
Sequence Alignment/Map Format Specification

The SAM/BAM Format Specification Working Group

17 Jun 2025

The master version of this document can be found at https://github.com/samtools/hts-specs.
This printing is version 35bc658 from that repository, last modified on the date shown above.

1 The SAM Format Specification

SAM stands for Sequence Alignment/Map format. It is a TAB-delimited text format consisting of a header
section, which is optional, and an alignment section. If present, the header must be prior to the alignments.
Header lines start with ‘@’, while alignment lines do not. Each alignment line has 11 mandatory fields for
essential alignment information such as mapping position, and variable number of optional fields for flexible
or aligner specific information.

This specification is for version 1.6 of the SAM and BAM formats. Each SAM and BAM file may
optionally specify the version being used via the @HD VN tag. For full version history see Appendix B.

Unless explicitly specified elsewhere, all fields are encoded using
:::::

SAM
:::

file
::::::::

contents
:::

are 7-bit US-ASCII1 in

:

,
::::::

except
:::

for
::::::

certain
::::

field
::::::

values
:::

as
::::::::::

individually
::::::::

specified
::::::

which
::::

may
:::::::

contain
:::::

other
::::::::

Unicode
:::::::::

characters
::::::::

encoded

::

in
:::::::

UTF-8.
:::::::::::::

Alternatively
::::

and
:::::::::::

equivalently,
:::::

SAM
:::::

files
:::

are
::::::::

encoded
::

in
:::::::

UTF-8
::::

but
::::::::::

non-ASCII
::::::::::

characters
:::

are

:::::::::

permitted
::::

only
::::::

within
:::::::

certain
::::

field
::::::

values
:::

as
::::::::

explicitly
::::::::

specified
:::

in
:::

the
:::::::::::

descriptions
::

of
::::::

those
:::::

fields.1

::::::

Where
::

it
::::::

makes
::

a
:::::::::

difference,
:::::

SAM
:::

file
::::::::

contents
:::::::

should
:::

be
::::

read
::::

and
:::::::

written
:

using the POSIX/C locale.
Regular expressions listed use the POSIX

:::

For
:::::::::

example,
::::::::::::

floating-point
::::::

values
::

in
::::::

SAM
::::::

always
::::

use
:

‘
:

.’
:::

for
::::

the

::::::::::::

decimal-point
:::::::::

character.
:

:::

The
:::::::

regular
:::::::::::

expressions
::

in
::::

this
::::::::::::

specification
:::

are
::::::::

written
:::::

using
::::

the
:::::::

POSIX/ IEEE Std 1003.1 extended
syntax.

1.1 An example

Suppose we have the following alignment with bases in lowercase clipped from the alignment. Read r001/1

and r001/2 constitute a read pair; r003 is a chimeric read; r004 represents a split alignment.

Coor 12345678901234 5678901234567890123456789012345

ref AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

+r001/1 TTAGATAAAGGATA*CTG

+r002 aaaAGATAA*GGATA

+r003 gcctaAGCTAA

+r004 ATAGCT..............TCAGC

-r003 ttagctTAGGC

-r001/2 CAGCGGCAT

1Charset ANSI X3.4-1968 as defined in RFC1345.
1

:::::

Hence
:

in
::::::::

particular
:::::

SAM
:::

files
::::

must
:::

not
:::::

begin
::::

with
:

a
::::

byte
::::

order
::::

mark
::::::

(BOM)
::::

and
::::

lines
:

of
::::

text
:::

are
:::::::

delimited
:::

by
:::::

ASCII
:::

line

::::::::

terminator
::::::::

characters
::::

only.
::

In
:::::::

addition
::

to
:::

the
::::

local
::::::::

platform’s
:::

text
:::

file
:::

line
:::::::::

termination
::::::::::

conventions,
:::::::::::::

implementations
:::

may
::::

wish

::

to
::::::

support
::

lf
::

and
:::::

cr lf
::

for
::::::::::::

interoperability
::::

with
:::::

other
::::::::

platforms.

1

DT Date the run was produced (ISO8601 date or date/time).
FO Flow order. The array of nucleotide bases that correspond to the nucleotides used for each

flow of each read. Multi-base flows are encoded in IUPAC format, and non-nucleotide flows by
various other characters. Format : /*|[ACMGRSVTWYHKDBN]+/

KS The array of nucleotide bases that correspond to the key sequence of each read.
LB Library.
PG Programs used for processing the read group.
PI Predicted median insert size,

::::::::

rounded
::

to
:::

the
::::::

nearest
:::::::

integer.
PL Platform/technology used to produce the reads. Valid values: CAPILLARY, DNBSEQ (MGI/BGI),

ELEMENT, HELICOS, ILLUMINA, IONTORRENT, LS454, ONT (Oxford Nanopore), PACBIO (Pacific Bio-
sciences),

::::::::

SINGULAR,
:

SOLID, and ULTIMA.11 This field should be omitted when the technology is
not in this list (though the PM field may still be present in this case) or is unknown.

PM Platform model. Free-form text providing further details of the platform/technology used.
PU Platform unit (e.g., flowcell-barcode.lane for Illumina or slide for SOLiD). Unique identifier.
SM Sample. Use pool name where a pool is being sequenced.

@PG Program.
ID* Program record identifier. Each @PG line must have a unique ID. The value of ID is used in the

alignment PG tag and PP tags of other @PG lines. PG IDs may be modified when merging SAM
files in order to handle collisions.

PN Program name
CL Command line. UTF-8 encoding may be used.
PP Previous @PG-ID. Must match another @PG header’s ID tag. @PG records may be chained using PP

tag, with the last record in the chain having no PP tag. This chain defines the order of programs
that have been applied to the alignment. PP values may be modified when merging SAM files
in order to handle collisions of PG IDs. The first PG record in a chain (i.e., the one referred to
by the PG tag in a SAM record) describes the most recent program that operated on the SAM
record. The next PG record in the chain describes the next most recent program that operated
on the SAM record. The PG ID on a SAM record is not required to refer to the newest PG record
in a chain. It may refer to any PG record in a chain, implying that the SAM record has been
operated on by the program in that PG record, and the program(s) referred to via the PP tag.

DS Description. UTF-8 encoding may be used.
VN Program version

@CO One-line text comment. Unordered multiple @CO lines are allowed. UTF-8 encoding may be
used.

1.3.1 Defined sub-sort terms

While the SS sub-sort field allows implementation-defined keywords, some terms are predefined with specific
meanings.

lexicographical sort order is defined as a character-based dictionary sort with the character order as
defined by the POSIX C locale. For example “abc”, “abc17”, “abc5”, “abc59” and “abcd” are in
lexicographical order.

natural sort order is similar to lexicographical order except that runs of adjacent digits are considered to
be numbers embedded within the text string, ordered numerically when compared to each other and
ordered as single digits when compared to the surrounding non-digit characters. Runs that differ only
in the number of leading zeros (thus are numerically tied) are ordered by more-zeros coming before
fewer-zeros. The characters ‘-’ and ‘.’ are considered as ordinary characters, so apparently negative or
fractional values are not treated as part of an embedded number. For example, “abc”, “abc+5”, “abc-
5”, “abc.d”, “abc03”, “abc5”, “abc008”, “abc08”, “abc8”, “abc17”, “abc17.+”, “abc17.2”, “abc17.d”,
“abc59” and “abcd” are in natural order.

11

:::

The
::

PL
::::

value
:::::

should
::

be
::::::

written
::

in
::::::::

uppercase
::::::

exactly
::

as
:::::

shown
::

in
:::

this
:::

list
:

of
::::

valid
::::::

values.
:::::

Tools
:::::

should
:::

also
::::::

accept
:::::::

lowercase

::::

when
::::::

reading
:::

the
:::

@RG
:::

PL
::::

field,
:::

due
::

to
:::

the
:::::::

existence
::

of
:::::

public
::::

data
:::

files
::::

with
::::::::

lowercase
::

PL
:::::

values.

5

umi is a lexicographical sort by the UMI tag. The MI tag should be used for comparing UMIs. The RX tag
may be used in its absence but is not guaranteed to be unique across multiple libraries.

1.3.2 Reference MD5 calculation

The M5 tag on @SQ lines allows reference sequences to be uniquely identified through the MD5 digest of the
sequence itself. As the digest is based on the sequence and nothing else, it can help resolve ambiguities with
reference naming. For example, it allows a quick way of checking that references named ‘1’, ‘Chr1’ and ‘chr1’
in different files are in fact the same.

The reference sequence must be in the 7-bit US-ASCII character set. All valid reference bases can be
represented in this set, and it avoids the problem of determining exactly which 8-bit representation may
have been used. Padding characters (See Section 3.2) must be represented only using the ‘*’ character.

The digest is calculated as follows:

• All characters outside of the inclusive range 33 (‘!’) to 126 (‘˜’) are stripped out. This removes all
unprintable and whitespace characters including spaces and new lines. Everything else is retained,
even if not a legal nucleotide code.

• All lowercase characters are converted to uppercase. This operation is equivalent to calling toupper()
on characters in the POSIX locale.

• The MD5 digest is calculated as described in RFC 1321 and presented as a 32 character lowercase
hexadecimal number.

As an example, if the reference contains the following characters (including spaces):

ACGT ACGT ACGT

acgt acgt acgt

... 12345 !!!

then the digest is that of the string ACGTACGTACGTACGTACGTACGT...12345!!! and the resulting tag would
be M5:dfabdbb36e239a6da88957841f32b8e4.

In padded SAM files, the padding bases should be inserted into the reference as ‘*’ characters. Taking
the example in Section 3.2, the padded version of the reference is

AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT

and the corresponding tag is M5:caad65b937c4bc0b33c08f62a9fb5411.

1.4 The alignment section: mandatory fields

In the SAM format, each alignment line typically represents the linear alignment of a segment. Each line
consists of 11 or more TAB-separated fields. The first eleven fields are always present and in the order
shown below; if the information represented by any of these fields is unavailable, that field’s value will be a
placeholder, either ‘0’ or ‘*’ as determined by the field’s type. The following table gives an overview of these
mandatory fields in the SAM format:

Col Field Type Regexp/Range Brief description

1 QNAME String [!-?A-~]{1,254} Query template NAME
2 FLAG Int [0, 216 − 1] bitwise FLAG
3 RNAME String *|[:rname:∧*=][:rname:]* Reference sequence NAME12

4 POS Int [0, 231 − 1] 1-based leftmost mapping POSition
5 MAPQ Int [0, 28 − 1] MAPping Quality
6 CIGAR String *|([0-9]+[MIDNSHPX

:::::::

MIDNSHP=
:

X])+ CIGAR string
7 RNEXT String *|=|[:rname:∧*=][:rname:]* Reference name of the mate/next read
8 PNEXT Int [0, 231 − 1] Position of the mate/next read
9 TLEN Int [−231 + 1, 231 − 1] observed Template LENgth

10 SEQ String *|[A-Za-z=.]+ segment SEQuence
11 QUAL String [!-~]+ ASCII of Phred-scaled base QUALity+33

6

3. RNAME: Reference sequence NAME of the alignment. If @SQ header lines are present, RNAME (if not
‘*’) must be present in one of the SQ-SN tag. An unmapped segment without coordinate has a ‘*’ at
this field. However, an unmapped segment may also have an ordinary coordinate such that it can be
placed at a desired position after sorting. If RNAME is ‘*’, no assumptions can be made about POS
and CIGAR.

4. POS: 1-based leftmost mapping POSition of the first CIGAR operation that “consumes” a reference
base (see table below). The first base in a reference sequence has coordinate 1. POS is set as 0 for
an unmapped read without coordinate. If POS is 0, no assumptions can be made about RNAME and
CIGAR.

5. MAPQ: MAPping Quality. It equals −10 log
10

Pr{mapping position is wrong}, rounded to the nearest
integer. A value 255 indicates that the mapping quality is not available.

6. CIGAR: CIGAR string. The CIGAR operations are given in the following table (set ‘*’ if unavailable):

Op BAM Description
Consumes

query
Consumes
reference

M 0 alignment match (can be a sequence match or mismatch) yes yes
I 1 insertion to the reference yes no
D 2 deletion from the reference no yes
N 3 skipped region from the reference no yes
S 4 soft clipping (clipped sequences present in SEQ) yes no
H 5 hard clipping (clipped sequences NOT present in SEQ) no no
P 6 padding (silent deletion from padded reference) no no
= 7 sequence match yes yes
X 8 sequence mismatch yes yes

• “Consumes query” and “consumes reference” indicate whether the CIGAR operation causes the
alignment to step along the query sequence and the reference sequence respectively.

• H can only be present as the first and/or last operation.

• S may only have H operations between them and the ends of the CIGAR string.

• For mRNA-to-genome alignment, an N operation represents an intron. For other types of align-
ments, the interpretation of N is not defined.

• Sum of lengths of the M/I/S/=/XM/I/S/=/X operations shall equal the length of SEQ.

7. RNEXT: Reference sequence name of the primary alignment of the NEXT read in the template. For
the last read, the next read is the first read in the template. If @SQ header lines are present, RNEXT (if
not ‘*’ or ‘=’) must be present in one of the SQ-SN tag. This field is set as ‘*’ when the information is
unavailable, and set as ‘=’ if RNEXT is identical RNAME. If not ‘=’ and the next read in the template
has one primary mapping (see also bit 0x100 in FLAG), this field is identical to RNAME at the primary
line of the next read. If RNEXT is ‘*’, no assumptions can be made on PNEXT and bit 0x20.

8. PNEXT: 1-based Position of the primary alignment of the NEXT read in the template. Set as 0 when
the information is unavailable. This field equals POS at the primary line of the next read. If PNEXT
is 0, no assumptions can be made on RNEXT and bit 0x20.

9. TLEN: signed observed Template LENgth. For primary reads where the primary alignments of all reads
in the template are mapped to the same reference sequence, the absolute value of TLEN equals the
distance between the mapped end of the template and the mapped start of the template, inclusively
(i.e., end − start + 1).15 Note that mapped base is defined to be one that aligns to the reference as
described by CIGAR, hence excludes soft-clipped bases. The TLEN field is positive for the leftmost
segment of the template, negative for the rightmost, and the sign for any middle segment is undefined.
If segments cover the same coordinates then the choice of which is leftmost and rightmost is arbitrary,

15Thus a segment aligning in the forward direction at base 100 for length 50 and a segment aligning in the reverse direction
at base 200 for length 50 indicate the template covers bases 100 to 249 and has length 150.

8

but the two ends must still have differing signs. It is set as 0 for a single-segment template or when
the information is unavailable (e.g., when the first or last segment of a multi-segment template is
unmapped or when the two are mapped to different reference sequences).

The intention of this field is to indicate where the other end of the template has been aligned without
needing to read the remainder of the SAM file. Unfortunately there has been no clear consensus on
the definitions of the template mapped start and end. Thus the exact definitions are implementation-
defined.16

10. SEQ: segment SEQuence. This field can be a ‘*’ when the sequence is not stored. If not a ‘*’, the
length of the sequence must equal the sum of lengths of M/I/S/=/XM/I/S/=/X operations in CIGAR.
An ‘=’ denotes the base is identical to the reference base. No assumptions can be made on the letter
cases.

11. QUAL: ASCII of base QUALity plus 33 (same as the quality string in the Sanger FASTQ format). A
base quality is the phred-scaled base error probability which equals −10 log

10
Pr{base is wrong}. This

field can be a ‘*’ when quality is not stored.17 If not a ‘*’, SEQ must not be a ‘*’ and the length of
the quality string ought to equal the length of SEQ.

1.5 The alignment section: optional fields

All optional fields follow the TAG:TYPE:VALUE format where TAG is a two-character string that matches
/[A-Za-z][A-Za-z0-9]/. Within each alignment line, no TAG may appear more than once and the order
in which the optional fields appear is not significant. A TAG containing lowercase letters is reserved for end
users. In an optional field, TYPE is a single case-sensitive letter which defines the format of VALUE:

Type Regexp matching VALUE Description

A [!-~] Printable character
i [-+]?[0-9]+ Signed integer18

f [-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)? Single-precision floating number
Z [!-~]* Printable string, including space
H ([0-9A-F][0-9A-F])* Byte array in the Hex format19

B [cCsSiIf](,[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?)* Integer or numeric array

For an integer or numeric array (type ‘B’), the first letter indicates the type of numbers in the following
comma separated array. The letter can be one of ‘cCsSiIf’, corresponding to int8 t (signed 8-bit integer),
uint8 t (unsigned 8-bit integer), int16 t, uint16 t, int32 t, uint32 t and float, respectively.20 During
import/export, the element type may be changed if the new type is also compatible with the array.

Predefined tags are described in the separate Sequence Alignment/Map Optional Fields Specification.21

See that document for details of existing standard tag fields and conventions around creating new tags that
may be of general interest. Tags starting with ‘X’, ‘Y’ or ‘Z’ and tags containing lowercase letters in either
position are reserved for local use and will not be formally defined in any future version of these specifications.

16The earliest versions of this specification used 5′ to 5′ (in original orientation, TLEN#1; dashed parts of the reads indicate
soft-clipped bases) while later ones used leftmost to rightmost mapped base (TLEN#2). Note: these two definitions agree in
most alignments, but differ in the case of overlaps where the first segment aligns beyond the start of the last segment.

Read 1 Read 2

TLEN #1/#2

Unambiguous scenario

Read 1
Read 2

TLEN#2

TLEN#1

Ambiguous scenario

17

::

In
:::

the
::::::

unlikely
::::

case
::

in
::::

which
::::

SEQ
:

is
::

of
:::::

length
:

1
::::

and
:::::

QUAL
:

is
:::

‘*’,
:::::

QUAL
:::::

should
::

be
:::::::::

interpreted
::

as
::::::

quality
:::

not
:::::

stored.
:::::

Tools

:::::

should
::::

avoid
::::::

writing
::

a
::::::

solitary
::::

base
::::::

quality
:

9
::::::

(ASCII
:

‘
:

*
:

’)
::

to
:::::

SAM,
:::::

BAM,
::

or
::::::

CRAM
::::

files
::

for
::::::::

alignment
::::

lines
:::::

where
::::

SEQ
:

is
::

of

:::::

length
::

1,
:::::

instead
::::::::

adjusting
:::

the
::::

base
:::::

quality
::

to
:::

10
::::::

(ASCII
:

‘+
::

’)
::

to
::::

avoid
:::

this
::::::::

potential
::::::::

ambiguity.
18The number of digits in an integer optional field is not explicitly limited in SAM. However, BAM can represent values in

the range [−231, 232), so in practice this is the realistic range of values for SAM’s ‘i’ as well.
19For example, the six-character Hex string ‘1AE301’ represents the byte array [0x1a, 0xe3, 0x1].
20Explicit typing eases format parsing and helps to reduce the file size when SAM is converted to BAM.
21See SAMtags.pdf at https://github.com/samtools/hts-specs.

9

2 Recommended Practice for the SAM Format

This section describes the best practice for representing data in the SAM format. They are not required in
general, but may be required by a specific software package for it to function properly.

1. The header section

1 The @HD line should be present, with either the SO tag or the GO tag (but not both) specified.

2 The @SQ lines should be present if reads have been mapped.

3 When a RG tag appears anywhere in the alignment section, there should be a single corresponding
@RG line with matching ID tag in the header.

4 When a PG tag appears anywhere in the alignment section, there should be a single corresponding
@PG line with matching ID tag in the header.

2. Adjacent CIGAR operations should be different.

3. No alignments should be assigned mapping quality 255.

4. Unmapped reads

1 For a unmapped paired-end or mate-pair read whose mate is mapped, the unmapped read should
have RNAME and POS identical to its mate.

2 If all segments in a template are unmapped, their RNAME should be set as ‘*’ and POS as 0.

3 If POS plus the sum of lengths of M/=/X/D/NM/=/X/D/N operations in CIGAR exceeds the length
specified in the LN field of the @SQ header line (if exists) with an SN equal to RNAME, the alignment
should be unmapped, unless the reference sequence is circular (see below).

4 Unmapped reads should be stored in the orientation in which they came off the sequencing machine
and have their reverse flag bit (0x10) correspondingly unset.

5. Multiple mapping

1 When one segment is present in multiple lines to represent a multiple mapping of the segment,
only one of these records should have the secondary alignment flag bit (0x100) unset. RNEXT
and PNEXT point to the primary line of the next read in the template.

2 SEQ and QUAL of secondary alignments should be set to ‘*’ to reduce the file size.

6. Optional tags:

1 If the template has more than 2 segments, the TC tag should be present.

2 The NM tag should be present.

7. Circular reference sequences

Mappings that cross the coordinate ‘join’ in circular reference sequences (i.e., those whose @SQ headers
specify TP:circular) may be represented as follows:

1 (Preferred) As usual POS should be between 1 and the @SQ header’s LN value, but POS plus
the sum of the lengths of M/=/X/D/N M/=/X/D/NCIGAR operations may exceed LN. Coordinates
greater than LN are interpreted by subtracting LN so that bases at LN + 1, LN + 2, LN + 3, . . . are
considered to be mapped at positions 1, 2, 3, . . .; thus each (1-based) position p is interpreted as
((p− 1) mod LN) + 1.22

2 Alternatively, such alignments may be split across several records: one record representing the
initial portion of the segment ending at LN, one representing the final portion starting from 1,
and any other records representing additional portions in between spanning the entire reference
sequence. One record (chosen arbitrarily) is considered primary and the remainder have their
supplementary flag bit (0x800) set.

22The impact of this representation on indexing and random access is yet to be explored by implementations.

10

4.2 The BAM format

BAM is compressed in the BGZF format. All multi-byte numbers in BAM are little-endian, regardless of
the machine endianness. The format is formally described in the following table where values in brackets are
the default when the corresponding information is not available; an underlined word in uppercase denotes a
field in the SAM format.

Field Description Type Value
magic BAM magic string char[4] BAM\1

l text Length of the header text, including any NUL padding uint32 t < 231

text Plain header text in SAM; not necessarily NUL-terminated char[l text]

n ref # reference sequences uint32 t < 231

List of reference information (n=n ref)
l name Length of the reference name plus 1 (including NUL) uint32 t limited

name Reference sequence name; NUL-terminated char[l name]

l ref Length of the reference sequence uint32 t < 231

List of alignments (until the end of the file)
block size Total length of the alignment record, excluding this field uint32 t limited

refID Reference sequence ID, −1 ≤ refID < n ref; -1 for a read
without a mapping position

int32 t [-1]

pos 0-based leftmost coordinate (= POS− 1) int32 t [-1]
l read name Length of read name below (= length(QNAME) + 1) uint8 t

mapq Mapping quality (=MAPQ) uint8 t

bin BAI index bin, see Section 4.2.1 uint16 t

n cigar op Number of operations in CIGAR, see Section 4.2.2 uint16 t

flag Bitwise flags (= FLAG)31 uint16 t

l seq Length of SEQ uint32 t limited

next refID Ref-ID of the next segment (−1 ≤ next refID < n ref) int32 t [-1]
next pos 0-based leftmost pos of the next segment (= PNEXT− 1) int32 t [-1]
tlen Template length (= TLEN) int32 t [0]
read name Read name, NUL-terminated (QNAME with trailing ‘\0’)32 char[l read name]

cigar CIGAR: op len<<4|op. ‘MIDNSHP
::

=X’→‘012345678’ uint32 t[n cigar op]

seq 4-bit encoded read: ‘=ACMGRSVTWYHKDBN’→ [0, 15]. See
Section 4.2.3

uint8 t[(l seq+1)/2]

qual Phred-scaled base qualities. See Section 4.2.3 char[l seq]

List of auxiliary data (until the end of the alignment block)
tag Two-character tag char[2]

val type Value type: AcCsSiIfZHB, see Section 4.2.4 char

value Tag value (by val type)

Most length and count fields described as uint32 t have additional constraints on their range: l text < 231

due to implementation limits; n ref < 231 because refID and next refID are signed; l ref < 231 because tlen is
signed; those marked “limited” are limited by available memory and the practical size of the data represented
well before they are limited by, e.g., Java’s signed 32-bit integer maximum array size.

4.2.1 BIN field calculation

BIN is calculated using the reg2bin() function in Section 5.3. For mapped reads this uses POS−1 (i.e., 0-based
left position) and the alignment end point using the alignment length from the CIGAR string. For unmapped
reads (e.g., paired-end reads where only one part is mapped, see Section 2) and reads whose CIGAR strings
consume no reference bases at all, the alignment is treated as being of length one. Note unmapped reads
with POS 0 (which becomes −1 in BAM) therefore use reg2bin(−1, 0) which is computed as 4680.

31As noted in Section 1.4, reserved FLAG bits should be written as zero and ignored on reading by current software.
32For backward compatibility, an absent QNAME (represented as ‘*’ in SAM) is stored as a C string "*\0".

15

Appendix A Parsing region notation

Parsing region notation such as name[:begin[-end]] (in which omission of the outer bracketed portion
indicates a request for the entire reference sequence) would be simple if name could not itself contain ‘:’
characters, but this is not the case. (No such notation containing an optional ‘:’ appears in the SAM format
itself, but various tools use this notation as a convenient way for their users to specify regions of interest.)

The set of valid reference sequence names is usually already known when parsing this notation—for
example, because the associated @SQ headers have already been encountered. Tools can use this set to
determine unambiguously which colons could delimit a known-valid reference sequence name.

In pseudocode form, a string str can be parsed as follows:

consider the rightmost ‘:’ character, if any, of str
if str is of the form ‘prefix:NUM’ or ‘prefix:NUM-NUM’

or generally ‘prefix:suffix ’ for some plausible interval suffix
then

if both prefix and str are in the known set then . . . error: ambiguous representation
else if prefix is in the known set then return (prefix, NUM. . . NUM)
else if str is in the known set then return (str, entire sequence)
else . . . error: unknown reference sequence name

else . . . either str does not contain a colon or the suffix is not plausibly numeric
if str is in the known set then return (str, entire sequence)
else . . . error: unknown reference sequence name or invalid interval syntax

The check leading to “error: ambiguous representation” is important as it prevents confusing interpretations
of actually ambiguous input. Typically the set of valid reference sequence names will not contain names
that are prefixes of other names in the set, so in practice this error will not usually be encountered in
non-malicious data.

Either in addition to this algorithm or as an alternative to it, tools can use additional delimiter characters
to make an unambiguously parsable notation. We recommend a convention using curly brackets around the
reference sequence name— {name}[:begin[-end]] —as being memorable, easily typed, unambiguous, and
not expanded by most shells.

Appendix B SAM Version History

This lists the date of each tagged SAM version along with changes that have been made while that version
was current. The key changes that caused the version number to change are shown in bold.

Additions and changes to the standard predefined tags are listed in the separate Sequence Alignment/Map
Optional Fields Specification.39

1.6: 28 November 2017 to current

• Add
:::::::::

SINGULAR
::

to
::::

the
:::

list
::

of
::::

@RG
:::

PL
::::::

header
:::

tag
:::::::

values.
:::::

(May
::::::

2023)

•
::::::

Clarify
::::

that
::::

@RG
:::

PI
:::::

values
::::

are
::::::::

integers.
:::::

(May
::::::

2023)

•
::::

Add ELEMENT and ULTIMA to the list of @RG PL header tag values. (Aug 2022)

• Clarify that header field tags must be distinct within each line, and that the ordering of both header
fields and alignment optional fields is not significant. (Jun 2021)

• Clarify the meaning of TLEN when secondary alignments are present. (May 2021)

• Bin calculation changed for alignment records whose CIGAR strings consume no reference bases: like
unmapped records, they are considered to have length one (rather than zero). (Jan 2021)

39See Appendix A of SAMtags.pdf at https://github.com/samtools/hts-specs.

21

1.4: 21 April 2011 to May 2013

• Add guide to using sequence annotations (CT/PT tags). (Mar 2012)

• Increase max reference length from 229 to 231. (Sep 2011)

• Clarify @SQ M5 header tag generation. (Sep 2011)

• Describe padded alignments. (Sep 2011)

• Add @RG FO, KS header fields. (Apr 2011)

• Clarify chaining of PG records. (Apr 2011)

• Add B array auxiliary tag type. (Apr 2011)

• Permit IUPAC in SEQ and MD auxiliary tag. (Apr 2011)

• Permit QNAME “*”. (Apr 2011)

1.3: July 2010 to April 2011

• Add RG PG header field. (Nov 2010)

• Add BAM description and index sections. (Nov
::::

2010)
:

•
::::

Add
::

‘
:

=’
:::::

and
:

‘
:

X
:

’
::::::::

CIGAR
::::::::::::

operations.
:::::

(July 2010)

• Removal of FLAG letters. (July 2010)

• The SM header field, previously mandatory for @RG, is now optional. (July 2010)

1.0: 2009 to July 2010

Initial edition.

23

	The SAM Format Specification
	An example
	Terminologies and Concepts
	Character set restrictions

	The header section
	Defined sub-sort terms
	Reference MD5 calculation

	The alignment section: mandatory fields
	The alignment section: optional fields

	Recommended Practice for the SAM Format
	Guide for Describing Assembly Sequences in SAM
	Unpadded versus padded representation
	Padded SAM

	The BAM Format Specification
	The BGZF compression format
	Random access
	End-of-file marker

	The BAM format
	BIN field calculation
	N_CIGAR_OP field
	SEQ and QUAL encoding
	Auxiliary data encoding

	Indexing BAM
	Algorithm
	Basic binning index
	Reducing small chunks
	Combining with linear index
	A conceptual example

	The BAI index format for BAM files
	C source code for computing bin number and overlapping bins

	Parsing region notation
	SAM Version History

