
		
			[image: Cover image]
		

	

 Werkzeug 文档概览

 Werkzeug是一个WSGI工具包，他可以作为一个Web框架的底层库。

 欢迎阅读 Werkzeug 0.9.4 中文文档。

 原文出处： http://werkzeug-docs-cn.readthedocs.org/zh_CN/latest/

 安装

 Werkzeug 要求 Python 2.6 以上版本。如果你需要支持 Pyhthon <2.6 版本可以下载老版本的 Werkzeug (强烈推荐 Pyhton 2.6 以上版本)。Werkzeug目前已经支持 Python 3。更多信息请看 Python 3 Notes.

 安装一个发行版

 安装一个egg包 (通过 easy_install 或 pip)

 你可以安装最新的 Werkzeug 版本通过 easy_install :

 easy_install Werkzeug

 另外你也可以使用pip:

 pip install Werkzeug

 我们强烈推荐结合 virtualenv 使用这些工具。

 这将会在 site-packages 目录安装一个 Werkzeug egg 包。

 从压缩包安装

 	从 download page 下载最新的压缩包。

 	解压压缩包。

 	执行 pythonsetup.pyinstall 命令。

 注意如果你没有安装 setuptools 执行最后一条命令将会自动下载和安装。这需要联网。

 以上命令会将 Werkzeug 安装到 site-packages 文件夹。

 安装开发版

 	安装 Git

 	gitclonegit://github.com/mitsuhiko/werkzeug.git

 	cdwerkzeug

 	pipinstall--editable

 virtualenv

 Virtualenv 大概会是你想在开发环境下使用的软件。如果你有shell权限访问生产环境，你可能也会喜欢他。

 virtualenv 解决了什么问题？如果你像我一样喜欢Python，你很可能会在基于 Werkzeug的 Web 应用之外使用Python。但是随着项目越来越多，你使用不同版本python的可能性越大，至少你有可能会用到支持不同Pytohn版本的库。我们不得不面对一种很常见的情况就是库是不向后兼容的，或者很少有应用没有依赖包。所以当然有两个甚至更多项目的时候你打算怎么解决依赖冲突？

 Virtualenv 正是为此而生！它允许你安装多个Python版本, 每个项目对应自己的Python。他其实并没有安装一个Python副本，而是通过很奇妙的方法来保持环境独立。

 下面让我门看看 virtualenv 是怎么工作的！

 如果你使用 Mac OS X 或 Linux, 这里有两种安装方法供你选择:

 $ sudo easy_install virtualenv

 或者更好的方法:

 $ sudo pip install virtualenv

 你可以通过上述命令在你的系统安装 virtualenv 。你甚至可以使用包管理器安装，如果你使用Ubuntu，可以尝试:

 $ sudo apt-get install python-virtualenv

 如果你是用Windows，没有 easy_install 命令，你必须首先安装它。一旦安装成功，执行相同的命令，但是不需要带 sudo 前缀。

 一旦成功安装 virtualenv，打开 shell 创建你自己的环境。我经常会创建一个 myproject 文件夹，并在其中创建 env 文件夹:

 $ mkdir myproject
$ cd myproject
$ virtualenv env
New python executable in env/bin/python
Installing setuptools............done.

 现在，无论何时只要你想在某个项目上工作，只需激活相应环境。在 OS X 和 Linux，按如下操作:

 $. env/bin/activate

 (注意 . 和脚本名称之间的空格。 . 意味着这个脚本在当前shell下运行。如果这个命令在你的命令行无效, 尝试用 source 代替 .)

 如果你是个 Windows 用户，可以使用以下命令:

 $ env\scripts\activate

 无论哪种方式，现在你已经可以使用 virtualenv 了(观察shell中切换到的Virtualenv提示)。

 安装Werkzeug

 $ pip install Werkzeug

 几秒钟后你就可以使用werkzeug了。

 过渡到 Werkzeug 1.0

 Werkzeug 原本有一个神奇的导入系统钩子，如果启用它则可以从一个模块导入所有东西而且还可以根据实际需要选择性加载。不幸的是，这种方法被证明是效率低下的，用它来代替Python实现和GAE是不可靠的。

 从 0.7 开始我们不推荐短入口，强烈鼓励从一个实际实现的模块来导入。Werkzeug 1.0 将完全不支持这种神奇的导入钩子。

 因为手动去发现那么实际的函数被导入并重写他们是一个痛苦和乏味的过程，所以我们写了一个工具来帮助过渡。

 自动重写入口

 举个例子， Werkzeug < 0.7 版本推荐的方法是使用 escape 函数，用法如下:

 from werkzeug import escape

 Werkzeug 0.7 版本推荐的方法是直接从工具包导入 escape 函数(1.0 版本这个方法将会变成强制性的)。为了自动重写所有的入口你可以使用 werkzeug-import-rewrite script。

 你可以通过 Python 和 Werkzeug 基础代码的文件夹列表来执行它。它将会输出一个 hg/git兼容的补丁文件。如下:

 $ python werkzeug-import-rewrite.py . > new-imports.udiff

 通过下列方法应用补丁文件:

 hg:

 hg import new-imports.udiff

 git:

 git apply new-imports.udiff

 patch:

 patch -p1 < new-imports.udiff

 停止使用废弃的东西

 Werkzeug 上的一些东西将停止更新，我们强烈建议替换掉即使他们短时间内还可以使用。

 不要使用:

 	werkzeug.script ，用 argparse 或其他相似的工具定制脚本替换它。

 	werkzeug.template, 用一个适当的模板引擎替换它。

 	werkzeug.contrib.jsrouting ，停止使用Javascript URL 生成器，它与许多公共公共路由的扩展性不是很好。

 	werkzeug.contrib.kickstart ，取代手写代码，实际上 Werkzeug API 变得越来越好，他不再是必需的。

 	werkzeug.contrib.testtools ，已经不是那么有用了。

 Werkzeug 教程

 欢迎来到 Werkzeug 教程，我们将会实现一个类似 TinyURL 的网站来储存 URLS。我们将会使用的库有模板引擎 Jinja 2，数据层支持 redis ，当然还有 WSGI 协议层 Werkzeug。

 你可以使用 pip 来安装依赖库:

 pip install Jinja2 redis

 同时确定你的本地开启一个 redis 服务，如果你是OS X系统，你可以使用 brew 来安装 redis:

 brew install redis

 如果你是用 Ubuntu 或 Debian, 你可以使用 apt-get:

 sudo apt-get install redis

 Redis 专为 UNIX 系统开发，并没有考虑为 Windows 设计。但对于开发来说，非官方的版本已经足够了，你可以从 github 得到它。

 	
 简短介绍

 	
 Step 0: WSGI 基础介绍

 	
 Step 1: 创建目录

 	
 Step 2: 基本结构

 	
 插曲: 运行应用程序

 	
 Step 3: 环境

 	
 Step 4: 路由

 	
 Step 5: 第一个视图

 	
 Step 6: 重定向视图

 	
 Step 7: 描述视图

 	
 Step 8: 模板

 	
 Step 9: 样式

 	
 Bonus: 改进

 简短介绍

 在这个教程中，我们将一起用 Werkzeug 创建一个短网址服务。请注意，Werkzeug 并不是一个框架，它是一个 WSGI 工具集的库，你可以通过它来创建你自己的框架或 Web 应用。Werkzeug 是非常灵活的，这篇教程用到的一些方法只是 Werkzeug 的一部分。

 在数据层，为了保持简单，我们使用 redis 来代替关系型数据库，而且 redis 也擅长来做这些。

 最终的结果将会看起来像这样:

 Step 0: WSGI 基础介绍

 Werkzeug 是一个 WSGI 工具包。WSGI 是一个 Web 应用和服务器通信的协议，Web 应用可以通过 WSGI 一起工作。

 一个基本的 “Hello World” WSGI 应用看起来是这样的:

 def application(environ, start_response):
 start_response('200 OK', [('Content-Type', 'text/plain')])
 return ['Hello World!']

 用过 WSGI 应用可以和环境通信，他有一个可调用的 start_response 。环境包含了所有进来的信息。 start_response 用来表明已经收到一个响应。通过 Werkzeug 你可以不必直接处理请求或者响应这些底层的东西，它已经为你封装好了这些。

 请求数据需要环境对象，Werkzeug 允许你以一个轻松的方式访问数据。响应对象是一个 WSGI应用，提供了更好的方法来创建响应。

 下面教你怎么用响应对象来写一个应用:

 from werkzeug.wrappers import Response

 def application(environ, start_response):
 response = Response('Hello World!', mimetype='text/plain')
 return response(environ, start_response)

 这里有一个在 URL 中查询字符串的扩展版本(重点是 URL 中的 name 将会替代World):

 from werkzeug.wrappers import Request, Response

def applicatio n(environ, start_response):
 request = Request(environ)
 text = 'Hello %s!' % request.args.get('name', 'World')
 response = Response(text, mimetype='text/plain')
 return response(environ, start_response)

 到此为止，你已经足够了解 WSGI 了。

 Step 1: 创建目录

 在开始之前，首先为应用创建一个目录:

 /shortly
 /static
 /templates

 这个简洁的目录不是一个python包，他用来存放我们的项目文件。我们的入口模块将会放在 /shortly目录的根目录下。 /static 目录用来放置CSS、Javascript等静态文件，用户可以通过HTTP协议直接访问。 /templates 目录用来存放 Jinja2 模板文件，接下来你为项目创建的模板文件将要放到这个文件夹内。

 Step 2: 基本结构

 现在我们正式开始为我们的项目创建模块。在 shortly 目录创建 shortly.py 文件。首先来导入一些东西。为了防止混淆，我把所有的入口放在这，即使他们不会立即使用:

 import os
import redis
import urlparse
from werkzeug.wrappers import Request, Response
from werkzeug.routing import Map, Rule
from werkzeug.exceptions import HTTPException, NotFound
from werkzeug.wsgi import SharedDataMiddleware
from werkzeug.utils import redirect
from jinja2 import Environment, FileSystemLoader

 接下来我们来为我们的应用创建基本的结构，并通过一个函数来创建应用实例，通过 WSGI中间件输出 static 目录的文件:

 class Shortly(object):

 def __init__(self, config):
 self.redis = redis.Redis(config['redis_host'], config['redis_port'])

 def dispatch_request(self, request):
 return Response('Hello World!')

 def wsgi_app(self, environ, start_response):
 request = Request(environ)
 response = self.dispatch_request(request)
 return response(environ, start_response)

 def __call__(self, environ, start_response):
 return self. wsgi_app(environ, start_response)

def create_app(redis_host='localhost', redis_port=6379, with_static=True):
 app = Shortly({
 'redis_host': redis_host,
 'redis_port': redis_port
 })
 if with_static:
 app.wsgi_app = SharedDataMiddleware(app.wsgi_app, {
 '/static': os.path.join(os.path.dirname(__file__), 'static')
 })
 return app

 最后我们添加一部分代码来开启一个本地服务器，自动加载代码并开启调试器:

 if __name__ == '__main__':
 from werkzeug.serving import run_simple
 app = create_app()
 run_simple('127.0.0.1', 5000, app, use_debugger=True, use_reloader=True)

 思路很简单，我们的 Shortly 是一个实际的 WSGI 应用。 call 方法直接调用 wsgi_app 。这样做我们可以装饰 wsgi_app 调用中间件，就像我们在 create_app函数中做的一样。 wsgi_app 实际上创建了一个 Request 对象,之后通过dispatch_request 调用 Request 对象然后给 WSGI 应用返回一个 Response对象。正如你看到的：无论是创建 Shortly 类，还是还是创建 Werkzeug Request 对象来执行 WSGI 接口。最终结果只是从 dispatch_request 方法返回另一个 WSGI 应用。

 create_app 可以被用于创建一个新的应用实例。他不仅可以通过参数配置应用，还可以选择性的添加中间件来输出静态文件。通过这种方法我们甚至可以不配置服务器就能访问静态文件，这对开发是很有帮助的。

 插曲: 运行应用程序

 现在你应该可以通过 python 执行这个文件了，看看你本机的服务:

 $ python shortly.py
 * Running on http://127.0.0.1:5000/
 * Restarting with reloader: stat() polling

 它告诉你自动加载已经开启，他会通过各种各样的技术来判断硬盘上的文件是否改变来自动重启。

 在浏览器输入这个URL，你将会看到 “Hello World!”。

 Step 3: 环境

 现在我们已经有了一个应用的基本类，可以通过构造函数来实现一些功能。通过构造函数我们可以渲染模板、连接redis。现在让我们扩展这个类:

 def __init__(self, config):
 self.redis = redis.Redis(config['redis_host'], config['redis_port'])
 template_path = os.path.join(os.path.dirname(__file__), 'templates')
 self.jinja_env = Environment(loader=FileSystemLoader(template_path),
 autoescape=True)

def render_template(self, template_name, **context):
 t = self.jinja_env.get_template(template_name)
 return Response(t.render(context), mimetype='text/html')

 Step 4: 路由

 下一步是路由。我们可以通过路由来匹配和解析URL。Werkzeug 提供了一个灵活的集成路由。你需要创建一个 Map 实例并添加一系列 Rule对象。每个 rule 将会匹配 URL 并添加一个 “endpoint”。endpoint 通常是一个用于标记URL 的字符串。此外我们还可以使用它来翻转 URL，但这不是这篇教程我们要做的。

 把下列代码放入构造函数:

 self.url_map = Map([
 Rule('/', endpoint='new_url'),
 Rule('/<short_id>', endpoint='follow_short_link'),
 Rule('/<short_id>+', endpoint='short_link_details')
])

 现在我们创造了一个包含三个 URL 规则的字典。第一个规则， / 是根 URL 空间，我们可以调用一个逻辑函数来创建一个新 URL；第二个规则，根据规则指向一个目标URL；最后一个规则，和第二个有相同的规则，但是它在最后添加一个(+)来显示链接链接详细信息。

 那么 endpoint 是怎么指向一个函数的？这是需要你解决的。本篇教程中是通过类中 on_+ endpoint 方法。具体如下:

 def dispatch_request(self, request):
 adapter = self.url_map.bind_to_environ(request.environ)
 try:
 endpoint, values = adapter.match()
 return getattr(self, 'on_' + endpoint)(request, **values)
 except HTTPException, e:
 return e

 我们将 RUL 绑定到目前的环境返回一个 URLAdapter 。适配器可以用于匹配请求也可以翻转 URLS。匹配方法将会返回 endpoint 和一个 URL 值字典。这个follow_short_link 路由实例有一个变量 short_id 。当我们在浏览器输入 http://localhost:5000/foo我们将会得到如下的值:

 endpoint = 'follow_short_link'
values = {'short_id': u'foo'}

 我们没有匹配到任何东西，他将会抛出一个 NotFound 异常，实质是一个 HTTPException 异常。所有的 HTTP 异常将会跳转 WSGI 应用渲染的默认错误页面。所以我们只需要捕获并返回他们。

 如果一切顺利，我们用 request 作为参数,所有的 URL 参数做作为关键字参数调用 on_+ endpoint 函数可以返回响应对象。

 Step 5: 第一个视图

 让我们开始第一个视图: new URLs 视图:

 def on_new_url(self, request):
 error = None
 url = ''
 if request.method == 'POST':
 url = request.form['url']
 if not is_valid_url(url):
 error = 'Please enter a valid URL'
 else:
 short_id = self.insert_url(url)
 return redirect('/%s+' % short_id)
 return self.render_template('new_url.html', error=error, url=url)

 思想不难理解。首先我们检查请求方法是不是 POST，然后验证得到的 URL 并插入到数据库中，然后跳转到一个详细页面。要实现这个，意味着我们需要在写一个函数和一个辅助方法下面是 URL 验证函数:

 def is_valid_url(url):
 parts = urlparse.urlparse(url)
 return parts.scheme in ('http', 'https')

 为了向数据库插入 URL，我们只需要在类中添加以下方法:

 def insert_url(self, url):
 short_id = self.redis.get('reverse-url:' + url)
 if short_id is not None:
 return short_id
 url_num = self.redis.incr('last-url-id')
 short_id = base36_encode(url_num)
 self.redis.set('url-target:' + short_id, url)
 self.redis.set('reverse-url:' + url, short_id)
 return short_id

 reverse-url: + URL 将会存放储存ID。如果 URL 已经被提交过那么只需要返回存储ID值，否则我们增加 last-url-id 键值并转化为 base36，接下来我们将存储连接和转换连接存储到 redis。下面就是转化为 base 36 的函数:

 def base36_encode(number):
 assert number >= 0, 'positive integer required'
 if number == 0:
 return '0'
 base36 = []
 while number != 0:
 number, i = divmod(number, 36)
 base36.append('0123456789abcdefghijklmnopqrstuvwxyz'[i])
 return ''.join(reversed(base36))

 然而我们还没有视图的模板，不急，我们过一会就来写模板。不过在这之前，我们先来完成另一个视图。

 Step 6: 重定向视图

 重定向视图很简单，它只需要从 redis 找到连接并重定向跳转到它。另外我们还想添加一个计数器以便于统计连接被点击频率:

 def on_follow_short_link(self, request, short_id):
 link_target = self.redis.get('url-target:' + short_id)
 if link_target is None:
 raise NotFound()
 self.redis.incr('click-count:' + short_id)
 return redirect(link_ta rget)

 在这种情况下，如果 URL 不存在，我们将会抛出一个 NotFound异常，通过 dispatch_request 函数返回一个 404 响应

 Step 7: 描述视图

 链接描述视图也是非常相似的，我们仅仅需要再渲染一个模板。除了目标 URL，我们还需要从 redis 查询被点击次数，如果在 redis 中没有记录，我们把它设为 0:

 def on_short_link_details(self, request, short_id):
 link_target = self.redis.get('url-target:' + short_id)
 if link_target is None:
 raise NotFound()
 click_count = int(self.redis.get('click-count:' + short_id) or 0)
 return self.render_template('short_link_details.html',
 link_target=link_target,
 short_id=short_id,
 click_count=click_count
)

 要知道 redis 存的是字符串，所以你需要手动点击次数转化为 :int 。

 Step 8: 模板

 这里就是全部的模板，仅仅把它们放到 templates 文件夹就可以了。jinja2支持模板继承，所以我们首先要创建一个 layout 模板，并用 blocks 占位。接下来设置jinja2以便于自动用html规则转化字符串，我们不必自己花时间来做这些。同时它可以也防止 XSS 攻击和渲染错误页面。

 layout.html:

 <!doctype html>
<title>{% block title %}{% endblock %} | shortly</title>
<link rel=stylesheet href=/static/style.css type=text/css>
<div class=box>
 <h1>shortly</h1>
 <p class=tagline>Shortly is a URL shortener written with Werkzeug
 {% block body %}{% endblock %}
</div>

 new_url.html:

 {% extends "layout.html" %}
{% block title %}Create New Short URL{% endblock %}
{% block body %}
 <h2>Submit URL</h2>
 <form action="" method=post>
 {% if error %}
 <p class=error>Error: {{ error }}
 {% endif %}
 <p>URL:
 <input type=text name=url value="{{ url }}" class=urlinput>
 <input type=submit value="Shorten">
 </form>
{% endblock %}

 short_link_details.html:

 {% extends "layout.html" %}
{% block title %}Details about /{{ short_id }}{% endblock %}
{% block body %}
 <h2>/{{ short_id }}</h2>
 <dl>
 <dt>Full link
 <dd class=link><div>{{ link_target }}</div>
 <dt>Click count:
 <dd>{{ click_count }}
 </dl>
{% endblock %}

 Step 9: 样式

 添加样式可以使页面比丑陋的黑色和白色看起来好一些。下面是一个简单的样式表:

 body { background: #E8EFF0; margin: 0; padding: 0; }
body, input { font-family: 'Helvetica Neue', Arial,
 sans-serif; font-weight: 300; font-size: 18px; }
.box { width: 500px; margin: 60px auto; padding: 20px;
 background: white; box-shadow: 0 1px 4px #BED1D4;
 border-radius: 2px; }
a { color: #11557C; }
h1, h2 { margin: 0; color: #11557C; }
h1 a { text-decoration: none; }
h2 { font-weight: normal; font-size: 24px; }
.tagline { color: #888; font-style: italic; margin: 0 0 20px 0; }
.link div { overflow: auto; font-size: 0.8em; white-space: pre;
 padding: 4px 10px; margin: 5px 0; background: #E5EAF1; }
dt { font-weight: normal; }
.error { background: #E8EFF0; padding: 3px 8px; color: #11557C;
 font-size: 0.9em; border-radius: 2px; }
.urlinput { width: 300px; }

 Bonus: 改进

 查看 Werkzeug 仓库的 example 目录可以找到这篇教程代码，那里的版本可能有一些改进，比如一个定制的 404 页面。

 	
 shortly in the example folder

 API 标准

 Werkzeug 的设计意图是一个实用的工具集而不是一个框架。得益于从低级API 中分离出来的面向用户友好的 API，Werkzeug 可以很简单的扩展另一个系统。

 Request 和 Response 对象(又名”wrappers”) 提供的函数也可以来实现一个小的功能。

 例子

 这个例子实现一个小的 Hello World 应用。显示用户输入的名字:

 from werkzeug.utils import escape
from werkzeug.wrappers import Request, Response

@Request.application
def hello_world(request):
 result = ['<title>Greeter</title>']
 if request.method == 'POST':
 result.append('<h1>Hello %s!</h1>' % escape(request.form['name']))
 result.append('''
 <form action="" method="post">
 <p>Name: <input type="text" name="name" size="20">
 <input type="submit" value="Greet me">
 </form>
 ''')
 return Response(''.join(result), mimet ype='text/html')

 另外不用 request 和 response 对象也可以实现这个功能，那就是借助 werkzeug 提供的解析函数:

 from werkzeug.formparser import parse_form_data
from werkzeug.utils import escape

def hello_world(environ, start_response):
 result = ['<title>Greeter</title>']
 if environ['REQUEST_METHOD'] == 'POST':
 form = parse_form_data(environ)[1]
 result.append('<h1>Hello %s!</h1>' % escape(form['name']))
 result.append('''
 <form action="" method="post">
 <p>Name: <input type="text" name="name" size="20">
 <input type="submit" value="Greet me">
 </form>
 ''')
 start_response('200 OK', [('Content-Type', 'text/html; charset=utf-8')])
 return [''.join(result)]

 高还是低?

 通常我们更倾向于使用高级的 API(request 和 response 对象)。但是也有些情况你可能更想使用低级功能。

 例如你想在不破坏 Django 或者其他框架的代码的情况下解析 HTTP 头信息。这时你可以利用 Werkzeug 调用低级 API 来解析 HTTP 头部。

 再比如，如果你想写一个 web 框架，或者做单元测试，或者 用 WSGI 中间件将一个老的CGI/mod_python 应用改成 WSGI 应用，并保证开销。那么你可能更希望使用较低级的 API。

 快速开始

 文档的这部分内容将会向你展示如何使用 Werkzeug 最重要的部分。意在让开发者对PEP 333 (WSGI) 和 RFC 2616 (HTTP) 有一个基本的了解。

 警告

 确保在文档建议的地方导入所有对象。理论上从不同的地方导入对象是可行的，但是在这却是不被支持的。

 例如 MultiDict 是一个 werkzeug 模块，但它在内部却不是 Werkzeug实现的。

 WSGI 环境

 WSGI 环境包含所有用户向应用发送信息。你可以通过它向 WSGI 发送信息，但是你也可以使用 create_environ() 辅助函数创建一个 WSGI 环境字典:

 >>> from werkzeug.test import create_environ
>>> environ = create_environ('/foo', 'http://localhost:8080/')

 现在我们创造了一个环境:

 >>> environ['PATH_INFO']
'/foo'
>>> environ['SCRIPT_NAME']
''
>>> environ['SERVER_NAME']
'localhost'

 通常没人愿意直接使用 environ 因为它对字节串是有限制的，而且不提供访问表单数据的方法除非手动解析数据。

 Request

 Request 对象访问请求数据是很有趣的。它封装 environ 并提供只读的方法访问数据:

 >>> from werkzeug.wrappers import Request
>>> request = Request(environ)

 现在你可以访问重要的变量，Werkzeug 将会帮你解析并解码他们。默认的字符集是 utf-8但是你可以通过 Request 子类更改。

 >>> request.path
u'/foo'
>>> request.script_root
u''
>>> request.host
'localhost:8080'
>>> request.url
'http://localhost:8080/foo'

 我们也可以得到 HTTP 请求方法:

 >>> request.method
'GET'

 通过这个方法我们可以访问 URL 参数(查询的字符串) 和 POST/PUT 请求提交的数据。

 为了测试，我们通过 from_values() 方法得到的数据创建一个请求对象:

 >>> from cStringIO import StringIO
>>> data = "name=this+is+encoded+form+data&another_key=another+one"
>>> request = Request.from_values(query_string='foo=bar&blah=blafasel',
... content_length=len(data), input_stream=StringIO(data),
... content_type='application/x-www-form-urlencoded',
... method='POST')
...
>>> request.method
'POST'

 我们可以很容易访问 URL 参数:

 >>> request.args.keys()
['blah', 'foo']
>>> request.args['blah']
u'blafasel'

 访问提交的数据也是一样的:

 >>> request.form['name']
u'this is encoded form data'

 处理上传文件不再困难正如下例:

 def store_file(request):
 file = request.files.get('my_file')
 if file:
 file.save('/where/to/store/the/file.txt')
 else:
 handle_the_error()

 files 代表一个 FileStorage 对象，提供一些常见的操作。

 通过 headers 的属性可以得到请求的 headers。

 >>> request.headers['Content-Length']
'54'
>>> request.headers['Content-Type']
'application/x-www-form-urlencoded'

 头信息的键不区分大小写。

 解析 Headers

 这里还有更多 Werkzeug 提供的使用 HTTP headers 和其他请求数据的常用的方法。

 让我们用典型的 web 浏览器发送数据来创建一个请求对象。以便于更真实的测试:

 >>> environ = create_environ()
>>> environ.update(
... HTTP_USER_AGENT='Mozilla/5.0 (Macintosh; U; Mac OS X 10.5; en-US;) Firefox/3.1',
... HTTP_ACCEPT='text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
... HTTP_ACCEPT_LANGUAGE='de-at,en-us;q=0.8,en;q=0.5',
... HTTP_ACCEPT_ENCODING='gzip,deflate',
... HTTP_ACCEPT_CHARSET='ISO-8859-1,utf-8;q=0.7,*;q=0.7',
... HTTP_IF_MODIFIED_SINCE='Fri, 20 Feb 2009 10:10:25 GMT',
... HTTP_IF_NONE_MATCH='"e51c9-1e5d-46356dc86c640"',
... HTTP_CACHE_CONTROL='max-age=0'
...)
...
>>> request = Request(environ)

 让我们从最没有用(- -)的 headers 开始: the user agent:

 >>> request.user_agent.browser
'firefox'
>>> request.user_agent.platform
'macos'
>>> request.user_agent.version
'3.1'
>>> request.user_agent.language
'en-US'

 一个更有用的 headers 是 Accept header。这个 header 将会告诉 web 应用可以处理并怎么处理MIME类型，所有 accept header 被严格分类，最重要的是第一条:

 >>> request.accept_mimetypes.best
'text/html'
>>> 'application/xhtml+xml' in request.accept_mimetypes
True
>>> print request.accept_mimetypes["application/json"]
0.8

 可使用的语言也是一样:

 >>> request.accept_languages.best
'de-at'
>>> request.accept_languages.values()
['de-at', 'en-us', 'en']

 当然还有编码和字符集:

 >>> 'gzip' in request.accept_encodings
True
>>> request.accept_charsets.best
'ISO-8859-1'
>>> 'utf-8' in request.accept_charsets
True

 标准化是可行的，所以你可以安全的使用不同形式来执行控制检查:

 >>> 'UTF8' in request.accept_charsets
True
>>> 'de_AT' in request.accept_languages
True

 E-tags 和其他条件 header 也可以被解析:

 >>> request.if_modified_since
datetime.datetime(2009, 2, 20, 10, 10, 25)
>>> request.if_none_match
<ETags '"e51c9-1e5d-46356dc86c640"'>
>>> request.cache_control
<RequestCacheControl 'max-age=0'>
>>> request.cache_control.max_age
0
>>> 'e51c9-1e5d-46356dc86c640' in request.if_none_match
True

 Response

 Response 对象和请求对象相对。他常用于向客户端发送响应数据。实际上，在 WSGI 应用中没有什么比 Response 对象更重要了。

 那么你要做的不是从一个 WSGI 应用中返回 returning 响应对象，而是在 WSGI 应用内部调用一个 WSGI 应用并返回调用的值。

 想象一个标准的 “Hello World” WSGI 应用:

 def application(environ, start_res ponse):
 start_response('200 OK', [('Content-Type', 'text/plain')])
 return ['Hello World!']

 带着一个响应对象的将会是这样的:

 from werkzeug.wrappers import Response

def application(environ, s tart_response):
 response = Response('Hello World!')
 return response(environ, start_response)

 同时,不同与请求对象，响应对象被设计为可修改的。所以你还可以进行如下操作:

 >>> from werkzeug.wrappers import Response
>>> response = Response("Hello World!")
>>> response.headers['content-type']
'text/plain; charset=utf-8'
>>> response.data
'Hello World!'
>>> response.headers['content-length'] = len(response.data)

 你可以用同样的方式修改响应状态，或者仅仅一个状态吗、一条信息:

 >>> response.status
'200 OK'
>>> response.status = '404 Not Found'
>>> response.status_code
404
>>> response.status_code = 400
>>> response.status
'400 BAD REQUEST'

 正如你看到的，状态属性是双向的,你可以同时看到 status 和status_code ，他们相互对应的。

 同时常见的 headers 是公开的，可以作为属性访问或者用方法设置/获取他们:

 >>> response.content_length
12
>>> from datetime import datetime
>>> response.date = datetime(2009, 2, 20, 17, 42, 51)
>>> response.headers['Date']
'Fri, 20 Feb 2009 17:42:51 GMT'

 因为 etags 可以使 weak 或者 strong，所以这里有方法可以设置它:

 >>> response.set_etag("12345-abcd")
>>> response.headers['etag']
'"12345-abcd"'
>>> response.get_etag()
('12345-abcd', False)
>>> response.set_etag("12345-abcd", weak=True)
>>> response.get_etag()
('12345-abcd', True)

 一些有用的 headers 是可变的结构，比如 Content- header 是一个值的集合:

 >>> response.content_language.add('en-us')
>>> response.content_language.add('en')
>>> response.headers['Content-Language']
'en-us, en'

 下面的 header 值同样不是单一的:

 >>> response.headers['Content-Language'] = 'de-AT, de'
>>> response.content_language
HeaderSet(['de-AT', 'de'])

 认证 header 也可以这样设置:

 >>> response.www_authenticate.set_basic("My protected resource")
>>> response.headers['www-authenticate']
'Basic realm="My protected resource"'

 Cookie 同样可以被设置:

 >>> response.set_cookie('name', 'value')
>>> response.headers['Set-Cookie']
'name=value; Path=/'
>>> response.set_cookie('name2', 'value2')

 如果头出现多次，你可以使用 getlist() 方法来获取一个 header 的所有值:

 >>> response.headers.getlist('Set-Cookie')
['name=value; Path=/', 'name2=value2; Path=/']

 最后如果你已经设置了所有条件值，那么你可以根据一个请求作出响应。这意味着，如果一个请求可以确定已经有了一个信息，只发送一个 header 是很节省流量的。尽管如此，你仍然应该至少设置一个 etag (用于比较) 和可以被请求对象的 make_conditional处理的 header 。

 因此，响应是被改进的 (比如状态码改变，移除响应主题，删除实体报头等)。

 Python 3 Notes

 这部分文档特别要求使用 Werkzeug 和 WSGI 的环境为 Python 3。

 警告

 Werkzeug 的 Python 3 支持目前只是实验性的。所以有问题欢迎反馈以帮助我们来改善它。

 WSGI 环境

 Python 3 的 WSGI 环境和 Python 2 有一点不同。如果你使用高级的 API，Werkzeug会帮你隐藏这些区别的大部分。Python 2 和 Pyhton 3 最主要的区别是 Python 2 的WSGI 环境包含字节，而 Python 3 包含一系列不同的编码字符串。

 在 Python 3 有两种不同类型的 WSGI 环境:

 	unicode 字符串限制到 latin1 值。他们经常用于 HTTP headers 信息和其他一些地方。

 	unicode 字符串携带二进制数据，通过 latin1 值来回传递。这在 Werkzeug 通常被成为 “WSGI encoding dance” 。

 Werkzeug 给你提供一些函数自动解决这些问题。所以你不需要关心内部的实现。下面的函数和类可以用来读取 WSGI 环境信息:

 	
 get_current_url()

 	
 get_host()

 	
 get_script_name()

 	
 get_path_info()

 	
 get_query_string()

 	
 EnvironHeaders()

 不推荐在 Python 3 中创造和修改 WSGI 环境除非确保能够正确解码。在 Werkzeug 中所有高级 API 接口能正确实现编码和解码。

 URLs

 在 Python 3 中 Werkzeug 的 URL 为 unicode 字符串。所有的解析函数一般会提供操作字节码功能。在某些情况，URLs 处理函数允许字符集不改变返回一个字节对象。在内部 Werkzeug 正尽可能统一 URIs 和 IRIs。

 清理 Request

 Python 3 和 PyPy 在上传文件时，需要确保关闭 Request 对象。这要妥善关闭由多重解析创建的临时文件。你可以使用 close() 方法。

 除了请求对象还有上下文管理需要关闭，但是上下文管理可以自动关闭。

 Debugging Applications

 Depending on the WSGI gateway/server, exceptions are handled differently.But most of the time, exceptions go to stderr or the error log.

 Since this is not the best debugging environment, Werkzeug provides aWSGI middleware that renders nice debugging tracebacks, optionally with anAJAX based debugger (which allows to execute code in the context of thetraceback's frames).

 The interactive debugger however does not work in forking environmentswhich makes it nearly impossible to use on production servers. Also thedebugger allows the execution of arbitrary code which makes it a majorsecurity risk and must never be used on production machines because ofthat.

 Enabling the Debugger

 You can enable the debugger by wrapping the application in aDebuggedApplication middleware. Additionally there areparameters to the run_simple() function to enable it because thisis a common task during development.

 class werkzeug.debug.DebuggedApplication(app, evalex=False, request_key='werkzeug.request', console_path='/console', console_init_func=None, show_hidden_frames=False, lodgeit_url=None)

Enables debugging support for a given application:

 from werkzeug.debug import DebuggedApplication
from myapp import app
app = DebuggedApplication(app, evalex=True)

 The evalex keyword argument allows evaluating expressions in atraceback's frame context.

 0.9 新版功能: The lodgeit_url parameter was deprecated.

 	参数:
 	

 	app – the WSGI application to run debugged.

 	evalex – enable exception evaluation feature (interactivedebugging). This requires a non-forking server.

 	request_key – The key that points to the request object in thsenvironment. This parameter is ignored in currentversions.

 	console_path – the URL for a general purpose console.

 	console_init_func – the function that is executed before startingthe general purpose console. The return valueis used as initial namespace.

 	show_hidden_frames – by default hidden traceback frames are skipped.You can show them by setting this parameterto True.

 Using the Debugger

 Once enabled and an error happens during a request you will see a detailedtraceback instead of a general “internal server error”. If you have theevalex feature enabled you can also get a traceback for every frame inthe traceback by clicking on the console icon.

 Once clicked a console opens where you can execute Python code in:

 Inside the interactive consoles you can execute any kind of Python code.Unlike regular Python consoles the output of the object reprs is coloredand stripped to a reasonable size by default. If the output is longerthan what the console decides to display a small plus sign is added tothe repr and a click will expand the repr.

 To display all variables that are defined in the current frame you canuse the dump() function. You can call it without arguments to get adetailed list of all variables and their values, or with an object asargument to get a detailed list of all the attributes it has.

 Pasting Errors

 If you click on the Traceback title the traceback switches over to a textbased one. The text based one can be pasted to paste.pocoo.org [http://paste.pocoo.org/] with oneclick.

 在服务器运行 WSGI 应用

 这里有一些在服务器运行 WSGI 应用的方式。当你正在开发一个应用，你往往不想在一个成熟服务器上部署和运行，取而代之的是一个轻量服务器。 Werkzeug 就内置了这样一个轻量的服务器。

 在一个服务器上运行 start-myproject.py 最简单的方法如下示例:

 #!/usr/bin/env python
-*- coding: utf-8 -*-

from werkzeug.serving import run_simple
from myproject import make_app

app = make_app(...)
run_simple('localhost', 8080, app, use_reloader=True)

 你可以添加一个 extra_files 关键字参数，一个你想要添加的文件(比如配置文件)列表。

 serving.run_simple(hostname, port, application, use_reloader=False, use_debugger=False, use_evalex=True, extra_files=None, reloader_interval=1, threaded=False, processes=1, request_handler=None, static_files=None, passthrough_errors=False, ssl_context=None)

用 wsgiref 带可选参数 reloader 运行一个应用，通过包裹 wsgiref 来改正多线程 WSGI的默认的错误报告，添加可选的多线程，支持 fork。

 这个函数也有一个命令行接口:

 python -m werkzeug.serving --help

 0.5 新版功能: 通过添加 static_files 简单支持静态文件和 passthrough_errors。

 0.6 新版功能: 支持添加 SSL。

 0.8 新版功能: 添加支持从 certificate 自动加载 SSL 上下文和私钥。file and private key.

 0.9 新版功能: 添加命令行接口。

 	参数:
 	

 	hostname – 应用的服务器。例子: 'localhost'。

 	port – 服务器接口。 例子: 8080

 	application – 要执行的 WSGI 应用。

 	use_reloader – 当模块更改是否自动重启 python 进程？

 	use_debugger – 是否开启 werkzeug 调试?

 	use_evalex – 是否开启异常诊断功能?

 	extra_files – 模块可以加载的件列表。比如配置文件。

 	reloader_interval – 加载的时间间隔。

 	threaded – 每个请求是否被放在一个独立线程?

 	processes – 请求处理线程的最大个数。

 	request_handler – 用于替换默认的可选参数。你可以用一个不同的BaseHTTPRequestHandler子类替换它。

 	static_files – 一个静态文件地址的字典。和 SharedDataMiddleware差不多。它实际上仅仅是在服务器运行前用中间件包裹一个应用。

 	passthrough_errors – 设为 True 关闭错误捕获。这意味着服务可能会因错误而崩溃，但是对于调试钩子很有用 (比如pdb)。

 	ssl_context – 连接的 SSL 上下文。或者一个 OpenSSL 上下文，从(cert_file,pkey_file) 得到的一个元组，服务是 'adhoc' 的则会自动创建一个，如果是 None 则会关闭 SSL(这是默认的)。

 serving.make_ssl_devcert(base_path, host=None, cn=None)

创建一个 SSL 密钥。用于代替 'adhoc' 密钥将会在服务启动的时候创建一个新的证书。他接受一个存放密钥、证书和主机或 CN 的路径。如果主机拥有这个将会使用 CN *.host/CN=host。

 更多信息请看 run_simple()。

 0.9 新版功能.

 	参数:
 	base_path – 证书和密钥的路径。扩展名是 .crt 的文件被添加到证书，扩

 展名为 .key 的文件被添加到密钥。:param host: 主机的名字。这个用于替代 cn。:param cn: 使用 CN。

 Information

 开发服务器不是为了生产环境，它的出现是为了开发方便，在高负载情况下效率是很低的。生产环境部署一个应用请看 Application Deployment 页面。

 虚拟主机

 一些应用有多个子域名，你需要模拟本地。幸运的是 hosts file 文件可以给本机分配多个名字。

 这允许你使用 yourapplication.local 和 api.yourapplication.local (或者其他)代替 localhost 访问本机。

 你可以从下面的地方找到 hosts 文件:

 	Windows
 	%SystemRoot%\system32\drivers\etc\hosts

 	Linux / OS X
 	/etc/hosts

 你可以用你喜欢的文本编辑器打开 hosts 文件，在 localhost 后面加上:

 127.0.0.1 localhost yourapplication.local api.yourapplication.local

 保存之后你应该就可以通过你添加的主机名字访问开发服务器了。你可以使用URL Routing 系统调度”两个”主机或自己解析 request.host 。

 关闭服务

 0.7 新版功能.

 从 Werkzeug 0.7 版本开始，开发服务器允许在一个请求后关闭服务。目前要求你的Python版本在 2.6 以上，同时也只能在开发服务器启用。通过在 WSGI 环境调用'erkzeug.server.shutdown' 来开启 shutdown:

 def shutdown_server(environ):
 if not 'werkzeug.server.shutdown' in environ:
 raise RuntimeError('Not running the development server')
 environ['werkzeug.server.shutdown']()

 故障排除

 在一些支持并配置 ipv6 的操作系统，比如 Linux, OS X 10.4 或更高 和 Windows Vista一些浏览器有时候访问本地服务器很慢，原因有可能是本机被设置为同时支持 ipv4 和ipv6 套接字，一些浏览器会首先尝试 ipv6 协议。

 而目前集成的服务器不能同时支持两种协议。为了更好的可移植性，将会默认支持 ipv4协议。

 注意到解决这个问题有两种方法。如果你不需要ipv6 支持，你可以移除 hosts file 文件中的下面一行:

 ::1 localhost

 另外你也可以关闭浏览器的 ipv6 支持。比如，在火狐浏览器中你可以进入about:config 关闭 network.dns.disableIPv6 。然后，在 werkzeug 0.6.1中不推荐这种做法。

 从 Werkzeug 0.6.1 开始服务器将不再根据操作系统的配置来转换协议。这意味着如果你的浏览器关闭 ipv6 支持，而你的操作系统更倾向于 ipv6，你将连接不上服务器。这种情况下，你可以移除本机 hosts 文件的 ::1 或者明确的用一个 ipv4 协议地址(127.0.0.1)绑定主机名。

 SSL

 0.6 新版功能.

 内置服务器支持测试目的的 SSL，如果提供一个 SSL上下文，他将会被使用，这意味着服务器可以在 HTTP 或 HTTPS 模式下运行，但不可同时在两种模式下运行。这个功能需要Python OpenSSL 库。

 快速开始

 在werkzeug开发过程中使用 SSL 最简单的方法就是通过 werkzeug 生成一个 SSL 证书和私钥存起来。对于证书你需要提供生成证书的服务器名或一个 CN.

 	
 生成一个 SSL 密钥并存放在某个地方:

 >>> from werkzeug.serving import make_ssl_devcert
>>> make_ssl_devcert('/path/to/the/key', host='localhost')
('/path/to/the/key.crt', '/path/to/the/key.key')

 	
 现在这个元组会当作 ssl_context 传入 run_simple() 方法:

 run_simple(‘localhost', 4000, application,ssl_context=(‘/path/to/the/key.crt',

‘/path/to/the/key.key'))

 现在当你通过浏览器访问 web 应用的时候将需要验证证书。

 手动加载上下文

 你也可以通过代码创建一个上下文代替使用 ssl_context 元组。这个方法是更好控制的:

 from OpenSSL import SSL
ctx = SSL.Context(SSL.SSLv23_METHOD)
ctx.use_privatekey_file('ssl.key')
ctx.use_certificate_file('ssl.cert')
run_simple('localhost', 4000, application, ssl_context=ctx)

 生成证书

 使用 openssl 工具代替 make_ssl_devcert() 预先创建一个证书。这要求你的系统安装 openssl 命令行工具:

 $ openssl genrsa 1024 > ssl.key
$ openssl req -new -x509 -nodes -sha1 -days 365 -key ssl.key > ssl.cert

 Adhoc 证书

 开启 SSL 最简单的方法就是用 adhoc 模式运行服务。在这个例子中 Werkzeug 将会为你创建一个证书:

 run_simple('localhost', 4000, application,
 ssl_context='adhoc')

 当然这种方法也有缺点，那就是每次重载服务你都需要验证证书。不推荐 Adhoc 证书因为现在的浏览器因为安全原因对他们支持并不好。

 单元测试

 也许你经常需要对你的的应用进行单元测试或者仅仅检查 Python session 的输出。理论上讲这是很简单的，你可以伪造一个环境，通过一个假的 start_response 遍历应用，但是这里还有一个更好的方法。

 Diving In

 Werkzeug 提供了一个 Client 对象，可以传入一个 WSGI 应用(可选传入一个 response),通过这个你可以向应用发出一个虚拟请求。

 用三个参数调用一个 response: 应用迭代器、状态和一个 headers。默认 response 返回一个元组。因为 response 对象有相同的签名，所以你可以像使用 response 一样使用他们。通过这样一种方式进行测试功能是很理想的。

 >>> from werkzeug.test import Client
>>> from werkzeug.testapp import test_app
>>> from werkzeug.wrappers import BaseResponse
>>> c = Client(test_app, BaseResponse)
>>> resp = c.get('/')
>>> resp.status_code
200
>>> resp.headers
Headers([('Content-Type', 'text/html; charset=utf-8'), ('Content-Length', '8339')])
>>> resp.data.splitlines()[0]
'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"'

 或默认没有 response:

 >>> c = Client(test_app)
>>> app_iter, status, headers = c.get('/')
>>> status
'200 OK'
>>> headers
[('Content-Type', 'text/html; charset=utf-8'), ('Content-Length', '8339')]
>>> ''.join(app_iter).splitlines()[0]
'<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"'

 环境搭建

 0.5 新版功能.

 交互测试应用 最简单的方法是使用 EnvironBuilder 类。它可以创建标准 WSGI环境和请求对象。

 下面的例子创建了一个上传文件和文件表单的 WSGI 环境:

 >>> from werkzeug.test import EnvironBuilder
>>> from StringIO import StringIO
>>> builder = EnvironBuilder(method='POST', data={'foo': 'this is some text',
... 'file': (StringIO('my file contents'), 'test.txt')})
>>> env = builder.get_environ()

 返回的环境是一个新的 WSGI 环境，可用于进一步的处理:

 >>> from werkzeug.wrappers import Request
>>> req = Request(env)
>>> req.form['foo']
u'this is some text'
>>> req.files['file']
<FileStorage: u'test.txt' ('text/plain')>
>>> req.files['file'].read()
'my file contents'

 当你将一个字典传给构造函数数据， EnvironBuilder 会自动自动找出内容类型。如过你传的似乎一个字符串或者输入字符流，你不得不自己来做这些处理。

 默认地它将会尝试使用 application/x-www-form-urlencoded ，如果文件被上传则只使用 multipart/form-data :

 >>> builder = EnvironBuilder(method='POST', data={'foo': 'bar'})
>>> builder.content_type
'application/x-www-form-urlencoded'
>>> builder.files['foo'] = StringIO('contents')
>>> builder.content_type
'multipart/form-data'

 如果传入一个字符串(或一个输入流)，你必须自己指定内容的类型:

 >>> builder = EnvironBuilder(method='POST', data='{"json": "this is"}')
>>> builder.content_type
>>> builder.content_type = 'application/json'

 测试 API

 class tests.EnvironBuilder(path='/', base_url=None, query_string=None, method='GET', input_stream=None, content_type=None, content_length=None, errors_stream=None, multithread=False, multiprocess=False, run_once=False, headers=None, data=None, environ_base=None, environ_overrides=None, charset='utf-8')

这个类为了测试可以方便的创建一个 WSGI 环境。他可以从任意数据快速创建 WSGI环境或请求对象。

 这个类的签名也可用于 Werkzeug 的其他地方(create_environ(), BaseResponse.from_values(), Client.open())。因为大多数功能只可通过构造函数实现。

 文件和表格数据可以被各自的 form 和 files 属性独立处理。但是以相同的参数传入构造函数:data。

 data 可以是这些值:

 	a str: 如果一个字符串被转化为一个 input_stream，将会设置content_length ，你还要提供一个 content_type。

 	
 a dict: 如果是一个字典，键将是一个字符串，值是以下对象:

 	一个 file-like 对象。他们会被自动转化成 FileStorage 对象。

 	一个元组。 add_file() 方法调用元组项目作为参数。

 0.6 新版功能: path 和 base_url 现在是 unicode 字符串，它可以使用 iri_to_uri()函数编码。

 	参数:
 	

 	path – 请求的路径。在 WSGI 环境它等效于 PATH_INFO。如果 query_string没有被定义，这里有一个问题要注意，path 后面的将被当作 query string。

 	base_url – base URL 是一个用于提取 WSGI URL ，主机 (服务器名 + 服务端口)和根脚本的 (SCRIPT_NAME) 的 URL。

 	query_string – URL 参数可选的字符串和字典。

 	method – HTTP 方法，默认为 GET。

 	input_stream – 一个可选输入流。不要指定它，一旦输入流被设定，你将不能更改 args 属性和 files 属性除非你将input_stream 重新设为 None 。

 	content_type – 请求的内容类型。在0.5 版本当你指定文件和表格数据的时候不必必须指定他。

 	content_length – 请求的内容长度。当通过 data 提供数据不必必须指定他。

 	errors_stream – 用于 wsgi.errors 可选的错误流。默认为 stderr。

 	multithread – 控制 wsgi.multithread。默认为 False。

 	multiprocess – 控制 wsgi.multiprocess。默认为 False。

 	run_once – 控制 wsgi.run_once。默认为 False。

 	headers – headers 一个可选的列表或者 Headers 对象。

 	data – 一个字符串或者表单数据字典。看上边的 explanation。

 	environ_base – 一个可选的默认环境。

 	environ_overrides – 一个可选的覆盖环境。

 	charset – 编码 unicode 数据的字符集。

 path

应用的地址。(又叫 PATH_INFO)

 charset

编码 unicode 数据的字符集。

 headers

一个带着请求 headers的 Headers 对象。

 errors_stream

用于 wsgi.errors 流的错误流。

 multithread

wsgi.multithread 的值。

 multiprocess

wsgi.multiprocess 的值。

 environ_base

新创建环境的基本字典。

 environ_overrides

用于覆盖生成环境的带值字典。

 input_stream

可选选项输入流。这个和 form / files 是相互独立的。同时如果请求方法不是 POST / PUT 或其他类似方法，不要提供输入流。

 args

URL 参数是 MultiDict。

 base_url

base URL 是一个用于提取 WSGI URL ，主机(服务器名 + 服务器端口) 和根脚本 (SCRIPT_NAME) 的 URL

 close()

关闭所有文件。如果把 file 对象放入 files 字典，你可以通过调用这个方法自动关闭他们。

 content_length

整数的长度，反射给 headers。如果你设置了 files 或 form属性不要设置这个参数。

 content_type

请求的内容类型。反射给 headers。如果你设置了 files 和form 属性就不能设置内容类型。

 get_environ()

返回内置环境。

 get_request(cls=None)

返回一个带数据的请求。如果没有指定请求类，将会是用 request_class。

 	参数:
 	cls – 使用 request 包装。

 input_stream

一个可选的输入流。如果你设置它，将会清空 form 和 files。

 query_string

查询字符串。如果你设置它， args 属性将不再可用。

 request_class

默认的请求类 get_request()。

 BaseRequest 的别名

 server_name

服务器名 (只读， 使用 host 设置)

 server_port

整型服务器接口(只读，使用 host 设置)

 server_protocol = 'HTTP/1.1'

服务器使用协议。默认为 HTTP/1.1

 wsgi_version = (1, 0)

使用的 WSGI 版本。默认为(1, 0)。

 class tests.Client(application, response_wrapper=None, use_cookies=True, allow_subdomain_redirects=False)

这个类允许你发送请求给一个包裹的应用。

 响应可以是一个类或者一个有三个参数工厂函数: app_iter, status and headers。默认的响应仅仅是一个元组。

 例如:

 class ClientResponse(BaseResponse):
 ...

 client = Client(MyApplication(), response_wrapper=ClientResponse)

 use_cookies 参数默认是开启的，无论 cookies 是否被存储，他都会和请求一起传输。但是你也可以关闭 cookie。

 如果你想要请求应用的子域名，你可以设置 allow_subdomain_redirects 为 True ，如果为 False ,将不允许外部重定向。

 0.5 新版功能: use_cookies 是在这个版本添加的。老版本不提供内置 cookie 支持。

 open(options)

和 EnvironBuilder 一样的参数还有一些补充: 你可以提供一个EnvironBuilder 类或一个 WSGI 环境代替 EnvironBuilder类作为参数。同时有两个可选参数 (as_tuple, buffered)，可以改变返回值的类型或应用执行方法。

 在 0.5 版更改: 如果为 data 参数提供一个带文件的字典，那么内容类型必须为 content_type而不是 mimetype。这个改变是为了和 werkzeug.FileWrapper 保持一致。

 follow_redirects 参数被添加到 open().

 Additional parameters:

 	参数:
 	

 	as_tuple – 在表格中返回一个元组 (environ,result)。

 	buffered – 把这个设为 True 来缓冲区运行应用。这个将会为你自动关闭所有应用。

 	follow_redirects – 如果接下来 Client HTTP 重定向，这个将会设为 True。

 get(options)

和 open 相似，但是方法强制执行 GET。

 post(options)

和 open 相似，但是方法强制执行 POST。

 put(options)

和 open 相似，但是方法强制执行 PUT。

 delete(options)

和 open 相似，但是方法强制执行 DELETE。

 head(options)

和 open 相似，但是方法强制执行 HEAD。

 tests.create_environ([options])

根据传入的值创建一个 WSGI 环境。第一个参数应该是请求的路径，默认为 ‘/'。另一个参数或者是一个绝对路径(在这个例子中主机是 localhost:80)或请求的完整路径，端口和脚本路径。

 它和 EnvironBuilder 构造函数接受相同的参数。

 在 0.5 版更改: 这个函数现在是一个 EnvironBuilder 包裹，在 0.5 版本被添加。需要 headers, environ_base, environ_overrides 和 charset 参数。

 tests.run_wsgi_app(app, environ, buffered=False)

返回一个应用输出的元组形式 (app_iter, status, headers)。如果你通过应用返回一个迭代器他将会工作的更好。

 有时应用可以使用 start_ewsponse 返回的 write() 回调函数。这将会自动解决边界情况。如果没有得到预期输出，你应该将 buffered 设为 True 执行buffering

 如果传入一个错误的应用，这个函数将会是未定义的。不要给这个函数传入一个不标准的 WSGI 应用。

 	参数:
 	

 	app – 要执行的应用。

 	buffered – 设为 True 来执行 buffering.

 	返回:
 	
 元组形式 (app_iter,status,headers)

 Request / Response Objects

 The request and response objects wrap the WSGI environment or the returnvalue from a WSGI application so that it is another WSGI application(wraps a whole application).

 How they Work

 Your WSGI application is always passed two arguments. The WSGI “environment”and the WSGI start_response function that is used to start the responsephase. The Request class wraps the environ for easier access torequest variables (form data, request headers etc.).

 The Response on the other hand is a standard WSGI application thatyou can create. The simple hello world in Werkzeug looks like this:

 from werkzeug.wrappers import Response
application = Response('Hello World!')

 To make it more useful you can replace it with a function and do someprocessing:

 from werkzeug.wrappers import Request, Response

def application(environ, start_response):
 request = Request(environ)
 response = Response("Hello %s!" % request.args.get('name', 'World!'))
 return response(environ, start_response)

 Because this is a very common task the Request object providesa helper for that. The above code can be rewritten like this:

 from werkzeug.wrappers import Request, Response

@Request.application
def application(request):
 return Response("Hello %s!" % request.args.get('name', 'World!'))

 The application is still a valid WSGI application that accepts theenvironment and start_response callable.

 Mutability and Reusability of Wrappers

 The implementation of the Werkzeug request and response objects are tryingto guard you from common pitfalls by disallowing certain things as much aspossible. This serves two purposes: high performance and avoiding ofpitfalls.

 For the request object the following rules apply:

 	The request object is immutable. Modifications are not supported bydefault, you may however replace the immutable attributes with mutableattributes if you need to modify it.

 	The request object may be shared in the same thread, but is not threadsafe itself. If you need to access it from multiple threads, uselocks around calls.

 	It's not possible to pickle the request object.

 For the response object the following rules apply:

 	The response object is mutable

 	The response object can be pickled or copied after freeze() wascalled.

 	Since Werkzeug 0.6 it's safe to use the same response object formultiple WSGI responses.

 	It's possible to create copies using copy.deepcopy.

 Base Wrappers

 These objects implement a common set of operations. They are missing fancyaddon functionality like user agent parsing or etag handling. These featuresare available by mixing in various mixin classes or using Request andResponse.

 class werkzeug.wrappers.BaseRequest(environ, populate_request=True, shallow=False)

Very basic request object. This does not implement advanced stuff likeentity tag parsing or cache controls. The request object is created withthe WSGI environment as first argument and will add itself to the WSGIenvironment as 'werkzeug.request' unless it's created withpopulate_request set to False.

 There are a couple of mixins available that add additional functionalityto the request object, there is also a class called Request whichsubclasses BaseRequest and all the important mixins.

 It's a good idea to create a custom subclass of the BaseRequestand add missing functionality either via mixins or direct implementation.Here an example for such subclasses:

 from werkzeug.wrappers import BaseRequest, ETagRequestMixin

class Request(BaseRequest, ETagRequestMixin):
 pass

 Request objects are read only. As of 0.5 modifications are notallowed in any place. Unlike the lower level parsing functions therequest object will use immutable objects everywhere possible.

 Per default the request object will assume all the text data is utf-8encoded. Please refer to the unicode chapter for moredetails about customizing the behavior.

 Per default the request object will be added to the WSGIenvironment as werkzeug.request to support the debugging system.If you don't want that, set populate_request to False.

 If shallow is True the environment is initialized as shallowobject around the environ. Every operation that would modify theenviron in any way (such as consuming form data) raises an exceptionunless the shallow attribute is explicitly set to False. Thisis useful for middlewares where you don't want to consume the formdata by accident. A shallow request is not populated to the WSGIenvironment.

 在 0.5 版更改: read-only mode was enforced by using immutables classes for alldata.

 environ

The WSGI environment that the request object uses for data retrival.

 shallow

True if this request object is shallow (does not modify environ),False otherwise.

 _get_file_stream(total_content_length, content_type, filename=None, content_length=None)

Called to get a stream for the file upload.

 This must provide a file-like class with read(), readline()and seek() methods that is both writeable and readable.

 The default implementation returns a temporary file if the totalcontent length is higher than 500KB. Because many browsers do notprovide a content length for the files only the total contentlength matters.

 	参数:
 	

 	total_content_length – the total content length of all thedata in the request combined. This valueis guaranteed to be there.

 	content_type – the mimetype of the uploaded file.

 	filename – the filename of the uploaded file. May be None.

 	content_length – the length of this file. This value is usuallynot provided because webbrowsers do not providethis value.

 access_route

If a forwarded header exists this is a list of all ip addressesfrom the client ip to the last proxy server.

 classmethod application(f)

Decorate a function as responder that accepts the request as firstargument. This works like the responder() decorator but thefunction is passed the request object as first argument and therequest object will be closed automatically:

 @Request.application
def my_wsgi_app(request):
 return Response('Hello World!')

 	参数:
 	f – the WSGI callable to decorate

 	返回:
 	a new WSGI callable

 args

The parsed URL parameters. By default anImmutableMultiDictis returned from this function. This can be changed by settingparameter_storage_class to a different type. This mightbe necessary if the order of the form data is important.

 base_url

Like url but without the querystring

 charset = 'utf-8'

the charset for the request, defaults to utf-8

 close()

Closes associated resources of this request object. Thiscloses all file handles explicitly. You can also use the requestobject in a with statement with will automatically close it.

 0.9 新版功能.

 cookies

Read only access to the retrieved cookie values as dictionary.

 dict_storage_class

the type to be used for dict values from the incoming WSGI environment.By default anImmutableTypeConversionDict is used(for example for cookies).

 0.6 新版功能.

 ImmutableTypeConversionDict 的别名

 disable_data_descriptor = False

Indicates weather the data descriptor should be allowed to read andbuffer up the input stream. By default it's enabled.

 0.9 新版功能.

 encoding_errors = 'replace'

the error handling procedure for errors, defaults to ‘replace'

 files
MultiDict object containingall uploaded files. Each key in files is the name from the. Each value in files is aWerkzeug FileStorage object.

 Note that files will only contain data if the request method wasPOST, PUT or PATCH and the

 that posted to the request hadenctype="multipart/form-data". It will be empty otherwise.
See the MultiDict /FileStorage documentation formore details about the used data structure.

form

The form parameters. By default anImmutableMultiDictis returned from this function. This can be changed by settingparameter_storage_class to a different type. This mightbe necessary if the order of the form data is important.

form_data_parser_class

The form data parser that shoud be used. Can be replaced to customizethe form date parsing.

FormDataParser 的别名

classmethod from_values(args, kwargs*)

Create a new request object based on the values provided. Ifenviron is given missing values are filled from there. This method isuseful for small scripts when you need to simulate a request from an URL.Do not use this method for unittesting, there is a full featured clientobject (Client) that allows to create multipart requests,support for cookies etc.

This accepts the same options as theEnvironBuilder.

在 0.5 版更改: This method now accepts the same arguments asEnvironBuilder. Because of this theenviron parameter is now called environ_overrides.

	返回:	request object

full_path

Requested path as unicode, including the query string.

get_data(cache=True, as_text=False, parse_form_data=False)

This reads the buffered incoming data from the client into onebytestring. By default this is cached but that behavior can bechanged by setting cache to False.

Usually it's a bad idea to call this method without checking thecontent length first as a client could send dozens of megabytes or moreto cause memory problems on the server.

Note that if the form data was already parsed this method will notreturn anything as form data parsing does not cache the data likethis method does. To implicitly invoke form data parsing functionset parse_form_data to True. When this is done the return valueof this method will be an empty string if the form parser handlesthe data. This generally is not necessary as if the whole data iscached (which is the default) the form parser will used the cacheddata to parse the form data. Please be generally aware of checkingthe content length first in any case before calling this methodto avoid exhausting server memory.

If as_text is set to True the return value will be a decodedunicode string.

0.9 新版功能.

headers

The headers from the WSGI environ as immutableEnvironHeaders.

host

Just the host including the port if available.

host_url

Just the host with scheme.

is_multiprocess

boolean that is True if the application is served bya WSGI server that spawns multiple processes.

is_multithread

boolean that is True if the application is served bya multithreaded WSGI server.

is_run_once

boolean that is True if the application will be executed onlyonce in a process lifetime. This is the case for CGI for example,but it's not guaranteed that the exeuction only happens one time.

is_secure

True if the request is secure.

is_xhr

True if the request was triggered via a JavaScript XMLHttpRequest.This only works with libraries that support the X-Requested-Withheader and set it to “XMLHttpRequest”. Libraries that do that areprototype, jQuery and Mochikit and probably some more.

list_storage_class

the type to be used for list values from the incoming WSGI environment.By default an ImmutableList is used(for example for access_list).

0.6 新版功能.

ImmutableList 的别名

make_form_data_parser()

Creates the form data parser. Instanciates theform_data_parser_class with some parameters.

0.8 新版功能.

max_content_length = None

the maximum content length. This is forwarded to the form dataparsing function (parse_form_data()). When set and theform or files attribute is accessed and theparsing fails because more than the specified value is transmitteda RequestEntityTooLarge exception is raised.

Have a look at Dealing with Request Data for more details.

0.5 新版功能.

max_form_memory_size = None

the maximum form field size. This is forwarded to the form dataparsing function (parse_form_data()). When set and theform or files attribute is accessed and thedata in memory for post data is longer than the specified value aRequestEntityTooLarge exception is raised.

Have a look at Dealing with Request Data for more details.

0.5 新版功能.

method

The transmission method. (For example 'GET' or 'POST').

parameter_storage_class

the class to use for args and form. The default is anImmutableMultiDict which supportsmultiple values per key. alternatively it makes sense to use anImmutableOrderedMultiDict whichpreserves order or a ImmutableDictwhich is the fastest but only remembers the last key. It is alsopossible to use mutable structures, but this is not recommended.

0.6 新版功能.

ImmutableMultiDict 的别名

path

Requested path as unicode. This works a bit like the regular pathinfo in the WSGI environment but will always include a leading slash,even if the URL root is accessed.

query_string

The URL parameters as raw bytestring.

remote_addr

The remote address of the client.

remote_user

If the server supports user authentication, and the script isprotected, this attribute contains the username the user hasauthenticated as.

scheme

URL scheme (http or https).

0.7 新版功能.

script_root

The root path of the script without the trailing slash.

stream

The stream to read incoming data from. Unlike input_streamthis stream is properly guarded that you can't accidentally read pastthe length of the input. Werkzeug will internally always refer tothis stream to read data which makes it possible to wrap thisobject with a stream that does filtering.

在 0.9 版更改: This stream is now always available but might be consumed by theform parser later on. Previously the stream was only set if noparsing happened.

trusted_hosts = None

Optionally a list of hosts that is trusted by this request. By defaultall hosts are trusted which means that whatever the client sends thehost is will be accepted. This is the recommended setup as a webservershould manually be set up to not route invalid hosts to the application.

0.9 新版功能.

url

The reconstructed current URL

url_charset

The charset that is assumed for URLs. Defaults to the valueof charset.

0.6 新版功能.

url_root

The full URL root (with hostname), this is the application root.

values

Combined multi dict for args and form.

want_form_data_parsed

Returns True if the request method carries content. As ofWerkzeug 0.9 this will be the case if a content type is transmitted.

0.8 新版功能.

class werkzeug.wrappers.BaseResponse(response=None, status=None, headers=None, mimetype=None, content_type=None, direct_passthrough=False)

Base response class. The most important fact about a response objectis that it's a regular WSGI application. It's initialized with a coupleof response parameters (headers, body, status code etc.) and will start avalid WSGI response when called with the environ and start responsecallable.

Because it's a WSGI application itself processing usually ends before theactual response is sent to the server. This helps debugging systemsbecause they can catch all the exceptions before responses are started.

Here a small example WSGI application that takes advantage of theresponse objects:

from werkzeug.wrappers import BaseResponse as Response

def index():
 return Response('Index page')

def application(environ, start_response):
 path = environ.get('PATH_INFO') or '/'
 if path == '/':
 response = index()
 else:
 response = Response('Not Found', status=404)
 return response(environ, start_response)

Like BaseRequest which object is lacking a lot of functionalityimplemented in mixins. This gives you a better control about the actualAPI of your response objects, so you can create subclasses and add customfunctionality. A full featured response object is available asResponse which implements a couple of useful mixins.

To enforce a new type of already existing responses you can use theforce_type() method. This is useful if you're working with differentsubclasses of response objects and you want to post process them with aknow interface.

Per default the request object will assume all the text data is utf-8encoded. Please refer to the unicode chapter for moredetails about customizing the behavior.

Response can be any kind of iterable or string. If it's a string it'sconsidered being an iterable with one item which is the string passed.Headers can be a list of tuples or aHeaders object.

Special note for mimetype and content_type: For most mime typesmimetype and content_type work the same, the difference affectsonly ‘text' mimetypes. If the mimetype passed with mimetype is amimetype starting with text/, the charset parameter of the responseobject is appended to it. In contrast the content_type parameter isalways added as header unmodified.

在 0.5 版更改: the direct_passthrough parameter was added.

	参数:		response – a string or response iterable.
	status – a string with a status or an integer with the status code.
	headers – a list of headers or aHeaders object.
	mimetype – the mimetype for the request. See notice above.
	content_type – the content type for the request. See notice above.
	direct_passthrough – if set to True iter_encoded() is notcalled before iteration which makes itpossible to pass special iterators thoughunchanged (see wrap_file() for moredetails.)

response

The application iterator. If constructed from a string this will be alist, otherwise the object provided as application iterator. (The firstargument passed to BaseResponse)

headers

A Headers object representing the response headers.

status_code

The response status as integer.

direct_passthrough

If direct_passthrough=True was passed to the response object or ifthis attribute was set to True before using the response object asWSGI application, the wrapped iterator is returned unchanged. Thismakes it possible to pass a special wsgi.file_wrapper to the responseobject. See wrap_file() for more details.

call(environ, start_response)

Process this response as WSGI application.

	参数:		environ – the WSGI environment.
	start_response – the response callable provided by the WSGIserver.

	返回:	an application iterator

_ensure_sequence(mutable=False)

This method can be called by methods that need a sequence. Ifmutable is true, it will also ensure that the response sequenceis a standard Python list.

0.6 新版功能.

autocorrect_location_header = True

Should this response object correct the location header to be RFCconformant? This is true by default.

0.8 新版功能.

automatically_set_content_length = True

Should this response object automatically set the content-lengthheader if possible? This is true by default.

0.8 新版功能.

calculate_content_length()

Returns the content length if available or None otherwise.

call_on_close(func)

Adds a function to the internal list of functions that shouldbe called as part of closing down the response. Since 0.7 thisfunction also returns the function that was passed so that thiscan be used as a decorator.

0.6 新版功能.

charset = 'utf-8'

the charset of the response.

close()

Close the wrapped response if possible. You can also use the objectin a with statement which will automatically close it.

0.9 新版功能: Can now be used in a with statement.

data

A descriptor that calls get_data() and set_data(). Thisshould not be used and will eventually get deprecated.

default_mimetype = 'text/plain'

the default mimetype if none is provided.

default_status = 200

the default status if none is provided.

delete_cookie(key, path='/', domain=None)

Delete a cookie. Fails silently if key doesn't exist.

	参数:		key – the key (name) of the cookie to be deleted.
	path – if the cookie that should be deleted was limited to apath, the path has to be defined here.
	domain – if the cookie that should be deleted was limited to adomain, that domain has to be defined here.

classmethod force_type(response, environ=None)

Enforce that the WSGI response is a response object of the currenttype. Werkzeug will use the BaseResponse internally in manysituations like the exceptions. If you call get_response() on anexception you will get back a regular BaseResponse object, evenif you are using a custom subclass.

This method can enforce a given response type, and it will alsoconvert arbitrary WSGI callables into response objects if an environis provided:

convert a Werkzeug response object into an instance of the
MyResponseClass subclass.
response = MyResponseClass.force_type(response)

convert any WSGI application into a response object
response = MyResponseClass.force_type(response, environ)

This is especially useful if you want to post-process responses inthe main dispatcher and use functionality provided by your subclass.

Keep in mind that this will modify response objects in place ifpossible!

	参数:		response – a response object or wsgi application.
	environ – a WSGI environment object.

	返回:	a response object.

freeze()

Call this method if you want to make your response object ready forbeing pickled. This buffers the generator if there is one. It willalso set the Content-Length header to the length of the body.

在 0.6 版更改: The Content-Length header is now set.

classmethod from_app(app, environ, buffered=False)

Create a new response object from an application output. Thisworks best if you pass it an application that returns a generator allthe time. Sometimes applications may use the write() callablereturned by the start_response function. This tries to resolve suchedge cases automatically. But if you don't get the expected outputyou should set buffered to True which enforces buffering.

	参数:		app – the WSGI application to execute.
	environ – the WSGI environment to execute against.
	buffered – set to True to enforce buffering.

	返回:	a response object.

get_app_iter(environ)

Returns the application iterator for the given environ. Dependingon the request method and the current status code the return valuemight be an empty response rather than the one from the response.

If the request method is HEAD or the status code is in a rangewhere the HTTP specification requires an empty response, an emptyiterable is returned.

0.6 新版功能.

	参数:	environ – the WSGI environment of the request.
	返回:	a response iterable.

get_data(as_text=False)

The string representation of the request body. Whenever you callthis property the request iterable is encoded and flattened. Thiscan lead to unwanted behavior if you stream big data.

This behavior can be disabled by settingimplicit_sequence_conversion to False.

If as_text is set to True the return value will be a decodedunicode string.

0.9 新版功能.

get_wsgi_headers(environ)

This is automatically called right before the response is startedand returns headers modified for the given environment. It returns acopy of the headers from the response with some modifications appliedif necessary.

For example the location header (if present) is joined with the rootURL of the environment. Also the content length is automatically setto zero here for certain status codes.

在 0.6 版更改: Previously that function was called fix_headers and modifiedthe response object in place. Also since 0.6, IRIs in locationand content-location headers are handled properly.

Also starting with 0.6, Werkzeug will attempt to set the contentlength if it is able to figure it out on its own. This is thecase if all the strings in the response iterable are alreadyencoded and the iterable is buffered.

	参数:	environ – the WSGI environment of the request.
	返回:	returns a new Headersobject.

get_wsgi_response(environ)

Returns the final WSGI response as tuple. The first item inthe tuple is the application iterator, the second the status andthe third the list of headers. The response returned is createdspecially for the given environment. For example if the requestmethod in the WSGI environment is 'HEAD' the response willbe empty and only the headers and status code will be present.

0.6 新版功能.

	参数:	environ – the WSGI environment of the request.
	返回:	an (app_iter,status,headers) tuple.

implicit_sequence_conversion = True

if set to False accessing properties on the response object willnot try to consume the response iterator and convert it into a list.

0.6.2 新版功能: That attribute was previously called implicit_seqence_conversion.(Notice the typo). If you did use this feature, you have to adaptyour code to the name change.

is_sequence

If the iterator is buffered, this property will be True. Aresponse object will consider an iterator to be buffered if theresponse attribute is a list or tuple.

0.6 新版功能.

is_streamed

If the response is streamed (the response is not an iterable witha length information) this property is True. In this case streamedmeans that there is no information about the number of iterations.This is usually True if a generator is passed to the response object.

This is useful for checking before applying some sort of postfiltering that should not take place for streamed responses.

iter_encoded()

Iter the response encoded with the encoding of the response.If the response object is invoked as WSGI application the returnvalue of this method is used as application iterator unlessdirect_passthrough was activated.

make_sequence()

Converts the response iterator in a list. By default this happensautomatically if required. If implicit_sequence_conversion isdisabled, this method is not automatically called and some propertiesmight raise exceptions. This also encodes all the items.

0.6 新版功能.

set_cookie(key, value='', max_age=None, expires=None, path='/', domain=None, secure=None, httponly=False)

Sets a cookie. The parameters are the same as in the cookie Morselobject in the Python standard library but it accepts unicode data, too.

	参数:		key – the key (name) of the cookie to be set.
	value – the value of the cookie.
	max_age – should be a number of seconds, or None (default) ifthe cookie should last only as long as the client'sbrowser session.
	expires – should be a datetime object or UNIX timestamp.
	domain – if you want to set a cross-domain cookie. For example,domain=".example.com" will set a cookie that isreadable by the domain www.example.com,foo.example.com etc. Otherwise, a cookie will onlybe readable by the domain that set it.
	path – limits the cookie to a given path, per default it willspan the whole domain.

set_data(value)

Sets a new string as response. The value set must either by aunicode or bytestring. If a unicode string is set it's encodedautomatically to the charset of the response (utf-8 by default).

0.9 新版功能.

status

The HTTP Status code

status_code

The HTTP Status code as number

Mixin Classes

Werkzeug also provides helper mixins for various HTTP related functionalitysuch as etags, cache control, user agents etc. When subclassing you canmix those classes in to extend the functionality of the BaseRequestor BaseResponse object. Here a small example for a request objectthat parses accept headers:

from werkzeug.wrappers import AcceptMixin, BaseRequest

class Request(BaseRequest, AcceptMixin):
 pass

The Request and Response classes subclass the BaseRequestand BaseResponse classes and implement all the mixins Werkzeug provides:

class werkzeug.wrappers.Request(environ, populate_request=True, shallow=False)

Full featured request object implementing the following mixins:

	AcceptMixin for accept header parsing
	ETagRequestMixin for etag and cache control handling
	UserAgentMixin for user agent introspection
	AuthorizationMixin for http auth handling
	CommonRequestDescriptorsMixin for common headers

class werkzeug.wrappers.Response(response=None, status=None, headers=None, mimetype=None, content_type=None, direct_passthrough=False)

Full featured response object implementing the following mixins:

	ETagResponseMixin for etag and cache control handling
	ResponseStreamMixin to add support for the stream property
	CommonResponseDescriptorsMixin for various HTTP descriptors
	WWWAuthenticateMixin for HTTP authentication support

class werkzeug.wrappers.AcceptMixin

A mixin for classes with an environ attributeto get all the HTTP accept headers asAccept objects (or subclassesthereof).

accept_charsets

List of charsets this client supports asCharsetAccept object.

accept_encodings

List of encodings this client accepts. Encodings in a HTTP termare compression encodings such as gzip. For charsets have a look ataccept_charset.

accept_languages

List of languages this client accepts asLanguageAccept object.

accept_mimetypes

List of mimetypes this client supports asMIMEAccept object.

class werkzeug.wrappers.AuthorizationMixin

Adds an authorization property that represents the parsedvalue of the Authorization header asAuthorization object.

authorization

The Authorization object in parsed form.

class werkzeug.wrappers.ETagRequestMixin

Add entity tag and cache descriptors to a request object or object witha WSGI environment available as environ. This notonly provides access to etags but also to the cache control header.

cache_control

A RequestCacheControl objectfor the incoming cache control headers.

if_match

An object containing all the etags in the If-Match header.

	返回类型:	ETags

if_modified_since

The parsed If-Modified-Since header as datetime object.

if_none_match

An object containing all the etags in the If-None-Match header.

	返回类型:	ETags

if_range

The parsed If-Range header.

0.7 新版功能.

	返回类型:	IfRange

if_unmodified_since

The parsed If-Unmodified-Since header as datetime object.

range

The parsed Range header.

0.7 新版功能.

	返回类型:	Range

class werkzeug.wrappers.ETagResponseMixin

Adds extra functionality to a response object for etag and cachehandling. This mixin requires an object with at least a headersobject that implements a dict like interface similar toHeaders.

If you want the freeze() method to automatically add an etag, youhave to mixin this method before the response base class. The defaultresponse class does not do that.

accept_ranges

The Accept-Ranges header. Even though the name would indicatethat multiple values are supported, it must be one string token only.

The values 'bytes' and 'none' are common.

0.7 新版功能.

add_etag(overwrite=False, weak=False)

Add an etag for the current response if there is none yet.

cache_control

The Cache-Control general-header field is used to specifydirectives that MUST be obeyed by all caching mechanisms along therequest/response chain.

content_range

The Content-Range header asContentRange object. Even if theheader is not set it wil provide such an object for easiermanipulation.

0.7 新版功能.

freeze(no_etag=False)

Call this method if you want to make your response object ready forpickeling. This buffers the generator if there is one. This alsosets the etag unless no_etag is set to True.

get_etag()

Return a tuple in the form (etag,is_weak). If there is noETag the return value is (None,None).

make_conditional(request_or_environ)

Make the response conditional to the request. This method worksbest if an etag was defined for the response already. The add_etagmethod can be used to do that. If called without etag just the dateheader is set.

This does nothing if the request method in the request or environ isanything but GET or HEAD.

It does not remove the body of the response because that's somethingthe call() function does for us automatically.

Returns self so that you can do returnresp.make_conditional(req)but modifies the object in-place.

	参数:	request_or_environ – a request object or WSGI environment to beused to make the response conditionalagainst.

set_etag(etag, weak=False)

Set the etag, and override the old one if there was one.

class werkzeug.wrappers.ResponseStreamMixin

Mixin for BaseRequest subclasses. Classes that inherit fromthis mixin will automatically get a stream property that providesa write-only interface to the response iterable.

stream

The response iterable as write-only stream.

class werkzeug.wrappers.CommonRequestDescriptorsMixin

A mixin for BaseRequest subclasses. Request objects thatmix this class in will automatically get descriptors for a couple ofHTTP headers with automatic type conversion.

0.5 新版功能.

content_encoding

The Content-Encoding entity-header field is used as a modifier to themedia-type. When present, its value indicates what additional contentcodings have been applied to the entity-body, and thus what decodingmechanisms must be applied in order to obtain the media-typereferenced by the Content-Type header field.

0.9 新版功能.

content_length

The Content-Length entity-header field indicates the size of theentity-body in bytes or, in the case of the HEAD method, the size ofthe entity-body that would have been sent had the request been aGET.

content_md5> The Content-MD5 entity-header field, as defined in RFC 1864, is anMD5 digest of the entity-body for the purpose of providing anend-to-end message integrity check (MIC) of the entity-body. (Note:a MIC is good for detecting accidental modification of theentity-body in transit, but is not proof against malicious attacks.)

0.9 新版功能.

content_type

The Content-Type entity-header field indicates the media type ofthe entity-body sent to the recipient or, in the case of the HEADmethod, the media type that would have been sent had the requestbeen a GET.

date

The Date general-header field represents the date and time at whichthe message was originated, having the same semantics as orig-datein RFC 822.

max_forwards

The Max-Forwards request-header field provides a mechanism with theTRACE and OPTIONS methods to limit the number of proxies or gatewaysthat can forward the request to the next inbound server.

mimetype

Like content_type but without parameters (eg, withoutcharset, type etc.). For example if the contenttype is text/html;charset=utf-8 the mimetype would be'text/html'.

mimetype_params

The mimetype parameters as dict. For example if the contenttype is text/html;charset=utf-8 the params would be{'charset':'utf-8'}.

pragma

The Pragma general-header field is used to includeimplementation-specific directives that might apply to any recipientalong the request/response chain. All pragma directives specifyoptional behavior from the viewpoint of the protocol; however, somesystems MAY require that behavior be consistent with the directives.

referrer

The Referer[sic] request-header field allows the client to specify,for the server's benefit, the address (URI) of the resource from whichthe Request-URI was obtained (the “referrer”, although the headerfield is misspelled).

class werkzeug.wrappers.CommonResponseDescriptorsMixin

A mixin for BaseResponse subclasses. Response objects thatmix this class in will automatically get descriptors for a couple ofHTTP headers with automatic type conversion.

age

The Age response-header field conveys the sender's estimate of theamount of time since the response (or its revalidation) wasgenerated at the origin server.

Age values are non-negative decimal integers, representing time inseconds.

allow

The Allow entity-header field lists the set of methods supportedby the resource identified by the Request-URI. The purpose of thisfield is strictly to inform the recipient of valid methodsassociated with the resource. An Allow header field MUST bepresent in a 405 (Method Not Allowed) response.

content_encoding

The Content-Encoding entity-header field is used as a modifier to themedia-type. When present, its value indicates what additional contentcodings have been applied to the entity-body, and thus what decodingmechanisms must be applied in order to obtain the media-typereferenced by the Content-Type header field.

content_language

The Content-Language entity-header field describes the naturallanguage(s) of the intended audience for the enclosed entity. Notethat this might not be equivalent to all the languages used withinthe entity-body.

content_length

The Content-Length entity-header field indicates the size of theentity-body, in decimal number of OCTETs, sent to the recipient or,in the case of the HEAD method, the size of the entity-body that wouldhave been sent had the request been a GET.

content_location

The Content-Location entity-header field MAY be used to supply theresource location for the entity enclosed in the message when thatentity is accessible from a location separate from the requestedresource's URI.

content_md5

The Content-MD5 entity-header field, as defined in RFC 1864, is anMD5 digest of the entity-body for the purpose of providing anend-to-end message integrity check (MIC) of the entity-body. (Note:a MIC is good for detecting accidental modification of theentity-body in transit, but is not proof against malicious attacks.)

content_type

The Content-Type entity-header field indicates the media type of theentity-body sent to the recipient or, in the case of the HEAD method,the media type that would have been sent had the request been a GET.

date

The Date general-header field represents the date and time at whichthe message was originated, having the same semantics as orig-datein RFC 822.

expires

The Expires entity-header field gives the date/time after which theresponse is considered stale. A stale cache entry may not normally bereturned by a cache.

last_modified

The Last-Modified entity-header field indicates the date and time atwhich the origin server believes the variant was last modified.

location

The Location response-header field is used to redirect the recipientto a location other than the Request-URI for completion of the requestor identification of a new resource.

mimetype

The mimetype (content type without charset etc.)

mimetype_params

The mimetype parameters as dict. For example if the contenttype is text/html;charset=utf-8 the params would be{'charset':'utf-8'}.

0.5 新版功能.

retry_after

The Retry-After response-header field can be used with a 503 (ServiceUnavailable) response to indicate how long the service is expectedto be unavailable to the requesting client.

Time in seconds until expiration or date.

vary

The Vary field value indicates the set of request-header fields thatfully determines, while the response is fresh, whether a cache ispermitted to use the response to reply to a subsequent requestwithout revalidation.

class werkzeug.wrappers.WWWAuthenticateMixin

Adds a www_authenticate property to a response object.

www_authenticate

The WWW-Authenticate header in a parsed form.

class werkzeug.wrappers.UserAgentMixin

Adds a user_agent attribute to the request object which contains theparsed user agent of the browser that triggered the request as aUserAgent object.

user_agent

The current user agent.

 URL Routing

 When it comes to combining multiple controller or view functions (howeveryou want to call them), you need a dispatcher. A simple way would beapplying regular expression tests on PATH_INFO and call registeredcallback functions that return the value.

 Werkzeug provides a much more powerful system, similar to Routes [http://routes.groovie.org/]. All theobjects mentioned on this page must be imported from werkzeug.routing, notfrom werkzeug!

 Quickstart

 Here is a simple example which could be the URL definition for a blog:

 from werkzeug.routing import Map, Rule, NotFound, RequestRedirect

url_map = Map([
 Rule('/', endpoint='blog/index'),
 Rule('/<int:year>/', endpoint='blog/archive'),
 Rule('/<int:year>/<int:month>/', endpoint='blog/archive'),
 Rule('/<int:year>/<int:month>/<int:day>/', endpoint='blog/archive'),
 Rule('/<int:year>/<int:month>/<int:day>/<slug>',
 endpoint='blog/show_post'),
 Rule('/about', endpoint='blog/about_me'),
 Rule('/feeds/', endpoint='blog/feeds'),
 Rule('/feeds/<feed_name>.rss', endpoint='blog/show_feed')
])

def application(environ, start_response):
 urls = url_map.bind_to_environ(environ)
 try:
 endpoint, args = urls.match()
 except HTTPException, e:
 return e(environ, start_response)
 start_response('200 OK', [('Content-Type', 'text/plain')])
 return ['Rule points to %r with arguments %r' % (endpoint, args)]

 So what does that do? First of all we create a new Map which storesa bunch of URL rules. Then we pass it a list of Rule objects.

 Each Rule object is instantiated with a string that represents a ruleand an endpoint which will be the alias for what view the rule represents.Multiple rules can have the same endpoint, but should have different argumentsto allow URL construction.

 The format for the URL rules is straightforward, but explained in detail below.

 Inside the WSGI application we bind the url_map to the current request which willreturn a new MapAdapter. This url_map adapter can then be used to matchor build domains for the current request.

 The MapAdapter.match() method can then either return a tuple in the form(endpoint,args) or raise one of the three exceptionsNotFound, MethodNotAllowed,or RequestRedirect. For more details about thoseexceptions have a look at the documentation of the MapAdapter.match() method.

 Rule Format

 Rule strings basically are just normal URL paths with placeholders in theformat <converter(arguments):name>, where converter and the argumentsare optional. If no converter is defined, the default converter is used(which means string in the normal configuration).

 URL rules that end with a slash are branch URLs, others are leaves. If youhave strict_slashes enabled (which is the default), all branch URLs that arevisited without a trailing slash will trigger a redirect to the same URL withthat slash appended.

 The list of converters can be extended, the default converters are explainedbelow.

 Builtin Converters

 Here a list of converters that come with Werkzeug:

 class routing.UnicodeConverter(map, minlength=1, maxlength=None, length=None)

This converter is the default converter and accepts any string butonly one path segment. Thus the string can not include a slash.

 This is the default validator.

 Example:

 Rule('/pages/<page>'),
Rule('/<string(length=2):lang_code>')

 	参数:
 	

 	map – the Map.

 	minlength – the minimum length of the string. Must be greateror equal 1.

 	maxlength – the maximum length of the string.

 	length – the exact length of the string.

 class routing.PathConverter(map)

Like the default UnicodeConverter, but it also matchesslashes. This is useful for wikis and similar applications:

 Rule('/<path:wikipage>')
Rule('/<path:wikipage>/edit')

 	参数:
 	map – the Map.

 class routing.AnyConverter(map, *items)

Matches one of the items provided. Items can either be Pythonidentifiers or strings:

 Rule('/<any(about, help, imprint, class, "foo,bar"):page_name>')

 	参数:
 	

 	map – the Map.

 	items – this function accepts the possible items as positionalarguments.

 class routing.IntegerConverter(map, fixed_digits=0, min=None, max=None)

This converter only accepts integer values:

 Rule('/page/<int:page>')

 This converter does not support negative values.

 	参数:
 	

 	map – the Map.

 	fixed_digits – the number of fixed digits in the URL. If you setthis to 4 for example, the application willonly match if the url looks like /0001/. Thedefault is variable length.

 	min – the minimal value.

 	max – the maximal value.

 class routing.FloatConverter(map, min=None, max=None)

This converter only accepts floating point values:

 Rule('/probability/<float:probability>')

 This converter does not support negative values.

 	参数:
 	

 	map – the Map.

 	min – the minimal value.

 	max – the maximal value.

 class routing.UUIDConverter(map)

This converter only accepts UUID strings:

 Rule('/object/<uuid:identifier>')

 0.10 新版功能.

 	参数:
 	map – the Map.

 Maps, Rules and Adapters

 class routing.Map(rules=None, default_subdomain='', charset='utf-8', strict_slashes=True, redirect_defaults=True, converters=None, sort_parameters=False, sort_key=None, encoding_errors='replace', host_matching=False)

The map class stores all the URL rules and some configurationparameters. Some of the configuration values are only stored on theMap instance since those affect all rules, others are just defaultsand can be overridden for each rule. Note that you have to specify allarguments besides the rules as keyword arguments!

 	参数:
 	

 	rules – sequence of url rules for this map.

 	default_subdomain – The default subdomain for rules without asubdomain defined.

 	charset – charset of the url. defaults to "utf-8"

 	strict_slashes – Take care of trailing slashes.

 	redirect_defaults – This will redirect to the default rule if itwasn't visited that way. This helps creatingunique URLs.

 	converters – A dict of converters that adds additional convertersto the list of converters. If you redefine oneconverter this will override the original one.

 	sort_parameters – If set to True the url parameters are sorted.See url_encode for more details.

 	sort_key – The sort key function for url_encode.

 	encoding_errors – the error method to use for decoding

 	host_matching – if set to True it enables the host matchingfeature and disables the subdomain one. Ifenabled the host parameter to rules is usedinstead of the subdomain one.

 0.5 新版功能: sort_parameters and sort_key was added.

 0.7 新版功能: encoding_errors and host_matching was added.

 converters

The dictionary of converters. This can be modified after the classwas created, but will only affect rules added after themodification. If the rules are defined with the list passed to theclass, the converters parameter to the constructor has to be usedinstead.

 add(rulefactory)

Add a new rule or factory to the map and bind it. Requires that therule is not bound to another map.

 	参数:
 	rulefactory – a Rule or RuleFactory

 bind(server_name, script_name=None, subdomain=None, url_scheme='http', default_method='GET', path_info=None, query_args=None)

Return a new MapAdapter with the details specified to thecall. Note that script_name will default to '/' if not furtherspecified or None. The server_name at least is a requirementbecause the HTTP RFC requires absolute URLs for redirects and so allredirect exceptions raised by Werkzeug will contain the full canonicalURL.

 If no path_info is passed to match() it will use the default pathinfo passed to bind. While this doesn't really make sense formanual bind calls, it's useful if you bind a map to a WSGIenvironment which already contains the path info.

 subdomain will default to the default_subdomain for this map ifno defined. If there is no default_subdomain you cannot use thesubdomain feature.

 0.7 新版功能: query_args added

 0.8 新版功能: query_args can now also be a string.

 bind_to_environ(environ, server_name=None, subdomain=None)

Like bind() but you can pass it an WSGI environment and itwill fetch the information from that dictionary. Note that because oflimitations in the protocol there is no way to get the currentsubdomain and real server_name from the environment. If you don'tprovide it, Werkzeug will use SERVER_NAME and SERVER_PORT (orHTTP_HOST if provided) as used server_name with disabled subdomainfeature.

 If subdomain is None but an environment and a server name isprovided it will calculate the current subdomain automatically.Example: server_name is 'example.com' and the SERVER_NAMEin the wsgi environ is 'staging.dev.example.com' the calculatedsubdomain will be 'staging.dev'.

 If the object passed as environ has an environ attribute, the value ofthis attribute is used instead. This allows you to pass requestobjects. Additionally PATH_INFO added as a default of theMapAdapter so that you don't have to pass the path info tothe match method.

 在 0.5 版更改: previously this method accepted a bogus calculate_subdomainparameter that did not have any effect. It was removed becauseof that.

 在 0.8 版更改: This will no longer raise a ValueError when an unexpected servername was passed.

 	参数:
 	

 	environ – a WSGI environment.

 	server_name – an optional server name hint (see above).

 	subdomain – optionally the current subdomain (see above).

 default_converters = ImmutableDict({'int': <class 'routing.IntegerConverter'>, 'string': <class 'routing.UnicodeConverter'>, 'default': <class 'routing.UnicodeConverter'>, 'path': <class 'routing.PathConverter'>, 'float': <class 'routing.FloatConverter'>, 'any': <class 'routing.AnyConverter'>, 'uuid': <class 'routing.UUIDConverter'>})

 0.6 新版功能: a dict of default converters to be used.

 is_endpoint_expecting(endpoint, *arguments)

Iterate over all rules and check if the endpoint expectsthe arguments provided. This is for example useful if you havesome URLs that expect a language code and others that do not andyou want to wrap the builder a bit so that the current languagecode is automatically added if not provided but endpoints expectit.

 	参数:
 	

 	endpoint – the endpoint to check.

 	arguments – this function accepts one or more argumentsas positional arguments. Each one of them ischecked.

 iter_rules(endpoint=None)

Iterate over all rules or the rules of an endpoint.

 	参数:
 	endpoint – if provided only the rules for that endpointare returned.

 	返回:
 	an iterator

 update()

Called before matching and building to keep the compiled rulesin the correct order after things changed.

 class routing.MapAdapter(map, server_name, script_name, subdomain, url_scheme, path_info, default_method, query_args=None)

Returned by Map.bind() or Map.bind_to_environ() and doesthe URL matching and building based on runtime information.

 allowed_methods(path_info=None)

Returns the valid methods that match for a given path.

 0.7 新版功能.

 build(endpoint, values=None, method=None, force_external=False, append_unknown=True)

Building URLs works pretty much the other way round. Instead ofmatch you call build and pass it the endpoint and a dict ofarguments for the placeholders.

 The build function also accepts an argument called force_externalwhich, if you set it to True will force external URLs. Per defaultexternal URLs (include the server name) will only be used if thetarget URL is on a different subdomain.

 >>> m = Map([
... Rule('/', endpoint='index'),
... Rule('/downloads/', endpoint='downloads/index'),
... Rule('/downloads/<int:id>', endpoint='downloads/show')
...])
>>> urls = m.bind("example.com", "/")
>>> urls.build("index", {})
'/'
>>> urls.build("downloads/show", {'id': 42})
'/downloads/42'
>>> urls.build("downloads/show", {'id': 42}, force_external=True)
'http://example.com/downloads/42'

 Because URLs cannot contain non ASCII data you will always getbytestrings back. Non ASCII characters are urlencoded with thecharset defined on the map instance.

 Additional values are converted to unicode and appended to the URL asURL querystring parameters:

 >>> urls.build("index", {'q': 'My Searchstring'})
'/?q=My+Searchstring'

 If a rule does not exist when building a BuildError exception israised.

 The build method accepts an argument called method which allows youto specify the method you want to have an URL built for if you havedifferent methods for the same endpoint specified.

 0.6 新版功能: the append_unknown parameter was added.

 	参数:
 	

 	endpoint – the endpoint of the URL to build.

 	values – the values for the URL to build. Unhandled values areappended to the URL as query parameters.

 	method – the HTTP method for the rule if there are differentURLs for different methods on the same endpoint.

 	force_external – enforce full canonical external URLs.

 	append_unknown – unknown parameters are appended to the generatedURL as query string argument. Disable thisif you want the builder to ignore those.

 dispatch(view_func, path_info=None, method=None, catch_http_exceptions=False)

Does the complete dispatching process. view_func is called withthe endpoint and a dict with the values for the view. It shouldlook up the view function, call it, and return a response objector WSGI application. http exceptions are not caught by defaultso that applications can display nicer error messages by justcatching them by hand. If you want to stick with the defaulterror messages you can pass it catch_http_exceptions=True andit will catch the http exceptions.

 Here a small example for the dispatch usage:

 from werkzeug.wrappers import Request, Response
from werkzeug.wsgi import responder
from werkzeug.routing import Map, Rule

def on_index(request):
 return Response('Hello from the index')

url_map = Map([Rule('/', endpoint='index')])
views = {'index': on_index}

@responder
def application(environ, start_response):
 request = Request(environ)
 urls = url_map.bind_to_environ(environ)
 return urls.dispatch(lambda e, v: views[e](request, **v),
 catch_http_exceptions=True)

 Keep in mind that this method might return exception objects, too, souse Response.force_type to get a response object.

 	参数:
 	

 	view_func – a function that is called with the endpoint asfirst argument and the value dict as second. Hasto dispatch to the actual view function with thisinformation. (see above)

 	path_info – the path info to use for matching. Overrides thepath info specified on binding.

 	method – the HTTP method used for matching. Overrides themethod specified on binding.

 	catch_http_exceptions – set to True to catch any of thewerkzeug HTTPExceptions.

 get_default_redirect(rule, method, values, query_args)

A helper that returns the URL to redirect to if it finds one.This is used for default redirecting only.

 	Internal:

 get_host(domain_part)

Figures out the full host name for the given domain part. Thedomain part is a subdomain in case host matching is disabled ora full host name.

 make_alias_redirect_url(path, endpoint, values, method, query_args)

Internally called to make an alias redirect URL.

 make_redirect_url(path_info, query_args=None, domain_part=None)

Creates a redirect URL.

 	Internal:

 match(path_info=None, method=None, return_rule=False, query_args=None)

The usage is simple: you just pass the match method the currentpath info as well as the method (which defaults to GET). Thefollowing things can then happen:

 	you receive a NotFound exception that indicates that no URL ismatching. A NotFound exception is also a WSGI application youcan call to get a default page not found page (happens to be thesame object as werkzeug.exceptions.NotFound)

 	you receive a MethodNotAllowed exception that indicates that thereis a match for this URL but not for the current request method.This is useful for RESTful applications.

 	you receive a RequestRedirect exception with a new_urlattribute. This exception is used to notify you about a requestWerkzeug requests from your WSGI application. This is for example thecase if you request /foo although the correct URL is /foo/You can use the RequestRedirect instance as response-like objectsimilar to all other subclasses of HTTPException.

 	you get a tuple in the form (endpoint,arguments) if there isa match (unless return_rule is True, in which case you get a tuplein the form (rule,arguments))

 If the path info is not passed to the match method the default pathinfo of the map is used (defaults to the root URL if not definedexplicitly).

 All of the exceptions raised are subclasses of HTTPException so theycan be used as WSGI responses. The will all render generic error orredirect pages.

 Here is a small example for matching:

 >>> m = Map([
... Rule('/', endpoint='index'),
... Rule('/downloads/', endpoint='downloads/index'),
... Rule('/downloads/<int:id>', endpoint='downloads/show')
...])
>>> urls = m.bind("example.com", "/")
>>> urls.match("/", "GET")
('index', {})
>>> urls.match("/downloads/42")
('downloads/show', {'id': 42})

 And here is what happens on redirect and missing URLs:

 >>> urls.match("/downloads")
Traceback (most recent call last):
 ...
RequestRedirect: http://example.com/downloads/
>>> urls.match("/missing")
Traceback (most recent call last):
 ...
NotFound: 404 Not Found

 	参数:
 	

 	path_info – the path info to use for matching. Overrides thepath info specified on binding.

 	method – the HTTP method used for matching. Overrides themethod specified on binding.

 	return_rule – return the rule that matched instead of just theendpoint (defaults to False).

 	query_args – optional query arguments that are used forautomatic redirects as string or dictionary. It'scurrently not possible to use the query argumentsfor URL matching.

 0.6 新版功能: return_rule was added.

 0.7 新版功能: query_args was added.

 在 0.8 版更改: query_args can now also be a string.

 test(path_info=None, method=None)

Test if a rule would match. Works like match but returns Trueif the URL matches, or False if it does not exist.

 	参数:
 	

 	path_info – the path info to use for matching. Overrides thepath info specified on binding.

 	method – the HTTP method used for matching. Overrides themethod specified on binding.

 class routing.Rule(string, defaults=None, subdomain=None, methods=None, build_only=False, endpoint=None, strict_slashes=None, redirect_to=None, alias=False, host=None)

A Rule represents one URL pattern. There are some options for Rulethat change the way it behaves and are passed to the Rule constructor.Note that besides the rule-string all arguments must be keyword argumentsin order to not break the application on Werkzeug upgrades.

 string

Rule strings basically are just normal URL paths with placeholders inthe format <converter(arguments):name> where the converter and thearguments are optional. If no converter is defined the defaultconverter is used which means string in the normal configuration.

 URL rules that end with a slash are branch URLs, others are leaves.If you have strict_slashes enabled (which is the default), allbranch URLs that are matched without a trailing slash will trigger aredirect to the same URL with the missing slash appended.

 The converters are defined on the Map.

 endpointThe endpoint for this rule. This can be anything. A reference to afunction, a string, a number etc. The preferred way is using a stringbecause the endpoint is used for URL generation.defaults

An optional dict with defaults for other rules with the same endpoint.This is a bit tricky but useful if you want to have unique URLs:

 url_map = Map([
 Rule('/all/', defaults={'page': 1}, endpoint='all_entries'),
 Rule('/all/page/<int:page>', endpoint='all_entries')
])

 If a user now visits http://example.com/all/page/1 he will beredirected to http://example.com/all/. If redirect_defaults isdisabled on the Map instance this will only affect the URLgeneration.

 subdomain

The subdomain rule string for this rule. If not specified the ruleonly matches for the default_subdomain of the map. If the map isnot bound to a subdomain this feature is disabled.

 Can be useful if you want to have user profiles on different subdomainsand all subdomains are forwarded to your application:

 url_map = Map([
 Rule('/', subdomain='<username>', endpoint='user/homepage'),
 Rule('/stats', subdomain='<username>', endpoint='user/stats')
])

 methods

A sequence of http methods this rule applies to. If not specified, allmethods are allowed. For example this can be useful if you want differentendpoints for POST and GET. If methods are defined and the pathmatches but the method matched against is not in this list or in thelist of another rule for that path the error raised is of the typeMethodNotAllowed rather than NotFound. If GET is present in thelist of methods and HEAD is not, HEAD is added automatically.

 在 0.6.1 版更改: HEAD is now automatically added to the methods if GET ispresent. The reason for this is that existing code often did notwork properly in servers not rewriting HEAD to GETautomatically and it was not documented how HEAD should betreated. This was considered a bug in Werkzeug because of that.

 strict_slashesOverride the Map setting for strict_slashes only for this rule. Ifnot specified the Map setting is used.build_onlySet this to True and the rule will never match but will create a URLthat can be build. This is useful if you have resources on a subdomainor folder that are not handled by the WSGI application (like static data)redirect_to

If given this must be either a string or callable. In case of acallable it's called with the url adapter that triggered the match andthe values of the URL as keyword arguments and has to return the targetfor the redirect, otherwise it has to be a string with placeholders inrule syntax:

 def foo_with_slug(adapter, id):
 # ask the database for the slug for the old id. this of
 # course has nothing to do with werkzeug.
 return 'foo/' + Foo.get_slug_for_id(id)

url_map = Map([
 Rule('/foo/<slug>', endpoint='foo'),
 Rule('/some/old/url/<slug>', redirect_to='foo/<slug>'),
 Rule('/other/old/url/<int:id>', redirect_to=foo_with_slug)
])

 When the rule is matched the routing system will raise aRequestRedirect exception with the target for the redirect.

 Keep in mind that the URL will be joined against the URL root of thescript so don't use a leading slash on the target URL unless youreally mean root of that domain.

 aliasIf enabled this rule serves as an alias for another rule with the sameendpoint and arguments.hostIf provided and the URL map has host matching enabled this can beused to provide a match rule for the whole host. This also meansthat the subdomain feature is disabled.

 0.7 新版功能: The alias and host parameters were added.

 empty()

Return an unbound copy of this rule. This can be useful if youwant to reuse an already bound URL for another map.

 Rule Factories

 class routing.RuleFactory

As soon as you have more complex URL setups it's a good idea to use rulefactories to avoid repetitive tasks. Some of them are builtin, others canbe added by subclassing RuleFactory and overriding get_rules.

 get_rules(map)

Subclasses of RuleFactory have to override this method and returnan iterable of rules.

 class routing.Subdomain(subdomain, rules)

All URLs provided by this factory have the subdomain set to aspecific domain. For example if you want to use the subdomain forthe current language this can be a good setup:

 url_map = Map([
 Rule('/', endpoint='#select_language'),
 Subdomain('<string(length=2):lang_code>', [
 Rule('/', endpoint='index'),
 Rule('/about', endpoint='about'),
 Rule('/help', endpoint='help')
])
])

 All the rules except for the '#select_language' endpoint will nowlisten on a two letter long subdomain that holds the language codefor the current request.

 class routing.Submount(path, rules)

Like Subdomain but prefixes the URL rule with a given string:

 url_map = Map([
 Rule('/', endpoint='index'),
 Submount('/blog', [
 Rule('/', endpoint='blog/index'),
 Rule('/entry/<entry_slug>', endpoint='blog/show')
])
])

 Now the rule 'blog/show' matches /blog/entry/.

 class routing.EndpointPrefix(prefix, rules)

Prefixes all endpoints (which must be strings for this factory) withanother string. This can be useful for sub applications:

 url_map = Map([
 Rule('/', endpoint='index'),
 EndpointPrefix('blog/', [Submount('/blog', [
 Rule('/', endpoint='index'),
 Rule('/entry/<entry_slug>', endpoint='show')
])])
])

 Rule Templates

 class routing.RuleTemplate(rules)

Returns copies of the rules wrapped and expands string templates inthe endpoint, rule, defaults or subdomain sections.

 Here a small example for such a rule template:

 from werkzeug.routing import Map, Rule, RuleTemplate

resource = RuleTemplate([
 Rule('/$name/', endpoint='$name.list'),
 Rule('/$name/<int:id>', endpoint='$name.show')
])

url_map = Map([resource(name='user'), resource(name='page')])

 When a rule template is called the keyword arguments are used toreplace the placeholders in all the string parameters.

 Custom Converters

 You can easily add custom converters. The only thing you have to do is tosubclass BaseConverter and pass that new converter to the url_map.A converter has to provide two public methods: to_python and to_url,as well as a member that represents a regular expression. Here is a smallexample:

 from random import randrange
from werkzeug.routing import Rule, Map, BaseConverter, ValidationError

class BooleanConverter(BaseConverter):

 def __init__(self, url_map, randomify=False):
 super(BooleanConverter, self).__init__(url_map)
 self.randomify = randomify
 self.regex = '(?:yes|no|maybe)'

 def to_python(self, value):
 if value == 'maybe':
 if self.randomify:
 return not randrange(2)
 raise ValidationError()
 return value == 'yes'

 def to_url(self, value):
 return value and 'yes' or 'no'

url_map = Map([
 Rule('/vote/<bool:werkzeug_rocks>', endpoint='vote'),
 Rule('/vote/<bool(randomify=True):foo>', endpoint='foo')
], converters={'bool': BooleanConverter})

 If you want that converter to be the default converter, name it 'default'.

 Host Matching

 0.7 新版功能.

 Starting with Werkzeug 0.7 it's also possible to do matching on the wholehost names instead of just the subdomain. To enable this feature you needto pass host_matching=True to the Map constructor and providethe host argument to all routes:

 url_map = Map([
 Rule('/', endpoint='www_index', host='www.example.com'),
 Rule('/', endpoint='help_index', host='help.example.com')
], host_matching=True)

 Variable parts are of course also possible in the host section:

 url_map = Map([
 Rule('/', endpoint='www_index', host='www.example.com'),
 Rule('/', endpoint='user_index', host='<user>.example.com')
], host_matching=True)

 WSGI Helpers

 The following classes and functions are designed to make working withthe WSGI specification easier or operate on the WSGI layer. All thefunctionality from this module is available on the high-levelRequest/Response classes.

 Iterator / Stream Helpers

 These classes and functions simplify working with the WSGI applicationiterator and the input stream.

 class werkzeug.wsgi.ClosingIterator(iterable, callbacks=None)

The WSGI specification requires that all middlewares and gatewaysrespect the close callback of an iterator. Because it is useful to addanother close action to a returned iterator and adding a custom iteratoris a boring task this class can be used for that:

 return ClosingIterator(app(environ, start_response), [cleanup_session,
 cleanup_locals])

 If there is just one close function it can be passed instead of the list.

 A closing iterator is not needed if the application uses response objectsand finishes the processing if the response is started:

 try:
 return response(environ, start_response)
finally:
 cleanup_session()
 cleanup_locals()

 class werkzeug.wsgi.FileWrapper(file, buffer_size=8192)

This class can be used to convert a file-like object intoan iterable. It yields buffer_size blocks until the file is fullyread.

 You should not use this class directly but rather use thewrap_file() function that uses the WSGI server's file wrappersupport if it's available.

 0.5 新版功能.

 If you're using this object together with a BaseResponse you haveto use the direct_passthrough mode.

 	参数:
 	

 	file – a file-like object with a read() method.

 	buffer_size – number of bytes for one iteration.

 class werkzeug.wsgi.LimitedStream(stream, limit)

Wraps a stream so that it doesn't read more than n bytes. If thestream is exhausted and the caller tries to get more bytes from iton_exhausted() is called which by default returns an emptystring. The return value of that function is forwardedto the reader function. So if it returns an empty stringread() will return an empty string as well.

 The limit however must never be higher than what the stream canoutput. Otherwise readlines() will try to read past thelimit.

 Note on WSGI compliance

 calls to readline() and readlines() are notWSGI compliant because it passes a size argument to thereadline methods. Unfortunately the WSGI PEP is not safelyimplementable without a size argument to readline()because there is no EOF marker in the stream. As a resultof that the use of readline() is discouraged.

 For the same reason iterating over the LimitedStreamis not portable. It internally calls readline().

 We strongly suggest using read() only or using themake_line_iter() which safely iterates line-basedover a WSGI input stream.

 	参数:
 	

 	stream – the stream to wrap.

 	limit – the limit for the stream, must not be longer thanwhat the string can provide if the stream does notend with EOF (like wsgi.input)

 exhaust(chunk_size=65536)

Exhaust the stream. This consumes all the data left until thelimit is reached.

 	参数:
 	chunk_size – the size for a chunk. It will read the chunkuntil the stream is exhausted and throw awaythe results.

 is_exhausted

If the stream is exhausted this attribute is True.

 on_disconnect()

What should happen if a disconnect is detected? The returnvalue of this function is returned from read functions in casethe client went away. By default aClientDisconnected exception is raised.

 on_exhausted()

This is called when the stream tries to read past the limit.The return value of this function is returned from the readingfunction.

 read(size=None)

Read size bytes or if size is not provided everything is read.

 	参数:
 	size – the number of bytes read.

 readline(size=None)

Reads one line from the stream.

 readlines(size=None)

Reads a file into a list of strings. It calls readline()until the file is read to the end. It does support the optionalsize argument if the underlaying stream supports it forreadline.

 tell()

Returns the position of the stream.

 0.9 新版功能.

 werkzeug.wsgi.make_line_iter(stream, limit=None, buffer_size=10240)

Safely iterates line-based over an input stream. If the input streamis not a LimitedStream the limit parameter is mandatory.

 This uses the stream's read() method internally as oppositeto the readline() method that is unsafe and can only be usedin violation of the WSGI specification. The same problem applies to theiter function of the input stream which calls readline()without arguments.

 If you need line-by-line processing it's strongly recommended to iterateover the input stream using this helper function.

 在 0.8 版更改: This function now ensures that the limit was reached.

 0.9 新版功能: added support for iterators as input stream.

 	参数:
 	

 	stream – the stream or iterate to iterate over.

 	limit – the limit in bytes for the stream. (Usuallycontent length. Not necessary if the streamis a LimitedStream.

 	buffer_size – The optional buffer size.

 werkzeug.wsgi.make_chunk_iter(stream, separator, limit=None, buffer_size=10240)

Works like make_line_iter() but accepts a separatorwhich divides chunks. If you want newline based processingyou should use make_line_iter() instead as itsupports arbitrary newline markers.

 0.8 新版功能.

 0.9 新版功能: added support for iterators as input stream.

 	参数:
 	

 	stream – the stream or iterate to iterate over.

 	separator – the separator that divides chunks.

 	limit – the limit in bytes for the stream. (Usuallycontent length. Not necessary if the streamis otherwise already limited).

 	buffer_size – The optional buffer size.

 werkzeug.wsgi.wrap_file(environ, file, buffer_size=8192)

Wraps a file. This uses the WSGI server's file wrapper if availableor otherwise the generic FileWrapper.

 0.5 新版功能.

 If the file wrapper from the WSGI server is used it's important to notiterate over it from inside the application but to pass it throughunchanged. If you want to pass out a file wrapper inside a responseobject you have to set direct_passthrough to True.

 More information about file wrappers are available in PEP 333 [http://www.python.org/dev/peps/pep-0333].

 	参数:
 	

 	file – a file-like object with a read() method.

 	buffer_size – number of bytes for one iteration.

 Environ Helpers

 These functions operate on the WSGI environment. They extract usefulinformation or perform common manipulations:

 werkzeug.wsgi.get_host(environ, trusted_hosts=None)

Return the real host for the given WSGI environment. This takes careof the X-Forwarded-Host header. Optionally it verifies that the hostis in a list of trusted hosts. If the host is not in there it will raisea SecurityError.

 	参数:
 	

 	environ – the WSGI environment to get the host of.

 	trusted_hosts – a list of trusted hosts, see host_is_trusted()for more information.

 werkzeug.wsgi.get_content_length(environ)

Returns the content length from the WSGI environment asinteger. If it's not available None is returned.

 0.9 新版功能.

 	参数:
 	environ – the WSGI environ to fetch the content length from.

 werkzeug.wsgi.get_input_stream(environ, safe_fallback=True)

Returns the input stream from the WSGI environment and wraps itin the most sensible way possible. The stream returned is not theraw WSGI stream in most cases but one that is safe to read fromwithout taking into account the content length.

 0.9 新版功能.

 	参数:
 	

 	environ – the WSGI environ to fetch the stream from.

 	safe – indicates weather the function should use an emptystream as safe fallback or just return the originalWSGI input stream if it can't wrap it safely. Thedefault is to return an empty string in those cases.

 werkzeug.wsgi.get_current_url(environ, root_only=False, strip_querystring=False, host_only=False, trusted_hosts=None)

A handy helper function that recreates the full URL for the currentrequest or parts of it. Here an example:

 >>> from werkzeug.test import create_environ
>>> env = create_environ("/?param=foo", "http://localhost/script")
>>> get_current_url(env)
'http://localhost/script/?param=foo'
>>> get_current_url(env, root_only=True)
'http://localhost/script/'
>>> get_current_url(env, host_only=True)
'http://localhost/'
>>> get_current_url(env, strip_querystring=True)
'http://localhost/script/'

 This optionally it verifies that the host is in a list of trusted hosts.If the host is not in there it will raise aSecurityError.

 	参数:
 	

 	environ – the WSGI environment to get the current URL from.

 	root_only – set True if you only want the root URL.

 	strip_querystring – set to True if you don't want the querystring.

 	host_only – set to True if the host URL should be returned.

 	trusted_hosts – a list of trusted hosts, see host_is_trusted()for more information.

 werkzeug.wsgi.get_query_string(environ)

Returns the QUERY_STRING from the WSGI environment. This also takescare about the WSGI decoding dance on Python 3 environments as anative string. The string returned will be restricted to ASCIIcharacters.

 0.9 新版功能.

 	参数:
 	environ – the WSGI environment object to get the query string from.

 werkzeug.wsgi.get_script_name(environ, charset='utf-8', errors='replace')

Returns the SCRIPT_NAME from the WSGI environment and properlydecodes it. This also takes care about the WSGI decoding danceon Python 3 environments. if the charset is set to None abytestring is returned.

 0.9 新版功能.

 	参数:
 	

 	environ – the WSGI environment object to get the path from.

 	charset – the charset for the path, or None if nodecoding should be performed.

 	errors – the decoding error handling.

 werkzeug.wsgi.get_path_info(environ, charset='utf-8', errors='replace')

Returns the PATH_INFO from the WSGI environment and properlydecodes it. This also takes care about the WSGI decoding danceon Python 3 environments. if the charset is set to None abytestring is returned.

 0.9 新版功能.

 	参数:
 	

 	environ – the WSGI environment object to get the path from.

 	charset – the charset for the path info, or None if nodecoding should be performed.

 	errors – the decoding error handling.

 werkzeug.wsgi.pop_path_info(environ, charset='utf-8', errors='replace')

Removes and returns the next segment of PATH_INFO, pushing it ontoSCRIPT_NAME. Returns None if there is nothing left on PATH_INFO.

 If the charset is set to None a bytestring is returned.

 If there are empty segments ('/foo//bar) these are ignored butproperly pushed to the SCRIPT_NAME:

 >>> env = {'SCRIPT_NAME': '/foo', 'PATH_INFO': '/a/b'}
>>> pop_path_info(env)
'a'
>>> env['SCRIPT_NAME']
'/foo/a'
>>> pop_path_info(env)
'b'
>>> env['SCRIPT_NAME']
'/foo/a/b'

 0.5 新版功能.

 在 0.9 版更改: The path is now decoded and a charset and encodingparameter can be provided.

 	参数:
 	environ – the WSGI environment that is modified.

 werkzeug.wsgi.peek_path_info(environ, charset='utf-8', errors='replace')

Returns the next segment on the PATH_INFO or None if thereis none. Works like pop_path_info() without modifying theenvironment:

 >>> env = {'SCRIPT_NAME': '/foo', 'PATH_INFO': '/a/b'}
>>> peek_path_info(env)
'a'
>>> peek_path_info(env)
'a'

 If the charset is set to None a bytestring is returned.

 0.5 新版功能.

 在 0.9 版更改: The path is now decoded and a charset and encodingparameter can be provided.

 	参数:
 	environ – the WSGI environment that is checked.

 werkzeug.wsgi.extract_path_info(environ_or_baseurl, path_or_url, charset='utf-8', errors='replace', collapse_http_schemes=True)

Extracts the path info from the given URL (or WSGI environment) andpath. The path info returned is a unicode string, not a bytestringsuitable for a WSGI environment. The URLs might also be IRIs.

 If the path info could not be determined, None is returned.

 Some examples:

 >>> extract_path_info('http://example.com/app', '/app/hello')
u'/hello'
>>> extract_path_info('http://example.com/app',
... 'https://example.com/app/hello')
u'/hello'
>>> extract_path_info('http://example.com/app',
... 'https://example.com/app/hello',
... collapse_http_schemes=False) is None
True

 Instead of providing a base URL you can also pass a WSGI environment.

 0.6 新版功能.

 	参数:
 	

 	environ_or_baseurl – a WSGI environment dict, a base URL orbase IRI. This is the root of theapplication.

 	path_or_url – an absolute path from the server root, arelative path (in which case it's the path info)or a full URL. Also accepts IRIs and unicodeparameters.

 	charset – the charset for byte data in URLs

 	errors – the error handling on decode

 	collapse_http_schemes – if set to False the algorithm doesnot assume that http and https on thesame server point to the sameresource.

 werkzeug.wsgi.host_is_trusted(hostname, trusted_list)

Checks if a host is trusted against a list. This also takes careof port normalization.

 0.9 新版功能.

 	参数:
 	

 	hostname – the hostname to check

 	trusted_list – a list of hostnames to check against. If ahostname starts with a dot it will match againstall subdomains as well.

 Convenience Helpers

 werkzeug.wsgi.responder(f)

Marks a function as responder. Decorate a function with it and itwill automatically call the return value as WSGI application.

 Example:

 @responder
def application(environ, start_response):
 return Response('Hello World!')

 werkzeug.testapp.test_app(environ, start_response)

Simple test application that dumps the environment. You can useit to check if Werkzeug is working properly:

 >>> from werkzeug.serving import run_simple
>>> from werkzeug.testapp import test_app
>>> run_simple('localhost', 3000, test_app)
 * Running on http://localhost:3000/

 The application displays important information from the WSGI environment,the Python interpreter and the installed libraries.

 HTTP Utilities

 Werkzeug provides a couple of functions to parse and generate HTTP headersthat are useful when implementing WSGI middlewares or whenever you areoperating on a lower level layer. All this functionality is also exposedfrom request and response objects.

 Date Functions

 The following functions simplify working with times in an HTTP context.Werkzeug uses offset-naive datetime [http://docs.python.org/dev/library/datetime.html#datetime.datetime] objects internallythat store the time in UTC. If you're working with timezones in yourapplication make sure to replace the tzinfo attribute with a UTC timezoneinformation before processing the values.

 werkzeug.http.cookie_date(expires=None)

Formats the time to ensure compatibility with Netscape's cookiestandard.

 Accepts a floating point number expressed in seconds since the epoch in, adatetime object or a timetuple. All times in UTC. The parse_date()function can be used to parse such a date.

 Outputs a string in the format Wdy,DD-Mon-YYYYHH:MM:SSGMT.

 	参数:
 	expires – If provided that date is used, otherwise the current.

 werkzeug.http.http_date(timestamp=None)

Formats the time to match the RFC1123 date format.

 Accepts a floating point number expressed in seconds since the epoch in, adatetime object or a timetuple. All times in UTC. The parse_date()function can be used to parse such a date.

 Outputs a string in the format Wdy,DDMonYYYYHH:MM:SSGMT.

 	参数:
 	timestamp – If provided that date is used, otherwise the current.

 werkzeug.http.parse_date(value)

Parse one of the following date formats into a datetime object:

 Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123
Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036
Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format

 If parsing fails the return value is None.

 	参数:
 	value – a string with a supported date format.

 	返回:
 	a datetime.datetime [http://docs.python.org/dev/library/datetime.html#datetime.datetime] object.

 Header Parsing

 The following functions can be used to parse incoming HTTP headers.Because Python does not provide data structures with the semantics requiredby RFC 2616 [http://tools.ietf.org/html/rfc2616.html], Werkzeug implements some custom data structures that aredocumented separately.

 werkzeug.http.parse_options_header(value)

Parse a Content-Type like header into a tuple with the contenttype and the options:

 >>> parse_options_header('text/html; charset=utf8')
('text/html', {'charset': 'utf8'})

 This should not be used to parse Cache-Control like headers that usea slightly different format. For these headers use theparse_dict_header() function.

 0.5 新版功能.

 	参数:
 	value – the header to parse.

 	返回:
 	(str, options)

 werkzeug.http.parse_set_header(value, on_update=None)

Parse a set-like header and return aHeaderSet object:

 >>> hs = parse_set_header('token, "quoted value"')

 The return value is an object that treats the items case-insensitivelyand keeps the order of the items:

 >>> 'TOKEN' in hs
True
>>> hs.index('quoted value')
1
>>> hs
HeaderSet(['token', 'quoted value'])

 To create a header from the HeaderSet again, use thedump_header() function.

 	参数:
 	

 	value – a set header to be parsed.

 	on_update – an optional callable that is called every time avalue on the HeaderSetobject is changed.

 	返回:
 	
 a HeaderSet

 werkzeug.http.parse_list_header(value)

Parse lists as described by RFC 2068 Section 2.

 In particular, parse comma-separated lists where the elements ofthe list may include quoted-strings. A quoted-string couldcontain a comma. A non-quoted string could have quotes in themiddle. Quotes are removed automatically after parsing.

 It basically works like parse_set_header() just that itemsmay appear multiple times and case sensitivity is preserved.

 The return value is a standard list [http://docs.python.org/dev/library/stdtypes.html#list]:

 >>> parse_list_header('token, "quoted value"')
['token', 'quoted value']

 To create a header from the list [http://docs.python.org/dev/library/stdtypes.html#list] again, use thedump_header() function.

 	参数:
 	value – a string with a list header.

 	返回:
 	list [http://docs.python.org/dev/library/stdtypes.html#list]

 werkzeug.http.parse_dict_header(value, cls=<type 'dict'>)

Parse lists of key, value pairs as described by RFC 2068 Section 2 andconvert them into a python dict (or any other mapping object created fromthe type with a dict like interface provided by the cls arugment):

 >>> d = parse_dict_header('foo="is a fish", bar="as well"')
>>> type(d) is dict
True
>>> sorted(d.items())
[('bar', 'as well'), ('foo', 'is a fish')]

 If there is no value for a key it will be None:

 >>> parse_dict_header('key_without_value')
{'key_without_value': None}

 To create a header from the dict [http://docs.python.org/dev/library/stdtypes.html#dict] again, use thedump_header() function.

 在 0.9 版更改: Added support for cls argument.

 	参数:
 	

 	value – a string with a dict header.

 	cls – callable to use for storage of parsed results.

 	返回:
 	
 an instance of cls

 werkzeug.http.parse_accept_header(value[, class])

Parses an HTTP Accept-* header. This does not implement a completevalid algorithm but one that supports at least value and qualityextraction.

 Returns a new Accept object (basically a list of (value,quality)tuples sorted by the quality with some additional accessor methods).

 The second parameter can be a subclass of Accept that is createdwith the parsed values and returned.

 	参数:
 	

 	value – the accept header string to be parsed.

 	cls – the wrapper class for the return value (can beAccept or a subclass thereof)

 	返回:
 	
 an instance of cls.

 werkzeug.http.parse_cache_control_header(value, on_update=None, cls=None)

Parse a cache control header. The RFC differs between response andrequest cache control, this method does not. It's your responsibilityto not use the wrong control statements.

 0.5 新版功能: The cls was added. If not specified an immutableRequestCacheControl is returned.

 	参数:
 	

 	value – a cache control header to be parsed.

 	on_update – an optional callable that is called every time a valueon the CacheControlobject is changed.

 	cls – the class for the returned object. By defaultRequestCacheControl is used.

 	返回:
 	
 a cls object.

 werkzeug.http.parse_authorization_header(value)

Parse an HTTP basic/digest authorization header transmitted by the webbrowser. The return value is either None if the header was invalid ornot given, otherwise an Authorizationobject.

 	参数:
 	value – the authorization header to parse.

 	返回:
 	a Authorization object or None.

 werkzeug.http.parse_www_authenticate_header(value, on_update=None)

Parse an HTTP WWW-Authenticate header into aWWWAuthenticate object.

 	参数:
 	

 	value – a WWW-Authenticate header to parse.

 	on_update – an optional callable that is called every time a valueon the WWWAuthenticateobject is changed.

 	返回:
 	
 a WWWAuthenticate object.

 werkzeug.http.parse_if_range_header(value)

Parses an if-range header which can be an etag or a date. Returnsa IfRange object.

 0.7 新版功能.

 werkzeug.http.parse_range_header(value, make_inclusive=True)

Parses a range header into a Rangeobject. If the header is missing or malformed None is returned.ranges is a list of (start,stop) tuples where the ranges arenon-inclusive.

 0.7 新版功能.

 werkzeug.http.parse_content_range_header(value, on_update=None)

Parses a range header into aContentRange object or None ifparsing is not possible.

 0.7 新版功能.

 	参数:
 	

 	value – a content range header to be parsed.

 	on_update – an optional callable that is called every time a valueon the ContentRangeobject is changed.

 Header Utilities

 The following utilities operate on HTTP headers well but do not parsethem. They are useful if you're dealing with conditional responses or ifyou want to proxy arbitrary requests but want to remove WSGI-unsupportedhop-by-hop headers. Also there is a function to create HTTP headerstrings from the parsed data.

 werkzeug.http.is_entity_header(header)

Check if a header is an entity header.

 0.5 新版功能.

 	参数:
 	header – the header to test.

 	返回:
 	True if it's an entity header, False otherwise.

 werkzeug.http.is_hop_by_hop_header(header)

Check if a header is an HTTP/1.1 “Hop-by-Hop” header.

 0.5 新版功能.

 	参数:
 	header – the header to test.

 	返回:
 	True if it's an entity header, False otherwise.

 werkzeug.http.remove_entity_headers(headers, allowed=('expires', 'content-location'))

Remove all entity headers from a list or Headers object. Thisoperation works in-place. Expires and Content-Location headers areby default not removed. The reason for this is RFC 2616 [http://tools.ietf.org/html/rfc2616.html] section10.3.5 which specifies some entity headers that should be sent.

 在 0.5 版更改: added allowed parameter.

 	参数:
 	

 	headers – a list or Headers object.

 	allowed – a list of headers that should still be allowed even thoughthey are entity headers.

 werkzeug.http.remove_hop_by_hop_headers(headers)

Remove all HTTP/1.1 “Hop-by-Hop” headers from a list orHeaders object. This operation works in-place.

 0.5 新版功能.

 	参数:
 	headers – a list or Headers object.

 werkzeug.http.is_byte_range_valid(start, stop, length)

Checks if a given byte content range is valid for the given length.

 0.7 新版功能.

 werkzeug.http.quote_header_value(value, extra_chars='', allow_token=True)

Quote a header value if necessary.

 0.5 新版功能.

 	参数:
 	

 	value – the value to quote.

 	extra_chars – a list of extra characters to skip quoting.

 	allow_token – if this is enabled token values are returnedunchanged.

 werkzeug.http.unquote_header_value(value, is_filename=False)

Unquotes a header value. (Reversal of quote_header_value()).This does not use the real unquoting but what browsers are actuallyusing for quoting.

 0.5 新版功能.

 	参数:
 	value – the header value to unquote.

 werkzeug.http.dump_header(iterable, allow_token=True)

Dump an HTTP header again. This is the reversal ofparse_list_header(), parse_set_header() andparse_dict_header(). This also quotes strings that include anequals sign unless you pass it as dict of key, value pairs.

 >>> dump_header({'foo': 'bar baz'})
'foo="bar baz"'
>>> dump_header(('foo', 'bar baz'))
'foo, "bar baz"'

 	参数:
 	

 	iterable – the iterable or dict of values to quote.

 	allow_token – if set to False tokens as values are disallowed.See quote_header_value() for more details.

 Cookies

 werkzeug.http.parse_cookie(header, charset='utf-8', errors='replace', cls=None)

Parse a cookie. Either from a string or WSGI environ.

 Per default encoding errors are ignored. If you want a different behavioryou can set errors to 'replace' or 'strict'. In strict mode aHTTPUnicodeError is raised.

 在 0.5 版更改: This function now returns a TypeConversionDict instead of aregular dict. The cls parameter was added.

 	参数:
 	

 	header – the header to be used to parse the cookie. Alternativelythis can be a WSGI environment.

 	charset – the charset for the cookie values.

 	errors – the error behavior for the charset decoding.

 	cls – an optional dict class to use. If this is not specifiedor None the default TypeConversionDict isused.

 werkzeug.http.dump_cookie(key, value='', max_age=None, expires=None, path='/', domain=None, secure=False, httponly=False, charset='utf-8', sync_expires=True)

Creates a new Set-Cookie header without the Set-Cookie prefixThe parameters are the same as in the cookie Morsel object in thePython standard library but it accepts unicode data, too.

 On Python 3 the return value of this function will be a unicodestring, on Python 2 it will be a native string. In both cases thereturn value is usually restricted to ascii as the vast majority ofvalues are properly escaped, but that is no guarantee. If a unicodestring is returned it's tunneled through latin1 as required byPEP 3333.

 The return value is not ASCII safe if the key contains unicodecharacters. This is technically against the specification buthappens in the wild. It's strongly recommended to not usenon-ASCII values for the keys.

 	参数:
 	

 	max_age – should be a number of seconds, or None (default) ifthe cookie should last only as long as the client'sbrowser session. Additionally timedelta objectsare accepted, too.

 	expires – should be a datetime object or unix timestamp.

 	path – limits the cookie to a given path, per default it willspan the whole domain.

 	domain – Use this if you want to set a cross-domain cookie. Forexample, domain=".example.com" will set a cookiethat is readable by the domain www.example.com,foo.example.com etc. Otherwise, a cookie will onlybe readable by the domain that set it.

 	secure – The cookie will only be available via HTTPS

 	httponly – disallow JavaScript to access the cookie. This is anextension to the cookie standard and probably notsupported by all browsers.

 	charset – the encoding for unicode values.

 	sync_expires – automatically set expires if max_age is definedbut expires not.

 Conditional Response Helpers

 For conditional responses the following functions might be useful:

 werkzeug.http.parse_etags(value)

Parse an etag header.

 	参数:
 	value – the tag header to parse

 	返回:
 	an ETags object.

 werkzeug.http.quote_etag(etag, weak=False)

Quote an etag.

 	参数:
 	

 	etag – the etag to quote.

 	weak – set to True to tag it “weak”.

 werkzeug.http.unquote_etag(etag)

Unquote a single etag:

 >>> unquote_etag('w/"bar"')
('bar', True)
>>> unquote_etag('"bar"')
('bar', False)

 	参数:
 	etag – the etag identifier to unquote.

 	返回:
 	a (etag,weak) tuple.

 werkzeug.http.generate_etag(data)

Generate an etag for some data.

 werkzeug.http.is_resource_modified(environ, etag=None, data=None, last_modified=None)

Convenience method for conditional requests.

 	参数:
 	

 	environ – the WSGI environment of the request to be checked.

 	etag – the etag for the response for comparison.

 	data – or alternatively the data of the response to automaticallygenerate an etag using generate_etag().

 	last_modified – an optional date of the last modification.

 	返回:
 	
 True if the resource was modified, otherwise False.

 Constants

 werkzeug.http.HTTP_STATUS_CODES

A dict of status code -> default status message pairs. This is usedby the wrappers and other places where an integer status code is expandedto a string throughout Werkzeug.

 Form Data Parsing

 Werkzeug provides the form parsing functions separately from the requestobject so that you can access form data from a plain WSGI environment.

 The following formats are currently supported by the form data parser:

 	application/x-www-form-urlencoded

 	multipart/form-data

 Nested multipart is not currently supported (Werkzeug 0.9), but it isn't usedby any of the modern web browsers.

 Usage example:

 >>> from cStringIO import StringIO
>>> data = '--foo\r\nContent-Disposition: form-data; name="test"\r\n' \
... '\r\nHello World!\r\n--foo--'
>>> environ = {'wsgi.input': StringIO(data), 'CONTENT_LENGTH': str(len(data)),
... 'CONTENT_TYPE': 'multipart/form-data; boundary=foo',
... 'REQUEST_METHOD': 'POST'}
>>> stream, form, files = parse_form_data(environ)
>>> stream.read()
''
>>> form['test']
u'Hello World!'
>>> not files
True

 Normally the WSGI environment is provided by the WSGI gateway with theincoming data as part of it. If you want to generate such fake-WSGIenvironments for unittesting you might want to use thecreate_environ() function or the EnvironBuilder instead.

 class werkzeug.formparser.FormDataParser(stream_factory=None, charset='utf-8', errors='replace', max_form_memory_size=None, max_content_length=None, cls=None, silent=True)

This class implements parsing of form data for Werkzeug. By itselfit can parse multipart and url encoded form data. It can be subclassedand extended but for most mimetypes it is a better idea to use theuntouched stream and expose it as separate attributes on a requestobject.

 0.8 新版功能.

 	参数:
 	

 	stream_factory – An optional callable that returns a new read andwriteable file descriptor. This callable worksthe same as _get_file_stream().

 	charset – The character set for URL and url encoded form data.

 	errors – The encoding error behavior.

 	max_form_memory_size – the maximum number of bytes to be accepted forin-memory stored form data. If the dataexceeds the value specified anRequestEntityTooLargeexception is raised.

 	max_content_length – If this is provided and the transmitted datais longer than this value anRequestEntityTooLargeexception is raised.

 	cls – an optional dict class to use. If this is not specifiedor None the default MultiDict is used.

 	silent – If set to False parsing errors will not be caught.

 werkzeug.formparser.parse_form_data(environ, stream_factory=None, charset='utf-8', errors='replace', max_form_memory_size=None, max_content_length=None, cls=None, silent=True)

Parse the form data in the environ and return it as tuple in the form(stream,form,files). You should only call this method if thetransport method is POST, PUT, or PATCH.

 If the mimetype of the data transmitted is multipart/form-data thefiles multidict will be filled with FileStorage objects. If themimetype is unknown the input stream is wrapped and returned as firstargument, else the stream is empty.

 This is a shortcut for the common usage of FormDataParser.

 Have a look at Dealing with Request Data for more details.

 0.5 新版功能: The max_form_memory_size, max_content_length andcls parameters were added.

 0.5.1 新版功能: The optional silent flag was added.

 	参数:
 	

 	environ – the WSGI environment to be used for parsing.

 	stream_factory – An optional callable that returns a new read andwriteable file descriptor. This callable worksthe same as _get_file_stream().

 	charset – The character set for URL and url encoded form data.

 	errors – The encoding error behavior.

 	max_form_memory_size – the maximum number of bytes to be accepted forin-memory stored form data. If the dataexceeds the value specified anRequestEntityTooLargeexception is raised.

 	max_content_length – If this is provided and the transmitted datais longer than this value anRequestEntityTooLargeexception is raised.

 	cls – an optional dict class to use. If this is not specifiedor None the default MultiDict is used.

 	silent – If set to False parsing errors will not be caught.

 	返回:
 	
 A tuple in the form (stream,form,files).

 werkzeug.formparser.parse_multipart_headers(iterable)

Parses multipart headers from an iterable that yields lines (includingthe trailing newline symbol). The iterable has to be newline terminated.

 The iterable will stop at the line where the headers ended so it can befurther consumed.

 	参数:
 	iterable – iterable of strings that are newline terminated

 Data Structures

 Werkzeug provides some subclasses of common Python objects to extend themwith additional features. Some of them are used to make them immutable, othersare used to change some semantics to better work with HTTP.

 General Purpose

 在 0.6 版更改: The general purpose classes are now pickleable in each protocol as longas the contained objects are pickleable. This means that theFileMultiDict won't be pickleable as soon as it contains afile.

 class werkzeug.datastructures.TypeConversionDict

Works like a regular dict but the get() method can performtype conversions. MultiDict and CombinedMultiDictare subclasses of this class and provide the same feature.

 0.5 新版功能.

 get(key, default=None, type=None)

Return the default value if the requested data doesn't exist.If type is provided and is a callable it should convert the value,return it or raise a ValueError [http://docs.python.org/dev/library/exceptions.html#ValueError] if that is not possible. Inthis case the function will return the default as if the value was notfound:

 >>> d = TypeConversionDict(foo='42', bar='blub')
>>> d.get('foo', type=int)
42
>>> d.get('bar', -1, type=int)
-1

 	参数:
 	

 	key – The key to be looked up.

 	default – The default value to be returned if the key can'tbe looked up. If not further specified None isreturned.

 	type – A callable that is used to cast the value in theMultiDict. If a ValueError [http://docs.python.org/dev/library/exceptions.html#ValueError] is raisedby this callable the default value is returned.

 class werkzeug.datastructures.ImmutableTypeConversionDict

Works like a TypeConversionDict but does not supportmodifications.

 0.5 新版功能.

 copy()

Return a shallow mutable copy of this object. Keep in mind thatthe standard library's copy() function is a no-op for this classlike for any other python immutable type (eg: tuple [http://docs.python.org/dev/library/stdtypes.html#tuple]).

 class werkzeug.datastructures.MultiDict(mapping=None)

A MultiDict is a dictionary subclass customized to deal withmultiple values for the same key which is for example used by the parsingfunctions in the wrappers. This is necessary because some HTML formelements pass multiple values for the same key.

 MultiDict implements all standard dictionary methods.Internally, it saves all values for a key as a list, but the standard dictaccess methods will only return the first value for a key. If you want togain access to the other values, too, you have to use the list methods asexplained below.

 Basic Usage:

 >>> d = MultiDict([('a', 'b'), ('a', 'c')])
>>> d
MultiDict([('a', 'b'), ('a', 'c')])
>>> d['a']
'b'
>>> d.getlist('a')
['b', 'c']
>>> 'a' in d
True

 It behaves like a normal dict thus all dict functions will only return thefirst value when multiple values for one key are found.

 From Werkzeug 0.3 onwards, the KeyError raised by this class is also asubclass of the BadRequest HTTP exception and willrender a page for a 400BADREQUEST if caught in a catch-all for HTTPexceptions.

 A MultiDict can be constructed from an iterable of(key,value) tuples, a dict, a MultiDict or from Werkzeug 0.2onwards some keyword parameters.

 	参数:
 	mapping – the initial value for the MultiDict. Either aregular dict, an iterable of (key,value) tuplesor None.

 add(key, value)

Adds a new value for the key.

 0.6 新版功能.

 	参数:
 	

 	key – the key for the value.

 	value – the value to add.

 clear() → None. Remove all items from D.copy()

Return a shallow copy of this object.

 static fromkeys(S[, v]) → New dict with keys from S and values equal to v.

v defaults to None.

 get(key, default=None, type=None)

Return the default value if the requested data doesn't exist.If type is provided and is a callable it should convert the value,return it or raise a ValueError [http://docs.python.org/dev/library/exceptions.html#ValueError] if that is not possible. Inthis case the function will return the default as if the value was notfound:

 >>> d = TypeConversionDict(foo='42', bar='blub')
>>> d.get('foo', type=int)
42
>>> d.get('bar', -1, type=int)
-1

 	参数:
 	

 	key – The key to be looked up.

 	default – The default value to be returned if the key can'tbe looked up. If not further specified None isreturned.

 	type – A callable that is used to cast the value in theMultiDict. If a ValueError [http://docs.python.org/dev/library/exceptions.html#ValueError] is raisedby this callable the default value is returned.

 getlist(key, type=None)

Return the list of items for a given key. If that key is not in theMultiDict, the return value will be an empty list. Just as getgetlist accepts a type parameter. All items will be convertedwith the callable defined there.

 	参数:
 	

 	key – The key to be looked up.

 	type – A callable that is used to cast the value in theMultiDict. If a ValueError [http://docs.python.org/dev/library/exceptions.html#ValueError] is raisedby this callable the value will be removed from the list.

 	返回:
 	
 a list [http://docs.python.org/dev/library/stdtypes.html#list] of all the values for the key.

 has_key(k) → True if D has a key k, else Falseitems(a, kw*)

Like iteritems(), but returns a list.

 iteritems(multi=False)

Return an iterator of (key,value) pairs.

 	参数:
 	multi – If set to True the iterator returned will have a pairfor each value of each key. Otherwise it will onlycontain pairs for the first value of each key.

 iterlists()

Return a list of (key,values) pairs, where values is the listof all values associated with the key.

 iterlistvalues()

Return an iterator of all values associated with a key. Zippingkeys() and this is the same as calling lists():

 >>> d = MultiDict({"foo": [1, 2, 3]})
>>> zip(d.keys(), d.listvalues()) == d.lists()
True

 itervalues()

Returns an iterator of the first value on every key's value list.

 keys(a, kw*)

Like iterkeys(), but returns a list.

 lists(a, kw*)

Like iterlists(), but returns a list.

 listvalues(a, kw*)

Like iterlistvalues(), but returns a list.

 pop(key, default=no value)

Pop the first item for a list on the dict. Afterwards thekey is removed from the dict, so additional values are discarded:

 >>> d = MultiDict({"foo": [1, 2, 3]})
>>> d.pop("foo")
1
>>> "foo" in d
False

 	参数:
 	

 	key – the key to pop.

 	default – if provided the value to return if the key wasnot in the dictionary.

 popitem()

Pop an item from the dict.

 popitemlist()

Pop a (key,list) tuple from the dict.

 poplist(key)

Pop the list for a key from the dict. If the key is not in the dictan empty list is returned.

 在 0.5 版更改: If the key does no longer exist a list is returned instead ofraising an error.

 setdefault(key, default=None)

Returns the value for the key if it is in the dict, otherwise itreturns default and sets that value for key.

 	参数:
 	

 	key – The key to be looked up.

 	default – The default value to be returned if the key is notin the dict. If not further specified it's None.

 setlist(key, new_list)

Remove the old values for a key and add new ones. Note that the listyou pass the values in will be shallow-copied before it is inserted inthe dictionary.

 >>> d = MultiDict()
>>> d.setlist('foo', ['1', '2'])
>>> d['foo']
'1'
>>> d.getlist('foo')
['1', '2']

 	参数:
 	

 	key – The key for which the values are set.

 	new_list – An iterable with the new values for the key. Old valuesare removed first.

 setlistdefault(key, default_list=None)

Like setdefault but sets multiple values. The list returnedis not a copy, but the list that is actually used internally. Thismeans that you can put new values into the dict by appending itemsto the list:

 >>> d = MultiDict({"foo": 1})
>>> d.setlistdefault("foo").extend([2, 3])
>>> d.getlist("foo")
[1, 2, 3]

 	参数:
 	

 	key – The key to be looked up.

 	default – An iterable of default values. It is either copied(in case it was a list) or converted into a listbefore returned.

 	返回:
 	
 a list [http://docs.python.org/dev/library/stdtypes.html#list]

 to_dict(flat=True)

Return the contents as regular dict. If flat is True thereturned dict will only have the first item present, if flat isFalse all values will be returned as lists.

 	参数:
 	flat – If set to False the dict returned will have listswith all the values in it. Otherwise it will onlycontain the first value for each key.

 	返回:
 	a dict [http://docs.python.org/dev/library/stdtypes.html#dict]

 update(other_dict)

update() extends rather than replaces existing key lists.

 values(a, kw*)

Like itervalues(), but returns a list.

 viewitems() → a set-like object providing a view on D's itemsviewkeys() → a set-like object providing a view on D's keysviewvalues() → an object providing a view on D's valuesclass werkzeug.datastructures.OrderedMultiDict(mapping=None)

Works like a regular MultiDict but preserves theorder of the fields. To convert the ordered multi dict into alist you can use the items() method and pass it multi=True.

 In general an OrderedMultiDict is an order of magnitudeslower than a MultiDict.

 note

 Due to a limitation in Python you cannot convert an orderedmulti dict into a regular dict by using dict(multidict).Instead you have to use the to_dict() method, otherwisethe internal bucket objects are exposed.

 class werkzeug.datastructures.ImmutableMultiDict(mapping=None)

An immutable MultiDict.

 0.5 新版功能.

 copy()

Return a shallow mutable copy of this object. Keep in mind thatthe standard library's copy() function is a no-op for this classlike for any other python immutable type (eg: tuple [http://docs.python.org/dev/library/stdtypes.html#tuple]).

 class werkzeug.datastructures.ImmutableOrderedMultiDict(mapping=None)

An immutable OrderedMultiDict.

 0.6 新版功能.

 copy()

Return a shallow mutable copy of this object. Keep in mind thatthe standard library's copy() function is a no-op for this classlike for any other python immutable type (eg: tuple [http://docs.python.org/dev/library/stdtypes.html#tuple]).

 class werkzeug.datastructures.CombinedMultiDict(dicts=None)

A read only MultiDict that you can pass multiple MultiDictinstances as sequence and it will combine the return values of all wrappeddicts:

 >>> from werkzeug.datastructures import CombinedMultiDict, MultiDict
>>> post = MultiDict([('foo', 'bar')])
>>> get = MultiDict([('blub', 'blah')])
>>> combined = CombinedMultiDict([get, post])
>>> combined['foo']
'bar'
>>> combined['blub']
'blah'

 This works for all read operations and will raise a TypeError formethods that usually change data which isn't possible.

 From Werkzeug 0.3 onwards, the KeyError raised by this class is also asubclass of the BadRequest HTTP exception and willrender a page for a 400BADREQUEST if caught in a catch-all for HTTPexceptions.

 class werkzeug.datastructures.ImmutableDict

An immutable dict [http://docs.python.org/dev/library/stdtypes.html#dict].

 0.5 新版功能.

 copy()

Return a shallow mutable copy of this object. Keep in mind thatthe standard library's copy() function is a no-op for this classlike for any other python immutable type (eg: tuple [http://docs.python.org/dev/library/stdtypes.html#tuple]).

 class werkzeug.datastructures.ImmutableList

An immutable list [http://docs.python.org/dev/library/stdtypes.html#list].

 0.5 新版功能.

 	Private:

 class werkzeug.datastructures.FileMultiDict(mapping=None)

A special MultiDict that has convenience methods to addfiles to it. This is used for EnvironBuilder and generallyuseful for unittesting.

 0.5 新版功能.

 add_file(name, file, filename=None, content_type=None)

Adds a new file to the dict. file can be a file name ora file-like or a FileStorage object.

 	参数:
 	

 	name – the name of the field.

 	file – a filename or file-like object

 	filename – an optional filename

 	content_type – an optional content type

 HTTP Related

 class werkzeug.datastructures.Headers([defaults])

An object that stores some headers. It has a dict-like interfacebut is ordered and can store the same keys multiple times.

 This data structure is useful if you want a nicer way to handle WSGIheaders which are stored as tuples in a list.

 From Werkzeug 0.3 onwards, the KeyError [http://docs.python.org/dev/library/exceptions.html#KeyError] raised by this class isalso a subclass of the BadRequest HTTP exceptionand will render a page for a 400BADREQUEST if caught in acatch-all for HTTP exceptions.

 Headers is mostly compatible with the Python wsgiref.headers.Headers [http://docs.python.org/dev/library/wsgiref.html#wsgiref.headers.Headers]class, with the exception of getitem. wsgiref [http://docs.python.org/dev/library/wsgiref.html#module-wsgiref] will returnNone for headers['missing'], whereas Headers will raisea KeyError [http://docs.python.org/dev/library/exceptions.html#KeyError].

 To create a new Headers object pass it a list or dict of headerswhich are used as default values. This does not reuse the list passedto the constructor for internal usage.

 	参数:
 	defaults – The list of default values for the Headers.

 在 0.9 版更改: This data structure now stores unicode values similar to how themulti dicts do it. The main difference is that bytes can be set aswell which will automatically be latin1 decoded.

 在 0.9 版更改: The linked() function was removed without replacement as itwas an API that does not support the changes to the encoding model.

 add(_key, _value, **kw)

Add a new header tuple to the list.

 Keyword arguments can specify additional parameters for the headervalue, with underscores converted to dashes:

 >>> d = Headers()
>>> d.add('Content-Type', 'text/plain')
>>> d.add('Content-Disposition', 'attachment', filename='foo.png')

 The keyword argument dumping uses dump_options_header()behind the scenes.

 0.4.1 新版功能: keyword arguments were added for wsgiref [http://docs.python.org/dev/library/wsgiref.html#module-wsgiref] compatibility.

 add_header(_key, _value, **_kw)

Add a new header tuple to the list.

 An alias for add() for compatibility with the wsgiref [http://docs.python.org/dev/library/wsgiref.html#module-wsgiref][add_header()](http://docs.python.org/dev/library/wsgiref.html#wsgiref.headers.Headers.add_header "(在 Python v3.5)") [http://docs.python.org/dev/library/wsgiref.html#wsgiref.headers.Headers.add_header] method.

 clear()

Clears all headers.

 extend(iterable)

Extend the headers with a dict or an iterable yielding keys andvalues.

 get(key, default=None, type=None, as_bytes=False)

Return the default value if the requested data doesn't exist.If type is provided and is a callable it should convert the value,return it or raise a ValueError [http://docs.python.org/dev/library/exceptions.html#ValueError] if that is not possible. Inthis case the function will return the default as if the value was notfound:

 >>> d = Headers([('Content-Length', '42')])
>>> d.get('Content-Length', type=int)
42

 If a headers object is bound you must not add unicode stringsbecause no encoding takes place.

 0.9 新版功能: Added support for as_bytes.

 	参数:
 	

 	key – The key to be looked up.

 	default – The default value to be returned if the key can'tbe looked up. If not further specified None isreturned.

 	type – A callable that is used to cast the value in theHeaders. If a ValueError [http://docs.python.org/dev/library/exceptions.html#ValueError] is raisedby this callable the default value is returned.

 	as_bytes – return bytes instead of unicode strings.

 get_all(name)

Return a list of all the values for the named field.

 This method is compatible with the wsgiref [http://docs.python.org/dev/library/wsgiref.html#module-wsgiref][get_all()](http://docs.python.org/dev/library/wsgiref.html#wsgiref.headers.Headers.get_all "(在 Python v3.5)") [http://docs.python.org/dev/library/wsgiref.html#wsgiref.headers.Headers.get_all] method.

 getlist(key, type=None, as_bytes=False)

Return the list of items for a given key. If that key is not in theHeaders, the return value will be an empty list. Just asget()getlist() accepts a type parameter. All items willbe converted with the callable defined there.

 0.9 新版功能: Added support for as_bytes.

 	参数:
 	

 	key – The key to be looked up.

 	type – A callable that is used to cast the value in theHeaders. If a ValueError [http://docs.python.org/dev/library/exceptions.html#ValueError] is raisedby this callable the value will be removed from the list.

 	as_bytes – return bytes instead of unicode strings.

 	返回:
 	
 a list [http://docs.python.org/dev/library/stdtypes.html#list] of all the values for the key.

 has_key(key)

Check if a key is present.

 items(a, kw*)

Like iteritems(), but returns a list.

 keys(a, kw*)

Like iterkeys(), but returns a list.

 pop(key=None, default=no value)

Removes and returns a key or index.

 	参数:
 	key – The key to be popped. If this is an integer the item atthat position is removed, if it's a string the value forthat key is. If the key is omitted or None the lastitem is removed.

 	返回:
 	an item.

 popitem()

Removes a key or index and returns a (key, value) item.

 remove(key)

Remove a key.

 	参数:
 	key – The key to be removed.

 set(_key, _value, **kw)

Remove all header tuples for key and add a new one. The newlyadded key either appears at the end of the list if there was noentry or replaces the first one.

 Keyword arguments can specify additional parameters for the headervalue, with underscores converted to dashes. See add() formore information.

 在 0.6.1 版更改: set() now accepts the same arguments as add().

 	参数:
 	

 	key – The key to be inserted.

 	value – The value to be inserted.

 setdefault(key, value)

Returns the value for the key if it is in the dict, otherwise itreturns default and sets that value for key.

 	参数:
 	

 	key – The key to be looked up.

 	default – The default value to be returned if the key is notin the dict. If not further specified it's None.

 to_list(charset='iso-8859-1')

Convert the headers into a list suitable for WSGI.

 to_wsgi_list()

Convert the headers into a list suitable for WSGI.

 The values are byte strings in Python 2 converted to latin1 and unicodestrings in Python 3 for the WSGI server to encode.

 	返回:
 	list

 values(a, kw*)

Like itervalues(), but returns a list.

 class werkzeug.datastructures.EnvironHeaders(environ)

Read only version of the headers from a WSGI environment. Thisprovides the same interface as Headers and is constructed froma WSGI environment.

 From Werkzeug 0.3 onwards, the KeyError raised by this class is also asubclass of the BadRequest HTTP exception and willrender a page for a 400BADREQUEST if caught in a catch-all forHTTP exceptions.

 class werkzeug.datastructures.HeaderSet(headers=None, on_update=None)

Similar to the ETags class this implements a set-like structure.Unlike ETags this is case insensitive and used for vary, allow, andcontent-language headers.

 If not constructed using the parse_set_header() function theinstantiation works like this:

 >>> hs = HeaderSet(['foo', 'bar', 'baz'])
>>> hs
HeaderSet(['foo', 'bar', 'baz'])

 add(header)

Add a new header to the set.

 as_set(preserve_casing=False)

Return the set as real python set type. When calling this, allthe items are converted to lowercase and the ordering is lost.

 	参数:
 	preserve_casing – if set to True the items in the set returnedwill have the original case like in theHeaderSet, otherwise they willbe lowercase.

 clear()

Clear the set.

 discard(header)

Like remove() but ignores errors.

 	参数:
 	header – the header to be discarded.

 find(header)

Return the index of the header in the set or return -1 if not found.

 	参数:
 	header – the header to be looked up.

 index(header)

Return the index of the header in the set or raise anIndexError [http://docs.python.org/dev/library/exceptions.html#IndexError].

 	参数:
 	header – the header to be looked up.

 remove(header)

Remove a header from the set. This raises an KeyError [http://docs.python.org/dev/library/exceptions.html#KeyError] if theheader is not in the set.

 在 0.5 版更改: In older versions a IndexError [http://docs.python.org/dev/library/exceptions.html#IndexError] was raised instead of aKeyError [http://docs.python.org/dev/library/exceptions.html#KeyError] if the object was missing.

 	参数:
 	header – the header to be removed.

 to_header()

Convert the header set into an HTTP header string.

 update(iterable)

Add all the headers from the iterable to the set.

 	参数:
 	iterable – updates the set with the items from the iterable.

 class werkzeug.datastructures.Accept(values=())

An Accept object is just a list subclass for lists of(value,quality) tuples. It is automatically sorted by quality.

 All Accept objects work similar to a list but provide extrafunctionality for working with the data. Containment checks arenormalized to the rules of that header:

 >>> a = CharsetAccept([('ISO-8859-1', 1), ('utf-8', 0.7)])
>>> a.best
'ISO-8859-1'
>>> 'iso-8859-1' in a
True
>>> 'UTF8' in a
True
>>> 'utf7' in a
False

 To get the quality for an item you can use normal item lookup:

 >>> print a['utf-8']
0.7
>>> a['utf7']
0

 在 0.5 版更改: Accept objects are forced immutable now.

 best

The best match as value.

 best_match(matches, default=None)

Returns the best match from a list of possible matches basedon the quality of the client. If two items have the same quality,the one is returned that comes first.

 	参数:
 	

 	matches – a list of matches to check for

 	default – the value that is returned if none match

 find(key)

Get the position of an entry or return -1.

 	参数:
 	key – The key to be looked up.

 index(key)

Get the position of an entry or raise ValueError [http://docs.python.org/dev/library/exceptions.html#ValueError].

 	参数:
 	key – The key to be looked up.

 在 0.5 版更改: This used to raise IndexError [http://docs.python.org/dev/library/exceptions.html#IndexError], which was inconsistentwith the list API.

 itervalues()

Iterate over all values.

 quality(key)

Returns the quality of the key.

 0.6 新版功能: In previous versions you had to use the item-lookup syntax(eg: obj[key] instead of obj.quality(key))

 to_header()

Convert the header set into an HTTP header string.

 values(a, kw*)

Like itervalues(), but returns a list.

 class werkzeug.datastructures.MIMEAccept(values=())

Like Accept but with special methods and behavior formimetypes.

 accept_html

True if this object accepts HTML.

 accept_json

True if this object accepts JSON.

 accept_xhtml

True if this object accepts XHTML.

 class werkzeug.datastructures.CharsetAccept(values=())

Like Accept but with normalization for charsets.

 class werkzeug.datastructures.LanguageAccept(values=())

Like Accept but with normalization for languages.

 class werkzeug.datastructures.RequestCacheControl(values=(), on_update=None)

A cache control for requests. This is immutable and gives accessto all the request-relevant cache control headers.

 To get a header of the RequestCacheControl object again you canconvert the object into a string or call the to_header() method. Ifyou plan to subclass it and add your own items have a look at the sourcecodefor that class.

 0.5 新版功能: In previous versions a CacheControl class existed that was usedboth for request and response.

 no_cache

accessor for ‘no-cache'

 no_store

accessor for ‘no-store'

 max_age

accessor for ‘max-age'

 no_transform

accessor for ‘no-transform'

 max_stale

accessor for ‘max-stale'

 min_fresh

accessor for ‘min-fresh'

 no_transform

accessor for ‘no-transform'

 only_if_cached

accessor for ‘only-if-cached'

 class werkzeug.datastructures.ResponseCacheControl(values=(), on_update=None)

A cache control for responses. Unlike RequestCacheControlthis is mutable and gives access to response-relevant cache controlheaders.

 To get a header of the ResponseCacheControl object again you canconvert the object into a string or call the to_header() method. Ifyou plan to subclass it and add your own items have a look at the sourcecodefor that class.

 0.5 新版功能: In previous versions a CacheControl class existed that was usedboth for request and response.

 no_cache

accessor for ‘no-cache'

 no_store

accessor for ‘no-store'

 max_age

accessor for ‘max-age'

 no_transform

accessor for ‘no-transform'

 must_revalidate

accessor for ‘must-revalidate'

 private

accessor for ‘private'

 proxy_revalidate

accessor for ‘proxy-revalidate'

 public

accessor for ‘public'

 s_maxage

accessor for ‘s-maxage'

 class werkzeug.datastructures.ETags(strong_etags=None, weak_etags=None, star_tag=False)

A set that can be used to check if one etag is present in a collectionof etags.

 as_set(include_weak=False)

Convert the ETags object into a python set. Per default all theweak etags are not part of this set.

 contains(etag)

Check if an etag is part of the set ignoring weak tags.It is also possible to use the in operator.

 contains_raw(etag)

When passed a quoted tag it will check if this tag is part of theset. If the tag is weak it is checked against weak and strong tags,otherwise strong only.

 contains_weak(etag)

Check if an etag is part of the set including weak and strong tags.

 is_weak(etag)

Check if an etag is weak.

 to_header()

Convert the etags set into a HTTP header string.

 class werkzeug.datastructures.Authorization(auth_type, data=None)

Represents an Authorization header sent by the client. You shouldnot create this kind of object yourself but use it when it's returned bythe parse_authorization_header function.

 This object is a dict subclass and can be altered by setting dict itemsbut it should be considered immutable as it's returned by the client andnot meant for modifications.

 在 0.5 版更改: This object became immutable.

 cnonce

If the server sent a qop-header in the WWW-Authenticateheader, the client has to provide this value for HTTP digest auth.See the RFC for more details.

 nc

The nonce count value transmitted by clients if a qop-header isalso transmitted. HTTP digest auth only.

 nonce

The nonce the server sent for digest auth, sent back by the client.A nonce should be unique for every 401 response for HTTP digestauth.

 opaque

The opaque header from the server returned unchanged by the client.It is recommended that this string be base64 or hexadecimal data.Digest auth only.

 password

When the authentication type is basic this is the passwordtransmitted by the client, else None.

 qop

Indicates what “quality of protection” the client has applied tothe message for HTTP digest auth.

 realm

This is the server realm sent back for HTTP digest auth.

 response

A string of 32 hex digits computed as defined in RFC 2617, whichproves that the user knows a password. Digest auth only.

 uri

The URI from Request-URI of the Request-Line; duplicated becauseproxies are allowed to change the Request-Line in transit. HTTPdigest auth only.

 username

The username transmitted. This is set for both basic and digestauth all the time.

 class werkzeug.datastructures.WWWAuthenticate(auth_type=None, values=None, on_update=None)

Provides simple access to WWW-Authenticate headers.

 algorithm

A string indicating a pair of algorithms used to produce the digestand a checksum. If this is not present it is assumed to be “MD5”.If the algorithm is not understood, the challenge should be ignored(and a different one used, if there is more than one).

 static auth_property(name, doc=None)

A static helper function for subclasses to add extra authenticationsystem properties onto a class:

 class FooAuthenticate(WWWAuthenticate):
 special_realm = auth_property('special_realm')

 For more information have a look at the sourcecode to see how theregular properties (realm etc.) are implemented.

 domain

A list of URIs that define the protection space. If a URI is anabsolute path, it is relative to the canonical root URL of theserver being accessed.

 nonce

A server-specified data string which should be uniquely generatedeach time a 401 response is made. It is recommended that thisstring be base64 or hexadecimal data.

 opaque

A string of data, specified by the server, which should be returnedby the client unchanged in the Authorization header of subsequentrequests with URIs in the same protection space. It is recommendedthat this string be base64 or hexadecimal data.

 qop

A set of quality-of-privacy directives such as auth and auth-int.

 realm

A string to be displayed to users so they know which username andpassword to use. This string should contain at least the name ofthe host performing the authentication and might additionallyindicate the collection of users who might have access.

 set_basic(realm='authentication required')

Clear the auth info and enable basic auth.

 set_digest(realm, nonce, qop=('auth',), opaque=None, algorithm=None, stale=False)

Clear the auth info and enable digest auth.

 stale

A flag, indicating that the previous request from the client wasrejected because the nonce value was stale.

 to_header()

Convert the stored values into a WWW-Authenticate header.

 type

The type of the auth mechanism. HTTP currently specifiesBasic and Digest.

 class werkzeug.datastructures.IfRange(etag=None, date=None)

Very simple object that represents the If-Range header in parsedform. It will either have neither a etag or date or one of either butnever both.

 0.7 新版功能.

 date = None

The date in parsed format or None.

 etag = None

The etag parsed and unquoted. Ranges always operate on strongetags so the weakness information is not necessary.

 to_header()

Converts the object back into an HTTP header.

 class werkzeug.datastructures.Range(units, ranges)

Represents a range header. All the methods are only supporting bytesas unit. It does store multiple ranges but range_for_length() willonly work if only one range is provided.

 0.7 新版功能.

 make_content_range(length)

Creates a ContentRange objectfrom the current range and given content length.

 range_for_length(length)

If the range is for bytes, the length is not None and there isexactly one range and it is satisfiable it returns a (start,stop)tuple, otherwise None.

 ranges = None

A list of (begin,end) tuples for the range header provided.The ranges are non-inclusive.

 to_header()

Converts the object back into an HTTP header.

 units = None

The units of this range. Usually “bytes”.

 class werkzeug.datastructures.ContentRange(units, start, stop, length=None, on_update=None)

Represents the content range header.

 0.7 新版功能.

 length

The length of the range or None.

 set(start, stop, length=None, units='bytes')

Simple method to update the ranges.

 start

The start point of the range or None.

 stop

The stop point of the range (non-inclusive) or None. Can only beNone if also start is None.

 units

The units to use, usually “bytes”

 unset()

Sets the units to None which indicates that the header shouldno longer be used.

 Others

 class werkzeug.datastructures.FileStorage(stream=None, filename=None, name=None, content_type=None, content_length=None, headers=None)

The FileStorage class is a thin wrapper over incoming files.It is used by the request object to represent uploaded files. All theattributes of the wrapper stream are proxied by the file storage soit's possible to do storage.read() instead of the long formstorage.stream.read().

 stream

The input stream for the uploaded file. This usually points to anopen temporary file.

 filename

The filename of the file on the client.

 name

The name of the form field.

 headers

The multipart headers as Headers object. This usually containsirrelevant information but in combination with custom multipart requeststhe raw headers might be interesting.

 0.6 新版功能.

 close()

Close the underlying file if possible.

 content_length

The content-length sent in the header. Usually not available

 content_type

The content-type sent in the header. Usually not available

 mimetype

Like content_type but without parameters (eg, withoutcharset, type etc.). For example if the contenttype is text/html;charset=utf-8 the mimetype would be'text/html'.

 0.7 新版功能.

 mimetype_params

The mimetype parameters as dict. For example if the contenttype is text/html;charset=utf-8 the params would be{'charset':'utf-8'}.

 0.7 新版功能.

 save(dst, buffer_size=16384)

Save the file to a destination path or file object. If thedestination is a file object you have to close it yourself after thecall. The buffer size is the number of bytes held in memory duringthe copy process. It defaults to 16KB.

 For secure file saving also have a look at secure_filename().

 	参数:
 	

 	dst – a filename or open file object the uploaded fileis saved to.

 	buffer_size – the size of the buffer. This works the same asthe length parameter ofshutil.copyfileobj() [http://docs.python.org/dev/library/shutil.html#shutil.copyfileobj].

 Utilities

 Various utility functions shipped with Werkzeug.

 HTML Helpers

 class werkzeug.utils.HTMLBuilder(dialect)

Helper object for HTML generation.

 Per default there are two instances of that class. The html one, andthe xhtml one for those two dialects. The class uses keyword parametersand positional parameters to generate small snippets of HTML.

 Keyword parameters are converted to XML/SGML attributes, positionalarguments are used as children. Because Python accepts positionalarguments before keyword arguments it's a good idea to use a list with thestar-syntax for some children:

 >>> html.p(class_='foo', *[html.a('foo', href='foo.html'), ' ',
... html.a('bar', href='bar.html')])
u'<p class="foo">foo bar</p>'

 This class works around some browser limitations and can not be used forarbitrary SGML/XML generation. For that purpose lxml and similarlibraries exist.

 Calling the builder escapes the string passed:

 >>> html.p(html("<foo>"))
u'<p><foo></p>'

 werkzeug.utils.escape(s, quote=None)

Replace special characters “&”, “<”, “>” and (”) to HTML-safe sequences.

 There is a special handling for None which escapes to an empty string.

 在 0.9 版更改: quote is now implicitly on.

 	参数:
 	

 	s – the string to escape.

 	quote – ignored.

 werkzeug.utils.unescape(s)

The reverse function of escape. This unescapes all the HTMLentities, not only the XML entities inserted by escape.

 	参数:
 	s – the string to unescape.

 General Helpers

 class werkzeug.utils.cached_property(func, name=None, doc=None)

A decorator that converts a function into a lazy property. Thefunction wrapped is called the first time to retrieve the resultand then that calculated result is used the next time you accessthe value:

 class Foo(object):

 @cached_property
 def foo(self):
 # calculate something important here
 return 42

 The class has to have a dict in order for this property towork.

 class werkzeug.utils.environ_property(name, default=None, load_func=None, dump_func=None, read_only=None, doc=None)

Maps request attributes to environment variables. This works not onlyfor the Werzeug request object, but also any other class with anenviron attribute:

 >>> class Test(object):
... environ = {'key': 'value'}
... test = environ_property('key')
>>> var = Test()
>>> var.test
'value'

 If you pass it a second value it's used as default if the key does notexist, the third one can be a converter that takes a value and convertsit. If it raises ValueError [http://docs.python.org/dev/library/exceptions.html#ValueError] or TypeError [http://docs.python.org/dev/library/exceptions.html#TypeError] the default valueis used. If no default value is provided None is used.

 Per default the property is read only. You have to explicitly enable itby passing read_only=False to the constructor.

 class werkzeug.utils.header_property(name, default=None, load_func=None, dump_func=None, read_only=None, doc=None)

Like environ_property but for headers.

 werkzeug.utils.parse_cookie(header, charset='utf-8', errors='replace', cls=None)

Parse a cookie. Either from a string or WSGI environ.

 Per default encoding errors are ignored. If you want a different behavioryou can set errors to 'replace' or 'strict'. In strict mode aHTTPUnicodeError is raised.

 在 0.5 版更改: This function now returns a TypeConversionDict instead of aregular dict. The cls parameter was added.

 	参数:
 	

 	header – the header to be used to parse the cookie. Alternativelythis can be a WSGI environment.

 	charset – the charset for the cookie values.

 	errors – the error behavior for the charset decoding.

 	cls – an optional dict class to use. If this is not specifiedor None the default TypeConversionDict isused.

 werkzeug.utils.dump_cookie(key, value='', max_age=None, expires=None, path='/', domain=None, secure=False, httponly=False, charset='utf-8', sync_expires=True)

Creates a new Set-Cookie header without the Set-Cookie prefixThe parameters are the same as in the cookie Morsel object in thePython standard library but it accepts unicode data, too.

 On Python 3 the return value of this function will be a unicodestring, on Python 2 it will be a native string. In both cases thereturn value is usually restricted to ascii as the vast majority ofvalues are properly escaped, but that is no guarantee. If a unicodestring is returned it's tunneled through latin1 as required byPEP 3333.

 The return value is not ASCII safe if the key contains unicodecharacters. This is technically against the specification buthappens in the wild. It's strongly recommended to not usenon-ASCII values for the keys.

 	参数:
 	

 	max_age – should be a number of seconds, or None (default) ifthe cookie should last only as long as the client'sbrowser session. Additionally timedelta objectsare accepted, too.

 	expires – should be a datetime object or unix timestamp.

 	path – limits the cookie to a given path, per default it willspan the whole domain.

 	domain – Use this if you want to set a cross-domain cookie. Forexample, domain=".example.com" will set a cookiethat is readable by the domain www.example.com,foo.example.com etc. Otherwise, a cookie will onlybe readable by the domain that set it.

 	secure – The cookie will only be available via HTTPS

 	httponly – disallow JavaScript to access the cookie. This is anextension to the cookie standard and probably notsupported by all browsers.

 	charset – the encoding for unicode values.

 	sync_expires – automatically set expires if max_age is definedbut expires not.

 werkzeug.utils.redirect(location, code=302)

Return a response object (a WSGI application) that, if called,redirects the client to the target location. Supported codes are 301,302, 303, 305, and 307. 300 is not supported because it's not a realredirect and 304 because it's the answer for a request with a requestwith defined If-Modified-Since headers.

 0.6 新版功能: The location can now be a unicode string that is encoded usingthe iri_to_uri() function.

 	参数:
 	

 	location – the location the response should redirect to.

 	code – the redirect status code. defaults to 302.

 werkzeug.utils.append_slash_redirect(environ, code=301)

Redirect to the same URL but with a slash appended. The behaviorof this function is undefined if the path ends with a slash already.

 	参数:
 	

 	environ – the WSGI environment for the request that triggersthe redirect.

 	code – the status code for the redirect.

 werkzeug.utils.import_string(import_name, silent=False)

Imports an object based on a string. This is useful if you want touse import paths as endpoints or something similar. An import path canbe specified either in dotted notation (xml.sax.saxutils.escape)or with a colon as object delimiter (xml.sax.saxutils:escape).

 If silent is True the return value will be None if the import fails.

 	参数:
 	

 	import_name – the dotted name for the object to import.

 	silent – if set to True import errors are ignored andNone is returned instead.

 	返回:
 	
 imported object

 werkzeug.utils.find_modules(import_path, include_packages=False, recursive=False)

Find all the modules below a package. This can be useful toautomatically import all views / controllers so that their metaclasses /function decorators have a chance to register themselves on theapplication.

 Packages are not returned unless include_packages is True. This canalso recursively list modules but in that case it will import all thepackages to get the correct load path of that module.

 	参数:
 	

 	import_name – the dotted name for the package to find child modules.

 	include_packages – set to True if packages should be returned, too.

 	recursive – set to True if recursion should happen.

 	返回:
 	
 generator

 werkzeug.utils.validate_arguments(func, args, kwargs, drop_extra=True)

Check if the function accepts the arguments and keyword arguments.Returns a new (args,kwargs) tuple that can safely be passed tothe function without causing a TypeError because the function signatureis incompatible. If drop_extra is set to True (which is the default)any extra positional or keyword arguments are dropped automatically.

 The exception raised provides three attributes:

 missingA set of argument names that the function expected but wheremissing.extraA dict of keyword arguments that the function can not handle butwhere provided.extra_positionalA list of values that where given by positional argument but thefunction cannot accept.

This can be useful for decorators that forward user submitted data toa view function:

 from werkzeug.utils import ArgumentValidationError, validate_arguments

def sanitize(f):
 def proxy(request):
 data = request.values.to_dict()
 try:
 args, kwargs = validate_arguments(f, (request,), data)
 except ArgumentValidationError:
 raise BadRequest('The browser failed to transmit all '
 'the data expected.')
 return f(*args, **kwargs)
 return proxy

 	参数:
 	

 	func – the function the validation is performed against.

 	args – a tuple of positional arguments.

 	kwargs – a dict of keyword arguments.

 	drop_extra – set to False if you don't want extra argumentsto be silently dropped.

 	返回:
 	
 tuple in the form (args,kwargs).

 werkzeug.utils.secure_filename(filename)

Pass it a filename and it will return a secure version of it. Thisfilename can then safely be stored on a regular file system and passedto os.path.join() [http://docs.python.org/dev/library/os.path.html#os.path.join]. The filename returned is an ASCII only stringfor maximum portability.

 On windows system the function also makes sure that the file is notnamed after one of the special device files.

 >>> secure_filename("My cool movie.mov")
'My_cool_movie.mov'
>>> secure_filename("../../../etc/passwd")
'etc_passwd'
>>> secure_filename(u'i contain cool \xfcml\xe4uts.txt')
'i_contain_cool_umlauts.txt'

 The function might return an empty filename. It's your responsibilityto ensure that the filename is unique and that you generate randomfilename if the function returned an empty one.

 0.5 新版功能.

 	参数:
 	filename – the filename to secure

 werkzeug.utils.bind_arguments(func, args, kwargs)

Bind the arguments provided into a dict. When passed a function,a tuple of arguments and a dict of keyword arguments bind_argumentsreturns a dict of names as the function would see it. This can be usefulto implement a cache decorator that uses the function arguments to buildthe cache key based on the values of the arguments.

 	参数:
 	

 	func – the function the arguments should be bound for.

 	args – tuple of positional arguments.

 	kwargs – a dict of keyword arguments.

 	返回:
 	
 a dict [http://docs.python.org/dev/library/stdtypes.html#dict] of bound keyword arguments.

 URL Helpers

 class werkzeug.urls.Href(base='./', charset='utf-8', sort=False, key=None)

Implements a callable that constructs URLs with the given base. Thefunction can be called with any number of positional and keywordarguments which than are used to assemble the URL. Works with URLsand posix paths.

 Positional arguments are appended as individual segments tothe path of the URL:

 >>> href = Href('/foo')
>>> href('bar', 23)
'/foo/bar/23'
>>> href('foo', bar=23)
'/foo/foo?bar=23'

 If any of the arguments (positional or keyword) evaluates to None itwill be skipped. If no keyword arguments are given the last argumentcan be a dict [http://docs.python.org/dev/library/stdtypes.html#dict] or MultiDict (or any other dict subclass),otherwise the keyword arguments are used for the query parameters, cuttingoff the first trailing underscore of the parameter name:

 >>> href(is_=42)
'/foo?is=42'
>>> href({'foo': 'bar'})
'/foo?foo=bar'

 Combining of both methods is not allowed:

 >>> href({'foo': 'bar'}, bar=42)
Traceback (most recent call last):
 ...
TypeError: keyword arguments and query-dicts can't be combined

 Accessing attributes on the href object creates a new href object withthe attribute name as prefix:

 >>> bar_href = href.bar
>>> bar_href("blub")
'/foo/bar/blub'

 If sort is set to True the items are sorted by key or the defaultsorting algorithm:

 >>> href = Href("/", sort=True)
>>> href(a=1, b=2, c=3)
'/?a=1&b=2&c=3'

 0.5 新版功能: sort and key were added.

 werkzeug.urls.url_decode(s, charset='utf-8', decode_keys=False, include_empty=True, errors='replace', separator='&', cls=None)

Parse a querystring and return it as MultiDict. There is adifference in key decoding on different Python versions. On Python 3keys will always be fully decoded whereas on Python 2, keys willremain bytestrings if they fit into ASCII. On 2.x keys can be forcedto be unicode by setting decode_keys to True.

 If the charset is set to None no unicode decoding will happen andraw bytes will be returned.

 Per default a missing value for a key will default to an empty key. Ifyou don't want that behavior you can set include_empty to False.

 Per default encoding errors are ignored. If you want a different behavioryou can set errors to 'replace' or 'strict'. In strict mode aHTTPUnicodeError is raised.

 在 0.5 版更改: In previous versions ”;” and “&” could be used for url decoding.This changed in 0.5 where only “&” is supported. If you want touse ”;” instead a different separator can be provided.

 The cls parameter was added.

 	参数:
 	

 	s – a string with the query string to decode.

 	charset – the charset of the query string. If set to Noneno unicode decoding will take place.

 	decode_keys – Used on Python 2.x to control whether keys shouldbe forced to be unicode objects. If set to Truethen keys will be unicode in all cases. Otherwise,they remain str if they fit into ASCII.

 	include_empty – Set to False if you don't want empty values toappear in the dict.

 	errors – the decoding error behavior.

 	separator – the pair separator to be used, defaults to &

 	cls – an optional dict class to use. If this is not specifiedor None the default MultiDict is used.

 werkzeug.urls.url_decode_stream(stream, charset='utf-8', decode_keys=False, include_empty=True, errors='replace', separator='&', cls=None, limit=None, return_iterator=False)

Works like url_decode() but decodes a stream. The behaviorof stream and limit follows functions likemake_line_iter(). The generator of pairs isdirectly fed to the cls so you can consume the data while it'sparsed.

 0.8 新版功能.

 	参数:
 	

 	stream – a stream with the encoded querystring

 	charset – the charset of the query string. If set to Noneno unicode decoding will take place.

 	decode_keys – Used on Python 2.x to control whether keys shouldbe forced to be unicode objects. If set to True,keys will be unicode in all cases. Otherwise, theyremain str if they fit into ASCII.

 	include_empty – Set to False if you don't want empty values toappear in the dict.

 	errors – the decoding error behavior.

 	separator – the pair separator to be used, defaults to &

 	cls – an optional dict class to use. If this is not specifiedor None the default MultiDict is used.

 	limit – the content length of the URL data. Not necessary ifa limited stream is provided.

 	return_iterator – if set to True the cls argument is ignoredand an iterator over all decoded pairs isreturned

 werkzeug.urls.url_encode(obj, charset='utf-8', encode_keys=False, sort=False, key=None, separator='&')

URL encode a dict/MultiDict. If a value is None it will not appearin the result string. Per default only values are encoded into the targetcharset strings. If encode_keys is set to True unicode keys aresupported too.

 If sort is set to True the items are sorted by key or the defaultsorting algorithm.

 0.5 新版功能: sort, key, and separator were added.

 	参数:
 	

 	obj – the object to encode into a query string.

 	charset – the charset of the query string.

 	encode_keys – set to True if you have unicode keys. (Ignored onPython 3.x)

 	sort – set to True if you want parameters to be sorted by key.

 	separator – the separator to be used for the pairs.

 	key – an optional function to be used for sorting. For more detailscheck out the sorted() [http://docs.python.org/dev/library/functions.html#sorted] documentation.

 werkzeug.urls.url_encode_stream(obj, stream=None, charset='utf-8', encode_keys=False, sort=False, key=None, separator='&')

Like url_encode() but writes the results to a streamobject. If the stream is None a generator over all encodedpairs is returned.

 0.8 新版功能.

 	参数:
 	

 	obj – the object to encode into a query string.

 	stream – a stream to write the encoded object into or None ifan iterator over the encoded pairs should be returned. Inthat case the separator argument is ignored.

 	charset – the charset of the query string.

 	encode_keys – set to True if you have unicode keys. (Ignored onPython 3.x)

 	sort – set to True if you want parameters to be sorted by key.

 	separator – the separator to be used for the pairs.

 	key – an optional function to be used for sorting. For more detailscheck out the sorted() [http://docs.python.org/dev/library/functions.html#sorted] documentation.

 werkzeug.urls.url_quote(string, charset='utf-8', errors='strict', safe='/:', unsafe='')

URL encode a single string with a given encoding.

 	参数:
 	

 	s – the string to quote.

 	charset – the charset to be used.

 	safe – an optional sequence of safe characters.

 	unsafe – an optional sequence of unsafe characters.

 0.9.2 新版功能: The unsafe parameter was added.

 werkzeug.urls.url_quote_plus(string, charset='utf-8', errors='strict', safe='')

URL encode a single string with the given encoding and convertwhitespace to “+”.

 	参数:
 	

 	s – The string to quote.

 	charset – The charset to be used.

 	safe – An optional sequence of safe characters.

 werkzeug.urls.url_unquote(string, charset='utf-8', errors='replace', unsafe='')

URL decode a single string with a given encoding. If the charsetis set to None no unicode decoding is performed and raw bytesare returned.

 	参数:
 	

 	s – the string to unquote.

 	charset – the charset of the query string. If set to Noneno unicode decoding will take place.

 	errors – the error handling for the charset decoding.

 werkzeug.urls.url_unquote_plus(s, charset='utf-8', errors='replace')

URL decode a single string with the given charset and decode “+” towhitespace.

 Per default encoding errors are ignored. If you want a different behavioryou can set errors to 'replace' or 'strict'. In strict mode aHTTPUnicodeError is raised.

 	参数:
 	

 	s – The string to unquote.

 	charset – the charset of the query string. If set to Noneno unicode decoding will take place.

 	errors – The error handling for the charset decoding.

 werkzeug.urls.url_fix(s, charset='utf-8')

Sometimes you get an URL by a user that just isn't a real URL becauseit contains unsafe characters like ‘ ‘ and so on. This function can fixsome of the problems in a similar way browsers handle data entered by theuser:

 >>> url_fix(u'http://de.wikipedia.org/wiki/Elf (Begriffskl\xe4rung)')
'http://de.wikipedia.org/wiki/Elf%20(Begriffskl%C3%A4rung)'

 	参数:
 	

 	s – the string with the URL to fix.

 	charset – The target charset for the URL if the url was given asunicode string.

 werkzeug.urls.uri_to_iri(uri, charset='utf-8', errors='replace')

Converts a URI in a given charset to a IRI.

 Examples for URI versus IRI:

 >>> uri_to_iri(b'http://xn--n3h.net/')
u'http://\u2603.net/'
>>> uri_to_iri(b'http://%C3%BCser:p%C3%A4ssword@xn--n3h.net/p%C3%A5th')
u'http://\xfcser:p\xe4ssword@\u2603.net/p\xe5th'

 Query strings are left unchanged:

 >>> uri_to_iri('/?foo=24&x=%26%2f')
u'/?foo=24&x=%26%2f'

 0.6 新版功能.

 	参数:
 	

 	uri – The URI to convert.

 	charset – The charset of the URI.

 	errors – The error handling on decode.

 werkzeug.urls.iri_to_uri(iri, charset='utf-8', errors='strict')

Converts any unicode based IRI to an acceptable ASCII URI. Werkzeug alwaysuses utf-8 URLs internally because this is what browsers and HTTP do aswell. In some places where it accepts an URL it also accepts a unicode IRIand converts it into a URI.

 Examples for IRI versus URI:

 >>> iri_to_uri(u'http://☃.net/')
'http://xn--n3h.net/'
>>> iri_to_uri(u'http://üser:pässword@☃.net/påth')
'http://%C3%BCser:p%C3%A4ssword@xn--n3h.net/p%C3%A5th'

 0.6 新版功能.

 	参数:
 	

 	iri – The IRI to convert.

 	charset – The charset for the URI.

 UserAgent Parsing

 class werkzeug.useragents.UserAgent(environ_or_string)

Represents a user agent. Pass it a WSGI environment or a user agentstring and you can inspect some of the details from the user agentstring via the attributes. The following attributes exist:

 string

the raw user agent string

 platform

the browser platform. The following platforms are currentlyrecognized:

 	aix

 	amiga

 	android

 	bsd

 	hpux

 	iphone

 	ipad

 	irix

 	linux

 	macos

 	sco

 	solaris

 	wii

 	windows

 browser

the name of the browser. The following browsers are currentlyrecognized:

 	aol *

 	ask *

 	camino

 	chrome

 	firefox

 	galeon

 	google *

 	kmeleon

 	konqueror

 	links

 	lynx

 	msie

 	msn

 	netscape

 	opera

 	safari

 	seamonkey

 	webkit

 	yahoo *

 (Browsers maked with a star (*) are crawlers.)

 version

the version of the browser

 language

the language of the browser

 Security Helpers

 0.6.1 新版功能.

 werkzeug.security.generate_password_hash(password, method='pbkdf2:sha1', salt_length=8)

Hash a password with the given method and salt with with a string ofthe given length. The format of the string returned includes the methodthat was used so that check_password_hash() can check the hash.

 The format for the hashed string looks like this:

 method$salt$hash

 This method can not generate unsalted passwords but it is possibleto set the method to plain to enforce plaintext passwords. If a saltis used, hmac is used internally to salt the password.

 If PBKDF2 is wanted it can be enabled by setting the method topbkdf2:method:iterations where iterations is optional:

 pbkdf2:sha1:2000$salt$hash
pbkdf2:sha1$salt$hash

 	参数:
 	

 	password – the password to hash

 	method – the hash method to use (one that hashlib supports), canoptionally be in the format pbpdf2:<method>[:iterations]to enable PBKDF2.

 	salt_length – the length of the salt in letters

 werkzeug.security.check_password_hash(pwhash, password)

check a password against a given salted and hashed password value.In order to support unsalted legacy passwords this method supportsplain text passwords, md5 and sha1 hashes (both salted and unsalted).

 Returns True if the password matched, False otherwise.

 	参数:
 	

 	pwhash – a hashed string like returned bygenerate_password_hash()

 	password – the plaintext password to compare against the hash

 werkzeug.security.safe_str_cmp(a, b)

This function compares strings in somewhat constant time. Thisrequires that the length of at least one string is known in advance.

 Returns True if the two strings are equal or False if they are not.

 0.7 新版功能.

 werkzeug.security.safe_join(directory, filename)

Safely join directory and filename. If this cannot be done,this function returns None.

 	参数:
 	

 	directory – the base directory.

 	filename – the untrusted filename relative to that directory.

 werkzeug.security.pbkdf2_hex(data, salt, iterations=1000, keylen=None, hashfunc=None)

Like pbkdf2_bin() but returns a hex encoded string.

 0.9 新版功能.

 	参数:
 	

 	data – the data to derive.

 	salt – the salt for the derivation.

 	iterations – the number of iterations.

 	keylen – the length of the resulting key. If not providedthe digest size will be used.

 	hashfunc – the hash function to use. This can either be thestring name of a known hash function or a functionfrom the hashlib module. Defaults to sha1.

 werkzeug.security.pbkdf2_bin(data, salt, iterations=1000, keylen=None, hashfunc=None)

Returns a binary digest for the PBKDF2 hash algorithm of datawith the given salt. It iterates iterations time and produces akey of keylen bytes. By default SHA-1 is used as hash function,a different hashlib hashfunc can be provided.

 0.9 新版功能.

 	参数:
 	

 	data – the data to derive.

 	salt – the salt for the derivation.

 	iterations – the number of iterations.

 	keylen – the length of the resulting key. If not providedthe digest size will be used.

 	hashfunc – the hash function to use. This can either be thestring name of a known hash function or a functionfrom the hashlib module. Defaults to sha1.

 Context Locals

 Sooner or later you have some things you want to have in every single viewor helper function or whatever. In PHP the way to go are globalvariables. However, that isn't possible in WSGI applications without amajor drawback: As soon as you operate on the global namespace yourapplication isn't thread-safe any longer.

 The Python standard library comes with a utility called “thread locals”.A thread local is a global object in which you can put stuff in and get backlater in a thread-safe way. That means whenever you set or get an objecton a thread local object, the thread local object checks in whichthread you are and retrieves the correct value.

 This, however, has a few disadvantages. For example, besides threads thereare other ways to handle concurrency in Python. A very popular approachis greenlets. Also, whether every request gets its own thread is notguaranteed in WSGI. It could be that a request is reusing a thread frombefore, and hence data is left in the thread local object.

 Here's a simple example of how one could use werkzeug.local:

 from werkzeug.local import Local, LocalManager

local = Local()
local_manager = LocalManager([local])

def application(environ, start_response):
 local.request = request = Request(environ)
 ...

application = local_manager.make_middleware(application)

 This binds the request to local.request. Every other piece of code executedafter this assignment in the same context can safely access local.request andwill get the same request object. The make_middleware method on the localmanager ensures that all references to the local objects are cleared up afterthe request.

 The same context means the same greenlet (if you're using greenlets) inthe same thread and same process.

 If a request object is not yet set on the local object and you try toaccess it, you will get an AttributeError. You can use getattr to avoidthat:

 def get_request():
 return getattr(local, 'request', None)

 This will try to get the request or return None if the request is not(yet?) available.

 Note that local objects cannot manage themselves, for that you need a localmanager. You can pass a local manager multiple locals or add additionalslater by appending them to manager.locals and everytime the managercleans up it will clean up all the data left in the locals for thiscontext.

 werkzeug.local.release_local(local)

Releases the contents of the local for the current context.This makes it possible to use locals without a manager.

 Example:

 >>> loc = Local()
>>> loc.foo = 42
>>> release_local(loc)
>>> hasattr(loc, 'foo')
False

 With this function one can release Local objects as wellas LocalStack objects. However it is not possible torelease data held by proxies that way, one always has to retaina reference to the underlying local object in order to be ableto release it.

 0.6.1 新版功能.

 class werkzeug.local.LocalManager(locals=None, ident_func=None)

Local objects cannot manage themselves. For that you need a localmanager. You can pass a local manager multiple locals or add them laterby appending them to manager.locals. Everytime the manager cleans upit, will clean up all the data left in the locals for this context.

 The ident_func parameter can be added to override the default identfunction for the wrapped locals.

 在 0.6.1 版更改: Instead of a manager the release_local() function can be usedas well.

 在 0.7 版更改: ident_func was added.

 cleanup()

Manually clean up the data in the locals for this context. Callthis at the end of the request or use make_middleware().

 get_ident()

Return the context identifier the local objects use internally forthis context. You cannot override this method to change the behaviorbut use it to link other context local objects (such as SQLAlchemy'sscoped sessions) to the Werkzeug locals.

 在 0.7 版更改: Yu can pass a different ident function to the local manager thatwill then be propagated to all the locals passed to theconstructor.

 make_middleware(app)

Wrap a WSGI application so that cleaning up happens afterrequest end.

 middleware(func)

Like make_middleware but for decorating functions.

 Example usage:

 @manager.middleware
def application(environ, start_response):
 ...

 The difference to make_middleware is that the function passedwill have all the arguments copied from the inner application(name, docstring, module).

 class werkzeug.local.LocalStack

This class works similar to a Local but keeps a stackof objects instead. This is best explained with an example:

 >>> ls = LocalStack()
>>> ls.push(42)
>>> ls.top
42
>>> ls.push(23)
>>> ls.top
23
>>> ls.pop()
23
>>> ls.top
42

 They can be force released by using a LocalManager or withthe release_local() function but the correct way is to pop theitem from the stack after using. When the stack is empty it willno longer be bound to the current context (and as such released).

 By calling the stack without arguments it returns a proxy that resolves tothe topmost item on the stack.

 0.6.1 新版功能.

 pop()

Removes the topmost item from the stack, will return theold value or None if the stack was already empty.

 push(obj)

Pushes a new item to the stack

 top

The topmost item on the stack. If the stack is empty,None is returned.

 class werkzeug.local.LocalProxy(local, name=None)

Acts as a proxy for a werkzeug local. Forwards all operations toa proxied object. The only operations not supported for forwardingare right handed operands and any kind of assignment.

 Example usage:

 from werkzeug.local import Local
l = Local()

these are proxies
request = l('request')
user = l('user')

from werkzeug.local import LocalStack
_response_local = LocalStack()

this is a proxy
response = _response_local()

 Whenever something is bound to l.user / l.request the proxy objectswill forward all operations. If no object is bound a RuntimeError [http://docs.python.org/dev/library/exceptions.html#RuntimeError]will be raised.

 To create proxies to Local or LocalStack objects,call the object as shown above. If you want to have a proxy to anobject looked up by a function, you can (as of Werkzeug 0.6.1) passa function to the LocalProxy constructor:

 session = LocalProxy(lambda: get_current_request().session)

 在 0.6.1 版更改: The class can be instanciated with a callable as well now.

 Keep in mind that repr() is also forwarded, so if you want to findout if you are dealing with a proxy you can do an isinstance() check:

 >>> from werkzeug.local import LocalProxy
>>> isinstance(request, LocalProxy)
True

 You can also create proxy objects by hand:

 from werkzeug.local import Local, LocalProxy
local = Local()
request = LocalProxy(local, 'request')

 _get_current_object()

Return the current object. This is useful if you want the realobject behind the proxy at a time for performance reasons or becauseyou want to pass the object into a different context.

 Middlewares

 Middlewares wrap applications to dispatch between then or provideadditional request handling. Additionally to the middlewares documentedhere, there is also the DebuggedApplication class that isimplemented as a WSGI middleware.

 class werkzeug.wsgi.SharedDataMiddleware(app, exports, disallow=None, cache=True, cache_timeout=43200, fallback_mimetype='text/plain')

A WSGI middleware that provides static content for developmentenvironments or simple server setups. Usage is quite simple:

 import os
from werkzeug.wsgi import SharedDataMiddleware

app = SharedDataMiddleware(app, {
 '/shared': os.path.join(os.path.dirname(__file__), 'shared')
})

 The contents of the folder ./shared will now be available onhttp://example.com/shared/. This is pretty useful during developmentbecause a standalone media server is not required. One can also mountfiles on the root folder and still continue to use the application becausethe shared data middleware forwards all unhandled requests to theapplication, even if the requests are below one of the shared folders.

 If pkg_resources is available you can also tell the middleware to servefiles from package data:

 app = SharedDataMiddleware(app, {
 '/shared': ('myapplication', 'shared_files')
})

 This will then serve the shared_files folder in the myapplicationPython package.

 The optional disallow parameter can be a list of fnmatch() [http://docs.python.org/dev/library/fnmatch.html#fnmatch.fnmatch]rules for files that are not accessible from the web. If cache is set toFalse no caching headers are sent.

 Currently the middleware does not support non ASCII filenames. If theencoding on the file system happens to be the encoding of the URI it maywork but this could also be by accident. We strongly suggest using ASCIIonly file names for static files.

 The middleware will guess the mimetype using the Python mimetypemodule. If it's unable to figure out the charset it will fall backto fallback_mimetype.

 在 0.5 版更改: The cache timeout is configurable now.

 0.6 新版功能: The fallback_mimetype parameter was added.

 	参数:
 	

 	app – the application to wrap. If you don't want to wrap anapplication you can pass it NotFound.

 	exports – a dict of exported files and folders.

 	disallow – a list of fnmatch() [http://docs.python.org/dev/library/fnmatch.html#fnmatch.fnmatch] rules.

 	fallback_mimetype – the fallback mimetype for unknown files.

 	cache – enable or disable caching headers.

 	Param cache_timeout:

 	
 	
 the cache timeout in seconds for the headers.

 is_allowed(filename)

Subclasses can override this method to disallow the access tocertain files. However by providing disallow in the constructorthis method is overwritten.

 class werkzeug.wsgi.DispatcherMiddleware(app, mounts=None)

Allows one to mount middlewares or applications in a WSGI application.This is useful if you want to combine multiple WSGI applications:

 app = DispatcherMiddleware(app, {
 '/app2': app2,
 '/app3': app3
})

 Also there's the …

 werkzeug._internal._easteregg(app=None)

Like the name says. But who knows how it works?

 HTTP Exceptions

 This module implements a number of Python exceptions you can raise fromwithin your views to trigger a standard non-200 response.

 Usage Example

 from werkzeug.wrappers import BaseRequest
from werkzeug.wsgi import responder
from werkzeug.exceptions import HTTPException, NotFound

def view(request):
 raise NotFound()

@responder
def application(environ, start_response):
 request = BaseRequest(environ)
 try:
 return view(request)
 except HTTPException as e:
 return e

 As you can see from this example those exceptions are callable WSGIapplications. Because of Python 2.4 compatibility those do not extendfrom the response objects but only from the python exception class.

 As a matter of fact they are not Werkzeug response objects. However youcan get a response object by calling get_response() on a HTTPexception.

 Keep in mind that you have to pass an environment to get_response()because some errors fetch additional information from the WSGIenvironment.

 If you want to hook in a different exception page to say, a 404 statuscode, you can add a second except for a specific subclass of an error:

 @responder
def application(environ, start_response):
 request = BaseRequest(environ)
 try:
 return view(request)
 except NotFound, e:
 return not_found(request)
 except HTTPException, e:
 return e

 Error Classes

 The following error classes exist in Werkzeug:

 exception werkzeug.exceptions.BadRequest(description=None, response=None)
400Bad Request

 Raise if the browser sends something to the application the applicationor server cannot handle.

 exception werkzeug.exceptions.Unauthorized(description=None, response=None)
401Unauthorized

 Raise if the user is not authorized. Also used if you want to use HTTPbasic auth.

 exception werkzeug.exceptions.Forbidden(description=None, response=None)
403Forbidden

 Raise if the user doesn't have the permission for the requested resourcebut was authenticated.

 exception werkzeug.exceptions.NotFound(description=None, response=None)
404Not Found

 Raise if a resource does not exist and never existed.

 exception werkzeug.exceptions.MethodNotAllowed(valid_methods=None, description=None)
405Method Not Allowed

 Raise if the server used a method the resource does not handle. Forexample POST if the resource is view only. Especially useful for REST.

 The first argument for this exception should be a list of allowed methods.Strictly speaking the response would be invalid if you don't provide validmethods in the header which you can do with that list.

 exception werkzeug.exceptions.NotAcceptable(description=None, response=None)
406Not Acceptable

 Raise if the server can't return any content conforming to theAccept headers of the client.

 exception werkzeug.exceptions.RequestTimeout(description=None, response=None)
408Request Timeout

 Raise to signalize a timeout.

 exception werkzeug.exceptions.Conflict(description=None, response=None)
409Conflict

 Raise to signal that a request cannot be completed because it conflictswith the current state on the server.

 0.7 新版功能.

 exception werkzeug.exceptions.Gone(description=None, response=None)
410Gone

 Raise if a resource existed previously and went away without new location.

 exception werkzeug.exceptions.LengthRequired(description=None, response=None)
411Length Required

 Raise if the browser submitted data but no Content-Length header whichis required for the kind of processing the server does.

 exception werkzeug.exceptions.PreconditionFailed(description=None, response=None)
412Precondition Failed

 Status code used in combination with If-Match, If-None-Match, orIf-Unmodified-Since.

 exception werkzeug.exceptions.RequestEntityTooLarge(description=None, response=None)
413Request Entity Too Large

 The status code one should return if the data submitted exceeded a givenlimit.

 exception werkzeug.exceptions.RequestURITooLarge(description=None, response=None)
414Request URI Too Large

 Like 413 but for too long URLs.

 exception werkzeug.exceptions.UnsupportedMediaType(description=None, response=None)
415Unsupported Media Type

 The status code returned if the server is unable to handle the media typethe client transmitted.

 exception werkzeug.exceptions.RequestedRangeNotSatisfiable(description=None, response=None)
416Requested Range Not Satisfiable

 The client asked for a part of the file that lies beyond the endof the file.

 0.7 新版功能.

 exception werkzeug.exceptions.ExpectationFailed(description=None, response=None)
417Expectation Failed

 The server cannot meet the requirements of the Expect request-header.

 0.7 新版功能.

 exception werkzeug.exceptions.ImATeapot(description=None, response=None)
418I'm a teapot

 The server should return this if it is a teapot and someone attemptedto brew coffee with it.

 0.7 新版功能.

 exception werkzeug.exceptions.PreconditionRequired(description=None, response=None)
428Precondition Required

 The server requires this request to be conditional, typically to preventthe lost update problem, which is a race condition between two or moreclients attempting to update a resource through PUT or DELETE. By requiringeach client to include a conditional header (“If-Match” or “If-Unmodified-Since”) with the proper value retained from a recent GET request, theserver ensures that each client has at least seen the previous revision ofthe resource.

 exception werkzeug.exceptions.TooManyRequests(description=None, response=None)
429Too Many Requests

 The server is limiting the rate at which this user receives responses, andthis request exceeds that rate. (The server may use any convenient methodto identify users and their request rates). The server may include a“Retry-After” header to indicate how long the user should wait beforeretrying.

 exception werkzeug.exceptions.RequestHeaderFieldsTooLarge(description=None, response=None)
431Request Header Fields Too Large

 The server refuses to process the request because the header fields are toolarge. One or more individual fields may be too large, or the set of allheaders is too large.

 exception werkzeug.exceptions.InternalServerError(description=None, response=None)
500Internal Server Error

 Raise if an internal server error occurred. This is a good fallback if anunknown error occurred in the dispatcher.

 exception werkzeug.exceptions.NotImplemented(description=None, response=None)
501Not Implemented

 Raise if the application does not support the action requested by thebrowser.

 exception werkzeug.exceptions.BadGateway(description=None, response=None)
502Bad Gateway

 If you do proxying in your application you should return this status codeif you received an invalid response from the upstream server it accessedin attempting to fulfill the request.

 exception werkzeug.exceptions.ServiceUnavailable(description=None, response=None)
503Service Unavailable

 Status code you should return if a service is temporarily unavailable.

 exception werkzeug.exceptions.HTTPUnicodeError

This exception is used to signal unicode decode errors of requestdata. For more information see the Unicode chapter.

 exception werkzeug.exceptions.ClientDisconnected(description=None, response=None)

Internal exception that is raised if Werkzeug detects a disconnectedclient. Since the client is already gone at that point attempting tosend the error message to the client might not work and might ultimatelyresult in another exception in the server. Mainly this is here so thatit is silenced by default as far as Werkzeug is concerned.

 Since disconnections cannot be reliably detected and are unspecifiedby WSGI to a large extend this might or might not be raised if a clientis gone.

 0.8 新版功能.

 exception werkzeug.exceptions.SecurityError(description=None, response=None)

Raised if something triggers a security error. This is otherwiseexactly like a bad request error.

 0.9 新版功能.

 Baseclass

 All the exceptions implement this common interface:

 exception werkzeug.exceptions.HTTPException(description=None, response=None)

Baseclass for all HTTP exceptions. This exception can be called as WSGIapplication to render a default error page or you can catch the subclassesof it independently and render nicer error messages.

 call(environ, start_response)

Call the exception as WSGI application.

 	参数:
 	

 	environ – the WSGI environment.

 	start_response – the response callable provided by the WSGIserver.

 get_response(environ=None)

Get a response object. If one was passed to the exceptionit's returned directly.

 	参数:
 	environ – the optional environ for the request. Thiscan be used to modify the response dependingon how the request looked like.

 	返回:
 	a Response object or a subclass thereof.

 Special HTTP Exceptions

 Starting with Werkzeug 0.3 some of the builtin classes raise exceptions thatlook like regular python exceptions (eg KeyError [http://docs.python.org/dev/library/exceptions.html#KeyError]) but areBadRequest HTTP exceptions at the same time. This decision was madeto simplify a common pattern where you want to abort if the client tamperedwith the submitted form data in a way that the application can't recoverproperly and should abort with 400BADREQUEST.

 Assuming the application catches all HTTP exceptions and reacts to themproperly a view function could do the following savely and doesn't have tocheck if the keys exist:

 def new_post(request):
 post = Post(title=request.form['title'], body=request.form['body'])
 post.save()
 return redirect(post.url)

 If title or body are missing in the form a special key error will beraised which behaves like a KeyError [http://docs.python.org/dev/library/exceptions.html#KeyError] but also a BadRequestexception.

 Simple Aborting

 Sometimes it's convenient to just raise an exception by the error code,without importing the exception and looking up the name etc. For thispurpose there is the abort() function.

 werkzeug.exceptions.abort(status)

It can be passed a WSGI application or a status code. If a status codeis given it's looked up in the list of exceptions from above and willraise that exception, if passed a WSGI application it will wrap it ina proxy WSGI exception and raise that:

 abort(404)
abort(Response('Hello World'))

 If you want to use this functionality with custom exceptions you cancreate an instance of the aborter class:

 class werkzeug.exceptions.Aborter(mapping=None, extra=None)

When passed a dict of code -> exception items it can be used ascallable that raises exceptions. If the first argument to thecallable is an integer it will be looked up in the mapping, if it'sa WSGI application it will be raised in a proxy exception.

 The rest of the arguments are forwarded to the exception constructor.

 Custom Errors

 As you can see from the list above not all status codes are available aserrors. Especially redirects and ather non 200 status codes thatrepresent do not represent errors are missing. For redirects you can usethe redirect() function from the utilities.

 If you want to add an error yourself you can subclass HTTPException:

 from werkzeug.exceptions import HTTPException

class PaymentRequired(HTTPException):
 code = 402
 description = '<p>Payment required.</p>'

 This is the minimal code you need for your own exception. If you want toadd more logic to the errors you can override theget_description(), get_body(),get_headers() and get_response()methods. In any case you should have a look at the sourcecode of theexceptions module.

 You can override the default description in the constructor with thedescription parameter (it's the first argument for all exceptionsexcept of the MethodNotAllowed which accepts a list of allowed methodsas first argument):

 raise BadRequest('Request failed because X was not present')

 Application Deployment

 This section covers running your application in production on a webserver such as Apache or lighttpd.

 	

 CGI

 	
 Creating a .cgi file

 	

 Server Setup

 	

 mod_wsgi (Apache)

 	
 Installing mod_wsgi

 	
 Creating a .wsgi file

 	

 Configuring Apache

 	

 FastCGI

 	
 Creating a .fcgi file

 	
 Configuring lighttpd

 	
 Configuring nginx

 	

 Debugging

 	

 HTTP Proxying

 	
 Creating a .py server

 	
 Configuring nginx

 CGI

 If all other deployment methods do not work, CGI will work for sure. CGIis supported by all major servers but usually has a less-than-optimalperformance.

 This is also the way you can use a Werkzeug application on Google'sAppEngine [http://code.google.com/appengine/], there however the execution does happen in a CGI-likeenvironment. The application's performance is unaffected because of that.

 Creating a .cgi file

 First you need to create the CGI application file. Let's call ityourapplication.cgi:

 #!/usr/bin/python
from wsgiref.handlers import CGIHandler
from yourapplication import make_app

application = make_app()
CGIHandler().run(application)

 If you're running Python 2.4 you will need the wsgiref [http://docs.python.org/dev/library/wsgiref.html#module-wsgiref] package. Python2.5 and higher ship this as part of the standard library.

 Server Setup

 Usually there are two ways to configure the server. Either just copy the.cgi into a cgi-bin (and use mod_rerwite or something similar torewrite the URL) or let the server point to the file directly.

 In Apache for example you can put a like like this into the config:

 ScriptAlias /app /path/to/the/application.cgi

 For more information consult the documentation of your webserver.

 mod_wsgi (Apache)

 If you are using the Apache [http://httpd.apache.org/] webserver you should consider using mod_wsgi [http://code.google.com/p/modwsgi/].

 Installing mod_wsgi

 If you don't have mod_wsgi installed yet you have to either install it usinga package manager or compile it yourself.

 The mod_wsgi installation instructions [http://code.google.com/p/modwsgi/wiki/QuickInstallationGuide] cover installation instructions forsource installations on UNIX systems.

 If you are using ubuntu / debian you can apt-get it and activate it as follows:

 # apt-get install libapache2-mod-wsgi

 On FreeBSD install mod_wsgi by compiling the www/mod_wsgi port or by usingpkg_add:

 # pkg_add -r mod_wsgi

 If you are using pkgsrc you can install mod_wsgi by compiling thewww/ap2-wsgi package.

 If you encounter segfaulting child processes after the first apache reload youcan safely ignore them. Just restart the server.

 Creating a .wsgi file

 To run your application you need a yourapplication.wsgi file. This filecontains the code mod_wsgi is executing on startup to get the applicationobject. The object called application in that file is then used asapplication.

 For most applications the following file should be sufficient:

 from yourapplication import make_app
application = make_app()

 If you don't have a factory function for application creation but a singletoninstance you can directly import that one as application.

 Store that file somewhere where you will find it again (eg:/var/www/yourapplication) and make sure that yourapplication and allthe libraries that are in use are on the python load path. If you don'twant to install it system wide consider using a virtual python [http://pypi.python.org/pypi/virtualenv] instance.

 Configuring Apache

 The last thing you have to do is to create an Apache configuration file foryour application. In this example we are telling mod_wsgi to execute theapplication under a different user for security reasons:

 <VirtualHost *>
 ServerName example.com

 WSGIDaemonProcess yourapplication user=user1 group=group1 processes=2 threads=5
 WSGIScriptAlias / /var/www/yourapplication/yourapplication.wsgi

 <Directory /var/www/yourapplication>
 WSGIProcessGroup yourapplication
 WSGIApplicationGroup %{GLOBAL}
 Order deny,allow
 Allow from all
 </Directory>
</VirtualHost>

 For more information consult the mod_wsgi wiki [http://code.google.com/p/modwsgi/wiki/].

 FastCGI

 A very popular deployment setup on servers like lighttpd [http://www.lighttpd.net/] and nginx [http://nginx.net/]is FastCGI. To use your WSGI application with any of them you will needa FastCGI server first.

 The most popular one is flup [http://trac.saddi.com/flup] which we will use for this guide. Makesure to have it installed.

 Creating a .fcgi file

 First you need to create the FastCGI server file. Let's call ityourapplication.fcgi:

 #!/usr/bin/python
from flup.server.fcgi import WSGIServer
from yourapplication import make_app

if __name__ == '__main__':
 application = make_app()
 WSGIServer(application).run()

 This is enough for Apache to work, however ngingx and older versions oflighttpd need a socket to be explicitly passed to communicate with the FastCGIserver. For that to work you need to pass the path to the socket to theWSGIServer:

 WSGIServer(application, bindAddress='/path/to/fcgi.sock').run()

 The path has to be the exact same path you define in the serverconfig.

 Save the yourapplication.fcgi file somewhere you will find it again.It makes sense to have that in /var/www/yourapplication or somethingsimilar.

 Make sure to set the executable bit on that file so that the serverscan execute it:

 # chmod +x /var/www/yourapplication/yourapplication.fcgi

 Configuring lighttpd

 A basic FastCGI configuration for lighttpd looks like this:

 fastcgi.server = ("/yourapplication.fcgi" =>
 ((
 "socket" => "/tmp/yourapplication-fcgi.sock",
 "bin-path" => "/var/www/yourapplication/yourapplication.fcgi",
 "check-local" => "disable",
 "max-procs" -> 1
))
)

alias.url = (
 "/static/" => "/path/to/your/static"
)

url.rewrite-once = (
 "^(/static.*)$" => "$1",
 "^(/.*)$" => "/yourapplication.fcgi$1"

 Remember to enable the FastCGI, alias and rewrite modules. This configurationbinds the application to /yourapplication. If you want the application towork in the URL root you have to work around a lighttpd bug with theLighttpdCGIRootFix middleware.

 Make sure to apply it only if you are mounting the application the URLroot. Also, see the Lighty docs for more information on FastCGI and Python [http://redmine.lighttpd.net/wiki/lighttpd/Docs:ModFastCGI] (note thatexplicitly passing a socket to run() is no longer necessary).

 Configuring nginx

 Installing FastCGI applications on nginx is a bit tricky because by defaultsome FastCGI parameters are not properly forwarded.

 A basic FastCGI configuration for nginx looks like this:

 location /yourapplication/ {
 include fastcgi_params;
 if ($uri ~ ^/yourapplication/(.*)?) {
 set $path_url $1;
 }
 fastcgi_param PATH_INFO $path_url;
 fastcgi_param SCRIPT_NAME /yourapplication;
 fastcgi_pass unix:/tmp/yourapplication-fcgi.sock;
}

 This configuration binds the application to /yourapplication. If you wantto have it in the URL root it's a bit easier because you don't have to figureout how to calculate PATH_INFO and SCRIPT_NAME:

 location /yourapplication/ {
 include fastcgi_params;
 fastcgi_param PATH_INFO $fastcgi_script_name;
 fastcgi_param SCRIPT_NAME "";
 fastcgi_pass unix:/tmp/yourapplication-fcgi.sock;
}

 Since Nginx doesn't load FastCGI apps, you have to do it by yourself. Youcan either write an init.d script for that or execute it inside a screensession:

 $ screen
$ /var/www/yourapplication/yourapplication.fcgi

 Debugging

 FastCGI deployments tend to be hard to debug on most webservers. Very often theonly thing the server log tells you is something along the lines of “prematureend of headers”. In order to debug the application the only thing that canreally give you ideas why it breaks is switching to the correct user andexecuting the application by hand.

 This example assumes your application is called application.fcgi and that yourwebserver user is www-data:

 $ su www-data
$ cd /var/www/yourapplication
$ python application.fcgi
Traceback (most recent call last):
 File "yourapplication.fcg", line 4, in <module>
ImportError: No module named yourapplication

 In this case the error seems to be “yourapplication” not being on the pythonpath. Common problems are:

 	relative paths being used. Don't rely on the current working directory

 	the code depending on environment variables that are not set by theweb server.

 	different python interpreters being used.

 HTTP Proxying

 Many people prefer using a standalone Python HTTP server and proxying thatserver via nginx, Apache etc.

 A very stable Python server is CherryPy. This part of the documentationshows you how to combine your WSGI application with the CherryPy WSGIserver and how to configure the webserver for proxying.

 Creating a .py server

 To run your application you need a start-server.py file that starts upthe WSGI Server.

 It looks something along these lines:

 from cherrypy import wsgiserver
from yourapplication import make_app
server = wsgiserver.CherryPyWSGIServer(('localhost', 8080), make_app())
try:
 server.start()
except KeyboardInterrupt:
 server.stop()

 If you now start the file the server will listen on localhost:8080. Keepin mind that WSGI applications behave slightly different for proxied setups.If you have not developed your application for proxying in mind, you canapply the ProxyFix middleware.

 Configuring nginx

 As an example we show here how to configure nginx to proxy to the server.

 The basic nginx configuration looks like this:

 location / {
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_pass http://127.0.0.1:8080;
 proxy_redirect default;
}

 Since Nginx doesn't start your server for you, you have to do it by yourself. Youcan either write an init.d script for that or execute it inside a screensession:

 $ screen
$ python start-server.py

 Contributed Modules

 A lot of useful code contributed by the community is shipped with Werkzeugas part of the contrib module:

 	
 Atom Syndication

 	

 Sessions

 	
 Application Integration

 	

 Reference

 	

 Secure Cookie

 	
 Application Integration

 	
 Security

 	

 Reference

 	

 Cache

 	
 How Caching Works

 	
 Creating a Cache Object

 	
 Cache System API

 	

 Cache Systems

 	
 Extra Wrappers

 	
 Iter IO

 	
 Fixers

 	
 WSGI Application Profiler

 	
 Lint Validation Middleware

 Atom Syndication

 This module provides a class called AtomFeed which can beused to generate feeds in the Atom syndication format (see RFC 4287 [http://tools.ietf.org/html/rfc4287.html]).

 Example:

 def atom_feed(request):
 feed = AtomFeed("My Blog", feed_url=request.url,
 url=request.host_url,
 subtitle="My example blog for a feed test.")
 for post in Post.query.limit(10).all():
 feed.add(post.title, post.body, content_type='html',
 author=post.author, url=post.url, id=post.uid,
 updated=post.last_update, published=post.pub_date)
 return feed.get_response()

 class werkzeug.contrib.atom.AtomFeed(title=None, entries=None, **kwargs)

A helper class that creates Atom feeds.

 	参数:
 	

 	title – the title of the feed. Required.

 	title_type – the type attribute for the title element. One of'html', 'text' or 'xhtml'.

 	url – the url for the feed (not the url of the feed)

 	id – a globally unique id for the feed. Must be an URI. Ifnot present the feed_url is used, but one of both isrequired.

 	updated – the time the feed was modified the last time. Mustbe a datetime.datetime [http://docs.python.org/dev/library/datetime.html#datetime.datetime] object. If notpresent the latest entry's updated is used.

 	feed_url – the URL to the feed. Should be the URL that wasrequested.

 	author – the author of the feed. Must be either a string (thename) or a dict with name (required) and uri oremail (both optional). Can be a list of (may bemixed, too) strings and dicts, too, if there aremultiple authors. Required if not every entry has anauthor element.

 	icon – an icon for the feed.

 	logo – a logo for the feed.

 	rights – copyright information for the feed.

 	rights_type – the type attribute for the rights element. One of'html', 'text' or 'xhtml'. Default is'text'.

 	subtitle – a short description of the feed.

 	subtitle_type – the type attribute for the subtitle element.One of 'text', 'html', 'text'or 'xhtml'. Default is 'text'.

 	links – additional links. Must be a list of dictionaries withhref (required) and rel, type, hreflang, title, length(all optional)

 	generator – the software that generated this feed. This must bea tuple in the form (name,url,version). Ifyou don't want to specify one of them, set the itemto None.

 	entries – a list with the entries for the feed. Entries can alsobe added later with add().

 For more information on the elements seehttp://www.atomenabled.org/developers/syndication/

 Everywhere where a list is demanded, any iterable can be used.

 add(args, kwargs*)

Add a new entry to the feed. This function can either be calledwith a FeedEntry or some keyword and positional argumentsthat are forwarded to the FeedEntry constructor.

 generate()

Return a generator that yields pieces of XML.

 get_response()

Return a response object for the feed.

 to_string()

Convert the feed into a string.

 class werkzeug.contrib.atom.FeedEntry(title=None, content=None, feed_url=None, **kwargs)

Represents a single entry in a feed.

 	参数:
 	

 	title – the title of the entry. Required.

 	title_type – the type attribute for the title element. One of'html', 'text' or 'xhtml'.

 	content – the content of the entry.

 	content_type – the type attribute for the content element. Oneof 'html', 'text' or 'xhtml'.

 	summary – a summary of the entry's content.

 	summary_type – the type attribute for the summary element. Oneof 'html', 'text' or 'xhtml'.

 	url – the url for the entry.

 	id – a globally unique id for the entry. Must be an URI. Ifnot present the URL is used, but one of both is required.

 	updated – the time the entry was modified the last time. Mustbe a datetime.datetime [http://docs.python.org/dev/library/datetime.html#datetime.datetime] object. Required.

 	author – the author of the entry. Must be either a string (thename) or a dict with name (required) and uri oremail (both optional). Can be a list of (may bemixed, too) strings and dicts, too, if there aremultiple authors. Required if the feed does not have anauthor element.

 	published – the time the entry was initially published. Mustbe a datetime.datetime [http://docs.python.org/dev/library/datetime.html#datetime.datetime] object.

 	rights – copyright information for the entry.

 	rights_type – the type attribute for the rights element. One of'html', 'text' or 'xhtml'. Default is'text'.

 	links – additional links. Must be a list of dictionaries withhref (required) and rel, type, hreflang, title, length(all optional)

 	categories – categories for the entry. Must be a list of dictionarieswith term (required), scheme and label (all optional)

 	xml_base – The xml base (url) for this feed item. If not providedit will default to the item url.

 For more information on the elements seehttp://www.atomenabled.org/developers/syndication/

 Everywhere where a list is demanded, any iterable can be used.

 Sessions

 This module contains some helper classes that help one to add sessionsupport to a python WSGI application. For full client-side sessionstorage see securecookie which implements asecure, client-side session storage.

 Application Integration

 from werkzeug.contrib.sessions import SessionMiddleware, \
 FilesystemSessionStore

app = SessionMiddleware(app, FilesystemSessionStore())

 The current session will then appear in the WSGI environment aswerkzeug.session. However it's recommended to not use the middlewarebut the stores directly in the application. However for very simplescripts a middleware for sessions could be sufficient.

 This module does not implement methods or ways to check if a session isexpired. That should be done by a cronjob and storage specific. Forexample to prune unused filesystem sessions one could check the modifiedtime of the files. It sessions are stored in the database the new()method should add an expiration timestamp for the session.

 For better flexibility it's recommended to not use the middleware but thestore and session object directly in the application dispatching:

 session_store = FilesystemSessionStore()

def application(environ, start_response):
 request = Request(environ)
 sid = request.cookies.get('cookie_name')
 if sid is None:
 request.session = session_store.new()
 else:
 request.session = session_store.get(sid)
 response = get_the_response_object(request)
 if request.session.should_save:
 session_store.save(request.session)
 response.set_cookie('cookie_name', request.session.sid)
 return response(environ, start_response)

 Reference

 class werkzeug.contrib.sessions.Session(data, sid, new=False)

Subclass of a dict that keeps track of direct object changes. Changesin mutable structures are not tracked, for those you have to setmodified to True by hand.

 sid

The session ID as string.

 new

True is the cookie was newly created, otherwise False

 modified

Whenever an item on the cookie is set, this attribute is set to True.However this does not track modifications inside mutable objectsin the session:

 >>> c = Session({}, sid='deadbeefbabe2c00ffee')
>>> c["foo"] = [1, 2, 3]
>>> c.modified
True
>>> c.modified = False
>>> c["foo"].append(4)
>>> c.modified
False

 In that situation it has to be set to modified by hand so thatshould_save can pick it up.

 should_save

True if the session should be saved.

 在 0.6 版更改: By default the session is now only saved if the session ismodified, not if it is new like it was before.

 class werkzeug.contrib.sessions.SessionStore(session_class=None)

Baseclass for all session stores. The Werkzeug contrib module does notimplement any useful stores besides the filesystem store, applicationdevelopers are encouraged to create their own stores.

 	参数:
 	session_class – The session class to use. Defaults toSession.

 delete(session)

Delete a session.

 generate_key(salt=None)

Simple function that generates a new session key.

 get(sid)

Get a session for this sid or a new session object. This methodhas to check if the session key is valid and create a new session ifthat wasn't the case.

 is_valid_key(key)

Check if a key has the correct format.

 new()

Generate a new session.

 save(session)

Save a session.

 save_if_modified(session)

Save if a session class wants an update.

 class werkzeug.contrib.sessions.FilesystemSessionStore(path=None, filenametemplate='werkzeug%s.sess', session_class=None, renew_missing=False, mode=420)

Simple example session store that saves sessions on the filesystem.This store works best on POSIX systems and Windows Vista / WindowsServer 2008 and newer.

 在 0.6 版更改: renew_missing was added. Previously this was considered True,now the default changed to False and it can be explicitlydeactivated.

 	参数:
 	

 	path – the path to the folder used for storing the sessions.If not provided the default temporary directory is used.

 	filename_template – a string template used to give the sessiona filename. %s is replaced with thesession id.

 	session_class – The session class to use. Defaults toSession.

 	renew_missing – set to True if you want the store togive the user a new sid if the session wasnot yet saved.

 list()

Lists all sessions in the store.

 0.6 新版功能.

 class werkzeug.contrib.sessions.SessionMiddleware(app, store, cookie_name='session_id', cookie_age=None, cookie_expires=None, cookie_path='/', cookie_domain=None, cookie_secure=None, cookie_httponly=False, environ_key='werkzeug.session')

A simple middleware that puts the session object of a store providedinto the WSGI environ. It automatically sets cookies and restoressessions.

 However a middleware is not the preferred solution because it won't be asfast as sessions managed by the application itself and will put a key intothe WSGI environment only relevant for the application which is againstthe concept of WSGI.

 The cookie parameters are the same as for the dumpcookie()function just prefixed with cookie. Additionally max_age iscalled cookie_age and not cookie_max_age because of backwardscompatibility.

 Secure Cookie

 This module implements a cookie that is not alterable from the clientbecause it adds a checksum the server checks for. You can use it assession replacement if all you have is a user id or something to marka logged in user.

 Keep in mind that the data is still readable from the client as anormal cookie is. However you don't have to store and flush thesessions you have at the server.

 Example usage:

 >>> from werkzeug.contrib.securecookie import SecureCookie
>>> x = SecureCookie({"foo": 42, "baz": (1, 2, 3)}, "deadbeef")

 Dumping into a string so that one can store it in a cookie:

 >>> value = x.serialize()

 Loading from that string again:

 >>> x = SecureCookie.unserialize(value, "deadbeef")
>>> x["baz"]
(1, 2, 3)

 If someone modifies the cookie and the checksum is wrong the unserializemethod will fail silently and return a new empty SecureCookie object.

 Keep in mind that the values will be visible in the cookie so do notstore data in a cookie you don't want the user to see.

 Application Integration

 If you are using the werkzeug request objects you could integrate thesecure cookie into your application like this:

 from werkzeug.utils import cached_property
from werkzeug.wrappers import BaseRequest
from werkzeug.contrib.securecookie import SecureCookie

don't use this key but a different one; you could just use
os.urandom(20) to get something random
SECRET_KEY = '\xfa\xdd\xb8z\xae\xe0}4\x8b\xea'

class Request(BaseRequest):

 @cached_property
 def client_session(self):
 data = self.cookies.get('session_data')
 if not data:
 return SecureCookie(secret_key=SECRET_KEY)
 return SecureCookie.unserialize(data, SECRET_KEY)

def application(environ, start_response):
 request = Request(environ, start_response)

 # get a response object here
 response = ...

 if request.client_session.should_save:
 session_data = request.client_session.serialize()
 response.set_cookie('session_data', session_data,
 httponly=True)
 return response(environ, start_response)

 A less verbose integration can be achieved by using shorthand methods:

 class Request(BaseRequest):

 @cached_property
 def client_session(self):
 return SecureCookie.load_cookie(self, secret_key=COOKIE_SECRET)

def application(environ, start_response):
 request = Request(environ, start_response)

 # get a response object here
 response = ...

 request.client_session.save_cookie(response)
 return response(environ, start_response)

 Security

 The default implementation uses Pickle as this is the only module thatused to be available in the standard library when this module was created.If you have simplejson available it's strongly recommended to create asubclass and replace the serialization method:

 import json
from werkzeug.contrib.securecookie import SecureCookie

class JSONSecureCookie(SecureCookie):
 serialization_method = json

 The weakness of Pickle is that if someone gains access to the secret keythe attacker can not only modify the session but also execute arbitrarycode on the server.

 Reference

 class werkzeug.contrib.securecookie.SecureCookie(data=None, secret_key=None, new=True)

Represents a secure cookie. You can subclass this class and providean alternative mac method. The import thing is that the mac methodis a function with a similar interface to the hashlib. Requiredmethods are update() and digest().

 Example usage:

 >>> x = SecureCookie({"foo": 42, "baz": (1, 2, 3)}, "deadbeef")
>>> x["foo"]
42
>>> x["baz"]
(1, 2, 3)
>>> x["blafasel"] = 23
>>> x.should_save
True

 	参数:
 	

 	data – the initial data. Either a dict, list of tuples or None.

 	secret_key – the secret key. If not set None or not specifiedit has to be set before serialize() is called.

 	new – The initial value of the new flag.

 new

True if the cookie was newly created, otherwise False

 modified

Whenever an item on the cookie is set, this attribute is set to True.However this does not track modifications inside mutable objectsin the cookie:

 >>> c = SecureCookie()
>>> c["foo"] = [1, 2, 3]
>>> c.modified
True
>>> c.modified = False
>>> c["foo"].append(4)
>>> c.modified
False

 In that situation it has to be set to modified by hand so thatshould_save can pick it up.

 hash_method()

The hash method to use. This has to be a module with a new functionor a function that creates a hashlib object. Such as hashlib.md5Subclasses can override this attribute. The default hash is sha1.Make sure to wrap this in staticmethod() if you store an arbitraryfunction there such as hashlib.sha1 which might be implementedas a function.

 classmethod load_cookie(request, key='session', secret_key=None)

Loads a SecureCookie from a cookie in request. If thecookie is not set, a new SecureCookie instanced isreturned.

 	参数:
 	

 	request – a request object that has a cookies attributewhich is a dict of all cookie values.

 	key – the name of the cookie.

 	secret_key – the secret key used to unquote the cookie.Always provide the value even though it hasno default!

 classmethod quote(value)

Quote the value for the cookie. This can be any object supportedby serialization_method.

 	参数:
 	value – the value to quote.

 quote_base64 = True

if the contents should be base64 quoted. This can be disabled if theserialization process returns cookie safe strings only.

 save_cookie(response, key='session', expires=None, session_expires=None, max_age=None, path='/', domain=None, secure=None, httponly=False, force=False)

Saves the SecureCookie in a cookie on response object. Allparameters that are not described here are forwarded directlyto set_cookie().

 	参数:
 	

 	response – a response object that has aset_cookie() method.

 	key – the name of the cookie.

 	session_expires – the expiration date of the secure cookiestored information. If this is not providedthe cookie expires date is used instead.

 serialization_method = <module 'pickle' from '/usr/lib/python2.7/pickle.pyc'>

the module used for serialization. Unless overriden by subclassesthe standard pickle module is used.

 serialize(expires=None)

Serialize the secure cookie into a string.

 If expires is provided, the session will be automatically invalidatedafter expiration when you unseralize it. This provides betterprotection against session cookie theft.

 	参数:
 	expires – an optional expiration date for the cookie (adatetime.datetime [http://docs.python.org/dev/library/datetime.html#datetime.datetime] object)

 should_save

True if the session should be saved. By default this is only truefor modified cookies, not new.

 classmethod unquote(value)

Unquote the value for the cookie. If unquoting does not work aUnquoteError is raised.

 	参数:
 	value – the value to unquote.

 classmethod unserialize(string, secret_key)

Load the secure cookie from a serialized string.

 	参数:
 	

 	string – the cookie value to unserialize.

 	secret_key – the secret key used to serialize the cookie.

 	返回:
 	
 a new SecureCookie.

 exception werkzeug.contrib.securecookie.UnquoteError

Internal exception used to signal failures on quoting.

 Cache

 The main problem with dynamic Web sites is, well, they're dynamic. Eachtime a user requests a page, the webserver executes a lot of code, queriesthe database, renders templates until the visitor gets the page he sees.

 This is a lot more expensive than just loading a file from the file systemand sending it to the visitor.

 For most Web applications, this overhead isn't a big deal but once itbecomes, you will be glad to have a cache system in place.

 How Caching Works

 Caching is pretty simple. Basically you have a cache object lurking aroundsomewhere that is connected to a remote cache or the file system orsomething else. When the request comes in you check if the current pageis already in the cache and if so, you're returning it from the cache.Otherwise you generate the page and put it into the cache. (Or a fragmentof the page, you don't have to cache the full thing)

 Here is a simple example of how to cache a sidebar for a template:

 def get_sidebar(user):
 identifier = 'sidebar_for/user%d' % user.id
 value = cache.get(identifier)
 if value is not None:
 return value
 value = generate_sidebar_for(user=user)
 cache.set(identifier, value, timeout=60 * 5)
 return value

 Creating a Cache Object

 To create a cache object you just import the cache system of your choicefrom the cache module and instantiate it. Then you can start workingwith that object:

 >>> from werkzeug.contrib.cache import SimpleCache
>>> c = SimpleCache()
>>> c.set("foo", "value")
>>> c.get("foo")
'value'
>>> c.get("missing") is None
True

 Please keep in mind that you have to create the cache and put it somewhereyou have access to it (either as a module global you can import or you justput it into your WSGI application).

 Cache System API

 class werkzeug.contrib.cache.BaseCache(default_timeout=300)

Baseclass for the cache systems. All the cache systems implement thisAPI or a superset of it.

 	参数:
 	default_timeout – the default timeout that is used if no timeout isspecified on set().

 add(key, value, timeout=None)

Works like set() but does not overwrite the values of alreadyexisting keys.

 	参数:
 	

 	key – the key to set

 	value – the value for the key

 	timeout – the cache timeout for the key or the defaulttimeout if not specified.

 clear()

Clears the cache. Keep in mind that not all caches supportcompletely clearing the cache.

 dec(key, delta=1)

Decrements the value of a key by delta. If the key doesnot yet exist it is initialized with -delta.

 For supporting caches this is an atomic operation.

 	参数:
 	

 	key – the key to increment.

 	delta – the delta to subtract.

 delete(key)

Deletes key from the cache. If it does not exist in the cachenothing happens.

 	参数:
 	key – the key to delete.

 delete_many(*keys)

Deletes multiple keys at once.

 	参数:
 	keys – The function accepts multiple keys as positionalarguments.

 get(key)

Looks up key in the cache and returns the value for it.If the key does not exist None is returned instead.

 	参数:
 	key – the key to be looked up.

 get_dict(*keys)

Works like get_many() but returns a dict:

 d = cache.get_dict("foo", "bar")
foo = d["foo"]
bar = d["bar"]

 	参数:
 	keys – The function accepts multiple keys as positionalarguments.

 get_many(*keys)

Returns a list of values for the given keys.For each key a item in the list is created. Example:

 foo, bar = cache.get_many("foo", "bar")

 If a key can't be looked up None is returned for that keyinstead.

 	参数:
 	keys – The function accepts multiple keys as positionalarguments.

 inc(key, delta=1)

Increments the value of a key by delta. If the key doesnot yet exist it is initialized with delta.

 For supporting caches this is an atomic operation.

 	参数:
 	

 	key – the key to increment.

 	delta – the delta to add.

 set(key, value, timeout=None)

Adds a new key/value to the cache (overwrites value, if key alreadyexists in the cache).

 	参数:
 	

 	key – the key to set

 	value – the value for the key

 	timeout – the cache timeout for the key (if not specified,it uses the default timeout).

 set_many(mapping, timeout=None)

Sets multiple keys and values from a mapping.

 	参数:
 	

 	mapping – a mapping with the keys/values to set.

 	timeout – the cache timeout for the key (if not specified,it uses the default timeout).

 Cache Systems

 class werkzeug.contrib.cache.NullCache(default_timeout=300)

A cache that doesn't cache. This can be useful for unit testing.

 	参数:
 	default_timeout – a dummy parameter that is ignored but existsfor API compatibility with other caches.

 class werkzeug.contrib.cache.SimpleCache(threshold=500, default_timeout=300)

Simple memory cache for single process environments. This class existsmainly for the development server and is not 100% thread safe. It triesto use as many atomic operations as possible and no locks for simplicitybut it could happen under heavy load that keys are added multiple times.

 	参数:
 	

 	threshold – the maximum number of items the cache stores beforeit starts deleting some.

 	default_timeout – the default timeout that is used if no timeout isspecified on set().

 class werkzeug.contrib.cache.MemcachedCache(servers=None, default_timeout=300, key_prefix=None)

A cache that uses memcached as backend.

 The first argument can either be an object that resembles the API of amemcache.Client or a tuple/list of server addresses. In theevent that a tuple/list is passed, Werkzeug tries to import the bestavailable memcache library.

 Implementation notes: This cache backend works around some limitations inmemcached to simplify the interface. For example unicode keys are encodedto utf-8 on the fly. Methods such as get_dict() returnthe keys in the same format as passed. Furthermore all get methodssilently ignore key errors to not cause problems when untrusted user datais passed to the get methods which is often the case in web applications.

 	参数:
 	

 	servers – a list or tuple of server addresses or alternativelya memcache.Client or a compatible client.

 	default_timeout – the default timeout that is used if no timeout isspecified on set().

 	key_prefix – a prefix that is added before all keys. This makes itpossible to use the same memcached server for differentapplications. Keep in mind thatclear() will also clear keys with adifferent prefix.

 class werkzeug.contrib.cache.GAEMemcachedCache

This class is deprecated in favour of MemcachedCache whichnow supports Google Appengine as well.

 在 0.8 版更改: Deprecated in favour of MemcachedCache.

 class werkzeug.contrib.cache.RedisCache(host='localhost', port=6379, password=None, db=0, default_timeout=300, key_prefix=None)

Uses the Redis key-value store as a cache backend.

 The first argument can be either a string denoting address of the Redisserver or an object resembling an instance of a redis.Redis class.

 Note: Python Redis API already takes care of encoding unicode strings onthe fly.

 0.7 新版功能.

 0.8 新版功能: key_prefix was added.

 在 0.8 版更改: This cache backend now properly serializes objects.

 在 0.8.3 版更改: This cache backend now supports password authentication.

 	参数:
 	

 	host – address of the Redis server or an object which API iscompatible with the official Python Redis client (redis-py).

 	port – port number on which Redis server listens for connections.

 	password – password authentication for the Redis server.

 	db – db (zero-based numeric index) on Redis Server to connect.

 	default_timeout – the default timeout that is used if no timeout isspecified on set().

 	key_prefix – A prefix that should be added to all keys.

 class werkzeug.contrib.cache.FileSystemCache(cache_dir, threshold=500, default_timeout=300, mode=384)

A cache that stores the items on the file system. This cache dependson being the only user of the cache_dir. Make absolutely sure thatnobody but this cache stores files there or otherwise the cache willrandomly delete files therein.

 	参数:
 	

 	cache_dir – the directory where cache files are stored.

 	threshold – the maximum number of items the cache stores beforeit starts deleting some.

 	default_timeout – the default timeout that is used if no timeout isspecified on set().

 	mode – the file mode wanted for the cache files, default 0600

 Extra Wrappers

 Extra wrappers or mixins contributed by the community. These wrappers canbe mixed in into request objects to add extra functionality.

 Example:

 from werkzeug.wrappers import Request as RequestBase
from werkzeug.contrib.wrappers import JSONRequestMixin

class Request(RequestBase, JSONRequestMixin):
 pass

 Afterwards this request object provides the extra functionality of theJSONRequestMixin.

 class werkzeug.contrib.wrappers.JSONRequestMixin

Add json method to a request object. This will parse the input datathrough simplejson if possible.

 BadRequest will be raised if the content-typeis not json or if the data itself cannot be parsed as json.

 json

Get the result of simplejson.loads if possible.

 class werkzeug.contrib.wrappers.ProtobufRequestMixin

Add protobuf parsing method to a request object. This will parse theinput data through protobuf [http://code.google.com/p/protobuf/] if possible.

 BadRequest will be raised if the content-typeis not protobuf or if the data itself cannot be parsed property.

 parse_protobuf(proto_type)

Parse the data into an instance of proto_type.

 protobuf_check_initialization = True

by default the ProtobufRequestMixin will raise aBadRequest if the object is notinitialized. You can bypass that check by setting thisattribute to False.

 class werkzeug.contrib.wrappers.RoutingArgsRequestMixin

This request mixin adds support for the wsgiorg routing argsspecification [http://www.wsgi.org/wsgi/Specifications/routing_args].

 routing_args

The positional URL arguments as tuple.

 routing_vars

The keyword URL arguments as dict.

 class werkzeug.contrib.wrappers.ReverseSlashBehaviorRequestMixin

This mixin reverses the trailing slash behavior of script_rootand path. This makes it possible to use urljoin()directly on the paths.

 Because it changes the behavior or Request this class has to bemixed in before the actual request class:

 class MyRequest(ReverseSlashBehaviorRequestMixin, Request):
 pass

 This example shows the differences (for an application mounted on/application and the request going to /application/foo/bar):

 	
 	normal behavior
 	reverse behavior

 	script_root
 	/application
 	/application/

 	path
 	/foo/bar
 	foo/bar

 path

Requested path as unicode. This works a bit like the regular pathinfo in the WSGI environment but will not include a leading slash.

 script_root

The root path of the script includling a trailing slash.

 class werkzeug.contrib.wrappers.DynamicCharsetRequestMixin

“If this mixin is mixed into a request class it will providea dynamic charset attribute. This means that if the charset istransmitted in the content type headers it's used from there.

 Because it changes the behavior or Request this class hasto be mixed in before the actual request class:

 class MyRequest(DynamicCharsetRequestMixin, Request):
 pass

 By default the request object assumes that the URL charset is thesame as the data charset. If the charset varies on each requestbased on the transmitted data it's not a good idea to let the URLschange based on that. Most browsers assume either utf-8 or latin1for the URLs if they have troubles figuring out. It's stronglyrecommended to set the URL charset to utf-8:

 class MyRequest(DynamicCharsetRequestMixin, Request):
 url_charset = 'utf-8'

 0.6 新版功能.

 charset

The charset from the content type.

 default_charset = 'latin1'

the default charset that is assumed if the content type headeris missing or does not contain a charset parameter. The defaultis latin1 which is what HTTP specifies as default charset.You may however want to set this to utf-8 to better supportbrowsers that do not transmit a charset for incoming data.

 unknown_charset(charset)

Called if a charset was provided but is not supported bythe Python codecs module. By default latin1 is assumed thento not lose any information, you may override this method tochange the behavior.

 	参数:
 	charset – the charset that was not found.

 	返回:
 	the replacement charset.

 class werkzeug.contrib.wrappers.DynamicCharsetResponseMixin

If this mixin is mixed into a response class it will providea dynamic charset attribute. This means that if the charset islooked up and stored in the Content-Type header and updatesitself automatically. This also means a small performance hit butcan be useful if you're working with different charsets onresponses.

 Because the charset attribute is no a property at class-level, thedefault value is stored in default_charset.

 Because it changes the behavior or Response this class hasto be mixed in before the actual response class:

 class MyResponse(DynamicCharsetResponseMixin, Response):
 pass

 0.6 新版功能.

 charset

The charset for the response. It's stored inside theContent-Type header as a parameter.

 default_charset = 'utf-8'

the default charset.

 Iter IO

 This module implements a IterIO that converts an iterator intoa stream object and the other way round. Converting streams intoiterators requires the greenlet module.

 To convert an iterator into a stream all you have to do is to pass itdirectly to the IterIO constructor. In this example we pass ita newly created generator:

 def foo():
 yield "something\n"
 yield "otherthings"
stream = IterIO(foo())
print stream.read() # read the whole iterator

 The other way round works a bit different because we have to ensure thatthe code execution doesn't take place yet. An IterIO call with acallable as first argument does two things. The function itself is passedan IterIO stream it can feed. The object returned by theIterIO constructor on the other hand is not an stream object butan iterator:

 def foo(stream):
 stream.write("some")
 stream.write("thing")
 stream.flush()
 stream.write("otherthing")
iterator = IterIO(foo)
print iterator.next() # prints something
print iterator.next() # prints otherthing
iterator.next() # raises StopIteration

 class werkzeug.contrib.iterio.IterIO

Instances of this object implement an interface compatible with thestandard Python file object. Streams are either read-only orwrite-only depending on how the object is created.

 If the first argument is an iterable a file like object is returned thatreturns the contents of the iterable. In case the iterable is emptyread operations will return the sentinel value.

 If the first argument is a callable then the stream object will becreated and passed to that function. The caller itself however willnot receive a stream but an iterable. The function will be be executedstep by step as something iterates over the returned iterable. Eachcall to flush() will create an item for the iterable. Ifflush() is called without any writes in-between the sentinelvalue will be yielded.

 Note for Python 3: due to the incompatible interface of bytes andstreams you should set the sentinel value explicitly to an emptybytestring (b'') if you are expecting to deal with bytes asotherwise the end of the stream is marked with the wrong sentinelvalue.

 0.9 新版功能: sentinel parameter was added.

 Fixers

 0.5 新版功能.

 This module includes various helpers that fix bugs in web servers. They maybe necessary for some versions of a buggy web server but not others. We tryto stay updated with the status of the bugs as good as possible but you haveto make sure whether they fix the problem you encounter.

 If you notice bugs in webservers not fixed in this module considercontributing a patch.

 class werkzeug.contrib.fixers.CGIRootFix(app, app_root='/')

Wrap the application in this middleware if you are using FastCGI or CGIand you have problems with your app root being set to the cgi script's pathinstead of the path users are going to visit

 在 0.9 版更改: Added app_root parameter and renamed from LighttpdCGIRootFix.

 	参数:
 	

 	app – the WSGI application

 	app_root – Defaulting to '/', you can set this to something elseif your app is mounted somewhere else.

 class werkzeug.contrib.fixers.PathInfoFromRequestUriFix(app)

On windows environment variables are limited to the system charsetwhich makes it impossible to store the PATH_INFO variable in theenvironment without loss of information on some systems.

 This is for example a problem for CGI scripts on a Windows Apache.

 This fixer works by recreating the PATH_INFO from REQUEST_URI,REQUEST_URL, or UNENCODED_URL (whatever is available). Thus thefix can only be applied if the webserver supports either of thesevariables.

 	参数:
 	app – the WSGI application

 class werkzeug.contrib.fixers.ProxyFix(app, num_proxies=1)

This middleware can be applied to add HTTP proxy support to anapplication that was not designed with HTTP proxies in mind. Itsets REMOTE_ADDR, HTTP_HOST from X-Forwarded headers.

 If you have more than one proxy server in front of your app, setnum_proxies accordingly.

 Do not use this middleware in non-proxy setups for security reasons.

 The original values of REMOTE_ADDR and HTTP_HOST are stored inthe WSGI environment as werkzeug.proxy_fix.orig_remote_addr andwerkzeug.proxy_fix.orig_http_host.

 	参数:
 	

 	app – the WSGI application

 	num_proxies – the number of proxy servers in front of the app.

 get_remote_addr(forwarded_for)

Selects the new remote addr from the given list of ips inX-Forwarded-For. By default it picks the one that the num_proxiesproxy server provides. Before 0.9 it would always pick the first.

 0.8 新版功能.

 class werkzeug.contrib.fixers.HeaderRewriterFix(app, remove_headers=None, add_headers=None)

This middleware can remove response headers and add others. Thisis for example useful to remove the Date header from responses if youare using a server that adds that header, no matter if it's present ornot or to add X-Powered-By headers:

 app = HeaderRewriterFix(app, remove_headers=['Date'],
 add_headers=[('X-Powered-By', 'WSGI')])

 	参数:
 	

 	app – the WSGI application

 	remove_headers – a sequence of header keys that should beremoved.

 	add_headers – a sequence of (key,value) tuples that shouldbe added.

 class werkzeug.contrib.fixers.InternetExplorerFix(app, fix_vary=True, fix_attach=True)

This middleware fixes a couple of bugs with Microsoft InternetExplorer. Currently the following fixes are applied:

 	removing of Vary headers for unsupported mimetypes whichcauses troubles with caching. Can be disabled by passingfix_vary=False to the constructor.see: http://support.microsoft.com/kb/824847/en-us

 	removes offending headers to work around caching bugs inInternet Explorer if Content-Disposition is set. Can bedisabled by passing fix_attach=False to the constructor.

 If it does not detect affected Internet Explorer versions it won't touchthe request / response.

 WSGI Application Profiler

 This module provides a simple WSGI profiler middleware for findingbottlenecks in web application. It uses the profile orcProfile module to do the profiling and writes the stats to thestream provided (defaults to stderr).

 Example usage:

 from werkzeug.contrib.profiler import ProfilerMiddleware
app = ProfilerMiddleware(app)

 class werkzeug.contrib.profiler.MergeStream(*streams)

An object that redirects write calls to multiple streams.Use this to log to both sys.stdout and a file:

 f = open('profiler.log', 'w')
stream = MergeStream(sys.stdout, f)
profiler = ProfilerMiddleware(app, stream)

 class werkzeug.contrib.profiler.ProfilerMiddleware(app, stream=None, sort_by=('time', 'calls'), restrictions=(), profile_dir=None)

Simple profiler middleware. Wraps a WSGI application and profilesa request. This intentionally buffers the response so that timings aremore exact.

 By giving the profile_dir argument, pstat.Stats files are saved to thatdirectory, one file per request. Without it, a summary is printed tostream instead.

 For the exact meaning of sort_by and restrictions consult theprofile documentation.

 0.9 新版功能: Added support for restrictions and profile_dir.

 	参数:
 	

 	app – the WSGI application to profile.

 	stream – the stream for the profiled stats. defaults to stderr.

 	sort_by – a tuple of columns to sort the result by.

 	restrictions – a tuple of profiling strictions, not used if dumpingto profile_dir.

 	profile_dir – directory name to save pstat files

 werkzeug.contrib.profiler.make_action(app_factory, hostname='localhost', port=5000, threaded=False, processes=1, stream=None, sort_by=('time', 'calls'), restrictions=())

Return a new callback for werkzeug.script that starts a localserver with the profiler enabled.

 from werkzeug.contrib import profiler
action_profile = profiler.make_action(make_app)

 Lint Validation Middleware

 0.5 新版功能.

 This module provides a middleware that performs sanity checks of the WSGIapplication. It checks that PEP 333 is properly implemented and warnson some common HTTP errors such as non-empty responses for 304 statuscodes.

 This module provides a middleware, the LintMiddleware. Wrap yourapplication with it and it will warn about common problems with WSGI andHTTP while your application is running.

 It's strongly recommended to use it during development.

 class werkzeug.contrib.lint.LintMiddleware(app)

This middleware wraps an application and warns on common errors.Among other thing it currently checks for the following problems:

 	invalid status codes

 	non-bytestrings sent to the WSGI server

 	strings returned from the WSGI application

 	non-empty conditional responses

 	unquoted etags

 	relative URLs in the Location header

 	unsafe calls to wsgi.input

 	unclosed iterators

 Detected errors are emitted using the standard Python warnings system and usually end up on stderr.

 from werkzeug.contrib.lint import LintMiddleware
app = LintMiddleware(app)

 	参数:
 	app – the application to wrap

 Werkzeug Changelog

 This file lists all major changes in Werkzeug over the versions.For API breaking changes have a look at API Changes, theyare listed there in detail.

 Werkzeug Changelog

 Version 0.10

 Release date and codename to be decided

 	Changed the error handling of and improved testsuite for the caches incontrib.cache.

 	Fixed a bug on Python 3 when creating adhoc ssl contexts, due to sys.maxintnot being defined.

 	Fixed a bug on Python 3, that causedmake_ssl_devcert() to fail with an exception.

 	Added exceptions for 504 and 505.

 	Added support for ChromeOS detection.

 	Added UUID converter to the routing system.

 	Added message that explains how to quit the server.

 	Fixed a bug on Python 2, that caused len forwerkzeug.datastructures.CombinedMultiDict to crash.

 	Added support for stdlib pbkdf2 hmac if a compatible digestis found.

 Version 0.9.5

 (bugfix release, release date to be decided)

 	Forward charset argument from request objects to the environbuilder.

 	Fixed error handling for missing boundaries in multipart data.

 	Fixed session creation on systems without os.urandom().

 	Fixed pluses in dictionary keys not being properly URL encoded.

 	Fixed a problem with deepcopy not working for multi dicts.

 	Fixed a double quoting issue on redirects.

 	Fixed a problem with unicode keys appearing in headers on 2.x.

 	Fixed a bug with unicode strings in the test builder.

 	Fixed a unicode bug on Python 3 in the WSGI profiler.

 Version 0.9.4

 (bugfix release, released on August 26th 2013)

 	Fixed an issue with Python 3.3 and an edge case in cookie parsing.

 	Fixed decoding errors not handled properly through the WSGIdecoding dance.

 	Fixed URI to IRI conversion incorrectly decoding percent signs.

 Version 0.9.3

 (bugfix release, released on July 25th 2013)

 	
 Restored behavior of the data descriptor of the request class to pre 0.9behavior. This now also means that .data and .get_data() havedifferent behavior. New code should use .get_data() always.

 In addition to that there is now a flag for the .get_data() method thatcontrols what should happen with form data parsing and the form parser willhonor cached data. This makes dealing with custom form data more consistent.

 Version 0.9.2

 (bugfix release, released on July 18th 2013)

 	Added unsafe parameter to url_quote().

 	Fixed an issue with url_quote_plus() not quoting‘+' correctly.

 	Ported remaining parts of RedisCache toPython 3.3.

 	Ported remaining parts of MemcachedCache toPython 3.3

 	Fixed a deprecation warning in the contrib atom module.

 	Fixed a regression with setting of content types through theheaders dictionary instead with the content type parameter.

 	Use correct name for stdlib secure string comparision function.

 	Fixed a wrong reference in the docstring ofrelease_local().

 	Fixed an AttributeError that sometimes occurred when accessing thewerkzeug.wrappers.BaseResponse.is_streamed attribute.

 Version 0.9.1

 (bugfix release, released on June 14th 2013)

 	Fixed an issue with integers no longer being accepted in certainparts of the routing system or URL quoting functions.

 	Fixed an issue with url_quote not producing the right escapecodes for single digit codepoints.

 	Fixed an issue with SharedDataMiddleware notreading the path correctly and breaking on etag generation in somecases.

 	Properly handle Expect: 100-continue in the development serverto resolve issues with curl.

 	Automatically exhaust the input stream on request close. This shouldfix issues where not touching request files results in a timeout.

 	Fixed exhausting of streams not doing anything if a non-limitedstream was passed into the multipart parser.

 	Raised the buffer sizes for the multipart parser.

 Version 0.9

 Released on June 13nd 2013, codename Planierraupe.

 	Added support for tell()on the limited stream.

 	ETags now is nonzero if itcontains at least one etag of any kind, including weak ones.

 	Added a workaround for a bug in the stdlib for SSL servers.

 	Improved SSL interface of the devserver so that it can generatecertificates easily and load them from files.

 	Refactored test client to invoke the open method on the classfor redirects. This makes subclassing more powerful.

 	werkzeug.wsgi.make_chunk_iter() andwerkzeug.wsgi.make_line_iter() now support processing ofiterators and streams.

 	URL generation by the routing system now no longer quotes+.

 	URL fixing now no longer quotes certain reserved characters.

 	The werkzeug.security.generate_password_hash() andcheck functions now support any of the hashlib algorithms.

 	wsgi.get_current_url is now ascii safe for browsers sendingnon-ascii data in query strings.

 	improved parsing behavior for werkzeug.http.parse_options_header()

 	added more operators to local proxies.

 	added a hook to override the default converter in the routingsystem.

 	The description field of HTTP exceptions is now always escaped.Use markup objects to disable that.

 	Added number of proxy argument to the proxy fix to make it moresecure out of the box on common proxy setups. It will by defaultno longer trust the x-forwarded-for header as much as it didbefore.

 	Added support for fragment handling in URI/IRI functions.

 	Added custom class support for werkzeug.http.parse_dict_header().

 	Renamed LighttpdCGIRootFix to CGIRootFix.

 	Always treat + as safe when fixing URLs as people love misusing them.

 	Added support to profiling into directories in the contrib profiler.

 	The escape function now by default escapes quotes.

 	Changed repr of exceptions to be less magical.

 	Simplified exception interface to no longer require environmntsto be passed to recieve the response object.

 	Added sentinel argument to IterIO objects.

 	Added pbkdf2 support for the security module.

 	Added a plain request type that disables all form parsing to onlyleave the stream behind.

 	Removed support for deprecated fix_headers.

 	Removed support for deprecated header_list.

 	Removed support for deprecated parameter for iter_encoded.

 	Removed support for deprecated non-silent usage of the limitedstream object.

 	Removed support for previous dummy writable parameter onthe cached property.

 	Added support for explicitly closing request objects to closeassociated resources.

 	Conditional request handling or access to the data property on responses nolonger ignores direct passthrough mode.

 	Removed werkzeug.templates and werkzeug.contrib.kickstart.

 	Changed host lookup logic for forwarded hosts to allow lists ofhosts in which case only the first one is picked up.

 	Added wsgi.get_query_string, wsgi.get_path_info andwsgi.get_script_name and made the wsgi.pop_path_info andwsgi.peek_path_info functions perform unicode decoding. Thiswas necessary to avoid having to expose the WSGI encoding danceon Python 3.

 	Added content_encoding and content_md5 to the request object'scommon request descriptor mixin.

 	added options and trace to the test client.

 	Overhauled the utilization of the input stream to be easier to useand better to extend. The detection of content payload on the inputside is now more compliant with HTTP by detecting off the contenttype header instead of the request method. This also now means thatthe stream property on the request class is always available insteadof just when the parsing fails.

 	Added support for using werkzeug.wrappers.BaseResponse in a withstatement.

 	Changed get_app_iter to fetch the response early so that it does notfail when wrapping a response iterable. This makes filtering easier.

 	Introduced get_data and set_data methods for responses.

 	Introduced get_data for requests.

 	Soft deprecated the data descriptors for request and response objects.

 	Added as_bytes operations to some of the headers to simplify workingwith things like cookies.

 	Made the debugger paste tracebacks into github's gist service asprivate pastes.

 Version 0.8.4

 (bugfix release, release date to be announced)

 	Added a favicon to the debugger which fixes problem withstate changes being triggered through a request to/favicon.ico in Google Chrome. This should fix someproblems with Flask and other frameworks that usecontext local objects on a stack with context preservationon errors.

 	Fixed an issue with scolling up in the debugger.

 	Fixed an issue with debuggers running on a different URLthan the URL root.

 	Fixed a problem with proxies not forwarding some rarelyused special methods properly.

 	Added a workaround to prevent the XSS protection from Chromebreaking the debugger.

 	Skip redis tests if redis is not running.

 	Fixed a typo in the multipart parser that caused content-typeto not be picked up properly.

 Version 0.8.3

 (bugfix release, released on February 5th 2012)

 	Fixed another issue with werkzeug.wsgi.make_line_iter()where lines longer than the buffer size were not handledproperly.

 	Restore stdout after debug console finished executing sothat the debugger can be used on GAE better.

 	Fixed a bug with the redis cache for int subclasses(affects bool caching).

 	Fixed an XSS problem with redirect targets coming fromuntrusted sources.

 	Redis cache backend now supports password authentication.

 Version 0.8.2

 (bugfix release, released on December 16th 2011)

 	Fixed a problem with request handling of the builtin servernot responding to socket errors properly.

 	The routing request redirect exception's code attribute is nowused properly.

 	Fixed a bug with shutdowns on Windows.

 	Fixed a few unicode issues with non-ascii characters beinghardcoded in URL rules.

 	Fixed two property docstrings being assigned to fdel insteadof doc.

 	Fixed an issue where CRLF line endings could be split into twoby the line iter function, causing problems with multipart fileuploads.

 Version 0.8.1

 (bugfix release, released on September 30th 2011)

 	Fixed an issue with the memcache not working properly.

 	Fixed an issue for Python 2.7.1 and higher that brokecopying of multidicts with copy.copy() [http://docs.python.org/dev/library/copy.html#copy.copy].

 	Changed hashing methodology of immutable ordered multi dictsfor a potential problem with alternative Python implementations.

 Version 0.8

 Released on September 29th 2011, codename Lötkolben

 	Removed data structure specific KeyErrors for a generalpurpose BadRequestKeyError.

 	Documented werkzeug.wrappers.BaseRequest._load_form_data().

 	The routing system now also accepts strings instead ofdictionaries for the query_args parameter since we're onlypassing them through for redirects.

 	Werkzeug now automatically sets the content length immediately whenthe data attribute is setfor efficiency and simplicity reasons.

 	The routing system will now normalize server names to lowercase.

 	The routing system will no longer raise ValueErrors in case theconfiguration for the server name was incorrect. This should makedeployment much easier because you can ignore that factor now.

 	Fixed a bug with parsing HTTP digest headers. It rejected headerswith missing nc and nonce params.

 	Proxy fix now also updates wsgi.url_scheme based on X-Forwarded-Proto.

 	Added support for key prefixes to the redis cache.

 	Added the ability to suppress some auto corrections in the wrappersthat are now controlled via autocorrect_location_header andautomatically_set_content_length on the response objects.

 	Werkzeug now uses a new method to check that the length of incomingdata is complete and will raise IO errors by itself if the serverfails to do so.

 	make_line_iter() now requires a limit that isnot higher than the length the stream can provide.

 	Refactored form parsing into a form parser class that makes it possibleto hook into individual parts of the parsing process for debugging andextending.

 	For conditional responses the content length is no longer set when itis already there and added if missing.

 	Immutable datastructures are hashable now.

 	Headers datastructure no longer allows newlines in values to avoidheader injection attacks.

 	Made it possible through subclassing to select a different remoteaddr in the proxy fix.

 	Added stream based URL decoding. This reduces memory usage on largetransmitted form data that is URL decoded since Werkzeug will no longerload all the unparsed data into memory.

 	Memcache client now no longer uses the buggy cmemcache module andsupports pylibmc. GAE is not tried automatically and the dedicatedclass is no longer necessary.

 	Redis cache now properly serializes data.

 	Removed support for Python 2.4

 Version 0.7.2

 (bugfix release, released on September 30th 2011)

 	Fixed a CSRF problem with the debugger.

 	The debugger is now generating private pastes on lodgeit.

 	If URL maps are now bound to environments the query argumentsare properly decoded from it for redirects.

 Version 0.7.1

 (bugfix release, released on July 26th 2011)

 	Fixed a problem with newer versions of IPython.

 	Disabled pyinotify based reloader which does not work reliably.

 Version 0.7

 Released on July 24th 2011, codename Schraubschlüssel

 	Add support for python-libmemcached to the Werkzeug cache abstractionlayer.

 	Improved url_decode() and url_encode() performance.

 	Fixed an issue where the SharedDataMiddleware could cause aninternal server error on weird paths when loading via pkg_resources.

 	Fixed an URL generation bug that caused URLs to be invalid if agenerated component contains a colon.

 	werkzeug.import_string() now works with partially set uppackages properly.

 	Disabled automatic socket switching for IPv6 on the developmentserver due to problems it caused.

 	Werkzeug no longer overrides the Date header when creating aconditional HTTP response.

 	The routing system provides a method to retrieve the matchingmethods for a given path.

 	The routing system now accepts a parameter to change the encodingerror behaviour.

 	The local manager can now accept custom ident functions in theconstructor that are forwarded to the wrapped local objects.

 	url_unquote_plus now accepts unicode strings again.

 	Fixed an issue with the filesystem session support's prunefunction and concurrent usage.

 	Fixed a problem with external URL generation discarding the port.

 	Added support for pylibmc to the Werkzeug cache abstraction layer.

 	Fixed an issue with the new multipart parser that happened whena linebreak happened to be on the chunk limit.

 	Cookies are now set properly if ports are in use. A runtime erroris raised if one tries to set a cookie for a domain without a dot.

 	Fixed an issue with Template.from_file not working for filedescriptors.

 	Reloader can now use inotify to track reloads. This requires thepyinotify library to be installed.

 	Werkzeug debugger can now submit to custom lodgeit installations.

 	redirect function's status code assertion now allows 201 to be usedas redirection code. While it's not a real redirect, it sharesenough with redirects for the function to still be useful.

 	Fixed securecookie for pypy.

 	Fixed ValueErrors being raised on calls to best_match onMIMEAccept objects when invalid user data was supplied.

 	Deprecated werkzeug.contrib.kickstart and werkzeug.contrib.testtools

 	URL routing now can be passed the URL arguments to keep them forredirects. In the future matching on URL arguments might also bepossible.

 	Header encoding changed from utf-8 to latin1 to support a port toPython 3. Bytestrings passed to the object stay untouched whichmakes it possible to have utf-8 cookies. This is a part wherethe Python 3 version will later change in that it will alwaysoperate on latin1 values.

 	Fixed a bug in the form parser that caused the last character tobe dropped off if certain values in multipart data are used.

 	Multipart parser now looks at the part-individual content typeheader to override the global charset.

 	Introduced mimetype and mimetype_params attribute for the filestorage object.

 	Changed FileStorage filename fallback logic to skip special filenamesthat Python uses for marking special files like stdin.

 	Introduced more HTTP exception classes.

 	call_on_close now can be used as a decorator.

 	Support for redis as cache backend.

 	Added BaseRequest.scheme.

 	Support for the RFC 5789 PATCH method.

 	New custom routing parser and better ordering.

 	Removed support for is_behind_proxy. Use a WSGI middlewareinstead that rewrites the REMOTE_ADDR according to your setup.Also see the werkzeug.contrib.fixers.ProxyFix fora drop-in replacement.

 	Added cookie forging support to the test client.

 	Added support for host based matching in the routing system.

 	Switched from the default ‘ignore' to the better ‘replace'unicode error handling mode.

 	The builtin server now adds a function named ‘werkzeug.server.shutdown'into the WSGI env to initiate a shutdown. This currently only worksin Python 2.6 and later.

 	Headers are now assumed to be latin1 for better compatibility withPython 3 once we have support.

 	Added werkzeug.security.safe_join().

 	Added accept_json property analogous to accept_html on thewerkzeug.datastructures.MIMEAccept.

 	werkzeug.utils.import_string() now fails with much bettererror messages that pinpoint to the problem.

 	Added support for parsing of the If-Range header(werkzeug.http.parse_if_range_header() andwerkzeug.datastructures.IfRange).

 	Added support for parsing of the Range header(werkzeug.http.parse_range_header() andwerkzeug.datastructures.Range).

 	Added support for parsing of the Content-Range header of responsesand provided an accessor object for it(werkzeug.http.parse_content_range_header() andwerkzeug.datastructures.ContentRange).

 Version 0.6.2

 (bugfix release, released on April 23th 2010)

 	renamed the attribute implicit_seqence_conversion attribute of therequest object to implicit_sequence_conversion.

 Version 0.6.1

 (bugfix release, released on April 13th 2010)

 	heavily improved local objects. Should pick up standalone greenletbuilds now and support proxies to free callables as well. There isalso a stacked local now that makes it possible to invoke the sameapplication from within itself by pushing current request/responseon top of the stack.

 	routing build method will also build non-default method rules properlyif no method is provided.

 	added proper IPv6 support for the builtin server.

 	windows specific filesystem session store fixes.(should now be more stable under high concurrency)

 	fixed a NameError in the session system.

 	fixed a bug with empty arguments in the werkzeug.script system.

 	fixed a bug where log lines will be duplicated if an application useslogging.basicConfig() (#499)

 	added secure password hashing and checking functions.

 	HEAD is now implicitly added as method in the routing system ifGET is present. Not doing that was considered a bug because oftencode assumed that this is the case and in web servers that do notnormalize HEAD to GET this could break HEAD requests.

 	the script support can start SSL servers now.

 Version 0.6

 Released on Feb 19th 2010, codename Hammer.

 	removed pending deprecations

 	sys.path is now printed from the testapp.

 	fixed an RFC 2068 incompatibility with cookie value quoting.

 	the FileStorage now gives access to the multipart headers.

 	cached_property.writeable has been deprecated.

 	MapAdapter.match() now accepts a return_rule keyword argumentthat returns the matched Rule instead of just the endpoint

 	routing.Map.bind_to_environ() raises a more correct error messagenow if the map was bound to an invalid WSGI environment.

 	added support for SSL to the builtin development server.

 	Response objects are no longer modified in place when they are evaluatedas WSGI applications. For backwards compatibility the fix_headersfunction is still called in case it was overridden.You should however change your application to use get_wsgi_headers ifyou need header modifications before responses are sent as the backwardscompatibility support will go away in future versions.

 	append_slash_redirect() no longer requires the QUERY_STRING to bein the WSGI environment.

 	added DynamicCharsetResponseMixin

 	added DynamicCharsetRequestMixin

 	added BaseRequest.url_charset

 	request and response objects have a default repr now.

 	builtin data structures can be pickled now.

 	the form data parser will now look at the filename instead thecontent type to figure out if it should treat the upload as regularform data or file upload. This fixes a bug with Google Chrome.

 	improved performance of make_line_iter and the multipart parserfor binary uploads.

 	fixed is_streamed

 	fixed a path quoting bug in EnvironBuilder that caused PATH_INFO andSCRIPT_NAME to end up in the environ unquoted.

 	werkzeug.BaseResponse.freeze() now sets the content length.

 	for unknown HTTP methods the request stream is now always limitedinstead of being empty. This makes it easier to implement DAVand other protocols on top of Werkzeug.

 	added werkzeug.MIMEAccept.best_match()

 	multi-value test-client posts from a standard dictionary are nowsupported. Previously you had to use a multi dict.

 	rule templates properly work with submounts, subdomains andother rule factories now.

 	deprecated non-silent usage of the werkzeug.LimitedStream.

 	added support for IRI handling to many parts of Werkzeug.

 	development server properly logs to the werkzeug logger now.

 	added werkzeug.extract_path_info()

 	fixed a querystring quoting bug in url_fix()

 	added fallback_mimetype to werkzeug.SharedDataMiddleware.

 	deprecated BaseResponse.iter_encoded()‘s charset parameter.

 	added BaseResponse.make_sequence(),BaseResponse.is_sequence andBaseResponse._ensure_sequence().

 	added better repr of werkzeug.Map

 	import_string accepts unicode strings as well now.

 	development server doesn't break on double slashes after the host name.

 	better repr and str ofwerkzeug.exceptions.HTTPException

 	test client works correctly with multiple cookies now.

 	the werkzeug.routing.Map now has a class attribute withthe default converter mapping. This helps subclasses to overridethe converters without passing them to the constructor.

 	implemented OrderedMultiDict

 	improved the session support for more efficient session storingon the filesystem. Also added support for listing of sessionscurrently stored in the filesystem session store.

 	werkzeug no longer utilizes the Python time module for parsingwhich means that dates in a broader range can be parsed.

 	the wrappers have no class attributes that make it possible toswap out the dict and list types it uses.

 	werkzeug debugger should work on the appengine dev server now.

 	the URL builder supports dropping of unexpected arguments now.Previously they were always appended to the URL as query string.

 	profiler now writes to the correct stream.

 Version 0.5.1

 (bugfix release for 0.5, released on July 9th 2009)

 	fixed boolean check of FileStorage

 	url routing system properly supports unicode URL rules now.

 	file upload streams no longer have to provide a truncate()method.

 	implemented BaseRequest._form_parsing_failed().

 	fixed #394

 	ImmutableDict.copy(), ImmutableMultiDict.copy() andImmutableTypeConversionDict.copy() return mutable shallowcopies.

 	fixed a bug with the make_runserver script action.

 	MultiDict.items() and MutiDict.iteritems() now accept anargument to return a pair for each value of each key.

 	the multipart parser works better with hand-crafted multipartrequests now that have extra newlines added. This fixes a bugwith setuptools uploades not handled properly (#390)

 	fixed some minor bugs in the atom feed generator.

 	fixed a bug with client cookie header parsing being case sensitive.

 	fixed a not-working deprecation warning.

 	fixed package loading for SharedDataMiddleware.

 	fixed a bug in the secure cookie that made server-side expirationon servers with a local time that was not set to UTC impossible.

 	fixed console of the interactive debugger.

 Version 0.5

 Released on April 24th, codename Schlagbohrer.

 	requires Python 2.4 now

 	fixed a bug in IterIO

 	added MIMEAccept and CharsetAccept that work like theregular Accept but have extra special normalization for mimetypesand charsets and extra convenience methods.

 	switched the serving system from wsgiref to something homebrew.

 	the Client now supports cookies.

 	added the fixers module with variousfixes for webserver bugs and hosting setup side-effects.

 	added werkzeug.contrib.wrappers

 	added is_hop_by_hop_header()

 	added is_entity_header()

 	added remove_hop_by_hop_headers()

 	added pop_path_info()

 	added peek_path_info()

 	added wrap_file() and FileWrapper

 	moved LimitedStream from the contrib package into the regularwerkzeug one and changed the default behavior to raise exceptionsrather than stopping without warning. The old class will stick inthe module until 0.6.

 	implemented experimental multipart parser that replaces the old CGI hack.

 	added dump_options_header() and parse_options_header()

 	added quote_header_value() and unquote_header_value()

 	url_encode() and url_decode() now accept a separatorargument to switch between & and ; as pair separator. The magicswitch is no longer in place.

 	all form data parsing functions as well as the BaseRequestobject have parameters (or attributes) to limit the number ofincoming bytes (either totally or per field).

 	added LanguageAccept

 	request objects are now enforced to be read only for all collections.

 	added many new collection classes, refactored collections in general.

 	test support was refactored, semi-undocumented werkzeug.test.Filewas replaced by werkzeug.FileStorage.

 	EnvironBuilder was added and unifies the previous distinctcreate_environ(), Client andBaseRequest.from_values(). They all work the same now whichis less confusing.

 	officially documented imports from the internal modules as undefinedbehavior. These modules were never exposed as public interfaces.

 	removed FileStorage.len which previously made the objectfalsy for browsers not sending the content length which all browsersdo.

 	SharedDataMiddleware uses wrap_file now and has aconfigurable cache timeout.

 	added CommonRequestDescriptorsMixin

 	added CommonResponseDescriptorsMixin.mimetype_params

 	added werkzeug.contrib.lint

 	added passthrough_errors to run_simple.

 	added secure_filename

 	added make_line_iter()

 	MultiDict copies now instead of revealing internallists to the caller for getlist and iteration functions thatreturn lists.

 	added follow_redirect to the open() [http://docs.python.org/dev/library/functions.html#open] of Client.

 	added support for extra_files inmake_runserver()

 Version 0.4.1

 (Bugfix release, released on January 11th 2009)

 	werkzeug.contrib.cache.Memcached accepts now objects thatimplement the memcache.Client interface as alternative to a list ofstrings with server addresses.There is also now a GAEMemcachedCache that connects to the Googleappengine cache.

 	explicitly convert secret keys to bytestrings now because Python2.6 no longer does that.

 	url_encode and all interfaces that call it, support ordering ofoptions now which however is disabled by default.

 	the development server no longer resolves the addresses of clients.

 	Fixed a typo in werkzeug.test that broke File.

 	Map.bind_to_environ uses the Host header now if available.

 	Fixed BaseCache.get_dict (#345)

 	werkzeug.test.Client can now run the application buffered in whichcase the application is properly closed automatically.

 	Fixed Headers.set (#354). Caused header duplication before.

 	Fixed Headers.pop (#349). default parameter was not properlyhandled.

 	Fixed UnboundLocalError in create_environ (#351)

 	Headers is more compatible with wsgiref now.

 	Template.render accepts multidicts now.

 	dropped support for Python 2.3

 Version 0.4

 Released on November 23rd 2008, codename Schraubenzieher.

 	Client supports an empty data argument now.

 	fixed a bug in Response.application that made it impossible to use itas method decorator.

 	the session system should work on appengine now

 	the secure cookie works properly in load balanced environments withdifferent cpu architectures now.

 	CacheControl.no_cache and CacheControl.private behavior changed toreflect the possibilities of the HTTP RFC. Setting these attributes toNone or True now sets the value to “the empty value”.More details in the documentation.

 	fixed werkzeug.contrib.atom.AtomFeed.call. (#338)

 	BaseResponse.make_conditional now always returns self. Previouslyit didn't for post requests and such.

 	fixed a bug in boolean attribute handling of html and xhtml.

 	added graceful error handling to the debugger pastebin feature.

 	added a more list like interface to Headers (slicing and indexingworks now)

 	fixed a bug with the setitem method of Headers that didn'tproperly remove all keys on replacing.

 	added remove_entity_headers which removes all entity headers froma list of headers (or a Headers object)

 	the responses now automatically call remove_entity_headers if thestatus code is 304.

 	fixed a bug with Href query parameter handling. Previously the lastitem of a call to Href was not handled properly if it was a dict.

 	headers now support a pop operation to better work with environproperties.

 Version 0.3.1

 (bugfix release, released on June 24th 2008)

 	fixed a security problem with werkzeug.contrib.SecureCookie.More details available in the release announcement [http://lucumr.pocoo.org/cogitations/2008/06/24/werkzeug-031-released/].

 Version 0.3

 Released on June 14th 2008, codename EUR325CAT6.

 	added support for redirecting in url routing.

 	added Authorization and AuthorizationMixin

 	added WWWAuthenticate and WWWAuthenticateMixin

 	added parse_list_header

 	added parse_dict_header

 	added parse_authorization_header

 	added parse_www_authenticate_header

 	added _get_current_object method to LocalProxy objects

 	added parse_form_data

 	MultiDict, CombinedMultiDict, Headers, and EnvironHeaders raisespecial key errors now that are subclasses of BadRequest so if youdon't catch them they give meaningful HTTP responses.

 	added support for alternative encoding error handling and the newHTTPUnicodeError which (if not caught) behaves like a BadRequest.

 	added BadRequest.wrap.

 	added ETag support to the SharedDataMiddleware and added an optionto disable caching.

 	fixed is_xhr on the request objects.

 	fixed error handling of the url adapter's dispatch method. (#318)

 	fixed bug with SharedDataMiddleware.

 	fixed Accept.values.

 	EnvironHeaders contain content-type and content-length now

 	url_encode treats lists and tuples in dicts passed to it as multiplevalues for the same key so that one doesn't have to pass a MultiDictto the function.

 	added validate_arguments

 	added BaseRequest.application

 	improved Python 2.3 support

 	run_simple accepts use_debugger and use_evalex parameters now,like the make_runserver factory function from the script module.

 	the environ_property is now read-only by default

 	it's now possible to initialize requests as “shallow” requests whichcauses runtime errors if the request object tries to consume theinput stream.

 Version 0.2

 Released Feb 14th 2008, codename Faustkeil.

 	Added AnyConverter to the routing system.

 	Added werkzeug.contrib.securecookie

 	Exceptions have a get_response() method that return a response object

 	fixed the path ordering bug (#293), thanks Thomas Johansson

 	BaseReporterStream is now part of the werkzeug contrib module. FromWerkzeug 0.3 onwards you will have to import it from there.

 	added DispatcherMiddleware.

 	RequestRedirect is now a subclass of HTTPException and uses a301 status code instead of 302.

 	url_encode and url_decode can optionally treat keys as unicode stringsnow, too.

 	werkzeug.script has a different caller format for boolean arguments now.

 	renamed lazy_property to cached_property.

 	added import_string.

 	added is_* properties to request objects.

 	added empty() method to routing rules.

 	added werkzeug.contrib.profiler.

 	added extends to Headers.

 	added dump_cookie and parse_cookie.

 	added as_tuple to the Client.

 	added werkzeug.contrib.testtools.

 	added werkzeug.unescape

 	added BaseResponse.freeze

 	added werkzeug.contrib.atom

 	the HTTPExceptions accept an argument description now which overrides thedefault description.

 	the MapAdapter has a default for path info now. If you usebind_to_environ you don't have to pass the path later.

 	the wsgiref subclass werkzeug uses for the dev server does not use directsys.stderr logging any more but a logger called “werkzeug”.

 	implemented Href.

 	implemented find_modules

 	refactored request and response objects into base objects, mixins andfull featured subclasses that implement all mixins.

 	added simple user agent parser

 	werkzeug's routing raises MethodNotAllowed now if it matches arule but for a different method.

 	many fixes and small improvements

 Version 0.1

 Released on Dec 9th 2007, codename Wictorinoxger.

 	Initial release

 API Changes

 0.9

 	Soft-deprecated the BaseRequest.data andBaseResponse.data attributes and introduced new methodsto interact with entity data. This will allows in the future tomake better APIs to deal with request and response entitybodies. So far there is no deprecation warning but users arestrongly encouraged to update.

 	The Headers and EnvironHeaders datastructuresare now designed to operate on unicode data. This is a backwardsincomaptible change and was necessary for the Python 3 support.

 	The Headers object no longer supports in-place operationsthrough the old linked method. This has been removed withoutreplacement due to changes on the encoding model.

 0.6.2

 	renamed the attribute implicit_seqence_conversion attribute ofthe request object to implicit_sequence_conversion. Becausethis is a feature that is typically unused and was only in therefor the 0.6 series we consider this a bug that does not requirebackwards compatibility support which would be impossible toproperly implement.

 0.6

 	Old deprecations were removed.

 	cached_property.writeable was deprecated.

 	BaseResponse.get_wsgi_headers() replaces the olderBaseResponse.fix_headers method. The older method staysaround for backwards compatibility reasons until 0.7.

 	BaseResponse.header_list was deprecated. You should notneed this function, get_wsgi_headers and the to_listmethod on the regular headers should serve as a replacement.

 	Deprecated BaseResponse.iter_encoded‘s charset parameter.

 	LimitedStream non-silent usage was deprecated.

 	the repr of HTTP exceptions changed. This might breakdoctests.

 0.5

 	Werkzeug switched away from wsgiref as library for the builtinwebserver.

 	The encoding parameter for Templates is now calledcharset. The older one will work for another two versionsbut warn with a DeprecationWarning [http://docs.python.org/dev/library/exceptions.html#DeprecationWarning].

 	The Client has cookie support now which is enabledby default.

 	BaseResponse._get_file_stream() is now passed more parametersto make the function more useful. In 0.6 the old way to invokethe method will no longer work. To support both newer and olderWerkzeug versions you can add all arguments to the signature andprovide default values for each of them.

 	url_decode() no longer supports both & and ; asseparator. This has to be specified explicitly now.

 	The request object is now enforced to be read-only for allattributes. If your code relies on modifications of some valuesmakes sure to create copies of them using the mutable counterparts!

 	Some data structures that were only used on request objects arenow immutable as well. (Authorization / Acceptand subclasses)

 	CacheControl was splitted up into RequestCacheControland ResponseCacheControl, the former being immutable.The old class will go away in 0.6

 	undocumented werkzeug.test.File was replaced byFileWrapper.

 	it's not longer possible to pass dicts inside the data dictin Client. Use tuples instead.

 	It's save to modify the return value of MultiDict.getlist()and methods that return lists in the MultiDict now. Theclass creates copies instead of revealing the internal lists.However MultiDict.setlistdefault still (and intentionally)returns the internal list for modifications.

 0.3

 	Werkzeug 0.3 will be the last release with Python 2.3 compatibility.

 	The environ_property is now read-only by default. This decision wasmade because the request in general should be considered read-only.

 0.2

 	The BaseReporterStream is now part of the contrib module, thenew module is werkzeug.contrib.reporterstream. Starting with0.3, the old import will not work any longer.

 	RequestRedirect now uses a 301 status code. Previously a 302status code was used incorrectly. If you want to continue usingthis 302 code, use response=redirect(e.new_url,302).

 	lazy_property is now called cached_property. The alias forthe old name will disappear in Werkzeug 0.3.

 	match can now raise MethodNotAllowed if configured formethods and there was no method for that request.

 	The response_body attribute on the response object is now calleddata. With Werkzeug 0.3 the old name will not work any longer.

 	The file-like methods on the response object are deprecated. Ifyou want to use the response object as file like object use theResponse class or a subclass of BaseResponse and mix the newResponseStreamMixin class and use response.stream.

 Important Terms

 This page covers important terms used in the documentation and Werkzeugitself.

 WSGI

 WSGI a specification for Python web applications Werkzeug follows. It wasspecified in the PEP 333 [http://www.python.org/dev/peps/pep-0333] and is widely supported. Unlike previous solutionsit gurantees that web applications, servers and utilties can work together.

 Response Object

 For Werkzeug, a response object is an object that works like a WSGIapplication but does not do any request processing. Usually you have a viewfunction or controller method that processes the request and assambles aresponse object.

 A response object is not necessarily the BaseResponse object or asubclass thereof.

 For example Pylons/webob provide a very similar response class that canbe used as well (webob.Response).

 View Function

 Often people speak of MVC (Model, View, Controller) when developing webapplications. However, the Django framework coined MTV (Model, Template,View) which basically means the same but reduces the concept to the datamodel, a function that processes data from the request and the database andrenders a template.

 Werkzeug itself does not tell you how you should develop applications, but thedocumentation often speaks of view functions that work roughly the same. Theidea of a view function is that it's called with a request object (andoptionally some parameters from an URL rule) and returns a response object.

 Unicode

 Since early Python 2 days unicode was part of all default Python builds. Itallows developers to write applications that deal with non-ASCII charactersin a straightforward way. But working with unicode requires a basic knowledgeabout that matter, especially when working with libraries that do not supportit.

 Werkzeug uses unicode internally everywhere text data is assumed, even if theHTTP standard is not unicode aware as it. Basically all incoming data isdecoded from the charset specified (per default utf-8) so that you don'toperate on bytestrings any more. Outgoing unicode data is then encoded intothe target charset again.

 Unicode in Python

 In Python 2 there are two basic string types: str and unicode. str maycarry encoded unicode data but it's always represented in bytes whereas theunicode type does not contain bytes but charpoints. What does this mean?Imagine you have the German Umlaut ö. In ASCII you cannot represent thatcharacter, but in the latin-1 and utf-8 character sets you can representit, but they look differently when encoded:

 >>> u'ö'.encode('latin1')
'\xf6'
>>> u'ö'.encode('utf-8')
'\xc3\xb6'

 So an ö might look totally different depending on the encoding which makesit hard to work with it. The solution is using the unicode type (as we didabove, note the u prefix before the string). The unicode type does notstore the bytes for ö but the information, that this is aLATINSMALLLETTEROWITHDIAERESIS.

 Doing len(u'ö') will always give us the expected “1” but len('ö')might give different results depending on the encoding of 'ö'.

 Unicode in HTTP

 The problem with unicode is that HTTP does not know what unicode is. HTTPis limited to bytes but this is not a big problem as Werkzeug decodes andencodes for us automatically all incoming and outgoing data. Basically whatthis means is that data sent from the browser to the web application is perdefault decoded from an utf-8 bytestring into a unicode string. Data sentfrom the application back to the browser that is not yet a bytestring is thenencoded back to utf-8.

 Usually this “just works” and we don't have to worry about it, but there aresituations where this behavior is problematic. For example the Python 2 IOlayer is not unicode aware. This means that whenever you work with data fromthe file system you have to properly decode it. The correct way to loada text file from the file system looks like this:

 f = file('/path/to/the_file.txt', 'r')
try:
 text = f.decode('utf-8') # assuming the file is utf-8 encoded
finally:
 f.close()

 There is also the codecs module which provides an open function that decodesautomatically from the given encoding.

 Error Handling

 With Werkzeug 0.3 onwards you can further control the way Werkzeug works withunicode. In the past Werkzeug ignored encoding errors silently on incomingdata. This decision was made to avoid internal server errors if the usertampered with the submitted data. However there are situations where youwant to abort with a 400 BAD REQUEST instead of silently ignoring the error.

 All the functions that do internal decoding now accept an errors keywordargument that behaves like the errors parameter of the builtin string methoddecode. The following values are possible:

 ignoreThis is the default behavior and tells the codec to ignore characters thatit doesn't understand silently.replaceThe codec will replace unknown characters with a replacement character(U+FFFDREPLACEMENTCHARACTER)strictRaise an exception if decoding fails.

Unlike the regular python decoding Werkzeug does not raise anUnicodeDecodeError [http://docs.python.org/dev/library/exceptions.html#UnicodeDecodeError] if the decoding failed but anHTTPUnicodeError whichis a direct subclass of UnicodeError and the BadRequest HTTP exception.The reason is that if this exception is not caught by the application buta catch-all for HTTP exceptions exists a default 400 BAD REQUEST errorpage is displayed.

 There is additional error handling available which is a Werkzeug extensionto the regular codec error handling which is called fallback. Often youwant to use utf-8 but support latin1 as legacy encoding too if decodingfailed. For this case you can use the fallback error handling. Forexample you can specify 'fallback:iso-8859-15' to tell Werkzeug it shouldtry with iso-8859-15 if utf-8 failed. If this decoding fails too (whichshould not happen for most legacy charsets such as iso-8859-15) the erroris silently ignored as if the error handling was ignore.

 Further details are available as part of the API documentation of the concreteimplementations of the functions or classes working with unicode.

 Request and Response Objects

 As request and response objects usually are the central entities of Werkzeugpowered applications you can change the default encoding Werkzeug operates onby subclassing these two classes. For example you can easily set theapplication to utf-7 and strict error handling:

 from werkzeug.wrappers import BaseRequest, BaseResponse

class Request(BaseRequest):
 charset = 'utf-7'
 encoding_errors = 'strict'

class Response(BaseResponse):
 charset = 'utf-7'

 Keep in mind that the error handling is only customizable for all decodingbut not encoding. If Werkzeug encounters an encoding error it will raise aUnicodeEncodeError [http://docs.python.org/dev/library/exceptions.html#UnicodeEncodeError]. It's your responsibility to not create data that isnot present in the target charset (a non issue with all unicode encodingssuch as utf-8).

 Dealing with Request Data

 The most important rule about web development is “Do not trust the user”.This is especially true for incoming request data on the input stream.With WSGI this is actually a bit harder than you would expect. Becauseof that Werkzeug wraps the request stream for you to save you from themost prominent problems with it.

 Missing EOF Marker on Input Stream

 The input stream has no end-of-file marker. If you would call theread() method on the wsgi.input stream you would cause yourapplication to hang on conforming servers. This is actually intentionalhowever painful. Werkzeug solves that problem by wrapping the inputstream in a special LimitedStream. The input stream is exposedon the request objects as stream. This one is eitheran empty stream (if the form data was parsed) or a limited stream withthe contents of the input stream.

 When does Werkzeug Parse?

 Werkzeug parses the incoming data under the following situations:

 	you access either form, files,or stream and the request method wasPOST or PUT.

 	if you call parse_form_data().

 These calls are not interchangeable. If you invoke parse_form_data()you must not use the request object or at least not the attributes thattrigger the parsing process.

 This is also true if you read from the wsgi.input stream before theparsing.

 General rule: Leave the WSGI input stream alone. Especially inWSGI middlewares. Use either the parsing functions or the requestobject. Do not mix multiple WSGI utility libraries for form dataparsing or anything else that works on the input stream.

 How does it Parse?

 The standard Werkzeug parsing behavior handles three cases:

 	input content type was multipart/form-data. In this situation thestream will be empty andform will contain the regular POST / PUTdata, files will contain the uploadedfiles as FileStorage objects.

 	input content type was application/x-www-form-urlencoded. Then thestream will be empty andform will contain the regular POST / PUTdata and files will be empty.

 	the input content type was neither of them, streampoints to a LimitedStream with the input data for furtherprocessing.

 Special note on the get_data method: Calling thisloads the full request data into memory. This is only safe to do if themax_content_length is set. Also you can eitherread the stream or call get_data().

 Limiting Request Data

 To avoid being the victim of a DDOS attack you can set the maximumaccepted content length and request field sizes. The BaseRequestclass has two attributes for that: max_content_lengthand max_form_memory_size.

 The first one can be used to limit the total content length. For exampleby setting it to 1024102416 the request won't accept more than16MB of transmitted data.

 Because certain data can't be moved to the hard disk (regular post data)whereas temporary files can, there is a second limit you can set. Themax_form_memory_size limits the size of POSTtransmitted form data. By setting it to 102410242 you can makesure that all in memory-stored fields is not more than 2MB in size.

 This however does not affect in-memory stored files if thestream_factory used returns a in-memory file.

 How to extend Parsing?

 Modern web applications transmit a lot more than multipart form data orurl encoded data. Extending the parsing capabilities by subclassingthe BaseRequest is simple. The following example implementsparsing for incoming JSON data:

 from werkzeug.utils import cached_property
from werkzeug.wrappers import Request
from simplejson import loads

class JSONRequest(Request):
 # accept up to 4MB of transmitted data.
 max_content_length = 1024 * 1024 * 4

 @cached_property
 def json(self):
 if self.headers.get('content-type') == 'application/json':
 return loads(self.data)

 OEBPS/images/Cover.jpg

