

臧斌宇

夏虞斌

mailto:binyu.zang@gmail.com
mailto:xiayubin@gmail.com

•

•

•

•

3

•

–

•

–

–

–

4

5

•

–

•

7

8

•

–

•

–

•

–

•

–

9

•

•

–

–

–

–

–

–

–
10

•

–

–

–

–

–

•

–

–

12

13

•

–

•

–

•

–

•

–

14

•

–

–

–

–

15

•
–

–

–
16

•

•

•

–

00011011 1101100

•

–

–

•

•

–

–

00011011 1101100

•

–

–

–

•

–

•

–

–

–

–

–

–

–

–

•

20

•

–

–

•

–

–

•

•

•

•

–

•

–

22

•
– To illustrate briefly, I have sketched a bone whose natural length has

been increased three times and whose thickness has been multiplied

until, for a correspondingly large animal, it would perform the same

function which the small bone performs for its small animal. From the

figures here shown you can see how out of proportion the enlarged

bone appears.

23

•
– Clearly then if one wishes to maintain in a great giant the same

proportion of limb as that found in an ordinary man he must either find

a harder and stronger material for making the bones, or he must admit a

diminution of strength in comparison with men of

medium stature; for if his height be increased

inordinately he will fall and be crushed under

his own weight.

24

•
– Whereas, if the size of a body be diminished, the strength of that body

is not diminished in the same proportion; indeed the smaller the body

the greater its relative strength. Thus a small dog could probably carry

on his back two or three dogs of his own size; but I believe that a horse

could not carry even one of his own size.

25

26

•

–

–

•

•

–

•

–

–

–

–

•

–

–

28

•

–

•

–

–

•

29

•

–

–

–

•

•

30

•

–
•

•

–
•

•

•

31

•

–

–

•

•

32

•

–

•

–

–

–

–

–

33

•

–

–

•

34

35

•

–

–

•

–

•

–

–

•

–

–

•

–

–

•
–

–

37

38

•

–

–

–

Original With Modularity

39

Bug

Bug

Bug

Bug

Original System System with Modularity

•

–

•

–

–

–

40

•

–

–

–

–

–

41

•

–

–

•

•

42

•

–

–

•

•

•

43

•

–

•

–

•

44

•

–

–

•

•

–

45

•
–

•

•

–

•

•

–

•

•

46

•

–

–

–

–

47

•

–

•

–

–

•

–

–
48

49

Processor & memory layer

Memory cells & gates layer

OS layer

Application layer

•
–

–

–

–

•
–

•
–

–

–

•
–

–

50

•
–

–

–
•

•

–

•

51

52

•

–

–

•

–

–

53

•

–

–

–

54

•

–

–

–

–

•

•

•

•

•

•

•

•

•

Naming Scheme
to achieve modularity

Computer System Engineering, Spring 2015. (IPADS, SJTU)

Our Web-site
•  http://ipads.se.sjtu.edu.cn/courses/cse

Review
•  Challenge in computer system: complexity

– Emergent properties
– Propagation of efforts
–  Incommensurate scaling
– Trade-offs

•  Solutions
– M.A.L.H.

NAMING SCHEME
Naming: the glue of modues

Naming in General
•  ipads.se.sjtu.edu.cn – hostname

•  steven@apple.com - email

•  steven – username

•  EAX - x86 processor register name

•  main() - function name

•  WebBrowser - class name

•  /courses/cse/index.html - path name (fully-qualified)

•  index.html - path name (relative)

•  http://ipads.se.sjtu.edu.cn/courses/cse/index.html - URL

•  13918275839- Phone number

•  202.120.40.188 - IP Address

Use Name to Achieve Modularity
•  Retrieval: e.g., using URL to get a web page

•  Sharing: e.g., passing an object reference to a function
–  Save space as well: only sending the name, not the object

•  Hiding: e.g., using a file name without knowing file system
–  Can support access control: use an object only if knowing its name
–  E.g., Windows has many undocumented API

•  User-friendly identifiers: e.g., “homework.txt” instead of 0x051DE540

•  Indirection: e.g., OS can move the location of the file data without notifying
the user
–  Have you ever defragmented your hard driver?

Address in Naming
•  Software uses names in an obvious way

– E.g., memory addresses

•  Hardware modules connected to a bus
– Use bus addresses (a kind of name) for interconnection

7

Naming Schemes
•  1. Set of all possible names

– You cannot use ‘for’ as a variable in C

•  2. Set of all possible values

•  3. Look-up algorithm to translate a name into a
value (or set of values, or “none”)

Naming Model

9

Naming Terminology
•  Binding – A mapping from a name to value

– Unbind is to delete the mapping
– A name that has a mapping is bound

•  A name mapping algorithm resolves a name

Naming Context
•  Type-1: context and name are separated

•  Type-2: context is part of the name

•  Name spaces with only one possible context are
called universal name spaces
– Example: credit card number

Determining Context - 1
•  Hard code it in the resolver

–  Examples: Many universal name spaces work this way

•  Embedded in name itself

–  cse@sjtu.edu.cn:
•  Name = “cse”
•  Context = “sjtu.edu.cn”

–  /ipads.se.sjtu.edu.cn/courses/cse/README :
•  Name = “README”
•  Context = “/ipads.se.sjtu.edu.cn/courses/cse”

12

Determining Context - 2
•  Taken from environment (Dynamic)

– Unix cmd: “rm foo”:
•  Name = “foo”, context is current dir
•  Question: how to find the binary of “rm” command?

– Read memory 0x7c911109:
•  Name = “0x7c911109”,
•  Context is thread’s address space

•  Many errors in systems due to using wrong context
13

Name Mapping Algorithms - 1
•  Table lookup

– Find name in a table
•  E.g., Phone book

– Context: which table?
•  Implicit VS. explicit
•  Default context

14

Table Lookup

Name Mapping Algorithms - 2
•  Recursive lookup

–  E.g., “/usr/bin/rm”
–  First find “usr” in “/”, then find “bin” in “/usr”, then “rm”
–  Each look-up process is the same

•  Multiple lookup
–  Recall: how to find “rm” without absolute name?
–  $PATH

•  E.g., “/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin”

–  Look-up in a predefined list of context

Interpreter Naming API
•  value ← RESOLVE(name, context)

–  Return the mapping of name in the context

•  status ← BIND(name, value, context)
–  Establish a name to value mapping in the context

•  status ← UNBIND(name, context)
–  Delete name from context

•  list ← ENUMERATE(context)
–  Return a list of all bindings

•  result ← COMPARE(name1, name2)
–  Check if name1 and name2 are equal

16

FAQ of Naming Scheme - 1
•  What is the syntax of names?

•  What are the possible value?

•  What context is used to resolve names?

•  Who specifies the context?

•  Is a particular name global (context-free) or local?

FAQ of Naming Scheme - 2
•  Does every name have a value?

–  Or, can you have “dangling” names?

•  Can a single name have multiple values?

•  Does every value have a name?
–  Or, can you name everything?

•  Can a single value have multiple names?
–  Or, are there synonyms?

•  Can the value corresponding to a name change over time?

CASE: DNS
Domain Name Service

DNS: Binding IP and Domain Name
•  Names: hostname strings

– E.g., www.sjtu.edu.cn

•  Values: IP addresses
– E.g., 202.120.2.119

•  Look up algorithm
– Resolves a hostname to an IP address so that your

machine knows where to send packets

Address can be seen as a Type of Name
•  An address itself is a type of name

–  A structured name that is used to locate an object
–  Recall your labs in ICS on socket

•  The program uses IP address to identify the server

– On Internet
•  The router will know where to send a packet with source IP

•  Hostname has no such semantic
–  A router does not know how to send a packet to “baidu.com”

Why Not Just Using IP Address?
•  IPs are structured in a particular way for routing

– You cannot pick your favorite four numbers as your IP
•  Note: usually an address cannot be picked, e.g., your house addr.

– While host names are not using such structured

•  One benefit
– User-friendliness

Retrieval
Sharing
Hiding
User-friendly identifiers *
Indirection

IP Address ABC
•  IP addresses are categorized to 5 types, A to E

•  Type D and E are special ones
–  Type D: multicast address, started with 1110
–  Other special ones: e.g., 127.0.0.1-127.255.255.255

Type Net # IP Range Host # Private IP

A 126 (27-2) 0.0.0.0-127.255.255.255 16777214 10.0.0.0-10.255.255.255

B 16384 (214) 128.0.0.0-191.255.255.255 65534 172.16.0.0-172.31.255.255

C 2097152(221) 192.0.0.0-223.255.255.255 254 192.168.0.0-192.168.255.255

Questions on DNS
•  Can a single name have multiple values?

–  Yes
–  This allows a web server to balance its load over multiple

machines
–  Also allows a client to choice a nearest IP to access

•  Can a single value have multiple names?
–  Yes
–  This allows server consolidation

Questions on DNS
•  Can the value corresponding to a name change?

–  Yes
–  This allows to change the physical machine (with different IP) that

stores the data without changing the hostname
–  So the changing is hidden to clients

The 3rd Part: the Look-up Algorithm
•  History

–  Each machine kept a “hosts.txt” for address binding
•  E.g., “r900 202.120.224.83”

–  Using table look-up to resolve the binding
–  This method cannot scale in Internet

•  Using a different way of storing data
•  Thus requires a different look-up algorithm

–  1984, four Berkeley students wrote BIND
•  Still the dominant DNS software in use

Distributing Responsibility
•  The binding

–  Too large to be stored on a single machine
–  Thus, the data are stored on many machines

•  As known as “name servers”

•  How to know which name server has a particular binding?
–  Solution: structure the hostname
–  Names have a hierarchy, e.g., com, net, gov, correspond to “zones”
–  Zones are mapped to name servers

Name Servers
•  The root zone

– Maintained by ICANN, non-profit

•  The “.com” zone
– Maintained by VeriSign, add for money

•  The “.sjtu.edu.cn” zone
– Maintained by SJTU

DNS Hierarchy (a partial view)
root

com

apple google

drive mail www

cn net org gov

com edu

fudan sjtu

se

ipads www

seiee ma

Basic DNS Look-up Algorithm
•  Example: lookup IP of “ipads.se.sjtu.edu.cn”

•  Traverse the name hierarchy from the root
–  The root will tell us the “cn” name server IP,
– which will tell us the “edu.cn” name server IP,
– which will tell us the “sjtu.edu.cn” name server IP,
– which will tell us the “se.sjtu.edu.cn” name server IP,
– which finally tells us the “ipads.se.sjtu.edu.cn” IP

•  Such algorithm is called delegation

DNS Lookup
root

com cn

com edu

fudan sjtu

se

ipads www

DNS Lookup
root

com cn

com edu

fudan sjtu

se

ipads www

198.41.0.4 cn:	
 202.112.0.44

DNS Lookup
root

com cn

com edu

fudan sjtu

se

ipads www

198.41.0.4 cn:	
 202.112.0.44

edu.cn:	
 202.112.0.35

DNS Lookup
root

com cn

com edu

fudan sjtu

se

ipads www

198.41.0.4 cn:	
 202.112.0.44

edu.cn:	
 202.112.0.35

sjtu.edu.cn:	
 202.120.2.101

DNS Lookup
root

com cn

com edu

fudan sjtu

se

ipads www

198.41.0.4 cn:	
 202.112.0.44

edu.cn:	
 202.112.0.35

sjtu.edu.cn:	
 202.120.2.101

se.sjtu.edu.cn:	
 202.120.40.2

DNS Lookup
root

com cn

com edu

fudan sjtu

se

ipads www

198.41.0.4 cn:	
 202.112.0.44

edu.cn:	
 202.112.0.35

sjtu.edu.cn:	
 202.120.2.101

se.sjtu.edu.cn:	
 202.120.2.101

ipads.se.sjtu.edu.cn:	
 202.120.40.188

Context in DNS
•  Names in DNS are global (context-free)

–  A hostname means the same thing everywhere in DNS

•  Actually, it should be “ipads.se.sjtu.edu.cn.”
–  A hostname is a list of domain names concatenated with dots
–  The root domain is unnamed, i.e., “.” + blank
–  You can also look-up a hostname like “web”

•  Resolving “web.”
•  Resolving “web” + additional default context (it’s system specific)

Fault Tolerant
•  Each zone can have multiple name servers

– A delegation usually contains a list of name servers
–  If one name server is down, the others can be used

Three Enhancements on Look-up Algorithm
•  1. The initial DNS request can go to any name server, not

just the root server
–  Even on your own machine: /etc/hosts
–  You can specific your name servers in /etc/resolv.conf
–  If no record, just returns address of the root server
–  Question: what are the benefits?

Three Enhancements on Look-up Algorithm
•  2. Recursion

– A client asks a name server “www.baidu.com”
– The name server does all the lookup through the tree

and return the IP of baidu to the client
– Usually, a name server has a better network connection

DNS Request Process

41	

Name client Name client

ns.iss.edu

ginger.
Scholar.edu

NS: for edu

NS: for
Scholarly.ed

u
AP: for

ginger.Schol
ar.edu

ginger.
Scholar.edu

ginger.
Scholar.edu

names.edu

a.root.net

ns.iss.edu

names.edu

a.root.net

Recursion Non-Recursion

Three Enhancements on Look-up Algorithm
•  3. Caching

– DNS clients and name servers keep a cache of names
•  Your browser will not do two look-ups for one address

– Cache has expire time limit
•  Controlled by a time-to-live parameter in the response itself
•  E.g., SJTU sets the TTL for www.sjtu.edu.cn

– Trade-off
•  High TTLs VS. low TTLs (Question: what are the tradeoffs?)

Combine These Enhancements
•  If

–  Many machines at SJTU use the SJTU name server for their initial
DNS query

–  The name server offers recursive querying and caching

•  Then
–  The name server’s cache will holding many bindings
–  Performance benefits from this large cache

Other Features of DNS
•  At least two identical replica servers

–  80 replicas of the root name server in 2008
–  Replicas are placed separated around the world

•  Organization’s name server
–  Several replicas in campus

•  To enable communications within the organization
–  At least one out of the campus

•  To validate the address for outside world
44	

Name Discovery in DNS
•  A client must discover the name of a nearby name server

–  Name discovery broadcast to ISP at first time
–  Ask network manager
–  A user must discover the domain name of a service
–  Ask by email, Google

BEHIND THE DESIGN
Why was DNS designed in this way?

Benefits of Hierarchical Design
•  Hierarchies delegate responsibility

•  Each zone is only responsible for a small portion

•  Hierarchies also limit interaction between modules

Good Points on DNS Design
•  Global names (assuming same root servers)

–  No need to specific a context
–  DNS has no trouble generating unique names
–  The name can also be user-friendly

•  Scalable in performance
–  Simplicity: look-up is simple and can be done by a PC
–  Caching
–  Delegation: many name severs handle lookups

Good Points on DNS Design
•  Scalable in management

– Each zone makes its own policy decision on binding
– Hierarchy is great here

•  Fault tolerant
–  If one name server breaks, other will still work
– Duplicated name server for a same zone

Bad Points on DNS Design
•  Policy

–  Who should control the root zone, .com zone, etc? Government?

•  Significant load on root servers
–  Many DNS clients starts by talking to root server
–  Many queries for non-existent names, becomes a DoS

•  Security
–  How does a client know if the response is correct?
–  How does VeriSign know “change Amazon.com IP” is legal?

DNS Security
•  DNS Authentication

–  Cache inconsistency

•  DNS Hijack
–  Cutting the binding between name and IP

•  Solution: /etc/hosts, dnsmasq, OpenDNS, etc.
–  DNS DoS
–  BAOFENG.com & DNSPod
–  2009-5-18: DNSPod is attacked and banned
–  2009-5-19: The Internet in China is almost down

•  DNS shield to defend against DoS attack

Problem 4.5
•  While browsing the Web, you click on a link that

identifies an Internet host named
www.cslab.scholarly.edu. Your browser asks your
Domain Name System (DNS) name server, M, to find
an Internet address for this domain name. Under
what conditions is each of the following statements
true of the name resolution process?

52

Problem 4.5
A.  To answer your query, M must contact one of the root name servers.

B.  If M answered a query for www.cslab.scholarly.edu in the past,
then it can answer your query without asking any other name server.

C.  M must contact one of the name servers for cslab.scholarly.edu to
resolve the domain name.

53

Problem 4.5
D.  If M has the current Internet address of a working

name server for scholarly.edu cached, then that name
server will be able to directly provide an answer.

E.  If M has the current Internet address of a working
name server for cslab.scholarly.edu cached, then that
name server will be able to directly provide an answer.

Naming in File System
A demonstration of naming, modularity and layering

Computer System Engineering, Spring 2015. (IPADS, SJTU)

Review: Naming Model

2

Review: Use Name to Achieve Modularity
•  Retrieval: e.g., using URL to get a web page
•  Sharing: e.g., passing an object reference to a function

–  Save space as well: only sending the name, not the object

•  Hiding: e.g., using a file name without knowing file system
–  Can support access control: use an object only if knowing its name
–  E.g., Windows has many undocumented API

•  User-friendly identifiers: e.g., “homework.txt” instead of 0x051DE540
•  Indirection: e.g., OS can move the location of the file data without

notifying the user
–  Have you ever defragmented your hard driver?

Review: Good Points on DNS Design
•  Global names (assuming same root servers)

–  No need to specific a context
–  DNS has no trouble generating unique names
–  The name can also be user-friendly

•  Scalable in performance
–  Simplicity: look-up is simple and can be done by a PC
–  Caching
–  Delegation: many name severs handle lookups

Review: Good Points on DNS Design
•  Scalable in management
– Each zone makes its own policy decision on binding
– Hierarchy is great here

•  Fault tolerant
–  If one name server breaks, other will still work
– Duplicated name server for a same zone

Review: Bad Points on DNS Design
•  Policy

–  Who should control the root zone, .com zone, etc? Government?

•  Significant load on root servers
–  Many DNS clients starts by talking to root server
–  Many queries for non-existent names, becomes a DoS

•  Security
–  How does a client know if the response is correct?
–  How does VeriSign know “change Amazon.com IP” is legal?

FILE SYSTEM OF UNIX-V6

File
•  File is a high-level version of the memory abstraction

–  Recall: Abstraction VS. Virtualization

•  A file has two key properties
–  It is durable & has a name

•  System layer implements files using modules from hardware layer
–  Divide-and-conquer strategy
–  Makes use of several hidden layers of machine-oriented names (addresses),

one on another, to implement files
–  Maps user-friendly names to these files

8	

The Big Picture

File System

Disk Driver

Disk

App-1 App-2 App-3

Kernel

Memory
Hardware

User
OPEN(“a.txt”, “rw”)
READ(…)
WRITE(…)
…

READ(block-addr, buf)
WRITE(block-addr, buf)

Abstraction: API of UNIX File System
•  OPEN, READ, WRITE, SEEK, CLOSE
•  FSYNC
•  STAT, CHMOD, CHOWN
•  RENAME, LINK, UNLINK, SYMLINK
•  MKDIR, CHDIR, CHROOT
•  MOUNT, UNMOUNT

10	

FILE SYSTEM: SOFTWARE LAYER

11	

The Naming Layers of the UNIX FS (version 6)

12	

Block Layer

13	

•  Block size: a trade-off
–  Neither too small or too big

•  Name mapping: block number -> block
–  Name-mapping algorithm

• 

–  Context
•  The storage device (e.g. disk) itself
•  Binds block numbers to physical blocks

–  Name discovery
•  Super block

Disk	

Block	

Block	

num	

Super Block
•  One superblock per file system

–  Kernel reads superblock when mount the FS

•  Superblock contains

14	

–  Size of the blocks
–  Number of free blocks
–  A list of free blocks
–  Index to next free block
–  Lock field for free block and free inode lists
–  Flag to indicate modification of superblock

–  Size of the inode list
–  Number of free inodes
–  A list of free inodes
–  Index to next free inode

Block	

num	

Disk	

Block	

File Layer
•  File requirements

–  Store items that are larger than one block
–  May grow or shrink over time
–  A file is a linear array of bytes of arbitrary length
–  Record which blocks belong to each file

•  inode (index node)
–  A container for metadata about the file

15	

Block	

num	

File	

(inode)	

Disk	

Block	

inode for Larger Files

16	

inode	

indirect	
 block	

double	
 indirect	
 block	

block	

Block	

num	

File	

(inode)	

Disk	

Block	

File Layer
•  Name mapping: index number -> block number

–  Index number can be seen as block-size offset within a file

•  Context: the inode itself
•  Name mapping algorithm

17	

Block	

num	

File	

(inode)	

Disk	

Block	

Choices Other Than inode
•  Method-1:

–  Use continue blocks
–  Re-allocate if the file expands
–  E.g., data in memory
–  Why not?

•  How to integrate different FS?
–  vnode
–  Interface is similar with inode

18	

•  Method-2: Use Linked List
–  Each block links to its next block
–  Use special one as EOF (End of

File)
–  E.g., FAT32
–  Why not?

inode Number Layer

19	

•  Name mapping: inode number -> inode
•  Context: the inode table
•  Name-mapping algorithm: inode table

–  At a fixed location on storage

•  Name discovery
–  Track which inode number are in use
–  E.g. free list, a field in inode

Block	

num	

File	

(inode)	

Inode	

num	

Disk	

Block	

Put Layers so far Together

20	

•  Needs more user-friendly name
– Numbers are convenient names only for computer

•  Numbers change on different storage device

Block	

num	

File	

(inode)	

Inode	

num	

Disk	

Block	

File Name Layer

21	

•  File name
–  Hide metadata of file management
–  Files and I/O devices

•  Name mapping algorithm
–  Mapping table saved in directory
–  Default context: current working directory
–  Context reference is also inode number

•  The directory itself is a file
– 

–  Max length of a name is 14 bytes in UNIX version 6

Block	

num	

File	

(inode)	

Inode	

num	

File	

name	

Disk	

Block	

LOOKUP in a Directory

•  Name compare method: STRING_MATCH
•  LOOKUP(“program”, dir) will return 10

•  Next Problem: too many files
22	

Block	

num	

File	

(inode)	

Inode	

num	

File	

name	

Disk	

Block	

Path Name Layer
•  Hierarchy of directories and files
–  Structured naming: E.g. “projects/paper”

•  Name-mapping algorithm
– 

–  PLAIN_NAME returns true if no ‘/’ in the path

•  Context: the working directory
23	

Block	

num	

File	

(inode)	

Inode	

num	

File	

name	
 Path	
 name	

Disk	

Block	

Links
•  LINK: shortcut for long names

–  LINK(“Mail/inbox/new-assignment”, “assignment”)
–  Turns strict hierarchy into a directed graph

•  Users cannot create links to directories -> acyclic graph

–  Different names, same inode number

•  UNLINK
–  Remove the binding of filename to inode number
–  If UNLINK last binding, put inode/blocks to free-list

•  A reference counter is needed
24	

Block	

num	

File	

(inode)	

Inode	

num	

File	

name	
 Path	
 name	

Disk	

Block	

Links
•  Reference count

–  An inode can bind multiple file names
–  +1 when LINK, -1 when UNLINK
–  A file will be deleted when reference count is 0
–  No cycle allowed

•  Except for ‘.’ and ‘..’
•  Naming current and parent

directory with no need to
know their names

25	

Block	

num	

File	

(inode)	

Inode	

num	

File	

name	
 Path	
 name	

Disk	

Block	

No Cycle for LINK

26	

/

25:1

•  /a/b is a directory
•  The refcnt of a is 1
•  a’s inode num is 25

/

25:2

/

25: 1

a

b

•  LINK (“/a/b/c”, a”)
•  Cause a cycle!
•  Refcnt of a is 2

a

b c b c

•  UNLINK (“/a”)
•  Refcnt of a is 1, so the

inode 25 is not deleted
•  Now inode 25 is dis-

connected from graph

a

Block	

num	

File	

(inode)	

Inode	

num	

File	

name	
 Path	
 name	

Disk	

Block	

Renaming - 1

•  Text edit usually save editing file in a tmp file
–  Edit in .a.txt.swp, then rename .a.txt.swp to a.txt

•  What if the computer fails between 1 & 2?
–  to_name will be lost, which surprises the user
–  Need atomic action in chap-9

27	

Block	

num	

File	

(inode)	

Inode	

num	

File	

name	
 Path	
 name	

Disk	

Block	

Renaming - 2

•  Weaker specification without atomic actions
–  Changes the inode number in the directory entry for to_name to the inode

number of from_name
–  Removes the directory entry for from_name
–  If fails between 1 & 2, must increase reference count of from_name’s inode on

recovery
–  If to_name already exist, it will always exist even if machine fails between 1 & 2
–  (The to_name file is UNLINKed in the first LINK function)

28	

Block	

num	

File	

(inode)	

Inode	

num	

File	

name	
 Path	
 name	

Disk	

Block	

Absolute Path
Name Layer
•  HOME directory

–  Every user’s default working directory
–  Problem: no sharing of HOME files between users

•  Context: the root directory
–  A universal context for all users
–  Well-known name: ‘/’
–  Both ‘/.’ and ‘/..’ are linked to ‘/’

29	

Block	

num	

File	

(inode)	

Inode	

num	

File	

name	

Absolute	
 path	

Path	
 name	

Disk	

Block	

An Example: Find Blocks of “/programs/pong.c”

30	

An Example: Find Blocks of “/programs/pong.c”

31	

•  ‘/’	
 root	
 directory:	
 inode	
 is	
 1	

An Example: Find Blocks of “/programs/pong.c”

32	

•  Find	
 the	
 first	
 directory	
 in	
 ‘/’	
 by	
 block	
 number	

An Example: Find Blocks of “/programs/pong.c”

33	

•  Find	
 ‘/programs’	
 by	
 comparing	
 name	

An Example: Find Blocks of “/programs/pong.c”

34	

•  Find	
 ‘/programs’	
 inode	
 by	
 its	
 inode	
 number	
 7	

An Example: Find Blocks of “/programs/pong.c”

35	

•  Find	
 the	
 first	
 file	
 in	
 ‘/programs/’	

An Example: Find Blocks of “/programs/pong.c”

36	

•  Find	
 ‘/programs/pong.c’	
 by	
 comparing	
 its	
 name	

An Example: Find Blocks of “/programs/pong.c”

37	

•  Find	
 inode	
 of	
 ‘/programs/pong.c’	
 by	
 the	
 inode	
 number	
 9	

An Example: Find Blocks of “/programs/pong.c”

38	

•  Find	
 block	
 number	
 of	
 ‘/programs/pong.c’	

An Example: Find Blocks of “/programs/pong.c”

39	

•  Find	
 data	
 of	
 block	
 61	
 by	
 its	
 block	
 number	

–  And	
 data	
 of	
 block	
 44	
 &	
 15	

Symbolic Link Layer

•  MOUNT
–  Records the device and the root inode number of the file system

in memory
–  Record in the in-memory version of the inode for “/dev/fd1” its

parent’s inode
–  UNMOUNT undoes the mount

•  Change to the file name layer
–  If LOOKUP runs into an inode on which a file system is mount, it

uses the root inode of that file system for the lookup
40	

Symbolic	
 link	

Block	

num	

File	

(inode)	

Inode	

num	

File	

name	

Absolute	
 path	

Path	
 name	

Disk	

Block	

Symbolic Link Layer

•  Name files on other disks
–  Inode is different on other disks
–  Supports to attach new disks to the name space

•  Two options
–  Make inodes unique across all disks
–  Create synonyms for the files on the other disks

•  Soft link (symbolic link)
–  SYMLINK
–  Add another type of inode
–  Context: the directory hierarchy

41	

Symbolic	
 link	

Block	

num	

File	

(inode)	

Inode	

num	

File	

name	

Absolute	
 path	

Path	
 name	

Disk	

Block	

•

–

•

–

•

–

–

–

2

3

•
–

–

–

•
–

–

–

•

4

•

–

–

•

–

•

•

–

•

5

6

•
–

–

–

•
–

•
–

–

7

8

•
–

–

–

–

–

–

•
–

–

9

•

–

•

–

–

•

–

–

–

10

•

•

•

–

–

11

•

–

–

–

•

–

–

•

•
12

•

–

•

–
•

–

•

–

13

•

–

•

•

•

–

14

15

3 115
index

Process A

fd_table
fd

3 116
index

Process B
fd

3 116
index

C is B’s child
fd

•

•

•

23 128

23 240

...
inode num file cursorindex

115

116

file_table

1
refcnt

2

16

17

•

•

•
–

–

–

–

–

i dS

•

•

•

open("/foo/bar", O_RDONLY)

•

–

–

•

–

–

–

•

–

23

•

–

–

–

24

•

•

–

•

25

•
–

–

–

–

–

•
–

26

Naming in Hardware
Memory bus, Interrupt and DMA

Computer SystemEngineering, Spring 2015. (IPADS, SJTU)

Review: File Cursor Sharing

2

3 115
index

Process A

fd_table
fd

3 116
index

Process B
fd

3 116
index

C is B’s child
fd

• Process A, B and C all open just one file with inode number 23
• Process A and B open the same file, not share file cursor
• Process B and C share the file cursor

23 128
23 240

...

inode num file cursorindex
115
116

file_table

1
refcnt

2

Review: File Open & Read Timeline

open("/foo/bar", O_RDONLY)

FSYNC
• Block cache

– Cache of recently used disk blocks
– Read from disk if cache miss
– Delay the writes for batching
– Improve performance
– Problem: may cause inconsistency if fail before write

• FSYNC
– Ensure all changes to the file have been written to the storage

device

4

Review: Naming Scheme
• Typically, a name can be an address, an index or a string
• A value can be an address, an index, a string, a data structure, a file, a

web page, a data-block, etc.
• A context can be a table, an inode, a file system, a directory, a disk, a

web domain, etc.
• A lookup algorithm can be table searching, nested, multiple lookup
• Name discovery method can be well-known, enumeration, etc.

BUS: A HARDWARE LAYER

6

A Hardware Layer: the Bus

7

Bus Features
• A set of wires

– Comprising address, data, control lines that connect to a bus interface on each
module

• Broadcast link: every module hears every message
– Bus address: identify the intended recipient, as the name

• Bus arbitration protocol
– Decide which module may send or receive a message at any particular time
– Bus arbiter (optional): a circuit to choose which modules can use the bus

8

Bus Transaction
1. Source module requires exclusive use of the bus: the data sender
2. Source module places a bus address of the destine module on the bus
3. Source module signals READY wire to alert the other module
4. The destine module singles ACKNOWLEDGE wire after copied the data

– If synchronized, then READY & ACKNOWLEDGE are not needed, just need to check
the address lines on each clock cycle

5. Source module releases the bus

9

Memory load example: LOAD 1742, R1

Processor #2 => all bus modules: {1742, READ, 102}

10

Memory load example: LOAD 1742, R1

• Memory1 recognizes the address is within its range
– By examining just a few high-order address bits

11

Memory load example: LOAD 1742, R1

• Memory1 acknowledges and processor2 releases the bus
• Memory1 performs the internal operation to get the value

– value <- READ (1742) 12

Memory load example: LOAD 1742, R1

• Memory1 => all bus modules: {102, value}

13

Memory load example: LOAD 1742, R1

• Processor2 is waiting for this result, just copies the data
on the bus to its register R1

14

Memory load example: LOAD 1742, R1

• Processor2 acknowledges and memory1 releases the
bus

15

Sync VS. Async

• Sync data transfer
– The source and destination cooperate through a shared

clock

• Async data transfer
– The source and destination cooperate through explicit

signal line, like acknowledge line

INTERACT WITH DEVICE: INTERRUPT

A Canonical Device

Status Address Data CommandRegisters

Micro-controller (CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Interface

Internals

A Canonical Protocol
While(STATUS == BUSY)

; //wait until device is not busy

Write data to DATA register and address to ADDRESS register

Write command to COMMAND register

(Doing so starts the device and executes the command)

While(STATUS == BUSY)

; //wait until device is done with your request

A Canonical Protocol
While(STATUS == BUSY)

; //wait until device is not busy
Write data to DATA register and address to ADDRESS register

Write command to COMMAND register

(Doing so starts the device and executes the command)

While(STATUS == BUSY)

; //wait until device is done with your request

• Polling: CPU waits until the device is ready to receive a
command by repeatedly reading the status register

A Canonical Protocol
While(STATUS == BUSY)

; //wait until device is not busy

Write data to DATA register and address to ADDRESS register

Write command to COMMAND register

(Doing so starts the device and executes the command)

While(STATUS == BUSY)

; //wait until device is done with your request

• If this were a disk, then multiple writes would need to take place to
transfer a disk block (say 512 Bytes) to the device

• When the main CPU is involved with the data movement (as in this
example protocol), we refer to it as programmed I/O (PIO)

A Canonical Protocol
While(STATUS == BUSY)

; //wait until device is not busy

Write data to DATA register and address to ADDRESS register

Write command to COMMAND register
(Doing so starts the device and executes the command)

While(STATUS == BUSY)

; //wait until device is done with your request

• OS writes a command to the command register; doing so
implicitly lets the device know that both the data is present
and that it should begin working on the command

A Canonical Protocol
While(STATUS == BUSY)

; //wait until device is not busy

Write data to DATA register and address to ADDRESS register

Write command to COMMAND register

(Doing so starts the device and executes the command)

While(STATUS == BUSY)
; //wait until device is done with your request

• OS waits for the device to finish by again polling it
in a loop, waiting to see if it is finished

• It may then get an error code to indicate success or failure

A Canonical Protocol
While(STATUS == BUSY)

; //wait until device is not busy

Write data to DATA register and address to ADDRESS register

Write command to COMMAND register

(Doing so starts the device and executes the command)

While(STATUS == BUSY)

; //wait until device is done with your request

• Problem: polling wastes too much CPU
• Solution: using interrupt

Lowering CPU Overhead With Interrupts
• Instead of polling, the OS can issue a request, put the calling process

to sleep, and context switch to another task
• When the device finishes, it will raise a hardware interrupt
• The CPU jumps into the OS at a pre-determined interrupt service

routine (ISR) or more simply an interrupt handler
• The handler is just a piece of operating system code that will finish

the request
– For example, by reading data and perhaps an error code from the device
– and wake the process waiting for the I/O, which can then proceed as desired

Lowering CPU Overhead With Interrupts

Using Polling

Using Interrupt

CPU is polling without doing anything

CPU can run thread 2

Example of Interrupt: Keyboard
• When user depresses a key, keyboard SENDs a message to the

processor containing the key value
• As the processor is not ready, its bus interface:

– copies the data into a temporary register,
– acknowledges the keyboard,
– SENDs an interrupt signal to the processor

• The processor handles the interrupt in next cycle
– SENDs the value over the bus to memory module

• Suitable for slow device, not suitable for disk

27

Problem of Interrupt: Livelock
• Using interrupts arises in networks

– When a huge stream of incoming packets each generate an interrupt it is
possible for the OS to livelock

– Livelock: the CPU only processes interrupts and never allows a user-level
process to run and actually service the requests

• Solution: hybrid
– Default using interrupts
– When an interrupt happens, handle it and polling for a while to solve

subsequence requests
– If no further request or time-out, fall back to interrupt again
– Used in Linux network driver with the name NAPI (New API)

Another Optimization for Interrupt
• A device which needs to raise an interrupt first waits for a bit before

delivering the interrupt to the CPU
• While waiting, other requests may soon complete, and thus multiple

interrupts can be coalesced into a single interrupt delivery, thus
lowering the overhead of interrupt processing

• Note: waiting too long will increase the latency of a request, a
common trade-off in systems

INTERACT WITH DEVICE: DMA

DMA for Disk Device

• DMA (Direct Memory Access)
– A processor SENDs a request to a disk controller to READ

a block of data
– Including the address of a buffer in memory

• The disk SENDs the data directly to memory
– Incrementing the memory address appropriately

31

DMA for Disk Device

Without DMA

With DMA

‘c’ is for copy

DMA for Disk Device

• Benefits of DMA
– Relieve the CPU’s load to execute other program
– Reduce one transfer (original two)
– Take better advantage of long message if the bus

supports
– Amortize the overhead of the bus protocol

33

Methods of Device Interaction
• How should the hardware communicate with a device?

Should there be explicit instructions? Or are there other
ways to do it?

• Two primary methods
– I/O instructions: on x86, IN and OUT instructions

• Must be executed in privileged mode (kernel mode)

– Memory-mapped I/O: using LOAD and STORE
• Can also be executed in unprivileged mode (user mode)

Memory Mapped I/O
• Use LOAD and STORE instructions to address the register

and buffer of the I/O modules
– Just like access memory
– Address is overloaded name with location info

• Provide a uniform interface to bus modules
– MMU translates virtual address to physical address

• Physical address is system bus address

– I/O modules translate bus address to register address internally

35

Memory Mapped I/O

36

Processor

MMU
Virtual address

Physical address (System bus address)

Memory Disk Keyboard

Internally translate
to register address

NOTE: Volatile Address if using MMIO
void main(void)
{

void *pdev = (void *) 0x40400000;
size_t size = (1024*1024);
int *base;

volatile int *pcid, cid;

base = mmap(pdev, size, PROT_READ|PROT_WRITE,

MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
if (base == MAP_FAILED) errx(1, "mmap failure");

pcid = (int *) (((void *) base) + 0xf0704);
cid = *pcid;
printf(“cid = %d\n", cid);

cid = *pcid;
printf(“cid = %d\n", cid);

munmap(base, size);

}

If no volatile, then the compiler will think
the two printf are redundant and will
eliminate the second memory load operation

Another Volatile Example
#include <stdio.h>
void main()
{

int i = 10;
int a = i;

printf("i= %d\n",a);

// Change value of i
__asm {

mov dword ptr [ebp-4], 20h
}

int b = i;
printf("i= %d\n",b);

}

38

Is volatile needed here?

Memory Mapped I/O Combined with DMA

39

DMA Example

40

BIOS Memory Disk

Processor 1
101

256-­‐511 3072-­‐4095 121-­‐124

• Processor #1 => all bus modules: {121, WRITE, 11742}
– Disk acknowledge and write the value 11742 to its control register

• Processor #1 => all bus modules: {122, WRITE, 3328}
• Processor #1 => all bus modules: {123, WRITE, 256}
• Processor #1 => all bus modules: {124, WRITE, 1}

102

Processor 2

DMA Example

41

BIOS Memory Disk

Processor 1
101

256-­‐511 3072-­‐4095 121-­‐124

• Disk => all bus modules: {3328, WRITE, data[11742]}
– Memory acknowledge and save data[11742]

• Disk => all bus modules: {3329, WRITE, data[11743]}
• ... (loop)
• Disk => all bus modules: {3583, WRITE, data[11997]}

102

Processor 2

DMA Example

42

BIOS Memory Disk

Processor 1
101

256-­‐511 3072-­‐4095 121-­‐124

• When transferring is finished, disk controller SENDs message to the
processor
– Just like keyboard controller does when press a key

• Processor will enter interrupt handler next cycle
• Now the processor knows that the DMA is done

102

Processor 2

Summary

• How does a CPU interact with physical memory?
– Through system bus that connects each other
– Using physical address to name memory content

• How does a CPU interact with a device?
– Also using physical address
– Polling, interrupt and DMA
– I/O instruction or MMIO

Questions

• How are the physical addresses assigned?
– Memory physical addresses: by BIOS
– Some devices (e.g., keyboard, IDE): fixed for all time
– Other devices: assigned by the OS

Questions

• Why not map the whole disk to memory?
– So that the CPU can access a byte on the disk directly by

system bus
– 1. Too large
– 2. Too slow

45

The principle of least astonishment:

People are part of the system. The design should match the user’s
experience, expectations, and mental models

Summary

46

Processor

Memory I/O Device

load/store PIO/MMIO

DMA

• Memory Load/Store
– Between CPU and memory
– Physical memory address space

• I/O Operations
– MMIO: map device memory

and registers into physical
address space

– E.g., frame buffer

• DMA
– Also using physical address

• Name of a disk
– File name: /dev/sda1

• As a special type of inode
• 8,0 as (major, minor)

– PCI address: 19:00.0
• SCSI storage controller: LSI Logic / Symbios Logic SAS1068E

PCI-Express Fusion-MPT SAS (rev 08)

Client & Server
Enforced modularity

Computer System Engineering, Spring 2015. (IPADS, SJTU)

Why Enforced Modularity?
•  Modularity itself is not enough
– Programmers make mistakes
– Mistakes propagate easily
– A way to strengthen the modularity is needed

2	

Modularity in the Code

•  Modularity in the code
–  E.g. hide CLOCK’s physical address
–  E.g. hide time unit
–  No need to change MEASURE on another computer, only change

GET_TIME
–  … but not enough

3	

Soft Modularity
•  Error leaks from one module to another
•  Function call
– Stack discipline
– Procedure calling convention

4	

Potential Problems in Calling - 1
•  Errors in callee may corrupt the caller’s stack

–  The caller may later compute incorrect results or fails

•  Callee may return somewhere else by mistake
–  The caller may lose control completely and fail

•  Callee may not store return value in R0
–  The caller may read error value and compute incorrectly

•  Caller may not save temp registers before the call
–  The callee may change the registers and causes the caller compute incorrectly

5	

Potential Problems in Calling - 2
•  Callee may have disasters (e.g. divided by 0)

–  Caller may terminate too, known as fate sharing

•  Callee may change some global variable that it shouldn’t change
–  Caller and callee may compute incorrectly or fail altogether
–  Even other procedures may be affected

•  Procedure call contract provides only soft modularity
–  Attained through specifications
–  No way to force the interactions among modules to their defined interfaces

6	

Enforced Modularity is Needed
•  Using external mechanism

–  Limits the interaction among modules
–  Reduces the opportunities for propagation of errors
–  Allows verification that a user uses a module correctly
–  Prevent an attacker from penetrating the security of a module

7	

Client/Service Organization
•  Limit interactions to explicit messages

–  Client: request; service: response or reply
–  On different computers, connected by a wire

•  Chap 5 will explain how to get them into one computer

8	

C/S Model
•  Client/Service model
– Separates functions (abstraction)
– Enforces that separation (enforced modularity)
– Reduce fate sharing but not eliminate it

9	

Multiple Clients and Services
•  One services can work for multiple clients
•  One client can use several services
•  One module can be both a client and a service

–  Printer as a service for printing request
–  Also a client of the file service

10	

Trusted Intermediaries
•  Service as trusted 3rd party

–  Run critical procedures as a service
–  E.g., a file service to keep clients’ file distinct, email service
–  Enforces modularity among multiple clients
–  Ensures that a fault in one client has limited effect on another client

•  Thin client computing (the ultimate version of C/S?)
–  Simplify clients by having the trusted intermediary provide most functions
–  Only the trusted intermediaries run on powerful computers
–  What if the powerful computers fail…

11	

RPC
Remote Procedure Call

12	

RPC
•  RPC （Remote Procedure Call)

–  Allow a procedure to execute in another address space without coding the
details for the remote interaction

•  RPC History
–  Idea goes back in 1976
–  Sun’s RPC: first popular implementation on Unix

•  Used as the basis for NFS

•  RMI (Remote Method Invocation)
–  Object-oriented version of RPC, e.g. in Java

13	

Back to the Example

•  Implement MEASURE and GET_TIME with RPC
–  On different computers
–  Marshaling: big-endian & little-endian converting

14	

RPC Calling Process

15	

•  Message send/receive
–  SEND_MESSAGE (NameForTimeService, {“Get time”, unit})
–  RECEIVE_MESSAGE (NameForTimeService)

RPC Stub
•  Client stub

–  Marshal the arguments into a message
–  Send the message
–  Wait for a response

•  Service stub
–  Wait for a message
–  Unmarshal the argument
–  Call the procedure (e.g. GET_TIME)

•  Stub
–  Hide marshaling and communication details

16	

Client Program

17	

Service Program

18	

Question
•  What is inside a message?
– Service ID (e.g., function ID)
– Service parameter (e.g., function parameter)
– Using marshal / unmarshal

19	

RPC Request
– UDP header...
•  Xid
•  call/reply
•  rpc version
•  program #
•  program version
•  procedure #
•  auth stuff
•  arguments

20	

X is short for “transaction”
Client reply dispatch uses xid
Client remembers the xid of each call

Server dispatch uses prog#, proc#

RPC Reply
– UDP header …
•  Xid
•  call/reply
•  accepted? (vs bad rpc version, or auth failure)
•  auth stuff
•  success? (vs bad prog/proc #)
•  results

21	

Marshal / Unmarshal
•  Marshal

–  Convert an object into an array of bytes with enough annotation so that the
unmarshall procedure can convert it back into an object

•  Why Marshal?
–  Serialization is not easy
–  E.g., big endian VS. little endian

•  0x89ABCDEF on POWER and Intel
•  Big endian on network:

–  htons(), ntohs()

–  What about an array?
–  What about a pointer?

22	

Automatic Stub Generation
•  Automatic generation

–  Generate stubs from an interface specification

•  Process
–  Tool to look at argument and return types
–  Generate marshal and unmarshal code
–  Generate stub procedures
–  Saves programming (thus less error)
–  Ensures agreement on e.g. argument types

•  E.g., consistent function ID
23	

RPC System Components
•  1. Standards for wire format of RPC msgs and data types

•  2. Library of routines to marshal / unmarshal data

•  3. Stub generator, or RPC compiler, to produce "stubs”
–  For client: marshal arguments, call, wait, unmarshal reply

–  For server: unmarshal arguments, call real fn, marshal reply

•  4. Server framework:
–  Dispatch each call message to correct server stub

•  5. Client framework:
–  Give each reply to correct waiting thread / callback

•  6. Binding: how does client find the right server?

24	

Client Framework

•  Keeps track of outstanding requests
–  For each, xid and caller's thread / callback

•  Matches replies to caller

•  Might be multiple callers using one socket
–  NFS client in kernel

•  Usually handles timing out and retransmitting

25	

Server Framework
•  In a threaded system:
–  Create a new thread per request

•  Master thread reads socket[s]

– Or a fixed pool of threads
•  Use a queue if too many requests
•  E.g., NFS server

– Or just one thread, serial execution
•  Simplifies concurrency
•  X server

26	

•  Key feature: support for concurrent RPCs
–  If one RPC takes multiple blocking steps, can the server serve

another one in the meantime?
–  For example, DNS service routine is an RPC client
–  May also avoid deadlock if one sends RPC to itself

27	

Concurrent RPC

RPC != PC
•  Different in three ways
– RPCs can reduce fate sharing
•  Won’t crash
•  Set a time-out for message lost or service failure

– RPCs introduce new failures: no response
– RPCs take more time
•  Stub itself may cost more than a service
•  Consider using RPC in device driver: time-out error

28	

RPC: Failure Handling
•  1. At least once

–  Client keeps resending until server responds
–  Only OK without side effects

•  2. At most once
–  Client keeps resending (may time-out)
–  Server remembers requests and suppress duplicates

•  3. Exactly once
–  This is often what we really want
–  Hard to do in a useful way, later in Chap-8 and 10

•  Most RPC system do #1 or #2
29	

Most network systems and
applications also have these
considerations

Other Differences
•  Language support
– Some features don’t combine well with RPC
•  Inter procedure communicate through global variable

– Data structure that contains pointers
•  Different binding of address on client and server

•  Different semantic now days
– Any client/service interaction in which the request is

followed by a response

30	

Review
•  Why C/S?
– Programmers make mistakes
– Mistakes propagate easily
– Enforce modularity

31	

CASE STUDY: NFS

32	

Case: NFS
•  NFS (Network File System)

–  Sun, 1980s, workstations
–  Centralized management: easy to share & backup
–  Cost benefit: workstations without disks

•  NFS goals
–  Compatibility with existing applications
–  Easy to deploy
–  OS independent: clients in DOS
–  Efficient enough to be tolerable

33	

Naming Remote Files and Directories
•  Transparent to programs

–  User cannot tell whether NFS or not

•  Mounter
–  # mount –t nfs 10.131.250.6:/nfs/dir /mnt/nfs/dir

•  File handle
–  File system identifier: for server to identify the FS
–  Inode number: for server to locate the file
–  Generation number: for server to maintain consistency
–  Usable across server failures, e.g. reboot
–  Why not put path name in the handle?

34	

Corner Case 1: Rename After Open

35	

•  UNIX Spec:
– Program 1 should read “dir2/f”
– NFS should keep the spec

Corner Case 2: Delete After Open

•  UNIX spec:
–  On local FS, program 2 will read the old file

•  How to avoid program 2 reading new file?
–  Generation number
–  “stale file handler”

•  Not the same as UNIX spec! It’s a tradeoff.
36	

RPC in NFS

37	

OPEN?
CLOSE?

RPC in NFS

38	

fd <-> fh

No state after
open()

Stateless on NFS server
•  Stateless on NFS server

–  Each RPC contains all the information

•  What about file cursor?
–  Client maintains the state, e.g. the file cursor

•  Client can repeat a request until it receives a reply
–  Server may execute the same request twice
–  Solution: each RPC is tagged with a transaction number, and server

maintains some “soft” state: reply cache
–  What if the server fails between two same requests?

39	

Extend the UNIX FS to support NFS
•  Vnode

–  Abstract whether a file or dir is local or remote
–  In volatile memory, why?
–  Support several different local file system
–  Where should vnode layer be inserted?

•  Vnode API
–  OPEN, READ, WRITE, CLOSE…
–  Code of fd_table, current dir, name lookup, can be moved up to

the file system call layer
40	

Extend the UNIX FS to support NFS

41	

Cache on the Client
•  NFS client maintains various caches

–  Stores vnode for every open file
•  Know the file handles

–  Recently used vnodes, attributes, recently used blocks, mapping
from path name to vnode

•  Cache benefits
–  Reduce latency
–  Less RPC, reduce load on server

•  Cache coherence is needed
42	

Coherence
•  Read/write coherence

–  On local file system, READ gets newest data
–  On NFS, client has cache
–  NFS could guarantee read/write coherence for every operation, or just

for certain operation

•  Close-to-open consistency
–  Higher data rate
–  GETATTR when OPEN, to get last modification time
–  Compare the time with its cache
–  When CLOSE, send cached writes to the server

43	

Coherence

44	

Two	
 cases	
 of	
 close-­‐to-­‐open	
 consistency	

•  More consistency on chapter 9 and 10

Operating System
Enforce modularity on a single machine

Computer System Engineering, Spring 2015. (IPADS, SJTU)

C/S using Virtual Computers
•  Enforce Modularity: Pros

–  Each program has its own virtual computer
–  Module isolation
–  Error containment
–  Programmer can think each one independently

•  Enforce Modularity: Cons
–  A power failure knocks out all virtual computers
–  Hacker exploits bugs in virtualization layer

•  Only one of several defense lines

–  All of these are caused by one reason: sharing

2	

Major Abstractions of a Virtual Computer
•  Memory

–  Virtual memory address space
–  OS gives modules their own memory name space

•  Communication
–  Bounded buffer virtual link
–  OS gives modules an inter-module communication channel for

passing messages

•  Interpreter
–  Thread
–  OS gives modules a slice of a CPU

3	

C/S on a Single Physical Machine
in order to enforce modularity + build an effective operating system

programs shouldn’t be able to refer to
(and corrupt) each others’ memory

programs should be able to
communicate

programs should be able to share a
CPU without one program halting the
progress of the other

Virtual memory

Assume that they don’t
need to (for today)

Assume one program
per CPU (for today)

OPERATING SYSTEMS
Virtualization VS. Abstraction

5	

Virtualization VS. Abstraction

•  Operating systems: enforce modularity on a single
machine via virtualization and abstraction

Operating System
•  Goals

–  Multiplexing
–  Protection
–  Cooperation
–  Portable
–  Performance

•  Technologies
–  Virtualization, e.g., memory and CPU
–  Abstraction, e.g., FS, bounded buffer, window

7	

Virtualization
•  Widely used term involving a layer of indirection top

of some abstraction

8	

Virtualization: Multiplexing

9	

•  Examples:	
 	

–  Thread:	
 1	
 CPU	
 looks	
 like	
 N	
 CPUs	
 	

–  Virtual	
 Memory:	
 1	
 memory	
 looks	
 like	
 N	
 memories	
 	

–  Virtual	
 Circuit:	
 1	
 channel	
 looks	
 like	
 N	
 channels	
 	

–  Virtual	
 Machine:	
 1	
 machine	
 looks	
 line	
 N	
 machines	

Virtualization: Aggregation

10	

•  Examples:
–  RAID disks: N disks look like one disk
–  Channel bounding: N channels look like one (e.g., the NICs)
–  Compute side: GPUs

 Module A
Module B

Mod B Mod B Mod B

 Module A
Virtualization Layer

Virtualization: Emulation

11	

•  Examples:
–  RAM Disk: Make a RAM memory act like a very fast disk
–  Apple’s Rosetta Technology: Make a x86 CPU look like a Power PC

CPU; btrans by Intel
–  Virtual Machines: VMware, Xen, KVM, Qemu, etc.

VIRTUAL MEMORY

12	

Virtual Memory
•  Virtual memory: which type(s)?

Mod B Mod B Mod B

 Module A
Virtualization Layer

Virtualize Memory

Using Page Tables

Page Table Entries
•  Page table entries are 32 bits because they contain a 20-bit

physical page number and 12 bits of additional information

KERNEL MODE VS. USER MODE

17	

Why Kernel Mode?
•  How to protect page tables from applications?

–  Only some privileged code can access the page table

–  Must save the page tables in some memory that applications
cannot access

•  Other Isolation
–  Special instructions: e.g., change CR3
–  I/O channels

18	

Kernel Mode Bit
•  Kernel/user bit on the processor

–  Add one bit to the processor to indicate current mode
–  Change the value of domain registers only in kernel mode

•  Generate an illegal instruction exception otherwise

–  Change the mode bit only in kernel mode

•  Kernel/user bit in page table entry
–  Only the kernel can access some specific memory region

Kernel and Address Spaces
•  Each address space include a mapping of the kernel into its

address space
–  Only the user-mode bit must be changed when mode switches
–  The kernel sets the permissions for kernel pages to KERNEL-ONLY

•  Kernel has its own separate address space
–  Inaccessible to user-level threads
–  Extend the SVC instruction to switch the page map address

register

20	

Two Design of Kernel Address Space
•  Type-1: In Linux, the kernel uses 3-4G

virtual memory space while applications
use 0-3G virtual memory space

•  Type-2: Giving the kernel a separated

memory space just like an application,
thus both the kernel and the applications
can have 4G memory space

Kernel Stack in Linux
•  Kernel uses its own stack

–  Kernel uses a different stack for each thread
–  It is accessible only to the kernel but is part of the process image
–  Save task’s registers (e.g., user’s ESP) & function parameters and return-

addresses
–  Kernel also uses a different stack for each CPU for handling interrupt

•  Kernel stack is small
–  In Linux, less than 8K (2 pages)
–  The stack is empty each time iret to user (no state!)

22	

Kernel Stack in Linux
•  Linux uses part of a task’s kernel-stack to store that task’s thread_info.

2157	
 union	
 thread_union	
 {	

2158	
 	
 	
 	
 	
 	
 	
 	
 struct	
 thread_info	
 thread_info;	

2159	
 	
 	
 	
 	
 	
 	
 	
 unsigned	
 long	
 stack[THREAD_SIZE/sizeof(long)];	

2160	
 };	

Room here for stack to expand as needed 8K

Thread info

 Kernel-mode stack

Kernel Stack in Linux
•  Is kernel stack large enough?

– Sometimes, no… stack overflows will occur
– E.g., on older kernels, filesystem / software RAID code

being interrupted by network code with iptables active
– Solution: increase the stack size

Kernel/User Mode Switching
•  The machine starts in K mode
•  K->U: using iret
•  U->K:

– Hardware
•  Clock interrupt, Network/Disk interrupt

– Software
•  Exception, System call (e.g., int 0x80)

25	

System Call: Library Stubs in User Mode

26	

•  Use	
 read(
 fd,	
 buf,	
 size)	
 as	
 an	

example:	

int	
 read(
 int	
 fd,	
 char	
 *	
 buf,	
 int	
 size)	

{	

	
 move	
 fd,	
 buf,	
 size	
 to	
 R1,	
 R2,	
 R3	

	
 move	
 READ	
 to	
 R0	

	
 int	
 $0x80	
 	

	
 move	
 result	
 to	
 Rresult	

}	

	

User	

stack	

Registers	

User	

memory	

Kernel	

stack	

Registers	

Kernel	

memory	

Linux:	
 80	

NT:	
 2E	

System Call: Entry Point in Kernel Mode

27	

•  Assume	
 passing	
 parameters	
 in	
 registers	

EntryPoint:	

	
 switch	
 to	
 kernel	
 stack	

	
 save	
 context	

	
 check	
 R0	

	
 call	
 the	
 real	
 code	
 pointed	
 by	
 R0	
 	

	
 restore	
 context	

	
 switch	
 to	
 user	
 stack	

	
 iret	
 (change	
 to	
 user	
 mode	
 and	
 	
 return)	

	

User	

stack	

Registers	

User	

memory	

Kernel	

stack	

Registers	

Kernel	

memory	

Call from Kernel to User
•  UNIX Signal

– Register signal handler
– Kernel checks signal

before iret
– Kernel calls handler

if a signal is pending
•  How?

28	

	

void	
 foo(int	
 signo)	
 {	

	
 	
 printf(“You	
 wanna	
 kill	
 me?\n”);	

	
 	
 return;	

}	

	

int	
 main()	
 {	

	
 	
 signal(SIGINT,	
 foo);	

	
 	
 while	
 (1)	
 {	

	
 	
 	
 	
 printf(“I’m	
 still	
 alive\n”);	

	
 	
 	
 	
 sleep	
 (1)	

	
 	
 }	

}	

	

Signal Handler Process

29	

from “Understanding Linux Kernel”, 3rd Edition

TYPES OF OS STRUCTURE

30	

Monolithic Kernel
•  The kernel must be a trusted intermediary for the memory

manager hardware,
–  Many designers also make the kernel the trusted intermediary for all

other shared devices
•  The clock, display, disk

–  Modules that manage these devices must be part of the kernel program
•  The window manager, network manager , file manager

•  Monolithic kernel
–  Most of the operating system runs in kernel mode

31	

Monolithic Kernel
•  Pros

–  Relatively few crossings
–  Shared kernel address space
–  Performance

•  Cons
–  Flexibility
–  Stability
–  Experimentation

32	

Microkernel
•  We would like to keep the kernel small
•  Reduce the number of bugs
•  Restrict errors in the module which generates the error

–  The file manager module error may overwrite kernel data
structures unrelated to the file system

–  Causing unrelated parts of the kernel to fail

33	

Microkernel

•  System modules run in user mode in their own domain
•  Microkernel itself implements a minimal set of abstractions

–  Domains to contain modules
–  threads to run programs
–  virtual communication links

34	

Microkernel
•  Pros

–  Easier to develop services
–  Fault isolation
–  Customization
–  Smaller kernel => easier to optimize

•  Cons
–  Lots of boundary crossings
–  Really poor performance

35	

Microkernel VS. Monolithic Kernel
•  Few microkernel OS

–  Mach, L4

•  Most widely-used operating systems have a mostly
monolithic kernel
–  the GNU/Linux operating system
–  the file and the network service run in kernel mode
–  the X Window system runs in user mode

36	

Microkernel VS. Monolithic Kernel
1.  The system is unusable if a critical service fails

–  No matter in user mode or kernel mode

2.  Some services are shared among many modules
–  It’s easier to implement these services as part of the kernel

program, which is already shared among all modules

3.  The performance of some services is critical
–  E.g., the overhead of SEND and RECEIVE supervisor calls may be

too large

37	

Microkernel VS. Monolithic Kernel
4.  Monolithic systems can enjoy the ease of debugging of

microkernel systems
–  good kernel debugging tools

5.  It may be difficult to reorganize existing kernel programs
–  There is little incentive to change a kernel program that already

works
–  If the system works and most of the errors have been eradicated

•  the debugging advantage of microkernel begins to evaporate
•  the cost of SEND and RECEIVE supervisor calls begins to dominate

38	

Microkernel VS. Monolithic Kernel
•  How to choose

–  a working system and a better designed, but new system
–  don’t switch over to the new system unless it is much better

•  The overhead of switching
–  learning the new design
–  re-engineering the old system to use the new design
–  rediscovering undocumented assumptions
–  discovering unrealized assumptions

39	

Microkernel VS. Monolithic kernel
•  The uncertainty of the gain of switching

–  The claims about the better design are speculative
–  There is little experimental evidence that

•  microkernel-based systems are more robust than existing monolithic
kernels

40	

Bounded Buffer and Lock
Virtualizing communication link

Computer System Engineering, Spring 2015. (IPADS, SJTU)

Review: Virtualization VS. Abstraction
•  C/S on a single computer
•  Operating systems: enforce modularity on a single machine

via virtualization and abstraction
•  Virtualization

–  Multiplexing, aggregation, emulation

•  Kernel: have higher privilege
–  So that the page tables are managed
–  Has its own stacks (as application contexts and interrupt contexts)

Kernel/User Mode Switching
•  The machine starts in K mode
•  K->U: using iret
•  U->K:
– Hardware
•  Clock interrupt, Network/Disk interrupt

– Software
•  Exception, System call (e.g., int 0x80)

3	

System Call: Library Stubs in User Mode

4	

•  Use	
 read(
 fd,	
 buf,	
 size)	
 as	
 an	

example:	

int	
 read(
 int	
 fd,	
 char	
 *	
 buf,	
 int	
 size)	

{	

	
 move	
 fd,	
 buf,	
 size	
 to	
 R1,	
 R2,	
 R3	

	
 move	
 READ	
 to	
 R0	

	
 int	
 $0x80	
 	

	
 move	
 result	
 to	
 Rresult	

}	

	

User	

stack	

Registers	

User	

memory	

Kernel	

stack	

Registers	

Kernel	

memory	

Linux:	
 80	

NT:	
 2E	

System Call: Entry Point in Kernel Mode

5	

•  Assume	
 passing	
 parameters	
 in	
 registers	

EntryPoint:	

	
 switch	
 to	
 kernel	
 stack	

	
 save	
 context	

	
 check	
 R0	

	
 call	
 the	
 real	
 code	
 pointed	
 by	
 R0	
 	

	
 restore	
 context	

	
 switch	
 to	
 user	
 stack	

	
 iret	
 (change	
 to	
 user	
 mode	
 and	
 	
 return)	

	

User	

stack	

Registers	

User	

memory	

Kernel	

stack	

Registers	

Kernel	

memory	

Call from Kernel to User
•  UNIX Signal
– Register signal handler
– Kernel checks signal

before iret
– Kernel calls handler

if a signal is pending
•  How?

6	

	

void	
 foo(int	
 signo)	
 {	

	
 	
 printf(“You	
 wanna	
 kill	
 me?\n”);	

	
 	
 return;	

}	

	

int	
 main()	
 {	

	
 	
 signal(SIGINT,	
 foo);	

	
 	
 while	
 (1)	
 {	

	
 	
 	
 	
 printf(“I’m	
 still	
 alive\n”);	

	
 	
 	
 	
 sleep	
 (1)	

	
 	
 }	

}	

	

Signal Handler Process

7	

from “Understanding Linux Kernel”, 3rd Edition

Enforcing Modularity via Virtualization
in order to enforce modularity + build an effective operating system

programs shouldn’t be able to refer to
(and corrupt) each others’ memory

programs should be able to
communicate

programs should be able to share a
CPU without one program halting the
progress of the other

Virtual memory

Bounded buffer (virtualize
communication links)

Assume one program
per CPU (for today)

Our Assumption So Far
•  One CPU per programmer
•  Programs don’t need to communication
– Today we’ll deal with this

•  No faults in the OS

VIRTUAL LINK: BOUNDED BUFFER

10

Virtual Communication Links

11

OS	

M
odule	
 A	

M
odule	
 B	

	
 2n	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 0	
 	

2n	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	

0	

Very similar with the C/S model

Enforce Modularity for Bounded Buffer
•  Adopt the same message-passing paradigm in C/S

–  To enable communication while keep isolation
–  Like RPC

•  Share buffer in kernel
–  User mode cannot access the buffer directly
–  Applications use API to operate the buffer
–  Must transition to kernel mode to copy messages into/from the

shared buffer

12

Bounded Buffer and its API
•  Bounded buffer: a buffer that stores (up to) N

messages

•  Bounded buffer API
ü send (m)
ü m <- receive()

Enforce Modularity for Bounded Buffer
•  SEND() and RECEIVE()

–  Supervisor calls (e.g., system calls)
–  Copy the message from/to the thread’s domain to/from the

shared buffer
–  Programs running in kernel mode is written carefully
–  Transitions between user mode and kernel mode can be

expensive

Virtual Communication Links
•  Producer and Consumer Problem
– Sender must wait when buffer is full
– Receiver must wait when buffer is empty
– Need sequence coordination

15

BB FOR SINGLE SENDER

Bounded Buffer Send

17	

Cannot switch the two

Bounded Buffer Send/Receive

18

Send/Receive Implementation Assumptions

1.  Single producer & Single consumer
2.  Each on own CPU
3.  in and out don’t overflow
4.  read/write coherence
5.  in and out ensure before-or-after atomicity
6.  The result of executing a statement becomes visible to

other threads in program order
–  Compilers cannot optimize it

19

Concurrency
•  This implementation works on two CPUs
– One for a sender and one for a receiver
– which is surprising!

RACE CONDITION IF MULTI-SENDERS
Multiple Senders and Receivers

21

Multiple Senders
•  Multiple senders may send at the same time

22

Case 1
A

bb.in = 0, bb.out = 0
write m1 to buf[0]
set bb.in = 1

B

bb.in = 1, bb.out = 0
write m2 to buf[1]
set bb.in = 2

Everything works fine!

Case 2
A

bb.in = 0, bb.out = 0

write m1 to buf[0]

set bb.in = 1

B

bb.in = 0, bb.out = 0

write m2 to buf[0]

set bb.in = 1

m1 lost!

Race Condition
•  Race condition

–  Timing dependent error involving shared state
–  Whether it happens depends on how threads scheduled
–  Considering “i++” by 2 threads concurrently, with i =0:

25

Before-or-After Atomicity
•  volatile int in;

•  Works on 32 and 64 bit machines

mov in, %eax

add $0x1, %eax

mov %eax, in

26	

Before-or-After Atomicity
•  volatile long long int in;

•  Works only on 64bit machines, not 32bit

mov in, %eax
mov in+4, %edx
add $0x1, %eax
adc $0x0, %edx
mov %eax, in
mov %edx, in+4

27	

Race Condition ─ Hard to Control
•  Must make sure all possible schedules are safe

–  Number of possible schedules permutations is huge

–  Bad schedules that will and will not work sometimes

•  They are intermittent
–  Small timing changes between invocations might result in different behavior

which can hide bug (e.g., Therac-25)

–  Heisenbugs (Heisenberg)

•  DMT (Deterministic Multi-Threading)

•  Record and Replay

28

LOCK, TO THE RESCUE, OR NOT?
Before-or-After

29

Locks: Before-or-after Atomicity

•  Widely used concept in systems
•  With a bunch of different names

–  Database community
•  Isolation and Isolated actions

–  Operating systems community
•  Mutual exclusion (mutex) and Critical sections

–  Computer architecture community
•  Atomicity and Atomic actions

30	

Using Locks
•  Developer must figure out the possible race conditions and

insert locks to prevent them
–  Puts a heavy load on the developer

•  Place acquire/release of locks in the code
–  Nothing is automatic
–  Forget one place, then you have race conditions
–  Forget to release a lock or try to acquire it twice, and you have likely

have a deadlock
–  How to avoid that?

31

Lock API
•  acquire(lock)
•  release(lock)

•  lock(lock)
•  unlock(lock)

Send with Locking: Correct?
send(bb, message):
 while True:
 if bb.in – bb.out < N:
 acquire(bb.send_lock)
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.send_lock)
 return

Send with Locking: the Correct Version
send(bb, message):
 acquire(bb.send_lock)
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.send_lock)
 return

LOCKS FOR FILE SYSTEM

Locks for File System
•  Consider a file system that has a move() function

–  Move a file from one directory to another
–  Step-1: removing the file from directory 1

•  unlink from directory 1

–  Step-2: Place the file in directory
•  link to directory 2

move(dir1, dir2, filename)
 unlink(dir1, filename)
 link(dir2, filename)

Approach 1: Coarse-grained Locking
 move(dir1, dir2, filename):
 acquire(fs_lock)
 unlink(dir1, filename)
 link(dir2, filename)
 release(fs_lock) move(dir1, dir2, file1.txt)

move(dir3, dir4, file2.txt)

Forbid possible concurrency

Approach 2: Fine-grained Locking
 move(dir1, dir2, filename):
 acquire(dir1.lock)
 unlink(dir1, filename)

 release(dir1.lock)
 acquire(dir2.lock)

 link(dir2, filename)
 release(dir2.lock)

Where is the file?

Approach 3: Fine-grained Locking + Holding Both Locks

 move(dir1, dir2, filename):
 acquire(dir1.lock)

 acquire(dir2.lock)
 unlink(dir1, filename)
 link(dir2, filename)

 release(dir1.lock)
 release(dir2.lock)

 A: move(M, N, file1.txt)
 B: move(N, M, file2.txt) // M and N swapped

Deadlock!

DEADLOCK
40

Approach 4: Fine-grained Locking + Solving Deadlock

 move(dir1, dir2, filename):
 if dir1.inum < dir2.inum:
 acquire(dir1.lock)
 acquire(dir2.lock)
 else:
 acquire(dir2.lock)
 acquire(dir1.lock)
 unlink(dir1, filename)
 link(dir2, filename)
 release(dir1.lock)
 release(dir2.lock)

•  dir.inum is the inumber of a
directory

•  Requires global reasoning
about all locks

•  Need a way to ensure locks are
acquired in the same order

•  Aka., ordered locking

Lock
Against race condition

Computer System Engineering, Spring 2015. (IPADS, SJTU)

Review: Enforcing Modularity via Virtualization
in order to enforce modularity + build an effective operating system

programs shouldn’t be able to refer to
(and corrupt) each others’ memory

programs should be able to
communicate

programs should be able to share a
CPU without one program halting the
progress of the other

Virtual memory

Bounded buffer (virtualize
communication links)

Assume one program
per CPU (for today)

Review: Bounded Buffer Send/Receive

3	

If the buffer is unavailable
yet, wait by spinning

Review: Multiple Sender
A

bb.in = 0, bb.out = 0

write m1 to buf[0]

set bb.in = 1

B

bb.in = 0, bb.out = 0

write m2 to buf[0]

set bb.in = 1

m1 lost!

Review: Send with Locking
send(bb, message):
 acquire(bb.send_lock)
 while True:
 if bb.in – bb.out < N:
 bb.buf[bb.in mod N] <- message
 bb.in <- bb.in + 1
 release(bb.send_lock)
 return

IMPLEMENTING THE LOCK

Lock Implementation (Incorrect)
structure lock {
 integer state;
}
void acquire (lock refrerence L) {
 while L.state = LOCKED {;} // spin until L is UNLOCKED
 L.state = LOCKED; // the while test failed, got the lock
}
void release (lock reference L) {
 L.state = UNLOCKED;
}

Race Condition Still Exists!

8	

Operation-1: Read L to check if its state is LOCKED

Operation-2: Write L to change its state to LOCKED
Not atomic!

A and B both have the Lock!

Need another lock?

RSM: READ and SET Memory (by Hardware)

1 procedure RSM (reference mem) // RSM memory location mem
2 do atomic
3 r ← mem // Load value stored at mem into r

4 mem ← LOCKED // Store LOCKED into memory location
5 return r

9	

Implementing ACQUIRE and RELEASE

1 procedure ACQUIRE (lock reference L)
2 R1 ← RSM (L.state) // read and set lock L

3 while R1 = LOCKED do // was it already locked?

4 R1 ← RSM (L.state) // yes, do it again, till we see it wasn’t
5
6 procedure RELEASE (lock reference L)
7 L.state ← UNLOCKED

10	

RSM: Test-and-Set
•  Test-and-Set

–  Load the memory, return its original value
–  Set the memory to 1 only if its original value is not 1
–  The load and set are combined as an atomic operation

•  ACQUIRE()
–  while	
 TEST_AND_SET(L)	
 ==	
 LOCKED	
 do	
 nothing	
 	

•  Other Versions of RSM
–  Compare-and-swap(v1, m, v2)
–  Non-blocking

11	

Using the One-Writer Principle (Software)

12	

Correctness
•  Two threads
–  Case-1:

•  A: Write A, Read B, -------------------
•  B: --------------------, Write B, Read A

–  Case-2:
•  A: Write A, ----------, Read B, ----------
•  B: ----------, Write B, ----------, Read A

–  Case-3:
•  A: Write A, -------------------- , Read B
•  B: ----------, Write B, Read A

13	

Bootstrapping
•  The faulty ACQUIRE has a multi-step operation on a shared

variable (the lock)
–  We must ensure in some way that ACQUIRE itself is a before-or-

after action

•  Once ACQUIRE is a before-or-after action
–  We can use it to turn arbitrary multi-step operations on shared

variables into before-or-after actions

14	

Bootstrapping
•  Solve the narrow problem using some specialized method

–  Might work for only that case
–  It takes advantage of the specific situation

•  The general solution then consists of two parts:
–  a method for solving the special case
–  a method for reducing the general problem to the special case

15	

Bootstrapping (In the case of ACQUIRE)
•  The solution for the specific problem is

–  Hardware: building a special hardware instruction that is itself is a
before-or-after action

–  Software: by some extremely careful programming

16	

Assumptions
•  Bus Arbiter

–  Guarantees that any single LOAD or STORE is a before-or-after
action with respect to every other LOAD and STORE

•  Each Entry of the Shared Array is:
–  in its own memory cell
–  the memory provides read/write coherence for memory cells

•  The instructions execute in program order

17	

Bus Arbiter Problem

18	

Arbiter	

Clock:	

B:	

A:	
 S:	
 A:	

B:	

Clock:	

•  Two async inputs (A, B), one sync output
–  Choose between two asynchronous input

•  If inputs are closely spaced
–  Output may be oscillating
–  Waiting longer only reduce the probability of oscillating

tE	
 S:	

LOCK PERFORMANCE

19	

Lock Granularity
•  Systems can be distinguished by number of locks and the

amount of share data they protect
•  Developer must choose a locking scheme to provides the

need amount of concurrency
–  Frequently concurrency leads to complexity

20	

Lock Granularity
•  Course-grain – Few locks protecting more data

+ Simpler, easier to reason about
- Less concurrency

•  Fine-grain – Many locks protecting smaller pieces of data
+ High amount of concurrency
- More complex
- Overhead for locks

21	

Simple Example of Granularity
•  Allocate a single lock and acquire the lock every time you enter the

subsystem and release it when you leave the subsystem
–  Advantage: Simple. As long as subsystem doesn’t call into itself recursively

everything is fine
–  Disadvantage: No concurrency

•  Frequently done if a subsystem doesn’t need concurrency while other
parts of the system does
–  Example: Many large software projects

•  Many modern operating systems (Example: Unix/Linux, NT)

22	

23

buffer_lock

One-writer Principle
•  If each variable has only one writer

–  Coordination becomes easier
–  Concurrency and read-only data is easy
–  Guide: Make as much data as you can have only a single writer

•  Privatization: Make data private to a thread
•  Allocate on thread stack
•  Array indexed by thread_id()

–  E.g. privateData[thread_id()]...

•  Focus locking scheme on data shared read/write

24	

DEADLOCK, LIVELOCK, OPTIMIZATION

Deadlock
•  If we had modified the code so that both threads acquire

the locks in the same order
–  (L1 and then L2, or vice versa)

–  No deadlock could have occurred

•  Again, small changes in the order of statements can result in
good or bad behavior

26	

Deadlock wait-for Graph

27	

Deadlock Theory
Four necessary and sufficient conditions for deadlock

1.  Limited access

–  Resource can only be shared with finite users.
2.  No preemption

–  Once resource granted, cannot be taken away.
3.  Multiple independent requests (hold and wait)

–  Don’t ask all at once (wait for next resource while holding current one)
4.  Cycle in wait for graph

28	

Deadlock & Making Progress
•  Inevitable if using locks in concurrency
–  1. Waiting for one another
–  2. Waiting for a lock by some deadlocked one
–  Correctness arguments ensures correctness, but no progress

•  Methods
–  Pessimistic ones: take a priori action to prevent
– Optimistic ones: detect deadlocks then fix up

29	

Methods for Solving Deadlock

•  Lock ordering (pessimistic)
– Number the locks uniquely
– Require transactions acquire locks in order
– Problem: some app may not predict all of the locks they

need before acquiring the first one

30	

Methods for Solving Deadlock

•  Backing out (optimistic)
– Allow acquire locks in any order
–  If it encounters an already-acquired lock with an number

lower than one it has previously acquired itself, then
•  UNDO: Back up to release its higher-numbered locks
•  Wait for the lower-numbered lock and REDO

31	

Methods for solving deadlock

•  Timer expiration (optimistic)
– Set a timer at begin_transaction, abort if timeout
–  If still no progress, another one may abort
– Problem: how to chose the interval?

32	

Methods for solving deadlock

•  Cycle detection (optimistic)
– Maintain a wait-for-graph in the lock manager

•  Shows owner and waiting ones
•  Check when transaction tries to acquire a lock

– Prevent cycle (deadlock)
•  Select some cycle member to be a victim

33	

Livelock
•  An interaction among a group of threads

–  Each thread is repeatedly performing some operations
•  E.g., context saving/restoring

–  But never able to complete the whole sequence of operations
•  E.g., process the network packets

34	

Thread
Virtualize the CPU

Computer System Engineering, Spring 2015. (IPADS, SJTU)

THREAD
Virtualizing CPU

2

Sharing a Processor Among Multiple Threads
•  Observation
– Many threads spend most of the time waiting

•  Waiting for specific condition
•  Most modules are consumers, e.g., mail reader

–  The processor can switch to another one
•  Synonyms
–  Time sharing
–  Processor multiplexing
– Multiprogramming, multithreading, multitasking

3

YIELD()

4

•  SEND & RECEIVE
–  Using spin loop
–  Waist processor

•  Using YIELD
–  When a thread calls YIELD(),

gives up the CPU
–  The state changes from

RUNNING to RUNNABLE
–  When YIELD() returns, the

thread gets another CPU

Implementing YIELD()
•  Assumptions

–  A fixed number of threads, e.g., 7
–  Fewer processors than threads
–  Threads share memory address space
–  Threads are already running

•  Don’t care creating or terminating

•  4 Procedures
–  ENTER_PROCESSOR_LAYER, GET_THREAD_ID, EXIT_PROCESSOR_LAYER, SCHEDULER()

•  2 Tables
–  processor_table: record current thread ID
–  thread_table: record thread SP

•  Protected by thread_table_lock

5

Thread Layer and Processor Layer
•  A thread runs in thread layer
•  A thread calls YIELD, enters processor layer
•  Saves the state of the running thread
– General purpose regs + PC + SP + CR3

•  Chose another runnable thread
•  Exit the processor layer and enter thread layer
•  The new thread runs in thread layer

Implementing YIELD()

YIELD: among the most mysterious [code] in an OS

Yield in a Nutshell

8

9

App

YIELD

ENTER

SCHED

YIELD ENTER SCHED EXIT

EXIT

SP-­‐1
ENTER

SP-­‐2

YIELD

YIELD

ENTER

SCHED

ENTER SCHED EXIT

EXIT

ENTER

YIELD

YIELD

SP-­‐1

YIELD

YIELD

SP-­‐2

A
P
P

A
P
P

Context Switch

Assumptions
•  Several Assumptions
– 1. Only fixed threads
– 2. All threads are runnable
– 3. Schedule using round-robin

10

Allocate a Thread
•  thread_id ←ALLOCATE_THREAD

(starting_procedure, address_space_id)
–  Allocate a new thread in address space address_space_id
–  The new thread is to begin with a call to the procedure

specified in the argument starting_procedure

–  Return
•  An identifier that names the just-created thread.
•  An error

11

Allocate a Thread
–  Allocate a range of memory in address space id

•  Used as the stack for procedure calls

–  Selects a processor
–  Set the processor’s PC to starting_procedure
–  Set the processor’s SP to the bottom of the allocated stack

–  thread_id <- ALLOCATE_THREAD (starting_procedure,
address_space_id)

12

Creating a Thread
•  ALLOCATE_THREAD

–  Allocate a new stack
–  Push address of EXIT_THREAD() as return address
–  Push address of starting_procedure as return address

•  starting_procedure is the start address of a thread

–  Initialize an entry in thread_table
–  Set state to RUNNABLE

13

star4ng_procedure	

EXIT_THREAD	

Stack	
 of	
 a	
 Thread

Start the Scheduler
•  Processor Thread
– Create a separate thread for each processor first
–  Its stack is not used for most of the time
•  Only used when running scheduler()

15

RUN_PROCESSOR
& Create Thread

SCHED

MAIN

RUN_PROCESSOR

EXIT_P

Thread	
 Create
EXIT_T

APP

Thread Exit
1 procedure EXIT_THREAD()
2 ACQUIRE (threadtable_lock)
3 threadtable[tid].kill_or_continue ← KILL
4 ENTER_PROCESSOR_LAYER (GET_THREAD_ID (), CPUID)

16

Destroy a Thread
•  DESTROY_THREAD
– One thread kills another thread
– Problem: the target thread may be running, thus the

calling thread cannot just free its resource
– Solution: asynchronization: set KILL and return
•  Wait for the thread to be destroyed when SCHEDULER

17

18

APP

EXIT_T

ENTER_P EXIT_P

SCHED

Thread	
 	

Exit

EXIT_P ENTER_P

YIELD

APP

Thread Exit

The New Scheduler()

19

16 procedure SCHEDULER ()
17 while shutdown = FALSE do
18 ACQUIRE (threadtable_lock)
19 for i from 0 until 7 do
20 if threadtable[i].state = RUNNABLE then
21 threadtable[i].state ← RUNNING
22 processor_table[CPUID].thread_id ← i
23 EXIT_PROCESSOR_LAYER (CPUID, i)
24 if threadtable[i].kill_or_continue = KILL then
25 threadtable[i].state ← FREE
26 DEALLOCATE(threadtable[i]. stack)
27 threadtable[i]. kill_or_continue = CONTINUE
28 RELEASE (threadtable_lock)
29 return // Go shut down this processor

20

App

YIELD

ENTER

SCHED

YIELD ENTER SCHED EXIT

EXIT
SP-­‐1

ENTER
SP-­‐2

YIELD

YIELD ENTER SCHED EXIT

YIELD

YIELD

SP-­‐1

YIELD

YIELD

SP-­‐2

A
P
P

A
P
P

SCHED

ENTER

SCHED

EXIT ENTER

MAIN

SCHED

SP	
 of	
 Processor	
 Thread SP	
 of	
 Processor	
 Thread

EXIT

MAIN

SCHED

EXIT

Context Switch

21

22	

23	

24	

25

thread_table_lock
1
2

3
4

5

6

7

8

9
10

11

12

26

1
2

3
4

9
10

11

12

5

6

7

8

Stack	
 changes	
 to	
 	

processor	
 thread

Stack	
 changes	
 back	

thread_table_lock

27

1
2

3
4

9
10

11

5

6

7

8

Stack	
 changes	
 to	
 	

processor	
 thread

Stack	
 changes	
 back	

First time of a thread

start_procedure()

Q:	
 s4ll	
 hold	
 the	
 lock?	

Preemptive Scheduling
•  Non-preemptive Scheduling

–  A thread continues to run until it gives up its processor

•  Cooperative Scheduling (cooperative multitasking)
–  Every thread is supposed to call YIELD periodically

•  Preemptive Scheduling

–  The thread manager force a thread to give up its processor after a time interval

28

Implement Preemptive Scheduling
•  Set the interval timer of a clock device
•  When the timer expires
–  The clock triggers an interrupt
–  Switching to kernel mode in the processor layer to invoke

clock interrupt handler
•  The clock interrupt handler invokes an exception

handler
–  Runs in the thread layer
–  Forces the currently running thread to yield

29

Problem: Before-or-after Again
•  Interrupt Handler Calls Exception Handler

–  Interrupt handler
•  Trigger: clock interrupt
•  Context: Processor

–  Exception handler
•  Trigger: YIELD(), EXIT_THREAD()
•  Context: Thread

–  Problem
•  The contexts are different, e.g., the double-acquire lock problem
•  Should also ensures before-or-after
•  Solution: disable interrupt when acquire thread_table_lock, and enable interrupt when

release the lock
30

Address Space Isolation between Threads
•  Virtual address space

–  Thread manager is aware of the address space
–  Switch address space while doing thread switch
–  ENTER_PROCESSOR_LAYER saves PMAR in the thread_table
–  EXIT_PROCESSOR_LAYER loads PMAR of the new thread

•  Sharing thread manager
–  Map both the instructions and the data of the thread manager into the same

set of virtual addresses in every virtual address space

31

OS Structures
Monolithic kernel, Micro-kernel, Virtual Machine

Computer System Engineering, Spring 2015. (IPADS, SJTU)

Enforcing Modularity via Virtualization
in order to enforce modularity + build an effective operating system

programs shouldn’t be able to refer to
(and corrupt) each others’ memory

programs should be able to
communicate

programs should be able to share a
CPU without one program halting the
progress of the other

Virtual memory

Bounded buffer (virtualize
communication links)

Thread (virtualize processors)

today: can we rely on the kernel to work properly?

Kernel Complexity

3	

Monolithic Kernel
•  Linux is Monolithic

–  No enforced modularity (e.g., Linux)
–  Many good software engineering techniques used in practice
–  But ultimately a bug in the kernel can affect entire system

•  How can we deal with the complexity of such systems?
–  One result of all this complexity: bugs!

4	

Linux Fails
•  A kernel bug can

–  Cause the whole Linux system to fail

•  Is it a good thing that Linux lasted this long?
–  Problems can be hard to detect, even if they may still do damage
–  E.g., maybe my files are now corrupted, but system didn't crash
–  Worse: adversary can exploit a bug to gain unauthorized access

5	

Linux Bugs

Source: Bugzilla.kernel.com, count of all bugs currently marked NEW, ASSIGNED,
REOPENED, RESOLVED, VERIFIED, or CLOSED, by creation data

TYPES OF OS STRUCTURE

7	

Monolithic Kernel
•  The kernel must be a trusted intermediary for the memory

manager hardware,
–  Many designers also make the kernel the trusted intermediary for all

other shared devices
•  The clock, display, disk

–  Modules that manage these devices must be part of the kernel program
•  The window manager, network manager , file manager

•  Monolithic kernel
–  Most of the operating system runs in kernel mode

8	

Monolithic Kernel
•  Pros
–  Relatively few crossings
–  Shared kernel address space
–  Performance

•  Cons
–  Flexibility
–  Stability
–  Experimentation

9	

Microkernel
•  We would like to keep the kernel small
•  Reduce the number of bugs
•  Restrict errors in the module which generates the error

–  The file manager module error may overwrite kernel data
structures unrelated to the file system

–  Causing unrelated parts of the kernel to fail

10	

Monolithic Kernel: No Enforced Mudularity within the Kernel

Microkernel: Enforce Modularity by Putting Subsystems in User Space

Microkernel

•  System modules run in user mode in their own domain
•  Microkernel itself implements a minimal set of abstractions

–  Domains to contain modules
–  threads to run programs
–  virtual communication links

13	

Microkernel
•  Pros
–  Easier to develop services
–  Fault isolation
–  Customization
–  Smaller kernel => easier to optimize

•  Cons
–  Lots of boundary crossings
–  Really poor performance

14	

Microkernel VS. Monolithic Kernel
•  Few microkernel OS

–  Mach, L4

•  Most widely-used operating systems have a mostly
monolithic kernel
–  the GNU/Linux operating system
–  the file and the network service run in kernel mode
–  the X Window system runs in user mode

15	

Microkernel VS. Monolithic Kernel
1.  The system is unusable if a critical service fails

–  No matter in user mode or kernel mode

2.  Some services are shared among many modules
–  It’s easier to implement these services as part of the kernel

program, which is already shared among all modules

3.  The performance of some services is critical
–  E.g., the overhead of SEND and RECEIVE supervisor calls may be

too large

16	

Microkernel VS. Monolithic Kernel
4.  Monolithic systems can enjoy the ease of debugging of

microkernel systems
–  good kernel debugging tools

5.  It may be difficult to reorganize existing kernel programs
–  There is little incentive to change a kernel program that already

works
–  If the system works and most of the errors have been eradicated

•  the debugging advantage of microkernel begins to evaporate
•  the cost of SEND and RECEIVE supervisor calls begins to dominate

17	

Microkernel VS. Monolithic Kernel
•  How to choose

–  a working system and a better designed, but new system
–  don’t switch over to the new system unless it is much better

•  The overhead of switching
–  learning the new design
–  re-engineering the old system to use the new design
–  rediscovering undocumented assumptions
–  discovering unrealized assumptions

18	

Microkernel VS. Monolithic Kernel
•  The uncertainty of the gain of switching

–  The claims about the better design are speculative
–  There is little experimental evidence that

•  microkernel-based systems are more robust than existing monolithic
kernels

19	

Another Solution
•  Problem:

–  Deal with Linux kernel bugs without redesigning Linux from scratch

•  One idea: run different programs on different computers
–  Each computer has its own Linux kernel; if one crashes, others not affected
–  Strong isolation (all interactions are client-server), but often impractical
–  Can't afford so many physical computers: hardware cost, power, space, ..

20	

VIRTUAL MACHINE

Run multiple Linux on a Single Computer?
•  Virtualization + Abstractions

–  New constraint: compatibility, because we want to run existing Linux kernel
–  Linux kernel written to run on regular hardware
–  No abstractions, pure virtualization

•  Approach is called "virtual machines" (VM):
–  Each virtual machine is often called a guest
–  The equivalent of a kernel is called a "virtual machine monitor" (VMM)
–  The VMM is often called the host

22	

Why Virtual Machine?
•  Consolidation

–  Run several different OS on a single machine

•  Isolation
–  Keep the VMs separated as error container
–  Fault tolerant

•  Maintenance
–  Easy to deploy, backup, clone, migrate

•  Security
–  VM introspection
–  Antivirus out of the OS

23	

Complete Machine Simulation
#define	
 REG_EAX	
 1;	

int32_t	
 eip;	

int32_t	
 regs[8];	

int32_t	
 segregs[4];	

...	

for	
 (;;)	
 {	

	
 	
 	
 read_instruction();	

	
 	
 	
 switch	
 (decode_instruction_opcode())	
 {	

	
 	
 	
 	
 	
 case	
 OPCODE_ADD:	

	
 	
 	
 	
 	
 	
 	
 int	
 src	
 =	
 decode_src_reg();	

	
 	
 	
 	
 	
 	
 	
 int	
 dst	
 =	
 decode_dst_reg();	

	
 	
 	
 	
 	
 	
 	
 regs[dst]	
 =	
 regs[dst]	
 +	
 regs[src];	

	
 	
 	
 	
 	
 	
 	
 break;	

	
 	
 	
 	
 	
 case	
 ..	

	
 	
 }	

	
 	
 eip	
 +=	
 instruction_length;	

} 	
 	
 	

Complete Machine Simulation
•  Emulate every single instruction from the guest OS
– Often too slow in practice
– Want to run most instructions directly on the CPU, like a

regular OS kernel

25	

Trap and Emulate
•  Idea

–  Why not run most of the instruction on hardware directly?
–  If the ISA of guest and host are the same

•  Problem
–  Some privileged instruction cannot be run by untrusted guest OS
–  E.g., cli (disable interrupt), load cr3 (change the page table)

•  Solution
–  Trap these privileged instruction and emulate them in software

Trap and Emulate
•  De-privileging guest kernel

–  VMM emulates the effect on system or
hardware resources of privileged instructions
whose execution traps into the VMM

–  Typically achieved by running Guest OS at a
lower hardware priority level than the VMM
•  E.g., ring-3

–  Problematic on some architectures where
privileged instructions do not trap when
executed at deprivileged priority

resource	

	
 	
 	
 	
 	
 vmm	

privileged
instruction

trap

GuestOS

resource	

emulate change

change

Virtualization
•  Memory virtualization

–  Enable each guest VM has its own virtual MMU
–  Keep isolation between guest VMs

•  CPU virtualization
–  Enable each guest VM has its own kernel and user modes
–  Keep isolation between guest’s kernel and user modes

•  I/O virtualization
–  Enable each guest VM has its own virtual devices

MEMORY VIRTUALIZATION

Virtualizing Memory
•  VMM constructs a page table that maps guest

address to host physical address
– E.g., if guest VM has 1GB of memory, it can access

memory address 0~1GB
– Each guest VM has its own mapping for memory

address 0, etc.
– Different host physical address used to store data for

those memory locations

30	

Virtualizing the PTP Register & Page Tables
•  Terminology: 3 levels of addressing now

–  Guest virtual. Guest physical. Host physical
–  Guest VM's page table contains guest physical address
–  Hardware page table must point to host physical address (actual DRAM

locations)

•  Setting hardware PTP register to point to guest page table would not
work
–  Processes in guest VM might access host physical address 0~1GB
–  But those host physical addresses might not belong to that guest VM

31	

One Solution: Shadow Pages
•  Shadow Paging

–  VMM intercepts guest OS setting the virtual PTP register
–  VMM iterates over the guest page table, constructs a

corresponding shadow PT
–  In shadow PT, every guest physical address is translated into host

physical address
–  Finally, VMM loads the host physical address of the shadow PT
–  Shadow PT is per process

32	

Shadow Page Table

33	

HPA	

Guest	
 VM	

GPT	

GVA	

SPT	
 HPT	

GPA	

What if Guest OS Modifies Its Page Table?
•  Hardware would start using the new page table's mappings

–  Virtual machine monitor has a separate shadow page table

•  Goal:
–  VMM needs to intercept when guest OS modifies page table, update

shadow page table accordingly

•  Technique:
–  use the read/write bit in the PTE to mark those pages read-only
–  If guest OS tries to modify them, hardware triggers page fault
–  Page fault handled by VMM: update shadow page table

Another Solution: Hardware Support
•  Hardware Support for Memory Virtualization
–  Intel’s EPT (Extended Page Table)
– AMD’s NPT (Nested Page Table)

•  Another Table
– EPT for translation from GPA to HPA
– EPT is controlled by the hypervisor
– EPT is per-VM

36	

GVA	

GPA	

HPA	

Guest	
 VM	
 VMM	

VA	

PA	

PT	

EPT	
 PT	

Root	
 mode	
 Non-­‐root	
 mode	

CPU VIRTUALIZATION

38	

Virtualizing the U/K bit
•  Hardware U/K bit should be set to 'U':
– Otherwise guest OS can do anything

•  Behavior affected by the U/K bit:
– 1. Whether privileged instructions can be executed (e.g.,

load PTP)
– 2. Whether pages marked "kernel-only" in page table

can be accessed

39	

Virtual U/K Bit
•  Implementing a virtual U/K bit:
–  VMM stores the current state of guest's U/K bit (in some

memory location)
–  Privileged instructions in guest code will cause an exception

(U mode)
•  VMM exception handler's job will be to emulate these instructions

–  "trap and emulate”
•  E.g., if load PTP instruction runs in virtual K mode, load shadow PT.

Otherwise, send an exception to the guest OS, so it can handle it

40	

PTP Exception

41	

Virtual U/K Bit

43	

Protect Kernel-only Pages
•  How do we selectively allow / deny access to

kernel-only pages in guest PT?
– Hardware doesn't know about our virtual U/K bit

•  Idea:
– Generate two shadow page tables, one for U, one for K
– When guest OS switches to U mode, VMM must invoke

set_ptp(current, 0)

44	

Sequence Coordination
Order matters

Computer System Engineering, Spring 2015. (IPADS, SJTU)

CONDITION VARIABLE

2

Condition Variables
•  Condition Variable
–  A condition variable (cv) object names a condition that a thread

can wait for
–  A waiting thread will be waked up only if the condition is ready

•  API:
–  WAIT(cv, lock): go to sleep (release lock while sleeping, re-acquire

later)
–  NOTIFY(cv): wake up any threads that have gone to sleep w/

same cv

3

Send with wait/notify (Incorrect)

4

release(bb.lock)	

wait(bb.full)	

acquire(bb.lock)	

Send with wait/notify
•  Do we really need a while loop with CV?

–  Strawman alternative: if buffer is full, wait() and then store message
–  Problem: many senders might wake up from wait() after just one

receive()
–  Must re-check that there's still space after we re-acquired the lock

•  What happens if send() notifies but there's no receiver waiting?
–  No one gets woken up, but that's OK: a later receiver will re-check

(in>out)

5

The Lost Notify Problem
•  Condition variable itself has no memory/state
– wait() and then notify(): wait() returns
– notify() and then wait(): wait() does not return
•  This is potentially prone to race conditions
•  The lock argument to wait() helps solve this -- will return to it

later

6

The Lost Notify Problem

7

Send with wait(bb.full, bb.lock)

8

release(bb.lock)	

wait(bb.full)	

acquire(bb.lock)	

Why Does it Works?
•  Before-or-after Atomicity

–  Suppose two thread: T0 & T1
•  T0 check/wait called before OR after T1 update

–  1. T0 check -> T0 wait -> T1 update -> T1 notify
•  Not lost

–  2. T1 update -> T0 check
•  No wait, so no lost notify
•  In this case, T0 doesn't go to sleep because the check sees T1's update

•  In practice, condition associated with data structure, which has a
lock
–  This is the lock that's associated with the cv/wait

9

Wait

10

Wait and notify

11

Recall: Original Yield

12

Yield for wait, first attempt

13

Yield for wait

14

Interrupt When Yield?
•  What happens if timer interrupt occurs when CPU is

running yield / yield_wait?
– Problem: t_lock already locked
•  When timer tries to call yield(), acquire(t_lock) will hang

forever

– Solution: hardware mechanism to disable interrupts
•  Disable interrupts before acquiring t_lock, re-enable after

releasing it

15

yield_wait():
 id = cpus[CPU].thread
 threads[id].sp = SP
 SP = cpus[CPU].stack

 do:
 id = (id + 1) mod N
 release(t_lock)
 enable_interrupt()
 disable_interrupt()
 acquire(t_lock)
 while threads[id].state != RUNNABLE

 threads[id].state = RUNNING
 SP = threads[id].sp
 cpus[CPU].thread = id

 16

Interrupt When Yield?
•  What if timer interrupt comes in when yield_wait() briefly

releases t_lock?
–  Interrupts not masked because yield_wait() released t_lock
–  Can't call yield: we would put the wrong thread to sleep!
–  Solution:

•  First set cpus[].thread to null in yield_wait()
•  Don't call yield if cpus[].thread is null in interrupt handler

17

18

yield_wait():
 id = cpus[CPU].thread
 cpus[CPU].thread = null
 threads[id].sp = SP
 SP = cpus[CPU].stack

 do:
 id = (id + 1) mod N
 release(t_lock)
 enable_interrupt()
 disable_interrupt()
 acquire(t_lock)
 while threads[id].state != RUNNABLE

 threads[id].state = RUNNING
 SP = threads[id].sp
 cpus[CPU].thread = id

Summary for Condition Variable
•  Previous Solution: Polling
– Spinning
– Periodically yield() and recheck

•  Condition Variable
– Wait for the condition to be ready
– Still need loop to recheck

19

EVENTCOUNT & SEQUENCER

20

Single Sender and Single Receiver

21

4 Primitives
•  AWAIT (eventcount, value)
•  ADVANCE (eventcount)
•  TICKET (sequencer)
•  READ (eventcount or sequencer)

22

Primitives for Sequence Coordination
•  AWAIT (eventcount, value) is a before-or-after action
–  Compares eventcount to value
–  If eventcount exceeds value

•  AWAIT returns to its caller.

–  If eventcount is less than or equal to value
•  Changes the state of the calling thread to WAITING
•  Places value and the name of eventcount in this thread’s entry in the

thread table
•  Yields its processor

23

Primitives for Sequence Coordination
•  ADVANCE (eventcount) is a before-or-after action
–  Increments eventcount by one
– Searches the thread table for threads that are waiting on

this eventcount
– For each one it finds,
•  If eventcount now exceeds the value for which that thread is

waiting
•  Changes that thread’s state to RUNNABLE

24

Primitives for Sequence Coordination
•  TICKET (sequencer) is a before-or-after action
– Returns a non-negative value that increases by one on

each call
– Two threads concurrently calling TICKET on the same

sequencer
•  Receive different values
•  The ordering of the values returned corresponds to the time

ordering of the execution of TICKET

25

Primitives for Sequence Coordination
•  READ (eventcount or sequencer) is a before-or-after

action
– Returns to the caller the current value of the variable
– Having an explicit READ procedure is to assure before-

or-after atomicity for eventcounts and sequencers whose
value may grow to be larger than a memory cell

26

Multiple Senders and Single Receiver

27

No	
 loop!	
 Is	
 it	
 OK?

28

Implementation

Thread State Diagram

29

System Performance
Design for performance

Computer System Engineering, Spring 2015. (IPADS, SJTU)

HPA	

Guest	
 VM	

GPT	

GVA	

SPT	
 HPT	

GPA	

Review: SPT

Guest	
 OS	
 View	

Guest	
 App	
 View	
 Guest	
 App	
 View	

Enforcing Modularity via Virtualization
in order to enforce modularity + build an effective operating system

programs shouldn’t be able to refer to
(and corrupt) each others’ memory

programs should be able to
communicate

programs should be able to share a
CPU without one program halting the
progress of the other

Virtual memory

Bounded buffer (virtualize
communication links)

Thread (virtualize processors)

today: can we get systems to not just work, but to work well?

Improving Performance
•  Get faster hardware

•  Fix application: better algorithm, fewer features (not in CSE)

•  General system optimization techniques:
–  Batching
–  Caching
–  Concurrency
–  Scheduling

Hardware	

System	

Applica9on	

Moore's Law

Performance Metrics
Computer Systems can be viewed as interconnected modules

★ Capacity
★ Utilization
★ Latency
★ Throughput

Performance Metrics: Capacity
Capacity – Size or amount of a service

Blocks on storage or memory devices
Cycles on a processor
Requests per second for a web server
Bits per second on a network link

Performance Metrics: Utilization
Utilization – Fraction of capacity used by a workload

CPU is 50% busy, rest in idle loop
75% of disk blocks are allocated
Webserver is running at 20% of capacity
20% of the time network is busy

Performance Metrics: Latency
The time it takes from start to finish

Webserver – Time from request to response
Network – Time from send() until receive() done
Procedure – Time from call until return

For a multi-step process (Steps A + B)
LatencyA+B ≥ LatencyA + LatencyB

Stage-­‐1	

Stage-­‐1	

…	

Stage-­‐n	

Response	

Request	

Service	

Performance Metrics: Throughput
Rate at which work is done
Webserver – Requests per second
Network – Bytes per second
Procedure – Calls per second

Pipeline of modules
ThoughputA+B ≤ minimum(ThroughputA, ThroughputB)
Bottleneck

100	

1000	
 10	

Relationship between Latency & Throughput

When processing is serial:
Throughput = 1 / (Latency)

When processing is parallel:
Throughput has no direct relationship with latency

How to improve throughput?
Reduce latency & Increase paralleling

Throughput and Latency
•  Few users

–  Low latency
–  Low throughput (few users = few requests)

Throughput and Latency
•  Moderate users

–  Low latency (new users consume previously idle resources)
–  High throughput (more users = more requests)

Throughput and Latency
•  Many users

–  High latency (requests queue up)
–  Throughput plateaus (cannot serve requests any faster)

Improving Bottlenecks
•  Latency is the harder of the problems

–  Frequently fundamental limits
–  Speed of CPU
–  Speed of communication link (e.g., light)

•  Throughput frequently is a resource limit
–  Example: Buy a fatter pipe but it costs more
–  Famous saying: You can buy throughput but you can’t bribe god

Latency Improves Slowly

Fast Path for Latency Optimizations
•  Use knowledge of the workload
•  Make the common cases faster

if (WorksOnFastPath(request))
 DoFastCase(request);

Else
 DoNormalCase(request);

•  E.g., cache hit VS. cache miss

Stage-­‐1	

Stage-­‐2	

…	

Stage-­‐n	

Response	

Request	

Slow	
 path	

Stage	

Fast	
 path	

Fast Path for Latency Optimizations
•  AverageLatency = Frequencyfast x Latencyfast + Frequencyslow x Latencyslow

•  Is introducing a fast path worth the effort?
–  depends on the difference of latency,
–  and the frequency using fast path,
–  which is dependent on the workload

•  Many workloads don’t have a uniform distribution of requests,
–  thus introducing a fast path works well

Caching: Classic Fast Path Optimization

•  Use knowledge of workload: memory abstractions
–  Keep common requests in a fast local memory
–  Check the local memory every access

•  CPU cache – Cache 1ns, Memory 100ns, 90% hit rate
–  AverageLatency = 0.9 x 1ns + 0.1 x 100ns = 10.9 ns (100ns ->

10.9ns)

•  Used everywhere there are memory abstractions
–  Processors, file systems, TLBs, browsers, DNS, etc.

Another Fast Path Example
•  Consider a request stream of different types
•  Some are very simple and some are very complex

•  Optimization:
 if (FastPath(request)) {

 Handle simple cases in highly optimized code
 } else {

 Handle request in full generality
 }

Reducing Latency using Concurrency
•  Example: Google search engine

–  Splits the index of the Web up in n pieces, each piece on a machine
–  Frontend sends copies of requests and combines the response

•  If subtasks are independent to each other
–  Can use n threads to get a speedup of n
–  Hard to get the ideal speedup

•  10 months a man -> 1 month 10 men?

Frontend	

Index	

Node	

Index	

Node	

Index	

Node	

Using Concurrency to Improve Throughput

Hide Latency by Overlapping
•  Fetch (5 time units) and process (5 units) 2 blocks (20 units)

–  Fetch B1; Process B1; Fetch B2; Process B2;

•  Fetch 2 blocks asynchronously (15 units)
–  Send request for B1,B2;
–  Receive B1; Process B1; Receive B2; Process B2

•  Processors prefetching memory requests
–  File systems prefetching files
–  Browser prefetching pages

Fetch	
 B1	
 Process	
 B1	
 Fetch	
 B2	
 Process	
 B2	

Fetch	

B1,B2	
 Process	
 B1	

Fetch	
 B2	

Process	
 B2	

Queuing and Overload
•  Overload: whenever the offered load is greater than the capacity of a

service for some duration
–  E.g., 7 threads on 3 processors, must wait in queue (RUNNABLE)

•  The queuing theory
–  Unit is the average service time
–  The waiting time in a queue: 1/(1-ρ), ρ is the utilization
–  Once the utilization approaches 1, the delay will grow without bound

Queuing and Overload
•  One solution

–  Make the capacity match the offered load of requests
•  Example:

–  CPU: one instruction per ns; memory: respond takes 10 ns
–  CPU must make a memory request 10 ns in advance
–  Memory must serve 10 requests concurrently

•  If half instructions are memory request, then only 5 concurrently
•  But cannot predicate the pattern of memory access

Queuing and Overload
•  If overload appears short period of time
–  A queue handles short bursts of too much demand by time-

averaging with adjacent periods when there is excess
capacity

•  If overload persists over long periods of time
–  Increase the capacity of the system
–  Shed load: reduce or limit the offered load

Queuing and Overload
•  Offered load: the rate of arrival of requests for service
•  Using bounded buffer to control offered load

–  Self managing, if the a source needs the results of the output
–  If source makes no request at all, then offered load decreases
–  If source holds the request and resubmits it later, offered load doesn't decrease
–  Put a quota on the source (e.g., max threads per application)

•  Reducing the offered load when a stage becomes
overloaded: e.g., swapping

FIGHTING BOTTLENECKS

Why Performance Bottleneck?
1. Physical limitation
– Speed of light
– The capacity of memory
– …

2. Sharing
– Several users share a device
– Several clients share a server

How to Improve Performance?
1. Measure the system to find the bottleneck
2. Relax the bottleneck
– Batch requests
– Cache data
– Exploit concurrency
– Exploit parallelism

Batching
•  Frequently it is possible to group requests for more efficiency

–  Amortize overheads of processing
–  Schedule requests for better performance

•  Examples: N messages vs. one message with N requests Disks:
–  Always transfer a bunch of bytes (sector or block)
–  Schedule the disk motions

Dallying
•  Procrastination sometimes helps

–  Temp files – deleted before written to disk

•  Examples:
–  Caches – Write back policy: Write absorption
–  Database transactions – group commit

•  Might hold your ATM request until others arrive to do batching

Speculation
•  Guessing at an operation and performing it ahead a time

–  Need to be able to undo changes if wrong

•  Examples:
–  Processors guess at branches, memory access
–  File systems guess at next file block needed (prefetching)
–  Easier if space of possibilities is small
–  Branch prediction versus value prediction

Challenges
•  Batching, dallying, and speculation introduce

complexity
– They introduce concurrency
– Coordination is difficult to get right

CASE: I/O BOTTLENECK

The I/O Bottleneck
•  Bits read from a disk encounter two potential transfer rate limits

–  The rate at which bits spin under the heads on their way to a buffer
–  The rate at which the I/O channel or I/O bus can transfer the contents

The I/O Bottleneck
•  Average seek latency: about 8 milliseconds

–  Time to move the head over 1/3 of the disk

•  The average rotational latency: 4.17 milliseconds
–  The disks spin at 7200 rotations/minute
–  One rotation every 8.33 milliseconds
–  On average, the disk has to wait a half rotation for the desired

block to be under the disk head

A Typical Modern 400 Gigabyte Disk
•  Has 16,383 cylinders, or about 24 megabytes per cylinder
•  Would have 8 two-sided platters and thus 16 read/write heads
•  Would be 24/16 = 1.5 megabytes per track
•  When rotating at 7200 revolutions per minute
•  The bits will go by a head at 180 megabytes per second

Bottleneck
•  The IDE bus: 66 MB/S is common
•  The Serial ATA-3 bus: 6 Gbps

•  With IDE bus: The electronics would be the bottleneck
–  at 66 MB/S

•  With SATA-3 bus: The mechanics would be the bottleneck
–  at 180 MB/S

Latency of 4-KB Data Accessing (Using IDE)
•  The latency of reading a 4 kilobyte block chosen at random:
•  avg seek time + avg rotation latency + transmission of 4 kilobytes
•  = 8 + 4.17 + (4 / (66 × 1024)) × 1000 milliseconds
•  = 8 + 4.17 + 0.06 milliseconds
•  = 12.23 milliseconds

•  The throughput for reading randomly-chosen blocks one by one is:
•  = 1000/12.23 × 4 kilobytes per second
•  = 327 kilobytes/second

Round-1: No Optimization
•  1 in ← OPEN (“in”, READ) // open “in” for reading
•  2 out ← OPEN (“out”, WRITE) // open “out” for reading
•  3
•  4 while not ENDOFFILE (in) do
•  5 block ← READ (in, 4096) // read 4 kilobyte block from in
•  6 block ← COMPUTE (block) // compute for 1 millisecond
•  7 WRITE (out, block, 4096) // write 4 kilobyte block to out
•  8 CLOSE (in)
•  9 CLOSE (out)

•  reading 4 kilobyte + 1 millisecond of computation + writing 4 kilobyte
•  = 12.23 + 1+ 12.23 milliseconds
•  = 25.46 milliseconds

Round-2
•  Modify the file system
–  to layout the blocks of a file contiguously
–  to prefetch an entire track of data on each read

•  Average seek time + 1 rotational delay
•  = 8 + 8.33 milliseconds = 16.33 milliseconds

Round-2
•  File system issues 1 read request per 384 (1.5 MB per track / 4 KB) loop iterations
•  The average time for 384 iterations is:
•  reading 1536 kilobyte + 384× (1 millisecond of computation + writing 4 kilobyte)
•  = 16.33 + 384 × (1 + 12.23) millisecond
•  = 16.33 + 5080.32 milliseconds
•  = 5096.65 milliseconds.
•  Thus, the average time for a loop iteration is 5096.65/384 = 13.27 milliseconds

Round-3
•  Improve by dallying & batching write requests
•  Write to buffer in RAM and flush when buffer is full
•  Latency = (16.33 + 384 + 16.33)/384 milliseconds
•  = 1.09 milliseconds

Round-4
•  Prefetch the next track before the 385th READ
•  Overlap computation and I/O completely
•  The average time around the loop is 1 millisecond
•  The bottleneck now is the CPU

Performance

Computer System Engineering, Spring 2015. (IPADS, SJTU)

CACHE POLICIES
Multi-level Memory

Analyzing Multilevel Memory Systems
•  Only consider the adjacent pair of levels

–  View it as a two level multilevel memory system
–  The first one is primary device, the second is secondary device

Locality of Reference and Working Sets
•  All information items stored in the memory must not have equal frequency of use

•  If accesses to every cell of the primary and secondary devices were of equal
frequency,

•  The primary device is L2 cache with 1 nanosecond latency and the secondary
device is main memory with 10 nanoseconds latency
–  0.99 + 0.10 = 1.09 nanoseconds

Locality of Reference and Working Sets
•  In many situations most memory references are to a small

set of addresses for significant periods of time

•  As the application progresses, the area of concentration of
access shifts, but its size still typically remains small

•  Called "locality of reference"
–  Temporal locality and spatial locality
–  Thrashing: repeated movement of data back and forth between

two levels

Multilevel Memory Management Policies
•  Each level of multilevel memory system can be

characterized by 4 items
–  The string of references directed to that level
–  The bring-in policy for that level
–  The removal policy for that level
–  The capacity of the level

Page-removal Policies
•  First-in, first-out (FIFO) page-removal policy

–  Remove the page that has been in the primary device the longest

•  Belady’s anomaly
–  Performance drops with a larger primary device capacity!

•  Optimal (OPT) page-removal policy
–  Choose for removal the page that will not be needed for the longest time

•  Least-recently-used (LRU) page-removal policy
–  The page in the primary device that has not been used for the longest time

First-in, First-out (FIFO) Page-Removal Policy
•  The page for removal is the one that has been in the

primary device the longest

Belady's Anomaly
•  Increase of missing-page exception numbers with a larger

primary device capacity

OPT (Optimal) Page-Removal Policy
•  Always choose for removal the page that will not be

needed for the longest time

LRU

Least-recently-used (LRU) Page Removal Policy

•  A program that runs from top to bottom
•  the virtual memory that is larger than primary device

•  LRU: always evicts exactly the wrong page

•  Most-recently-used (MRU) page-removal policy

Comparative Analysis of Different Policies
•  Ways of deciding the following two things:

–  How large the primary memory device should be?
–  Which page removal policy to use?

•  Collecting traces of the reference strings of typical programs that are
to be run

•  Simulate the multilevel memory manager with:
–  Different configurations - Size of primary device
–  Page removal policy - Traces of memory access

Stack Algorithms
•  Subset property

–  For the optimal policy, at all times
–  the pages it keeps in the 3-page memory
–  is a subset of that it keeps in the 4-page memory

•  No Belady’s anomaly if subset property holds
–  At all times and
–  For every possible capacity of primary device
–  It creates a total ordering for pages at a given time

Stack Algorithms for LRU
•  It can perform a simulation for all possible primary memory size with

a single pass through a given reference string

Efficiency of Page-Removal Policies
•  Clock page-removal algorithm

–  Base on a hardware setting bit
–  Reference bit
–  Move clockwise
–  If T, set F
–  Choose as the victim otherwise

•  Random removal policy
–  For TLB

•  Directed mapping

SCHEDULING

Scheduling
•  Algorithm that assigns requests to resources

•  Processor time – Threads
•  Physical memory – Address spaces
•  Printers – Printer jobs
•  Disks – Disk requests
•  Networks – Packets
•  Memory bus – Memory requests

Challenges of Scheduling
•  Easy – if number of requests ≤ resources

•  Lack of information

–  Packet scheduling and streaming media

•  Lack of mechanism to enforce policies

–  Give high priority to CPU scheduler, but if can’t get to the disk or network …

•  Getting mechanism right

–  Many schedulers break rather than gracefully degrade under load

Example: Livelock under Overload
•  Web news server overloaded

– Most of the time is spend to handle interrupt and drop
requests

– No progress at all!

The Ideal Scheduler
•  Mini latency: How long a service takes? E.g., Move mouse, cursor moves

•  Max throughput: Max jobs / time. E.g., Web server pages/second

•  Low overheads: Scheduler doesn’t use any resources

•  Fairness: everyone gets to make progress, no one starves

•  Scales linearly up to capacity: Graceful handling of overload

•  System-level goal may conflict with the needs of individual threads
–  System: minimal preemption
–  Apps: finish ASAP

Measuring the Request’s Response
•  Turn-around time: - The length of time from when a request arrives at

a service until it completes

•  Response time: The length of time from when a request arrives at a
service until it starts producing output

•  Waiting time: The length of time from when a request arrives at a
service until the service starts processing the request

First Come First Server (FCFS)
•  Fairness paramount
•  Good for printer Scheduler

First Come First Server (FCFS)
•  For the processor

–  One thread that periodically waits for I/O but mostly computes
–  Several threads that perform mostly I/O operations

•  For the scheduler
–  It runs the I/O-bound threads first
–  Then runs the computation intensive thread
–  All quickly finished computations and waiting for I/O

Convoy Effect
•  When I/O devices are idle

–  The I/O-bound threads will quickly finish computations and start I/O operations
–  The processor-bound thread will run for a long time
–  I/O-bound operations will finish I/O operation and queuing up for computation
–  All the I/O devices will become idle!

•  When processor is idle
–  The processor-bound thread finishes computation and starts I/O operation
–  The I/O-bound threads will quickly finish computations and start I/O operations
–  Processor will become idle!

Shortest-Job-First
•  Chooses the job that has the shortest expected run time
•  Require a prediction of the running time of a job before running
•  Starvation: several short jobs makes a long job starve

Round-Robin
•  Select the first job from queue as in the first-come first-serve policy
•  Stop the job after some period of time, and select a new job

Comparing the Three Policies

Wait time before start Wait time till done

Priority Scheduling Policy
•  Priority Scheduling Policy

–  Assign each job a priority number (static vs. dynamic)
–  Select the job with the highest priority number
–  Must have some rule to break ties

•  Modern CPU schedulers have
–  Priorities: Run job with the highest priority
–  Round Robin: Alternate among jobs of same priority, preempt a

job if it holds CPU too long

CPU Scheduling Policy
•  Assign priorities to jobs

– Give high priorities to I/O-bound jobs
– Give low priorities to CPU-bound jobs
– Handles I/O-bound and CPU-bound jobs nicely

CPU Scheduling Policy
•  Challenge: distinguish I/O-bound and CPU-bound

•  Look at past behavior to predict the future
–  Linux: Priority of job is function of amount of CPU it has used

•  Counterintuitive:
–  More CPU a job uses/needs, the lower its priority
–  The less CPU it uses, the higher its priority
–  Avoids starvation problems: Not running gives you a higher priority

The Priority Inversion Problem
•  Problem: what if a high priority thread waits for a low

priority one which holding a lock?
•  Solution: priority inheritance

Real-Time Scheduling
•  Processes are not time insensitive
•  Missed deadline = incorrect behavior

•  Soft real time: Display video frame every 30th of sec
•  Hard real time: “apply-breaks” process in your car

•  Scheduling more than one thing: memory, network
bandwidth, CPU all at once

Earliest Deadline First (EDF)
•  Keep the queue of jobs sorted by deadline
•  Run the first of the queue
•  Minimize the total lateness of all the jobs

•  How to know deadline?
–  Specified by tasks themselves
–  In the form of (C, P), C for second, P for period
–  The scheduler rejects new task if sum(Ci/Pi) > 1

Disk Scheduling Goals
•  Minimize time spent waiting on disk mechanisms

– Moving the disk arm
– Waiting for sector to rotate under disk heads

•  Fairness
– Should not make requests wait too long

Disk Scheduling Goals

Disk Scheduling Goals

Shortest-­‐Seek-­‐First Elevator	
 Algorithm

Introduction to Network
As a component, and as a system itself

Computer System Engineering, Spring 2015. (IPADS, SJTU)

Why Learn About Networks?
•  Many computer systems use the network
•  The Internet is an interesting example of a

successful system

Why do We Need Network?
•  We need network to transfer data

•  Considerations
–  Data size
–  Data type
–  Transfer speed: throughput vs. latency
–  Transfer distance
–  Transfer method
–  …

3	

d(tech)/dt for Networks

4	

Networks are Heterogeneous

5	

Layers in Network
•  Link layer

–  Moving data directly from one point to another

•  Network layer
–  Forwarding data through intermediate points to the place it is wanted

•  End-to-end layer
–  Everything else required to provide a comfortable application interface

•  Application
–  Can be thought of as a fourth layer
–  Not part of the network

6	

OSI, TCP/IP & Protocol Stack

7th Application Layer

6th Presentation Layer

4th Transport Layer

3th Network Layer

2nd Link Layer

1st Physical Layer

Application Layer HTTP

TCP

Ethernet

UDP

IP

PPP …

SMTP POP3 FTP …

ICMP
ARP & RARP

Transport Layer

5th Session Layer

Network Layer

Link Layer

End-to-end Layer

Network Layer

Link Layer

OSI TCP/IP CSE

WiFi Fiber TD-LTE FDD …

Question
•  What do we talk when we talk about Internet
– Which layer does the Internet reside in?

The Internet “Hour Glass”

9	

•  More people, more useful
–  Value to me = N
–  Value to society is N2

•  Network, dumb vs. smart
–  Standardize vs. flexibility

•  Network is a black box
–  Simplify the system that uses it

Application Layer
•  Entities

–  Client and server
–  End-to-end connection

•  Name space:
–  URL

•  Protocols
–  HTTP, FTP, POP3, SMTP, etc.

•  What to care?
–  Content of the data: video, text, …

10	

<html>	

	
 	
 	
 	
 <head>	

	
 	
 	
 	
 	
 	
 	
 	
 <2tle>Google</2tle>	

	
 	
 	
 	
 	
 	
 	
 	
 <script>window.google=…..	
 </script>	

	
 	
 	
 	
 </head>	

	
 	
 	
 	
 <body>	
 	
 …	
 	
 </body>	

</html>	

Transport Layer
•  Entities

–  Sender and receiver
–  Proxy, firewall, etc.
–  End-to-end connection

•  Name space: port number
•  Protocols: TCP, UDP, etc.
•  What to care?

–  TCP: Retransmit packet if lost
–  UDP: nothing

11	

Packet Format of TCP & UDP

12	

TCP	

UDP	

•  Network entities
–  Gateway, bridge
–  Router, etc.

•  Name space
–  IP address

•  Protocols
–  IP, ICMP (ping)

•  What to care?
–  Next hop decided by route table

Network Layer (the Internet Layer, IP Layer)

13	

IP Datagram (Packet, Package)

14	

Header

10101011101010101010010101010100101010100
11010010101010010101111111010000011101111
10100001011101010100110101011110100000101
00100000000010101000011010000111111010101
......... 1011011001010100011001001010110

Data

TCP/IP Architecture: Internet Layer
•  Each layer adds/strips off its own header
•  Each layer may split up higher-level data
•  Each layer multiplexes multiple higher layers
•  Each layer is (mostly) transparent to higher layers

16	

Applica2on	

Transport	

Internet	

Network	
 Interface	

Applica2on	

Transport	

Internet	

	
 	
 	
 	
 Network	
 Interface	

Internet	

	
 	
 	
 Network	
 Interface	

Network	
 1	
 Network	
 2	

Machine	
 A	
 Machine	
 B	

Router/Gateway	

TCP/IP Architecture: Internet Layer

IPv4 Address

Class	
 Leading	

address	
 bits	

Range	
 of	

first	
 octet	

Network	
 ID	

format	

Host	
 ID	

format	

Number	
 of	

networks	

Number	
 of	

addresses	

A	
 0	
 0	
 -­‐	
 127	
 a	
 b.c.d	
 27	
 =	
 128	
 224	
 =	
 16777216	

B	
 10	
 128	
 -­‐	
 191	
 a.b	
 c.d	
 214	
 =	
 16384	
 216	
 =	
 65536	

C	
 110	
 192	
 -­‐	
 223	
 a.b.c	
 d	
 221	
 =	
 2097152	
 28	
 =	
 256	

17	

	

	
 Start	
 END	
 No.	
 of	
 addresses	

	

24-­‐bit	
 Block	
 (/8	
 prefix,	
 1	
 ×	
 A)	
 10.0.0.0	
 10.255.255.255	
 16777216	

20-­‐bit	
 Block	
 (/12	
 prefix,	
 16	
 ×	
 B)	
 172.16.0.0	
 172.31.255.255	
 1048576	

16-­‐bit	
 Block	
 (/16	
 prefix,	
 256	
 ×	
 C)	
 192.168.0.0	
 192.168.255.255	
 65536	

Private	
 IPv4	
 network	
 ranges	

Historical	
 classful	
 network	
 architecture	

IP Route Table

18	

ICMP Protocol
•  Ping

–  Test the reachability of a host
–  Measure the RTT (Round Trip Time)

•  "Ping of death" attack
–  Sending a ping larger than 65535 bytes
–  Many computer could not handle and then crash
–  Fixed since 1997 & 1998

•  "Ping flooding" attack
–  DoS (Denial of Service)

19	

Link Layer (& Physical Layer)
•  Network entities

–  Hub, switcher, etc.
–  Twisted line, cable line, etc.

•  Name space
–  No name needed

•  Protocols
–  Ethernet, ATM, etc.
–  ARP, RARP, etc.

•  What to care?
–  Physical transfer, error detection, etc.

20	

Frame Format of Ethernet

21	

Packet Encapsulation

22Bytes	
 20Bytes	
 20Bytes	
 4Bytes	

64	
 to	
 1500	
 Bytes	

LINK LAYER
From a node to its physical neighbor

23	

The Link Layer
•  The bottom-most layer of the three layers
•  Purpose: moving data directly from one physical location to another

•  1. Physical transmission
•  2. Multiplexing the link
•  3. Framing bits & bit sequences
•  4. Detecting transmission errors
•  5. Providing a useful interface to the up layer

24	

Physical Transmission using Shared Clock
•  Example-1: moving a bit from register-1 to register-2 on the same chip

–  Run a wire to connect output of reg-1 to input of reg-2
–  Wait till reg-1's output has settled & signal has propagated to reg-2
–  Reg-2 read input the next clock tick
–  Assumption: propagation can be done within one clock

•  How to send data between two modules without sharing a clock?

Physical Transmission without Shared Clock
•  Three-wire ready/acknowledge protocol

–  1. A places data on data line
–  2. A changes value on the ready line
–  B sees the ready line change, reads value on the data line, then changes the

acknowledge line

•  B: when to look at the data line?
•  A: when to stop holding the bit value on the data line?

Parallel Transmission
•  Propagation time ∆t
–  It takes more than 2∆t to send one bit
– The max data rate is 1/(2∆t)

•  Parallel transmission
– Use N parallel data lines to achieve N/(2∆t)
– E.g. SCSI, printer, etc.

Parallel vs. Serial
•  Ready/acknowledge protocol

–  ∆t grows significantly, which limits the data rate

•  Serial transmission
–  Send a stream of bits down a single line
–  Without waiting for any response from the receiver
–  Expect the receiver can recover the bits with no additional signal
–  Higher rates, longer distance, fewer wires
–  E.g., USB, SATA

Signal Transmission on Analog Line

29	

•  It is hard for B to understand the signal
–  B doesn't have a copy of A's clock, so when to sample the signal?

VCO: Voltage Controlled Oscillator
•  How to make two ends agree on the data rate without clock line?

•  The receiver run a VCO at about the same data rate
•  VCO's output is multiplied by the voltage of incoming signal
•  The product is suitably filtered and sent back to adjust the VCO

•  VCO will finally be locked to both the frequency and phase of the arriving signal: phase-
locked loop

•  Then the VCO becomes a clock source for the receiver

•  Problem: if no transition in the stream (e.g., a lot of zero), the phase-locked loop cannot
synchronize

Manchester Code
•  Solution: sender encodes the data to ensure transitions
•  Phase encoding: at least 1 level transition for a bit

–  Manchester code: 0 -> 01, 1 -> 10
–  Max data rate is only half, but simple enough

Manchester	

Encoding	

Polar	
 NRZ	

1	
 0	
 1	
 0	
 1	
 1	
 0	
 0	
 1	

Sharing a Connection
•  Isochronous communication (telephone communication)

–  Needs prior arrangement between switches
–  Connection: set up and tear down
–  Stream: continuous bits flows out of a phone

•  Asynchronous communication (data communication)
–  Message: burst, ill-suited to fixed size and spacing of isochronous

frames
–  Connectionless, asynchronous

32	

Isochronous Multiplexing

33	

•  Telephone network
–  Leverage "virtual link" for connection
–  "network is busy" when no available time slot

Isochronous - TDM

34	

•  64 Kbps each phone, 45 Mbps link
•  8-bit block (frame), 8000 frames per second
•  5624 bit times or 125 us
•  703 simultaneous conversations
•  Q: Why the voice is still continuous, instead of fragmented?

Data Communication Network

35	

•  Data communication network usually contains burst communication
•  Different from the telephone network

Frame and Packet: Asynchronous Link
•  Frame can be of any length, carried at any time that the link is free
•  Packet: a variable-length frame with its guidance info
•  Connectionless transmission: no state maintained
•  Segment and reassemble
•  Packet voice: replacing many parts of isochronous network

36	

Multiplexing / Demultiplexing

•  Multiplex using a queue: switch need memory/buffer
•  Demultiplex using information in packet header

–  Header has destination
–  Switch has a forwarding table that contains information about which link to

use to reach a destination

37	

Switch	

Framing Frames
•  Where a frame begins and ends

•  Independent from framing bits
–  Some model separates link layer to 2: one for bits and one for frames

•  Simple method
–  Choose a pattern of bits, e.g. 7 one-bits in a row, as a frame-separator
–  Bit stuffing: if data contains 6 ones in a row, then add an extra bit (0)

38	

Error Handling
•  Error detection code

–  Adding redundancy: e.g., checksum at the end

•  What to do if detect an error
–  Error correction code: with enough redundancy

•  Where noise is well understood, e.g., disk

–  Ask sender to resend: sender holds frame in buffer
–  Let receiver discard the frame
–  Blending these techniques

39	

Coding: Incremental Redundancy
•  Forward error correction

–  Perform coding before storing or transmitting
–  Later decode the data without appealing to the creator

•  Hamming distance
–  Number of 1 in A ⊕ B , ⊕ is exclusive OR (XOR)
–  If H-distance between every legitimate pair is 2

•  000101, can only detect 1-bit flip

–  If H-distance between every legitimate pair is 3
•  Can only correct 1 bit flip

–  If H-distance between every legitimate pair is 4
•  Can detect 2-bit flip, correct 1-bit flip

40	

Example-1: Simple Parity Check
•  2 bits -> 3 bits

–  Detect 1-bit errors
–  8 patterns total

•  Only 4 correct patterns
–  00 -> 000
–  11 -> 110
–  10 -> 101
–  01 -> 011

•  Hamming distance of this code is 2
–  1-bit flipping will cause incorrect pattern

41	

Example-2: 4-bit -> 7-bit

•  4 bits -> 7 bits (56 using only extra 7)
–  3 extra bits to distinguish 8 cases
–  e.g. 1101 -> 1010101

•  Correct 1-bit errors
–  1010101 -> 1010001 : P1 & P4 not match
–  1010101 -> 1110101 : P2 not match

42	

1	
 1	
 0	
 1	
 0	
 1	
 0	

1	
 1	
 0	
 1	
 0	
 1	
 0	

1	
 1	
 0	
 1	
 0	
 1	
 0	

Not	
 Match	
 Error	

None	
 None	

P1	
 P1	

P2	
 P2	

P4	
 P4	

P1	
 &	
 P2	
 P3	

P1	
 &	
 P4	
 P5	

P2	
 &	
 P4	
 P6	

P1	
 &	
 P2	
 &	
 P4	
 P7	

1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 6	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 7	

Network Layer
It’s all about routing

Computer System Engineering, Spring 2015. (IPADS, SJTU)

Why Learn About Networks?
•  Many computer systems use the network
•  The Internet is an interesting example of a

successful system

Review: OSI, TCP/IP & Protocol Stack

7th Application Layer

6th Presentation Layer

4th Transport Layer

3th Network Layer

2nd Link Layer

1st Physical Layer

Application Layer HTTP

TCP

Ethernet

UDP

IP

PPP …

SMTP POP3 FTP …

ICMP
ARP & RARP

Transport Layer

5th Session Layer

Network Layer

Link Layer

End-to-end Layer

Network Layer

Link Layer

OSI TCP/IP CSE

WiFi Fiber TD-LTE FDD …

Review: Manchester Code
•  Solution: sender encodes the data to ensure transitions
•  Phase encoding: at least 1 level transition for a bit

–  Manchester code: 0 -> 01, 1 -> 10
–  Max data rate is only half, but simple enough

Manchester	

Encoding	

Polar	
 NRZ	

1	
 0	
 1	
 0	
 1	
 1	
 0	
 0	
 1	

Review: 4-bit -> 7-bit Encoding

•  4 bits -> 7 bits (56 using only extra 7)
–  3 extra bits to distinguish 8 cases
–  e.g. 1101 -> 1010101

•  Correct 1-bit errors
–  1010101 -> 1010001 : P1 & P4 not match
–  1010101 -> 1110101 : P2 not match

5	

1	
 1	
 0	
 1	
 0	
 1	
 0	

1	
 1	
 0	
 1	
 0	
 1	
 0	

1	
 1	
 0	
 1	
 0	
 1	
 0	

Not	
 Match	
 Error	

None	
 None	

P1	
 P1	

P2	
 P2	

P4	
 P4	

P1	
 &	
 P2	
 P3	

P1	
 &	
 P4	
 P5	

P2	
 &	
 P4	
 P6	

P1	
 &	
 P2	
 &	
 P4	
 P7	

1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 6	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 7	

IP: Best-effort Network
•  Best-effort network

–  If it cannot dispatch, may discard a packet

•  Guaranteed-delivery network
–  Also called store-and-forward network, no discarding data
–  Work with complete messages rather than packets
–  Uses disk for buffering to handle peaks
–  Tracks individual message to make sure none are lost

•  In real world
–  No absolute guarantee
–  Guaranteed-delivery: higher layer; best-effort: lower layer

6	

Duplicate Packets and Suppression
•  Discarding packets is common case

–  Many network protocol includes timeout and resend mechanism

•  When a congested forwarder discards a packet
–  Client doesn’t receive a response as quickly as originally hoped
–  Users may prepared for duplicate requests and responses
–  Detecting duplicates may or may not be important

7	

The Network Layer

•  Addressing interface
–  Network attachment points
–  Network address
–  Source & destination

•  NETWORK_SEND (segment_buffer, destnation, network_protocol, end_layer_protocol)
•  NETWORK_HANDLE (packet, network_protocol)

8	

Network Layer Interface
structure	
 packet	
 	

	
 	
 	
 	
 bit_string	
 source	
 	

	
 	
 	
 	
 bit_string	
 destination	
 	

	
 	
 	
 	
 bit_string	
 end_protocol	
 	

	
 	
 	
 	
 bit_string	
 payload	

9	

Accumulation of Headers and Trailers

10	

1	
 procedure	
 NETWORK_SEND	
 (segment_buffer,	
 destination,	
 	

2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 net_protocol,	
 end_protocol)	

3	
 	
 	
 	
 	
 packet	
 instance	
 outgoing_packet	
 	

4	
 	
 	
 	
 	
 outgoing_packet.payload	
 ←	
 segment_buffer	
 	

5	
 	
 	
 	
 	
 outgoing_packet.end_protocol	
 ←	
 end_protocol	
 	

6	
 	
 	
 	
 	
 outgoing_packet.source	
 ←	
 MY_NETWORK_ADDRESS	
 	

7	
 	
 	
 	
 	
 outgoing_packet.destination	
 ←	
 destination	
 	

8	
 	
 	
 	
 	
 NETWORK_HANDLE	
 (outgoing_packet,	
 net_protocol)	

	

9	
 procedure	
 NETWORK_HANDLE	
 (net_packet,	
 net_protocol)	
 	

10	
 	
 	
 	
 packet	
 instance	
 net_packet	
 	

11	
 	
 	
 	
 if	
 net_packet.destination	
 !=	
 MY_NETWORK_ADDRESS	
 then	

12	
 	
 	
 	
 	
 	
 	
 	
 next_hop	
 ←	
 LOOKUP	
 (net_packet.destination,	
 forwarding_table)	

13	
 	
 	
 	
 	
 	
 	
 	
 LINK_SEND	
 (net_packet,	
 next_hop,	
 link_protocol,	
 net_protocol)	

14	
 	
 	
 	
 else	

15	
 	
 	
 	
 	
 	
 	
 	
 GIVE_TO_END_LAYER	
 (net_packet.payload,	
 	

16	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 net_packet.end_protocol,	
 net_packet.source)	

11	

sendproc

NETWORK_SEND

NETWORK_HANDLE

GIVE_TO_END_LAYER

LINK_SEND

GIVE_TO_NETWORK
_HANDLER

LINK_RECEIVE

sendproc

net_handler[]

link_protocol[]

LOOKUP

struct packet
 source
 destination
 end_protocol
 payload

struct frame
 struct checked_cnt
 net_protocol
 payload
 checksum

Managing the Forwarding Table: Routing
•  Routing (or path-finding)

–  Constructing the tables

•  Impractical by hand
–  Determining the best paths requires calculation
–  Recalculating the table when links change
–  Recalculating the table when link fails
–  Adapt according to traffic congestion

•  Static routing vs. adaptive routing
–  Adaptive routing requires exchange of info

13	

IP Route Table

14	

Path Vector Exchange
•  Each participant maintains a path vector

–  A complete path to some destination
–  E.g. zero-length path to itself
–  Gradually learns about other paths
–  Construct a new forwarding table from its new path vector

•  Algorithm
–  Advertising
–  Path selection

15	

Path Vector Exchange

16	

•  Need coordination to ensure no loop

A	

G	

17	

Path vector exchange routing algorithm
//	
 Maintain	
 routing	
 and	
 forwarding	
 tables.	
 	

vector	
 associative	
 array	
 	
 //	
 vector[d_addr]	
 contains	
 path	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 to	
 destination	
 d_addr	

neighbor_vector	
 instance	
 of	
 vector	
 //	
 A	
 path	
 vector	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 received	
 from	
 some	
 neighbor	
 	

my_vector	
 instance	
 of	
 vector	
 //	
 My	
 current	
 path	
 vector.	
 	

addr	
 associative	
 array	
 //	
 addr[j]	
 is	
 the	
 address	
 of	
 the	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 network	
 attachment	
 point	
 at	
 the	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 other	
 end	
 of	
 link	
 j.	
 my_addr	
 is	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 address	
 of	
 my	
 network	
 attachment	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 point.	
 A	
 path	
 is	
 a	
 parsable	
 list	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 of	
 addresses,	
 e.g.	
 {a,b,c,d}	

18	

Path vector exchange routing algorithm
procedure	
 main()	
 	

	
 	
 SET_TYPE_HANDLER	
 (HANDLE_ADVERTISEMENT,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 exchange_protocol)	
 	

	
 	
 clear	
 my_vector;	
 	

	
 	
 do	
 occasionally	

	
 	
 	
 	
 for	
 each	
 j	
 in	
 link_ids	
 do	

	
 	
 	
 	
 	
 	
 status	
 ←	
 SEND_PATH_VECTOR	
 (j,	
 my_addr,	
 my_vector,	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 exch_protocol)	

	
 	
 	
 	
 	
 	
 if	
 status	
 !=	
 0	
 then	

	
 	
 	
 	
 	
 	
 	
 	
 clear	
 new_vector	

	
 	
 	
 	
 	
 	
 	
 	
 FLUSH_AND_REBUILD	
 (j)	

19	

Path vector exchange routing algorithm
procedure	
 HANDLE_ADVERTISEMENT	
 (advt,	
 link_id)	

	
 	
 addr[link_id]	
 ←	
 GET_SOURCE	
 (advt)	

	
 	
 neighbor_vector	
 ←	
 GET_PATH_VECTOR	
 (advt)	

	
 	
 for	
 each	
 neighbor_vector.d_addr	
 do	

	
 	
 	
 	
 new_path	
 ←	
 {addr[link_id],	
 neighbor_vector[d_addr]}	

	
 	
 	
 	
 if	
 my_addr	
 is	
 not	
 in	
 new_path	
 then	

	
 	
 	
 	
 	
 	
 if	
 my_vector[d_addr]	
 =	
 NULL)	
 then	

	
 	
 	
 	
 	
 	
 	
 	
 my_vector[d_addr]	
 ←	
 new_path	

	
 	
 	
 	
 	
 	
 else	

	
 	
 	
 	
 	
 	
 	
 	
 my_vector[d_addr]	
 ←	
 SELECT_PATH	
 (new_path,	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 my_vector[d_addr])	

	
 	
 FLUSH_AND_REBUILD	
 (link_id)	

20	

Path vector exchange routing algorithm
procedure	
 SELECT_PATH	
 (new,	
 old)	
 	

	
 	
 if	
 first_hop(new)	
 =	
 first_hop(old)	
 then	
 return	
 new	

	
 	
 else	
 if	
 length(new)	
 ≥	
 length(old)	
 then	
 return	
 old	

	
 	
 else	
 return	
 new	

	

procedure	
 FLUSH_AND_REBUILD	
 (link_id)	

	
 	
 for	
 each	
 d_addr	
 in	
 my_vector	
 	

	
 	
 	
 	
 if	
 first_hop(my_vector[d_addr])	
 =	
 addr[link_id]	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 and	
 new_vector[d_addr]	
 =	
 NULL	
 	

	
 	
 	
 	
 	
 	
 then	

	
 	
 	
 	
 	
 	
 delete	
 my_vector[d_addr]	

	
 	
 REBUILD_FORWARDING_TABLE	
 (my_vector,	
 addr)	

21	

Question on Path Vector
•  How do we avoid permanent loops?

–  When a node updates its paths, it never accepts a path that has itself

•  What happens when a node hears multiple paths to the
same destination?
–  It picks the better path

•  What happens if the graph changes?
–  Algorithm deals well with new links
–  To deal with links that go down, each router should discard any path that a

neighbor stops advertising

22

Hierarchical Address Assignment & Routing
•  Two problems of the implementation

–  Every attachment point must have a unique address
–  The path vector grows in size with the number of attachment

points

•  Hierarchy
–  Tow parts of network address: region & station, e.g., “11,75”
–  Regions correspond to the set of closely-connected entities
–  Region 11 has only 1 entry in other region routers’ table
–  First forward to region, then to station

23	

Hierarchical Address Assignment & Routing

24	

Hierarchical Address Assignment & Routing
•  Problems introduced by hierarchy: more complex
– Binding address with location
•  has to change address after changing location

– Paths may no longer be the shortest possible
•  Algorithm has less detailed information

•  More about hierarchy
– Can extend to more levels
– Different places can have different levels

25	

NAT (Network Address Translation)
•  Private network

–  Public routers don’t accept routes to network 10

•  NAT router: bridge the private networks
–  Router between private & public network
–  Send: modify source address to temp public address
–  Receive: modify back by looking mapping table

•  Limitations
–  Some end-to-end protocols place address in payloads
–  The translator may become the bottleneck
–  What if two private network merge?

26	

NAT

Control-plane VS. Data-plane
•  Control-plane

–  Control the data flow by defining rules
–  E.g., the routing algorithm

•  Data-plane
–  The data-path which copies data according to the rules
–  Performance critical
–  E.g., the IP forwarding process

•  Interface: the routing table
–  Control-plane write the table, data-plane read the table

Inside a Router

29

Forwarding an IP Packet
•  Lookup packet’s DST in forwarding table

–  If known, find the corresponding outgoing link
–  If unknown, drop packet

•  Decrement TTL (Time To Live)
–  Drop packet if TTL is zero

•  Update header checksum
•  Forward packet to outgoing port
•  Transmit packet onto link

30

Data-plane Case: Intel’s DPDK
•  DPDK: Data Plane

Development Kit
•  NIC

–  Has several ports
–  A port has RX/TX

•  Processor
–  Read packets from RX

•  Polling

–  Find output port
–  Write packets to TX

RouteBricks [SOSP’09]

RouteBricks [SOSP’09]
•  The performance of parallel

and pipeline

Reporting Network Layer Errors
•  The buffers of the router were full, so the packet had to be discarded
•  The buffers of the router are getting full - please stop sending so many packets
•  The region identifier part of the target address does not exist
•  The station identifier part of the target address does not exist
•  The end type identifier was not recognized
•  The packet is larger than the maximum transmission unit of the next link
•  The packet hop limit has been exceeded

•  What about sending report when checksum is error?

34	

Reporting Network Layer Errors
•  Cross layers error message

–  Originates in the network layers, is delivered to the end-to-end layer
–  Violating the separation of layers?

•  Error reporting protocol: best-effort
–  Reliable protocol adds a lot
–  Can be thought of hints, not essential
–  E.g. ICMP (ping)
–  Hop limit exceeded
–  Learn the smallest MTU by “MTU exceeded” error

35	

CASE: ETHERNET MAPPING
Mapping Internet to Ethernet

Case Study: Mapping Internet to Ethernet
•  Listen-before-sending rule, collision
•  Ethernet: CSMA/CD

–  Carrier Sense Multiple Access with Collision Detection

•  Ethernet type
–  Experimental Ethernet, 3mpbs
–  Standard Ethernet, 10 mbps
–  Fast Ethernet, 100 mbps
–  Gigabit Ethernet, 1000 mbps	

37	

Overview of Ethernet
•  A half duplex Ethernet

–  The max propagation time is less than the 576 bit times, the shortest allowable
packet

–  So that two parties can detect a collision together
–  If collision: wait random first time, exponential backoff if repeat

•  A full duplex & point-to-point Ethernet
–  No collisions & the max length of the link is determined by the physical

medium	

38	

Broadcast Aspects of Ethernet

•  Broadcast network
–  Every frame is delivered to every station
–  (Compare with forwarding network)

•  ETHERNET_SEND
–  Pass the call along to the link layer

•  ETHERNET_HANDLE
–  Simple, can even be implemented in hardware	

39	

Broadcast Aspects of Ethernet
procedure	
 ETHERNET_HANDLE	
 (net_packet,	
 length)	

	
 	
 destination	
 ←	
 net_packet.target_id	

	
 	
 if	
 destination	
 =	
 my_station_id	
 	

	

	
 	
 	
 	
 then	
 	

	
 	
 	
 	
 GIVE_TO_END_LAYER	
 (net_packet.data,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 net_packet.end_protocol,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 net_packet.source_id)	

	
 	
 else	

	
 	
 	
 	
 ignore	
 packet	

40	

no	
 need	

to	
 do	
 any

	
 forward
ing

Broadcast Aspects of Ethernet
procedure	
 ETHERNET_HANDLE	
 (net_packet,	
 length)	

	
 	
 destination	
 ←	
 net_packet.target_id	

	
 	
 if	
 destination	
 =	
 my_station_id	
 	

	
 	
 	
 	
 	
 	
 or	
 destination	
 =	
 BROADCAST_ID	
 	

	
 	
 	
 	
 then	

	
 	
 	
 	
 GIVE_TO_END_LAYER	
 (net_packet.data,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 net_packet.end_protocol,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 net_packet.source_id)	

	
 	
 else	

	
 	
 	
 	
 ignore	
 packet	

41	

Layer Mapping: Attach Ethernet to Forwarding Network

•  L sends a RPC to N by sending to station 18 of link 1
•  L sends a RPC to E by sending to K, E may have 15 as address, as well as M	

42	

15

Layer Mapping
•  The Internet network layer
– NETWORK_SEND (data, length, RPC, INTERNET, N)
– NETWORK_SEND (data, length, RPC, ENET, 18)

•  L must maintain a table	

43	

ARP (Address Resolution Protocol)
•  NETWORK_SEND (“where is M?”, 11, ARP, ENET, BROADCAST)
•  NETWORK_SEND (“M is at station 15”, 18, ARP, ENET, BROADCAST)
•  L ask E’s Ethernet address, E does not hear the Ethernet broadcast, but

the router at station 19 does, and it sends a suitable ARP response instead
•  Manage forwarding table as a cache

44	

ARP & RARP Protocol

45	

•  Name mapping: IP address <-> MAC address

ARP Spoofing: A Design Flaw

46	

End-to-end Layer
Best-effort is not enough

Computer System Engineering, Spring 2015. (IPADS, SJTU)

Review: IP: Best-effort Network
•  Best-effort network

–  If it cannot dispatch, may discard a packet

•  Guaranteed-delivery network
–  Also called store-and-forward network, no discarding data
–  Work with complete messages rather than packets
–  Uses disk for buffering to handle peaks
–  Tracks individual message to make sure none are lost

•  In real world
–  No absolute guarantee
–  Guaranteed-delivery: higher layer; best-effort: lower layer

2	

Review: Path Vector Exchange

3	

•  Need coordination to ensure no loop

A	

G	

4	

Review: NAT (Network Address Translation)
•  Private network

–  Public routers don’t accept routes to network 10

•  NAT router: bridge the private networks
–  Router between private & public network
–  Send: modify source address to temp public address
–  Receive: modify back by looking mapping table

•  Limitations
–  Some end-to-end protocols place address in payloads
–  The translator may become the bottleneck
–  What if two private network merge?

5	

Src IP: 192.168.1.2
Dst IP: 173.194.72.104
Src Port: 54321
Dst Port: 80

Data

Src IP: 202.120.40.85
Dst IP: 173.194.72.104
Src Port: 60001
Dst Port: 80

Data

Netgate 192.168.1.1 202.120.40.85 173.194.72.104

Src IP: 173.194.72.104
Dst IP: 192.168.1.2
Src Port: 80
Dst Port: 54321

Data

Dst IP: 202.120.40.85
Src IP: 173.194.72.104

Src Port: 80
Dst Port: 60001

Data

Src IP Src
Port

NAT
Port

192.168.1.2 54321 60001

192.168.1.2 12345 60002

...

192.168.1.2

Review: Control-plane VS. Data-plane
•  Control-plane

–  Control the data flow by defining rules
–  E.g., the routing algorithm

•  Data-plane
–  The data-path which copies data according to the rules
–  Performance critical
–  E.g., the IP forwarding process

•  Interface: the routing table
–  Control-plane write the table, data-plane read the table

Review: Mapping IP to Ethernet
•  The Internet network layer
– NETWORK_SEND (data, length, RPC, INTERNET, N)
– NETWORK_SEND (data, length, RPC, ENET, 18)

•  L must maintain a table	

8	

ARP (Address Resolution Protocol)
•  NETWORK_SEND (“where is M?”, 11, ARP, ENET, BROADCAST)
•  NETWORK_SEND (“M is at station 15”, 18, ARP, ENET, BROADCAST)
•  L ask E’s Ethernet address, E does not hear the Ethernet broadcast, but

the router at station 19 does, and it sends a suitable ARP response instead
•  Manage forwarding table as a cache

9	

ARP & RARP Protocol

10	

•  Name mapping: IP address <-> MAC address

ARP Spoofing: A Design Flaw

11	

END-TO-END LAYER

The End-to-end Layer
•  Network layer has no guarantees on:
– Delay - Order of arrival
–  Certainty of arrival - Accuracy of content
–  Right place to deliver

•  End-to-end layer
– No single design is likely to suffice
–  Transport protocol for each class of application

13	

Famous Transport Protocols
•  UDP (User Datagram Protocol)

–  Be used directly for some simple applications
–  Also be used as a component for other protocols

•  TCP (Transmission Control Protocol)
–  Keep order, no missing, no duplication
–  Provision for flow control

•  RTP (Real-time Transport Protocol)
–  Built on UDP
–  Be used for streaming video or voice, etc.

•  No “one size fits all”
14	

Assurance of End-to-end Protocol
1.  Assurance of at-least-once delivery
2.  Assurance of at-most-once delivery
3.  Assurance of data integrity
4.  Assurance of stream order & closing of connections
5.  Assurance of jitter control
6.  Assurance of authenticity and privacy
7.  Assurance of end-to-end performance

15	

1. Assurance of At-least-once Delivery
•  RTT (Round-trip time)
–  to_time + process_time + back_time (ack)

•  At least once on best effort network
–  Send packet with nonce
–  Sender keeps a copy of the packet
–  Resend if timeout before receiving acknowledge
–  Receiver acknowledges a packet with its nonce

•  Try limit times before returning error to app

16	

1. Assurance of At-least-once Delivery

17	

•  Dilemma
–  1. The data was not delivered
–  2. The data was delivered, but no ACK received
–  No way to know which situation

•  At-least-once delivery
–  No absolute assurance for at-least-once
–  Ensure if it is possible to get through, the message

will get through eventually
–  Ensure if impossible to confirm delivery, app will know
–  No assurance for no-duplication

How to Decide Timeout?
•  Fixed timer: dilemma of fixed timer

–  Too short: unnecessary resend
–  Too long: take long time to discover lost packets

•  Adaptive timer
–  E.g., adjust by currently observed RTT, set timer to 150%
–  Exponential back-off: doubling from a small timer

•  NAK (Negative AcKnowledgment)
–  Receiver sends a message that lists missing items
–  Receiver can count arriving segments rather than timer
–  Sender can have no timer (only once per stream)

18	

Fixed Timer is Evil	

•  Fixed Timers Lead to Congestion Collapse in NFS
•  Emergent Phase Synchronization of Periodic

Protocols
•  Wisconsin Time Server Meltdown	

19	

Congestion Collapse in NFS 	

•  Using at-least-once with stateless interface

–  Persistent client: repeat resending forever
–  Server: FIFO

•  Timeout when queuing and the client will resend
–  The server re-execute the resent request and waste time
–  When the queue becomes longer, waste more time and collapse

•  Lesson: Fixed timers are always a source of trouble, sometimes
catastrophic trouble	

20	

Emergent Phase Synchronization of Periodic Protocols

•  Periodic polling
–  E.g. picking up mail, sending “are-you-there?”
–  A workstation sends a broadcast packet every 5 minutes
–  All workstations try to broadcast at the same time

•  Each workstation
–  Send a broadcast
–  Set a fixed timer

•  Lesson: Fixed timers have many evils. Don’t assume that unsynchronized
periodic activities will stay that way	

Wisconsin Time Server Meltdown	

•  NETGEAR added a feature to wireless router

–  Logging packets -> timestamp -> time server (SNTP) -> name discovery ->
128.105.39.11

–  Once per second until receive a response
–  Once per minute or per day after that

•  Wisconsin Univ.
–  On May 14, 2003, at about 8:00 a.m
–  From 20,000 to 60,000 requests per second, filtering 23457
–  After one week, 270,000 requests per second, 150Mbps

22	

Wisconsin Time Server Meltdown	

•  Lesson(s)
– Fixed timers, again
– Fixed Internet address
– The client implements only part of a protocol
•  There is a reason for features likes the “go away” response in

SNTP	

23	

RTT Could be Highly Variable

24

Calculating RTT and Timeout (in TCP)
•  Exponentially Weighted Moving Average

–  Estimate both the average rtt_avg and the deviation rtt_dev

–  Procedure calc_rtt(rtt_sample)
•  rtt_avg = a*rtt_sample + (1-a)*rtt_avg; /* a = 1/8 */
•  dev = absolute(rtt_sample – rtt_avg);
•  rtt_dev = b*dev + (1-b)*rtt_dev; /* b = 1/4 */

–  Procedure calc_timeout(rtt_avg, rtt_dev)
•  Timeout = rtt_avg + 4*rtt_dev

25

2. Assurance of At-most-once Delivery
•  At-least-once delivery

–  Remember state at the sending side
–  Tends to generate duplicated requests

•  At-most-once delivery
–  Maintains a table of nonce at the receiving side
–  The table may grow indefinitely

•  Space and search time
•  Tombstones (something that cannot be deleted forever)

–  Another way: Make the application tolerate duplicated requests
•  Recall the NFS collapse case: server wastes time to execute duplicated requests

26	

Duplicate Suppression
•  Monotonically increasing sequence number

–  Receiver discards smaller nonce, only holds the last nonce, one per sender (tombstone)

•  Use a different port for each new request
–  Should never reuse the old port number (the old port is now tombstone)

•  Accept the possibility of making a mistake
–  E.g., if sender always gives up after five RTT (cannot ensure at-least-once), then receiver can safely

discard nonces that are older than five RTT
–  It is possible that a packet finally shows up after long delay (solution: wait long time)

•  Receiver crashes and restarts: lose the table
–  One solution is to use a new port number each time the system restarts
–  Another is to ignore all packets until the number of RTT has passed since restarting, if sender tries

limit times

•  Anyway, duplicate suppression makes the system complex
27	

3. Assurance of Data Integrity
•  Data integrity

–  Receiver gets the same contents as sender

•  Reliable delivery protocol
–  Sender: adds checksum to the end-to-end layer
–  Receiver: recalculates the checksum, discards if not match

•  Is it redundant since link layer provides checksum?
–  Other errors, e.g., in memory copying

•  The assurance is not absolute
–  What if a packet is misdelivered and the receiver ACK?

28	

4. Segments and Reassembly of Long Messages
•  Bridge the difference between message and MTU

–  Message length: determined by application
–  MTU: determined by network

•  Segment contains ID for where it fits
–  E.g., “message 914, segment 3 of 7”
–  Can be used for at-least-once and at-most-once delivery

•  Reassembly
–  Out-of-order, mingled with other message’s segments
–  Allocating a buffer large enough to hold the message
–  Keeping a checklist for segments not arrived

29	

When Out of Order…	

•  Solution-1: Receiver only ACK in order packets, discards others

–  Waste of bandwidth

•  Solution-2: ACK every packet and hold early packets in buffer, release the buffer
when all in order
–  Need using large buffer when waiting for a bad packet

•  Solution-3: Combine the two above
–  Discard if buffer is full
–  New problem: how much buffer?

•  Speedup for common case
–  NAK to avoid timeout
–  If NAKs are causing duplicates, stop NAKs

•  TCP is based on ACK, not NAK
30	

Closing of Connections	

•  Open a stream

–  Create a record to keep track of which elements have been sent, received, acknowledged

•  Close a stream
–  When finish, it needs to report an end-of-stream
–  Both ends need to agree last element is OK and then close
–  1. Alice sends close request to Bob with stream record ID
–  2. Bob checks and agrees, sends a close ACK
–  3. Alice receives ACK, turn off sender, discard record
–  4. Alice sends “all done” to Bob
–  5. Bob receives “all done” and discard stream record	

31	

<- What if duplicate?

5. Assurance of Jitter Control	

•  Real-time
– When reliability is less important than timely delivery
– A few error in a movie may not be noticed
–  Jitter: variability in delivery time

•  Strategy
– Basic: delay all arriving segments	

32	

5. Assurance of Jitter Control	

•  Measure the distribution of delays in a chart showing delay time vs.

frequency of that delay
•  Choose an acceptable frequency of delivery failure
•  Determine Dlong that longer than 99% delay
•  Determine the shortest delay, Dshort

•  Calculate number of segment buffer:

–  Dheadway is average delay between arriving segments

33	

6. Assurance of Authenticity and Privacy	

•  Internet is dangerous

–  Hostile intercepts and maliciously modifies packets
–  Violate a protocol with malicious intent

•  Key-based mathematical transformations to data
–  Sign and verify: establish the authenticity of the source and

integrity of contents
–  Encrypt and decrypt: maintain privacy of contents

•  Consideration
–  False sense of security, worse than no assurance	

34	

6. Security: Asymmetric Encryption
•  Public Key VS. Private Key

–  Public key: encrypt to identify reader (only me can read this)
–  Private key: encrypt to identify writer (yes, it's me who wrote this)
–  Poor performance, so just used to exchange symmetric key

•  Questions
–  What is a certificate? Why using a CA (Certificate Authority)?
–  How to exchange a symmetric key in HTTPS or SSH?
–  What is the root of trust?

7. End-to-end Performance
•  Next lecture

36	

Congestion Control
Sliding window & queue management

Computer System Engineering, Spring 2015. (IPADS, SJTU)

Review: Assurance of End-to-end Protocol
1.  Assurance of at-least-once delivery
2.  Assurance of at-most-once delivery
3.  Assurance of data integrity
4.  Assurance of stream order & closing of connections
5.  Assurance of jitter control
6.  Assurance of authenticity and privacy
7.  Assurance of end-to-end performance

2	

7. End-to-end Performance
•  Multi-segment message questions
–  Trade-off between complexity and performance
–  Lock-step protocol

3	

Overlapping Transmissions
•  Pipelining technique

4	

Overlapping Transmissions: Problems
•  Packets or ACK may be lost

–  Sender holds a list of segments sent, check it off when receives ACK
–  Set a timer (according to RTT) for last segment

•  If list of missing ACK is empty, OK
•  If timer expires, resend packets and another timer

5	

Fixed Window
•  Receiver tells the sender a window size
•  Sender sends window
•  Receiver acks each packet as before
•  Window advances when all packets in

previous window are acked
–  E.g., packets 4-6 sent, after 1-3 ack’d

•  If a packet times out -> resend packets
•  Still much idle time

6

Sliding Window

•  Sender advances the window by 1
for each in-sequence ACK it receives
–  Reduces idle periods
–  Pipelining idea

•  But what’s the correct value for the
window?
–  We’ll revisit this question
–  First, we need to understand windows

7

Handling Packet Loss

8

Recovery of Lost Data Segments with Windows
•  When to take action on sender’s checklist?

–  Solution-1: Timestamp and timeout
•  Associate each segment in the list with a timestamp
•  After more than one RTT, resend

–  Solution-2: Numbering segments
•  Receiver sends a NAK

•  If sender resends a segment, should the available window increase?
–  Dilemma: original segment is lost? ACK is lost?
–  Presume receiver discard duplicated segments
–  Same answer in both cases: no increase	

Recovery of Lost Data Segments with Windows
•  What if a permission message is lost?

–  No data will be received

•  Resend permission message?
–  May get twice as much
–  Incremental value is fragile -> cumulative total is better

•  E.g., using “send 1-3” instead of “send 3 more”

–  Similar with “in” and “out” pointer in bounded-buffer

•  Rate-matching problem
–  Blizzard of packets arising from a newly-opened window
–  Need cooperation between end-to-end protocol & network forwarders	

Chose the Right Window Size

•  If window is too small
–  Long idle time
–  Underutilized network

•  If window too large
–  Congestion

11

Sliding Window Size
window size ≥ round-trip time × bottleneck data rate

•  Sliding window with one segment in size
–  Data rate is window size / RTT

•  Enlarge window size to bottleneck data rate
–  Data rate is window size / RTT

•  Enlarge window size further
–  Data rate is still bottleneck
–  Larger window makes no sense

12	

-­‐	
 Receive	
 500	
 KBps	

-­‐	
 Sender	
 1	
 MBps	

-­‐	
 RTT	
 70ms	

-­‐	
 A	
 segment	
 carries	
 0.5	
 KB	

	

-­‐	
 Sliding	
 window	
 size	
 =	

35KB	
 (70	
 segment)	

Self-pacing: Sliding Window Size
•  Although the sender doesn’t know the bottleneck, it is

sending at exactly that rate

•  Once sender fills a sliding window, cannot send next data
until receive ACK of the oldest data in the window

•  The receiver cannot generate ACK faster than the network
can deliver data elements

•  RTT estimation still needed
13	

CONGESTION CONTROL

Congestion
•  Definition: Too many packets present in (a part of) the network

causes packet delay and loss that degrades performance.

•  Network & e2e layers share the responsibility for handling congestion

•  1. Network layer
–  Directly experiences the congestion
–  Ultimately determine what to do with the excess packets

•  2. End-to-end layer
–  Control to reduce the sending rate, is the most effective way

15	

Congestion Collapse	

16	

Network Congestion

17	

Congestion Control	

•  Requires cooperation of more than one layer

•  A shared resource, and demands from several statistically
independent sources, there will be fluctuations in the arrival of load,
and thus in the length of queue and time spent waiting	

18	

Why Congest?
•  If all of a sudden, streams of packets begin arriving on three or four

input lines and all need the same output line, a queue will build up

•  If there is insufficient memory to hold all of them, packets will be lost

•  Adding more memory may help up to a point, but
–  Nagle (1987) realized that if routers have an infinite amount of memory,

congestion gets worse, not better.
–  This is because by the time packets get to the front of the queue, they have

already timed out (repeatedly) and duplicates have been sent

Congestion Control vs. Flow Control
•  Congestion control

–  Makes sure the network is able to carry the offered traffic
–  A global issue, involving the behavior of all the hosts and routers
–  E.g., 1000 PCs send packets at 100-Kbps over a 1-Mbps lines

•  Flow control
–  Cares the traffic between a particular sender and a particular receiver
–  Makes sure that a fast sender cannot continually transmit data faster than the

receiver is able to absorb it
–  E.g., a supercomputer sends 100-Gbps over fiber to a 1-Gbps PC

2 Types of
Congestion

Approaches to Congestion Control
•  1. Network provisioning: add network resources
•  2. Traffic-aware routing: tailor route to traffic patterns
•  3. Admission control: refuse new connection (in virtual-circuit)
•  4. Traffic throttling: request source to slow down, or slow down itself
•  5. Load shedding: just discard packets

Traffic Throttling
•  When congestion is imminent, the network (routers) must tell the

senders to throttle back their transmissions and slow down

•  First, routers must determine when congestion is approaching
–  the utilization of the output links
–  buffering of queued packets inside the router (most useful)
–  the number of packets that are lost due to insufficient buffering

Traffic Throttling
•  Choke packets

–  Router sends choke packet to source, source reduce load by, e.g., 50%
–  Must be sent at low rate to avoid congestion

•  Explicit Congestion Notification
–  Tag IP packet to the dest (2 bits in IP header), and then back to the source
–  The "back" process is end-to-end, e.g., in TCP layer

Traffic Throttling
•  Hop-by-Hop Backpressure

Load Shedding: Setting Window Size
•  For performance:

–  window size ≥ round-trip time × bottleneck data rate

•  For congestion control:
–  window size ≤ min(RTT x bottleneck data rate, Receiver buffer)
–  Congestion window (cwnd)

•  2 windows become 1
–  to achieve best performance and avoid congestion

Congestion Control
Basic Idea:

-  Increase cwnd slowly

-  If no drops -> no congestion yet

-  If a drop occurs -> decrease cwnd quickly

Use the idea in a distributed protocol that achieves
-  Efficiency: i.e., uses the bottleneck capacity efficiently

-  Fairness, i.e., senders sharing a bottleneck get equal throughput (if they have
demands)

27

AIMD (Additive Increase, Multiplicative Decrease)

28

•  Every RTT:
–  No drop: cwnd = cwnd + 1
–  A drop: cwnd = cwnd / 2

Problems with AIMD
•  Increases very slowly at the beginning
•  Initial window size is 1

–  Probably too small in practice

•  Solution: do multiplicative increase at the beginning
–  cwnd init = 1
–  initially, do cwnd ← 2 * cwnd each RTT until we hit congestion
–  Named “slow start” (even though it’s exponentially fast!)

Retrofitting TCP	

30	

Retrofitting TCP	

•  1. Slow start: one packet at first, then double until

–  Sender reaches the window size suggested by the receiver
–  All the available data has been dispatched
–  Sender detects that a packet it sent has been discarded

•  2. Duplicate ACK
–  When receiver gets an out-of-order packet, it sends back a duplicate of latest ACK

•  3. Equilibrium
–  Additive increase & multiplicative decrease

•  4. Restart, after waiting a short time	

31	

Fairness between Links

32

AIMD Leads to Efficiency and Fairness

33

Q: Why not Additive Decrease
•  It does not converge to fairness
–  from a congested point, (x’,y’), reducing each by 1

worsens fairness and takes us away from the “ideal”
outcome

Weakness of TCP
•  If routers have too much buffering, causes long delays
•  Packet loss is not always caused by congestion

–  Consider wireless network

•  TCP doesn’t perform well in datacenters
–  High bandwidth, low delay situations

•  TCP has a bias against long RTTs
–  Throughput inversely proportionally to RTT

–  Consider when sending packets really far away vs really close

•  Assumes cooperating sources, which isn’t always a good assumption

Summary of Congestion Window
•  Reliability Using Sliding Window

–  Tx Rate = W / RTT

•  Congestion Control
–  W = min(Receiver_buffer, cwnd)

–  cwnd is adapted by the congestion control protocol to ensure
efficiency and fairness

–  TCP congestion control uses AIMD which provides fairness and
efficiency in a distributed way

36

QUEUE MANAGEMENT

Congestion Control is A Cross-layer Problem
•  The end-to-end layer (TCP) is using network layer’s

feedback to adapt
–  The feedback: packet drops

•  Routers have buffer
–  If buffer is full -> long delay

–  When use a buffer? the network is enough (to absorb burst)

–  When not use a buffer? there’s bottleneck on the network

–  What we don’t want is: queues that never drain

Packet Drop VS. Delay
•  Problem: TCP reacts to packet drops, but packets are not

dropped until the queues are full
–  It may be too late

•  Observation: the delay increases as the buffer increases
•  TCP senders back off when observe an increase in delay

–  Earlier, before the queues are full
–  But, how to distinguish between full-queue and transient queue?

•  Both increase the delay, but we don’t want TCP back-off for the latter

DropTail
•  Drop a packet if and only if the queue is full
•  Synchronization problem

–  Consider multiple sources, all with bursty type
–  1. All sources burst
–  2. Packet dropped from all
–  3. All sources throttle back, reducing utilization
–  4. Sources increase, repeat from 1
–  All the flows get synchronized!

•  Flow synchronization = decreased network utilization

RED (Random Early Detection)
•  Drop before the queue is full to give flows an early signal

–  RED spreads the drops out, while DropTail does this all at once

•  + Queue length does not oscillate as much
•  + Smooth change in the drop rate with congestion
•  + Flows get desynchronized

Explicit Congestion Notification (ECN)
•  Idea: Mark packets instead of dropping them
– A particular bit in the header
– As a signal of congestion
– No packet drop at all
– The source needs to cooperate (same as RED)

RED/ECN VS. DropTail
•  Pros

–  Smaller persistent queues => smaller delays
–  Less dramatic oscillation
–  Less biased against bursty traffic (in theory)

•  Cons
–  More complex
–  Hard to pick parameters (min_q, max_q, etc.)

•  Depend on the number of flows in the network, the bottleneck, etc. If not
chosen well, the oscillation can be even worse

Traffic Differentiation
•  Youku stream VS. large email
– Consider FIFO and round-robin
– Priority based scheduling

•  Good or bad?
–  It’s hard to decide the granularity
•  Per-app? per-flow? per-destination? per-source?

– How to ensure fairness?

Fault Tolerant
Reliable System from
Unreliable Components

Computer System Engineering, Spring 2015. (IPADS,
SJTU)

War Story

2

“ It's good to learn from your mistakes.
 It's better to learn from other
people's mistakes."

- Warren
Buffett

War Stories: MAXC & Alto
MAXC

•A time-sharing computer
system

– Using Intel 1103: 1KB
memory

•Fault tolerant
– Extra bits for each 36-bit
– Single-error-correction
– Double-error-detection

•Result
– Solidly reliable
– No errors were reported

Alto
• A personal workstation

– Using the same Intel memory
chip

• Fault tolerant
– One parity bit for each 16-bit
– Error-detection only

• Result
– Frequent memory-parity

failures!
1. Bit-map
display: Bravo
2. Pattern-
sensitive 1103

War Stories: MAXC & Alto
• Lesson-1:

– There is no such thing as a small change in a large system
– A new software can bring down previously working hardware
– You are never quite sure just how close to the edge of the cliff

you are standing

• Lesson-2:
– Experience is a primary source of information about failures
– It is nearly impossible, without specific prior experience, to

predict what kinds of failures you will encounter in the field

War Stories: MAXC & Alto,
Chap-2
• Back to MAXC: why so few errors at that time?

– Hardware reports both corrected errors and
uncorrectable errors

– But software only logged uncorrectable errors!

• Lessons
 Safety margin principle is important when

system implement automatic error masking
 Otherwise, you may be standing on the edge

again

War stories: MAXC & Alto,
Chap-3
• New machine: Alto-2

– Using new memory chip with 4096 bits
– Single-error-correction, double-error-detection, again,

flawlessly!
– Two years later, an implementation mistake is discovered
– Neither error correction nor detection was working on 1/4

cards!

• Lessons
 Never assume the h/w does as it says in the

spec
 It is harder than it looks to test the FT

features of a FT sys
 Just because it seems to be working doesn’t

mean that it actually is

Nowadays
• Memory chip does become better
– Errors often don’t lead to failures
– Bit-flip can be benign

• But there are still errors
– Sometimes, failure is blamed on

something else
– You never know it h/w error or s/w

error

The U.S. National Archives
• Preserve electronic records e.g., email

– Daily incremental backups
– periodic complete backups
– audit logs for tracking actions

• June 18-21, 1999, 43,000 emails disappeared
– The audit log had been turned off for better

performance
– The contractor’s employees never backup
– Archives never verify the existence of backup copies

Lesson: Avoid rarely used components,
must be tested periodically

Hospital Operating Room in
Newark, New Jersey
• Hospital operating room, with three backup

generators

• August 14, 2003, a widespread power grid
failure
– One backup generator caught fire from an oil leak
– Another backup generator shut down due to overload
– Hospital engineering turned off many circuit
– Main power was interrupted to the OR
1. Rarely used component may not have
been maintained properly
2. Human makes mistakes

World-Flight of Northwest
Airline
• 2:05 p.m. on March 23, 2000

– All communications dropped out
– Six cables were accidentally bored through
– Both primary and secondary!
– Pilots resorted to manual procedures
– Radio links were used
– 125 flights had to be cancelled

1. MTTF depend on that replicas are
independent
2. FT measuring is difficult to test

British: Telehouse’s Electricity
• Safe against “fire, flooding, bombs, sabotage”

– Especial protection against power failure
– Including two independent connections to power grid
– A room full of batteries, two diesel generators
– Can detect failures automatically then switch
– May 8, 1997…“It was due to human error.”, which is not

detectable

1. Identifying each potential fault and evaluate
the risk is first step
2. People are part of the system, mistakes
made by authorized operators are typically a
bigger threat than trees falling on power lines

Kerosene Light in Radin,
Poland
• A town of Radin has a electricity

generator
– One day the machine broke
– Darkness descended upon all of the streets
– Even worse than the days without electricity
– Every house had a kerosene light
1. Single point of failure: Centralization
reduces robustness
2. Adding redundancy to a centralized
design takes planning and adds to the
cost

The SOHO Mission Interrupt
• SOHO spacecraft was lost on June 25,

1998
– “… a direct result of operational errors, a

failure to adequately monitor spacecraft status,
and an erroneous decision which …”

– Five distinct direct causes of the loss
– Three indirect causes in design process
– Three indirect causes in operations procedures1. Complex systems fail for complex
reasons
2. When some components are people,
multi-failures are too common

Fault, Error, Failure
Basic Concepts

Fault, Error, Failure
• Fault can be latent or active

– If active, get wrong data or control signals

• Error is the results of active fault
– E.g. violation of assertion or invariant of spec
– Discovery of errors is ad hoc (formal specification?)

• Failure happens if an error is not detected and
masked
– Not producing the intended result at an interface

Failure in System and
Subsystem
• The failure of a subsystem is a fault of a system

– The fault may cause an error that leads to the failure of
the larger subsystem

– Unless the larger subsystem detects the error and masks
it

• Examples
– A flat tire -> detects the error by failure of a subsystem
– Miss an appointment -> the person notices a failure
– Change to a spare tire -> masked the error

Different Types of Faults
Fault Types Types

Software fault Programming mistakes

Hardware fault A gate whose output is stuck at the value
ZERO

Design fault Assign too little memory in a telephone
switch

Implementation
fault

Installing less memory than the design called
for

Operations fault Running a weekly payroll twice last Friday

Environment fault Lightning strikes a power line causing a
voltage surge

Transient fault Cosmic ray caused single bit flipped (soft
error)

Persistent fault A bit is stuck at zero (hard error)

More Examples
• Stuck-at-ZERO in a memory chip

– It’s a persistent fault, but is not active

• When the bit should contain a ONE
– The fault is active and the value is in error

• If cosmic ray flips 1 more bit, and system can
only handle 1-bit error
– Two bits may cause a failure of the module

• If someone tests the module
– If the error is masked, the masking should be reported

The Fault Tolerance Design
Process (1/2)
• 1. Begin to develop a fault-tolerance model

– Identify every potential fault
– Estimate the risk of each fault
– Where the risk is too high, design methods to detect the

errors

• 2. Apply modularity to contain the damage

• 3. Design and implement procedures to mask
– Temporal redundancy. Retry using the same components
– Spatial redundancy. Have different components do the

operation

• 4. Update the fault-tolerance model
– To account for those improvements

The Fault Tolerance Design
Process (2/2)
• 5. Iterate the design and the model

– until the probability of untolerated faults is low enough that it
is acceptable

• 6. Observe the system in the field
– Check logs of how many errors the system is successfully

masking. (Always keep track of the distance to the edge of the
cliff)

– Perform postmortems on failures and identify all of the
reasons for each failure

• 7. Use the logs of masked faults and the postmortem
reports to revise and improve the FT model and reiterate
the design

Tolerating Active Faults
• Do nothing: let higher layer solve the failure

– The more layers, the more difficult

• Be fail-fast: report the problem
– E.g., Ethernet stops sending and broadcasts when collision

• Be fail-safe: transfer incorrect values to acceptable ones
– E.g., blinking red light in all directions

• Be fail-soft: continues to operate with degradation
– E.g., airplane with three engines continues to fly if one has

failure

• Mask the error: makes incorrect value right

MTTF & Availability

MTTF, MTTR, MTBF
• MTTF: mean time to failure

• MTTR: mean time to repair

• MTBF: mean time between failure

• MTBF = MTTF + MTTR

TBF-1 TBF-2 TBF-3

TTF-1 TTF-2 TTF-3TTR-2TTR-1 TTR-3

24

MTBF Web page snapshot

Measuring MTBF
• Two purposes: evaluating & predicting

– The more reliable, the longer it takes to evaluate
– Not measure directly, but use proxies to estimate its

value

• One way to measure “MTBF”
– E.g. 3.5-inch disk’s MTTF is 700,000 hours (80 years!)
– Guess: ran 7,000 disks for 1,000 hours and 10 failed
– If the failure process were memoryless, then OK
– “expected operational lifetime” is only 5 years

Measuring MTBF
• Bathtub curve

– Infant mortality: gross manufacturing defects
– Burn out: accumulated ware and tear cause

failure
– Burn in: run for a while before shipping

The Bathtub Curve

The Learning Curve
• Learning curve
– The first components coming out of a

new production line tend to have more
failures

– Result of design of iteration

The Learning Curve

Frequency of
Hardware
Replacement

Availability
• Counting the number of nines

– E.g. 99.9% has 3-nines availability
– Often used in marketing

• Corresponding down time
– E.g. 3-nines -> 8 hour/year
– E.g. 5-nines -> 5 min/year
– E.g. 7-nines -> 3 sec/year
– Without any information about MTTF

• More fine-grained
– Fail-soft, as in 8.3

Availability in Practice
• Carrier airlines (2002 FAA fact book)

– 99.9993% availability, 41 accidents, 6.7M
departures

• 911 Phone service (1993 NRIC report)
– 99.994%, 29 minutes per line per year

• Standard phone service (various sources)
– 99.99+%, 53+ minutes per line per year

• End-to-end Internet Availability
– 95% - 99.6%

Redundancy

Systematically Applying
Redundancy
• Masking error
– Analog system designer: margin
– Digital system designer: redundancy

• Outline
– Coding: incremental redundancy
– Replication: massive redundancy
– Voting
– Repair

Recall: Coding for Incremental
Redundancy
• Forward error correction

– Perform coding before storing or transmitting
– Later decode the data without appealing to the creator

• Hamming distance
– Number of 1 in A ⊕ B , ⊕ is exclusive OR (XOR)
– If H-distance between every legitimate pair is 2

• 000101, can only detect 1-bit flip
– If H-distance between every legitimate pair is 3

• Can only correct 1 bit flip
– If H-distance between every legitimate pair is 4

• Can detect 2-bit flip, correct 1-bit flip

36

Replication: Massive
Redundancy
• Redundancy in bridge building

– Material strength: 5 or 10 times as strong as
min

– Heavy-handed, but simple and effective
• Replication

– Replicas: identical multiple copies
– E.g. Quad component by Shannon & Moore

• Can tolerate single short circuit and single open
circuit, and others

– Mask failures silently

37

Voting
• NMR: N-modular redundancy (supermodule)

– E.g. TMR (3MR) and 5MR
– Voter: compare the outputs with the same inputs
– Can be applied at any level of module

• Fail-vote: NMR with a majority voter
– Raise an alert if any replicas disagree with majority
– Signal a failure if no majority
– Fail-fast only if any two replicas fail in different ways

• If two replicas fail in same way, then not fail-fast

38

Voting
• The probability that an incorrect result will be

accepted by the voter is that it is no more than:

• Assume that the voter is perfectly reliable, which is
not practical
– Voter should also be replicated
– Everything should be replicated
– Recursive: voters belong to

next module
– Final voter should be the client

39

Voting
• TMR can improve reliability

– If R(T) = 0.999, TMR’s R(T) = 0.999997

• But MTTF can be smaller
– If MTTF is 6,000 hours and fails independently, and

the mechanism of engine failure is memoryless
– 6,000 hours in only 2,000 hours of flying, first fail
– 3,000 hours next and cause the second fail
– 5,000 hours < 6,000 hours

40

MTTF-replica and MTTF-
system
• If MTTF-replica = 1, N replicas total

– Expected time until 1st failure is MTTF-replica/N
– Expected time from then until the 2nd is MTTF-

replica/(N-1)
– Expected time until the system of N replicas fails is

– For large N is approximately ln(N)

• If mission time is long compared with MTTF-
replica
– Simple replication escalates the cost while providing

little benefit

41

Repair
• Return to fail-vote TMR supermodel

– Requires at least two replicas be working
– The rate of failure of 2 replicas is 2/MTTF

– If replacement takes 1 hour, chance is
1/3000

– Once replaced, expect to fly another 2000
hours until the next engine failure

– If we have unlimited replacement for 10,000
hours

42

– MTTF = 6 million hours

• In another word
– Although MTTF is reduced by the factor of 3
– The availability of repair has increased MTTF by a

factor equal to the ratio of the MTTF to MTTR of the
remaining 2 engines

• Disk with 3 replicas
– If MTTF is 5-year, repair in 10 hours

43

Review Overly Optimistic
Assumptions
• Disks fail independently

– Same vendor, same fault
– Earthquake, whose MTTF is less than 3650 years

• Disk failures are memoryless
– Bathtub curve

• Repair is also a memoryless process
– Stock enough spares

• Repair is done flawlessly
– Replace the wrong disk, forget to copy data, etc.

44

Redundancy to software and
data

45

Applying Redundancy to
Software and Data
• Software and data

– Soft: reduce the impact of programming errors
– Data: reduce the impact of any kind of hw, sw, or

operational error that may affect integrity
– N-version programming, valid construction, firewall

• Outline
– Tolerating software faults
– Tolerating soft (and other) faults by separating state
– Durability and durable storage
– Magnetic disk fault tolerance

46

Tolerating Software Faults
• NMR requires independence among the replicas

– E.g. DNS software evolved for different OSes

• N-version programming
– Commission several teams of programmers
– Run several versions in parallel and compare results
– Same training? Same language? Same ambiguities?
– Bit-for-bit identical results are difficult
– Boeing 777 aircraft (N=3) & Space Shuttle (N=2)
– Can also apply in hardware replica

47

Tolerating Software Faults
• Valid construction

– Devising spec and programming tech that avoid faults
in the first place

– Test tech that systematically root out faults
– Repaired once and for all before deploying
– Software: once it is made correct, it stays that way

• Hard to get correct: patch for patch for patch
• Changing is required
• Tension between valid construction and design for

iteration
• Later maintainer may make things worse

48

Separating States
• Residue of faults is inevitable

– Both software and hardware

• Distributed states
– Non-volatile storage, volatile memory, processor

registers, kernel tables, etc.
– Makes containment of errors problematic
– Stop/repair/resume is usually unrealistic

• Separating states
– 1. State that the system can safely abandon when fail
– 2. State whose integrity the system should preserve

despite failure

49

50

Separating States
• Upon detecting a failure

– Abandon all state in the first category
– Just maintain the integrity of second category
– Starting a new set of threads with a clean states

• Working only with the second category
– Firewall is needed

• Natural firewall
– Non-volatile storage: GET/PUT interface, as a bottleneck
– Volatile storage: READ/WRITE interface
– Stop the system before it reaches the next PUT

• Making the volatile storage the error containment boundary

50

Durability and Durable
Storage
• Durability

– How long a result of action be preserved after the action completes

• 1. Durability no longer than the lifetime of the thread that
created the data
– Place the data in volatile memory is enough
– E.g. CHDIR: change working directory
– E.g. registers and cache of a processor

• 2. Durability for times short compared with expected operational
lifetime of non-volatile storage media
– Writing one copy of the data in the nonvolatile storage
– E.g. data in a cache that writes through to a non-volatile medium
– E.g. writing nonce to non-volatile memory in RPC
– E.g. temporary copies in word-processing system

51

Durability and Durable
Storage
• 3. Durability for times comparable to the expected

operational lifetime of non-volatile media
– Placing replicas of the data on independent instances of the

non-volatile media

• 4. Durability for many multiples of the expected
operational lifetime of non-volatile media
– Aka. preservation
– Copying data from one non-volatile medium to another

before the first one deteriorates or becomes obsolete
– Also consider software’s lifetime

52

Magnetic Disk Fault Tolerance
• Using disk as durable storage

– Low cost, large capacity, non-volatility
– Internal power can prevent data loss at power-off

• Three/four nested layers
– Raw storage, fail-fast storage, careful storage
– Optional: durable storage

• Fail-fast storage
– In software first, then migrate to firmware of the disk

controller
– Usually includes a RAM buffer
– Reason: easy to track the source of failure, not as memory

Magnetic Disk Fault Modes
• Mechanical wear and tear

• A bumping may cause a head to hit the surface
– Head crush may also create cloud of dust
– Results in several sectors decaying: decay set

• Electronic components in the controller age
– E.g. clock timing and signal detection circuits
– Cause previously good data to become unreadable, or bad

data to be written
– Soft or hard errors

• Seek error
– Arm moves to a wrong track

54

System Faults
• Two threats to the integrity of data from

outside
– If the power fails in the middle of a disk write

• Sector maybe partly written
– If the OS fails during the writing

• Data could be affected, even if the disk is perfect and
rest of the system is fail-fast

• All the contests of volatile memory are at risk

55

1. Raw Disk Storage
• Untolerated error

– Soft error: dust particles on the surface of the disk
– Hard error: a spot on the disk may be defective
– Hard error: previously information may decay
– Seek error: read on the wrong track
– Power fails during a RAW_PUT, partly write data
– OS crashes during RAW_PUT and scribbles over disk

buffer

56

2. Fail-fast Disk Storage
• Detected errors

– FAIL_FAST_GET checks the error-detection code, simply reports
status = BAD

– FAIL_FAST_PUT reads back and checks fail, also report status = BAD
– FAIL_FAST_SEEK reads track number in the first sector and finds not

match, report status = BAD
– Caller of FAIL_FAST_PUT tells it to bypass the verification step, but

next FAIL_FAST_GET should detect it
– Power fails during FAIL_FAST_PUT, later FAIL_FAST_GET should

discover checksum fails (reserve of power is needed)

• Untolerated errors
– OS crashed during FAIL_FAST_PUT and scribbles buffer
– The data of some sector decays that is undetectable (rarely)

57

3. Careful Disk Storage
• Tolerated errors

– Soft read, write, or seek error
– Mask by repeatedly retrying until status = OK
– If retry count exceeds some limit, it gives up and reports

• Detected errors
– Hard errors after several retry, by setting status = BAD
– Power fails during a CAREFUL_PUT

• Untolerated errors
– Crash corrupts data
– Data decays undetectably

58

3. Careful Disk Storage

59

• Revectoring
– Write data on a spare sector elsewhere on the same disk
– Add an entry to an internal disk mapping table

• Future GETs and PUTs use that spare one

60

Durable Storage: RAID 1
• Errors on reading are detected by the fail-fast layer

– Only read one copy, unless its bad

• Virtual sector number
– Usually involve different disks

• Tolerate error
– Hard errors reported by careful layer are

masked by reading from other replicas

• Untolerated error
– Decay on the same sector of all the replicas, status = BAD
– OS crashes during a DURABLE_PUT
– Decay in a way that is undetectable

61

Improving on RAID 1
• Clerk: periodically checks for decays

– Td as the period, must short enough

• Tolerated error
– Hard errors reported by careful layer are masked by reading

from one of the other replicas
– Data of a single decay set decays, is discovered by the clerk,

and is repaired, all within Td of the decay event

• Untolerated error
– The OS crashes during DURABLE_PUT
– All decay sets fail with Td

– The data of some sector decays in a way undetectable

Detecting Errors Caused by
System Crashes
• Outside help is need

– Either from OS or the application
– Calculates and includes an end-to-end

checksum before initiating the disk write
– Any program checks first before using

63

All-or-Nothing
Atomicity of single operation

Computer System Engineering, Spring 2015. (IPADS,
SJTU)

Transaction & Atomicity

2

Atomicity
• An action is atomic

– If there is no way for a higher layer to
discover the internal structure of its
implementation

• Atomicity = All-or-Nothing +
Before-or-After
– Atomicity of single operation
– Atomicity of concurrent operations

3

All-or-Nothing Atomicity
• From the point of view of a procedure

that invokes an atomic action
– The atomic action always appears either to

complete as anticipated, or to do nothing
– This consequence is the one that makes atomic

actions useful in recovering from failures

4

Before-or-After Atomicity
• From the point of view of a concurrent

thread
– An atomic action acts as though it occurs

either completely before or completely after
every other concurrent atomic action

– This consequence is the one that makes atomic
actions useful for coordinating concurrent
threads

5

All-or-Nothing and Before-or-
After Atomicity
• 1. Data abstraction

– Hide the internal structure of data
• 2. Client/server organization

– Hide the internal structure of major subsystems
• 3. Atomicity

– Hide the internal structure of an action
• Enforce industrial-strength modularity

– Guarantee absence of unanticipated interactions among
components of a complex system

• The implementer’s point of view
– Painful

6

Golden Rule of Atomicity

• Never modify the only copy!

Example: the IBM System/370
• Multi-operand character-editing instruction

– TRANSLATE contains 3 arguments
• Two address: string and table
• 8-bit counter: length
• Takes 1 byte at a time from string, as an offset in table,

get the byte in table, then replace the byte in string
– Problem: page fault
– Solution: dry run

• Hidden copy of register make no change to memory
• Maybe several dry run for one instruction
• Then run it again

– Problem: what if another process snatch a page?

8

Commit Point

ALL_OR_NOTHING_PUT
1. procedure ALMOST_ALL_OR_NOTHING_PUT (data, all_or_nothing_sector)
2. CAREFUL_PUT(data, all_or_nothing_sector.S1)
3. CAREFUL_PUT (data, all_or_nothing_sector.S2)
4. CAREFUL_PUT (data, all_or_nothing_sector.S3)
5. procedure ALL_OR_NOTHING_GET (reference date,all_or_nothing_sector)
6. CAREFUL_GET (data1, all_or_nothing_sector.S1)
7. CAREFUL_GET (data2, all_or_nothing_sector.S2)
8. CAREFUL_GET (data3, all_or_nothing_sector.S3)
9. if (data1 = data2) data ← data1
10. else data ← data3

10

11

ALL_OR_NOTHING_PUT
1. procedure ALL_OR_NOTHING_PUT (data, all_or_nothing_sector)
2. CHECK_AND_REPAIR (all_or_nothing_sector)
3. ALMOST_ALL_OR_NOTHING_PUT (data, all_or_nothing_sector)

4. procedure CHECK_AND_REPAIR (all_or_nothing_sector)
 // Ensure copies match

5. CAREFUL_GET (data1, all_or_nothing_sector.S1)
6. CAREFUL_GET (data2, all_or_nothing_sector.S2)
7. CAREFUL_GET (data3, all_or_nothing_sector.S3)

11

ALL_OR_NOTHING_PUT
8. if (data1 = data2) and (data2 = data3) return // State 1 or 7, no repair

9. if (data1 = data2)

10. CAREFUL_PUT (data1, all_or_nothing_sector.S3) return // State 5 or 6.

11. if (data2 = data3)

12. CAREFUL_PUT (data2, all_or_nothing_sector.S1) return // State 2 or 3.

13. CAREFUL_PUT (data1, all_or_nothing_sector.S2) // State 4, go to state 5

14. CAREFUL_PUT (data1, all_or_nothing_sector.S3 // State 5, go to state 7

12

13

Commit Point

13

Shadow Copy

Bank Account Transfer

xfer(bank, a, b, amt):

 bank[a] = bank[a] – amt

 bank[b] = bank[b] + amt

audit(bank):

 sum = 0

 for acct in bank:

 sum = sum + bank[acct]

 return sum

15

<- sum=200

audit(bank):

<- sum=150
<- sum=200

16

Shadow Copy
xfer(bank, a, b, amt):

 bank[a] = read_accounts(bankfile)

 bank[a] = bank[a] – amt

 bank[b] = bank[b] + amt

 write_accounts(#bankfile)

 rename(“#bankfile”, bankfile)

16

17

rename(“#bank”, “bank”)
• Directory data blocks:

– filename “bank” → inode 12
– filename “#bank” → inode 13

• inode 12:
– data blocks: 3, 4, 5
– refcount: 1

• inode 13:
– data blocks: 6, 7, 8
– refcount: 1

17

18

rename(“#bank”, “bank”)
• Directory data blocks:

– filename “bank” → inode 13
– filename “#bank” → inode 13

• inode 12:
– data blocks: 3, 4, 5
– refcount: 1

• inode 13:
– data blocks: 6, 7, 8
– refcount: 1

18

19

rename(“#bank”, “bank”)
• Directory data blocks:

– filename “bank” → inode 13
– filename “#bank” → inode 13

• inode 12:
– data blocks: 3, 4, 5
– refcount: 1

• inode 13:
– data blocks: 6, 7, 8
– refcount: 2

19

rename(“#bank”, “bank”)
• Directory data blocks:

– filename “bank” → inode 13
– filename “#bank” → inode 13

• inode 12:
– data blocks: 3, 4, 5
– refcount: 0

• inode 13:
– data blocks: 6, 7, 8
– refcount: 2

20

rename(“#bank”, “bank”)
• Directory data blocks:

– filename “bank” → inode 13
– filename “#bank” → inode 13

• inode 12:
– data blocks: 3, 4, 5
– refcount: 0

• inode 13:
– data blocks: 6, 7, 8
– refcount: 2

21

rename(“#bank”, “bank”)
• Directory data blocks:

– filename “bank” → inode 13
– filename “#bank” → inode 13

• inode 12:
– data blocks: 3, 4, 5
– refcount: 0

• inode 13:
– data blocks: 6, 7, 8
– refcount: 1

22

23

Problem
• Two names point fnew’s inode, but

refcount is 1
• Problem is that we don’t know

which reference is the correct one

Second Try: Increase ref-count
First
rename(x, y):

 newino = lookup(x)

 oldino = lookup(y)

 incref(newino)

 change y's dirent to newino

 decref(oldino)

 remove x's dirent

 decref(newino)

24

25

rename(“#bank”, “bank”)
• Directory data blocks:

– filename “bank” → inode 12
– filename “#bank” → inode 13

• inode 12:
– data blocks: 3, 4, 5
– refcount: 1

• inode 13:
– data blocks: 6, 7, 8
– refcount: 2

25

rename(“#bank”, “bank”)
• Directory data blocks:

– filename “bank” → inode 13
– filename “#bank” → inode 13

• inode 12:
– data blocks: 3, 4, 5
– refcount: 1

• inode 13:
– data blocks: 6, 7, 8
– refcount: 2

26

rename(“#bank”, “bank”)
• Directory data blocks:

– filename “bank” → inode 13
– filename “#bank” → inode 13

• inode 12:
– data blocks: 3, 4, 5
– refcount: 0

• inode 13:
– data blocks: 6, 7, 8
– refcount: 2

27

rename(“#bank”, “bank”)
• Directory data blocks:

– filename “bank” → inode 13
– filename “#bank” → inode 13

• inode 12:
– data blocks: 3, 4, 5
– refcount: 0

• inode 13:
– data blocks: 6, 7, 8
– refcount: 2

28

rename(“#bank”, “bank”)
• Directory data blocks:

– filename “bank” → inode 13
– filename “#bank” → inode 13

• inode 12:
– data blocks: 3, 4, 5
– refcount: 0

• inode 13:
– data blocks: 6, 7, 8
– refcount: 1 29

30

Recovery After Crash
salvage(disk):

 for inode in disk.inodes:

 inode.refcnt =

 find_all_refs(disk.root_dir, inode)

 if exists(“#bank”):

 unlink(“#bank”)

30

31

Shadow Copy
• Write to a copy of data, atomically switch to

new copy
• Switching can be done with one all-or-nothing

operation (sector write)
• Requires a small amount of all-or-nothing

atomicity from lower layer (disk)
• Main rule: only make one write to current/live

copy of data
– In our example, sector write for rename
– Creates a well-defined commit point

31

Shadow Copy
• Does the shadow copy approach work in general?

+ Works well for a single file
- Hard to generalize to multiple files or directories

• Might have to place all files in a single directory, or
rename subdirs

- Requires copying the entire file for any (small) change
- Only one operation can happen at a time
- Only works for operations that happen on a single
computer, single disk

32

All-or-nothing In Transaction

33

Transactions: A Programming
Model
• All-or-nothing (“Atomic” in the database

literature, but “All-or-nothing” in 6.033)

• Before-or-after (“Isolation”)

• Effects persist (“Durable)

• “Consistent”: satisfies higher-level constraints
(e.g., all salaries > 0)

• Aka “ACID”

Example: Bank Account App
xfer(bank, a, b, amt):

copy(bank, tmp)

tmp[a] = tmp[a] – amt

tmp[b] = tmp[b] + amt

rename(tmp, bank)

35

Shadow Copy Abort VS.
Commit
xfer(bank, a, b, amt):

copy(bank, tmp)

tmp[a] = tmp[a] – amt

tmp[b] = tmp[b] + amt

if tmp[a] < 0:

print “Not enough funds”

unlink(tmp)

else:

rename(tmp, bank)

36

Transaction Terminology
xfer(bank, a, b, amt):

 begin

bank[a] = bank[a] – amt

bank[b] = bank[b] + amt

if bank[a] < 0:

print “Not enough funds”

abort

else:

commit

37

38

Consider the Bank Account
Example
•Two accounts: A and B.

– Accounts start out empty.
– Run these all-or-nothing actions

38

 begin
 A = 100
 B = 50
 commit

 begin
 A = A - 20
 B = B + 20
 commit

 begin
 A = A + 30
 --CRASH--

39

A Log Sample
 +-------+------+--------+-------+------+--------+-------+
TID | T1 | T1 | T1 | T2 | T2 | T2 | T3 |
OLD | A=0 | B=0 | | A=100 | B=50 | | A=80 |
NEW | A=100 | B=50 | COMMIT | A=80 | B=70 | COMMIT | A=110 |
 +-------+------+--------+-------+------+--------+-------+

• Begin
• Write variable
• Read variable
• Commit
• Abort

 begin
 A = 100
 B = 50
 commit

 begin
 A = A - 20
 B = B + 20
 commit

 begin
 A = A + 30
 --CRASH--

40

Logging
• What happens when a program runs now?

– begin: allocate a new transaction ID
– write variable: append an entry to the log
– read variable: scan the log looking for last

committed value
• As an aside: how to see your own updates?
• Read uncommitted values from your own tid

Read with a Log
read(log, var):

 commits = { }

 for record r in log[len(log)-1] .. log[0]:

 if (r.type == commit):

 commits = commits + r.tid

 if (r.type == update)

 and (r.tid in commits)

 and (r.var == var):

 return r.new_val

42

Logging
– Commit: write a commit record

• Expectedly, writing a commit record is the "commit
point" for action, because of the way read works
(looks for commit record)

• However, writing log records better be all-or-
nothing
– One approach, from last time: make each record fit

within one sector
– Abort:

• Do nothing or write a record?
– could write an abort record, but not strictly needed

– Recover from a crash: do nothing

Performance of Read
• What's the performance of this log-only

approach?
– Write performance is probably good: sequential

writes, instead of random.
– (Since we aren't using the old values yet, we

could have skipped the read.)

• Read performance is terrible: scan the log
for every read!
– Crash recovery is instantaneous: nothing to do.

Performance Optimization
• How can we optimize read performance?

– Keep both a log and "cell storage”
– Log is just as before: authoritative, provides all-or-

nothing atomicity
– Cell storage: provides fast reads, but cannot provide all-

or-nothing

• Terminology
– "log" an update when it's written to the log
– "install" an update when it's written to cell storage

45

Cell Storage (Home) + Log
Storage

Read / write with Cell Storage
read(var):

 return cell_read(var)

write(var, value):

 log.append(cur_tid, update,

 var, read(var), value)

 cell_write(var, value)

46

47

Read / write with Cell Storage

• Two questions we have to answer
now:
– How to update both the log and cell

storage when an update happens?
– How to recover cell storage from the

authoritative log after crash?

47

Order Matters
• Ordering of logging and installing

– The two together don't have all-or-nothing atomicity
– Can crash in-between, so just one of the two might have taken place

• What happens if we install first and then log?
– If we crash, no idea what happened to cell storage, or how to fix it

• The corresponding rule for logging is the "Write-ahead-log
protocol" (WAL)
– Log the update before installing it

• If we crash, log is authoritative and intact, can repair cell storage
– Can think of it as not being the only copy, once it's in the log

Recovering Cell Storage
• What happens if we log an update, install it, but

then abort/crash?
– Need to undo that installed update.
– Plan: scan log, determine what actions aborted ("losers"),

undo them.

• Why do we have to scan backwards?
– Need to undo newest to oldest
– Also need to find outcome of action before we decide

whether to undo

50

Recovering Cell Storage from
Log
recover(log):

 done = { }, aborted = { }

 for record r in log[len(log)-1] .. log[0]:

 if r.type == commit or r.type == abort:

 done = done + r.tid

 if r.type == update and r.tid not in done:

 cell_write(r.var, r.old_val) # undo

 aborted = aborted + r.tid

 for tid in aborted: log.append(tid, abort)

50

51

Performance Now
• Writes might still be OK

– but we do write twice: log & install

• Reads are fast
– just look up in cell storage

• Recovery requires scanning the entire log
• Remaining performance problems:

– We have to write to disk twice
– Scanning the log will take longer and longer, as the log

grows

Optimization 1: Defer
Installing Updates
• Storing installing in a cache

– Writes can now be fast: just one write, instead of two
• Hope that variable is modified several times in cache before flush

– Reads go through the cache, since cache may contain more
up-to-date values

– Atomicity problem: cell storage (on disk) may be out-of-date
• Is it possible to have changes that should be in cell storage, but

aren't?
• yes: might not have flushed the latest commits
• Is it possible to have changes that shouldn't be in cell storage, but

are?
• yes: flushed some changes that then aborted (same as before)

Cached read/write
read(var):

 if var not in cache:

 # may evict others from cache to cell store

 cache[var] = cell_read(var)

 return cache[var]

write(var, value):

 log.append(cur_tid, update,

 var, read(var), value)

 cache[var] = value

53

Recovery
• Need to go through and re-apply changes to cell

storage
– undo every abort (even if it had an explicit record)
– redo every commit

• Don't treat actions with an abort record as
"done”
– there might be leftover changes from them in cell

storage

• Re-do any actions that are committed (in the
"done" set now)

Recovery for Cached Writes
recover(log):

 done = { }

 for record r in log[len(log)-1] .. log[0]:

 if r.type == commit or r.type == abort:

 done = done + r.tid

 if r.type == update and r.tid not in done:

 cell_write(r.var, r.old_val) # undo

 for record r in log[0] .. log[len(log)-1]:

 if r.type == update and r.tid in done:

 cell_write(r.var, r.new_val) # redo

55

Optimization 2: Truncate the
Log
• Current log grows without bound: not practical.

– What part of the log can be discarded?
• Must know the outcome of every action in that part of log
• Cell storage must reflect all of those log records (commits, aborts).

– Truncating mechanism (assuming no pending actions):
• Flush all cached updates to cell storage
• Write a checkpoint record, to save our place in the log.
• Truncate log prior to checkpoint record
• (Often log implemented as a series of files, so can delete old log files.)

– With pending actions, delete before checkpoint & earliest undecided
record

Before-or-After
Atomicity of current
operations

Computer System Engineering, Spring 2015. (IPADS,
SJTU)

Before-or-after

2

Before-or-after atomicity
• Transaction

– All-or-nothing: single operation, crash
– Before-or-after: multiple operations,

concurrency
– In the midst of multiple-step atomic action

• Definition of “correctness” (as in 9.1.5)
– If every result is guaranteed to be one that

could have been obtained by some purely serial
application of those same actions

– Serializability

3

Concurrent actions
xfer(a, b, amt):
 begin
 a = a – amt
 b = b + amt
 commit

interest(rate):
 begin
 for each account x:
 x = x * (1+rate)
 commit

4

Serial executions
• What happens if we have A=100,

B=50, and concurrent xfer(A,B,10)
& int(0.1)?

• Serial executions:
– .. -> [xfer] -> A=90, B=60 -> [int] ->

A=99, B=66
– .. -> [int] -> A=110, B=55 -> [xfer] -

> A=100, B=65
5

Schedule1
 xfer: int:
 RA [100]
 WA [90]
 RA [90]
 WA [99]
 RB [50]
 WB [60]
 RB [60]
 WB [66]

6

Schedule 2
 xfer: int:
 RA [100]
 RA [100]
 WA [90]
 WA [110]
 RB [50]
 WB [60]
 RB [60]
 WB [66]

7

Simple serialization

• Simple serialization: similar as lock-step
– Transaction n waits transaction n-1 to complete

• Drawbacks: too strict
– Prevents all concurrency among transactions
– Suitable for applications without many transactions

• Next of this chapter are nothing but optimizations

8

9

10

• More relaxed disciplines that still guarantee correctness

• We don’t care when things happen
– Transaction-3 can create new version of C before transaction-2
– Transaction-4 can run concurrently with transaction-3

Mark-point Discipline
• Step-1: wait for pending version
• Step-2: mark data to be updated

– Create a pending versions of every variable it intends to
modify --- mark point

– Announce when it is finished doing so
• By MARK_POINT_ANNOUNCE, simple set a flag

• Step-3: keep discipline of mark point:
– No transaction can begin reading its inputs until the

preceding transaction has reached its mark point or is
no longer pending

11

12

WRITE_NEW_VERSION() using
Markpoint

13

14

Waiting, instead of skipping

Mark-point Discipline
• Distribute delays

– Some in BEGIN_TRANSACTION()
– Some in READ_CURRENT_VALUE()

• Bootstrapping
– Goal: before-or-after for general programs
– Solution: special case of a “new outcome

record”

• Three layers

15TICKET, REQUIRE, RELEASE

NEW_OUTCOME_RECORD

MARK_POINT -> before-or-after

16

Mark-point: no deadlock
• Wait only earlier transaction

– Earliest ones wait no one
– Guarantee progress

• Lock will not guarantee progress,
• requires additional mechanisms to ensure no deadlock

• Two minor points
– Reduce to simple serialization discipline

• If wait to announce mark point until commit or abort
– Two possible errors

• Never call NEW_VERSION after mark point
• Never try to write a value without new version

17

Read-capture: Optimistic
Atomicity
• Pessimistic methods

– Presume that interference is likely
– Prevent any possibility of interference actively
– Simple serialization & mark-point

• Optimistic methods
– Allow write in any order and at any time
– With the risk that “sorry, interfere write, you

must abort, clear the history and then retry”
– Read-capture discipline

18

19

Transaction-4 was late
Transaction-6 has already
read A
Transaction-4 has to redo as
7

2020

Read-capture’s Correctness
• Correctness

– 1. WAIT for PENDING in READ ensures that
transaction n will wait for k to commit or abort (k<n)

– 2. High-water mark in READ and test in
NEW_VERSION ensures transaction j will abort if n has
read the object (j < n)

– 3. Therefore, every value that READ returns to
transaction n will include effect of 1…n-1

– 4. Therefore, every transaction n will act as if it serially
follows transaction n-1

• Price of optimism
– Later transaction may cause earlier ones to abort
– Suitable for those application without a lot of data

interference
21

Locking

22

Pragmatics: lock
• Lock: a flag associated with a data object to warn

concurrent actions not to read or write the object
– ACQUIRE (A.lock) / RELEASE (A.lock)

• Only one will succeed
– Problems

• Easy to make error to race
• Difficult to find out why

– Three steps
• Discipline specifies which locks must be acquired and when
• Establish a compelling line of reasoning that concurrent

transactions that follow the discipline will ensure before-or-after
• Interpose a lock manager to enforces the discipline

23

System-wide locking
• System-wide lock

– begin_transaction
ACQUIRE (System.lock)
…

– …
RELEASE (System.lock)
end_transaction

– Allow only one transaction to run at a time
– Serialize potentially concurrent transactions in

the order that they call ACQUIRE

24

Simple Locking
• Simple locking

– 1. Acquire a lock for every shared data in advance
– 2. Release locks only after commit or abort

• Lock point (similar as mark-point)
– Lock set: locks acquired when reaches lock point
– Lock manager’s enforcement

• Intercept read/write/commit/abort, and check

• Problems
– How to enumerate all shared object to access?
– The set of might access may be larger than does access

25

Simple Locking

26Time

Lo
ck

Lock Point

Two-phase Locking
• Two-phase locking

– Avoids to know lock set in advance
– Acquire locks as it proceeds, access data as soon as it

acquires the lock

• Constraints
– Not release any locks until passes lock point
– Only release a lock if never need to read/write again

27

Two-phase Locking

28Time

Lo
ck

Lock Point

Performance Optimizations
• Lock compatibility modes
–Multiple-reader, single-writer protocol
• Any number of readers is safe
• Only one writer, wait for all reader to
finish
• Suitable for applications with a lot of
reading
• A writer may be delayed indefinitely

–More specific, more complex
29

Using Read-write Lock

30Time

Lo
ck

Lock Point Release Read
Lock ASAP

Release
Write Lock

Two-phase locking
• Unnecessary blocking
– Example
• T1: READ X
• T2: WRITE Y
• T1: WRITE Y
• T1’s & T2’s lock sets intersect at Y

– Two-phase locking prevents interleaving
• But T1/T2/T1 = T2/T1/T1
• NP-complete

31

Interactions between locks and
logs
• Transaction abort

– Restore its changed data before releasing lock
– Just like committed transactions doing

nothing
• System recovery

– Whether the locks themselves should be logged?
• No pending after recovery, thus no locks
• Locks are in volatile memory

– Non-complete transactions have no
overlapping lock sets at the moment of crash

32

Performance Optimizations
• Physical locking VS. logical locking

– Choose lock granularity
• E.g. change 6-byte object of a 1000-byte disk sector,

or change 1500-byte object on two disk sectors
• Which to lock: the object or sector?

– Logical locking
• If objects are small: more concurrency, more logging

– Physical locking
• New logical layer between app and disk

– E.g. data object management and garbage collection
• Tailor the logging and locking design to match disk

granularity
– Disk sectors rather than object is a common practice

33

Deadlock & Making Progress
• Inevitable if using locks in concurrency

– 1. Waiting for one another
– 2. Waiting for a lock by some deadlocked one
– Correctness arguments ensures correctness,

but no progress

• Methods
– Pessimistic ones: take a priori action to

prevent
– Optimistic ones: detect deadlocks then fix up

34

Methods for solving deadlock
• Lock ordering (pessimistic)

– Number the locks uniquely
– Require transactions acquire locks in order
– Problem: some app may not predict all of the locks they

need before acquiring the first one

• Backing out (optimistic)
– Allow acquire locks in any order
– If it encounters an already-acquired lock with an

number lower than one it has previously acquired itself,
then
• UNDO: Back up to release its higher-numbered locks
• Wait for the lower-numbered lock and REDO

35

Methods for solving deadlock
• Timer expiration (optimistic)

– Set a timer at begin_transaction, abort if timeout
– If still no progress, another one may abort
– Problem: how to chose the interval?

• Cycle detection (optimistic)
– Maintain a wait-for-graph in the lock manager

• Shows owner and waiting ones
• Check when transaction tries to acquire a lock

– Prevent cycle (deadlock)
• Select some cycle member to be a victim

36

History Version & Isolation

37

Using version histories
• Register renaming
– Pentium-4 only has 8 architectural register
– Has 128 physical register
– Renaming by reorder buffer
• Assigning a slot in the reorder buffer

– NEW_OUTCOME_RECORD & NEW_VERSION

• Committing instruction
– WRITE_VALUE & COMMIT

38

Register renaming

39

Using version histories
• Oracle database’s serializable
– Snapshot isolation
– When a transaction begins
• System takes a snapshot of every committed value
• Read all of its inputs from that snapshot

– If two concurrent transaction modify the same
variable
• The first one to commit wins
• Aborts the other one with “serialization error”

40

Using version histories
• Transaction memory
– Allow concurrent threads without locks
• Mark the beginning of an atomic instruction sequence

with a “begin transaction” instruction
• Direct all STORE to a hidden copy
• Check interference at end

– Even more optimistic than read-capture
– Most useful if interference is possible but unlikely
– Hardware or software implementation

41

Snapshot Isolation
• Setup: table with doctors, oncall=true

• T1:
select count(*) from doctors where oncall=true;
If count > 1

update doctors set oncall=false where username = 'alice’;

• T2:
select count(*) from doctors where oncall=true;
If count > 1

update doctors set oncall=false where username = 'bob';

42

Read-committed Isolation
• Setup: table with doctors, oncall=false

• T1:
select count(*) from doctors where oncall=false;

select count(*) from doctors where oncall=false;
commit;

• T2:
update doctors set oncall=true where username = 'bob’;
commit;

43

Summary
• Serialization (before-or-after)

– Simple serialization
– Mark-point
– Read-capture

• Other Isolation
– Read uncommitted
– Read committed <- PostgreSQL

default
– Repeat Read
– Serializability

– Snapshot isolation <- Oracle db

• Locking
– System-wide locking
– Simple locking
– Two-phase locking

• Deadlock
– Prevention
– Detection
– Solving

44

Transaction: multi-site

45

Multiple-site Atomicity: Distributed
Two-phase Commit
• Multiple-site atomicity

– A transaction requires several transactions at
different sites in a best-effort network
• 1 machine holds accounts A-K
• 1 machine holds accounts K-Z

– Message may be lost, delayed or duplicated
– Use RPC to communicate

• Ensure at-least-once by persistent sender
• Ensure at-most-once by duplicate suppression
• However, neither is enough to ensure atomicity here

– Combine three components
• At-lease-once, at-most-once, one-site transaction

46

Two-phase Commit
• Phase-1: preparation / voting

– Lower-layer transactions either aborts or
tentatively committed

– Higher-layer transaction evaluate lower
situation

• Phase-2: commitment
– If top-layer, then COMMIT or ABORT
– If nested itself, then become tentatively

committed

47

Multiple-site Atomicity
• Worker: Bob, Charles, Dawn
– Does three transactions: X, Y, Z

• Coordinator: Alice
– Create a higher-layer transaction
– Send three messages to the three

workers
• Challenge: un-reliable

communication
48

Commit Phase-1

Commit Phase-2

Bob: tentative committed
State: PREPARED

Bob: COMMITTED
Bob will perform post-commit

5050

3N messages

Multiple-site Atomicity
• Coordinator

– Collect some ABORT or nothing: ABORT or
assign the work to another worker

– Collect all COMMIT: then COMMIT

• Worker
– When receive nothing: resend PREPARED

• Coordinator will send current state if it receives
duplicate message

– When receive COMMIT: then COMMIT

51

Worker Crash Recovery
• If a worker uses logs and locks crashes

– 1. Classify any PREPARED transaction as a tentative
winner that it should restore to the PREPARED state

– 2. If worker uses lock, recovery reacquires any locks the
PREPARED transaction was holding when fail

– 3. Restart the persistent sender to learn the current
status of higher-layer transaction

• If a worker uses version history
– Only step-3 is needed

52

Variation of 3N protocol
• Carry PREPARE/PREPARED in initial RPC req/rep

– Lose the ability to ABORT when PREPARED
– Must remain on the knife edge
– It is preferred to delay the PREPARE/PREPARED pair

• 4N: with ACKs
– Coordinator safely discard its outcome record after collecting

all ACKs

• Presumed commit
– Expect most transactions commit
– Space-efficient representation of COMMITTED: non-existence

• COMMIT by destroy the outcome record, but not when ABORT
– Answers inquiry about a non-existent outcome record by

sending a COMMITTED response

53

Unsolved Problem
• What if the coordinator crash after

sending PREPARE but before sending
COMMIT?
– Workers are left in PREPARED with no way

to proceed
• A problem that cannot be solved

– Several workers will do their parts eventually,
not necessarily simultaneously

– Alice would in trouble if she had required
simultaneous action

54

Review problem set 37: two-
phase commit
• First phase: PREPARE / vote

– First, the coordinator sends a PREPARE message to each of the workers.
– For each worker, if it is able to commit, it writes a log record indicating it is entering the

PREPARED state and send a YES vote to the coordinator; otherwise it votes NO.

• Second phase-1: COMMIT or ABORT
– If all YES, coordinator logs a COMMIT and sends a COMMIT to all workers, which in turn log

a COMMIT record. ABORT is similar.

• Second phase-2: ACKNOWLEDGMENT / END
– After they receive the transaction outcome, workers send an ACKNOWLEDGMENT message

to the coordinator.
– Once the coordinator has received all ACK, it logs an END record.

• Crash recovery
– Workers that have not learned the outcome of a transaction periodically contact the

coordinator asking for the outcome.
– If the coordinator does not receive an ACKNOWLEDGMENT from some worker, after a timer

expiration it resends the outcome to that worker, persistently if necessary
55

56

57

Review so far

57

Case studies: machine language
atomicity
• Complex instruction sets: the general electric

600 line
– Indirect and tally: set by one-bit of indirect address
– Load register A from Y indirect.

• First Y++, then A = [Y.old]
• Can be used to sweep through a table

– Problem: page fault?
• The indirect word and operand are in different pages
• Then the state of the processor is “half-way of a

instruction”
– Solution: save internal state: 216-bit

• Programmer get info not in the API
• Be careful when restore

58

The Apollo desktop computer and
Motorola M68k
• Problem: ISA is not atomic when adding VM, and multiple

processors

• Solution: install two 68k
– When the first encounters a page fault, stops
– The second fetches the missing page, restarts the first one

• Solution-2:
– Modify compilers to generate atomic instruction only
– More tricky but risky

• Solution-3:
– Save internal state

59

