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Abstract—In  closed hydroponic systems, periodic
readjustment of nutrient solution is necessary to continuously
provide stable environment to plant roots because the
interaction between plant and nutrient solution changes the rate
of ions in it. The traditional method is to repeat supplying small
amount of premade concentrated nutrient solution, measuring
total electric conductivity and pH of the tank only. As it cannot
control the collapse of ion rates, recent researches try to
measure the concentration of individual components to provide
insufficient ions only. However, those approaches use titration-
like heuristic approaches, which repeat adding small amount of
components and measuring ion density a lot of times for a single
control input. Both traditional and recent methods are not only
time-consuming, but also cannot predict chemical reactions
related with control inputs because the nutrient solution is a
nonlinear complex system, including many precipitation
reactions and complicated interactions. We present a
continuous network model of the nutrient solution system,
whose reactions are described as differential equations. The
model predicts molar concentration of each chemical
components and total dissolved solids with low error. This
model also can calculate the amount of chemical compounds
needed to produce a desired nutrient solution, by reverse
calculation from dissolved ion concentrations.

Keywords— nutrient solution, smart farm, system engineering,
computational chemistry, simulation, complex system, loT

I. INTRODUCTION

Recently, soilless culture takes center stage in agricultural
industry. Closed hydroponic system is one of the most
popular hydroponic method because it reduces the cost and
hazard of water pollution [1]. As plants continuously absorbs
nutrients from the environment, the concentration of
individual ions continuously drops. Traditional methods
usually measure pH and electrical conductivity (EC) of the
nutrient solution to monitor the fertilization status [2-3].
When EC is low, they add premade concentrated solution to
the tank and then apply acids to maintain pH.

As the absorption rate of the ions are all different, those
approaches gradually destroy the ratio among ions [4] and
accumulates excessive ions (sodium, chloride, sulfate and
etc.) [5-6] which have low absorption rates or are supplied
too much. Many researchers recently have suggested to
measure individual ion with ion-selective sensors and to
provide insufficient ions only [1, 7-9]. However, their control
methods are slow and cannot avoid Na+ accumulation
problem caused by Fe-EDTA supply.
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Nutrient solution is a complex system. It is a bi-directed
network model, whose nodes are chemical components and
edges are reactions. It is difficult to figure out the exact state,
and some input can cause unexpected results because almost
all the vesicles have self-feedback structures and many
reactions leads to undesired output nodes such as sediment or
unabsorbable ions. For example, supplying additional
chemicals does not just raise ion concentrations directly. The
components in the nutrient solution makes various reactions
such as sedimentations or reductions, producing compounds
which plant does not absorb. As researchers does not know
what is happening in the nutrient solution system exactly,
they proposed some models to predict salt accumulation [6]
or ion rates [4].

Boolean network model and ordinary differential equation
(ODE) model are frequently applied to describe complex
system. Boolean system describes value of the components
as true or false binary. So it is useful when modeling large-
scale network model such as cancer cell model [10-13]. ODE
network describes interaction between components as
ordinary differential equations, which usually have time t as
independent variable [14-16]. It requires huge computing
power, and it is difficult to build differential equations for the
whole network. ODE model can describe continuous system
while Boolean model can describe discrete phenomena only.
Applying Boolean network on nutrient system modeling can
only show existence of a component as true or false value but
ODE network can describe continuous changes of
concentrations of ions and sedimentation reactions.

Chemical reactions are time-dependent continuous process
so they can be modeled as ordinary differential equations,
whose independent variable is the time. For example, a
sedimentation reaction in the nutrient solution CaSO, =
Ca** + S0,% is described as equation (1). The coefficients
ki and ko are reaction rate coefficients which shows how fast
the reaction is. If one component appears on the left side of
various differential equations, they can be superpositioned as
single equation. As a chemical reaction influences every
component except catalyst, chemical reaction network has a
lot of self-feedbacks. If a chemical produces more same ions
at the same time, we multiplied the number of ions on the
reaction rate coefficient like equation (2) describing
Ca(NO3); dissociation, in terms of NO3,

d[CaS0,]

T ki [Ca?*][S0,*7] — k,[CaS0,]
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Although the topology of chemical system network is
easily driven from known reaction sets, the reaction rate
coefficient is not. It is measured by experiments [17]. The
coefficient of each equation defines response of the system
because kinetic parameters define the activity of the equation.
However, precise literature values for those chemical
processes in nutrient solution system are missing. Parameter
estimation algorithms for complex network systems have
been proposed in systems biology field [18-20] but they
require experimental data. It is not feasible to measure the
amount of all the chemical compounds in nutrient solution
along time adding input, because not all kinds of ion selective
electrodes (ISEs) and sediments are not measurable with
commercially available sensors, while not affecting any
chemical environments such as pH or temperatures.

We present a comprehensive and persuasive network
model for nutrient solution system whose parameters are
driven from literature values. The kinetic parameters are
based on equilibrium constants. This model can simulate both
forward and reverse reaction at the same time, and even can
perform time-reverse simulation. Simulation with this model
is easily perform without GPU devices.

We can predict the ionic composition and the amount of
sediments by dissolution simulation of fertilization materials.
Or even calculation of the amount of each nutrient powder

from ionic solution state is possible with reverse-direction
simulation. As it is a white-box model, it can also trace the
accumulation of Na* or other unabsorbable ions in closed
hydroponic system. Readjustment method for nutrient
solution should also be changed because the model can show
the amount of required materials. Pouring a shot of chemicals
into the tank is enough, rather than traditional methods which
takes several minutes for single step of control input.

II. METHODS

A. Network Topology Design

We established nutrient solution system with Yamazaki’s
solution for Lactuca Sativa L. [21], which includes N, P, K
families and microelements in highly-plant-absorbable ion
state. Although the industrial recipes recommend hydrates
[22], there are too many possible numbers of water molecules
per formula unit for one salt, and even incomplete sealing
increases it during storage in fields. So we chose dehydrated
chemical compounds in order to build a standard model for
nutrient solutions.

The selected standard chemicals, their ionized forms and
the products which are produced by reactions among the ions
which are involved the experiment of the experiments are
provided on S1 in the supplementary information section.
They are all enlisted on the system network. We also added
water, hydrogen ion, hydroxyl ion, nitric acid for pH
adjustment and UV light which disintegrates Fe-EDTA"™ ion
to make the model more comprehensive.

The interaction among nodes are simply classified into 3
classes: enhancement, suppression, not-interactive. Fig 1 is
visualized network topology with Cytoscape [23].

Dissolution of system input is regarded as irreversible
processes because nutrient solution is thin enough and
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Fig. 1. Nutrient Solution System Network Model.



external plant interference which reduces concentrations of
plant-absorbable ions is applied in real world.

B. Network Dynamics Design
Reaction rate coefficients are driven from equilibrium

. k s .
constants by the relation K =/ / k- Equilibrium constant is

a description of a state of convergence so if we manipulate
the value of kr and ky, while fixing their ration as K, the
reaction converges within the same status if time stride is not
too big. Therefore, if we let kr =K and k, =1, the
differential equation converges appropriately because their
rate is still K, but the required time to make convergence only
differs. It also can describe ionization and its reverse process,
which are not actually chemical reactions.

We used dissociation constant Ky, which explains a
reversible process in which big components breaks down into
smaller components, to explain liquid state input such as
nitric acid. For example, the equilibrium state of a reversible
dissociation process XY, < aX + bY is described as
equation (2). Ky is directly obtain by gathering literature
value of acid dissociation constant K,. The solubility product
equilibrium constant K, is adopted for dissolution of solids
because it describes the dynamic equilibrium between solid
and ion state. Solubility product equilibrium constant for
dissolution Z(5y = aX(qq) + bY(4q) is defined as equation (3),
which is easily calculated with solubility.

PP
= Ky P

Ksp = [X(aq)]a[y(aq)]b 3)

Although simple application of ks and k;, driven above can
predict converged state of the system, it is not enough to
describe system states before convergence. Therefore, we
multiplied correction coefficient, which is a positive number
between 1 and 1000, to correct the speed of forward and
backward reactions. For example, dissociation of HNOj3 into
H* and NO;" is very fast but dissolution of NaFe-EDTA into
Na* and Fe-EDTA" is relatively slow. So we multiplied 1000
to both kr and ky for nitric acid dissolution process and
multiplied 1 to those of ferric EDTA.

Literature values of K,, solubility for all reactions and
calculated equilibrium constants involved in the experiments
are provided on S2 in the supplementary information section.
The differential equations, their reaction rate coefficients and
correction coefficients used to perform simulations are listed
in Table S3 on the supplementary information section.

III. ALGORITHM

The system needs initial state information. As the kinetics
are time-dependent, the model is an ordinary differential
equation model. An ODE model updates its next-step status
by applying current-state information. Let [Xi] the
concentration of i-th node variable of the network. It is a time-
dependent variable. In other word, [X;] is a function of time.
ODE for [Xj] is equation (4), where q is total number of terms
in superpositioned equation for [X;]. Coefficient c means the
number of X; in the term.

q
% = Z{ij n[input toX;](t—1} @)
j=1
_ d[X;](t)
[X:](®) = [X]t -1 +———At  (5)

dt

Update for [Xj] along time is performed with gradient-
descent-like method as equation (5), where At is the time
interval. If the time interval is too small, the system converges
too slowly but if it is too big, the system may not converge.

We applied synchronous update method, which update all
[X](t) values from all [X](t-1), because chemical reactions in
one solution occurs simultaneously. We defined X(t) as a

vector of concentration of the nodes and simply calculated
dax(t)

dt _
vector-form is described in equation (6).

to obtain gradient vector. Synchronous update with

X (0)
Xt)=Xt-1)+ WAt (6)

We built a chemical complex system solver with Python
language. This simulator receives a text file containing
differential equations of chemical reactions and reaction rate
coefficient and automatically performs superposition for
overlapped variables. The chemical topology is driven during
text parsing process. It also performs both forward and
backward simulations. We also wrote a text file which
contains the topological and kinetic information of nutrient
solution model. Both chemical complex system solver and
nutrient system model information file are provided as an
open sourced python package at the authors’ Github
repository: https://github.com/needleworm/nutrient _solution.

IV. EXPERIMENT

To examine the performance of the simulator, we
performed experiment on Yamazaki’s nutrient solution. As
ISEs have error in complex chemical system due to the ion
interference phenomenon, traditional methods to selectively
readjust individual ions are not feasible. We compared ISE-
observed ion concentration with the model’s prediction, as
well as the literacy value

A. Equipments

Vernier’s Go Direct® ISE series, GDX-NO3, GDX-NH4,
GDX-CA, GDX-K, are used to measure the concentration of
ions. KNOs, Ca(NO3),-4H,0, NH4H,PO4, MgSO4-7H,0 are
used to produce Yamazaki’s nutrient solution for lettuce. The
simulation was performed on Intel’s 17-6850K with Python
3.6. 10 different settings of simulations were done at the same
time as the CPU has 12 thread. Total simulation was done in
less than 1 minute.

B. In-situ Conecntration Measurement

We prepared 100 times more concentrated version of
Yamazaki’s nutrient solution for lettuce. It consisted of 0.4M
of KNOs, 0.IM of Ca(NOs), and 0.05M of NH4H,POs.
Chemical compounds which are needed for other ions of



1 2 3 4 5 6 7 8 9 10

K

Theoretical Value 3.8835 7327 10.689  13.87 16.885 19.747 22467 25.055 27.521 29.873
Simulator Prediction 3.8835 7.327 10.689 13.87 16.885 19.747 22467  25.055 27.521 29873
Experimental Value | 4.36955 7.96121 11.3368 14.5715 17.55282 21.32524 24.19406 27.28197 30.85615 34.4981
Ca

Theoretical Value | 0.97087 1.832 2,672  3.467 4221 4937 5.617 6.264 6.88 7.468
Simulator Prediction| 0.97087 1.832 2.67199 3.46699 4.220957 4.936942 5.616895 6.263866 6.87983  7.4678
Experimental Value | 0.95579 1.54849 2.04874 2.31673 2.650174 3.119853 3.356937 3.65157 3.790148 4.00463
NO3

Theoretical Value 5.82524 10991 16.033 20.804  25.327 26.92 33.7 37582 41.281 44.81
Simulator Prediction| 5.82524 10.991 16.033 20.804 25.327 29.621 33.701 37.583 41.281 44.809
Experimental Value | 4.04472 8.24084 12.1232 16.0027 19.1123 22.95228 25.57974 29.36491 31.64328 34.8821
NH4

Theoretical Value | 0.48544 0916 1336 1734 2111 2468 2808  3.132 344 3734
Simulator Prediction| 0.48544 0916  1.336  1.7339 2.111 2.468 2.808 3.132 3.44 3.734
Experimental Value | 0.81084 1.46115 2.09361 2.68363 3.104724 3.616726 4.101231 4.388624 4.899455 5.34784

Table 1. Experiment Results. (mol / mL)

Yamazaki’s nutrient solution were omitted in order to avoid
any ions which are unmeasurable with our ISE devices.

By adding the concentrated solution on 1L water, we
gradually increased the ionic concentration. Total 10 steps of
addition was conducted and theoretical value for individual
ions at each experimental step are provided on Table 1.

C. Simulation

The network model simulator was designed to receive
various parameters: names of components, initial
concentration, ionic state, reaction rate coefficient and the
stirring velocity of water. We set the initial concentration
values of KNO3, Ca(NO3), and NH4H,POj as the same value
from wet experiment’s. And we set the initial value of any
other components except H,O, H" and OH- into 0 in order to
make the simulation and experimental condition be same.

The time step dt was set to 1e-8 second to avoid step-
update related issue. Although the concentration doesn’t show
divergence, some ions with low concentration sometimes
converged into wrong value when dt was set to 1e-4 second.
The authors recommend using smaller time step for each
update. Each simulation was terminated after 2.5 million
updates, which took less than 50 seconds.

V. RESULT

The results from in-situ concentration measurement and
simulation are provided on Table 1. The values are in mol per
milliliter scale.

The simulator predicted theoretical value almost exactly.
However, all the experimental value showed significant error.
The error becomes greater at higher-concentration condition.

VI. CONCLUSION

Experiment showed that ion interference effect makes ISE
value unclear. The errors of experimental values are not
related to calibration or sensor malfunction because the ISE
were calibrated with single-ion state solutions, whose
concentration is exactly same as the solutions used for wet
experiment. As interfering ions disturb Nernst potential on
the membrane of ISE, any glass-based sensory device has ion
interference issue. Therefore, applying ISEs on industrial
condition to maintain nutrient solution is not feasible.

However, the network model provided in this paper has no
prediction error even the prediction was gradient-descent
based approach rather than calculation of dissociational value
of chemical components directly. Applying complex system
modeling would help removal of limitation of ISE approach
and provide more precise status of nutrient solution system.
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SUPPLEMENTARY INFORMATIONS

S1. Equations for simulation

dH,0
dt

= —ko[H,0] + ky[H*][OH7] (1)

U = kolH,01 — ky[HH][OH] )

dOH™
dat

= ko[H,0] = ks [H*][OHT] (3)

dKNO3
dt

= —k,[KNO;] + k3[K*][NO;™] (4)

U = Iy [KNOS] — ks[K*INOT] (5)

WO — Ky [KNOS] ~ ks [K*][NO;7] (6)
2Cal): = —k,[Ca(NOs),] + ks[Ca** 1[N0, (7)
L ky[Ca(NOy),] ~ ks[K*IINO; T (8)
WO = 2k, [Ca(NO;),] - ks[K*IINO; T (9)
IO — kg [NH,H,PO,] + Iy [NH,1[H,PO,] (10)

anm*

o ks[NH4H2P04] - k7[NH4+][H2P04_] (1)
L0 = oo [NH,H,PO,] — Ky [NH,T[H,PO,”] (12)

% = _ks[H3P04] + k9[H+][HzP04_] (13)

% = ks[H3P04] - k9[H+][HzP04_] (14)

LI = Jeg[HyPO,] — ko[H*][H,PO,”] (15)
PO _jeyy[H,PO, ] + ke [HYIIHPO,] (16)
dH*

. kio[H,PO,"] - k11[H+][HP042_] (17)
O kg [HPO, ] — kyy [H*][HPO,] (18)
P07 = gy [HPO | + ki [HY1[PO,S] (19)

C = kyo[HPO ] — kys[H*][PO,7] (20)

%= kiz[HPO,*] = kis[H*1[PO,*7] (21)

dc:? = ky,[CaHPO,] — kys[Ca®*][HPO,*7] (22)
% = ky,[CaHPO,] — ky5[Ca**][HPO,*7] (23)
@= —k1,[CaHPO,] + ky5[Ca®+|[HPO,*"](24)
dca?*

o 3ki6[Casz(POL),] — k17[Ca2+]3[P043_]2 (25)
PO = Dherg[Caz(PO,] — kyy[Ca? P[PO T (26)
LA = —key6[Caz (PO, + kyy[Ca* 1P [PO,1(27)
dca?*
dt

= kig[Ca(H,PO,),] — kis[Ca®*][H,PO,7]* (28)

dH,P0,~

- 2k1g[Ca(H,P0,),] — kio[Ca®*1[H,P0O,7]* (29)

dCa(H,P0,),

dt = —ky5[Ca(H,PO,),] +

k19[caz+] [H,PO,7]* (30)

S2. Kgp and K,
(1) H,0 & H*+ OH-
K, = [OH"]? =(10"7)? = 107" atpH 7

(1]

[2]

[3]

[4]

() KNO; & K*+ NO,~
K, = [K*][NO;"] = (3.77685133)?[24] = 14.26460597
() Ca(N0y), & Ca®* + 2NO;~

Kyp = [Ca?*][NO; 712 = 8.7495048(2 x 8.7495048)2[24] =
2679.232594

(4) NH,H,PO, < NH,* + H,P0,”

Ky, = [NH,"][H,P0,7] = (3.5017430)%[24] = 12.262204
(5) H3PO, & H* + H,P0,”, Ky =0.00707946 [25]
(6) H,P0,” & H*+ HPO,*, K, =8.1283¢-08 [25]
(7) HPO,>” & H*+ P0,>”, K, =4.7863¢-13 [25]
(8) CaHPO, < Ca**+ HPO,*”

Ky = [Ca**1[HPO,*"]| = (0.0014655)%[24] = 2.14787e — 6
) Caz(PO,), < 3Ca®* + 2P0,

K, = [Ca?* [P0, ]

= (2 x3.857e — 6)%(3 x 3.857¢ — 6)3[24] = 9.22¢ — 26

(10) Ca(H,P0,), < Ca** + 2H,PO,”
Ky, = [Ca?*][H,P0,”]? = (0.0769)(2 x 0.0769)2[26]

=0.00591361
S3. krand kp
Coefficient Value Coefficient | Value
ko le-20 ki le-6
ko 976.8870716 k3 0
k4 161.1897361 ks 0
ke 105.7203812 k7 0
ks 0.725 ko 100
kio 6.31e-6 ki 100
ki2 3.98e-13 ki3 100
kia le-5 kis 100
kie 1.2e-16 k17 100
kis 0.591361 ko 100

Table S1. k¢ and ks values for simulation
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