the starting context for each
interleaved rANS state and so need to consider this in our frequency table.

Consider abracadabraabracadabraabracadabraabracadabrad as example input. Note for the additional trail-
ing “d” giving us 45 characters instead of 44. This can be broken into 4 approximate equal portions abracadabra
abracadabra abracadabra abracadabrad. We operate one independent rANS stream per portion, providing
us the opportunity to exploit CPU data parallelism.

Naively observed Order-1 frequencies:

Context Symbol Frequency
\0 a 4
a a 3

b 8
c 4
d 5

b r 8
c a 4
d a 4
r a 8

Normalised (per Order-0 statistics):

Context Symbol Frequency
\0 a 4095
a a 614

b 1639
c 819
d 1023

b r 4095
c a 4095
d a 4095
r a 4095

Note that the above table has redundant entries. While our complete string had three cases of two consecutive
“a” characters (“...cadabraabraca...”), these spanned the junction of our split streams and each rANS state is
operating independently, starting with the same last character of nul (0). Hence during decode we will not need
to access the table for the frequency of “a” in the context of a previous “a”. A similar issue occurs for the very
last byte used for each rANS state, which will not be used as a context. In extreme cases this may even be
the only time that symbols occurs anywhere. While these scenarios represent unnecessary data to store, and
these frequency entries can be safely omitted, their presence does not invalidate the data format and it may be
simpler to use a more naive algorithm when producing the frequency tables.

The above tables are encoded as:

0x00 # ‘\0’ context
0x61 0x8f 0xff # a <4095>
0x00 # end of Order-0 table

0x61 # ‘a’ context
0x61 0x82 0x66 # a <614>
0x62 0x02 0x86 0x67 # b <+2: c,d> <1639>

0x83 0x33 # c (implicit) <819>
0x83 0xff # d (implicit) <1023>

0x00 # end of Order-0 table

0x62 0x02 # ‘b’ context, <+2: c, d>
0x72 0x8f 0xff # r <4095>

5

0x00 # end of Order-0 table

‘c’ context (implicit)
0x61 0x8f 0xff # a <4095>
0x00 # end of Order-0 table

‘d’ context (implicit)
0x61 0x8f 0xff # a <4095>
0x00 # end of Order-0 table

0x72 # ‘r’ context
0x61 0x8f 0xff # a <4095>
0x00 # end of Order-0 table

0x00 # end of contexts

2.2 rANS entropy encoding

The encoder takes a symbol s and a current state x (initially L below) to produce a new state x′ with function
C.

x′ = C(s, x)

The decoding function D is the inverse of C such that C(D(x)) = x.

D(x′) = (s, x)

The entire encoded message can be viewed as a series of nested C operations, with decoding yielding the symbols
in reverse order, much like popping items off a stack. This is where the asymmetric part of ANS comes from.

As we encode into x the value will grow, so for efficiency we ensure that it always fits within known bounds.
This is governed by

L ≤ x < bL− 1

where b is the base and L is the lower-bound.

We ensure this property is true before every use of C and after every use of D. Finally to end the stream we
flush any remaining data out by storing the end state of x.

Implementation specifics

We use an unsigned 32-bit integer to hold x. In encoding it is initialised to L. For decoding it is read little-endian
from the input stream.

Recall freqi is the frequency of the i-th symbol si in alphabet A. We define cfreqi to be cumulative frequency
of all symbols up to but not including si:

cfreqi =

{
0 if i < 1
cfreqi−1 + freqi−1 if i ≥ 1

We have a reverse lookup table cfreq_to_symc from 0 to 4095 (0xfff) that maps a cumulative frequency c to
a symbol s.

cfreq_to_symc = si where c : cfreqi ≤ c < cfreqi + freqi

The x′ = C(s, x) function used for the i-th symbol s is:

x′ = (x/freqi)× 0x1000+ cfreqi + (x mod freqi)

The D(x′) = (s, x) function used to produce the i-th symbol s and a new state x is:

c = x′ AND 0xfff

si = cfreq_to_symc

x = freqi(x
′/0x1000) + c− cfreqi

Most of these operations can be implemented as bit-shifts and bit-AND, with the encoder modulus being
implemented as a multiplication by the reciprocal, computed once only per alphabet symbol.

6

We use L = 0x800000 and b = 256, permitting us to flush out one byte at a time (encoded and decoded in
reverse order).

Before every encode C(s, x) we renormalise x, shifting out the bottom 8 bits of x until x < 0x80000 × freqi.
After finishing all encoding we flush 4 more bytes (lowest 8-bits first) from x.

After every decoded D(x′) we renormalise x′, shifting in the bottom 8 bits until x ≥ 0x800000.

Interleaving

For efficiency, we interleave 4 separate rANS codecs at the same time4. For the Order-0 codecs these simply
encode or decode the 4 neighbouring bytes in cyclic fashion using interleaved codec 0, 1, 2, and 3, sharing the
same output buffer (so the output bytes get interleaved).

For the Order-1 codec we cannot do this as we need to know the previous byte value as the context for the
next byte. We therefore split the input data into 4 approximately equal sized fragments5 starting at 0, ⌊len/4⌋,
⌊len/4⌋ × 2 and ⌊len/4⌋ × 3. Each Order-1 codec operates in a cyclic fashion as with Order-0, all starting with
0 as their state and sharing the same compressed output buffer. Any remainder, when the input buffer is not
divisible by 4, is processed at the end by the 4th rANS state.

We do not permit Order-1 encoding of data streams smaller than 4 bytes.

2.3 rANS decode pseudocode

A naïve implementation of a rANS decoder follows. This pseudocode is for clarity only and is not expected to
be performant and we would normally rewrite this to use lookup tables for maximum efficiency. The function
ReadUint8 fetches the next single unsigned byte from an unspecified input source. Similarly for ReadITF8
(variable size integer) and ReadUint32 (32-bit unsigned integer in little endian format).

1: procedure RansDecode(input, output)
2: order ← ReadUint8 ▷ Implicit read from input
3: n_in ← ReadUint32
4: n_out← ReadUint32
5:
6: if order = 0 then
7: RansDecode0(output, n_out)
8: else
9: RansDecode1(output, n_out)

10: end if
11: end procedure

rANS order-0

The Order-0 code is the simplest variant. Here we also define some of the functions for manipulating the rANS
state, which are shared between Order-0 and Order-1 decoders.

(Reads a table of Order-0 symbol frequencies Fi)
(and sets the cumulative frequency table Ci+1 = Ci + Fi)

1: procedure ReadFrequencies0(F, C)
2: s← ReadUint8 ▷ Next alphabet symbol
3: last_sym← s
4: rle← 0
5: repeat
6: Fs ← ReadITF8
7: if rle > 0 then
8: rle ← rle− 1

4F. Giesen, Interleaved entropy coders, http://arxiv.org/abs/1402.3392
5This was why the ‘\0’ → ‘a’ context in the example above had a frequency of 4 instead of 1.

7

http://arxiv.org/abs/1402.3392

9: s ← s+ 1
10: else
11: s← ReadUint8
12: if s = last_sym+ 1 then
13: rle← ReadUint8
14: end if
15: end if
16: last_sym← s
17: until s = 0

(Compute cumulative frequencies Ci from Fi)
18: C0 ← 0
19: for s← 0 to 255 do
20: Cs+1 ← Cs + Fs

21: end for
22: end procedure

(Bottom 12 bits of our rANS state R are our frequency)
23: function RansGetCumulativeFreq(R)
24: return R AND 0xfff
25: end function

(Convert frequency to a symbol. Find s such that Cs ≤ f < Cs+1)
(We would normally implement this via a lookup table)

26: function RansGetSymbolFromFreq(C, f)
27: s← 0
28: while f >= Cs+1 do
29: s← s+ 1
30: end while
31: return s
32: end function

(Compute the next rANS state R given frequency f and cumulative freq c)
33: function RansAdvanceStep(R, c, f)
34: return f × (R>> 12) + (R AND 0xfff)− c
35: end function

(If too small, feed in more bytes to the rANS state R)
36: function RansRenorm(R)
37: while R < (1<< 23) do
38: R← (R<< 8)+ ReadUint8
39: end while
40: return R
41: end function

42: procedure RansDecode0(output, nbytes)
43: ReadFrequencies0(F,C)
44: for j ← 0 to 3 do ▷ Initialise the 4 interleaved streams
45: Rj ← ReadUint32 ▷ Unsigned 32-bit little endian
46: end for
47: for i← 0 to nbytes− 1 do
48: j ← i mod 4
49: f ← RansGetCumulativeFreq(Rj)
50: s← RansGetSymbolFromFreq(C, f)
51: outputi ← s
52: Rj ← RansAdvanceStep(Rj , Cs, Fs)
53: Rj ← RansRenorm(Rj)
54: end for
55: end procedure

8

rANS order-1

As described above, the decode logic is very similar to rANS Order-0 except we have a two dimensional array
of frequencies to read and the decode uses the last character as the context for decoding the next one. In
the pseudocode we illustrate this by using two dimensional vectors Ci,j and Fi,j . For simplicity, we reuse the
Order-0 code by referring to Ci and Fi of the 2D vectors to get a single dimensional vector that operates in the
same manner as the Order-0 code. This is not necessarily the most efficient implementation.

Note the code for dealing with the remaining bytes when an output buffer is not an exact multiple of 4 is less
elegant in the Order-1 code. This is correct, but it is unfortunately a design oversight.

(Reads a table of Order-1 symbol frequencies Fi,j)
(and sets the cumulative frequency table Ci,j+1 = Ci,j + Fi,j)

1: procedure ReadFrequencies1(F, C)
2: sym← ReadUint8 ▷ Next alphabet symbol
3: last_sym← sym
4: rle← 0
5: repeat
6: ReadFrequencies0(Fi, Ci)
7: if rle > 0 then
8: rle ← rle− 1
9: sym← sym+ 1

10: else
11: sym← ReadUint8
12: if sym = last_sym+ 1 then
13: rle← ReadUint8
14: end if
15: end if
16: last_sym← sym
17: until sym = 0
18: end procedure

19: procedure RansDecode1(output, nbytes)
20: ReadFrequencies1(F,C)
21: for j ← 0 to 3 do ▷ Initialise 4 interleaved streams
22: Rj ← ReadUint32 ▷ Unsigned 32-bit little endian
23: Lj ← 0 ▷ Last symbol
24: end for
25: i← 0
26: while i < ⌊nbytes/4⌋ do
27: for j ← 0 to 3 do
28: f ← RansGetCumulativeFreq(Rj)
29: s← RansGetSymbolFromFreq(CLj

, f)
30: outputi+j×⌊nbytes/4⌋ ← s
31: Rj ← RansAdvanceStep(Rj , CLj ,s, FLj ,s)
32: Rj ← RansRenorm(Rj)
33: Lj ← s
34: end for
35: i← i+ 1
36: end while

(Now deal with the remainder if buffer size is not a multiple of 4,)
(using rANS state 3 exclusively.)

37: for i← i× 4 to len− 1 do
38: f ← RansGetCumulativeFreq(R3)
39: s← RansGetSymbolFromFreq(CL3

, f)
40: outputi ← s
41: R3 ← RansAdvanceStep(R3, CL3,s, FL3,s)
42: R3 ← RansRenorm(R3)
43: L3 ← s

9

44: end for
45: end procedure

3 rANS Nx16

CRAM version 3.1 defines an additional rANS entropy encoder, using 16-bit renormalisation instead of the
8-bit used in CRAM 3.0 and with inbuilt bit-packing and run-length encoding. The lower-bound and initial
encoder state L is also changed to 0x8000. The Order-1 rANS Nx16 encoder has also been modified to permit a
maximum frequency of 1024 instead of 4096. This offers better cache performance for the large Order-1 tables
and usually has minimal impact on compression ratio.

Additionally it permits adjustment of the number of interleaved rANS states from the fixed 4 used in rANS 4x8
to either 4 or 32 states. The benefit of the 32-way interleaving is in enabling efficient use of SIMD instructions
for faster encoding and decoding speeds. However it has a small cost in size and initialisation times so it is not
recommended on smaller blocks of data.

Frequencies are now stored using uint7 format instead of ITF8. The tables are also stored differently, separating
the list of symbols present in the alphabet (those with frequency greater than zero) from the frequencies
themselves.

Finally transformations may be applied to the data prior to compression (or after decompression). These
consist of stripe, for structured data where every Nth byte is sent to one of N separate compression streams,
Run Length Encoding replacing repeated strings of symbols with a symbol and count, and bit-packing where
reduced alphabets can combine multiple symbols into a byte prior to entropy encoding.

The initial “Order” byte is expanded with additional bits to list the transformations to be applied. The specifics
of each sub-format are listed below, in the order they are applied.

• Stripe: rANS Nx16 with multi-way interleaving (see Section 3.6).

• NoSize: Do not store the size of the uncompressed data stream. This information is not required when
the data stream is one of the four sub-streams in the Stripe format.

• Cat: If present, the order bit flag is ignored.

The uncompressed data stream is the same as the compressed stream. This is useful for very short data
where the overheads of compressing are too high.

• N32: Flag indicating whether to interleave 4 or 32 rANS states.

• Order: Bit field defining order-0 (unset) or order-1 (set) entropy encoding, as described above by the
RansDecodeNx16_0 and RansDecodeNx16_1 functions.

• RLE: Bit field defining whether Run Length Encoding has been applied to the data. If set, the reverse
transorm will be applied using DecodeRLE after Order-0 or Order-1 uncompression (see Section 3.4).

• Pack: Bit field indicating the data was packed prior to compression (see Section 3.5). If set, unpack the
bits after any RLE decoding has been applied (if required) using the DecodePack function.

3.1 Frequency tables

Frequency tables in rANS Nx16 separate the list of symbols from their frequencies. The symbol list must
be stored in ascending ASCII order, with their frequency values in the same ordering as their corresponding
symbols. For the Order-1 frequency table this list of symbols is those used in any context, thus we only have
one alphabet recorded for all contexts. This means in some contexts some (potentially many) symbols will have
zero frequency. To reduce the Order-1 table size an additional zero run-length encoding step is used. Finally
the Order-1 frequencies may optionally be compressed using the Order-0 rANS Nx16 codec.

Frequencies must always add up to a power of 2, but do not necessarily have to match the final power of two
used in the Order-0 (4096) and Order-1 (1024, 4096) entropy decoder algorithm. A normalisation step is applied
after reading the frequencies to scale them appropriately. This is required as the Order-1 frequencies may be
scaled differently for each context.

10

(Reads a set of symbols A used in our alphabet)
1: function ReadAlphabet
2: s← ReadUint8
3: last_sym← s
4: rle← 0
5: repeat
6: A← (A, s) ▷ Append s to the symbol set A
7: if rle > 0 then
8: rle ← rle− 1
9: s ← s+ 1

10: else
11: s← ReadUint8
12: if s = last_sym+ 1 then
13: rle← ReadUint8
14: end if
15: end if
16: last_sym← s
17: until s = 0
18: return A
19: end function

(Reads a table of Order-0 symbol frequencies Fi)
(and sets the cumulative frequency table Ci+1 = Ci + Fi)

1: procedure ReadFrequenciesNx16_0(F, C)
2: F ← (0, ...) ▷ (Set to zero for all i ∈ {0, 1, ..., 255})
3: A← ReadAlphabet
4: foreach i in A do
5: Fi ← ReadUint7
6: end foreach
7:
8: NormaliseFrequenciesNx16_0(F, 12)
9:

10: C0 ← 0
11: for s← 0 to 255 do ▷ All 256 possible byte values
12: Cs+1 ← Cs + Fs

13: end for
14: end procedure

(Normalises a table of frequencies Fi to sum to a specified power of 2.)
1: procedure NormaliseFrequenciesNx16_0(F, bits)
2: tot← 0
3: for i← 0 to 255 do
4: tot← tot+ Fi

5: end for
6: if tot = 0 or tot = (1<< bits) then
7: return
8: end if
9:

10: shift← 0
11: while tot < (1<< bits) do
12: tot← tot ∗ 2
13: shift← shift+ 1
14: end while
15:
16: for i← 0 to 255 do
17: Fi ← Fi << shift
18: end for
19: end procedure

11

The Order-1 frequencies also store the complete alphabet of observed symbols (ignoring context) followed by
a table of frequencies for each symbol in the alphabet. Given many frequencies will be zero where a symbol
is present in one context but not in others, all zero frequencies are followed by a run length to omit adjacent
zeros.

The order-1 frequency table itself may still be quite large, so is optionally compressed using the order-0 rANS
Nx16 codec with a fixed 4-way interleaving. This is specified in the bottom bit of the first byte. If this is 1, it is
followed by 7-bit encoded uncompressed and compressed lengths and then the compressed frequency data. The
pseudocode here differs slightly to elsewhere as it indicates the input sources, which are either the uncompressed
frequency buffer or the default (unspecified) source. The top 4 bits of the first byte indicate the number of bits
used for the frequency tables. Permitted values are 10 and 12.

(Reads a table of Order-1 symbol frequencies Fi,j)
(and sets the cumulative frequency table Ci,j+1 = Ci,j + Fi,j)

1: procedure ReadFrequenciesNx16_1(F, C, bits)
2: comp← ReadUint8
3: bits← comp >> 4
4: if (comp and 1) ̸= 0 then
5: u_size← ReadUint7 ▷ Uncompressed size
6: c_size← ReadUint7 ▷ Compressed size
7: c_data← ReadData(c_size)
8: source← RansDecodeNx16_0(c_data, 4) ▷ Create u_size bytes of source from c_data
9: else

10: (define source to be the default input stream)
11: end if

12: F ← ((0, ...), ...) ▷ (Set to zero for all i and j ∈ {0, 1, ..., 255})
13: A← ReadAlphabet(from source)
14: foreach i in A do
15: run← 0
16: foreach j in A do
17: if run > 0 then
18: run← run− 1 ▷ Fi,j is implicitly zero already
19: else
20: Fi,j ← ReadUint7(from source)
21: if Fi,j = 0 then
22: run← ReadUint8(from source)
23: end if
24: end if
25: end foreach
26: NormaliseFrequenciesNx16_0(Fi, bits)
27:
28: Ci,0 ← 0
29: for j ← 0 to 255 do
30: Ci,j+1 ← Ci,j + Fi,j

31: end for
32: end foreach
33: end procedure

3.2 rANS Nx16 Order-0

To decode an Order-0 encoded byte stream we first decode the symbol frequencies as described above and then
decode the N interleaved rANS states. This is similar to the old (4x8) rANS decoder, but the RansRenorm
function is replaced by a single 16-bit renormalisation instead of a loop using 8-bit values and can interleave to
different amounts.
1: function RansGetCumulativeFreqNx16(R, bits)
2: return R AND ((1<< bits)− 1)
3: end function

12

4: function RansAdvanceStepNx16(R, c, f, bits)
5: return f × (R>> bits) + (R AND ((1<< bits)− 1)− c
6: end function

7: function RansRenormNx16(R)
8: if R < (1<< 15) then
9: R← (R<< 16)+ ReadUint16

10: end if
11: return R
12: end function

13: function RansDecodeNx16_0(len,N)
14: ReadFrequenciesNx16_0(F , C)
15: for j ← 0 to N − 1 do
16: Rj ← ReadUint32
17: end for
18: for i← 0 to len− 1 do
19: j ← i mod N
20: f ← RansGetCumulativeFreqNx16(Rj , 12)
21: s← RansGetSymbolFromFreq(C, f)
22: outi ← s
23: Rj ← RansAdvanceStepNx16(Rj , Cs, Fs, 12)
24: Rj ← RansRenormNx16(Rj)
25: end for
26: return out
27: end function

3.3 rANS Nx16 Order-1

The Order-1 code is comparable to Order-0 but with an extra dimension (the previous value) to the F and C
matrices and a more complex system for storing the frequencies. The frequencies may also add up to either
1024 or 4096 (10 or 12 bits).

The N rANS states don’t operate on interleaved data either, but in distinct regions so they can utilise their
previous symbols without inter-dependency between the decoded output of the rANS states. This makes the
handling of data that isn’t a multiple of N is a little more complex too.
1: function RansDecodeNx16_1(len, N)
2: ReadFrequenciesNx16_1(F , C, bits)
3: for j ← 0 to N − 1 do
4: Rj ← ReadUint32
5: Lj ← 0 ▷ Last symbol
6: end for

(The primary unrollable loop)
7: for i← 0 to ⌊len/N⌋ − 1 do
8: for j ← 0 to N − 1 do
9: f ← RansGetCumulativeFreqNx16(Rj , bits)

10: s← RansGetSymbolFromFreq(CLj
, f)

11: outi+j×⌊len/N⌋ ← s
12: Rj ← RansAdvanceStepNx16(Rj , CLj ,s, FLj ,s, bits)
13: Rj ← RansRenormNx16(Rj)
14: Lj ← s
15: end for
16: end for

(The remainder for data not a multiple of N in size, using RN−1 throughout.)
17: for i← i×N to len− 1 do
18: f ← RansGetCumulativeFreqNx16(RN−1, bits)
19: s← RansGetSymbolFromFreq(CLN−1

, f)
20: outi ← s

13

21: RN−1 ← RansAdvanceStepNx16(RN−1, CLN−1,s, FLN−1,s, bits)
22: RN−1 ← RansRenormNx16(RN−1)
23: LN−1 ← s
24: end for
25: return out
26: end function

3.4 rANS Nx16 Run Length Encoding

For symbols that occur many times in succession, we can replace them with a single symbol and a count. In
this specification, run lengths are always provided for certain symbols (even if the run length is 1) and never
for the other symbols (even if many are consecutive).

The data stream is split into two parts: the meta-data holding run-lengths and the run-removed data itself.

Bytes Type Name Description
? uint7 rle_meta_len RLE meta-data-size times 2. The bottom bit is a flag to

indicate whether rle_meta is uncompressed (1) or com-
pressed (0).

? uint7 rle_len Size of uncompressed data before DecodeRLE is applied
? uint7 (comp_meta_len) Only stored if bottom bit of rle_meta_len is unset. Size

of compressed RLE meta data.
? uint8[] rle_meta RLE meta-data. Decompress with RansDecodeNx16_0

if bottom bit of rle_meta_len is unset.

The meta-data format starts with the count of symbols which have runs associated with them (zero being
interpreted as all of them) and the list of these symbol values. This is followed by the run lengths encoded as
variable sized integers in the uint7 format.

(Reads and optionally uncompresses the blob of run-lengths and the array L)
(indicating which symbols have associates run-lengths.)

1: function DecodeRLEMeta(N)
2: L← (0, ...) ▷ (Set to zero for all i ∈ {0, 1, ..., 255})
3: rle_meta_len←ReadUint7
4: len←ReadUint7 ▷ Length of uncompressed O0/O1 data, pre-expansion
5: if rle_meta_len AND 1 then
6: rle_meta←ReadData(⌊rle_meta_len/2⌋)
7: else
8: comp_meta_len←ReadUint7
9: rle_meta←ReadData(comp_meta_len)

10: rle_meta←RansDecodeNx16_0(rle_meta_len/2, N , source = rle_meta, source = rle_meta)
11: end if

12: n← ReadUint8(metadata)
13: if n = 0 then
14: n← 256
15: end if
16: for i← 0 to n− 1 do
17: s← ReadUint8(metadata)
18: Ls ← 1
19: end for

20: return (L, rle_meta, len)
21: end function

The use of the run length meta-data occurs when expanding the uncompressed data, after Order-0 or Order-1
data decompression.

(Expands data (in) using run-length metadata)
1: function DecodeRLE(in, L, metadata, in_len)

14

2: j ← 0
3: for i← 0 to in_len− 1 do
4: sym← ReadUint8(in)
5: if Ls then
6: run← ReadUint7(metadata)
7: for k ← 0 to run do
8: outj+k ← s
9: end for

10: j ← j + run+ 1
11: else
12: outj ← s
13: j ← j + 1
14: end if
15: end for
16: return out
17: end function

3.5 rANS Nx16 Bit Packing

If the alphabet of used symbols in the uncompressed data stream is small - no more than 16 - then we can pack
multiple symbols together to form bytes prior to compression. This permits 2, 4, 8 and infinite (all symbols
are the same) numbers per byte. The distinct symbol values do not need to be adjacent as a mapping table P
converts mapped value x to original symbol Px.

The packed format is split into uncompressed meta-data (below) and the compressed packed data.

Bytes Type Name Description
1 byte nsym Number of distinct symbols
nsym byte[] P Symbol map
? uint7 len Length of packed data

The first meta-data byte holds nsym, the number of distinct values, followed by nsym bytes to construct the
P map. If nsym = 1 then the byte stream is a stream of constant values and no bit-packing is done (we know
every value already). If nsym = 2 then each symbol is 1 bit (8 per byte), if 2 < nsym ≤ 4 symbols are 2
bits each (4 per byte) and if 4 < nsym ≤ 16 symbols are 4 bits each (2 per byte). It is not permitted to have
nsym > 16 or nsym = 0 as bit packing is not possible. Bits are unpacked from low to high.

Decoding this meta-data is implemented by the DecodePackMeta function below.
1: function DecodePackMeta
2: nsym←ReadUint8
3: for i← 0 to nsym− 1 do
4: Pi ← ReadUint8
5: end for
6: len← ReadUint7
7: return (P, nsym, len)
8: end function

After uncompressing the main data stream, it should be unpacked using DecodePack below. The format of
this data stream is packed data as described above.
1: function DecodePack(data, P, nsym, len)
2: j ← 0 ▷ Index into data; i is index into output
3: if nsym ≤ 1 then ▷ Constant value
4: for i← 0 to len− 1 do
5: outi ← P0

6: end for

7: else if nsym ≤ 2 then ▷ 1 bit per value
8: for i← 0 to len− 1 do
9: if i mod 8 = 0 then

15

10: v ← dataj
11: j ← j + 1
12: end if
13: outi ← P(v AND 1)

14: v = v >> 1
15: end for

16: else if nsym ≤ 4 then ▷ 2 bits per value
17: for i← 0 to len− 1 do
18: if i mod 4 = 0 then
19: v ← dataj
20: j ← j + 1
21: end if
22: outi ← P(v AND 3)

23: v = v >> 2
24: end for

25: else if nsym ≤ 16 then ▷ 4 bits per value
26: for i← 0 to len− 1 do
27: if i mod 2 = 0 then
28: v ← dataj
29: j ← j + 1
30: end if
31: outi ← P(v AND 15)

32: v = v >> 4
33: end for

34: else
35: Error
36: end if

37: return out
38: end function

3.6 Striped rANS Nx16

If we have a series of 32-bit values, we can often get better compression by treating it as a series of 4 8-bit
values representing the first to last bytes in each 32-bit word, than we can by simply processing it as a stream
of 8-bit values. Each 4th byte is sent to its own stream producing 4 interleaved streams, so the 1st stream will
hold data from byte 0, 4, 8, etc while the 2nd stream will hold data from byte 1, 5, 9, etc. Each of those four
streams is then itself compressed using this compression format.

For example an input block of small unsigned 32-bit little-endian numbers may use RLE for the first three
streams as they are mostly zero, and a non-RLE Order-0 entropy encoder for the last stream.

In the general case we describe this as N -way interleaved streams. We can consider this interleaving process to
be equivalent to a table transpose of M rows by N columns to N rows by M columns, followed by compressing
each N row independently.

The byte stream consists of a 7-bit encoded uncompressed combined length, a byte holding the value of N ,
followed by N compressed lengths also 7-bit encoded. Finally the data sub-streams themselves, each a valid
cdata stream, follow.

Normally our cdata format will include the decoded size, but with Stripe we can omit this from the internal
compressed sub-streams (using the NoSize flag) as given the total length we know how to compute the sub-
lengths.

Reproducing the original uncompressed data involves decoding the N sub-streams and interleaving them to-
gether again (reversing the table transpose). The uncompressed data length may not necessary be an exact
multiple of N , in which case the latter uncompressed sub-streams may be 1 byte shorter.

16

As an example starting with input data D we define the transposed data T as:

D = aAAbBBcCCdDDe

T = [abcde, ABCD, ABCD]

Note our example data is not a multiple of N long, missing EE, which gives T fragments of length [5, 4, 4].

If Di is the ith character in D and Tj,i is the ith character of the jth substring in T , transformations between
D and T are defined as:

Tj,i = DiN+j

Di = T(i mod N), (i div N)

1: function RansDecodeStripe(len)
2: N ←ReadUint8
3: for j ← 0 to N do ▷ Fetch N compressed lengths
4: clenj ←ReadUint7
5: end for

6: for j ← 0 to N do ▷ Decode N streams
7: ulenj ← (len div N) + ((len mod N) > j) ▷ (x > y) expression being 1 if true, 0 if false
8: Tj ←RansDecodeNx16(ulenj)
9: end for

10: for j ← 0 to N − 1 do ▷ Stripe
11: for i← 0 to ulenj − 1 do
12: outi×N+j ← Tj,i

13: end for
14: end for
15: return out
16: end function

3.7 Combined rANS Nx16 Format

We combine the Order-0 and Order-1 rANS Nx16 encoder with optional run-length encoding, bit-packing and
four-way interleaving into a single data stream.

Bits Type Name Description
8 uint8 flag Data format bit field

Unless NoSize flag is set:
? uint7 ulen Uncompressed length

If Stripe flag is set:
8 uint8 N Number of sub-streams
? uint7[] clen[] N copies of compressed sub-block length
? uint8[] cdata[] N copies of Compressed data sub-block (recurse)

If Cat flag is set (and Stripe flag is unset):
? uint8[] udata Uncompressed data stream

If Pack flag is set (and neither Stripe or Cat flags are set):
? uint8[] pack_meta Pack lookup table

If RLE flag is set (and neither Stripe or Cat flags are set):
? uint8[] rle_meta RLE meta-data

If neither Stripe or Cat flags are set:
? uint8[] cdata Entropy encoded data stream (see Order flag)

The first byte of our generalised data stream is a bit-flag detailing the type of transformations and entropy

17

encoders to be combined, followed by optional meta-data, followed by the actual compressed data stream. The
bit-flags are defined below, but note not all combinations are permitted.

Bit AND value Code Description
1 Order Order-0 or Order-1 entropy coding
2 reserved Reserved (for possible order-2/3)
4 N32 Interleave N = 32 rANS states (else N = 4)
8 Stripe∗ multi-way interleaving of byte streams
16 NoSize original size is not recorded (for use by Stripe)
32 Cat Data is uncompressed
64 RLE Run length encoding, with runs and literals encoded separately
128 Pack Pack 2, 4, 8 or infinite symbols per byte

(∗) Not to be used in conjunction with other bit-field values except NoSize.

Bit-packing and run length encoding transforms have their own meta-data, which is decoded prior to the main
compressed data stream. After decoding, these transforms are applied in order of RLE followed by unpack as
required and in that order.

For example a flag data-format value of 197 indicates a byte stream should decode the pack meta-data, the
RLE meta-data and the Order-1 compressed data itself, all using 32 rANS states, and then apply the RLE
followed by Unpack transforms to yield the original uncompressed data.

RansDecodeNx16 describes the decoding of the generalised RANS Nx16 decoder.
1: function RansDecodeNx16(len)
2: flags←ReadUint8
3: if flagsAND NoSize ̸= 0 then
4: len←ReadUint7
5: end if
6: if flagsAND Stripe then
7: data←RansDecodeStripe(len)
8: return data
9: end if

10: if flagsAND N32 then
11: N ← 32
12: else
13: N ← 4
14: end if

▷ Read meta-data
15: if flagsAND Pack then
16: pack_len← len
17: (P, nsym, len)←DecodePackMeta
18: end if
19: if flagsAND RLE then
20: rle_len← len
21: (L, rle_meta, len)←DecodeRLEMeta(N)
22: end if

▷ Uncompress main data block
23: if flagsAND Cat then
24: data←ReadData(len)
25: else if flagsAND Order then
26: data←RansDecodeNx16_1(len,N)
27: else
28: data←RansDecodeNx16_0(len,N)
29: end if

▷ Apply data transformations
30: if flagsAND RLE then
31: data←DecodeRLE(data, L, rle_meta, rle_len)
32: end if
33: if flagsAND Pack then
34: data←DecodePack(data, P , nsym, pack_len)

18

35: end if
36: return data
37: end function

4 Range coding

The range coder is a byte-wise arithmetic coder that operates by repeatedly reducing a probability range (for
example 0.0 to 1.0) one symbol (byte) at a time, with the complete compressed data being represented by any
value within the final range.

This is easiest demonstrated with a worked example, so let us imagine we have an alphabet of 4 symbols, ‘t’,
‘c’, ‘g’, and ‘a’ with probabilities 0.2, 0.3, 0.3 and 0.2 respectively. We can construct a cumulative distribution
table and apply probability ranges to each of the symbols:

Symbol Probability Range low Range high
t 0.2 0.0 0.2
c 0.3 0.2 0.5
g 0.3 0.5 0.8
a 0.2 0.8 1.0

As a conceptual example (note: this is not how it is implemented in practice, see below) using arbitrary precision
floating point mathematics this could operate as follows.

If we wish to encode a message, such as “cat” then we will encode one symbol at a time (‘c’, ‘a’, ‘t’) successively
reducing the initial range of 0.0 to 1.0 by the cumulative distribution for that symbol. At each point the new
range is adjusted to be the proportion of the previous range covered by the cumulative symbol range. See the
table footnotes below for the worked mathematics.
Range low / high Symbol Sym. low / high New range low New range high

0.000 1.000 c 0.2 0.5 0 + (1− 0)× .2 0 + (1− 0)× .5
0.200 0.500 a 0.8 1.0 .2 + (.5− .2)× .8 .2 + (.5− .2)× 1
0.440 0.500 t 0.0 0.2 .44 + (.5− .44)× 0 .44 + (.5− .44)× .2
0.440 0.452 <end>

Our final range is 0.44 to 0.452 with any value in that range representing “cat”, thus 0.45 would suffice. A
pictorial example of this process is below.

Figure 1: A pictorial demonstration of range reduction.

19

Decoding is simply the reverse of this. In the above picture we can see that 0.45 would read off ‘c’, ‘a’ and ‘t’
by repeatedly comparing the symbol ranges to the current range and using those to identify the symbol and
produce a new range.

Range low Range high Fraction into range Symbol
0.000 1.000 0.450 c
0.200 0.500 0.833a a
0.440b 0.500 0.167 t

a. 0.45 into range 0.2 to 0.5: (0.45 − 0.2)/(0.5 − 0.2) = 0.833.
This falls within the 0.8 to 1.0 symbol range for ‘a’.
b. ‘a’ symbol range 0.8 to 1.0 applied to range 0.2 to 0.5: 0.2+
0.8× (0.5− 0.2) = 0.44 and 0.2 + 1.0× (0.5− 0.2) = 0.5.

Note: The above example is not how the actual implementation works6. For efficiency, we use integer values
having a starting range of 0 to 232− 1. We write out the top 8-bits of the range when low and high become the
same value. Special care needs to be taken to handle small values that are numerically close but stradding a
top byte value, such as 0x37ffba20 to 0x38000034. The decoder does not need to do anything special here, but
the encoder must track the number of 0xff or 0x00 values to emit in order to avoid needing arbitrary precision
integers.

Pseudocode for the range codec decoding follows. This implementation uses code (next few bytes in the current
bit-stream) and range instead of low and high, both 32-bit unsigned integers. This specification focuses on de-
coding, but given the additional complexity of the precision overflows in encoder we describe this implementation
too.

RangeDecodeCreate initialises the range coder, reading the first bytes of the compressed data stream.
1: function RangeDecodeCreate
2: range ← 232 − 1 ▷ Maximum 32-bit unsigned value
3: code ← 0 ▷ 32-bit unsigned
4: for i← 0 to 4 do
5: code← (code << 8)+ReadUint8
6: end for
7: code← code AND 232 − 1
8: return this range coder (range, code)
9: end function

Decoding each symbol is in two parts; getting the current frequency and updating the range.
1: function RangeGetFreq(tot_freq)
2: range← range div tot_freq
3: return code div range
4: end function
1: procedure RangeDecode(sym_low, sym_freq, tot_freq)
2: code ← code− sym_low × range
3: range ← range× sym_freq
4: while range < 224 do ▷ Renormalise
5: range ← range << 8
6: code ← (code << 8)+ReadUint8
7: end while
8: end procedure

As mentioned above, the encoder is more complex as it cannot shift out the top byte until it has determined
the value. This can take a considerable while if our current low / high (low + range) are very close but span a
byte boundary, such as 0x37ffba20 to 0x38000034, where ultimately we will later emit either 0x37 or 0x38. To
handle this case, when the range gets too small but the top bytes still differ, the encoder caches the top byte of
low (0x37) and keeps track of how many 0xff or 0x00 values will need to be written out once we finally observe
which value the range has shrunk to.

The RangeEncode function is a straight forward reversal of the RangeDecode, with the exception of the
special code for shifting the top byte out of the low variable.
1: procedure RangeEncode(sym_low, sym_freq, tot_freq)

6This implementation was designed by Eugene Shelwein, based on Michael Schindler’s earlier work.

20

2: old_low ← low
3: range ← range div tot_freq
4: low ← low + sym_low × range
5: range ← range× sym_freq

6: if low < old_low then
7: carry ← 1 ▷ overflow
8: end if
9: while range < 224 do ▷ Renormalise

10: range ← range << 8
11: RangeShiftLow
12: end while
13: end procedure

RangeShiftLow is the main heart of the encoder renormalisation. It tracks the total number of extra bytes
to emit and carry indicates whether they are a string of 0xFF or 0x00 values.
1: procedure RangeShiftLow
2: if low < 0xff000000 orcarry ̸= 0 then
3: if carry = 0 then
4: WriteByte(cache) ▷ top byte cache plus FFs
5: while FFnum > 0 do
6: WriteByte(0xff)
7: FFnum← FFnum− 1
8: end while
9: else

10: WriteByte(cache+ 1) ▷ top byte cache+ 1 plus 00s
11: while FFnum > 0 do
12: WriteByte(0)
13: FFnum← FFnum− 1
14: end while
15: end if
16: cache← low >> 24 ▷ Copy of top byte ready for next flush
17: carry ← 0
18: else
19: FFnum← FFnum+ 1
20: end if

21: low ← low << 8
22: end procedure

For completeness, the Encoder initialisation and finish functions are below.
1: procedure RangeEncodeStart
2: low ← 0
3: range ← 232 − 1
4: FFnum← 0
5: carry ← 0
6: cache ← 0
7: end procedure
1: procedure RangeEncodeEnd
2: for i← 0 to 4 do ▷ Flush any residual state in low
3: RangeShiftLow
4: end for
5: end procedure

4.1 Adaptive Modelling

The probabilities passed to the range coder may be fixed for all scenarios (as we had in the “cat” example), or
they may be adaptive and context aware. For example the letter ‘u’ occurs around 3% of time in English text,

21

but if the previous letter was ‘q’ it is close to 100% and if the previous letter was ‘u’ it is close to 0%. Using
the previous letter is known as an Order-1 entropy encoder, but the context can be anything. We can also
adaptively adjust our probabilities as we encode or decode, learning the likelihoods and thus avoiding needing
to store frequency tables in the data stream covering all possible contexts.

To do this we use a statistical model, containing an array of symbols S and their frequencies F . The sum of
these frequences must be less than 216 − 16 so after adjusting the frequencies it never go above the maximum
unsigned 16-bit integer. When they get too high, they are renormalised by approximately halving the frequencies
(ensuring none drop to zero).

Typically an array of models are used where the array index represents the current context.

To encode any symbol the entropy encoder needs to know the frequency of the symbol to encode, the cumulative
frequencies of all symbols prior to this symbol, and the total of all frequencies. For decoding a cumulative
frequency is obtained given the frequency total and the appropriate symbol is found matching this frequency.
Symbol frequencies are updated after each encode or decode call and the symbols are kept in order of most-
frequent symbol first in order to reduce the overhead of scanning through the cumulative frequencies.

ModelCreate initialises a model by setting every symbol to have a frequency of 1. (At no point do we permit
any symbol to have zero frequency.)
1: function ModelCreate(num_sym)
2: total_freq ← num_sym
3: max_sym← num_sym− 1
4: for i← 0 to max_sym do
5: Si ← i
6: Fi ← 1
7: end for
8: return this model (total_freq, max_sym, S, F)
9: end function

ModelDecode is called once for each decoded symbol. It returns the next symbol and updates the model
frequencies automatically.
1: function ModelDecode(rc)
2: freq ← rc.RangeGetFrequency(total_freq)
3: x← 0
4: acc← 0
5: while acc+ Fx ≤ freq do
6: acc← acc+ Fx

7: x← x+ 1
8: end while
9: rc.RangeDecode(acc, Fx, total_freq)

10: Fx ← Fx + 16 ▷ Update model frequencies
11: total_freq ← total_freq + 16
12: if total_freq > 216 − 17 then
13: ModelRenormalise
14: end if
15: sym← Sx

16: if x > 0 and Fx > Fx−1 then
17: Swap(Fx, Fx−1)
18: Swap(Sx, Sx−1)
19: end if
20: return sym
21: end function

ModelRenormalise is called whenever the total frequencies get too high. The frequencies are halved, taking
sure to avoid any zero frequencies being created.
1: procedure ModelRenormalise
2: total_freq ← 0
3: for i← 0 to max_sym do
4: Fi ← Fi − (Fi div 2)
5: total_freq ← total_freq + Fi

22

6: end for
7: end procedure

4.2 Order-0 and Order-1 Encoding

We can combine the model defined above and the range coder to provide a simple function to perform Order-0
entropy decoder.
1: function DecodeOrder0(len)
2: max_sym←ReadUint8
3: if max_sym = 0 then
4: max_sym← 256
5: end if
6: model_lit←ModelCreate(max_sym)

7: rc←RangeDecodeCreate
8: for i← 0 to len− 1 do
9: outi ← model_lit.ModelDecode(rc)

10: end for
11: return out
12: end function

The Order-1 variant simply uses an array of models and selects the appropriate model based on the previous
value encoded or decoded. This array index is our “context”.
1: function DecodeOrder1(len)
2: max_sym←ReadUint8
3: if max_sym = 0 then
4: max_sym← 256
5: end if
6: for i← 0 to max_sym− 1 do
7: model_liti ←ModelCreate(max_sym)
8: end for

9: rc←RangeDecodeCreate
10: last← 0
11: for i← 0 to len− 1 do
12: outi ← model_litlast.ModelDecode(rc)
13: last← outi
14: end for
15: return out
16: end function

4.3 RLE with Order-0 and Order-1 Encoding

The DecodeOrder0 and DecodeOrder1 codecs can be expanded to include a count of how many runs of
each symbol should be decoded. Both order 0 and order 1 variants are possible.

After the symbol is decoded, the run length must be decoded to indicate how many extra copies of this symbol
occur. Long runs are broken into a series of lengths of no more than 3. If length 3 is decoded it indicates we
must decode an additional length and add to the current one. The context used for the run length model is the
symbol itself for the initial run, 256 for the first continuation run (if ≥ 4) and 257 for any further continuation
runs. Thus encoding 10 ‘A’ characters would first store symbol ‘A’ followed by run length 3 (with context ‘A’),
length 3 (context 256), length 3 (context 257), and length 1 (context 257).

For example, if we have the string “ABBCCCCDDDDD” we will record “A”<0> “B”<1> “C”<3,0> and “D”<3,1>.
1: function DecodeRLE0(len)
2: max_sym←ReadUint8
3: if max_sym = 0 then
4: max_sym← 256

23

5: end if
6: model_lit←ModelCreate(max_sym)
7: for i← 0 to 257 do
8: model_runi ←ModelCreate(4)
9: end for

10: rc←RangeDecodeCreate
11: i← 0
12: while i < len do
13: outi ← model_lit.ModelDecode(rc)
14: part← model_runouti .ModelDecode(rc)
15: run← part
16: rctx← 256
17: while part = 3 do
18: part← model_runrctx.ModelDecode(rc)
19: rctx← 257
20: run← run+ part
21: end while
22: for j ← 1 to run do
23: outi+j ← outi
24: end for
25: i← run+ 1
26: end while
27: return out
28: end function

The order-1 run length variant is identical to order-0 except the previous symbol is used as the context for the
next literal. The context for the run length does not change.
1: function DecodeRLE1(len)
2: max_sym←ReadUint8
3: if max_sym = 0 then
4: max_sym← 256
5: end if
6: for i← 0 to max_sym− 1 do
7: model_liti ←ModelCreate(max_sym)
8: end for
9: for i← 0 to 257 do

10: model_runi ←ModelCreate(4)
11: end for

12: rc←RangeDecodeCreate
13: last← 0
14: i← 0
15: while i < len do
16: outi ← model_litlast.ModelDecode(rc)
17: last← outi
18: part← model_runlast.ModelDecode(rc)
19: run← part
20: rctx← 256
21: while part = 3 do
22: part← model_runrctx.ModelDecode(rc)
23: rctx← 257
24: run← run+ part
25: end while
26: for j ← 1 to run do
27: outi+j ← last
28: end for
29: i← run+ 1

24

30: end while
31: return out
32: end function

We wrap up the Order-0 and 1 entropy encoder, both with and without run length encoding, into a data stream
that specifies the type of encoded data and also permits a number of additional transformations to be applied.
These transformations support bit packing (for example a data block with only 4 distinct values can be packed
with 4 values per byte), no-op for tiny data blocks where entropy encoding would grow the data and N-way
interleaving of the 8-bit components of a 32-bit value.

Bits Type Name Description
8 uint8 flag Data format bit field

Unless NoSize flag is set:
? uint7 ulen Uncompressed length

If Stripe flag is set:
8 uint8 N Number of sub-streams
? uint7[] clen[] N copies of compressed sub-block length
? uint8[] cdata[] N copies of Compressed data sub-block (recurse)

If Cat flag is set (and Stripe flag is unset):
? uint8[] udata Uncompressed data stream

If Pack flag is set (and neither Stripe or Cat flags are set):
? uint8[] pack_meta Pack lookup table

If neither Stripe or Cat flags are set:
? uint8[] cdata Entropy encoded data stream (see Order / RLE / Ext

flags)

The first byte of our generalised data stream is a bit-flag detailing the type of transformations and entropy
encoders to be combined, followed by optional meta-data, followed by the actual compressed data stream. The
bit-flags are defined below, but note not all combinations are permitted.

Bit AND value Code Description
1 Order∗ Order-0 or Order-1 entropy coding
2 reserved Reserved (for possible order-2/3)
4 Ext “External” compression via bzip2
8 Stripe† N-way interleaving of byte streams
16 NoSize Original size is not recorded (used by Stripe)
32 Cat† Data is uncompressed
64 RLE∗ Run length encoding, with runs and literals encoded separately
128 Pack Pack 2, 4, 8 or infinite symbols per byte

(∗) Has no effect when Ext flag is set.
(†) Not to be used in conjunction with other flags except Pack and NoSize.

Of these Stripe is the most complex. As with the rANS Nx16 encoder, the data is rearranged such that every
N th byte is adjacent in a single block producing N distinct sub-blocks. Each of the N streams is then itself
compressed using this compression format.

For example an input block of small unsigned 32-bit little-endian numbers may use RLE for the first three
streams as they are mostly zero, and a non-RLE Order-0 entropy encoder of the last stream. Normally our data
format will include the decoded size, but with Stripe we can omit this from the internal compressed streams
as we know their size will be a computable fraction of the combined data.

The data layout differs for each of these bit types, as described below in the ArithDecode function. Some
of these can be used in combination, so the order needs to be observed. The Pack format has additional meta
data. This is decoded first, before entropy decoding and finally expanding the specified pack transformation
after decompression. For example value 193 is indicates a byte stream should be decoded with an RLE aware
order-1 entropy encoder and then unpacked.
1: function ArithDecode(len)

25

2: flags←ReadUint8
3: if flags AND NoSize ̸= 0 then
4: len←ReadUint7
5: end if
6: if flags AND Stripe then
7: data←DecodeStripe(len)
8: return data
9: end if

10: if flags AND Pack then
11: pack_len← len
12: (P, nsym, len)←DecodePackMeta
13: end if

▷ Entropy Decoding
14: if flags AND Cat then
15: data←ReadData(len)
16: else if flags AND Ext then
17: data←DecodeEXT(len)
18: else if flags AND RLE then
19: if flags AND Order then
20: data←DecodeRLE1(len)
21: else
22: data←DecodeRLE0(len)
23: end if
24: else
25: if flags AND Order then
26: data←DecodeOrder1(len)
27: else
28: data←DecodeOrder0(len)
29: end if
30: end if

▷ Apply data transformations
31: if flags AND Pack then
32: data←DecodePack(data, P , nsym, pack_len)
33: end if
34: return data
35: end function

The specifics of each sub-format are described below, in the order (minus meta-data specific shuffling) they are
applied.

• Stripe: The byte stream consists of a 7-bit encoded uncompressed length and a byte holding the number
of substreams N , and their 7-bit encoded compressed data streams lengths. This is then followed by the
substreams themselves, each of which is a valid cdata stream as defined above, hence this offers a recursive
mechanism as each substream has its own format byte.

The total uncompressed byte stream is then an interleaving of one byte in turn from each of the N
substreams (in order of 1st to Nth). Thus an array of 32-bit unsigned integers could be unpacked using
Stripe to compress each of the 4 8-bit components together with their own algorithm.
1: function DecodeStripe(len)
2: N ←ReadUint8
3: for j ← 0 to N do ▷ Fetch N compressed lengths
4: clenj ←ReadUint7
5: end for

6: for j ← 0 to N do ▷ Decode N streams
7: ulenj ← (len div N) + ((len mod N) > j) ▷ (x > y) expression being 1 if true, 0 if false
8: Tj ←ArithDecode(ulenj)
9: end for

26

10: for j ← 0 to N − 1 do ▷ Stripe
11: for i← 0 to ulenj − 1 do
12: outi×N+j ← Tj,i

13: end for
14: end for
15: return out
16: end function

• NoSize: Do not store the size of the uncompressed data stream. This information is not required when
the data stream is one of the four sub-streams in the Stripe format.

• Cat: If present, all other bit flags should be zero, with the possible exception of NoSize or Pack.

The uncompressed data stream is the same as the compressed stream. This is useful for very short data
where the overheads of compressing are too high.

• Order: Bit field defining order-0 (unset) or order-1 (set) entropy encoding, as described above by the
DecodeOrder0 and DecodeOrder1 functions.

• RLE: Bit field defining whether the Order-0 and Order-1 encoding should also use a run-length. When
set, the DecodeRLE0 and DecodeRLE1 functions will be used instead of DecodeOrder0 and De-
codeOrder1.

• Ext: Instead of using the adaptive arithmetic coder for decompression (with or without RLE), this uses
an compression codec defined in an “external” library. Currently the only supported such codec is Bzip2.
In future more may be added, so the “magic number” (the file signature, typically in first few bytes of
data) must be validated to check the external codec being used.

Given bzip2 is already supported elsewhere in CRAM, the purpose of adding it here is to permit bzip2
compression after Pack and Stripe transformations. This may be tidied up in later CRAM releases to
clarify the separation between compression codecs and data transforms, but that requires more major
restructuring so for compatibility with v3.0 these have been placed into this single codec.
1: function DecodeExt(len)
2: if Bzip2 magic number is present then
3: return DecodeBzip2(len)
4: else
5: Error
6: end if
7: end function

• Pack: Data containing only 1, 2, 4 or 16 distinct values can have multiple values packed into a single
byte (infinite, 8, 4 or 2). The distinct symbol values do not need to be adjacent as a mapping table P
converts mapped value x to original symbol Px.

The packed format is split into uncompressed meta-data (below) and the compressed packed data as de-
scribed in the rANS Nx16 bit-packing section. The same DecodePackMeta and DecodePack functions
are used.

5 Name tokenisation codec

Sequence names (identifiers) typically follow a structured pattern and compression based on columns within
those structures usually leads to smaller sizes. The sequence name (identifier) tokenisation relies heavily on the
rANS Nx16 and Adaptive arithmetic coders described above.

As an example, take a series of names:

I17_08765:2:123:61541:01763#9
I17_08765:2:123:1636:08611#9
I17_08765:2:124:45613:16161#9

27

We may wish to tokenise each of these into 7 tokens, e.g. “I17_08765:2:”, “123”, “:”, “61541”, “:”, “01763”and
“#9”. Some of these are multi-byte strings, some single characters, and some numeric, possibily with a leading
zero. We also observe some regularly have values that match the previous line (the initial prefix string, colons,
“#9”) while others are numerically very close to the value in the previous line (124 vs 123).

The name tokeniser compares each name against a previous name (which is not necessarily the one immediately
prior) and encodes this name either as a series of differences to the previous name or marking it as an exact
duplicate. A maximum of 128 tokens are permitted within any single read name.

Token IDs (types) are listed below.

ID Type Value Description
0 TYPE Type Used to determine the type of token at a given position
5 DUP Integer (distance) The entire name is a duplicate of an earlier one. Used in position

0 only
6 DIFF Integer (distance) The entire name differs to earlier ones. Used in position 0 only
1 STRING String A nul-terminated string of characters
2 CHAR Byte A single character
7 DIGITS 0 ≤ Int < 232 A numerical value, not containing a leadng zero
3 DIGITS0 0 ≤ Int < 232 A numerical value possibly starting in leading zeros
4 DZLEN Int length Length of associated DIGITS0 token
8 DELTA 0 ≤ Int < 256 A numeric value being stored as the difference to the numeric

value of this token on the previous name
9 DELTA0 0 ≤ Int < 256 As DELTA, but for numeric values starting with leading zeros
10 MATCH (none) This token is identical type and value to the same position in the

previous name (NB: not permitted for DELTA/DELTA0)
11 NOP (none) Does nothing
12 END (none) Marks end of name

The tokens and values are stored in a 2D array of byte streams, Bpos,type, where pos 0 is reserved for name
meta-data (whether it is a duplicate name) and pos 1 onwards is for the first, second and later tokens. Type
is one of the token types listed above, corresponding to the type of data being stored. Some token types may
also have associated values. Bpos,TYPE (type) holds the token type itself and that is then used to retrieve any
associated value(s) if appropriate from Bpos,type. Thus multiple types at the same token position will have their
values encoded in distinct data streams, e.g. if position 5 is of type either DIGITS or DELTA then data streams
will exist for B5,TYPE, B5,DIGITS and B5,DELTA. Decoding per name continues until a token of type END is observed.

More detail on the token types is given below.

• TYPE: This is the first token fetched at each token position. It holds the type of the token at this
position, which in turn may then require retrieval from type-specific data streams at this position.
For position 0, the TYPE field indicates whether this record is an exact duplicate of a prior read name or
has been encoded as a delta to an earlier one.

• DUP, DIFF: These types are fetched for position 0, at the start of each new identifier. The value is an
integer value describing how many reads before this (with 1 being the immediately previous name) we
are comparing against. When we subsequently refer to “previous name” below, we always mean the one
indicated by the DIFF field and not the one immediately prior to the current name.
The first record will have a DIFF of zero and no delta or match operations are permitted.

• STRING: We fetch one byte at a time from the value byte stream, appending to the name buffer until
the byte retrieved is zero. The zero byte is not stored in the name buffer. For purposes of token type
MATCH, a match is defined as entirely matching the string including its length.

• CHAR: Fetch one single byte from the value byte stream and append to the name buffer.

• DIGITS: Fetch 4 bytes from the value byte stream and intrepret these as a little endian unsigned integer.
This is appended to the name buffer as string of base-10 digits, most significant digit first. Larger values
may be represented, but will require multiple DIGITS tokens. Negative values may be encoded by treating
the minus sign as a CHAR or STRING and storing the absolute value.

• DIGITS0, DZLEN: This fetches the 4 byte value from Bpos,DIGITS0 and a 1 byte length from Bpos,DZLEN .
As per DIGITS, the value is intrepreted as a little endian unsigned integer. The length indicates the total

28

size of the numeric value when displayed in base 10 which must be greater than log10(value) with any
remaining length indicating the number of leading zeros. For example if DIGITS0 value is 123 and DZLEN
length is 5 the string “00123” must be appended to the name.

For purposes of the MATCH type, both value and length must match.

• DELTA: Fetch a 1 byte value and add this to the DIGITS value from the previous name. The token in
the prior name must be of type DIGITS or DELTA.

MATCH is not supported for this type.

• DELTA0: As per DELTA, but the 1 byte value retrieved is added to the DIGITS0 value in the previous
name. No DZLEN value is retrieved, with the length from the previous name being used instead. The
token in the prior name must be of type DIGITS0 or DELTA0.

MATCH is not supported for this type.

• MATCH: This token matches the token at the same position in the previous name. (The previous name
is permitted to also have a MATCH token at this position, in which case it recurses to its previous name.)

MATCH is only valid when the token being matched against is CHAR, STRING, DIGITS, DIGITS0 or
MATCH. (I.e. matching a numeric delta will not repeat the delta increment.)

No value is needed for MATCH tokens.

• NOP: This token type does nothing. The purpose of this is simply to permit skipping tokens in order to
keep token numbers in sync, such as when processing “10” vs “-10” with the latter needing an additional
“-” token.

• END: Marks the end of the name. A nul byte is added to the name output buffer. No value is needed
for END tokens.

Decoding needs some simple functions to read successive bytes from our token byte streams, as 8-bit characters
or unsigned integers, as 32-bit unsigned integers and nul-terminated strings. We reuse the ReadUint32 and
related functions with the byte array specified as input.

(Convert an integer to a string form in base-10 digits, at least len bytes long with leading zeros)
1: function LeftPadNumber(val, len)
2: str ← val ▷ Implicit language-specific Integer to String conversion
3: while Length(str) < len do
4: str ← ‘0’ ++ str
5: end while
6: return str
7: end function

For the main name decoding loop, we use a single dimensional array of names decoded so far, N , and a two
dimensional array of their tokens T (indexed by name number n and token position t within that name). We
define a function to decode the nth name (Nn) using a previous mth name (Nm). The tokens T are used in
MATCH and DELTA token types to copy data from when constructing the name.

Now we have the basic primitives for pulling from the B byte streams, decoding the nth individual name is as
follows7:

(Decodes the nth name, returning Nn and updating globals Nn and Tn)
1: function DecodeSingleName(n)
2: type← ReadUint8(B0,TYPE)
3: dist← ReadUint32(B0,type)
4: m← n− dist
5: if type = DUP then
6: Nn ← Nm

7: Tn ← Tm ▷ Copy for all Tn,∗

7For simplicity of algorithm description, we take a flexible approach as to whether we read/write T in numeric or string form.
For example a DELTA token will fetch the previous token as a string, interpret it as a numeric value, add to it, and then write it
back as a string. Practical implementations may wish to separate out T into distinct integer and string arrays.

29

8: return Nn

9: end if

10: t← 1 ▷ Token number t
11: repeat
12: type← ReadUint8(Bt,TYPE)
13: if type = CHAR then
14: Tn,t ← ReadChar(Bt,CHAR)
15: else if type = STRING then
16: Tn,t ← ReadString(Bt,STRING)
17: else if type = DIGITS then
18: Tn,t ← ReadUint32(Bt,DIGITS)
19: else if type = DIGITS0 then
20: d← ReadUnt32(Bt,DIGITS0)
21: l← ReadUint8(Bt,DZLEN)
22: Tn,t ← LeftPadNumber(d, l)
23: else if type = DELTA then
24: Tn,t ← Tm,t+ ReadUint8(Bt,DELTA)
25: else if type = DELTA0 then
26: d← Tm,t+ ReadUint8(Bt,DELTA0)
27: l← Length(Tm,t) ▷ String length including leading zeros
28: Tn,t ← LeftPadNumber(d, l)
29: else if type = MATCH then
30: Tn,t ← Tm,t

31: else
32: Tn,t ← ‘’
33: end if
34: Nn ← Nn ++ Tn,t

35: t← t+ 1
36: until type = END
37: return Nn

38: end function

Given a complex name with both position and type specific values, this can lead to many separate data streams.
The name tokeniser codec is a format within a format, as the multiple byte streams Bpos,type are serialised into
a single byte stream.

The serialised data stream starts with two unsigned little endian 32-bit integers holding the total size of un-
compressed name buffer and the number of read names, and a flag byte indicating whether data is compressed
with arithmetic coding or rANS Nx16. Note the uncompressed size is calculated as the sum of all name lengths
including a termination byte per name (e.g. the nul char). This is irrespective of whether the implementation
produces data in this form or whether it returns separate name and name-length arrays.

This is then followed by serialised data and meta-data for each token stream. Token types, ttype holds one of
the token ID values listed above in the list above, plus special values to indicate certain additional flags. Bit 6
(64) set indicates that this entire token data stream is a duplicate of one earlier. Bit 7 (128) set indicates the
token is the first token at a new position. This way we only need to store token types and not token positions.

The total size of the serialised stream needs to be already known, in order to determine when the token types
finish.

30

Bytes Type Name Description
4 uint32 uncomp_length Length of uncompressed name buffer
4 uint32 num_reads Number of read names
1 uint8 use_arith Whether compression is arithmetic (1) or rANS Nx16 (0)

For each token data stream
1 uint8 ttype Token type code plus flags (64=duplicate, 128=next token posi-

tion).
If ttype AND 64 (duplicate)

1 uint8 dup_pos Duplicate from this token position
1 uint8 dup_type Duplicate from this token type ID

else if not duplicate
? uint7 clen compressed length

clen uint8[] cdata compressed data stream

A few tricks are used to remove some byte streams. In addition to the explicit marking of duplicate bytes
streams, if a byte stream of token types is entirely MATCH apart from the very first value it is discarded. It
is possible to regenerate this during decode by observing the other byte streams. For example if we have a
byte stream B5,DIGITS but no B5,TY PE then we assume the contents of B5,TY PE consist of one DIGITS type
followed by as many MATCH types as are needed.

The cdata stream itself is as described in the relevant entropy encoder section above (rANS or arithmetic
coding).

(Decodes and uncompresses the serialised token byte streams)
1: function DecodeTokenByteStreams(use_arith)
2: sz ← 0
3: t← −1
4: repeat
5: ttype← ReadUint8
6: tok_new ← ttype AND 128
7: tok_dup← ttype AND 64
8: type← ttype AND 63
9: if tok_new ̸= 0 then

10: t← t+ 1
11: if type ̸= TYPE then
12: Bt,TYPE ← (type, TOK_MATCH, TOK_MATCH, ...) ▷ for nnames− 1 times
13: end if
14: end if

15: if tok_dup ̸= 0 then
16: dup_pos← ReadUint8
17: dup_type← ReadUint8
18: Bt,type ← Bdup_pos,dup_type

19: else
20: clen← ReadUint7
21: data← ReadData(clen)
22: if use_arith then
23: Bt,type ← ArithDecode(clen, source = data)
24: else
25: Bt,type ← RansDecodeNx16(clen, source = data)
26: end if
27: end if
28: until EOF
29: return B
30: end function

(Decodes all names, returning N)
1: function DecodeNames
2: ulen← ReadUint32

31

3: nnames← ReadUint32
4: use_arith← ReadUint8
5: B ← DecodeTokenByteStreams(use_arith)
6: for n← 0 to nnames− 1 do
7: Nn ← DecodeSingleName(n)
8: end for
9: return N

10: end function

6 FQZComp quality codec

The FQZComp quality codec uses an adaptive statistical model to predict the next quality value in a given
context (comprised of previous quality values, position along this sequence, whether the sequence is the second
in a pair, and a running total of number of times the quality has changed in this sequence).

For each position along the sequence, the models produce probabilities for all possible next quality values, which
are passed into an arithmetic entropy encoder to encode or decode the actual next quality value. The models
are then updated based on the actual next quality in order to learn the statistical properties of the quality data
stream. This step wise update process is identical for both encoding and decoding.

The algorithm is a generalisation on the original fqzcomp program, described in Compression of FASTQ and
SAM Format Sequencing Data by Bonfield JK, Mahoney MV (2013). PLoS ONE 8(3): e59190. https:
//doi.org/10.1371/journal.pone.0059190

6.1 FQZComp Models

The FQZComp process utilises knowledge of the read lengths, complement (qualities reversed) status, and
a generic parameter selector, but in order to maintain a strict separation between CRAM data series this
knowledge is stored (duplicated) within the quality data stream itself. Note the complement model is only
needed in CRAM 3.1 as CRAM 4 natively stores the quality in the original orientation already. Both reversed
and duplication models have no context and are boolean values.

The parameter selector model also has no context associated with it and encodes max_sel distinct values.
The selector value may be quantised further using stab (Selector Table) to reduce the selector to fewer sets of
parameters. This is useful if we wish to use the selector bits directly in the context using the same parameters.
The selector is arbitrary and may be used for distinguishing READ1 from READ2, as a precalculated “delta”
instead of the running total, distinguishing perfect alignments from imperfect ones, or any other factor that is
shown to improve quality predictability and increase compression ratio (average quality, number of mismatches,
tile, swathe, proximity to tile edge, etc).

The quality model has a 16-bit context used to address an array of 216 models, each model permitting max_sym
distinct quality values. The context used is defined by the FQZcomp parameters, of which there may be multiple
sets, selected using the selector model. There are 4 read length models each having max_sym of 256. Each
model is used for the 4 successive bytes in a 32-bit length value.

The entropy encoder used is shared between all models, so the bit streams are multiplexed together.

The 16-bit quality value context is constructed by adding sub-contexts together consisting of previous quality
values, position along the current record, a running count (per record) of how many times the quality value has
differed to the previous one (delta), and an arbitrary stored selector value, each shifted to a defined location
within the combined context value (qloc, ploc, dloc and sloc respectively). The qual, pos and delta sub-contexts
are computed from the previous data while the selector, if used, is read directly from the compressed data
stream. The selector may be used to switch parameter sets, or simply to group quality strings into arbitrary
user-defined sub-sets. The numeric values for each of these components can be passed through lookup tables
(qtab for quality, ptab for positions, dtab for running delta and stab for turning the selector s into a parameter
index x). These all convert the monotonically increasing range 0→M to a (usually smaller) monotonically
increasing 0→N. For example if we wish to use the approximate position along a 100 byte string, we may
uniformly map 0→127 to 0→15 to utilise 4 bits of our 16-bit combined context.

As some sequencing instruments produce binned qualities, e.g. 0, 10, 25, 35, these values are squashed to

32

https://doi.org/10.1371/journal.pone.0059190
https://doi.org/10.1371/journal.pone.0059190

Context: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

qloc = 0 ploc = 8
sloc = 12

dloc = 14

qual<< = 2
qbits = 8, qshift = 2

pos selector delta

qtab: 0
12
18
36

⇒ 0
1
2
3

ptab: 0-7
7-15
...

120-127

⇒ 0
1
...
15

dtab: 0-3
4-15
16-35
36-255

⇒ 0
1
2
3

Figure 2: An example FQZComp configuration.

incremental values from 0 to max_sym−1 where max_sym is the maximum number of distinct quality values
observed. If this transform is required, the flag have_qmap will be set and a mapping table (qmap) will hold
the original quality values. The encoded qualities will be the smaller mapped range.

The quality sub-context is constructed by shifting left the previous quality sub-context by qshift bits and
adding the current quality after passing through the qmap transform and if defined through the qtab lookup
table. The quality context is limited to qbits long and is added to the combined context starting at bit qloc.
The quality sub-context is reset to zero at the start of each new record. 8

The position context is simply the number of remaining quality values in this record, so is a value starting at
record length (minus 1) and decrementing. As with the quality context it may be passed through a lookup table
ptab before shifting left by ploc bits and adding to the combined context.

Delta is a count of the number of times the quality value has changed from one value to a different one. Thus
a run of identical values will not increase delta. It gets reset to zero at the start of every record. It may be
adjusted by the dtab lookup table and is shifted by dloc before adding to the combined context.

The selector value may also be used as a sub-context, if the do_sel paramter is set. The initial context value
(reset per record) is defined within each parameter set, providing a more general purpose alternative to adding
the selector value at a defined location (sloc) into the context.

Thus the full context can be updated after each decoded quality with the following pseudocode. Note for brevity
this is assuming the pos, delta, prevq, qctx and sel parameters referred are global and updateable.

(Add quality q to produce and return a new context ctx)
1: function FQZUpdateContext(params, q)
2: ctx← params.context ▷ Also the initial value
3: qctx← (qctx << params.qshift) + qtabq
4: ctx← ctx+ ((qctx AND (2params.qbits − 1))<< params.qloc)
5: if params.pflags AND 32 then ▷ have_ptab
6: p←Min(pos, 1023)
7: ctx← ctx+ (ptabp << params.ploc)
8: end if
9: if params.pflags AND 64 then ▷ have_dtab

10: d←Min(delta, 255)
11: ctx← ctx+ (dtabd << params.dloc)
12: if prevq ̸= q then
13: delta← delta+ 1
14: end if
15: prevq ← q
16: end if

8For example if we have 4 quality values in use – 0, 10, 25 and 35 – we will be encoding quality values 0, 1, 2 and 3. We may
wish to define qbits to be 6 and qshift to be 2 such that the previous 3 quality values can be used as context, for the prediction of
the next quality value. There will likely be little reason to use qtab in this scenario, but an encoder could define qtab to convert {0,
1, 2, 3} to {0, 0, 0, 1} and use qshift of 1 instead, giving us knowledge of which of the previous 6 values were maximum quality.

33

17: if params.pflags AND 8 then ▷ do_sel
18: ctx← ctx+ (sel << params.sloc)
19: end if
20: return ctx AND (216 − 1)
21: end function

In summary context is produced using the following models:

Model Max symbol Context size Description
model_qual max_sym 216 Primary model for quality values
model_len 256 4 Read length models with the context 0-3 being successive

byte numbers (little endian order)
model_rev 2 none Used if pflags.do_rev is defined. Indicating which strings

to reverse.
model_dup 2 none Used if pflags.do_dup is defined. Indicates if this whole

string is a duplicate of the last one
model_sel max_sel none Used if gflags.multi_param or pflags.do_sel are defined.

34

6.2 FQZComp Data Stream

The start of an FQZComp data stream consists of the parameters used by the decoder. The data layout is as
follows.

Bits Type Name Description
8 uint8 version FQZComp format version: must be 5
8 uint8 gflags Global FQZcomp bit-flags. From lowest bit to highest:

1: multi_param: indicates more than one parameter
block is present. Otherwise set nparam = 1
2: have_stab: indicates the parameter selector is mapped
through stab. Otherwise set stabi = i
4: do_rev: model_revcomp will be used (CRAM v3.1)

If multi_param gflag is set:
8 uint8 nparam Number of parameter blocks (defaults to 1)

If have_stab gflag is set:
8 uint8 max_sel Maximum parameter selector value

variable array stab Parameter selector table

Parameter block: repeated nparam times: (selected via model_sel and stab)
16 uint16 context Starting context value
8 uint8 pflags Per-parameter block bit-flags. From lowest bit to high-

est:
1: Reserved
2: do_dedup: model_dup will be used
4: do_len: model_len will be used for every record
8: do_sel: model_sel will be used
16: have_qmap: indicates quality map is present
32: have_ptab: Load ptab, otherwise position contexts
are unused
64: have_dtab: Load dtab, otherwise delta contexts are
unused
128: have_qtab: Load qtab, otherwise set qtabi = i

8 uint8 max_sym Total number of distinct quality values
4 uint4 (high) qbits Total number of bits for quality context
4 uint4 (low) qshift Left bit shift per successive quality in quality context
4 uint4 (high) qloc Bit position of quality context
4 uint4 (low) sloc Bit position of selector context
4 uint4 (high) ploc Bit position of position context
4 uint4 (low) dloc Bit position of delta context

If have_qmap pflag is set:
variable uint8[max_sym] qmap Map for unbinning quality values.

If have_qtab pflag is set:
variable array qtab Quality context lookup table

If have_tab pflag is set:
variable array ptab Position context lookup table

If have_tab pflag is set:
variable array dtab Delta context lookup table

35

FQZDecodeParams below describes the pseudocode for reading the parameter block.

1: procedure FQZDecodeParams
2: vers←ReadUint8
3: if vers ̸= 5 then
4: ERROR
5: end if
6: gflags← ReadUint8
7: if gflags AND 1 then ▷ multi_param
8: nparam← ReadUint8
9: max_sel← nparam

10: else
11: nparam← 1
12: max_sel← 0
13: end if
14: if gflags AND 2 then ▷ have_stab
15: max_sel← ReadUint8
16: stab← ReadArray(256)
17: end if
18: max_sym← 0
19: for p← 0 to nparam− 1 do
20: paramp ← FQZDecodeSingleParam
21: if max_sym < paramp.max_sym then
22: max_sym← paramp.max_sym ▷ Maximum across all param sets
23: end if
24: end for
25: end procedure

1: function FQZDecodeSingleParam
2: p.context ← ReadUint16
3: p.flags ← ReadUint8
4: p.max_sym ← ReadUint8
5: p.first_len ← 1
6: x ← ReadUint8
7: p.qbits ← x div 16
8: p.qshift← x mod 16
9: x ← ReadUint8

10: p.qloc ← x div 16
11: p.sloc ← x mod 16
12: x ← ReadUint8
13: p.ploc ← x div 16
14: p.dloc ← x mod 16
15: if p.flags AND 16 then ▷ Have qmap
16: for i← 0 to p.max_sym− 1 do
17: p.qmapi ← ReadUint8
18: end for
19: end if
20: if p.flags AND 128 then ▷ Have qtab
21: p.qtab← ReadArray(256)
22: else
23: for i← 0 to 256 do
24: p.qtabi ← i
25: end for
26: end if
27: if p.flags AND 32 then ▷ Have ptab
28: p.ptab← ReadArray(1024)
29: end if
30: if p.flags AND 64 then ▷ Have dtab

36

31: p.dtab← ReadArray(256)
32: end if
33: return p
34: end function

FQZCreateModels creates the decoder models based on the above parameters and the shared range coder.

1: procedure FQZCreateModels
2: rc←RangeDecodeCreate
3: for i← 0 to 3 do
4: model_leni ←ModelCreate(256)
5: end for
6: for i← 0 to 216 − 1 do
7: model_quali ←ModelCreate(max_sym+ 1)
8: end for
9: model_dup←ModelCreate(2)

10: model_rev ←ModelCreate(2)
11: if max_sel > 0 then
12: model_sel←ModelCreate(max_sel + 1)
13: end if
14: end procedure

ReadArray reads an array A of size n which maps values 0 to n − 1 to a smaller range (0 to m − 1), both
monotonically increasing. For efficiency this is done using a two-level run length encoding.

Assuming m < n there will be runs of the same value. We measure run lengths for all values (even if
they are zero). For example an array A = {0, 1, 3, 4, 5, 6, 7, 7, 7, 7} may be converted to run lengths R =
{1, 1, 0, 1, 1, 1, 1, 4}. To keep values in this array fitting within one byte, long runs are broken down in a succes-
sive series of 255 values, so a run of length 600 becomes 255 255 90.

This array R is no longer monotonically increasing but may still have repeated values, so is run-length encoded
by storing the number of additional values whenever the last two lengths match. This converts R to R2 =
{1, 1,+0, 0, 1, 1,+2, 4} where the ‘+’ symbol is shown purely to indicate the values representing the additional
run-length copy numbers. (This also now turns the example run of 600 above into 255 255 0 90.)

The final array R2 is the stored data stream. The decoder process is the reverse of the above, starting by
converting R2 to R and then A. The following pseudocode demonstrates this process.

1: function ReadArray(n)
2: i, j, z ← 0
3: last← −1
4: while z < n do ▷ Convert R2 to R
5: run← ReadUint8
6: Rj ← run
7: j ← j + 1
8: z ← z + run
9: if run = last then

10: copy ← ReadUint8
11: for x← 1 to copy do
12: Rj ← run
13: j ← j + 1
14: end for
15: z ← z + run× copy
16: end if
17: last← run
18: end while

19: i, j, z ← 0
20: while z < n do ▷ Convert R to A

37

21: run_len← 0
22: repeat
23: part← Rj

24: j ← j + 1
25: run_len← run_len+ part
26: until part ̸= 255
27: for x← 1 to run_len do
28: Az ← i
29: z ← z + 1
30: end for
31: i← i+ 1
32: end while

33: return A
34: end function

The FQZComp main loop decodes data in the following order per read: read length (if not fixed), the flag for
whether this is read 2 (if needed), a bit flag to indicate if the quality is duplicated (if needed), followed by record
length number of quality values using various data gathered since the start of this read as context.

The output of this function is an array of quality values in the variable output, indexed with the ith value via
outputi. The output buffer is a concatenation of all quality values for each record. The record lengths are
recorded, but note this is the number of qualities encoded in CRAM for this sequence record and this does not
necessarily have to match the number of base calls (for example where qualities are explicitly specified for SNP
bases but not elsewhere).

1: function FQZNewRecord
2: sel← 0
3: x← 0
4: if max_sel > 0 then ▷ Find parameter selector
5: sel← model_sel.ModelDecode(rc)
6: if have_stab then
7: x← stabsel
8: end if
9: end if

10: param← paramsx

11: if param.do_len or param.first_len then ▷ Decode read length
12: rec_len←DecodeLength(rc)
13: param.last_len← rec_len
14: param.first_len = 0
15: else
16: rec_len← param.last_len
17: end if
18: pos← rec_len

19: if param.do_rev then ▷ Check if needs reversal
20: revrec ← model_rev.ModelDecode(rc)
21: lenrec ← rec_len
22: end if
23: rec← rec+ 1

24: is_dup← 0
25: if do_dedup then ▷ Duplicate last string if appropriate
26: if model_dup.ModelDecode(rc) > 0 then
27: is_dup← 1
28: end if
29: end if

38

30: qctx← 0
31: delta← 0
32: prevq ← 0
33: return x ▷ Tabulated parameter selector
34: end function
1: procedure FQZDecode
2: buf_len← ReadUint7
3: FQZDecodeParams
4: FQZCreateModels
5: i← 0 ▷ Position in total quality block
6: pos← 0 ▷ Remaining base count current quality string
7: next_record:
8: while i < buf_len do
9: if pos = 0 then ▷ Reset state at start of each new record

10: x←FQZNewRecord
11: if is_dup = 1 then
12: for j ← 0 to rec_len− 1 do
13: outputi+j ← outputi+j−rec_len

14: end for
15: i← i+ rec_len
16: pos← 0
17: go to next_record
18: end if

19: param← paramsx
20: ctx← param.context
21: end if

22: q ← model_qualctx.ModelDecode(rc) ▷ Decode a single quality value
23: if param.have_qmap then
24: outputi ← qmapq
25: else
26: outputi ← q
27: end if

28: ctx←FQZUpdateContext(param, q) ▷ Also updates qctx, prevq and delta

29: i← i+ 1
30: pos← pos− 1
31: end while
32: if do_rev then
33: ReverseQualities(output, buf_len, rev, len)
34: end if
35: end procedure

Read lengths are encoded as 4 8-bit bytes, each having its own model.

1: function DecodeLength(rc)
2: rec_len← model_len0.ModelDecode(rc)
3: rec_len← rec_len+ (model_len1.ModelDecode(rc)<< 8)
4: rec_len← rec_len+ (model_len2.ModelDecode(rc)<< 16)
5: rec_len← rec_len+ (model_len3.ModelDecode(rc)<< 24)
6: return rec_len
7: end function

For CRAM v4.0 quality values are stored in their original FASTQ orientation. For CRAM v3.1 they are stored
in their alignment orientation and it may be beneficial for compression purposes to reverse them first. If so
do_rev will be set and the ReverseQualities procedure called below after decoding.

39

1: procedure ReverseQualities(qual, qual_len, rev, len)
2: rec← 0
3: i← 0
4: while i < qual_len do
5: if revrec ̸= 0 then
6: j ← 0
7: k ← lenrec − 1
8: while j < k do
9: Swap(quali+j , quali+k)

10: j ← j + 1
11: k ← k − 1
12: end while
13: i← i+ lenrec

14: rec← rec+ 1
15: end if
16: end while
17: end procedure

40

	Introduction
	Pseudocode introduction
	Mathematical operators
	Implicit functions
	Other basic functions

	rANS 4x8 - Asymmetric Numeral Systems
	Frequency table
	rANS entropy encoding
	rANS decode pseudocode

	rANS Nx16
	Frequency tables
	rANS Nx16 Order-0
	rANS Nx16 Order-1
	rANS Nx16 Run Length Encoding
	rANS Nx16 Bit Packing
	Striped rANS Nx16
	Combined rANS Nx16 Format

	Range coding
	Adaptive Modelling
	Order-0 and Order-1 Encoding
	RLE with Order-0 and Order-1 Encoding

	Name tokenisation codec
	FQZComp quality codec
	FQZComp Models
	FQZComp Data Stream

