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Low-Power Wide-Area Networks (LPWANs), extensively utilized for connecting billions of IoT devices, en-

counter wireless interference challenges in unlicensed frequency bands. Cutting-edge research suggests em-

ploying Received Signal Strength Indication (RSSI) sequences for error detection to mitigate interference-

related issues. Nevertheless, the effectiveness of this method significantly declines under low signal-to-noise

ratios (SNRs). Additionally, long-range communication often results in low SNR received signals, sometimes

even below the noise floor. Targeting this fundamental issue, this article proposes the LPWAN packet tech-

nique, broadly applicable across diverse scenarios through edge–cloud collaboration. On the edge side, we

propose an innovative architecture that fully exploits spatial distribution and interference independence in

the field. Rather than utilizing resource-intensive RSSI-based error detection, we leverage a lightweight cod-

ing scheme for error detection at the Long Range (LoRa) edge, forwarding correct frames to the cloud. On the

cloud side, packet recovery is achieved utilizing group-weighted voting. We design and implement ECRLoRa

with commercially available devices (SemTech’s SX1278 and SX1302 LoRa chipsets) and assess its perfor-

mance in low SNR environments. Our thorough evaluation demonstrates that our approach attains a Packet

Recovery Ratio of 96% with low SNR (i.e., below −10 dB), resulting in 1.8× throughput, 7.5× faster recovery

time, and 4.92× average accuracy compared to state-of-the-art cloud-optimized application layer solutions.
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1 INTRODUCTION

Low-Power Wide-Area Networks (LPWANs) are gaining increasing attention in both indus-
try and academia. Due to their long-range coverage, low energy consumption, and cost-effective
deployment, Long Range (LoRa) has emerged as one of the leading LPWAN technologies in
unlicensed sub-1-GHz/2.4-GHz bands [22]. A multitude of wireless devices utilizing various com-
munication protocols, such as LoRa [16, 26], Sigfox [27], Zigbee [9], Bluetooth [12, 13, 17], and
Wi-Fi [18, 37, 38, 40], are densely deployed under the coverage of LoRa edge (e.g., LoRa base sta-
tion). These wireless devices share the same unlicensed spectrum with LoRa, causing interference
in LoRa communications. This issue becomes more severe in large-scale LoRa deployments. More-
over, low signal-to-noise ratios (SNR) deployments are common in LoRaWAN, making it crucial
to enhance the robustness of LoRaWAN under low SNR conditions [15, 29, 36].

Traditional methods for addressing interference issues in LPWANs involve re-transmitting cor-
rupted packets. These approaches, though easy to deploy, face challenges due to increased energy
consumption, protocol complexity, and channel congestion. Additionally, some studies propose re-
designing the PHY and MAC layers [5, 6, 10, 32, 34] for interference mitigation. While these meth-
ods significantly improve the throughput and reliability of LPWANs, they necessitate additional
hardware or firmware modifications, making them incompatible with existing LPWAN systems.

The emergence of cloud computing has led to the design of many modern IoT systems, con-
nect to the cloud [4, 7, 33], such as LoRaWAN. The sender, edge, and cloud network architecture
provide new opportunities to optimize interference mitigation utilizing cloud computing power.
Recent approaches demonstrate that cloud-optimized application layer interference mitigation,
which involves offloading information and recovering data packets in the cloud, offers numerous
benefits. For example, DaRe [20] combines convolution and fountain codes and utilizes redundant
data in payloads from other receivers for packet recovery. OPR [1] reconstructs corrupted packets
by transmitting the packets and their Received Signal Strength Indication (RSSI) samples to
the cloud, where the cloud iterates through alternative fragments matched in the error-detection
fields. These approaches significantly reduce the failure rate of LoRa packets when a cloud opti-
mizes packet processing upon receiving the RSSI sequence. However, they result in excessive RSSI
transmissions or computational overhead, considerably limiting their practical feasibility.

This article aims to develop a fast, cost-effective packet recovery approach for mitigating severe
interference in Long Range (LoRa) systems. To accomplish this, we investigate the potential
of edge–cloud collaboration and introduce a novel edge–cloud collaborative packet recovery ap-
proach for LoRa, termed ECRLoRa. In the ECRLoRa architecture, LoRa base stations possess com-
puting and networking capabilities, functioning as edge devices. The LoRa senders, edge devices,
and the cloud naturally form a typical edge–cloud collaboration scenario. On the one hand, com-
mercial LoRa edge devices have signal perception advantages, enabling error position recognition.
On the other hand, the cloud connects to numerous LoRa edge devices, enhancing packet recov-
ery by leveraging global information. To achieve the proposed edge–cloud collaborative packet
recovery, ECRLoRa faces several challenges: (i) For the LoRa edge, how do we rapidly detect error
segments under low SNR and report necessary frames timely to support packet recovery in the
cloud? (ii) For the cloud, how do we recover the correct packet with disjoint interfered frames from
multiple LoRa edges within the time limitation of the LoRa communication ACK threshold?
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To conquer those challenges, we design a lightweight error detection method for quick error
position detection under low SNR conditions at the ECRLoRa edge. We employ the LoRa edge for
error detection, thereby avoiding the transmission of the RSSI sequence. Furthermore, we create
a group-weighted voting algorithm for packet recovery in the cloud, which effectively gathers
correct frames from multiple LoRa edges. In summary, the contributions of this work include the
following:

• We design ECRLoRa, a fast edge–cloud packet recovery technique that identifies corruption
at the edges and recovers packets in the cloud. ECRLoRa features an edge–cloud collabora-
tive design without transmitting the RSSI sequence of the packet, making it deployable in
existing LoRa infrastructures with widespread applicability.
• To expedite the packet recovery process, we address several unique challenges, such as (i)

optimized corruption indication utilizing error detection codes, (ii) efficient data transmis-
sion, (iii) collaborative packet recovery, (iv) parallel symbol computation, and (v) reliability
under low SNR conditions. These techniques offer general guidance for extending the range
of edge–cloud packet recovery designs.
• We implement and evaluate ECRLoRa on commercial devices (SemTech’s SX1278 LoRa

sender [24] and SX1302 LoRa gateway [24]). Our comprehensive evaluation shows that
ECRLoRa achieves fast, robust, SNR-tolerant packet recovery across a full range of wire-
less configuration settings, including hollow, occluded, long-distance, and noisy environ-
ments. In these settings, the packet recovery ratio (PRR) reaches 96% with three edges.
The throughput and recovery speed surpass existing cloud-optimized application layer ap-
proaches [1, 20, 21].

The remainder of the article is structured as follows. Section 2 elucidates the motivation through
empirical studies. Section 3 provides an overview of ECRLoRa. Sections 4 and 5 describe the
crucial components of our design, namely error detection and packet recovery, respectively.
Section 6 assesses ECRLoRa’s performance utilizing extensive test-bed implementations in
various scenarios. Section 7 summarizes related work. Section 8 concludes this article.

2 MOTIVATION

The ability to mitigate interference, particularly under severe conditions, has become a crucial
factor limiting the advancement of LoRa technology. In this section, we first examine the con-
straints of cloud-optimized approaches. Subsequently, we demonstrate the benefits of adopting an
edge–cloud collaborative strategy for packet recovery.

Limitation of Cloud-optimized Application Layer Approaches: Recent interference
mitigation strategies concentrate on recovering corrupted information from a vast collection of
packets utilizing cloud-optimized methods [1, 20]. Cloud-optimized application layer approaches
employ redundancy coding at the application layer and leverage cloud computing resources for
packet recovery. State-of-the-art cloud-optimized application layer methods include DaRe [20]
and OPR [1]. DaRe integrates convolution and fountain codes to explore spatial and temporal
information in LoRa communication channels. However, these redundancy coding techniques
are limited to specific LoRa edges and lack full collaboration for distributed error detection. In
long-range communication, multiple edges simultaneously receive valuable information. Exploit-
ing this information allows LoRa to enhance data accuracy while reducing coding redundancy,
leading to improved throughput and reliability. The LoRa sender, edge, and cloud architecture
also offer opportunities for collaborative information processing from multiple edges in the cloud.
Conversely, OPR extracts the RSSI samples of corrupted packets from various edges and recovers
the corrupted packet utilizing these samples on the cloud side. The RSSI length reaches nearly

ACM Transactions on Sensor Networks, Vol. 20, No. 2, Article 40. Publication date: January 2024.



40:4 L. Mei et al.

Fig. 1. (a) The environmental settings. (b) The RSSI sample of a LoRa packet that is not strongly correlated

with Error Bits position. (c) The Correlation Coefficient of RSSI sequence and Error Bits Position. (d) The in

Phase/in Quadrature (I/Q) of three LoRa packets with collision captured with a software-defined Radio.

6,000 bits for a 100-bit payload when the spreading factor is 12. Consequently, the main drawback
of cloud-optimized application layer approaches is the high communication cost incurred while
transmitting massive RSSI samples to the cloud.

Moreover, the performance of cloud-optimized application layer approaches significantly de-
clines under low SNR conditions. To validate this, we carry out extensive real-world experiments,
with typical experimental settings displayed in Figure 1(a). We observe that RSSI values do not
exhibit correlation with erroneous bit positions in low SNR scenarios. As depicted in Figure 1(b), the
orange bar represents actual error bits, while the black line illustrates the unrelated RSSI values.
This phenomenon considerably impairs error detection performance or even renders it incapable
of identifying error bits. The statistical results concerning the correlation between RSSI and errors
are presented in Figure 1(c). Here, the X axis represents SNR, and the Y axis corresponds to the
correlation coefficient of RSSI and errors. The figure indicates that the RSSI sequence is nearly
uncorrelated with error bits under low SNR conditions. Consequently, existing cloud-optimized
application layer approaches that rely on RSSI to pinpoint corruption have limitations in low SNR
environments.

Advantages of Edge–Cloud Collaborative Packet Recovery: LoRa exhibits an extensive
transmission range owing to its unique modulation technique. A single LoRa sender’s packet is
received by multiple LoRa edges situated in various locations. These edges experience distinct in-
terference conditions, resulting in spatially disjoint error bit positions. Figure 1(d) demonstrates the
lack of correlation between error bit positions in packets received by different edges. Consequently,
it becomes feasible to recover a packet in the cloud utilizing multiple parallel corrupted packets.

Moreover, LoRaWAN’s sender (LoRa node), receiver (LoRa edge), and cloud architecture enable
error detection at the edges without relying on imprecise RSSI values, thus eliminating the need
to transmit large RSSI sequences to the cloud. This leads to a lower data transmission volume
for edge–cloud collaborative designs. ECRLoRa leverages the opportunities presented by disjoint

ACM Transactions on Sensor Networks, Vol. 20, No. 2, Article 40. Publication date: January 2024.



ECRLoRa: LoRa Packet Recovery under Low SNR via Edge–Cloud Collaboration 40:5

Fig. 2. Architecture of ECRLoRa.

interference to perform error detection across multiple LoRa edges while utilizing the cloud’s
global management capabilities for packet recovery. Sharing valuable information among multiple
LoRa edges through the cloud capitalizes on the benefits of disjoint interference.

The edge–cloud collaborative architecture addresses the limitations of cloud-optimized applica-
tion layer approaches by enabling error detection at the LoRa edge and performing packet recovery
in the cloud. In comparison to other methods like adjusting the spreading factor (SF), reducing
link distance, or changing communication channels, the edge–cloud collaborative architecture of-
fers enhanced robustness by incorporating error detection at the LoRa edge and facilitating packet
recovery within the cloud. This approach delivers superior adaptability and efficiency in mitigating
interference and restoring data packets, especially in noisy environments with low SNR conditions.

3 OVERVIEW OF ECRLORA

This section provides an overview of ECRLoRa, which consists of two primary components: error
detection and packet recovery. As illustrated in Figure 2, the error detection module operates at the
edge, while the packet recovery module functions in the cloud. ECRLoRa effectively harnesses both
the signal awareness capabilities of each LoRa edge and the global management ability of the cloud.

Error Detection: ECRLoRa features a lightweight and flexible error detection module that func-
tions under various interference conditions. To accomplish this, we examine LoRa’s error condi-
tions in the presence of interference and meticulously design the redundancy method based on
the observed interference. The redundancy’s hash value is computed and added as a prefix to the
payload. Subsequently, the payload containing redundancy is input into the LoRa encoding model,
where the payload undergoes encoding and transmission utilizing commercial LoRa devices, as
depicted in the lower part of Figure 2. Consequently, commercial LoRa edges are able to detect the
payload’s error conditions (utilizing the prefix) and position (employing redundancy) for fast error
detection, as demonstrated in the middle section of Figure 2. Notably, ECRLoRa’s error detection
design does modify alter the hardware architecture of the LoRa encoder and modulator. As a result,
the redundancy distribution and hash algorithm are compatible with multiple hash functions and
redundancy constructions, enabling flexible adjustments to the encoding process. We elaborate on
the specifics of error detection in Section 4.

Packet Recovery: Another critical component of ECRLoRa is packet recovery. Due to the ge-
ographic independence of edges, the errors in packets received by multiple LoRa edges differ. As
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Fig. 3. Workflows of ECRLoRa.

shown in the middle part of Figure 2, when a LoRa edge identifies a corrupted packet and pinpoints
the exact error positions, it transmits the marked payload to the cloud. If the packet is error-free,
then a LoRa edge proceeds with the transmission. On the cloud side, it collects multiple frames
consisting of both correct and corrupted payloads. It then leverages the recovery component of
these frames to determine the accurate values and provides feedback to the corresponding edges,
as illustrated in the upper part of Figure 2. The cloud employs group-weighted voting to recover
corrupted transmissions, as elaborated in Section 5.

Feasibility with Low SNR: Conventionally, cloud-optimized application layer packet recovery
employs RSSI to indicate error positions [1]. Utilizing RSSI for error detection offers certain advan-
tages, such as the ease of obtaining the RSSI sequence for a LoRa packet, since LoRa devices feature
an addressable register to record it. However, when environmental noise surpasses and obscures
the received signal at a specific level, the received signal strength indicator becomes inadequate for
distinguishing actual signal interference. Direct error detection utilizing RSSI is infeasible under
low SNR conditions. We observe that the coding/decoding and modulation/demodulation func-
tions of LoRa devices are vulnerable under low SNR. Consequently, we design an error detection
module that employs lightweight coding instead of RSSI sequences. This approach overcomes the
limitations of cloud-optimized application layer SoA under low SNR.

4 ERROR DETECTION

In this section, we introduce the error detection component of ECRLoRa. We first describe the
workflows of error detection at both the sender and edge sides. As illustrated in Figure 3(a), at
the sender side, (i) the payload is initially encoded utilizing a lightweight coding module, gener-
ating a positionable error payload. (ii) Next, we process the encoded payload to a certain degree
to obtain its identification code. This identification code allows for the fast detection of errors in
the received payload. Following this, we prepend the identification code and combine it with the
encoded payload to create a new payload. This new payload is then subjected to encoding, in-
terleaving grouping, and modulation in steps (iii), (iv), and (v), respectively. Finally, the packet is
transmitted by the RF end.

As shown in Figure 3(b), at the edge side, after receiving the signal from the transmitter, the
LoRa edges process demodulation, deinterleaving, and decoding with steps (vi), (vii), and (viii).
The received I/Q signal is subsequently converted into an error-detectable payload. This payload
is the new encoded payload from the sender, albeit with errors. (ix) Next, the LoRa edge verifies if
the recorded identification value matches the payload’s identification value for selective error de-
tection. (x) The payload undergoes processing by the lightweight decoding module, which decodes
the original payload. (xi) We identify the common characteristics of interference-induced errors
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and develop a fuzzy error detection method utilizing these characteristics, enhancing error detec-
tion accuracy and minimizing overall time overhead. Finally, error bits are pinpointed through the
fuzzy error position module.

4.1 ECRLoRa at LoRa Sender

This subsection introduces the design of ECRLoRa at the LoRa sender. In practical scenarios, unsuit-
able encoding schemes do not enhance performance but instead result in throughput degradation
due to additional redundant encoding bits caused by dynamic interference changes. To circumvent
this issue, we initially analyze reception performance and error under interference to determine
an appropriate coding design. Subsequently, we introduce the ECRLoRa coding method, which
dynamically adjusts the checking code settings in response to varying interference levels. Further-
more, we provide an example to facilitate a more comprehensive understanding of the ECRLoRa
code’s functionality.

Coding Redundancy vs. Symbol Error Ratio. This subsection presents the model employed
to determine the coding design. ECRLoRa incorporates dynamic coding for varying interference
levels, as LoRa devices are susceptible to environmental noise. We introduce Lemma 4.1 to analyze
the symbol error ratio (SER) of LoRa. The symbol error ratio offers a theoretical foundation for
ECRLoRa’s dynamic coding approach.

Lemma 4.1. Given LoRa spreading factor SF and the noise power spectral density σ 2. For transmit-
ting symbol “k ,” the SER of LoRa is as follows:

P (k̂ � k |k ) =

∫ ∞

0

⎡⎢⎢⎢⎢⎣1 −
[
1 − exp

[
− μ2

2σ 2

] ]2S F−1⎤⎥⎥⎥⎥⎦ fμk
(μ )dμ . (1)

Here “k” is the transmitted symbol, μ follows Rician distribution, SF is the spreading factor at

LoRa edge, and σ 2 =
N0

2 is the noise power spectral density. The proof details of Lemma 4.1 are
available in Appendix.

To substantiate our analysis, we delve deeper into the investigation of the SER of LoRa by
conducting experiments with various SFs while maintaining a fixed bandwidth (BW) of 125
kHz. In our experimental setup, we utilize the SemTech SX1278 as the sender and the SX1302
as the receiver. We manipulate the distance between the transmitter and receiver to control the
SNR for our tests. For each SNR value, ranging from −24 to −8 dB with increments of 2 dB, we
conduct multiple trials to minimize the impact of environmental noise and fluctuations on our
measurements. We systematically test various combinations of valid bits and redundancy bits to
evaluate the error detection ability of ECRLoRa checking code.

As depicted in Figure 4, the X axis represents SNR, while the Y axis denotes the symbol error
ratio. As interference intensifies, the symbol error ratio escalates to an intolerable level. In LoRa
transmissions, it is typical for the interference strength to be markedly higher than the received
LoRa signal strength [15], thereby significantly increasing the symbol error ratio at the LoRa edge.

Table 1 shows the error detection ability of the checking code when using different numbers of
redundant bits for different numbers of valid bits. ECRLoRa takes the symbol error ratio as input
and dynamically adjusts the number of valid bits and the number of redundancy bits for error
detection. Since parity-checking with interleaving groups has been proven suitable and compati-
ble for LoRa communication [24], we adopt the idea of Hamming code and provide our dynamic
ECRLoRa checking code.

Coding Design of ECRLoRa. ECRLoRa introduces a dynamic parity-checking method that
incorporates interleaving groups and a hash algorithm at the LoRa sender. This method involves
the dynamic insertion of redundant bits into the payload based on the symbol error ratio. These
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Fig. 4. Symbol error ratio under low SNR.

Table 1. Error Detection Ability of ECRLoRa

Checking Code

Valid

bits
Redundancy

Error

detection

ability

7 4 0.118

6 4 0.111

10 4 0.062

9 4 0.061

8 4 0.059

16 5 0.031

redundant bits are generated to facilitate error detection under various interference conditions. To
fully index error conditions in anm-bit payload LoRa packet, at least r redundant bits are needed,
with r following the condition: 2r ≥ m + r + 1. Assuming a packet to be transmitted has an m-bit
payload and r is the number of redundant bits added, the LoRa sender indicates a minimum of
m + r + 1 distinct states. Since r bits represent 2r states, to fully index error conditions, we derive
the equation 2r ≥ m + r + 1 for calculating the minimum redundant bits.

In addition, ECRLoRa employs a hash algorithm to facilitate fast error detection. On the sender
side, the payload is mapped to a bit array at the sender utilizing a hash function. The hash value
is recalculated at the edge side to verify its consistency with the aforementioned bit array. If they
match perfectly, then the received packet is considered error-free. Otherwise, the edge proceeds to
identify the actual error position. Traditional hash functions utilize fixed lengths for redundancy
construction (e.g., MD5: 32-bits, SHA-3: 256-bits), which are not space-efficient for small-size pack-
ets. To strike a balance between redundancy and transmission efficiency, ECRLoRa applies redun-
dant bits in low SNR scenarios where transmission efficiency is enhanced. This redundancy indexes
both correct and incorrect cases of the payload. LoRa edges employ the same encoding algorithm
as the hash function for consistency.

Lemma 4.2. Given an m-bit LoRa payload and r redundant bits, the coding rate of the ECRLoRa

encoding process is given by Ps

B
= m

m+r+1 , where Ps represents the number of bits in a message and B
denotes the block length.

Proof. The ECRLoRa error checking code consists of 2r check bits and 2m−r valid bits in each
group. These groups have 2m−k −1 transition methods. Consequently, the theoretical undetectable
bit distortions in the ECRLoRa error checking code amount to Nm = 2m (2m−r − 1). The detection
capability is defined as the ratio of undetectable distortions to the total number of possible distor-

tions of valid bits, i.e., Pm =
Nm

N
. The error detection capability of ECRLoRa checking code with

varying levels of redundancy is illustrated in Table 1. �

Theoretically, in the ideal case with no interference, the bit rate of LoRa is given by Rb = SF ∗
BW
2S F ∗ 4

4+CR
, where SF represents the spreading factor, BW denotes the bandwidth, andCR signifies

the coding rate. Under low SNR conditions and in the presence of high interference, the LoRa

bit rate decreases to Rl = P (k̂ � k |k ) ∗ Rb , where P (k̂ � k |k ) is the bit error ratio calculated in
Lemma 4.1. Nonetheless, ECRLoRa is able to recover corrupted packets and achieves a bit rate of

Re = Rl + Pr ∗ (1 − P (k̂ � k |k )) ∗ Rb , where Pr is the recovery ratio of ECRLoRa, as verified in
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Fig. 5. Inserting the redundant bits.

Table 2. Interleaving Groups

Index bits

G1 P1, P2, P4, P5, P7, R1

G2 P1, P3, P4, P6, P7, R2

G3 P2, P3, P4, R3

G4 P5, P6, P7, R4

Section 6.2. Under low SNR conditions with high interference, ECRLoRa yields a higher bit rate
compared to LoRa.

Example of ECRLoRa at LoRa Sender. ECRLoRa employs an identification code calculation
algorithm to expedite error detection by examining the payload’s condition. To reduce redundancy,
ECRLoRa repurposes the encoding algorithm for the identification code calculation. Consider an
example with m = 7 and r = 4: The LoRa sender divides the payload into several groups, as il-
lustrated in the left part of Figure 5. Each group comprises m bits. Subsequently, the LoRa sender
utilizes the encoding algorithm to compute r redundant bits for each group, which indicate the
correctness of each group, as depicted in the middle part of Figure 5. ECRLoRa calculates the
identification code of the encoded payload, as detailed in Section 4.2. Finally, it appends the iden-
tification code as prefixes to the payload before forwarding it to the LoRa encoding module, as
demonstrated in the right part of Figure 5.

Each redundant bit is an additional bit that renders the number of “1”s in a group either even or
odd. The LoRa sender divides each m-bit group into four interleaving groups and calculates one
parity bit as redundancy for each interleaving group. ECRLoRa employs even parity for redun-
dancy calculation. An illustrative example for each interleaving group is presented in Table 2. If
the total number of “1”s in a group is even, the redundant bit is set to “0”; otherwise, it is set to “1.”

As per Lemma 4.2, the coding rate of ECRLoRa checking code is m
m+r+1 . Although redundancy

decreases the throughput of the LoRa sender, the packet recovery ratio for both LoRa and SoA
is under 20% in low SNR conditions [14]. Unrecoverable packets must be re-transmitted utilizing
higher SF, which negatively impacts throughput more significantly than our lightweight coding.
Under low SNR with high interference, LoRa switches from SF = 6 to SF = 12 to maintain stable
communication, causing the theoretical bit rate to drop from 37.5 kbps to 18 bps, according to
SemTech’s LoRa deployment guide [25]. In contrast, ECRLoRa can recover corrupted packets and
maintain a bit rate of 24 kbps.

4.2 ECRLoRa at LoRa Edges

ECRLoRa swiftly identifies and rectifies errors at LoRa edge nodes, such as LoRa base stations.
Initially, the LoRa edge nodes receive signals transmitted by the LoRa sender. They then perform
LoRa demodulation, deinterleaving, and decoding processes to obtain the received payload. The
received payload, originating from the sender as an error-detectable payload, contains erroneous
bits due to interference. Subsequently, the LoRa edges nodes conduct an identification check to
determine if the received payload contains errors. By utilizing lightweight decoding and fuzzy
error localization techniques, these edges identify and mark error bits within the payload. In the
final step, the LoRa edges transmit the corrected payload to the cloud for packet recovery.

Identification Checking. Upon receiving the encoded payload, the edge device extracts the
first element from the payload as the identification code. It then compares this identification
code with a newly recalculated code derived from the received payload. The relationship be-
tween the first element value, R, and the new identification code, Pr , is expressed by the equation
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Fig. 6. Parity-checking and error position. Fig. 7. Symbol error ratio.

Pr = R ∗ r∗ B
Ps
+rk+1

rk
, where Pr represents the new identification code and R denotes the value of

the first element in the received payload.
The aforementioned equation is not valid when the received packet contains erroneous bits.

Under this condition, the edge device performs error detection. If no errors are found, then the
LoRa edge proceeds with hash calculation, utilizing the encoding function as the hash algorithm
and the received payload as input. If the hash value of the received payload matches the recorded
one, then the LoRa edge considers the payload correct and uploads it to the cloud. Otherwise, the
edge device initiates the parity-checking process to identify the correct frames within the received
payload. It is important to note that reported bit values may not be entirely accurate due to hash
collisions. Therefore, a group-weighted voting algorithm is employed to select the most plausible
value for each bit position during error recovery.

Parity-checking. Parity bits are computed based on the payload bits and redundancy, utilizing
the same interleaving groups as the encoding module, as illustrated in Table 2. The LoRa edge de-
vice calculates the decimal equivalent of the binary values of the parity bits to identify errors. If the
result is “0,” then there are no errors. Otherwise, the decimal value indicates the error bit position.
More specifically, Figure 6 presents an example of parity-checking. When the received redundancy
R1, R2, . . . ,Rr are 0, 1, . . . , 0, and the received payload P1, P2, P3, . . . , Pm are 1, 0, 0, . . . , 1, the LoRa
sender detects that the parity checks for interleaving groups G2 and G3 have failed. This implies
that interleaving groups G2 and G3 contain erroneous bits, while bits in G1 and G4 are correct. By
employing cross-checking, the LoRa edge determines that the bit at P3 is incorrect. It then extracts
the error bit and marks the other bits as correct before uploading them to the cloud.

Fine-grained Fuzzy Error Position. ECRLoRa enables error detection at the LoRa edge
through lightweight code. However, LoRa suffers from interference signals that are significantly
shorter in duration than LoRa packets, resulting in distinct SER under various SFs. This interfer-
ence tends to concentrate error bits, making symbols closer to the interference more prone to
errors, regardless of the SF setting. To demonstrate this phenomenon, we set up an experimental
environment utilizing a SemTech SX1278 as the sender and an SX1302 as the receiver. We per-
form multiple tests with different SFs to analyze the probability of SER depending on the symbol’s
proximity to the the symbol location of the interference center, as depicted in Figure 7. The figure
reveals that as symbols approach the interference center, the likelihood of errors occurring in-
creases, irrespective of the SFs used. Based on these observations, we propose a fuzzy algorithm to
be implemented at the LoRa edge to boost error detection precision, ultimately enhancing the sys-
tem’s robustness against interference-induced errors. This improved resilience will provide more
reliable communication in environments with varying interference levels.

We propose the pseudocode for the algorithm in Algorithm 1. The error detection result from
parity-checking is employed to determine the approximate error position. Subsequently, we lever-
age interference features, allowing error penetration into symbols in nearby interleaving groups.
ECRLoRa achieves the best outcomes when penetration begins until the number of error symbols
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ALGORITHM 1: Fuzzy error positing algorithm

Input: P , Error Detected Payload
Output: DPi , Accurate Error positing

1: for all Pi ∈ P do

2: if Pi == “-” then

3: if interleaving group is marked as error then

4: mark nearby interleaving group as error
5: end if

6: mark interleaving group as error
7: end if

8: end for

9: return marked error positing as DPi

in the interleaving group reaches two. Specifically, we mark the adjacent interleaving group as
incorrect when concentrated errors occur in a single interleaving group. Finally, the marked error
position is returned as the error detection result.

Error Detection Complexity. We further analyze the computational overhead associated with
localization. As demonstrated earlier, the coding rate for our payload construction is m

m+r+1 . The
computational overhead consists of three components: bit number calculation, redundancy value
calculation, and redundancy insertion, with complexities ofO (1),O (m∗N ), andO (N ), respectively.
Consequently, the computational complexity for the LoRa sender,Ts (N ), isO (N ), whereN denotes
the payload length. At the LoRa edge, the computational cost of error detection comprises three
parts: hash-checking, parity-checking, and cross-error posting, with costs of O (m ∗ N ), O (r ∗ N ),
and O (N ), respectively. Therefore, the computational cost of error detection at the LoRa edge,
Tr (N ), is O (N ), where N represents the received payload length.

We have two key advantages for fast error detection at the LoRa edge: (i) the delicate insertion
of marking bits, preventing wasteful usage of redundancy, and (ii) minimizing the computation of
LoRa devices. We propose a lightweight approach for error checking that detects and locates errors
at the LoRa edge. More specifically, we leverage the benefits of the LoRaWAN architecture. The
LoRa edge processes segmentation error detection and uploads appropriate frames, disregarding
error recovery. The cloud, connected to numerous edges, receives the correct frames from multiple
packets for packet recovery. Since ECRLoRa reconstructs the LoRa payload, it necessitates neither
hardware nor firmware modifications in existing commercial technologies. Consequently, ECR-
LoRa offers a convenient architecture for deployment within modern LoRaWAN infrastructures.

5 PACKET RECOVERY

ECRLoRa identifies error bits and transmits correct frames to the cloud at the LoRa edge. The LoRa
edges extract the correct frames and forward them to the cloud, accompanied by the packet mark.
The cloud associates frames originating from the same packet, collecting a sufficient number of
frames to assemble packets that pass error checking. Subsequently, these packets are distributed
to the required LoRa edges and recorded by the cloud with a predetermined lifecycle. Fast packet
recovery is achieved by minimizing the amount of transmitted data from the LoRa edge to the
cloud and expediting the frame combination process.

ECRLoRa leverages the global management competencies and computational capabilities of
the cloud to facilitate fast packet recovery. However, ECRLoRa also encounters challenges due to
hardware constraints, such as bandwidth capacity, computational capability, and ACK thresholds.
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Fig. 8. Correct frame transmission from multiple LoRa edges.

This section discusses the error recovery processes and presents strategies to address these
challenges effectively.

5.1 Correct Frame Transmission

In the LoRaWAN architecture, each LoRa edge connects to the cloud via an ethernet cable or a
cellular network. In ECRLoRa, LoRa edges detect error bits upon receiving a packet from the LoRa
sender. Subsequently, the LoRa edge transmits the correct frame to the cloud, as illustrated in
Figure 8. The LoRa edge sends the marked payload to the cloud to facilitate fast packet recovery,
circumventing the need to transmit the RSSI sequence. This approach optimizes bandwidth utiliza-
tion at the LoRa edges. Our second micro-benchmark in the motivation section demonstrates that
the payload received by LoRa edges exhibits disjoint corrupted positions due to the irrelevant in-
terference affecting each edge. As a result, the cloud receives distinct segments of the same packet,
which are then collaboratively employed for efficient packet recovery.

5.2 Group-weighted Voting

The cloud processes packet recovery upon receiving the correct frames from the LoRa edge. De-
spite the LoRa edge transmitting frames that have passed both hash-checking and parity-checking,
these frames may still harbor errors. Consequently, the cloud does not grant them complete trust.
To address this issue, the cloud employs each frame in a fast packet recovery process and adeptly
combines the correct segments to create a packet that passes error checking.

More specifically, ECRLoRa employs a group-weighted voting algorithm within the cloud to
meticulously extract accurate segments from received frames and reconstruct packets. The weight
assigned to each symbol represents the probability of the symbol value, which is influenced by
the packet’s error condition, the length of the received accurate frame, and the parity-checking
outcome. The following equation represents the error condition and parity-checking results:

Ei = ∧∪(PinGi )
n=1 Pn . (2)

In this equation, Ei symbolizes the error condition of the ith interleaving group,Gi represents the
ith interleaving group, and P refers to the payload within the ith interleaving group.

The frame length serves as the prefix of the marked payload, and the following equation com-
putes the length of the ith interleaving group:

Li =

p∑
k=1

∃ik ∧ ¬∃ik+1. (3)

In this equation, Li denotes the length of the ith interleaving group, and ik represents the kth
symbol within the ith interleaving group.
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Fig. 9. Group-weighted voting process for packet recovery.

The weight of the kth symbol is represented by the following equation:

Wk =

∑Li

i=1 it −
∑Li

i=1 (it == 1 ∧Gi )∑Li

i=1 it
. (4)

In this equation, Wk signifies the weight of the kth symbol, while it represents the t th bit in the
binary sequence of i .

As depicted in Figure 9, ECRLoRa employs the group-weighted voting algorithm to assign
weights to each symbol, effectively assessing the reliability of packets during the group-weighted
voting process. A higher weight indicates a more acceptable symbol value. This approach enables
the correct parts of the received frame to be combined to reconstruct a valid packet. Furthermore,
the cloud organizes received frames corresponding to the same packet and executes the weighted
voting algorithm among frames within a single group, facilitating fast packet recovery. Once a
sufficient number of frames are received to constitute a valid packet, the cloud halts the group-
weighted voting, records the packet, and transmits it back to the LoRa edge.

5.3 Recovered Packet Feedback

The cloud stores the valid packet with a specified lifetime following the group-weighted voting
computation, expediting packet recovery and enabling consecutive LoRa edges to utilize these
packets without requiring re-calculation. As mentioned in Section 2, the corrupted segments of the
frames are disjoint. This characteristic enhances the cloud’s packet recovery capability when mul-
tiple frames from distinct edges are accessible. ECRLoRa converts the challenge of isomorphism
interference into an opportunity for packet recovery via multiple edges within the LoRaWAN ar-
chitecture. The lifetime of each valid packet is established at six rounds. The cloud preserves the
recovered packet until six LoRa edges request it or until it surpasses the ACK threshold, which is
one second in LoRaWAN.

6 EVALUATION

In this section, we commence by outlining the experimental configurations, scenarios, and data
acquisition methods employed for assessing the performance of ECRLoRa. Subsequently, we eval-
uate the effectiveness of ECRLoRa in comparison to state-of-the-art (SoA) techniques [1, 20]
under various conditions.

6.1 Experiment Setup

LoRaWAN senders, edge, and cloud deployments: We evaluate the effectiveness of ECRLoRa
on several 10 km2 test beds in two major Chinese cities, as depicted in Figure 10(a). The test
bed in the Shenzhen city center (Figure 10(a), top figure) features an occluded, high-interference,
and on-the-land environment. The test bed in Shenzhen bay park (Figure 10(a), central figure)
presents a hollowness, low-interference, and an on-the-water environment. Furthermore, the test
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Fig. 10. Experimental settings and hardware architecture.

bed along the Nanjing Yangtze River bridge (Figure 10(a), bottom figure) presents a hollowness,
low-interference, and cross-bridge environment.

In each test bed, we establish one LoRa sender and several groups of LoRa edges. The LoRa
sender consists of a transceiver SX1278 and a controller STM32F030 (Figure 10(b), LoRa Sender).
For each group of LoRa edges, we deploy an SX1302 digital baseband chip, along with several
SX1250, SX1255, and SX1257 transceiver chips, and a Raspberry Pi (Figure 10(c)) manages these
chips to form the LoRa edge. The subsequent experiments are conducted within the CN470-
510MHz frequency band.

In our experiments, we introduce additional interference signal sources along each LoRa edge to
generate varying levels of interference. These same-frequency, random interference signal sources
are implemented utilizing USRP N310 devices. To maximize the interference impact, we equip each
USRP N310 device with a 20 dB gain antenna and continuously transmit signals at maximum power.
We employ three different configurations to represent varying interference levels: 0×, 2×, and 4×.
The 0× configuration represents a LoRa edge exposed only to environmental noise, with no addi-
tional interference signal sources. In this scenario, we expect a relatively low channel occupancy of
approximately 10%. The 2× configuration includes environmental noise and two additional USRP
N310 interference signal sources, resulting in a higher channel occupancy of around 30%. The 4×
configuration encompasses environmental noise and four additional USRP N310 interference sig-
nal sources. In this case, we anticipate an even higher channel occupancy of about 60%, as the
increased number of interference sources contributes to packet collisions and delays.

To fully exploit the potential of disjoint interference, we need to identify each LoRa edge [30].
We employ a GPS module for LoRa edge identification. Specifically, the LoRa sender is situated at
a fixed, pre-recorded location. For each LoRa edge in the experiment groups, we log the location
value from the GPS module as illustrated in Figure 10(c), enabling the calculation of the distance
and identifying the LoRa edge. Moreover, the distance serves as a crucial factor in determining
whether the experiments are conducted under low SNR conditions. Thus, we primarily change the
distance between the LoRa edges and the LoRa sender in each group of experiments. To control
the distance more precisely and minimize the impact of occlusions on the SNR, we predominantly
deploy each group of LoRa edges along the main road. However, we also place some groups of
LoRa edges off the road—as indicated by the green nodes away from the main road in Figure 10(a).
Data recording and identical experiments are performed on these groups as well.
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In each group of experiments, SNR, SF, edge number, and interference conditions serve as vari-

able settings. SNR is defined as the ratio of signal power to background noise power: SNR =
Psiдnal

Pnoise
.

As signal power diminishes with increasing distance, SNR is chiefly controlled by the distance be-
tween the LoRa sender and the LoRa edge. We set the sender-to-edge distance to range from 100 m
to 5 km. In each group of experiments, we designate SF values between 7 and 12 and record data
packets. Specifically, we employ an SF value of seven for distances between 100 m and 1 km, 10
for distances between 1 and 3 km, and 12 for distances between 3 and 5 km. We utilize six LoRa
edges to collect data packets in each experiment group. Simultaneously, the edge number is con-
trolled later during the packet recovery module, incorporating data packets from specific LoRa
edges based on the required edge number. To minimize redundancy and ensure error localization
performance, ECRLoRa elaborately selects four redundancies for seven bits (the reserved parame-
ters in Section 4). We find that, with this configuration, the LoRa edge accurately identifies error
fragments, preventing the waste of correct bits.

It is crucial to note that the −10 dB SNR value mentioned in the experiments is not fixed but
serves as an example under our experimental conditions. Our methodology dynamically selects
the SF at the LoRa edge based on the current SNR, SER conditions, and the overall communication
environment. The LoRa edge makes the decision regarding the coding rate of redundancy, taking
these factors into account.

To implement dynamic SF selection and synchronization, the LoRa edge periodically sends a spe-
cific broadcast frame containing the chosen SF value or triggers it when significant changes in the
communication environment occur. This enables other devices within the network to update their
SF values accordingly. By incorporating these dynamic adjustments and synchronization mecha-
nisms into the experimental setup, we intend to demonstrate the adaptability and responsiveness
of our approach in various real-world communication scenarios.

Experimental Setup for Comparison: In our study, we conduct comparative experiments in-
volving two state-of-the-art techniques, namely OPR and DaRe. As the source code for OPR is not
accessible, we re-implement the algorithm following the descriptions and methodology outlined
in the pertinent literature [1]. We diligently replicate deployment details, encompassing parameter
settings, node configurations, and channel characteristics, to maintain congruence with the origi-
nal work. However, we utilize the open source code for DaRe [20] and introduce several enhance-
ments to ensure a fair comparison between DaRe and ECRLoRa. The most significant enhancement
to the DaRe source code is the incorporation of the multi-receiver function. We thoroughly ana-
lyze the DaRe algorithm and adapt it to conform with our experimental setup, guaranteeing that
both OPR and DaRe are assessed under identical conditions.

Concerning low-level settings such as BW, Power, and RF-frequency, we adhere to the consen-
sus parameter settings within the LoRa community, specifically 500 KHz, 20 dBm, and unlicensed
sub-GHz bands, respectively. Our experimental settings align with those detailed in the OPR publi-
cation. As a result, we achieve exceptional performance and reliability in our experiments, demon-
strating the effectiveness of our approach across a variety of conditions, including different SNR,
SF, edge numbers, and interference scenarios. This comprehensive comparison of OPR and DaRe
enables us to gain insights into their individual strengths and weaknesses while highlighting the
advantages of our proposed ECRLoRa approach.

6.2 Experiment Results

In this subsection, we compare ECRLoRa with state-of-the-art approaches under various settings.
Our experiments evaluate the following performance metrics: (a) Error detection ability, (b) Packet
recovery ability, (c) Time consumption, and (d) Throughput. Each experiment encompasses diverse
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Fig. 11. Examples of error detection.

settings of SNR, SF, edge number, and interference conditions. The experimental settings cover
most scenarios that LoRa may encounter. The subsequent section provides detailed experiment
settings and results.

Error Detection Ability. To evaluate the accuracy of error detection, we deactivate the inter-
leaving feature of the original LoRa to further evaluate ECRLoRa’s error detection capability. We
measure the true-positive, false-positive, and false-negative conditions for each symbol within the
LoRa packet.

Figure 11 illustrates examples of ECRLoRa’s error detection ability. Label GT represents the
ground truth of the actual error position, while TP, FP, and FN denote the true-positive, false-
positive, and false-negative conditions of ECRLoRa error detection. ECRLoRa accurately detects
most errors with a few false-negative values (less than 3.5%) and a minimal number of false-positive
values (less than 2%). We observe that the false-positive values are in close proximity to the true-
positive values. Therefore, ECRLoRa naturally employs group recovery to minimize the influence
of false-positive values.

Figure 12 presents the statistical error detection capability of ECRLoRa under different SF and
various interference conditions. We employ the LoRa SX1278 chip to generate interference. Each
interfering node transmits at the same frequency as the LoRa sender and edge. Furthermore, inter-
ference nodes utilize full transmit power at +20 dBm (maximum transmit power of the SX1278 chip)
and continuously transmit LoRa packets without any blank frames.

Figure 12(a) demonstrates the average true-positive ratio of ECRLoRa error detection when
encountering zero, two, and four interfering nodes with SF values of 7, 10, and 12, respectively.
ECRLoRa successfully detects over 90% of errors when facing environmental noises. Figure 12(b)
illustrates the average false-negative ratio under the same experimental conditions. ECRLoRa
maintains a false-negative ratio of less than 3.5% across all experimental settings. Although inter-
ference impacts error detection performance (as interference introduces errors), ECRLoRa reliably
identifies error positions with an acceptable false-negative ratio. Figure 12(c) indicates the average
false-positive ratio under different SFs and varying interference conditions. ECRLoRa achieves
a false-positive ratio of less than 2% during the error detection process, thereby improving the
packet’s recovery foundation.

Figure 13 illustrates the probabilities of successful packet reception by a varying number of
nodes in three different scenarios. Specifically, for Shenzhen City Center, the probability of a
packet being received by one node is highest at 98%, and it decreases as the number of nodes
increases, dropping to 50% for six nodes. In Shenzhen Bay Park, the probability starts at 98% for
one node, and it similarly declines with an increasing number of nodes, reaching 65% for six nodes.
Lastly, for the Nanjing Yangtze River Bridge scenario, the probability is highest for one node at
99% and decreases to 70% for six nodes. The figure effectively demonstrates how the probability of
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Fig. 12. Error detection ratio.

Fig. 13. Probability of a packet received by multiple

LoRa edges.

Fig. 14. Comparison of packet recovery ratio under

three scenarios.

successful packet reception varies across different environments and with the number of nodes
receiving the packet.

Figure 14 presents the packet recovery performance in three distinct deployment scenarios. Ow-
ing to environmental differences, the performances are slightly different. Shenzhen city center,
with its occluded and high-interference environment, exhibits the poorest performance. Shenzhen
Bay Park, characterized by more open spaces and reduced interference, demonstrates better av-
erage performance. Meanwhile, the Nanjing Yangtze River Bridge scenario, featuring the most
hollowness and low-interference environment, delivers the best performance among the three
scenarios. In summary, while packet recovery performance varies slightly due to environmental
differences, the overall packet recovery capability and trends remain consistent across all three sce-
narios. Furthermore, detailed performance results for the remainder of this section are presented
utilizing the deployment scenario of the Nanjing Yangtze River Bridge.

To further evaluate ECRLoRa’s performance, we conduct experiments under various SNR con-
ditions utilizing multiple LoRa edges. Figure 15(a) demonstrates that in high SNR scenarios, both
ECRLoRa and the state of the art achieve an error detection ratio exceeding 90% when utilizing
more than five LoRa edges. Conversely, under low SNR conditions, as shown in Figure 15(b),
ECRLoRa attains a 75% error detection ratio with only two edges, while the state of the art
reaches a 22% error detection ratio under same settings. Furthermore, ECRLoRa’s error detection
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Fig. 15. Error detection ability vs.

SoA.

Fig. 16. Packet recovery ratio. Fig. 17. Number of edges.

ratio approaches 90% when five or more edges receive LoRa packets, whereas the state-of-the-art
achieves an accuracy of no more than 40%.

To further demonstrate ECRLoRa’s capabilities, we conduct a series of experiments under a
broader range of conditions. We compare ECRLoRa with state-of-the-art techniques [1, 20] in var-
ious SNR conditions, ranging from high to low. We examine the experimental results based on
data collected in both low and high SNR conditions. Figure 16 showcases the statistical results of
our experiments. By exploiting disjoint interference opportunities, as discussed in Section 2, ECR-
LoRa attains a higher PRR as the number of edges increases. The packet recovery ratio surpasses
90% when there are three edges. ECRLoRa outperforms DaRe under high SNR conditions when
the edge number is less than six, as illustrated in Figure 16(a). Furthermore, by utilizing accurate
error detection in low SNR conditions, ECRLoRa achieves an average performance improvement
of 1.25× compared to DaRe [20] under ultra-low SNR scenarios (e.g., SNR<−10 dB), as depicted in
Figure 16(b).

Packet Recovery Ability. To investigate ECRLoRa’s packet recovery capabilities by leverag-
ing the disjoint correct frames from multiple edges, we first determine the maximum number of
edges required for ECRLoRa to recover packets under various experimental conditions. We employ
the same experimental setup as in the error detection ability experiments. Figure 17 displays the
number of edges ECRLoRa necessitates for packet recovery. ECRLoRa successfully recovers pack-
ets with fewer than five edges under high SNR conditions. Moreover, ECRLoRa utilizes no more
than six edges for packet recovery when encountering low SNR situations. By implementing the
group-weighted voting algorithm, ECRLoRa effectively combines the disjoint correct frames from
multiple edges and minimizes the number of edges needed for packet recovery.

We evaluate the performance of ECRLoRa under low SNR conditions utilizing various ex-
perimental configurations of spreading factors and edge numbers. Figure 18 demonstrates the

ACM Transactions on Sensor Networks, Vol. 20, No. 2, Article 40. Publication date: January 2024.



ECRLoRa: LoRa Packet Recovery under Low SNR via Edge–Cloud Collaboration 40:19

Fig. 18. Packet recovery ratio under low SNR.

differences in Packet Recovery Ratio between ECRLoRa and state-of-the-art cloud-optimized appli-
cation layer approaches [1, 20] under low SNR with multiple experimental settings. DaRe exhibits
a higher packet recovery ratio due to redundant coding, but it does not fully exploit the benefits of
the LoRa edge–cloud architecture, resulting in lower performance than ECRLoRa. OPR has a packet
recovery ratio below 30% because of inaccurate RSSI-based error detection under low SNR condi-
tions. Furthermore, by leveraging error detection at the edge, ECRLoRa attains over 60% packet
recovery ratio utilizing a single edge. Additionally, the group-weighted voting algorithm enables
ECRLoRa to capitalize on the disjointness of correct frames from multiple edges. Consequently,
ECRLoRa’s packet recovery performance tends to increase with a growing number of edges.

Throughput. We compare the throughput of ECRLoRa with cloud-optimized application layer
approaches [1, 20] and LoRa under a signal-to-noise ratio ranging from 0 to −20, utilizing SF =
7, as depicted in Figure 19. ECRLoRa’s throughput is the bit rate after removing redundancy. It
is important to note that ECRLoRa features dynamic redundancy under varying SNRs. For exam-
ple, ECRLoRa employs a dynamic coding methodology based on SNR. Under low SNR conditions,
ECRLoRa chooses the coding rate for redundancy according to the SER, as detailed in Section 4.1.
ECRLoRa deactivates redundancy when SNR increases to the point where the symbol error ratio is
too low to necessitate redundancy. However, the received packet still contains errors. As a result,
ECRLoRa conducts error detection and employs the group-weighted voting algorithm for packet
recovery. Under the above conditions, ECRLoRa’s throughput is, on average, 1.36× higher than
OPR and 1.05× higher than DaRe. Last, under high SNR conditions, the quality of the received
signal is so exceptional that some LoRa edges correctly receive the packet. ECRLoRa selects the
first correct packet that arrives.

We further compare ECRLoRa’s throughput with DaRe, OPR, and LoRa under low SNR condi-
tions with severe interference (4× interference nodes). The throughput is calculated utilizing the
packet received ratio, packet recovery ratio, and valid payloads. As illustrated in Figure 20, ECR-
LoRa achieves the highest throughput when SF = 7, 8, 9, 10, 11. On average, ECRLoRa’s throughput
is 1.88× and 1.23× higher than OPR and DaRe, respectively. The throughput of DaRe, OPR, and
LoRa decreases when SF changes from 7 to 9 due to the longer packet time, which intensifies in-
terference in each packet, degrading the packet and reducing the throughput. However, ECRLoRa
attains more than 4.4× throughput compared to OPR and LoRa when SF = 9 by recovering cor-
rupted packets. As SF changes from 9 to 11, the throughput of both OPR and LoRa experiences a
slight increase, because the higher SF reduces the symbol error ratio of the received signal. When
SF = 12, ECRLoRa’s throughput is 0.7445 kbps, marginally lower than OPR’s 0.8 kbps.

Time Complexity. ECRLoRa consists of three steps: encoding, error detection, and packet re-
covery. We conduct numerous experiments to assess the average time consumption of ECRLoRa’s
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Fig. 19. Throughput under different SNR when

SF = 7.

Fig. 20. Throughput with SF from 7 to 12 under

Low SNR.

Fig. 21. Average time consumption.

steps. The encoding step brings an encoding delay at the LoRa sender, resulting in a drawback in
LoRa performance. To evaluate ECRLoRa’s feasibility at the LoRa sender, we perform experiments
with payload lengths ranging from 10 to 100. Figure 21(a) presents the experimental results of en-
coding time consumption. ECRLoRa exhibits a longer encoding time than DaRe and OPR due to
its interleaving error detection code. However, the error detection code effectively leverages the
disjointness of LoRa edges to achieve rapid error detection.

Figure 21(b) illustrates the consumption of data transmission utilizing the transmit data amount
as a metric, comparing the proposed method with OPR and DaRe. The horizontal axis represents
the Payload Length, ranging from 10 to 100 bytes, while the vertical axis indicates the Transmit
Data Amount (in bytes). ECRLoRa achieves exponential savings in data transmission by detecting
errors at the LoRa edge and transmitting correct frames instead of the RSSI sequence. Although
ECRLoRa has a minor drawback in encoding speed due to utilizing redundancy, it is faster and
more reliable in error detection and packet recovery. Employing a small amount of redundancy
for error detection is a wise tradeoff. Specifically, at SF = 7, ECRLoRa disables redundancy and
maintains a consistent data transmission amount between 10 and 100 bytes, while DaRe contains
higher redundancy amount and has data transmission amount varies considerably from 32 to 455
bytes. For higher SF values, such as SF = 10 and SF = 12, ECRLoRa sustains stable data transmis-
sion amounts within the ranges of 30–300 bytes and 60–600 bytes, respectively. Conversely, DaRe
demonstrates significantly higher data transmission amounts at these SF levels, ranging from 76
to 754 bytes for SF = 10 and 89 to 801 bytes for SF = 12.
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Additionally, when comparing ECRLoRa with OPR, we observe a distinct advantage in data
transmission amount for ECRLoRa. OPR relies on data repetition to combat interference, which
leads to a larger data transmission amount compared to our method. For example, at SF = 7, OPR’s
data transmission amount ranges from 105 to 834 bytes, which is considerably larger than ECR-
LoRa’s range. This trend continues at higher SF values such as SF = 10 and SF = 12. At SF = 10,
OPR’s data transmission amount varies between 406 and 2194 bytes, while at SF = 12, it ranges
from 1,414 to 6,040 bytes.

Figure 21(c) illustrates the packet recovery time consumption for various payload lengths. ECR-
LoRa and DaRe exhibit linear packet recovery time, while OPR shows exponential recovery time.
To clearly demonstrate ECRLoRa’s packet recovery capability, we recover packets that disregard
the ACK threshold, wait until the packet is fully recovered, or exceed the time limitation. In our
settings, the maximum recovery time is one hundred seconds. Benefiting from the group-weighted
voting algorithm and store-then-feedback mechanism, ECRLoRa is, on average, 7.5× faster than
OPR when the payload length is less than 30. When the payload is longer than 30 but shorter than
60, OPR’s packet recovery time exceeds the LoRa ACK threshold, and ECRLoRa performs 192.7×
faster on average under such conditions. Furthermore, OPR fails to recover packets when the pay-
load length surpasses 60 in our experimental environment. In contrast, ECRLoRa successfully re-
covers packets with time consumption below the LoRa ACK threshold. In conclusion, ECRLoRa
is an brilliant design that employs minimal redundancy at the LoRa sender, detects errors, and
transmits accurate frames at the LoRa edge while rapidly recovering packets in the cloud.

7 RELATED WORKS

This section summarizes the related works of this article. Some studies focus on essential error de-
tection algorithms, e.g., EEC [2] and TVA[19]. The majority of recent LPWAN interference mitiga-
tion efforts fall into the following two categories. The first category includes protocol-based inter-
ference mitigation approaches that involve redesigning LoRa edges and end devices [3, 5, 10, 32, 39].
The second category has recently emerged, utilizing cloud computing resources to recover cor-
rupted packets as a means of information collaboration for interference mitigation. These cloud-
optimized application layer approaches, such as in References [1, 20], demonstrate excellent com-
patibility with existing LPWAN systems.

Protocol-based Approaches. Early efforts in LPWAN interference mitigation have concen-
trated on (i) the physical layer, encompassing SCLoRa [11], PSR [28], Choir [6], FTrack [32], and
mLoRa [31], and (ii) the MAC layer, which includes S-MAC [35], LoRaFFEC [3], and LMAC [8].
These protocol-based solutions necessitate the redesign of the PHY or MAC layers in LPWAN
senders or edges. The need for specialized devices significantly constrains the large-scale applica-
tion of these approaches.

Cloud-optimized Application Layer Approaches. Taking advantage of the LPWAN system
architecture, it is feasible to employ cloud resources for interference mitigation [1, 20]. For ex-
ample, DaRe [20] integrates convolution and fountain codes for spatial and temporal information
exploration in LoRa communication channels. However, these redundancy coding approaches are
limited to specific LoRa edges and cannot fully collaborate with multiple edges for distributed
error detection. A collaborative method is necessary to fully utilize this information, enabling
LoRa to enhance data accuracy while reducing coding redundancy for increased throughput and
reliability. OPR [1] offloads RSSI samples, sends corrupted packets to the cloud, and recovers them.
Cloud-optimized application layer approaches have made significant strides in recent research
by leveraging the cloud’s ample computational resources and global management capabilities.
Moreover, these approaches are compatible with existing LPWAN systems as they do not require
hardware modifications. Nonetheless, offloading RSSI samples to the cloud results in substantial
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Table 3. Related Cloud-optimized Application Layer Approaches

Cost Delay PRR Low SNR

LoRaWAN Standard

Standard
[24]

Low Low Low Support

Cloud-optimized

DaRe [20] High Low High Support

OPR [1] Low High High Not
Support

Edge–Cloud Collaboration

ECRLoRa Low Low High Support

communication overhead in uplink bandwidth. Our preliminary work [21] demonstrated the
feasibility of edge–cloud collaboration and achieved packet recovery with 51.76% corruption.
This article introduces ECRLoRa to further enhance packet recovery capacity at the edge side. We
conduct a series of empirical studies to support our insights as follows.

ECRLoRa is designed for edge–cloud collaborative packet recovery under low SNR conditions.
Our approach involves utilizing LoRa edges to detect errors in corrupted packets accurately. This
way, only the error bits need to be transmitted to the cloud instead of a large volume of RSSI
samples. Generally, the length of RSSI is several times the length of the LoRa payload. As in-field
interference worsens, transmitting RSSI to the cloud results in a heavy network load. Minimizing
the required data transmission amount and enhancing error detection capabilities at the edge con-
tribute to reducing the overall time cost for packet recovery. As shown in Table 3, error detection
at the LoRa edge significantly decreases the data transmission amount. Moreover, ECRLoRa em-
ploys a weighted voting algorithm to quickly recover packets by collaborating with correct frames
from multiple LoRa edges, thus recovering severely damaged packets beneath the ACK threshold.

8 CONCLUSION

This article introduces ECRLoRa, an edge–cloud collaborative approach for packet recovery un-
der low SNR conditions. It leverages the signal perception advantage of LoRa edge and the global
management capabilities of the cloud. To the best of our knowledge, ECRLoRa is the first work
implementing packet recovery for interference mitigation through edge–cloud collaboration. It
achieves low cost, reduced packet recovery delay, and a high packet recovery ratio while sup-
porting low SNR. ECRLoRa attains a 96% Packet Recovery Ratio at low SNR, below the ACK
threshold of LoRaWAN. It demonstrates 1.8× higher throughput, 7.5× faster recovery time, and
4.92× greater accuracy compared to the state-of-the-art under such conditions. ECRLoRa explores
a novel methodology for interference mitigation utilizing edge–cloud collaboration and strikes an
optimal balance between reliability, flexibility, deployability, and complexity.

APPENDIX

Proof of Lemma 4.1.

Lemma 1. Given LoRa spreading factor SF , and the noise power spectral density σ 2. For transmit-
ting symbol ‘k’, the SER of LoRa is as follows:

P (k̂ � k |k ) =

∫ ∞

0

⎡⎢⎢⎢⎢⎣1 −
[
1 − exp

[
− μ2

2σ 2

] ]2S F−1⎤⎥⎥⎥⎥⎦ fμk
(μ )dμ . (5)
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Here “k” is the transmitted symbol, μ follows Rician distribution, SF is the spreading factor at

LoRa edge, and σ 2 =
N0

2 is the noise power spectral density.

Proof. The proof involves two steps: (1) First, we show the signal received by LoRa edge under
interference in Appendix 8, then for transmitting every symbol “k ,” we have the bit error ratio in
Lemma 10.

(2) Next, we show that noise satisfies the Rayleigh distribution of the Lemma 4.1. The proof is
completed by calculating the symbol error ratio using the Rayleigh distribution function.

To prove Equation (1), we first show that the LoRa communication is under interference. LoRa
devices are highly sensitive to environmental noise. Due to the interference, the signal received
by the LoRa edge is as follows:

y[n] = hx[n] + z[n] + I [n], (6)

Here n ∈ {0, . . . , 2S F −1}, x[n] is the original signal from the sender, z[n] represents plural white
Gaussian noise, I [n] is the interference received by LoRa edge, h ∈ C is the channel signal gain.

The interference contained in the received signal influences the accuracy of demodulation re-
sults. For the received signal y[n]:

2S F−1∑
n=0

y[n] ∗ x∗i [n] =

{
2S F (
√
ES + ϕi + Ii ), i = k

2S F (ϕi + Ii ), i � k
. (7)

Here ϕi represents the process of plural white Gaussian noise, and Ii is the interference received
by the LoRa edge. We define δi = |ϕi + Ii | as the amplitude of the envelope composed of noise and
interference.

Thus, the symbol error ratio is as follows:

Pe |k = Pr [maxi,i�k (δi ) > |
√
ES + ϕk + IK |]. (8)

Here ϕk represents the plural Gaussian white noise, and the plural noise envelope is δi = |ϕi |.
δi satisfies Rayleigh distribution, and the cumulative distribution function is as follows:

Fδi
(δ ) = 1 − exp

[
− δ 2

2σ 2

]
. (9)

Here σ 2 =
N0

2 is noise power spectral density. Thus, the bit error ratio of the transmitting symbol
“k” is as follows:

P (k̂ � k |k ) = Pr [maxi,i�k (δi ) > μk ]. (10)

μk = |
√
ES + ϕk | follows Rician distribution f (μk |

√
ES ,σ ):

fμk
(y) =

y

σ 2
exp

[
− (y2 + ES )

2σ 2

]
I0

(
y
√
ES

σ 2

)
. (11)

The cumulative distribution function ofmaxi,i�k is as follows:

Fmaxi,i�k
(x ) =

[
1 − exp

[
− x2

2σ 2

] ]2S F−1

. (12)

Thus, we obtain the symbol error ratio in Lemma 4.1. �
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