
01 概 述
Introduction

• Database
–长期储存在计算机内的、有组织的、可共享的、
互相关联的数据的集合

–是一个持久数据的集合

– A very large, integrated collection of data.

数据库

3

• DataBase Management System(DBMS)
• A software package designed to store

and manage databases.
• Provide efficient, reliable, convenient,

and safe multi-user storage of and
access to massive amounts of persistent
data.

数据库管理系统

• Massive
• Persistent
• Safe
• Multi-user
• Convenient
• Efficient
• Reliable

DBMS

• Data model
– A collection of concepts for describing data
– A description of, in general, how the data is structured.

• Schema versus data
– A description of a particular collection of data, using the given

data model
– The schema sets up the structure of the database.

• Data definition language (DDL)
• Data manipulation or query language (DML)

Key concepts

数据抽象

（Conceptual）

• DBMS implementer
• Database designer
• Database application developer
• Database administrator

People

D
BM

S

系
统
结
构

Whether you know it or not,
you’re using a database every day

……

数据库应用

02 关系模型
Relational Model

关系数据模型基础

• 关系模型是一种基于表的数据模型

–用表的集合表示数据及数据间的联系

• Schema
–structural description of relations in database

Student(sno, sname, age, gender, dept）

• Instance
–actual contents at given point in time

Student(95001,”张三”,21,”M”,”SE”)

• Database = set of named relations(tables)

• Each relation has a set of named attributes
(columns)

• Each tuple(row) has a value for each
attribute

• Each attribute has a type(domain)

• Key（键、码）
– attribute whose value is unique in each tuple
– Or set of attributes whose combined values

are unique
• Super Key（超码）
• Candidate Key（候选码）
• Primary Key（主码）
• Foreign key（外码）
– Value in one relation must appear in another
– Referencing relation
– Referenced relation

student

sno sname age gende dept

001 张三 21 M SE

002 李四 20 F CS

course

cno cname credit

222 SE 3

223 DB 3

SC

sno cno grade

001 223 80

002 222 86

001 222 82

Example: University
• 大学分成多个系

– 每个系由自己唯一的名字（dept_name）来标识
– 座落在特定的建筑物（building）中
– 有它的经费预算（budget）

• 每一个系有一个开设课程列表

– 每门课程有课程号（course id）
– 课程名（title）
– 系名（dept name）
– 学分（credits）
– 还可能有先修要求（prerequisites）

• 教师由个人唯一的标识号（ID）来标识
– 每位教师有姓名（name）
– 所在的系（dept name）
– 工资（salary）

• 学生由个人唯一的标识号（ID）来标识
– 每位学生有姓名（name）
– 主修的系（dept name）
– 已修学分数（tot_cred）

Example: University

• 大学维护一个教室列表

– 楼名（building）
– 房间号（room_number）
– 容量（capacity）。

• 大学维护开设的所有课程（开课）的列表

– 每次开课由课程号（course id）、开课号（sec_id）、年
（year）、学期（semester）来标识

– 与之相关联的有学期（semester）、年（year）、楼名
（building）、房间号（room_number）、时段号
（time_slot_id，即上课的时间）。

Example: University

• 系有一个教学任务列表，说明每位教师的授课情况。

• 大学有一个所有学生课程注册的列表，说明每位学生在哪些
课程的哪次开课中注册了。

• 一个真正的大学数据库会比上述的设计复杂得
多。然而，我们就用这个简化了的模型来帮助
你理解概念思想，避免你迷失在复杂设计的细
节中。

Example: University

Example: University

Classroom (building, room number, capacity)
Department (dept_name, building, budget)
Course (course id, title, dept_name, credits)
Instructor (ID, name, dept_name, salary)
Section (course id, sec id, semester, year, building,

 room_number, time_slot_id)
Teaches (ID, course id, sec id, semester, year) student
(ID, name, dept_name, tot_cred)
Takes (ID, course id, sec id, semester, year, grade)
Advisor (s_ID, i_ID)
time_slot (time slot id, day, start time, end_time)
Prereq (course id, prereq id)

Example: University

关系代数

• 关系数据模型的操作

–查询、修改

• 查询语言

–用户用来从数据库中请求获取信息的语言

–过程化语言（what & how）
–非过程化语言（what）

• 关系代数

–过程化查询语言

关系代数基础

• Set
• Bag
• List

•Six basic operators
– select:
– project:
– union:
– set difference: –
– Cartesian product: x
– rename:

•The operators take one or two
relations as inputs and produce a new
relation as a result.

关系代数

•select:

p(r) = {t | t r and p(t) }

• project:

)(,,2,1
r

kAAA 

• Cartesian product: x
 r x s = {t q | t r and q s}

将多个relation组合（join）在一起

• union:
r s = {t | t r or t s }

在r中，或在s中的tuple

试列出所有师生员工的姓名（Student，Instructor）
X？
？

• set difference: –
 r – s = {t | t r and t s}

在r中，不在s中的tuple

试列出没有选课成绩的学生的学号

• rename:

additional operations
• Set intersection 
• Natural join
• Assignment
• Outer join

关系代数

•Set intersection

E1-E2 = E1-(E1-E2)

•Natural join （自然连接）
r s
=Πschema(r) U schema(s)σr.a1=s.a1∧r.a2=s.a2 ∧…(rxs)

schema(r) ∩ schema(s)=(a1,a2,…)
（属性的交集上取等值）

•试列出选过课程的学生的学号、姓名

•试列出没有选课记录的学生的学号、姓名

• Theta join θ or Xθ
r θ s = σθ (r X s)
（条件连接）

•Outer join
外连接，匹配连接 及 不匹配连接

左外

右外

全外

所有学生的选课情况

所有课程的被选情况

•Assignment
赋值

p r s
insert r r U t1

delete r r - t1

Aggregate Functions and Operations
• Aggregation function (聚集函数) takes a
collection of values and returns a single
value as a result.

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

32

Aggregate Functions and Operations
• Aggregate operation in relational algebra

E is any relational-algebra expression
– G1, G2 …, Gn is a list of attributes on which
to group (can be empty)

– Each Fi is an aggregate function
– Each Ai is an attribute name

• Note: Some books/articles use instead
of (Calligraphic G)

)()(,,(),(,,, 221121
E

nnn AFAFAFGGG 

33

• 统计男女生人数

• 分别计算男女生平均年龄

• 列出学生数大于1000人的院系名称

Aggregate Functions and Operations

•Null,不参与

•for r(a,b),
– sum(a) – sum(b) = sum(a – b) ?
– count(*),count(a),count(b)?

•count(name),count(distinct name)?

Aggregate Functions and Operations

基本关系运算

SQL

(Structured Query Language)

• 读作“S.Q.L.” or “sequel”
• Supported by all major commercial
database systems

• Standardized – many new features over
time

• Interactive via GUI or prompt, or
embedded in programs

• Declarative, based on relational algebra

SQL
Structured Query Language

• IBM Sequel language developed as part of System R project
at the IBM San Jose Research Laboratory

• Renamed Structured Query Language (SQL)
• ANSI and ISO standard SQL:

– SQL-86 (First formalized by ANSI)
– SQL-89 (integrity constraints)
– SQL-92 (Major revision)
– SQL:1999 (language name became Y2K compliant! ORDB)
– SQL:2003,SQL:2006 (XML)
– SQL:2008 (INSTEAD OF,TRUNCATE)
– SQL:2011 (temporal databases)

• Commercial systems offer most, if not all, SQL-92 features,
plus varying feature sets from later standards and special
proprietary features.

History

Year Name Alias Comments
1986 SQL-86 SQL-87 First formalized by ANSI.

1989 SQL-89 FIPS127-1 Minor revision, in which the major addition were integrity constraints.
Adopted as FIPS 127-1.

1992 SQL-92 SQL2, FIPS
127-2

Major revision (ISO 9075), Entry Level SQL-92 adopted as FIPS 127-
2.

1999 SQL:1999 SQL3

Added regular expression matching, recursive queries (e.g. transitive
closure), triggers, support for procedural and control-of-flow
statements, non-scalar types, and some object-oriented features
(e.g. structured types). Support for embedding SQL in Java
(SQL/OLB) and vice-versa (SQL/JRT).

2003 SQL:2003 SQL 2003
Introduced XML-related features (SQL/XML), window functions,
standardized sequences, and columns with auto-generated values
(including identity-columns).

2006 SQL:2006 SQL 2006

ISO/IEC 9075-14:2006 defines ways in which SQL can be used in
conjunction with XML. It defines ways of importing and storing XML
data in an SQL database, manipulating it within the database and
publishing both XML and conventional SQL-data in XML form. In
addition, it enables applications to integrate into their SQL code the
use of XQuery, the XML Query Language published by the World
Wide Web Consortium (W3C), to concurrently access ordinary SQL-
data and XML documents.

2008 SQL:2008 SQL 2008 Legalizes ORDER BY outside cursor definitions. Adds INSTEAD OF
triggers. Adds the TRUNCATE statement.

2011 SQL:2011 SQL 2011 One of the main new features is improved support for temporal
databases

• Oracle
– SQL*Plus (command line)
– iSQL*Plus (Web-based)

• SQL Server
– SQLCMD (command line)
– iSQL,OSQL

• Sql server anywhere
– Dbisqlc (command line style)
– Dbisql (GUI)

• Mysql
– MYSQL (command line)

数据库交互工具

• DDL
– For Schema
– Create, Alter, Drop

• DML
– For Data
– Modification: Insert, Update, Delete
– Query: Select
– Authorization: Grant, Revoke

SQL

• The Microsoft Open Database
Connectivity (ODBC,1992) interface is a
C programming language interface that
makes it possible for applications to
access data from a variety of database
management systems (DBMSs).

• ODBC is a low-level, high-performance
interface that is designed specifically
for relational data stores.

• CLI(Call Level Interface)

ODBC

• Application
• ODBC driver manager
• ODBC driver
• DBMS

• Windows ODBC
• UnixODBC
• iODBC

ODBC:Architecture

• DSN（Data Source Name） is a
symbolic name that represents the
ODBC connection.

• It stores the connection details like
database name, directory, database
driver, UserID, password, etc. when
making a connection to the ODBC.

ODBC:DSN

Interactive SQL

iSQL Anywhere

DDL

For Schema (Create/Alter/Drop)

Create table Student(
sno char(10) primary key,
sname varchar(10),
age smallint check(age>=0),
gende char(1),
dept char(2)

);

DDL

Alter table student add GPA int;
Alter table student drop GPA;

Drop table student;

DDL

DDL: data type
• char(n)

– Fixed length character string, with user-specified
length n.

• varchar(n)
– Variable length character strings, with user-specified

maximum length n.
• Int

– Integer (a finite subset of the integers that is
machine-dependent).

• Smallint
– Small integer (a machine-dependent subset of the

integer domain type).

DDL: data type
• numeric(p,d)

– Fixed point number, with user-specified precision of p
digits, with d digits to the right of decimal point.

– Eg. numeric(3,1), 44.5
• real, double precision

– Floating point and double-precision floating point
numbers, with machine-dependent precision.

• float(n)
– Floating point number, with user-specified precision

of at least n digits.

DDL: data type
• Date

– Dates, containing a (4 digit) year, month and date
– Example: date ‘2005-7-27’

• Time
– Time of day, in hours, minutes and seconds.
– Example: time ‘09:00:30’ time ‘09:00:30.75’

• Timestamp
– Date plus time of day
– Example: timestamp ‘2005-7-27 09:00:30.75’

DDL: data type
• Interval

– Period of time
– Example: interval ‘1’ day
– Subtracting a date/time/timestamp value from

another gives an interval value
– Interval values can be added to date/time/timestamp

values

DDL: data type
• Large objects (photos, videos, CAD files,
etc.) are stored as a large object:
– Blob

• binary large object
• object is a large collection of uninterpreted
binary data (whose interpretation is left to
an application outside of the database
system)

– Clob
• character large object
• object is a large collection of character
data

DDL: data type
• Large objects (photos, videos, CAD files,
etc.) are stored as a large object:
– When a query returns a large object, a
pointer is returned rather than the large
object itself.

Query

DML: Query
SELECT sno,sname,gende
FROM student
WHERE dept = ‘SE’

Πsno,sname,gende σdept=‘SE’ (student)

DML: Query
SELECT *
FROM student
WHERE dept = ‘SE’

SELECT DISTINCT sname,dept
FROM student
WHERE age >= 21

DML: Query
SELECT *
FROM student
WHERE sname LIKE ‘%明_’

SELECT sno, cno, SQRT(grade)*10
FROM SC

DML: Query
列出软件学院所有学生的姓名、课名和成绩

SELECT sname,cname,grade
FROM student,SC,course
WHERE dept = ‘SE’
？

DML: Query
找出与95001同龄的学生的学号、姓名、院系
SELECT sno,sname,dept
FROM student s1,student s2
WHERE s1.sno = ‘95001’ and

s1.age = s2.age
？

元组变量: s1,s2

DML: Query
•join-expression :
table-expr. join-operator table-expr. [ON join-condition]

– join-operator :
[KEY | NATURAL] [join-type] JOIN | CROSS JOIN

• join-type :
INNER
| LEFT [OUTER]
| RIGHT [OUTER]
| FULL [OUTER]

DML: Query,Aggregation
•统计软件学院男女生平均年龄及人数
SELECT gende,AVG(age),COUNT(*)
FROM student
WHERE dept = ‘SE’
GROUP BY dept,gende

•统计人数大于1000人的院系的男女生平均年
龄

SELECT dept,gende,AVG(age)
FROM student
WHERE dept = ‘SE’
GROUP BY dept,gende
HAVING COUNT(*)>1000

DML: Query,Aggregation

• 容易混淆的问题
– Where？Having?

–那些原始属性可以出现在 select 子句中？

– Null的角色

DML: Query,Aggregation

•列出所有师生的编号（工号或学号）、姓名

SELECT id,name
FROM insturctor
Union
SELECT id,name
FROM student

DML: Query,SET

•列出所有师生的编号（工号或学号）、姓名

SELECT id,name
FROM insturctor
Union ALL
SELECT id,name
FROM student

DML: Query,MultiSet

r有m个t元组，s有n个t元组，
则结果集中t元组数：
r union s

m+n
r intersect s

min(m,n)
r except s

max(0,m-n).

DML: Query,MultiSet

Subquery

SubQuery
回忆一下：

找出与95001同龄的学生的学号、姓名、院系

Tuple varible

自然思维方式？

SubQuery
•Select-from-where嵌入where,from中

找出与95001同龄的学生的学号、姓名、院系

SELECT sno,sname,dept
FROM student
WHERE age = (SELECT age

FROM student
WHERE sno = ‘95001’)

SELECT sno,sname,dept
FROM student
WHERE age = (SELECT age

FROM student
WHERE sno = ‘95001’)

结果集中如何去除95001本人？

关联变量（Correlation Variables）

SubQuery

SubQuery
列出选过02号课程的学生的姓名

SELECT sname
FROM student
WHERE sno in (SELECT sno

FROM SC
WHERE cno = ‘02’)

SubQuery
找出年龄最大的学生

SELECT *
FROM student
WHERE age >= ALL (SELECT age

FROM student)

SubQuery
找出年龄不是最大的学生

SELECT *
FROM student
WHERE age <= SOME (SELECT age

 FROM student)

SOME = ANY

SubQuery
找出选修了SE开设的所有课程的学生
SELECT *
FROM student s
WHERE not exist (SELECT cno

 FROM course
 WHERE dept = ‘SE’)
 except
 (SELECT cno
 FROM SC
 WHERE SC.sno = s.sno)

Find all courses taught in both the Fall
2009 semester and in the Spring 2010
semester.

select course_id
from section as S
where semester = ’Fall’ and year= 2009 and
 exists (select *
 from section as T
 where semester = ’Spring’ and

 year= 2010 and
 S.course_id= T.course_id);

SubQuery

SubQuery
Select-from-where,可以出现在哪里？
•Where
•From
Find the average instructors’ salaries of those departments
where the average salary is greater than $42,000.

selectdept_name, avg_salary from
 (select dept_name, avg (salary) as

avg_salary
 from instructor
 group by dept_name

) as dept_avg (dept_name, avg_salary)
where avg_salary > 42000;

SubQuery
Select-from-where,可以出现在哪里？
•With
Find the average instructors’ salaries of those departments
where the average salary is greater than $42,000.

With dept_avg (dept_name, avg_salary) as
(select dept_name, avg (salary) as

avg_salary
 from instructor
 group by dept_name)
 selectdept_name, avg_salary
 from dept_avg

where avg_salary > 42000;

DML: Modification

DML: Modification
• INSERT

–单行整行
–单行部分属性
–多行

DML: Modification
INSERT INTO student Values

(’98001’,’张三’,21,’M’,’SE’)

INSERT INTO　student (sno,sname)
Values(‘99001’,’李四’)

INSERT INTO SC
SELECT sno,cno
FROM student as s,course as c
WHERE c.dept = ‘SE’

’

DML: Modification
DELETE 整元组删除

DELETE
FROM student
WHERE dept = ‘SE’

DELETE
FROM student
FROM SC
WHERE student.sno = SC.sno and

grade < 60

DML: Modification
UPDATE

修改相关元组中的指定属性

UPDATE student
SET age = age+1,

dept = ‘SE’
WHERE dept = ‘MA’

Authorization

•DCL
•Grant授权
•Revoke回收

grant select on instructor to U1, U2, U3
revoke select on branch from U1, U2, U3

Authorization

grant select on department to Amit
 with grant option;

revoke select on department from Amit,
Satoshi cascade;

revoke select on department from Amit,
Satoshi restrict;

Authorization

View

View(视图)
•仅允许用户察看部分数据（瞎子摸象）
•提高数据安全性

CREATE VIEW se_name_list as
SELECT sno,sname
FROM student
WHERE dept = ‘SE’

View
•Create a view of department salary totals

 create view

departments_total_salary(dept_na
me, total_salary) as
 select dept_name, sum (salary)
 from instructor
 group by dept_name;

• Virtual Table Base Table
• View的定义被存储在Meta Data中

• 操作时，被转换成对BASE TABLE的处理

View的存在形式及操作

create view
departments_total_salary(dept_name,

total_salary) as
 select dept_name, sum (salary)
 from instructor
 group by dept_name;

SELECT dept_name,total_salary
FROM departments_total_salary
WHERE total_salary > 2,000,000

查询：如同BaseTable，转换成对BaseTable的查
询

View的使用

UPDATE departments_total_salary
SET total_salary = tatal_salary*1.5
WHERE total_salary < 2,000,000

能成功转换成对BaseTable的运算吗？

对View的更新操作，必须慎重！

View的使用

•Most SQL implementations allow
updates only on simple views

– The FROM clause has only one database
relation.

– The SELECT clause contains only
attribute names of the relation, and does
not have any expressions, aggregates, or
DISTINCT specification.

– Any attribute not listed in the SELECT
clause can be set to NULL

– The query does not have a GROUP BY or
HAVING clause.

View的使用

Integrity Constraints

• Integrity constraints guard against
accidental damage to the database, by
ensuring that authorized changes to the
database do not result in a loss of data
consistency.
– A checking account must have a balance
greater than $10,000.00.

– A salary of a bank employee must be at
least $4.00 an hour.

– A customer must have a (non-null) phone
number

Integrity Constraints

• not null
• primary key
• unique
• check (P)

• unique (A1, A2, …, Am)
– The unique specification states that the
attributes A1, A2, … Am
form a candidate key.

– Candidate keys are permitted to be null
(in contrast to primary keys).

 Constraints on a Single Relation

• Ensures that a value that appears in
one relation for a given set of
attributes also appears for a certain
set of attributes in another relation.

Referential Integrity

create table course (
 course_id char(5) primary key,
 title varchar(20),
 dept_name varchar(20) references department
)
create table course (
 …
 dept_name varchar(20),
 foreign key (dept_name) references department
 on delete cascade
 on update cascade,
 …
)
alternative actions to cascade: set null, set default

Cascading Actions in Referential Integrity

•check (time_slot_id in (select time_slot_id
from time_slot))

– why not use a foreign key here?
•Every section has at least one instructor
teaching the section.

– how to write this?
•Unfortunately: subquery in check clause not
supported by pretty much any database

– Alternative: triggers (later)
•create assertion <assertion-name> check
<predicate>;

– Also not supported by anyone

Complex Check Clauses

参照完整性中的违例及处理方式

Trigger

• “Event-Condition-Action Rules”
–When event occurs
–Check condition; if true, do action

Trigger

Create Trigger name
Before|After|Instead Of events
[referencing-variables]
[For Each Row]
When (condition)

action

Trigger

Use triggers on section and time_slot to enforce integrity
constraints

Create Trigger timeslot_check1 after insert on section
referencing new row as nrow
for each row
when (nrow.time_slot_id not in (select time_slot_id

 from time_slot))
begin
 rollback
end;

Trigger

create trigger timeslot_check2 after delete on time_slot
referencing old row as orow
for each row
when (orow.time_slot_id not in (
 select time_slot_id
 from time_slot)
 and orow.time_slot_id in (
 select time_slot_id
 from section))
begin
 rollback
end;

Trigger

create trigger credits_earned after update of takes on (grade)
referencing new row as nrow
referencing old row as orow
for each row
when nrow.grade <> ’F’ and nrow.grade is not null

 and (orow.grade = ’F’ or orow.grade is null)
begin atomic

 update student
 set tot_cred= tot_cred +
 (select credits
 from course
 where course.course_id= nrow.course_id)
 where student.id = nrow.id;

end;

Trigger

Function &
Stored procedure

• SQL provides a module language
– Permits definition of procedures in SQL,
with if-then-else statements, for and while
loops, etc.

• Stored Procedures
– Can store procedures in the database
– then execute them using the call statement
– permit external applications to operate on
the database without knowing about internal
details

Procedure

• SQL:1999 supports functions and procedures
– Functions/procedures can be written in SQL itself,

or in an external programming language.
– Functions are particularly useful with specialized

data types such as images and geometric objects.
• Example: functions to check if polygons overlap,
or to compare images for similarity.

– Some database systems support table-valued
functions, which can return a relation as a result.

• SQL:1999 also supports a rich set of
imperative constructs, including
– Loops, if-then-else, assignment

Procedure

•Define a function that, given the name of a department,
returns the count of the number of instructors in that
department.

Create Function dept_count (dept_name varchar(20))
 returns integer
 begin

declare d_count integer;
 select count (*) into d_count
 from instructor
 where instructor.dept_name = dept_name
 return d_count;
 end

Function

Find the department name and budget of
all departments with more that 12
instructors.

Select dept_name, budget
From department
Where dept_count (dept_name) > 12

Function

•SQL:2003 added functions that return a relation as a
result

Create Function instructors_of (dept_name char(20))
returns table (ID varchar(5),

name varchar(20),
 dept_name varchar(20),

salary numeric(8,2))
return table(Select ID, name, dept_name, salary
 From instructor
 Where instructor.dept_name =

 instructors_of.dept_name)

Select *
From table (instructors_of (‘Music’))

Function

Stored Procedure
•The dept_count function could instead be
written as procedure:

Create Procedure dept_count_proc (
in dept_name varchar(20),

 out d_count integer)
Begin

select count(*) into d_count
 from instructor
 where instructor.dept_name =

 dept_count_proc.dept_name
End

Stored Procedure
•Procedures can be invoked either from
an SQL procedure or from embedded
SQL, using the call statement.

Declare d_count integer;
Call dept_count_proc(‘Physics’, d_count);

•Procedures and functions can be invoked
also from dynamic SQL

Cursor

• A cursor is used to retrieve rows
from a query that has multiple rows in
its result set. A cursor is a handle or
an identifier for the SQL query and a
position within the result set.

• Cursors can be positioned in the
following places:
– Before the first row of the result set.
– On a row in the result set.
– After the last row of the result set.

Cursor

CREATE PROCEDURE get_table_name(
IN id_value INT, OUT tabname CHAR(128))
BEGIN
 DECLARE qry LONG VARCHAR;
 SET qry = 'SELECT table_name FROM

SYS.SYSTAB ' || 'WHERE table_id=' ||
string(id_value);

 BEGIN
DECLARE crsr CURSOR USING qry;
OPEN crsr;
FETCH crsr INTO tabname;
CLOSE crsr;

 END
END;

Cursor

CREATE FUNCTION GetRowCount(IN qry LONG VARCHAR)
RETURNS INT

BEGIN
 DECLARE crsr CURSOR USING qry;
 DECLARE rowcnt INT;
 SET rowcnt = 0;
 OPEN crsr;
 lp: LOOP
 FETCH crsr;
 IF SQLCODE <> 0 THEN LEAVE lp END IF;
 SET rowcnt = rowcnt + 1;
 END LOOP;
 CLOSE crsr;
 RETURN rowcnt;
END;

Cursor

Updates Through Cursors
 Can update tuples fetched by cursor by

declaring that the cursor is for update
 declare c cursor for

 select *
 from instructor
 where dept_name = ‘Music’
 for update

To update tuple at the current location of cursor
c

 update instructor
 set salary = salary + 100
 where current of c

85

API & Application

JDBC and ODBC
• API (Application-Program Interface) for a program

to interact with a database server
• Application makes calls to

– Connect with the database server
– Send SQL commands to the database server
– Fetch tuples of result one-by-one into program

variables
• ODBC (Open Database Connectivity) works with C,

C++, C#, and Visual Basic
– Other API’s such as ADO.NET sit on top of

ODBC
• JDBC (Java Database Connectivity) works with

Java

87

ODBC
• Open DataBase Connectivity(ODBC) standard
• standard for application program to

communicate with a database server.
• application program interface (API) to

– open a connection with a database,
– send queries and updates,
– get back results.

• Applications such as GUI, spreadsheets, etc.
can use ODBC

88

ODBC
int ODBCexample()
{
 RETCODE error;
 HENV env; /* environment */
 HDBC conn; /* database connection */
 SQLAllocEnv(&env);
 SQLAllocConnect(env, &conn);
 SQLConnect(conn, “db.yale.edu", SQL_NTS, "avi", SQL_NTS,
"avipasswd", SQL_NTS);
 { …. Do actual work … }

 SQLDisconnect(conn);
 SQLFreeConnect(conn);
 SQLFreeEnv(env);
}

89

ODBC
char deptname[80];
float salary;
int lenOut1, lenOut2;
HSTMT stmt;
char * sqlquery = "select dept_name, sum (salary)
 from instructor
 group by dept_name";
SQLAllocStmt(conn, &stmt);
error = SQLExecDirect(stmt, sqlquery, SQL NTS);
if (error == SQL SUCCESS) {
 SQLBindCol(stmt, 1, SQL C CHAR, deptname , 80,
&lenOut1);
 SQLBindCol(stmt, 2, SQL C FLOAT, &salary, 0 ,
&lenOut2);
 while (SQLFetch(stmt) == SQL SUCCESS) {
 printf (" %s %g\n", deptname, salary);
 }
}
SQLFreeStmt(stmt, SQL DROP);

90

JDBC
• JDBC is a Java API for communicating with

database systems supporting SQL.
• JDBC supports a variety of features for querying

and updating data, and for retrieving query results.
• JDBC also supports metadata retrieval, such as

querying about relations present in the database and
the names and types of relation attributes.

• Model for communicating with the database:
– Open a connection
– Create a “statement” object
– Execute queries using the Statement object to

send queries and fetch results
– Exception mechanism to handle errors

91

SQLCA

SQL Communication Area
• is an area of memory that is used on

every database request for
communicating statistics and errors from
the application to the database server
and back to the application.

• The SQLCA is used as a handle for the
application-to-database communication
link. It is passed in to all database library
functions that need to communicate with
the database server. It is implicitly
passed on all embedded SQL statements.

93

SQLCA Fields
• sqlcode A 32-bit integer that specifies

the error code when the database
detects an error on a request.

• Definitions for the error codes can be
found in the header file sqlerr.h.
– The error code is 0 (zero) for a successful

operation
– 100 for row not found
– Positive for a warning
– Negative for an error.

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 7: Entity-Relationship
Model

©Silberschatz, Korth and Sudarshan7.2Database System Concepts - 6th Edition

Chapter 7: Entity-Relationship
Model

 Design Process
 Modeling
 Constraints
 E-R Diagram
 Design Issues
 Weak Entity Sets
 Extended E-R Features
 Design of the Bank Database
 Reduction to Relation Schemas
 Database Design
 UML

©Silberschatz, Korth and Sudarshan7.3Database System Concepts - 6th Edition

Modeling

 A database can be modeled as:
 a collection of entities,
 relationship among entities.

 An entity is an object that exists and is distinguishable from
other objects.

 Example: specific person, company, event, plant
 Entities have attributes

 Example: people have names and addresses
 An entity set is a set of entities of the same type that share

the same properties.
 Example: set of all persons, companies, trees, holidays

©Silberschatz, Korth and Sudarshan7.4Database System Concepts - 6th Edition

Entity Sets instructor and student

instructor_ID instructor_name student-ID student_name

©Silberschatz, Korth and Sudarshan7.5Database System Concepts - 6th Edition

Relationship Sets

 A relationship is an association among several entities
Example:
 44553 (Peltier) advisor 22222 (Einstein)
 student entity relationship set instructor entity

A relationship set is a mathematical relation among n  2
entities, each taken from entity sets

{(e1, e2, … en) | e1  E1, e2  E2, …, en  En}

where (e1, e2, …, en) is a relationship
Example:

 (44553,22222)  advisor

©Silberschatz, Korth and Sudarshan7.6Database System Concepts - 6th Edition

Relationship Set advisor

©Silberschatz, Korth and Sudarshan7.7Database System Concepts - 6th Edition

Relationship Sets (Cont.)

 An attribute can also be property of a relationship set.
 For instance, the advisor relationship set between entity

sets instructor and student may have the attribute date
which tracks when the student started being associated
with the advisor

©Silberschatz, Korth and Sudarshan7.8Database System Concepts - 6th Edition

Degree of a Relationship Set

 binary relationship
 involve two entity sets (or degree two).
 most relationship sets in a database system are

binary.
 Relationships between more than two entity sets are

rare. Most relationships are binary. (More on this later.)
Example: students work on research projects under

the guidance of an instructor.
 relationship proj_guide is a ternary relationship

between instructor, student, and project

©Silberschatz, Korth and Sudarshan7.9Database System Concepts - 6th Edition

Attributes

 An entity is represented by a set of attributes, that is
descriptive properties possessed by all members of an entity set.
 Example:
 instructor = (ID, name, street, city, salary)

course= (course_id, title, credits)
Domain – the set of permitted values for each attribute
Attribute types:
Simple and composite attributes.
Single-valued and multivalued attributes
Example: multivalued attribute: phone_numbers
Derived attributes
Can be computed from other attributes
Example: age, given date_of_birth

©Silberschatz, Korth and Sudarshan7.10Database System Concepts - 6th Edition

Composite Attributes

©Silberschatz, Korth and Sudarshan7.11Database System Concepts - 6th Edition

Mapping Cardinality Constraints

 Express the number of entities to which another entity can
be associated via a relationship set.

 Most useful in describing binary relationship sets.
 For a binary relationship set the mapping cardinality must

be one of the following types:
 One to one
 One to many
 Many to one
 Many to many

©Silberschatz, Korth and Sudarshan7.12Database System Concepts - 6th Edition

Mapping Cardinalities

One to
one

One to many

Note: Some elements in A and B may not be mapped to any
elements in the other set

©Silberschatz, Korth and Sudarshan7.13Database System Concepts - 6th Edition

Mapping Cardinalities

Many to
one

Many to many

Note: Some elements in A and B may not be mapped to any
elements in the other set

©Silberschatz, Korth and Sudarshan7.14Database System Concepts - 6th Edition

Keys

 A super key of an entity set is a set of one or more
attributes whose values uniquely determine each entity.

 A candidate key of an entity set is a minimal super key
 ID is candidate key of instructor
 course_id is candidate key of course

 Although several candidate keys may exist, one of the
candidate keys is selected to be the primary key.

©Silberschatz, Korth and Sudarshan7.15Database System Concepts - 6th Edition

Keys for Relationship Sets

 The combination of primary keys of the participating
entity sets forms a super key of a relationship set.
 (s_id, i_id) is the super key of advisor
 NOTE: this means a pair of entity sets can have at

most one relationship in a particular relationship set.
 Example: if we wish to track multiple meeting dates

between a student and her advisor, we cannot
assume a relationship for each meeting. We can use
a multivalued attribute though

 Must consider the mapping cardinality of the relationship
set when deciding what are the candidate keys

 Need to consider semantics of relationship set in selecting
the primary key in case of more than one candidate key

©Silberschatz, Korth and Sudarshan7.16Database System Concepts - 6th Edition

Redundant Attributes

 Suppose we have entity sets
 instructor, with attributes including dept_name
 department
and a relationship
 inst_dept relating instructor and department

 Attribute dept_name in entity instructor is redundant since
there is an explicit relationship inst_dept which relates
instructors to departments
 The attribute replicates information present in the

relationship, and should be removed from instructor
 BUT: when converting back to tables, in some cases the

attribute gets reintroduced, as we will see.

©Silberschatz, Korth and Sudarshan7.17Database System Concepts - 6th Edition

E-R Diagrams

 Peter Chen & IDEF1X

 Rectangles represent entity sets.
 Diamonds represent relationship sets.
 Attributes listed inside entity rectangle
 Underline indicates primary key attributes

©Silberschatz, Korth and Sudarshan7.18Database System Concepts - 6th Edition

Entity With Composite, Multivalued, and Derived
Attributes

©Silberschatz, Korth and Sudarshan7.19Database System Concepts - 6th Edition

Relationship Sets with Attributes

©Silberschatz, Korth and Sudarshan7.20Database System Concepts - 6th Edition

Roles

 Entity sets of a relationship need not be distinct
 Each occurrence of an entity set plays a “role” in the

relationship
 The labels “course_id” and “prereq_id” are called roles.

©Silberschatz, Korth and Sudarshan7.21Database System Concepts - 6th Edition

Cardinality Constraints

 We express cardinality constraints by drawing either a
directed line (), signifying “one,” or an undirected line
(—), signifying “many,” between the relationship set and
the entity set.

 One-to-one relationship:
 A student is associated with at most one instructor via

the relationship advisor
 A student is associated with at most one department

via stud_dept

©Silberschatz, Korth and Sudarshan7.22Database System Concepts - 6th Edition

One-to-One Relationship

 one-to-one relationship between an instructor and a
student
 an instructor is associated with at most one student

via advisor
 and a student is associated with at most one

instructor via advisor

©Silberschatz, Korth and Sudarshan7.23Database System Concepts - 6th Edition

One-to-Many Relationship

 one-to-many relationship between an instructor and a
student
 an instructor is associated with several (including 0)

students via advisor
 a student is associated with at most one instructor via

advisor,

©Silberschatz, Korth and Sudarshan7.24Database System Concepts - 6th Edition

Many-to-One Relationships

 In a many-to-one relationship between an instructor and
a student,
 an instructor is associated with at most one student

via advisor,
 and a student is associated with several (including 0)

instructors via advisor

©Silberschatz, Korth and Sudarshan7.25Database System Concepts - 6th Edition

Many-to-Many Relationship

 An instructor is associated with several (possibly 0)
students via advisor

 A student is associated with several (possibly 0)
instructors via advisor

©Silberschatz, Korth and Sudarshan7.26Database System Concepts - 6th Edition

Participation of an Entity Set in a
Relationship Set

 Total participation (indicated by double line): every entity
in the entity set participates in at least one relationship in
the relationship set
 E.g., participation of section in sec_course is total

 every section must have an associated course
 Partial participation: some entities may not participate in

any relationship in the relationship set
 Example: participation of instructor in advisor is partial

©Silberschatz, Korth and Sudarshan7.27Database System Concepts - 6th Edition

Alternative Notation for Cardinality
Limits

 Cardinality limits can also express participation constraints

©Silberschatz, Korth and Sudarshan7.28Database System Concepts - 6th Edition

E-R Diagram with a Ternary
Relationship

©Silberschatz, Korth and Sudarshan7.29Database System Concepts - 6th Edition

Cardinality Constraints on Ternary
Relationship

 We allow at most one arrow out of a ternary (or greater
degree) relationship to indicate a cardinality constraint

 E.g., an arrow from proj_guide to instructor indicates each
student has at most one guide for a project

 If there is more than one arrow, there are two ways of
defining the meaning.
 E.g., a ternary relationship R between A, B and C with

arrows to B and C could mean
 1. each A entity is associated with a unique entity from

B and C or
2. each pair of entities from (A, B) is associated with a
unique C entity, and each pair (A, C) is associated with a
unique B

 Each alternative has been used in different formalisms
 To avoid confusion we outlaw more than one arrow

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

How about doing an ER design
interactively on the board?
Suggest an application to be

modeled.

©Silberschatz, Korth and Sudarshan7.31Database System Concepts - 6th Edition

Weak Entity Sets

 An entity set that does not have a primary key is referred
to as a weak entity set.

 The existence of a weak entity set depends on the existence
of a identifying entity set
 It must relate to the identifying entity set via a total,

one-to-many relationship set from the identifying to
the weak entity set

 Identifying relationship depicted using a double diamond
 The discriminator (or partial key) of a weak entity set is

the set of attributes that distinguishes among all the
entities of a weak entity set.

 The primary key of a weak entity set is formed by the
primary key of the strong entity set on which the weak
entity set is existence dependent, plus the weak entity set’s
discriminator.

©Silberschatz, Korth and Sudarshan7.32Database System Concepts - 6th Edition

Weak Entity Sets (Cont.)

 We underline the discriminator of a weak entity set with
a dashed line.

 We put the identifying relationship of a weak entity in a
double diamond.

 Primary key for section – (course_id, sec_id, semester,
year)

©Silberschatz, Korth and Sudarshan7.33Database System Concepts - 6th Edition

Weak Entity Sets (Cont.)

 Note: the primary key of the strong entity set is not
explicitly stored with the weak entity set, since it is
implicit in the identifying relationship.

 If course_id were explicitly stored, section could be made a
strong entity, but then the relationship between section
and course would be duplicated by an implicit relationship
defined by the attribute course_id common to course and
section

©Silberschatz, Korth and Sudarshan7.34Database System Concepts - 6th Edition

E-R Diagram for a University
Enterprise

©Silberschatz, Korth and Sudarshan7.35Database System Concepts - 6th Edition

Reduction to Relational Schemas

©Silberschatz, Korth and Sudarshan7.36Database System Concepts - 6th Edition

Reduction to Relation Schemas

 Entity sets and relationship sets can be expressed uniformly
as relation schemas that represent the contents of the
database.

 A database which conforms to an E-R diagram can be
represented by a collection of schemas.

 For each entity set and relationship set there is a unique
schema that is assigned the name of the corresponding
entity set or relationship set.

 Each schema has a number of columns (generally
corresponding to attributes), which have unique names.

©Silberschatz, Korth and Sudarshan7.37Database System Concepts - 6th Edition

Representing Entity Sets With Simple
Attributes

 A strong entity set reduces to a schema with the same
attributes
student(ID, name, tot_cred)

 A weak entity set becomes a table that includes a column for
the primary key of the identifying strong entity set
section (course_id, sec_id, sem, year)

©Silberschatz, Korth and Sudarshan7.38Database System Concepts - 6th Edition

Representing Relationship Sets

 A many-to-many relationship set is represented as a schema
with attributes for the primary keys of the two participating
entity sets, and any descriptive attributes of the relationship
set.

 Example: schema for relationship set advisor
advisor = (s_id, i_id)

©Silberschatz, Korth and Sudarshan7.39Database System Concepts - 6th Edition

Redundancy of Schemas

 Many-to-one and one-to-many relationship sets that are
total on the many-side can be represented by adding an
extra attribute to the “many” side, containing the primary
key of the “one” side

 Example: Instead of creating a schema for relationship set
inst_dept, add an attribute dept_name to the schema arising
from entity set instructor

©Silberschatz, Korth and Sudarshan7.40Database System Concepts - 6th Edition

Redundancy of Schemas (Cont.)

 For one-to-one relationship sets, either side can be chosen
to act as the “many” side
 That is, extra attribute can be added to either of the

tables corresponding to the two entity sets
 If participation is partial on the “many” side, replacing a

schema by an extra attribute in the schema corresponding
to the “many” side could result in null values

 The schema corresponding to a relationship set linking a
weak entity set to its identifying strong entity set is
redundant.
 Example: The section schema already contains the

attributes that would appear in the sec_course schema

©Silberschatz, Korth and Sudarshan7.41Database System Concepts - 6th Edition

Composite and Multivalued Attributes

 Composite attributes are flattened out by
creating a separate attribute for each
component attribute
 Example: given entity set instructor with

composite attribute name with component
attributes first_name and last_name the
schema corresponding to the entity set has
two attributes name_first_name and
name_last_name
 Prefix omitted if there is no ambiguity

 Ignoring multivalued attributes, extended
instructor schema is
 instructor(ID,

 first_name, middle_initial, last_name,
 street_number, street_name,
 apt_number, city, state, zip_code,
 date_of_birth)

©Silberschatz, Korth and Sudarshan7.42Database System Concepts - 6th Edition

Composite and Multivalued Attributes

 A multivalued attribute M of an entity E is represented by a
separate schema EM
 Schema EM has attributes corresponding to the primary

key of E and an attribute corresponding to multivalued
attribute M

 Example: Multivalued attribute phone_number of
instructor is represented by a schema:
 inst_phone= (ID, phone_number)

 Each value of the multivalued attribute maps to a
separate tuple of the relation on schema EM
 For example, an instructor entity with primary key

22222 and phone numbers 456-7890 and 123-
4567 maps to two tuples:
 (22222, 456-7890) and (22222, 123-4567)

©Silberschatz, Korth and Sudarshan7.43Database System Concepts - 6th Edition

Multivalued Attributes (Cont.)

 Special case:entity time_slot has only one attribute other than
the primary-key attribute, and that attribute is multivalued
 Optimization: Don’t create the relation corresponding to

the entity, just create the one corresponding to the
multivalued attribute

 time_slot(time_slot_id, day, start_time, end_time)
 Caveat: time_slot attribute of section (from sec_time_slot)

cannot be a foreign key due to this optimization

©Silberschatz, Korth and Sudarshan7.44Database System Concepts - 6th Edition

Design Issues

 Use of entity sets vs. attributes

 Use of phone as an entity allows extra information about
phone numbers (plus multiple phone numbers)

©Silberschatz, Korth and Sudarshan7.45Database System Concepts - 6th Edition

Design Issues

 Use of entity sets vs. relationship sets
Possible guideline is to designate a relationship set to describe an
action that occurs between entities

©Silberschatz, Korth and Sudarshan7.46Database System Concepts - 6th Edition

Design Issues

 Binary versus n-ary relationship sets
Although it is possible to replace any nonbinary (n-ary, for n >
2) relationship set by a number of distinct binary relationship
sets, a n-ary relationship set shows more clearly that several
entities participate in a single relationship.

 Placement of relationship attributes
 e.g., attribute date as attribute of advisor or as attribute of

student

©Silberschatz, Korth and Sudarshan7.47Database System Concepts - 6th Edition

Binary Vs. Non-Binary Relationships

 Some relationships that appear to be non-binary may be
better represented using binary relationships
 E.g., A ternary relationship parents, relating a child to

his/her father and mother, is best replaced by two binary
relationships, father and mother
 Using two binary relationships allows partial

information (e.g., only mother being know)
 But there are some relationships that are naturally non-

binary
 Example: proj_guide

©Silberschatz, Korth and Sudarshan7.48Database System Concepts - 6th Edition

Converting Non-Binary Relationships to Binary
Form

 In general, any non-binary relationship can be represented
using binary relationships by creating an artificial entity set.
 Replace R between entity sets A, B and C by an entity set

E, and three relationship sets:
1. RA, relating E and A 2. RB, relating E and B

 3. RC, relating E and C
 Create a special identifying attribute for E
 Add any attributes of R to E
 For each relationship (ai , bi , ci) in R, create

 1. a new entity ei in the entity set E 2. add (ei , ai)
to RA

 3. add (ei , bi) to RB 4. add (ei ,
ci) to RC

©Silberschatz, Korth and Sudarshan7.49Database System Concepts - 6th Edition

Converting Non-Binary Relationships
(Cont.)

 Also need to translate constraints
 Translating all constraints may not be possible
 There may be instances in the translated schema

that
cannot correspond to any instance of R
 Exercise: add constraints to the relationships RA,

RB and RC to ensure that a newly created entity
corresponds to exactly one entity in each of entity
sets A, B and C

 We can avoid creating an identifying attribute by
making E a weak entity set (described shortly)
identified by the three relationship sets

©Silberschatz, Korth and Sudarshan7.50Database System Concepts - 6th Edition

Extended ER Features

©Silberschatz, Korth and Sudarshan7.51Database System Concepts - 6th Edition

Extended E-R Features: Specialization

 Top-down design process; we designate subgroupings within an
entity set that are distinctive from other entities in the set.

 These subgroupings become lower-level entity sets that have
attributes or participate in relationships that do not apply to
the higher-level entity set.

 Depicted by a triangle component labeled ISA (E.g., instructor
“is a” person).

 Attribute inheritance – a lower-level entity set inherits all the
attributes and relationship participation of the higher-level
entity set to which it is linked.

©Silberschatz, Korth and Sudarshan7.52Database System Concepts - 6th Edition

Specialization Example

©Silberschatz, Korth and Sudarshan7.53Database System Concepts - 6th Edition

Extended ER Features: Generalization

 A bottom-up design process – combine a number of
entity sets that share the same features into a higher-
level entity set.

 Specialization and generalization are simple inversions of
each other; they are represented in an E-R diagram in
the same way.

 The terms specialization and generalization are used
interchangeably.

©Silberschatz, Korth and Sudarshan7.54Database System Concepts - 6th Edition

Specialization and Generalization
(Cont.)

 Can have multiple specializations of an entity set based on
different features.

 E.g., permanent_employee vs. temporary_employee, in
addition to instructor vs. secretary

 Each particular employee would be
 a member of one of permanent_employee or

temporary_employee,
 and also a member of one of instructor, secretary

 The ISA relationship also referred to as superclass - subclass
relationship

©Silberschatz, Korth and Sudarshan7.55Database System Concepts - 6th Edition

Design Constraints on a
Specialization/Generalization

 Constraint on which entities can be members of a given lower-
level entity set.
 condition-defined

 Example: all customers over 65 years are members of
senior-citizen entity set; senior-citizen ISA person.

 user-defined
 Constraint on whether or not entities may belong to more than

one lower-level entity set within a single generalization.
 Disjoint

 an entity can belong to only one lower-level entity set
 Noted in E-R diagram by having multiple lower-level

entity sets link to the same triangle
 Overlapping

 an entity can belong to more than one lower-level entity
set

©Silberschatz, Korth and Sudarshan7.56Database System Concepts - 6th Edition

Design Constraints on a
Specialization/Generalization (Cont.)

 Completeness constraint -- specifies whether or not an
entity in the higher-level entity set must belong to at
least one of the lower-level entity sets within a
generalization.
 total: an entity must belong to one of the lower-level

entity sets
 partial: an entity need not belong to one of the lower-

level entity sets

©Silberschatz, Korth and Sudarshan7.57Database System Concepts - 6th Edition

Aggregation

 Consider the ternary relationship proj_guide, which we saw
earlier

 Suppose we want to record evaluations of a student by a guide
on a project

©Silberschatz, Korth and Sudarshan7.58Database System Concepts - 6th Edition

Aggregation (Cont.)

 Relationship sets eval_for and proj_guide represent
overlapping information
 Every eval_for relationship corresponds to a proj_guide

relationship
 However, some proj_guide relationships may not

correspond to any eval_for relationships
 So we can’t discard the proj_guide relationship

 Eliminate this redundancy via aggregation
 Treat relationship as an abstract entity
 Allows relationships between relationships
 Abstraction of relationship into new entity

©Silberschatz, Korth and Sudarshan7.59Database System Concepts - 6th Edition

Aggregation (Cont.)

 Without introducing redundancy, the following diagram
represents:
 A student is guided by a particular instructor on a particular

project
 A student, instructor, project combination may have an

associated evaluation

©Silberschatz, Korth and Sudarshan7.60Database System Concepts - 6th Edition

Representing Specialization via
Schemas

 Method 1:
 Form a schema for the higher-level entity
 Form a schema for each lower-level entity set, include

primary key of higher-level entity set and local attributes

 schema attributes
 person ID, name, street, city
 student ID, tot_cred
 employee ID, salary

 Drawback: getting information about, an employee
requires accessing two relations, the one corresponding to
the low-level schema and the one corresponding to the
high-level schema

©Silberschatz, Korth and Sudarshan7.61Database System Concepts - 6th Edition

Representing Specialization as
Schemas (Cont.)

 Method 2:
 Form a schema for each entity set with all local and inherited

attributes
 schema attributes
 person ID, name, street, city
 student ID, name, street, city, tot_cred
 employee ID, name, street, city, salary

 If specialization is total, the schema for the generalized entity
set (person) not required to store information

 Can be defined as a “view” relation containing union of
specialization relations

 But explicit schema may still be needed for foreign key
constraints

 Drawback: name, street and city may be stored redundantly
for people who are both students and employees

©Silberschatz, Korth and Sudarshan7.62Database System Concepts - 6th Edition

Schemas Corresponding to
Aggregation

 To represent aggregation, create a schema containing
 primary key of the aggregated relationship,
 the primary key of the associated entity set
 any descriptive attributes

©Silberschatz, Korth and Sudarshan7.63Database System Concepts - 6th Edition

Schemas Corresponding to
Aggregation (Cont.)

 For example, to represent aggregation manages between
relationship works_on and entity set manager, create a
schema
 eval_for (s_ID, project_id, i_ID, evaluation_id)

 Schema proj_guide is redundant provided we are willing to
store null values for attribute manager_name in relation on
schema manages

©Silberschatz, Korth and Sudarshan7.64Database System Concepts - 6th Edition

E-R Design Decisions

 The use of an attribute or entity set to represent an
object.

 Whether a real-world concept is best expressed by an
entity set or a relationship set.

 The use of a ternary relationship versus a pair of binary
relationships.

 The use of a strong or weak entity set.
 The use of specialization/generalization – contributes to

modularity in the design.
 The use of aggregation – can treat the aggregate entity

set as a single unit without concern for the details of its
internal structure.

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

How about doing another ER design
interactively on the board?

©Silberschatz, Korth and Sudarshan7.66Database System Concepts - 6th Edition

Summary of Symbols Used in E-R
Notation

©Silberschatz, Korth and Sudarshan7.67Database System Concepts - 6th Edition

Symbols Used in E-R Notation (Cont.)

©Silberschatz, Korth and Sudarshan7.68Database System Concepts - 6th Edition

Alternative ER Notations

 Chen, IDE1FX, …

©Silberschatz, Korth and Sudarshan7.69Database System Concepts - 6th Edition

Alternative ER Notations

 Chen IDE1FX
(Crows feet notation)

©Silberschatz, Korth and Sudarshan7.70Database System Concepts - 6th Edition

UML

 UML: Unified Modeling Language
 UML has many components to graphically model different

aspects of an entire software system
 UML Class Diagrams correspond to E-R Diagram, but

several differences.

©Silberschatz, Korth and Sudarshan7.71Database System Concepts - 6th Edition

ER vs. UML Class Diagrams

*Note reversal of position in cardinality constraint depiction

©Silberschatz, Korth and Sudarshan7.72Database System Concepts - 6th Edition

ER vs. UML Class Diagrams

ER Diagram Notation Equivalent in UML

*Generalization can use merged or separate arrows independent
 of disjoint/overlapping

©Silberschatz, Korth and Sudarshan7.73Database System Concepts - 6th Edition

UML Class Diagrams (Cont.)

 Binary relationship sets are represented in UML by just
drawing a line connecting the entity sets. The relationship
set name is written adjacent to the line.

 The role played by an entity set in a relationship set may
also be specified by writing the role name on the line,
adjacent to the entity set.

 The relationship set name may alternatively be written in
a box, along with attributes of the relationship set, and
the box is connected, using a dotted line, to the line
depicting the relationship set.

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 7

©Silberschatz, Korth and Sudarshan7.75Database System Concepts - 6th Edition

Figure 7.01

©Silberschatz, Korth and Sudarshan7.76Database System Concepts - 6th Edition

Figure 7.02

©Silberschatz, Korth and Sudarshan7.77Database System Concepts - 6th Edition

Figure 7.03

©Silberschatz, Korth and Sudarshan7.78Database System Concepts - 6th Edition

Figure 7.04

©Silberschatz, Korth and Sudarshan7.79Database System Concepts - 6th Edition

Figure 7.05

©Silberschatz, Korth and Sudarshan7.80Database System Concepts - 6th Edition

Figure 7.06

©Silberschatz, Korth and Sudarshan7.81Database System Concepts - 6th Edition

Figure 7.07

©Silberschatz, Korth and Sudarshan7.82Database System Concepts - 6th Edition

Figure 7.08

©Silberschatz, Korth and Sudarshan7.83Database System Concepts - 6th Edition

Figure 7.09

©Silberschatz, Korth and Sudarshan7.84Database System Concepts - 6th Edition

Figure 7.10

©Silberschatz, Korth and Sudarshan7.85Database System Concepts - 6th Edition

Figure 7.11

©Silberschatz, Korth and Sudarshan7.86Database System Concepts - 6th Edition

Figure 7.12

©Silberschatz, Korth and Sudarshan7.87Database System Concepts - 6th Edition

Figure 7.13

©Silberschatz, Korth and Sudarshan7.88Database System Concepts - 6th Edition

Figure 7.14

©Silberschatz, Korth and Sudarshan7.89Database System Concepts - 6th Edition

Figure 7.15

©Silberschatz, Korth and Sudarshan7.90Database System Concepts - 6th Edition

Figure 7.17

©Silberschatz, Korth and Sudarshan7.91Database System Concepts - 6th Edition

Figure 7.18

©Silberschatz, Korth and Sudarshan7.92Database System Concepts - 6th Edition

Figure 7.19

©Silberschatz, Korth and Sudarshan7.93Database System Concepts - 6th Edition

Figure 7.20

©Silberschatz, Korth and Sudarshan7.94Database System Concepts - 6th Edition

Figure 7.21

©Silberschatz, Korth and Sudarshan7.95Database System Concepts - 6th Edition

Figure 7.22

©Silberschatz, Korth and Sudarshan7.96Database System Concepts - 6th Edition

Figure 7.23

©Silberschatz, Korth and Sudarshan7.97Database System Concepts - 6th Edition

Figure 7.24

©Silberschatz, Korth and Sudarshan7.98Database System Concepts - 6th Edition

Figure 7.25

©Silberschatz, Korth and Sudarshan7.99Database System Concepts - 6th Edition

Figure 7.26

©Silberschatz, Korth and Sudarshan7.100Database System Concepts - 6th Edition

Figure 7.27

©Silberschatz, Korth and Sudarshan7.101Database System Concepts - 6th Edition

Figure 7.28

©Silberschatz, Korth and Sudarshan7.102Database System Concepts - 6th Edition

Figure 7.29

Relational Database Design

• Design “anomalies”
– eg. student-course
– Redundancy
– Update anomaly
– Deletion anomaly

BAD Design

• Decompose into “GOOD”
– Functional Dependency (FD)
–Multivalued Dependency (MVD)

• Normal Form
– FD,1NF-2NF-3NF-BCNF
–MVD,4NF

GOOD Design

Let R be a relation schema
  R and   R

The functional dependency   
holds on R if and only if for any legal
relations r(R), whenever any two tuples
t1 and t2 of r agree on the attributes ,
they also agree on the attributes  .
That is,

 t1[] = t2 []
 t1[] = t2 []

FD

•Consider r (A, B) with the following
instance of r.

•On this instance, A B does NOT
hold, but B A does hold
•FD实质是约束，描述属性间的约束

FD, Example

1 4
1

5
3
7

• Stu(sno,sname,age,gende,ID,dept,cno,
cname,grade)

FD, Example

• K R
• K is a superkey for relation schema R if
and only if K R

• K is a candidate key for R if and only if
• K R, and
• for no K, R

Key

•A functional dependency is trivial if it is
satisfied by all instances of a relation
•Example:

 ID, name ID
name name

•In general,    is trivial if   

Trivial(平凡) FD

• if   , then    (自反律)
• if   ,then    (增补律)
• if   ,and   ,then    (传递律)

• Additional rules:
• If and , then (合
并律)

• If , then and (分
解律)

• If and ,then (伪
传递律)

Armstrong’s Axioms

• 根据相关定理，找出已知的FD所蕴涵的函
数依赖

–函数依赖集的闭包

–属性的闭包

Closure(闭包)

• 1NF
• 2NF
• 3NF
• BCNF

Normal Form

• 分解的要求
– Lossless-join decomposition

R1  R2  R1
R1  R2  R2

– Dependency preserving
(F1  F2  …  Fn)+ = F +

– NF要求

NF的分解

• a canonical cover of F is a “minimal”
set of functional dependencies
equivalent to F, having no redundant
dependencies or redundant parts of
dependencies

• Canonical Cover的特征
–左边是唯一的，右边多属性合并

–两边均不含无关属性(extraneous)
• 用于校验依赖保持

Canonical Cover(正则覆盖)

• For
• To test if attribute A is extraneous in

1.compute ({ } – A)+ using the dependencies in F
2.check that ({ } – A)+ contains ; if it does, A

is extraneous in
• To test if attribute A is extraneous in

1.compute + using only the dependencies in

 F’ = (F – { }) { (– A)},
2.check that + contains A; if it does, A is

extraneous in

无关属性的判断

•R = (A, B, C)
F = {A BC, B C, A B, AB C}

•F = {A BC, B C, AB C}

•F = {A BC, B C}

•F = {A B, B C}

Canonical Cover(正则覆盖)

1）For R，求Key，找出违反范式要求的FD，A B;
2）求A+

3）R1 = {A+} √
 R2 = {A ∪ (R-A+)}
4）对R2重复1-3，直至均满足范式要求

•R1∩R2 R1,无损连接

• 验证 (F1 F2 … Fn)+ = F +

• 亦可验证Fc

范式分解

R = (A, B, C)
F = {A→B, B→C)
 Can be decomposed in two different ways
– R1 = (A, B), R2 = (B, C)

 Lossless-join decomposition:
R1∩R2 = {B} and B→BC

Dependency preserving
– R1 = (A, B), R2 = (A, C)

Lossless-join decomposition:
 R1∩R2 = {A} and A→AB

Not dependency preserving
(cannot check B→C without computing R1 R2)

范式分解

•R = (A, B, C)
F = {A→B, B→C, B→A)
– R1 = (A, B), R2 = (A, C)

Lossless-join decomposition:
R1∩R2 = {A} and A→AB

dependency preserving？
B→C ?

(F1 F2 … Fn)+ = F +

范式分解

R(T,S,C),每位教师T只上一门课C，每门课
可能有多个教学班，S为学生。

T C,SC T
Key

SC,TS
分解

R1(T,C),R2(T,S)
无损连接，依赖保持？

范式分解

• 图书馆

– ISBM，分类号：TP311.13

例子

MVD

• inst_info(ID, child_name, phone_number)

• BCNF,why？
• 仍有冗余，仍有异常

• MVD
– ID→→child_name
– ID→→phone_number

MVD
ID Child_name Phone_number

99999 David 512-555-1234
99999 David 512-555-4321
99999 William 512-555-1234
99999 William 512-555-4321

MVD

MVD
•平凡的MVD，  

 = R

•If  →  then  →→ 

•If → then →→ R - -

4NF
• 对所有的非平凡多值依赖，其决定因子均来自
超码。

• ID→→child_name
• ID→→phone_number
• R1(ID,child_name),R2(ID,phone_number)

ID Child_name Phone_number
99999 David 512-555-1234
99999 David 512-555-4321
99999 William 512-555-1234
99999 William 512-555-4321

ER Model and Normalization
In a real (imperfect) design, there can be
functional dependencies from non-key
attributes of an entity to other attributes
of the entity
– Example: an employee entity with attributes
 department_name and building,
and a functional dependency
 department_name building

– Good design would have made department an
entity

Denormalization for
Performance

• May want to use non-normalized schema for performance
• For example, displaying prereqs along with course_id,

and title requires join of course with prereq
• Use denormalized relation containing attributes of course

as well as prereq with all above attributes
– faster lookup
– extra space and extra execution time for updates
– extra coding work for programmer and possibility of

error in extra code

Transaction
（事务）

• A transaction is a unit of program
execution that accesses and possibly
updates various data items

• SQL DML/C++ Java
• 操作的集合、逻辑工作单元

• 可能由多条语句构成

Transaction Concept

E.g. transaction to transfer $50 from
account A to account B:
1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

Example of transaction

• Atomicity
• Consistency
• Isolation
• Durability

ACID Properties

• Commit

• Rollback

Transaction

Transaction process

Transaction State

•Active – the initial state; the transaction stays in
this state while it is executing
•Partially committed – after the final statement has
been executed.
•Failed -- after the discovery that normal execution
can no longer proceed.
•Aborted – after the transaction has been rolled back
and the database restored to its state prior to the
start of the transaction. Two options after it has
been aborted:

– restart the transaction
 can be done only if no internal logical error

– kill the transaction
•Committed – after successful completion.

Tracsaction State

• 指令执行的时间顺序

• 必须包含被调度的事务的所有指令，并保
持指令在各事务中的原顺序

• 调度，实现事务的并发运行

• 可串行调度，多事务并发运行的结果，与
串行运行一致

Schedules

Schedule 1

A serial schedule in which T1 is followed by T2

Schedule 2

A serial schedule where T2 is followed by T1

Schedule 3

In Schedules 1, 2 and 3, the sum A + B is preserved.

Schedule 4

This concurrent schedule does not preserve the value of (A + B).

Lock

• 共享锁（Shared）、排它锁（exclusive）

锁的机制

• A transaction may be granted a lock on an
item if the requested lock is compatible with
locks already held on the item by other
transactions.

• Any number of transactions can hold shared
locks on an item,
– but if any transaction holds an exclusive on the

item no other transaction may hold any lock on
the item.

• If a lock cannot be granted, the requesting
transaction is made to wait till all
incompatible locks held by other transactions
have been released. The lock is then
granted.

Lock & Transaction

Lock

• Neither T3 nor T4 can make progress — executing lock-S(B)
causes T4 to wait for T3 to release its lock on B, while
executing lock-X(A) causes T3 to wait for T4 to release its
lock on A.

• Such a situation is called a deadlock.
• To handle a deadlock one of T3 or T4 must be rolled back

and its locks released.

Isolation level

• 事务的隔离层次（隔离级别）
– 并发性能vs完整一致之间的一种弱化、折中

– Read uncommitted Isolation_Level = 3
– Read committed Isolation_Level = 2
– Repeatable read Isolation_Level = 1
– Serializable Isolation_Level = 0

Isolation level

• Read permitted on row with or without
write lock

• No read locks are applied
• No guarantee that concurrent transaction

will not modify row or roll back changes to
row

• Corresponds to table hints NOLOCK and
READUNCOMMITTED

• Allow dirty reads, non-repeatable reads,
and phantom rows

0 - Read uncommitted

• Read only permitted on row with no write lock
• Read lock acquired and held for read on

current row only, but released when cursor
moves off the row

• No guarantee that data will not change during
transaction

• Corresponds to table hint READCOMMITTED
• Prevent dirty reads
• Allow non-repeatable reads and phantom rows

1 - Read committed

• Read only permitted on row with no write lock
• Read lock acquired as each row in the result

set is read, and held until transaction ends
• Corresponds to table hint REPEATABLEREAD
• Prevent dirty reads and non-repeatable reads
• Allow phantom rows

2 - Repeatable

• Read only permitted on rows in result
without write lock

• Read locks acquired when cursor is
opened and held until transaction ends

• Corresponds to table hints HOLDLOCK
and SERIALIZABLE

• Prevent dirty reads, non-repeatable
reads, and phantom rows

3 - serializable

Isolation Level

Recovery System

Failure Classification
•Transaction failure:
– Logical errors: transaction cannot complete due

to some internal error condition
– System errors: the database system must

terminate an active transaction due to an error
condition (e.g., deadlock)

•System crash: a power failure or other hardware or
software failure causes the system to crash.

•Disk failure: a head crash or similar disk failure
destroys all or part of disk storage

• 即使发生故障，仍需保持数据库的基本特
性ACID

• 在正常事务处理时采取措施，保障有足够
的信息可用于故障恢复；

• 故障发生后，使数据库恢复到某一保证
ACID的状态。

恢复策略

Classification of Physical
Storage Media

• Speed with which data can be accessed
• Cost per unit of data
• Reliability
– data loss on power failure or system crash
– physical failure of the storage device

• Can differentiate storage into:
– volatile storage:

• loses contents when power is switched off
– non-volatile storage:

• Contents persist even when power is switched off.
• Includes secondary and tertiary storage, as well as

batter-backed up main-memory.

5

Physical Storage Media
• Cache – fastest and most costly form

of storage; volatile; managed by the
computer system hardware.

6

Physical Storage Media
• Main memory:
– fast access (10s to 100s of nanoseconds;

1 nanosecond = 10–9 seconds)
– generally too small (or too expensive) to

store the entire database
• capacities of up to a few Gigabytes widely used

currently
• Capacities have gone up and per-byte costs

have decreased steadily and rapidly (roughly
factor of 2 every 2 to 3 years)

– Volatile — contents of main memory are
usually lost if a power failure or system
crash occurs.

7

Physical Storage Media (Cont.)
• Flash memory
– Data survives power failure
– Data can be written at a location only
once, but location can be erased and
written to again

– Reads are roughly as fast as main
memory

– But writes are slow (few microseconds),
erase is slower

–Widely used in embedded devices such
as digital cameras, phones, and USB
keys

– SSD（Solid-State Disk）

8

Physical Storage Media (Cont.)
• Magnetic-disk
– Data is stored on spinning disk, and
read/written magnetically

– Primary medium for the long-term
storage of data; typically stores
entire database.

– Data must be moved from disk to
main memory for access, and written
back for storage

– direct-access possible to read data
on disk in any order, unlike magnetic
tape

9

Physical Storage Media (Cont.)
• Magnetic-disk
– Capacities range up to roughly 1.5 TB
as of 2009
• Much larger capacity and cost/byte than main

memory/flash memory
• Growing constantly and rapidly with technology

improvements (factor of 2 to 3 every 2 years)

– Survives power failures and system
crashes
• disk failure can destroy data, but is rare

10

Physical Storage Media (Cont.)
• Optical storage
– non-volatile, data is read optically
from a spinning disk using a laser

– CD-ROM (640 MB) and DVD (4.7
to 17 GB) most popular forms

– Blu-ray disks: 27 GB to 54 GB

11

Physical Storage Media (Cont.)
• Optical storage
– Write-one, read-many (WORM) optical

disks used for archival storage (CD-R,
DVD-R, DVD+R)

– Multiple write versions also available
(CD-RW, DVD-RW, DVD+RW, and DVD-
RAM)

– Reads and writes are slower than with
magnetic disk

– Juke-box systems, with large numbers of
removable disks, a few drives, and a
mechanism for automatic
loading/unloading of disks available for
storing large volumes of data

12

Physical Storage Media (Cont.)
• Tape storage
– non-volatile, used primarily for backup

(to recover from disk failure), and for
archival data

– sequential-access – much slower than
disk

– very high capacity (40 to 300 GB tapes
available)

13

Physical Storage Media (Cont.)
• Tape storage
– tape can be removed from drive
storage costs much cheaper than
disk, but drives are expensive

– Tape jukeboxes available for
storing massive amounts of data
• hundreds of terabytes (1 terabyte =
109 bytes) to even multiple petabytes
(1 petabyte = 1012 bytes)

14

Storage
H
ierarchy

15

Storage Hierarchy (Cont.)
• primary storage: Fastest media but

volatile (cache, main memory).
• secondary storage: next level in

hierarchy, non-volatile, moderately
fast access time
– also called on-line storage
– E.g. flash memory, magnetic disks

• tertiary storage: lowest level in
hierarchy, non-volatile, slow access
time
– also called off-line storage
– E.g. magnetic tape, optical storage

16

Magnetic Hard Disk Mechanism

NOTE: Diagram is schematic, and simplifies the structure of actual disk drives

17

Magnetic Disks
• Read-write head

– Positioned very close to the platter surface (almost touching it)
– Reads or writes magnetically encoded information.

• Surface of platter divided into circular tracks
– Over 50K-100K tracks per platter on typical hard disks

• Each track is divided into sectors.
– A sector is the smallest unit of data that can be read or written.
– Sector size typically 512 bytes
– Typical sectors per track: 500 to 1000 (on inner tracks) to 1000 to

2000 (on outer tracks)
• To read/write a sector

– disk arm swings to position head on right track
– platter spins continually; data is read/written as sector passes under

head
• Head-disk assemblies

– multiple disk platters on a single spindle (1 to 5 usually)
– one head per platter, mounted on a common arm.

• Cylinder i consists of ith track of all the platters

18

Magnetic Disks (Cont.)
• Earlier generation disks were susceptible

to head-crashes
– Surface of earlier generation disks had

metal-oxide coatings which would
disintegrate on head crash and damage all
data on disk

– Current generation disks are less susceptible
to such disastrous failures, although
individual sectors may get corrupted

19

Magnetic Disks (Cont.)
• Disk controller – interfaces between the

computer system and the disk drive hardware.
– accepts high-level commands to read or write a

sector
– initiates actions such as moving the disk arm to the

right track and actually reading or writing the data
– Computes and attaches checksums to each sector to

verify that data is read back correctly
• If data is corrupted, with very high probability stored

checksum won’t match recomputed checksum
– Ensures successful writing by reading back sector

after writing it
– Performs remapping of bad sectors

20

Disk Subsystem

• Multiple disks connected to a computer system through a
controller
– Controllers functionality (checksum, bad sector remapping) often

carried out by individual disks; reduces load on controller
• Disk interface standards families

– ATA (AT adaptor) range of standards
– SATA (Serial ATA)
– SCSI (Small Computer System Interconnect) range of standards
– SAS (Serial Attached SCSI)
– Several variants of each standard (different speeds and capabilities)

21

Disk Subsystem
• Disks usually connected directly to

computer system
• In Storage Area Networks (SAN), a large

number of disks are connected by a high-
speed network to a number of servers

• In Network Attached Storage (NAS)
networked storage provides a file system
interface using networked file system
protocol, instead of providing a disk system
interface

Performance Measures of Disks
• Access time – the time it takes from when a read or

write request is issued to when data transfer begins.
Consists of:
– Seek time – time it takes to reposition the arm over the

correct track.
• Average seek time is 1/2 the worst case seek time.

– Would be 1/3 if all tracks had the same number of sectors, and we
ignore the time to start and stop arm movement

• 4 to 10 milliseconds on typical disks
– Rotational latency – time it takes for the sector to be

accessed to appear under the head.
• Average latency is 1/2 of the worst case latency.
• 4 to 11 milliseconds on typical disks (5400 to 15000 r.p.m.)

• Data-transfer rate – the rate at which data can be
retrieved from or stored to the disk.
– 25 to 100 MB per second max rate, lower for inner tracks
– Multiple disks may share a controller, so rate that

controller can handle is also important
• E.g. SATA: 150 MB/sec, SATA-II 3Gb (300 MB/sec)
• Ultra 320 SCSI: 320 MB/s, SAS (3 to 6 Gb/sec)
• Fiber Channel (FC2Gb or 4Gb): 256 to 512 MB/s

23

Performance Measures (Cont.)
• Mean time to failure (MTTF) – the

average time the disk is expected to
run continuously without any failure.
– Typically 3 to 5 years
– Probability of failure of new disks is quite

low, corresponding to a
“theoretical MTTF” of 500,000 to
1,200,000 hours for a new disk
• E.g., an MTTF of 1,200,000 hours for a new

disk means that given 1000 relatively new disks,
on an average one will fail every 1200 hours

– MTTF decreases as disk ages

24

Optimization of Disk-Block Access

• Block – a contiguous sequence of sectors
from a single track
– data is transferred between disk and main

memory in blocks
– sizes range from 512 bytes to several

kilobytes
• Smaller blocks: more transfers from disk
• Larger blocks: more space wasted due to partially

filled blocks
• Typical block sizes today range from 4 to 16

kilobytes

• Disk-arm-scheduling algorithms order
pending accesses to tracks so that disk
arm movement is minimized

25

Optimization of Disk Block Access(Cont.)
• File organization – optimize block access

time by organizing the blocks to
correspond to how data will be accessed
– E.g. Store related information on the same

or nearby cylinders.
– Files may get fragmented over time

• E.g. if data is inserted to/deleted from the file
• Or free blocks on disk are scattered, and newly

created file has its blocks scattered over the
disk

• Sequential access to a fragmented file results in
increased disk arm movement

– Some systems have utilities to defragment
the file system, in order to speed up file
access

26

• Nonvolatile write buffers speed up disk
writes by writing blocks to a non-volatile
RAM buffer immediately
– Non-volatile RAM: battery backed up RAM or

flash memory
• Even if power fails, the data is safe and will be written to disk

when power returns
– Controller then writes to disk whenever the disk

has no other requests or request has been pending
for some time

– Database operations that require data to be
safely stored before continuing can continue
without waiting for data to be written to disk

– Writes can be reordered to minimize disk arm
movement

Optimization of Disk Block Access(Cont.)

27

• Log disk – a disk devoted to writing a
sequential log of block updates
– Used exactly like nonvolatile RAM

• Write to log disk is very fast since no seeks are required
• No need for special hardware (NV-RAM)

• File systems typically reorder writes to disk
to improve performance
– Journaling file systems write data in safe order

to NV-RAM or log disk
– Reordering without journaling: risk of corruption

of file system data

Optimization of Disk Block Access(Cont.)

28

Flash Storage
• NOR flash vs NAND flash
• NAND flash
– used widely for storage, since it is much

cheaper than NOR flash
– requires page-at-a-time read (page: 512 bytes

to 4 KB)
– transfer rate around 20 MB/sec
– solid state disks: use multiple flash storage

devices to provide higher transfer rate of 100
to 200 MB/sec

Flash Storage
• NOR flash vs NAND flash
• NAND flash
– erase is very slow (1 to 2 millisecs)
• erase block contains multiple pages
• remapping of logical page addresses to
physical page addresses avoids waiting for
erase
– translation table tracks mapping

» also stored in a label field of flash page

– remapping carried out by flash translation layer

• after 100,000 to 1,000,000 erases, erase
block becomes unreliable and cannot be used
–wear leveling

Example of Data Access

X

Y
A

B

x1

y1

buffer
Buffer Block A

Buffer Block B

input(A)

output(B)

read(X)
write(Y)

disk

work
area
of T1

work area
of T2

memory

x2

31

Data Access
• Physical blocks are those blocks residing on the disk.
• Buffer blocks are the blocks residing temporarily in

main memory.
• Block movements between disk and main memory are

initiated through the following two operations:
– input(B) transfers the physical block B to main

memory.
– output(B) transfers the buffer block B to the disk,

and replaces the appropriate physical block there.

32

Data Access
• Each transaction Ti has its private work-area in which

local copies of all data items accessed and updated by
it are kept.
– Ti's local copy of a data item X is called xi.

• We assume, for simplicity, that each data item fits in,
and is stored inside, a single block.

33

Data Access (Cont.)
• Transaction transfers data items between system

buffer blocks and its private work-area using the
following operations:
– read(X) assigns the value of data item X to the

local variable xi.
– write(X) assigns the value of local variable xi to

data item {X} in the buffer block.
– Both these commands may necessitate the issue of

an input(BX) instruction before the assignment, if
the block BX in which X resides is not already in
memory.

34

Data Access (Cont.)
• Transactions
– Perform read(X) while accessing X for the first time;
– All subsequent accesses are to the local copy.
– After last access, transaction executes write(X).

• output(BX) need not immediately follow write(X).
System can perform the output operation when it
deems fit.

35

基于Log的备份
•To ensure atomicity despite failures,
we first output information describing
the modifications to stable storage
without modifying the database itself.
•log-based recovery

基于Log的恢复
• A log is kept on stable storage.
– The log is a sequence of log records, and
maintains a record of update activities on
the database

• Two approaches using logs
• Deferred database modification
• Immediate database modification

Deferred Database Modification

Immediate database modification

Immediate database modification
Log Write Output

<T0 start>

<T0, A, 1000, 950>
To, B, 2000, 2050
 A = 950
 B = 2050

<T0 commit>
<T1 start>
<T1, C, 700, 600>
 C = 600
 BB, BC
<T1 commit>

 BA
• Note: BX denotes block containing X.

checkpoint
• Problems in recovery procedure

1.searching the entire log is time-consuming
2.we might unnecessarily redo transactions which

have already
3.output their updates to the database.

• Streamline recovery procedure by
periodically performing checkpointing
1.Output all log records currently residing in main

memory onto stable storage.
2.Output all modified buffer blocks to the disk.
3.Write a log record < checkpoint> onto stable

storage

日常备份策略

• Dump Database

• Dump Log

• Dump Log

• Recovery Database

• Recovery Log

• Recovery Log

Query Processing
&

Performance Tuning

INDEX
• Primary mechanism to get improved
performance on a database

• Indexing mechanisms used to speed up
access to desired data

– Search Key - attribute or set of attributes
used to look up records in a file.

search-key pointer

INDEX
• Two basic kinds of indices:

• Ordered indices
– search keys are stored in sorted order
– Balanced trees

• Hash indices
– search keys are distributed uniformly

across “buckets” using a “hash function”
– Hash tables

INDEX - Query

INDEX - Modification

Ordered Indices
• In an ordered index, index entries are

stored sorted on the search key value.
• Primary index: in a sequentially ordered file,

the index whose search key specifies the
sequential order of the file.
– Also called clustering index
– The search key of a primary index is
usually but not necessarily the primary
key.

7

Ordered Indices
• Secondary index: an index whose search key

specifies an order different from the
sequential order of the file. Also called
non-clustering index.

• Index-sequential file: ordered sequential
file with a primary index.

8

Dense Index Files
• Dense index — Index record appears for every search-

key value in the file.
• E.g. index on ID attribute of instructor relation

9

Dense Index Files (Cont.)
• Dense index on dept_name, with instructor file

sorted on dept_name

10

Sparse Index Files
• Sparse Index: contains index records for only

some search-key values.
– Applicable when records are sequentially ordered on

search-key
• To locate a record with search-key value K we:

– Find index record with largest search-key value <= K
– Search file sequentially starting at the record to which

the index record points

11

Multilevel Index
• If primary index does not fit in memory,

access becomes expensive.
• Solution: treat primary index kept on

disk as a sequential file and construct a
sparse index on it.
– outer index – a sparse index of
primary index

– inner index – the primary index file
• If even outer index is too large to fit in

main memory, yet another level of index
can be created, and so on.

• Indices at all levels must be updated on
insertion or deletion from the file.

12

Multilevel Index (Cont.)

13

Multilevel Index (primary index)

14

Multilevel Index (secondary index)

15

Multilevel Index (Cont.)

16

Covering indices (primary)

select * from employee
where emp_id like "E%"

Covering indices (secondary)

Covering indices
(Multiple Attributes)

select emp_fname, emp_lname
from employee
where emp_lname like “Gr%”and

emp_fname like “M%”

Covering indices
(Multiple Attributes)

Query Processing

Basic Steps in Query Processing
1.Parsing and translation
2.Optimization
3.Evaluation

Measures of Query Cost
• Cost is generally measured as total elapsed time for

answering query
– Many factors contribute to time cost

• disk accesses, CPU, or even network communication
• Typically disk access is the predominant cost, and is also

relatively easy to estimate. Measured by taking into
account
– Number of seeks * average-seek-cost
– Number of blocks read * average-block-read-cost
– Number of blocks written * average-block-write-cost

• Cost to write a block is greater than cost to read a
block

– data is read back after being written to ensure
that the write was successful

23

Measures of Query Cost (Cont.)
• For simplicity we just use the number of block

transfers from disk and the number of seeks as
the cost measures
– tT – time to transfer one block
– tS – time for one seek
– Cost for b block transfers plus S seeks

 b * tT + S * tS
• We ignore CPU costs for simplicity

– Real systems do take CPU cost into account
• We do not include cost to writing output to disk

in our cost formulae

24

Measures of Query Cost (Cont.)
• Several algorithms can reduce disk IO by using

extra buffer space
– Amount of real memory available to buffer

depends on other concurrent queries and OS
processes, known only during execution

• We often use worst case estimates,
assuming only the minimum amount of
memory needed for the operation is
available

• Required data may be buffer resident already,
avoiding disk I/O
– But hard to take into account for cost

estimation

Selection Operation

File scan
• Algorithm A1 (linear search). Scan each

file block and test all records to see
whether they satisfy the selection condition.
– Cost estimate = br block transfers + 1
seek
• br denotes number of blocks containing
records from relation r

– If selection is on a key attribute, can
stop on finding record
• cost = (br /2) block transfers + 1 seek

27

File scan
– Linear search can be applied regardless of

• selection condition or
• ordering of records in the file, or
• availability of indices

• Note: binary search generally does not make sense
since data is not stored consecutively
–except when there is an index
available,

–and binary search requires more
seeks than index search

28

Selections Using Indices
• Index scan – search algorithms that use an index

– selection condition must be on search-key of index.
• A2 (primary index, equality on key). Retrieve a single

record that satisfies the corresponding equality
condition
– Cost = (hi + 1) * (tT + tS)

• A3 (primary index, equality on nonkey) Retrieve
multiple records.
– Records will be on consecutive blocks

• Let b = number of blocks containing matching
records

– Cost = hi * (tT + tS) + tS + tT * b

29

Selections Using Indices
• A4 (secondary index, equality on nonkey).

– Retrieve a single record if the search-
key is a candidate key
• Cost = (hi + 1) * (tT + tS)

– Retrieve multiple records if search-key
is not a candidate key
• each of n matching records may be
on a different block

• Cost = (hi + n) * (tT + tS)
–Can be very expensive!

Selections Involving Comparisons
• Can implement selections of the form A V (r)

or A V(r) by using
– a linear file scan,
– or by using indices in the following ways:

• A5 (primary index, comparison). (Relation is sorted
on A)

• For A V(r) use index to find first tuple v
and scan relation sequentially from there

• For A V (r) just scan relation sequentially till
first tuple > v; do not use index

31

Selections Involving Comparisons
• A6 (secondary index, comparison).

• For A V(r) use index to find first
index entry v and scan index
sequentially from there, to find pointers
to records.

• For A V (r) just scan leaf pages of
index finding pointers to records, till
first entry > v

• In either case, retrieve records that are
pointed to

–requires an I/O for each record
– Linear file scan may be cheaper

32

Implementation of Complex Selections

• Conjunction: 1 2 . . . n(r)
• A7 (conjunctive selection using one index).

– Select a combination of i and algorithms A1
through A7 that results in the least cost for i
(r).

– Test other conditions on tuple after fetching it
into memory buffer.

• A8 (conjunctive selection using composite index).
– Use appropriate composite (multiple-key) index if

available.

33

Implementation of Complex Selections

• Conjunction: 1 2 . . . n(r)

• A9 (conjunctive selection by intersection of
identifiers).
–Requires indices with record pointers.
–Use corresponding index for each condition, and
take intersection of all the obtained sets of record
pointers.
–Then fetch records from file
–If some conditions do not have appropriate indices,
apply test in memory.

34

Algorithms for Complex Selections
• Disjunction: 1 2 . . . n (r).
• A10 (disjunctive selection by union of

identifiers).
– Applicable if all conditions have
available indices.
• Otherwise use linear scan.

– Use corresponding index for each
condition, and take union of all the
obtained sets of record pointers.

– Then fetch records from file

35

Algorithms for Complex Selections
• Negation: (r)

– Use linear scan on file
– If very few records satisfy , and
an index is applicable to
• Find satisfying records using index
and fetch from file

36

Sorting

• We may build an index on the relation, and
then use the index to read the relation in
sorted order. May lead to one disk block
access for each tuple.

• For relations that fit in memory, techniques
like quicksort can be used. For relations
that don’t fit in memory, external
sort-merge is a good choice.

37

Join Operation
• Several different algorithms to implement joins

–Nested-loop join
–Block nested-loop join
–Indexed nested-loop join
–Merge-join
–Hash-join

• Choice based on cost estimate
• Examples use the following information

–Number of records of student : 5,000
 takes : 10,000
–Number of blocks of student : 100
takes : 400

38

Nested-Loop Join
•To compute the theta join r s
for each tuple tr in r do begin
 for each tuple ts in s do begin
 test pair(tr,ts) to see if they satisfy the join condition

if they do, add tr • ts to the result.
end

end
r is called the outer relation and s the inner relation of
the join.
Requires no indices and can be used with any kind of join
condition.
Expensive since it examines every pair of tuples in the two
relations.

39

Nested-Loop Join (Cont.)
• In the worst case, if there is enough memory only to hold one

block of each relation, the estimated cost is
 nr bs + br block transfers, plus
 nr + br seeks

• If the smaller relation fits entirely in memory, use that as the
inner relation.
– Reduces cost to br + bs block transfers and 2 seeks

• Assuming worst case memory availability cost estimate is
– with student as outer relation:

• 5000 400 + 100 = 2,000,100 block transfers,
• 5000 + 100 = 5100 seeks

– with takes as the outer relation
• 10000 100 + 400 = 1,000,400 block transfers and 10,400 seeks

• If smaller relation (student) fits entirely in memory, the cost
estimate will be 500 block transfers.

• Block nested-loops algorithm (next slide) is preferable.

40

Block Nested-Loop Join
• Variant of nested-loop join in which every block of

inner relation is paired with every block of outer
relation.
for each block Br of r do begin

for each block Bs of s do begin
for each tuple tr in Br do begin

for each tuple ts in Bs do begin
Check if (tr,ts) satisfy the join condition
if they do, add tr • ts to the result.

end
end

end
end

41

Block Nested-Loop Join (Cont.)
• Worst case estimate: br  bs + br block transfers + 2 * br

seeks

– Each block in the inner relation s is read once for each
block in the outer relation

• Best case: br + bs block transfers + 2 seeks.
• Improvements to nested loop and block nested loop algorithms:

– In block nested-loop, use M — 2 disk blocks as blocking
unit for outer relations, where M = memory size in blocks;
use remaining two blocks to buffer inner relation and output

• Cost = br / (M-2)  bs + br block transfers +
 2 br / (M-2) seeks

– If equi-join attribute forms a key or inner relation, stop
inner loop on first match

– Scan inner loop forward and backward alternately, to make
use of the blocks remaining in buffer (with LRU replacement)

– Use index on inner relation if available (next slide)

42

Indexed Nested-Loop Join
• Index lookups can replace file scans if

– join is an equi-join or natural join and
– an index is available on the inner relation’s
join attribute

• Can construct an index just to compute a join.
• For each tuple tr in the outer relation r, use the index to look up

tuples in s that satisfy the join condition with tuple tr.
• Worst case: buffer has space for only one page of r, and, for

each tuple in r, we perform an index lookup on s.
• Cost of the join: br (tT + tS) + nr c

– Where c is the cost of traversing index and
fetching all matching s tuples for one tuple
or r

– c can be estimated as cost of a single
selection on s using the join condition.

• If indices are available on join attributes of both r and s,
use the relation with fewer tuples as the outer relation.

43

Example of Nested-Loop Join Costs

• Compute student takes, with student as the outer
relation.

• Let takes have a primary B+-tree index on the attribute ID,
which contains 20 entries in each index node.

• Since takes has 10,000 tuples, the height of the tree is 4,
and one more access is needed to find the actual data

• student has 5000 tuples
• Cost of block nested loops join

– 400*100 + 100 = 40,100 block transfers + 2 * 100 = 200 seeks
• assuming worst case memory
• may be significantly less with more memory

• Cost of indexed nested loops join
– 100 + 5000 * 5 = 25,100 block transfers and seeks.

– CPU cost likely to be less than that for block nested loops
join

