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Abstract—As an important branch of IoT applications, Human
activity recognition (HAR) is widely used in daily life, particularly
through vision-based methods. However, vision-based HAR has
serious privacy issues. How to better and low-cost protect the
privacy of users who have already installed the relevant devices
is a problem that needs to be solved. To address this challenge, we
can solve it by transforming video to privacy-preserving mmWave
data. Existing studies have primarily focused on synthesizing
micro-Doppler data from video, but there is a lack of methods for
synthesizing range-Doppler data. Thus, we present a comprehen-
sive method for synthesizing range-Doppler data from videos and
subsequently utilize this synthetic data for HAR. Experimentally,
we deploy our range-Doppler synthesis method and classification
model on a custom dataset. Experimental results indicate that
the model trained with synthetic data achieves accuracy on the
custom dataset by 95.7%, which is comparable to the accuracy
of vision-based HAR works, and demonstrate that the scheme
proposed in this paper achieves privacy-preserving HAR.

Index Terms—Human Activity Recognition, Wireless Sensing,
Deep Learning, Privacy-preserving

I. INTRODUCTION

Human Activity Recognition (HAR), a branch of IoT appli-

cations, provides intelligent and convenient services for people

and has been widely used in human-computer interaction

[1, 2], healthcare, smart driving [3] and monitoring.

HAR can be categorized into three modalities: sensor-based,

vision-based, and multimodal, based on the sensing approach

[4]. Vision-based HAR has made significant advancements,

but it often raises concerns about privacy leakage. Incidents

such as the exposure of home surveillance images on websites

have caused widespread alarm among users. As a sensor-based

approach, mmWave-based HAR has the advantage of protect-

ing visual privacy and good signal richness, but it requires

the specialized acquisition of usage scene data. For users

already employing vision-based devices, adopting mmWave-

based HAR for privacy preservation would require equipment

replacement and the extensive re-collection of data, which

is costly. To address this issue, we propose a solution to

achieve privacy-preserving HAR with vision-based devices by

synthesizing mmWave data from video and then performing

HAR based on the synthesized data.

Prior works in synthesizing mmWave data from video in-

clude Vid2doppler [12] and SynMotion [13]. Vid2doppler fo-

cuses on synthesizing micro-Doppler from video and achieves

micro-Doppler-based HAR. On the other hand, SynMotion

synthesizes mmWave data at the signal level, which is further

processed into micro-Doppler for HAR. However, neither of

these two works synthesize and utilize the advantageous range-

Doppler. In contrast to micro-Doppler, range-Doppler data

offers the advantage of an additional dimension, making it

more informative and distinctive. And synthesizing range-

Doppler requires less storage space and less computational

cost compared to synthesizing mmWave signal for HAR.
However, synthesizing range-Doppler data from RGB video

poses a challenging task due to the heterogeneity between

the two data types, as they have different dimensions and

represent different information. To address this challenge, we

propose a novel approach in this paper for synthesizing range-

Doppler data from unstructured human activity video data.

Our approach involves performing cross-domain translation

to bridge the gap between RGB video and range-Doppler

data, enabling the extraction of range and velocity information

from video and synthesizing range-Doppler sensing features.

Furthermore, we leverage the synthesized range-Doppler data

to train a classification model, allowing us to perform accurate

HAR tasks. In summary, our work makes the following

contributions:

• We propose a scheme for synthesizing range-Doppler

data from RGB video. The method utilizes computer

vision and camera imaging principles, etc., to realize the

extraction of range and velocity information from video

data and synthesize range-Doppler sensing features.

• We propose an action recognition scheme based on the

synthetic range-Doppler data. We transform the synthe-

sized range-Doppler into a spatial-temporal map and use

a classification model for the action recognition tasks.

• We evaluate the performance of the scheme based on

a custom dataset. Our model achieves an impressive

accuracy of 95.7% in near-realistic scenarios. Through

comparisons with previous work, we demonstrate that our

approach is comparable to vision-based HAR in terms of

accuracy, enabling privacy-preserving HAR tasks.

II. RELATED WORKS

A. Human Activity Recognition based on mmWave
HAR based on mmWave technology can be broadly cate-

gorized into two approaches: 3D radar echo-based recognition

and 2D radar echo-based recognition.
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Range-Doppler is a type of 3D radar echos that reveals

moving properties and micro-Doppler properties of targets,

which provides comprehensive information about activities

compared to 2D echoes. 3D Convolutional Neural Networks

(3D-CNN) and Long Short Term Memory (LSTM) are the

two most commonly used models for HAR based on 3D

radar echos. For example, researchers[5] employ 3D-CNN and

CNN-LSTM models for gesture recognition. However, our

approach adopts the method proposed in work [6] to synthesize

the 3D echo information into 2D spatial-temporal heat maps.

With spatial-temporal maps, we can extract temporal and

spatial features only using 2D-CNN without LSTM. This

method can simplify the model training process while retaining

high accuracy in HAR.

As for 2D radar echoes, micro-Doppler has emerged as

the most prevalent choice. Given that the features of 2D

echo data are usually images, they are commonly transformed

into image classification tasks. 2D-CNNs are the most widely

employed models for processing such radar data. Previous

works [7, 8] have successfully utilized CNNs to accomplish

classification tasks. Compared to the works with 2D echoes,

the features extracted by our method contain information

in three dimensions, which has the advantage of one more

dimension and can be better used for performing HAR.

B. Synthesize mmWave Data

As for mmWave data synthesis, existing work can be

broadly categorized into synthesis from real mmWave data

and synthesis from non-mmWave data. A common approach to

synthesizing from real mmWave data is Generative Adversarial

Networks (GANs), such as the work [9]. As for synthesis from

non-mmWave data, existing works usually synthesize sensing

features of mmWave from non-radar data, such as MoCap [10],

camera point clouds [11] and video [12, 13]. Our approach

focuses on synthesizing data from RGB video.

The existing works for synthesizing mmWave data from

video are Vid2doppler [12] and SynMotion [13]. There is a

lack of methods to synthesize range-Doppler data from video,

which is the innovation of our work. Vid2doppler synthesizes

micro-Doppler data based on human body mesh and uses an

encoder-decoder to make it into realistic micro-Doppler data,

which is used to train the HAR model. However, our synthetic

range-Doppler offers the advantage of an additional dimension

compared with micro-Doppler, and can provide the range and

speed information of the target.

As for SynMotion, apart from synthesizing sensing features,

researchers synthesize mmWave at the signal level using video

data and process the synthetic signals into micro-Doppler for

HAR. Compared to synthesizing signals and then processing

the raw data into sensing features (e.g., micro-Doppler and

range-Doppler) for HAR, our method has advantages. We

synthesize range-Doppler data directly from video, eliminating

the complex computational process of generating sensing

features from raw signals using the Fast Fourier Transform

(FFT). And saving range-Doppler data requires less storage

space than raw signals.

Name Source Training data HAR Model
3D echos [5] Radar range-Doppler etc. 3D-CNN+LSTM
2D echos [7, 8] Radar micro-Doppler 2D-CNN
Lin et al. [10] MoCap micro-Doppler 2D-CNN
Erol et al. [11] Kinect micro-Doppler 2D-CNN
Vid2doppler [12] Video micro-Doppler 2D-CNN
SynMotion [13] Video micro-Doppler 2D-CNN
Our approach Video range-Doppler 2D-CNN

TABLE I: Comparison of related works

III. SYSTEM OVERVIEW

Input

Video-based Range-Doppler Data Synthesis

3D Mesh 
Fitting

Vertex 
Visibility

Range-Doppler 
Synthesis

HAR Video

Spatial-temporal Map based HAR

Spatial-temporal 
Map Synthesis

Viewpoint 
Synthesis

Range & Velocity 
Calculation

HAR Model

Wave

Output

Prediction Result

Wave Lunge

Clap Punch

……

……

Fig. 1: System overview

Figure 1 illustrates the overall architecture of our approach.

And it should be noted that we only employ synthesized range-

Doppler data for HAR, without utilizing micro-Doppler data.

As shown in Figure 1, this part includes HAR Video Input,

3D Mesh Fitting, Viewpoint Synthesis, Range and Velocity

Calculation, Vertex Visibility, and Range-Doppler Synthesis.

Throughout these processes, we extract relevant human ac-

tivity information from the RGB video and transform it into

range-Doppler data, effectively representing the underlying

human activities. Following the Range-Doppler Synthesis, we

perform HAR using the synthesized data. This part includes

Spatial-temporal Map Synthesis, HAR Model, and Prediction

Results. We generate 2D spatial-temporal map features from

the synthesized range-Doppler and then use a classification

model to learn the features and output the prediction results.

IV. MAIN DESIGN

We outline the key points of this work: video-based range-

Doppler data synthesis and spatial-temporal map based HAR.

A. Video-based Range-Doppler Data Synthesis

1) 3D Mesh fitting Synthesizing range-Doppler data from

2D video frames necessitates obtaining 3D information regard-

ing the user’s body. Fortunately, there have been significant

advancements in computer vision that combine 3D meshes

with human images. Therefore, our approach first employs

the VIBE model [14], which leverages an adversarial learning

framework to estimate realistic human pose meshes. Given a

video, the VIBE model generates a 3D human mesh output

for each frame in the video.

The output of VIBE corresponds to the SMPL (Skinned

Multi-Person Linear) model [15]. This statistical human
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model, which defines a total of N = 6890 vertices comprising

the human body surface, plays a key role in the reflection of

mmWave radar signals. The vertices are positioned in a 3D

coordinate system, with the human chest serving as the origin.

Each vertex contains three coordinate parameters: x, y, z. After

obtaining the vertices, we improve the stability of the vertex

positions by means of frame complement and multi-frame

averaging. Then, we will use these vertices in Step 3) for

synthesizing range-Doppler.

2) Viewpoint synthesis After obtaining the 3D mesh, we

position a virtual mmWave radar, referred to as a viewpoint,

within the 3D coordinate system of SMPL. This viewpoint

allows us to observe the user’s action from a specific per-

spective for synthesizing the range-Doppler sensing features.

By varying the coordinates and angles of the viewpoint, we

can obtain different views of the SMPL model from distinct

perspectives, as shown in Figure 2. In theory, it is feasible to

position any observation viewpoint within the user-centered

SMPL coordinate system. In this study, we specifically select

the frontal viewpoint for further use, which aligns with the

video acquisition viewpoint.

(a) Input video (b) Front view (c) Side view (d) Top view

Fig. 2: SMPL mesh in different views of the waving action

3) Range and velocity calculations Since the video has

no range calibration and depth information, we must estimate

and calculate the relative range and velocity of each vertex

relative to the virtual radar under the frontal viewpoint in the

SMPL coordinate system. Both the range and velocity will be

used for the range-Doppler synthesis in Step 5).
3.1) Range calculation The calculation of range is actually

to calculate the relative distance between the vertex coordi-

nates and the virtual radar coordinates. However, since the

origin of the SMPL coordinate system is located in the user’s

chest, when the user moves extensively back and forth, the

origin will shift within the global coordinate system. As a

result, the relative z coordinate of the virtual radar in the

SMPL coordinate system will change. Thus, to calculate the

range, we first estimate the variations in the z coordinate based

on the principles of camera imaging, as depicted in Figure 3.

In Figure 3, O represents the focus point, which corresponds

to the camera, while f denotes the focal length. The initial

position of the person in the first frame is recorded as Z1, the

actual height at that time is recorded as h1, and the height of

the bounding box is recorded as B1. For any frame other than

the first frame, the range of the person is denoted as Z2, the

Fig. 3: Camera imaging principle

actual height at that time is recorded as h2, and the height of

the bounding box is recorded as B2.

Considering the fitted SMPL mesh size approximates a 1:1

equivalence with the users, the difference between the maxi-

mum and minimum y coordinates of the mesh can represent

the real human body height. The bounding box, represented by

bboxes(nframes, 4), is one of the outputs of the VIBE, with

the width w and height h being equal. Applying the camera

imaging principle and the similar triangle principle, we can

derive the following formulas:
B1

f
=

h1

Z1
and

B2

f
=

h2

Z2
.

With the initial range Z1 of the first frame, the camera range

Z2 of other frames can be obtained from the above formulas:

Z2 =
h2×B1

h1×B2
Z1 (1)

The range Z2 calculated using Formula 1 represents the new

estimated value of the virtual mmWave radar’s z coordinate

after the user’s movement. Formula 1 effectively eliminates

the effect of human posture on range estimation. For instance,

when the user stands and squats in place, as shown in Figure

4, the actual height and bounding box height differ between

Figure 4a and Figure 4b, but the range remains unchanged.

In Figure 4a, the actual height of the human mesh is 1.72

and the bounding box height is 247.71 when standing. When

squatting, the mesh height is 1.19 and the bounding box height

is 167.13. According to Formula 1,
1.19× 247.71

1.72× 167.13
≈ 1.025.

Thus, we can consider that Z1 ≈ Z2, which eliminates the

effect of human posture successfully.

(a) Bounding box when standing (b) Bounding box when squatting

Fig. 4: Different actions affect the size of the bounding box

With Formula 1, we can obtain the changed z and calculate

the range of the vertices relative to the radar, which is used

for the synthesis of the range-Doppler.

3.2) Velocity calculation Once the range is obtained, we can

calculate the relative radial velocity of each vertex in the front

view. This is achieved by determining the motion direction
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vector for each mesh vertex and its corresponding direction

vector with respect to the virtual radar.

Then we smooth out the relative range and velocity of each

vertex to ensure the continuity and stability between frames.

4) Vertex visibility In the previous steps, the assumption

is that all SMPL vertices are visible and will contribute to

the synthetic Doppler signal. However, some vertices are not

visible with respect to the virtual radar and they do not reflect

radar signals, such as the vertices located at the back of the

human body. Since these vertices do not contribute to the

reflection, they must be removed from the full body mesh.

We retain the visible vertices through back-face culling [16].

5) Range-Doppler synthesis In real scenarios, radar signals

need to go through steps such as Range-FFT and Dopper-

FFT to extract range and Doppler velocity information of

the target. For the synthesis of range-Doppler, we can bypass

such steps and directly obtain the required features using the

range and velocity calculated in previous steps. We obtain the

synthesized range-Doppler matrix for the visible vertices by

overlaying their range and velocity using a two-dimensional

histogram. In the synthesized range-Doppler matrix, the Y
coordinate represents the radial velocity, ranging from -2 to 2,

divided into 32 bins. The X coordinate represents the relative

distance range, ranging from 0 to 10, divided into 224 bins.

We synthesize range-Doppler by arranging different frames’

range-Doppler matrices in the time dimension.

B. Spatial-temporal Map based HAR

1) Spatial-temporal map synthesis After obtaining the

synthetic range-Doppler, we convert it into spatial-temporal

heat map features. As described in Related Work, this method

can simplify the model training while making good use of the

three-dimensional features in the range-Doppler. Specifically,

the work calculates and superimposes the velocity at each

range in the range-Doppler by weight:

Vq,t =
D∑

p=1

(Ip,q,t)× vp,t, p ∈ [1, D], q ∈ [1, R] (2)

In Formula 2, Ip,q,t refers to the intensity of the velocity

in range-Doppler, and p refers to the velocity index, and q
represents the range index, and t represents the frame index.

vp,t is the velocity corresponding to velocity index p at frame

t. D represents the bin number of velocity, in this paper

D = 32. R represents the bin number of range, in this paper

R = 224. In Formula 2, an array containing single-frame

range and velocity information is generated after the velocity

superposition, and a two-dimensional feature can be obtained

by supplementing the array with the time dimension.

The action in Figure 5 is waving, as shown in Figure 2a.

The range-Doppler map synthesized based on a certain frame

of the video is shown in Figure 5a. The spatial-temporal map

synthesized based on the range-Doppler of 50 frames of input

video is shown in Figure 5b, where the features generated by

the repetitive waving motion can be seen.

(a) Range-Doppler map (b) Spatial-temporal map

Fig. 5: Spatial-temporal feature synthesis

2) HAR model For the classification model, we choose the

well-known VGG-16 network. The initial size of the spatial-

temporal map is 224× 50. To prepare the data for input into

the VGG-16 model, we map the matrix data in the spatial-

temporal map to RGB color values ranging from 0 to 255 and

make the map multi-channeled. The model will be trained to

classify different activities in the following section.

V. EVALUATION

A. Data Collection

First, we design seven common actions for recognition, as

shown in Figure 6.

(a) (b) (c) (d) (e) (f) (g)

Fig. 6: Seven actions for classification. Action (a) to (g) refers

to Lunge, Clap, Wave, Run, Punch, Clean and Stand.

Video capture format We use Microsoft Kinect to cap-

ture monocular camera RGB images with a resolution of

1280×720 pixels. After that, the captured images are synthe-

sized into RGB video with a frame rate of 10 fps.

Data collection We invite 6 participants (5 males and

1 female, average age of about 22 years) to collect data

in two different scenarios. In scenario 1, we collect video

data of approximately 2.4 h in total for the participants (3

males and 1 female). In scenario 2, we collect video data

of approximately 0.8 h in total for the participants (3 males

and 0 females). It should be noted that we do not strictly

correct the participants’ actions during data acquisition. Thus,

the data collected retained the participants’ habits and the final

accuracy will be relatively robust.

B. Experimental Platform and Environment Related Settings

The hardware platform is the GeForce RTX 4070Ti GPU.

The software environment is built on Anaconda3, with Python

version 3.7.16. The specific software packages used include
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(a) Female 1 leave-one-out result (b) Male 2 leave-one-out result (c) Female 1 user calibration result

Fig. 7: Confusion matrices with models trained on the usage scenarios data

(a) No calibration result (b) User calibration result (c) Environmental and user calibration result

Fig. 8: Confusion matrices with models trained on the non-usage scenario data and calibration data

cudatoolkit version 11.6.0, cudnn version 8.8.0.121, pytorch

version 1.12.1, tensorflow version 2.4.1, and other necessary

packages required by the VIBE model.

We train the classification model VGG-16 with pre-training

loading weights, the cross-entropy loss and Adam optimizer

with a learning rate of 0.0002 for 150 epochs.

C. Experimental Results and Analysis

1) Recognition accuracy: data from usage scenarios. We

select Scenario 1 as the usage scenario and train and test the

HAR model with Scenario 1 data. We first take leave-one-

out experiments, meaning that for 4 participants, select the

data from 3 of them for training, and then use the data of

the remaining one participant for testing (except for Male3).

In this configuration, our model achieves an average accuracy

of 80.9%. The results are shown in Figure 9 and the two test

confusion matrices are shown in Figure 7.

Fig. 9: Training results with leave-one-out methods

However, in practical scenarios, it is common for sensing

systems to collect some training data from users for calibra-

tion. Therefore, based on the leave-one-out method for Female

1, we add half of the data from her for training and use

the other half for testing (the training-to-testing data ratio

is approximately 8:1). In this case, our model achieves the

accuracy of 96.5% after user calibration. The confusion matrix

is shown in Figure 7c. Compared with Fig 7a, it shows that

user calibration will be effective in improving model accuracy.

2) Recognition accuracy: only data from non-usage
scenario for training. To better evaluate our method, we

choose Scenario 1 with more data as a non-usage scenario for

training and choose Scenario 2 as the use scenario for testing.

In the following experiments, we utilize the user calibration

model in experiment 1 for testing. First, we test the model with

data from the participants in Scenario 2, who did not contribute

to the data collection in Scenario 1. The final accuracy rate is

76.2% and the confusion matrix is presented in Figure 8a. This

result can be regarded as ”out-of-the-box” accuracy, without

any calibration to the local environment or user. The accuracy

rate decreases compared to the leave-one-out method, possibly

due to variations in the testing environment.

Subsequently, we test the model with the data from the

participant in Scenario 2, who also participated in Scenario 1

data collection. With only user calibration, the final accuracy

rate of this test is 94%, and the confusion matrix obtained

from the test is shown in Figure 8b. The significantly higher

accuracy compared to 76.2% indicates that user calibration has
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played an important role in the model performance.

3) Recognition accuracy: data from non-usage scenario
and usage scenario for training. We take Scenario 1 as the

non-use scenario and Scenario 2 as the usage scenario. All of

the data in Scenario 1 and half of the data in Scenario 2 are

used for training, and the rest of the data are used for testing

(training data to test data ratio is 5.8:1). This experimental

setup is closest to real-world applications, where HAR

models are typically trained with a large amount of non-use

scenario data and calibrated with a small amount of data. In

this configuration, our model achieves a final test accuracy

of 95.7% and the confusion matrix is displayed in Figure 8c.

The results demonstrate that after completing environment and

user calibration, the model exhibits high recognition accuracy

across all actions, yielding improved performance.

The above experiments show that our method performs

better when trained with all scenario data. And the ”out-of-

the-box” accuracy is 76.2%. In the most realistic scenarios, it

achieves 95.7% accuracy, indicating that our method is able

to efficiently and accurately accomplish HAR.

4) Comparison with previous works. First, we compare

our work with mmWave synthesis works in Related Work.

Vid2dop [12] achieves a recognition accuracy of 95.9% for

12 human activities, incorporating user and environment cal-

ibration. SynMotion [13] achieved 94.1% accuracy across

eight activities. Our work achieves 95.7% on 7 actions with

calibrations, showcasing promising performance compared to

previous studies. Second, we compare our work with vision-

based HAR studies to assess the potential of our approach as

a substitute for video data in HAR tasks. With larger datasets

like UCF101, work [17] achieves 91.4% recognition accuracy

with high efficiency. According to the work [18], state-of-the-

art vision-based methods can achieve efficient and accurate

multi-person pose estimation in complex scenes. Therefore,

compared with the latest or state-of-the-art vision-based work,

our work has limitations concerning datasets, the number

of recognized action categories, and multi-object recognition.

However, the recognition accuracy of our work reaches 95.7%,

meeting the standard that the advanced deep learning recog-

nition methods can attain accuracy rates exceeding 90% [19].

Therefore, the accuracy of our work is comparable to vision-

based HAR, which means our approach can replace video data

for the HAR task from the accuracy point of view.

VI. CONCLUSION

Vision-based HARs have now achieved significant results

in IoT applications, but the privacy issues they pose have

been controversial. How to better protect the privacy of users

who have installed related devices is an urgent problem to

be solved. In this paper, we propose a solution by first

synthesizing range-Doppler data containing human motion

information from human activity video, and then implementing

activity classification using a deep learning network based

on the synthesized data. The experimental results show that

the model’s human activity recognition accuracy is 95.7%

in the most realistic scenarios, which is a good performance

relative to previous work on synthesized mmWave data. Com-

pared to vision-based work, from the accuracy point of view,

our method is comparable and can replace video data to

accomplish the task of HAR. This work contributes to the

advancement of privacy-preserving HAR systems, providing

an accurate approach while mitigating privacy concerns asso-

ciated with vision-based approaches.
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