4 The BAM Format Specification

4.1 The BGZF compression format

BGZF is block compression implemented on top of the standard gzip file format.?6 The goal of BGZF is to
provide good compression while allowing efficient random access to the BAM file for indexed queries. The
BGZF format is ‘gunzip compatible’; in the sense that a compliant gunzip utility can decompress a BGZF
compressed file.?”

A BGZF file is a series of concatenated BGZF blocks, each no larger than 64b-before-or-64KB before
and after compression. Each BGZF block is itself a spec-compliant gzip archive which contains an “extra
field” in the format described in RFC1952. The gzip file format allows the inclusion of application-specific
extra fields and these are ignored by compliant decompression implementation. The gzip specification also
allows gzip files to be concatenated. The result of decompressing concatenated gzip files is the concatenation
of the uncompressed data.

Each BGZF block contains a standard gzip file header with the following standard-compliant extensions:

1. The F.EXTRA bit in the header is set to indicate that extra fields are present.
2. The extra field used by BGZF uses the two subfield ID values 66 and 67 (ASCII ‘BC’).

3. The length of the BGZF extra field payload (field LEN in the gzip specification) is 2 (two bytes of
payload).

4. The payload of the BGZF extra field is a 16-bit unsigned integer in little endian format. This integer
gives the size of the containing BGZF block minus one.

On disk, a complete BGZF file is a series of blocks as shown in the following table. (All integers are little
endian as is required by RFC1952.)

Field [Description Type | Value
List of compression blocks (until the end of the file)
ID1 gzip IDentifierl uint8_t 31
ID2 gzip [Dentifier2 uint8_t 139
CcM gzip Compression Method uint8_t 8
FLG gzip FLaGs uint8_t 4
MTIME gzip Modification TIME uint32_t
XFL gzip eXtra FLags uint8_t
oS gzip Operating System uint8_t
XLEN gzip eXtra LENgth uintl6_t
Extra subfield(s) (total size=XLEN)
Additional RFC1952 extra subfields if present
SI1 Subfield Identifierl uint8_t 66
SI2 Subfield Identifier2 uint8_t 67
SLEN | Subfield LENgth uintl6_t 2
BSIZE | total Block SIZE minus 1 uint16_t
Additional RFC1952 extra subfields if present
CDATA Compressed DATA by zlib::deflate() uint8_t [BSIZE-XLEN-19]
CRC32 CRC-32 uint32_t
ISIZE Input SIZE (length of uncompressed data) | uint32_t

The random access method to be described next limits the uncompressed contents of each BGZF block
to a maximum of 2'¢ bytes of data. Thus while ISIZE is stored as a uint32_t as per the gzip format, in
BGZF it is limited to the range [0,65536]. BSIZE can represent BGZF block sizes in the range [1,65536],
though typically BSIZE will be rather less than ISIZE due to compression.

261,. Peter Deutsch, GZIP file format specification version 4.3, RFC 1952.

27t is worth noting that there is a known bug in the Java GZIPInputStream class that concatenated gzip archives cannot be
successfully decompressed by this class. BGZF files can be created and manipulated using the built-in Java util.zip package,
but naive use of GZIPInputStream on a BGZF file will not work due to this bug.

13

	The SAM Format Specification
	An example
	Terminologies and Concepts
	Character set restrictions

	The header section
	Defined sub-sort terms
	Reference MD5 calculation

	The alignment section: mandatory fields
	The alignment section: optional fields

	Recommended Practice for the SAM Format
	Guide for Describing Assembly Sequences in SAM
	Unpadded versus padded representation
	Padded SAM

	The BAM Format Specification
	The BGZF compression format
	Random access
	End-of-file marker

	The BAM format
	BIN field calculation
	N_CIGAR_OP field
	SEQ and QUAL encoding
	Auxiliary data encoding

	Indexing BAM
	Algorithm
	Basic binning index
	Reducing small chunks
	Combining with linear index
	A conceptual example

	The BAI index format for BAM files
	C source code for computing bin number and overlapping bins

	Parsing region notation
	SAM Version History

