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blueRect.on('dragmove', (e) => {
ӻᶮᅩզ݊Ӿᅩጱࣖຽࢥ᭗ᬦ਼ଶ๶ᦇᓒݸጱ xy҅ᆐڹ୮ݐ឴ //  
  const currentX = e.target.x();
  const currentY = e.target.y();
  const {x: targetX, y: targetY} = redRect.getPosition();
  const {width: currentWidth, height: currentHeight} = blueRect.getSize();
  const {width: targetWidth, height: targetHeight} = redRect.getSize();
  const current = {
    leftX: currentX,
    leftY: currentY,
    rightX: currentX + currentWidth,
    rightY: currentY + currentHeight,
    mediumX: Math.ceil(currentX + currentWidth / 2),
    mediumY: Math.ceil(currentY + currentHeight / 2),
  };
  const target = {
    leftX: targetX,
    leftY: targetY,
    rightX: targetX + targetWidth,
    rightY: targetY + targetHeight,
    mediumX: Math.ceil(targetX + targetWidth / 2),
    mediumY: Math.ceil(targetY + targetHeight / 2),
  };
});

୮ᆐᬯ᯾ᵱᥝဳ఺௔ᚆᳯ᷌҅ྲই؉Ӟӥᜓၞ҅಩� target �ᬯᐿဌํᑏۖጱزᔰ֖ᗝզ݊੮ੑጱᦇᓒמ௳ᖨਂ᩸๶҅ݶ෸ᵱᥝဳ
఺҅ target �ࣁᚆӧྊӞӻ҅ಅզᵱᥝݢ� dragStart �ጱ෸ײᦇᓒӞེਂӞӻහᕟ҅ࣁ� dragMove �ጱᬦᑕӾ੒ྲෆӻහᕟ҅ࣁ�
dragEnd �ጱ෸ײႴᑮහᕟ҅ԅԧො׎ᄍᐏᬯ᯾੪ӧ؉ᬯӻᬦᑕԧ̶

�ULJKW޾�ᦕԅ�OHIWڦړᵱᥝӷӻᅩ੪ᚆᏟਧ֖ᗝ҅ݝय़༷ฎᬯӻਧ֖҅ӞӻᎥ୵ݷ޸



ള፳ԅԧො׎ԧᥴܻቘ҅ਫሿӞӻ๋ᓌܔጱ҅ᶮᕚ԰ፘ੒ྲ

// ୮ڣෙᶮᕚ԰ፘᶌᬪ᪗ᐶੜԭᒵԭ 8҅಩ᬀۗᕚᦡᗝԅดᐏ҅ᬀۗᕚ᩸ᅩ x ԅፓຽጱ x҅ᕣᅩ x ԅ୮زڹᔰጱ x҅᩸ᅩ y ޾᯿ᅩ y ԅፓ



ຽࢶ୵ጱ y
if (Math.abs(current.leftY - target.leftY) <= 8) {console.log('ᩂᬪԧ');
  auxLine.setAttrs({points: [target.rightX, target.leftY, current.leftX, target.leftY],
    opacity: 1,
  });} else if (auxLine.getAttr('opacity') === 1) {
  auxLine.setAttrs({points: [0, 0],
    opacity: 0,
  });}

�ดᆐᬀۗᕚଫᧆ՗ײᬟጱ෸ૢک୵ᑏۖࢶӞԶᳯֺ᷌҅ইࣁच๜පຎฎਫሿԧ҅֕ฎׁ෯ਂکզ፡ݢ target �ጱ� leftX �୏ত҅
ᬯ᯾ᵱᥝڣෙӞӥ҅ᬀۗᕚ࿞ᬱ๋ݐᎨጱ᪠ஆ҅୮ᆐ҅च๜පຎਫሿԏݸս۸ᬮฎྲ᫾ᓌܔጱ҅ᬯ᯾੪ӧᖀᖅٟս۸᮱҅ړ୏তਫ
ሿᛔۖޕᴫۑᚆ̶





if (Math.abs(current.leftY - target.leftY) <= 8) {console.log('ᩂᬪԧ');
  auxLine.setAttrs({points: [target.rightX, target.leftY, current.leftX, target.leftY],
    opacity: 1,
  });

 // ᦡᗝޕᴫ֖ᗝ
  blueRect.setPosition({x: current.leftX, y: target.leftY});
} else if (auxLine.getAttr('opacity') === 1) {
  auxLine.setAttrs({points: [0, 0],
    opacity: 0,
  });}



ޕݝզս۸ݢ෸ᬮݶզ໑ഝᵱᥝᛔᤈ᧣ෆ҅ݢጱਫሿԧ҅֕ฎᵱᥝս۸Ӟӥ҅��ጱ᪗ᐶᬮฎॡय़҅ܔᴫපຎ૪ᕪஉᓌޕ҅کզ፡ݢ
ᴫӞེ҅ޕᴫݸইຎᑏۖӧ᩻ᬦӞਧጱ᪗ᐶ҅ӧེٚޕᴫҁڞވጱᦾٌਫฎᒵԭ୩ګ੒ἶԧزᔰ҅՚ᕡ፡ᥤ᷇҅୮ޕᴫզٚݸᑏۖ
ٌਫฎ෫පጱ҅஠ᶳᑏۖ᪃ड़ᬱ಍ᚆᚙᐶ҂̶

ᕮ๳᧍ 

௛֛ᘒ᥺ਫሿᬯӻۑᚆᬮฎӧॡᵙጱ҅Ԇᥝฎս۸ጱ᮱ړᶋଉग़҅ӧྊฎ௔ᚆොᶎ҅ᬮํ֛ḵොᶎ᮷ᵱᥝ؉Ⴎଶጱս۸҅ᬮฎྲ᫾
Ἃᅸጱٍ֛҅ݢզ݇ᆙ� sketch ҅֕ฎਫᴬපຎֵአ᩸๶ׯฎӧᲙ̶



դᎱኸਂ 

export default function Index() {
  const ref = useRef<HTMLDivElement>(null);

  useEffect(() => {
    const dom = ref.current;
    if (!dom) return;

    const stage = new Konva.Stage({
      container: dom,
      width: dom.clientWidth,
      height: dom.clientHeight,
    });
    const layer = new Konva.Layer({});
    const [redRect, blueRect] = ['red', 'blue'].map(
      (fill, index) =>
        new Konva.Rect({
          x: 100 + index * 150,
          y: 100 + index * 150,
          width: 100,
          height: 100,
          fill,
          draggable: true,
        }),
    );
    const auxLine = new Konva.Line({
      points: [0, 0],
      opacity: 0,
      stroke: 'green',
      strokeWidth: 2,



      lineJoin: 'round',
      dash: [3],
    });
    layer.add(auxLine);
    layer.add(redRect);
    layer.add(blueRect);

    blueRect.on('dragmove', (e) => {
ӻᶮᅩզ݊Ӿᅩጱࣖຽࢥ᭗ᬦ਼ଶ๶ᦇᓒݸጱ xy҅ᆐڹ୮ݐ឴ //      
      const currentX = e.target.x();
      const currentY = e.target.y();
      const { x: targetX, y: targetY } = redRect.getPosition();
      const { width: currentWidth, height: currentHeight } = blueRect.getSize();
      const { width: targetWidth, height: targetHeight } = redRect.getSize();
      const current = {
        leftX: currentX,
        leftY: currentY,
        rightX: currentX + currentWidth,
        rightY: currentY + currentHeight,
        mediumX: Math.ceil(currentX + currentWidth / 2),
        mediumY: Math.ceil(currentY + currentHeight / 2),
      };
      const target = {
        leftX: targetX,
        leftY: targetY,
        rightX: targetX + targetWidth,
        rightY: targetY + targetHeight,
        mediumX: Math.ceil(targetX + targetWidth / 2),
        mediumY: Math.ceil(targetY + targetHeight / 2),
      };

ᴫපຎޕ //      



      if (Math.abs(current.leftY - target.leftY) <= 4) {
        blueRect.setPosition({ x: current.leftX, y: target.leftY });
      }

      // ୮ڣෙᶮᕚ԰ፘᶌᬪ᪗ᐶੜԭᒵԭ8҅಩ᬀۗᕚᦡᗝԅดᐏ҅ᬀۗᕚ᩸ᅩxԅፓຽጱx҅ᕣᅩxԅ୮زڹᔰጱx҅᩸ᅩy޾᯿ᅩyԅፓຽࢶ୵ጱy
      if (Math.abs(current.leftY - target.leftY) <= 8) {
        console.log('ᩂᬪԧ');
        auxLine.setAttrs({
          points: [target.rightX, target.leftY, current.leftX, target.leftY],
          opacity: 1,
        });
      } else if (auxLine.getAttr('opacity') === 1) {
        auxLine.setAttrs({
          points: [0, 0],
          opacity: 0,
        });
      }
    });

    stage.add(layer);
  }, []);

  return (
    <div
      css={{
        display: 'flex',
        width: '100%',
        height: '100%',
      }}
    >
      <div>
        <Button draggable={true} type={'primary'}>



          ೲᰵ
        </Button>
      </div>
      <div
        ref={ref}
        css={{
          width: 900,
          height: 800,
        }}
      />
    </div>
  );
}
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