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Abstract—IoT devices have evolved from providing remote
connection to being an essential component of the Metaverse. The
integration of IoT and vision technologies has been incubating
emerging applications such as vision-enhanced device tracking
and remote education/medicine/maintenance. Despite the exciting
vision, practical challenges include coordinate transformation,
angle estimation, target mapping, and personal error. Instead of
proposing yet-another localization approach, we propose a novel
vision-enhanced device tracking system, called VisBLE. VisBLE
takes advantage of the new localization capability introduced in
BLE 5.1 and advances in vision technologies for high accuracy,
robust, and intuitive BLE device tracking. There are two novel
technical mechanisms: i) a rotation-based wireless localization
mechanism that accurately and robustly locates the BLE trans-
mitter in the camera coordinate and ii) a homography-based
matching mechanism that identifies target BLE devices with high
accuracy on the camera screen. We prototype VisBLE and deploy
it on the smartphone (i.e., Nexus 5X) and development board
(i.e., CC26X2 + BOOSTXL-AOA). Our results show that VisBLE
outperforms the state of the art in both angular accuracy and
position accuracy.

I. INTRODUCTION

With the advent of the Internet of Things (IoTs) era, the
number of IoT devices surges in recent years. By 2035, the
number of IoT devices is estimated to reach a trillion [1]. IoT
nowadays not only provides ubiquitous connection but also
integrates with the Metaverse for a better user experience. One
promising direction in IoT is to integrate IoT applications with
AR/VR applications, such as intuitive IoT devices tracking and
remote education/medicine/maintenance applications [2].

A conceptual use case is illustrated in Figure 1. There are
various IoT devices in an office, such as the lamp, the fan,
and the printer, embedded with BLE chips. Instead of looking
for each in a long Bluetooth device list, a user turns on the
camera and scans the whole room. The connectable devices
will appear on the screen as clickable AR objects. The user
then operates on these devices directly from the screen. Such
a novel user experience is way more intuitive and immersive
compared with traditional solutions. In addition to the office
scenario, other application scenarios include factories, malls,
restaurants, and hospitals wherever intuitive operation on IoT
devices is needed.

To achieve this vision, a straight forward solution is to
provide high-accuracy device tracking in both the wireless area
and the computer vision area. There are extensive wireless-
based and vision-based solutions respectively in the literature

†Both authors contributed equally to this research.
*Shuai Wang is the corresponding author.

Fig. 1: A conceptual scene of the VisBLE use case in the
office to operate on various BLE devices from the screen.

[3]–[6]. However, the intersection of the two lines of studies
is still an open question, especially on mobile devices with
constrained radio and camera module with ordinary users.
First, advanced wireless solutions rely on wide-bandwidth
signal and a large-size antenna array to achieve centimeter-
level accuracy [7], which is not common for mobile devices.
Second, cross-modality opportunities and constraints are not
fully explored in such a novel user scenario. Finally, a prac-
tical application should have consistent performance for both
ordinary users and experience users. VisIoT [4] is a pioneer
work that achieves IoT tracking in AR by projecting an IoT
device’s angular information to the camera view, but it fails
to explore more cross-modality opportunities to further reduce
accumulating errors and output ambiguity.

Instead of proposing yet another wireless localization ap-
proach, in this paper, we aims to address the gaps between
the wireless technology and the vision technology for them to
cooperate seamlessly and supplement each other. We present
VisBLE, an vision-enhanced BLE device tracking system.
VisBLE is built with two key designs: (i) an angular-based
wireless localization mechanism that links the wireless and
vision localization technologies to accurately and robustly
locate the BLE transmitter in the camera coordinate and (ii)
a homography-based matching mechanism that provides the
depth information of target BLE device to push the localiza-
tion accuracy and resolve the non-line-of-sight (NLoS) issue.
Detailed technical contributions are as follows:
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• To the best of our knowledge, this work is the first to
explore a vision-enhanced BLE device tracking with the
new direction-finding feature. It is a fundamental building
block for AR/VR applications.

• On the wireless side, we propose a novel azimuth and
elevation estimation mechanism based on the Level meter
(an electronic level) that advances inertial measurement
unit (IMU) sensors with lower accumulating errors.

• On the vision side, we utilize the homography matrix to
extract depth information from the point cloud. It helps
separate objects in the foreground and the background
of the camera view, and also addresses the Non-line-of-
sight (NLoS) problem which troubles most vision-based
technologies.

• We have prototyped and evaluated the performance of
VisBLE on the smartphone camera and multiple BLE
devices. Our results show that VisBLE tracks a BLE
device with 3.4° angular error and 8.4cm position error
in median which outperforms the state-of-the-art by 48%
and 8% respectively. Its overall device tracking accuracy
is over 90%.

II. MOTIVATION

IoT has seen rapid development in the past decade beyond
ubiquitous connection and starts to be integrated into the
Metaverse to empower emerging applications such as remote
education/medicine/maintenance through vision technologies
like AR/VR [2]. Such an integration will power Metaverse by
emerging large amount of IoT data into the virtual world as
well as providing IoT applications a more intuitive and immer-
sive 3D user interface. However, the conventional operation
and localization schemes on IoT devices are not designed for
the new paradigm, bringing a series of technical challenges
during the integration. In this work, for specification, we
design an vision-enhanced BLE device tracking to demonstrate
the idea. This work has the potential to enhance the perfor-
mance and user experience of popular BLE tracking services
such as AirTag and Tile Mate [8].

A. Limitations of the SOA

In the literature, the device tracking problem is usually
formulated as a 3D wireless localization problem [3], [9],
[10]. These works typically rely on advanced radio tech-
nologies such as large bandwidth and antenna array which
are often costly to be equipped on mobile devices if not
impossible. Popular wireless radios on mobile devices, such
as BLE, are intrinsically restricted in localization accuracy
due to bandwidth and antenna. In addition, there is limited
access to the physical layer signals open to the end-users per
the specifications. On the other hand, advances in computer
vision can locate the visual objects on the camera screen and
mark them with bounding boxes or masks [11], [12]. Vision
technologies are usually used to recognize visual landmarks in
the environment in a simultaneous localisation and mapping
(SLAM) task [13]. However, we argue that the visual patterns
alone cannot tell whether an object is a BLE device or not

since a BLE device can come in all shapes and colors. VisIoT
[4] is a pioneer work that projects ZigBee angular information
into the camera screen for AR applications, but it requires
software-defined-radio to extract low-level phase information.
In addition, though mentioned in the paper, the work does
not explore the opportunities of vision technologies in such
an AR application. Finally, errors due to users’ operation are
very relevant to the practical performance but not fully studied.

B. Opportunities and Challenges

Opportunities: Our opportunities come from the new ‘di-
rection finding’ feature introduced since BLE specification
5.1 [14], where two localization elements are proposed,
namely the angle of arrival (AoA) and the angle of departure
(AoD). AoA and AoD measure the angle of the target device
through the differences of the signal arriving multiple antenna.
Compared with most existing BLE devices that are only
capable of proximity measurement through RSSI, the AoA
and AoD are much more accurate due to the new capability of
angular measurement. In addition, the angular information is a
physical quantity that can be linked to the vision technologies.
In other words, instead of extracting objects’ visual patterns
from the picture/video footage, we are more interested in the
angular relationship between the camera and the target objects
in the camera screen. In such a manner, BLE devices with
different shapes and colors can be tracked without pre-training.
Challenges: The technical challenges of the work are in three
folds. First, though the AoA information can be read from
BLE devices, it is an angle on the antenna plane, which has
to be transformed to the camera coordinate. In addition, to pin
an object in the 3D world, the azimuth and elevation angles
have to be estimated. Finally, accumulating measurement and
personal errors will be introduced during device tracking. They
need to be addressed to increase the accuracy of the system.
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Fig. 2: VisBLE overview.

III. VISBLE OVERVIEW

Figure 2 illustrates the overall workflow of VisBLE to track
a BLE device in an AR application. In a nutshell, VisBLE
takes advantage of the angular information to link the wireless
measure and the visual point cloud to track BLE devices
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with high accuracy and robustness. It is comprised of two
components, i.e., (i) the AoA point cloud extraction and (ii)
the vision enhanced BLE tracking.

• AoA point cloud extraction 2D AoA information is
extracted from BLE devices supporting the ‘direction
finding’ feature in specification 5.1 and onward. The
information will then be projected onto the camera co-
ordinate. To further estimate the azimuth and elevation
angles of the target BLE device in the 3D world, the
Level meter reading and a controlled rotation are applied
to the mobile device under UI assistance.

• Vision enhanced BLE identification Images in the
camera screen are segmented into semantic mask seg-
ments. During the controlled rotation, a technology called
‘Homography’ is applied to analyze the depth of the mask
segments for mask matching and dealing with NLoS case.

Compared to the state of the art [4], in VisBLE, the wireless
measure and the vision technologies are deeply coupled during
device tracking. In addition, the use of Level meter and the
UI assistance during the process can help ordinary users to
largely reduce accumulating errors during operation.

IV. AOA POINT CLOUD EXTRACTION
This section illustrates the VisBLE design in detail. We

first give background about the AoA information obtained
from BLE 5.1 devices. Then we introduce how to estimate
the azimuth and elevation angles from the AoA.

A. Preliminary of BLE Device Tracking

Angle of Arrival (AoA): Direction finding is a feature
introduced in BLE specification 5.1. It enables a BLE receiver
to directly obtain the angle of arrival (AoA) of another BLE
transmitter. Let Θ be the AoA and Ψ be the phase difference
of the incident signal, we have

cos(Θ) =
λΨ

2πd
, (1)

where λ is the wavelength of the incoming signal and d is the
interval between antennas.

However, the AoA information alone is not enough to
determine the position of a BLE device in (i) the camera screen
and (ii) the 3D world. To address these issues, coordinate
transformation and an estimation of the azimuth and elevation
angles are necessary.
Coordinate in camera screen: According to [4], the co-
ordinate of BLE device in the camera screen (u, v) can be
determined by

(u, v) =

(
f
sinϕ

cosϕ
, f

cosθ

cosϕsinθ

)
(2)

where f is the focal length, ϕ is the azimuth angle, and θ is
the elevation angle.
Estimating azimuth and elevation: Now the question be-
comes how to estimate the azimuth angle ϕ and elevation angle
θ. The relationship between the two angles is formulated as

Ψ =
2dπ

λ
cos(ϕ)sin(θ) (3)

where Ψ is the phase difference of the signals from two anten-
nas. In the literature, we can fix one angle (either azimuth and
elevation) and estimate the other through a controlled device
motion tracked by gyroscope or the inertial measurement unit
(IMU) sensor using gyroscope internally [4].
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Fig. 3: Gyroscope vs Level meter

B. Level Meter Based Angle Estimation

However, one issue with gyroscope-based angle estimation
is the accumulating errors, because the angle of rotation is
accumulated by a real-time integrator. We argue that track-
ing the mobile phone gesture in real-time is not necessary.
Instead, obtaining the start and final gestures of the mobile
device is more than enough. By doing so, we can reduce the
accumulating errors. In a mobile device, a Level meter can
do the job. It captures the angle between the mobile device
and the horizontal plane in a certain state, which is a state
quantity. To verify the hypothesis, in Figure 3, we measured
the accumulating error of the gyroscope vs a Level meter. We
can see the gyroscope introduces 2.5° error after 18 seconds
while the Level meter has almost 0° angular error.

Inspired by this observation, we propose to utilize the Level
meter available in the mobile devices to estimate the azimuth
and elevation angles. Specific operations are as follows: We
first take the angle between the device and the horizontal plane
obtained by the Level meter in the AR device ρ and the AoA Θ
obtained by the Bluetooth device as a known quantity. Then we
rotate the device to change the position of the antenna and get
another Level meter reading. The rotation angle is calculated
from the Level meter reading difference before and after the
rotation. After that, we calculate the azimuth and elevation
angles from the rotation angle and AoA. The azimuth and
elevation angles determine the pixel coordinates of the target
Bluetooth device in the camera screen following Equation 2.

We hereby derive how to calculate the azimuth angle ϕ and
elevation angle θ from the rotation angle and AoA. Without
loss of generality, we assume the receiving antenna is located
on the X-axis and the rotation is around the Y-axis as shown
in Figure 4. When the user rotates the AR device around the
Y-axis, according to the relativity of the movement, the target
device is rotating in the opposite direction around the Y-axis.
As shown in Figure 4, the coordinates of the target Bluetooth
device before rotation are (x, y, z)

T , and the coordinates after
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Fig. 4: Spatial angle relation.

rotation are (x′, y′, z′)
T . M is the projection of the target

device on the XZ plane before rotation. Its coordinates are
(x, z). Similarly, the coordinates of the projection of the
rotated point M ′ are (x′, z′). Then we have:

z = OMcosα x = OMsinα (4)

z′ = OM ′cos(∆ρ+ α) x′ = OM ′sin(∆ρ+ α) (5)

where ∆ρ represents the angle at which the user rotates the
device around Y-axis and α represents the angle between M
and Z-axis. Also, OM = OM ′, since the rotation is around
the Y-axis. When we rotate the device around the Y-axis, its
Y-axis coordinate remains unchanged: y = y′. Based on this
observation, the relation is as follows:x′

y′

z′

 =

 cos∆ρ 0 sin∆ρ
0 1 0

−sin∆ρ 0 cos∆ρ

xy
z

 (6)

Since the horizontal angle ∆ρ and AoA Θ are known quanti-
ties, we calculate 1) elevation angle θ 2) azimuth angle ϕ

θ = arccos
cos(Θ′)− cos(∆ρ)cos(Θ)

sin(∆ρ)
(7)

ϕ = arccos
cos(Θ)

sin(θ)
(8)

Through the calculation of the above Equations, we estimate
the azimuth and elevation angles of the target Bluetooth device
relative to the AR receiving device, and then estimate the
position of its signal source in the camera screen. It should
be noted that if the sender is outside of the camera’s viewing
angle, (u, v) values from Equation 2 become infeasible (i.e.,
either smaller than zero or larger than the number of pixels of
the video).

Compared with the state of the arts, the Level meter based
angle estimation has several advantages:

• Less accumulating errors. We only need to know the
difference between the angles before and after the rotation
without tracking the angle changes during the rotation.

• Easier operation. We only need to rotate around a single
axis once. Also, during the rotation of the device, we
no longer perform threshold estimation on AoA [4], just
collect the AoA and Level meter readings.

• Low computational cost. The proposed angle estimation
algorithm causes low computing overhead and runs in
real-time in mobile AR devices.

Rotate around 
Y-axis

Not rotate around 
Y-axis

Y Y

Fig. 5: Rely on prompt instead of tripods.

C. UI-assisted Device Rotation

Personal error is a factor that cannot be ignored in such
an AR application, especially during the rotation operation.
To largely alleviate this kind of error, we have designed a
user interface that can assist the device rotation operation. It
is inspired by the UI in the camera’s ‘panorama mode’ which
can help users to keep balance while moving the camera during
the panorama shooting.

In particular, we designed a simple UI with one virtual track
and an arrow moving in the track as shown in Fig. 5. This
UI shows users how much they offset the right track in real
time and in a intuitive way. Figure 6 shows the CDFs of the
position error when the rotation mode is changed. As shown
in the figure, the median positioning error dropped from 280
pixels to 246 pixels when we removed tripods and use UI-
assisted. While we removed UI, the error increases. Thus,
VisBLE is suitable for both tripods and non-tripods devices,
and UI-assisted helps for improve the accuracy while keep the
operation convenient.
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Fig. 6: Position errors: Tripods vs. UI-assisted vs. Manual.

V. VISION ENHANCED BLE TRACKING

Through the azimuth and elevation angle estimation mech-
anism, we estimate the position of the target device in the
camera screen, but that is only halfway done. The pure
wireless solution is limited in two aspects: (i) relative low
accuracy due to the simple antenna and fast-changing wireless
environment and (ii) scattered point cloud that cannot directly
mask the target object. In this section, we introduce how to
borrow ideas from computer vision technology to improve
BLE device tracking accuracy.
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A. Mask Acquisition

In contrast to the wireless localization approaches that gen-
erate point clouds, the computer vision algorithms segment the
image into semantic objects. One state-of-the-art framework is
the Mask R-CNN [12]. Mask R-CNN first realizes the instance
semantic segmentation of the captured image at the pixel level.
It then clusters the semantic information of each feature point
to generate a Mask of the target object. Compared with edge
detection-based approaches, such as SIFT [15] or SURF [16]
that are based on color gradients, segmentation masks in Mask
R-CNN are more rational and interpretable with pre-trained
models over large labeled datasets. So it is more suitable for
the device tracking tasks in this work.

B. Matching through Pixel Proximity

Although Mask R-CNN obtains accurate segmentation
masks of the semantic objects in the image, the matching
between the segmentation masks and the wireless point cloud
is a technical challenge. One straightforward approach is
matching through the pixel proximity in the camera screen.
Recall that in Section IV we have transformed the AoA point
cloud to the camera coordinate so that it can be naturally
mapped to the closest masks.

One issue in such an approach is the sparse AoA point. Note
that the number of pixels on the screen is several orders higher
than the number of AoA points. For example, the camera in the
experiment is with a resolution of 4032 × 3024 pixels, while
the number of AoA points is only dozens. It causes unstable
matching results jumping among several nearby objects. To
resolve this limitation, we apply a Gaussian filter to model the
point cloud distribution and further look for the most likely
position of the AoA transmitter. According to the law of large
numbers, we assume the spatial distribution of the point cloud
approximates a two-dimensional Gaussian distribution centred
at the signal transmitter.

Another issue with the pixel proximity is its inability
to distinguish objects in the foreground from those in the
background. In some cases, the point cloud may be scattered
on two objects that are close to the camera screen but far away
in the actual scene. For example, one object could be a bottle
close to the user while the other is a clock hanging on the
remote wall. The matching approach through pixel proximity
may identify the wrong object. It is a challenging issue because
the camera screen itself is a 2D plane which does not contain
any depth information.

C. Matching through Homography

To distinguish objects at different depths of field, we employ
the homography technology from computer vision. Recall
that the camera pose changes in the azimuth and elevation
estimation algorithm. The camera viewing angle also changes
accordingly during the process. In the field of computer vision,
and two camera screens of the same planar surface are related
by homography (assuming a pinhole camera model). From
the homography matrix, we derive the camera’s rotation and
further figure out the depth of the target object.

𝑶𝟏 𝑶𝟐

𝑯

(𝑹, 𝑻)

AoA1 AoA2

Fig. 7: Homography transformation

Homography matrix: As illustrated in Figure 7, a homogra-
phy matrix describes the relation between the position projec-
tion of the feature point on the two frames of the camera on
the same plane [17]:u1

v1
1

 = H

u2

v2
1

 , (9)

where (u1, v1, 1)
T represents the image point in image 1,

(u2, v2, 1)
T is the image point in image 2. Image 2 is

transformed into image 1 through the Homography matrix H.
During the azimuth and elevation estimation algorithm, we
change the pose of the camera. Such a movement generates
a unique homography matrix in the camera screen for each
mask at a certain depth in the real scene, assuming each
Mask approximates a plane. In other words, by calculating
the homography matrix of each mask in the camera screen,
we figure out the depth of the object.
Homography matrix and depth: The formula between the
homography matrix and depth is as follows [17]:

H = K(R+ T
1

d
NT )K−1, (10)

where K is the camera internal parameter, R is the camera
rotation matrix, T is the translation matrix, d is the depth, and
N is the normal vector of the plane in the frame.

From Figure 7, we observe that the change of camera pose
produces two frames of images (as the black dotted line). The
Homography matrix of the plane is calculated by the matching
feature points in the two frames. Since each mask contains
thousands of pixels, we apply edge detection approaches to
extract feature points from the masks [15], [16]. From Equa-
tion 10, we find that the homography matrix H is inversely
proportional to the depths d. Based on it, we leverage the
homography matrix as a characteristic feature to distinguish
masks of different depths to enhance the matching algorithm.
In addition, Homography can naturally address the NLoS case
through the mismatch between the directions extracted from
the AoA and Homography. As illustrated in Fig. 7, when a
BLE tracker of interest is behind the foreground scene, its
AoA changes will be less than the angular changes calculated
from pixels on the foreground scene through Homography.
A more robust matching mechanism: Note that we have
projected the AoA point cloud to the camera screen. The AoA
point cloud is supposed to be located on the same plane as the
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Fig. 8: CDFs for estimation angles and position error comparison between VisBLE and VisIoT

target device as the signal is sent from a target device. Accord-
ing to the principle of homography, the homography matrix of
the AoA point cloud and the target device should always be
similar no matter how the camera pose changes. Based on that,
by calculating the similarity between each Mask’s homography
matrix and the AoA point cloud’s Homography matrix, we
distinguish Masks at the same depth as the AoA point cloud.
Dealing with multiple devices: Though our discussion so far
is focused on one BLE device for simplicity, the multi-device
case also has native support thanks to the ‘connectionless
mode’ in BLE 5.1 direction-finding [14]. Under the connec-
tionless mode, one BLE tracker actively advertises a special
packet known as the continuous tone extension (CTE) with
which its AoA information is obtained by a nearby locator.

To put everything together, the matching algorithm works as
follows. First a Mask R-CNN algorithm is applied to processes
the original picture frame/video footage and generates several
Masks which represents an recognized object. Then wireless
AoA point cloud projected to the camera screen are filtered
by the Masks following two rules: i) the proximity rule where
mask are mapped to AoA point cloud with the closest camera
screen distance and ii) the consistence in angular information
where the AoA information is compared with angular infor-
mation calculated from the Homography matrices. Mappings
with inconsistent angular information will be removed from
the result set.

Slave BLE
(CC26X2)

Master BLE
(CC26X2+BOO

STXL-AOA)

AR device
(Nexus5x)

Fig. 9: Experiment setting for VisBLE.

VI. IMPLEMENTATION AND EVALUATION

In this section, we present the implementation and evalua-
tion to quantitatively understand the system performance.

A. Implementation

We build VisBLE, which locates the position of the Blue-
tooth device signal source in the video and provide interactive
Bluetooth device objects. Figure 9 illustrates our implemen-
tation setting platform of VisBLE. By default, connectionless
Bluetooth devices broadcast and send data packets with 100ms
intervals. The resolution of the smartphone screen is 4032
× 3024 pixels. Note that the use of development board is
for its openness to second-development. The ideas works for
other off-the-shelf BLE devices or chips that support ‘direction
finding’, such the Tile Mate BLE tracker [8] and Nordic’s
nRF52810 chip [18].

B. Angular and Position Accuracy

Angular accuracy: We first evaluate the angular accuracy of
VisBLE, say the azimuth and elevation angles. For the perfor-
mance evaluation, we conducted experiments while varying
the position of the target BLE device. The distance between
the target device and the receiving device is between 1m
and 6m. Figure 8(a) and 8(b) show the CDF of the azimuth
and elevation errors with 300 experiments. The median errors
of the azimuth and elevation angles of VisBLE are 2.2°
and 3.1°, respectively. In comparison, VisIoT yields much
higher azimuth and elevation angle estimation errors, with
median errors of 3.4° and 6.4°, respectively. In other words,
our azimuth and elevation estimation algorithms have error
reduced by 35% and 51%, respectively. It is observed that
VisBLE and VisIoT are comparable in azimuth estimation, and
have a huge difference in elevation estimation. The reason is
that VisBLE uses the state quantities which brings much less
cumulative errors during the rotation.
Position accuracy: We then evaluate the errors between the
estimated target and the actual target in the camera coordinate.
Figure 8(c) shows the corresponding CDF of the positioning
pixel error. The median and the 95-percentile errors of VisBLE
are 8.4cm and 16.4cm, respectively. In comparison, VisIoT
yields higher position errors. The median error of VisIoT is
14.9cm and its 95-percentile error is 26.7cm. Normalized
according to the number of pixels on the diagonal, the posi-
tioning errors of VisIoT are 8.6% and 15.5% of the screen
diagonal, respectively VisBLE achieves not only accurate
tracking in the camera coordinate but also centimeter-level
localization accuracy.
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Fig. 10: Evaluation in various distances

Impact of distance: Since Bluetooth is suitable for short-
distance recognition and transmission, the scenario in this
paper focuses on the indoor environment. We discuss the
impact of distance on VisBLE positioning in an indoor en-
vironment. Figure 10(a) and Figure 10(b) show the median
angles estimation errors within 95% confidence interval in
various distances. And, Figure 10(c) shows the position error.
We observe that VisIoT has slightly lower azimuth estimation
accuracy than VisBLE, and VisBLE is much better than VisIoT
in elevation estimation. The conclusion is consistent with the
previous results. It once again proves that the calculation of
the two-state angles by Level meter is more reliable than the
calculation of rotation by Gyroscope integration.

In addition, we observe that the error of VisBLE marginally
grows as the distance increases from 1m to 6m. However, we
find that as the distance increases (1m to 6m), the median
error increases slowly. The greater the distance, the greater
the variance. The main reasons are as follows: i) With the
same angle estimation error, larger distance leads to larger
localization errors [19]. ii) In a long distance scenario, the
multi-path effect becomes obvious which leads to increased
errors. In all these cases, the performance of VisBLE is better
than VisIoT. In addition, a horizontal comparison shows that
the estimations of elevation angles are in general more accurate
than those of azimuth angles.
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Fig. 11: Angles estimation error with ground-truth rotation.

Impact of Level meter: In our azimuth and elevation esti-
mation algorithm, the level tracks the motion of the device
and records the angle of rotation. Here, we analyze how
much estimation error is caused by the imperfect Level meter.
We replace the rotation angle obtained based on the Level
meter with the ground-truth rotation angle. Figure 11 shows
the performance comparison. The results show that the Level

meter is reliable, where VisBLE does not seriously suffer from
the drift problem. When the ground-truth rotation angle is
used, the median azimuth estimation error reduces from 2.2° to
2.0°, and the median elevation angle estimation error reduces
from 3.2° to 2.6°. Regardless of the CDF estimation of azimuth
or elevation, the overall trend of the curve is very similar to
Ground truth.
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Fig. 12: The performance of rotation angle and frame interval
on localization.

Impact of rotation angle: In Section IV-B, we rotate the
device to change the position of the antenna to estimate the
azimuth and elevation angles. One might wonder how much
the user needs to rotate the device. It depends on the angle
of view of the camera and the range of Antennas receiving.
Figure 12(a) show that the performance of rotation angle on
localization. The result proves that the angle of rotation is no
more than 20°, the positioning error is hardly affected, and
the median of position error is 8.5cm. The angle of rotation
is not difficult for users to rotate that amount. In addition, we
found that when the rotation angle exceeds 20°, the positioning
error increases significantly. The reason for the excessive
error may be due to the restricted antenna position of the
development board. In brief, the results in Figure 12(a) shows
that VisBLE does not require users to perform too complex
rotation operations to achieve high-precision positioning.
Impact of frame interval: In the previous experiment, con-
nectionless Bluetooth devices broadcast and send data packets
at 100ms intervals by default. However, in scenarios with
too many IoT devices, data packet loss and few received
data packets may occur. To adapt to the needs of the actual
environment, it is necessary to verify VisBLE’s demand for
traffic. For this reason, we evaluated the impact of VisBLE
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data packet transmission interval on localization accuracy. Fig-
ure 12(b) shows the CDFs of the position error when varying
the frame interval. From the collected curve, we changed the
frame interval and evaluated the positioning error of VisBLE.
As shown in Figure 12(b), the frame interval increased from
100ms to 160ms, and the median positioning error increased
from 8.3 to 9.9cm. Our results prove that the frame interval
time does not seriously affect the positioning performance of
VisBLE. In addition, VisBLE of low traffic demand helps its
application in large-scale IoT device scenarios.

C. Enhancement through Vision Technology

In this subsection, we evaluate the accuracy of VisBLE after
Bluetooth positioning and visual positioning are coupled.
Performance in different scenarios: To confirm the reliability
of VisBLE in more general, we deploy VisBLE, the above two
methods, and the no-vision-based AoA point cloud method
in different scenarios, including a large classroom, a small
classroom, and a lab. In a large classroom, there is a large
distance between objects, while in a laboratory environment,
the interference object is closer to the target device. As shown
in Figure 13, AoA point cloud alone obtains higher recognition
accuracy in large classrooms, but in small classrooms and
laboratories, it is significantly reduced. After enhancing by
visual method, regional segmentation enhances the accuracy
of AoA point cloud positioning objects, and the homography
roughly distinguishes objects in front and back.
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Fig. 13: Accuracy of 5 methods in different scenarios.

Figure 13 shows the accuracy of different methods to
identify the correct target device. The methods applied in this
experiments are as follows:

• AoA: relying only on the AoA information without vision
enhancement.

• Pixel: projecting AoA information onto camera screen
and use the proximity for mask matching.

• Homography (Hgy): only leveraging the homography
matrix to match masks.

• Prompt: combining pixel proximity and homography
matrix for device tracking but operated by a volunteer
relying on the visual UI during operation.

• VisBLE: ombining pixel proximity and homography ma-
trix for device tracking but operated by an experienced
operator.

We can observe from Fig. 13 that: First approaches with
vision enhancement, i.e., all except ‘AoA’ do improves the

BLE tracking performance. Second, point cloud proximity,
i.e., ’Pixel’, outperforms homography approach, i.e., ’Hgy’,
in large space but underperforms in small rooms. That is
because there are more interfering objects in small scenes.
Proximity-based method cannot differentiate interfering ob-
jects in different depth levels. Third, approaches combining
the proximity and homography, i.e., ’Prompt’ and ’VisBLE’,
have the best performance. Also the help of visual UI lets
a volunteer performs closely to experienced operator. The
overall device tracking performance can reach over 90%.
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Fig. 14: Environment of
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Performance with multiple BLE devices: To verify the
robustness of VisBLE, we arranged multiple target devices in
the experimental scene, as shown in Figure 14. There are three
target devices, one of which is located in the built-in drawer,
and several interference objects in the picture to simulate the
actual built-in Bluetooth device. Figure 15 shows the result of
the tracking accuracy of each device under different methods.
Experimental results show that VisBLE’s recognition accuracy
in the scene of multiple devices is still stable at about 90%,
and the devices of NLoS can also be identified through the
directional function of Bluetooth signals. VisBLE is more
robust in real-world scenarios than VisIoT.
The reasons of tracking failure: There are two main reasons
for VisBLE tracking failure: First, due to the limitations of
indoor positioning, we obtained the AoA with the median error
of 3.4°, the resulting point cloud area with the median error of
8.4cm. Second, as described in section V-C, the homography
makes a rough distinction between front and rear objects when
the position changes in a small range(≤ 1m), and cannot make
a clear distinction between objects with close depth.

In summary, our extensive experiment results have shown
the effectiveness of the Level meter and the vision technology
in providing an accurate and robust BLE tracking. It paves the
way for a lot of AR applications in the future.

VII. RELATED WORK

Vision-based localization: With the rapid development of
computer vision technology, we are able to identify and locate
known IoT devices in the video [20]–[23]. The concepts of
AR visualization with wireless devices have been proposed.
However, there is no feasible solution to achieve it at the
existing visual inspection. For example, researchers deliber-
ately construct marks in visual images, such as 2D barcodes
[20], retroreflective or luminous points [21] or other patterns
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[23]. To this extent, previous works primarily focused on local
interactions with a device with prior knowledge of where it is
located in the environment, which limits the scalability.
Wireless Signal-based localization:

i) Direction of arrival: In the latest wireless signal localiza-
tion research [3], [10], researchers have achieved centimeter-
level 3D localization accuracy. They both track the device in
3D space by estimating the distance from 3 or more anchor
points, and finding the intersections of the circles whose radii
are the estimated distances. Although they provide a reliable
location estimation method, it cannot meet the requirement
of visualizing the target device to the AR device because it
cannot estimate the direction of arrival of the received signal.

ii) Additional hardware requirements: In order to separate
the azimuth and elevation angles from the AoA measurement,
the researchers adopt a dedicated antenna array, such as a
uniform circular array [24], L-shaped array [25], parallel
linear array [16]. To our knowledge, these methods need
the support of additional hardware. Scenariot [26] utilizes a
combination of UWB distance localization and visual SLAM,
which perceives smart devices in the surrounding environment
and spatially register them on SLAM-based AR devices.

iii) Complicated operation: Park, Y et al. [4] focused on the
visualization of IoT devices and conducted design experiments
based entirely on wireless communication technology. The
proposed azimuth and elevation angles estimation algorithms
utilize the phase difference of the received signals from the
two antennas, combined with the motion of the AR device
tracked by inertial measurement unit (IMU) sensors.

VIII. CONCLUSION

This work presents VisBLE, which provides users with
a novel way to interact with Bluetooth devices. VisBLE
is the first work to achieve visual tracking with Bluetooth
devices under the Bluetooth 5.1 protocol. In contrast with
previous wireless signal localization visualization works, Vis-
BLE proposes a novel azimuth and elevation angle estimation
mechanism to simplify the user’s operation and combines it
with computer vision technology to improve the reliability of
the system. Our results are divided into the following two
aspects: i) Angular and position accuracy: VisBLE positions a
BLE device with the median angular error of 3.4° and position
error of 8.4cm. ii) Accuracy of tracking: VisBLE identifies a
BLE device with an overall success rate of over 90%.
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