
Randoop Tutorial

December 11, 2016

1 Introduction

Randoop is a test generator for Java. Given a set of Java classes, Randoop outputs two test
suites:

• Error-revealing tests that indicate errors in the Java code.

• Regression tests that capture current behavior, and that can identify when future code changes
affect behavior.

Randoop creates large numbers of tests that may be too complicated or too mundane for the average
programmer to write. Randoop runs automatically. The user can tune parameters and provide
optional inputs to improve Randoop’s performance.

This tutorial is an introduction to using Randoop to generate tests, specifically in the context of
the Pascali project.

2 Getting Started

This tutorial assumes that the integration-test2 fetch.py and run dyntrace.py scripts have been
run:

git clone https://github.com/aas-integration/integration-test2.git

cd integration-test2

python fetch.py

python run_dyntrace.py catalano

The fetch.py script ensures that the Randoop jar file is available, and the run dyntrace.py script
ensures that input files for Randoop (such as the list of classes in the Pascali corpus) are there. It
produces copious output, including Java stack traces — you can ignore these.

From the integration test2 directory, run the following commands to make links to files needed
for the tutorial:

PASCALIROOT=`pwd`

git clone https://github.com/randoop/tutorial-examples.git

1

https://randoop.github.io/randoop/manual/#command-line-options

cd tutorial-examples

./gradlew -PpascaliRoot=$PASCALIROOT tutorialInit

3 Learning about Randoop

We will apply Randoop to a toy class, MyInteger.

3.1 Discovering a bug

First, run the command

./gradlew first build

Before moving on, peek in the file src/main/java/math/MyInteger.java. This is a simple class
that creates integer-like objects that can be added and multiplied. Programmer-crafted tests are
in src/test/java/math/MyIntegerTest.java. With a quick glance these look reasonable, but,
as we’ll see, this version of MyInteger has a bug.

When we ran the build Gradle task these files were compiled, and the tests were run. You can
verify that the tests pass:

./gradlew cleanTest test

Now let’s use Randoop to generate some tests. Copy and paste the following command into your
terminal to run Randoop:

java -ea -cp build/classes/main:randoop.jar randoop.main.Main gentests \

--testclass=math.MyInteger --junit-output-dir=src/test/java --outputlimit=20

This generates a small number of tests that call the constructors and methods of the MyInteger

class; it writes the tests to the subdirectory src/test/java. Randoop has actually generated two
test suites: one for error-revealing tests, and one for regression tests. Each suite consists of a JUnit4
suite file (e.g., ErrorTest.java) and files containing the tests themselves (e.g., ErrorTest0.java).

The fact that Randoop generated the error-revealing tests means that it discovered a faulty be-
havior. The file src/test/java/ErrorTest0.java contains five methods, each of which violates
the same contract: if two objects are equal, then they have the same hashCode For example, the
second test method, slightly edited, is

public void test2() throws Throwable {

math.MyInteger myInteger1 = new math.MyInteger((-1));

math.MyInteger myInteger3 = new math.MyInteger((-1));

java.lang.String str4 = myInteger3.toString();

math.MyInteger myInteger5 = myInteger1.multiply(myInteger3);

int i6 = myInteger1.getIntValue();

// Checks the contract: equals-hashcode on myInteger3 and myInteger5

org.junit.Assert.assertTrue(

2

"Contract failed: equals-hashcode on myInteger3 and myInteger5",

myInteger3.equals(myInteger5)

? myInteger3.hashCode() == myInteger5.hashCode() : true);

}

This is the kind of test that is likely to be overlooked by a programmer, but is critical to the proper
behavior of the class in the tests that the programmer wrote.

To run the Randoop-generated tests, do:

./gradlew test

You will see that the ErrorTests test suite fails, and the RegressionTests test suite passes.

The regression tests capture sequences of code that do not violate a contract, along with assertions
about the values that are generated. We’ll look more closely at regression tests after we have fixed
the defect.

3.2 Fixing the bug

If we look at the class (src/main/java/math/MyInteger.java) more closely than before, we can
see that the equals method is incorrectly defined

public boolean equals(Object other) {

if (other instanceof MyInteger) {

return true;

}

return false;

}

and there is no hashCode() method.

Let’s assume that Randoop’s tests revealed the problem to a developer, and the developer has made
a fix. To obtain the fixed version of the class, run

./gradlew second

Then, compile the class and run the tests:

./gradlew build

Notice that all of the tests now pass, even the error-revealing tests that had failed before. This
verifies the fix

3.3 Discovering a regression error

As we just saw, the tests generated for a previous version of the code are useful for checking the
behavior of newer versions of the code. Let’s create new regression tests for the MyInteger class.
First, run

./gradlew cleanRandoopRegressionTests

3

to remove the existing set of tests, and then run Randoop again

java -ea -cp build/classes/main:randoop.jar randoop.main.Main gentests \

--testclass=math.MyInteger --junit-output-dir=src/test/java --outputlimit=200

Notice that Randoop only generated new regression tests. That is because Randoop did not discover
any problems in the new version of the code. Note that the command uses a larger value for
--outputlimit, which is an upper bound on the number of tests that will generated.

The value of regression tests is that they reveal changes in behavior. Suppose that a programmer
makes some modifications to improve performance or add new features, but the programmer intends
that existing functionality should not be affected. To validate these changes, you can run the
regression tests.

Obtain a changed version of the code with the command

./gradlew third

and run the tests:

./gradlew test

The test runner output shows that there is an AssertionError at line 54 of RegressionTest0.java
(among other places). That is the last assertion in the second test:

public void test02() throws Throwable {

if (debug) { System.out.format("%n%s%n","RegressionTest0.test02"); }

math.MyInteger myInteger1 = new math.MyInteger((-1));

math.MyInteger myInteger3 = new math.MyInteger((-1));

java.lang.String str4 = myInteger3.toString();

math.MyInteger myInteger5 = myInteger1.multiply(myInteger3);

boolean b7 = myInteger5.equals((java.lang.Object)(short)100);

int i8 = myInteger5.getIntValue();

// Regression assertion (captures the current behavior of the code)

org.junit.Assert.assertTrue("’" + str4 + "’ != ’" + "-1"+ "’", str4.equals("-1"));

// Regression assertion (captures the current behavior of the code)

org.junit.Assert.assertNotNull(myInteger5);

// Regression assertion (captures the current behavior of the code)

org.junit.Assert.assertTrue(b7 == false);

// Regression assertion (captures the current behavior of the code)

org.junit.Assert.assertTrue(i8 == 1);

}

4

This assertion says that −1×−1 = 1. Since the assertion fails, either the test is wrong, or there is
something wrong with one of the methods that the test calls. If we look in the new MyInteger, the
problem is that the developer performed an incorrect optimization. The optimization is to avoid
multiplication of negative numbers, but the logic is wrong for correcting the sign:

public MyInteger multiply(MyInteger other) {

// Always multiply positive numbers, negate later.

boolean negative = false;

negative = negative || this.value < 0;

int absThis = Math.abs(this.value);

negative = negative || other.value < 0;

int absOther = Math.abs(other.value);

int absProduct = absThis * absOther;

if (negative) {

return new MyInteger(-1 * absProduct);

} else {

return new MyInteger(absProduct);

}

}

4 A Larger Example

What we’ve seen so far is that Randoop can generate tests that find important bugs, and also
can help find regressions that arise between versions of code. But, Randoop can do more than
build tests for a single simple class, it can build complex tests for non-toy code bases such as those
included in the Pascali corpus.

As an example, consider part of the Catalano Framework (https://github.com/DiegoCatalano/
Catalano-Framework) from the Pascali corpus. The following Gradle task runs Randoop on the
files in catalanoimage/classlist.txt, using the classpath in catalanoimage/classpath.txt

and redirecting standard error to a log file.

./gradlew runCatalanoExample 2> catalano-error-log.txt

Randoop runs for about 2 minutes. It generates 9 error-revealing tests and about 1062 regression
tests, and writes them to src/test/java/catalano/.

5

https://github.com/DiegoCatalano/Catalano-Framework
https://github.com/DiegoCatalano/Catalano-Framework

	Introduction
	Getting Started
	Learning about Randoop
	Discovering a bug
	Fixing the bug
	Discovering a regression error

	A Larger Example

