1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
//! A flat grid with square cells.

use math::{ Matrix2d, Scalar, Vec2d };
use { DrawState, Graphics, Line };

/// Represents a flat grid with square cells.
#[derive(Debug, Copy, Clone)]
pub struct Grid {
    /// Number of columns.
    pub cols: u32,
    /// Number of rows.
    pub rows: u32,
    /// The width and height of each grid cell.
    pub units: Scalar,
}

/// Iterates through the cells of a grid as (u32, u32).
#[derive(Debug, Copy, Clone)]
pub struct GridCells {
    cols: u32,
    rows: u32,
    state: u64,
}

impl Grid {
    /// Draws the grid.
    pub fn draw<G>(
        &self,
        line: &Line,
        draw_state: &DrawState,
        transform: Matrix2d,
        g: &mut G
    )
        where G: Graphics
    {
        let &Grid {
            cols, rows, units
        } = self;
        for x in 0..cols + 1 {
            let x1 = x as Scalar * units;
            let y1 = 0.0;
            let x2 = x1;
            let y2 = rows as Scalar * units;
            line.draw([x1, y1, x2, y2], draw_state, transform, g);
        }
        for y in 0..rows + 1 {
            let x1 = 0.0;
            let y1 = y as Scalar * units;
            let x2 = cols as Scalar * units;
            let y2 = y1;
            line.draw([x1, y1, x2, y2], draw_state, transform, g);
        }
    }

    /// Get a GridIterator for the grid
    pub fn cells(&self) -> GridCells {
        GridCells {
            cols: self.cols,
            rows: self.rows,
            state: 0,
        }
    }
    
    /// Get on-screen position of a grid cell
    pub fn cell_position(&self, cell: (u32, u32)) -> Vec2d {
        [cell.0 as Scalar * &self.units, cell.1 as Scalar * &self.units]
    }
    
    /// Get on-screen x position of a grid cell
    pub fn x_pos(&self, cell: (u32, u32)) -> Scalar {
        self.cell_position(cell)[0]
    }

    /// Get on-screen y position of a grid cell
    pub fn y_pos(&self, cell: (u32, u32)) -> Scalar {
        self.cell_position(cell)[1]
    }
}

impl Iterator for GridCells {
    type Item = (u32, u32);

    fn next(&mut self) -> Option<(u32, u32)> {
        let cols = self.cols as u64;
        let rows = self.rows as u64;

        if self.state == cols * rows {
            return None
        }

        // reverse of: state = x + (y * cols)
        let ret = (
            (self.state % cols) as u32,
            (self.state / cols) as u32,
        );
        self.state += 1;

        return Some(ret);
    }

}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_grid_iterator() {
        let combinations = vec![(2, 2), (2, 3), (3, 2)];

        for (cols, rows) in combinations {
            let grid = Grid { cols: cols, rows: rows, units: 2.0 };
            println!("Testing {:?}", grid);

            let mut iter = grid.cells();
            for y in 0..rows {
                for x in 0..cols {
                    assert_eq!(iter.next(), Some((x, y)));
                    println!("Got: {:?}", (x, y));
                }
            }

            assert_eq!(iter.next(), None);
        }
    }

    #[test]
    fn test_cell_positions() {
        let g: Grid = Grid {cols: 2, rows: 3, units: 2.0};
        assert_eq!(4.0, g.x_pos((2,3)));
        assert_eq!(6.0, g.y_pos((2,3)));
    }
}