Computer System Engineering, Spring 2015. (IPADS, SJTU)

Introduction

Coping with the complexity of computer system

B [nstructors

Yubin Xia B & &,
xiayubin@gmail.com

Binyu Zang 8K, F
binyu.zang@gmail.com

mailto:binyu.zang@gmail.com
mailto:xiayubin@gmail.com

Bl Teaching Assistants

* Qiangian Yu
* Jinyu Gu

e LeiShi

* Yang Zheng

B Textbook

 Principles of Computer System Design: An Introduction
— Jerome H. Saltzer & M. Frans Kaashoek, June 2009.

e QOthers
— Computer Systems: An Integrated Approach to Architecture and Operating Systems
— Distributed Systems: Principles and Paradigms, 2™ Edition
— Papers and articles for recitation

B Where is CSE in Courses

J
J
J

Architecture
Compilers
Networking

[Operat'ng Systems]

— —

Computer Systems Engineering

(Introduction to Computer Systems)

B What is a System?

 System = Interacting set of components with a
specified behavior at the interface with its
environment

— Examples: Web, Android, Linux, File system

* This lecture: study and design of systems, their
components, and internals

[The Problem: Complexity of the Systems

7l

B An Example: The Gas System

EINEE ,L\o 2.
...O\O O \m&b o Y
2 wﬁw\\o 7 @\o@
3 _o\/ PV
?ﬁulﬁ\bo\m U\ow k
__ P
o T STy
o\ﬁo;&ow.ufo; ﬁo 0,20
RS ey
e e QlaO.\||..
/ /o ﬁ;.,__nv O
H,,,PQ\\DW‘_U ??m.a\b,m\
s %0 o »

B Compare with the Computer Systems

e Programming / Data Structure
— LOC (Lines Of Code): From hundreds to millions

* Operating System / Architecture
— Cores: from one to hundreds
* Network

— Nodes: from two to millions

e Web Service
— Clients: from tens to millions

Bl Example Complex System: the Linux Kernel

e 1975 Unix kernel: 10,500 LOC (Lines of Code)

e 2008 Linux 2.6.24 line counts:
— 85,000 processes
— 430,000 sound drivers
— 490,000 network protocols
— 710,000 file systems
— 1,000,000 different CPU architectures
— 4,000,000 drivers
— 7,800,000 Total

B LOC (Lines Of Code
Codebases

Millions of lines of code

—— hundred

thousand

simple iPhone game app
Unix v 1.0

1971

Wind2/Simile virus
average iPhone app
Pacemaker

Photoshop v L0

Camino

web browser

Quake 3 engine
3D Video game system

Space Shuttle

a million lines of code

million

]

APP

BROWSER

MACHINE

a million lines of code
W00 pacres of printed text

50

B Complexity of Computer Systems

 Hard to define; symptoms:
— Large number of components
— Large number of connections
— lrregular
— No short description
— Many people required to design/maintain

* Technology rarely the limit
— Indeed tech opportunity is the problem
— Limitis usually designers’understanding

B SYSTEM COMPLEXITY

B Problem Types

* Emergent properties (surprisel)

— The properties that are not considered at design time
* Propagation of effects

— Small change -> big effect

* Incommensurate scaling
— Design for small model may not scale

e Trade-offs
— Waterbed effect

B 1. Emergent Properties

* [eatures
— No evident in the individual components of a system
— But show up when combining those components
— Might also be called surprises

— An unalterable fact of life: some things turn up only
when a system is built

[1. Emergent Properties (Cont.)

* The Millennium Bridge
— For pedestrians over the River Thames in London

— Pedestrians synchronize their footsteps when the bridge sways,
causing it to sway even more

— It had to be closed after only a few days

16

Bl Emergent Property Example: Ethernet

 All computers share single cable

* (oalisreliable delivery

e Listen while sending to detect collisions

— If two nodes sends data at the same time, then both

cancel and wait for a random time

00011011

1101100

A

Max length: Tkm

B

B Does Collision Detection Work?

00011011 1101100

A

Max length: Tkm B

* Whatif A finishes sending before data from B arrives?

Tkm at 60% speed of light =5 ms (microseconds)
Original Ethernet Spec: 3 Mbit/sec

» Acansend 15 bits before bit 1 arrives at B
* A must keep sending for 2*5 ms (to detect collision when first bit from B arrives)

Minimum packet size is 5*2*3 = 30 bits

The default header is 5 bytes (40 bits), so no problem!

il 3 Mbit/s to 10 Mbit/s

e First Ethernet standard: 10 Mbit/s, 2.5 km wire
— Must send for 2*12.5 pseconds = 250 bits @ 10 Mb/s
— Header was 14 bytes

— Needed to pad packets to at least 250 bits (32 bytes)
* Emergent property: Minimum packet size!
— The 250-bit minimum packet size is a surprise

[l 2. Propagation of Effects [C0le?

e WHO: tried control malaria in North Borneo

Sprayed villages with DDT

Wiped out mosquitoes, but ...
Roaches collected DDT in tissue

Lizards ate roaches and became slower
Easy target for cats

Cats didn't deal with DDT well and died
Forest rats moved into villages

Rats carried the bacillus for the plague

* WHO replaced malaria with the plague

[l Example: No Small Changes

* Phone network features CF CF
— (F: Call Forwarding
— CNDB: Call Number Delivery Blocking A

* The caller's number should be hidden
— ACRB: Automatic Call Back

— IB: Itemized Billing 77

CNDB ACB + IB » Acalls B, Bis busy

* Once Bisdone, B automatically calls A
@ e As(caller) number appears on B's bill

B 3. Incommensurate Scaling

* Asa system increases in size or speed, not all parts
of it follow the same scaling rules

— 50 things stop working

* The mathematical description

— Different parts of the system exhibit different orders of
growth

B 3. Incommensurate Scaling (Cont.)

e (Galileoin 1638

— To illustrate briefly, I have sketched a bone whose natural length has
been increased three times and whose thickness has been multiplied
until, for a correspondingly large animal, it would perform the same
function which the small bone performs for its small animal. From the
figures here shown you can see how out of proportion the enlarged
bone appears.

Fig. 27

23

B 3. Incommensurate Scaling (Cont.)

e (Galileoin 1638

— Clearly then if one wishes to maintain in a great giant the same
proportion of limb as that found in an ordinary man he must either find
a harder and stronger material for making the bones, or he must admit a
diminution of strength in comparison with men of i
medium stature; for if his height be increased ol
inordinately he will fall and be crushed under : 5)

PR :
= \)

his own weight.

B 3. Incommensurate Scaling (Cont.)

e (Galileoin 1638

— Whereas, if the size of a body be diminished, the strength of that body
IS not diminished in the same proportion; indeed the smaller the body
the greater its relative strength. Thus a small dog could probably carry
on his back two or three dogs of his own size; but I believe that a horse
could not carry even one of his own size.

25

3. Incommensurate Scaling (Cont.

ARPA NETWORK, LOGICAL MAP, SEPTEMBER 1973

@) o

L8L UTaAM ILLINOIS

HAawall AMES ILLIAC I¥
@/\/V‘.[IMP {PDP-)

STANFORD @
.'@_{wp .
E

veso !

316 MICRO
IMP 8!
e 36700
meHGronse

vsc-
/151

Qop-lo IMP

Bl Example: Scaling the Internet

* Size routing tables (for shortest paths): O(n?)
— Hierarchical routing on network numbers
— Address: 16 bit network number and 16 bit host number

e Limited networks (2'6)

e Solutions:
— NAT (Network Address Translators) and IPv6

B 4. Trade-offs

* General Models
— Limited amount of goodness
— Maximize the goodness
— Avoid wasting
— Allocate where helps most

o \Waterbed Effect

— Pushing down on a problem at one point
— (Causes another problem to pop up somewhere else

B 4. Trade-offs (Cont.)

* Binary Classification
— We wish to classify a set of things into two categories

* Based on presence or absence of some property
— But we lack a direct measure of that property
— S0 we identify instead some indirect measure

* Known as a proxy

B 4. Trade-offs (Cont.)

* Binary Classification (Cont.)
— Occasionally this scheme misclassifies something
— By adjusting parameters of the proxy

— The designer may be able to

* reduce one class of mistakes
* but only at the cost of increasing some other class of mistakes

I How to Handle?

* |deally, the Constructive Theory

— Allows the designer systematically to
* Synthesize a system from its specifications
* Make necessary trade-offs with precision
— In some fields

e Communication systems
* Linear control systems
* Design of bridge and skyscrapers (to a certain extent)

B How to Handle? (Cont.)

* In Computer Systems
— “We find that we were born too soon” -- Our textbook

— The problems

* We work almost entirely by analyzing ad hoc examples rather
than by synthesizing

* S0, in place of a well-organized theory, we use case studies

[Signs of Complexity

* Webster’s Definition
— “Difficult to understand”
* Signs of complexity (like diagnosis in medicine)
— Large number of components
— Large number of interconnections
— Many irregularities
— Along description
— Ateam of designers, implementers, or maintainers

Bl Limit the Levels of Complexity

* All systems are indefinitely

— The deeper one digs, the more signs of complexity
turn up

— A computer -> gates -> electrons -> quarks -> ...

 Abstraction: limits the depth of digging

B COPING WITH COMPLEXITY

B MALH

* Modularity * Abstraction

— Split up system — Interface/Hiding

— Consider separately — Avoid propagation of effects
* Layering Hierarchy

— Gradually build up — Reduce connections

capabilities — Divide-and-conquer

B Modularity

* Analyze or design the system as a collection of interacting
subsystems

— Subsystems called modules
— Divide-and-conquer technigue

e The simplest, most important tool for reducing complexity

— Be able to consider interactions among the components within a
module

— Without simultaneously thinking about the components that are
inside other modules

I Modularity (Cont.)

e Example
— Debugging a program with N statements
— Number of bugs is proportional to its size

— Bugs are randomly distributed

DebugTime ~ (%)2 X K

BugCount ~ N
DebugTime ~ N X BugCount _ N?
~ N2 K

Original With Modularity

I Modularity (Cont.)

Bug
Bug

Original System

~

Bug

N J

Bug

System with Modularity

39

B Abstraction

o Abstraction

— Treat a module based on external specifications, no
need for details inside

* Principles to divide a module
— Follow natural or effective boundaries
— Fewer interactions among modules (Chap.4 & 5)

— Less propagation of effects

B Abstraction (Cont.)

e Examples
— DVD players
— Regjisters (circuits to remember states)

— Procedure call
— Applications with window interfaces
— Games, spreadsheet, web browsers

B Abstraction (Cont.)

* Minimizing interconnections among modules may
be defeated

— Unintentional or accidental interconnections, arising
from implementation errors

— Well-meaning design attempts to sneak past modular
boundaries

* Improve performance
* Meet some other requirement

B Abstraction (Cont.)

* Software is particularly subject to this problem

— The modular boundaries provided by the separately
compiled subprograms are actually somewhat soft

— Is easily penetrated by errors in
* using pointers

* filling buffers
* calculating array indices

B Abstraction (Cont.)

* System designers prefer techniques
— Enforce modularity by
* Interposing impenetrable walls between modules

— Assure that there can be no
e Unintentional or hidden interconnections

B Abstraction (Cont.)

e Failure Containment

— A module does not meet its abstract interface
specifications

— Limiting the impact of faults
* Well-designed and properly enforced modular abstractions
* Control propagation of effects

— Modules are the units of fault containment

B Abstraction (Cont.)

* The Robustness Principle
— Be tolerant of inputs and strict on outputs
 Suppress Noise or errors

 Not propagate or amplify them

— A module should accept its input values
e Ifitis still apparent how to sensibly interpret them
 Evenif they are not within specified ranges

— A module should construct its outputs

 (Conservatively in accordance with its specification
» Making them even more accurate or more constrained than the specification

requires if possible

46

B Abstraction (Cont.)

* The Safety Margin Principle

— Keep track of the distance to the cliff, or you may fall
over the edge

— Abnormal inputs indicate something is going wrong
— Track and report out-of-tolerance inputs
— Shake-out mode & production mode

47

I Layering

e (04l
— Reduce module interconnections even more

* Howtodoit
— Build a set of mechanisms first(a lower layer)

— Use them to create a different complete set of mechanisms (an
upper layer)

* General rule: A module in one layer only interacts with:

— [ts peers in the same layer, and
— Modules in the next lower layer / next higher layer

B Layering (Cont.)

Application layer

<D

OS layer

Processor & memory layer

<>

Memory cells & gates layer

* House:
— Inner layer of studs, joist, rafter (shape & strength)
— Layer of sheathing and drywall (wind out)
— Layerof siding, flooring and roof tiles (watertight)
— Cosmetic layer of paint (looks good)

* Algebra:

— integer, complex number, polynomials, polynomials with polynomial coefficients
49

[Hierarchy

* Hierarchy: another module organization
— Start with a small group of modules

— Assemble them into a stable, self-contained subsystem with
well defined interface

— Assemble a group of subsystems to a larger subsystem

e Example /\ _______

— 1 manager leads N employees

— 1 higher manager leads N SN
lower managers

[l Hierarchy (Cont.)

 There are many striking examples of hierarchy

— from microscopic biological systems
— to the assembly of Alexander’s empire

— Offers compelling arguments
* under evolution, hierarchical designs have a better chance of survival

e (onstrains interactions
— Permitting them only among the components of a subsystem
 Reduces the number of potential interactions among
modules from square-law to linear

B COMPUTER SYSTEMS ARE DIFFERENT

B Computer Systems are Different

« Computer systems are the same as all other systems
(plausible)
— Certain common problems show up in all complex systems

— The techniques that have been devised for coping with
complexity are universal

« Computer systems are different
— The complexity is not limited by physical laws
— The rate of change of technology is unprecedented

B Unbounded Composition

 Two properties of computer systems
— 1. Mostly digital
— 2. Controlled by software

— Both relax the limits on complexity arising from physical
laws in other systems

[l Computer System: Coping with Complexity

 MA.LHare NOT enough

— Hard to choose the right modularity
— Hard to choose the right abstraction
— Hard to choose the right layer

— Hard to choose the right hierarchy

B Class Plan

* Naming: Glue between modules

Operating systems: Enforced modularity within a machine

Network: Enforced modularity between machines

Reliability and transactions: Handing hardware failures

Security: Handling malicious failures

B Scores

e Exam:45%
e Lab:30%
e Recitation: 15%

e Homework: 10%

Computer System Engineering, Spring 2015. (IPADS, SJTU)

Naming Scheme

to achieve modularity

B Our Web-site

e http://ipads.se.sjtu.edu.cn/courses/cse

B Review

 (Challenge in computer system: complexity
— Emergent properties
— Propagation of efforts

— Incommensurate scaling
— Trade-offs

e Solutions
— M.A.LH.

Naming: the glue of modues

B NAMING SCHEME

Bl Naming in General

ipads.se.sjtu.edu.cn — hostname

steven@apple.com - email

steven — username

EAX - x86 processor register name

main() - function name

WebBrowser - class name

/courses/cse/index.html - path name (fully-qualified)
index.html - path name (relative)
http://ipads.se.sjtu.edu.cn/courses/cse/index.html - URL
13918275839- Phone number

202.120.40.188 - IP Address

Bl Use Name to Achieve Modularity

* Retrieval: e.q., using URL to get a web page

 Sharing: e.g., passing an object reference to a function
— Save space as well: only sending the name, not the object

 Hiding: e.g., using a file name without knowing file system
— (an support access control: use an object only if knowing its name
— E.g, Windows has many undocumented API

 User-friendly identifiers: e.qg., "homework.txt" instead of 0x051DE540

* Indirection: e.g., OS can move the location of the file data without notifying
the user
— Have you ever defragmented your hard driver?

Bl Address in Naming

e Software uses names in an obvious way
— E.g.,, memory addresses

 Hardware modules connected to a bus
— Use bus addresses (a kind of name) for interconnection

B Naming Schemes

e 1.Setof all possible names
— You cannot use for'as a variable in C

 2.Setof all possible values

* 3. Look-up algorithm to translate a name into a
value (or set of values, or“none”)

B Naming Model

////’, Name-
-~ mapping
P algorithm
/

Name space Universe of values

Bl Naming Terminology

 Binding — A mapping from a name to value
— Unbind is to delete the mapping
— A name that has a mapping is bound

* A name mapping algorithm resolves a name

B Naming Context

* Type-1: context and name are separated

* Type-2: context is part of the name

* Name spaces with only one possible context are
called universal name spaces

— Example: credit card number

Bl Determining Context - 1

* Hard code it in the resolver
— Examples: Many universal name spaces work this way

* Embedded in name itself

— cse@sjtu.edu.cn:
* Name ="cse”
« Context ="sjtu.edu.cn’
— /ipads.se.sjtu.edu.cn/courses/cse/README :
e Name ="README"
« Context ="/ipads.se.sjtu.edu.cn/courses/cse”

12

Bl Determining Context - 2

* Taken from environment (Dynamic)

— Unix cmd: “rm foo”:
* Name ="foo” context is current dir
* Question: how to find the binary of ‘rm” command?

— Read memory 0x7¢911109:
e Name ="0x7¢c911109"
 Context is thread's address space

* Many errors in systems due to using wrong context

13

Bl Name Mapping Algorithms - 1

* Table lookup

— Find name in a table
* E.g., Phone book

— Context: which table?
 ImplicitVS. explicit
* Default context

name |value
L NL L/
N2 _[foo_
NS _ [2o
N4 13
NS [2]
Ne | 1_
N7/ N9
Context A

Table Lookup

AN

bindings

14

Bl Name Mapping Algorithms - 2

* Recursive lookup
— E.g.,"/usr/bin/rm”
— First find“usr”in“/” then find “bin”in “/usr” then “rm”
— Each look-up process is the same

* Multiple lookup
— Recall: how to find “rm” without absolute name?

— SPATH
« E.g.,"/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin”

— Look-up in a predefined list of context

B Interpreter Naming API

e value < RESOLVE(name, context)
— Return the mapping of name in the context

e status <= BIND(name, value, context)
— Establish a name to value mapping in the context

o status <= UNBIND(name, context)
— Delete name from context

o [ist < ENUMERATE(context)

— Return a list of all bindings

e result <= COMPARE(namel, name?2)
— Check if nameT and name2 are equal

16

B FAQ of Naming Scheme - 1

* What is the syntax of names?

* What are the possible value?

* \WWhat context is used to resolve names?
* Who specifies the context?

* |sa particular name global (context-free) or local?

B FAQ of Naming Scheme - 2

* Does every name have a value?
— Or, can you have “dangling” names?

e (anasingle name have multiple values?

* Does every value have a name?
— Or, can you name everything?

 (an asingle value have multiple names?
— Or, are there synonyms?

Can the value corresponding to a name change over time?

Domain Name Service

B CASE: DNS

Bl DNS: Binding IP and Domain Name

* Names: hostname strings
— E.g., www.sjtu.edu.cn

e \alues: IP addresses
—Eg,202.120.2.119

* Look up algorithm

— Resolves a hostname to an IP address so that your
machine knows where to send packets

B Address can be seen as a Type of Name

* Anaddress itself is a type of name
— A structured name that is used to locate an object

— Recall your labs in ICS on socket
* The program uses IP address to identify the server

— On Internet
 The router will know where to send a packet with source IP

e Hostname has no such semantic
— A router does not know how to send a packet to “baidu.com”

B Why Not Just Using IP Address?

* |Psare structured in a particular way for routing

— You cannot pick your favorite four numbers as your IP
* Note: usually an aadress cannot be picked, e.g., your house addr.

— While host names are not using such structured

. Oﬂe beneﬁt Retrieval
. _ Sharing
— User-friendliness Hiding

User-friendly identifiers *

Indirection

B 1P Address ABC

[P addresses are categorized to 5 types, Ato E

Type Net# IP Range Host # Private IP

A 126 (27-2) 0.0.0.0-127.255.255.255 16777214 10.0.0.0-10.255.255.255

B 16384 (214) 128.0.0.0-191.255.255.255 65534 172.16.0.0-172.31.255.255

C 2097152(221) 192.0.0.0-223.255.255.255 254 192.168.0.0-192.168.255.255

* Type D and E are special ones

— Type D: multicast address, started with 1110
— Other special ones: e.q., 127.0.0.1-127.255.255.255

B Questions on DNS

* (an asingle name have multiple values?
— Yes

— This allows a web server to balance its load over multiple
machines

— Also allows a client to choice a nearest IP to access

e (an asingle value have multiple names?
— Yes
— This allows server consolidation

B Questions on DNS

 (an the value corresponding to a name change?
— Yes

— This allows to change the physical machine (with different IP) that
stores the data without changing the hostname

— So the changing is hidden to clients

Bl The 3¢ Part: the Look-up Algorithm

* History
— Each machine kept a“hosts.txt” for address binding
* E.g," 1900 202.120.224.83"
— Using table look-up to resolve the binding

— This method cannot scale in Internet

* Using a different way of storing data
 Thus requires a different look-up algorithm

— 1984, four Berkeley students wrote BIND
 Still the dominant DNS software in use

Bl Distributing Responsibility

* The binding
— Too large to be stored on a single machine

— Thus, the data are stored on many machines
* As known as“name servers"

* How to know which name server has a particular binding?
— Solution: structure the hostname
— Names have a hierarchy, e.g., com, net, gov, correspond to “zones”
— Zones are mapped to name servers

B Name Servers

* The root zone
— Maintained by ICANN, non-profit

e The”com”zone

J VeriSign
Trusted

— Maintained by VeriSign, add for money

e The"sjtu.edu.cn”zone
— Maintained by SJTU

Bl DNS Hierarchy (a partial view)

root
com cn net org gov
I
I I I I
apple google com edu
I I
I I I I I
drive mail WWW fudan sjtu
I
I I I
se seiee ma
I
I I
ipads WWW

B Basic DNS Look-up Algorithm

* Example: lookup IP of “Ipads.se.sjtu.edu.cn”

* Traverse the name hierarchy from the root
— The root will tell us the “cn” name server IP.

— WNIC
— WNIC
— WNIC

— WNIC

N wWill te
N Will te
N will te

ust
ust
ust

ne “edu.cn”name server IP,
ne “sjtu.edu.cn”name server IP

ne “se.sjtu.edu.cn”name server IP

n finally tells us the “ipads.se.sjtu.edu.cn” P

* Such algorithm is called delegation

I DNS Lookup

root

com

cn

com

fudan

sjtu

ipads

WWW

I DNS Lookup

198.41.0.4

root

com

cn

com

fudan

sjtu

ipads

WWW

> cn: 202.112.0.44

I DNS Lookup

198.41.0.4

root

com

cn

\ 4

com

fudan

sjtu

se

ipads

WWW

v

cn: 202.112.0.44

edu.cn: 202.112.0.35

B DNS Lookup

198.41.0.4

root

com

cn

\ 4

com

v

fudan

sjtu

se

ipads

WWW

v

cn: 202.112.0.44

edu.cn: 202.112.0.35

sjtu.edu.cn: 202.120.2.101

I DNS Lookup

198.41.0.4 | root >
com cn >
I
[I
com edu >
I
[I
fudan 1LV ——
se
I
[I
ipads WWW

cn: 202.112.0.44

edu.cn: 202.112.0.35

sjtu.edu.cn: 202.120.2.101

se.sjtu.edu.cn: 202.120.40.2

I DNS Lookup

198.41.0.4

root

com

cn

\ 4

cn: 202.112.0.44

com

edu.cn: 202.112.0.35

v

fudan

sjtu

se

v

sjtu.edu.cn: 202.120.2.101

> se.sjtu.edu.cn: 202.120.2.101

ipads

WWW

— ipads.se.sjtu.edu.cn: 202.120.40.188

B Context in DNS

* Names in DNS are global (context-free)
— A hostname means the same thing everywhere in DNS

 Actually, it should be “ipads.se.sjtu.edu.cn.
— A hostname is a list of domain names concatenated with dots

mnn

— The root domain is unnamed, i.e.,”” + blank

— You can also look-up a hostname like “web”
 Resolving “web!
 Resolving “web” + additional default context (it's system specific)

B Fault Tolerant

* Fach zone can have multiple name servers
— A delegation usually contains a list of name servers
— If one name server is down, the others can be used

B Three Enhancements on Look-up Algorithm

* 1.The initial DNS request can go to any name server, not
just the root server
— Even on your own machine: /etc/hosts
— You can specific your name servers in /etc/resolv.conf
— If no record, just returns address of the root server
— Question: what are the benefits?

B Three Enhancements on Look-up Algorithm

e). Recursion
— A client asks a name server “www.baidu.com”

— The name server does all the lookup through the tree
and return the IP of baidu to the client

— Usually, a name server has a better network connection

B DNS Request Process

a.root.net
names.edu
NS|foredu J
: for
:ch IarIyed
ginger, ginger, ginger, AP: for
Scholar.ddu | Scholar.gdu Scholar.edu |ginger.Schol

ar.edu

Name client

Non-Recursion

a.root.

t.net
@

Name client

Recursion

41

B Three Enhancements on Look-up Algorithm

* 3. Caching

— DNS clients and name servers keep a cache of names
* Your browser will not do two look-ups for one address

— Cache has expire time limit
* Controlled by a time-to-live parameter in the response itself
* E.g, SJTU sets the TTL for www.sjtu.edu.cn

— Trade-off
* High TTLsVS. low TTLs (Question: what are the tradeoffs?)

B Combine These Enhancements

o If

— Many machines at SJTU use the SJTU name server for their initial
DNS query

— The name server offers recursive querying and caching

 Then

— The name server’s cache will holding many bindings
— Performance benefits from this large cache

B Other Features of DNS

At least two identical replica servers

— 80 replicas of the root name server in 2008
— Replicas are placed separated around the world

* Organization’s name server
— Several replicas in campus
* To enable communications within the organization
— At least one out of the campus
* To validate the address for outside world

44

B Name Discovery in DNS

* Aclient must discover the name of a nearby name server
— Name discovery broadcast to ISP at first time
— Ask network manager
— A user must discover the domain name of a service
— Ask by email, Google

Why was DNS designed in this way?

B BEHIND THE DESIGN

Bl Benefits of Hierarchical Design

* Hierarchies delegate responsibility
* Each zone is only responsible for a small portion

* Hierarchies also limit interaction between modules

B Good Points on DNS Design

* Global names (assuming same root servers)
— No need to specific a context
— DNS has no trouble generating unigue names
— The name can also be user-friendly

 Scalable in performance
— Simplicity: look-up is simple and can be done by a PC
— (Caching
— Delegation: many name severs handle lookups

B Good Points on DNS Design

* Scalable in management
— Each zone makes its own policy decision on binding
— Hierarchy is great here

* Fault tolerant
— If one name server breaks, other will still work
— Duplicated name server for a same zone

Bl Bad Points on DNS Design

* Policy

— Who should control the root zone, .com zone, etc? Government?

 Significant load on root servers
— Many DNS clients starts by talking to root server
— Many queries for non-existent names, becomes a DoS

e Security
— How does a client know if the response is correct?
— How does VeriSign know “‘change Amazon.com IP”is legal?

B DNS Security

DNS Authentication
— (Cache inconsistency

DNS Hijack
— Cutting the binding between name and IP

Solution: /etc/hosts, dnsmasg, OpenDNS, etc.
— DNS DoS
— BAOFENG.com & DNSPod
— 2009-5-18: DNSPod is attacked and banned
— 2009-5-19: The Internet in China is almost down

DNS shield to defend against DoS attack

B Problem 4.5

* While browsing the Web, you click on a link that
identifies an Internet host named
www.cslab.scholarly.edu. Your browser asks your
Domain Name System (DNS) name server, M, to find
an Internet address for this domain name. Under
what conditions is each of the following statements
true of the name resolution process?

B Problem 4.5

A. To answer your guery, M must contact one of the root name servers.

B. If Manswered a query for www.cslab.scholarly.edu in the past,
then it can answer your query without asking any other name server.

C. M must contact one of the name servers for cslab.scholarly.edu to
resolve the domain name.

B Problem 4.5

D. If M has the current Internet address of a working
name server for scholarly.edu cached, then that name
server will be able to directly provide an answer.

E. It M has the current Internet address of a working
name server for cslab.scholarly.edu cached, then that
name server will be able to directly provide an answer.

Computer System Engineering, Spring 2015. (IPADS, SJTU)

Naming in File System

A demonstration of naming, modularity and layering

Bl Review: Naming Model

////” Name-
-7 mapping
P algorithm
/

Name space Universe of values

Bl Review: Use Name to Achieve Modularity

 Retrieval: e.g., using URL to get a web page

Sharing: e.g., passing an object reference to a function
— Save space as well: only sending the name, not the object

 Hiding: e.g., using a file name without knowing file system
— (an support access control: use an object only if knowing its name
— E.g., Windows has many undocumented AP!

* User-friendly identifiers: e.g., "homework.txt" instead of 0x051DE540

* [ndirection: e.g., OS can move the location of the file data without
notifying the user
— Have you ever defragmented your hard driver?

Bl Review: Good Points on DNS Design

* Global names (assuming same root servers)
— No need to specific a context
— DNS has no trouble generating unigue names
— The name can also be user-friendly

 Scalable in performance
— Simplicity: look-up is simple and can be done by a PC
— (Caching
— Delegation: many name severs handle lookups

Bl Review: Good Points on DNS Design

* Scalable in management
— Each zone makes its own policy decision on binding
— Hierarchy is great here

e Fault tolerant
— |f one name server breaks, other will still work
— Duplicated name server for a same zone

Bl Review: Bad Points on DNS Design

* Policy
— Who should control the root zone, .com zone, etc? Government?

* Significant load on root servers
— Many DNS clients starts by talking to root server
— Many queries for non-existent names, becomes a DoS

* Security
— How does a client know if the response is correct?
— How does VeriSign know “‘change Amazon.com IP"is legal?

B FILE SYSTEM OF UNIX-V6

Brile

* Fileis a high-level version of the memory abstraction
— Recall: Abstraction VS. Virtualization

« Afile has two key properties
— Itis durable & hasaname

* System layer implements files using modules from hardware layer

— Divide-and-conquer strategy

— Makes use of several hidden layers of machine-oriented names (addresses),
one on another, to implement files

— Maps user-friendly names to these files

B The Big Picture

User | App-1| | App-2 | | App-3

OPEN("a.txt’, "rw”)
READ(...)

File System WRITE(..)

Kernel

Disk Driver

READ(block-addr, buf)

WRITE(block-addr, buf)
Hardware @ mratE e

Memory Disk

Bl Abstraction: AP of UNIX File System

* OPEN, READ, WRITE, SEEK, CLOSE
* FSYNC

* STAT, CHMOD, CHOWN

* RENAME, LINK, UNLINK, SYMLINK
* MKDIR, CHDIR, CHROOT

* MOUNT, UNMOUNT

B FILE SYSTEM: SOFTWARE LAYER

Bl The Naming Layers of the UNIX FS (version 6)

Layer
Symbolic link layer

Absolute path name layer

Path name layer

File name layer

Inode number layer

File layer

Block layer

Purpose

Integrate multiple file systems with
symbolic links.

Provide a root for the naming hierarchies.

Organize files into naming hierarchies.

Provide human-oriented names for files.

Provide machine-oriented names for files.

Organize blocks into files.

Identify disk blocks.

T

user-oriented
names

3

machine-user
interface

T

machine-oriented
names

2

12

B Block Layer

 Block size: a trade-off
— Neither too small or too big

* Name mapping: block number -> block
— Name-mapping algorithm

Block
num

Disk
Block

e procedure BLOCK_NUMBER_TO_BLOCK (integer b) returns bl/ock

return devicel bl
— (Context

 The storage device (e.q. disk) itself
* Binds block numbers to physical blocks

— Name discovery

* Superblock €

13

B Super Block

Block | Disk
num Block
* One superblock per file system
— Kernel reads superblock when mount the FS
 Superblock contains
Size of the blocks — Size of the inode list
Number of free blocks — Number of free inodes
A list of free blocks — Alist of free inodes
Index to next free block — Index to next free inode
Lock field for free block and free inode lists
Flag to indicate modification of superblock
0 1 eese n—1
Sggi ii‘opci' f?;?;géﬁ; Inode table brlzggk . brI:cLIc?k
14

<

Ml File Layer

 File requirements
— Store items that are larger than one block
— May grow or shrink over time
— Afileis alinear array of bytes of arbitrary length
— Record which blocks belong to each file

e inode (index node)
— A container for metadata about the file

structure /node
integer block_numbers[N]
integer size

File
(inode)

Block
num

Disk
Block

15

B inode for Larger Files

block [—]
indirect block]
double indirect block [N

File
(inode)

Block
num

Disk
Block

inode

16

File Block | Disk

.File I.ayer (inode) [num | Block

* Name mapping: index number -> block number
— Index number can be seen as block-size offset within a file

* (Context: the inode itself
* Name mapping algorithm

procedure INDEX_TO_BLOCK_NUMBER (/node instance /, integer /ndex) returns integer
return /.block_numberslindex]
procedure INODE_TO_BLOCK (integer offset, inode instance /) returns b/ock

O < oOffset / BLOCKSIZE
b <« INDEX_TO_BLOCK_NUMBER (/, 0)
return BLOCK_NUMBER_TO_BLOCK (b)

17

B Choices Other Than inode

Method-2: Use Linked List

* Method-1:
— Use continue blocks
— Re-allocate if the file expands
— E.g, datain memory
— Why not?

* How to integrate different FS?
— vnode
— Interface is similar with inode

Fach block links to its next block

Use special one as EOF (End of
File)

E.g., FAT32
Why not?

18

M inode Number Layer

* Name mapping: inode number -> inode

o (Context: the inode table

* Name-mapping algorithm: inode table
— At a fixed location on storage

procedure INoDE_NUMBER_TO_INODE (integer /inode_number) returns inode
return /node_tablelinode_number]

Inode
num

File
(inode)

Block
num

Disk
Block

0 1 eee n _1
Boot | Super Bitmap for File File
block | block free blocks Inode table block | **° | block

* Name discovery

— Track which inode number are in use

— Eg.freelist, a field in inode

19

Inode

Bl Put Layers so far Together | mm

File
(inode)

Block
num

Disk
Block

procedure INODE_NUMBER_TO_BLOCK (integer offset, integer inode_number)
returns block

inode instance / < INODE_NUMBER_TO_INODE (/node_number)

b < INDEX_TO_BLOCK_NUMBER (/, 0)

1

2

3

4 0 <« offset / BLOCKSIZE

5

6 return BLOCK_NUMBER_TO_BLOCK (b)

* Needs more user-friendly name

— Numbers are convenient names only for computer

* Numbers change on different storage device

20

M File Name Layer e

e File name

Inode
num

File
(inode)

Block
num

Disk
Block

Hide metadata of file management
Files and 1/0 devices

* Name mapping algorithm

Mapping table saved in directory
Default context: current working directory

Context reference is also inode number
 The directory itself is a file

structure /node

integer block_numbers[N]

integer size
integer type

File name

Inode number

program

10

paper

12

procedure NnAME_TO_INODE_NUMBER (character string filename, integer dir) returns integer

return Lookur (filename, dir)

Max length of a name is 14 bytes in UNIX version 6

21

B LOOKUP in a Directory | rme |mom | inode) | mom | o

procedure Lookur (character string filename, integer dir) returns integer
block instance b
inode instance / « INODE_NUMBER_TO_INODE (dir)
if /.type # pirecToRrY then return FAILURE
for offset from O to /.size — 1 do
b « INODE_NUMBER_TO_BLOCK (offset, dir)
if sTRING_MATCH (filename, b) then
return NnoDE_NUMBER (filename, b)
offset «— offset + BLOCKSIZE
0 return rFAILURE

SN LOONOORNWNR

« Name compare method: STRING_MATCH
e LOOKUP(“program’, dir) will return 10

* Next Problem: too many files
22

Bl Path Name Layer [ran name

File
name

Inode
num

File
(inode)

Block
num

Disk
Block

* Hierarchy of directories and files
— Structured naming: E.g. “projects/paper”

* Name-mapping algorithm

— procedure pPATH_TO_INODE_NUMBER (character string path, integer dir) returns integer

if (PLain_NAME (path)) return NAME_TO_INODE_NUMBER (path, dir)

else
dir « Lookupr (FIRST (path), dir)
path « RrResT (path)

return PATH_TO_INODE_NUMBER (path, dir)

— PLAIN_NAME returns true if no’/"in the path
 (Context: the working directory

23

. I_inkS Path name

File
name

Inode
num

File
(inode)

Block
num

Disk
Block

LINK: shortcut for long names
— LINK("Mail/inbox/new-assignment

1

— Turns strict hierarchy into a directed graph
* Users cannot create links to directories -> acyclic graph

— Different names, same inode number

UNLINK

,"assignment”)

— Remove the binding of filename to inode number
— IF UNLINK last binding, put inode/blocks to free-list

» A reference counter is needed

24

B Links

Reference count

Path name

File

Inode

Nname | num

File
(inode)

Block
num

Disk
Block

— Aninode can bind multiple file names

— +1 when LINK, -1 when UNLINK
— A file will be deleted when reference countis 0

— No cycle allowed
» Exceptfor’and’!

* Naming current and parent
directory with no need to

know their names

structure /node
integer block_numbers[N]
integer size
integer type
integer refcnt

25

B No Cycle for LINK

25:1

/a/bis a directory
The refcntof ais 1
a’s inode num is 25

File Inode | File Block | Disk
Path name name |num | (inode) [num | Block
/ /
a . <
25:2 25:1
C b C b
LINK (“/a/b/c" a") e UNLINK ("/a")

Cause a cycle!
Refcnt of ais 2

Refcnt of ais 1, so the
inode 25 is not deleted

Now inode 25 is dis-

connected from graph

26

B Renaming-1 [rannome

File
name

Inode
num

File
(inode)

Block
num

Disk
Block

1 UNLINK (fo_name)
2 LINK (from_name, to_name)
3 UNLINK (from_name)

» Textedit usually save editing file in a tmp file
— Editin .a.txt.swp, then rename .a.txt.swp to a.txt

« Whatif the computer fails between 1 & 27
— to_name will be lost, which surprises the user

— Need atomic action in chap-9

27

. File Inode | File Block | Disk
.Renamlng'z Path name name |num | (inode) [num | Block

1 LINK (from_name, to_name)
2 UNLINK (from_name)

» Weaker specification without atomic actions

— Changes the inode number in the directory entry for to_name to the inode
number of from_name

— Removes the directory entry for from_name

— If fails between 1 & 2, must increase reference count of from_name’s inode on
recovery

— If to_name already exist, it will always exist even if machine fails between 1 & 2
— (The to_name file is UNLINKed in the first LINK function)

28

Absolute Path

Absolute path

Path name

Name Layer
* HOME directory

File
name

Inode
num

File
(inode)

Block
num

Disk
Block

— Every user’s default working directory

— Problem: no sharing of HOME files between users

 (Context: the root directory

— A universal context for all users
— Well-known name:’/'
— Both'//and’/. are linked to /'

procedure GENERALPATH_TO_INODE_NUMBER (character string path) returns integer

if (path[O] = "/") return PATH_TO_INODE_NUMBER(path, 1)

else return pPATH_TO_INODE_NUMBER(path, wd)

29

B An Example: Find Blocks of “/programs/pong.c”

—

Block numbers " L ‘*\\\
: P , -
4 \ 5 6 7 14 23 61
147 4 1| N iRs Bl Srograms 17| [pongd " rs
Lo >1pgl N programs_, 7| |pong.c 19
370 1 C 28 44 data .6 i pong()l
161 ! : :55: 15: Lo T T T T TAT I
| 1 1
R LY Lo /'4\ , ! }
N o Lo
\\‘1\ Lo I Lo ! :’?“ ' A
1Y 7 9 = —— Inode #s / Root | A | A
<+——— Inode table > ,/ directory \ directory ! file

[File names -~ \ !

'_ N Inode #'s
Root inode

B An Example: Find Blocks of “/programs/pong.c”

Block numbers " //’ ‘\\\\
) P , -
4 \ 5 6 7 14 23 61
147 1| N 128 (et Srogramis 17| [pongc " 5
L S | jprograms_, 7| |pong.c .9
37, 1 | | 128 44: Lo data 1 6 i pong(){
161 | : :55: 15: I T T T T T AT I
| 1 1
[191, Lo /"\ ! ! }
| | | | | | | | |
\\\1\ Lo Lo Lo ! :’?“ P A
1 |\ 7 9 =—— Inode #'s / Root | A | A
<+——— Inode table 4 ,/ directory \ directory ! file

[File names -~ \ !

'_ N Inode #'s
Root inode

* ‘/'root directory: inodeis 1

B An Example: Find Blocks of “/programs/pong.c”

Block numbers - //’ ‘\\\\
i k/// V// \\
\
4 \\ 5 6 7 14 23 61
Ged 1 1 [Nzl ol || g 17| (5o s
L Na | programs_ ,7| |pong.c ;9
377 | 128 44: Lo data 1 6 i pong(){
161 : : : :55: 15: : : St Sl i
| 1 1
| I I I 151, (I T /'4\ , ! }
| | | | | | | | |
AN I R A ! A A
1Y 7 9 = —— Inode #s / Root | A | A
<+——— Inode table > ,// directory |\ directory ! file
[File names -~ \ /
! N Inode #'s
Root inode

* Find the first directory in ‘/* by block number

32

B An Example: Find Blocks of “/programs/pong.c”

Block numbers - //’ ‘\\\\
i\ // V "N
4 \\ 5 6 7 14 23 61
W[N e (e 17| loage s
Lo N | programs |, 7| |pong.c ;9
37, 1 | | 128 44: Lo data 1 6 i pong(){
161 I | :55: 15: o ittt Tl i
| 1 1
I | I I 191 [T /'4\ , ! }
| | | | | I | | |
\\\1\ Lo I Lo ! :’t‘ ' A
1Y 7 9 = —— Inode #s / Root | A | A
<+——— Inode table > ,// directory |\ directory ! file
| File names -~ \ I
' N lnode #'s
Root inode

* Find ‘/programs’ by comparing name

B An Example: Find Blocks of “/programs/pong.c”

————— - Numbered blocks ————__ _
Block numbers P 7 T~
. 7 / ~
4 \\ 5 6 7 14 23 61
I I T I R ereee:)l s
R X ogl B programs (L 7| Jjpong.c .19
370 C 28 44 data , 6 i pong(){
161 I | :55: 15: o T T T T T AT |
| 1 1
[T 1971 R /'4\ , ! }
| | | | | | | | |
\\\1\ Lo Lo o ! :’t‘ P A
1Y 7 9 = —— Inode #s / Root | A | A
<+——— Inode table > ,// directory | directory | file

[File names -~ \ !
" N Inode #'s
Root inode

* Find ‘/programs’ inode by its inode number 7

34

B An Example: Find Blocks of “/programs/pong.c”

Block numbers - //’ ‘\\\\
) P , -
|‘ ,// y \\i
4 \\ 5 6 7 14 23 61

ZIR I 5 I T g 17| lpoe s
1 I I N] ([T (Programs_ -7 |PONE.C 9_

AR A O data____ 16 e
Lo I olgq! Lo : ! }“'
SRR EEE. b :

A 1 1
AN N B ! A A
1Y 7 9 = —— Inode #s / Root | A | A
<+——— Inode table > ,// directory |\ directory ! file

[File names -~ \ !

'_ N Inode #'s
Root inode

* Find the first file in ‘/programs/’

35

B An Example: Find Blocks of “/programs/pong.c”

Block numbers

\ 7 // \\\
\ v % N
- \ 5 6 7 14 23 61
a1 | N2l fer] | | e 17| (oee s
L Sa | jprograms_ , 7| |pong.c .9
37 1 L 128 44l data 6 D pong()l
I -
1 1
oo LY Lo A ! : J
| | | | | | | | |
Norov vy ; ' I
1Y 7 9 = —— Inode #s / Root | A | A
<«——— Inode table > ,// directory |\ directory ! file

Root inode

Ve \ /

N Inode #'s 7

File names -

e Find ‘/programs/pong.c’ by comparing its name

36

B An Example: Find Blocks of “/programs/pong.c”

Block numbers - -7 -

\ k/// V’// \\\\%

- \\ 5 6 7 14 23 61
@l 1| N2 fer || S I P— =

Lo Sa | jprograms_ , 7| |pong.c |9
370 L 128 44 data ' ; pong(){
tel b | st s b -
| 1 1
(R LY Lo /'4\ , ! }
o o Lo
\\\1\ Lo [o ! :’t‘ P A
1) 7 9 |=—- Inode #'s / Root | A | A
<+——— Inode table > ,// directory | directory | file

File names -~ \ !

I
" N Inode #'s
Root inode

* Find inode of ‘/programs/pong.c’ by the inode number 9

37

B An Example: Find Blocks of “/programs/pong.c”

————— - Numbered blocks ————__ _
Block numbers - //’ T~
) P , -
l‘ V/ y \\i
4 \\ 5 6 7 14 23 61
EEERNEE iogans 17 [soEe ‘s
o S ogl | jprograms_, 7| |pong.c .9
37, 1 I hat| DR data 1 6 i pong()1
161 o | :55: 151 o Stttk Tl I
| 1 1
o 191 I T /"\ ! ! }
w1 R Lo ! !
NS S O O S IO O ! A A
1Y 7 9 = —— Inode #s / Root | A | A
<+——— Inode table > ,// directory |\ directory ! file
I File names -~ \ !
' N lnode #'s
Root inode

* Find block number of ‘/programs/pong.c’

38

B An Example: Find Blocks of “/programs/pong.c”

—

Block numbers - L ‘*\\\
i\ v’ V N
4 \ 5 6 7 14 - 23 61
ZI T AT F Sgene 17| o o ——
Lo Sa | programs_ 7| |pong.c ;9
37, 1 | | 128 44: Lo data 1 6 i pong(){
161 I ! :55: 15: o Sttt i
| 1 1
I I I I 151 (T /'4\ , ! }
(TR T Lo Lo —
Noror vy ; ' I
1Y 7 9 = —— Inode #s / Root | A | A
<+——— Inode table > ,// directory |\ directory ! file
I File names -~ \ I
| N Inode #'s 7
Root inode

. Find data of block 61 by its block number
— And data of block 44 & 15

39

Symbolic link

. . Absolute path
B Symbolic Link Layer Fooeace

File
name

Inode
num

File
(inode)

Block
num

Disk
Block

 MOUNT

— Records the device and the root inode number of the file system

iIn memory

— Record in the in-memory version of the inode for“/dev/fd1”its

parent’s inode
— UNMOUNT undoes the mount

* (Change to the file name layer

— If LOOKUP runs into an inode on which a file system is mount, it

uses the root inode of that file system for the lookup

40

Symbolic link

. . Absolute path
B Symbolic Link Layer Foace

File
name

Inode
num

File
(inode)

Block
num

Disk
Block

 Name files on other disks
— Inode is different on other disks

— Supports to attach new disks to the name space

* [wo options

— Make inodes unique across all disks x
— Create synonyms for the files on the other disks

 Soft link (symbolic link)
— SYMLINK
— Add another type of inode
— (Context: the directory hierarchy

41

Computer System Engineering, Spring 2015. (IPADS, SJTU)

Naming in File System

A demonstration of naming, modularity and layering

B Review: File

* Fileis a high-level version of the memory abstraction
— Recall: Abstraction VS. Virtualization

* Afile has two key properties
— Itisdurable & has a name

* System layer implements files using modules from hardware layer

— Divide-and-conquer strategy

— Makes use of several hidden layers of machine-oriented names (addresses),
one on another, to implementfiles

— Maps user-friendly names to these files

Bl Review: The Naming Layers of the UNIX FS (version 6)

Layer Purpose

Symbolic link layer Integrate multiple file systems with T
symbolic links.

Absolute path name layer Provide a root for the naming hierarchies. usc:;r;zrsltcd

Path name layer Organize files into naming hierarchies. J,

File name layer Provide human-oriented names for files. m;? cuset

interface
Inode number layer Provide machine-oriented names for files. T
File layer Organize blocks into files. machine-oriented

namcs

Block layer Identify disk blocks. \L

Bl Review: Two Types of Links (Synonyms)

Add link “assignment”to “Mail/new-assignment”
* Hard link

— Nonew file is created, just add a binding between a string and an existing
inode

— Target inode reference countis increased
— Iftarget file is deleted, the link is still valid

* Softlink
— Anewfileis created, the data is the string “Mail/new-assignment”
— Targetinode reference count is not increased
— Iftarget file is deleted, the link is not valid

* Softlink can create cycle by SYMLINK("a",“a")

l Symbolic Link Layer

* Another interesting behavior of soft link

— Current directory is “/Scholarly/programs/www”

— This wd contains a soft link
* "CSE-web"->"Scholarly/programs/www"

— Run following commands
* CHDIR ("CSE-web”)
e CHDIR ("))

— Whatis the current directory?

inn

* "!isresolvedin the new default context, by bash

Bl Decouple Modules with Indirection

Table 2.3 The uNIx Naming Layers, with Details of the Naming Scheme of Each Layer

Lavyer

Symbolic
link

Absolute
path
name

Path
name

File
name

Inode
number

File

Block

Names

Path
names

Absolute
path
names

Relat