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1 Introduction

This document (in its current draft form) provides a brief introduction to
spatial data handling in R . I use the term ’handling’ to refer to practical aspects
of working with spatial data, such as importing data and manipulating it for
analysis. I do not discuss the analysis of spatial data.

Spatial data refers to locations. In the context of this vignette these are
geographical locations, that is, locations on earth, although most the concepts
can be used for locations on other planets, or other regions such as the surface
of your skin.

Before getting to spatial data I briefly review, in Chapter 2, basic data types
and structures in R . Chapter 3 discusses some general properties of spatial data.
Chapter 4 shows how you can represent spatial data with the basic data types
and chapter 5 introduces the main spatial data types that area available in R
and that make spatial data handling an easy task.

Carefully read through the example code. Copy and paste the code to R and
run it yourself. Make changes to the code and predict the result before running
it to test your understanding.

2 Basic data types in R

This section describes, very briefly, some of the basic data types in R . Ex-
perienced R users need not read it. It is meant as a reminder to those who have
not used R much, or not recently. If the material in this section is not immedi-
ately obvious to you, you should probably consult a text book that introduces
R . For example Adler’s ”R in a nutshell” or Zuur et al’s ”Introduction to R for
ecologists”.

2.1 Vectors

The most basic data type in R is the ’vector’, a one-dimensional array of
textitn values of a certain type (numeric, integer, character, logical, or factor).
Even a single number is a vector (of length 1). These vectors can easily be
created and manipulated:
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Let’s create variable v0 that holds one number, and variables v1 and v2

holding three numbers. For v1 we use the c (short for combine) function; for
v2 we use : to create a regular sequence.

> v0 <- 7

> v0

[1] 7

> v1 <- c(1.25, 2.9, 3.0)

> v1

[1] 1.25 2.90 3.00

> # going from 5 to 7

> v2 <- 5:7

> v2

[1] 5 6 7

Note that when R prints the value of textttv0 it shows [1] 7 because 7 is
the first element in vector v0. That is, even a single number is a vector (of
length 1). Also note that I use - for assingment (assigning a value to a variable
name) because it is the original R idiom and I think it is clearer than using
texttt= which is now also allowed as that might be easily confused with testing
for equality (==, see below).

Now let’s create variable x holding a character vector of five elements

> x <- c('a', 'bc', 'def', 'gh', 'i')

> x

[1] "a" "bc" "def" "gh" "i"

> class(x)

[1] "character"

> length(x)

[1] 5

Remember to use quotes for character values (because character strings with-
out quotes represent variable names), and hence to not use quotes for variables
(x does not have quotes) because they would be interpreted as a character value.

> x <- c(a, bc, def)

Error: object ’a’ not found

> ’x’

[1] "x"
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Also remember that the character value ’a’ is not equal to ’A’ (double-
quoted "a" is the same as single-quoted ’a’, but you cannot mix the two: "a’

is invalid) and that variable x is not the same as X. Not noting the difference
between upper and lower case characters is one of the main sources of frustration
for beginners with R .

A factor is a nominal (categorical) variable with a set of known possible
values. They can be created using the as.factor function. In R you typically
need to convert a character variable to a factor to use it in statistical modeling.

> f1 <- as.factor(x)

> f1

[1] a bc def gh i

Levels: a bc def gh i

> f2 <- as.factor(5:7)

> f2[1]

[1] 5

Levels: 5 6 7

> as.integer(f2)

[1] 1 2 3

The result of as.integer(f2) may have been surprising. But it should not be,
as there is no direct link between a category with label ”5” and the number 5.
In this case ”5” is simply the first category and hence it gets converted to the
integer 1. If you wanted the original numbers, you should do:

> fc2 <- as.character(f2)

> as.integer(fc2)

[1] 5 6 7

Elements of vectors can be obtained by indexing. Remember that brackets
[ ] are used for indexing, whereas parenthesis ( ) are used to call a function.

> # first element

> v2[1]

[1] 5

> # elements 2 to 3

> v2[2:3]

[1] 6 7

> # all elements but the first two

> v2[-c(1:2)]
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[1] 7

Vectors can be used to compute new vectors with simple algebraic expres-
sions.

> # are the elements of v1 2?

> v1 == 2

[1] FALSE FALSE FALSE

> # are the elements of v1 larger than 2?

> f <- v1 > 2

> f

[1] FALSE TRUE TRUE

> # element wise multiplication

> v3 <- v1 * v2

> v3

[1] 6.25 17.40 21.00

> # add all elements

> sum(v3)

[1] 44.65

In the examples above the computations used either vectors of the same
length, or one of the vectors had lenght 1. But be careful, you can compute
with vectors of different lengths, as the shorter ones will be recycled. R only
issues a warning if the length of longer vector is not a multiple of the length of
the shorter object. Because of this feature, you may overlook that your data
are not what you think they are.

> 1:6 * 1:2

[1] 1 4 3 8 5 12

The examples above illustrate a special feature of R not found in most other
programming languages. This is that you do not need to ’loop’ over elements in
an array (vector in this case) to compute new values. It is important to use this
feature as much as possible. In other programming languages you would need to
do something like the ’for-loop’ below to achieve the above. This is illustrated
below. Note that the braces are used to open and close a ”block” of code.

> # initialization of output variables

> v3 <- vector(length=length(v1))

> s <- 0

> # i goes from 1 to 3 (the length of v1)
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> for (i in 1:length(v1)) {

+ v3[i] <- v1[i] * v2[i]

+ s <- s + v3[i]

+ }

> v3

[1] 6.25 17.40 21.00

> s

[1] 44.65

> # another example, with an if/else branch:

>

> f <- vector(length=length(v1))

> # i goes from 1 to 3 (the length of v1)

> for (i in 1:length(v1)) {

+ if (v1[i] > 2) {

+ f[i] <- TRUE

+ } else {

+ f[i] <- FALSE

+ }

+ }

> f

[1] FALSE TRUE TRUE

In R we avoid loops wherever we can, as they tend to be much slower than
’vectorized’ computation, and because they are less concise. At first code using
for-loops may seem easier to read, but after using R for a while, the reverse is
true is most cases.

Things are not always what they seem. (This is a little more advanced topic
that is useful to know about (but you do not need to worry about much if it you
do not get it). Some R functions require numbers to be integers and you need to
explicitly coerce a number to become an integer. Also, by default R only prints
up to 6 decimals, ommitting trailing zeros. On the other hand, in comparison
for numerical equality integer ’2’ is equavalent to numeric ’2.0’.

> a <- 1

> b <- 1.00000000000001

> # a and b look the same

> a

[1] 1

> b

[1] 1

5



> # but they are not

> a == b

[1] FALSE

> # but they are "near equal"

> all.equal(a,b)

[1] TRUE

> # inspect for small decimals

> print(b, digits=15)

[1] 1.00000000000001

> is.integer(a)

[1] FALSE

> aa <- as.integer(a)

> aa

[1] 1

> is.integer(aa)

[1] TRUE

> bb <- round(b)

> aa == bb

[1] TRUE

> is.integer(bb)

[1] FALSE

2.2 Matrices

A two-dimensional array can be represented with a matrix. Here is how you
can create a matrix with missing NA values:

> matrix(ncol=3, nrow=3)

[,1] [,2] [,3]

[1,] NA NA NA

[2,] NA NA NA

[3,] NA NA NA

A matrix with values 1 to 9 (note that by default the values are distributed
column-wise
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> matrix(1:6, ncol=3, nrow=2)

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> matrix(1:6, ncol=3, nrow=2, byrow=TRUE)

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

> # the above can also be achieved using the transpose function

> # (note the reversal of ncol and nrow valus)

> t(matrix(1:6, ncol=2, nrow=3))

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

You can also create a matrix by column-binding and/or row-binding vectors:

> v1 <- c(1,2,3)

> v2 <- 5:7

> # column bind

> m1 <- cbind(v1, v2)

> m1

v1 v2

[1,] 1 5

[2,] 2 6

[3,] 3 7

> # row bind

> m2 <- rbind(v1, v2, v1*v2)

> m2

[,1] [,2] [,3]

v1 1 2 3

v2 5 6 7

5 12 21

> m3 <- cbind(m1, m2)

> # get the column names

> colnames(m3)

[1] "v1" "v2" "" "" ""
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> # set the column names

> colnames(m3) <- c('ID', 'V2', 'X', 'Y', 'Z')

> m3

ID V2 X Y Z

v1 1 5 1 2 3

v2 2 6 5 6 7

3 7 5 12 21

> # dimensions of m3 (nrow, ncol))

> dim(m3)

[1] 3 5

Like vectors, values of matrices can be accessed through indexing. You can
use a single number, in which case the cells are numbered column-wise (i.e. first
the rows in the first column, then the second column, etc.), but it is often easier
to use two numbers in a double index, the first for the row number(s) and the
second for the column number(s).

> # one value

> m3[2,2]

[1] 6

> # equivalent to

> m3[5]

[1] 6

> # 2 columns and rows

> m3[1:2,1:2]

ID V2

v1 1 5

v2 2 6

> # entire row

> m3[2, ]

ID V2 X Y Z

2 6 5 6 7

> # entire column

> m3[ ,2]

v1 v2

5 6 7
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> # you can also use column- or rownames for subsetting

> m3[c('v1', 'v2') , c('ID', 'X')]

ID X

v1 1 1

v2 2 5

Computation with matrices is also ’vectorized’. For example you can do m3

* 5 to multiply all values of m3 with 5 or do m32̂ or m3 * m3 to square the
values of m3. But often we need to compute values for the margins of a matrix,
that is, a single value for each row or column. The ’apply’ function can be used
for that:

> # sum values in each row

> apply(m3, 1, sum)

v1 v2

12 26 48

> # get mean for each column

> apply(m3, 2, mean)

ID V2 X Y Z

2.000000 6.000000 3.666667 6.666667 10.333333

Note that the apply uses at least three arguments: a matrix, a 1 or 2 in-
dicating whether the computation is for rows or for columns, and a function
that computes a new value (or values) for each row or column. You can read
more about this in the help file of the function (type ?apply). In most cases
you will also add the argument na.rm=TRUE to remove NA (missing) values as
any computation that includes an NA value will return NA. In this case we used
existing basic functions mean and sum but we could write our own function. As
a toy example, we’ll write a function that returns the minimum value, except
when it is higher than 1, in wich case it returns NA.

> myFun <- function(x, na.rm=FALSE) {

+ v <- min(x, na.rm=na.rm)

+ v[v > 1] <- NA

+ return(v)

+ }

> # our function

> apply(m3, 1, myFun)

v1 v2

1 NA NA

> # compare with 'min'

> apply(m3, 1, min)
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v1 v2

1 2 3

Note that apply (and related functions such as tapply and sapply are ways
to avoid writing a loop. In the apply examples above you could have written
a loop to do the computations row by row (or column by column) but using
apply is more compact and efficient.

2.3 data.frame

In R , matrices can only contain one data type (e.g. numeric or character).
In contrast, a data.frame can have columns (variables) of different types (each
variable has to be of a single type though). A data.frame is what you get
when you read spread-sheet like data into R with functions like read.table or
read.csv. We can also create a data.frame with some code, for example like
this:

> d <- data.frame(ID=as.integer(1:4), name=c('Ana', 'Rob', 'Liu', 'Veronica'),

+ sex=as.factor(c('F','M','M', 'F')), score=c(10.2, 9, 13.5, 18),

+ stringsAsFactors=FALSE)

> d

ID name sex score

1 1 Ana F 10.2

2 2 Rob M 9.0

3 3 Liu M 13.5

4 4 Veronica F 18.0

> class(d)

[1] "data.frame"

> class(d$name)

[1] "character"

> sapply(d, class)

ID name sex score

"integer" "character" "factor" "numeric"

Indexing data.frames can be done as for matrices, but variables can also be
accessed using the $ sign:

> d$name

[1] "Ana" "Rob" "Liu" "Veronica"

> d[, 'name']
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[1] "Ana" "Rob" "Liu" "Veronica"

> d[,2]

[1] "Ana" "Rob" "Liu" "Veronica"

You can summarize values in a data.frame with functions table, tapply or
aggregate. Have a look at the help for these functions if you are not familiar
with them.

> # tabulate single variable

> table(d$sex)

F M

2 2

> # contingency table

> table(d[ c('name', 'sex')])

sex

name F M

Ana 1 0

Liu 0 1

Rob 0 1

Veronica 1 0

> # mean score by sex

> tapply(d$score, d$sex, mean)

F M

14.10 11.25

> aggregate(d[, 'score', drop=F], d[, 'sex', drop=FALSE], mean)

sex score

1 F 14.10

2 M 11.25

2.4 Lists

Lists are the most flexible container to store data (a data.frame is in fact
a special type of list). Each element of a list can contain any type of R object,
e.g. a vector, matrix, data.frame, another list, or more complex data types such
as the spatial data types described in the next chapters. Indexing can be a bit
confusing as you can both refer to the elements of the list, or the elements of
the data (perhaps a matrix) in one of the list elements (note the difference that
double brackets make; or ignore this if it is over your head).
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> e <- list(d , m3, 'abc')

> e

[[1]]

ID name sex score

1 1 Ana F 10.2

2 2 Rob M 9.0

3 3 Liu M 13.5

4 4 Veronica F 18.0

[[2]]

ID V2 X Y Z

v1 1 5 1 2 3

v2 2 6 5 6 7

3 7 5 12 21

[[3]]

[1] "abc"

> e[2][1]

[[1]]

ID V2 X Y Z

v1 1 5 1 2 3

v2 2 6 5 6 7

3 7 5 12 21

> e[[2]][1]

[1] 1

To iterate over a list, we can use lapply or sapply. The difference is that
lapply always returns a list while sapply tries to simplify the result to a vector
or matrix.

> lapply(e, NROW)

[[1]]

[1] 4

[[2]]

[1] 3

[[3]]

[1] 1

> sapply(e, length)

[1] 4 15 1

Note that the length of a matrix is defined as the number of cells, while the
length of a data.frame is defined as the number of variables!
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2.5 functions

We now have used many functions that come with R . But it is often impor-
tant to write your own functions. Functions allow you to more clearly describe
a particular task and to reuse code. Rather than repeating the same steps sev-
eral times (e.g. for each of 200 species you are analysing), you write a function
that gets called several times. This should lead to faster development of scripts
and to fewer mistakes. Writing your own functions is easy. For exammple this
function squares the sum of two numbers.

> sumsquare <- function(a, b) {

+ d <- a + b

+ dd <- d * d

+ return(dd)

+ }

We can now use the function:

> sumsquare(1,2)

[1] 9

> x <- 1:3

> y <- 3:5

> sumsquare(x,y)

[1] 16 36 64

Here is a function to compute the number of unique values in a vector:

> nun <- function(x)length(unique(x))

> data <- c('a', 'b', 'a', 'c', 'b')

> nun(data)

[1] 3

3 Spatial data

Spatial data always refers to a location, and it normally also includes infor-
mation about these locations. For example, a spatial data set may describe the
borders of the countries of the world, and also store the names of the countries
and the size of their population in 2010. The location data can be referred
to as the ’geometry’ and the associated information can be referred to as the
’attributes’ (or simply ’variables’).

One important distinction is between the ’object’ and ’field’ view of spatial
phenomena. In the object view space is divided into discrete spatial entities. In
the field view, space consists of continuously varying quantities without obvious
boundaries. The object representation is mostly implemented using ’vector’
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data, that is, by points, lines, or polygons (note that both the terms object and
vector can lead to confusion because in R , almost everything (data, function)
can be referred to as an object, and a vector is used for a simple one-dimensional
data structure that can hold a set of values).

In spatial data terminology, vector data is commonly used to represent enti-
ties with well defined boundaries, like country boundaries, roads, or the location
of weather stations. The geometry of such data structures is represented by one
or multiple coordinate pairs. The simplest type is points. Points each have
one coordinate pair, and 0 to n associated attributes. For example, a point
might represent a place where a rat was trapped, and the attributes could in-
clude the date it was captured, the person who captured it, the species size and
sex, and information about the habitat. Several points can be combined into a
multi-point object, i.e. a combination of multiple spatial features with a single
attribute record (this is common in point pattern analysis).

Lines and polygons are more complex. Note that the literature on spatial
data analysis, and on geographic information systems, the terms ’line’ and ’poly-
gon’ are used rather loosely. In this context, a ’line’ in fact refers to a set of 1 or
more polylines (connected series of line segments); a polygon refers to a set of
closed polylines (the last coordinates coincide with the first ones). For example
the US state of Hawaii consists of several islands. Each can be represented by
a single polygon, and together then can be represent a single (multi-) polygon.

Other related vector type object data types are networks (graphs) and tri-
angulated irregular networks (TINs); these are not discussed here.

Fields are commonly represented using raster data. A raster divides the
world into a grid of equally sized rectangles (referred to as cells or, in the context
of air photos and satellite images, pixels) that all have values (or missing values)
for the variables. In contrast to vector data, in raster data the geometry is
not explicitly stored as coordinates. It is implicitly set by knowing the spatial
extent and number or rows and columns (defining the spatial resolution (size of
the raster cells)). Note, however, that while fields can also be represented by
vedsctor data, this is in most cases inefficient and inpractical.

4 Simple representation of spatial data

We have already discussed that the basic data types in R are numbers, char-
acters, logical (TRUE or FALSE) and factor values. Values of a single type
can be combined in vectors and matrices, and variables of multiple types can
be combined into a data.frame. This allows us to represent some basic types
of spatial data. Let’s say we have the location (represented by longitude and
latitude) of ten weather stations (named A to J) and their annual precipitation.

In the example below we use some fake data to make a very simple map.
(Note that a map is a plot of spatial data that also has labels and other graphical
objects such as a scale bar or legend; the spatial data itself should not be referred
to as a map).

> name <- toupper(letters[1:10])
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> longitude <- c(-116.7, -120.4, -116.7, -113.5, -115.5,

+ -120.8, -119.5, -113.7, -113.7, -110.7)

> latitude <- c(45.3, 42.6, 38.9, 42.1, 35.7, 38.9,

+ 36.2, 39, 41.6, 36.9)

> precip <- (latitude-30)^3

> stations <- cbind(longitude, latitude)

> # plot locations, with size (cex) proportional to precip

> plot(stations, cex=1+precip/500, pch=20, col='red', main='Precipitation')

> text(stations, name, pos=4)

> # add a legend

> breaks <- c(100, 500, 1000, 2000)

> legend("topright", legend=breaks, pch=20, pt.cex=1+breaks/500, col='red', bg='gray')

The map shows the location of the weather stations and the size of the dots
is indicative of the amount of precipitation. Note that the data are represented
by ”longitude, latitude”, in that order, do not use ”latitude, longitude” because
on most maps latitude (North/South) is used for the vertical axis and longitude
(East/West) for the horizontal axis. This is important to keep in mind, as it is a
very common source of mistakes as most people organize their data as ”latitude,
longitude”.

We can add mulitple sets of points to the plot, and even draw lines and
polygons:

> lon <- c(-116.8, -114.2, -112.9, -111.9, -114.2, -115.4, -117.7)
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> lat <- c(41.3, 42.9, 42.4, 39.8, 37.6, 38.3, 37.6)

> x <- cbind(lon, lat)

> plot(stations)

> polygon(x, col='blue', border='light blue')

> lines(x, lwd=3, col='red')

> points(x, cex=2, pch=20)

> points(stations)

The above illustrates how numeric vectors representing locations can be used
to draw simple maps. It also shows how points can (and typically are) repre-
sented by pairs of numbers, and a line and a polygons by a number of these
points. An additional criterion for polygons is that they are ”closed”, i.e. the
first point coincides with the last point, but ’plot’ takes care of that in this case.

There are cases where a simple approach like this may suffice and you may
come across this in older R code or packages. Particularly when only dealing
with point data such an approach may work. For example, a spatial data set
representing points and attributes could be made by combining geometry and
attributes in a single data.frame.

> wst <- data.frame(longitude, latitude, name, precip)

> wst

longitude latitude name precip

1 -116.7 45.3 A 3581.577
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2 -120.4 42.6 B 2000.376

3 -116.7 38.9 C 704.969

4 -113.5 42.1 D 1771.561

5 -115.5 35.7 E 185.193

6 -120.8 38.9 F 704.969

7 -119.5 36.2 G 238.328

8 -113.7 39.0 H 729.000

9 -113.7 41.6 I 1560.896

10 -110.7 36.9 J 328.509

However, wst is a data.frame and R does not automatically understand the
special meaning of the first two columns, or to what coordinate reference system
it refers (longitude/latitude, or perhaps UTM zone 17S, or ....?). Moreover, it is
non-trivial to do some basic spatial operations. For example, the blue polygon
drawn might represent a state, and a next question might be which of the
10 stations fall within that polygon. And how about any other operation on
spatial data, including reading from and writing data to files? To facilitate such
operation a number of R packages have been developed that are discussed in
the next chapter.

5 Spatial packages

5.1 packages

The success of R is to a large extent due to the ease of contributing new and
often specialized functionality through plug-ins called ”packages” or ”libraries”.
A package is a collection of functions and/or some other R objects such as data
sets, and help files. To create a package you do not need to be involved in the
development of the core R software; and there is an easily accessible central
repository from where these packages can be downloaded and installed. This
means that there is relatively little need for oversight, a contributed package
cannot break the code in already existing packages, and hence that the barrier
to contributing code is very low. Thanks to this there are hundreds of active
developers contributing to R . The downside is that R can be somewhat chaotic.
For example, the same functionality may be implemented in slightly different
ways (or not) in functions in different packages; packages doing similar things
may use very different data structures and can thus be hard to use together; if
newer packages improve upon older packages, the older packages still linger on,
and the unsuspecting user may not be aware that and waste time learning to
use obsolete software.

Despite all these issues, R has become the leading platform for data analy-
sis. While R is particularly strong for particular domains of data analysis (e.g.
molecular biology, ecology, spatial, finance, machine learning, time series), it
is perhaps more important to note that it is the tool for interdisciplinary and
creative data analysis, as one can integrate analytical methods and data types
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form virtually any domain; and it is very easy to build on existing functionality
to create your own analytical methods.

To use a package, it must be downloaded to your computer. You need to do
that each time you update the R software (which you should do at least once
a year). Depending on how you use R you may be able to install packages via
a menu, but it easiest to use the install.packages function. For example to
install packages raster and rgdal you do (note the quotes):

> install.packages(c(’raster’, ’rgdal’))

You should only install a package every couple of months or so (to get up-
dates, e.g. by running update.packages()), but on a day-to-day basis you
should not re-install a package every time you use it. However, you must the
library function to load a package to make its functions and data available
for use in a R session. Do not install a package each time you need it. For
example, to use the raster package in a script, it needs to have this line (no
quotes required) before the functions can be used:

> library(raster)

5.2 Package sp

Package sp is the main package supporting spatial data analysis in R . It
does not provide very many functions to modify or analyze spatial data. Rather
it defines a set of ”classes” to represent spatial data. A class defines a particular
data structure such that functions (also known as ’methods’) can be written
for them (they know what to expect in terms of the data structure, not the
values). A data.frame is an example of a class. Any particular data.frame

is an ’instantiation’ of the class, or an ’object’. Package sp introduces a num-
ber of classes with names that start with Spatial. The basic types are the
SpatialPoints, SpatialLines, SpatialPolygons, SpatialGrid (raster) and
SpatialPixels (sparse raster). These classes only represent geometries. To
also store attributes, classes are available with these names plus DataFrame,
e.g., SpatialPolygonsDataFrame.

In most cases you will not create such data types with R code. Rather you
will read them from a file or database, for example from a shapefile (and it is im-
portant to recognise the difference between such a file and the object created in
R to represent the data in the file). Shapefiles can be read with function readOGR

in the rgdal package and with the (easier to use) function textttshapefile in the
raster package. Other functions exist (e.g. readShapePoly in maptools but
these should not be used.

Let’s do an example anyway, using the same data as in the previous chapter.
A SpatialPoints and a SpatialPointsDataFrame object:

> longitude <- c(-116.7, -120.4, -116.7, -113.5, -115.5,

+ -120.8, -119.5, -113.7, -113.7, -110.7)

> latitude <- c(45.3, 42.6, 38.9, 42.1, 35.7, 38.9,

+ 36.2, 39, 41.6, 36.9)

> library(sp)
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> st1 <- SpatialPoints(cbind(longitude, latitude))

> df <- data.frame(precip=(latitude-30)^3)

> st2 <- SpatialPointsDataFrame(st1, data=df)

> class(st1)

[1] "SpatialPoints"

attr(,"package")

[1] "sp"

> class(st2)

[1] "SpatialPointsDataFrame"

attr(,"package")

[1] "sp"

> st2

coordinates precip

1 (-116.7, 45.3) 3581.577

2 (-120.4, 42.6) 2000.376

3 (-116.7, 38.9) 704.969

4 (-113.5, 42.1) 1771.561

5 (-115.5, 35.7) 185.193

6 (-120.8, 38.9) 704.969

7 (-119.5, 36.2) 238.328

8 (-113.7, 39) 729.000

9 (-113.7, 41.6) 1560.896

10 (-110.7, 36.9) 328.509

And a SpatialPolygons object:

> lon <- c(-116.8, -114.2, -112.9, -111.9, -114.2, -115.4, -117.7)

> lat <- c(41.3, 42.9, 42.4, 39.8, 37.6, 38.3, 37.6)

> x <- cbind(lon, lat)

> # close the ring of the polygon

> x <- rbind(x, x[1,])

> pols <- SpatialPolygons( list( Polygons(list(Polygon(x)), 1)))

> str(pols)

Formal class 'SpatialPolygons' [package "sp"] with 4 slots

..@ polygons :List of 1

.. ..$ :Formal class 'Polygons' [package "sp"] with 5 slots

.. .. .. ..@ Polygons :List of 1

.. .. .. .. ..$ :Formal class 'Polygon' [package "sp"] with 5 slots

.. .. .. .. .. .. ..@ labpt : num [1:2] -114.7 40.1

.. .. .. .. .. .. ..@ area : num 19.7

.. .. .. .. .. .. ..@ hole : logi FALSE
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.. .. .. .. .. .. ..@ ringDir: int 1

.. .. .. .. .. .. ..@ coords : num [1:8, 1:2] -117 -114 -113 -112 -114 ...

.. .. .. .. .. .. .. ..- attr(*, "dimnames")=List of 2

.. .. .. .. .. .. .. .. ..$ : NULL

.. .. .. .. .. .. .. .. ..$ : chr [1:2] "lon" "lat"

.. .. .. ..@ plotOrder: int 1

.. .. .. ..@ labpt : num [1:2] -114.7 40.1

.. .. .. ..@ ID : chr "1"

.. .. .. ..@ area : num 19.7

..@ plotOrder : int 1

..@ bbox : num [1:2, 1:2] -117.7 37.6 -111.9 42.9

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "x" "y"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

.. .. ..@ projargs: chr NA

> class(pols)

[1] "SpatialPolygons"

attr(,"package")

[1] "sp"

The structure of the SpatialPolygons class is somewhat complex as it needs
to accomodate the possibility of multiple polygons, each consisting of multiple
sub-polygons, some of which may be ”holes”.

As these Spatial* objects are now known entities we can use generic functions
like plot to make a map:

> plot(st2, axes=TRUE)

> plot(pols, border='blue', col='yellow', lwd=3, add=TRUE)

> points(st2, col='red', pch=20, cex=3)
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For much more information and examples see vignette(’intro_sp’)

5.3 Package raster

The raster package is built around a number of classes of which the RasterLayer,
RasterBrick, and RasterStack classes are the most important. See Chambers
(2009) for a detailed discussion of the use of classes in R . When discussing
methods that can operate on all three of these objects, they are referred to as
’Raster*’ objects.

A RasterLayer object represents single-layer (variable) raster data. A RasterLayer

object always stores a number of fundamental parameters that describe it. These
include the number of columns and rows, the coordinates of its spatial extent
(’bounding box’), and the coordinate reference system (the ’map projection’).
In addition, a RasterLayer can store information about the file in which the
raster cell values are stored (if there is such a file). A RasterLayer can also
hold the raster cell values in memory.

Multiple layers can be represented by a RasterStack and by a RasterBrick.
These are very similar objects. The main differnce is that a RasterStack is loose
collection of RasterLayer objects that can refer to different files (but must all
have the same extent and resolution), whereas a RasterBrick can only point
to a single file.

Here I create a RasterLayer from scratch. But note that in most cases these
objects are created from a file.
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> library(raster)

> # create empty RasterLayer

> r <- raster(ncol=10, nrow=10, xmx=-80, xmn=-150, ymn=20, ymx=60)

> r

class : RasterLayer

dimensions : 10, 10, 100 (nrow, ncol, ncell)

resolution : 7, 4 (x, y)

extent : -150, -80, 20, 60 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84

> # assign values

> r[] <- 1:ncell(r)

> r

class : RasterLayer

dimensions : 10, 10, 100 (nrow, ncol, ncell)

resolution : 7, 4 (x, y)

extent : -150, -80, 20, 60 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84

data source : in memory

names : layer

values : 1, 100 (min, max)

> # plot

> plot(r)

> # add polygon and points

> plot(pols, border='blue', col='yellow', lwd=3, add=TRUE)

> points(st2, col='red', pch=20, cex=3)
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Make a RasterStack from mulitple layers:

> r2 <- r * r

> r3 <- sqrt(r)

> s <- stack(r, r2, r3)

> s

class : RasterStack

dimensions : 10, 10, 100, 3 (nrow, ncol, ncell, nlayers)

resolution : 7, 4 (x, y)

extent : -150, -80, 20, 60 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84

names : layer.1, layer.2, layer.3

min values : 1, 1, 1

max values : 100, 10000, 10

> plot(s)
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See vignette(’raster’) for more info about these objects and how they
can be manipulated.

5.4 Other packages

Other important packages (to be discussed in more detail in the future):
rgdal – reading and writing spatial data (GIS data)
rgeos – geometric operations on vector (notably polygon) data, e.g. inter-

secting and merging of polygons
dismo – species distribution modelling
vegan – spatial ecology, biodiversity indices
gdistance – compute ecological distances (such as resistance distance or

cost distance)
spatstat – point pattern analysis
gstat – geostatistics: kriging
spdep – inference with spatial data (detecting and correcting for spatial

autocorrelation)
Most of the these packages have vignettes that illustrate their use. For

example, the dismo package has a vignette called ’sdm’ that illustrates the
basic steps in species distribtion modeling. You can use Bivand et al, 20087 or
Plant 2012 for a more general introduction to spatial statistics.

24



6 References

Adler, J. R in a nutshell. O’Reilly.
Bivand, R.S., E.J. Pebesma and V. Gomez-Rubio, 2008. Applied spatial data

analysis with R . Springer. 378p.
Chambers, J.M., 2009. Software for data analysis: programming with R .

Springer. 498p.
Plant, R., 2012. Spatial data analysis in ecology and agriculture using R . CRC

Press 648p.
Zuur, Ieno and Meesters, 2009. A beginner’s guide to R . Springer

25


	Introduction
	Basic data types in R 
	Vectors
	Matrices
	data.frame
	Lists
	functions

	Spatial data
	Simple representation of spatial data
	Spatial packages
	packages
	Package sp
	Package raster
	Other packages

	References

