1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
use std::io::{Read, Seek, SeekFrom};
use std::iter::{Iterator, repeat, Rev};
use std::slice::ChunksMut;
use byteorder::{ReadBytesExt, LittleEndian};

use image::{
    DecodingResult,
    ImageResult,
    ImageDecoder,
    ImageError
};
use color::ColorType;

const BITMAPCOREHEADER_SIZE: u32 = 12;
const BITMAPINFOHEADER_SIZE: u32 = 40;
const BITMAPV2HEADER_SIZE: u32 = 52;
const BITMAPV3HEADER_SIZE: u32 = 56;
const BITMAPV4HEADER_SIZE: u32 = 108;
const BITMAPV5HEADER_SIZE: u32 = 124;

static LOOKUP_TABLE_3_BIT_TO_8_BIT: [u8; 8] = [0, 36, 73, 109, 146, 182, 219, 255];
static LOOKUP_TABLE_4_BIT_TO_8_BIT: [u8; 16] = [0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255];
static LOOKUP_TABLE_5_BIT_TO_8_BIT: [u8; 32] = [0, 8, 16, 25, 33, 41, 49, 58, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, 148, 156, 165, 173, 181, 189, 197, 206, 214, 222, 230, 239, 247, 255];
static LOOKUP_TABLE_6_BIT_TO_8_BIT: [u8; 64] = [0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255];

static R5_G5_B5_COLOR_MASK: Bitfields = Bitfields {
    r: Bitfield { len: 5, shift: 10 },
    g: Bitfield { len: 5, shift: 5 },
    b: Bitfield { len: 5, shift: 0 },
    a: Bitfield { len: 0, shift: 0 }
};
const R8_G8_B8_COLOR_MASK: Bitfields = Bitfields {
    r: Bitfield { len: 8, shift: 24 },
    g: Bitfield { len: 8, shift: 16 },
    b: Bitfield { len: 8, shift: 8 },
    a: Bitfield { len: 0, shift: 0 }
};

const RLE_ESCAPE: u8 = 0;
const RLE_ESCAPE_EOL: u8 = 0;
const RLE_ESCAPE_EOF: u8 = 1;
const RLE_ESCAPE_DELTA: u8 = 2;

#[derive(PartialEq, Copy, Clone)]
enum ImageType {
    Palette,
    RGB16,
    RGB24,
    RGB32,
    RGBA32,
    RLE8,
    RLE4,
    Bitfields16,
    Bitfields32,
}

#[derive(PartialEq)]
enum BMPHeaderType {
    CoreHeader,
    InfoHeader,
    V2Header,
    V3Header,
    V4Header,
    V5Header,
}

#[derive(PartialEq)]
enum FormatFullBytes {
    FormatRGB24,
    FormatRGB32,
    FormatRGBA32,
    Format888
}

enum Chunker<'a> {
    FromTop(ChunksMut<'a, u8>),
    FromBottom(Rev<ChunksMut<'a, u8>>),
}

pub struct RowIterator<'a> {
    chunks: Chunker<'a>
}

impl<'a> Iterator for RowIterator<'a> {
    type Item = &'a mut [u8];

    #[inline(always)]
    fn next(&mut self) -> Option<&'a mut [u8]> {
        match self.chunks {
            Chunker::FromTop(ref mut chunks) => chunks.next(),
            Chunker::FromBottom(ref mut chunks) => chunks.next()
        }
    }
}

fn set_8bit_pixel_run<'a, T: Iterator<Item=&'a u8>>(pixel_iter: &mut ChunksMut<u8>,
                                                    palette: &Vec<(u8, u8, u8)>,
                                                    indices: T, n_pixels: usize) -> bool {
    for idx in indices.take(n_pixels) {
        if let Some(pixel) = pixel_iter.next() {
            let (r, g, b) = palette[*idx as usize];
            pixel[0] = r;
            pixel[1] = g;
            pixel[2] = b;
        } else {
            return false;
        }
    }
    true
}

fn set_4bit_pixel_run<'a, T: Iterator<Item=&'a u8>>(pixel_iter: &mut ChunksMut<u8>,
                                                    palette: &Vec<(u8, u8, u8)>,
                                                    indices: T, mut n_pixels: usize) -> bool {
    for idx in indices {
        macro_rules! set_pixel {
            ($i:expr) => (
                if n_pixels == 0 {
                    break;
                }
                if let Some(pixel) = pixel_iter.next() {
                    let (r, g, b) = palette[$i as usize];
                    pixel[0] = r;
                    pixel[1] = g;
                    pixel[2] = b;
                } else {
                    return false;
                }
                n_pixels -= 1;
            )
        }
        set_pixel!(idx >> 4);
        set_pixel!(idx & 0xf);
    }
    true
}

fn set_1bit_pixel_run<'a, T: Iterator<Item=&'a u8>>(pixel_iter: &mut ChunksMut<u8>,
                                                    palette: &Vec<(u8, u8, u8)>,
                                                    indices: T) {
    for idx in indices {
        let mut bit = 0x80;
        loop {
            if let Some(pixel) = pixel_iter.next() {
                let (r, g, b) = palette[((idx & bit) != 0) as usize];
                pixel[0] = r;
                pixel[1] = g;
                pixel[2] = b;
            } else {
                return
            }

            bit = bit >> 1;
            if bit == 0 {
                break;
            }
        }
    }
}

#[derive(PartialEq, Eq)]
struct Bitfield {
    shift: u32,
    len: u32,
}

impl Bitfield {
    fn from_mask(mask: u32, max_len: u32) -> ImageResult<Bitfield> {
        if mask == 0 {
            return Ok(Bitfield { shift: 0, len: 0 })
        }
        let mut shift = mask.trailing_zeros();
        let mut len = (!(mask >> shift)).trailing_zeros();
        if len != mask.count_ones() {
            return Err(ImageError::FormatError("Non-contiguous bitfield mask".to_string()))
        }
        if len + shift > max_len {
            return Err(ImageError::FormatError("Invalid bitfield mask".to_string()))
        }
        if len > 8 {
            shift += len - 8;
            len = 8;
        }
        Ok(Bitfield { shift: shift, len: len })
    }

    fn read(&self, data: u32) -> u8 {
        let data = data >> self.shift;
        match self.len {
            1 => ((data & 0b1) * 0xff) as u8,
            2 => ((data & 0b11) * 0x55) as u8,
            3 => LOOKUP_TABLE_3_BIT_TO_8_BIT[(data & 0b111) as usize],
            4 => LOOKUP_TABLE_4_BIT_TO_8_BIT[(data & 0b1111) as usize],
            5 => LOOKUP_TABLE_5_BIT_TO_8_BIT[(data & 0b11111) as usize],
            6 => LOOKUP_TABLE_6_BIT_TO_8_BIT[(data & 0b111111) as usize],
            7 => ((data & 0x7f) << 1 | (data & 0x7f) >> 6) as u8,
            8 => (data & 0xff) as u8,
            _ => panic!()
        }
    }
}

#[derive(PartialEq, Eq)]
struct Bitfields {
    r: Bitfield,
    g: Bitfield,
    b: Bitfield,
    a: Bitfield,
}

impl Bitfields {
    fn from_mask(r_mask: u32, g_mask: u32, b_mask: u32, a_mask: u32, max_len: u32) -> ImageResult<Bitfields> {
        let bitfields = Bitfields {
            r: try!(Bitfield::from_mask(r_mask, max_len)),
            g: try!(Bitfield::from_mask(g_mask, max_len)),
            b: try!(Bitfield::from_mask(b_mask, max_len)),
            a: try!(Bitfield::from_mask(a_mask, max_len)),
        };
        if bitfields.r.len == 0 || bitfields.g.len == 0 || bitfields.b.len == 0 {
            return Err(ImageError::FormatError("Missing bitfield mask".to_string()))
        }
        Ok(bitfields)
    }
}

/// A bmp decoder
pub struct BMPDecoder<R> {
    r: R,

    bmp_header_type: BMPHeaderType,

    width: i32,
    height: i32,
    data_offset: u64,
    top_down: bool,
    no_file_header: bool,
    add_alpha_channel: bool,
    has_loaded_metadata: bool,
    image_type: ImageType,

    bit_count: u16,
    colors_used: u32,
    palette: Option<Vec<(u8, u8, u8)>>,
    bitfields: Option<Bitfields>,
}

enum RLEInsn {
    EndOfFile,
    EndOfRow,
    Delta(u8, u8),
    Absolute(u8, Vec<u8>),
    PixelRun(u8, u8),
}

struct RLEInsnIterator<'a, R: 'a + Read> {
    r: &'a mut R,
    image_type: ImageType,
}

impl<'a, R: Read> Iterator for RLEInsnIterator<'a, R> {
    type Item = RLEInsn;

    fn next(&mut self) -> Option<RLEInsn> {
        let control_byte = match self.r.read_u8() {
            Ok(b) => b,
            Err(_) => return None
        };

        match control_byte {
            RLE_ESCAPE => {
                let op = match self.r.read_u8() {
                    Ok(b) => b,
                    Err(_) => return None
                };

                match op {
                    RLE_ESCAPE_EOL => Some(RLEInsn::EndOfRow),
                    RLE_ESCAPE_EOF => Some(RLEInsn::EndOfFile),
                    RLE_ESCAPE_DELTA => {
                        let xdelta = match self.r.read_u8() {
                            Ok(n) => n,
                            Err(_) => return None
                        };
                        let ydelta = match self.r.read_u8() {
                            Ok(n) => n,
                            Err(_) => return None
                        };
                        Some(RLEInsn::Delta(xdelta, ydelta))
                    },
                    _ => {
                        let mut length = op as usize;
                        if self.image_type == ImageType::RLE4 {
                            length = (length + 1) / 2;
                        }
                        length += length & 1;
                        let mut buffer = vec![0; length];
                        match self.r.read_exact(&mut buffer) {
                            Ok(()) => Some(RLEInsn::Absolute(op, buffer)),
                            Err(_) => None
                        }
                    }
                }
            },
            _ => {
                match self.r.read_u8() {
                    Ok(palette_index) => {
                        Some(RLEInsn::PixelRun(control_byte, palette_index))
                    },
                    Err(_) => None
                }
            }
        }
    }
}

impl<R: Read + Seek> BMPDecoder<R> {
    /// Create a new decoder that decodes from the stream ```r```
    pub fn new(r: R) -> BMPDecoder<R> {
        BMPDecoder {
            r: r,

            bmp_header_type: BMPHeaderType::InfoHeader,

            width: 0,
            height: 0,
            data_offset: 0,
            top_down: false,
            no_file_header: false,
            add_alpha_channel: false,
            has_loaded_metadata: false,
            image_type: ImageType::Palette,

            bit_count: 0,
            colors_used: 0,
            palette: None,
            bitfields: None,
        }
    }

    #[cfg(feature = "ico")]
    #[doc(hidden)]
    pub fn reader(&mut self) -> &mut R {
        &mut self.r
    }

    fn read_file_header(&mut self) -> ImageResult<()> {
        if self.no_file_header {
            return Ok(())
        }
        let mut signature = [0; 2];
        try!(self.r.read_exact(&mut signature));

        if signature != b"BM"[..] {
            return Err(ImageError::FormatError("BMP signature not found".to_string()));
        }

        // The next 8 bytes represent file size, followed the 4 reserved bytes
        // We're not interesting these values
        try!(self.r.read_u32::<LittleEndian>());
        try!(self.r.read_u32::<LittleEndian>());

        self.data_offset = try!(self.r.read_u32::<LittleEndian>()) as u64;

        Ok(())
    }

    fn read_bitmap_core_header(&mut self) ->ImageResult<()> {
        self.width  = try!(self.r.read_u16::<LittleEndian>()) as i32;
        self.height = try!(self.r.read_u16::<LittleEndian>()) as i32;

        // Don't care about number of planes
        try!(self.r.read_u16::<LittleEndian>());

        self.bit_count = try!(self.r.read_u16::<LittleEndian>());
        self.image_type = match self.bit_count {
            1 | 4 | 8 => ImageType::Palette,
            24 => ImageType::RGB24,
            _ => return Err(ImageError::FormatError("Invalid bit count".to_string())),
        };

        Ok(())
    }

    fn read_bitmap_info_header(&mut self) -> ImageResult<()> {
        self.width  = try!(self.r.read_i32::<LittleEndian>());
        self.height = try!(self.r.read_i32::<LittleEndian>());

        if self.width < 0 {
            return Err(ImageError::FormatError("Negative width".to_string()));
        }

        if self.height == i32::min_value() {
            return Err(ImageError::FormatError("Invalid height".to_string()));
        }

        if self.height < 0 {
            self.height *= -1;
            self.top_down = true;
        }

        // Don't care about number of planes
        try!(self.r.read_u16::<LittleEndian>());

        self.bit_count = try!(self.r.read_u16::<LittleEndian>());
        let image_type_u32 = try!(self.r.read_u32::<LittleEndian>());
        self.image_type = match image_type_u32 {
            0 => match self.bit_count {
                1 | 4 | 8 => ImageType::Palette,
                16 => ImageType::RGB16,
                24 => ImageType::RGB24,
                32 => if self.add_alpha_channel { ImageType::RGBA32 } else { ImageType::RGB32 },
                _ => return Err(ImageError::FormatError("Invalid RGB bit count".to_string())),
            },
            1 => match self.bit_count {
                8 => ImageType::RLE8,
                _ => return Err(ImageError::FormatError("Invalid RLE8 bit count".to_string())),
            },
            2 => match self.bit_count {
                4 => ImageType::RLE4,
                _ => return Err(ImageError::FormatError("Invalid RLE4 bit count".to_string())),
            },
            3 => match self.bit_count {
                16 => ImageType::Bitfields16,
                32 => ImageType::Bitfields32,
                _ => return Err(ImageError::FormatError("Invalid bitfields bit count".to_string())),
            },
            _  => return Err(ImageError::UnsupportedError("Unsupported image type".to_string())),
        };

        // The next 12 bytes represent data array size in bytes,
        // followed the horizontal and vertical printing resolutions
        // We will calculate the pixel array size using width & height of image
        // We're not interesting the horz or vert printing resolutions
        try!(self.r.read_u32::<LittleEndian>());
        try!(self.r.read_u32::<LittleEndian>());
        try!(self.r.read_u32::<LittleEndian>());

        self.colors_used = try!(self.r.read_u32::<LittleEndian>());

        // The next 4 bytes represent number of "important" colors
        // We're not interested in this value, so we'll skip it
        try!(self.r.read_u32::<LittleEndian>());

        Ok(())
    }


    fn read_bitmasks(&mut self) -> ImageResult<()> {
        let r_mask = try!(self.r.read_u32::<LittleEndian>());
        let g_mask = try!(self.r.read_u32::<LittleEndian>());
        let b_mask = try!(self.r.read_u32::<LittleEndian>());

        let a_mask = match self.bmp_header_type {
            BMPHeaderType::V3Header | BMPHeaderType::V4Header | BMPHeaderType::V5Header => {
                try!(self.r.read_u32::<LittleEndian>())
            },
            _ => 0
        };

        self.bitfields = match self.image_type {
            ImageType::Bitfields16 => Some(try!(Bitfields::from_mask(r_mask, g_mask, b_mask, a_mask, 16))),
            ImageType::Bitfields32 => Some(try!(Bitfields::from_mask(r_mask, g_mask, b_mask, a_mask, 32))),
            _ => None
        };

        if self.bitfields.is_some() && a_mask != 0 {
            self.add_alpha_channel = true;
        }

        Ok(())
    }

    fn read_metadata(&mut self) -> ImageResult<()> {
        if !self.has_loaded_metadata {
            try!(self.read_file_header());
            let bmp_header_offset = try!(self.r.seek(SeekFrom::Current(0)));
            let bmp_header_size = try!(self.r.read_u32::<LittleEndian>());
            let bmp_header_end = bmp_header_offset + bmp_header_size as u64;

            self.bmp_header_type = match bmp_header_size {
                BITMAPCOREHEADER_SIZE => BMPHeaderType::CoreHeader,
                BITMAPINFOHEADER_SIZE => BMPHeaderType::InfoHeader,
                BITMAPV2HEADER_SIZE => BMPHeaderType::V2Header,
                BITMAPV3HEADER_SIZE => BMPHeaderType::V3Header,
                BITMAPV4HEADER_SIZE => BMPHeaderType::V4Header,
                BITMAPV5HEADER_SIZE => BMPHeaderType::V5Header,
                _ => return Err(ImageError::UnsupportedError("Unsupported Bitmap Header".to_string()))
            };

            match self.bmp_header_type {
                BMPHeaderType::CoreHeader => {
                    try!(self.read_bitmap_core_header());
                },
                BMPHeaderType::InfoHeader | BMPHeaderType::V2Header | BMPHeaderType::V3Header | BMPHeaderType::V4Header | BMPHeaderType::V5Header => {
                    try!(self.read_bitmap_info_header());
                }
            };

            match self.image_type {
                ImageType::Bitfields16 | ImageType::Bitfields32 => try!(self.read_bitmasks()),
                _ => { }
            };

            try!(self.r.seek(SeekFrom::Start(bmp_header_end)));

            match self.image_type {
                ImageType::Palette | ImageType::RLE4 | ImageType::RLE8 => try!(self.read_palette()),
                _ => { }
            };

            if self.no_file_header {
                // Use the offset of the end of metadata instead of reading a BMP file header.
                self.data_offset = try!(self.r.seek(SeekFrom::Current(0)));
            }

            self.has_loaded_metadata = true;
        }
        Ok(())
    }

    #[cfg(feature = "ico")]
    #[doc(hidden)]
    pub fn read_metadata_in_ico_format(&mut self) -> ImageResult<()> {
        self.no_file_header = true;
        self.add_alpha_channel = true;
        try!(self.read_metadata());

        // The height field in an ICO file is doubled to account for the AND mask
        // (whether or not an AND mask is actually present).
        self.height = self.height / 2;
        Ok(())
    }

    fn get_palette_size(&mut self) -> ImageResult<usize> {
        match self.colors_used {
            0 => Ok(1 << self.bit_count),
            _ => {
                if self.colors_used > 1 << self.bit_count {
                    return Err(ImageError::FormatError(format!(
                        "Palette size {} exceeds maximum size for BMP with bit count of {}",
                        self.colors_used, self.bit_count
                    )))
                }
                Ok(self.colors_used as usize)
            }
        }
    }

    fn bytes_per_color(&self) -> usize {
        match self.bmp_header_type {
            BMPHeaderType::CoreHeader => 3,
            _ => 4
        }
    }

    fn read_palette(&mut self) -> ImageResult<()> {
        const MAX_PALETTE_SIZE: usize = 256; // Palette indices are u8.

        let bytes_per_color = self.bytes_per_color();
        let palette_size = try!(self.get_palette_size());
        let length = palette_size * bytes_per_color;
        let max_length = MAX_PALETTE_SIZE * bytes_per_color;
        let mut buf = Vec::with_capacity(max_length);

        buf.resize(length, 0);
        try!(self.r.by_ref().read_exact(&mut buf));

        // Allocate 256 entries even if palette_size is smaller, to prevent corrupt files from
        // causing an out-of-bounds array access.
        if length < max_length {
            buf.resize(max_length, 0);
        }

        let p: Vec<(u8, u8, u8)> = (0..MAX_PALETTE_SIZE).map(|i| {
            let b = buf[bytes_per_color * i];
            let g = buf[bytes_per_color * i + 1];
            let r = buf[bytes_per_color * i + 2];
            (r, g, b)
        }).collect();

        self.palette = Some(p);

        Ok(())
    }

    fn num_channels(&self) -> usize {
        if self.add_alpha_channel { 4 } else { 3 }
    }

    fn create_pixel_data(&self) -> Vec<u8> {
        vec![0xFF; self.num_channels() * self.width as usize * self.height as usize]
    }

    fn rows<'a>(&self, pixel_data: &'a mut Vec<u8>) -> RowIterator<'a> {
        let stride = self.width as usize * self.num_channels();
        if self.top_down {
            RowIterator{ chunks: Chunker::FromTop(pixel_data.chunks_mut(stride)) }
        } else {
            RowIterator{ chunks: Chunker::FromBottom(pixel_data.chunks_mut(stride).rev()) }
        }
    }

    fn read_palettized_pixel_data(&mut self) -> ImageResult<Vec<u8>> {
        let mut pixel_data = self.create_pixel_data();
        let num_channels = self.num_channels();
        let row_byte_length = ((self.bit_count as u32 * self.width as u32 + 31) / 32 * 4) as usize;
        let mut indices = vec![0; row_byte_length];
        let palette = self.palette.as_ref().unwrap();

        try!(self.r.seek(SeekFrom::Start(self.data_offset)));
        for row in self.rows(&mut pixel_data) {
            try!(self.r.by_ref().read_exact(&mut indices));
            let mut pixel_iter = row.chunks_mut(num_channels);
            match self.bit_count {
                1 => { set_1bit_pixel_run(&mut pixel_iter, &palette, indices.iter()); },
                4 => { set_4bit_pixel_run(&mut pixel_iter, &palette, indices.iter(), self.width as usize); },
                8 => { set_8bit_pixel_run(&mut pixel_iter, &palette, indices.iter(), self.width as usize); },
                _ => panic!(),
            }
        }

        Ok(pixel_data)
    }

    fn read_16_bit_pixel_data(&mut self, bitfields: Option<&Bitfields>) -> ImageResult<Vec<u8>> {
        let mut pixel_data = self.create_pixel_data();
        let num_channels = self.num_channels();
        let row_padding_len = self.width as usize % 2 * 2;
        let row_padding = &mut [0; 2][..row_padding_len];
        let bitfields = match bitfields {
            Some(b) => b,
            None => self.bitfields.as_ref().unwrap()
        };

        try!(self.r.seek(SeekFrom::Start(self.data_offset)));
        for row in self.rows(&mut pixel_data) {
            for pixel in row.chunks_mut(num_channels) {
                let data = try!(self.r.read_u16::<LittleEndian>()) as u32;

                pixel[0] = bitfields.r.read(data);
                pixel[1] = bitfields.g.read(data);
                pixel[2] = bitfields.b.read(data);
                if num_channels == 4 {
                    pixel[3] = bitfields.a.read(data);
                }
            }
            try!(self.r.read_exact(row_padding));
        }

        Ok(pixel_data)
    }

    fn read_32_bit_pixel_data(&mut self) -> ImageResult<Vec<u8>> {
        let mut pixel_data = self.create_pixel_data();
        let num_channels = self.num_channels();
        let bitfields = self.bitfields.as_ref().unwrap();

        try!(self.r.seek(SeekFrom::Start(self.data_offset)));
        for row in self.rows(&mut pixel_data) {
            for pixel in row.chunks_mut(num_channels) {
                let data = try!(self.r.read_u32::<LittleEndian>());

                pixel[0] = bitfields.r.read(data);
                pixel[1] = bitfields.g.read(data);
                pixel[2] = bitfields.b.read(data);
                if num_channels == 4 {
                    pixel[3] = bitfields.a.read(data);
                }
            }
        }

        Ok(pixel_data)
    }

    fn read_full_byte_pixel_data(&mut self, format: FormatFullBytes) -> ImageResult<Vec<u8>> {
        let mut pixel_data = self.create_pixel_data();
        let num_channels = self.num_channels();
        let row_padding_len = match format {
            FormatFullBytes::FormatRGB24 => (4 - (self.width as usize * 3) % 4) % 4,
            _ => 0
        };
        let row_padding = &mut [0; 4][..row_padding_len];

        try!(self.r.seek(SeekFrom::Start(self.data_offset)));
        for row in self.rows(&mut pixel_data) {
            for pixel in row.chunks_mut(num_channels) {

                if format == FormatFullBytes::Format888 {
                    try!(self.r.read_u8());
                }

                let b = try!(self.r.read_u8());
                let g = try!(self.r.read_u8());
                let r = try!(self.r.read_u8());

                if format == FormatFullBytes::FormatRGB32 {
                    try!(self.r.read_u8());
                }

                pixel[0] = r;
                pixel[1] = g;
                pixel[2] = b;

                if format == FormatFullBytes::FormatRGBA32 {
                    let a = try!(self.r.read_u8());
                    pixel[3] = a;
                }
            }
            try!(self.r.read_exact(row_padding));
        }

        Ok(pixel_data)
    }

    fn read_rle_data(&mut self, image_type: ImageType) -> ImageResult<Vec<u8>> {
        let mut pixel_data = self.create_pixel_data();
        let num_channels = self.num_channels();

        try!(self.r.seek(SeekFrom::Start(self.data_offset)));
        // Scope the borrowing of pixel_data by the row iterator.
        {
            // Handling deltas in the RLE scheme means that we need to manually
            // iterate through rows and pixels.  Even if we didn't have to handle
            // deltas, we have to ensure that a single runlength doesn't straddle
            // two rows.
            let mut row_iter = self.rows(&mut pixel_data);
            let mut insns_iter = RLEInsnIterator{ r: &mut self.r, image_type: image_type };
            let p = self.palette.as_ref().unwrap();

            'row_loop: while let Some(row) = row_iter.next() {
                let mut pixel_iter = row.chunks_mut(num_channels);

                'rle_loop: loop {
                    if let Some(insn) = insns_iter.next() {
                        match insn {
                            RLEInsn::EndOfFile => {
                                break 'row_loop;
                            },
                            RLEInsn::EndOfRow => {
                                break 'rle_loop;
                            },
                            RLEInsn::Delta(x_delta, y_delta) => {
                                for _ in 0..x_delta {
                                    if let None = pixel_iter.next() {
                                        // We can't go any further in this row.
                                        break;
                                    }
                                }

                                if y_delta > 0 {
                                    for _ in 1..y_delta {
                                        if let None = row_iter.next() {
                                            // We've reached the end of the image.
                                            break 'row_loop;
                                        }
                                    }
                                }
                            },
                            RLEInsn::Absolute(length, indices) => {
                                // Absolute mode cannot span rows, so if we run
                                // out of pixels to process, we should stop
                                // processing the image.
                                match image_type {
                                    ImageType::RLE8 => {
                                        if !set_8bit_pixel_run(&mut pixel_iter,
                                                               &p,
                                                               indices.iter(),
                                                               length as usize) {
                                            break 'row_loop;
                                        }
                                    },
                                    ImageType::RLE4 => {
                                        if !set_4bit_pixel_run(&mut pixel_iter,
                                                               &p,
                                                               indices.iter(),
                                                               length as usize) {
                                            break 'row_loop;
                                        }
                                    },
                                    _ => panic!(),
                                }
                            },
                            RLEInsn::PixelRun(n_pixels, palette_index) => {
                                // A pixel run isn't allowed to span rows, but we
                                // simply continue on to the next row if we run
                                // out of pixels to set.
                                match image_type {
                                    ImageType::RLE8 => {
                                        if !set_8bit_pixel_run(&mut pixel_iter,
                                                               &p,
                                                               repeat(&palette_index),
                                                               n_pixels as usize) {
                                            break 'rle_loop;
                                        }
                                    },
                                    ImageType::RLE4 => {
                                        if !set_4bit_pixel_run(&mut pixel_iter,
                                                               &p,
                                                               repeat(&palette_index),
                                                               n_pixels as usize) {
                                            break 'rle_loop;
                                        }
                                    },
                                    _ => panic!()
                                }
                            }
                        }
                    } else {
                        // We ran out of data while we still had rows to fill in.
                        return Err(ImageError::FormatError("Not enough RLE data".to_string()))
                    }
                }
            }

        }
        Ok(pixel_data)
    }

    fn read_image_data(&mut self) -> ImageResult<Vec<u8>> {
        return match self.image_type {
            ImageType::Palette => self.read_palettized_pixel_data(),
            ImageType::RGB16 => self.read_16_bit_pixel_data(Some(&R5_G5_B5_COLOR_MASK)),
            ImageType::RGB24 => self.read_full_byte_pixel_data(FormatFullBytes::FormatRGB24),
            ImageType::RGB32 => self.read_full_byte_pixel_data(FormatFullBytes::FormatRGB32),
            ImageType::RGBA32 => self.read_full_byte_pixel_data(FormatFullBytes::FormatRGBA32),
            ImageType::RLE8 => self.read_rle_data(ImageType::RLE8),
            ImageType::RLE4 => self.read_rle_data(ImageType::RLE4),
            ImageType::Bitfields16 => {
                match self.bitfields {
                    Some(_) => self.read_16_bit_pixel_data(None),
                    None => Err(ImageError::FormatError("Missing 16-bit bitfield masks".to_string()))
                }
            },
            ImageType::Bitfields32 => {
                match self.bitfields {
                    Some(R8_G8_B8_COLOR_MASK) => {
                        self.read_full_byte_pixel_data(FormatFullBytes::Format888)
                    },
                    Some(_) => self.read_32_bit_pixel_data(),
                    None => Err(ImageError::FormatError("Missing 32-bit bitfield masks".to_string()))
                }
            },
        }
    }
}

impl<R: Read + Seek> ImageDecoder for BMPDecoder<R> {
    fn dimensions(&mut self) -> ImageResult<(u32, u32)> {
        try!(self.read_metadata());
        Ok((self.width as u32, self.height as u32))
    }

    fn colortype(&mut self) -> ImageResult<ColorType> {
        try!(self.read_metadata());
        if self.add_alpha_channel {
            Ok(ColorType::RGBA(8))
        } else {
            Ok(ColorType::RGB(8))
        }
    }

    fn row_len(&mut self) -> ImageResult<usize> {
        try!(self.read_metadata());
        Ok(3 * self.width as usize)
    }

    fn read_scanline(&mut self, _buf: &mut [u8]) -> ImageResult<u32> {
        unimplemented!();
    }

    fn read_image(&mut self) -> ImageResult<DecodingResult> {
        try!(self.read_metadata());
        self.read_image_data().map(|v| DecodingResult::U8(v) )
    }
}

#[cfg(test)]
mod test {
    use super::Bitfield;

    #[test]
    fn test_bitfield_len() {
        for len in 1..9 {
            let bitfield = Bitfield { shift: 0, len: len };
            for i in 0..(1 << len) {
                let read = bitfield.read(i);
                let calc = (i as f64 / ((1 << len) - 1) as f64 * 255f64).round() as u8;
                if read != calc {
                    println!("len:{} i:{} read:{} calc:{}", len, i, read, calc);
                }
                assert_eq!(read, calc);
            }
        }
    }
}