
๋ᬪࢩԅᥝ؉Ӟӻૡٍ҅ັᩒාጱᬦᑕӾݎሿԧᬯӻපຎ҅ఽᥧᬮฎꂁํ఺௏ጱ҅ᦕ୯Ӟӥਫ᪢ᬦᑕ̶

࣎ࣈᇆࢶ

Ḓض፡Ӟӥ�$SSOH�୏ݎᘏ෈໩�ํىԭᬯӻපຎጱਫሿຽ޾ٵՕᕨ҅ᡱᆐ౯ժฎ؉ᗑᶭ޾�$SSOH�Ԟӧ፳ᬟ҅֕ฎ෬ᆐ�$SSOH�ํᬯӻ
ຽ҅ٵԞݢզय़ᛘ፡ӞӥํՋԍىᲫᅩ̶

ٌӾ౯൹ಧԧӞԶىᲫᅩ҅च๜ฎೲᆙ�ZHE�୏ݎጱຽ҅ٵන୒ധӞԶ�ZHEݢ�ᚆአӧӤጱӳᥜ҅ෑ̵֛ἓ֛ԅ౯ጱဳ᯽޾௳מᵱᥝ
ဳ఺ጱמ௳̶

Օᕨ

Auto Layout ҁ
�ᛔۖ૲ੴ�҂տ໑ഝනᗝࣁᥤࢶӤጱᕅ๳๵կ҅ۖாᦇᓒᥤࢶ੶ེᕮ຅Ӿಅํᥤࢶጱय़ੜ֖޾ᗝ̶ֺই҅఍ݢզ
ᴴګೲᰵֵٌ҅Ө؟ࢶᥤࢶ࿜ଘ੷Ӿ҅
�ଚֵೲᰵጱᶮ᮱ᬟᖭতᕣכ೮؟ࢶࣁବ᮱ӥො���ᅩ�

̶ইຎ؟ࢶᥤࢶጱय़ੜ౲֖ᗝݎኞݒ
۸҅ೲᰵጱ֖ᗝ੪տᛔۖ᧣ෆզ܃ᯈ̶

क़᮱۸ݒ

canvas ਫሿᛔۖ੒ἶ૲ੴۑᚆҁauto layout҂

https://cdn.jsdelivr.net/gh/jinzhuming/oss@master/uPic/2020-12-28-14.32.23.gif
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/AutolayoutPG/

୮ᥤࢶҁ
�ᑻݗ౲ᘏक़᮱۱᥄�'20
҂ጱय़ੜ౲୵ᇫݎኞ۸ݒ෸҅տݎኞक़᮱۸̶ྯེݒๅද෸҅఍஠ᶳๅෛᥤࢶ੶ེᕮ຅ጱ૲
ੴ҅զ๋֯ොୗֵአݢአᑮᳵ̶

ٖ᮱۸ݒ

୮አಁᭌೠጱ᧍᥺̵ᔮᕹԆ᷌ݎኞز۸҅ݒᔰԞᵱᥝ᪙ᵋ۸̶ݒ

ᵱᥝ੒ἶጱં௔

ବ᮱҂҅޾ᖭ̵ᶮ᮱ݸᖭ̵ڹӻᬟᖭҁࢥጱᇙ஄̶Ӟᛱ๶᧔҅ᬯ۱ೡګզᴴݢᛔۖ૲ੴӾ҅ં௔ਧԎԧӞӻࣁ
�զ݊ṛଶ̵਼ଶ̵
࣮ፗ޾࿜ଘӾஞ�̶�෈๜ᶱԞํӞӻ౲ग़ӻचᕚં௔�

̶

ᴴګ

੒ԭ֖ᗝં௔҅఍ӧᚆਖ਼࣮ፗં௔ᕅ๳ԅ࿜ଘં௔̶

ńńńńńńńńńńń

ٌਫ෈໩ٟጱᶋଉᧇᕡ҅ݝฎय़᮱ړ᮷޾� web �෫҅ىᮎԍݝᵱᥝဳىӞԶ޾� web ᅩپ௛ᕮय़༷ইӥ҅ݢܨጱىํ�

��� ᵱᥝ੒ٌጱં௔ᴻԧزᔰጱࢥӻᬟզक़҅ᬮํӾᳵᕚ
��� ੒ἶचԭᶮᕚବᕚ԰ፘ੒ἶ҅ૢݦᕚ԰ፘ੒ἶጱܻ҅ڞӧᥝ಩ᶮᕚݦૢ޾ᕚ੒ἶ
��� ኮ૲ጱᬟᖭᵱᥝኸӞԶᬟ᪗҅ӧᥝᦏزᔰᩂᬰᬟᖭ
��� ᛔۖ᧣ෆ֖ᗝ੒ἶ҅ײᔰٖጱ෸؟ᬡӞӻ೰ਧጱکᴫපຎ҅୮੒ἶᕚ԰ፘᶌᬪޕզ؉Ӟӻݢ

च๜ܻቘय़༷੪ইࢶᇆಅኮ҅ᕁᜋጱ�$�ᕚݝᚆ޾�$�ᕚ԰ፘ੒ἶ҅᠗ᜋጱ�%�ᕚ޾�%�ᕚ԰ፘ੒ἶ҅ӧᥝ�$̵%�԰ፘ੒ἶ̶ྯེزᔰᑏ
ۖጱ෸҅ײᵱᥝአزᔰጱم๵ᕚڦړԭޮزࢱᔰጱم๵ᕚ԰ፘ੒ἶྲ੒҅चԭӤᶎ᧔ጱ੒ἶොୗ҅ဌํႮفս۸ጱఘ٭ӥय़༷ᵱᥝ
���ེ੒ྲ҅୮ڣෙ᪗ᐶੜԭᛔۖ੒ἶᕚጱӞӻ؇ᑏ꧊ጱ෸ײดᐏӞ๵੒ἶᕚ҅୮ੜԭᛔۖޕᴫ؇ᑏ꧊ጱ෸ײᛔۖ᧣ෆ֖ᗝ੒ἶ҅ਠ
౮ޕᴫපຎ̶

च๜ܻቘ޾ਫሿොໜ൥Ⴔ༩҅ളӥ๶੪ฎਫ᪢ᬦᑕԧ҅ො׎ਫሿׁ҅෯ֵአ� konva �๶ਠ౮

ਫ᪢

Ḓضኞ౮ӷӻ�VKDSH�አ֢೒ֵۖአ

஑کᬯ໏ጱӷӻࢶ୵

ฮ෸ᵌᡐ᩸๶ض෸ኞ౮Ӟ໑ᬀۗᕚ҅ᵱᥝݶ

ള፳ࣁ೒ۖԪկ᯾ፊ֖ލᗝ

blueRect.on('dragmove', (e) => {
ӻᶮᅩզ݊Ӿᅩጱࣖຽࢥ᭗ᬦ਼ଶ๶ᦇᓒݸጱ xy҅ᆐڹ୮ݐ឴ //
 const currentX = e.target.x();
 const currentY = e.target.y();
 const {x: targetX, y: targetY} = redRect.getPosition();
 const {width: currentWidth, height: currentHeight} = blueRect.getSize();
 const {width: targetWidth, height: targetHeight} = redRect.getSize();
 const current = {
 leftX: currentX,
 leftY: currentY,
 rightX: currentX + currentWidth,
 rightY: currentY + currentHeight,
 mediumX: Math.ceil(currentX + currentWidth / 2),
 mediumY: Math.ceil(currentY + currentHeight / 2),
 };
 const target = {
 leftX: targetX,
 leftY: targetY,
 rightX: targetX + targetWidth,
 rightY: targetY + targetHeight,
 mediumX: Math.ceil(targetX + targetWidth / 2),
 mediumY: Math.ceil(targetY + targetHeight / 2),
 };
});

୮ᆐᬯ᯾ᵱᥝဳ఺௔ᚆᳯ᷌҅ྲই؉Ӟӥᜓၞ҅಩� target �ᬯᐿဌํᑏۖጱزᔰ֖ᗝզ݊੮ੑጱᦇᓒמ௳ᖨਂ᩸๶҅ݶ෸ᵱᥝဳ
఺҅ target �ࣁᚆӧྊӞӻ҅ಅզᵱᥝݢ� dragStart �ጱ෸ײᦇᓒӞེਂӞӻහᕟ҅ࣁ� dragMove �ጱᬦᑕӾ੒ྲෆӻහᕟ҅ࣁ�
dragEnd �ጱ෸ײႴᑮහᕟ҅ԅԧො׎ᄍᐏᬯ᯾੪ӧ؉ᬯӻᬦᑕԧ̶

�ULJKW޾�ᦕԅ�OHIWڦړᵱᥝӷӻᅩ੪ᚆᏟਧ֖ᗝ҅ݝय़༷ฎᬯӻਧ֖҅ӞӻᎥ୵ݷ޸

ള፳ԅԧො׎ԧᥴܻቘ҅ਫሿӞӻ๋ᓌܔጱ҅ᶮᕚ԰ፘ੒ྲ

// ୮ڣෙᶮᕚ԰ፘᶌᬪ᪗ᐶੜԭᒵԭ 8҅಩ᬀۗᕚᦡᗝԅดᐏ҅ᬀۗᕚ᩸ᅩ x ԅፓຽጱ x҅ᕣᅩ x ԅ୮زڹᔰጱ x҅᩸ᅩ y ޾᯿ᅩ y ԅፓ

ຽࢶ୵ጱ y
if (Math.abs(current.leftY - target.leftY) <= 8) {console.log('ᩂᬪԧ');
 auxLine.setAttrs({points: [target.rightX, target.leftY, current.leftX, target.leftY],
 opacity: 1,
 });} else if (auxLine.getAttr('opacity') === 1) {
 auxLine.setAttrs({points: [0, 0],
 opacity: 0,
 });}

�ดᆐᬀۗᕚଫᧆ՗ײᬟጱ෸ૢک୵ᑏۖࢶӞԶᳯֺ᷌҅ইࣁच๜පຎฎਫሿԧ҅֕ฎׁ෯ਂکզ፡ݢ target �ጱ� leftX �୏ত҅
ᬯ᯾ᵱᥝڣෙӞӥ҅ᬀۗᕚ࿞ᬱ๋ݐᎨጱ᪠ஆ҅୮ᆐ҅च๜පຎਫሿԏݸս۸ᬮฎྲ᫾ᓌܔጱ҅ᬯ᯾੪ӧᖀᖅٟս۸᮱҅ړ୏তਫ
ሿᛔۖޕᴫۑᚆ̶

if (Math.abs(current.leftY - target.leftY) <= 8) {console.log('ᩂᬪԧ');
 auxLine.setAttrs({points: [target.rightX, target.leftY, current.leftX, target.leftY],
 opacity: 1,
 });

 // ᦡᗝޕᴫ֖ᗝ
 blueRect.setPosition({x: current.leftX, y: target.leftY});
} else if (auxLine.getAttr('opacity') === 1) {
 auxLine.setAttrs({points: [0, 0],
 opacity: 0,
 });}

ޕݝզս۸ݢ෸ᬮݶզ໑ഝᵱᥝᛔᤈ᧣ෆ҅ݢጱਫሿԧ҅֕ฎᵱᥝս۸Ӟӥ҅��ጱ᪗ᐶᬮฎॡय़҅ܔᴫපຎ૪ᕪஉᓌޕ҅کզ፡ݢ
ᴫӞེ҅ޕᴫݸইຎᑏۖӧ᩻ᬦӞਧጱ᪗ᐶ҅ӧེٚޕᴫҁڞވጱᦾٌਫฎᒵԭ୩ګ੒ἶԧزᔰ҅՚ᕡ፡ᥤ᷇҅୮ޕᴫզٚݸᑏۖ
ٌਫฎ෫පጱ҅஠ᶳᑏۖ᪃ड़ᬱ಍ᚆᚙᐶ҂̶

ᕮ๳᧍

௛֛ᘒ᥺ਫሿᬯӻۑᚆᬮฎӧॡᵙጱ҅Ԇᥝฎս۸ጱ᮱ړᶋଉग़҅ӧྊฎ௔ᚆොᶎ҅ᬮํ֛ḵොᶎ᮷ᵱᥝ؉Ⴎଶጱս۸҅ᬮฎྲ᫾
Ἃᅸጱٍ֛҅ݢզ݇ᆙ� sketch ҅֕ฎਫᴬපຎֵአ᩸๶ׯฎӧᲙ̶

դᎱኸਂ

export default function Index() {
 const ref = useRef<HTMLDivElement>(null);

 useEffect(() => {
 const dom = ref.current;
 if (!dom) return;

 const stage = new Konva.Stage({
 container: dom,
 width: dom.clientWidth,
 height: dom.clientHeight,
 });
 const layer = new Konva.Layer({});
 const [redRect, blueRect] = ['red', 'blue'].map(
 (fill, index) =>
 new Konva.Rect({
 x: 100 + index * 150,
 y: 100 + index * 150,
 width: 100,
 height: 100,
 fill,
 draggable: true,
 }),
);
 const auxLine = new Konva.Line({
 points: [0, 0],
 opacity: 0,
 stroke: 'green',
 strokeWidth: 2,

 lineJoin: 'round',
 dash: [3],
 });
 layer.add(auxLine);
 layer.add(redRect);
 layer.add(blueRect);

 blueRect.on('dragmove', (e) => {
ӻᶮᅩզ݊Ӿᅩጱࣖຽࢥ᭗ᬦ਼ଶ๶ᦇᓒݸጱ xy҅ᆐڹ୮ݐ឴ //
 const currentX = e.target.x();
 const currentY = e.target.y();
 const { x: targetX, y: targetY } = redRect.getPosition();
 const { width: currentWidth, height: currentHeight } = blueRect.getSize();
 const { width: targetWidth, height: targetHeight } = redRect.getSize();
 const current = {
 leftX: currentX,
 leftY: currentY,
 rightX: currentX + currentWidth,
 rightY: currentY + currentHeight,
 mediumX: Math.ceil(currentX + currentWidth / 2),
 mediumY: Math.ceil(currentY + currentHeight / 2),
 };
 const target = {
 leftX: targetX,
 leftY: targetY,
 rightX: targetX + targetWidth,
 rightY: targetY + targetHeight,
 mediumX: Math.ceil(targetX + targetWidth / 2),
 mediumY: Math.ceil(targetY + targetHeight / 2),
 };

ᴫපຎޕ //

 if (Math.abs(current.leftY - target.leftY) <= 4) {
 blueRect.setPosition({ x: current.leftX, y: target.leftY });
 }

 // ୮ڣෙᶮᕚ԰ፘᶌᬪ᪗ᐶੜԭᒵԭ8҅಩ᬀۗᕚᦡᗝԅดᐏ҅ᬀۗᕚ᩸ᅩxԅፓຽጱx҅ᕣᅩxԅ୮زڹᔰጱx҅᩸ᅩy޾᯿ᅩyԅፓຽࢶ୵ጱy
 if (Math.abs(current.leftY - target.leftY) <= 8) {
 console.log('ᩂᬪԧ');
 auxLine.setAttrs({
 points: [target.rightX, target.leftY, current.leftX, target.leftY],
 opacity: 1,
 });
 } else if (auxLine.getAttr('opacity') === 1) {
 auxLine.setAttrs({
 points: [0, 0],
 opacity: 0,
 });
 }
 });

 stage.add(layer);
 }, []);

 return (
 <div
 css={{
 display: 'flex',
 width: '100%',
 height: '100%',
 }}
 >
 <div>
 <Button draggable={true} type={'primary'}>

 ೲᰵ
 </Button>
 </div>
 <div
 ref={ref}
 css={{
 width: 900,
 height: 800,
 }}
 />
 </div>
);
}

	canvas 实现自动对齐布局功能（auto layout）
	介绍
	外部变化
	内部变化
	需要对齐的属性
	限制
	实践
	结束语
	代码留存

