01 # iz

Introduction

AR

* Database

- KEMEFAETEILAR. BEAR., ATHEZaY,
E?I‘Eaéﬂfﬁ’h&‘ HIEE R

— P FABIENES

— A very large, integrated collection of data.

HEEEE RS

* DataBase Management System(DBMS)

A software package designed to store
and manage databases.

* Provide efficient, reliable, convenient,
and safe multi-user storage of and
access o massive amounts of persistent

data.

Massive
Persistent
Safe
Multi-user
Convenient
Efficient
Reliable

DBMS

Key concepts

Data model
— A collection of concepts for describing data
— A description of, in general, how the data is structured.

Schema versus data

— A description of a particular collection of data, using the given
data model

— The schema sets up the structure of the database.
Data definition language (DDL)
Data manipulation or query language (DML)

HARHR

(Conceptual)

People
DBMS implementer
Database designer
Database application developer
Database administrator

DBMSHRHTLE

AR EE N

Whether you know it or not,
you're using a database every day

02 XREE
Relational Model

X AFER B AL

« XAREE—FMETROBIEEDR
- ARNEEFTRYEELBIEEIANER

» Schema
—structural description of relations in database

Student(sho, sname, age, gender, dept)

* Instance
—actual contents at given point in time

Student(95001,"3k="21"M" "SE")

* Database = set of named relations(tables)

* Each relation has a set of named attributes
(columns)

* Each tuple(row) has a value for each
attribute

 Each attribute has a type(domain)

I(ey (%\ EE)

— attribute whose value is unique in each tuple

— Or set of attributes whose combined values
are unique

Super Key (Ef5)
Candidate Key (fxix#5)
Primary Key (F£#5)
Foreign key (5pB)

— Value in one relation must appear in another
— Referencing relation
— Referenced relation

student course

sho shame age gende dept cho chame credit
001 K= 21 M SE 222 SE 3
002 Z= 20 F CS 223 DB 3

001 223 80

002 222 86

001 222 82

Example: University

— @%E’

+ KEGHBENER
NAHECHE—BF (dept_name) RiriH

FERESY (building)

- AENZ%EWE (budget)

¥ 19RT

£ R

s F—ANRENITRRIETIR

25 (course id)

— Tﬁ%/_%ﬁg (title)
— &% (dept name)
— 24 (credits)

— EA[EEASBIBER (prerequisites)

Example: University

« FHUTHMAME—RRIRS (ID) KixiR

TR 4 (name)
- ﬁﬂfﬁ'ﬁ% (dept name)
— L% (salary)

+ BEHDNAE—RIRRS (ID) RixiR

—- AR EHZ (name)
- MR (dept name)
- BBESE (tot_cred)

Example: University

+ RFUEP —IPHEIIR

— #42 (building)
— BE%S (room_number)
- A& (capacity) .

» REFELZPHRBIFARE (FHR) HFIE

b

FIXKHTRHRIES (course id) . RS (sec_id) . 4
(year) 2238 (semester) XKiniR

- 527 HRBRA W (semester) . & (year) . B4
(building) . EES (room_number) . BES
(time_slot_id, BEI_E{RAIBTE])

Example: University

+ RAEMEEFEESIIR, RHSMBEITHRRER.

+ REA—TIEFEEREIMNFIR, WA FEERE
PR VR R ITR P IEAM T .

A

* —MRENAFRERE L LRI ARRF
L. AW, RIVRAXNHEAT By E R By
gf_ﬁﬁ%ﬁ&%#&, 5, 138 4k 7 A AR

Example: University

Example: University

Classroom (building, room number, capacity)
Department (dept name, building, budget)
Course (course id, title, dept_name, credits)
Instructor (ID, name, dept_name, salary)

Section (course id, sec id, semester, year, building,
room_number, time_slot_id)

Teaches (ID, course id, sec id, semester, year) student
(ID, name, dept_name, tot_cred)

Takes (ID, course id, sec id, semester, year, grade)
Advisor (s_ID, i_ID)

time_slot (time slot id, day, start time, end_time)
Prereq (course id, prereq id)

RERH

KA B EAL

o RABIREBIRRE

- &if), &

- FifIES

— A PRAENSHEEFIBE R IKE 2T
—~ ZBEUITSE (what & how)

- EIFEHIES (what)

- XARRH

- TRELKEAIES

Tilt

¢ Set
* Bag
e List

RENRH

Six basic operators
— select:
— project:
— union:
— set difference: -
— Cartesian product: x
— rename:
*The operators take one or two

relations as inputs and produce a new
relation as a result.

select:

(r)={t|*+ randp(t)}

* project:

[1 A Ay .. A (7)

 Cartesian product: x
rxs={tq|t randq s}

¥ Z A relationdl & (join) 7E

T

=1y

* union:
r s={t|t rort s}
fErd, BEfEsH Htuple

WY HTEIMAE R T4 (Student, Instructor)
X?
U?

- set difference: -
r-s ={t|t randt s}
fErd, AiEsH tuple

IR BRRRGHFENFES

* rename.

RENRH

additional operations
» Set intersection N
* Natural join X

* Assignment

- Outer join X

*Set intersection

E,-E, = E;-(E;-E>)

‘Natural join) (BH#AREE)
P S

=nschema(r‘) U schema(s)Or.aq=s.ay Ar.ay=s.a, /\m(r'xs)

schema(r) N schema(s)=(a;,a,,..)

(R1ERYZE EEFE)
AT RIENFENFS, ER

HIVHRFERICRNFENT S, R

» Theta join Mg or Xg

ries = og(r X s)
(&R

‘Outer join
SpiERE, [LHCERE B A ILECERE

=5 N

a5 X

25 N
FRAFERIERE R

FrARENSIER I

*Assignment
TR AE
p riXs
insert r ruUt,
deleter r - t1

Aggregate Functions and Operations

» Aggregation function (K&K %) takes a
collection of values and returns a single
value as a result.

avg:
min:
max:
sum:.
count:

average value
minimum value
maximum value
sum of values
number of values

Aggregate Functions and Operations
* Aggregate operation in relational algebra

GGy, sG }Q(Al),ﬁ‘z(Az,...,Fn(An)<E)

E is any relational-algebra expression

— 64, 6, ..., 6, is a list of attributes on which
to group (can be empty)

— Each F; is an aggregate function
— Each A. is an attribute name

* Note: Some books/articles use instead
of (Calligraphic 6)

Aggregate Functions and Operations

s BB TEAR
» AT R B A SR
+ FIHFAHAT1000 AR B FR

Aggregate Functions and Operations

‘Null, &5
for r(a,b),

—sum(a) - sum(b) = sum(a - b) ?
— count(*), count(a), count(b)?
count(name), count(distinct name)?

EAXXRREH

SQL

(Structured Query Language)

SQL
Structured Query Language

+ FE"S.Q.L." or “sequel”
 Supported by all major commercial
database systems

« Standardized - many new features over
time

* Interactive via GUI or prompt, or
embedded in programs

 Declarative, based on relational algebra

History
IBM Sequel language developed as part of System R project
at the IBM San Jose Research Laboratory
Renamed Structured Query Language (SQL)
ANSI and ISO standard SQL:
— SQL-86 (First formalized by ANSI)
— SQL-89 (integrity constraints)
— SQL-92 (Major revision)
— SQL:1999 (language name became Y2K compliant! ORDB)
— SQL:2003,SQL:2006 (XML)
— SQL:2008 (INSTEAD OF, TRUNCATE)
— SQL:2011 (temporal databases)

Commercial systems offer most, if not all, SQL-92 features,
plus varying feature sets from later standards and special
proprietary features.

Year = Name Alias Comments
1986 SQL-86 SQL-87 First formalized by ANSI.
Minor revision, in which the major addition were integrity constraints.
1989 SQL-89 FIPS127-1 - pdopted as FIPS 127-1.

SQL2, FIPS Major revision (ISO 9075), Entry Level SQL-92 adopted as FIPS 127-
127-2 2.

Added regular expression matching, recursive queries (e.g. transitive
closure), triggers, support for procedural and control-of-flow

1999 SQL:1999 SQL3 statements, non-scalar types, and some object-oriented features
(e.g. structured types). Support for embedding SQL in Java
(SQL/OLB) and vice-versa (SQL/JRT).

Introduced XML-related features (SQL/XML), window functions,
2003 SQL:2003 SQL 2003 standardized sequences, and columns with auto-generated values
(including identity-columns).
ISO/IEC 9075-14:2006 defines ways in which SQL can be used in
conjunction with XML. It defines ways of importing and storing XML
data in an SQL database, manipulating it within the database and
publishing both XML and conventional SQL-data in XML form. In
addition, it enables applications to integrate into their SQL code the
use of XQuery, the XML Query Language published by the World
Wide Web Consortium (W3C), to concurrently access ordinary SQL-
data and XML documents.
Legalizes ORDER BY outside cursor definitions. Adds INSTEAD OF
triggers. Adds the TRUNCATE statement.

One of the main new features is improved support for temporal
databases

1992 SQL-92

2006 SQL:2006 SQL 2006

2008 SQL:2008 SQL 2008

2011 SQL:2011 SQL 2011

HEERZET R

* Oracle
— SQL*Plus (command line)
— iSQL*Plus (Web-based)
 SQL Server
— SQLCMD (command line)
—iSQL,0SQL
« Sql server anywhere
— Dbisqlc (command line style)
— Dbisql (6UTI)
* Mysq|
— MYSQL (command line)

SQL
- DDL

— For Schema
— Create, Alter, Drop

- DML
— For Data
— Modification: Insert, Update, Delete
— Query: Select
— Authorization: Grant, Revoke

ODBC

* The Microsoft Open Database
Connectivity (ODBC,1992) interface is a
C programmin%lan uage interface that
makes it possible for applications to
access data from a variety of database
management systems (DBMSs).

» ODBC is a low-level, high-performance
interface that is designed specifically
for relational data stores.

« CLI(Call Level Interface)

Application

ODBC:Architecture ==

Manager
(Odbc32.dlIl)

1

* Application

+ ODBC driver manager (hserc 2.
- ODBC driver

- DBMS Drver

Supported
Network

 Windows ODBC Software
 UnixODBC
« iODBC

[

SQL*MNet
Listener

Qracle

ODBC:DSN

« DSN (Data Source Name) is a
symbolic name that represents the
ODBC connection.

« It stores the connection details like
database name, directory, database
driver, UserID, password, etc. when
making a connection to the ODBC.

iISQL Anywhere

Interactive SQL

DOL

DDOL

For Schema (Create/Alter/Drop)

Create table Student(
sho char(10) primary key,
sname varchar(10),
age smallint check(age>=0),
gende char(1),
dept char(2)

DDOL

Alter table student add GPA int;
Alter table student drop GPA;

Drop table student:

DDL: data type

char(n)

— Fixed length character string, with user-specified
length n.

varchar(n)

— Variable length character strings, with user-specified
maximum length n.

Int

— Integer (a finite subset of the integers that is
machine-dependent).

Smallint

— Small integer (a machine-dependent subset of the
integer domain type).

DDL: data type

* numeric(p,d)

— Fixed point number, with user-specified precision of p
digits, with d digits to the right of decimal point.

— Eg. numeric(3,1), 44.5
* real, double precision

— Floating point and double-precision floating point
numbers, with machine-dependent precision.

* float(n)

— Floating point number, with user-specified precision
of at least n digits.

DDL: data type

* Date
— Dates, containing a (4 digit) year, month and date
— Example: date '2005-7-27
* Time
— Time of day, in hours, minutes and seconds.
— Example: time '09:00:30' time '09:00:30.75
* Timestamp

— Date plus time of day
— Example: timestamp '2005-7-27 09:00:30.75'

DDL: data type

« Interval
— Period of time
— Example: interval '1' day

— Subtracting a date/time/timestamp value from
another gives an interval value

— Interval values can be added to date/time/timestamp
values

DDL: data type

* Large objects (photos, videos, CAD files,
etc.) are stored as a large object:
— Blob
* binary large object
* object is a large collection of uninterpreted
binary data (whose interpretation is left to

an application outside of the database
system)

— Clob
* character large object

. ob:i_ect is a large collection of character
data

DDL: data type

* Large objects (photos, videos, CAD files,
etc.) are stored as a large object:
—When a query retfurns a Iar'ge objec’r, qa

pointer is returned rather than the large
object itself.

Query

DML: Query

SELECT sno,sname,gende
FROM student
WHERE dept = 'SE’

LI O pt-'sE (student)

sno,sname,gende

DML: Query

SELECT *
FROM student
WHERE dept = 'SE’

SELECT DISTINCT sname,dept
FROM student
WHERE age >= 21

DML: Query

SELECT *
FROM student
WHERE sname LIKE '7%.HR '

SELECT sno, cno, SQRT(grade)*10
FROM SC

DML: Query
SN HFERAAFEERER . KRB RS

SELECT sname,cname,grade
FROM student,SC,course

WHERE dept = 'SE’
?

DML: Query

XH 595001 FEiRMFEENES, R KRR
SELECT sno,sname,dept
FROM student sl,student s2
WHERE sl1.sno = '95001' and
sl.age = s2.age
?

TCHTE: sl,s2

DML: Query

*join-expression :
table-expr. join-operator table-expr. [ON join-condition]

— Join-operator :
[KEY | NATURAL][join-type] JOIN | CROSS JOIN
* join-type :
INNER
LEFT [OUTER]
RIGHT [OUTER]
FULL [OUTER]

DML: Query, Aggregation

G FER B L E FIFER B
SELECT gende, AVG(age), COUNT(*)
FROM student

WHERE dept = 'SE’

GROUP BY dept,gende

DML: Query, Aggregation

-ﬁ?ﬁkﬁ&kﬂ‘mm}&ﬂ@ﬁ%ﬂ@% LEFHE

SELECT dept,gende, AVG(age)
FROM student

WHERE dept = 'SE’

GROUP BY dept,gende
HAVING COUNT(*)>1000

DML: Query, Aggregation
- BZRERIO)E

— Where? Having?

—- PLFBBREFTAHIE select FRIH?

- Nullfy &

DML: Query,SET
SIHEFBITENSES (TSHES) « HH

SELECT id,name
FROM insturctor
Union

SELECT id,name
FROM student

DML: Query, MultiSet
SIHEFBITENSES (TSHES) « HH

SELECT id,name
FROM insturctor
Union ALL

SELECT id,name
FROM student

DML: Query, MultiSet

rBm i, sBnittd,
ML RERTITHM
r union s
m+n
r intersect s
min(m,n)
r except s
max(0,m-n).

Subquery

SubQuery

EZ—T:
595001 AR NFEENES, R, AR

Tuple varible

BREHFN?

SubQuery

Select-from-whereffz Awhere froms

L 595001 FEMFEENES . R, BRAR

SELECT sno,sname,dept

FROM student

WHERE age = (SELECT age
FROM student
WHERE sno = '95001°)

SubQuery

SELECT sno,sname,dept

FROM student

WHERE age = (SELECT age
FROM student
WHERE sno = '95001")

GHREP I EFRIS001 RN ?

XHtIFE (Correlation Variables)

SubQuery
SIHIET 02 SRIENFERNER

SELECT sname

FROM student

WHERE sno in (SELECT sno
FROM SC
WHERE cno = '02')

SubQuery
R FIRFEANFE

SELECT *

FROM student

WHERE age >= ALL (SELECT age
FROM student)

SubQuery
REFRNERKHFE

SELECT *

FROM student

WHERE age <= SOME (SELECT age
FROM student)

SOME = ANY

SubQuery

R HIEE T SEFRRI I BRIZRFEE
SELECT *
FROM student s
WHERE not exist (SELECT cno
FROM course
WHERE dept = 'SE’)

except
(SELECT cno
FROM SC

WHERE SC.sno = s.snho)

SubQuery

Find all courses taught in both the Fall
2009 semester and in the Spring 2010
semester.

select course_id
from section as S
where semester = ‘Fall' and year= 2009 and
exists (select *
from section as T
where semester = 'Spring’ and
year= 2010 and
S.course_id= T.course_id);

SubQuery

Select-from-where, A] 1]
‘Where
‘From

IR

= R

Find the average instructors’ salaries of those departments
where the average salary is greater than $42,000.

selectdept_name, avg_salary from
(select dept_name, avg (salary) as

avg_salary
from instructor

group by dept_name
) as dept_avg (dept_name, avg_salary)
where avg_salary > 42000;

SubQuery

Select-from-where AL HINFEBRE °
‘With

Find the average instructors’ salaries of those departments
where the average salary is greater than $42,000.

With dept_avg (dept_name, avg_salary) as

[T
~

(select dept_name, avg (salary) as
avg_salary
from instructor

group by dept_name)
selectdept_name, avg_salary
from dept_avg
where avg_salary > 42000;

DML: Modification

DML: Modification
+ INSERT

- TR

- BT R

- &7

DML: Modification

INSERT INTO student Values
('98001°,'5ik=",21,'"M’,'SE’)

INSERT INTO student (sno,sname)

Values('99001°,'Z=

INSERT INTO SC
SELECT sno,cno

/L

)

FROM student as s,course as ¢
WHERE c.dept = 'SE’

DML: Modification
DELETE % ciHTMBR

DELETE
FROM student
WHERE dept = 'SE’

DELETE
FROM student
FROM SC

WHERE student.sno = SC.sno and
grade < 60

DML: Modification
UPDATE
XX EPNIEERTE

UPDATE student
SET age = age+l,
dept = 'SE’
WHERE dept = 'MA’

Authorization

Authorization

‘DCL

Grantril
‘Revoke [T UL

grant select on instructor to U,, U,, U;
revoke select on branch from U,, U,, U,

Authorization

grant select on department to Amit
with grant option;

revoke select on department from Amit,
Satoshi cascade;

revoke select on department from Amit,
Satoshi restrict;

View

View(#L[#])
XA TFRAREFBSHE (EFER)
e EREM

CREATE VIEW se name_list as
SELECT sno,sname
FROM student
WHERE dept = 'SE’

View

‘Create a view of department salary totals

create view
departments_total_salary(dept_na
me, total_salary) as
select dept_name, sum (salary)
from instructor
group by dept_name;

ViewIZ1ETC I B BR1E

* Virtual Table Base Table
 ViewddE X B FiEEMeta Dataf

o« FRIERT, #EEEHRELFIBASE TABLERJALIE

ViewRI{£
create view

departments_total_salary(dept_name,
otal_salary) as

select dept_name, sum (salary)

from instructor

group by dept_name;

SELECT dept_name,total_salary

FROM departments_total_salary
WHERE total_salary > 2,000,000

%iﬁ: N[5]BaseTable, #%#ip*IBaseTablefIE
;

ViewHJ{sEFH

UPDATE departments_total_salary

SET total_salary = tatal_salary*1.5
WHERE total_salary < 2,000,000

REARTha% Rk 3T Base Table I EH M ?

X ViewHIEF#HRIE, SHMIRE!

ViewY{sEH

‘Most SQL implementations allow
updates only on simple views

— The FROM clause has only one database
relation.

— The SELECT clause contains only
attribute names of the relation, and does

not have any expressions, aggregates, or
DISTINCT specification.

— Any attribute not listed in the SELECT
clause can be set to NULL

— The query does not have a GROUP BY or
HAVING clause.

Integrity Constraints

Integrity Constraints

« Integrity constraints guard against
accidental damage to the database, by
ensuring that authorized changes to the
database do not result in a loss of data
consistency.

— A checking account must have a balance
greater than $10,000.00.

— A salary of a bank employee must be at
least $4.00 an hour.

— A customer must have a (non-null) phone
number

Constraints on a Single Relation

not null
primary key
unique
check (P)

unique (A1, A2, .., Am)

— The unique sgecifica’rion states that the
attributes Al, A2, .. Am
form a candidate key.

—Candidate keys are permitted to be null
(in contrast to primary keys).

Referential Integrity

 Ensures that a value that appears in
one relation for a given set of
attributes also appears for a certain
set of attributes in another relation.

Cascading Actions in Referential Integrity

create table course (
course_id char(b) primary key,
title varchar(20),
dept_name varchar(20) references department

)

create table course (

dept_name varchar(20),

foreign key (dept_name) references department
on delete cascade
on update cascade,

)

alternative actions to cascade: set null, set default

Complex Check Clauses

check (time_slot_id in (select time_slot_id
from time_slot))

— why not use a foreign key here?
Every section has at least one instructor
teaching the section.

— how to write this?
‘Unfortunately: subquery in check clause not
supported by pretty much any database

— Alternative: triggers (later)
create assertion <assertion-name> check
<predicate>;

— Also not supported by anyone

SREEMPREHZAEG

Trigger

Trigger

» "Event-Condition-Action Rules”
—When event occurs
—Check condition; if true, do action

Trigger

Create Trigger name

Before|After|Instead Of events
[referencing-variables]
[For Each Row]

When (condition)
action

Trigger

Use triggers on section and time_slot to enforce integrity
constraints

Create Trigger timeslot_checkl after insert on section
referencing new row as nrow
for each row
when (nrow.time_slot_id not in (select time_slot_id
from time_slot))
begin
rollback
end;

Trigger

create trigger timeslot_check2 after delete on time_slot

referencing old row as orow

for each row

when (orow.time_slot_id not in (
select time_slot _id
from time_slot)

and orow.time_slot_id in (

select time_slot _id
from section))

begin

rollback
end;

Trigger

create trigger credits_earned after update of takes on (grade)
referencing new row as nrow
referencing old row as orow
for each row
when nrow.grade <> ‘F' and nrow.grade is not null
and (orow.grade = ‘'F' or orow.grade is null)
begin atomic
update student
set tot_cred= tot cred +
(select credits
from course
where course.course_id= nrow.course_.id)
where student.id = nrow.id;
end;

Function &
Stored procedure

Procedure

» SQL provides a module language

— Permits definition of procedures in SQL,
with if-then-else statements, for and while
loops, etc.

« Stored Procedures
— Can store procedures in the database
—then execute them using the call statement

— permit external applications to operate on
the database without knowing about internal
details

Procedure

* SQL:1999 supports functions and procedures

— Functions/procedures can be written in SQL itself,
or in an external programming language.

— Functions are particularly useful with specialized
data types such as images and geometric objects.

« Example: functions to check if polygons overlap,
or to compare images for similarity.

— Some database systems support table-valued
functions, which can return a relation as a result.

* SQL:1999 also supports a rich set of
imperative constructs, including

— Loops, if-then-else, assignment

Function

‘Define a function that, given the name of a department,
returns the count of the number of instructors in that
department.

Create Function dept_count (dept_name varchar(20))
returns integer
begin
declare d_count integer:
select count (*) into d_count
from instructor
where instructor.dept_name = dept_name
return d_count;
end

Function

Find the department name and budget of
all departments with more that 12
instructors.

Select dept_name, budget
From department
Where dept_count (dept_name) > 12

Function

-SQII_:ZOO3 added functions that return a relation as a
result

Create Function instructors_of (dept_name char(20))

returns table (ID varchar§5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

return table(Select ID, name, dept_name, salary
From instructor
Where instructor.dept_name =
instructors_of.dept_name)

Select *
From table (instructors_of (‘Music'))

Stored Procedure

*The dept_count function could instead be
written as procedure:

Create Procedure dept_count_proc (

in dept_name varchar(20),
out d_count integer)

Begin
select count(*) into d_count

from instructor
where instructor.dept_name =

dept_count_proc.dept_name
End

Stored Procedure

‘Procedures can be invoked either from
an SQL procedure or from embedded
SQL, using the call statement.

Declare d_count integer;
Call dept_count_proc(‘Physics’, d_count);

‘Procedures and functions can be invoked
also from dynamic SQL

Cursor

Cursor

* A cursor is used to retrieve rows
from a query that has multiple rows in
its result set. A cursor is a handle or
an identifier for the SQL query and a
position within the result set.

* Cursors can be positioned in the
following places:
— Before the first row of the result set.
—On a row in the result set.
— After the last row of the result set.

Cursor

CREATE PROCEDURE get_table_name(
IN id_value INT, OUT tabname CHAR(128))
BEGIN

DECLARE gry LONG VARCHAR;

SET qry = 'SELECT table_name FROM
SYS.SYSTAB ' || "WHERE table_id=" ||
string(id_value);

BEGIN
DECLARE crsr CURSOR USING qry:
OPEN crsr;
FETCH crsr INTO tabname;
CLOSE crsr;
END
END:

Cursor

CREATE FUNCTION GetRowCount(IN qry LONG VARCHAR)
RETURNS INT
BEGIN
DECLARE crsr CURSOR USING qry:
DECLARE rowcnt INT;
SET rowcnt = O;
OPEN crsr;
lp: LOOP
FETCH crsr;
IF SQLCODE <> O THEN LEAVE Ip END IF;
SET rowcnt = rowent + 1;
END LOOP;
CLOSE crsr;
RETURN rowcnt;
END:

Updates Through Cursors

® Can update tuples fetched by cursor by
declaring that the cursor is for update

declare ¢ cursor for

select *

from instructor

where dept_name = 'Music’
for update

To update tuple at the current location of cursor
c

update instructor
set salary = salary + 100
where current of c

API & Application

JDBC and ODBC

APTI (Application-Program Interface) for a program
to interact with a database server

Application makes calls to
— Connect with the database server
— Send SQL commands to the database server

— Fetch tuples of result one-by-one into program
variables

ODBC (Open Database Connectivity) works with C,
C++, C#, and Visual Basic

— Other API's such as ADO.NET sit on top of
ODBC

g DBC (Java Database Connectivity) works with
ava

ODBC

Open DataBase Connectivity(ODBC) standard

standard for application program to
communicate with a database server.

application program interface (API) to
— open a connection with a database,

— send queries and updates,
— get back results.

Applications such as GUI, spreadsheets, eftc.
can use ODBC

ODBC

int ODBCexample()

{
RETCODE error;
HENV env; /* environment */
HDBC conn; /* database connection */

SQLAIllocEnv(&env):;
SQLAllocConnect(env, &conn);

SQLConnect(conn, "db.yale.edu”, SQL_NTS, "avi", SQL_NTS,
"avipasswd", SQL_NTS);

{ ... Do actual work ... }

SQLDisconnect(conn);
SQLFreeConnect(conn);
SQLFreeEnv(env);

}

ODBC

char deptname[80];
float salary:
int lenOutl, lenOut2;
HSTMT stmt;
char * sqlquery = "select dept_name, sum (salary)
from instructor
group by dept_name";
SQLAllocStmt(conn, &stmt);
error = SQLExecDirect(stmt, sqlquery, SQL NTS);
if (error == SQL SUCCESS) {
SQLBindCol(stmt, 1, SQL € CHAR, deptname , 80,
&lenOutl);
SQLBindCol(stmt, 2, SQL C FLOAT, &salary, O ,
&lenOut2);
while (SQLFetch(stmt) == SQL SUCCESS) {
} printf (* %s %g\n", deptname, salary):
}

SQLFreeStmt(stmt, SQL DROP);

JDBC

JDBC is a Java API for communicating with
database systems supporting SQL.

JDBC supports a variety of features for querying
and updating data, and for retrieving query results.

JDBC also supports metadata retrieval, such as
querying about relations present in the database and
the names and types of relation attributes.

Model for communicating with the database:
— Open a connection
— Create a "statement” object

— Execute queries using the Statement object to
send queries and fetch results

— Exception mechanism to handle errors

SQLCA

SQL Communication Area

* is an area of memory that is used on
every database request for
communicating statistics and errors from
the application to the database server
and back to the application.

« The SQLCA is used as a handle for the
application-to-database communication
link. It is passed in to all database library
functions that need to communicate with
the database server. It is implicitly
passed on all embedded SQL statements.

SQLCA Fields

* sqlcode A 32-bit integer that specifies
the error code when the database
detects an error on a request.

e Definitions for the error codes can be
found in the header file sqlerr.h.

— The error code is O (zero) for a successful
operation

— 100 for row not found
— Positive for a warning
— Negative for an error.

Chapter 7: Entity-Relationship
Modlel

Database System Concepts, 6t Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

A i 4 ‘V‘r L4 4 g © GV ©/8 Va S VPRIV SV S8

Design Process

Modeling

Constraints

E-R Diagram

Design [ssues

Weak Entity Sets

Extended E-R Features
Design of the Bank Database
Reduction to Relation Schemas
Database Design

UML

Database System Concepts - 6t Edition 7.2 ©Silberschatz, Korth and Sudarshan

Modeling

B A database can be modeled as:
a collection of entities,
relationship among entities.

B An entity is an object that exists and is distinguishable from
other objects.

Example: specific person, company, event, plant
B Entities have attributes
Example: people have names and addresses

B An entity set is a set of entities of the same type that share
the same properties.

Example: set of all persons, companies, trees, holidays

Database System Concepts - 6t Edition 7.3 ©Silberschatz, Korth and Sudarshan

Entity Sets /nstructor and student

instructor_ID instructor_name student-ID student _name

Database System Concepts - 6t Edition 7.4 ©Silberschatz, Korth and Sudarshan

Relationship Sets

B A relationship is an association among several entities

Example:
44553 (Peltier) advisor 22222 (Einstein)
student entity relationship set /mstructor entity

A relationship set (s a mathematical relation among n > 2
entities, each taken from entity sets

{(61, 62) g//l) I 51 S EZLJ gz € Ez, cie) 5/4 € En}

where (¢,, ¢,, ..., &,) IS a relationship
Example:
(44553,22222) € advisor

Database System Concepts - 6t Edition 7.5 ©Silberschatz, Korth and Sudarshan

Relationship Set advisor

Database System Concepts - 6th Edition 7.6 ©Silberschatz, Korth and Sudarshan

Relationship Sets (Cont.)

m An attribute can also be property of a relationship set.

B For instance, the adlisor relationship set between entit
sets /mstructor and student may have the attribute date

which tracks when the student started being associated
with the advisor

Database System Concepts - 6t Edition 7.7 ©Silberschatz, Korth and Sudarshan

Degree of a Relationship Set

B binary relationship
involve two entity sets (or degree two).

most relationship sets in a database system are
binary.

m Relationships between more than two entity sets are
rare. Most relationships are binary. (More on this later.)

» Example: students work on research projects under
the guidance of an mstructor:

» relationship proj guide is a ternary relationship
between /nstructor, student, and project

Database System Concepts - 6t Edition 7.8 ©Silberschatz, Korth and Sudarshan

Attributes

B An entity is represented by a set of attributes, that is
descriptive properties possessed by all members of an entity set.

Example:

mstructor = (ID, name, street, city, salary)
course= (course_id, title, crearts)

Domain — the set of permitted values for each attribute
Attribute types:

Simple and composite attributes.

Single-valued and multivalued attributes

Example: multivalued attribute: phone_numbers
Derived attributes

Can be computed from other attributes

Example: age, given date_of_birth

Database System Concepts - 6t Edition 7.9 ©Silberschatz, Korth and Sudarshan

Composite Attributes

Database System Concepts - 6t Edition 7.10 ©Silberschatz, Korth and Sudarshan

Mapping Cardinality Constraints

B Express the number of entities to which another entity can
be associated via a relationship set.

Most useful in describing binary relationship sets.

For a binary relationship set the mapping cardinality must
be one of the following types:

One to one
One to many
Many to one
Many to many

Database System Concepts - 6t Edition 7.11 ©Silberschatz, Korth and Sudarshan

Mapping Cardinalities

One to One to many
one
Note: Some elements in A and B may not be mapped to any
elements in the other set

Database System Concepts - 6t Edition 7.12 ©Silberschatz, Korth and Sudarshan

Mapping Cardinalities

Many to Many to many
one

Note: Some elements in A and B may not be mapped to any
elements in the other set

Database System Concepts - 6t Edition 7.13 ©Silberschatz, Korth and Sudarshan

Keys

B A super key of an entity set is a set of one or more
attributes whose values uniquely determine each entity.

m A candidate key of an entity set is a minimal super key
/D is candidate key of /nstructor
course_id is candidate key of course

B Although several candidate keys may exist, one of the
candidate keys is selected to be the primary key.

Database System Concepts - 6t Edition 7.14 ©Silberschatz, Korth and Sudarshan

Keys for Relationship Sets

B The combination of primary keys of the participating
entity sets forms a super key of a relationship set.

(ssd, [1d) is the super key of advisor

NOTE: this means a palr of entrty sets can have at
most one relationship in a particular relationship set.

Example: if we wish to track multiple meeting dates
between a student and her advisor, we cannot
assume a relationship for each meeting. We can use
a multivalued attribute though

B Must consider the mapping cardinality of the relationship
set when deciding what are the candidate keys

m Need to consider semantics of relationship set in selecting
the primary key in case of more than one candidate key

Database System Concepts - 6t Edition 7.15 ©Silberschatz, Korth and Sudarshan

Redundant Attributes

B Suppose we have entity sets
mstructor, with attributes including dept: name
department
and a relationship

st dept velating mstructor and depariment

m Attribute deptname in entity instructoris redundant since

there is an explicit velationship /st dept which relates
instructors to departments

The attribute replicates information present in the
relationship, and should be removed from instructor

BUT: when converting back to tables, in some cases the
attribute gets reintroduced, as we will see.

Database System Concepts - 6t Edition 7.16 ©Silberschatz, Korth and Sudarshan

E-R Diagrams

m Peter Chen & IDEF1X

Rectangles represent entity sets.
Diamonds represent relationship sets.
Attributes listed inside entity rectangle

Underline indicates primary key attributes

Database System Concepts - 6t Edition 7.17 ©Silberschatz, Korth and Sudarshan

Entity With Composite, Multivalued, and Derived
Attributes

Database System Concepts - 6t Edition 7.18 ©Silberschatz, Korth and Sudarshan

Relationship Sets with Attributes

Database System Concepts - 6th Edition 7.19 ©Silberschatz, Korth and Sudarshan

Roles

B Entity sets of a relationship need not be distinct

Each occurrence of an entity set plays a “role” in the
relationship

m The labels “course_id’ and “preveq 2’ ave called roles.

Database System Concepts - 6t Edition 7.20 ©Silberschatz, Korth and Sudarshan

Cardinality Constraints

B We express cardinality constraints by drawing either a
directed line (=), signifying “one,”’ or an undirected line
(=), signifying “many,” between the relationship set and

the entity set.
B One-to-one relationship:

A student (s associated with at wost one mstructor via
the relationship advisor

A student is associated with at most one department
via stud_ dept

Database System Concepts - 6t Edition 7.21 ©Silberschatz, Korth and Sudarshan

One-to-One Relationship

B one-to-one relationship between an /nstructor and a
student

an Instructor (s associated with at most one student
via advisor

and a student s associated with at most one
instructor via aavisor

Database System Concepts - 6t Edition 7.22 ©Silberschatz, Korth and Sudarshan

One-to-Many Relationship

B one-to-many relationship between an /mstructor and a
student

an instructor is associated with several (including O)
students via advisor

a student 1s associated with at most one nstructor via
advisor,

Database System Concepts - 6t Edition 7.23 ©Silberschatz, Korth and Sudarshan

Many-to-One Relationships

B (n a many-to-one relationship between an /instructor and
a student,

an instructor s associated with at most one student
via aavisor,

and a student is associated with several (including O)
instructors via aavisor

Database System Concepts - 6t Edition 7.24 ©Silberschatz, Korth and Sudarshan

Many-to-Many Relationship

B An instructor is associated with several (possibly O)
students via aavisor

m A student is associated with several (possibly O)
instructors via aavisor

Database System Concepts - 6t Edition 7.25 ©Silberschatz, Korth and Sudarshan

Participation of an Entity Set in a
Relationship Set

m Total participation (indicated by double line): every entity
in the entity set participates in at least one relationship in
the relationship set

E.g., participation of section in sec_course is total
»every section must have an associated course

B Partial participation: some entities may not participate in
any relationship in the relationship set

Example: participation of /nstructor in advisor is partial

Database System Concepts - 6t Edition 7.26 ©Silberschatz, Korth and Sudarshan

F NI VI 7V WNRVIVV | VWIS VI CLWALT Wl'\vVlllDy

Limits

B Cardinality limits can also express participation constraints

Database System Concepts - 6t Edition 7.27 ©Silberschatz, Korth and Sudarshan

[| I VIWU' YV ve VVIW L 4) S @IV '\-Vl'g

Relatlonslfup

Database System Concepts - 6th Edition 7.28 ©Silberschatz, Korth and Sudarshan

Cardinality Constraints on Ternary
Relationship

= We allow at most one arrow out of a ternary (or greater
degree) relationship to indicate a cardinality constraint

B E.g., an arvow from pro/ gurde to instructor indicates each
student has at most one guide for a project

m [f there is more than one arrow, there are two ways of
defining the meaning.

E.g., a ternary relationship R between A, B and C with
arvows to B and C could mean

1. each A entity is associated with a unique entity from
B and Cor

2. each pair of entities from (A, B) is associated with a
unique C entity, and each pair (A, €) is associated with a
unique 3

Each alternative has been used in different formalisms
To avoid confusion we outlaw more than one arvow

Database System Concepts - 6t Edition 7.29 ©Silberschatz, Korth and Sudarshan

How about doing an ER design
interactively on the board?
Suggest an application to be

modeled.

Database System Concepts, 6t Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Weak Entity Sets

B An entity set that does not have a primary key is referred
to as a weak entity set.

m The existence of a weak entity set depends on the existence
of a identifying entity set

[t must relate to the identifying entity set via a total,
one-to-many relationship set from the identifying to
the weak entity set

Identifying relationship depicted using a double diamond

B The discriminator (or partial key) of a weak entity set is
the set of attributes that distinguishes among all the
entities of a weak entity set.

= The primary key of a weak entity set is formed by the
primary key of the strong entity set on which tb\e weak
entity set (s existence dependent, plus the weak entity set’s
discriminator.

Database System Concepts - 6t Edition 7.31 ©Silberschatz, Korth and Sudarshan

Weak Entity Sets (Cont.)

B We underline the discriminator of a weak entity set with
a dashed line.

B We put the identifying relationship of a weak entity in a
douvle diamond.

B Primary key for section — (course_ia, sec_id, semester,
year)

Database System Concepts - 6t Edition 7.32 ©Silberschatz, Korth and Sudarshan

Weak Entity Sets (Cont.)

m Note: the primary key of the strong entity set is not
explicitly stored with the weak entity set, since it is
implicit in the identifying relationship.

m f course_id were explicitly stored, section could be made a
strong entity, but then the relationship between section
and course would be duplicated by an implicit relationship
defined by the attribute course_iad common to course and
section

Database System Concepts - 6t Edition 7.33 ©Silberschatz, Korth and Sudarshan

| | I VIWU' Vv Ve Il OV WISV SV UV JIVU

Enterprise

Database System Concepts - 6th Edition 7.34 ©Silberschatz, Korth and Sudarshan

Reduction to Relational Schemas

Database System Concepts - 6t Edition 7.35 ©Silberschatz, Korth and Sudarshan

Reduction to Relation Schemas

B Entity sets and relationship sets can be expressed uniformly
as relation schemas that represent the contents of the
database.

m A database which conforms to an E-R diagram can be
represented by a collection of schemas.

B For each entity set and relationship set there is a unique
schema that is assigned the name of the corresponding
entity set or relationship set.

B Each schema has a number of columns (generally
corresponding to attributes), which have unique names.

Database System Concepts - 6t Edition 7.36 ©Silberschatz, Korth and Sudarshan

Representing cntity oets Witn sinmple
Attributes

B A strong entity set reduces to a schema with the same
attributes
student(ID, name, tot cred)

B A weak entity set becomes a table that includes a column for
the primary key of the identifying strong entity set
section (course (d, sec 1d, sem, year)

Database System Concepts - 6t Edition 7.37 ©Silberschatz, Korth and Sudarshan

Representing Relationship Sets

B A many-to-many relationship set is represented as a schema
with attributes for the primary keys of the two participating

entity sets, and any descriptive attributes of the relationship
set.

m Example: schema for relationship set advisor
aavisor = (s.1d, [14)

Database System Concepts - 6t Edition 7.38 ©Silberschatz, Korth and Sudarshan

Redundancy of Schemas

B Many-to-one and one-to-many relationship sets that are
total on the many-side can be represented by adding an
extra attribute to the “many’ side, containing the primary
key of the “one” side

m Example: Instead of creating a schema for relationship set

mst-dept, add an attribute dept name to the schema arising
Frrama ontiti cot mnctryctor

Database System Concepts - 6t Edition 7.39 ©Silberschatz, Korth and Sudarshan

Redundancy of Schemas (Cont.)

B For one-to-one relationship sets, either side can be chosen
to act as the “many’ side

That is, extra attribute can be added to either of the
tables corresponding to the two entity sets

m [f participation is partial on the “many” side, replacing a
scnema by an extra attribute in the schema corresponding
to the “many’ side could result in null values

B The schema corresponding to a relationship set linking a
weak entity set to its identifying strong entity set is
redundant.

Example: The section schema already contains the
attributes that would appear in the sec_course schema

Database System Concepts - 6t Edition 7.40 ©Silberschatz, Korth and Sudarshan

Composite and Multivalued Attributes

m Composite attributes are flattened out by
creating a separate attribute for each
component attribute

Example: given entity set /mstructor with
composite attribute name with component
attributes firstname and lastname the
schema corresponding to the entity set has
two attributes name_first name and
name_last_name

v Prefix omytted iF there is no ambgurty

B Ignoring multivalued attributes, extended
nstructor schema is

mstructor(/D,
frst name, middile_imitial, lastname,
Street number, street name,
apt-number, city, state, zijp_code,
date_of birth)

Database System Concepts - 6t Edition 7.41 ©Silberschatz, Korth and Sudarshan

Composite and Multivalued Attributes

= A multivalued attribute M of an entity £ is represented by a
separate schema EM

Schema EM has attributes corrvesponding to the primary
key of £ and an attribute corresponding to multivalued
attribute M

Example: Multivalued attribute phone number of
mstructor is vepresented by a schema:
mst. phone= ([D, phone number)

Each value of the multivalued attribute maps to a
separate tuple of the relation on schema EM

» For example, an mstructor entity with primary key
22222 and phone numbers 456-7890 and 123 -
4567 maps to two tuples:

(22222, 456-7890) and (22222, 123-4567)

Database System Concepts - 6t Edition 7.42 ©Silberschatz, Korth and Sudarshan

Multivalued Attributes (Cont.)

m Special caseentity trime_slot has only one attribute other than
the primary-key attribute, and that attribute is multivalued

Optimization: Don't create the relation corresponding to
the entity, just create the one corvesponding to the
multivalued attribute

time_slof(time_slot 1d, day, start time, end time)

Caveat: trme_slot attribute of section (from sec_time_s/od)
cannot be a foreian key due to this optimization

Database System Concepts - 6t Edition 7.43 ©Silberschatz, Korth and Sudarshan

Design Issues

m Use of entity sets vs. attributes

B Use of phone as an entity allows extra information about
phone numbers (plus multiple phone numbers)

Database System Concepts - 6t Edition 7.44 ©Silberschatz, Korth and Sudarshan

Design Issues

B Use of entity sets vs. relationship sets
Possible guideline is to designate a relationship set to describe an
action that occurs between entities

Database System Concepts - 6t Edition 7.45 ©Silberschatz, Korth and Sudarshan

Design Issues

B Binary versus n-ary relationship sets
Although it is possible to replace any nonbinary (n-ary, for n >
2) relationship set by a number of distinct binary relationship
sets, a n-ary relationship set shows more clearly that several
entities participate in a single relationship.

m Placement of relationship attributes

o e.g., attribute date as attribute of advisor or as attribute of
Student

Database System Concepts - 6t Edition 7.46 ©Silberschatz, Korth and Sudarshan

Binary Vs. Non-Binary Relationships

B Some relationships that aéopear to be non-binary may be
better represented using binary relationships

E.g., A ternary relationship parents, relating a child to
his/her father and mother, is best replaced by two binary
relationships, rfather and mother

» Using two binary relationships allows partial
information (e.g., only mother being know)

But there are some relationships that are naturally non-
binary

» Example: prof guide

Database System Concepts - 6t Edition 7.47 ©Silberschatz, Korth and Sudarshan

Converting Non-binary Relationsnips to bbinary
Form

B (n general, any non-binary relationship can be re/wesemted
using binary relationships by creating an artificial entity set.

Replace R between entity sets A, B and C by an entity set
E, and three relationship sets:

1. Ry, relating £ and A 2. Rp relating £ and B
3. R, relating £ and C

Create a special identifying attribute for £
Add any attributes of Rto £
For each relationship (a,, &;, ¢) in R, create

1. a new entity ¢, in the entity set £ 2. add (¢, a,)
to R,

3. add (¢, 6) to Ry 4. add (e,
C/') to R

Database System Concepts - 6t Edition 7.48 ©Silberschatz, Korth and Sudarshan

Converting Non-Binary Relationships
(Cont.)

m Also need to translate constraints
Translating all constraints may not be possible

There may be instances in the translated schema
that

cannot correspond to any instance of R

» Exercise: add constrammts to the relationships Ry,
Rz and R, to ensure that a newly created entity
corresponds to exactly one entity in each of entity
sets A, Band C

We can avoid creating an identifying attribute by
making E a weak entity set (described shortly)
identified by the three relationship sets

Database System Concepts - 6t Edition 7.49 ©Silberschatz, Korth and Sudarshan

Extended ER Features

Database System Concepts - 6t Edition 7.50 ©Silberschatz, Korth and Sudarshan

Extended E-R Features: Specialization

B Top-down design process; we designate subgroupings within an
entity set that are distinctive from other entities in the set.

B These subgroupings become lower-level entity sets that have
attributes or participate in relationships that do not apply to
the higher-level entity set.

m Depicted by a triangle component labeled ISA (E.g., mstructor
“Is a” person).

m Attribute inheritance — a lower-level entity set inherits all the
attributes and relationship participation of the higher-level
entity set to which it is linked.

Database System Concepts - 6t Edition 7.51 ©Silberschatz, Korth and Sudarshan

Specialization Example

Database System Concepts - 6t Edition 7.52 ©Silberschatz, Korth and Sudarshan

Extended ER Features: Generalization

B A bottom-up design process — combine a number of
entity sets that share the same features into a higher-
level entity set.

m Specialization and generalization are simple inversions of

each other; they are represented in an E-R diagram in
the same way.

B The terms specialization and generalization are used
interchangeably.

Database System Concepts - 6t Edition 7.53 ©Silberschatz, Korth and Sudarshan

JVODIM”AUIDIUV‘ ANV WA Ul ML VIVT LY

(Cont.)

B Can have multiple specializations of an entity set based on
different features.

B E.g., permanent.employee Vs. termporary employee, in
addition to mstructor vs. secretary

B Each particular employee would be

a member of one of permanent: employee or
Lemporary_employee,

and also a member of one of /nstructor, secretary

B The ISA relationship also referred to as superclass - subclass
relationship

Database System Concepts - 6t Edition 7.54 ©Silberschatz, Korth and Sudarshan

Design Constraints on a
Specialization/Generalization

B Constraint on which entities can be members of a given lower-
level entity set.

condition-defined

» Example: all customers over 65 years are members of
senior-crtizen entity set; senior-crtizen ISA person.

user-defined

B Constraint on whether or not entities may belong to more than
one lower-level entity set within a single generalization.

Disjoint
» an entity can belong to only one lower-level entity set

» Noted in E-R diagram by having multiple lower-level
entity sets link to the same triangle

Overlapping

» an entity can belong to more than one lower-level entity
set

Database System Concepts - 6t Edition 7.55 ©Silberschatz, Korth and Sudarshan

Design Constraints on a
Specialization/Generalization (Cont.)

m Completeness constraint -- specifies whether or not an
entity in the higher-level entity set must belong to at
least one of the lower-level entity sets within a
generalization.

total: an entity must belong to one of the lower-level
entity sets

partial: an entity need not belong to one of the lower-
level entity sets

Database System Concepts - 6t Edition 7.56 ©Silberschatz, Korth and Sudarshan

Aggregation

m Consider the ternary relationship prof guide, which we saw
earlier

m Suppose we want to record evaluations of a student by a guide
on a project

Database System Concepts - 6t Edition 7.57 ©Silberschatz, Korth and Sudarshan

Aggregation (Cont.)

m Relationship sets eval for and proj guide represent
overlapping information

Every eval for relationship corresponds to a proj gurde
relationship

However, some proj guide relationships may not
corrrespond to any eval for relationships

So we can’t discard the proj guide relationship
B Eliminate this redundancy via aggregation
Treat relationship as an abstract entity
Allows relationships between relationships
Abstraction of relationship into new entity

Database System Concepts - 6t Edition 7.58 ©Silberschatz, Korth and Sudarshan

Aggregation (Cont.)

. Without introducing redundancy, the following diagram
represents:

A student is guided by a particular instructor on a particular
project

A student, instructor, project combination may have an
associated evaluation

Database System Concepts - 6t Edition 7.59 ©Silberschatz, Korth and Sudarshan

Representing Specialization via
Schemas

m Method 1:
Form a schema for the higher-level entity

Form a schema for each lower-level entity set, include
primary key of higher-level entity set and local attributes

schema attributes
person /D, name, street, city
student /D, tot cred
employee | [D, salary

Drawback: getting information about, an employee
requires accessing two relations, the one corresponding to
the low-level schema and the one corresponding to the

high-level schema

Database System Concepts - 6t Edition 7.60 ©Silberschatz, Korth and Sudarshan

Representing Specialization as
Schemas (Cont.)

m Method 2:
Form a schema for each entity set with all local and inherited
attributes
schema attributes
person /D, name, street, city
student /D, name, street, city, tot cred
employee /D, name, street, city, salary

If specialization is total, the schema for the generalized entity
set (person) not required to store information

Can be defined as a “view” relation containing union of
specialization relations

But explicit schema may still be needed for foreign key
constraints

Drawback: name, street and city may be stored redundantly
for people who are both students and employees

Database System Concepts - 6t Edition 7.61 ©Silberschatz, Korth and Sudarshan

e’ OV SV ¥V SWeer - WV 'VJrV' vwwe v @

Aggregation

_4 4

B To represent aggregation, create a schema containing
primary key of the aggregated relationship,
the primary key of the associated entity set
any descriptive attributes

Database System Concepts - 6t Edition 7.62 ©Silberschatz, Korth and Sudarshan

Schemas Corresponding to
Aggregation (Cont.)

B For example, to represent aggregation manages between
relationship works_on and entity set manager, create a

schema
eval for (s_ID, profectid, [ID, evaluation /d)

B Schema prof gurde is redundant provided we are willing to
store null values for attribute manager- name in relation on

schema manages

Database System Concepts - 6t Edition 7.63 ©Silberschatz, Korth and Sudarshan

E-R Design Decisions

m The use of an attribute or entity set to represent an
object.

m Whether a real-world concept is best expressed by an
entity set or a relationship set.

B The use of a ternary relationship versus a pair of binary
relationships.

The use of a strong or weak entity set.

The use of specialization/generalization — contributes to
modularity in the design.

m The use of aggregation — can treat the aggregate entity
set as a single unit without concern for the details of its
internal structure.

Database System Concepts - 6t Edition 7.64 ©Silberschatz, Korth and Sudarshan

How about doing another ER design
interactively on the board?

Database System Concepts, 6t Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Database System Concepts - 6t Edition 7.66 ©Silberschatz, Korth and Sudarshan

Symbols Used in E-R Notation (Cont.)

Database System Concepts - 6t Edition 7.67 ©Silberschatz, Korth and Sudarshan

Alternative ER Notations

B Chen, IDELFX, ..

Database System Concepts - 6t Edition 7.68 ©Silberschatz, Korth and Sudarshan

Alternative ER Notations

Chen IDE1FX
(Crows feet notation)

Database System Concepts - 6t Edition 7.69 ©Silberschatz, Korth and Sudarshan

UML

®m UML: Unified Modeling Language

B UML has many components to graphically wmodel different
aspects of an entire software system

B UML Class Diagrams correspond to E-R Diagram, but
several differences.

Database System Concepts - 6t Edition 7.70 ©Silberschatz, Korth and Sudarshan

ER vs. UML Class Diagrams

*Note reversal of position in cardinality constraint depiction

Database System Concepts - 6t Edition 7.71 ©Silberschatz, Korth and Sudarshan

ER vs. UML Class Diagrams

ER Diagram Notation Equivalent in UML

*Generalization can use merged or separate arvows independent
of disjoint/overlapping

Database System Concepts - 6t Edition 7.72 ©Silberschatz, Korth and Sudarshan

UML Class Diagrams (Cont.)

B Binary relationship sets are represented in UML by just
drawing a line connecting the entity sets. The relationship
set name is written adjacent to the line.

B The role played by an entity set in a relationship set may
also be specified by writing the role name on the line,
adjacent to the entity set.

B The relationship set name may alternatively be written in
a box, along with attributes of the relationship set, and
the box is connected, using a dotted line, to the line
depicting the relationship set.

Database System Concepts - 6t Edition 7.73 ©Silberschatz, Korth and Sudarshan

End of Chapter 7

Database System Concepts, 6t Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Figure 7.01

Database System Concepts - 6t Edition 7.75 ©Silberschatz, Korth and Sudarshan

Figure 7.02

Database System Concepts - 6t Edition 7.76 ©Silberschatz, Korth and Sudarshan

Figure 7.03

Database System Concepts - 6t Edition 7.77 ©Silberschatz, Korth and Sudarshan

Figure 7.04

Database System Concepts - 6t Edition 7.78 ©Silberschatz, Korth and Sudarshan

Figure 7.05

Database System Concepts - 6t Edition 7.79 ©Silberschatz, Korth and Sudarshan

Figure 7.06

Database System Concepts - 6t Edition 7.80 ©Silberschatz, Korth and Sudarshan

Figure 7.07

Database System Concepts - 6t Edition 7.81 ©Silberschatz, Korth and Sudarshan

Figure 7.08

Database System Concepts - 6t Edition 7.82 ©Silberschatz, Korth and Sudarshan

Figure 7.09

Database System Concepts - 6t Edition 7.83 ©Silberschatz, Korth and Sudarshan

Figure 7.10

Database System Concepts - 6t Edition 7.84 ©Silberschatz, Korth and Sudarshan

Figure 7.11

Database System Concepts - 6t Edition 7.85 ©Silberschatz, Korth and Sudarshan

Figure 7.12

Database System Concepts - 6t Edition 7.86 ©Silberschatz, Korth and Sudarshan

Figure 7.13

Database System Concepts - 6t Edition 7.87 ©Silberschatz, Korth and Sudarshan

Figure 7.14

Database System Concepts - 6t Edition 7.88 ©Silberschatz, Korth and Sudarshan

Figure 7.15

Database System Concepts - 6t Edition 7.89 ©Silberschatz, Korth and Sudarshan

Figure 7.17

Database System Concepts - 6t Edition 7.90 ©Silberschatz, Korth and Sudarshan

Figure 7.18

Database System Concepts - 6t Edition 7.91 ©Silberschatz, Korth and Sudarshan

Figure 7.19

Database System Concepts - 6t Edition 7.92 ©Silberschatz, Korth and Sudarshan

Figure 7.20

Database System Concepts - 6t Edition 7.93 ©Silberschatz, Korth and Sudarshan

Figure 7.21

Database System Concepts - 6t Edition 7.94 ©Silberschatz, Korth and Sudarshan

Figure 7.22

Database System Concepts - 6t Edition 7.95 ©Silberschatz, Korth and Sudarshan

Figure 7.23

Database System Concepts - 6t Edition 7.96 ©Silberschatz, Korth and Sudarshan

Figure 7.24

Database System Concepts - 6t Edition 7.97 ©Silberschatz, Korth and Sudarshan

Figure 7.25

Database System Concepts - 6t Edition 7.98 ©Silberschatz, Korth and Sudarshan

Figure 7.26

Database System Concepts - 6t Edition 7.99 ©Silberschatz, Korth and Sudarshan

Figure 7.27

Database System Concepts - 6t Edition 7.100 ©Silberschatz, Korth and Sudarshan

Figure 7.28

Database System Concepts - 6t Edition 7.101 ©Silberschatz, Korth and Sudarshan

Figure 7.29

Database System Concepts - 6t Edition 7.1202 ©Silberschatz, Korth and Sudarshan

Relational Database Design

BAD Design

 Design "anomalies”
—eg. student-course
— Redundancy
— Update anomaly
— Deletion anomaly

600D Design

« Decompose into "GOOD"
— Functional Dependency (FD)
— Multivalued Dependency (MVD)

 Normal Form
—FD,1NF-2NF-3NF-BCNF
— MVD,4NF

FD

Let R be a relation schema
oac Rand R

The functional dependency o — £
holds on R if and only if for any legal
relations r(R), whenever any two tuples
t; and t, of r agree on the attributes a,
they also agree on the attributes S .
That is,

ti[a] = 12 [a]
t104] = 12 [F]

FD, Example

Consider r (A, B) with the following
instance of r.

1 4
1

5
5

*On this instance, A B does NOT
hold, but B A does hold

FDSERELIR, kR MEBERIZIR

FD, Example

« Stu(sno,sname,age,gende,ID,dept,cno,
cname,grade)

Key

K R

K is a superkey for relation schema R if
and only if K R

K is a candidate key for R if and only if
- K R, and
» for no K, R

Trivial(GEJL) FD

A functional dependency is trivial if it is
satisfied by all instances of a relation

‘Example:
ID, name ID
name nhame
In general, o —» A is trivial if f c «a

Armstrong’'s Axioms

cif fc , thena > S (BREE)
* if a > S then ya — yf (I8xhE)
if o > S,and 8 > v,then a > v ({HIEE)

« Additional rules:

. Tf and , then (&
;’:';1)

. If . then and (5
EY)

. If and _then (th

)

Closure([f1)

- RIBEXERE, #KRHEARIFDETEHRY K
B

- BB AR RS

- RS

Normal Form

« INF
« 2NF
» 3NF
« BCNF

NF &Y 53
- SRHER

— Lossless- join decomposition
k>R
Rk -k

— Dependency preserving
(FRFUFRU U FR)=F*

— NFER

Canonical Cover(IENB3E)

* a canonical cover of F is a "minimal”
set of functional dependencies
equivalent to F, having no redundant
dependencies or redundant parts of
dependencies

« Canonical CoverBY4F{iE
- LA RE—R, HiAZEREEH
— FBIA & ek B % (extraneous)
- AT RIEKIEIRTF

TR RIERNFI B
* For

 To test if attribute A is extraneous in

1.compute ({ } - A)- using the dependencies in F
2.check that ({ } - A)- contains ; if it does, A
is extraneous in

 To test if attribute A is extraneous in

1.compute + using only the dependencies in
F=F -{) IR | (-A}
2.check that + contains A; if it does, A is
extraneous in

Canonical Cover(IENB3E)

R = (A, B,)
F={A BCLB C,A B, AB ()}

‘F={A BC,B C, AB (}
‘F={A BC, B C(}

F={A B, B (}

SETIT

1) For R, kKey, RHERTENEKWFD, A B;
2) KA
3) R1 = {A} /
R2 ={A U (R-A")}
4) HMR2ELE1-3, EEWHETEAER

‘R1NR2 Rl THER
« IGF (F, F, . F)=F"
» JRAJEEEFC

SET T
R = {A, B, €)

F = {A—B, B—()
Can be decomposed in two different ways
_R1 = (A, B), R2 = (B, C)
Lossless- join decomposition:
R1NR2 = {B} and B—BC
Dependency preserving
-R1 =(A, B), R2= (A, C)
Lossless-join decomposition:
R1NR2 = {A} and A—AB

Not dependency preserving
(cannot check B—C without computing RT R2)

SETIT

‘R = (A, B, C)
F = {A—B, B—~C, B—~A)
—R1 = (A, B), R2 = (A, C)
Lossless- join decomposition:
R1NR2 = {A} and A—AB
dependency preserving?
B—~C ?

(F1 F2 . Fn) =F"~+

SER ST
R(T,S.C), BuUBIFTR E—I'TIRC, ®INR
AREAZIMEEFH, SHFE.
T CSC T
Key
SC, TS

iy
R1(T,C),R2(T,S)

ToRERE, KEiREE?

filF
. EH

— ISBM, 43S : TP311.13

MVD

MVD

inst_info(ID, child_name, phone_number)

“ Child_name Phone_number

99999 David 512-555-1234

99999 David 512-555-4321

99999 William 512-555-1234

99999 William 512-555-4321

BCNF,why?

= =¥
NBRR, BFE

MVD
— ID——child _name
— ID——phone_number

MVD

MVD
SEFLEIMVD, o ->— B

= R
If o > Bthena —— B

If —- then —-—R- -

4NF

- Egﬁ HAESE AL ZEWKRE, HREETFHRE

I T

99999 David 512-555-1234
99999 David 512-555-4321
99999 William 512-555-1234
99999 William 512-555-4321

« ID——child_name
« ID——phone_number
* R1(ID,child_name),R2(ID,phone_number)

ER Model and Normalization

In a real (imperfect) design, there can be
functional dependencies from non-key
attributes of an entity to other attributes
of the entity
— Example: an employee entity with attributes
department_name and building,

and a functional dependency
department_name building

— Good design would have made department an
entity

Denormalization for
Performance

May want to use non-normalized schema for performance

For example, displaying prereqs along with course_id,
and title requires join of course with prereq

Use denormalized relation containing attributes of course
as well as prereq with all above attributes

— faster lookup
— extra space and extra execution time for updates

— extra coding work for programmer and possibility of
error in extra code

Transaction

(FH)

Transaction Concept

A transaction is a unit of program
execution that accesses and possibly
updates various data items

« SQL DML/C++ Java
- BRMENES. ZEIERET
+ A[BEH B FIG IR

Example of transaction

E.g. transaction to transfer $50 from
account A to account B:

1. read(A)
2. A:=A-50
3. write(A)
4. read(B)
5. B:=B + 50
6. write(B)

ACID Properties

Atomicity
Consistency
Isolation
Durability

Transaction

« Commit

* Rollback

Transaction process

Transaction State

Tracsaction State

‘Active - the initial state; the transaction stays in
this state while it is executing

Partially committed - after the final statement has
been executed.

‘Failed -- after the discovery that normal execution
can no longer proceed.

*Aborted - after the transaction has been rolled back
and the database restored to its state prior to the
start of the transaction. Two options after it has
been aborted:

— restart the transaction

can be done only if no internal logical error
— kill the transaction

‘Committed - after successful completion.

Schedules

» IELSHATRIRT BB FF

- DAEZHWAENESHNRAES, Hx
FHELSESES PRI

- HE, SPHEFHHRET

- AIRITRE, FEHFEHLZEBITHER, 5

43—

RITEIT—H

Schedule 1

A serial schedule in which T; is followed by T,

Schedule 2

A serial schedule where T is followed by T;

Schedule 3

In Schedules 1, 2 and 3, the sum A + B is preserved.

Schedule 4

This concurrent schedule does not preserve the value of (A + B).

Lock

I

HZ4 (Shared) . HEE$Hi (exclusive)

Lock & Transaction

* A transaction may be granted a lock on an
item if the requested lock is compatible with
locks already held on the item by other
transactions.

 An number'.of transactions can hold shared
locks on an item,

— but if any transaction holds an exclusive on the
item no other transaction may hold any lock on
the item.

« If a lock cannot be granted, the requesting
transaction is made to wait ftill all
incomgaﬁble locks held by other transactions
have been released. The lock is then
granted.

Lock

« Neither T3 nor T, can make progress — executing lock-S(B)
causes T, to wait for T3 to release its lock on B, while
executing lock-X(A) causes T3 to wait for T, to release its
lock on A.

« Such a situation is called a deadlock.

* To handle a deadlock one of T;or T, must be rolled back
and its locks released.

Isolation level

Isolation level

- HEHREEX (BB
- FHEMREvsSEE—H Z EH—MEHL. P

— Read uncommitted Isolation Level = 3
— Read committed Isolation Level = 2
— Repeatable read Isolation_Level = 1

— Serializable Isolation Level = O

O - Read uncommitted

Read permitted on row with or without
write lock

No read locks are applied

No guarantee that concurrent transaction
will not modify row or roll back changes to
row

Corresponds to table hints NOLOCK and
READUNCOMMITTED

Allow dirty reads, non-repeatable reads,
and phantom rows

1 - Read committed

Read only permitted on row with no write lock

Read lock acquired and held for read on
current row only, but released when cursor
moves off the row

No guarantee that data will not change during
transaction

Corresponds to table hint READCOMMITTED
Prevent dirty reads
Allow non-repeatable reads and phantom rows

2 - Repeatable

Read only permitted on row with no write lock

Read lock acquired as each row in the result
set is read, and held until transaction ends

Corresponds to table hint REPEATABLEREAD
Prevent dirty reads and non-repeatable reads
Allow phantom rows

3 - serializable

Read only permitted on rows in result
without write lock

Read locks acquired when cursor is
opened and held until transaction ends

Corresponds to table hints HOLDLOCK
and SERIALIZABLE

Prevent dirty reads, non-repeatable
reads, and phantom rows

Isolation Level

Recovery System

Failure Classification

Transaction failure:

— Logical errors: transaction cannot complete due
to some internal error condition

— System errors: the database system must
terminate an active transaction due to an error
condition (e.g., deadlock)

System crash: a power failure or other hardware or
software failure causes the system to crash.

Disk failure: a head crash or similar disk failure
destroys all or part of disk storage

RS SRR

- BMERZEWEE, NERFHEENELXSY
HACID

» HIERESAERREEE, RIEHE®
HE R AT HRERE ;

- WREELSER, ERIBEREZIE—RIE
ACIDRIRRES

Classification of Physical
Storage Media

Speed with which data can be accessed
Cost per unit of data

Reliability

— data loss on power failure or system crash
— physical failure of the storage device

Can differentiate storage into:

— volatile storage:
* loses contents when power is switched off

— non-volatile storage:
* Contents persist even when power is switched off.

* Includes secondary and tertiary storage, as well as
batter-backed up main-memory.

Physical Storage Media

» Cache - fastest and most costly form
of storage: volatile; managed by the
computer system hardware.

Physical Storage Media

* Main memory:

— fast access (10s to 100s of nanoseconds;
1 nanosecond = 10-9 seconds)

— generally too small (or too expensive) to
store the entire database

« capacities of up to a few Gigabytes widely used
currently

 Capacities have gone up and per-byte costs
have decreased steadily and rapidly (roughly
factor of 2 every 2 to 3 years)
— Volatile — contents of main memory are
usually lost if a power failure or system
crash occurs.

Physical Storage Media (Cont.)

* Flash memory
— Data survives power failure

— Data can be written at a location only
once, but location can be erased and
written to again

—Reads are roughly as fast as main
memory

— But writes are slow (few microseconds),
erase is slower

— Widely used in embedded devices such
as digital cameras, phones, and USB
keys

— SSD (Solid-State Disk)

Physical Storage Media (Cont.)

* Magnetic-disk
— Data is stored on spinning disk, and
read/written magnetically

— Primary medium for the long-term
storage of data; typically stores
entire database.

— Data must be moved from disk to
main memory for access, and written
back for storage

— direct-access possible to read data
on disk in any order, unlike magnetic
tape

Physical Storage Media (Cont.)

* Magnetic-disk

— Capacities range up to roughly 1.5 TB
as of 2009

* Much larger capacity and cost/byte than main
memory/flash memory

« Growing constantly and rapidly with technology
improvements (factor of 2 to 3 every 2 years)

— Survives power failures and system
crashes
* disk failure can destroy data, but is rare

Physical Storage Media (Cont.)

 Optical storage

—non-volatile, data is read optically
from a spinning disk using a laser

— CD-ROM (640 MB) and DVD (4.7
to 17 GB) most popular forms

— Blu-ray disks: 27 GB to 54 GB

Physical Storage Media (Cont.)

 Optical storage

— Write-one, read-many (WORM) optical
disks used for archival storage (CD-R,
DVD-R, DVD+R)

— Multiple write versions also available
I(QCADN-\) W, DVD-RW, DVD+RW, and DVD-

— Reads and writes are slower than with
magnetic disk

— Juke-box sgs'rems, with large numbers of
removable disks, a few drives, and a
mechanism for automatic
Ioading/unloadin? of disks available for
storing large volumes of data

Physical Storage Media (Cont.)

* Tape storage

— non-volatile, used primarily for backup
(to recover from disk failure), and for
archival data

— sequential-access - much slower than
disk

— very high capacity (40 to 300 GB tapes
available)

Physical Storage Media (Cont.)

» Tape storage

— tape can be removed from drive
storage costs much cheaper than
disk, but drives are expensive

— Tape jukeboxes available for
storing massive amounts of data

* hundreds of terabytes (1 terabyte =
10° bytes) to even multiple petabytes
(1 petabyte = 1012 bytes)

Storage
Hierarchy

Storage Hierarchy (Cont.)

 primary storage: Fastest media but
volatile (cache, main memory).

» secondary storage: next level in
hierarchy, non-volatile, moderately
fast access time

— also called on-line storage

— E.g. flash memory, magnetic disks
 tertiary storage: lowest level in

hierarchy, non-volatile, slow access

time

— also called off-line storage

— E.g. magnetic tape, optical storage

Magnetic Hard Disk Mechanism

NOTE: Diagram is schematic, and simplifies the structure of actual disk drives

Magnetic Disks

Read-write head
— Positioned very close to the platter surface (almost touching it)
— Reads or writes magnetically encoded information.

Surface of platter divided into circular tracks
— Over 50K-100K tracks per platter on typical hard disks

Each track is divided into sectors.
— A sector is the smallest unit of data that can be read or written.
— Sector size typically 512 bytes
— Typical sectors per track: 500 to 1000 (on inner tracks) to 1000 to
2000 (on outer tracks)
To read/write a sector
— disk arm swings to position head on right track
— F\Ia‘rc"rer spins continually; data is read/written as sector passes under
ea
Head-disk assemblies
— multiple disk platters on a single spindle (1 to 5 usually)
— one head per platter, mounted on a common arm.

Cylinder i consists of ith track of all the platters

Magnetic Disks (Cont.)

» Earlier generation disks were susceptible
to head-crashes

— Surface of earlier generation disks had
metal-oxide coatings which would
disintegrate on head crash and damage all
data on disk

— Current generation disks are less susceptible
to such disastrous failures, although
individual sectors may get corrupted

Magnetic Disks (Cont.)

« Disk controller - interfaces between the
computer system and the disk drive hardware.

accepts high-level commands to read or write a
sectfor

initiates actions such as moving the disk arm to the
right track and actually reading or writing the data

Computes and attaches checksums to each sector to
verify that data is read back correctly

« If data is corrupted, with very high probability stored
checksum won't match recomputed checksum

Ensures successful writing by reading back sector
after writing it

Performs remapping of bad sectors

Disk Subsystem

Multiple disks connected to a computer system through a
controller

— Controllers functionality (checksum, bad sector remapping) often

carried out by individual disks; reduces load on controller

Disk interface standards families

— ATA (AT adaptor) range of standards

— SATA (Serial ATA)

— SCSI (Small Computer System Interconnect) range of standards

— SAS (Serial Attached SCSI)

— Several variants of each standard (different speeds and capabilities)

Disk Subsystem

Disks usually connected directly to
computer system

In Storage Area Networks (SAN), a large
number of disks are connected by a high-
speed network to a number of servers

In Network Attached Storage (NAS)
networked storage provides a file system
interface using networked file system
protocol, instead of providing a disk system
interface

Performance Measures of Disks

« Access time - the time it takes from when a read or
write request is issued to when data transfer begins.
Consists of:

— Seek time - time it takes to reposition the arm over the
correct track.

« Average seek time is 1/2 the worst case seek time.

— Would be 1/3 if all tracks had the same number of sectors, and we
ignore the time to start and stop arm movement

* 4 to 10 milliseconds on typical disks
— Rotational latency - time it takes for the sector to be
accessed to appear under the head.

« Average latency is 1/2 of the worst case latency.
* 4 to 11 milliseconds on typical disks (5400 to 15000 r.p.m.)

* Data-transfer rate - the rate at which data can be
retrieved from or stored to the disk.
— 25 to 100 MB per second max rate, lower for inner tracks
— Multiple disks may share a controller, so rate that
controller can handle is also important
« E.g. SATA: 150 MB/sec, SATA-II 36b (300 MB/sec)
« Ultra 320 SCSI: 320 MB/s, SAS (3 to 6 Gb/sec)
« Fiber Channel (FC2G6b or 4Gb): 256 to 512 MB/s

Performance Measures (Cont.)

* Mean time to failure (MTTF) - the
average time the disk is expected to
run continuously without any failure.
— Typically 3 to 5 years

— Probability of failure of new disks is quite
low, corresponding to a
“theoretical MTTF” of 500,000 to
1,200,000 hours for a new disk

« E.g., an MTTF of 1,200,000 hours for a new
disk means that given 1000 relatively new disks,
on an average one will fail every 1200 hours

— MTTF decreases as disk ages

Optimization of Disk-Block Access

 Block - a contiguous sequence of sectors
from a single track

— data is transferred between disk and main
memory in blocks

— sizes range from 512 bytes to several
kilobytes
« Smaller blocks: more transfers from disk

* Larger blocks: more space wasted due to partially
filled blocks

* Typical block sizes today range from 4 to 16
kilobytes

 Disk-arm-scheduling algorithms order
pending accesses to tracks so that disk
arm movement is minimized

24

Optimization of Disk Block Access(Cont.)

* File organization - optimize block access
time by organizing the blocks to
correspond to how data will be accessed

— E.g. Store related information on the same
or nearby cylinders.

— Files may get fragmented over time
« E.qg. if data is inserted to/deleted from the file

* Or free blocks on disk are scattered, and newly
created file has its blocks scattered over the

disk
 Sequential access to a fragmented file results in
increased disk arm movement
— Some systems have utilities to defragment
the file system, in order to speed up file
access

Optimization of Disk Block Access(Cont.)

* Nonvolatile write buffers speed up disk
writes by writing blocks to a non-volatile

RAM buffer immediately

— Non-volatile RAM: battery backed up RAM or
flash memory

 Even if power fails, the data is safe and will be written to disk
when power returns

— Controller then writes to disk whenever the disk
has no other requests or request has been pending
for some time

— Database operations that require data to be
safely stored before continuing can continue
without waiting for data to be written to disk

— Writes can be reordered to minimize disk arm
movement

Optimization of Disk Block Access(Cont.)

* Log disk - a disk devoted to writing a
sequential log of block updates
— Used exactly like nonvolatile RAM

« Write to log disk is very fast since no seeks are required
* No need for special hardware (NV-RAM)

* File systems typically reorder writes to disk
to improve performance

— Journaling file systems write data in safe order
to NV-RAM or log disk

— Reordering without journaling: risk of corruption
of file system data

Flash Storage

« NOR flash vs NAND flash
« NAND flash

— used widely for storage, since it is much
cheaper than NOR flash

— requires page-at-a-time read (page: 512 bytes
to 4 KB)

— transfer rate around 20 MB/sec

— solid state disks: use multiple flash storage

devices to provide higher transfer rate of 100
to 200 MB/sec

Flash Storage

 NOR flash vs NAND flash
 NAND flash
— erase is very slow (1 to 2 millisecs)
- erase block contains multiple pages

 remapping of logical page addresses to
physical page addresses avoids waiting for
erase
— translation table tracks mapping
» also stored in a label field of flash page
— remapping carried out by flash translation layer

« after 100,000 to 1,000,000 erases, erase
block becomes unreliable and cannot be used

—wear leveling

Example of Data Access

buffer Q
Butfer Block A—x Ll MPUt(A) "
Bufter Block B / Y EENE-
output(B)_—
read(X
write(Y)
v | |x,
X4
Y1
work work area
area of T,
of T

memory disk

Data Access

Physical blocks are those blocks residing on the disk.

Buffer blocks are the blocks residing temporarily in
main memory.

Block movements between disk and main memory are
initiated through the following two operations:

— input(B) transfers the physical block B to main
memory.

— output(B) transfers the buffer block B to the disk,
and replaces the appropriate physical block there.

Data Access

« Each transaction Ti has its private work-area in which
local copies of all data items accessed and updated by
it are kept.

— Ti's local copy of a data item X is called xi.

« We assume, for simplicity, that each data item fits in,
and is stored inside, a single block.

Data Access (Cont.)

« Transaction transfers data items between system
buffer blocks and its private work-area using the
following operations:

— read(X) assigns the value of data item X to the
local variable xi.

— write(X) assigns the value of local variable xi to
data item {X} in the buffer block.

— Both these commands may necessitate the issue of
an input(BX) instruction before the assignment, if
the block BX in which X resides is not already in
memory.

Data Access (Cont.)

« Transactions
— Perform read(X) while accessing X for the first time:
— All subsequent accesses are to the local copy.
— After last access, transaction executes write(X).

 output(BX) need not immediately follow write(X).
System can perform the output operation when it
deems fit.

EFLogh &4

*To ensure atomicity despite failures,
we first output information describing
the modifications to stable storage

without modifying the database itself.

log-based recovery

EFLoghtx &

* A log is kept on stable storage.

—The log is a sequence of log records, and
maintains a record of update activities on
the database

« Two approaches using logs
« Deferred database modification
 Immediate database modification

Deferred Database Modification

<T, start> <T, start> <T, start>
<Ty, A, 990> <To, A, 950> <T,, A, 950>
<T,, B, 2060> <T,, B, 2050> <T,, B, 2050>
<T, commit> <T, commit>
<T, start> <T, start>
<T,, C, 600> <Ty, C, 600>
<T; commit>

(a) (b) ()

Immediate database modification

<T, start> <T, start> <T, start>
<Ty, A, 1000, 950> <T,, A, 1000, 950> <T,, A, 1000, 950>
<Ty, B, 2000, 2030> <T,, B, 2000, 2050> <T,, B, 2000, 2050>
<T, commit> <T, commit>
<T, start> <T, start>
<Ty, C, 700, 600> <T,, C, 700, 600>
<T, commit>

() (b) (c)

Immediate database modification

Log Write Output

I, start>

<T, A, 1000, 950>
7., B, 2000, 2050

A = 950
B = 2050
<7, commit>
I, start>
<r, G, 700, 600>
¢ = 600
By B
<7, commit>
B,

* Note: B, denotes block containing X

checkpoint

* Problems in recovery procedure
1.searching the entire log is time-consuming

2.we might

unnecessarily redo transactions which

have already
3.output their updates to the database.

« Streamline recovery procedure by
periodically performing checkpointing

1.Output a

| log records currently residing in main

memory onto stable storage.

2.0Output a

3.Write a
storage

| modified buffer blocks to the disk.
og record < checkpoint> onto stable

H & &4 R

Dump Database
Dump Log
Dump Log

Recovery Database
Recovery Log
Recovery Log

Query Processing
&
Performance Tuning

INDEX

* Primary mechanism to get improved
performance on a database

» Indexing mechanisms used to speed up
access to desired data

search-key | pointer

— Search Key - attribute or set of attributes
used to look up records in a file.

INDEX

« Two basic kinds of indices:
* Ordered indices
— search keys are stored in sorted order
— Balanced trees
« Hash indices

— search keys are distributed uniformly
across "buckets” using a “hash function”

— Hash tables

INDEX - Query

INDEX - Modification

Ordered Indices

 In an ordered index, index entries are
stored sorted on the search key value.

* Primary index: in a sequentially ordered file,
the index whose search key specifies the
sequential order of the file.

— Also called clustering index

— The search key of a primary index is
usually but not necessarily the primary
key.

Ordered Indices

« Secondary index: an index whose search key
specifies an order different from the
sequential order of the file. Also called
non-clustering index.

« Index-sequential file: ordered sequential
file with a primary index.

Dense Index Files

« Dense index — Index record appears for every search-
key value in the file.

« E.q. index on ID attribute of instructor relation

Dense Index Files (Cont.)

* Dense index on dept_name, with instructor file

sorted on dept_name

Sparse Index Files

- Sparse Index: contains index records for only
some search-key values.
— Applicable when records are sequentially ordered on
search-key
* To locate a record with search-key value K we:
— Find index record with largest search-key value <= K

— Search file sequentially starting at the record to which
the index record points

Multilevel Index

If primary index does not fit in memory,
access becomes expensive.

Solution: treat pr'imar?l index kept on
disk as a sequential file and construct a
sparse index on it.

—outer index - a sparse index of
primary index

— inner index - the primary index file

If even outer index is too large to fit in

main memory, Jie‘r another level of index

can be created, and so on.

Indices at all levels must be updated on

insertion or deletion from the file.

Multilevel Index (Cont.)

Multilevel Index (primary index)

Multilevel Index (secondary index)

Multilevel Index (Cont.)

Covering indices (primary)

select * from employee
where emp_id like "E%"

Covering indices (secondary)

Covering indices
(Multiple Attributes)

select emp fname, emp _Iname

from employee

where emp_Iname like “Gr%”and
emp_fname like “M%”

Covering indices
(Multiple Attributes)

Query Processing

Basic Steps in Query Processing

1.Parsing and translation
2.0Optimization
3.Evaluation

Measures of Query Cost

* Cost is generally measured as total elapsed time for
answering query

— Many factors contribute to time cost
« disk accesses, CPU, or even network communication

« Typically disk access is the predominant cost, and is also
relatively easy to estimate. Measured by taking into
account

— Number of seeks * average-seek-cost
— Number of blocks read * average-block-read-cost
— Number of blocks written * average-block-write-cost

« Cost to write a block is greater than cost to read a
block

— data is read back after being written to ensure
that the write was successful

Measures of Query Cost (Cont.)

 For simplicity we just use the number of block
transfers from disk and the number of seeks as
the cost measures

— t+ - time to transfer one block
— t; - time for one seek
— Cost for b block transfers plus S seeks
b*tr+S*t,
« We ignore CPU costs for simplicity
— Real systems do take CPU cost into account

* We do not include cost to writing output to disk
in our cost formulae

Measures of Query Cost (Cont.)

« Several algorithms can reduce disk IO by using
extra buffer space

— Amount of real memory available to buffer
depends on other concurrent queries and OS
processes, known only during execution

 We often use worst case estimates,
assuming only the minimum amount of
memory needed for the operation is
available

* Required data may be buffer resident already,
avoiding disk I/0

— But hard to take into account for cost
estimation

Selection Operation

File scan

* Algorithm A1 (linear search). Scan each
file block and test all records to see
whether they satisfy the selection condition.

— Cost estimate = b, block transfers + 1
seek

* b. denotes number of blocks containing
records from relation r

— If selection is on a key attribute, can
stop on finding record

* cost = (b, /2) block transfers + 1 seek

File scan

— Linear search can be applied regardless of
« selection condition or
* ordering of records in the file, or
* availability of indices

* Note: binary search generally does not make sense
since data is not stored consecutively

—except when there is an index
available,

—and binary search requires more
seeks than index search

Selections Using Indices

« Index scan - search algorithms that use an index
— selection condition must be on search-key of index.

« A2 (primary index, equality on key). Retrieve a single
record that satisfies the corresponding equality
condition

— Cost = (h, + 1) * (t'r + ts)

« A3 (primary index, equality on nonkey) Retrieve
multiple records.

— Records will be on consecutive blocks

* Let b = number of blocks containing matching
records

—COStzh,'*(tT"' ts)"'ts"‘t'r*b

28

Selections Using Indices

* A4 (secondary index, equality on nonkey).

— Retrieve a single record if the search-
key is a candidate key

e Cost = (h, + 1) * (tT + ts)

— Retrieve multiple records if search-key
is not a candidate key

» each of n matching records may be
on a different block

Cost = (h; + n) * (tr+ + to)
—Can be very expensivel!

29

Selections Involving Comparisons

* Can implement selections of the form , , (r)
or , r) by using
— a linear file scan,
— or by using indices in the following ways:

« ADB (primary index, comparison). (Relation is sorted
on A)

* For 4, \(r) use index to find first tuple v
and scan relation sequentially from there

* For 4 y(r) just scan relation sequentially till
first tuple > v; do not use index

Selections Involving Comparisons

« A6 (secondary index, comparison).

*For , (r) use index to find first
index entry v and scan index
sequentially from there, to find pointers
to records.

*For , y(r) just scan leaf pages of
index finding pointers to records, till
first entry > v

* In either case, retrieve records that are
pointed to

—requires an I/0 for each record
— Linear file scan may be cheaper

31

Implementation of Complex Selections

* Conjunction: 1 2 . . . n(f')
« A7 (conjunctive selection using one index).

— Select a combination of ; and algorithms Al
through A7 that results in the least cost for

(r).

— Test other conditions on tuple after fetching it
info memory buffer.

« A8 (conjunctive selection using composite index).

— Use appropriate composite (multiple-key) index if
available.

32

Implementation of Complex Selections

- Conjunction: 1 > ... r)

* A9 (conjunctive selection by intersection of
identifiers).

—Requires indices with record pointers.

—Use corresponding index for each condition, and
take intersection of all the obtained sets of record
pointers.

—Then fetch records from file

—If some conditions do not have appropriate indices,
apply test in memory.

Algorithms for Complex Selections

- Disjunction: > ... na(r).
» A10 (disjunctive selection by union of
identifiers).

— Applicable if all conditions have
available indices.

 Otherwise use linear scan.

— Use corresponding index for each
condition, and take union of all the
obtained sets of record pointers.

— Then fetch records from file

Algorithms for Complex Selections

* Negation: (r)
— Use linear scan on file

— If very few records satisfy , and
an index is applicable to

 Find satisfying records using index
and fetch from file

Sorting

« We may build an index on the relation, and
then use the index to read the relation in
sorted order. May lead to one disk block
access for each tuple.

* For relations that fit in memory, techniques
like quicksort can be used. For relations
that don't fit in memory, external

sort-merge is a good choice.

Join Operation

 Several different algorithms to implement joins
—Nested-loop join
—Block nested-loop join
—Indexed nested-loop join
—Merge- join
—Hash- join

+ Choice based on cost estimate

« Examples use the following information
—Number of records of student : 5,000

takes : 10,000

—Number of blocks of student : 100
takes : 400

Nested-Loop Join

*To compute the theta join r [s

for each tuple t. in r do begin
for each tuple t; in s do begin
test pair(t,, t;) to see if they satisfy the join condition

if they do, add t. - t; to the result.
end
end

r is called the outer relation and s the inner relation of
the join.
Requires no indices and can be used with any kind of join
condition.

Expensive since it examines every pair of tuples in the two
relations.

Nested-Loop Join (Cont.)

In the worst case, if there is enough memory only to hold one
block of each relation, the estimated cost is

n. b,+b block transfers, plus

n. + b, seeks
If the smaller relation fits entirely in memory, use that as the
inner relation.
— Reduces cost to b, + b, block transfers and 2 seeks

Assuming worst case memory availability cost estimate is

— with student as outer relation:
- 5000 400 + 100 = 2,000,100 block transfers,
- 5000 + 100 = 5100 seeks

— with takes as the outer relation
« 10000 100 + 400 = 1,000,400 block transfers and 10,400 seeks

If smaller relation (student) fits entirely in memory, the cost
estimate will be 500 block transfers.

Block nested-loops algorithm (next slide) is preferable.

Block Nested-Loop Join

* Variant of nested-loop join in which every block of
inner relation is paired with every block of outer
relation.

for each block B, of r do begin

for each block B; of s do begin
for each tuple t. in B. do begin

for each tuple t; in B; do begin
Check if (t,., ts) satisfy the join condition
if they do, add t. * t; to the result.
end
end

end
end

Block Nested-Loop Join (Cont.)

Worst case estimate: b, * b, + b, block transfers + 2 * p,
seeks

— Each block in the inner relation s is read once for each
b/ock in the outer relation

Best case: b, + b, block transfers + 2 seeks.
Improvements to nested loop and block nested loop algorithms:

— In block nested—loop, use # — 2 disk blocks as blocking
unit for outer relations, where # = memory size in blocks;
use remaining two blocks to buffer inner relation and output

« GCost= [b, / W2 * b, +b, block transfers +
26, / W-2)] seeks

— If equi—join attribute forms a key or inner relation, stop
inner loop on first match

— Scan inner loop forward and backward alternately, to make
use of the blocks remaining in buffer (with LRU replacement)

— Use index on inner relation if available (next slide)

Indexed Nested-Loop Join

» Index lookups can replace file scans if
— join is an equi- join or natural join and
—an index is available on the inner relation's
join attribute

* Can construct an index just to compute a join.

For each tuple t. in the outer relation r, use the index to look up
tuples in s that satisfy the join condition with tuple t..

Worst case: buffer has space for only one page of r, and, for
each tuple in r, we perform an index lookup on's.

Cost of the join: b, (tr+ ts) +n. ¢

—Where c is the cost of traversing index and
fetching all matching s tuples for one tuple
or r

— ¢ can be estimated as cost of a single

selection on s using the join condition.

If indices are available on join attributes of both r and s,
use the relation with fewer tuples as the outer relation.

Example of Nested-Loop Join Costs
X

 GCompute student takes, with student as the outer
relation.

» Let takes have a primary B*—tree index on the attribute /0
which contains 20 entries in each index node.

e Since takes has 10,000 tuples, the height of the tree is 4,
and one more access is needed to find the actual data

o student has 5000 tuples

* (Cost of block nested loops join
— 400%100 + 100 = 40,100 block transfers + 2 ¥ 100 = 200 seeks

« assuming worst case memory
* may be significantly less with more memory

Cost of indexed nested loops join
— 100 + 5000 * 5 = 25,100 block transfers and seeks.

— CPU cost likely to be less than that for block nested l|oops
join

