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    The "Computer Science Field Guide" is an online interactive resource for high school students learning about computer science, developed at the University of Canterbury in New Zealand.

  
    1.1. WHAT’S THE BIG PICTURE?

    Why is it that people have a love-hate relationship with computers? Why are some people so fanatical about particular types of computers, while others have been so angry at digital devices that they have been physically violent with them? And what does this have to do with computer science? And what is computer science anyway?

    I’m glad you asked! Put simply, computer science is about tools and techniques for designing and building applications that are very fast, have great interfaces, are reliable, secure, helpful — even fun.

    A lot of people confuse computer science with programming. It has been said that “computer science is no more about programming than astronomy is about telescopes” (Mike Fellows). Programming is the tool that computer scientists use to bring great ideas to life, but just knowing how to give programmed instructions to a computer isn’t enough to create software that delights and empowers people.

    For example, computers can perform billions of operations every second, and yet people often complain that they are too slow. Humans can perceive delays of about one tenth of a second, and if your program takes longer than that to respond it will be regarded as sluggish, jerky or frustrating. You’ve got well under a second to delight the user! If you are searching millions of items of data, or displaying millions of pixels (megapixels), you can’t afford to do things the wrong way, and you can’t just tell your users that they should buy a faster computer ... they’ll probably just go out and buy someone’s faster software instead!

    Here’s some advice from Fred Wilson, who has invested in many high profile tech companies:

    
      First and foremost, we believe that speed is more than a feature. Speed is the most important feature. If your application is slow, people won’t use it. I see this more with mainstream users than I do with power users. I think that power users sometimes have a bit of sympathetic eye to the challenges of building really fast web apps, and maybe they’re willing to live with it, but when I look at my wife and kids, they’re my mainstream view of the world. If something is slow, they’re just gone. ... speed is more than a feature. It’s a requirement.

      —Fred Wilson (Source)

    

    A key theme in computer science is working out how to make things run fast, especially if you want to be able to sell your software to the large market of people using old-generation smartphones, or run it in a data centre where you pay by the minute for computing time. You can’t just tell your customers to buy a faster device — you need to deliver efficient software.

    Try using the following two calculators to make a simple calculation. They both have the same functionality (they can do the same calculations), but which is nicer to use? Why?

    (This book has many interactives like this. If the first calculator doesn’t work properly, you may need to use a more recent browser. The interactive material in this book works in most recent browsers; Google Chrome is a particularly safe bet.)

    The second calculator above is slower, and that can be frustrating. But it has a fancier interface — buttons expand when you point to them to highlight what you’re doing. Does this make it easier to use? Did you have problems because the “C” and “=” keys are so close?

    How interfaces work is a core part of computer science. The aesthetics — images and layout — are important, but what’s much more crucial is the psychology of how people interact. For example, suppose the “OK” and “Cancel” buttons in dialogue boxes were occasionally reversed. You would always need to check carefully before clicking on one of them, instead of using the instinctive moves you’ve made countless times before. There are some very simple principles based on how people think and behave that you can take advantage of to design systems that people love.

    Making software that can scale up is another important theme. Imagine you’ve built a web interface and have attracted thousands of customers. Everything goes well until your site goes viral overnight, and you suddenly have millions of customers. If the system becomes bogged down, people will become frustrated waiting for a response, and tomorrow you will have no customers — they’ll all have moved on to someone else’s system. But if your programs are designed so they can scale up to work with such large amounts of data your main problem will be dealing with offers to buy your company!

    Some of these problems can be solved by buying more equipment, but that can be an expensive and wasteful option (not just for cost, but because of the impact on the environment, including the wasted power used to do the processing inefficiently). With mobile computing it’s even more important to keep things lean and efficient — heavy duty programs chew up valuable battery life, and processing and memory must be used sparingly as these affect the size, weight and even heat dissipation of devices.

    And if your system continues be successful, pretty soon people will be trying to hack into it to steal valuable customer data or passwords. How can you design systems so that you know they are secure from such attacks and your customers can trust you with their personal information or business transactions?

    All these questions and more are addressed by the field of computer science. The purpose of this guide is to introduce you to those ideas so that you have a better idea of whether this field is for you. It is aimed at high-school level, and is intended to bring you to the point where you have a good overview of the field, and are well prepared for further in-depth study to become an expert.

    We’ve broken computer science up into a whole lot of topics that you’ll often find in curricula around the world, such as algorithms, human-computer interaction, compression, cryptography, computer graphics, and artificial intelligence. The reality is that all these topics interact, so be on the lookout for the connections.

    This guide isn’t a list of facts for you to memorise, or to copy and paste into projects! It is mainly a guide to things you can do — experiences that will engage you with the topics. In fact, we won’t go through all the topics in great detail, but will give you references to websites and books that explain things thoroughly. The idea of this guide is to give you enough background to understand the topics, and to do something meaningful with them.

    And what about programming? You can get through this whole guide without doing any programming, although we’ll suggest exercises. Ultimately, however, all the concepts here are reflected in programs that people write. If you want to learn programming there are many excellent courses available. It takes time and practice, and is well worth doing in parallel with working through the topics in this guide. There are a number of free online systems and books that you can use to teach yourself programming. A database of options for learning to program is being compiled by code.org, where there is also a popular video of some well-known high-fliers in computing which is good to show classes. Here are some other sources that might suit you:

    
      	The NCEA year 12 workbook is a book (two actually) on programming in Java and Python, written for the NZ achievement standards. The authors are developing a second book for the year 13 programming standard.

      	CodeAvengers is an online system where you can work through challenges that will introduce you to programming in Javascript. This system matches the NZ programming achievement standards from level 1 to 3.

      	Interactive Python has a free online “book” called “How to Think Like a Computer Scientist: Interactive Edition” (also referred to as “Think Python”) which teaches the Python language, and enables students to edit and run Python examples within the web browser. The original book is open source and is also available in various non-interactive versions.

      	Codecademy is an online system where you can learn languages including Python and Javascript

      	Coder Dojo is a “movement orientated around running free not-for-profit coding clubs and regular sessions for young people”.

      	TryPython is an instant Python tutorial that runs in your web browser.

      	CodingBat has hundreds of programming challenges that you can try to check on how you are progressing with learning to program.

      	Greenfoot is a visual, interactive system that teaches object orientation with Java. You create ‘actors’ that live in ‘worlds’ to build games, simulations, and other graphical programs.

      	Khan Academy has a “Computer Science” section; most of the material here is about programming rather than computer science in general.

      	Grok learning is a new site for learning to code

    

    The following programming teaching systems are aimed more at younger students, or are based around a “drag and drop” language which is only intended as a teaching tool:

    
      	ScratchEd provides extensive educational material for Scratch, which is a drag-and-drop programming language centred around creating 2D animations. Scratch has many of the features of more conventional languages. The Snap (BYOB) system is based on Scratch, and has some more advanced features.

      	Computer Science Concepts in Scratch is a book on programming in Scratch.

      	Alice is an educational programming language based around creating 3D animations.

      	Kodu is a visual programming tool that is also available of Xbox.

      	Snake wrangling for kids is a free downloadable book that introduces younger students to Python programming.

    

    Programming is just one of the skills you’ll need to be a computer scientist. In this book you’ll be exercising many other skills — maths, psychology, and communication are important ones.

    1.2. HOW TO USE THIS GUIDE

    This guide is intended to support a variety of curricula, and teacher guides will become available for using it in different contexts. For students, we’ve designed most chapters so that they can stand alone; the few that build on previous chapters explain at the outset what preparation you need (the most useful general preparation is the chapter on data representation, because everything on a computer is stored using binary numbers and so they have an important role in many areas of computer science.)

    Each chapter begins with a section about the “big picture” — why the topic is useful for understanding and designing computer systems, and what can be achieved using the main ideas in the chapter. You’ll then be introduced to key ideas and applications of the topic through examples, and wherever possible we’ll have interactive activities that enable you to work with the ideas first hand. Sometimes these will be simplified versions of the full sized problems that computer scientists need to deal with – our intention is for you to actually interact with the ideas, not just read about them. Make sure you give them a go!

    We finish each chapter by talking about the “whole story,” giving hints about parts of the topic that we omitted because we didn’t want to make the chapter too overwhelming. There will be pointers for further reading, but be warned that some of it might be quite deep, and require advanced math or programming skills.

    If you are doing this for formal study, you’ll end up having to do some sort of assessment. The chapters provide ideas for projects and activities that could be used for this, and the appendix has more detailed projects (currently designed for the New Zealand NCEA requirements).

    1.3. ABOUT THIS GUIDE

    This guide is free for you to copy, share and even modify. We plan to make it available online, as a downloadable PDF file, and for ePub (e.g. for iBooks) and MOBI (e.g. for Kindle), although it’s much better viewed in the other formats because you can watch the videos and use the interactive activities.

    This guide is licenced under a Creative Commons Attribution-NonCommercial-ShareAlike licence, which means that you are welcome to take copies and modify them. If you do make improvements, we ask that you share those, and acknowledge this guide by linking back to our web site. You can give away the guide (or any derivatives), but you’re not allowed to sell it.

    Production of the guide was partially funded by a generous grant from Google Inc., and supported by the University of Canterbury. Of course, we welcome donations to support further work on the guide.

    1.4. FURTHER READING

    Each chapter gives suggestions for further reading for that particular. There are also plenty of general books and websites about computer science that you might want to read to keep your view of the topic broad.

    The “Nested” Youtube channel is a video series that introduces different computer science topics (for example: binary search) and closely matches the topics in the Field Guide.

    Books that we particularly recommend include:

    
      	Algorithmic adventures: from knowledge to magic, by Jurag Hromkovic

      	The Turing Omnibus, by A.K. Dewdney

      	Algorithmics, by David Harel

      	Computational fairy tales, by Jeremy Kubica

    

    Wikipedia has a fairly extensive entry on computer science.

    The AQA Computing A2 book(s), by Sylvia Langfield and Kevin Bond, give a more detailed account of many of these topics.

    There are also some excellent general web sites about Computer Science, many of which we’ve referenced:

    
      	Computer Science For Fun — a very readable collection of short articles about practical applications of topics in computer science

      	Babbage’s bag is an excellent collection of technical articles on many topics in computing.

      	CS Bytes has up-to-date articles about applications of computer science.

      	Thriving in our digital world has some excellent information and interactive material on topics from computer science.

      	The Virginia tech online interactive modules for teaching computer science cover a range of relevant topics.

      	CS animated has interactive activities on computer science.

      	
        CS for All
      

    

  
    2.1. WHAT’S THE BIG PICTURE?

    Every computer device you have ever used, from your school computers to your calculator, has been using algorithms to tell it how to do whatever it was doing. Algorithms are a very important topic in Computer Science because they help software developers create efficient and error free programs. The most important thing to remember about algorithms is that there can be many different algorithms for the same problem, but some are much better than others!

    Click an image to play sorting animations

    

    
      Selection sort
    

    

    
      Quick sort
    

    
      Animations provided by David Martin from www.sorting-algorithms.com
    

    Computers are incredibly fast at manipulating, moving and looking through data. However the amount of data computers use is often so large that it doesn’t matter how fast the computer is, it will take it far too long to examine every single piece of data (companies like Google, Facebook and Twitter process about 1 billion things per day). This is where algorithms come in. If a computer is given a better algorithm to process the data then it doesn’t matter how much information it has to look through, it will still be able to do it in a reasonable amount of time.

    If you have read through the Introduction chapter you may remember that the speed of an application on a computer makes a big difference to a human using it. If an application you create is too slow, people will get frustrated with it and won’t use it. It doesn’t matter if your program can solve all their life problems, if it takes too long they will simply get bored and close it!

    2.1.1. ALGORITHMS, PROGRAMS AND INFORMAL INSTRUCTIONS

    At this stage you might be thinking that algorithms and computer programs kind of sound like the same thing, but they are actually two very distinct concepts. Descriptions of these and another important concept, Informal Instructions, are below. They are each different ways of describing how to do something:

    
      	Informal Instruction: An instruction using natural language. They are un-precise so computers cannot understand them, but humans are able to use their own intelligence to interpret them. This is the least precise of our three descriptions for doing things, and is typically used to give a very simple description of the general idea of an algorithm.

      	Algorithm: step by step process that describes how to solve a problem and/or complete a task, which will always give a result. They are more precise than Informal Instructions and do not require any knowledge or intelligence to follow, however they are still not precise enough for a computer to follow. These are often expressed using pseudo-code, which matches a programming language fairly closely, but leaves out details that could easily be added later by a programmer, and doesn’t specify the kinds of commands that can be used.

      	Program: a specific implementation of an algorithm, which is written in a specific programming language and will give a certain result. This is the most precise of these three descriptions and computers are able to follow and understand these.

    

    For example…

    
      	Informal Instruction: “Get me a glass of water”. A human can understand what this means and can figure out how to accomplish this task by thinking, but a computer would have no idea how to do this!

      	Algorithm: 1) Go to the kitchen. 2) Pick up a glass. 3) Turn on the tap. 4) Put the glass under the running water and remove it once it is almost full. 5) Turn off the tap. 6) Take the glass back to the person who gave the instruction. A human could follow these instructions easily, but a computer could not figure out exactly what to do.

      	Program: A computer program, written in a programming language, which would tell a robot exactly how to retrieve a glass of water and bring it back to the person who asked for the water.

    

    2.1.2. ALGORITHM COST

    When Computer Scientists are comparing algorithms they often talk about the ‘cost’ of an algorithm. The cost of an algorithm can be interpreted in several different ways, but it is always related to how well an algorithm performs based on the size of its input, n. In this chapter we will talk about the cost of an algorithm as either the time it takes a program (which performs the algorithm) to complete, and the number of comparisons the algorithm makes before it finishes.

    The amount of time a program which performs the algorithm takes to complete may seem like the simplest cost we could look at, but this can actually be affected by a lot of different things, like the speed of the computer being used, or the programming language the program has been written in. This means that if the time the program takes to complete is used to measure the cost of an algorithm it is important to use the same program and the same computer (or another computer with the same speed) for testing the algorithm with different numbers of inputs.

    The number of comparisons an algorithm makes however will not change depending on the speed of a computer, or the programming language the program using the algorithm is written in. Some algorithms will always make the same number of comparisons for a certain input size, while others might vary.

    If you want to find out more about how the cost of an algorithm is described in industry, with ‘Big-O Notation’, then check out “The Whole Story!” section at the end of this chapter.

    2.1.3. SEARCHING AND SORTING

    In this chapter we will look at two of the most common and important types of algorithms, Searching and Sorting. You probably come across these kinds of algorithms every time you use a computer without even realising!

    2.2. SEARCHING

    Searching through collections of data is something computers have to do all the time. It happens every time you type in a search on Google, or when you type in a file name to search for on your computer. Computers deal with such huge amounts of data that we need fast algorithms to help us find information quickly. Lets investigate searching with a game…

    
      Click to load

Searching Game - Part 1
    

    You may have noticed that the numbers on the monsters and pets in the game were in a random order, which meant that finding the pet was basically luck! You might have found it on your first try, or if you were less lucky you might have had to look inside almost all the presents before you found it. This might not seem like such a bad thing since you had enough lives to look under all the boxes, but imagine if there had been 1,000 boxes, or worse 1,000,000! It would have taken far too long to look through all the boxes and the pet might have never been found.

    Now this next game is slightly different. You have less lives, which makes things a bit more challenging, but this time the numbers inside the boxes will be in order. The monsters, or maybe the pet, with the smallest number is in the present on the far left, and the one with the largest number is in the present on the far right. Let’s see if you can collect all the pets without running out of lives…

    
      Click to load

Searching Game - Part 2
    

    Now that you have played through the whole game (and hopefully found all of the lost pets!) you may have noticed that even though you had less lives in the second part of the game, and lots of presents to search through, you were still able to find the pet. Why was this possible?

    2.2.1. TWO CONTRASTING SEARCH ALGORITHMS

    Since the boxes in the first game were in a random order there really wasn’t any strategy you could have used to find the pet, except simply keep opening presents one by one until you found the pet. This is very similar to the Linear Search Algorithm (sometimes called a sequential search). In plain english, this algorithm is as follows:

    
      	Check if the first item in a list is the item you are searching for, if it is the one you are looking for, you are done.

      	If it isn’t the item you are searching for move on and check the next item.

      	Continue checking items until you find the one you are searching for.

    

    If you used this algorithm you might get lucky and find what you are looking for on your first go, but if you were really unlucky you might have to look through everything in your list before you found the right object! For a list of 10 items this means on average you would only have to look at 5 items to find what you were looking for, but for a list of 10000 you would have to look through on average 5000.

    
      Curiosity: Bozo Search
    

    If you watched the video at the beginning of the chapter you might be thinking that what you did in the present searching game sounds more like Bozo Search than Linear Search, but actually Bozo Search is even sillier than this! If you were doing a Bozo Search then after unwrapping a present and finding a monster inside, you would wrap the present back up before you moved on to the next one! This means you might end up checking the same present again and again and again and you might never find the pet, even with a small number of presents!

    A much better algorithm to use is called Binary Search. In the second part of the present searching game the boxes were in order, which meant you were able to be more clever when you were searching for the pet, and you might have been using a Binary Search without realising...

    If you used a Binary Search on each of the levels then you would have always had enough lives to find the pet! Informally, the Binary Search algorithm is as follows.

    
      	Look at the item in the centre of the list and compare it to what you are searching for

      	If it is what you are looking for then you are done.

      	If it is larger than the item you are looking for then you can ignore all the items in the list which are larger than that item (if the list is from smallest to largest this means you can ignore all the items to the right of the centre item).

      	If it is smaller then you can ignore all the items in the list which are smaller than that centre item.

      	Now repeat the algorithm on the remaining half of the list, checking the middle of the list and choosing one of the halves, until you find the item you are searching for.

    

    Binary Search is a very powerful algorithm. If you had 1000 presents to Search through it would take you at most 10 checks for Binary search to find something and Linear search would take at most 1000 checks, but if you doubled the number of presents to search through how would this change the number of checks made by Binary Search and Linear search?

    Hopefully you’ve noticed that the answer for each of these algorithms would be different.

    It is important to remember that you can only perform a Binary Search if the items you are searching through are sorted into order. This makes the sorting algorithms we will look at next even more important because without sorting algorithms we wouldn’t be able to use Binary Search to quickly look through data!

    The following files will run linear and binary search in various languages:

    
      	
        Scratch
      

      	
        Python (Version 2)
      

      	
        Python (Version 3)
      

    

    2.3. SORTING ALGORITHMS

    Sorting is another very important area of algorithms. Computers often have to sort large amounts of data into order based on some attribute of that data, such as sorting a list of files by their name or size, or emails by the date they were received, or a customer list according to people’s names. Most of the time this is done to make searching easier. For example you might have a large amount of data and each piece of data could be someone’s name and their phone number. If you want to search for someone by name it would help to first have the data sorted alphabetically according to everyones names, but if you then wanted to search for a phone number it would be more useful to have the data sorted according to people’s phone numbers.

    Like searching there are many different sorting algorithms, but some take much longer than others. In this section you will be introduced to two slower algorithms and one much better one.

    2.3.1. SCALES INTERACTIVE

    Throughout this section you can use the sorting interactive to test out the algorithms we talk about. When you’re using it make sure you take note of the comparisons at the bottom of the screen, each time you compare two boxes the algorithm is making ‘one comparison’ so the total number of comparisons you have to make with each algorithm is the cost of that algorithm for the 8 boxes.

    Use the scales to compare the boxes (you can only compare two boxes at a time) and then arrange them along the bottom of the screen. Arrange them so that the lightest box is on the far left and the heaviest is on the far right. Once you think they are in order click ‘Test order’.

    If the interactive does not run properly on your computer you can use a set of physical balance scales instead — just make sure you can only tell if one box is heavier than the other, not their exact weight (so not digital scales that show the exact weight).

    
      Click to load the

Algorithm Sorting interactive
    

    2.3.2. SELECTION SORT

    One of the most intuitive ways to sort a group of boxes into order, from lightest to heaviest, is to start by first finding the lightest (or the heaviest) box and placing that to the side. Try this with the scales interactive.

    After finding the lightest box simply repeat the process again with the remaining boxes until you find the second lightest, now place that to the side alongside the lightest box. If you keep repeating this process you will eventually find you have placed each box into order. Try sorting the whole group of boxes in the scales interactive into order using this method and count how many comparisons you have to make.

    Tip: Start by moving all the boxes to the right of the screen and then once you have found the lightest box place it to the far right (if you want to find the heaviest first instead then move them all to the left).

    If you record how many comparisons you had to make each time to find the next lightest box you might notice a pattern (hint: finding the lightest should take 7 comparisons, and then finding the second lightest should take 6 comparisons…). If you can see the pattern then how many comparisons do you think it would take to then sort 9 boxes into order? What about 20? If you knew how many comparisons it would take to sort 1000 boxes, then how many more comparisons would it take to sort 1001 instead?

    This algorithm is called Selection sort, because each time you look through the list you are ‘selecting’ the next lightest box and putting it into the correct position. If you go back to the algorithms racing interactive at the top of the page you might now be able to watch the selection sort list and understand what it is doing at each step.

    The selection sort algorithm can be described as follows.

    
      	Find the smallest item in the list and place it to one side. This will be your sorted list.

      	Next find the smallest item in the remaining list, remove it and place it into your sorted list beside the item you previously put to the side.

      	Repeat this process until all items have been selected and moved into their correct position in the sorted list.

    

    You can swap the word ‘smallest’ for ‘largest’ and the algorithm will still work, as long as you are consistent it doesn’t matter if you are looking for the smallest or the largest item each time.

    2.3.3. INSERTION SORT

    This algorithm works by removing each box from the original group of boxes and inserting it into its correct position in a new sorted list. Like Selection Sort, it is very intuitive and people often perform it when they are sorting objects themselves, like cards in their hands.

    Try this with the scales interactive. Start by moving all the boxes to one side of the screen, this is your original, and unsorted, group. Now choose a box at random and place that on the other side of the screen, this is the start of your sorted group.

    To insert another box into the sorted group, compare it to the box that is already in the sorted group and then arrange these two boxes in the correct order. Then to add the next box compare it to these boxes (depending on the weight of the box you might only have to compare it to one!) and then arrange these three boxes in the correct order. Continue inserting boxes until the sorted list is complete. Don’t forget to count how many comparisons you had to make!

    This algorithm is called Insertion Sort. If you’re not quite sure if you’ve got the idea of the algorithm yet then have a look at this animation from Wikipedia.

    Insertion sort can be described with informal instructions as follows:

    
      	Take an item from your unsorted list and place it to the side, this will be your sorted list.

      	One by one, take each item from the unsorted list and insert it into the correct position in the sorted list.

      	Do this until all items have been sorted.

    

    People often perform this when they physically sort items. It can also be a very useful algorithm to use if you already have a sorted set of data and want to add a new piece of data into the set. For example if you owned a library and purchased a new book you wouldn’t do a Selection Sort on the entire library just to place this new book, you would simply insert the new book in its correct place.

    2.3.4. QUICKSORT

    Insertion and Selection Sort may seem like logical ways to sort things into order, but they both take far too many comparisons when they are used for large amounts of data. Remember computers often have to search through HUGE amounts of data, so even if they use a good searching algorithm like Binary Search to look through their data, if they use a bad sorting algorithm to first sort that data into order then finding anything will take far too long!

    A much better sorting algorithm is Quicksort! (the name is a bit of a giveaway)

    
      Click to load the

Quick Sort interactive
    

    This algorithm is a little more complicated, but is very powerful. To do this algorithm with the sorting interactive, start by randomly choosing a box and placing it on the scales. Now compare every other box to the one you selected; heavier boxes should be put on the right of the second row and lighter boxes are put on the left. When you are done, place the box you were comparing everything else to between these two groups, but to help you keep track of things, put it in the row below. The following example shows how it might look after this step. Note that the selected block is in the right place for the final sorted order, and everything on either side will remain on the side that it is on.

    

    Now apply this process to each of the two groups of boxes (the lighter ones, then the heavier ones). Keep on doing this until they are all sorted. The boxes should then be in sorted order!

    It might be worth trying this algorithm out a few times and counting the number of comparisons you perform each time. This is because sometimes you might be unlucky and happen to pick the heaviest, or the lightest box first. On the other hand you might be very lucky and choose the middle box to compare everything to first. Depending on this the number of comparisons you perform will change.

    Quicksort can be described in the following way:

    
      	Choose an item from the list and compare every other item in the list to this (this item is often called the pivot).

      	Place all the items that are greater than it into one subgroup and all the items that are smaller into another subgroup. Place the pivot item in between these two subgroups.

      	Choose a subgroup and repeat this process. Eventually each subgroup will contain only one item and at this stage the items will be in sorted order.

    

    The following files will run quicksort in various languages:

    
      	
        Scratch
      

      	
        Python (Version 2)
      

      	
        Python (Version 3)
      

    

    2.4. OTHER TOPICS IN ALGORITHMS

    
      	There is another searching algorithm which performs even better than Binary Search. It is called Hashing and can be investigated with the CS UnpluggedBattleships Game.

      	There are some problems for which no good algorithms have been found (and many people believe they will never be found). For more on these kinds of algorithms see the Complexity and Tractability chapter in the Field Guide.

    

    2.5. THE WHOLE STORY!

    We’ve only really scraped the surface of algorithms in this chapter, as there are millions of different algorithms for millions of different problems! Algorithms are used in maths, route planning, network planning and operation, problem solving, artificial intelligence, genetic programming, computer vision, the list goes on and on! But by going through this chapter you should have gained an understanding of the key concepts of algorithms and will be well prepared to tackle more complicated ones in the future.

    In this chapter we have only talked about the number of comparisons an algorithm makes, and the amount of time a program takes to complete as ‘costs’ of algorithms. There are actually many other ways of measuring the cost of an algorithm. These include the amount of memory the algorithm uses and its computational complexity. Computer Scientists use ‘Big O notation’ to more accurately describe the performance or complexity of an algorithm, and you are likely to come across this notation very quickly when investigating the performance of algorithms. It characterises the resources needed by an algorithm and is usually applied to the execution time required, or sometimes the space used by the algorithm.

    Here are some Big O examples:

    
      	O(1) - An algorithm with O(1) complexity will always execute in the same amount of time regardless of how much data you give it to process

      	O(n) - The amount of time an algorithm with O(n) complexity will take to execute will increase linearly and in direct proportion to the amount of data you give it to process. Remember that Big O describes the worst case scenario so the algorithm might sometimes take less time, but the greatest amount of time it can take will increase in direct proportion to the amount of data it is given.

      	O(n2) - The performance of an algorithm with this complexity is directly proportional to the square of the size of the input data set.

      	O(2n) - The amount of time an algorithm with this complexity will take to complete will double with each additional element added to the data set! Does this remind you of any of the algorithms you have looked at in this chapter?

    

    Big O Notation however requires some advanced mathematics to explore thoroughly so has been intentionally left out of this main chapter, but if you want to learn more check out the Useful Links section. These topics are looked at in more depth in the Complexity and Tractability chapter.

    To make things even more complicated, in practice algorithms are running on computers that have cached memory and virtual memory, where the time to access a particular value can be particularly short, or particularly long. There is a whole range of algorithms that are used for this situation to make sure that the algorithm still runs efficiently in such environments. Such algorithms are still based on the ideas we’ve looked at in this chapter, but require some clever adjustments to ensure that they work well.

    2.6. FURTHER READING

    2.6.1. USEFUL LINKS

    
      	CS Unplugged Searching algorithms

      	CS Unplugged Sorting algorithms

      	
        Searching algorithm game, may not be suitable
      

      	Wikipedia has more details on Linear Search, Binary Search, Selection sort, Insertion sort and Quicksort.

      	The Sorting Bricks game is a great way to learn about several sorting algorithms (requires Java).

      	Sorting Algorithms Visualisations shows several different sorting algorithms racing and contains information and pseudocode for each.

      	
        Beginners Guide to Big O Notation
      

    

  
    3.1. WHAT’S THE BIG PICTURE?

    People often become frustrated with computers. At some point when using these devices, you will be annoyed that the computer did something you didn’t want it to do and you can’t figure out how to get the computer to do what you want, but why is that? Humans made computers, so why are computers often so frustrating to use by humans?

    Computers are becoming hundreds of times more powerful every decade, yet there is one important component of the computer system that hasn’t changed significantly in performance since the first computers were developed in the 1940s: the human. For a computer system to work really well it needs to be designed by people who understand the human part of the system well.

    In this chapter we’ll look at what typically makes good and bad interfaces. The idea is to make you sensitive to the main issues so that you can critique existing interfaces, and begin to think about how you might design good interfaces.

    Often software developers create a computer program or system for a device that requires the user to spend some time to learn how to use the program. These interfaces might be easy to use for the developer since they know the system really well, but a user just wants to get the job done without spending too much time learning the software (they might switch to another program if it’s too hard to use). A developer might treat the program and the user separately, however the user is part of the system, and a developer needs to create the software with the user in mind, designing a program that they will find easy to use and intuitive.

    Human-computer interaction (HCI) is about trying to make programs useful, usable, and accessible to humans. It goes way beyond choosing layouts, colours, and fonts that aren’t Comics Sans for an interface. It’s strongly influenced by the psychology of how people interact with digital devices, which means understanding many issues about how people behave, how they perceive things, and how they understand things so that they feel that a system is working to help them and not hinder them. HCI “involves the study, planning, and design of the interaction between people (the users) and computers. It is often regarded as the intersection of computer science, behavioral sciences, design and several other fields of study.” By understanding HCI, developers are more likely to create software that is effective and popular. If you ask people if they have ever been frustrated using a computer system, you’ll probably get a clear message that HCI isn’t always done well.

    Try out the following interactive task, and get some friends to try it:

    Answer as many questions as you can

    START

    15 seconds left

    Did anyone get a wrong answer to the question even though you thought you got it right? You may have noticed that the “Yes” and “No” button sometimes swap. Inconsistency is normally a really bad thing in an interface, as it can easily fool the user into making an error.

    The study of Human Computer Interaction involves a lot of psychology (how people behave) because this affects how they will use a system. As a simple example, the human short term memory only lasts for a matter of seconds (even in young people!) If a device delays a response for more than about 10 seconds, the user has to make a conscious effort to remember what they were doing, and that’s extra work for the user (which from their point of view, makes the system more tiring to use). Another example is that people get “captured” into sequences: if you start biking on a route that you take each day, you’ll soon find yourself arriving without thinking about every turn along the way, which is fine unless you were supposed to go somewhere else on the way. A similar effect occurs with confirmation dialogues; perhaps you often accidentally close a file without saving it, and the system says “Do you want to save it?”, so you press “Yes”. After you’ve done this a few times you’ll be captured into that sequence, so on the one occasion that you don’t want to overwrite your old file, you may accidentally click “Yes” anyway. A lot of people might blame themselves for such errors, but basic psychology says that this is a natural error to make, and a good system should protect users from such errors (for example, by allowing them to be undone).

    Designing good interfaces is very difficult. Just when you think you’ve got a clever idea, you’ll find that a whole group of people struggle to figure out how to use it, or it backfires in some situation. Even worse, some computer developers think that their users are dummies and that any interface problems are the user’s fault and not the developer’s. But the real problem is that the developer knows the system really well, whereas the user just wants to get their job done without having to spend a lot of time learning the software – if the software is too hard to use, they’ll just find something else that’s easier. Good interfaces are worth a lot in the market.

    There are many ways to evaluate and fine tune interfaces, and in this chapter we’ll look at some of these. One important principle is that one of the worst people to evaluate an interface is the person who designed and programmed it. They know all the details of how it works, they’ve probably been thinking about it for weeks, they know the bits that you’re not supposed to touch and the options that shouldn’t be selected, and of course they have a vested interest in finding out what is rightwith it rather than what is wrong. It’s also important that the interface should be evaluated by someone who is going to be a typical user; if you get a 12-year-old to evaluate a retirement planning system they may not know what the user will be interested in; and if you get a teacher to try out a system that students will use, they will know what the answers are and what the correct process is.

    Often interfaces are evaluated by getting typical users to try them out, and carefully noting any problems they have. There are companies that do nothing but these kinds of user tests — they will be given a prototype product, and pay groups of people to try it out. A report on the product is then produced and given to the people who are working on it. This is an expensive process, but it makes the product a lot better, and may well give it a huge advantage over its competitors. Having it evaluated by a separate company means that you avoid any bias from people in your own company who want to prove (even subconsciously) that they’ve done a good job designing it, rather than uncover any niggling problems in the software that will annoy users.

    Before we look at different ways to evaluate interfaces, we need to consider what is happening with an interface.

    3.2. USERS AND TASKS

    A very important consideration when designing or evaluating an interface is who the users are likely to be. For example, the typical age of a user can be significant: very young children may have difficulty reading some words and prefer images and animations, while a business person who uses an interface frequently will want it to be very fast to use, perhaps using keyboard shortcuts only.

    What are some of the considerations you would make for the following user groups?

    
      	Senior citizens

      	Gamers

      	Casual users

      	Foreign visitors

    

    The interface is the only part of a program that the user sees (that’s the definition of an interface!), so if the interface doesn’t work for them, the program doesn’t work.

    Another important thing to do when designing and evaluating an interface is to think about what tasks it is being used for. Advertisements for digital devices often hide the complexity of a task, and simply point out the features available for doing the task. For example, suppose a smartphone is advertised as having a high resolution camera. The real task that someone might want to do is to take a photo of something they’ve just spotted, and send it to a friend. If you look at what happens in reality, the smartphone might be in their pocket or bag, and if they see something cool going past, they need to get it out, perhaps unlock it, open the camera app, adjust the lighting and other settings, press a button (is it easy to find when you’re holding the camera up?), select the photo, choose an email option, type in the friend’s address (does the system help with that?), send it (what happens if you’re out of reception range?), and then put the phone away. If any one of these steps is slow or hard to remember, the whole experience can be frustrating, and it’s possible the photo opportunity will be missed, or for some other reason the friend won’t receive the photo.

    It’s very important to think about the whole context when describing a task. As an exercise, can you provide an example of a real task, including context, for a real person for each of the following:

    
      	set an alarm clock

      	show a slide (Powerpoint) presentation

    

    It’s important to think through all the parts of a task when discussing an interface, as it’s the small steps in a task that make all the difference between using the interface in a real situation, compared with a demonstration of some features of the device.

    3.2.1. ACTIVITY: SENDING AN EMAIL FROM MULTIPLE DEVICES

    For this activity, try sending an email from both a computer and a mobile phone. Take note of all the steps required from when you start using the device until the email is sent.

    You will probably notice quite a few differences between the two interfaces.

    3.2.2. ACTIVITY: DESIGNING STOVETOPS/REMOTE

    For this activity, you will designing the top of a cooking stove. This isn’t a computer system, but will help demonstrate some of the issues that come up. Your task is to sketch three different configurations for the stovetop which includes the arrangement of the 4 elements and the 4 control knobs.

    The task is described in detail in the HCI CS Unplugged activity.

    3.3. INTERFACE USABILITY

    Devices are often sold using catch phrases like “user friendly” and “intuitive”, but these are vague terms that are hard to pin down. In this section we will use the more technical term, Usability, which is well understood by HCI experts, and gives us some ways to evaluate how suitable an interface is for a particular task. Usability isn’t just about an interface being nice to use: poor usability can lead to serious problems, and has been the cause of major disasters, such as airplane crashes, financial disasters, and medical mishaps. It is also important because an interface that requires a lot of dexterity, quick reactions or a good memory makes it less accessible to much of the population, when accessibility can be both a moral and legal expectation.

    There are many elements that can be considered in usability, and we will mention a few that you are likely to come across when evaluating everyday interfaces. Bear in mind that the interfaces might not just be a computer — any digital device such as an alarm clock, air conditioning remote control, microwave oven, or burglar alarms can suffer from usability problems.

    One “golden rule” of usability is consistency. If a system keeps changing on you, it’s going to be frustrating to use. Earlier we had the example of a yes/no button pair that occasionally swapped places. A positive example is the consistent use of “control-C” and “control-V” in many different programs to copy and paste text or images. This also helps learnability: once you have learned copy and paste in one program, you know how to use it in many others. Imagine if every program used different menu commands and keystrokes for this!

    A related issue is the Mode error, where the behaviour of an action depends on what mode you are in. A simple example is having the caps lock key down (particularly for entering a password, where you can’t see the effect of the mode). A classic example is in Excel spreadsheets, where the effect of clicking on a cell depends on the mode: sometimes it selects the cell, and other times it puts the name of the cell you clicked on into another cell. Modes are considered bad practice in interface design because they can easily cause the user to make the wrong action, and should be avoided if possible.

    The speed at which an interface responds (its reaction time) has a significant effect on usability. This is closely related to human perception of time. If something happens fast enough, we will perceive it as being instant.

    The following interactive lets you find out how fast “instant” is for you. As you click on each cell, there will sometimes be a random delay before it comes up; other cells won’t have a delay. Click on each cell, and if it seems to respond instantly, leave it as it is. However, if you perceive that there is a small delay before the image comes up, click it again (which makes the cell a little lighter). You can’t go back and change a cell, so just make a quick, gut-level decision the first time you click each one. The delay may be very short, but only make the cell gray if you are fairly sure you noticed a delay.

    
      Click to load the

delay interactive
    

    Once you have clicked on all the cells, click on the “Probability of perceiving delays” bar to see a graph of how often you thought there was a delay compared with how long the delay actually was. 100 ms is one tenth of a second; for most people this is where they are likely to start perceiving a delay; anything short (particularly around 50 ms) is very hard to notice. Longer delays (for example, 350 ms, which is over a third of a second) are very easy to notice.

    The point of this is that any interface element (such as a button or checkbox) that takes more than 100 ms to respond is likely to be perceived by the user as not working, and they may even click it again. In the case of a checkbox, this may lead to it staying off (from the two clicks), leading the user to think that it’s not working.

    Click the checkbox

    Clicked 0 times

    So, as you evaluate interfaces, bear in mind that even very small delays can make a system hard to use.

    Another important length of time to bear in mind is our short term memory time, which is usually a matter of seconds. To remember something for longer, the user needs to rehearse it (repeat it over) or make a note of the information, such as writing it down. If a system takes some time to respond (say, 10 seconds) then chances are the user may have forgotten some detail of what they were going to do with the system. For example, if you have a phone number to type in that someone has just told you, and it takes 12 seconds before you can type it, you may forget the number, whereas if you can access the interface within a couple of seconds, you can probably enter the number without much effort. For this reason, any part of a system that takes more than about 10 seconds to respond forces the user to rehearse or write down key information, which is more tiring.

    Another important usability consideration is spatial memory — our ability to remember where things are located (such as where a button or icon is). Human spatial memory has a high capacity (you can probably remember the location of many places and objects), it is long lasting (people visiting a town they grew up in can often remember the layout), and we can remember things very quickly. A very simple aspect of usability that comes from this is that the layout of an interface shouldn’t keep changing. The interactive task at the start of this chapter was deliberately set up to be frustrating by swapping the two buttons occasionally; the reason people often make a mistake in that situation is that their spatial memory takes over, so the location of the button is more important than what is written on it. Systems that aren’t consistent in their spatial placement of the “OK” and “Cancel” buttons can be frustrating.

    Another place that the layout of an interface changes quickly is when a tablet or smartphone is rotated. Some devices rearrange the icons for the new orientation, which loses the spatial layout, while others keep them the same (except they may not look right in the new rotation). Try a few different devices and see which ones change the layout when rotated.

    What else can cause the layout of an interface to change suddenly?

    Associated with spatial memory is our muscle memory, which helps us to locate items without having to look carefully. With some practice, you can probably select a common button with a mouse just by moving your hand the same distance that you always have, rather than having to look carefully. For example, working with a new keyboard can mean having to re-learn the muscle memory that you have developed, and so may slow you down a bit.

    One common human error that an interface needs to take account of is the off by one error, where the user accidentally clicks or types on an item next to the one they intended. For example, if the “save” menu item is next to a “delete” menu item, that is risky because one small slip could cause the user to erase a file instead of saving it. A similar issue occurs on keyboards; for example, control-W might close just one window in a web browser, and control-Q might close the entire web-browser, so choosing these two adjacent keys is a problem. Of course, this can be fixed by either checking if the user quits, or by having all the windows saved so that the user just needs to open the browser again to get their work back. This can also occur in web forms, where there is a reset button next to the submit button, and the off-by-one error causes the user to lose all the data they just entered.

    Another idea used by HCI designers is the principle of commensurate effort, which says that frequently done simple tasks should be easy to do, but it’s ok to require a complex procedure for a complex task. For example, in a word processor, printing a page as it is displayed should be easy, but it’s ok if some effort is required to make it double sided, two to a page, with a staple in the top left corner. In fact, sometimes more effort should be required if the command has a serious consequence, such as deleting a file, wiping a device, or closing an account. In such cases artificial tasks may be added, such as asking “Are you sure?”, or to get an extreme setting on a device (like setting a voltage for a power supply) might require pressing an “up” button many times, rather than letting the user type in an extra couple of zeroes.

    These are just a few ideas from HCI that will help you to be aware of the kinds of issues that interfaces can have. In the following project you can observe these kinds of problems firsthand by watching someone else use an interface, noting any problems they have. It’s much easier to observe someone else than do this yourself, partly because it’s hard to concentrate on the interface and taking notes at the same time, and partly because you might already know the interface and have learned to overcome some of the less usable features.

    3.3.1. PROJECT: COGNITIVE WALKTHROUGH

    The cognitive walkthrough is a technique that HCI experts use to do a quick evaluation of an interface. Details of how to do one are on the cs4fn site.

    There is more information in the Wikipedia entry for Cognitive Walkthrough.

    3.4. USABILITY HEURISTICS

    Evaluating an interface is best done by getting feedback from having lots of potential users try it out. However, this can be expensive and time-consuming, so HCI experts have come up with some quick rules of thumb that help us spot obvious problems quickly. The formal word for a rule of thumb is a heuristic, and in this section we will look at some common heuristics that can be used to critique an interface.

    There are various sets of heuristics that people have proposed for evaluating interfaces, but a Danish researcher called Jakob Nielsen has come up with a set of 10 heuristics that have become very widely used, and we will describe them in this section. If you encounter a usability problem in an interface, it is almost certainly breaking one of these heuristics, and possibly a few of them. It’s not easy to design a system that doesn’t break any of the heuristics, and sometimes you wouldn’t want to follow them strictly — that’s why they are called heuristics, and not rules.

    You can find the heuristics online on Jakob Nielsen’s website; below is an explanation of each one.

    3.4.1. VISIBILITY OF SYSTEM STATUS

    
      The system should always keep users informed about what is going on, through appropriate feedback within reasonable time.
    

    This heuristic states that a user should be able to see what the device is doing (the system’s status), at all times. This varies from the user being able to tell if the device is turned on or off, to a range of actions. A classic example is the “caps lock” key, which may not clearly show if it is on, and when typing a password the user might not know why it is being rejected; a positive example of this is when a password entry box warns you that the caps lock key is on.

    One of the simplest statuses for a device is on or off, which is usually a coloured light on the outside of the computer. However, some devices take a while to show the status (for example, some DVD players take a while to respond when switched on), and the user might press the power button again or otherwise get confused about the status.

    There are many tasks that users ask computers to do that require some time including copying documents, downloading files, and loading video games. In this situation, one of the most common ways to keep a user informed of the task is the progress bar.

    85% Complete

    

    

    
      
    

    However, progress indicators aren’t always helpful; the spinning wheels above don’t indicate if you are going to have to wait a few seconds or a few minutes (or even hours) for the task to complete, which can be frustrating.

    Giving feedback in a “reasonable time” is really important, and the “reasonable time” is often shorter than what you might think. In the section above there was an experiment to find out at what point people perceive a delayed reaction; you probably found that it was around a tenth of a second. If a computer takes longer than that to respond then it can be confusing to use. There’s more about this in the previous section.

    There are some other important delay periods in interface evaluation: a delay of around 1 second is where natural dialogues start to get awkward, and around 10 seconds puts a lot of load on the user to remember what they were doing. Nielsen has an article about the importance of these time periods. If you want to test these ideas, try having a conversation with someone where you wait 3 seconds before each response; or put random 10 second delays in when you’re working on a task!

    Getting computers to respond quickly often depends on the algorithms used (covered in the chapter on algorithms), and can also depend on the design of a program (such as whether it stores data on disk or waits for a network response before continuing). It is particularly noticeable on small devices like smartphones, which have limited computing power, and might take a second or two to open an app or respond to some input. It’s not too hard to find these sorts of delays in systems when you’re evaluating them.

    3.4.2. MATCH BETWEEN SYSTEM AND THE REAL WORLD

    
      The system should speak the users’ language, with words, phrases and concepts familiar to the user, rather than system-oriented terms. Follow real-world conventions, making information appear in a natural and logical order.
    

    The language, colours and notation in an interface should match the user’s world, and while this seems obvious and sensible, it’s often something that is overlooked. Take for example the following two buttons — can you see what is confusing about them?

    CONFIRM

    CANCEL

    The following interface is from a bank system for paying another person. Suppose you get an email asking someone to pay you $1699.50 dollars for a used car; try entering “$1699.50” into the box.

    Payment Amount:

    The notation “$1699.50” is a common way to express a dollar amount, but this system forces you to follow its own conventions (probably to make things easier for the programmer who wrote the system).

    Are there other ways of expressing dollar amounts that are valid, but this system rejects? This system should be flexible with the inputted text to prevent errors (we will talk more about this later on).

    3.4.3. USER CONTROL AND FREEDOM

    
      Users often choose system functions by mistake and will need a clearly marked “emergency exit” to leave the unwanted state without having to go through an extended dialogue. Support undo and redo.
    

    It is very frustrating to make a mistake and not be able to get out of it. It is particularly bad if one small action can wipe a lot of work that can’t be recovered (the reset button on some web forms is infamous for this — it is often next to the submit button, and you can wipe all your data with an off-by-one error.) A common way to provide user freedom is an “undo” feature, which means that not only can mistakes be fixed easily, but the user is encouraged to experiment, trying out features of the interface secure in the knowledge that they can just “undo” to get back to how things were, instead of worrying that they’ll end up in a state that they can’t fix. If “redo” is also available, they can flick back and forth, deciding which is best. (In fact, redo is really an undo for undo!)

    Here’s an example of a button that doesn’t provide user control; if you press it, you’ll lose this whole page and have to find your way back (we warned you!)

    Do you wish to close this window?

    YES

    NO

    Sometimes the interface can force the user into doing something the user does not want to do. For example, it is quite common for operating systems or programs to perform updates automatically that require a restart. Sometimes the interface may not give them the opportunity to cancel or delay this, and restart nevertheless. This is bad if it happens when the user is just about to give a presentation.

    Another common form of this problem is not being able to quit a system. A positive example is the “home” button on smartphones, which almost always stops the current app that is in use.

    3.4.4. CONSISTENCY AND STANDARDS

    
      Users should not have to wonder whether different words, situations, or actions mean the same thing. Follow platform conventions.
    

    Consistency (something being the same every time) is extremely useful for people using interfaces, and is sometimes called the “golden rule of HCI”. If an interface is consistent with other interfaces then learning in one interface transfers directly to another. One of the biggest examples of consistency in computer programs is copy and paste, which works the same way in most software, so users only have to learn the concept once. The shortcut keys for copy and paste are also fairly consistent between programs. But in some software, copy/paste behaves differently, and this can be confusing for users.

    An example of inconsistency is generally found within spreadsheet programs, where the result of pushing “control-A” (select all) depends on whether you are editing a cell or just have the cell selected (this particular problem is a ‘mode’ problem). While this may make sense to a user experienced with spreadsheets, a new user can be very confused when the same action causes a different response.

    A lack of consistency is often the reason behind people not liking a new system. It is particularly noticeable between Mac and Windows user; someone who has only used one system can find the other very frustrating to use because so many things are different (consider the window controls for a start, which are in a different place and have different icons). An experienced user of one interface will think that it is “obvious”, and can’t understand why the other person finds it frustrating, which can lead to discussions of religious fervour on which interface is best. Similar problems can occur when a radically different version of an operating system comes out (such as Windows 8); a lot of the learning that has been done on the previous system needs to be undone, and the lack of consistency (i.e. losing prior learning) is frustrating.

    3.4.5. ERROR PREVENTION

    
      Even better than good error messages is a careful design which prevents a problem from occurring in the first place. Either eliminate error-prone conditions or check for them and present users with a confirmation option before they commit to the action.
    

    A computer program shouldn’t make it easy for people to make serious errors. An example of error prevention found in many programs is a menu item on a toolbar or dropdown being ‘greyed out’ or deactivated. It stops the user from using a function that shouldn’t be used in that situation, like trying to copy when nothing is selected. A good program would also inform the user why an item is not available (for example in a tooltip).

    Below is a date picker; can you see what errors can be produced with it?
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    A related problem with dates is when a user needs to pick a start and end date (for example, booking flights or a hotel room); the system should prevent a date prior to the first date being selected for the second date.

    Any time a dialogue box comes up that says you weren’t allowed to do a certain action, the system has failed to prevent an error. Of course, it may be difficult to do that because the error can depend on so many user choices, but it is ideal that the system doesn’t offer something that it can’t do.

    MENU 

    3.4.6. RECOGNITION RATHER THAN RECALL

    
      Minimize the user’s memory load by making objects, actions, and options visible. The user should not have to remember information from one part of the dialogue to another. Instructions for use of the system should be visible or easily retrievable whenever appropriate.
    

    Humans are generally very good at recognising items, but computers are good at remembering them accurately. A good example of this is a menu system; if you click on the “Edit” menu in a piece of software, it will remind you of all the editing tasks available, and you can choose the appropriate one easily. If instead you had to type in a command from memory, that would put more load on the user. In general it’s good for the computer to “remember” details, and the user to be presented with options rather than having to remember them.

    3.4.7. FLEXIBILITY AND EFFICIENCY OF USE

    
      Accelerators – unseen by the novice user – may often speed up the interaction for the expert user such that the system can cater to both inexperienced and experienced users. Allow users to tailor frequent actions.
    

    When someone is using software every day, they soon have common sequences of operations they do (such as “Open the file, find the next blank space, put in a record of what just happened”). It’s good to offer ways to make this quick to do, such as “macros” which do a sequence of actions from a single keystroke.

    Similarly, it’s good to be able to customise software by allocating keystrokes for frequent actions (such as “file this email in the ‘pending’ folder”). Common tasks like copy and paste usually have keystrokes added to them, and these allow experienced users to perform the task without having to reach for a mouse.

    3.4.8. AESTHETIC AND MINIMALIST DESIGN

    
      Dialogues should not contain information which is irrelevant or rarely needed. Every extra unit of information in a dialogue competes with the relevant units of information and diminishes their relative visibility.
    

    Software can contain many features, and if they are all visible at the same time (for example, on a toolbar) this can be overwhelming for a new user.

    3.4.9. HELP USERS RECOGNIZE, DIAGNOSE, AND RECOVER FROM ERRORS

    
      Error messages should be expressed in plain language (no codes), precisely indicate the problem, and constructively suggest a solution.
    

    It’s not hard to find error messages that don’t really tell you what’s wrong! The most common examples are messages like “Misc error”, “Error number -2431”, or “Error in one of the input values”. These force the user to go on a debugging mission to find out what went wrong, which could be anything from a disconnected cable or unfixable compatibility issue, to a missing digit in a number.

    A variant of this is a message that gives two alternatives, such as “File may not exist, or it may already be in use”. A better message would save the user having to figure out which of these is the problem.

    3.4.10. HELP AND DOCUMENTATION

    
      Even though it is better if the system can be used without documentation, it may be necessary to provide help and documentation. Any such information should be easy to search, focused on the user’s task, list concrete steps to be carried out, and not be too large.
    

    CLICK ME FOR HELP

    Often help is an afterthought, and tends to be feature-centred (e.g. a catalogue of menu items), rather than task-centred (the series of actions needed to complete typical tasks, which is more useful for the user). When a user needs help, they typically have a task to complete (such as upload photos from a camera), and good documentation should explain how to do common tasks, rather than explain each feature (such as “Setting the camera to USB mode”).

    3.5. THE WHOLE STORY!

    In this chapter we’ve mainly looked at how to critique interfaces, but we haven’t said much about how to design good interfaces. That’s a whole new problem, although being able to see what’s wrong with an interface is a key idea. Many commercial systems are tested using the ideas above to check that people will find them easy to use; in fact, before releasing a new application, often they are tested many times with many users. Improvements are made, and then more tests need to be run to check that the improvements didn’t make some other aspect of the interface worse! It’s no wonder that good software can be expensive — there are many people and a lot of time involved in making sure that it’s easy to use before it’s released.

    We also haven’t talked much about accessibility: making a system usable for someone with a disability such as impaired vision or impaired use of their limbs provides extra challenges, but is also very worthwhile because the device itself may improve accessibility (such as software to browse the web using an audio interface, or a computer-controlled wheelchair that can avoid colliding with obstacles).

    There are many other ideas from psychology, physiology, sociology and even anthropology that HCI experts must draw on. Things that come into play includeMental models, about how someone believes a system works compared with how it actually works (these are almost never the same e.g. double clicking on an icon that only needs to be single clicked), Fitts’s law, about how long it takes to point to objects on a screen (such as clicking on a small button), the Hick-Hyman law, about how long it takes to make a decision between multiple choices (such as from a menu), Miller’s law about the number of items a person can think about at once,affordances, about how properties of an object help us to perform actions on them, interaction design (IxD), about creating digital devices that work for the people who will use the product, the NASA TLX (Task Load Index) for rating the perceived workload that a task puts on a user, and many more laws, observations and guidelines about designing interfaces that take account of human behaviour and how the human body functions.

    3.6. FURTHER READING

    
      	The book “Designing with the mind in mind” by Jeff Johnson provides excellent background reading for many of the issues discussed in this chapter

      	The cs4fn website has a lot of articles and activities on Human Computer Interaction, such as problems around reporting interface problems, cultural issues in interface design, and The importance of Sushi.

      	A classic book relating to usability is “The psychology of everyday things” (later changed to “The design of everyday things”) by Don Norman. It’s about everyday objects like doors and phones, and it was written a while ago, but it contains lots of thought provoking and often humorous examples.

    

    3.6.1. USEFUL LINKS

    
      	The ten usability heuristics on Nielsen’s website, and a collection of articles about usability heuristics

      	There is a CS Unplugged activity on HCI which includes background information

      	There is extensive material on HCI on the cs4fn website

      	A glossary of usability terms

    

  
    4.1. WHAT’S THE BIG PICTURE?

    Programming, sometimes referred to as coding, is a nuts and bolts activity for computer science. While this book won’t teach you how to program (we’ve given some links to sites that can do this in the introduction), we are going to look at what a programming language is, and how computer scientists breath life into a language. From a programmer’s point of view, they type some instructions, and the computer follows them. But how does the computer know what to do? Bear in mind that you might be using one of the many languages such as Python, Java, Scratch, Basic or C#, yet computers only have the hardware to follow instructions in one particular language, which is usually a very simple “machine code” that is hard for humans to read and write. And if you invent a new programming language, how do you tell the computer how to use it?

    In this chapter we’ll look at what happens when you write and run a program, and how this affects the way that you distribute the program for others to use.

    We start with an optional subsection on what programming is, for those who have never programmed before and want an idea about what a program is. Examples of very simple programs in Python are provided, and these can be run and modified slightly. Working through this section should give you sufficient knowledge for the rest of this chapter to make sense; we won’t teach you how to program, but you will get to go through the process that programmers use to get a program to run. Feel free to skip this section if you are already know a bit about programming.

    A subsection on what this chapter focuses on then follows. Everybody should read that section.

    4.1.1. WHAT IS PROGRAMMING?

    Note: This section is intended for those who are unfamiliar with programming. If you already know a little about programming, feel free to skip over this section. Otherwise, it will give you a quick overview so that the remainder of the chapter makes sense.

    An example of the simplest kind of program is as follows — it has five instructions (one on each line) that are followed one after the other.

    
      print("************************************************")
print("************************************************")
print("*** Welcome to computer programming, Student ***")
print("************************************************")
print("************************************************")
    

    This program is written in a language called Python, and when the program runs, it will print the following text to the screen

    
      ************************************************
************************************************
*** Welcome to computer programming, Student ***
************************************************
************************************************
    

    In order to run a Python program, we need something called a Python interpreter. A Python interpreter is able to read your program, and process it. Below is a Python interpreter that you can use to run your own programs. If you have a Python interpreter installed on your computer (ask your teacher if you are following this book for a class and are confused) and know how to start it and run programs in it, you can use that.

    Run 

Output:

    Try changing the program so that it says your name instead of Student. When you think you have it right, try running the program again to see. Make sure you don’t remove the double quotes or the parentheses (round brackets) in the program by mistake. What happens if you spelt “programming” wrong? Does the computer correct it? If you are completely stuck, ask your teacher for help before going any further.

    Hopefully you figured out how to make the program print your name. You can also change the asterisks (*) to other symbols. What happens if you do remove one of the double quotes or one of the parentheses? Try it!

    If you change a critical symbol in the program you will probably find that the Python interpreter gives an error message. In the online Python interpreter linked to above, it says “ParseError: bad input on line 1”, although different interpreters will express the error in different ways. If you have trouble fixing the error again, just copy the program back into Python from above.

    Programming languages can do much more than print out text though. The following program is able to print out multiples of a number. Try running the program.

    
      print("I am going to print the first 5 multiples of 3")
for i in range(5):
    print(i*3)
    

    The first line is a print statement, like those you saw earlier, which just tells the system to put the message on the screen. The second line is a loop, which says to repeat the lines after it 5 times. Each time it loops, the value of i changes. i.e. the first time i is 0, then 1, then 2, then 3, and finally 4. It may seem weird that it goes from 0 to 4 rather than 1 to 5, but programmers tend to like counting from 0 as it makes some things work out a bit simpler. The third line says to print the current value of i multiplied by 3 (because we want multiples of 3). Note that there is not double quotes around the last print statement, as they are only used when we want to print out a something literally as text. If we did put them in, this program would print the text “i*3” out 5 times instead of the value we want!

    Try make the following changes to the program.

    
      	Make it print multiples of 5 instead of 3. Hint: You need to change more than just the first line — you will need to make a change on the third line as well.

      	Make it print the first 10 multiples instead of the first 5. Make sure it printed 10 multiples, and not 9 or 11!

    

    You can also loop over a list of data. Try running the program below. It will generate a series of “spam” messages, one addressed to each person in the recipients list!

    Note that the # symbol tells the computer that it should ignore the line, as it is a comment for the programmer.

    
      #List of recipients to generate messages for
spam_recipients = ["Heidi", "Tim", "Pondy", "Jack", "Caitlin", "Sam", "David"]
#Go through each recipient
for recipient in spam_recipients:
   #Write out the letter for the current recipient
   print("Dear " + recipient + ", \n")
   print("You have been successful in the random draw for all  people ")
   print("who have walked over a specific piece of ground located 2 meters ")
   print("from the engineering road entrance to Canterbury University.\n")
   print("For being successful in this draw you, " + recipient + ", win ")
   print("a prize of 10 million kilograms of chocolate!!!\n")
   print("And " + recipient + " if you phone us within the next 10 minutes ")
   print("you will get a bonus 5 million kilograms of chocolate!!! \n")
   print("\n\n\n") #Put some new lines between the messages
    

    Try changing the recipients or the letter. Look carefully at all the symbols that were used to include the recipient’s name in the letter.

    
      Jargon Buster
    

    The detailed requirements of a programming language about exactly which characters need to be used and where, is called its syntax. In the example above, the syntax for the list of names requires square brackets around the list, inverted commas around the names, and a comma between each one. If you make a mistake, such as leaving out one of the square brackets, the system will have a syntax error, and won’t be able to run the program. Every symbol counts, and one small error in a program can stop it running, or make it do the wrong thing.

    Programs can also use variables to store the results of calculations in, receive user input, and make decisions (called conditionals, such as if statements). Try running this program. Enter a number of miles to convert when asked. Don’t put units on the number you enter; for example just put “12”.

    
      print("This program will convert miles to kilometers")
number_of_miles = int(input("Number of miles: "))
if number_of_miles < 0:
    print("Error: Can only convert a positive number of miles!")
else:
    number_of_kilometers = number_of_miles / 0.6214
    print("Calculated number of kilometers...")
    print(number_of_kilometers)
    

    The first line is a print statement (which you should be very familiar with by now!) The second line asks the user for a number of miles which is converted from input text (called a string) to an integer, the third line uses an if statement to check if the number entered was less than 0, so that it can print an error if it is. Otherwise if the number was ok, the program jumps into the else section (the error is not printed because the if was not true), calculates the number of kilometers (there are 0.6214 kilometers in a mile), stores it into a variable called number_of_kilometers for later reference, and then the last line prints it out. Again, we don’t have quotes around number_of_kilometers in the last line as we want to print the value out that is stored in the number_of_kilometers variable. If this doesn’t make sense, don’t worry. You aren’t expected to know how to program for this chapter, this introduction is only intended for you to have some idea of what a program is and the things it can do.

    If you are keen, you could modify this program to calculate something else, such as pounds to kilograms or farenheit to celcius. It may be best to use an installed Python interpreter on your computer rather than the web version, as the web version can give very unhelpful error messages when your program has a mistake in it (although all interpreters give terrible error messages at least sometimes!)

    Programs can do many more things, such as having a graphical user interface (like most computer programs you will be familiar with), being able to print graphics onto a screen, or being able to write to and from files on the computer in order to save information between each time you run the program.

    4.1.2. WHERE ARE WE GOING?

    When you ran the programs, it might have seemed quite magical that the computer was able to instantly give you the output. Behind the scenes however, the computer was running your example programs through another program in order to convert them into a form that it could make sense of and then run.

    Firstly, you might be wondering why we need languages such as Python, and why we can’t give computers instructions in English. If we typed into the computer “Okay computer, print me the first 5 multiples of 3”, there’s no reason that it would be able to understand. For starters, it would not know what a “multiple” is. And it would not even know how to go about this task. Computers cannot be told what every word means, and they cannot know how to accomplish every possible task. Understanding human language is a very difficult task for a computer, as you will find out in the Artificial Intelligence chapter. Unlike humans who have an understanding of the world, and see meaning, computers are only able to follow the precise instructions you give them. Therefore, we need languages that are constrained and unambiguous that the computer “understands” instructions in. These can be used to give the computer instructions, like those in the previous section.

    It isn’t this simple though, a computer cannot run instructions given directly in these languages. At the lowest level, a computer has to use physical hardware to run the instructions. Arithmetic such as addition, subtraction, multiplication, and division, or simple comparisons such as less than, greater than, or equal to are done on numbers represented in binary by putting electricity through physical computer chips containing transistors. The output is also a number represented in binary. Building a fast and cheap circuit to do simple arithmetic such as this isn’t that hard, but the kind of instructions that people want to give computers (like “print the following sentence”, or “repeat the following 100 times”) are much harder to build circuitry for.

    
      Jargon Buster
    

    The electronics in computers uses circuitry that mainly just works with two values (represented as high and low voltages) to make it reliable and fast. This system is called binary, and is often written on paper using zeroes and ones. There’s a lot more about binary in the Data representation chapter, and it’s worth having a quick look at the first section of that now if you haven’t come across binary before.

    So instead of building computers that can understand these high level instructions that you find in languages like Python (or Java, Basic, JavaScript, C and so on), we build computers that can follow a very limited set of instructions, and then we write programs that convert the instructions in the standard languages people write programs in into the simple instructions that the circuitry can directly carry out. The language of these simple instructions is a low level programming language often referred to as machine code.

    The conversion from a high level to a low level language can involve compiling, which replaces the high level instructions with machine code instructions that can then be run, or it can be done by interpreting, where each instruction is converted and followed one by one, as the program is run. In reality, a lot of languages use a mixture of these, sometimes compiling a program to an intermediate language, then interpreting it (Java does this). The language we looked at earlier, Python, is an interpreted language. Other languages such as C++ are compiled. We will talk more about compiling and interpreting later.

    We will start with looking at some other programming languages that programmers use to give instructions to computers, then we will look at low level languages and how computers actually carry out the instructions in them, and then finally we will talk about how we convert programs that were written by humans in a high level language into a low level language that the computer can carry out.

    4.2. MACHINE CODE (LOW LEVEL LANGUAGES)

    A computer has to carry out instructions on physical circuits. These circuits contain transistors laid out in a special way that will give a correct output based on the inputs.

    Data such as numbers (represented using binary) have to be put into storage places called registers while the circuit is processing them. Registers can be set to values, or data from memory can be put into registers. Once in registers, they can be added, subtracted, multiplied, divided, or be checked for equality, greater than, or less than. The output is put into a register, where it can either be retrieved or used in further arithmetic.

    All computers have a machine code language (commonly referred to as an instruction set) that is used to tell the computer to put values into registers, to carry out arithmetic with the values in certain registers and put the result into another specified register like what we talked about above. Machine code also contains instructions for loading and saving values from memory (into or out of registers), jumping to a certain line in the program (that is either before or after the current line), or to jump to the line only if a certain condition is met (by doing a specified comparisons on values in registers). There are also instructions for handling simple input/ output, and interacting with other hardware on the computer.

    The instructions are quite different to the ones you will have seen before in high level languages. For example, the following program is written in a machine language called MIPS; which is used on some embedded computer systems. We will use MIPS in examples throughout this chapter.

    It starts by adding 2 numbers (that have been put in registers $t0 and $t1) and printing out the result. It then prints “Hello World!” Don’t worry, we aren’t about to make you learn how to actually program in this language! And if you don’t really understand the program, that’s also fine because many software engineers wouldn’t either! (We are showing it to you to help you to appreciate high level languages!)

    
      .data
str:  .asciiz "\nHello World!\n"
#You can change what is between the  quotes if you like

.text
.globl main

main:
#Do the addition
#For this, we first need to put the values to add into registers  ($t0 and $t1)
li $t0, 10 #You can change the 10
li $t1, 20 #You can change the 20
#Now we can add the values in $t0 and $t1, putting the result in special register $a0
add $a0, $t0, $t1
#Set up for printing the value in $a0\. A 1 in $v0 means we want to print an int
li $v0, 1
#The system call looks at what is in $v0 and $a0, and knows to print what is in $a0
syscall

#Now we want to print Hello World
#So we load the (address of the) string into $a0
la $a0, str
#And put a 4 in $v0 to mean print a string
li $v0, 4
#And just like before syscall looks at $v0 and $a0 and knows to print the string
syscall

#Nicely end the program
li $v0, 0
jr $ra
    

    You can run this program using an online MIPS emulator. This needs to be done in 2 steps:

    
      	Copy paste the code into the black box on the page from this link (remove ALL existing text in the box), and then click the Assemble button.

      	Copy paste the output in the “Assembler Output” box into the box on the page from this link (remove ALL existing text in the box), and click the Simulate Execution button, and the output should appear in a box near the top of the page

    

    Once you have got the program working, try changing the values that are added. The comments tell you where these numbers that can be changed are. You should also be able to change the string (text) that is printed without too much trouble also. As a challenge, can you make it so that it subtracts rather than adds the numbers? Clue: instruction names are always very short. Unfortunately you won’t be able to make it multiply or divide using this emulator as this seems to not currently be supported. Remember that to rerun the program after changing it, you will have to follow both steps 1 and 2 again.

    You may be wondering why you have to carry out both these steps. Because computers work in 1’s and 0’s, the instructions need to simply be converted into hexadecimal. Hexadecimal is a shorthand notation for binary numbers. Don’t muddle this process with compiling or interpreting! Unlike these, it is much simpler as in general each instruction from the source code ends up being one line in the hexadecimal.

    One thing you might have noticed while reading over the possible instructions is that there is no loop instruction in MIPS. Using several instructions though, it actually is possible to write a loop using this simple language. Have another read of the paragraph that describes the various instructions in MIPS. Do you have any ideas on how to solve this problem? It requires being quite creative!

    The jumping to a line, and jumping to a line if a condition is met can be used to make loops! A very simple program we could write that requires a loop is one that counts down from five and then says “Go!!!!” once it gets down to one. In Python we can easily write this program in three lines.

    
      for i in range(5,0,-1): #Start at 5, count down by 1 each time, when we get to 0 stop
    print(i)
print("GO!!!!!")
    

    But in MIPS, it isn’t that straight forward. We need to put values into registers, and we need to build the loop out of jump statements. Firstly, how can we design the loop?

    And the full MIPS program for this is as follows. You can go away and change it.

    
      #Define the data strings
.data
go_str:   .asciiz "GO!!!!!\n"
new_line: .asciiz "\n"

.text
#Where should we start?
.globl main

main:
    li $t0, 5    #Put our starting value 5 into register $t0\. We will update it as we go
    li $t1, 0    #Put our stopping value 0 into register $t1
start_loop:      #This label is just used for the jumps to refer to
    #This says that if the values in $t0 and $t1 are the same, it should jump down to the end_loop label.
    #This is the main loop condition.
    beq $t0, $t1, end_loop
    #These three lines prepare for and print the current int
    move $a0, $t0 # It must be moved into $a0 for the printing
    li $v0, 1
    syscall
    #These three lines print a new line character so that each number is on a new line
    li $v0, 4
    la $a0, new_line
    syscall
    addi $t0, $t0, -1 #Add -1 to the value in $t0, i.e decrement it by 1
    j start_loop  #Jump back up to the start_loop label
end_loop: #This is the end loop label that we jumped to when the loop is false
    #These three lines print the “GO!!!!” string
    li $v0, 4
    la $a0, go_str
    syscall
    #And these 2 lines make the program exit nicely
    li $v0, 0
    jr $ra
    

    Can you change the Python program so that it counts down from 10? What about so it stops at 5? (You might have to try a couple of times, as it is somewhat counter intuitive. Remember that when i is the stopping number, it stops there and does not run the loop for that value!). And what about decrementing by 2 instead of 1? And changing the string (text) that is printed at the end?

    You probably found the Python program not too difficult to modify. See if you can make these same changes to the MIPS program.

    If that was too easy for you, can you make both programs print out “GO!!!!” twice instead of once? (you don’t have to use a loop for that). And if THAT was too easy, what about making each program print out “GO!!!!” 10 times? Because repeating a line in a program 10 times without a loop would be terrible programming practice, you’d need to use a loop for this task.

    More than likely, you’re rather confused at this point and unable to modify the MIPS program with all these suggested changes. And if you do have an additional loop in your MIPS program correctly printing “GO!!!” 10 times, then you are well on your way to being a good programmer!

    So, what was the point of all this? These low level instructions may seem tedious and a bit silly, but the computer is able to directly run them on hardware due to their simplicity. A programmer can write a program in this language if they know the language, and the computer would be able to run it directly without doing any further processing. As you have probably realised though, it is extremely time consuming to have to program in this way. Moving stuff in and out of registers, implementing loops using jump and branch statements, and printing strings and integers using a three line pattern that you’d probably never have guessed was for printing had we not told you leaves even more opportunities for bugs in the program. Not to mention, the resulting programs are extremely difficult to read and understand.

    Because computers cannot directly run the instructions in the languages that programmers like, high level programming languages by themselves are not enough. The solution to this problem of different needs is to use a compiler or interpreter that is able to convert a program in the high level programming language that the programmer used into the machine code that the computer is able to understand.

    These days, few programmers program directly in these languages. In the early days of computers, programs written directly in machine language tended to be faster than those compiled from high level languages. This was because compilers weren’t very good at minimising the number of machine language instructions, referred to as optimizing, and people trained to write in machine code were better at it. These days however, compilers have been made a lot smarter, and can optimize code far better than most people can. Writing a program directly in machine code may result in a program that is less optimized than one that was compiled from a high level language. Don’t put in your report that low level languages are faster!

    This isn’t the full story; the MIPS machine code described here is something called a Reduced Instruction Set Architecture (RISC). Many computers these days use a Complex Instruction Set Architecture (CISC). This means that the computer chips can be a little more clever and can do more in a single step. This is well beyond the scope of this book though, and understanding the kinds of things RISC machine code can do, and the differences between MIPS and high level languages is fine at this level, and fine for most computer scientists and software engineers.

    In summary, we require low level programming languages because the computer can understand them, and we require high level programming languages because humans can understand them. A later section talks more about compilers and interpreters; programs that are used to convert a program that is written in a high level language (for humans) into a low level language (for computers).

    4.3. A BABEL OF PROGRAMMING LANGUAGES

    There are many different programming languages. Here we have included a small subset of languages, to illustrate the range of purposes that languages are used for. There are many, many more languages that are used for various purposes, and have a strong following of people who find them particularly useful for their applications.

    For a much larger list you can check Wikipedia here.

    4.3.1. PYTHON

    Python is a widely used language, that has also become very popular as a teaching language. Many people learn Python as their first programming language. In the introduction, we looked at some examples of Python programs, for those who have never programmed before.

    Originally though, Python was intended to be a scripting language. Scripting languages have syntax that makes them quick to write programs for file processing in, and for doing repetitive tasks on a computer.

    As an example of a situation where Python is very useful, imagine your teacher has given 5 quizzes throughout the year, and recorded the results for each student in a file such as this (It could include more than 6 students), where each student’s name is followed by their scores. Some students didn’t bother going to class for all the quizzes, so have less than 5 results recorded.

    
      Karen 12 12 14 18 17
James 9 7 1
Ben 19 17 19 13
Lisa 9 1 3 0
Amalia 20 20 19 15 18
Cameron 19 15 12 9 3
    

    She realises she needs to know the average (assuming 5 quizzes) that each student scored, and with many other things to do does not want to spend much time on this task. Using python, she can very quickly generate the data she needs in less than 10 lines of code.

    Note that understanding the details of this code is irrelevant to this chapter, particularly if you aren’t yet a programmer. Just read the comments (the things that start with a “#”) if you don’t understand, so that you can get a vague idea of how the problem was approached.

    
      raw_scores_file = open("scores.txt", "r") #Open the raw score file for reading
processed_scores_file = open("processed_scores.txt", "w") #Create and open a file for writing the processed scores into
for line in raw_scores_file.readlines(): #For each line in the file
    name = line.split()[0] #Get the name, which is in the first part of the line
    scores_on_line = [int(score) for score in line.split()[1:]] #Get a list of the scores, which are on the remainder of the line after the name
    average = sum(scores_on_line)/5 #Calculate the average, which is the sum of the scores divided by 5
    processed_scores_file.write(name + " " + str(average) + "\n") #Write the average to the processed scores output file
raw_scores_file.close() #Close the raw scores file
processed_scores_file.close() #Close the processed scores file
    

    This will generate a file that contains each student’s name followed by the result of adding their scores and dividing the sum by 5. You can try the code if you have python installed on your computer (it won’t work on the online interpreter, because it needs access to a file system). Just put the raw data into a file called “scores.txt” in the same format it was displayed above. As long as it is in the same directory as the source code file you make for the code, it will work.

    This problem could of course be solved in any language, but some languages make it far simpler than others. Standard software engineering languages such as Java, which we talk about shortly, do not offer such straight forward file processing. Java requires the programmer to specify what to do if opening the file fails in order to prevent the program from crashing. Python does not require the programmer to do this, although does have the option to handle file opening failing should the programmer wish to. Both these approaches have advantages in different situations. For the teacher writing a quick script to process the quiz results, it does not matter if the program crashes so it is ideal to not waste time writing code to deal with it. For a large software system that many people use, crashes are inconvenient and a security risk. Forcing all programmers working on that system to handle this potential crash correctly could prevent a lot of trouble later on, which is where Java’s approach helps.

    In addition to straight forward file handling, Python did not require the code to be put inside a class or function, and it provided some very useful built in functions for solving the problem. For example, the function that found the sum of the list, and the line of code that was able to convert the raw line of text into a list of numbers (using a very commonly used pattern).

    This same program written in Java would require at least twice as many lines of code.

    There are many other scripting languages in addition to Python, such as Perl, Bash, and Ruby.

    4.3.2. SCRATCH

    Scratch is a programming language used to teach people how to program. A drag and drop interface is used so that new programmers don’t have to worry so much about syntax, and programs written in Scratch are centered around controlling cartoon characters or other sprites on the screen.

    Scratch is never used in programming in industry, only in teaching. If you are interested in trying Scratch, you can try it out online here, no need to download or install anything.

    
      
    

    Click the image above to load the project and try it for yourself.

    This is an example of a simple program in Scratch that is similar to the programs we have above for Python and Java. It asks the user for numbers until they say “stop” and then finds the average of the numbers given.

    

    And this is the output that will be displayed when the green flag is clicked:

    

    Scratch can be used for simple calculations, creating games and animations. However it doesn’t have all the capabilities of other languages.

    Other educational languages include Alice and Logo. Alice also uses drag and drop, but in a 3D environment. Logo is a very old general purpose language based on Lisp. It is not used much anymore, but it was famous for having a turtle with a pen that could draw on the screen, much like Scratch. The design of Scratch was partially influenced by Logo. These languages are not used beyond educational purposes, as they are slow and inefficient.

    4.3.3. JAVA

    Java is a popular general purpose software engineering language. It is used to build large software systems involving possibly hundreds or even thousands of software engineers. Unlike Python, it forces programmers to say how certain errors should be handled, and it forces them to state what type of data their variables are intended to hold, e.g. int (i.e. a number with no decimal places), or String (some text data). Python does not require types to be stated like this. All these features help to reduce the number of bugs in the code. Additionally, they can make it easier for other programmers to read the code, as they can easily see what type each variable is intended to hold (figuring this out in a python program written by somebody else can be challenging at times, making it very difficult to modify their code without breaking it!)

    This is the Java code for solving the same problem that we looked at in Python; generating a file of averages.

    
      import java.io.*;
import java.util.*;
public class Averager
{
        public static void main() {
            try {
                Scanner scanner = new Scanner(new File("scores.txt"));
                PrintStream outputFile = new PrintStream(new File("processed_scores.txt"));
                while (scanner.hasNextLine()) {
                    String name = scanner.next();
                    Scanner numbersToRead = new Scanner(scanner.nextLine());
                    int totalForLine = 0;
                    while (numbersToRead.hasNextInt()) {
                        totalForLine += numbersToRead.nextInt();
                    }
                    outputFile.println(name + " " + totalForLine/5.0 + "\n");
                }
                outputFile.close();
            }
            catch (IOException e) {
                System.out.println("The file could not be opened!" + e);
            }
     print("I am finished!");
        }
}
    

    While the code is longer, it ensures that the program doesn’t crash if something goes wrong. It says to try opening and reading the file, and if an error occurs, then it should catch that error and print out an error message to tell the user. The alternative (such as in Python) would be to just crash the program, preventing anything else from being able to run it. Regardless of whether or not an error occurs, the “I am finished!” line will be printed, because the error was safely “caught”. Python is able to do error handling like this, but it is up to the programmer to do it. Java will not even compile the code if this wasn’t done! This prevents programmers from forgetting or just being lazy.

    There are many other general software engineering languages, such as C# and C++. Python is sometimes used for making large software systems, although is generally not considered an ideal language for this role.

    4.3.4. JAVASCRIPT

    
      	Interpreted in a web browser

      	Similar language: Actionscript (Flash)

    

    Note that this section will be completed in a future version of the field guide. For now, you should refer to wikipedia page for more information.

    4.3.5. C

    
      	Low level language with the syntax of a high level language

      	Used commonly for programming operating systems, and embedded systems

      	Programs written in C tend to be very fast (because it is designed in a way that makes it easy to compile it optimally into machine code)

      	Bug prone due to the low level details. Best not used in situations where it is unnecessary

      	Related languages: C++ (somewhat)

    

    Note that this section will be completed in a future version of the field guide. For now, you should refer to wikipedia page for more information.

    4.3.6. MATLAB

    
      	Used for writing programs that involve advanced math (calculus, linear algebra, etc.)

      	Not freely available

      	Related languages: Mathematica, Maple

    

    Note that this section will be completed in a future version of the field guide. For now, you should refer to wikipedia page for more information.

    4.3.7. ESOTERIC PROGRAMMING LANGUAGES

    Anybody can make their own programming language. Doing so involves coming up with a syntax for your language, and writing a parser and compiler or interpreter so that programs in your language can be run. Most programming languages that people have made never become widely used.

    In addition to programming languages that have practical uses, people have made many programming languages that were intended to be nothing more than jokes, or to test the limits of how obscure a programming language can be. Some of them make the low level machine languages you saw earlier seem rather logical! Wikipedia has a list of such languages. http://en.wikipedia.org/wiki/Esoteric_programming_language

    You could even make your own programming language if you wanted to!

    4.4. HOW DOES THE COMPUTER PROCESS YOUR PROGRAM?

    A programming language such as Python or Java is implemented using a program itself — the thing that takes your Python program and runs it is a program that someone has written!

    Since the computer hardware can only run programs in a low level language (machine code), the programming system has to make it possible for your Python instructions to be executed using only machine language. There are two broad ways to do this: interpreting and compiling.

    This 1983 video provides a good analogy of the difference between an interpreter and a compiler.

    The main difference is that a compiler is a program that converts your program to machine language, which is then run on the computer. An interpreter is a program that reads your program line by line, works out what those instructions are, and does them immediately.

    There are advantages to both approaches, and each one suits some languages better than others. In reality, most modern languages use a mixture of compiling and interpreting. For example, most Java programs are compiled to an “intermediate language” called ByteCode, which is closer to machine code than Java. The ByteCode is then executed by an interpreter.

    If your program is to be distributed for widespread use, you will usually want it to be in machine code because it will run faster, the user doesn’t have to have an interpreter for your particular language installed, and when someone downloads the machine code, they aren’t getting a copy of your original high-level program. Languages where this happens include C#, Objective C (used for programming iOS devices), Java, and C.

    Interpreted programs have the advantage that they can be easier to program because you can test them quickly, trace what is happening in them more easily, and even sometimes type in single instructions to see what they do, without having to go through the whole compilation process. For this reason they are widely used for introductory languages (for example, Scratch and Alice are interpreted), and also for simple programs such as scripts that perform simple tasks, as they can be written and tested quickly (for example, languages like PHP, Ruby and Python are used in these situations).

    The diagram below shows the difference between what happens in an interpreter and compiler if you write and run a program that sorts some numbers. The compiler produces a machine code program that will do the sorting, and the data is fed into that second program to get the sorted result. The interpreter simply does the sorting on the input by immediately following the instructions in the program. The compiler produces a machine code program that you can distribute, but it involves an extra phase in the process.

    

    4.5. THE WHOLE STORY!

    There are many different programming languages, and new ones are always being invented. Each new language will need a new compiler and/or interpreter to be developed to support it. Fortunately there are good tools to help do this quickly, and some of these ideas will come up in the Formal Languages chapter, where things like regular expressions and grammars can be used to describe a language, and a compiler can be built automatically from the description.

    The languages we have discussed in this chapter are ones that you are likely to come across in introductory programming, but there are some completely different styles of languages that have very important applications. There is an approach to programming called Functional programming where all operations are formulated as mathematical functions. Common languages that use functional techniques include Lisp, Scheme, Haskel, Clojure and F#; even some conventional languages (such as Python) include ideas from functional programming. A pure functional programming style eliminates a problem called side effects, and without this problem it can be easier to make sure a program does exactly what it is intended to do. Another important type of programming is logic programming, where a program can be thought of as a set of rules stating what it should do, rather than instructions on how to do it. The most well-known logic programming language is Prolog.

    4.6. FURTHER READING

    4.6.1. USEFUL LINKS

    
      	The TeachICT lesson on programming languages covers many of the topics in this chapter

      	CS Online has a quick overview of this topic

      	Wikipedia entries on Programming language, High level language, and `Low level language ’_

      	website including posters comparing programming languages by Samuel Williams

      	
        tutorial comparing programming languages
      

      	a discussion of interpreters and compilers

      	a poster with full details of the file content in an executable file (the exe format)

      	David Bolton explains a Programming Language, Compiler, and the difference between Compilers and Interpreters.

      	
        Computerworld article on the A to Z of programming languages
      

      	What is Python? (compared with other languages)

      	A very large poster showing a timeline of the development of programming languages

      	
        Hello World program in hundreds of programming languages
      

      	
        99 bottles of beer song in hundreds of programming languages
      

    

  
    5.1. WHAT’S THE BIG PICTURE?

    Computers are machines that do stuff with information. They let you view, listen, create, and edit information in documents, images, videos, sound, spreadsheets and databases. They let you play games in simulated worlds that don’t really exist except as information inside the computer’s memory and displayed on the screen. They let you compute and calculate with numerical information; they let you send and receive information over networks. Fundamental to all of this is that the computer has to represent that information in some way inside the computer’s memory, as well as storing it on disk or sending it over a network.

    To make computers easier to build and keep them reliable, everything is represented using just two values. You may have seen these two values represented as 0 and 1, but on a computer they are represented by anything that can be in two states. For example, in memory a high or low voltage is used to store each 0 or 1. On a magnetic disk it’s stored with, surprisingly, magnetism (whether a tiny spot on the disk is magnetised north or south).

    When we write what is stored in a computer on paper, we normally use “0” for one of the states, and “1” for the other state. If a piece of computer memory had the following voltages: “low”, “low”, “high”, “low”, “high”, “high”, “high”, “high”, “low”, “high”, “low”, “low”, we could allocate “0” to “low”, and “1” to high” and write this sequence down as 001011110100. While this notation is used extensively, and you may often hear the data being referred to as being “0’s and 1’s”, it is important to remember that a computer does not store 0’s and 1’s; it has no way of doing this. They are just using physical mechanisms such as high and low voltage, north or south polarity, and light or dark materials.

    
      Jargon Buster
    

    The use of the two digits 0 and 1 is so common that some of the best known computer jargon is used for them. Since there are only two digits, the system is called binary. The short word for a “binary digit” is made by taking the first two letters and the last letter — a bit is just a digit that can have two values.

    Every file you save, every picture you make, every download, is just a whole lot of bits. Computer scientists don’t spend a lot of time reading bits themselves, but knowing how they are stored is really important because it affects the amount of space that data will use, the amount of time it takes to send the data to a friend (as data that takes more space takes longer to send!) and the quality of what is being stored. You may have come across things like “24-bit colour”, “128-bit encryption”, “32-bit IPv4 addresses” or “8-bit ASCII”. Understanding what the bits are doing enables you to work out how much space will be required to get high-quality colour, hard-to-crack secret codes, a unique ID for every device in the world, or text that uses more characters than the usual English alphabet.

    This chapter is about some of the different methods that computers use to code different kinds of information in patterns of these bits, and how this affects the cost and quality of what we do on the computer, or even if something is feasible at all.

    5.2. GETTING STARTED

    More than 200 years ago a 15-year-old French boy invented a system for representing text using combinations of flat and raised dots on paper so that they could be read by touch. The system became very popular with people who had visual impairment as it provided a relatively fast and reliable way to “read” text without seeing it. Louis Braille’s system is an early example of a “binary” representation of data — there are only two symbols (raised and flat), and yet combinations of them can be used to represent reference books and works of literature. Each character in braille is represented with a cell of 6 dots. Each dot can either be raised or not raised. Different numbers and letters can be made by using different patterns of raised and not raised dots.

    

    Let’s work out how many different patterns can be made using the 6 dots in a Braille character. When working through the material in this section, a good way to draw braille on paper without having to actually make raised dots is to draw a rectangle with 6 small circles in it, and to colour in the circles that are raised, and not colour in the ones that aren’t raised.

    If braille used only 2 dots, there would be 4 patterns.

    

    And with 3 dots there would be 8 patterns

    

    You may have noticed that there are twice as many patterns with 3 dots as there are with 2 dots. It turns out that every time you add an extra dot, that gives twice as many patterns (why?), so with 4 dots there are 16 patterns, 5 dots has 32 patterns, and 6 dots has 64 patterns.

    So, Braille can make 64 patterns. That’s enough for all the letters of the alphabet, and other symbols too, such as digits and punctuation.

    Braille also illustrates why binary representation is so popular. It would be possible to have three kinds of dot: flat, half raised, and raised. A skilled braille reader could distinguish them, and with three values per dot, you would only need 4 dots to represent 64 patterns. The trouble is that you would need more accurate devices to create the dots, and people would need to be more accurate at sensing them. If a page was squashed, even very slightly, it could leave the information unreadable.

    Digital devices almost always use two values (binary) for similar reasons: computer disks and memory can be made cheaper and smaller if they only need to be able to distinguish between two extreme values (such as a high and low voltage), rather than fine-grained distinctions between very subtle differences in voltages. Arithmetic is also easy with binary values; if you have only two digits (0 and 1), then there aren’t many rules to learn - adding digits only requires circuits to calculate 0+0, 0+1, 1+0 and 1+1. You might like to work out how many combinations of decimal digits you need to be able to add if you’re doing conventional arithmetic!

    In fact, every kind of file on a computer is represented using just a whole lot of binary digits — text, pictures, spreadsheets, web pages, songs — everything is stored using just two values. Even the programs (apps) that you run use binary representation — sometimes a program file that the computer can run is referred to as a “binary file”, which is a bit odd since every file on a computer is binary!

    5.3. REPRESENTING TEXT WITH BITS

    We saw above that 64 unique patterns can be made using 6 dots in Braille. Count how many different upper-case letters, lower-case letters, numbers, and symbols that you could insert into a text editor using your keyboard. (Don’t forget to count both of the symbols that share the number keys, and the symbols to the side that are for punctuation!) The collective name for these is characters e.g. a, D, 1, h, 6, *, ], and ~ are all characters.

    Would 6 dots (which can represent 64 patterns) be enough to represent all these characters? If you counted correctly, you should find that there were more than 64 characters! How many bits would you need to be able to represent all the characters you counted on your keyboard?

    It turns out that 7 dots is enough as this gives 128 possible patterns, and this is exactly what the ASCII code for text does. ASCII is one of the main systems that computers use to represent English text. It was first used commercially in 1963, and despite the big changes in computers since then, it is still the basis of how English text is stored on computers.

    ASCII assigned a different pattern of bits to each of the characters, along with a few other “control” characters that you don’t need to worry about yet. For reasons that we will get to later, each pattern in ASCII is usually stored in 8 bits, with one wasted bit, rather than 7 bits. However, the first bit in each 8-bit pattern is a 0, meaning there are still only 128 possible patterns.

    Below is a table that shows the patterns of bits that ASCII uses for each of the characters.

    
      
        
          	Binary
          	Char
          	Binary
          	Char
          	Binary
          	Char
        

      
      
        
          	0100000
          	Space
          	1000000
          	@
          	1100000
          	
            `
          
        

        
          	0100001
          	!
          	1000001
          	A
          	1100001
          	a
        

        
          	0100010
          	“
          	1000010
          	B
          	1100010
          	b
        

        
          	0100011
          	#
          	1000011
          	C
          	1100011
          	c
        

        
          	0100100
          	$
          	1000100
          	D
          	1100100
          	d
        

        
          	0100101
          	%
          	1000101
          	E
          	1100101
          	e
        

        
          	0100110
          	&
          	1000110
          	F
          	1100110
          	f
        

        
          	0100111
          	‘
          	1000111
          	G
          	1100111
          	g
        

        
          	0101000
          	(
          	1001000
          	H
          	1101000
          	h
        

        
          	0101001
          	)
          	1001001
          	I
          	1101001
          	i
        

        
          	0101010
          	*
          	1001010
          	J
          	1101010
          	j
        

        
          	0101011
          	+
          	1001011
          	K
          	1101011
          	k
        

        
          	0101100
          	,
          	1001100
          	L
          	1101100
          	l
        

        
          	0101101
          	-
          	1001101
          	M
          	1101101
          	m
        

        
          	0101110
          	.
          	1001110
          	N
          	1101110
          	n
        

        
          	0101111
          	/
          	1001111
          	O
          	1101111
          	o
        

        
          	0110000
          	0
          	1010000
          	P
          	1110000
          	p
        

        
          	0110001
          	1
          	1010001
          	Q
          	1110001
          	q
        

        
          	0110010
          	2
          	1010010
          	R
          	1110010
          	r
        

        
          	0110011
          	3
          	1010011
          	S
          	1110011
          	s
        

        
          	0110100
          	4
          	1010100
          	T
          	1110100
          	t
        

        
          	0110101
          	5
          	1010101
          	U
          	1110101
          	u
        

        
          	0110110
          	6
          	1010110
          	V
          	1110110
          	v
        

        
          	0110111
          	7
          	1010111
          	W
          	1110111
          	w
        

        
          	0111000
          	8
          	1011000
          	X
          	1111000
          	x
        

        
          	0111001
          	9
          	1011001
          	Y
          	1111001
          	y
        

        
          	0111010
          	:
          	1011010
          	Z
          	1111010
          	z
        

        
          	0111011
          	;
          	1011011
          	[
          	1111011
          	{
        

        
          	0111100
          	<
          	1011100
          	\
          	1111100
          	
          	
        

        
          	0111101
          	=
          	1011101
          	]
          	1111101
          	}
        

        
          	0111110
          	>
          	1011110
          	^
          	1111110
          	~
        

        
          	0111111
          	?
          	1011111
          	_
          	1111111
          	
        

      
    

    For example, the letter c (lower-case) in the table has the pattern “01100011” (the 0 at the front is just extra padding to make it up to 8 bits). The letter o has the pattern “01101111”. You could write a word out using this code, and if you give it to someone else, they should be able to decode it exactly.

    Computers can represent pieces of text with sequences of these patterns, much like Braille does. For example, the word “computers” (all lower-case) would be 01100011 01101111 01101101 01110000 01110101 01110100 01100101 01110010 01110011.

    How would you represent the word “science” in ASCII? What about “Wellington” (note that it starts with an upper-case “W”)? How would you represent “358” in ASCII (it is three characters, even though it looks like a number)? What about the sentence “Hello, how are you?” (look for the comma, question mark, and space characters in the ASCII table).

    
      Curiosity
    

    If you only wanted to represent the 26 letters of the alphabet, and weren’t worried about upper-case or lower-case, you could get away with using just 5 bits, which allows for up to 32 different patterns. Have a look at the last 5 bits of each of the 26 lower-case letters in ASCII. Do any of the 26 lower-case letters have the same last 5 bits? Have a look at the 26 upper-case letters. Do any of the upper-case letters have the same last 5 bits?

    You may have noticed that none of the lower-case letters have the same last 5 bits, but they do have the same last 5 bits as their corresponding upper-case letter!

    For example, a = 1100001 and A = 1000001, they both have 00001 as their last 5 bits. As another example, s = 1110011 and S = 1010011, they both have 10011 as their last 5 bits.

    An easy way to allocate patterns in this 5 bit system would be to just use the last 5 bits for each character in the ASCII table. Therefore A would be 00001, b would be 00010, c would be 00011, etc.

    The word “water” would be 10111 00001 10111 10100 10010

    There’s an activity that uses five-bit text codes hidden in music here.

    English text can easily be represented using ASCII, but what about languages such as Chinese where there are thousands of different characters? The 128 patterns aren’t nearly enough to represent such languages! That’s where codes that use more than 7 bits become important, and in a later section we’ll look at these, but first we need to explore binary number representation and develop some efficient ways to talk about longer binary numbers.

    
      Curiosity
    

    The name “ASCII” stands for “American Standard Code for Information Interchange”, which was a particular way of assigning bit patterns to the characters on a typewriter. The ASCII system even includes “characters” for ringing a bell (useful for getting attention on old telegraph systems), deleting the previous character (kind of an early “undo”), and “end of transmission” (to let the receiver know that the message was finished). These days those characters are rarely used, but the codes for them still exist (they are the missing patterns in the table above). Nowadays ASCII has been surplanted by a code called “UTF-8”, which happens to be the same as ASCII if the extra left-hand bit is a 0, but opens up a huge range of characters if the left-hand bit is a 1.

    There are several other codes that were popular before ASCII, including the Baudot code and EBCDIC. A widely used variant of the Baudot code was the “Murray code”, named after New Zealand born inventor Donald Murray. One of Murray’s significant improvements was to introduce the idea of “control characters”, such as the carriage return (new line). The “control” key still exists on modern keyboards.

    5.4. REPRESENTING NUMBERS WITH BITS

    The number system that humans normally use is in base 10 (also known as decimal). It’s worth revising quickly, because binary numbers use the same ideas as decimal numbers, just with fewer digits!

    In decimal, the value of each digit in a number depends on its place in the number. For example, in the amount $123, the 3 represents $3, whereas the 1 represents $100. Each place value in a number is worth 10 times more than the place value to its right, i.e. there are the “ones”, the “tens”, the “hundreds”, the “thousands” the “ten thousands”, the “hundred thousands”, the “millions”, etc. Also, there are 10 different digits (0,1,2,3,4,5,6,7,8,9) that can be at each of those place values.

    If you were only able to use one digit to represent a number, then the largest number would be 9. After that, you need a second digit, which goes to the left, giving you the next ten numbers (10, 11, 12... 19). It’s because we have 10 digits that each one is worth 10 times as much as the one it its right.

    You may have encountered different ways of expressing numbers using “expanded form”. For example, if you want to write the number 90328 in expanded form you might have written it as:

    90328 = 90000 + 300 + 20 + 8

    A more sophisticated way of writing it is:

    90328 = (9 x 10000) + (0 x 1000) + (3 x 100) + (2 x 10) + (8 x 1)

    If you’ve learnt about exponents, you could write it as 90328 = (9 x 104) + (0 x 103) + (3 x 102) + (2 x 101) + (8 x 100)

    Remember that any number to the power of 0 is 1. i.e. the 8 x 100 is 8, because the 100 is 1.

    The key ideas to notice from this are that the digit on the right (such as the 8 in 90328) is the one that’s worth the least, and that because we have 10 digits, each place is worth 10 times as much as the one to the right (e.g. the 2 in 90328 is the number of tens, the 3 is the number of 100s, and so on). Exactly the same happens with binary numbers.

    5.4.1. BINARY NUMBERS

    As discussed earlier, computers can only store information using bits, which only have 2 possible states. This means that they cannot represent base 10 numbers using digits 0 to 9, the way we write down numbers in decimal; instead, they use a base 2 number system, also called binary.

    
      Curiosity
    

    The base 10 (decimal) system is sometimes called denary, which is more consistent with the the name binary for the base 2 system. The word “denary” also refers to the Roman denarius coin, which was worth ten asses (an “as” was a copper or bronze coin).

    Because binary is base 2, there are only 2 possible digits (0 and 1), as opposed to the 10 in our standard number system, and each place value is 2 times bigger than the one to its right (in contrast to our base 10 number system where each place is 10 times bigger).

    The interactive below illustrates how this binary number system represents decimal numbers. Have a play around with it to see what patterns you can see. The decimal (base 10) representation for the binary number currently shown is given by the interactive on the far right.

    
      Click to load the

binary number interactive
    

    To ensure you are understanding correctly how to use the interactive, verify that when you enter the binary number 101101 it shows that the decimal representation is 45, that when you enter 100000 it shows that the decimal representation is 32, and when you enter 001010 it shows the decimal representation is 10.

    You should try using the interactive to convert a decimal number to binary. For example, choose a number less than 61 (perhaps your house number, a friend’s age, or the day of the month you were born on), set all the binary digits to zero, and then start with the left-most digit (32), trying out if it should be zero or one. See if you can find a method for converting the number without too much trial and error.

    Can you figure out the binary representation for 23 without using the interactive? What about 4, 0, and 32? Check all your answers using the interactive to verify they are correct.

    What is the largest number you can make with this binary interactive? What is the smallest? Is there any integer value in between the biggest and the smallest that you can’t make? Are there any numbers with more than one representation? Why/ why not?

    You have probably noticed from the interactive that when set to 1, the leftmost bit (the “most significant bit”) adds 32 to the total, the next adds 16, and then the rest add 8, 4, 2, and 1 respectively. When set to 0, a bit does not add anything to the total. So the idea is to make numbers by adding some or all of 32, 16, 8, 4, 2, and 1 together, and each of those numbers can only be included once.

    Rather than just using trial and error to figure out what a decimal number is in binary, could you figure out a systematic approach? Have a look at what 100000 is in binary. What about 011111? Is it possible to make a number over 32 if the most significant bit is set to a 0? Why? And what about 001000 and 000111? Can you see a pattern that would lead to a systematic way of converting decimal numbers to binary? Hint: start with deciding the leftmost bit, and then work along to the right, bit by bit.

    So what happens if we have fewer than 6 bits? For example, with 5 bits, the place values would be 16, 8, 4, 2 and 1, so the largest value is 11111 in binary, or 31 in decimal. What’s the largest value you can store with 4 bits? 3 bits?

    What would happen if we have 7 bits instead of 6? The seventh bit would have a value of 64, and it would be possible to store numbers up to 127.

    
      Extra for Experts
    

    Can you figure out a systematic approach to counting in binary? i.e. start with the number 0, then increment it to 1, then 2, then 3, etc, all the way up to the highest number that can be made with the 7 bits. Try counting from 0 to 16, and see if you can detect a pattern. Hint: Think about how you add 1 to a number in base 10. e.g. how do you work out 7 + 1, 38 + 1, 19 + 1, 99 + 1, 230899999 + 1, etc? Can you apply that same idea to binary?

    Using your new knowledge of the binary number system, can you figure out a way to count to higher than 10 using your 10 fingers? What is the highest number you can represent using your 10 fingers? What if you included your 10 toes as well (so you have 20 fingers and toes to count with).

    An important concept with binary numbers is the range of values that can be represented using a given number of bits. One bit on its own might not seem very useful, but it’s enough to store things like the state of a checkbox (checked or not checked). When we have 8 bits the binary numbers start to get useful — they can represent values from 0 to 255, so it is enough to store someone’s age, the day of the month, and so on.

    
      Jargon Buster
    

    Groups of 8 bits are so useful that they have their own name: a byte. Computer memory and disk space is usually divided up into bytes, and bigger values are stored using more than one byte. For example, two bytes (16 bits) are enough to store numbers from 0 to 65,535. Four bytes (32 bits) can store numbers up to 42,94,967,295. You can check these numbers by working out the place values of the bits. Every bit that’s added will double the range of the number.

    
      Curiosity
    

    Candles on birthday cakes use the base 1 numbering system, where each place is worth 1 times the one to its right(!) For example, the number 3 is 111, and 10 is 1111111111. This can cause problems as you get older — if you’ve ever seen a cake with 100 candles on it, you’ll be aware that it’s a serious fire hazard.

    

    Luckily it’s possible to use binary notation for birthday candles — each candle is either lit or not lit. For example, if you are 18, the binary notation is 10010, and you need 5 candles (with only two of them lit).

    There’s a video on using binary notation for counting up to 1023 on your hands, as well as using it for birthday cakes.

    

    5.4.2. SHORTHAND FOR BINARY NUMBERS

    Most of the time binary numbers are stored electronically, and we don’t need to worry about making sense of them. But sometimes it’s useful to be able to write down and share numbers, such as the unique identifier assigned to each digital device (MAC address), or the colours specified in an HTML page.

    Writing out long binary numbers is tedious — for example, suppose you need to copy down the 16-bit number 0101001110010001. A widely used shortcut is to break the number up into 4-bit groups (in this case, 0101 0011 1001 0001), and then write down the digit that each group represents (giving 5391). There’s just one small problem: each group of 4 bits can go up to 1111, which is 15, and the digits only go up to 9.

    The solution is simple: we introduce symbols for the digits for 1010 (10) to 1111 (15), which are just the letters A to F. So, for example, the 16-bit binary number 1011 1000 1110 0001 can be written more concisely as B8E1. The “B” represents the binary 1011, which is the decimal number 11, and the E represents binary 1110, which is decimal 14.

    Because we now have 16 digits, this representation is called hexadecimal (or hex for short). Converting between binary and hexadecimal is very simple, and that’s why hexadecimal is a very common way of writing down large binary numbers.

    Here’s a full table of all the 4-bit numbers and their hexadecimal digit equivalent:

    | Binary | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |

| Hex | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |

    For example, the largest 8-bit binary number is 11111111. This can be written as FF in hexadecimal. Both of those representations mean 255 in our conventional decimal system (you can check that by converting the binary number to decimal).

    The largest 16 bit binary number is 1111111111111111, or FFFF in hexadecimal. Both of these represent 65535 in decimal.

    The hexadecimal system is also known as base 16. The following interactive converts hexadecimal numbers to decimal (base 10), which provides another way of thinking about them. But don’t forget that the main point is that hexadecimal is an easy shorthand for binary representation.

    
      Click to load the widget
    

    Which notation you use will depend on the situation; binary numbers represent what is actually stored, but can be confusing to read and write; hexadecimal numbers are a good shorthand; and decimal numbers are used if you’re trying to understand the meaning of the number. All three get used in computer science.

    5.4.3. HOW TO BINARY NUMBERS AFFECT US?

    The length of a binary number determines the range of values it can represent. Often on computers we are dealing with text, images and sound rather than numbers, but they do appear in quite a few places, and the accuracy with which they are represented can affect what we can do on a computer.

    For example, numbers in spreadsheets usually have a finite precision. Try putting the formula “=1/3” into a spreadsheet, and have it represented with maximum accuracy. How many decimal places does it store? This will be dictated by the number of binary digits that the spreadsheet is storing.

    Many programming languages allow the programmer to specify the number of bits used to represent each variable (e.g. in the C language a “short int” is 16 bits or more, and a “long int” is at least 32 bits); if you are working with a language then they could investigate limits on how numbers are represented. Note that some languages, including Python, seamlessly changes the size of the representation of an integer if it gets too large, so it’s harder to explore these issues in Python.

    Another situation where different numbers of bits in a representation is important is IP (Internet Protocol) and MAC (media access control) addresses for devices; the recent change from IPv4 to IPv6 was driven by the number of devices you could represent, and if you are interested in networks could explore the number of bits used for an address, and how many possible devices could exist before we run out of numbers.

    5.5. REPRESENTING IMAGES WITH BITS

    Warning

    This section assumes that you understand binary numbers. If you are confused by binary numbers still, you should go back to the binary numbers section and work through the material there again until you understand it. The first part of this section is possible to understand without understanding binary numbers, although in order to actually use the material for assessment purposes, you will need to understand binary numbers, as the key idea is representing colours usingbits, and the bits in colours are decided based on numbers.

    In school or art class you may have mixed different colours of paint or dye together in order to make new colours. This was probably very helpful if the exact colour you wanted was not present in your palette, in addition to just being fun to experiment with! When mixing paints, red and blue would give purple. If you mixed yellow and blue, you would get green. If you mixed red and yellow, you would get orange. If you mixed an even amount of the 3 primary colours; blue, red, and yellow together, you should get black, although often it would be a murky brown. By mixing together various amounts of the three primary colours, along with white and black, you can make many different colours.

    Actually, while the colours blue, red and yellow are commonly used in art classes, the very similar primary colours that work better for printing are cyan, magenta and yellow (CMY), which are commonly found in computer printers as well as printing presses. This kind of mixing is called “subtractive mixing”, because it starts with a white canvas or paper, and subtracts colour from it. The below interactive allows you to experiment with these in case you’re not familiar with them, or in case you just like mixing colours. We’ve also added a “black” mix; it’s not strictly necessary (you can get black by putting all the other colours on full), but it’s useful for printers because it’s such a common colour.

    CMY COLOUR MIXER

    Cyan

    0182255

    Magenta

    0183255

    Yellow

    036255

    Computer screens and related devices also rely on mixing colours, except they go about it in quite a different way — they use a different set of primary colours, because they are additive, starting with a black screen and adding colour to it. For additive colour on computers, the colours red, green and blue (RGB) are used. Each pixel on a screen has 3 tiny lights; one red, one green, and one blue. By increasing and decreasing the amount of light coming out of each of these 3 lights, all the different colours can be made.

    You can try additive colours in the following interactive; try different combinations of each slider. How do you generate yellow? What happens if they are all at zero? All at full value (255)? Halfway? What happens if one colour is at full, and the other two are at halfway? How do you get shades of purple, yellow, orange, and pink? What happens when you have the same amount of each colour? How do you get black? How do you get white?

    The key idea is that you can specify the colour of a pixel using three numbers. In the above example, each number is from 0 to 255. With 256 possible values for each of the three components, that gives 256 x 256 x 256 = 16,777,216 possible colours, which is more than the human eye can detect. In other words, using just three numbers, you can specify pretty much any colour you want — and probably a lot that you don’t.

    Of course, a computer screen or printout doesn’t have just one colour on it — it has millions of small pixels, each of which has a particular colour.

    The following interactive allows you to zoom in on an image to see the pixels that are used to represent it. Each pixel is a solid colour square, and the computer needs to store the colour for each pixel. If you zoom in far enough, the interactive will show you the red-green-blue values for each pixel. You can pick a pixel and put the values on the slider above - it should come out as the same colour as the pixel.

    
      Click to load

Pixel Interactive
    

    
      Jargon Buster
    

    The word pixel is short for “picture element”. On computer screens and printers an image is created by a grid of pixels, each one set to the required colour. A pixel is typically a fraction of a millimeter across, and images can be made up of millions of pixels (one megapixel is a million pixels).

    
      
    

    
      Curiosity
    

    The human eye has millions of light sensors in it, and the ones that detect colour are called “cones”. There are three different kinds of cones, which detect red, blue, and green light respectively. Colours are perceived by the amount of red, blue, and green light in them. Computer screen pixels take advantage of this by releasing the amounts of red, blue, and green light that will be perceived as the desired colour by your eyes. So when you see “purple”, it’s really the red and blue cones in your eyes being stimulated, and your brain converts that to a perceived colour.

    For more information about RGB displays, see RGB on Wikipedia; for more information about the eye sensing the three colours, see Cone cell and trichromacy on Wikipedia.

    Even the smallest computer screens have millions of pixels on them, and the computer needs to represent a colour for each one of those pixels. These days photographs are measured in megapixels (millions of pixels). To store the image, your computer is storing a colour for every one of those pixels, and each of those could be using the three numbers above. So a 2 megapixel photo, in its simplest form, needs 6 million numbers to be recorded to represent it accurately.

    5.5.1. REPRESENTING HIGH QUALITY IMAGES USING BITS

    So now, how can computers represent each possible colour using bits? You may have noticed in the above interactive that for each of red, green, and blue, there are 256 different positions the slider can be in (don’t forget to include setting the slider to 0). From the numbers section, you may remember that to get 256 different possibilities, you need 8 bits. So for example, to represent the current value of the red slider, you would need 8 bits (28 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 256).

    Because there are three primary colours, each of which has 256 different possible values, we need 24 bits in order to have enough possible bit patterns to represent all the possible colours that this scheme can represent (3 x 8 = 24).

    If you calculate 224 (i.e. the number of bit patterns you can get with 24 bits), and 256 x 256 x 256 (i.e. the number of possible colours that can be represented using the above interactive), you will find that the result of these two calculations are the same; 16,777,216. This means that there are 16,777,216 different possible colours that can be represented using this scheme, and that’s more colours than most people can distinguish, which is why 24-bit colour is regarded as high quality.

    So now that we know we’ll need 24 bits to represent all the possible colours that can be made from the scheme in the interactive, how can we assign colours to bit patterns?

    A sensible way is to use 3 binary numbers that represent the amount of each of red, green, and blue in the pixel. In order to do this, you can simply convert the decimal values on the interactive that specify how much of each of the primary colours is making up the resulting colour into binary, and put them side by side to make a full pattern of 24 bits. Because consistency is important in order for a computer to make sense of the bit pattern, the binary number for red should be put first, followed by green, and then finally blue.

    

    As an example, suppose you have the colour that has red = 145, green = 50, and blue = 123 (it is a shade of purple shown in the square above; you can see it if you set the sliders to those values in the interactive above). You need to convert each of the 3 numbers into binary, using 8 bits for each. You can either do this by hand if you are confident with binary numbers, use this binary number interactive with 8 columns, or use a binary piano. You should get red = 10010001, green = 00110010, and blue = 01111011. This can be written as 100100010011001001111011, which is the bit pattern for representing that shade of purple. Note that there are no spaces between the 3 numbers, as this is a pattern of bits rather than actually being 3 binary numbers, and computers don’t have any such concept of a space between bit patterns anyway — everything must be a 0 or a 1. You could write it with spaces to make it easier to read, and to represent the idea that they are likely to be stored in 3 8-bit bytes, but inside the computer memory there is just a sequence of high and low voltages, so even writing 0 and 1 is an arbitrary notation. Note that all leading and trailing 0’s on each of the components are kept — without them, it would be representing a shorter number. Make sure you work through this example yourself, to understand how it works.

    As long as the computer knows this is a colour (typically because it has been taken from a file that is specifying colours, such as GIF or HTML), it will know that the first 8 bits specify the amount of red, the next 8 bits specify the amount of green, and the last 8 bits specify the amount of blue. The computer won’t actually convert the number into decimal, as it works with the binary directly — most of the process that takes the bits and makes the right pixels appear is typically done by a graphics card or a printer.

    24 bit colour is sometimes referred to in settings as “True Color” (because it is more accurate than the human eye can see). On Apple systems, it is called “Millions of colours”.

    5.5.2. HEXADECIMAL COLOUR CODES

    When writing HTML code, you often need to specify colours for text, backgrounds, etc. One way of doing this is to specify the colour name, for example “red”, “blue”, “purple”, or “gold”. The use of names limits the number of colours you can represent and the shade might not be exactly the one you wanted. A better way is to specify the 24 bit colour directly. The problem is that strings of 24 binary digits are hard to read, and so colours in HTML use hexadecimal codes as a quick way to write the 24 bits, for example #00FF9E. The hash sign just means that it should be interpreted as a hexadecimal representation, and since each hexadecimal digit corresponds to 4 bits, the 6 digits represent 24 bits of colour information. This “hex triplet” format is used in HTML pages to specify colours for things like the background of the page, the text, and the colour of links. It is also used in CSS, SVG, and other applications.

    In the 24 bit colour example earlier, the 24 bit pattern was 100100010011001001111011. This can be broken up into groups of 4 bits: 1001 0001 0011 0010 0111 1011. Substituting a hexadecimal digit for each of the 4-bit groups (using the table above) gives 91327B. This is the hexadecimal code for this colour!

    The hexadecimal notation is extremely useful for people to read or write, as it is much easier to type 6 characters rather than 24 1’s and 0’s when specifying a colour!

    For example, to specify the background colour of a page in HTML, the body tag can have a hexadecimal colour added to it like this:

    
      <body bgcolor="#00FF9E">
    

    You can use an HTML page to experiment with hexadecimal colours.

    Understanding how these hexadecimal colour codes are derived also allows you to change them slightly without having to refer back the colour table, when the colour isn’t exactly the one you want. Remember that in the 24 bit color code, the first 8 bits specify the amount of red (so this is the first 2 digits of the hexadecimal code), the next 8 bits specify the amount of green (the next 2 digits of the hexadecimal code), and the last 8 bits specify the amount of blue (the last 2 digits of the hexadecimal code). To increase the amount of any one of these colours, you can change the appropriate hexadecimal letters.

    For example, #000000 has zero for red, green and blue, so setting a higher value to the middle two digits (such as #002300) will add some green to the colour. What colours will the following codes give? #FF0000, #FF00FF, #FFFFFF ? (You can try them out using an HTML file).

    5.5.3. REPRESENTING COLOURS USING FEWER BITS

    What if we were to use fewer than 24 bits to represent each colour, i.e. each slider didn’t have as many possible positions it could be in? The following interactive shows what would happen with this limitation. You can select a colour by clicking on the image on the left, and then try to match it with the 24-bit colour sliders (if it’s too difficult, the system will offer to help you; to move the sliders by small amounts, you can use the arrow keys).

    It should be possible to get a perfect match using 24 bit colour. Now try the 8-bit sliders. These ones have only 8 values for red and green, and just 4 values for blue!

    The above system used 3 bits to specify the amount of red (8 possible values), 3 bits to specify the amount of green (again 8 possible values), and 2 bits to specify the amount of blue (4 possible values). This gives a total of 8 bits (hence the name), which can be used to make 256 different bit patterns, and thus can represent 256 different colours.

    Using this scheme to represent all the pixels of an image takes one third of the number of bits required for 24-bit colour, but it is not as good at showing smooth changes of colours or subtle shades, because there are only 256 possible colors for each pixel. This is one of the big tradeoffs in data representation: do you allocate less space (fewer bits), or do you want higher quality?

    
      Jargon Buster
    

    The number of bits used to represent the colours of pixels in a particular image is sometimes referred to as its “colour depth” or “bit depth”. For example, an image or display with a colour depth of 8-bits has a choice of 256 colours for each pixel. There is more information about this in Wikipedia. Drastically reducing the bit depth of an image can make it look very strange; sometimes this is used as a special effect called “posterisation” (ie. making it look like a poster that has been printed with just a few colours).

    The following interactive shows what happens to images when you use a smaller range of colours (including right down to zero bits!) You can choose an image using the menu. In which cases is the change in quality most noticeable? In which is it not? In which would you actually care about the colours in the image? In which situations is colour actually not necessary (i.e. we are fine with two colours)?

    One other interesting thing to think about is whether or not we’d want more than 24 bit colour. It turns out that the human eye can only differentiate around 10 million colours, so the 16 million provided by 24 bit colour is already beyond what our eyes can distinguish. However, if the image were to be processed by some software that enhances the contrast, it may turn out that 24-bit colour isn’t sufficient. Choosing the representation isn’t simple!

    So is it worth the space saving to put up with a lower quality image? An image represented using 24 bit colour would have 24 bits per pixel. In 600 x 800 pixel image (which is a reasonable size for a photo), this would contain 600 x 800 = 480,000 pixels, and thus would use 480,000 x 24 bits = 11,520,000 bits. This works out to around 1.44 megabytes. If we use 8-bit colour instead, it will use a third of the memory, so it would save nearly a megabyte of storage.

    8 bit colour is not used much anymore, although it can still be helpful in situations such as accessing a computer desktop remotely on a slow internet connection, as the image of the desktop can instead be sent using 8 bit colour instead of 24 bit colour. Even though this may cause the desktop to appear a bit strangely, it doesn’t stop you from getting whatever it was you needed to get done, done. There are also other situations where colour doesn’t matter at all, for example diagrams, and black and white printed images.

    If space really is an issue, then this crude method of reducing the range of colours isn’t usually used; instead, compression methods such as JPEG, GIF and PNG are used. These make much more clever compromises to reduce the space that an image takes, without making it look so bad, including choosing a better palette of colours to use rather than just using the simple representation discussed above. However, compression methods require a lot more processing, and images need to be decoded to the representations discussed in this chapter before they can be displayed. We will look at compression methods in a later chapter. The ideas in this present chapter more commonly come up when designing systems (such as graphics interfaces) and working with high-quality images (such as RAW photographs), and typically the goal is to choose the best representation possible without wasting too much space.

    For the purposes of the New Zealand NCEA standards, reducing the bit depth of an image is ok as a second compression method to compare to specialised compression methods (JPEG, PNG, GIF etc.), but isn’t very suitable for explaining how compression works (in the Achieved level requirements).

    Now that you know how the 24 bit and 8 bit colour schemes work and how to represent them using bits, what are the implications of this in practice? The following interactive can be used to upload your own image, and experiment with allocating different numbers of bits to each colour. You can use it to demonstrate the effect of the different numbers of bits for this data representation.

    5.6. GENERAL REPRESENTATIONS OF TEXT

    In the introduction we looked at 8-bit ASCII representations of text (which really use 7 bits, allowing for 128 different symbols). As with any other kind of data represented in binary, we can get improvements by considering larger (or smaller) representations.

    In the curiosity section earlier we observed that 5 bits are sufficient for simple coding of the English alphabet, and for very slow coding systems (like the video that contains hidden text using musical notes) using 5 bits instead of 8 can save some time. The braille system uses only 6 bits for each character, which allows for 64 different characters, and it is also better than using 8 bits since it would take more paper and more time to read if the longer code was used.

    But some languages have way more than 32, or 64, or even 128 characters in their alphabet. In fact, the majority of the world’s population use such languages! In this case, longer codes are needed, and the most widely used approach is a system called Unicode. A commonly used version of Unicode allows 16 bits per character. Because every extra bit that is added doubles the number of patterns possible, 16-bit codes have many more representations than 8 bit codes. In fact, with 16 bits there are 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 216 = 65,536 patterns that can be represented. This is enough to assign a unique pattern of bits to the main characters in the most common languages, although there are also standards that allow 32 bits (4 bytes) for each character.

    The Unicode table is far too big to display in this book, but you can find a variety of tables on the internet, and use them to look up codes. This website displays all unicode characters with geographical data for appropriate characters. The 16- and 32-bit codes are usually written using hexadecimal since this is an easy abbreviation for the long binary codes, and sections of the Unicode alphabet (different languages) tend to be in multiples of 16.

    The modern codes associated with Unicode are usually flexible in the size of the representation, so 8-bit characters can be used if that is sufficient, but 16- or 32- bit characters can be invoked for larger alphabets. If you are investigating these codes, you will come across standards such as the Universal Character Set (UCS), the Unicode/UCS Transformation Format (UTF-8 UTF-16, etc.), and the GB 18030 standard (which was mandated in the People’s Republic of China from the year 2000).

    5.7. COMPUTERS REPRESENTING NUMBERS IN PRACTICE

    A common place that numbers are stored on computers is in spreadsheets or databases. Some of the things that we might think of as numbers, such as the telephone number (03) 555-1234, aren’t actually stored as numbers, as they contain important characters (like dashes and spaces) as well as the leading 0 which would be lost if it was stored as a number (the above number would come out as 35551234, which isn’t quite right). On the other hand, things that don’t look like a number (such as “30 January 2014”) are often stored using a value that is converted to a format that is meaningful to the reader (try typing two dates into Excel, and then subtract one from the other — the result is a useful number). Numbers are commonly used to store things as diverse as student marks, prices, statistics, and scientific readings.

    Any system that stores numbers needs to make a compromise between the number of bits allocated to store the number, and the range of values that can be stored. For example, Excel spreadsheets have a maximum value that can be stored — try calculating 1/3, and display it to as many places of accuracy as possible. In some systems (like the Java and C programming languages and databases) it’s possible to specify how accurately numbers should be stored; in others it is fixed in advance (such as in spreadsheets). Some are able to work with arbitrarily large numbers by increasing the space used to store them as necessary (e.g. integers in the Python programming language).

    There are two commonly used kinds of numbers: integers and floating point numbers. Integers are what you might know as whole numbers, and can be positive or negative, whereas floating point numbers can have a decimal point in them, and can also be positive or negative. In this section we are just going to focus on integers, as representing floating point numbers is a bit more difficult to understand (but well worth understanding if you use them a lot)!

    The binary number representation in the previous section only allowed us to represent positive numbers. In practice, we will want to be able to represent negative numbers as well (such as when the amount of money earned goes to a negative amount, or the temperature falls below zero!) In our normal representation of base 10 numbers, we represent negative numbers by putting a minus sign in front of the number. On a computer we don’t have minus signs, but we can do it by allocating one extra bit, called a sign bit, to represent the minus sign. We can choose the leftmost bit as the sign bit — when the sign bit is set to “0”, that means the number is positive and when the sign bit is set to “1”, the number is negative (just as if there were a minus sign in front of it). For example, if we wanted to represent the number 41 using 6 bits (like above) along with an additional 7th bit that is the sign bit, assuming the sign bit is first, we would represent it by 0101001. The first bit is a 0, meaning the number is positive, then the remaining 6 bits give 41, meaning the number is +41. If we wanted to make -59, this would be 1111011. The first bit is a 1, meaning the number is negative, and then the remaining 6 bits give 59, meaning the number is -59.

    Using 7 bits as described above (one for the sign, and 6 for the actual number), what would be the binary representations for 1, -1, -8, 34, -37, -88, and 102?

    Suppose we have 8-bit numbers, with the left-most bit as a sign bit. What would the decimal values be for the following 10000110? 01111111? How about 10000000?

    The representation 10000000 highlights a problem with this notation, as it represents the number -0, which is the same as 0. That is, there are two ways to represent the number 0, which is wasteful, and potentially confusing.

    It turns out that there’s a notation called “two’s complement” for negative numbers, which avoids this wastage, and more importantly, makes it easier to do arithmetic with negative numbers. It’s beyond what is needed for this topic, but the following box gives some more information if you’d like to look into it.

    
      Extra for Experts
    

    Negative numbers are more often stored on computers using a system called “two’s complement”. This system makes it very easy to do arithmetic without having to treat negative numbers as a special case, so it’s faster and uses less circuitry. The principle is based on a fairly simple idea: for example, in decimal, if you had to subtract the number 4 from a value, it’s the same if you add 6 and subtract 10. Using the complement of the number -4 (i.e. 6) plus an indicator that it’s negative can make calculations quicker and simpler. A similar approach applies in binary, and it’s even easier because there are only two digits. Moreinformation is available here on how negative numbers work, and also on the Wikipedia page about two’s complement, although it’s quite technical.

    
      Curiosity
    

    In some programming languages there isn’t a check for when a number gets too big (overflows). For example, if you have an 8-bit number using two’s complement, then 01111111 is the largest number (127), and if you add one without checking, it will change to 10000000, which happens to be the number -128. This can cause serious problems if not checked for, and is behind a variant of the Y2K problem, called the Year 2038 problem, involving a 32-bit number overflowing for dates on Tuesday, 19 January 2038.

    
      
    

    Because of the way computer memory is constructed, memory is most commonly used in chunks of 8 bits or 32 bits (or even 64 bits) at a time. That means that if the computer is representing an integer as a binary number with a sign bit, it will commonly use 32 bits, where the first bit is the sign bit, and the other 31 bits represent the value of the number.

    In a computer that uses 32 bits for a number, how many different numbers could it represent? What’s the largest number it could represent? Remember that every bit you add doubles how many numbers you can make. If you double 64 another 25 times (so that it is up to 31 bits), i.e. 128, 256, 512, 1024, 2048.... you get an end result of 2,147,483,648. This means that there 2,147,483,648 numbers that can be represented with 31 bits, the highest of which is 2,147,483,647. This number is just over 2 billion. With the 32nd bit, the sign bit, this means that the number can be positive or negative. This is called a signed 32 bit integer. So with the signed 32 bit integer, you can represent any number between -2,147,483,647 and +2,147,483,647.

    There is also such thing as a 32 bit unsigned integer. This does not have a signed bit, and the 32nd bit is included as part of the value. As a result, it can represent twice as many positive numbers (but no negative numbers) as the 32 bit signed integer above. This would be 4,294,967,296 different numbers, with 4,294,967,295 being the highest.

    How many people are in the world? Would a 32 bit integer like described above be large enough to store a different identifier number for each person in the world? How many bits of accuracy would you want to allow for possible population growth?

    
      
        
          	Type of Number
          	Unsigned Range
          	Signed Range
        

      
      
        
          	8 bit signed
          	0 to 255
          	-128 to 127
        

        
          	16 bit signed
          	0 to 65,535
          	-32,768 to 32,767
        

        
          	32 bit signed
          	0 to 4,294,967,295
          	−2,147,483,648 to 2,147,483,647
        

        
          	64 bit signed
          	0 to 18,446,744,073,709,551,615
          	−9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
        

      
    

    So when you are storing values on a computer with very limited space, you need to be careful to pick a suitable kind of integer that has enough space, but isn’t wasting space. You also need to think about whether or not a number could potentially be negative.

    Think of a few different examples for different sized integers (both signed and unsigned ones) of a piece of data that you could store in that sized integer. For example, the age of a person could be stored in an 8 bit unsigned integer (people can’t be a negative age!), and the number of students in your school could be stored in an 8 bit or 16 bit integer, depending on how big your school is! What other examples can you think of?

    What are some examples of numbers you could not represent using any of these integers?

    
      Extra for Experts
    

    Another type of number used in computer systems is the “floating point” value. While we won’t look at it in detail, to get a taste of what’s involved, consider the bit values in a 4-bit number, which are 8, 4, 2 and 1. What would the value of a bit to the right of the one bit be? And to the right of that one?

    The following version of the base conversion interactive has bits that are smaller than the 1-bit. Try representing the decimal number 3.5 using this system. How about 2.8125? What about 2.8?

    This system is a fixed-point number system; floating point numbers are based on this idea, but allow for the number of digits to be fixed, but the position of the point to change (by giving an exponent value).

    
      Click to load the widget
    

    5.7.1. NUMBERS IN PROGRAMMING LANGUAGES

    If you are programming in a language (e.g. Python, Java, C, C++, C#) then the limitations of data representations become important very quickly, as you will have to choose what kind of data representation you want to use, and if it is too small then it can “overflow”. For example, if you allocate a variable to be stored as a 16 bit unsigned integer, and you are counting how many characters there are in a file, then it will fail after 65,535 characters — that’s just a 65 kilobyte file.

    If the amount of memory your computer has to store its data in is very limited (for example, on a small portable device), you might not want to reserve 32 bits for a number if it is never going to be over 100. Or even if there is plenty of memory, if you are storing millions of data values then using 16-bit integers instead of 8-bit integers will waste millions of bytes of memory.

    Working out the size of an integer used in a particular programming language may take some investigation, as they are usually declared with names like “int” and “long”, which don’t say explicitly how many bits they use. For example, in the Java programming language, there is a data type called the “byte”, which is an 8-bit integer that includes negative numbers (it goes from -128 to 127), whereas a “short” integer is 16 bits, an “int” is 32 bits, and a “long” is 64 bits. In some cases (such as the “int” type in C) the length of an integer depends on the version of the language of the type of computer it is running on, and in other cases (such as integers in Python) the representation is automatically changed for you if the number gets too big!

    5.8. THE WHOLE STORY!

    The kind of image representations covered here are the basic ones used in most digital systems, and the main point of this chapter is to understand how digital representations work, and the compromises needed between the number of bits, storage used, and quality.

    The colour representation discussed is what is often referred to as “raw” or “bitmap” (bmp) representation. For large images, real systems use compression methods such as JPEG, GIF or PNG to reduce the space needed to store an image, but at the point where an image is being captured or displayed it is inevitably represented using the raw bits as described in this chapter, and the basic choices for capturing and displaying images will affect the quality and cost of a device. Compression is regarded as a form of encoding, and is covered in a later chapter.

    The representation of numbers is a whole area of study in itself. The choice of representation affects how quickly arithmetic can be done on the numbers, how accurate the results are, and how much memory or disk space is used up storing the data. Even integers have issues like the order in which a large number is broken up across multiple bytes. Floating point numbers generally follow common standards (the IEEE 754 standard is the most common one) to make it easy to design compatible hardware to process them. Spreadsheets usually store numbers using a floating point format, which limits the precision of calculations (typically about 64 bits are used for each number). There are many experiments that can be done (such as calculating 1/3, or adding a very large number to a very small one) that demonstrate the limitations of floating point representations.

    The chapter does not (yet) cover other forms of data representation, and you may wish to explore these as alternatives. The common ones are:

    
      	sound (wave files and related storage; for example, 16-bit samples are used for “CD quality”, but professional systems use 24-bit or even higher) — for some information, see the Teach with ICT page on sound representation.

      	video (which are based on multiple images being played one after the other; however, these files are so large that they are almost never stored as a “raw” representation)

    

    5.9. FURTHER READING

    This puzzle can be solved using the pattern in binary numbers: http://www.cs4fn.org/binary/lock/

    This site has more complex activities with binary numbers, including fractions, multiplication and division.

    5.9.1. USEFUL LINKS

    
      	
        Basics of binary numbers
      

      	
        Representing bits using sound
      

      	
        Hex game
      

      	Thriving in our digital world has good illustrations of data representation

    

  
    6.1. WHAT’S THE BIG PICTURE?

    The word “code” has lots of meanings in computer science. It’s often used to talk about programming, and a program can be referred to as “source code”. However, in this chapter (and the next three chapters), we will use it to talk about representing information in useful ways, such as secret codes. In the previous chapter we looked at using binary representations to store all kinds of data — numbers, text, images and more. But often simple binary representations aren’t so useful. Sometimes they take up too much space, sometimes small errors in the data can cause big problems, and sometimes we worry that someone else could easily read our messages. Most of the the time all three of these things are a problem! The codes that we will look overcome all of these problems, and are widely used for storing and transmitting important information.

    The three main reasons that we use more complex representations of binary data are:

    
      	Compression: this reduces the amount of space the data needs (for example, coding an audio file using MP3 compression can reduce the size of an audio file to well under 10% of its original size)

      	Encryption: this changes the representation of data so that you need to have a “key” to unlock the message (for example, whenever your browser uses “https” instead of “http” to communicate with a website, encryption is being used to make sure that anyone eavesdropping on the connection can’t make any sense of the information)

      	Error Control: this adds extra information to your data so that if there are minor failures in the storage device or transmission, it is possible to detect that the data has been corrupted, and even reconstruct the information (for example, every bar code has an extra digit added to it so that if the bar code is scanned incorrectly in a checkout, it makes a warning sound instead of charging you for the wrong product).

    

    Often all three of these are applied to the same data; for example, a photo taken on a camera is often compressed using JPG, stored on the camera card with error correction, and stored on a backup disk with encryption so that if the disk was stolen the data couldn’t be accessed.

    Without these forms of coding, digital devices would be very slow, have limited capacity, be unreliable, and be unable to keep your information private.

    6.2. THE WHOLE STORY!

    The idea of encoding data to make the representation more compact, robust or secure is centuries old, but the solid theory needed to support codes in the information age was developed in the 1940s — not surprisingly considering that technology played such an important role in World War II, where efficiency, reliability and secrecy were all very important. One of the most celebrated researchers in this area was Claude Shannon, who developed the field of “information theory”, which is all about how data can be represented effectively.

    A key concept in Shannon’s work is a measure of information called “entropy”, which established mathematical limits like how small files could be compressed, and how many extra bits must be added to a message to achieve a given level of reliability. While the idea of entropy is beyond the scope of this section, there are some fun games that provide a taste of how you could measure information content by guessing what letter comes next; there’s an Unplugged activity called Twenty Guesses, and an online game for guessing sentences.

    6.3. FURTHER READING

    James Gleick’s book The Information: A History, a Theory, a Flood provides an interesting view of the history of several areas relating to coding.

    6.3.1. USEFUL LINKS

    
      	A good collection of resources related to all three kinds of coding is available in the Bletchley Park Codes Resources

      	
        Entropy and information theory
      

      	
        History of information theory and its relationship to entropy in thermodynamics
      

      	
        Timeline of information theory
      

      	
        Shannon’s seminal work in information theory
      

    

  
    7.1. WHAT’S THE BIG PICTURE?

    Data compression reduces the amount of space needed to store files. If you can halve the size of a file, you can store twice as many files for the same cost, or you can download the files twice as fast (and at half the cost if you’re paying for the download). Even though disks are getting bigger and high bandwidth is becoming common, it’s nice to get even more value by working with smaller, compressed files. For large data warehouses, like those kept by Google and Facebook, halving the amount of space taken can represent a massive reduction in the space and computing required, and consequently big savings in power consumption and cooling, and a huge reduction in the impact on the environment.

    Common forms of compression that are currently in use include JPEG (used for photos), MP3 (used for audio), MPEG (used for videos including DVDs), and ZIP (for many kinds of data). For example, the JPEG method reduces photos to a tenth or smaller of their original size, which means that a camera can store 10 times as many photos, and images on the web can be downloaded 10 times faster.

    So what’s the catch? Well, there can be an issue with the quality of the data — for example, a highly compressed JPEG image doesn’t look as sharp as an image that hasn’t been compressed. Also, it takes processing time to compress and decompress the data. In most cases, the tradeoff is worth it, but not always.

    Move your cursor or tap the image to compare the two images

    

    
      Left is low quality JPEG (20Kb) - Right is high quality JPEG (88Kb)
    

    In this chapter we’ll look at how compression might be done, what the benefits are, and the costs associated with using compressed data that need to be considered when deciding whether or not to compress data. We’ll start with a simple example — Run Length Encoding — which gives some insight into the benefits and the issues around compression.

    In this activity, students simulate writing some text using a method used by Jean-Dominique Bauby, who was completely unable to move except for blinking one eye. With a simple binary interface (blinking or not blinking) he was able to author an entire book. It is well worth getting students to work in pairs, and have one try to communicate a word or short phrase strictly by blinking only. It raises many questions, including how it could be done in the shortest time and with the minimum effort. Of course, the first step is to work out how to convey any text at all!

    7.2. RUN LENGTH ENCODING

    Imagine we have the following simple black and white image.

    

    One very simple way a computer can store this image is by using a format where 0 means white and 1 means black. The above image would be represented in the following way

    
      011000010000110
100000111000001
000001111100000
000011111110000
000111111111000
001111101111100
011111000111110
111110000011111
011111000111110
001111101111100
000111111111000
000011111110000
000001111100000
100000111000001
011000010000110
    

    There are 15 (rows) by 15 (columns) = 225 bits representing this image. Can we represent the same image using fewer bits, in a way that a computer would still be able to understand it? Imagine that you had to read it out to someone... after a while you might say things like “five zeroes” instead of “zero zero zero zero zero”. This technique is used to save space for storing digital images, and is known as run length encoding (RLE). In run length encoding, we replace each row with numbers that say how many consecutive pixels are the same colour, always starting with the number of white pixels. For example, the first row in the image above contains 1 white, 2 black, 4 white, 1 black, 4 white, 2 black, and 1 white pixel. This could be represented as;

    
      1, 2, 4, 1, 4, 2, 1
    

    For the second row, because we need to say what the number of white pixels is before we say the number of black, we need to explicitly say there are 0 at the start of the row. This would give

    
      0, 1, 5, 3, 5, 1
    

    And the third row contains 5 whites, 5 blacks, 5 whites. This would give

    
      5, 5, 5
    

    So, we have determined that the first 3 rows of the file can be represented using RLE as:

    
      1, 2, 4, 1, 4, 2, 1
0, 1, 5, 3, 5, 1
5, 5, 5
    

    Work out what the other rows would be, and write them out as well.

    Which representation takes less space to store?

    One simple way to consider this is to imagine you were typing these representations, so you could think of each of the original bits being stored as one character, and each of the RLE codes using a character for each digit and comma (this is a bit crude, but it’s a starting point).

    In the original representation, 225 bits were required to represent the image. Count up the number of commas and digits (but not spaces or newlines, ignore those) in the new representation. This is the number of characters required to represent the image with the new representation (to ensure you are on the right track, the first 3 rows that were given to you contain 29 characters)

    Assuming you got the new image representation correct, and counted correctly, you should have found there are 119 characters in the new image (double check if your number differs!) This means that the new representation only requires around 53% as many characters to represent (calculated using 119/225)! This is a significant reduction in the amount of space required to store the image. The new representation is a compressed form of the old one.

    In practice this method (with some extra tricks) can be used to compress images to about 15% of their original size. In real systems, the image only uses one bit for every pixel to store the black and white values (not one character, which we used for our calculations). The run length numbers are also stored much more efficiently, again using bit patterns that take very little space to represent the numbers. The bit patterns used are usually based on a technique called Huffman coding, but that is beyond what we want to get into here.

    The main place that black and white scanned images are used now is on fax machines, which used this approach to compression. One reason that it works so well with scanned pages the number of consecutive white pixels is huge. In fact, there will be entire scanned lines that are nothing but white pixels. A typical fax page is 200 pixels across or more, so replacing 200 bits with one number is a big saving. The number itself can take a few bits to represent, and in some places on the scanned page only a few consecutive pixels are replaced with a number, but overall the saving is significant. In fact, fax machines would take 7 times longer to send pages if they didn’t use compression.

    Just to ensure that we can reverse the compression process, what is the original representation (zeroes and ones) of this (compressed) image?

    
      4, 11, 3
4, 9, 2, 1, 2
4, 9, 2, 1, 2
4, 11, 3
4, 9, 5
4, 9, 5
5, 7, 6
0, 17, 1
1, 15, 2
    

    What is the image of? How good was the compression on this image? (Look back at the calculation above for the amount of compression).

    
      Click to load

Run Length Encoding
    

    Created by Hannah Taylor

    As the compressed representation of the image can be converted back to the original representation, and both the original representation and the compressed representation would give the same image when read by a computer, this compression algorithm is called lossless, i.e. none of the data was lost from compressing the image, and as a result the compression could be undone exactly.

    Not all compression algorithms are lossless. In some types of files, in particular photos, sound, and videos, we are willing to sacrifice a little bit of the quality (i.e. lose a little of the data representing the image) if it allows us to make the file size a lot smaller. For downloading very large files such as movies, this can be essential to ensure the file size is not so big that it is infeasible to download! These compression methods are called lossy. If some of the data is lost, it is impossible to convert the file back to the exactly the original form when lossy compression was used, but the person viewing the movie or listening to the music may not mind the lower quality if the files are smaller. Later in this chapter, we will investigate the effects some lossy compression algorithms have on images and sound.

    Now that you know how run length encoding works, you can come up with and compress your own black and white image, as well as uncompress an image that somebody else has given you.

    Start by making your own picture with ones and zeroes. (Make sure it is rectangular — all the rows should have the same length.) You can either draw this on paper or prepare it on a computer (using a fixed width font, otherwise it can become really frustrating and confusing!) In order to make it easier, you could start by working out what you want your image to be on grid paper (such as that from a math exercise book) by shading in squares to represent the black ones, and leaving them blank to represent the white ones. Once you have done that, you could then write out the zeroes and ones for the image.

    Work out the compressed representation of your image using run length coding, i.e. the run lengths separated by commas form that was explained above.

    Now, swap a copy of the compressed representation (the run length codes, not the original uncompressed representation) with a classmate. You should each uncompress the other person’s image, to get back to the original uncompressed representations. Check to make sure the conversions back to the uncompressed representations was done correctly by making sure the images are the same.

    Imagining that you and your friend are both computers, by doing this you have shown that images using these systems of representations can be compressed on one computer, and decompressed on another. It is very important for compression algorithms to have this property in order to be useful. It wouldn’t be very good if a friend gave you a song they’d compressed on their computer, but then your computer was unable to make sense of the representation the compressed song was using!

    
      Extra for Experts
    

    What is the image with the best compression (i.e. an image that has a size that is a very small percentage of the original) that you can come up with? This is the best case performance for this compression algorithm.

    What about the worst compression? Can you find an image that actually has a larger compressed representation? (Don’t forget the commas in the version we used!) This is the worst case performance for this compression algorithm.

    In fact, any lossless compression algorithm will have cases where the compressed version of the file is larger than the uncompressed version! Computer scientists have even proven this to be the case, meaning it is impossible for anybody to ever come up with a lossless compression algorithm that makes all possible files smaller. In most cases this isn’t an issue though, as a good lossless compression algorithm will tend to give the best compression on common patterns of data, and the worst compression on ones that are highly unlikley to occur.

    
      Extra for Experts
    

    There is actually an image format that uses the simple one-character-per-pixel representation we used at the start of this section. The format is called portable bitmap format (PBM). PBM files are saved with the file extension “.pbm”, and contain a simple header, along with the the image data. The data in the file can be viewed by opening it in a text editor, much like opening a .txt file, and the image itself can be viewed by opening it in a drawing or image viewing program that supports PBM files (they aren’t very well supported, but a number of image viewing and editing programs can display them). A pbm file for the diamond image used earlier would be as follows:

    
      P1
15 15
011000010000110
100000111000001
000001111100000
000011111110000
000111111111000
001111101111100
011111000111110
111110000011111
011111000111110
001111101111100
000111111111000
000011111110000
000001111100000
100000111000001
011000010000110
    

    The first 2 lines are the header. The first line specifies the format of the file (P1 means that the file contains ASCII zeroes and ones. The second line specifies the width and then the height of the image in pixels. This allows the computer to know the size and dimensions of the image, even if the newline characters separating the rows in the file were missing. The rest of the data is the image, just like above. If you wanted to, you could copy and paste this representation (including the header) into a text file, and save it with the file extension .pbm. If you have a program on your computer able to open PBM files, you could then view the image with it. You could even write a program to output these files, and then display them as images.

    There are variations of this format that pack the pixels into bits instead of characters, and variations that can be used for grey scale and colour images. Moreinformation about this format is available on Wikipedia.

    7.3. IMAGE COMPRESSION: JPEG

    Images can take up a lot of space, and most of the time that pictures are stored on a computer they are compressed to avoid wasting too much space. With a lot of images (especially photographs), there’s no need to store the image exactly as it was originally, because it contains way more detail than anyone can see. This can lead to considerable savings in space, especially if the details that are missing are the kind that people have trouble perceiving. This kind of compression is called lossy compression. There are other situations where images need to be stored exactly as they were in the original, such as for medical scans or very high quality photograph processing, and in these cases lossless methods are used, or the images aren’t compressed at all (e.g. using RAW format on cameras).

    In the data representation section we looked at how the size of an image file can be reduced by using fewer bits to describe the colour of each pixel. However, image compression methods such as JPEG take advantage of patterns in the image to reduce the space needed to represent it, without impacting the image unnecessarily.

    The following three images show the difference between reducing bit depth and using a specialised image compression system. The left hand image is the original, which was 24 bits per pixel. The middle image has been compressed to one third of the original size using JPEG; while it is a “lossy” version of the original, the difference is unlikely to be perceptible. The right hand one has had the number of colours reduced to 256, so there are 8 bits per pixel instead of 24, which means it is also stored in a third of the original size. Even though it has lost just as many bits, the information removed has had much more impact on how it looks. This is the advantage of JPEG: it removes information in the image that doesn’t have so much impact on the perceived quality. Furthermore, with JPEG, you can choose the tradeoff between quality and file size.

    Reducing the number of bits (the colour depth) is sufficiently crude that we don’t really regard it as a compression method, but just a low quality representation. Image compression methods like JPEG, GIF and PNG are designed to take advantage of the patterns in an image to get a good reduction in file size without losing more quality than necessary.

    

    For example, the following image shows a zoomed in view of the pixels that are part of the detail around an eye from the above (high quality) image.

    

    Notice that the colours in adjacent pixels are often very similar, even in this part of the picture that has a lot of detail. For example, the pixels shown in the red box below just change gradually from very dark to very light.

    

    Run-length encoding wouldn’t work in this situation. You could use a variation that specifies a pixel’s colour, and then says how many of the following pixels are the same colour, but although most adjacent pixels are nearly the same, the chances of them being identical are very low, and there would be almost no runs of identical colours.

    But there is a way to take advantage of the gradually changing colours. For the pixels in the red box above, you could generate an approximate version of those colours by specifying just the first and last one, and getting the computer to interpolate the ones in between smoothly. Instead of storing 5 pixel values, only 2 are needed, yet someone viewing it probably wouldn’t notice any difference. This would be lossy because you can’t reproduce the original exactly, but it would be good enough for a lot of purposes, and save a lot of space.

    The JPEG system, which is widely used for photos, uses a more sophisticated version of this idea. Instead of taking a 5 by 1 run of pixels as we did above, it works with 8 by 8 blocks of pixels. And instead of estimating the values with a linear function, it uses combinations of cosine waves.

    
      Jargon Buster
    

    A cosine wave form is from the trig function that is often used for calculating the sides of a triangle. If you plot the cosine value from 0 to 180 degrees, you get a smooth curve going from 1 to -1. Variations of this plot can be used to approximate the value of pixels, going from one colour to another. If you add in a higher frequency cosine wave, you can produce interesting shapes. In theory, any pattern of pixels can be created by adding together different cosine waves!

    

    You can see the 8 by 8 blocks of pixels if you zoom in on a heavily compressed JPEG image. For example, the following image has been very heavily compressed using JPEG (it is just 1.5% of its original size).

    

    If we zoom in on the eye area , you can see the 8 x 8 blocks of pixels:

    

    Notice that there is very little variation across each block. In the following image the block in the red box only changes from top to bottom, and could probably be specified by giving just two values, and having the ones in between calculated by the decoder as for the line example before. The green square only varies from left to right, and again might only need 2 values stored instead of 64. The blue block has only one colour in it! The yellow block is more complicated because there is more activity in that part of the image, which is where the cosine waves come in. A “wave” value varies up and down, so this one can be represented by a left-to-right variation from dark to light to dark, and a top-to-bottom variation mainly from dark to light. Thus still only a few values need to be stored instead of the full 64.

    

    The quality is quite low, but the saving in space is huge — it’s more than 60 times smaller (for example, it would download 60 times faster). Higher quality JPEG images store more detail for each 8 by 8 block, which makes it closer to the original image, but makes bigger files because more details are being stored. You can experiment with these tradeoffs by saving JPEGs with differing choices of the quality, and see how the file size changes. Most image processing software offers this option when you save an image as a JPEG.

    
      Jargon Buster
    

    The name “JPEG” is short for “Joint Photographic Experts Group”, a committee that was formed in the 1980s to create standards so that digital photographs could be captured and displayed on different brands of devices. Because some file extensions are limited to three characters, it is often seen as the ”.jpg” extension.

    
      Extra for Experts
    

    The cosine waves used for JPEG images are based on a “Discrete Cosine Transform”. The “Discrete” means that the waveform is digital — it is the opposite of continuous, where any value can occur. In a JPEG wave, there are only 8 x 8 values (for the block being coded), and each of those values can have a limited range of numbers (binary integers), rather than any value at all.

    An important issue arises because JPEG represents images as smoothly varying colours: what happens if the colours change suddenly? In that case, lots of values need to be stored so that lots of cosine waves can be added together to make the sudden change in colour, or else the edge of the image become fuzzy. You can think of it as the cosine waves overshooting on the sudden changes, producing artifacts like the ones in the following image where the edges are messy.

    

    The original had sharp edges, but this zoomed in view of the JPEG version of it show that not only are the edges gradual, but some darker pixels occur further into the white space, looking a bit like shadows or echoes.

    

    For this reason, JPEG is used for photos and natural images, but other techniques (such as GIF and PNG, which we will look at in another section) work better for artificial images like this one.

    7.4. IMAGE COMPRESSION: GIF AND PNG

    [appearing soon!]

    7.5. GENERAL PURPOSE COMPRESSION

    General purpose compression methods need to be lossless because you can’t assume that the user won’t mind if the data is changed. The most widely used general purpose compression algorithms (such as ZIP, gzip, and rar) are based on a method called “Ziv-Lempel coding”, invented by Jacob Ziv and Abraham Lempel in the 1970s.

    We’ll look at this with a text file as an example. The main idea of Ziv-Lempel coding is that sequences of characters are often repeated in files (for example, the sequence of characters “image ” appears often in this chapter), and so instead of storing the repeated occurrence, you just replace it with a reference to where it last occurred. As long as the reference is smaller than the phrase being replaced, you’ll save space. Typically this systems based on this approach can be used to reduce text files to as little as a quarter of their original size, which is almost as good as any method known for compressing text.

    The following interactive allows you to explore this idea. The empty boxes have been replaced with a reference to the text occurring earlier. You can click on a box to see where the reference is, and you can type the referenced characters in to decode the text. What happens if a reference is pointing to another reference? As long as you decode them from first to last, the information will be available before you need it.

    You can also enter your own text by clicking on the “Text” tab. You could paste in some text of your own to see how many characters can be replaced with references.

    The references are actually two numbers: the first says how many characters to count back to where the previous phrase starts, and the second says how long the referenced phrase is. Each reference typically takes about the space of one or two characters, so the system makes a saving as long as two characters are replaced. The options in the interactive above allow you to require the replaced length to be at least two, to avoid replacing a single character with a reference. Of course, all characters count, not just letters of the alphabet, so the system can also refer back to the white spaces between words. In fact, some of the most common sequences are things like a full stop followed by a space.

    This approach also works very well for black and white images, since sequences like “10 white pixels” are likely to have occurred before. Here are some of the bits from the example earlier in this chapter; you can paste them into the interactive above to see how many pointers are needed to represent it.

    
      011000010000110
100000111000001
000001111100000
000011111110000
000111111111000
001111101111100
011111000111110
111110000011111
    

    In fact, this is essentially what happens with GIF and PNG images; the pixel values are compressed using the Ziv-Lempel algorithm, which works well if you have lots of consecutive pixels the same colour. But it works very poorly with photographs, where pixel patterns are very unlikely to be repeated.

    
      Curiosity
    

    The method we have described here is named “Ziv-Lempel” compression after Jacob Ziv and Abraham Lempel, the two computer scientists who invented it in the 1970s. Unfortunately someone mixed up the order of their names when they wrote an article about it, and called it “LZ” compression instead of “ZL” compression. So many people copied the mistake that Ziv and Lempel’s method is now usually called “LZ compression”!

    7.6. AUDIO COMPRESSION

    One of the most widely used methods for compressing music is MP3, which is actually from a video compression standard. The Motion Picture Expert Group (MPEG) was a consortium of companies and researchers that got together to agree on a standard so that people could easily play the same videos on different brands of equipment (especially from DVD). The very first version of their standard (called MPEG 1) had three methods of storing the sound track (layer 1, 2 and 3). One of those methods (MPEG 1 layer 3) became very popular for compressing music, and was abbreviated to MP3.

    Most other audio compression methods use a similar approach to the MP3 method, although some offer better quality for the same amount of storage (or less storage for the same quality). It’s not essential to know how this works, but the general idea is to break the sound down into bands of different frequencies, and then represent each of those bands by adding together the values of a simple formula (the sum of cosine waves, to be precise).

    There is some more detail about how MP3 coding works on the cs4fn site, and also in an article on the I Programmer site.

    Other audio compression systems that you might come across include AAC, ALAC, Ogg Vorbis, and WMA. Each of these has various advantages over others, and some are more compatible or open than others.

    The main questions with compressed audio are how small the file can be made, and how good the quality is of the human ear. (There is also the question of how long it takes to encode the file, which might affect how useful the system is.) The tradeoff between quality and size of audio files can depend on the situation you’re in: if you are jogging and listening to music then the quality may not matter so much, but it’s good to reduce the space available to store it. On the other hand, someone listening to a recording at home on a good sound system might not mind about having a large device to store the music, as long as the quality is high.

    To evaluate an audio compression you should choose a variety of recordings that you have high quality originals for, typically on CD (or using uncompressed WAV or AIFF files). Choose different styles of music, and other kinds of audio such as speech, and perhaps even create a recording that is totally silent. Now convert these recordings to different audio format. One system for doing this that is free to download is Apple’s iTunes, which can be used to rip CDs to a variety of formats, and gives a choice of settings for the quality and size. A lot of other audio systems are able to convert files, or have plugins that can do the conversion.

    Compress each of your recordings using a variety of methods, making sure that each compressed file is created from a high quality original. Make a table showing how long it took to process each recording, the size of the compressed file, and some evaluation of the quality of the sound compared with the original. Discuss the tradeoffs involved — do you need much bigger files to store good quality sound? Is there a limit to how small you can make a file and still have it sounding ok? Do some methods work better for speech than others? Does a 2 minute recording of silence take more space than a 1 minute recording of silence? Does a 1 minute recording of music use more space than a minute of silence?

    7.7. THE WHOLE STORY!

    The details of how compression systems work have been glossed over in this chapter, as we have been more concerned about the file sizes and speed of the methods than how they work. Most compression systems are variations of the ideas that have been covered here, although one fundamental method that we haven’t mentioned is Huffman coding, which turns out to be useful as the final stage of all of the above methods, and is often one of the first topics mentioned in textbooks discussing compression (there’s a brief explanation of it here. A closely related system is Arithmetic coding (there’s an explanation of it here). Also, motion picture compression has been omitted, even though compressing videos saves more space than most kinds of compression. Most video compression is based on the “MPEG” standard (Motion Picture Experts Group). There is some information about how this works in the CS4FN article on “Movie Magic”.

    The Ziv-Lempel method shown is a variation of the so-called “LZ77” method. Many of the more popular compression methods are based on this, although there are many variations, and one called “LZW” has also been used a lot. Another high-compression general-purpose compression method is bzip, based on a very clever method called the Burrows-Wheeler Transform.

    Questions like “what is the most compression that can be achieved” are addressed by the field of information theory. There is an activity on information theory on the CS Unplugged site, and there is a fun activity that illustrates information theory. Based on this theory, it seems that English text can’t be compressed to less than about 12% of its original size at the very best. Images, sound and video can get much better compression because they can use lossy compression, and don’t have to reproduce the original data exactly.

    7.8. FURTHER READING

    
      	“The Data Compression Book” by Mark Nelson and Jean-Loup Gailly is a good overview of this topic

      	A list of books on this topic (and lots of other information about compression) is available from The Data Compression Site.

      	Gleick’s book “The Information” has some background to compression, and coding in general.

    

    7.8.1. USEFUL LINKS

    
      	Images, run-length-coding http://csunplugged.org/image-representation This is also relevant to binary representations in general, although is probably best used in the compression section.

      	There is a detailed section on JPEG encoding on Wikipedia.

      	Text compression http://csunplugged.org/text-compression

    

  
    8.1. WHAT’S THE BIG PICTURE?

    Encryption is used to keep data secret. In its simplest form, a file or data transmission is garbled so that only authorised people with a secret key can unlock the original text. If you’re using digital devices then you’ll be using systems based on encryption all the time: when you use online banking, when you access data through through wifi, when your web browser remembers your password, when you pay for something with a credit card (either by swiping, inserting or tapping), in fact, nearly every activity will involve layers of encryption. Without encryption, your information would be wide open to the world — anyone could pull up outside a house and read all the data going over your wifi, and stolen laptops, hard disks and SIM cards would yield all sorts of information about you — so encryption is critical to having computer systems work at all.

    Of course, we wouldn’t need encryption if we lived in a world where everyone was honest and could be trusted, and it was ok for anyone to have access to all your personal information such as health records, online discussions, bank accounts and so on, and if you knew that no-one would interfere with things like aircraft control systems and computer controlled weapons. However, information is worth money, people value their privacy, and safety is important, so encryption has become fundamental to the design of computer systems. Even breaking the security on a traffic light system could be used to personal advantage!

    
      Curiosity
    

    An interesting example of the value of using encryption outside of secret messages is the two engineers who were convicted of changing traffic light patterns to cause chaos during a strike http://latimesblogs.latimes.com/lanow/2009/12/engineers-who-hacked-in-la-traffic-signal-computers-jamming-traffic-sentenced.html. A related problem in the US was traffic signals that could respond to codes from emergency vehicles to change to green; originally these didn’t use encryption, and people could figure out how to trigger them to their own advantage.

    Like all technologies, encryption can be used for good and bad purposes. A human rights organisation might use encryption to secretly send photographs of human rights abuse to the media, while drug traffickers might use it to avoid having their plans read by investigators. Understanding how encryption works and what is possible can help to make informed decisions around things like freedom of speech, human rights, tracking criminal activity, personal privacy, identity theft, online banking and payments, and the safety of systems that might be taken over if they were “hacked into”.

    An encryption system is really two programs: one to encrypt some data (referred to as plaintext) into a form that looks like nonsense (the ciphertext), and a second program that can decrypt the ciphertext back into the plaintext form.

    A big issue with encryption systems is people who want to break into them and decrypt messages without the key. Some systems that were used many years ago were discovered to be insecure because of attacks, so could no longer be used. It is possible that somebody will find an effective way of breaking into the widespread systems we use these days, which would result in a lot of chaos!

    
      Jargon Buster
    

    There are various words that can be used to refer to trying to get the plaintext from a ciphertext, including decipher, decrypt, crack, and cryptanalysis. Often the process of trying to break cryptography is referred to as an “attack”. The term “hack” is also sometimes used, but it has other connotations, and is only used informally.

    Of course, encryption doesn’t fix all our security problems, and because we have such good encryption systems available, information thieves must turn to other approaches, especially social engineering. The easiest way to get a user’s password is to ask them! A phishing attack does just that, and there are estimates that as many as 1 in 20 computer users have given out secret information this way at some stage.

    Other social engineering approaches that can be used include bribing or blackmailing people who have access to a system, or simply looking for a password written on a sticky note on someone’s monitor! Gaining access to someone’s email account is a particularly easy way to get lots of passwords, because many “lost password” systems will send a new password to their email account.

    
      Jargon Buster
    

    When describing an encryption scenario, cryptographers often use the fictitious characters “Alice” and “Bob”, with a message being sent from Alice to Bob (A to B). We always assume that someone is eavesdropping on the conversation (in fact, if you’re using a wireless connection, it’s trivial to pick up the transmissions between Alice and Bob as long as you’re in reach of the wireless network that one of them is using). The fictitious name for the eavesdropper is usually Eve.

    
      
    

    People who try to decrypt messages are called cryptanalysts; more informal terms like hackers and crackers are sometimes used, generally with the implication that they have bad intentions. Being a cryptanalyst is generally a good thing to do though: people who use encryption systems actually want to know if they have weaknesses, and don’t want to wait until the bad guys find out for them. It’s like a security guard checking doors on a building; the guard hopes that they can’t get in, but if a door is found unlocked, they can do something about it to make sure the bad guys can’t get in. Of course, if a security guard finds an open door, and takes advantage of that to steal something for themselves, they’re no longer doing their job properly!

    
      Curiosity
    

    There are several other characters used to describe activities around encryption protocols: for example Mallory (a malicious attacker) and Trudy (an intruder). Wikipedia has a list of Alice and Bob’s friends.

    8.2. SUBSTITUTION CIPHERS

    For these activities, you will need to have pen and paper in front of you to figure out the answers in this section.

    Working in a group with 1 or 2 of your classmates (or by yourself if nobody else is around), can you figure out what the following message, encrypted with a simple cipher, says?

    
      DRO BOCMEO WSCCSYX GSVV ECO K ROVSMYZDOB,
KBBSFSXQ KD XYYX DYWYBBYG.
LO BOKNI DY LBOKU YED KC CYYX
KC IYE ROKB DRBOO
LVKCDC YX K GRSCDVO.
S'VV LO GOKBSXQ K BON KBWLKXN.
    

    
      	What techniques did your group use to decrypt the message?

      	If you haven’t already, write out each letter in the alphabet, and then the letter that it corresponds to in the cipher (for the ones that are known, i.e. actually were in the cipher). Can you see a pattern?

      	If you were going to make a secret message of your own using this same cipher, how would you go about it?

      	What would be wrong with using this cipher method for a secret you’d never want anybody else finding out?

    

    You may have realised that there was a pattern in how letters from the original message corresponded to letters in the decoded one: a letter in the original message is decoded to the letter that is 10 places before it in the alphabet. The conversion table you drew should have highlighted this. Here’s the table for the letter correspondences, where the letter “K” translates to an “A”

    

    The same idea can generate other codes, such as the following one where each letter is replaced with the one that is 8 places earlier.

    

    We sometimes say that the alphabet has been rotated by 8. This system of rotating each letter in a piece of text by a certain amount in order to encrypt it is called Caesar Cipher, named after Julius Caesar, who used it with a rotation of 3 to disguise messages.

    You can experiment with this cipher using this interactive.

    PLAINTEXT

    ENCRYPT

    ROTATION AMOUNT

    CIPHERTEXT

    DECRYPT

    In this system, the amount of rotation is referred to as a key, since you can unlock the message if you know the key. Normally the sender and receiver would agree on a key in advance (and in person), so that the receiver can easily unlock the message.

    However, this encryption method isn’t very secure, and you’ve probably already figured out how to crack a coded message. You actually only need to work out what one of the corresponding letters is, and then use that to calculate what the rotation is, which immediately gives you the key.

    If for example you identify that the letter “Y” in the encrypted message is in place of the letter “R”, you can calculate the rotation by working out how many places R is before Y in the alphabet (it might help to write the alphabet out on a piece of paper so that you can count the places, as saying the alphabet backwards is quite challenging for most people!) As R is 7 places before Y, this means that the rotation for this cipher must be 7, and you should be able to convert all letters in the encrypted message to an understandable message by subtracting 7 from them. The quickest way of going about this though would be to write out a conversion table like the ones above.

    
      Curiosity
    

    The Caesar cipher with a key of 13 is the same as an approach called ROT13 (rotate 13 characters), which is sometimes used to obscure things like the punchline of a joke, a spoiler for a story, the answer to a question, or text that might be offensive. It is easy to decode (and there are plenty of automatic systems for doing so), but the user has to deliberately ask to see the deciphered version. A key of 13 for a Caesar cipher has the interesting property that the encryption method is identical to the decryption method i.e. the same program can be used for both. Actually, many strong encryption methods try to make the encryption and decryption processes as similar as possible so that the same software and/or hardware can be used for both parts of the task, perhaps with only minor adaptions.

    Taking advantage of the idea that you only need to figure out 1 letter to decide, can you figure out what the following message says? Which letter is the best one to try and guess? Why? What was the rotation? You may make a few incorrect guesses before figuring it out, so be prepared for that! Once you think you know what one of the letters in the ciphertext might correspond to in the plaintext, work out what the rotation is, and then write out the conversions for that rotation and decode the start of the message using that conversion table to see whether or not it makes sense. If the first few words seem to be meaningless, then that rotation is probably not the correct one.

    
      P  OVWL  AOPZ  TLZZHNL  DHZ  UVA  AVV  KPMMPJBSA  MVY  FVB!
    

    Now that you know how to decipher a message that is using Caesar Cipher without actually knowing the key, you should be able to see that it would be very easy to decipher a message if you know the key. The following message was encrypted using a rotation of 6. Generate the conversion table for a rotation of 6. This should allow you to easily decipher the following message. What does the message say? (Use only the conversion table to figure it out!)

    
      ZNK WAOIQ HXUCT LUD PASVY UBKX ZNK RGFE JUM.
    

    It shouldn’t be too difficult to see how a message can be encrypted using Caesar Cipher. Previously, you were generating conversion tables that converted from the ciphertext to the plaintext. In a very similar way, you can generate conversion tables that convert from the plaintext to the ciphertext. The only difference is that instead of subtracting the rotation, you are adding it. i.e. if the rotation was 5, then the letter “H” in the plaintext would go to the letter that is 5 places forward in the alphabet, which is “M”.

    Using a rotation of 3, generate a conversion table, and then the ciphertext, for the following message.

    
      HOW ARE YOU
    

    Now that all that is out of the way, you can encrypt your own messages (assuming it doesn’t matter too much if somebody deciphers them — as you saw above, this is not a very secure cipher!). Decide on a message to encrypt, and a rotation key. Generate a conversion table, and then encrypt your message.

    If a friend is also doing this activity, once you have your encrypted message you could give them the ciphertext and the rotation key (and get them to give you theirs), and see if you can decrypt one another’s messages (remember to generate a conversion table).

    
      Jargon Buster
    

    The Caesar is an example of a substitution cipher, where each letter is substituted for another one. Other substitution ciphers improve on the Caesar cipher by not having all the letters in order, and some older written ciphers use different symbols for each symbol. However, substitution ciphers are easy to attack because a statistical attack is so easy: you just look for a few common letters and sequences of letters, and match that to common patterns in the language.

    8.3. PROBLEMS WITH SUBSTITUTION CIPHERS

    We have looked at one way of cracking Caesar cipher: using patterns in the text. By looking for patterns such as one letter words, other short words, double letter patterns, apostrophe positions, and knowing rules such as all words (excluding some acronyms and words written in txt language of course) must contain at least one of a, e, i, o, u, or y, you were probably able to decipher the messages in the book with little difficulty.

    There are many other ways of cracking Caeser cipher which we will look at in this section. Understanding various common attacks on ciphers is important when looking at the security of more sophisticated ciphers.

    8.3.1. FREQUENCY ANALYSIS ATTACKS

    Frequency analysis means looking at how many times each letter appears in the encrypted message, and using this information to crack the message. A letter that appears many times in a message is far more likely to be “T” than “Z”!

    For example, try copying and pasting the following text into the statistical analyser at http://www.richkni.co.uk/php/crypta/freq.php. What is the most common letter in the code? Which English letter is that likely to be?

    
      F QTSL RJXXFLJ HTSYFNSX QTYX TK XYFYNXYNHFQ HQZJX YMFY HFS GJ ZXJI YT FSFQDXJ BMFY YMJ RTXY KWJVZJSY QJYYJWX FWJ, FSI JAJS YMJ RTXY HTRRTS UFNWX TW YWNUQJX TK QJYYJWX HFS MJQU YT GWJFP YMJ HTIJ
    

    The most common letter in most English text is the letter E, so it makes sense to try to decrypt the message guessing that the most common letter in the ciphertext corresponds to E.

    If that doesn’t work, you could see if the second most common letter in the ciphertext is E, and so on.

    
      Curiosity
    

    Although in almost all English texts the letter E is the most common letter, it isn’t always. For example, the 1939 novel Gadsby by Ernest Vincent Wrightdoesn’t contain a single letter E (this is called a lipogram). Furthermore, the text you’re attacking may not be English. During World War 1 and 2, the US military had many Native American Code talkers translate messages into their own language, which provided a strong layer of security at the time.

    
      Curiosity
    

    A slightly stronger cipher than the Caesar cipher is the Vigenere cipher, which is created by using multiple Caesar ciphers, where there is a key phrase (e.g. “acb”), and each letter in the key gives the offset (in the example this would be 1, 3, 2). These offsets are repeated to give the offset for encoding each character in the plaintext.

    By having multiple caesar ciphers, common letters such as E will no longer stand out as much, making frequency analysis a lot more challenging. The following website shows the effect on the distribution. http://www.simonsingh.net/The_Black_Chamber/vigenere_strength.html

    However, while this makes the Vigenere cipher more challenging to crack than the Caeser cipher, ways have been found to crack it. In fact, once you know the key length, it just breaks down to cracking several Caesar ciphers (which you have seen is straightforward!). Several statistical methods have been devised for working out the key length.

    A brute force attack is harder for the Vigenere cipher because there are a lot more possible keys. In principle there isn’t a limit to the number of key phrases possible, although if the phrase is too long then keeping track of the key would be difficult.

    The Vigenere cipher is known as a polyalphabetic substitution cipher, since it is uses multiple substitution rules.

    8.3.2. PLAIN TEXT ATTACKS

    Another kind of attack is the known plaintext attack, where you know part or all of the solution. For example, if you know that I start all my messages with “HI THERE”, what is the key for the following message?

    
      AB MAXKX LXVKXM FXXMBGZ TM MPH TF MANKLWTR
    

    Even if you did not know the key was a rotation, you have learnt that A->H, B->I, M->T, X->E, and K->R. This goes a long way towards deciphering the message!

    A known plaintext attack is trivial for a Caesar cipher, but a good code shouldn’t have this vulnerability because there it can be surprisingly easy for someone to know that a particular message is being sent. For example, a common message might be “Nothing to report”, or in online banking there are likely to be common messages like headings in a bank account or parts of the web page that always appear.

    Even worse is a chosen plaintext attack, where you trick someone into sending your chosen message through their system.

    For this reason, it is essential for any good cryptosystem to not be breakable, even if the attacker has pieces of plaintext along with their corresponding ciphertext to work with.

    Also, the cryptosystem should not give different ciphertext each time the same plaintext message is encrypted. It may initially sound impossible to achieve this, although there are several clever techniques used by real cryptosystems.

    8.3.3. BRUTE FORCE ATTACKS TO GUESS THE KEY

    Another approach to cracking a ciphertext is a brute force attack, which involves trying out all possible keys, and seeing if any of them produce intelligible text. This is easy for a Caesar cipher because there are only 25 possible keys. For example, the following ciphertext is a single word, but is too short for a statistical attack. Try putting it into the decoder above, and trying keys until you decipher it.

    
      EIJUDJQJYEKI
    

    These days encryption keys are normally numbers that are 128 bits or longer. You could calculate how long it would take to try out every possible 128 bit number if a computer could test a million every second (including testing if each decoded text contains English words). It will eventually crack the message, but would it be any use after that amount of time?

    
      Key size in general substition ciphers
    

    While Caesar cipher has a key specifying a rotation, a more general substitution cipher could randomly scramble the entire alphabet. This requires a key consisting of a sequence of 26 letters or numbers, specifying which letter maps onto each other one. For example, the first part of the key could be “D, Z, E”, which would mean D -> A, Z -> B, E ->C. The key would have to have another 23 letters in order to specify the rest of the mapping.

    This increases the number of possible keys, and thus reduces the risk of a brute force attack. A can be substituted for any of the 26 letters in the alphabet, B can then be substituted for any of the 25 remaining letters (26 minus the letter already substituted for A), C can then be substituted for any of the 24 remaining letters…

    This gives us 26 possibilities for A times 25 possibilities for B times 24 possibilities for C.. all the way down to 2 possibilities for Y and 1 possibility for Z. 262524232221201918171615141312111098765432*1 = 26! Representing each of these possibilites requires around 88 bits, making the cipher’s key size around 88 bits!

    However, this only solves one of the problems. The other techniques for breaking caeser cipher we have looked at are still highly effective on all substitution ciphers. For this reason, we need better ciphers in practice, which we will look at shortly!

    
      Jargon Buster
    

    The main terminology you should be familiar with now is that a plaintext is encrypted by to create a ciphertext using an encryption key. Someone without the encryption key who wants to attack the cipher could try various approaches, including a brute force attack (trying out all possible keys), a frequency analysis attack (looking for statistical patterns), and a known plaintext attack (matching some known text with the cipher to work out the key).

    
      Steganography
    

    Cryptography is about hiding the content of a message, but sometimes it’s important to hide the existence of the message. Otherwise an enemy might figure out that something is being planned just because a lot more messages are being sent, even though they can’t read them. One way to achieve this is via steganography, where a secret message is hidden inside another message that seems innocuous. A classic scenario would be to publish a message in the public notices of a newspaper or send a letter from prison where the number of letters in each word represent a code. To a casual reader, the message might seem unimportant (and even say the opposite of the hidden one), but someone who knows the code could work it out. Messages can be hidden in digital images by making unnoticable changes to pixels so that they store some information. You can find out more about steganography on Wikipedia or in this lecture on steganography.

    Two fun uses of steganography that you can try to decode yourself are a film about ciphers that contains hidden ciphers (called “The Thomas Beale Cipher”), and an activity that has five-bit text codes hidden in music.

    8.4. PUBLIC KEY SYSTEMS

    8.4.1. THE KEY DISTRIBUTION PROBLEM

    Alice sending an encrypted message to Bob raises an interesting problem in encryption. The ciphertext itself can safely be sent across an “unsafe” network (one that Eve is listening on), but the key cannot. How can Alice get the key to Bob? Remember the key is the thing that tells Bob how to convert the ciphertext back to plaintext. So Alice can’t include it in the encrypted message, because then Bob would be unable to access it! Alice can’t just include it as plaintext either, because then Eve will be able to get ahold of it and use it to decrypt any messages that come through using it! You might ask why Alice doesn’t just encrypt the key using a different encryption scheme, but then how will Bob know the new key? Alice would need to tell Bob the key that was used to encrypt it... and so on... this idea is definitely out!

    Remember that Alice and Bob might be in different countries, and can only communicate through the internet. This also rules out Alice simply passing Bob the key in person.

    Distributing keys physically is very expensive, and up to the 1970s large sums of money were spent physically sending keys internationally. Systems like this are callsymmetric encryption, because Alice and Bob both need an identical copy of the key. The breakthrough was the realisation that you could make a system that used different keys for encoding and decoding!

    8.4.2. SOLVING THE PROBLEM WITH PUBLIC KEY SYSTEMS

    One of the remarkable discoveries in computer science in the 1970s was a method called public key encryption, where it’s fine to tell everyone what the key is to encrypt any messages, but you need a special private key to decrypt it. Because Alice and Bob use different keys, this is called an asymmetric encryption system.

    It’s like giving out padlocks to all your friends, so anyone can lock a box and send it to you, but if you have the only (private) key, then you are the only person who can open the boxes. Once your friend locks a box, even they can’t unlock it. It’s really easy to distribute the padlocks. Public keys are the same — you can make them completely public — often people put them on their website or attach them to all emails they send. That’s quite different to having to hire a security firm to deliver them to your colleague.

    Public key encryption is very heavily used for online commerce (such as internet banking and credit card payment) because your computer can set up a connection with the business or bank automatically using a public key system without you having to get together in advance to set up a key. Public key systems are generally slower than symmetric systems, so the public key system is often used to then send a new key for a symmetric system just once per session, and the symmetric key can be used from then on with a faster symmetric encryption system.

    A very popular public key system is RSA. The following interactives use RSA so that you can try using a public key system for yourself.

    Firstly, you will need to generate a pair of keys using the key generator interactive. Note that each key consists of two numbers and the interactive separates them with a “+” (this does not mean addition). You should keep the private key secret, and publicly announce the public key so that your friends can send you messages (e.g. put it on the whiteboard, or email it to some friends). Make sure you save your keys somewhere so you don’t forget them — a text file would be best.

    RSA Key Generator

    Public Key

    Private Key

    The second interactive is the encrypter, and it is used to encrypt or decrypt messages with the keys. In order to encrypt messages for you, your friends should use your public key (and select the “encrypt” button on the interactive). In order to decrypt the messages your friends have sent you, you should use your private key (and select the “decrypt” button on the interactive).

    RSA Encrypter & Decrypter

    Mode

    Encrypt Decrypt

    Key

    Text

    Output

    Despite even your enemies knowing your public key (as you publically announced it), they cannot use it to decrypt your messages which were encrypted using the public key.

    Digital Signatures In order to encrypt a message, the public key is used. In order to decrypt it, the corresponding private key must be used. But what would happen if the message was encrypted using the private key? Could you then decrypt it with the public key? Initially this might sound like a silly thing to do, as why would you encrypt a message which can be decrypted using a key that everybody in the world can access!?! It turns out that indeed, encrypting a message with the private key and then decrypting it with the public key works, and it has a very useful application! The only person who is able to encrypt the message using the private key is the person who owns the private key. The public key will only decrypt the message if the private key that was used to encrypt it actually is the public key’s corresponding private key! If the message can’t be decrypted, then it could not have been encrypted with that private key. This allows the sender to prove that the message actually is from them, and is known as a digital signature.

    You could check that someone is the authentic private key holder by giving them a phrase to encrypt with their private key. You then decrypt it with the public key to check that they encrypted the phrase you gave them.

    Note that this interactive’s implementation of RSA only uses around 50 bits of encryption and has other weaknesses. It is just for demonstrating the concepts here and is not quite the same as the implementations used in live encryption systems. In the RSA chapter, we will look at a more realistic implementation.

    There’s a video illustrating how public key systems work using a padlock analogy which might help to understand how asymmetric keys could work.

    
      Jargon Buster
    

    Public key systems rely on one way functions, which are mathematical functions where it’s easy to calculate the output for a particular input, but very hard to work out the input given the output. In the physical world a telephone book is a one-way function: if you’re given a name, it’s easy to work out the number, but given someone’s phone number, it’s difficult to work out their name from the phone book. In cryptography a widely used one-way function is multiplying numbers. Given two large numbers, you can multiply them very quickly, but given the result of the multiplication, it is very difficult to find out what its factors are. For example, see if you can work out which numbers multiply to give 806,849,546,124,373,268,247,678,601. You could try writing a program to try every combination of factors, but you’ll probably find it takes too long. Although this particular number can be factorised by modern software, larger numbers can’t be, and this is a problem that mathematicians and computer scientists can’t find an efficient solution to.

    
      Jargon Buster
    

    The methods that we considered at the start of this chapter are symmetric key systems, which just means that you use the same key to encode and decode the text. Public key systems are often called asymmetric key systems, where the sender and receiver have different keys. An asymmetric system can make it a lot easier to distribute the encryption key, because if the eavesdropper gets hold of it, all they can do is encrypt messages, not decrypt them, so they are no use for attacking messages.

    8.5. THE RSA CRYPTOSYSTEM

    The RSA cryptosystem is a widely used algorithm for public key systems. Many real world cryptosystems are based on RSA. Because it is a public key system, this means that keys are in pairs; a private key and a public key. A message that was encrypted using the public key can only be decrypted using the private key. This means that the key owner is able to keep their private key secret, and distribute their public key to the world.

    In a nutshell, the RSA cryptosystem uses some clever math based on the unsolved mathematical problem of efficiently factoring a number which is the product of two prime numbers. If you need a reminder of what prime numbers and factoring a number are, read the Jargon Buster just below.

    
      Jargon Buster
    

    Remember that the factors of a number are all the numbers which divide into it without giving a remainder. For example: The factors of 12 are 1, 2, 3, 4, 6, and 12. Numbers such as 5 and 7 are NOT factors of 12, because 12 divided by 7 gives 1 remainder 5.

    If a number only has 1 and itself as factors (i.e. all other numbers would give a remainder if divided into it), it is a prime number (For example, the factors of 37 are only 1 and 37, making it a prime number).

    Factoring means to find all the factors of a number.

    Currently the only known algorithm to find what the two primes that were multiplied are is a brute force one that has to try most of the possibilities that are less the the number itself. If the number is massive, then that is a huge number of possibilities that need to be checked, and it cannot be done before the sun is expected to burn out, even with huge amounts of computing power! This problem is known as the factoring problem. A public and private key pair has a mathematical relationship to the primes that were used.

    If somebody was to find a good solution to this problem that could work on massive numbers, then RSA would no longer be secure, unlocking many important computer systems around the world including banks! Mathematicians are quite confident no such solution exists though. We aren’t going to go any further into the mathematical details here.

    The following interactive provides a key generator and encrypter/decrypter for RSA. http://travistidwell.com/jsencrypt/demo/

    Keys of various sizes can be generated, and then used to encrypt a message. Encryption is carried out using the public key. Decryption is carried out using the private key

    
      Easy vs Difficult problems in Computer Science
    

    If you were asked to multiply the following two big prime numbers, you might find it a bit tiring to do by hand (although it is definitely doable!), but could get an answer in milliseconds by putting it in the big numbers calculator! (included just below this box).

    
      97394932817749829874327374574392098938789384897239489848732984239898983986969870902045828438234520989483483889389687489677903899
    

    
      34983724732345498523673948934032028984850938689489896586772739002430884920489508348988329829389860884285043580020020020348508591
    

    If on the other hand you were asked what two prime numbers were multiplied to get the following big number, you’d have a lot more trouble! (If you do find the answer, let us know! We’d be very interested to hear about it!)

    
      3944604857329435839271430640488525351249090163937027434471421629606310815805347209533599007494460218504338388671352356418243687636083829002413783556850951365164889819793107893590524915235738706932817035504589460835204107542076784924507795112716034134062407
    

    So why is it that despite these two problems being similar, one of them is “easy” and the other one is “hard”? Well, it comes down to the algorithms we have to solve each of the problems. You have probably done long multiplication in school by making one line for each digit in the second number and then adding all the rows together. We can analyse the speed of this algorithm, much like we did in the algorithms chapter for sorting and searching. Assuming that each number has the same number of digits, which we will call n (“Number of digits”), we need to write n rows. For each of those n rows, we will need to do around n multiplications. That gives us n*n little multiplications. We need to add the n rows together at the end as well, but that doesn’t take long so lets ignore that part. We have determined that the number of small multiplications needed to multiply two big numbers is approximately the square of the number of digits. So for two numbers with 1000 digits, that’s 1,000,000 little multiplication operations. A computer can do that in less than a second! If you know about Big-O notation, this is a O(n^2) algorithm, where n is the number of digits! Note that some slightly better algorithms have been designed, but this estimate is good enough for our purposes.

    For the second problem, we’d need an algorithm that could find the two numbers that were multiplied together. You might initially say, why can’t we just reverse the multiplication? The reverse of multiplication is division, so can’t we just divide to get the two numbers? It’s a good idea, but it won’t work. For division we need to know the big number, and one of the small numbers we want to divide into it, and that will give us the other small number. But in this case, we only know the big number. So it isn’t a straightforward long division problem at all! It turns out that there is no known good algorithm to solve the problem. One way is to just try every number that is less than the number (well, we only need to go up to the square root, but that doesn’t help much!) There is still billions of billions of billions of numbers we need to check. Even a computer that could check 1 billion possibilities a second isn’t going to help us much with this! If you know about Big-O notation, this is an O(10^n) algorithm, where n is the number of digits – even small numbers of digits are just too much to deal with! There are slightly better solutions, but none of them shave off enough time to actually be useful for problems of the size of the one above!

    The chapter on Complexity and Tractability looks at more computer science problems which are surprisingly challenging to solve. If you found this stuff interesting, do read about Complexity and Tractability when you are finished here!

    
      Click to load

big number calculator
    

    What isn’t known though, is whether or not the general problem of breaking RSA is actually as difficult as the factoring problem. In other words, is there a completely different way of breaking it that does not involve factoring numbers?

    What happens when we try the tricks that we could use to break Caesar cipher?

    8.5.1. DOES RSA REVEAL ANY PATTERNS IN THE CIPHERTEXT?

    You will need to scroll up to the Caesar cipher interactive for this exercise.

    Using a Caesar cipher key of your choice, encrypt a short sentence, for example:

    
      “I HAVE A PET CAT”
    

    Now, encrypt a very similar sentence using the same key, for example:

    
      “I HAVE A PET BAT”
    

    Put the ciphertext for each side by side. As you might expect, they look very similar. This is problematic given that if Eve has the first message, she could probably use it to guess the second one! This means Caesar cipher is not semantically secure. It is essential that ciphers used in practice are!

    But what about RSA? Do similar plaintext messages lead to similar ciphertext messages when RSA is used?

    In order to find out, generate an RSA key and use it to encrypt each of the two above messages. What do you observe?

    Because of how RSA encrypts messages, the way each character is jumbled is dependent on all the other characters in the message. This makes many of the analysis techniques we used to break Caeser cipher useless for breaking RSA! Well, nearly...

    
      Jargon Buster: Semantically Secure
    

    Semantically secure means that there is no known efficient algorithm that can use the ciphertext to get any information about the plaintext, other than the length of the message. It is very important that cryptosystems used in practice are semantically secure.

    8.5.2. ADDING PADDING TO THE PLAINTEXT

    The plain RSA algorithm actually fails one important requirement of a good cryptosystem though! If Eve thinks she knows what message Alice is sending to Bob using public key encryption, she can attempt to encrypt that message using the public key and then see if the ciphertext she gets is the same as what Alice sent. If it is, she now knows what Alice sent Bob!

    Luckily, a simple solution to this problem has been found. Alice can add random padding to the plaintext message, which then gets mixed into her message in the ciphertext. As long as Bob’s computer knows how much padding is on the message so that once it decrypts the message, it can throw away the padding, this will work.

    For example, assume 5 characters of padding have been added onto the end of Alice’s message. Hi Bob, want to meet for lunch?1si98 Even if Eve knew it was likely Alice was asking Bob to go to lunch with her, she would have no way of knowing what random padding has been used. She might try Hi Bob, want to meet for lunch?72kld

    Try encrypting both of these messages using the same public key. Is there any way to know from the ciphertext that they are even the same message?

    Cryptosystems which implement RSA use padding in order to counteract this weakness of RSA in practice. This makes them semantically secure

    8.5.3. CAN WE JUST GUESS THE RSA KEY?

    You might remember from the Algorithms chapter that problems can have good and bad algorithms to solve them, and that a good algorithm is fast even when the size of the problem is massive. While we have no good algorithms for breaking a message that is encrypted with RSA without the key, we have good algorithms for encrypting or decrypting the message, given the appropriate key. This means that large keys can be used, that will take a long time to guess with brute force.

    If we were using a key size of 1024 bits (which is pretty standard), this would mean that there are 2^1024 different possible keys. Even if every computer in the world was working to guess the key and was able to check a million combinations a second, the universe will still end well before the key is guessed!

    You might like to calculate how long it would take for various levels of encryption to be broken. e.g. 256, 1024, 2048, and 4096 using a big numbers calculator.

    RSA normally uses keys in the size range of 1024 bits to 4096 bits. This makes it incredibly unlikely for somebody to guess the key!

    8.5.4. A PITFALL OF RSA

    So far RSA has held up really well against the potential attacks we have looked at. However, one big problem exists. How can Alice be certain that the public key she is about to use actually is Bob’s? This problem isn’t trivial, as Eve could easily publish that a public key belongs to Bob, when infact it is Eve that has the private key for it! All she has to do is get Alice to encrypt a message with that public key, mistakenly believing it is Bob’s, and she can now intercept and read the message with the private key she holds!

    No mathematical solution exists, although there is a practical solution. Public Key Certificates are distributed by Public Key Certificate Authorities (CA’s) in order to prove the ownership of a public key. This now assumes that the CA’s are trustworthy and that they won’t be fooled or compromised. For the most part it works, although there have been some worrying exceptions…

    8.6. THE WHOLE STORY!

    Many of the examples in this chapter use very weak encryption methods that were chosen to illustrate concepts, but would never be used for commercial or military systems.

    There are many aspects to computer security beyond encryption. For example, access control (such as password systems and security on smart cards) is crucial to keeping a system secure. Another major problem is writing secure software which doesn’t leave ways for a user to get access to information that they shouldn’t (such as typing a database command into a website query and have the system accidentally run it, or overflowing the buffer with a long input, which could accidentally replace parts of the program). Also, systems need to be protected from “denial of service” (DOS) attacks, where they get so overloaded with requests (e.g. to view a web site) that the server can’t cope, and legitimate users get very slow response from the system, or it might even fail completely.

    For other kinds of attacks relating to computer security, see the Wikipedia entry on Hackers.

    There’s a dark cloud hanging over the security of all current encryption methods: Quantum computing. Quantum computing is in its infancy, but if this approach to computing is successful, it has the potential to run very fast algorithms for attacking our most secure encryption systems (for example, it could be used to factorise numbers very quickly). In fact, the quantum algorithms have already been invented, but we don’t know if quantum computers can be built to run them. Such computers aren’t likely to appear overnight, and if they do become possible, they will also open the possibility for new encryption algorithms. This is yet another mystery in computer science where we don’t know what the future holds, and where there could be major changes in the future. But we’ll need very capable computer scientists around at the time to deal with these sorts of changes!

    On the positive side, quantum information transfer protocols exist and are used in practice (using specialised equipment to generate quantum bits); these provide what is in theory a perfect encryption system, and don’t depend on an attacker being unable to solve a particular computational problem. Because of the need for specialised equipment, they are only used in high security environments such as banking.

    8.7. FURTHER READING

    The Wikipedia entry on cryptography has a fairly approachable entry going over the main terminology used in this chapter (and a lot more)

    The encryption methods used these days rely on fairly advanced maths; for this reason books about encryption tend to either be beyond high school level, or else are about codes that aren’t actually used in practice.

    There are lots of intriguing stories around encryption, including its use in wartime and for spying e.g.

    
      	How I Discovered World War II’s Greatest Spy and Other Stories of Intelligence and Code (David Kahn)

      	Decrypted Secrets: Methods and Maxims of Cryptology (Friedrich L. Bauer)

      	Secret History: The Story of Cryptology (Craig Bauer)

      	The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet (David Kahn) — this book is an older version of his new book, and may be hard to get

    

    The following activities explore cryptographic protocols using an Unplugged approach; these methods aren’t strong enough to use in practice, but provide some insight into what is possible:

    
      	
        
        http://csunplugged.org/information-hiding
      

      	
        
        http://csunplugged.org/cryptographic-protocols
      

      	
        
        http://csunplugged.org/public-key-encryption
      

    

    War in the fifth domain looks at how encryption and security are key to our defence against a new kind of war.

    There are lots of articles in cs4fn on cryptography, including a statistical attack that lead to a beheading.

    The book “Hacking Secret Ciphers with Python: A beginner’s guide to cryptography and computer programming with Python” (by Al Sweigart) goes over some simple ciphers including ones mentioned in this chapter, and how they can be programmed (and attacked) using Python programs.

    8.7.1. USEFUL LINKS

    
      	
        How Stuff Works entry on Encryption
      

      	Cryptool is a free system for trying out classical and modern encryption methods. Some are beyond the scope of this chapter, but many will be useful for running demonstrations and experiments in cryptography.

      	
        Wikipedia entry on Cryptographic keys
      

      	
        Wikipedia entry on the Caesar cipher
      

      	
        Videos about modern encryption methods
      

      	
        Online interactives for simple ciphers
      

    

  
    9.1. WHAT’S THE BIG PICTURE?

    The parity magic trick (in the video above) enables the magician to detect which card out of dozens has been flipped over while they weren’t looking. The magic in the trick is actually computer science, using the same kind of technique that computers use to detect and correct errors in data. We will talk about how it works in the next section.

    The same thing is happening to data stored on computers — while you (or the computer) is looking away, some of it might accidentally change because of a minor fault. When the computer reads the data, you don’t want it to just use the incorrect values. At the least you want it to detect that something has gone wrong, and ideally it should do what the magician did, and put it right.

    This chapter is about guarding against errors in data in its many different forms — data stored on a harddrive, on a CD, on a floppy disk, on a solid state drive (such as that inside a cellphone, camera, or mp3 player), data currently in RAM (particularly on servers where the data correctness is critical), data going between the RAM and hard drive or between an external hard drive and the internal hard drive, data currently being processed in the processor or data going over a wired or wireless network such as from your computer to a server on the other side of the world. It even includes data such as the barcodes printed on products or the number on your credit card.

    If we don’t detect that data has been changed by some physical problem (such as small scratch on a CD, or a failing circuit in a flash drive), the information will just be used with incorrect values. A very poorly written banking system could potentially result in your bank balance being changed if just one of the bits in a number was changed by a cosmic ray affecting a value in the computer’s memory! If the barcode on the packet of chips you buy from the shop is scanned incorrectly, you might be charged for shampoo instead. If you transfer a music file from your laptop to your mp3 player and a few of the bits were transferred incorrectly, the mp3 player might play annoying glitches in the music. Error control codes guard against all these things, so that (most of the time) things just work without you having to worry about such errors.

    There are several ways that data can be changed accidentally. Networks that have a lot of “noise” on them (caused by poor quality wiring, electrical interference, or interference from other networks in the case of wireless). The bits on disks are very very small, and imperfections in the surface can eventually cause some of the storage to fail. The surfaces on compact disks and DVDs are exposed, and can easily be damaged by storage (e.g. in heat or humidity) and handling (e.g. scratches or dust). Errors can also occur when numbers are typed in, such as entering a bank account number to make a payment into, or the number of a container that is being loaded onto a ship. A barcode on a product might be slightly scratched or have a black mark on it, or perhaps the package is bent or is unable to be read properly due to the scanner being waved too fast over it. Bits getting changed on permanent storage (such as hard drives, optical disks, and solid state drives) is sometimes referred to as bit rot, and the wikipedia page on bit rot has a list of more ways that these errors can occur.

    Nobody wants a computer that is unreliable and won’t do what it’s supposed to do because of bits being changed! So, how can we deal with these problems?

    Error control coding is concerned with detecting when these errors occur, and if practical and possible, correcting the data to what it is supposed to be.

    Some error control schemes have error correction built into them, such as the parity method that was briefly introduced at the beginning of this section. You might not understand yet how the parity trick worked, but after the card was flipped, the magician detected which card was flipped, and was able to correct it.

    Other error control schemes, such as those that deal with sending data from a server overseas to your computer, send the data in very small pieces called packets (the network protocols chapter talks about this) and each packet has error detection information added to it.

    Error detection is also used on barcode numbers on products you buy, as well as the unique ISBN (International Standard Book Number) that all books have, and even the 16 digit number on a credit card. If any of these numbers are typed or scanned incorrectly, there’s a good chance that the error will be detected, and the user can be asked to re-enter the data.

    By the end of this chapter, you should understand the basic idea of error control coding, the reasons that we require it, the differences between algorithms that can detect errors and those that can both detect and correct errors, and some of the ways that error control coding is used, in particular parity (focussing on the parity magic trick) and the check digits used to ensure book numbers, barcode numbers, and credit card numbers are entered correctly.

    9.2. THE PARITY MAGIC TRICK

    If you have never seen the parity magic trick before, check out the video in the “What’s the Bigger Picture?” section above. This section assumes that you know what is meant by the parity magic trick, but now we’ll explain how it actually works!

    A magician asks an observer to lay out a square grid of two-sided cards, and the magician then says they are going to make it a bit harder, and add an extra row and column to the square. The magician then faces the other way while the observer flips over one card. The magician turns back around again, and tells the observer which card was flipped!

    The question now is, how did the magician know which card had been flipped without seeing the card being flipped, or memorising the layout?! The short answer is error control coding. Let’s look more closely at that…

    9.2.1. CARRYING OUT THE PARITY TRICK

    You are now going to take the role of the magician and carry out the trick yourself. The interactive below will allow you to practice it.

    In the interactive, the computer has a 7x7 grid of black and white cards. You must choose the colour of an extra card for each row (at the right) and column (at the bottom), making an 8x8 grid of cards. Each extra card should be chosen so that each row and column has an even number of black cards (since there are 8 cards, there will also be an even number of white cards). The bottom right-hand card can be chosen from either its row or column; they should both give the same colour. Once you think you have this correct, you should tell the computer to flip a card. An animation will appear for a few seconds, and then the cards will reappear with one card flipped (all the rest will be the same as before). Your task is to identify the flipped card. You should be able to do this without having memorised the layout. Remember the pattern you made with the extra cards you added? That’s the key to figuring it out. Once you think you have identified the card, click it to see whether or not you were right! The interactive will guide you through these instructions. If you are completely stuck identifying the flipped card, a hint follows the interactive, although you should try and figure it out for yourself first! Make sure you add the extra cards correctly; the computer won’t tell you if you get them wrong, and you probably won’t be able to identify the flipped card if the extra cards aren’t chosen correctly.

    
      Click to load the parity widget
    

    Remember how you made it so that each column had an even number of black cards? When a card is flipped, this results in the row and column that the card was in having an odd number of black cards. So all you need to do is to identify the row and column that have an odd number of black and white cards, and the card that is at the intersection of them must be the one that was flipped!

    What we saw above is a simple error control coding algorithm, known as 2-dimensional parity.

    The cards represent bits, with their two states being black and white (in the “data representation” chapter we looked at how a bit can be stored by anything that can be in one of two states: shiny/not shiny, magnetised/not magnetised, high voltage/low voltage, black/white, etc). The original 7x7 cards that the computer laid out for you could be some kind of data, for example some text represented using bits, or an image, or some numbers. Although they are laid out in a grid, on a computer the rows of bits would be stored or transmitted one after the other (as 8 lots of 8 bits).

    The extra cards you added are called parity bits. Parity simply means whether a number is even or odd (the word comes from the same root as “pair”). By adding the extra cards in a way that ensured an even number of black cards in each row and column, you made it so that the rows and columns had what is called even parity.

    When a card was flipped, this simulated an error being made in your data (such as a piece of dust landing on a bit stored on a CD, or a cosmic ray changing a bit stored on a hard disk, or electrical interference changing a bit being sent over a network cable). Because you knew that each row and column was supposed to have an even number of black and white cards in it, you could tell that there was an error from the fact that there was a column and row that had an odd number of black cards in it. This means that the algorithm is able to detect errors, i.e. it has error detection. The specific card that had been flipped was at the intersection of the row and column that had an odd number of black cards and white cards in them, and because you were able to identify exactly which card was flipped, you were able to correct the error, i.e the algorithm has error correction.

    If you had not added the parity bits, you would have had no way of even knowing an error had occurred, unless you had memorised the entire layout of cards! And what if more than one bit had been flipped? We’ll consider this later.

    
      Being a magician
    

    Now that you have learnt how the parity trick works, you might like to try it with a physical set of cards like the busker in the video, or you could use any objects with two distinct sides, such as coins or cups. You could use playing cards, but the markings can be distracting, and cards with two colours are easiest (you can make them by cutting up sheets of card with the two colours on, or single coloured card with a scribble or sticker on one side).

    You can find details and lots of ideas relating to the trick here, or follow these instructions:

    
      	Ask a friend to lay out 25 cards in a 5 by 5 grid, trying to have a reasonably random mix of blacks and whites (this is smaller than the one in the interactive, but it is easier to have fewer cards to avoid errors in the next step!)

      	Take all the remaining cards, and then say that actually, 5 by 5 is too easy so you are going to make it 6 by 6. Instead of adding the new row and column randomly though, you are adding them in the way you did in the interactive (even parity). Do this as fast as you can without making errors (it can look very casual if you practise this, even though the cards are being carefully selected).

      	Tell your friend that you are going to face the other way, and you want them to flip over one card while you are not looking.Check that they’ve flipped exactly one card.

      	Turn around again once they have flipped a card, look through the rows and columns, identifying a row and then a column that has an odd number of black cards in it. The flipped card will be the one at the intersection of that row and column. Flip that card back over.

    

    It would take some practice to be able to add the extra cards, and identify the flipped card without the observer noticing that you are thinking hard about it. With practice you should be able to do it while having a casual conversation. Once you master it, you’ve got a great trick for parties, or even for busking.

    To make it more showy, you can pretend that you are mind reading the person, waving your hands over the cards. A particular impressive variation is to have an assistant come in to the room after the card has been flipped; even though they haven’t seen any of the setup, they will still be able to detect the error.

    9.2.2. INVESTIGATING THE PARITY TRICK A LITTLE FURTHER

    At this point, you should be able to carry out the parity trick well enough that you can demonstrate that you understand how to do it. The remainder of this section is focussed on exploring further ideas in error control coding related to the parity trick. You can either continue to read through the rest of this section and explore the interesting questions raised, or you can skip forward to one of the other sections.

    It would be ideal to have some physical parity cards at this point that you can layout in front of you and play around with to explore the questions raised.

    An error control coding algorithm can often detect errors more easily than it can correct them. Errors involving multiple bits can sometimes even go undetected. What if the computer (or your friend if you were being a magician with actual parity cards) had been sneaky and turned over two cards instead of one? You could start by getting a friend or classmate to actually do this. Repeat it a few times. Are you always able to correct the errors, or do you get it wrong?

    Remember that to detect errors using this algorithm, you know that if one or more rows and/or columns has an odd number of blacks and whites in it, that there must be at least one error. In order to correct errors you have to be able to pinpoint the specific card(s) that were flipped.

    Are you always able to detect when an error has occurred if 2 cards have been flipped? Why? Are you ever able to correct the error? What about with 3 cards?

    There is actually a way to flip 4 cards where the error is then undetected meaning that the algorithm will be unable to detect the error. Can you find a way of doing this?

    With more parity cards, we can detect and possibly correct more errors. Lets explore a very simple system with minimal parity cards. We can have a 7x7 grid of data with just one parity card. That parity card makes it so that there is an even number of black cards in the entire layout (including the parity card). How can you use this to detect errors? Are you ever able to correct errors in this system? In what situations do errors go undetected (think when you have multiple errors, i.e. more than one card flipped).

    So going back to the actual parity trick that has the 7 by 7 grid, and 15 parity cards to make it 8 by 8, it is interesting to note that only 1 extra card was needed to detect that an error had occurred, but an extra 15 cards were needed to be able to correct the error. In terms of the cost of an algorithm, it costs a lot more space to be able to correct errors than it does to be able to simply detect them!

    What happens when you use grids of different sizes? The grid doesn’t have to have an even number of black cards and an even number of white cards, it just happens that whenever you have an even number sized grid with the parity bits added (e.g. the 8x8 we have mostly used in this section) and you have an even number of black cards, you will also have to have an even number of whites, which makes it a bit easier to keep track of.

    Try a 6x6 grid with parity cards to make it 7x7. The parity cards simply need to make each row and column have an even number of black cards (in this case there will always be an odd number of white cards in each row and column). The error detection is then looking for rows and columns that have an odd number of black cards in them (but an even number of white cards). Interestingly, the grid doesn’t even have to be a square! You could use 4x7 and it would work!

    There’s also no limit on the size. You could create a 10x10 grid (100 cards), and still be able to detect which card has been flipped over. Larger grids make for an even more impressive magic trick.

    9.3. CHECK DIGITS ON BARCODES AND OTHER NUMBERS

    You probably wouldn’t be very happy if you bought a book online by entering the ISBN (International Standard Book Number), and the wrong book was sent to you, or if a few days after you ordered it, you got an email saying that the credit card number you entered was not yours, but was instead one that was one digit different and another credit card holder had complained about a false charge. Or if you went to the shop to buy a can of drink and the scanner read it as being a more expensive product. Sometimes, the scanner won’t even read the barcode at all, and the checkout operator has to manually enter the number into the computer — but if they don’t enter it exactly as it is on the barcode you could end up being charged for the wrong product. These are all examples of situations that error control coding can help prevent.

    Barcode numbers, credit card numbers, ISBNs, the NHI (National Health Index, the unique identifier given to all users of the NZ health system), IRD numbers (Inland Revenue Department number for all NZ taxpayers) all have error control coding in them to help reduce the chance of errors. The last digit in each of these numbers is a check digit, which is obtained doing a special calculation on all the other digits in the number. If for example you enter your credit card number into a web form to buy something, it will calculate what the 16th digit should be, using the first 15 digits and the special calculation (there are 16 digits in a credit card number). If the 16th digit that it expected is not the one you entered, it can tell that there was an error made when the number was entered and will notify you that the credit card number is not valid.

    In this section we will be initially looking at one of the most commonly used barcode number formats used on most products you buy from supermarkets and other shops. We will then be having a look at credit card numbers. You don’t have to understand why the calculations work so well (this is advanced math, and isn’t important for understanding the overall ideas), and while it is good for you to know what the calculation is, it is not essential. So if math is challenging and worrying for you, don’t panic too much because what we are looking at in this section isn’t near as difficult as it might initially appear!

    9.3.1. CHECK DIGITS ON PRODUCT BARCODES

    Most products you can buy at the shop have a barcode on them with a 13 digit global trade item number (referred to as GTIN-13). The first 12 digits are the actual identification number for the product, the 13th is the check digit calculated from the other 12. Not all barcodes are GTIN-13, there are several others around. If the barcode has 13 numbers in it, it is almost certainly GTIN-13.

    The following spreadsheet checks GTIN-13 barcodes. Enter a barcode number into the interactive, and it will tell you whether or not you typed it correctly! Start by using the barcode number of a box of 30 cans of coke; “9 300675 036009”. What happens if you then change one digit to something else?

    
      Click here to download the spreadsheet.
    

    Have a look for another product that has a barcode on it, such as a food item from your lunch, or a stationery item. Your teacher might also bring various packaging that has barcodes on it for you to try. Note that some barcodes are a little different. Make sure the barcodes that you are using have 13 digits (although you might like to go and find out how the check digit works on some of the other ones). Hopefully you will find that the interactive is always able to determine whether or not you typed the barcode correctly!

    One of the following product numbers has one incorrect digit. Can you tell which of the products is wrong?

    
      	9 400550 619775

      	9 400559 001014

      	9 300617 013199

    

    If you were scanning the above barcodes in a supermarket, the incorrect one will need to be rescanned, and the system can tell that it’s a wrong number without even having to look it up.

    You could try swapping barcode numbers with a classmate, but before giving them the number toss a coin, and if it’s heads, change one digit of the barcode before you give it to them. Can they determine that they’ve been given an erroneous barcode?

    If one of the digits is incorrect, this calculation will produce a different value to the checksum, and signals an error. So single digit errors will always be detected, but what if two digits change — will that always detect the error?

    What if the error is in the checksum itself but not in the other digits - will that be detected?

    9.3.2. HOW DO CHECK DIGITS PROTECT AGAINST COMMON HUMAN ERRORS?

    People can make mistakes when they enter numbers into computers, and even barcode scanners can get a digit wrong. Check digits attempt to detect when an error has occurred and notify the computer and/or person of it. Suppose you give your cellphone number to a friend so that they can contact you later. To ensure that you told them the number correctly, you may get them to text you immediately to confirm (and so that you have their number too). If you don’t get the text you will probably double check the number and will find that your friend made an error, for example they got a digit wrong or they reversed 2 digits next to one another. Mistakes happen, and good systems prevent those mistakes from having annoying or even serious consequences. If a check digit is being used, there is a good chance that the error will be detected when the check digit is not what the computer expects it to be.

    Some of the really common errors are:

    
      	Getting one digit wrong (substitution)

      	Swapping two digits that are adjacent (transposition)

      	Missing a digit

      	Adding a digit

    

    The last two will be picked up from the expected length of the number; for example,a GTIN-13 has 13 numbers, so if 12 or 14 were entered, the computer immediately knows this is not right. The first two depend on the check digit in order to be detected. Interestingly, all one digit errors will be detected by common checksum systems, and most transpositions will be detected (can you find examples of transpositions that aren’t detected, using the interactive above?)

    There are also some less common errors that people make - Getting a digit wrong in two or more different places - Doubling the wrong digit, e.g. putting 3481120 instead of 3481220 - Muddling 3 digits, e.g. 14829 instead of 12489 - Phonetic errors are possible when the number was read and typed by somebody listening (or reading the number to themselves as they type it). For example, “three-forty” (340) might be heard as “three-fourteen” (314), and numbers like 5 and 9 can sound similar on a bad phone line.

    Experiment further with the interactives for the product barcodes and/or credit card numbers. What errors are picked up? What errors can you find that are not? Are the really common errors nearly always picked up? Can you find any situations that they are not? Try to find examples of errors that are detected and errors that are not for as many of the different types of errors as you can.

    Writing a program to calculate checksums is a good programming exercise. It can be made simple by having each digit entered separately, or part of the exercise could be to separate the digits. It’s also not hard to create a spreadsheet to do these calculations.

    9.3.3. HOW IS THE CHECK DIGIT ON PRODUCT BARCODES CALCULATED?

    The first 12 numbers of the barcode represent information such as the country origin, manufacturer, and an identifier for the product. The 13th digit is a check digit, it is calculated from the first 12 digits.

    So, given the first 12 digits of a barcode number, how is the 13th digit calculated? The following algorithm is used (also, see the example below).

    
      	Multiply every second digit (starting with the second digit) by 3, and every other digit by 1 (so they stay the same).

      	Add up all the multiplied numbers to obtain the sum.

      	The check digit is whatever number would have to be added to the sum in order to bring it up to a multiple of 10 (i.e. the last digit of the sum should be 0). Or more formally, take the last digit of the sum and if it is 0, the check digit is 0. Otherwise, subtract the last digit from 10 to obtain the check digit.

    

    Lets look at an example to illustrate this algorithm. We want to confirm that the check digit that was put on the barcode of a bottle of coke was the correct one. Its barcode number is 9300675032247. The last digit, 7, is the check digit. So we take the first 12 digits and multiply them by 1 or 3, depending on their positions (9x1+3x3+0x1+0x3+6x1+7x3+5x1+0x3+3x1+2x3+2x1+4x3). We then add up all the multiplied numbers, obtaining a sum of 73. We want to add the check digit that will bring the sum up to the nearest multiple of 10, which is 80. This number is 7, which is indeed the check digit on the coke bottle’s barcode.

    The algorithm to check whether or not a barcode number was correctly entered is very similar. This time, we are using all 13 digits.

    
      	Multiply every second digit (starting with the second digit) by 3, and every other digit by 1. This includes the 13th digit.

      	Add up all the multiplied numbers to obtain the sum

      	If the last digit of the sum is a 0, the number was entered correctly.

    

    
      Hint
    

    A quick way to add up a checksum that can be done in your head with some practice is to separate the numbers to be multiplied by 3, add them up, and then multiply by 3. For the example above (9300675032247) the two groups are 9+0+6+5+3+2+7 = 32 and 3+0+7+0+2+4= 16. So we add 32 + 16x3, which gives the total of 80 including the check digit.

    
      For Experts: Why does this algorithm work so well?
    

    In order to be effective, the algorithm needs to ensure the multiplied digits will not add up to a multiple of 10 any more if the digits are changed slightly. The choice of multipliers affects how likely it is to detect small changes in the input. It’s possible to analyse these mathematically to work out what sorts of errors can be detected.

    The check digit on barcodes is described in the >. Basically every second digit is multiplied by 3, and the sum of these multiples are added to the remaining digits.

    Lets look at some smaller examples with 5 digits (4 normal digits and a check digit), as the same ideas will apply to the 13 digit numbers.

    If we need a check digit for 8954, we would calculate (8x1)+(9x3)+(5x1)+(4x3)=52, and in order to bring this up to 60, we need to add 8. This makes the full number 89548.

    The first thing we should observe is that only the ones column (last digit) of each number added have any impact on the check digit. 8+27+5+12=52, and 8+7+5+2=22 (only looking at the last digit of each number we are adding). Both these end in a 2, and therefore need 8 to bring them up to the nearest multiple of 10. You might be able to see why this is if you consider that the “2” and “1” were cut from the tens column, they are equal to 10+20=30, a multiple of 10. Subtracting them only affects the tens column and beyond. This is always the case, and therefore we can simplify the problem by only adding the ones column of each number to the sum. (This can also be used as a shortcut to calculate the checksum in your head).

    
      Protection against single digit errors
    

    Next, lets look at why changing one digit in the number to another digit will always be detected with this algorithm. Each digit will contribute a number between 0 and 9 to the sum (remember we only care about the ones column now). As long as changing the digit will result in it contributing a different amount to the sum, it becomes impossible for it to still sum to a multiple of 10. Remember that each digit is either multiplied by 1 or 3 before its ones column is added to the sum.

    A number being multiplied by 1 will always contribute itself to the sum. If for example the digit was supposed to be 9, no other single digit can contribute 9 to the sum. So those multiplied by 1 are fine.

    But what about those multiplied by 3? To answer that, we need to look at what each different digit contributes to the sum when multiplied by 3.

    
      
        	1 -> 3

        	2 -> 6

        	3 -> 9

        	4 -> 2 (from 12)

        	5 -> 5 (from 15)

        	6 -> 8 (from 18)

        	7 -> 1 (from 21)

        	8 -> 4 (from 24)

        	9 -> 7 (from 27)

        	0 -> 0

      

    

    If you look at the right hand column, you should see that no number is repeated twice. This means that no digit contributes the same amount to the sum when it is multiplied by 3!

    Therefore, we know that all single digit errors will be detected.

    
      Protection against swapping adjacent digit errors
    

    Seeing why the algorithm is able to protect against most swap errors is much more challenging.

    If two digits are next to one another, one of them must be multiplied by 1, and the other by 3. If they are swapped, then this is reversed. For example, if the number 89548 from earlier is changed to 85948, then (5x3)+(9x1)=24 is being added to the total instead of (9x3)+(5x1)=32. Because 24 and 32 have different values in their ones columns, the amount contributed to the total is different, and therefore the error will be detected.

    But are there any cases where the totals will have the same values in their ones columns? Another way of looking at the problem is to take a pair of rows from the table above, for example:

    
      
        	8 -> 4

        	2 -> 6

      

    

    Remember that the first column is how much will be contributed to the total for digits being multiplied by 1, and the second column is for those being multiplied by 3. Because adjacent digits are each multiplied by a different amount (one by 3 and the other by 1), the numbers diagonal to each other in the chosen pair will be added.

    If for example the first 2 digits in a number are “28”, then we will add 2+4=6 to the sum. If they are then reversed, we will add 8+6=14, which is equivalent to 4 as again, the “10” part does not affect the sum. 8+6 and 2+4 are the diagonals of the pair!

    
      
        	8 -> 4

        	2 -> 6

      

    

    So the question now is, can you see any pairs where the diagonals would add up to the same value? There is one!

    
      Protection against twin errors
    

    A twin error is where a digit that is repeated twice in a number is changed to a different digit that is repeated twice. For example, if we have “22” in the number, somebody might somehow change it to “88”.

    When two numbers are side by side, one is multiplied by 3 and the other by 1. So the amount contributed to the total is the sum of the number’s row in the above table. For example, 2 has the row “2->6”. This means that 2+6=8 will be contributed to the sum as a result of these two digits.

    If any rows add up to the same number, this could be a problem. Where the sum was over 10, the tens column has been removed.

    
      
        	1 -> 3 adds to “4”

        	2 -> 6 adds to “8”

        	3 -> 9 adds to “2”

        	4 -> 2 adds to “6”

        	5 -> 5 adds to “0”

        	6 -> 8 adds to “4”

        	7 -> 1 adds to “8”

        	8 -> 4 adds to “2”

        	9 -> 7 adds to “6”

        	0 -> 0 adds to “0”

      

    

    Some of the rows add up to the same number! Because both 4 and 9 add up to 6, the error will not be detected if “44” changes to “99” in a number!

    Rows that do not add will be detected. From the example above, if 22 changes to 88, this will be detected because 22’s total is 8, and 88’s total is 2.

    
      An error which is never detected
    

    Another error that people sometimes make is the jump transposition error. This is where two digits that have one digit in between them are swapped, for example, 812 to 218.

    A pair of numbers that are two apart like this will always be multiplied by the same amount as each other, either 1 or 3. This means that the change in position of the numbers does not affect what they are multiplied by, and therefore what they contribute to the sum. So this kind of error will never be detected.

    9.3.4. CHECK DIGITS ON CREDIT CARD NUMBERS

    Credit card numbers also have check digits. These can be used by online purchasing systems to ensure that the credit card number entered was entered correctly way before having to check with the bank to see if the number is legitimate. This isn’t a good protection against fraud, but it does check that a legitimate user hasn’t made a simple mistake that makes it look like they are trying to commit a fraud, or that a completely random number has been typed in. A credit card number has 16 digits in it: 15 digits that make up the number, and then the last digit is a check digit.

    Before we go any further investigating credit card numbers, there are a few ethical and privacy issues we must consider. While credit card numbers are not secret, just like your home address you would not give your credit card number to just anybody. There are fraudsters around who collect credit card numbers and attempt to use other peoples credit cards. (One of the main reasons Paypal exists is that it hides the credit card number from the seller, and only Paypal needs to be trusted with this sensitive information, rather than every person you make a payment to on the internet.)

    It is not really a good idea to include experiments in an assessed report that contain your credit card number or your parents’ credit card number. You also need to be careful about making credit card numbers up, as the number you make up could potentially be somebody’s valid credit card number. There is a range of credit card numbers that are only used as test numbers, which start with 5413 30. If you are giving examples using credit cards, we recommend that you use numbers in this range in your report. You can use the following generator to generate test credit card numbers in this range.

    JACK PUT THE CREDIT CARD NUMBER GENERATOR HERE

    The interactive below allows you to experiment with numbers from the above generator, and see what kinds of errors are detected and which are not (use the information from the previous sections to guide your experimentation). Note that it only accepts numbers from the above generator, as we don’t want you checking real credit card numbers with this interactive!

    9.3.5. THE ALGORITHM FOR CALCULATING CREDIT CARD NUMBER CHECK DIGITS

    9.4. THE WHOLE STORY!

    The codes discussed in this chapter are all widely used, but the most widely used codes for data storage are more sophisticated because they need to deal with more complex errors than a single bit changing. For example, if a CD is scratched of a hard disk has a small fault, it’s likely to affect many adjacent bits. These systems use codes based on more advanced mathematical concepts. The most widely used codes for storage and data transfer are the Reed-Solomon codes and Cyclic Redundancy Check (CRC). For human readable numbers such as bar codes, bank numbers, tax numbers, social security numbers and so on, checksums are very common, and the Luhn algorithm is one of the more widely used. Larger checksums are also used to check that downloaded files are correct. The parity method is a form of Hamming code.

    9.5. FURTHER READING

    9.5.1. USEFUL LINKS

    
      	
        CS Unplugged Parity Trick
      

      	CS4FN has a free book that contains the Parity Trick and a number of other tricks related to computer science.

      	Techradar has more information about error detection and correction

      	
        An explanation of error correcting codes
      

      	
        A check digit calculator for common bar codes
      

    

  
    10.1. WHAT’S THE BIG PICTURE?

    Artificial Intelligence conjures up all sorts of images — perhaps you think of friendly systems that can talk to you and solve tough problems; or maniac robots that are bent on world domination? There’s the promise of driverless cars that are safer than human drivers, and the worry of medical advice systems that hold peoples lives in their virtual hands. The field of Artificial Intelligence is a part of computer science that has a lot of promise and also raises a lot of concerns. It can be used to make decisions in systems as large as an aeroplane or an autonomous dump truck , or as small as a mobile phone that accurately predicts text being typed into it. What they have in common is that they try to mimic aspects of human intelligence. And importantly, such systems can be of significant help in people’s everyday lives.

    AI (also known as intelligent systems) is primarily a branch of computer science but it has borrowed a lot of concepts and ideas from other fields, especiallymathematics (particularly logic, combinatorics, statistics, probability and optimisation theory), biology , psychology , linguistics , neuroscience and philosophy.

    In this chapter we’ll explore a range of these intelligent systems. Inevitably this will mean dealing with ethical and philosophical issues too — do we really want machines to take over some of our jobs? Can we trust them? Might it all go too far one day? What do we really mean by a computer being intelligent? While we won’t address these questions directly in this chapter, gaining some technical knowledge about AI will enable you to make more informed decisions about the deeper issues.

    10.2. CHATTERBOTS AND THE TURING TEST

    

    Many humans take for granted the fact that they can easily have a conversation with another person, and choose appropriate things to say based on the conversation. The ability to do this is a form of intelligence, and for computers it isn’t so easy! Many attempts have been made to design computer programs that can have a conversation with a human and sound intelligent. These computer programs are called chatterbots, or just chatbots. This book uses the former term, although you may see both being used in other books or websites.

    10.2.1. A THERAPY SESSION WITH ELIZA THE CHATTERBOT

    One such chatterbot is Eliza. Eliza attempts to sound like a Rogerian Psychotherapist, and sounds most intelligent in the kind of conversation that would be had in such a therapy session. (Rogerian Psychotherapy is a technique that revolves around trying to understand the client by asking questions and reflecting their statements back to clarify that they’ve been understood).

    Warning

    Eliza is a system that was intended to get people thinking about AI, and you should not use it for your own therapeutic usage. You should never enter personal information into a computer that you wouldn’t want anybody else reading, as you can never be certain that the web site isn’t going to store the information or pass it on to someone. So you don’t want to be telling Eliza the kinds of things a person would say in a therapy session — just make stuff up when talking to Eliza! For the same reason, do not tell any chatterbot other personal information such as your full name, date of birth, or address.

    Go to the link just below and have a conversation with Eliza (keeping in mind that she is supposed to be a Rogerian Psychotherapist, so will respond like one).

    
      Click here for the Eliza chatterbot at nlp-addiction
    

    

    Do you think Eliza is as smart as a human? Would you believe she was a human if somebody told you she was?

    You will probably agree that while Eliza sounds somewhat intelligent at times, she gives very vague and general replies, forgets earlier parts of the conversation, and says some things that sound very strange! As an example, here is a conversation with Eliza:

    Eliza: Hello, I am Eliza. Human: Hello I am a human Eliza: Do you believe it is normal to be a human? Human: Yes Eliza: Are you Sure? Human: Yes Eliza: Why did you repeat yourself?

    Eliza often gives very general replies by looking for suitable rules based only on the line you’ve just typed, and that often leads to some very weird conversations, such as the one above! In this case Eliza used pattern matching to determine that it might be appropriate to ask me “Do you believe it is normal to be a human?”, as I had said I was a human; if I had said “I am a banana” then the same rule would have responded with “Do you believe it is normal to be a banana?”. When I answered “Yes”, Eliza didn’t actually understand the meaning of me saying “Yes”, so simply asked me if I was sure, as it has a general response that says a good way of responding to somebody saying “Yes” is to ask them if they were sure. Eliza also has rules that are triggered if somebody repeats themselves that say she should ask them why. Because Eliza doesn’t actually understand meanings but instead just follows rules that say what might be appropriate responses, she had no way of knowing that it actually was meaningful for me to respond with “Yes” twice! This is a big giveaway that Eliza really isn’t that intelligent, and doesn’t actually understand meanings in conversation, or even whether or not a response to her own question is actually reasonable.

    Now go back and have another conversation with Eliza. There are many other examples of Eliza saying stuff that makes no sense such as the above dialogue. How many can you find? In addition, how does Eliza respond when you do the following things?

    
      	Try being a “parrot” that just copies everything Eliza says.

      	What happens when you don’t give meaningful answers to her questions?

      	If you say the same thing you said earlier in the conversation, does Eliza always respond in the same way? (When you say it immediately after, she probably won’t, as she’ll comment on the fact that you repeated yourself the second time!)

      	What happens when you talk about things that are unrelated to what would be said in a therapy session, i.e. you try to have a general conversation with Eliza (remember that Eliza works in a restricted domain, i.e. she assumes she is a therapist).

    

    10.2.2. ALICE THE CHATTERBOT

    We saw above that Eliza is a chatterbot who works with a restricted domain (trying to take the role of a therapist), and tried to sound intelligent by giving very general responses. As you probably found out though, this quickly reveals that Eliza really isn’t intelligent at all, and will just repeat the same things over and over again. In addition, you probably also noticed that Eliza frequently doesn’t make a lot of sense, and comes up with sentences that make no sense to a human.

    Try having a conversation with another chatterbot — Alice. Note that she knows you as “judge”. You might work out why she calls you this once you have read the sections on the Turing Test below!

    
      Click here for the Alice chatterbot at pandorabots.com
    

    

    Does Alice sound more intelligent than Eliza? Does she sound as intelligent as a human, or can you trick her into saying things that make no sense? Try using the same tricks you used to fool Eliza and see if they fool Alice as well. (Look back at the list of bullet points in the Eliza section just above).

    Like Eliza, Alice also uses hard coded rules to know what to say, although she has a lot more of these rules and a more sophisticated algorithm for choosing which rules should be used to determine what to say. If you want to know more, just ask Alice how she works, and she’ll tell you!

    Some possible rules that Alice might have are,

    
      	If “favourite colours” are mentioned, say your favourite colour is “green”,

      	if family members are mentioned (e.g. “mum”, “dad”, or “brother”) say something that is about family.

    

    To use the rules, the chatterbot analyses your last sentence (and possibly earlier sentences also) by matching the sentence against the patterns in its rules. If the sentence matches the rule pattern, it “activates” the rule. The rule will specify a reply. Sometimes the reply is just a template for a sentence, and the chatterbot analyses the text you typed to extract words that can be inserted into the template. That’s why the replies sometimes use part of what you typed.

    The quality of these rules determines how intelligent the chatterbot will sound.

    While Alice is undoubtedly more intelligent than Eliza, Alice still has her limitations. Sometimes she even admits to those limitations!

    Judge: What will happen in the year 2000 ALICE: I cannot predict the future. Judge: That is the past ALICE: Yes it is one of the past. Judge: Then why did you say you can’t predict the future? ALICE: It was a preprogrammed response completely determined by your statements.

    I suppose I was a bit mean for tricking her and saying “what will”. Her rules assume a human wouldn’t mislead her like that.

    10.2.3. CHATTERBOTS THAT LEARN FROM HUMANS

    We saw in the previous sections examples of two chatterbots that have rules that help them determine suitable things to say. One of those chatterbots only works in a restricted domain, taking the role of a therapist, and is unable to have very general conversations, and the other is able to have more general conversations. Both these chatterbots had their rules of what to say determined by programmers at the time of programming, and these rules will never be changed unless a programmer decides to change them.

    There are other chatterbots that are able to learn their rules from the humans they have conversations with. By looking at how a human responds to various dialogues, the chatterbot attempts to learn how it should respond in various situations. The idea is that if it responds in similar ways to what a human does, then perhaps it will sound like a human. Most of these chatterbots aim to have very general conversations, i.e. they aren’t restrained to one domain such as Eliza the therapist is.

    If it is human intelligence you are trying to simulate, then perhaps learning from humans is the way to go?

    Warning

    Please note that the following exercise involves interacting with one of these chatterbots. Because the chatterbot has learnt from humans, it will quite possibly have been taught to say things that you may find highly offensive. While we have tried to choose chatterbots that mostly say things that aren’t going to offend, it is impossible to guarantee this, so use your discretion with them; you can skip this section and still cover the main concepts of this chapter. Because Eliza and Alice don’t learn from humans, they won’t say offensive things unless you do first!

    And again, don’t tell the chatterbots your personal details (such as your full name, date of birth, address, or any other information you wouldn’t be happy sharing with everybody). Make stuff up where necessary. A chatterbot that learns from people quite possibly will pass on what you say to other people in an attempt to sound intelligent to them!

    These warnings will make more sense once you’ve learnt how these chatterbots work.

    An example of a chatterbot that learns from humans is Cleverbot.

    
      Click on this link to have a conversation with Cleverbot
    

    
      
    

    Unlike Eliza and Alice, whose rules of what to say were determined by programmers, Cleverbot learns rules based on what people say. For example, when Cleverbot says “hi” to a person, it keeps track of all the different responses that people make to that, such as “hi”, “hello!”, “hey ya”, “sup!”. A rule is made that says that if somebody says hi to you, then the things that people have commonly said in response to Cleverbot saying hi are appropriate things to say in response to “hi”. In turn, when Cleverbot says something like “sup!” or “hello!”, it will look at how humans respond to that in order to learn appropriate response for those. And then it will learn responses for those responses. This allows Cleverbot to built up an increasingly large database.

    An implication of learning from humans is that Cleverbot makes the assumption that the humans actually are intelligent, and will teach it to say intelligent things. If for example people told Cleverbot something like “School is boring” in response to Cleverbot saying “hi”, Cleverbot might learn that when a person says “hi” to it, it should say “School is boring”!

    
      Curiosity: A short film written by Cleverbot
    

    Check out the short film “Do You Love Me” (~3 mins), that Chris R Wilson collaborated with Cleverbot to write a movie script.

    10.2.4. EVEN MORE CHATTERBOTS!

    There are even more chatterbots you can talk to. Try looking at the list on wikipedia, or doing a google search for chatterbots. Each chatterbot on this list has its own wikipedia page. You should be able to find the chatterbots by either an internet search, or looking at the references of the wikipedia pages. Some of these will have rules that were determined by programmers, and others will have rules that were learnt from humans.

    If you have a device that runs Apple iOS (for example an iPhone), have a look at the Siri chatterbot in the device’s help system. Siri is an example of a chatterbot that has the job of helping a human, unlike most chatterbots which simply have the purpose of web entertainment. It also has voice recognition, so you can talk to it rather than just typing to it.

    10.2.5. THE TURING TEST

    In the above sections you met some chatterbots, and (hopefully!) have drawn the conclusion that they aren’t entirely convincing in terms of sounding like a human (although some are better than others!). But maybe soon, there will be new chatterbots that don’t have the same limitations. Should we consider them to be intelligent? How could we tell? Is there a formal way we can determine whether or not a chatterbot is of the level of human intelligence?

    A very famous computer scientist, Alan Turing, answered this question back in 1950, before the first chatterbots even existed! Alan Turing had an extraordinary vision of the future, and knew that coming up with computers that were intelligent would become a big thing, and that we would need a way to know when we have succeeded in creating a truly intelligent computer.

    He thought about how intelligence could be defined (defining intelligence is surprisingly difficult!), and decided that one way would be to say that a human was intelligent, and that if a computer was able to communicate convincingly like a human, then it must be intelligent also. This definition doesn’t cover all of intelligence, as it only considers what a person or a computer says and ignores other components of intelligence such as determining the best way to walk through a building (or maze) or deciding how to act in a specific situation (such as at a social event, when deciding what to do next at work, or when lost). However, communication is still a very significant component of human intelligence.

    In order to test whether or not a computer program can communicate like a human, Turing proposed a test. In addition to the computer program, two humans are required to carry out the test. One of the humans act as an interrogator, and the other as a “human” to compare the computer program to. The interrogator is put in a separate room from the computer running the computer program and the “human”. The interrogator has conversations with both the human and the computer program, but isn’t told which one they are having the conversation with at each time. The conversations are both carried out over something like an instant messaging program so that actual speech isn’t required from the computer program. During the conversations, the human has to convince the interrogator that they are indeed the human, and the computer program has to convince the interrogator that IT is actually the human. At the end of the conversations, the interrogator has to say which was the computer and which was the human. If they can’t reliably tell, then the computer is said to have passed the test.

    This test proposed by Turing eventually became very famous and got the name “The Turing Test”. One of the motivations for writing chatterbots is to try and make one that passes the Turing Test. Unfortunately, making a chatterbot that successfully passes the Turing Test hasn’t yet been achieved, and whether or not it is even possible is still an open question in computer science, along with many other questions in artificial intelligence that you will encounter later in this chapter.

    Other forms of the Turing Test exist as well. Action games sometimes have computer controlled characters that fight your own character, in place of a second human controlled character. A variation of the Turing Test can be used to determine whether or not the computer controlled player seems to have human intelligence by getting an interrogator to play against both the computer character and the human character, and to see whether or not they can tell them apart.

    Infact, many parts of human intelligence could be tested using a variation of the Turing Test. If you wanted a computer chess player that seemed like a human as opposed to a computer (as some people might prefer to be playing against a human rather than a computer), you could use a Turing Test for this as well! What other possible Turing Tests can you think of?

    In the next section, you will actually carry out the Turing Test on a chatterbot.

    
      Curiosity: The real Turing test
    

    Alan Turing actually started by suggesting a simple party game requiring three players, where the first player was female, the second player was male, and the third player could be either male or female, and took the role of the “interrogator”. The interrogator would be in a separate room to the other two players, and could only communicate with them by passing written notes (for example, by passing the notes under a door). The male had to try and convince the interrogator that he was actually female, and the female had to try and convince the interrogator that she was the female. At the end the interrogator had to say which was the male and which was the female, and if the interrogator guessed incorrectly, then the male “won”.

    10.2.6. ACTIVITY: RUN YOUR OWN TURING TEST

    This section will involve you actually carrying out the Turing Test. Read this entire section carefully (and the previous section if you haven’t done so already) before you start, and make sure you understand it all before starting.

    In science classes, such as biology, physics, and chemistry, carrying out experiments is commonly done. If you have taken classes like these, you will probably know that if an experiment isn’t carried out properly (e.g. in chemistry some students are tempted to put in more of a chemical than the instructions say to, or when timing is important this is easy to get wrong), then the results will not necessarily be the ones you are after and your experiment is essentially meaningless and pointless. You also have to be careful that other factors don’t affect the results. e.g. controlling temperature and moisture in biology experiments that involve growing micro-organisms.

    Carrying out the Turing Test is carrying out an experiment, just like carrying out experiments in chemistry classes. And just like the chemistry experiments, carrying out the Turing Test requires being careful to follow instructions correctly, and controlling factors that could potentially affect the results but aren’t part of what is being tested. You should keep this in mind while you are carrying out this project.

    For example, most chatterbots communicate in a text form rather than verbal. Communicating in a verbal form involves not only choosing intelligent sounding things to say, but also involves having a convincing voice and pronouncing words correctly. Tone of voice or accent could potentially make it very obvious to the interrogator which conversation was with the human and which was the computer, without them even having to consider what was actually said in the conversation. This is not what the Turing Test is supposed to be testing! Therefore, the Turing Test will have both the computer and the human communicating in a written form.

    As another example, speed of response could have an impact. The computer is likely to be able to reply instantly, whereas the human will need time to think and then write their reply. To prevent the interrogator from making their decision based on the speed instead of the content, the speed of response needs to be controlled as well. The way of carrying out the Turing Test described below tries to control these additional factors.

    Choose a chatterbot from the list on Wikipedia (see the above chatterbots section), or possibly use Alice or Cleverbot (Eliza isn’t recommended for this). You will be taking the role of the interrogator, but will need another person to act as the “human”. For this it is recommended you choose a person in your class who you don’t know very well. Do not choose your best friend in the class, because you will know their responses to questions too well, so will be able to identify them from the chatterbot based on their personality rather than the quality of the chatterbot.

    In addition to the chatterbot and your classmate to act as the human, you will need access to a room with a computer with internet (this could just be the computer classroom), another room outside it (a hallway would be fine), pieces of paper, 2 pens, and a coin or a dice.

    The chatterbot should be loaded on the computer to be used, and your classmate should be in the same room with the computer. You should be outside that room. As the interrogator, you will first have a conversation with either your classmate or the computer, and then a conversation with the other one. You should not know which order you will speak to them; to determine which you speak to first your classmate should use the dice or the coin to randomly decide (and shouldn’t tell you).

    In order to carry out the conversations, start by writing something at the top of the piece of paper such as “hello” or “hi” or “how are you?”. Put a mark next to the line to make it clear that line was written by YOU. Pass the piece of paper into the room where your classmate and the computer are (if you can, slide it under the door) where your classmate will write a reply on it and pass it back to you. You should then write a reply to that and repeat the process. Each conversation should be on a separate piece of paper, and be around 20 to 40 lines long (this means that each person/ computer should say around 10 - 20 lines in each conversation). Put a mark next to each of the lines you write, so that it is clear who wrote which lines.

    If your classmate is currently supposed to be having the conversation (rather than the chatterbot), they will write the reply based on what they would say.

    If the chatterbot is currently supposed to be having the conversation, your classmate should type what you said into the chatterbot and then write its reply on the piece of paper. Before submitting the line to the chatterbot, they should double check it was entered correctly.

    A problem is that it will take longer for the conversation between you and the chatterbot than between you and the classmate, because of the need for your classmate to type what you say to the chatterbot. You wouldn’t want to make it obvious which was the computer and which was the human due to that factor! To deal with this, you could intentionally delay for a while before each reply to that they all take exactly one minute.

    You can ask whatever you like, although keep in mind that you should be assuming you don’t know your classmate already, so don’t refer to common knowledge about previous things that happened such as in class or in the weekend in what you ask your classmate or the chatterbot. This would be unfair to the chatterbot since it can’t possibly know about those things. Remember you’re evaluating the chatterbot on its ability to display human intelligence, not on what it doesn’t know about.

    Good conversation topics would be favourite colours, games, foods, the weather, and the kinds of conversation topics you’d have with a person you don’t know but are having a friendly conversation with at work, the supermarket, or a party. Coming up with good things to ask is challenging but just ask yourself whether something would require knowledge of an event that not everybody could be expected to have.

    Once both conversations are complete, you as the interrogator has to say which was your classmate, and which was the chatterbot. Your classmate should tell you whether or not you were correct.

    These are some questions you can consider after you have finished carrying out the Turing Test:

    
      	How were you able to tell which was the chatterbot and which was your classmate?

      	Were there any questions you asked that were “unfair” — that depended on knowledge your classmate might have but no-one (computer or person) from another place could possibly have?

      	Which gave it away more: the content of the answers, or the way in which the content was expressed?

    

    

    10.2.7. PROJECT: INVESTIGATING CHATTERBOTS AND THE TURING TEST

    In this project, you will write a report about your investigations of Chatterbots and the Turing Test.

    The report consists of 2 parts. The first involves demonstrating that you understand the Turing Test by carrying out your own Turing Test and then answering some questions about the Turing Test. The second part involves having conversations with several chatterbots and investigating some common techniques they used in order to sound as though they have human intelligence.

    If you haven’t already, carry out the Turing Test in the project in the above section. Once you have carried out the Turing Test and have your two conversations, answer the following questions in your report, to show you understand the Turing Test. Make sure you include the two conversations in your report!

    Explain what the Turing Test is for, using your experience with chatterbots as an example.

    Describe what you did to run a Turing Test, including a copy of the two conversations.

    When you were carrying out the Turing Test, you had to be careful to avoid external factors that gave away which was the computer and which was the human. Explain some of these factors and why it is important to avoid them. (Some of them were mentioned in the text above!)

    Explain how the Turing Test could be used to evaluate a new chatbot. Discuss other possible applications of the Turing Test or similar tests for other programs that are supposed to be intelligent.

    Discuss whether or not the Turing test is a good test of intelligence, giving reasons for your answer and using examples from your chatterbot experiments. What parts of human intelligence would the Turing test not capture?

    Before completing this second part of your report, you should ensure you have talked to at least three chatterbots (either the ones talked about in this book or other ones you find).

    What is it that chatterbots are trying to accomplish?

    Describe the chatterbots that you have investigated. Show a brief conversation with each of them to illustrate what they do (no more than 10 lines for each conversation).

    Choose at least two techniques used by chatterbots in an attempt to sound like they have human intelligence. The techniques you choose could be the identification of key words, canned responses, learning from humans, giving very general replies, or anything else you notice about how a chatterbot tends to speak or react that is an attempt to make it sound human (including techniques that make sense in some cases that the chatterbot uses them, but not in others!)

    For each of the techniques you choose, do the following.

    
      	Explain how the technique works, using specific examples.

      	Give examples of specific chatterbots that use this technique, and examples of conversations with these chatterbots where it is obvious that they are using these techniques.

      	Explain your examples in terms of the technique(s) they are illustrating.

      	Discuss how well the techniques work and when they break.

    

    Which techniques seemed to be the most effective, if any? How could you tell that these chatterbots weren’t actually human? What were the main limitations of the chatterbots? Which chatterbot out of the ones you talked to do you think was the most intelligent? Which was the least intelligent? Why?

    Most of the chatterbots you have looked at here exist solely for the purpose of web entertainment, or as attempts to pass the Turing Test. These however aren’t the only applications of chatterbots. Discuss how chatterbots be useful in other applications, for example, help systems and games? Can you think of any other possible applications for chatterbots?

    10.3. THE WHOLE STORY!

    In this chapter so far, we have only talked about one application of AI. AI contains many more exciting applications, such as computers that are able to play board games against humans, computers that are able to learn, and computers that are able to control robots that are autonomously exploring an environment too dangerous for humans to enter.

    Eventually further sections on other topics in AI will be added to this chapter.
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    11.1. WHAT’S THE BIG PICTURE?

    Are there problems that are too hard even for computers? Yes. In the chapter on Artificial Intelligence we’ll see that just having a conversation — chatting — is something computers can’t do well, not because they can’t speak but rather because they can’t understand or think of sensible things to say. However, that’s not the kind of hard problem we’re talking about here — it’s not that computers couldn’t have conversations, more that we don’t know just how we do it ourselves and so we can’t tell the computer what to do.

    In this chapter we’re going to look at problems where it’s easy to tell the computer what to do — by writing a program — but the computer can’t do what we want because it takes far too long: millions of centuries, perhaps. Not much good buying a faster computer: if it were a hundred times faster it would still take millions of years; even one a million times faster would take hundreds of years. That’s what you call a hard problem—one where it takes far longer than the lifetime of the fastest computer imaginable to come up with a solution! The area of tractability explores problems and algorithms that can take an impossible amount of computation to solve except perhaps for very small examples of the problem. We’ll define what we mean by tractable later on, but put very crudely, a tractable problem is one which we can write programs for that finish in a reasonable amount of time, and an intractable problem is one that will generally end up taking way too long.

    Knowing when a problem you are trying to solve is one of these hard problems is very important. Otherwise it is easy to waste huge amounts of time trying to invent a clever program to solve it, and never getting anywhere. A computer scientist needs to be able to recognise a problem as an intractable problem, so that they can use other approaches. A very common approach is to give up on getting a perfect answer, and instead just aim for an approximately correct answer. There are a variety of techniques for getting good approximate answers to hard problems; a way of getting an answer that isn’t guaranteed to give the exact correct answer is sometimes referred to as a heuristic.

    One important example of an intractable problem that this chapter looks at is the travelling salesman problem (TSP for short). It’s a simple problem; if you’ve got a collection of places that you need to visit, and you know the distance to travel between each pair of places, what’s the shortest route that visits all of the places exactly once? This is a very practical problem that comes up with courier vehicles choosing routes to deliver parcels, rock bands planning tours, and even a designated driver dropping friends off after an event. In fact, the measurement between cities doesn’t have to be distance. It could actually be the dollar cost to travel between each pair of cities. For example, if you needed to visit Queenstown, Christchurch, Auckland, and Wellington one after the other while minimising airfares and you knew the cost of an airfare between each pair of those 4 cities, you could work out what the cheapest way of flying to each of them is. This is still an example of TSP.

    The following interactive has a program that solves the problem for however many cities you want to select by trying out all possible routes, and recording the best so far. You can get a feel for what an intractable problem looks like by seeing how long the interactive takes to solve the problem for different size maps. Try generating a map with about 5 cities, and press “Start” to solve the problem.

    Now try it for 10 cities (twice as many). Does it take twice as long? How about twice as many again (20 cities)? What about 50 cities? Can you guess how long it would take? You’re starting to get a feel for what it means for a problem to be intractable.

    Of course, for some situations, intractable problems are a good thing. In particular, most security and cryptography algorithms are based on intractable problems; the codes could be broken, but it would take billions of years and so would be futile. In fact, if anyone ever finds a fast algorithm for solving such problems, a lot of computer security systems would stop being secure overnight! So one of the jobs of computer scientists is to be confident that such solutions don’t exist!

    In this chapter we will look at the TSP and other problems for which no tractable solutions are known, problems that would take computers millions of centuries to solve. And we will encounter what is surely the greatest mystery in computer science today: that no-one knows whether there’s a more efficient way of solving these problems! It may be just that no-one has come up with a good way yet, or it may be that there is no good way. We don’t know which.

    
      
    

    But let’s start with a familiar problem that we can actually solve.

    11.2. ALGORITHMS, PROBLEMS, AND SPEED LIMITS

    Complexity is an important concept with problems and algorithms that solve them. Usually complexity is just the amount of time it takes to solve a problem, but there are several ways that we can measure the “time”. Using the actual time on a particular computer can be useful, but to get a rough idea of the inherent behaviour of an algorithm, computer scientists often start by estimating the number of steps the algorithm will take for n items. For example, a linear search can end up checking each of n items being searched, so the algorithm will take n steps. An algorithm that compares every pair of values in a list of n items will have to make n2comparisons, so we can characterise it as taking about n2 steps. This gives us a lot of information about how good an algorithm is without going into details of which computer it was running on, which language, and how well written the program was. The term complexity is generally used to refer to these rough measures.

    Having a rough idea of the complexity of a problem helps you to estimate how long it’s likely to take. For example, if you write a program and run it with a simple input, but it doesn’t finish after 10 minutes, should you quit, or is it about to finish? It’s better if you can estimate the number of steps it needs to make, and then extrapolate from the time it takes other programs to find related solutions.

    
      Jargon Buster: Asymptotic complexity
    

    If you’re reading about complexity, you may come across some terminology like “Big Oh” notation and “asymptotic complexity”, where an algorithm that takes about n2 steps is referred to as O(n2). We won’t get into these in this chapter, but here’s a little information in case you come across the terms in other reading. “Big Oh” notation is a precise way to talk about complexity, and is used with “asymptotic complexity”, which simply means how an algorithm performs for large values of n. The “asymptotic” part means as n gets really large — when this happens, you are less worried about small details of the running time. If an algorithm is going to take seven days to complete, it’s not that interesting to find out that it’s actually 7 days, 1 hour, 3 minutes and 4.33 seconds, and it’s not worth wasting time to work it out precisely.

    We won’t use precise notation for asymptotic complexity (which says which parts of speed calculations you can safely ignore), but we will make rough estimates of the number of operations that an algorithm will go through. There’s no need to get too hung up on precision since computer scientists are comfortable with a simple characterisation that gives a ballpark indication of speed.

    For example, consider using selection sort to put a list of n values into increasing order. (This is explained in the chapter on algorithms). Suppose someone tells you that it takes 30 seconds to sort a thousand items. Does that sounds like a good algorithm? For a start, you’d probably want to know what sort of computer it was running on - if it’s a supercomputer then that’s not so good; if it’s a tiny low-power device like a smartphone then maybe it’s ok.

    Also, a single data point doesn’t tell you how well the system will work with larger problems. If the selection sort algorithm above was given 10 thousand items to sort, it would probably take about 50 minutes (3000 seconds) — that’s 100 times as long to process 10 times as much input.

    These data points for a particular computer are useful for getting an idea of the performance (that is, complexity) of the algorithm, but they don’t give a clear picture. It turns out that we can work out exactly how many steps the selection sort algorithm will take for n items: it will require about n(n-1)/2 operations, or in expanded form,n2/2 - n/2 operations. This formula applies regardless of the kind of computer its running on, and while it doesn’t tell us the time that will be taken, it can help us to work out if it’s going to be reasonable.

    From the above formula we can see why it gets bad for large values of n : the number of steps taken increases with the square of the size of the input. Putting in a value of 1 thousand for n tells us that it will use 1,000,000/2 - 1,000/2 steps, which is 499,500 steps.

    Notice that the second part (1000/2) makes little difference to the calculation. If we just use the n2/2 part of the formula, the estimate will be out by 0.1%, and quite frankly, the user won’t notice if it takes 20 seconds or 19.98 seconds. That’s the point of asymptotic complexity — we only need to focus on the most significant part of the formula, which contains n2.

    Also, since measuring the number of steps is independent of the computer it will run on, it doesn’t really matter if it’s described as n2/2 or n2. The amount of time it takes will be proportional to both of these formulas, so we might as well simplify it to n2. This is only a rough characterisation of the selection sort algorithm, but it tells us a lot about it, and this level of accuracy is widely used to quickly but fairly accurately characterise the complexity of an algorithm. In this chapter we’ll be using similar crude characterisations because they are usually enough to know if an algorithm is likely to finish in a reasonable time or not.

    If you’ve studied algorithms, you will have learnt that some sorting algorithms, such as mergesort and quicksort, are inherently faster than other algorithms, such as insertion sort, selection sort, or bubble sort. It’s obviously better to use the faster ones. The first two have a complexity of n log(n) time (that is, the number of steps that they take is roughly proportional to n log(n)), whereas the last three have complexity of n2. Generally the consequence of using the wrong sorting algorithm will be that a user has to wait many minutes (or perhaps hours) rather than a few seconds or minutes.

    Here we’re going to consider another possible sorting algorithm, called permutation sort. Permutation sort says “Let’s list all the possible orderings (“permutations”) of the values to be sorted, and check each one to see if it is sorted, until the sorted order is found”. This algorithm is straightforward to describe, but is it any good?

    For example, if you are sorting the numbers 45, 21 and 84, then every possible order they can be put in (that is, all permutations) would be listed as:

    45, 21, 84

    45, 84, 21

    21, 45, 84

    21, 84, 45

    84, 21, 45

    84, 45, 21

    Going through the above list, the only line that is in order is 21, 45, 84, so that’s the solution. It’s a very inefficient approach, but it will help to illustrate what we mean by tractability.

    In order to understand how this works, and the implications, choose four different words (in the example below we have used colours) and list all the possible orderings of the four words. Each word should appear exactly once in each ordering. You can either do this yourself, or use an online permutation generator such asJavaScriptPermutations or Text Mechanic.

    For example if you’d picked red, blue, green, and yellow, the first few orderings could be:

    red, blue, green, yellow

    red, blue, yellow, green

    red, yellow, blue, green

    red, yellow, green, blue

    They do not need to be in any particular order, although a systematic approach is recommended to ensure you don’t forget any!

    Once your list of permutations is complete, search down the list for the one that has the words sorted in alphabetical order. The process you have just completed is using permutation sort to sort the words.

    Now add another word. How many possible orderings will there be with 5 words? What about with only 2 and 3 words — how many orderings are there for those? If you gave up on writing out all the orderings with 5 words, can you now figure out how many there might be? Can you find a pattern? How many do you think there might be for 10 words? (You don’t have to write them all out!).

    If you didn’t find the pattern for the number of orderings, think about using factorials. For 3 words, there are 3! (“3 factorial”) orderings. For 5 words, there are 5! orderings. Check the jargon buster below if you don’t know what a “factorial” is, or if you have forgotten!

    
      Jargon Buster
    

    Factorials are very easy to calculate; just multiply together all the integers from the number down to 1. For example, to calculate 5! you would simply multiply: 5 x 4 x 3 x 2 x 1 = 120. For 8! you would simply multiply 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 = 40,320.

    As stated above, the factorial of a number tells you how many permutations (orderings) there would be for that number of words (assuming they are all different). This means that if you are arranging 8 words, there will be 40,320 ways of arranging them (which is why you weren’t asked to try this in the first exercise!!)

    Your calculator may have a ”!” button for calculating factorials and spreadsheets usually have a “FACT” function, although for the factorials under 10 in this section, we recommend that you calculate them the long way, and then use the calculator as a double check. Ensuring you understand how a factorial is calculated is essential for understanding the rest of this section!

    For factorials of larger numbers, most desktop calculators won’t work so well; for example, 100! has 158 digits. You can use the calculator below to work with huge numbers (especially when using factorials and exponents).
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big number calculator
    

    Try calculating 100! using this calculator — that’s the number of different routes that a travelling salesman might take to visit 100 places (not counting the starting place). With this calculator you can copy and paste the result back into the input if you want to do further calculations on the number. If you are doing these calculations for a report, you should also copy each step of the calculation into your report to show how you got the result.

    There are other big number calculators available online; for example, the Big Integer Calculator. Other big calculators are available online, or you could look for one to download for a desktop machine or smartphone.

    As a final exercise on permutation sort, calculate how long a computer would take to use permutation sort to sort 100 numbers. Remember that you can use the calculator that was linked to above. Assume that you don’t have to worry about how long it will take to generate the permutations, only how long it will take to check them. Assume that you have a computer that creates and checks an ordering every nanosecond.

    
      	How many orderings need to be checked for sorting 100 numbers?

      	How many orderings can be checked in a second?

      	How many orderings can be checked in a year?

      	How many years will checking all the orderings take?

    

    And as an interesting thing to think about, do some calculations based on the assumptions listed below. How long would it take to use permutation sort on 100 numbers? What would happen first: the algorithm would finish, or the universe would end?

    
      	There are 1082 atoms in the universe

      	The universe has another 14 billion years before it ends

      	Suppose every atom in the universe is a computer that can check an ordering every nanosecond

    

    By now, you should be very aware of the point that is being made. Permutation sort is so inefficient that sorting 100 numbers with it takes so long that it is essentially impossible. Trying to use permutation sort with a non trivial number of values simply won’t work. While selection sort is a lot slower than quick sort or merge sort, it wouldn’t be impossible for Facebook to use selection sort to sort their list of 1 billion users. It would take a lot longer than quick sort would, but it would be doable. Permutation sort on the other hand would be impossible to use!

    At this point, we need to now distinguish between algorithms that are essentially usable, and algorithms that will take billions of year to finish running, even with a small input such as 100 values.

    Computer Scientists call an algorithm “intractable” if it would take a completely unreasonable amount of time to run on reasonably sized inputs. Permutation sort is a good example of an intractable algorithm. The term “intractable” is used a bit more formally in computer science; it’s explained in the next section.

    But the problem of sorting items into order is not intractable - even though the Permutation sort algorithm is intractable, there are lots of other efficient and not-so-efficient algorithms that you could use to solve a sorting problem in a reasonable amount of time: quick sort, merge sort, selection sort, even bubble sort! However, there are some problems in which the ONLY known algorithm is one of these intractable ones. Problems in this category are known as intractable problems.

    
      Curiosity : Towers of Hanoi
    

    The Towers of Hanoi problem is a challenge where you have a stack of disks of increasing size on one peg, and two empty pegs. The challenge is to move all the disks from one peg to another, but you may not put a larger disk on top of a smaller one. There’s a description of it at Wikipedia.

    This problem cannot be solved in fewer than 2n-1 moves, so it’s an intractable problem (a computer program that lists all the moves to make would use at least 2n - 1 steps). For 6 disks it only needs 63 moves, but for 50 disks this would be 1,125,899,906,842,623 moves.

    We usually characterise a problem like this as having a complexity of 2n, as subtracting one to get a precise value makes almost no difference, and the shorter expression is simpler to communicate to others.

    The Towers of Hanoi is one problem where we know for sure that it will take exponential time. There are many intractable problems where this isn’t the case — we don’t have tractable solutions for them, but we don’t know for sure if they don’t exist. Plus this isn’t a real problem — it’s just a game (although there is a backup system based on it). But it is a nice example of an exponential time algorithm, where adding one disk will double the number of steps required to produce a solution.

    11.3. TRACTABILITY

    There’s a very simple rule that computer scientists use to decide if an algorithm is tractable or not, based on the complexity (estimated number of steps) of the algorithm. Essentially, if the algorithm takes an exponential amount of time or worse for an input of size n, it is labelled as intractable. This simple rule is a bit crude, but it’s widely used and provides useful guidance. (Note that a factorial amount of time, n!, is intractable because it’s bigger than an exponential function.)

    To see what this means, let’s consider how long various algorithms might take to run. The following interactive will do the calculations for you to estimate how long an algorithm might take to run. You can choose if the running time is exponential (that is, 2n, which is the time required for the Towers of Hanoi problem with ndisks), or factorial (that is, n!, which is the time required for checking all possible routes a travelling salesman would make to visit n places other than the starting point). You can use the interactive below to calculate the time.

    For example, try choosing the factorial time for the TSP, and put in 20 for the value of n (i.e. this is to check all possible travelling salesman visits to 20 places). Press the return or tab key to update the calculation. The calculator will show a large number of seconds that the program will take to run; you can change the units to years to see how long this would be.
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big number calculator
    

    So far the calculation assumes that the computer would only do 1 operation per second; try changing to a million (1,000,000) operations per second, which is more realistic, and see how long that would take.

    Another way to solve problems faster is to have multiple processors work on different solutions at the same time. If you were to buy 1,000 processors (e.g. 1,000 computers, or 250 4-core computers) and have each one test out different routes, then the solution could be found 1,000 times faster. Try changing the number of processors to 1,000, and see how long that would take (you may need to change the units back — is it seconds? hours? days?)

    The interactive above estimates the amount of time taken for various algorithms to run given n values to be processed. Let’s assume that we have a very fast computer, faster than any that exist. Try putting in the assumption that the computer can do a million million (1,000,000,000,000) steps per second. Is that achievable? But what if you add just two more locations to the problem (i.e. n=22 instead of n=20)?

    Now, consider an algorithm that has a complexity of n2 (there are lots that take roughly this number of steps, including selection sort which was mentioned earlier). Type in a value of 1,000,000 for n to see how long it might take to sort a million items on a single processor (keep the number of steps per second at 1,000,000,000,000, but set the number of processors to just 1) — it should show that it will only take about 1 second on our hypothetical very fast machine. Now put in 10 million for n — although it’s sorting a list 10 times as big, it takes more than 10 times as long, and will now take a matter of minutes rather than seconds. At what value of n does the amount of time become out of the question — that is, how large would the problem need to be for it to take years to finish? Is anyone ever likely to be sorting this many values — for example, what if for some reason you were sorting the name of every person in the world, or every base in the human genome?

    What about an algorithm with complexity of n3? What’s the largest size input that it can process in a reasonable amount of time?

    Now try the same when the number of steps is 2n, but start with a value of 10 for n , then try 30, 40 , 50 and so on. You’ll probably find that for an input of about 70 items it will take an unreasonable amount of time. Is it much worse for 80 items?

    Now try increasing the number of operations per second to 10 times as many. Does this help to solve bigger problems?

    Trying out these figures you will likely have encountered the barrier between “tractable” and “intractable” problems. Algorithms that take n2, n3 or even n4 time to solve a problem (such as sorting a list) aren’t amazing, but at least with a fast enough computer and for the size of inputs we might reasonably encounter, we have a chance of running them within a human lifetime, and these are regarded as tractable . However, for algorithms that take 2n, 3n or more steps, the amount of time taken can end up as billions of years even for fairly small problems, and using computers that are thousand times faster still doesn’t help to solve much bigger problems. Such problems are regarded as intractable . Mathematically, the boundary between tractable and intractable is between a polynomial number of steps (polynomials are formulas made up of n2, n3, n4 and so on), and an exponential number of steps (2n, 3n, 4n, and so on).

    The two formulas n2 and 2n look very similar, but they are really massively different, and can mean a difference between a few seconds and many millennia for the program to finish. The whole point of this chapter is to develop an awareness that there are many problems that we have tractable algorithms for, but there are also many that we haven’t found any tractable algorithms for. It’s very important to know about these, since it will be futile to try to write programs that are intractable, unless you are only going to be processing very small problems.

    Note that algorithms that take a factorial amount of time (n!, or 1 \times 2 \times 3 \times \ldots n) are in the intractable category (in fact, they take times that are a lot worse than 2n).

    Essentially any algorithm that tries out all combinations of the input will inevitably be intractable because the number of combinations is likely to be exponential or factorial. Thus an important point is that it’s usually not going to work to design a system that just tries out all possible solutions to see which is the best.

    Although we’ve provided n6 as an example of a tractable time, nearly all algorithms you’re likely to encounter will be n3 and better, or 2n and worse — only very specialised ones fall in the gap between those. So there’s a big gulf between tractable and intractable problems, and trying to grapple with it is one of the biggest problems in computer science!

    What about Moore’s law, which says that computing power is increasing exponentially? Perhaps that means that if we wait a while, computers will be able to solve problems that are currently intractable? Unfortunately this argument is wrong; intractable problems are also exponential, and so the rate of improvement due to Moore’s law means that it will only allow for slightly larger intractable problems to be solved. For example, if computing speed is doubling every 18 months (an optimistic view of Moore’s law), and we have an intractable problem that takes 2n operations to solve (many take longer than this), then in 18 months we will be able to solve a problem that’s just one item bigger. For example, if you can solve an exponential time problem for 50 items (50 countries on a map to colour, 50 cities for a salesman to tour, or 50 rings on a Towers of Hanoi problem) in 24 hours, then in 18 months you can expect to buy a computer that could solve it for 51 items at best! And in 20 years you’re likely to be able to get a computer that could solve for 55 items in one day. You’re going to have to be more than patient if you want Moore’s law to help out here — you have to be prepared to wait for decades for a small improvement!

    Remember that if you need to do calculations of huge numbers, there’s a calculator here that you can use:

    
      [image: ]Click to load

big number calculator
    

    11.4. THE TRAVELLING SALESMAN PROBLEM

    An example of an intractable problem is the Travelling Salesman Problem (TSP). The TSP involves a bunch of locations (cities, houses, airports,....) where you can travel between any possible pair of locations. The goal is to find the shortest route that will go through all the locations once — this is what the interactive at the start of this chapter does.

    Researchers have spent a lot of time trying to find efficient solutions to the Travelling Salesman Problem, yet have been unable to find a tractable algorithm for solving it. As you learnt in the previous section, intractable algorithms are very slow, to the point of being impossible to use. As the only solutions to TSP are intractable, TSP is known as an intractable problem.

    It hasn’t actually been proven that there is no tractable solution to TSP, although many of the world’s top computer scientists have worked on this problem for the last 40 years, trying to find a solution but without success. What they have managed to do is find thousands of other problems that are also intractable, and more importantly, if a solution is found for any one of these problems, we know how to convert it to a solution for any of the others (these are called NP-complete problems). They all stand and fall together, including the TSP problem. So it’s not just being lazy if you give up on finding an optimal TSP algorithm — people have tried for decades and not found a tractable algorithm. Of course, this is also a strong motivator to try to find one — if you do, you will have solved thousands of other problems at the same time! This is a great thing for a researcher to do, but if you have a program to get finished by the end of the month, it’s not a good bet to work on it.

    Current algorithms for finding the optimal TSP solution aren’t a lot better than simply trying out all possible paths through the map (as in the interactive at the start of this chapter). The number of possible paths gets out of hand; it’s an intractable approach. In the project below you’ll be estimating how long it would take.

    While TSP was originally identified as being the problem that sales people face when driving to several different locations and wanting to visit them in the order that leads to the shortest route (less petrol usage), the same problem applies to many other situations as well. Courier and delivery companies have variants of this problem — often with extra constraints such as limits on how long a driver can work for, or allowing for left hand turns being faster than right-hand ones (in NZ at least!)

    Since these problems are important for real companies, it is not reasonable to simply give up and say there is no solution. Instead, when confronted with an intractable problem, computer scientists look for algorithms that produce approximate solutions — solutions that are not perfectly correct or optimal, but are hopefully close enough to be useful. By relaxing the requirement that the solution has to be perfectly correct, it is often possible to come up with tractable algorithms that will find good enough solutions in a reasonable time. This kind of algorithm is called a heuristic - it uses rules of thumb to suggest good choices and build up a solution made of pretty good choices.

    A simple heuristic that often works OK is a greedy heuristic algorithm — an algorithm that just takes what looks like the best choice at each step. For example, for the TSP, a greedy heuristic algorithm might repeatedly take the route to the next closest city. This won’t always be the best choice, but it is very fast, and experience shows that it is typically no more than 25% worse than the optimal. There are more sophisticated ways of designing approximate algorithms that can do better than this (some can get within 3% of optimal for the TSP), but they take longer to run.

    There are software companies that work on trying to make better and better approximate algorithms for guiding vehicles by GPS for delivery routes. Companies that write better algorithms can charge a lot of money if their routes are faster, because of all the fuel and time savings that can be made.

    An interesting thing with intractability is that you can have two very similar problems, with one being intractable and the other being tractable. For example, finding the shortest route between two points (like a GPS device usually does) is a tractable problem, yet finding the shortest route around multiple points (the TSP) isn’t. By the way, finding the longest path between two points (without going along any route twice) is also intractable, even though finding the shortest path is tractable!

    11.4.1. PROJECT: THE CRAYPOTS PROBLEM

    You should present your findings for this project in a written report where you include your answers to the exercises, the maps you make, and written explanations to explain what you have found out and learnt.

    This project is based around a scenario where there is a cray fisher who has around 18 craypots that have been laid out in open water. Each day the fisher uses a boat to go between the craypots and check each one for crayfish.

    The cray fisher has started wondering what the shortest route to take to check all the craypots would be, and has asked you for your help. Because every few weeks the craypots need to be moved around, the fisher would prefer a general way of solving the problem, rather than a solution to a single layout of craypots. Therefore, your investigations must consider more than one possible layout of craypots, and the layouts investigated should have the craypots placed randomly i.e. not in lines, patterns, or geometric shapes.

    When asked to generate a random map of craypots, get a pile of coins (or counters) with however many craypots you need, and scatter them onto an A4 piece of paper. If any land on top of each other, place them beside one another so that they are touching but not overlapping. One by one, remove the coins, making a dot on the paper in the centre of where each coin was. Number each of the dots. Each dot represents one craypot that the cray fisher has to check. You should label the top left corner or the paper as being the boat dock, where the cray fisher stores the boat.

    Generate a map with 7 or 8 craypots using the random map generation method described above. Make an extra copy of this map, as you will need it again later.

    Using your intuition, find the shortest path between the craypots.

    Now generate a map (same method as above) with somewhere between 15 and 25 craypots. Make more than one copy of this map, as you will need it again later

    Now on this new map, try to use your intuition to find the shortest path between the craypots. Don’t spend more than 5 minutes on this task; you don’t need to include the solution in your report. Why was this task very challenging? Can you be sure you have an optimal solution?

    Unless your locations were laid out in a circle or oval, you probably found it very challenging to find the shortest route. A computer would find it even harder, as you could at least take advantage of your visual search and intuition to make the task easier. A computer could only consider two locations at a time, whereas you can look at more than two. But even for you, the problem would have been challenging! Even if you measured the distance between each location and put lines between them and drew it on the map so that you didn’t have to judge distances between locations in your head, it’d still be very challenging for you to figure out!

    A straightforward algorithm to guarantee that you find the shortest route is to check all possible routes. This involves working out what all the possible routes are, and then checking each one. A possible route can be written as a list of the locations (i.e. the numbers on the craypots), in the order to go between them. This should be starting to sound familiar to you assuming you did the permutation sort discussed above. Just like in that activity you listed all the possible ordering for the values in the list to be sorted, this algorithm would require listing all the possible orderings of the craypots, which is equivalent (although you don’t need to list all the orderings for this project!).

    How many possible routes are there for the larger example you have generated? How is this related to permutation sort, and factorials? How long would it take to calculate the shortest route in your map, assuming the computer can check 1 billion (1,000,000,000) possible routes per second? (i.e. it can check one route per nanosecond) What can you conclude about the cost of this algorithm? Would this be a good way for the cray fisher to decide which path to take?

    Make sure you show all your mathematical working in your answers to the above questions!

    So this algorithm is intractable, but maybe there is a more clever algorithm that is tractable? The answer is No.

    You should be able to tell that this problem is equivalent to the TSP, and therefore it is intractable. How can you tell? What is the equivalent to a town in this scenario? What is the equivalent to a road?

    Since we know that this craypot problem is an example of the TSP, and that there is no known tractable algorithm for the TSP, we know there is no tractable algorithm for the craypot problem either. Although there are slightly better algorithms than the one we used above, they are still intractable and with enough craypots, it would be impossible to work out a new route before the cray fisher has to move the pots again!

    Instead of wasting time on trying to invent a clever algorithm that no-one has been able to find, we need to rely on a algorithm that will generate an approximate solution. The cray fisher would be happy with an approximate solution that is say, 10% longer more than the best possible route, but which the computer can find quickly.

    There are several ways of approaching this. Some are better than others in general, and some are better than others with certain layouts. One of the more obvious approximate algorithms, is to start from the boat dock in the top left corner of your map and to go to the nearest craypot. From there, you should go to the nearest craypot from that craypot, and repeatedly go to the nearest craypot that hasn’t yet been checked. This approach is known as a greedy heuristic algorithm as it always makes the decision that looks the best at the current time, rather than making a not so good decision now to try and get a bigger pay off later. You will understand why this doesn’t necessarily lead to the optimal solution after completing the following exercises.

    On a copy of each of your 2 maps you generated, draw lines between the craypots to show the route you would find following the greedy algorithm (you should have made more than one copy of each of the maps!)

    For your map with the smaller number of craypots (7 or 8), compare your optimal solution and your approximate solution. Are they the same? Or different? If they are the same, would they be the same in all cases? Show a map where they would be different (you can choose where to place the craypots yourself, just use as many craypots as you need to illustrate the point).

    For your larger map, show why you don’t have an optimal solution. The best way of doing this is to show a route that is similar to, but shorter than the approximate solution. The shorter solution you find doesn’t have to be the optimal solution, it just has to be shorter than the one identified by the approximate algorithm (Talk to your teacher if you can’t find a shorter route and they will advise on whether or not you should generate a new map). You will need to show a map that has a greedy route and a shorter route marked on it. Explain the technique you used to show there was a shorter solution. Remember that it doesn’t matter how much shorter the new solution you identify is, just as long as it is at least slightly shorter than the approximate solution — you are just showing that the approximate solution couldn’t possibly be the optimal solution by showing that there is a shorter solution than the approximate solution.

    Even though the greedy algorithm only generates an approximate solution, as opposed to the optimal solution, explain why is it more suitable for the cray fisher than generating an optimal solution would be?

    Why would it be important to the cray fisher to find a short route between the craypots, as opposed to just visiting them in a random order? Discuss other problems that are equivalent to TSP that real world companies encounter every day. Why is it important to these companies to find good solutions to TSP? Estimate how much money might a courier company be wasting over a year if their delivery routes were 10% worse than the optimal. How many different locations/towns/etc might their TSP solutions have to be able to handle?

    Find a craypot layout that will result in the greedy algorithm finding the shortest route. How do you know it is the shortest route? What is a general pattern that seem to work well for this greedy algorithm?

    Find a craypot layout that results in the greedy algorithm finding what seem to be a really inefficient route. Why is it inefficient? Don’t worry about trying to find an actual worst case, just find a case that seems to be quite bad. What is a general pattern that seems to make this greedy algorithm inefficient?

    Don’t forget to include an introductory paragraph in your report that outlines the key ideas. It should include a brief description of what an intractable problem is, and how a computer scientist goes about dealing with such a problem. The report should also describe the Travelling Salesman Problem and the craypot problem in your own words. Explain why the craypot problem is a realistic problem that might matter to someone.

    11.5. OTHER INTRACTABLE PROBLEMS

    There are thousands of problems like the TSP for which no tractable solution is known. Extra sections will eventually be added here to introduce some of them, but in the meantime, if you are keen you might like to explore some of these problems:

    
      	map and graph colouring (these can be reduced to a timetabling problem and vice versa, showing how NP-complete problems can relate to each other)

      	
        the knapsack problem
      

      	
        the bin packing problem
      

      	Hamiltonian paths (no tractable solution for this is known, yet the very similar Eulerian path, which is often presented as the seven bridges problem, has an easy tractable solution)

      	
        Steiner trees
      

      	
        Dominating sets
      

      	Longest path (this is interesting because finding the longest path is intractable, yet finding the shortest path is tractable - the shortest path is calculated when a GPS device works out the shortest route to a destination. Also, a Hamiltonian problem can be reduced easily to longest path, showing the concept of reduction when one NP-complete problem is used to solve another). And here’s a song about it! https://www.youtube.com/watch?feature=player_embedded&v=a3ww0gwEszo

      	
        the Battleship problem
      

    

    11.6. THE WHOLE STORY!

    The question of tractability is a big one in computer science — in fact, what is widely regarded as the biggest unsolved problem in computer science revolves around it. You may recall that we mentioned that there are thousands of problems that are we don’t have a tractable solution for, yet a tractable solution to one can be adapted to all the others. This groups of problems is called “NP-complete” (NP stands for non-deterministic polynomial if you really want to know; complete just means that they can all be converted to each other!) The big question is whether or not there is a polynomial time algorithm for any one of them, in which case all NP problems will have a P (polynomial time) solution. The question is often referred to as whether or not P equals NP.

    Actually, things get worse. So far we’ve talked about intractable problems — ones that can be solved, but might need billions of years on a computer. If you think it’s bad that some problems take that long to solve, that’s nothing! There are some well known problems that we know can never be solved on a computer. For example, writing a program that reliably tells you if another program will finish or not is impossible! There are other examples of such problems here: -http://www.cs4fn.org/algorithms/tiles.php - http://www.cs4fn.org/algorithms/uncomputable.php - http://www.cs4fn.org/algorithms/haltingproblem.php

    It’s good to know about these issues, to avoid getting stuck writing impossible programs. It’s also a fascinating area of research with opportunities to make a discovery that could change the world of computing, as well as contribute to our understanding on what can and can’t be computed.

    11.7. FURTHER READING

    This topic is covered very thoroughly in a way that is accessible to non-specialists in a popular book by David Harel called “Computers Ltd.: What They Really Can’t Do”.

    11.7.1. USEFUL LINKS

    
      	
        
        http://en.wikipedia.org/wiki/Computational_complexity_theory
      

      	
        
        http://www.tsp.gatech.edu/games/index.html
      

      	
        
        http://csunplugged.org/graph-colouring
      

      	
        
        http://en.wikipedia.org/wiki/Travelling_salesman_problem
      

      	
        
        http://en.wikipedia.org/wiki/Knapsack_problem
      

      	
        
        http://en.wikipedia.org/wiki/Bin_packing_problem
      

      	
        
        http://en.wikipedia.org/wiki/Hamiltonian_path
      

      	
        
        http://en.wikipedia.org/wiki/Brute-force_search
      

    

  
    12.1. WHAT’S THE BIG PICTURE?

    If you’ve ever written a text-based program, chances are that at some stage the system has told you there’s an error in your program even before it runs.

    

    These “syntax errors” are annoying messages that programmers become excruciatingly familiar with ... it means that they didn’t follow the rules somehow, even if it’s just a tiny mistake. For example, suppose you intended to write:

    
      x = (a+b)*(c+d)
    

    but you accidentally left out one of the brackets:

    
      x = (a+b)*c+d)
    

    When you try to compile or run the program, the computer will tell you that there’s an error. If it’s really helpful, it might even suggest where the error is, but it won’t run the program until you fix it.

    This might seem annoying, but in fact by enforcing precision and attention to detail it helps pinpoint mistakes before they become bugs in the program that go undetected until someone using it complains that it’s not working correctly.

    Whenever you get errors like this, you’re dealing with a formal language. Formal languages specify strict rules such as “all parentheses must be balanced”, “all commands in the program must be keywords selected from a small set”, or “the date must contain three numbers separated by dashes”.

    Formal languages aren’t just used for programming languages — they’re used anywhere the format of some input is tightly specified, such as typing an email address into a web form.

    In all these cases, the commands that you have typed (whether in Python, Scratch, Snap!, C, Pascal, Basic, C#, HTML, or XML) are being read by a computer program. (That’s right... Python is a program that reads in Python programs.) In fact, the compiler for a programming language is often written in its own language. Most C compilers are written in C — which begs the question, who wrote the first C compiler (and what if it had bugs)?! Computer Scientists have discovered good ways to write programs that process other programs, and a key ingredient is that you have to specify what is allowed in a program very precisely. That’s where formal languages come in.

    Many of the concepts we’ll look at in this chapter are used in a variety of other situations: checking input to a web page; analysing user interfaces; searching text, particularly with “wild cards” strings that can match any sequence of characters; creating logic circuits; specifying communication protocols; and designing embedded systems.

    Once you’re familiar with the idea of formal languages, you’ll possess a powerful tool for cutting complex systems down to size using an easily specified format.

    
      
    

    12.2. GETTING STARTED

    To give you a taste of what can be done, let’s try searching for words that fit particular patterns. Suppose you’re looking for words that contain the name “tim”.

    Go to the Regex Dictionary and type into the “String:” box:

    
      tim
    

    then press the “Search” button to find all words containing “tim”.

    That’s a pretty simple search (though the results may have surprised you!). But now we introduce the wildcard code, which in this case is ”.” — a widely used convention. This matches any character at all. So now you can do a search like

    
      tim.b
    

    and you will get any words that have both “tim” and “b” with a single character — any character — in between. Are there any words that match “tim..b”? “tim...b”? You can specify any number of occurrences of a symbol by putting a “*” after it (again a widely used convention), so:

    
      tim.*b
    

    will match any words where “tim” is followed by “b”, separated by any number of characters — including zero.

    Try the following search. What kind of words does it find?

    
      x.*y.*z
    

    
      	Can you find words that contain your name, or your initials?

      	What about words containing the letters from your name in the correct order?

      	Are there any words that contain all the vowels in order (a, e, i, o, u)?

    

    The code you’ve used above is a part of a formal language called a “regular expression”. Computer programs that accept typed input use regular expressions for checking items like dates, credit card numbers and product codes. They’re used extensively by programming language compilers and interpreters to make sense of the text that a programmer types in. We’ll look at them in more detail in the section on Regular expressions.

    Next we examine a simple system for reading input called a finite state automaton, which — as we’ll find out later — is closely related to regular expressions. Later we’ll explore the idea of grammars, another kind of formal language that can deal with more complicated forms of input.

    12.3. FINITE STATE AUTOMATA

    Here’s a map of a commuter train system for the town of Trainsylvania. The trouble is, it doesn’t show where the the trains go — all you know is that there are two trains from each station, the A-train and the B-train. The inhabitants of Trainsylvania don’t seem to mind this — it’s quite fun choosing trains at each station, and after a while you usually find yourself arriving where you intended.

    

    You can travel around Trainsylvania yourself using the following interactive. You’re starting at the City Mall station, and you need to find your way to Suburbopolis. At each station you can choose either the A-train or the B-train — press the button to find out where it will take you. But, like the residents of Trainsylvania, you’ll probably want to start drawing a map of the railway, because later you might be asked to find your way somewhere else. If you want a template to draw on, you canprint one out from here.

    Did you find a sequence of trains to get from City Mall to Suburbopolis? You can test it by typing the sequence of trains in the following interactive. For example, if you took the A-train, then the B-train, then an A-train, type in ABA.

    Can you find a sequence that takes you from City Mall to Suburbopolis? Can you find another sequence, perhaps a longer one? Suppose you wanted to take a really long route ... can you find a sequence of 12 hops that would get you there? 20 hops?

    Here’s another map. It’s for a different city, and the stations only have numbers, not names (but you can name them if you want).

    

    Suppose you’re starting at station 1, and need to get to station 3 (it has a double circle to show that’s where you’re headed.)

    
      	What’s the shortest way to get from station 1 to station 3?

      	Where do you end up if you start at station 1 and take the trains ABAA?

      	Where do you end up if your start at station 1 and take 20 train hops, always alternating A, B, A, B, A, B?

      	Can you give an easy-to-describe sequence of 100 or more hops that will get you to station 3?

    

    The map that we use here, with circles and arrows, is actually a powerful idea from computer science called a Finite State Automaton, or FSA for short. Being comfortable with such structures is a useful skill for computer scientists.

    
      Jargon Buster
    

    The name Finite State Automaton (FSA) might seem strange, but each word is quite simple. “Finite” just means that there is a limited number of states (such as train stations) in the map. The “state” is just as another name for the train stations we were using. “Automaton” is an old word meaning a machine that acts on its own, following simple rules (such as the cuckoo in a cuckoo clock). Sometimes an FSA is called a Finite State Machine (FSM), or even just a “state machine”. By the way, the plural of “Automaton” can be either “Automata” or “Automatons”. People working with formal languages usually use Finite State Automata, but “FSAs” for short.

    An FSA isn’t all that useful for train maps, but the notation is used for many other purposes, from checking input to computer programs to controlling the behaviour of an interface. You may have come across it when you dial a telephone number and get a message saying “Press 1 for this … Press 2 for that … Press 3 to talk to a human operator.” Your key presses are inputs to a finite state automaton at the other end of the phone line. The dialogue can be quite simple, or very complex. Sometimes you are taken round in circles because there is a peculiar loop in the finite-state automaton. If this occurs, it is an error in the design of the system — and it can be extremely frustrating for the caller!

    Another example is the remote control for an air conditioning unit. It might have half a dozen main buttons, and pressing them changes the mode of operation (e.g. heating, cooling, automatic). To get to the mode you want you have to press just the right sequence, and if you press one too many buttons, it’s like getting to the train station you wanted but accidentally hopping on one more train. It might be a long journey back, and you may end up exploring all sorts of modes to get there! If there’s a manual for the controller, it may well contain a diagram that looks like a Finite State Automaton. If there isn’t a manual, you may find yourself wanting to draw a map, just as for the trains above, so that you can understand it better.

    The map that we used above uses a standard notation. Here’s a smaller one:

    

    Notice that this map has routes that go straight back to where they started! For example, if you start at 1 and take route “b”, you immediately end up back at 1. This might seem pointless, but it can be quite useful. Each of the “train stations” is called a state, which is a general term that just represents where you are after some sequence of inputs or decisions. What it actually means depends on what the FSA is being used for. States could represent a mode of operation (like fast, medium, or slow when selecting a washing machine spin cycle), or the state of a lock or alarm (on, off, exit mode), or many other things. We’ll see more examples soon.

    One of the states has a double circle. By convention, this marks a “final” or “accepting” state, and if we end up there we’ve achieved some goal. There’s also a “start” state — that’s the one with an arrow coming from nowhere. Usually the idea is to find a sequence of inputs that gets you from the start state to a final state. In the example above, the shortest input to get to state 2 is “a”, but you can also get there with “aa”, or “aba”, or “baaaaa”. People say that these inputs are “accepted” because they get you from the start state to the final state — it doesn’t have to be the shortest route.

    What state would you end up in if the input was the letter “a” repeated 100 times?

    Of course, not all inputs get you to state 2. For example, “aab” or even just “b” aren’t accepted by this simple system. Can you characterise which inputs are accepted?

    Here’s an interactive which follows the rules of the FSA above. You can use it to test different inputs.

    Here’s another FSA, which looks similar to the last one but behaves quite differently. You can test it in the interactive below.

    

    Work out which of the following inputs it accepts. Remember to start in state 1 each time!

    
      	“aaa”

      	“abb”

      	“aaaa”

      	“bababab”

      	“babababa”

      	the letter “a” repeated 100 times

      	the letter “a” repeated 1001 times

      	the letter “b” a million times, then an “a”, then another million of the letter “b”

    

    Can you state a general rule for the input to be accepted?

    To keep things precise, we’ll define two further technical terms. One is the alphabet, which is just a list of all possible inputs that might happen. In the last couple of examples the alphabet has consisted of the two letters “a” and “b”, but for an FSA that is processing text typed into a computer, the alphabet will have to include every letter on the keyboard.

    The connections between states are called transitions, since they are about changing state. The sequence of characters that we input into the FSA is often called astring (it’s just a string of letters), and the set of all strings that can be accepted by a particular FSA is called its language. For the FSA in the last example, its language includes the strings “a”, “aaa”, “bab”, “ababab”, and lots more, because these are accepted by it. However, it does not include the strings “bb” or “aa”.

    The language of many FSAs is big. In fact, the ones we’ve just looked at are infinite. You could go on all day listing patterns that they accept. There is no limit to the length of the strings they can accept.

    That’s good, because many real-life FSA’s have to deal with “infinite” input. The diagram below shows the FSA for the spin speed on a washing machine, where each press of the spin button changes the setting.

    

    It would be frustrating if you could only change the spin setting 50 times, and then it stopped accepting input ever again. If you want, you could switch from fast to slow spin by pressing the spin button 3002 times. Or 2 times would do. Or 2 million times (try it if you don’t believe me).

    The following diagram summarizes the terminology we have introduced. Notice that this FSA has two accepting states. You can have as many as you want, but only one start state.

    

    For this FSA, the strings “aa” and “aabba” would be accepted, and “aaa” and “ar” wouldn’t. By the way, notice that we often put inverted commas around strings to make it clear where they start and stop. Of course, the inverted commas aren’t part of the strings.

    Sometimes you’ll see an FSA referred to as a Finite State Machine, or FSM, and there are other closely related systems with similar names. We’ll mention some later in the chapter.

    Now there’s something we have to get out of the way before going further. If we’re talking about which strings of inputs will get you into a particular state, and the system starts in that state, then the empty string — that is, a string without any letters at all — is one of the solutions! For example, here’s a simple finite state automaton with just one input (button a) that represents a strange kind of light switch. The reset button isn’t part of the FSA; it’s just a way of letting you return to the starting state. See if you can figure out which patterns of input will turn the light on:

    Have you worked out which sequences of button presses turn on the light? Now think about the shortest sequence from a reset that can turn it on.

    Since it’s already on when it has been reset, the shortest sequence is zero button presses. It’s hard to write that down (although you could use “”), so we have a symbol especially for it, which is the Greek letter epsilon: ϵ. You’ll come across ϵ quite often with formal languages.

    It can be a bit confusing. For example, the language (that is, the list of all accepted inputs) of the FSA above includes “aaa”, “aaaaaa”, and ϵ. If you try telling someone that “nothing” will make the light come on that could be confusing — it might mean that you could never turn the light on — so it’s handy being able to say that theempty string (or ϵ) will turn the light on. There are different kinds of “nothing”, and we need to be precise about which one we mean!

    Here’s the FSA for the strange light switch. You can tell that ϵ is part of the language because the start state is also a final state (in fact, it’s the only final state). Actually, the switch isn’t all that strange — data projectors often require two presses of the power button, to avoid accidentally turning them off.

    

    An important part of the culture of computer science is always to consider extreme cases. One kind of extreme case is where there is no input at all: what if a program is given an empty file, or your database has zero entries in it? It’s always important to make sure that these situations have been thought through. So it’s not surprising that we have a symbol for the empty string. Just for variety, you’ll occasionally find some people using the Greek letter lambda (λ) instead of ϵ to represent the empty string.

    And by the way, the language of the three-state FSA above is infinitely large because it is the set of all strings that contain the letter “a” in multiples of 3, which is {ϵ, aaa, aaaaaa, aaaaaaaaa, ...}. That’s pretty impressive for such a small machine.

    While we’re looking at extremes, here’s another FSA to consider. It uses “a” and “b” as its alphabet.

    

    Will it accept the string “aaa”? Or “aba”? Or anything of 3 characters or more?

    As soon as you get the third character you end up in state 4, which is called a trap state because you can’t get out. If this was the map for the commuter train system we had at the start of this section it would cause problems, because eventually everyone would end up in the trap state, and you’d have serious overcrowding. But it can be useful in other situations — especially if there’s an error in the input, so no matter what else comes up, you don’t want to go ahead.

    For the example above, the language of the FSA is any mixture of “a”s and “b”s, but only two characters at most. Don’t forget that the empty string is also accepted. It’s a very small language; the only strings in it are: {ϵ, a, b, aa, ab, ba, bb}.

    Here’s another FSA to consider:

    

    It’s fairly clear what it will accept: strings like “ab”, “abab”, “abababababab”, and, of course ϵ. But there are some missing transitions: if you are in state 1 and get a “b” there’s nowhere to go. If an input cannot be accepted, it will be rejected, as in this case. We could have put in a trap state to make this clear:

    

    But things can get out of hand. What if there are more letters in the alphabet? We’d need something like this:

    

    So, instead, we just say that any unspecified transition causes the input to be rejected (that is, it behaves as though it goes into a trap state). In other words, it’s fine to use the simple version above, with just two transitions.

    Now that we’ve got the terminology sorted out, let’s explore some applications of this simple but powerful “machine” called the Finite State Automaton.

    12.3.1. WHO USES FINITE STATE AUTOMATA?

    Finite state automata are used a lot in the design of digital circuits (like the electronics in a hard drive) and embedded systems (such as burglar alarms or microwave ovens). Anything that has a few buttons on it and gets into different states when you press those buttons (such as alarm on/off, high/med/low power) is effectively a kind of FSA.

    With such gadgets, FSAs can be used by designers to plan what will happen for every input in every situation, but they can also be used to analyse the interface of a device. If the FSA that describes a device is really complicated, it’s a warning that the interface is likely to be hard to understand. For example, here’s an FSA for a microwave oven. It reveals that, for example, you can’t get from power2 to power1 without going through timer1. Restrictions like this will be very frustrating for a user. For example, if they try to set power1 it won’t work until they’ve set timer1 first. Once you know this sequence it’s easy, but the designer should think about whether it’s necessary to force the user into that sort of sequence. These sorts of issues become clear when you look at the FSA. But we’re straying into the area of Human-Computer Interaction! This isn’t surprising because most areas of computer science end up relating to each other — but let’s get back to other applications of FSAs.

    

    As we shall see in the next section, one of the most valuable uses of the FSA in computer science is for checking input to computers, whether it’s a value typed into a dialogue box, a program given to a compiler, or some search text to be found in a large document. There are also data compression methods that use FSAs to capture patterns in the data being compressed, and variants of FSA are used to simulate large computer systems to see how best to configure it before spending money on actually building it.

    
      Curiosity
    

    What’s the biggest FSA in the world, one that lots of people use every day? It’s the World-Wide Web. Each web page is like a state, and the links on that page are the transitions between them. Back in the year 2000 the web had a billion pages. In 2008 Google Inc. declared they had found a trillion different web page addresses. That’s a lot. A book with a billion pages would be 50 km thick. With a trillion pages, its thickness would exceed the circumference of the earth.

    But the web is just a finite-state automaton. And in order to produce an index for you to use, search engine companies like Google have to examine all the pages to see what words they contain. They explore the web by following all the links, just as you did in the train travelling exercise. Only, because it’s called the “web,” exploring is called “crawling” — like spiders do.

    12.3.2. ACTIVITY: PRACTICE CREATING FSAS

    This activity involves constructing and testing your own FSA, using free software that you can download yourself. Before doing that, we’ll look at some general ways to create an FSA from a description. If you want to try out the examples here on a live FSA, read the next two sections about using Exorciser and JFLAP respectively, which allow you to enter FSAs and test them.

    A good starting point is to think of the shortest string that is needed for a particular description. For example, suppose you need an FSA that accepts all strings that contain an even number of the letter “b”. The shortest such string is ϵ, which means that the starting state must also be a final state, so you can start by drawing this:

    

    If instead you had to design an FSA where the shortest accepted string is “aba”, you would need a sequence of 4 states like this:

    

    Then you need to think what happens next. For example, if we are accepting strings with an even number of “b”s, a single “b” would have to take you from the start state to a non-accepting state:

    

    But another “b” would make an even number, so that’s acceptable. And for any more input the result would be the same even if all the text to that point hadn’t happened, so you can return to the start state:

    

    Usually you can find a “meaning” for a state. In this example, being in state 1 means that so far you’ve seen an even number of “b”s, and state 2 means that the number so far has been odd.

    Now we need to think about missing transitions from each state. So far there’s nothing for an “a” out of state 1. Thinking about state 1, an “a” doesn’t affect the number of “b”s seen, and so we should remain in state 1:

    

    The same applies to state 2:

    

    Now every state has a transition for every input symbol, so the FSA is finished. You should now try some examples to check that an even number of “b”s always brings it to state 1.

    Get some practice doing this yourself! Here are instructions for two different programs that allow you to enter and test FSAs.

    12.3.2.1. EXORCISER

    This section shows how to use some educational software called “Exorciser”. (The next section introduces an alternative called JFLAP which is a bit harder to use.) Exorciser has facilities for doing advanced exercises in formal languages; but we use just the simplest ones.

    Exorciser can be downloaded here.

    When you run it, select “Constructing Finite Automata” (the first menu item); click the “Beginners” link when you want a new exercise. The challenge in each FSA exercise is the part after the | in the braces (i.e., curly brackets). For example, in the diagram below you are being asked to draw an FSA that accepts an input string w if “w has length at least 3”. You should draw and test your answer, although initially you may find it helpful to just click on “Solve exercise” to get a solution, and then follow strings around the solution to see how it works. That’s what we did to make the diagram below.

    

    To draw an FSA in the Exorciser system, right-click anywhere on the empty space and you’ll get a menu of options for adding and deleting states, choosing thealphabet, and so on. To make a transition, drag from the outside circle of one state to another (or out and back to the state for a loop). You can right-click on states and transitions to change them. The notation “a|b” means that a transition will be taken on “a” or “b” (it’s equivalent to two parallel transitions).

    If your FSA doesn’t solve their challenge, you’ll get a hint in the form of a string that your FSA deals with incorrectly, so you can gradually fix it until it works. If you’re stuck, click “Solve exercise”. You can also track input as you type it: right-click to choose that option. See the SwissEduc website for more instructions.

    

    The section after next gives some examples to try. If you’re doing this for a report, keep copies of the automata and tests that you do. Right-click on the image for a “Save As” option, or else take screenshots of the images.

    12.3.2.2. JFLAP

    Another widely used system for experimenting with FSAs is a program called JFLAP (download it from http://jflap.org). You can use it as an alternative for Exorciser if necesary. You’ll need to follow instructions carefully as it has many more features than you’ll need, and it can be hard to get back to where you started.

    Here’s how to build an FSA using JFLAP. As an example, we’ll use the following FSA:

    

    To build this, run JFLAP and:

    
      	click on the “Finite Automaton” button in the control panel.

      	In the Editor window, click on the picture of a state (with a little q in it), and then click in the window to create states.

      	To move the states around, click on the arrow tool in the toolbar (leftmost icon). It doesn’t matter where the states are, but you want them to be easy to view.

      	To put a transition between two states, click on the transition tool (third icon), drag a line between two states, type the label for the transition (“a” or “b” for this exercise), and press return. (The system will offer the empty string (λ) as a label, but please don’t go there!)

      	To make a transition loop back to a state, just click on the state with the transition tool.

      	You can choose the start state by selecting the arrow tool (leftmost icon), right-clicking on the state, and selecting “Initial”. Only one state can be the start state, but you can set more than one “Final” (accepting) state in the same way, by right-clicking on them.

    

    If you need to change something, you can delete things with the delete tool (the skull icon). Alternatively, select the arrow tool and double-click on a transition label to edit it, or right-click on a state. You can drag states around using the arrow tool.

    To watch your FSA process some input, use the “Input” menu (at the top), choose “Step with closure”, type in a short string such as “abaa”, and click “OK”. Then at the bottom of the window you can trace the string one character at a time by pressing “Step”, which highlights the current state as it steps through the string. If you step right through the string and end up in a final (accepting) state, the panel will come up green. To return to the Editor window, go to the “File” menu and select “Dismiss Tab”.

    

    You can run multiple tests in one go. From the “Input” menu choose “Multiple Run”, and type your tests into the table, or load them from a text file.

    

    You can even do tests with the empty string by leaving a blank line in the table, which you can do by pressing the “Enter Lambda” button.

    There are some FSA examples in the next section. If you’re doing this for a report, keep copies of the automata and tests that you do (JFLAP’s “File” menu has a “Save Image As...” option for taking snapshots of your work; alternatively you can save an FSA that you’ve created in a file to open later).

    12.3.2.3. EXAMPLES TO TRY

    Using Exorciser or JFLAP, construct an FSA that takes inputs made of the letters “a” and “b”, and accepts the input if it meets one of the following requirements. You should build a separate FSA for each of these challenges.

    
      	strings that start with the letter “a” (e.g. “aa”, “abaaa”, and “abbbb”).

      	strings that end with the letter “a” (e.g. “aa”, “abaaa”, and “bbbba”).

      	strings that have an even number of the letter “a” (e.g. “aa”, “abaaa”, “bbbb”; and don’t forget the empty string ϵ).

      	strings that have an odd number of the letter “a” (e.g. “a”, “baaa”, “bbbab”, but not ϵ).

      	strings where the number of “a”s in the input is a multiple of three (e.g. “aabaaaa”, “bababab”).

      	strings where every time an a appears in the input, it is followed by a b (e.g. “abb”, “bbababbbabab”, “bbb”).

      	strings that end with “ab”

      	strings that start with “ab” and end with “ba”, and only have “b” in the middle (e.g. “abba”, “abbbbba”)

    

    For the FSA(s) that you construct, check that they accept valid input, but also make sure they reject invalid input.

    Here are some more sequences of characters that you can construct FSAs to detect. The input alphabet is more than just “a” and “b”, but you don’t need to put in a transition for every possible character in every state, because an FSA can automatically reject an input if it uses a character that you haven’t given a transition for. Try doing two or three of these:

    
      	the names for international standard paper sizes (A1 to A10, B1 to B10, and so on)

      	a valid three-letter month name (Jan, Feb, Mar, etc.)

      	a valid month number (1, 2, ... 12)

      	a valid weekday name (Monday, Tuesday, ...)

    

    A classic example of an FSA is an old-school vending machine that only takes a few kinds of coins. Suppose you have a machine that only takes 5 and 10 cent pieces, and you need to insert 30 cents to get it to work. The alphabet of the machine is the 5 and 10 cent coin, which we call F and T for short. For example, TTT would be putting in 3 ten cent coins, which would be accepted. TFFT would also be accepted, but TFFF wouldn’t. Can you design an FSA that accepts the input when 30 cents or more is put into the machine? You can make up your own version for different denominations of coins and required total.

    If you’ve worked with binary numbers, see if you can figure out what this FSA does. Try each binary number as input: 0, 1, 10, 11, 100, 101, 110, etc.

    

    Can you work out what it means if the FSA finishes in state q1? State q2?

    12.3.3. ACTIVITY: FIND FINITE STATE AUTOMATA IN EVERYDAY USE

    There are lots of systems around that use FSAs. You could choose a system, explain how it can be represented with an FSA, and show examples of sequences of input that it deals with. Examples are:

    
      	Board games. Simple board games are often just an FSA, where the next move is determined by some input (e.g. a number given by rolling dice), and the final state means that you have completed the game — so the first person to the final state wins. Most games are too complex to draw a full FSA for, but a simple game like snakes and ladders could be used as an example. What are some sequences of dice throws that will get you to the end of the game? What are some sequences that don’t?!

      	Simple devices with a few buttons often have states that you can identify. For example, a remote control for a car alarm might have two buttons, and what happens to the car depends on the order in which you press them and the current state of the car (whether it is alarmed or not). For devices that automatically turn on or off after a period of time, you may have to include an input such as “waited for 30 seconds”. Other devices to consider are digital watches (with states like “showing time”, “showing date”, “showing stopwatch”, “stopwatch is running”), the power and eject buttons on a CD player, channel selection on a TV remote (just the numbers), setting a clock, storing presets on a car radio, and burglar alarm control panels.

    

    12.3.4. ACTIVITY: KARA, THE LADYBUG

    SwissEduc has a programming environment called Kara (requires Java to be installed), which is a programmable ladybug that (in its simplest version) walks around an imaginary world controlled by actions output by a finite state automaton. The ladybug has (simulated) detectors that sense its immediate surroundings; these serve as input to the FSA.

    12.4. REGULAR EXPRESSIONS

    Note

    For teachers

    Regular expressions (regex for short) are closely related to FSAs, as we shall see. Much of the terminology that is needed was already covered in the previous section: we’ll be using languages, alphabets, strings, ϵ / λ, and eventually finite state automata. So the previous section on FSAs needs to be covered before embarking on regular expressions.

    It may be that students have used regular expressions already, because they are built into many programming languages and are often used when writing script programs. We’ll be looking briefly at such applications — and they’re very relevant — but in formal languages we’re also interested in the limits of what can be represented, and how to convert a regex to an FSA. So there should be something here to get students thinking, even if they’re expert at programming with regexes.

    We’ve already had a taste of regular expressions in the Getting started section. They are just a simple way to search for things in the input, or to specify what kind of input will be accepted as legitimate. For example, many web scripting programs use them to check input for patterns like dates, email addresses and URLs. They’ve become so popular that they’re now built into most programming languages.

    You might already have a suspicion that regular expressions are related to finite state automata. And you’d be right, because it turns out that every regular expression has a finite state automaton that can check for matches, and every finite state automaton can be converted to a regular expression that shows exactly what it does (and doesn’t) match. Regular expressions are usually easier for humans to read. For machines, a computer program can convert any regular expression to an FSA, and then the computer can follow very simple rules to check the input.

    The simplest kind of matching is just entering some text to match. Open a new window to the “Rubular” system (a screenshot is shown below) by clicking on the following challenge:

    
      Open Rubular using this link and type the text "cat" into the box labeled "Your regular expression"
    

    

    If you’ve only typed the 3 characters “cat”, then it should find 6 matches.

    Now try typing a dot (full stop or period) as the fourth character: “cat.”. In a regular expression, ”.” can match any single character. Try adding more dots before and after “cat”. How about “cat.s” or “cat..n”?

    What do you get if you search for ” ... ” (three dots with a space before and after)?

    Now try searching for “ic.”. The ”.” matches any letter, but if you really wanted a full stop, you need to write it like this “ic.” — use this search to find “ic” at the end of a sentence.

    Another special symbol is “\d”, which matches any digit. Try matching 2, 3 or 4 digits in a row (for example, two digits in a row is “\d\d”).

    To choose from a small set of characters, try “[ua]ff”. Either of the characters in the square brackets will match. Try writing a regular expression that will match “fat”, “sat” and “mat”, but not “cat”.

    A shortcut for “[mnopqrs]” is “[m-s]”; try “[m-s]at” and “[4-6]”.

    Another useful shortcut is being able to match repeated letters. There are four common rules:

    
      	a* matches 0 or more repetitions of a

      	a+ matches 1 or more repetitions of a

      	a? matches 0 or 1 occurrences of a (that is, a is optional)

      	a{5} matches “aaaaa” (that is, a repeated 5 times)

    

    Try experimenting with these. Here are some examples to try:

    
      f+
pf*t
af*
f*t
f{5}
.{5}n
    

    If you want to choose between options, the vertical bar is useful. Try the following, and work out what they match. You can type extra text into the test string area if you want to experiment:

    
      was|that|hat
was|t?hat
th(at|e) cat
[Tt]h(at|e) [fc]at
(ff)+
f(ff)+
    

    Notice the use of brackets to group parts of the regular expression. It’s useful if you want the “+” or “*” to apply to more than one character.

    
      Jargon Buster
    

    The name Regular Expression is sometimes abbreviated to “regex”, “regexp”, or “RE”. It’s “regular” because it can be used to define sets of strings from a very simple class of languages called “regular languages”, and it’s an “expression” because it is a combination of symbols that follow some rules.

    Click here for another challenge: you should try to write a short regular expression to match the first two words, but not the last three.

    Of course, regular expressions are mainly used for more serious purposes. Click on the following challenge to get some new text to search:

    Open this challenge in Rubular and try the following expressions.

    The following regular expression will find comon NZ number plates in the sample text, but can you find a shorter version using the {n} notation?

    
      [A-Z][A-Z][A-Z]\d\d\d
    

    How about an expression to find the dates in the text? Here’s one option, but it’s not perfect:

    
      \d [A-Z][a-z][a-z] \d\d\d\d
    

    Can you improve on it?

    What about phone numbers? You’ll need to think about what variations of phone numbers are common! How about finding email addresses?

    
      
    

    Regular expressions are useful!

    The particular form of regular expression that we’ve been using is for the Ruby programming language (a popular language for web site development), although it’s very similar to regular expressions used in other languages including Java, JavaScript, PHP, Python, and Microsoft’s .NET Framework. Even some spreadsheets have regular expression matching facilities.

    But regular expressions have their limits — for example, you won’t be able to create one that can match palindromes (words and phrases that are the same backwards as forwards, such as “kayak”, “rotator” and “hannah”), and you can’t use one to detect strings that consist of n repeats of the letter “a” followed by n repeats of the letter “b”. We’ll look at other systems for doing that in the section on grammars. But nevertheless, regular expressions are very useful for a lot of common pattern matching requirements.

    12.4.1. REGULAR EXPRESSIONS AND FSAS

    There’s a direct relationship between regular expressions and FSAs. For example, consider the following regex, which matches strings that begin with an even number of the letter “a” and end with an even number of the letter “b”:

    
      (aa)+(bb)+
    

    Now look at how the following FSA works on these strings — you could try “aabb”, “aaaabb”, “aaaaaabbbb”, and also see what happens for strings like “aaabb”, “aa”, “aabbb”, and so on.

    

    You may have noticed that q2 is a “trap state”. We can achieve the same effect with the following FSA, where all the transitions to the trap state have been removed — the FSA can reject the input as soon as a non-existent transition is needed.

    

    Like an FSA, each regular expression represents a language, which is just the set of all strings that match the regular expression. In the example above, the shorteststring in the language is “aabb”, then there’s “aaaabb” and “aabbbb”, and of course an infinite number more. There’s also an infinite number of strings that aren’t in this language, like “a”, “aaa”, “aaaaaa” and so on.

    In the above example, the FSA is a really easy way to check for the regular expression — you can write a very fast and small program to implement it (in fact, it’s a good exercise: you typically have an array or list with an entry for each state, and each entry tells you which state to go to next on each character, plus whether or not it’s a final state. At each step the program just looks up which state to go to next.)

    Fortunately, every regular expression can be converted to an FSA. We won’t look at the process here, but both Exorciser and JFLAP can do it for you anyway (see the activities below).

    This is also built into most programming languages. Programmers usually use regular expressions by calling functions or methods that are passed the regex and thestring to be searched. But behind the scenes, the regular expression is converted to a finite state automaton, and then the job of checking your regular expression is very easy.

    12.4.2. ACTIVITY: DESIGNING REGULAR EXPRESSIONS

    Here are some ideas for regular expressions for you to try to create. You can check them using Rubular as we did earlier, but you’ll need to make up your own text to check. When testing your expressions, make sure that they not only accept correct strings, but reject ones that don’t match, even if there’s just one character missing.

    You may find it easier to have one test match string per line in “Your test string”. You can force your regular expression to match a whole line by putting “^” (start of line) before the regular expression, and “$” (end of line) after it. For example, “^a+$” only matches lines that have nothing but “a”s on them.

    Here are some challenges to try to create regular expressions for:

    
      	local forms of non-personalised number plates (e.g. AB1234 or ABC123 in New Zealand)

      	any extended form of the word “hello”, e.g. “helloooooooooooo”

      	variants of “aaaarrrrrgggggghhhh”

      	a 24-hour clock time (e.g. 23:00) or a 12-hour time (e.g. 11:55 pm)

      	a bank account or credit card number

      	a credit card expiry date (must have 4 digits e.g 01/15)

      	a password that must contain at least 2 digits

      	a date

      	a phone number (choose your format e.g. mobile only, national numbers, or international)

      	a dollar amount typed into a banking website, which should accept various formats like “$21.43”, “$21”, “21.43”, and “$5,000”, but not “21$”, “21.5”, “5,0000.00”, and “300$”.

      	acceptable identifiers in your programming language (usually something like a letter followed by a combination of letters, digits and some punctuation symbols)

      	an integer in your programming language (allow for + and - at the front, and some languages allow suffixes like L, or prefixes like 0x)

      	an IP address (e.g. 172.16.5.2 or 172.168.10.10:8080)

      	a MAC address for a device (e.g. e1:ce:8f:2a:0a:ba)

      	postal codes for several countries e.g. NZ: 8041, Canada: T2N 1N4, US: 90210

      	a (limited) http URL, such as “http://abc.xyz”, “http://abc.xyz#conclusion”, “http://abc.xyz?search=fgh”.

    

    12.4.3. PROJECT: CONVERTING REGULAR EXPRESSIONS TO FSAS

    For this project you will make up a regular expression, convert it to an FSA, and demonstrate how some strings are processed.

    There’s one trick you’ll need to know: the software we’re using doesn’t have all the notations we’ve been using above, which are common in programming languages, but not used so much in pure formal language theory. In fact, the only ones available are:

    
      	a* matches 0 or more repetitions of a

      	a|b matches a or b

      	(aa|bb)* Parentheses group commands together; in this case it gives a mixture of pairs of “a”s and pairs of “b”s.

    

    Having only these three notations isn’t too much of a problem, as you can get all the other notations using them. For example, “a+” is the same as “aa*”, and “\d” is “0|1|2|3|4|5|67|8|9”. It’s a bit more tedious, but we’ll mainly use exercises that only use a few characters.

    12.4.3.1. CONVERTING WITH EXORCISER

    Use this section if you’re using Exorciser; if you’re using JFLAP then skip to `Converting with JFLAP`~.

    Exorciser is very simple. In fact, unless you change the default settings, it can only convert regular expressions using two characters: “a” and “b”. But even that’s enough (in fact, in theory any input can be represented with two characters — that’s what binary numbers are about!)

    On the plus side, Exorciser has the empty string symbol available — if you type “e” it will be converted to ϵ. So, for example, “(a| ϵ)” means an optional “a” in the input.

    To do this project using Exorciser, go to the start (“home”) window, and select the second link, “Regular Expression to Finite Automata Conversion”. Now type yourregular expression into the text entry box that starts with “R =”.

    As a warmup, try:

    
      aabb
    

    then click on “solve exercise” (this is a shortcut — the software is intended for students to create their own FSA, but that’s beyond what we’re doing in this chapter).

    You should get a very simple FSA!

    To test your FSA, right-click on the background and choose “Track input”.

    Now try some more complex regular expressions, such as the following. For each one, type it in, click on “solve exercise”, and then track some sample inputs to see how it accepts and rejects different strings.

    
      aa*b
a(bb)*
(bba*)*
(b*a)*a
    

    Your project report should show the regular expressions, explain what kind of strings they match, show the corresponding FSAs, show the sequence of states that some sample test strings would go through, and you should explain how the components of the FSA correspond the parts of the regular expression using examples.

    12.4.3.2. CONVERTING WITH JFLAP

    If you’re using JFLAP for your project, you can have almost any character as input. The main exceptions are “”, “+” (confusingly, the “+” is used instead of “|” for alternatives), and ”!” (which is the empty [string*](http://csfieldguide.org.nz/appendices/Glossary.html#term-string) — in the preferences you can choose if it is shown as λ or ϵ).

    So the main operators available in JFLAP are:

    
      	a* matches 0 or more repetitions of a

      	a+b matches a or b

      	(aa+bb)* Parentheses group commands together; in this case it gives a mixture of pairs of “a”s and pairs of “b”s.

    

    The JFLAP software can work with all sorts of formal languages, so you’ll need to ignore a lot of the options that it offers! This section will guide you through exactly what to do.

    There are some details about the format that JFLAP uses for regular expressions in the following tutorial — just read the “Definition” and “Creating a regular expression” sections.

    
      
      http://www.jflap.org/tutorial/regular/index.html
    

    As a warmup, we’ll convert this regex to an FSA:

    
      ab*b
    

    On the main control window of JFLAP click on “Regular Expression”, and type your regular expression into JFLAP:

    

    From the “Convert” menu choose “Convert to NFA”. This will only start the conversion; press the “Do all” button to complete it (the system is designed to show all the steps of the conversion, but we just want the final result). For the example, we get the following non-deterministic finite automaton (NFA), which isn’t quite what we want and probably looks rather messy:

    

    We need a DFA (deterministic FA), not an NFA. To convert the NFA to a DFA, press the “Export” button, then from the “Convert” menu, choose “Convert to DFA”, press the “Complete” button to complete the conversion, and then the “Done?” button, which will put it in a new window:

    

    We’re nearly there. If it’s hard to read the FSA, you can move states around by choosing the arrow tool (on the left of the tool bar — if the states won’t move when you grab them, so make sure you click on the arrow icon before trying to move them). The states may have some extraneous labels underneath them; you can hide those by selecting the arrow tool, right-click on the white part of the window and un-check “Display State Labels”.

    

    If the FSA is simple enough, it may be just as easy if you now copy the diagram by hand and try to set it out tidily yourself, otherwise you can save it as an image to put into your project.

    Now try some sample inputs. The starting state is labeled q0 and will have a large arrow pointing at it. You can get JFLAP to run through some input for you by using the “Input” menu. “Step by state” will follow your input state by state, “Fast run” will show the sequence of states visited for your input, and “Multiple run” allows you to load a list of strings to test.

    Multiple runs are good for showing lots of tests on your regular expression:

    

    For example, “ab” is rejected because it would only get to state 2.

    Now you should come up with your own regular expressions that test out interesting patterns, and generate FSA’s for them. In JFLAP you can create FSAs for some of regular expressions we used earlier, such as (simple) dates, email addresses or URLs.

    Your project report should show the regular expressions, explain what kind of strings they match, show the corresponding FSAs, show the sequence of states that some sample test strings would go through, and you should explain how the components of the FSA correspond to the parts of the regular expression using examples.

    12.4.4. OTHER IDEAS FOR PROJECTS AND ACTIVITIES

    Here are some more ideas that you could use to investigate regular expressions:

    
      	On the regexdict site, read the instructions on the kinds of pattern matching it can do, and write regular expressions for finding words such as:

    

    
      
        	words that contain “aa”

        	all words with 3 letters

        	all words with 8 letters

        	all words with more than 8 letters

        	words that include the letters of your name

        	words that are made up only of the letters in your name

        	words that contain all the vowels in reverse order

        	words that you can make using only the notes on a piano (i.e the letters A to G and a to g)

        	words that are exceptions to the rule “i before e except after c” — make sure you find words like “forfeit” as well as “science”.

      

    

    
      	Microsoft Word’s Find command uses regular expressions if you select the “Use wildcards” option. For more details see Graham Mayor‘s Finding and Replacing Characters using Wildcards.

      	Explore regular expressions in spreadsheets. The Google docs spreadsheet has a function called RegExMatch, RegExExtract and RegExReplace. In Excel they are available via Visual Basic.

      	Knitting patterns are a form of regular expression. If you’re interested in knitting, you could look into how they are related through the article about knitting and regular expressions at CS4FN site.

      	The Chesapeake NetCraftsmen site provides a system for practising writing regular expressions.

      	The “grep” command is available in many command line systems, and matches a regular expression in the command with lines in an input file. (the name comes from “Global Regular Expression Parser”). Demonstrate the grep command for various regular expressions.

      	Functions for matching against regular expressions appear in most programming languages. If your favourite language has this feature, you could demonstrate how it works using sample regular expressions and strings.

      	Advanced: The free tools lex and flex are able to take specifications for regular expressions and create programs that parse input according to the rules. They are commonly used as a front end to a compiler, and the input is a program that is being compiled. You could investigate these tools and demonstrate a simple implementation.

    

    12.5. GRAMMARS AND PARSING

    Warning

    this section hasn’t been written yet; the material below is just an introduction

    With unusual grammar Yoda from Star Wars speaks. Yet still understand him, people can. The flexibility of the rules of English grammar mean that you can usually be understood if you don’t get it quite right, but it also means that the rules get very complicated and difficult to apply.

    Grammars in formal languages are much more predictable than grammars in human languages — that’s why they’re called formal languages! When you’re doing English, grammar can be a tricky topic because not only are there are so many rules, but there are also so many exceptions — for example, you need an apostrophe if you write “the computer’s USB port”, but you have to leave it out if you say “its USB port”. Grammars in computer science are mainly used to specify programming languages and file formats, and compilers make a fuss even if you leave out just one bracket or comma! But at least they’re predictable.

    In this section we’ll look at the kind of grammars that are widely used in computer science. They are very powerful because they allow a complicated system (like a compiler or a format like HTML) to be specified in a very concise way, and there are programs that will automatically take the grammar and build the system for you. The grammars for conventional programming languages are a bit too unwieldy to use as initial examples (they usually take a few pages to write out), so we’re going to work with some small examples here, including parts of the grammars for programming languages.

    Note: the remainder of this section will be developed during 2013.

    12.5.1. PROJECT IDEAS

    (Note that these will make more sense when the previous introduction to grammars has been completed!)

    
      	Demonstrate how compilers, interpreters, parsers or validators find errors in formal languages e.g. introduce an error to a compiled program, XML document file or web page, and show the effect of the error.

      	Find a grammar for a programming language, and show how a sample program would be parsed using the grammar.

      	Use examples to show the parse tree (or syntax tree) for a correct and incorrect program fragment, or to show a sequence of grammar productions to construct a correct program fragment

      	Explore the grammar for balanced parentheses S -> SS, S -> (S), S -> ( )

      	Find a grammar for a simple arithmetic expression in a programming language, and show the parse tree for sample expressions (such as (a+b)*(c-d) ).

    

    12.5.2. PROJECTS: GRAMMARS IN ART AND MUSIC

    

    The context free art program ( http://www.contextfreeart.org/ ) enables you to specify images using a context-free grammar. For example, the following pictures of trees are defined by just a few rules that are based around a forest being made of trees, a tree being made of branches, and the branches in turn being made of branches themselves! These simple definitions can create images with huge amounts of detail because the drawing process can break down the grammar into as many levels as required. You can define your own grammars to generate images, and even make a movie of them being created, like the one below. Of course, if you do this as a project make sure you understand how the system works and can explain the formal language behind your creation.

    The JFLAP program that we have been using also has a feature for rendering “L-systems” (http://en.wikipedia.org/wiki/L-system), which are another way to use grammars to create structured images. You’ll need to read about how they work in the JFLAP tutorial (www.jflap.org/tutorial/index.html), and there’s a more detailed tutorial at http://www.cs.duke.edu/csed/pltl/exercises/lessons/20/L-system.zip. There are some sample files here to get you inspired: (the ones starting “ex10...” www.cs.duke.edu/csed/jflap/jflapbook/files/ ) and here’s an example of the kind of image that can be produced:

    

    A tree drawn using L-systems in JFLAP

    There’s also an online system for generating images with L-systems: http://www.kevs3d.co.uk/dev/lsystems/

    Grammars have been used for music notation:

    
      	The following is the BNF grammar for the ABC music format: http://www.norbeck.nu/abc/bnf/abc20bnf.htm

      	
        
        http://abc.sourceforge.net/
      

      	
        
        https://meta.wikimedia.org/wiki/Music_markup
      

      	
        
        http://www.emergentmusics.org/theory/15-implementation
      

      	analyse a simple piece of music in terms of a formal grammar.

    

    12.6. THE WHOLE STORY!

    If you found the material in this chapter interesting, here are some topics that you might want to look into further, as we’ve only just scratched the surface of what can be done with formal languages.

    Formal languages come up in various areas of computer science, and provide invaluable tools for the computer scientist to reduce incredibly complex systems to a small description, and conversely to create very complex systems from a few simple rules. They are essential for writing compilers, and so are activated every time someone writes a program! They are also associated with automata theory and questions relating to computability, and are used to some extent in natural language processing, where computers try to make sense of human languages.

    Technically the kind of finite state automata (FSA) that we used in Finite state automata section is a kind known as a Deterministic Finite Automata (DFA), because the decision about which transition to take is unambiguous at each step. Sometimes it’s referred to as a Finite State Acceptor because it accepts and rejects input depending on whether it gets to the final state. There are all sorts of variants that we didn’t mention, including the Mealy and Moore machines (which produce an output for each each transition taken or state reached), the nested state machine (where each state can be an FSA itself), the non-deterministic finite automata (which can have the same label on more than one transition out of a state), and the lambda-NFA (which can include transitions on the empty string, λ). Believe it or not, all these variations are essentially equivalent, and you can convert from one to the other. They are used in a wide range of practical situations to design systems for processing input.

    However, there are also more complex models of computation such as the push-down automaton (PDA) which is able to follow the rules of context-free grammars, and the most general model of computation which is called a Turing machine. These models are increasingly complicated and abstract, and structures like the Turing machine aren’t used as physical devices (except for fun), but as a tool for reasoning about the limits on what can be computed.

    The Turing machine is named after Alan Turing, who worked on these concepts in the early 20th century (that’s the same person from whom we got the Turing test in AI, which is something quite different — Turing’s work comes up in many areas of computer science!) If you want to investigate the idea of a Turing machine and you like chocolate, there’s an activity on the cs4fn site that gives examples of how it works. The Kara programming environment also has a demonstration of Turing machines

    This chapter looked at two main kinds of formal language: the regular expression (RE) and the context-free grammar (CFG). These typify the kinds of languages that are widely used in compilers and file processing systems. Regular expressions are good for finding simple patterns in a file, like identifiers, keywords and numbers in a program, or tags in an HTML file, or dates and URLs in a web form. Context-free grammars are good when you have nested structures, for example, when an expression is made up of other expressions, or when an “if” statement includes a block of statements, which in turn could be “if” statements, ad infinitum. There are more powerful forms of grammars that exist, the most common being context-sensitive grammars and unrestricted grammars, which allow you to have more than one non-terminal on the left hand side of a production; for example, you could have xAy → aBb, which is more flexible but a lot harder to work with. The relationships between the main kinds of grammars was described by the linguist Noam Chomsky, and is often called the Chomsky Hierarchy after him.

    There is a direct correspondence between the “machines” (such as the FSA) and languages (such as the Regular Expression), as each increasingly complex language needs the correspondingly complex machine to process it. For example, an FSA can be used to determine if the input matches a given Regular Expression, but a PDA is needed to match a string to a CFG. The study of formal languages looks at these relationships, and comes up with ways to create the appropriate machines for a given language and vice versa.

    There are many tools available that will read in the specification for a language and produce another program to parse the language; some common ones are called “Lex” and “Flex” (both perform lexical anaylsis of regular expressions), “Yacc” (“yet another compiler compiler”) and “Bison” (an improved version of Yacc). These systems make it relatively easy to make up your own programming language and construct a compiler for it, although they do demand quite a range of skills to get the whole thing working!

    So we’ve barely got started on what can be done with formal languages, but the intention of this chapter is to give you a taste of the kind of structures that computer scientists work with, and the powerful tools that have been created to make it possible to work with infinitely complex systems using small descriptions.

    12.7. GLOSSARY

    Here’s a list of the main terms and concepts that come up in this chapter.

    
      
        Alphabet
      
    

    
      
        String
      
    

    
      
        Finite state automaton
      
    

    
      
        Regular expression
      
    

    
      
        Pattern matching
      
    

    
      
        Lexical analysis
      
    

    
      
        Grammar
      
    

    
      
        Parsing
      
    

    
      
        Parse tree
      
    

    
      
        Syntax
      
    

    
      
        Syntax diagram
      
    

    
      
        Syntactically correct
      
    

    
      
        Chomsky hierarchy
      
    

    12.8. FURTHER READING

    Some of the material in this chapter was inspired by http://www.ccs3.lanl.gov/mega-math/workbk/machine/malearn.html

    There’s a good article on finite state machines at http://www.i-programmer.info/babbages-bag/223-finite-state-machines.html

    Textbooks on formal languages will have considerably more advanced material and more mathematical rigour than could be expected at High School level, but for students who really want to read more, a popular book is “Introduction to the Theory of Computation” by Michael Sipser.

    Regular expressions and their relationship with FSAs is explained well in the book “Algorithms” by Robert Sedgewick.

    12.8.1. USEFUL LINKS

    
      	
        
        http://en.wikipedia.org/wiki/Formal_language
      

      	
        
        http://en.wikipedia.org/wiki/Context-free_grammar#Examples
      

      	
        
        http://en.wikipedia.org/wiki/Abstract_syntax_tree
      

      	
        
        http://en.wikipedia.org/wiki/Regular_expression
      

      	
        
        http://csunplugged.org/finite-state-automata
      

      	
        
        http://www.i-programmer.info/babbages-bag/223-finite-state-machines.html
      

      	
        
        http://www.jflap.org/
      

      	
        
        http://en.wikipedia.org/wiki/Deterministic_finite_automaton
      

      	
        
        http://en.wikipedia.org/wiki/Finite-state_machine
      

    

  
    13.1. WHAT’S THE BIG PICTURE?

    Computer graphics will be familiar from games, films and images, and there is amazing software available to create images, but how does the software work? The role of a computer scientist is not just to use graphics systems, but to create them, and especially invent new techniques.

    The entertainment industry is always trying to develop new graphics software so that they can push the boundaries and create new experiences. We’ve seen this in the evolution of animated films, from simple 2D films to realistic computer generated movies with detailed 3D images.

    Movie and gaming companies can’t always just use existing software to make the next great thing — they need computer scientists to come up with better graphics techniques to make something that’s never been seen before. The creative possibilities are endless!

    Computer graphics are used in a wide variety of situations: games and animated movies are common examples, but graphics techniques are also used to visualise large amounts of data (such as all cellphone calls being made in one day), to display and animate graphical user interfaces, to create virtual reality and augmented reality worlds, and much more.

    In this chapter we’ll look at some of the basic techniques that are used to create computer graphics. These will give you an idea of the techniques that are used in graphics programming, although it’s just the beginning of what’s possible.

    For this chapter we are using a system called WebGL which can render 3D graphics in your browser. If your browser is set up correctly then you should see a teapot on the right, and you can click the “animate” button to make it rotate. If this doesn’t work, or if the performance is poor, there is information here about how to get it going .

    13.2. GRAPHICS TRANSFORMS

    A computer graphics image is just the result of a whole lot of mathematical calculations. In fact, every pixel you see in an image has typically had many calculations made to work out what colour it should be, and there are often millions of pixels in a typical image.

    Let’s start with some simple but common calculations that are needed for in graphics programming. The following image shows a cube with writing on each face. You can move it around using what’s called a transform, which simply adjusts where it is placed in space.

    In this example the only transforms we've supplied are to translate it in three dimensions. The dimensions are x (left and right), y (up and down) and z (in and out of the screen). Your goal is to type in how far it should be transformed in each of these directions so that you can see the symbol on each face, and put those symbols on the spinner wheels shown. (The order of the symbols doesn't matter).

    
      Click to load the widget
    

    You’ve just applied 3D translation transforms to the cube. Translation just means moving it in the three dimensions up and down, forward and back, and sideways.

    Another common transform is rotation, which you can use in the following image to find the symbols (the rotation is measured in degrees).

    
      Click to load the widget
    

    There are several transformations that are used in computer graphics, but the most common ones are translation (moving the object), rotation (spinning it) and scaling (changing its size). They come up often in graphics because they are applied not only to objects, but to things like the positions of the camera and lighting sources.

    In this section you can apply transformations to various images. We’ll start by making the changes manually, one point at a time, but we’ll move up to a quick shortcut method that uses a matrix to do the work for you. We’ll start by looking at how these work in two dimensions - it’s a bit easier to think about than three dimensions.

    The following interactive shows an arrow, and on the right you can see a list of the points that correspond to its 7 corners. The arrow is on a grid (usually referred to as cartesian coordinates ), where the centre point is the “zero” point. Points are specified using two numbers, x and y, usually written as (x,y). The x value is how far the point is to the right of the centre and the y value is how far above the centre it is. For example, the first point in the list is the tip at (0,2), which means it’s 0 units to the right of the centre (i.e. at the centre), and 2 units above it. Which point does the last pair (2,0) correspond to? What does it mean if a coordinate has a negativex value?

    The first list of coordinates is for the original arrow position, and in the second list, you can type in the transformed points to move the arrow — the original is shown in green and the moved one is in blue.

    
      Click to load the widget
    

    Your first challenge is to add 2 to all the x points, and 3 to all the y points (you can either type the new number or put the calculation in the box e.g. "0.5+2". What effect does this have on the original arrow? (Be careful to add the negative numbers correctly; for example, adding 2 to -0.5 gives 1.5.) What happens if you subtract 3 from each of the original coordinate values?

    The above transform is called a translation — it translates the arrow around the grid. This kind of transform is used in graphics to specify where an object should be placed in a scene, but it has many other uses, such as making an animated object move along a path, or specifying the position of the imaginary camera (viewpoint).

    In this next interactive, try replacing the coordinates in the second list with all the original values multiplied by 2. What is the effect of this transform? What would happen if you multiply each value by 10? How about 0.5? What if you only multiply the x values?

    
      Click to load the widget
    

    This transformation is called scaling, and although it can obviously be used to control the size of an object, this can in turn be used to create a visual effect such as making the object appear closer or further away.

    Try to get the blue arrow to match up with the red one. It will require a mixture of scaling and translation.

    
      Click to load the widget
    

    Next, see what happens if you swap the x and y value for each coordinate.

    
      Click to load the widget
    

    This is a simple rotation transformation, also useful for positioning objects in a scene, but also for specifying things like camera angles.

    13.2.1. MATRIX TRANSFORMS

    There’s a much easier way to specify transformations than having to change each coordinate separately. Transformations are usually done in graphics using matrixarithmetic, which is a shorthand notation for doing lots of simple arithmetic operations in one go. The matrix for the two-dimensional transformations we’ve been doing above has four values in it. For the 2 dimensional scaling transform where we made each x and y value twice as large, the matrix is written as:

    [2002]

    You can type this matrix into the following interactive to see what it does (replace the ones with twos). The top left-hand value just means multiply all the x values by 2, and the bottom right one means multiply all the y values by 2. For the meantime, leave the other two values as 0.

    
      

Click to load the widget.
    

    (At this stage you may want to have the widget open in a separate window so that you can read the text below and interact with the widget at the same time.)

    Now try changing the matrix to

    [3003]

    or

    [0.2000.2]

    The “add translate” values in the interactive are added to each x and y coordinate; experiment with them to see what they do. Now try to find suitable values for these and the matrix to match the arrow up with the red one.

    What happens if you use the following matrix?

    [2004]

    Now try the following matrix:

    [0110]

    This matrix should have rotated the arrow to the right.

    A simple way of looking at the matrix is that the top row determines the transformed x value, simply by saying how much of the original x value and y value contribute to the new x value. So in the matrix:

    [2004]

    the top row just means that the new x value is 2 lots of the original x, and none of the original y, which is why all the x values double. The second row determines the yvalue: in the above example, it means that the new y value uses none of the original x, but 4 times the original y value. If you try this matrix, you should find that the location of all the x points is doubled, and the location of all the y points is multiplied by 4.

    That now explains the [0110] matrix. The new x value has none of the original x, but exactly the original y value, and vice versa. This swaps all the x and ycoordinates, which is the same as rotating the object to the right.

    Where it gets interesting is when you use a little of each value; try the following matrix:

    [0.7−0.70.70.7]

    Now the x value of each coordinate is a mixture of 0.7 of the original x, and 0.7 of the original y.

    In general, to rotate an image by a given angle you need to use the sine (abbreviated sin) and cosine (abbreviated cos) functions from trigonometry. To rotate the image by Θ degrees, you’ll need the following values in the matrix, which rely on trig functions:

    [cos(θ)sin(θ)−sin(θ)cos(θ)]

    You can type these calculations directly into the interactive - if you type cos(60) it will work out the cosine of 60 degrees for you, which happens to be exactly 0.5. Or you can just type in the sin and cosine values; the 0.7 numbers in the matrix above are just the values for sin(45) and so on (or at least, they approximately the value; it's actually 0.70710678..., which happens to be the square root of 0.5, but 0.7 is close enough for our example).

    
      

Click to load the widget.
    

    What is the matrix for rotation by 360 degrees?

    The general matrix for scaling is a bit simpler; if you want to scale by a factor of s, then you just use the matrix:

    [s00s]

    A translation can’t be specified by this kind of matrix, but in the interactives we’ve provided an extra place to specify an x and y value to translate the input.

    Try translating the original arrow so that it matches up with the red arrow.

    
      

Click to load the widget.
    

    Now try to scale the original arrow in the following, and translate it to match the red arrow.

    
      [image: ]

Click to load the widget.
    

    The following interactive has the translation and scaling the other way around. Use this one to transform the blue arrow to the red arrow. The order in which the operations happen makes a difference!

    
      

Click to load the widget.
    

    In the above, you’ll have noticed that scaling is affected by how far the object is from the centre. If you want to scale around a fixed point in the object (so it expands where it is), then an easy way is to translate it back to the centre (also called the origin), scale it, and then translate it back to where it was. The following interactive allows you to move the arrow, then scale it, and move it back.

    The tip is at (-8,7), so you should translate it to (0,0), scale by 2, and translate back to (-8, 7).

    
      

Click to load the widget.
    

    The same problem comes up with rotation.

    Try rotating this image by 45 degrees.You'll need to translate the tip to the origin, apply the rotation, and translate it back.

    
      

Click to load the widget.
    

    The following two examples combine rotation, scaling and translation. You can use multiple matrices (that’s the plural of matrix) to match up the target object — the product of each matrix becomes the input to the next one. Oh, and the arrow is twice as fat, but still the same hight (from base to tip).

    Try matching the blue arrow to the red one using two matrices (one to scale and one to rotate), and adding a vector.

    
      

Click to load the widget.
    

    You will need to use all three operations to do this next one.

    
      

Click to load the widget.
    

    These combined transformations are common, and they might seem like a lot of work because each matrix has to be applied to every point in an object. Our arrows only had 7 points, but complex images can have thousands or even millions of points in them. Fortunately we can combine all the matrix operations in advance to give just one operation to apply to each point.

    13.2.2. COMBINING TRANSFORMATIONS

    Several transforms being applied to the same image can be made more efficient by creating one matrix that has the effect of all the transforms combined.The combination is done by “multiplying” all the matrices.

    Multiplying two matrices can’t be done by just multiplying the corresponding elements; if you are multiplying two matrices with the a and b values shown below, the resulting values from the multiplication are calculated as follows:

    [a11a12a21a22]

    \times

    [b11b12b21b22]

    =

    [a11b11+a21b12a12b11+a22b12a11b21+a21b22a12b21+a22b22]

    It’s a bit complicated, but this calculation is only done once to work out the combined transformation, and it gives you a single matrix that will provide to transforms in one operations.

    As a simple example, consider what happens when you scale by 2 and then rotate by 45 degrees. The two matrices to multiply work out like this:

    [2002]

    \times

    [0.7−0.70.70.7]

    =

    [2×0.7+0×−0.70×0.7+2×−0.72×0.7+0×0.70×0.7+2×0.7]

    =

    [1.4−1.41.41.4]

    Try putting in the final matrix here and see if it does scale by 2 and rotate by 45 degrees.

    
      [image: ]

Click to load the widget.
    

    Now try multiplying two other transform matrices that you make up yourself, and see if they produce the expected result.

    
      [image: ]

Click to load the widget.
    

    In computer graphics systems there can be many transformations combined, and this is done by multiplying them all together (two at a time) to produce one matrix that does all the transforms in one go. That transform might then be applied to millions of points, so the time taken to do the matrix multiplication at the start will pay off well.

    The project below gives the chance to explore combining matrices, and has an interactive that will calculate the multiplied matrices for you.

    13.2.3. 3D TRANSFORMS

    So far we’ve just done the transforms in two dimensions. To do this in 3D, we need a z coordinate as well, which is the depth of the object into the screen. A matrix for operating on 3D points is 3 by 3. For example, the 3D matrix for doubling the size of an object is as follows; it multiplies each of the x, y and z values of a point by 2.

    ⎡⎣⎢200020002⎤⎦⎥

    In this interactive, try changing the scaling on the image (it starts with a scaling factor of 10 in all three dimensions).

    
      

Click to load the widget.
    

    The above image mesh has 3644 points in it, and your matrix was applied to each one of them to work out the new image.

    Translation requires 3 values, which are added to the x, y and z coordinates of each point in an object.

    In the following interactive, try moving the teapot left and right ( x ), up and down ( y ), and in and out of the screen ( z ) by adding a “vector” to the operations. Then try combining all three.

    
      [image: ]

Click to load the widget.
    

    Rotation is trickier because you can now rotate in different directions. In 2D rotations were around the centre (origin) of the grid, but in 3D rotations are around a line (either the horizontal x-axis, the vertical y-axis, or the z-axis, which goes into the screen!)

    The rotation we used earlier can be applied to 3 dimensions using this matrix:

    ⎡⎣⎢cos(θ)sin(θ)0−sin(θ)cos(θ)0001⎤⎦⎥

    Try applying that to the image above. This is rotating around the z-axis (a line going into the screen); that is, it’s just moving the image around in the 2D plane. It’s really the same as the rotation we used previously, as the last line (0, 0, 1) just keeps the z point the same.

    Try the following matrix, which rotates around the x-axis (notice that the x value always stays the same because of the 1,0,0 in the first line):

    ⎡⎣⎢1000cos(θ)sin(θ)0−sin(θ)cos(θ)⎤⎦⎥

    And this one for the y-axis:

    ⎡⎣⎢cos(θ)0−sin(θ)010sin(θ)0cos(θ)⎤⎦⎥

    The following interactive allows you to combine 3D matrices.

    You can experiment with moving the teapot around in space, changing its size, and angle.

    Think about the order in which you need to combine the transforms to get a particular image that you want.

    For example, if you translate an image and then scale it, you’ll get a different effect to scaling it then translating it. If you want to rotate or scale around a particular point, you can do this in three steps (as with the 2D case above): (1) translate the object so that the point you want to scale or rotate around is the origin (where the x, y and z axes meet), (2) do the scaling/rotation, (3) translate the object back to where it was. If you just scale an object where it is, its distance from the origin will also be scaled up.

    
      [image: ]

Click here for the interactive to combine multiple transforms into one
    

    In the above examples, when you have several matrices being applied to every point in the image, a lot of time can be saved by converting the series of matrices and transforms to just one formula that does all of the transforms in one go. The following interactive can do those calculations for you.

    For example, in the following interactive, type in the matrix for doubling the size of an object (put the number 2 instead of 1 on the main diagonal values), then add another matrix that triples the size of the image (3 on the main diagonal). The interactive shows a matrix on the right that combines the two — does it look right?

    Multiple transforms

    
      

Click to load the widget.
    

    The interactive also allows you to combine in translations (just three numbers, for x, y and z). Try combining a scaling followed by a translation. What if you add a rotation — does the order matter?

    In case you’re wondering, the interactive is using the following formula to combine two matrices (you don’t have to understand this to use it). It is called matrix multiplication, and while it might be a bit tricky, it’s very useful in computer graphics because it reduces all the transformations you need to just one matrix, which is then applied to every point being transformed. This is way better than having to run all the matrices of every point.

    13.2.4. PROJECT: 3D TRANSFORMS

    For this project, you will demonstrate what you’ve learned in the section above by explaining a 3D transformation of a few objects. You should take screenshots of each step to illustrate the process for your report.

    The following scene-creation interactive allows you to choose objects (and their colours etc.), and apply one transformation to them. To position them more interestingly, you will need to come up with multiple transformations (e.g. scale, then rotate, then translate), and use the “simplifier” interactive to combine all the matrices into one operation.

    The scene-creation interactive can be run from here:

    
      [image: ]

Click to load the widget.
    

    To generate combined transformations, you can use the following transform simplifier interactive:

    
      [image: ]

Click to load the widget.
    

    Because you can’t save your work in the interactives, keep notes and screen shots as you go along. These will be useful for your report, and also can be used if you need to start over again.

    Introduce your project with a examples of 3D images, and how they are used (perhaps from movies or scenes that other people have created). Describe any innovations in the particular image (e.g. computer generated movies usually push the boundaries of what was previously possible, so discuss what boundaries were moved by a particular movie, and who wrote the programs to achieve the new effects).

    For your project, try putting a few objects in a particular arrangement (e.g. with the teapot sitting beside some cups), and explain the transforms needed to achieve this, showing the matrices needed.

    Give simple examples of translation, scaling and rotation using your scene.

    You should include multiple transforms applied to one object, and show how they can be used to position an object.

    Show how the matrices for a series of transforms can be multiplied together to get one matrix that applies all the transforms at once.

    Discuss how the single matrix derived from all the others is more efficient, using your scene as an example to explain this.

    13.3. DRAWING LINES AND CIRCLES

    A fundamental operation is computer graphics is to draw lines and circles. For example, these are used as the components of scalable fonts and vector graphics; the letter “i” is specified as a series of lines and curves, so that when you zoom in on it the computer can redraw it at whatever resolution is needed.

    

    In 3D graphics shapes are often stored using lines and curves that mark out the edges of flat surfaces, each of which is so small that you can’t see them unless you zoom right in.

    

    The lines and circles that specify an object are usually given using numbers (for example, a line between a given starting and finishing position or a circle with a given centre and radius). From this a graphics program must calculate which pixels on the screen should be coloured in to represent the line or circle.

    For example, here’s a grid of pixels with 5 lines shown magnified. The vertical line would have been specified as going from pixel (2,9) to (2,16) — that is, starting 2 across and 9 up, and finishing 2 across and 16 up. Of course, this is only a small part of a screen, as normally they are more like 1000 by 1000 pixels or more; even a smartphone can be hundreds of pixels high and wide.

    
      
    

    These are things that are easy to do with pencil and paper using a ruler and compass, but on a computer the calculations need to be done for every pixel, and if you use the wrong method then it will take too long and the image will be displayed slowly or a live animation will appear jerky. In this section we will look into some very simple but clever algorithms that enable a computer to do these calculations very quickly.

    13.3.1. LINE DRAWING

    To draw a line, a computer must work out which pixels need to be filled so that the line looks straight. You can try this by colouring in squares on a grid, such as the one below (they are many times bigger than the pixels on a normal printer or screen). We’ll identify the pixels on the grid using two values, (x,y), where x is the distance across from the left, and y is the distance up from the bottom. The bottom left pixel below is (0,0), and the top right one is (19,19).

    On the following grid, try to draw these straight lines by filling in pixels in the grid:

    
      	from (2, 17) to (10, 17)

      	from (18, 2) to (18, 14)

      	from (1, 5) to (8, 12)

    

    
      
    

    Drawing a horizontal, vertical or diagonal line like the ones above is easy; it’s the ones at different angles that require some calculation.

    Without using a ruler, can you draw a straight line from A to B on the following grid by colouring in pixels?

    
      
    

    Once you have finished drawing your line, try checking it with a ruler. Place the ruler so that it goes from the centre of A to the centre of B. Does it cross all of the pixels that you have coloured?

    13.3.2. USING A FORMULA TO DRAW A LINE

    The mathematical formula for a line is y=mx+c. This gives you the y value for each x value across the screen, where m is the slope of the line and c is where it crosses the y axis. In other words, for x pixels across, the pixel to colour in would be (x, mx+c).

    For example, choosing m=2 and c=3 means that the line would go through the points (0,3), (1,5), (2,7), (3,9) and so on. This line goes up 2 pixels for every one across (m=2), and crosses the y axis 3 pixels up (c=3).

    You should experiment with drawing graphs for various values of m and c (for example, start with c=0, and try these three lines: m=1, m=0.5 and m=0) by putting in the values. What angle are these lines at?

    The mx+c formula can be used to work out which pixels should be coloured in for a line that goes between (x1,y1) and (x2,y2). What are (x1,y1) and (x2,y2) for the points A and B on the grid below?

    See if you can work out the m and b values for a line from A to B, or you can calculate them using the following formulas:

    m=(y2−y1)(x2−x1)

    b=(y1x2−y2x1)(x2−x1)

    Now draw the same line as in the previous section (between A and B) using the formula y=mx+c to calculate y for each value of x from x1 to x2 (you will need to round y to the nearest integer to work out which pixel to colour in). If the formulas have been applied correctly, the y value should range from y1 to y2.

    
      
        [image: ]
      
    

    Once you have completed the line, check it with a ruler. How does it compare to your first attempt?

    Now consider the number of calculations that are needed to work out each point. It won’t seem like many, but remember that a computer might be calculating hundreds of points on thousands of lines in a complicated image. In the next section we will explore a method that greatly speeds this up.

    13.3.3. BRESENHAM’S LINE ALGORITHM

    A faster way for a computer to calculate which pixels to colour in is to use Brensenham’s Line Algorithm. It follows these simple rules. First, calculate these three values:

    A=2×(y2−y1)

    B=A−2×(x2−x1)

    P=A−(x2−x1)

    To draw the line, fill the starting pixel, and then for every position along the x axis:

    
      	if P is less than 0, draw the new pixel on the same line as the last pixel, and add A to P.

      	if P was 0 or greater, draw the new pixel one line higher than the last pixel, and add B to P.

      	repeat this decision until we reach the end of the line.

    

    Without using a ruler, use Bresenham’s Line Algorithm to draw a straight line from A to B:

    
      
        [image: ]
      
    

    Once you have completed the line, check it with a ruler. How does it compare to the previous attempts?

    13.3.4. LINES AT OTHER ANGLES

    So far the version of Bresenham’s line drawing algorithm that you have used only works for lines that have a gradient (slope) between 0 and 1 (that is, from horizontal to 45 degrees). To make this algorithm more general, so that it can be used to draw any line, some additional rules are needed:

    
      	If a line is sloping downward instead of sloping upward, then when P is 0 or greater, draw the next column’s pixel one row below the previous pixel, instead of above it.

      	If the change in Y value is greater than the change in X value, then the calculations for A, B, and the initial value for P will need to be changed. When calculating A, B, and the initial P, use X where you previously would have used Y, and vice versa. When drawing pixels, instead of going across every column in the X axis, go through every row in the Y axis, drawing one pixel per row.

    

    
      
        [image: ]
      
    

    In the grid above, choose two points of your own that are unique to you. Don’t choose points that will give horizontal, vertical or diagonal lines!

    Now use Bresenham’s algorithm to draw the line. Check that it gives the same points as you would have chosen using a ruler, or using the formula y=mx+b. How many arithmetic calculations (multiplications and additions) were needed for Bresenhams algorithm? How many would have been needed if you used the y=mx+b formula? Which is faster (bear in mind that adding is a lot faster than multiplying for most computers).

    You could write a program or design a spreadsheet to do these calculations for you — that’s what graphics programmers have to do.

    13.3.5. CIRCLES

    As well as straight lines, another common shape that computers often need to draw are circles. An algorithm similar to Bresenham’s line drawing algorithm, called the Midpoint Circle Algorithm, has been developed for drawing a circle efficiently.

    A circle is defined by a centre point, and a radius. Points on a circle are all the radius distance from the centre of the circle.

    
      
    

    Try to draw a circle by hand by filling in pixels (without using a ruler or compass). Note how difficult it is to make the circle look round.

    It is possible to draw the circle using a formula based on Pythagoras’ theorem, but it requires calculating a square root for each pixel, which is very slow. The following algorithm is much faster, and only involves simple arithmetic so it runs quickly on a computer.

    13.3.6. BRESENHAM’S MIDPOINT CIRCLE ALGORITHM

    Here are the rules for the Midpoint Circle Algorithm for a circle around (cx, cy) with a radius of R:

    E=−R

    X=R

    Y=0

    Repeat the following rules in order until Y becomes greater than X:

    
      	Fill the pixel at coordinate (cx+X, cy+Y)

      	Increase E by 2×Y+1

      	Increase Y by 1

      	If E is greater than or equal to 0, subtract (2X−1) from E, and then subtract 1 from X.

    

    Follow the rules to draw a circle on the grid, using (cx, cy) as the centre of the circle, and R the radius. Notice that it will only draw the start of the circle and then it stops because Y is greater than X!

    
      
        [image: ]
      
    

    When y becomes greater than x, one eighth (an octant) of the circle is drawn. The remainder of the circle can be drawn by reflecting the octant that you already have (you can think of this as repeating the pattern of steps you just did in reverse). Reflect pixels along the X and Y axis, such that the line of reflection crosses the middle of the centre pixel of the circle. Half of the circle is now drawn, the left and the right half. To add the remainder of the circle, another line of reflection must be used. Can you work out which line of reflection is needed to complete the circle?

    Jargon Buster : Octant

    A quadrant is a quarter of an area; the four quadrants that cover the whole area are marked off by a vertical and horizontal line that cross. An octant is one eighth of an area, and the 8 octants are marked off by 4 lines that intersect at one point (vertical, horizontal, and two diagonal lines).

    To complete the circle, you need to reflect along the diagonal. The line of reflection should have a gradient of 1 or -1, and should cross through the middle of the centre pixel of the circle.

    While using a line of reflection on the octant is easier for a human to understand, a computer can draw all of the reflected points at the same time it draws a point in the first octant because when it is drawing pixel with an offset of (x,y) from the centre of the circle, it can also draw the pixels with offsets (x,-y), (-x,y), (-x,-y), (y,x), (y,-x), (-y,x) and (-y,-x), which give all eight reflections of the original point!

    By the way, this kind of algorithm can be adapted to draw ellipses, but it has to draw a whole quadrant because you don’t have octant symmetry in an ellipse.

    13.3.7. PRACTICAL APPLICATIONS

    Computers need to draw lines, circles and ellipses for a wide variety of tasks, from game graphics to lines in an architect’s drawing, and even a tiny circle for the dot on the top of the letter ‘i’ in a word processor. By combining line and circle drawing with techniques like ‘filling’ and ‘antialiasing’, computers can draw smooth, clear images that are resolution independent. When an image on a computer is described as an outline with fill colours it is called vector graphics — these can be re-drawn at any resolution. This means that with a vector image, zooming in to the image will not cause the pixelation seen when zooming in to bitmap graphics, which only store the pixels and therefore make the pixels larger when you zoom in. However, with vector graphics the pixels are recalculated every time the image is redrawn, and that’s why it’s important to use a fast algorithm like the one above to draw the images.

    Outline fonts are one of the most common uses for vector graphics as they allow the text size to be increased to very large sizes, with no loss of quality to the letter shapes.

    Computer scientists have found fast algorithms for drawing other shapes too, which means that the image appears quickly and it can be done on relatively slow hardware - for example, a smartphone needs to do these calculations all the time to display images, and reducing the amount of calculations can extend its battery life, as well as make it appear faster.

    As usual, things aren’t quite as simple as shown here. For example, consider a horizontal line that goes from (0,0) to (10,0), which has 11 pixels. Now compare it with a 45 degree line that goes from (0,0) to (10,10). It still has 11 pixels, but the line is longer (about 41% longer to be precise). This means that the line would appear thinner or fainter on a screen, and extra work needs to be done (mainly anti-aliasing) to make the line look ok. We’ve only just begun to explore how techniques in graphics are needed to quickly render high quality images.

    13.3.8. PROJECT: LINE AND CIRCLE DRAWING

    To compare Bresenham’s method with using the equation of a line (y=mx+b), choose your own start and end point of a line (of course, make sure it’s at an interesting angle), and show the calculations that would be made by each method. Count up the number of additions, subtractions, multiplications and divisions that are made in each case to make the comparison. Note that addition and subtraction is usually a lot faster than multiplication and division.

    You can estimate how long each operation takes on your computer by running a program that does thousands of each operation, and timing how long it takes for each. From this you can estimate the total time taken by each of the two methods. A good measurement for these is how many lines (of your chosen length) your computer could calculate per second.

    13.4. THE WHOLE STORY!

    13.5. FURTHER READING

    Todo

    this section is yet to be written

    13.5.1. USEFUL LINKS

    
      	
        
        http://en.wikipedia.org/wiki/Computer_graphics
      

      	
        
        http://en.wikipedia.org/wiki/Transformation_matrix
      

      	http://en.wikipedia.org/wiki/Bresenham’s_line_algorithm

      	
        
        http://en.wikipedia.org/wiki/Ray_trace
      

      	
        
        http://www.cosc.canterbury.ac.nz/mukundan/cogr/applcogr.html
      

      	
        
        http://www.cosc.canterbury.ac.nz/mukundan/covn/applcovn.html
      

      	
        
        http://www.povray.org/resources/links/3D_Tutorials/POV-Ray_Tutorials/
      

    

    Computer Graphics, Computer Vision, Bresenham’s Line Algorithm, Ray Tracing, Magnetic Resonance Imaging (MRI), Rendering, 3D Modeling, Animation, WebGL (Web Graphics Library), OpenGL (Open Graphics Library)

    13.5.2. KEY CONCEPTS

    
      	Algorithms: Bresenham’s algorithm (line and circle drawing), colour space conversion, line anti-aliasing, Bézier and B-spline curves, painter’s algorithm, Z-buffer

      	Techniques: Techniques: ray tracing, texture mapping, shading, anti-aliasing, volume rendering, polygonisation, constructive solid geometry, 3D modeling, hidden object removal

      	Applications: drawing software, animation

    

  
    14.1. WHAT’S THE BIG PICTURE?

    When computers were first developed, the only way they could interact with the outside world was through the input that people wired or typed into them. Digital devices today often have cameras, microphones and other sensors through which programs can perceive the world we live in automatically. Processing images from a camera, and looking for interesting information in them, is what we call computer vision.

    With increases in computer power, the decrease in the size of computers and progressively more advanced algorithms, computer vision has a growing range of applications. While it is commonly used in fields like healthcare, security and manufacturing, we are finding more and more uses for them in our everyday life, too.

    For example, here is a sign written in Chinese:

    

    If you can’t read the Chinese characters, there are apps available for smartphones that can help:

    

    Having a small portable device that can “see” and translate characters makes a big difference for travellers. Note that the translation given is only for the second part of the phrase (the last two characters). The first part says “please don’t”, so it could be misleading if you think it’s translating the whole phrase!

    Recognising of Chinese characters may not work every time perfectly, though. Here is a warning sign:

    

    My phone has been able to translate the “careful” and “steep” characters, but it hasn’t recognised the last character in the line. Why do you think that might be?

    Giving users more information through computer vision is only one part of the story. Capturing information from the real world allows computers to assist us in other ways too. In some places, computer vision is already being used to help car drivers to avoid collisions on the road, warning them when other cars are too close or there are other hazards on the road ahead. Combining computer vision with map software, people have now built cars that can drive to a destination without needing a human driver to steer them. A wheelchair guidance system can take advantage of vision to avoid bumping into doors, making it much easier to operate for someone with limited mobility.

    14.2. LIGHTS, CAMERA, ACTION!

    Digital cameras and human eyes fulfill largely the same function: images come in through a lens and are focused onto a light sensitive surface, which converts them into electrical impulses that can be processed by the brain or a computer respectively. There are some differences, however.

    Human eyes have a very sensitive area in the centre of their field of vision called the fovea. Objects that we are looking at directly are in sharp detail, while our peripheral vision is quite poor. We have separate sets of cone cells in the retina for sensing red, green and blue (RGB) light, but we also have special rod cells that are sensitive to light levels, allowing us to perceive a wide dynamic range of bright and dark colours. The retina has a blind spot (a place where all the nerves bundle together to send signals to the brain through the optic nerve), but most of the time we don’t notice it because we have two eyes with overlapping fields of view, and we can move them around very quickly.

    Digital cameras have uniform sensitivity to light across their whole field of vision. Light intensity and colour are picked up by RGB sensor elements on a silicon chip, but they aren’t as good at capturing a wide range of light levels as our eyes are. Typically, a modern digital camera can automatically tune its exposure to either bright or dark scenes, but it might lose some detail (e.g. when it is tuned for dark exposure, any bright objects might just look like white blobs).

    It is important to understand that neither a human eye nor a digital camera — even a very expensive one — can perfectly capture all of the information in the scene in front of it. Electronic engineers and computer scientists are constantly doing research to improve the quality of the images they capture, and the speed at which they can record and process them.

    14.3. NOISE

    One challenge when using digital cameras is something called noise. That’s when individual pixels in the image appear brighter or darker than they should be, due to interference in the electronic circuits inside the camera. It’s more of a problem when light levels are dark, and the camera tries to boost the exposure of the image so that you can see more. You can see this if you take a digital photo in low light, and the camera uses a high ASA/ISO setting to capture as much light as possible. Because the sensor has been made very sensitive to light, it is also more sensitive to random interference, and gives photos a “grainy” effect.

    Noise mainly appears as random changes to pixels. For example, the following image has “salt and pepper” noise.

    

    Having noise in an image can make it harder to recognise what’s in the image, so an important step in computer vision is reducing the effect of noise in an image. There are well-understood techniques for this, but they have to be careful that they don’t discard useful information in the process. In each case, the technique has to make an educated guess about the image to predict which of the pixels that it sees are supposed to be there, and which aren’t.

    Since a camera image captures the levels of red, green and blue light separately for each pixel, a computer vision system can save a lot of processing time in some operations by combining all three channels into a single “grayscale” image, which just represents light intensities for each pixel.

    This helps to reduce the level of noise in the image. Can you tell why, and about how much less noise there might be? (As an experiment, you could take a photo in low light — can you see small patches on it caused by noise? Now use photo editing software to change it to black and white — does that reduce the effect of the noise?)

    Rather than just considering the red, green and blue values of each pixel individually, most noise-reduction techniques look at other pixels in a region, to predict what the value in the middle of that neighbourhood ought to be.

    A mean filter assumes that pixels nearby will be similar to each other, and takes the average (i.e. the mean) of all pixels within a square around the centre pixel. The wider the square, the more pixels there are to choose from, so a very wide mean filter tends to cause a lot of blurring, especially around areas of fine detail and edges where bright and dark pixels are next to each other.

    A median filter takes a different approach. It collects all the same values that the mean filter does, but then sorts them and takes the middle (i.e. the median) value. This helps with the edges that the mean filter had problems with, as it will choose either a bright or a dark value (whichever is most common), but won’t give you a value between the two. In a region where pixels are mostly the same value, a single bright or dark pixel will be ignored. However, numerically sorting all of the neighbouring pixels can be quite time-consuming!

    A Gaussian blur is another common technique, which assumes that the closest pixels are going to be the most similar, and pixels that are farther away will be less similar. It works a lot like the mean filter above, but is statistically weighted according to a normal distribution.

    14.3.1. ACTIVITY: NOISE REDUCTION FILTERS

    
      Open the noise reduction filtering interactive using this link and experiment with settings as below. You will need a webcam, and the widget will ask you to allow access to it.
    

    Mathematically, this process is applying a special kind of matrix called a convolution kernel to the value of each pixel in the source image, averaging it with the values of other pixels nearby and copying that average to each pixel in the new image. The average is weighted, so that the values of nearby pixels are given more importance than ones that are far away. The stronger the blur, the wider the convolution kernel has to be and the more calculations take place.

    For your project, investigate the different kinds of noise reduction filter and their settings (mask size, number of iterations) and determine:

    
      	how well they cope with different kinds and levels of noise (you can set this in the interactive).

      	how much time it takes to do the necessary processing (the interactive shows the number of frames per second that it can process)

      	how they affect the quality of the underlying image (a variety of images + camera)

    

    You can take screenshots of the image to show the effects in your writeup. You can discuss the tradeoffs that need to be made to reduce noise.

    14.4. FACE RECOGNITION

    Recognising faces has become a widely used computer vision application. These days photo album systems like Picasa and Facebook can try to recognise who is in a photo using face recognition — for example, the following photos were recognised in Picasa as being the same person, so to label the photos with people’s names you only need to click one button rather than type each one in.

    

    There are lots of other applications. Security systems such as customs at country borders use face recognition to identify people and match them with their passport. It can also be useful for privacy — Google Maps streetview identifies faces and blurs them. Digital cameras can find faces in a scene and use them to adjust the focus and lighting.

    There is some information about How facial recognition works that you can read up as background, and some more information at i-programmer.info .

    There are some relevant articles on the cs4fn website that also provide some general material on computer vision.

    14.4.1. PROJECT: RECOGNISING FACES

    First let’s manually try some methods for recognising whether two photographs show the same person.

    
      	Get about 3 photos each of 3 people

      	Measure features on the faces such as distance between eyes, width of mouth, height of head etc. Calculate the ratios of some of these.

      	Do photos of the same person show the same ratios? Do photos of different people show different ratios? Would these features be a reliable way to recognise two images as being the same person?

      	Are there other features you could measure that might improve the accuracy?

    

    You can evaluate the effectiveness of facial recognition in free software such as Google’s Picasa or the Facebook photo tagging system, but uploading photos of a variety of people and seeing if it recognises photos of the same person. Are there any false negatives or positives? How much can you change your face when the photo is being taken to not have it match your face in the system? Does it recognise a person as being the same in photos taken several years apart? Does a baby photo match of a person get matched with them when they are five years old? When they are an adult? Why or why not does this work?

    Use the following face recognition interactive to see how well the Haar face recognition system can track a face in the image. What prevents it from tracking a face? Is it affected if you cover one eye or wear a hat? How much can the image change before it isn’t recognised as a face? Is it possible to get it to incorrectly recognise something that isn’t a face?

    
      Open the face recognition interactive using this link and experiment with the settings. You will need a webcam, and the widget will ask you to allow access to it.
    

    14.5. EDGE DETECTION

    A useful technique in computer vision is edge detection, where the boundaries between objects are automatically identified. Having these boundaries makes it easy tosegment the image (break it up into separate objects or areas), which can then be recognised separately.

    For example, here’s a photo where you might want to recognise individual objects:

    

    And here’s a version that has been processed by an edge detection algorithm:

    

    Notice that the grain on the table above has affected the quality; some pre-processing to filter that would have helped!

    You can experiment with edge-detection yourself. Open the following interactive, which provides a Canny edge detector (see the information about Canny edge detection on Wikipedia ). This is a widely used algorithm in computer vision, developed in 1986 by John F. Canny.

    
      Open the edge detection interactive using this link and experiment with settings as below. You will need a webcam, and the widget will ask you to allow access to it.
    

    14.5.1. ACTIVITY: EDGE DETECTION EVALUATION

    With the canny edge detection interactive above, try putting different images in front of the camera and determine how good the algorithm is at detecting boundaries in the image. Capture images to put in your report as examples to illustrate your experiments with the detector.

    
      	Can the Canny detector find all edges in the image? If there are some missing, why might this be?

      	Are there any false edge detections? Why did they system think that they were edges?

      	Does the lighting on the scene affect the quality of edge detection?

      	Does the system find the boundary between two colours? How similar can the colours be and still have the edge detected?

      	How fast can the system process the input? Does the nature of the image affect this?

      	How well does the system deal with a page with text on it?

    

    14.6. THE WHOLE STORY!

    The field of computer vision is changing rapidly at the moment because camera technology has been improving quickly over the last couple of decades. Not only is the resolution of cameras increasing, but they are more sensitive for low light conditions, have less noise, can operate in infra-red (useful for detecting distances), and are getting very cheap so that it’s reasonable to use multiple cameras, perhaps to give different angles or to get stereo vision.

    Despite these recent changes, many of the fundamental ideas in computer vision have been around for a while; for example, the “k-means” segmentation algorithm was first described in 1967, and the first digital camera wasn’t built until 1975 (it was a 100 by 100 pixel Kodak prototype).

    (More material will be added to this chapter in the near future)

    14.7. FURTHER READING

    
      	
        
        http://en.wikipedia.org/wiki/Computer_vision
      

      	
        
        http://en.wikipedia.org/wiki/Mri
      

      	
        
        http://www.cosc.canterbury.ac.nz/mukundan/cogr/applcogr.html
      

      	
        
        http://www.cosc.canterbury.ac.nz/mukundan/covn/applcovn.html
      

    

  
    15.1. WHAT’S THE BIG PICTURE?

    Think about the last time someone sent you mail via the post. They probably wrote some content on some paper, put it in an envelope, wrote an address and put it in a postbox. From there, the letter probably went into a sorting center, got sorted, and was put in a bag. The bag then went into a vehicle like a truck, plane or boat. The vehicle either travelled through water, the air, or on the road. The postal system is a complicated one, designed to let individuals communicate easily, yet being efficient enough to group many letters into one postal delivery. The same ideas apply to how messages move around the internet. Whether it be a ‘like’ on Facebook, a video stream or an email - the internet and its various protocols looks after it for you so it is delivered on time and intact to the other person.

    Below we introduce some concepts, algorithms, techniques, applications and problems that relate to network protocols; it isn’t a complete list of all the ideas in the area, but should be enough to give you a good idea of what this area of computer science is about.

    15.2. GETTING STARTED

    Take part in a game of Tablets of Stone in your classroom. Your teacher will show you how it is played. Try to think about a few things while you’re playing the game. What happens if one of my messages is delayed? What happens if one of my messages gets lost completely? Will the other governor be able to put them back together?

    15.3. WHAT IS A PROTOCOL?

    ‘Protocol’ is a fancy word for simply saying “an agreed way to do something”. You might have heard it in a cheesy cop show – “argh Jim, that’s against protocol!!!” – or heard it used in a procedural sense, such as how to file a tax return or sit a driving test. We all use protocols, every day. Think of when you’re in class. The protocolfor asking a question may be as follows: raise your hand, wait for a nod from the teacher then begin asking your question.

    Simple tasks require simple protocols like the one above; however more complicated processes may require more complicated protocols. Pilots and aviation crew have their own language (almost) for their tasks. A subset of normal language used to convey information such as altitude, heading, people on board, status and more.

    Activities on the internet vary a lot too (email, skype, video streaming, music, gaming, browsing, chatting), and so do the protocols used to achieve these. These collections of protocols form the topic of Networking Communication Protocols and this chapter will introduce you to some of them, what problems they solve, and what you can do to experience these protocols first hand. Let’s start by talking about the one you’re using if you’re viewing this page on the web.

    15.4. APPLICATION LEVEL PROTOCOLS - HTTP, IRC

    The URL for the home site of this book is http://csfieldguide.org. Ask a few friends what the “http” stands for - they have probably seen it thousands of times...do they know what it is? This section covers high level protocols such as HTTP and IRC, what they can do and how you can use them (hint: you’re already using HTTP right now).

    15.4.1. HYPERTEXT TRANSFER PROTOCOL (HTTP)

    The HyperText Transfer Protocol (HTTP) is the most common protocol in use on the internet. The protocol’s job is to transfer HyperText (such as HTML) from a server to your computer. It’s doing that right now. You just loaded the Field Guide from the servers where it is hosted. Hit refresh and you’ll see it in action.

    HTTP functions as a simple conversation between client and server. Think of when you’re at a shop:

    You: “Can I have a can of soda please?”

    Shop Keeper: “Sure, here’s a can of soda”

    

    HTTP uses a request/response pattern for solving the problem of reliable communication between client and server. The “ask for” is known as a request and the reply is known as a response. Both requests and responses can also have other data or resources sent along with it.

    
      Curiosity
    

    A resource is any item of data on a server. For example, a blog post, a customer, an item of stock or a news story. As a business or a website, you would create, read, update and delete these as part of your daily business. HTTP is well suited to that. For example, if you’re a news site, every day your authors would add stories, you could update them, delete them if they’re old or become out of date, all sorts. These sorts of methods are required to manage content on a server, and HTTP is the way to do this.

    This is happening all the time when you’re browsing the web; every web page you look at is delivered using the HyperText Transfer Protocol. Going back to the shop analogy, consider the same example, this time with more resources shown in asterisk (*) characters.

    You: “Can I have a can of soda please?” You hand the shop keeper $2

    Shop Keeper: “Sure, here’s a can of soda” Also hands you a receipt and your change

    

    There are nine types of requests that HTTP supports, and these are outlined below.

    A GET request returns some text that describes the thing you’re asking for. Like above, you ask for a can of soda, you get a can of soda.

    A HEAD request returns what you’d get if you did a GET request. It’s like this:

    You: “Can I have a can of soda please?”

    Shop Keeper: “Sure, here’s the can of soda you’d get” Holds up a can of soda

    What’s neat about HTTP is that it allows you to also modify the contents of the server. Say you’re now also a representative for the soda company, and you’d like to re-stock some shelves.

    A POST request allows you to send information in the other direction. This request allows you to replace a resource on the server with one you supply. These use what is called a Uniform Resource Identifier or URI. A URI is a unique code or number for a resource. Confused? Let’s go back to the shop:

    Sales Rep: “I’d like to replace this dented can of soda with barcode number 123-111-221 with this one, that isn’t dented”

    Shop Keeper: “Sure, that has now been replaced”

    A PUT request adds a new resource to a server, however, if the resource already exists with that URI, it is modified with the new one.

    Sales Rep: “Here, have 10 more cans of lemonade for this shelf”

    Shop Keeper: “Thanks, I’ve now put them on the shelf”

    A DELETE request does what you’d think, it deletes a resource.

    Sales Rep: “We are no longer selling ‘Lemonade with Extra Vegetables’, no one likes it! Please remove them!”

    Shop Keeper: “Okay, they are gone”.

    Some other request types (HTTP methods) exist too, but they are less used; these are TRACE, OPTIONS, CONNECT and PATCH. You can find out more about theseon your own if you’re interested.

    In HTTP, the first line of the response is called the status line and has a numeric status code such as 404 and a text-based reason phrase such as “Not Found”. The most common is 200 and this means successful or “OK”. HTTP status codes are primarily divided into five groups for better explanation of requests and responses between client and server and are named by purpose and a number: Informational 1XX, Successful 2XX, Redirection 3XX, Client Error 4XX and Server Error 5XX. There are many status codes for representing different cases for error or success. There’s even a nice 418: Teapot error on Google: http://www.google.com/teapot

    So what’s actually happening? Well, let’s find out. If you’re in a Chrome or Safari browser, press Ctrl + Shift + I in windows or Command + Option + I on a mac to bring up the web inspector. Select the Network tab. Refresh the page. What you’re seeing now is a list of of HTTP requests your browser is making to the server to load the page you’re currently viewing. Near the top you’ll see a request to NetworkCommunicationProtocols.html. Click that and you’ll see details of the Headers, Preview, Response, Cookies and Timing. Ignore those last two for now.

    Let’s look at the first few lines of the headers:

    
      Remote Address:132.181.17.3:80
Request URL:http://csfieldguide.org.nz/NetworkCommunicationProtocols.html
Request Method:GET
Status Code:200 OK
    

    The Remote Address is the address of the server of the page is hosted on. The Request URL is the original URL that you requested. The request method should be familiar from above. It is a GET type request, saying “can I have the web page please?” and the response is the HTML. Don’t believe me? Click the Response tab. Finally, the Status Code is a code that the page can respond with.

    Let’s look at the Request Headers now, click ‘view source’ to see the original request.

    
      GET /NetworkCommunicationProtocols.html HTTP/1.1
Host: www.cosc.canterbury.ac.nz
Connection: keep-alive
Cache-Control: max-age=0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
User-Agent: Chrome/34.0.1847.116
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8
    

    As you can see, a request message consists of the following:

    
      	A request line in the form of method URI protocol/version

      	Request Headers (Accept, User-Agent, Accept-Language etc)

      	An empty line

      	An optional message body.

    

    Let’s look at the Response Headers:

    
      HTTP/1.1 200 OK
Date: Sun, 11 May 2014 03:52:56 GMT
Server: Apache/2.2.15 (Red Hat)
Accept-Ranges: bytes
Content-Length: 3947
Connection: Keep-Alive
Content-Type: text/html; charset=UTF-8
Vary: Accept-Encoding, User-Agent
Content-Encoding: gzip
    

    As you can see, a request message consists of the following:

    
      	Status Line, 200 OK means everything went well.

      	Response Headers (Content-Length, Content-Type etc)

      	An empty line

      	An optional message body.

    

    Go ahead and try this same process on a few other pages too. For example, try these sites:

    
      	A very busy website in terms of content, such as Facebook.com

      	A chapter that doesn’t exist in the Field Guide

      	Your favourite website

    

    
      Curiosity
    

    Tim Berners-Lee was credited for creating HTTP in 1989. You can read more about him here.

    15.4.2. INTERNET RELAY CHAT (IRC)

    Internet Relay Chat (IRC) is a system that lets you transfer messages in the form of text. It’s essentially a chat protocol. The system uses a client-server model. Clients are chat programs installed on a user’s computer that connect to a central server. The clients communicate the message to the central server which in turn relays that to other clients. The protocol was originally designed for group communication in a discussion forum, called channels. IRC also supports one-to-one communication via private messages. It is also capable of file and data transfer too.

    The neat thing about IRC is that users can use commands to interact with the server, client or other users. For example /DIE will tell the server to shutdown (although it will only work if you are the administrator!) /ADMIN will tell you who the administrator is.

    Whilst IRC may be new to you, the concept of a group conversation online or a chat room may not be. There really isn’t any difference. Groups exist in the forms ofchannels. A server hosts many channels, and you can choose which one to join.

    Channels usually form around a particular topic, such as Python, Music, TV show fans, Gaming or Hacking. Convention dictates that channel names start with one or two # symbols, such as #python or ##TheBigBangTheory. Conventions are different to protocols in that they aren’t actually enforced by the protocol, but people choose to use it that way.

    To get started with IRC, first you should get a client. A client is a program that let’s you connect Ask your teacher about which one to use. For this chapter, we’ll use the freenode web client.. Check with your teacher about which channel to join, as they may have set one up for you.

    Try a few things while you’re in there. Look at this list of commands and try to use some of them. What response do you get? Does this make sense?

    Try a one on one conversation with a friend. If they use commands, do you see them? How about the other way around?

    15.5. PROJECTS - HTTP AND IRC

    HTTP is the most common protocol yet. We use it every day and you’re using it right now if you’re viewing this on the web. Open up the web inspector (you might have to do this at home if your school doesn’t have it available) and have a look at the traffic. You might need to refresh, depending on your browser. We recommend Chrome, which is free to download at https://www.google.com/chrome/browser/.

    Bring up the Developer Tools. Find the Network tab. Reload the page. You should now see a slew of request form. Go through and click each one. Have a look at the details you can see under headers.

    
      	What is the remote address?

      	What type of method is it?

      	What does the status code mean?

      	What is the path?

      	What is the response?

      	What is actually happening here? What part of the page is loading?

    

    IRC is a very primitive chat program which is fun to use with your friends.

    Go be a hacker, grab a friend and visit freenode and create a channel for you. Now, look at the list of commands you can use and try to use some of them. What response do you get? Does this make sense?

    Try a one on one conversation with a friend. If they use commands, do you see them? How about the other way around?

    15.6. TRANSPORT LAYER PROTOCOLS - TCP AND UDP

    So far we have talked about HTTP and IRC. These protocols are at a level that make sure you do not need to worry about how your data is being transported. Now we’ll cover how your data is transferred reliably and efficiently, regardless of what the data is. Below this level is an unreliable medium for transfer (such as wifi or cable, which are subject to interference errors) which causes a concern for data transportation. These protocols take different approaches to ensure data is delivered in an effective and/or efficient manner.

    15.6.1. TCP

    TCP (The Transmission Control Protocol) is one of the most important protocol on the internet. It breaks large messages up into packets. What is a packet? A packet is a segment of data that when combined with other packets, make up a total message (something like a HTTP request, an email, an IRC message or a file like a picture or song being downloaded). For the rest of the section, we’ll look at how these are used to load an image from a website.

    So computer A looks the file and takes it, breaks it into packets. It then sends the packets over the internet and computer B reassembles them and gives them back to you as the image, which is demonstrated in this video.

    By now you’re probably wondering why we bother splitting up packets… wouldn’t it be easier to send the file as a whole? Well, it solves congestion. Imagine you’re in a bus, in rush hour and you have to be home by 5. The road is jammed and there’s no way you and your friends are getting home on time. So you decide to get out of the bus and go your own separate ways. Web pages are like this too. They are too big to travel together so they are split up and sent in tiny pieces and then reassembled at the other end.

    So why don’t the packets all just go from computer A to computer B just fine? Ha! That’d be nice. Unfortunately it’s not that simple. Through various means, there are some problems that can affect packets. These problems are:

    
      	Packet loss

      	Packet delay (packets arrive out of order)

      	Packet corruption (the packet gets changed on the way)

    

    So, if we didn’t try fix these, the image wouldn’t load, bits would be missing, corrupted or computer B might not even recognise what it is!

    

    So, TCP is a protocol that solves these issues. To introduce you to TCP, please play the game below. In the game, you are the problems (loss, delay, corruption) and as you move through the levels, pay attention to how the computer tries to combat them. Good luck trying to stop the messages getting through correctly!

    
      Click to play

Packet Attack
    

    Let’s talk about what you saw in that game. What did the levels do to solve the issues of packet loss, delay (reordering) and corruption? TCP has several mechanisms for dealing with packet troubles.

    
      Curiosity
    

    Why do packets experience delays, loss and corruption? This is because as packets are sent over a network, they go through various nodes. These nodes are effectively different routers or computers. One route might experience more interference than another (causing packet loss), one might be faster or shorter than another (causing order to be lost). Corruption can happen at any time through electronic interference.

    Firstly, TCP starts by doing what is known as a handshake. This basically means the two computers say to each other: “Hey, we’re going to use TCP for this image. Reconstruct it as you would”.

    Next is Ordering. Since a computer can’t look at data and order it like we can (like when we do a jigsaw puzzle or play Scrabble™) they need a way to “stitch” the packets back together. As we saw in Packet Attack, if you delayed a message that didn’t have ordering, the message may look like “HELOLWOLRD”. So, TCP puts a number on each packet (called a sequence number) which signifies its order. With this, it can put them back together again. It’s a bit like when you print out a few pages from a printer and you see “Page 2 of 11” on the bottom. Now, if packets do become out of order, TCP will wait for all of the packets to arrive and then put the message together.

    Another concept is checksums. This concept of storing information about the data may be familiar from the error control coding chapter. Basically, a checksum can detect errors and sometimes with coding schemes, can correct them. In the case of a correctable packet, it is corrected. If not, the packet is useless and needs to be resent. In the game, shields represent checksums. Corrupt a checksum once, and it can recover from the error using error correction. Corrupt it again and it can’t.

    So how do packets get re-sent? TCP has a concept of acknowledgement and negative acknowledgement messages (ACK and NACK for short). You would have seen these in the higher levels of the game as the green (ACK) and red (NACK) creatures going back. Acks are sent to let the sender know when a packet arrives and it is usable. Nacks are sent back when a packet arrives and is damaged and needs resending. ACKs and and NACKs are useful because they provide a channel in the opposite direction for communication. If computer A receives a NACK, they can resend the message. If it receives an Ack, the computer can stop worrying about a resend.

    But does a computer send it again if it doesn’t hear back? Yes. It’s called a timeout and it’s the final line of defense in TCP. If a computer doesn’t get an ACK or a NACK back, after a certain time it will just resend the packet. It’s a bit like when you’re tuning out in class, and the teacher keeps repeating your name until you answer. Maybe that’s been you… woops. Sometimes, an ACK might get lost, so the packet is resent after a timeout, but that’s OK, as TCP can recognise duplicates and ignore them.

    So that’s TCP. A protocol that puts accurate data transmission before efficiency and speed in a network. It uses timeouts, checksums, acks and nacks and many packets to deliver a message reliably. However, what if we don’t need all the packets? Can we get the overall picture faster? Read on…

    15.6.2. UDP

    UDP (User Datagram Protocol) is a protocol for sending packets that does not guarantee delivery. UDP doesn’t guarantee against lost packets, duplicate packets or out of order packets. It just gets the bulk of the data there when it can. Checksums are used for data integrity though, so they have some protection. It’s still a protocol because it has a formal packet structure. The packets still include destination and origin as well as the size of the packet.

    So do we even use such an unreliable protocol? Yes, but not for anything too important. Files, messages, emails, web pages and other text based items use TCP, but things like streaming music, video, VOIP and so on use UDP. Maybe you’ve had a call on Skype that has been poor quality. Maybe the video flickers or the sound drops for a split second. That’s packets being lost. However, you of course get the overall picture and the conversation you’re having is successful.

    15.7. PROJECTS - TCP AND UDP

    Before writing about Network Communication Protocols, think about the following questions:

    
      Tablets of Stone:
    

    
      	How did your messaging go when you first started?

      	Did you need numbers on your tablets?

      	Was it a pain to use up tablet space on numbers and other information?

      	Did you ever get to reliable communication?

    

    
      Packet Attack:
    

    
      	What happens if you add too many kills, corrupts and delays? Is there a relationship between this and time taken to transmit the message? Try graphing it

      	What happens if you turn off all the defenses?

      	What happens if you have no kills, corrupts and delays?

      	What happens if you only have delays?

      	What happens if you kill a packet creature when it tries to get sent the second time?

      	What other situations can you get the protocol in?

    

    PACKET ATTACK LEVEL CREATOR

    Check any defenses you want, enter some values for the attacks and click Create Level

    Shields

    Numbers

    Timeouts

    Return Packet Creatures

    Number of Delays:

    Number of Corrupts:

    Number of Kills:

    For a project, using the knowledge you have gained on TCP and UDP, create some custom levels in Packet Attack using the controls just above to create some unique situations that illustrate different aspects of Network Protocols. The following questions will help you to reflect on the issues that you could talk about:

    
      	What problems did you encounter when transmitting data across networks? Talk about problems that you encountered at the start of Tablets of Stone (photos of examples from various stages of the activity are a great way to illustrate it!)

      	Explain the use of TCP and UDP in networks today, with example situations. Which systems use TCP? Which use UDP?

      	Explain at least two techniques used by TCP and UDP to address the problems above. Show some examples from Packet Attack (and/or Tablets of Stone) that illustrate the concepts.

      	For systems that require TCP, what might happen to them if TCP did not exist and they had to use UDP?

      	Discuss the differences between TCP and UDP, why each exists, and why you would choose a particular protocol for several scenarios.

      	How does the performance of protocols like TCP change as the reliability of the connection varies? You could look at how the speed of getting data through changes if lots of packets need to be re-sent.

    

    15.8. THE WHOLE STORY

    Let’s say I want to write an online music player. Okay, so I write the code for someone to press play on a website and the song plays. Do I now need to code up the protocol that streams the music? Fine, I write some UDP code. Now, do I need to go install the cables in your house? Sure, I jump in my van and spend a few weeks running cable to your house and make sure the packets can get over too.

    No. This sounds absurd. As a web developer, I don’t want to worry about anything other than making my music player easy to use and fast. I don’t want to worry about UDP and I don’t want to worry about ethernet or cables. It’s already done, I can assume it’s take care of. And it is.

    Internet protocols exist in layers. We have four such layers in the computer science internet model. The top two levels are discussed above in detail, the bottom two we won’t focus on.The first layer is the Application Layer, followed by the Transport, Internet and Link layers.

    At each layer, data is made up of the previous layers’ whole unit of data, and then headers are added and passed down. At the bottom layer, the Link layer, a footer is added also. Below is an example of what a UDP packet looks like when it’s packaged up for transport.

    
      Jargon Buster
    

    Footers and Headers are basically packet meta-data. Information about the information. Like a letterhead or a footnote, they’re not part of the content, but they are on the page. Headers and Footers exist on packets to store data. Headers come before the data and footers afterwards.

    

    You can think of these protocols as a game of pass the parcel. When a message is sent in HTTP, it is wrapped in a TCP header, which is then wrapped in an IPv6 header, which is then wrapped in a Ethernet header and footer and sent over ethernet. At the other end, it’s unwrapped again from an ethernet frame, back to a IPpacket, a TCP datagram, to a HTTP request.

    
      Jargon Buster
    

    The name packet is a generic term for a unit of data. In the application layer units of data are called data or requests, in the transport layer, datagram orsegments, in the Network/IP layer, packet and in the physical layer, a frame. Each level has its own name for a unit of data (segment, packet, frame, request etc), however the more generic “packet” is often used instead, regardless of layer.

    This system is neat because each layer can assume that the layer above and below have guaranteed something about the information, and each layer (and protocol in use at that layer) has a stand-alone role. So if you’re making a website you just have to program website code, and not worry about code to make the site work over wifi as well as ethernet. A similar system is in the postal system… You don’t put the courier’s truck number on the front of the envelope! That’s take care of by the post company, which then uses a system to sort the mail and assign it to drivers, and then drivers to trucks, and then drivers to routes… none of which you need to worry about when you send or receive a letter or use a courier.

    So what does a TCP segment look like?

    

    As you can see, a packet is divided into four main parts, addresses (source, destination), numbers (sequence number, ANCK number if it’s an acknowledgement), flags (urgent, checksum) in the header, then the actual data. At each level, a segment becomes the data for the next data unit, and that again gets its own header.

    TCP and UDP packets have a number with how big they are. This number means that the packet can actually be as big as you like. Can you think of any advantages of having small packets? How about big ones? Think about the ratio of data to information (such as those in the header and footer).

    
      Curiosity
    

    Here’s an example of a packet trace on our network…(using tcpdump on the mac)

    
      00:55:18.540237 b8:e8:56:02:f8:3e > c4:a8:1d:17:a0:d3, ethertype IPv4 (0x0800), length 100: (tos 0x0, ttl 64, id 41564, offset 0, flags [none], proto UDP (17), length 86)
  192.168.1.7.51413 > 37.48.71.67.63412: [udp sum ok] UDP, length 58
      0x0000:  4500 0056 a25c 0000 4011 aa18 c0a8 0107
      0x0010:  2530 4743 c8d5 f7b4 0042 1c72 6431 3a61
      0x0020:  6432 3a69 6432 303a b785 2dc9 2e78 e7fb
      0x0030:  68c3 81ab e28b fde3 cfef ae47 6531 3a71
      0x0040:  343a 7069 6e67 313a 7434 3a70 6e00 0031
      0x0050:  3a79 313a 7165
    

    15.9. FURTHER READING

    
      	The two generals problem__ is a famous problem in protocols to talk about what happens when you can’t be sure about communication success

      	What happens if you were to send packets tied to birds? IP over Avian Cariers

      	Protocols are found in the strangest of places…. Engine Order Telegraph

      	Coursera course on Internet History, Technology, and Security

    

    15.9.1. EXTRA ACTIVITIES

    
      	CS Unplugged Routing - Why do packets get delayed? http://csunplugged.org/routing-and-deadlock

      	Snail Mail - http://www.cs4fn.org/internet/realsnailmail.php

      	Code.org - The Internet https://learn.code.org/s/1/level/102

    

    15.9.2. USEFUL LINKS

    
      	
        
        http://simple.wikipedia.org/wiki/TCP/IP
      

      	
        
        http://en.wikipedia.org/wiki/Internet_protocol_suite
      

      	
        
        http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
      

      	
        
        http://en.wikipedia.org/wiki/Internet_Relay_Chat
      

      	
        
        http://en.wikipedia.org/wiki/Transmission_Control_Protocol
      

      	
        
        http://en.wikipedia.org/wiki/User_Datagram_Protocol
      

      	
        
        http://csunplugged.org/routing-and-deadlock
      

    

  
    16.1. WHAT’S THE BIG PICTURE?

    Software failures happen all the time. Sometimes it’s a little bug that makes a program difficult to use; other times an error might crash your entire computer. Some software failures are more spectacular than others.

    In 1996, The ARIANE 5 rocket of the European Space Agency was launched for its first test flight: Countdown, ignition, flame and smoke, soaring rocket... then BANG! Lots of little pieces scattered through the South American rainforest. Investigators had to piece together what happened and finally tracked down this tiny, irrelevant bug. A piece of software on board the rocket which was not even needed had reported an error and started a self-destruct sequence. Thankfully, no one was on board but the failure still caused about US$370m damage.

    

    In extreme cases, software bugs can endanger lives. This happened in the 1980s, for example, when a radiation therapy machine caused the deaths of 3 patients by giving 100 times the intended dose of radiation. And in 1979, a US army computer almost started a nuclear war, when it misinterpreted a simulation of the Soviet Union launching a missile as the real thing! (If you are interested in other software failures, CS4FN lists the most spectacular ones!)

    Our society today is so reliant on software that we can’t even imagine life without it anymore. In many ways, software has made our lives easier: we write emails, chat with friends on Facebook, play computer games and search for information on Google. Heaps of software is hidden behind the scenes too so we don’t even know we’re using it, for example in cars, traffic lights, TVs, washing machines, Japanese toilets, and hearing aids. We’ve become so used to having software, we expect it to work at all times!

    So why doesn’t it? Why do we get bugs in the first place? As it turns out, writing software is incredibly difficult. Software isn’t a physical product, so we can’t just look at it to see if it’s correct. On top of that, most of the software you use every day is huge and extremely complex. Windows Vista is rumoured to have around 50 million lines of code; MacOSX even has 86 million. If we printed Vista out on paper, we would get a 88m high stack! That’s as high as a 22 storey building or the Statue of Liberty in New York! If you wanted to read through Vista and try to understand how it works, you can expect to get through about 120 lines per hour, so it would take you 417,000 hours or 47 ½ years! (And that’s just to read through it, not write it.)

    

    Software engineering is all about how we can create software despite this enormous size and complexity and hopefully get a working product in the end. It was first introduced as a topic of computer science in the 1960s during the so-called “software crisis”, when people realised that the capability of hardware was increasing at incredible speeds while our ability to develop software is staying pretty much the same.

    As the name software engineering suggests, we are taking ideas and processes from other engineering disciplines (such as building bridges or computer hardware) and applying them to software. Having a structured process in place for developing software turns out to be hugely important because it allows us to manage the size and complexity of software. As a result of advances in software engineering, there are many success stories of large and complex software products which work well and contain few bugs. Think, for example, of Google who have huge projects (Google search, Gmail, …) and thousands of engineers working on them but somehow still manage to create software that does what it should.

    Since the 1960s, software engineering has become a very important part of computer science, so much so that today programmers are rarely called programmers, but software engineers. That’s because making software is much more than just programming. There are a huge number of jobs for software engineers and demand for skilled workers continues to grow. The great thing about being a software engineer is that you get to work in large teams to produce products that will impact the lives of millions of people! Although you might think that software engineers would have to be very smart and a bit geeky, communication and teamwork skills are actually more important; software engineers have to be able to work in teams and communicate with their teammates. The ability to work well with humans is at least as important as the ability to work with computers.

    
      Curiosity: Moore’s Law
    

    In 1965, Gordon Moore noticed that the number of transistors on integrated circuits was doubling about every 2 years. This means that computers’ processing power was doubling roughly every 2 years (sometimes this is quoted as 18 months due to the combination of the numbers and speed increasing). Moore said that he expected this trend to continue for at least 10 years.

    Believe it or not, Moore’s law didn’t just last for 10 years but is still true nearly 50 years later (although a slowdown is predicted in the next couple of years). This means that computers today are over 100 million times faster than in 1965! (It’s been 47 years since 1965, which means that processing power has doubled about 24 times; 2^{24} is 16,777,216 so if computers could run one instruction per second in 1965, they can now run 16,777,216!) It also means that if you buy a computer today, you might regret it in two years time when new computers will be twice as fast. Moore’s law also holds for other things, such as processing power in cellphones and the number of pixels in digital cameras.

    The exact numbers above will depend on exactly what you’re describing, but the main point is that the processing power is increasing exponentially — exponential growth doesn’t mean just getting a lot faster, but getting unbelievably faster; nothing in human history has ever grown this quickly! To illustrate this in reverse, the time taken to open an app on a smartphone might be half a second today, but a 1965 smartphone would have taken over a year to open the same app (and the phone would probably have been the size of a football field). It’s no wonder that smartphones weren’t popular in the 1960s.

    Although software engineering has come a long way in the last decades, writing software is still difficult today. As a user, you only see the programs that were completed, not those that failed. In 2009, just under a third of all software projects succeeded, while almost a quarter failed outright or were cancelled before the software could be delivered. The remaining projects were either delivered late, were over budget or lacked functionality. A famous recent project failure was the software for the baggage handling system at the new airport in Denver. The system turned out to be more complex than engineers had expected; in the end, the entire airport was ready but had to wait for 16 months before it could be opened because the software for the baggage system was not working. Apparently, the airport lost $1 million every day during these 16 months!

    In this chapter, we look at some of the basics of software engineering. We’ll give you an introduction about analysing the problem so you know what kind of software to build in the first place; we’ll talk briefly about how to structure and design software and tell you a bit about testing, one of the most important steps for avoiding software bugs. As you’ll see below, analysis, design and testing are all important steps when making software. The actual programming part usually takes up only 20% of time on a project (and in this chapter we barely even mention it)! Finally, we’ll look at software processes which organise activities including analysis, design and testing so that we always know what we should be doing next.

    16.2. ANALYSIS: WHAT DO WE BUILD?

    To be able to start making software, we first have to decide what we actually want to make. We call this part of the software project analysis because we analyse exactly what our software needs to be able to do. Although this sounds trivial, getting the details right is pretty tricky. If someone asked you to design a physical object like a chair or a toaster, you’d probably have a pretty good idea of what the finished product would be like. No matter how many legs you decide to put on your chair, they will still have to do the job of holding up a person against the force of gravity. When designing software, we often don’t have the benefit of creating familiar objects, or even known constraints like the laws of physics. If your software was, say, a program to help authors invent imaginary worlds, where would you start? What could you take for granted?

    Analysis is extremely important. Obviously, if we make a mistake at this stage of the project, the software we end up building may not be what we wanted; all the other work to design, build and test the software could be for nothing.

    For example, imagine your friend Anna asks you to write a program to help her get to school in the morning. You write a great GPS navigation system and show it to Anna, but it turns out that she takes to bus to school so what she really needed was just software showing the current bus timetable. All your hard work was in vain, because you didn’t get the details right in the start!

    Sometimes we are making software for ourselves; in that case, we can just decide what the software should do. (But be careful: even if you think you know what you want the software to do when you start developing it, you will probably find that by the end of the project you will have a very different view of what it should do. The problem is that before you have the software, you can’t really predict how you will use it when it’s finished. For example, the people making smart phones and software for smart phones probably didn’t anticipate how many people would want to use their smart phones as torches!)

    In many cases, we build software for other people. You might make a website for your aunt’s clothing shop or write software to help your friends with their maths homework. A software company might create software for a local council or a GP’s practice. Google and Microsoft make software used by millions of people around the world. Either way, whether you’re writing a program for your friends or for millions of people, you first have to find out from your customers what they actually need the software to do.

    We call anyone who has an interest in the software a stakeholder. These are the people that you need to talk to during the analysis part of your project to find out what they need the software to do.

    Imagine that you are making a phone app that allows students to preorder food from the school cafeteria. They can use the app to request the food in the morning and then just go a pick up the food at lunch time. The idea is that this should help streamline the serving of food and reduce queues in the cafeteria. Obvious stakeholders for your project are the students (who will be using the phone app) and cafeteria staff (who will be receiving requests through the app). Less obvious (and indirect) stakeholders include parents (“I have to buy Johnny an iPhone so he can use this app?”), school admin (“No phones should be used during school time!”) and school IT support who will have to deal with all the students who can’t figure out how to work the app. Different stakeholders might have very different ideas about what the app should do.

    To find out what our stakeholders want the software to do, we usually interview them. We ask them questions to find functional and non-functional requirements for the software. Functional requirements are things the software needs to do. For example, your phone app needs to allow students to choose the food they want to order. It should then send the order to the cafeteria, along with the student’s name so that they can be easily identified when picking up the food.

    Non-functional requirements, on the other hand, don’t tell us what the software needs to do but how it needs to do it. How efficient does it need to be? How reliable? What sort of computer (or phone) does it need to run on? How easy to use should it be?

    So we first figure out who our stakeholders are and then we go to interview them to find the requirements for the software. That doesn’t sound too hard, right? Unfortunately, it’s the communication with the customer that often turns out to be most difficult.

    The first problem is that customers and software engineers often don’t speak the same language. Of course, we don’t mean to say that they don’t both speak English, but software engineers tend to use technical language, while customers use language specific to their work. For example, doctors might use a lot of scary medical terms that you don’t understand.

    Imagine that a customer asks you to develop a scoring system for the (fictional) sport of Whacky-Flob. The customer tells you “It’s really simple. You just need to record the foo-whacks, but not the bar-whacks, unless the Flob is circulating”. After this description, you’re probably pretty confused because you don’t know anything about the sport of Whacky-Flob and don’t know the specific terms used. (What on earth are foo-whacks???) To get started, you should attend a few games of Whacky-Flob and observe how the game and the scoring works. This way, you’ll be able to have a much better conversation with the customer since you have some knowledge about the problem domain. (Incidentally, this is one of the cool things about being a software engineer: you get exposure to all kinds of different, exciting problem domains. One project might be tracking grizzly bears, the next one might be identifying cyber terrorists or making a car drive itself.)

    You should also never assume that a customer is familiar with technical terms that you might think everyone should know, such as JPEG, database or maybe even operating system. Something like “The metaclass subclass hierarchy was constrained to be parallel to the subclass hierarchy of the classes which are their instances” might make some sense to a software engineer but a customer will just look at you very confused! One of the authors once took part in a customer interview where the stakeholder was asked if they want to use the system through a browser. Unfortunately, the customer had no idea what a browser was. Sometimes, customers may not want to admit that they have no idea what you’re talking about and just say “Yes” to whatever you suggest. Remember, it’s up to you to make sure you and your customer understand each other and that you get useful responses from your customer during the interview!

    

    Even if you manage to communicate with a customer, you might find that they don’t really know what they want the software to do or can’t express it. They might say they want “software to improve their business” or to “make their work more efficient” but that’s not very specific. (There’s a great cartoon of Dilbert which illustrates this point!) When you show them the software you have built, they can usually tell you if that’s what they wanted or what they like and don’t like about it. For that reason, it’s a good idea to build little prototypes while you’re developing your system and keep showing them to customers to get feedback from them.

    You’ll often find that customers have a specific process that they follow already and want the software to fit in with that. We were once involved in a project being done by university students for a library. Their staff used to write down information about borrowed items three times on a paper form, cut up the form and send the pieces to different places as records. When the students interviewed them, they asked for a screen in the program where they could enter the information three times as well (even though in a computer system there really isn’t much point in that)!

    Customers are usually experts in their field and are therefore likely to leave out information that they think is obvious, but may not be obvious to you. Other times, they do not really understand what can and cannot be done with computers and may not mention something because they do not realise that it is possible to do with a computer. Again, it’s up to you to get this information from them and make sure that they tell you what you need to know.

    If you have multiple stakeholders, you can get conflicting viewpoints. For example, when you talk to the cafeteria people about your food-ordering app, they may suggest that every student should only be able to order food up to a value of $10. In this way, they want to avoid prank orders. When you talk to a teacher, they agree with this suggestions because they are worried about bullying. They don’t want one student to get pressured into ordering food for lots of other students. But the students tell you that they want to be able to order food for their friends. In their view, $10 isn’t even enough for one student.

    What do you do about these conflicting points of view? Situations like this can be difficult to handle, depending on the situation, the stakeholders and the software you are making. In this case, you need the support from the cafeteria and the teachers for your software to work, but maybe you could negotiate a slightly higher order limit of $20 to try to keep all your stakeholders happy.

    Finally, even if you get everything right during the analysis stage of your project, talk to all the stakeholders and find all the requirements for the software, requirements can change while you’re making the software. Big software projects can take years to complete. Imagine how much changes in the technology world in a year! While you’re working on the project, new hardware (phones, computers, tablets, …) could come out or a competitor might release software very similar to what you’re making. Your software itself might change the situation: once the software is delivered, the customer will try working with it and may realise it isn’t what they really wanted. So you should never take the requirements for your software to be set in stone. Ideally, you should keep talking to customers regularly throughout the project and always be ready for changes in requirements!

    16.2.1. PROJECT: FINDING THE REQUIREMENTS

    For this project, you need to find someone for whom you could develop software. This could be someone from your family or a friend. They might, for example, need software to manage information about their business’ customers or their squash club might want software to schedule squash tournaments or help with the timetabling of practices. (For this project, you won’t actually be making the software, just looking at the requirements; if the project is small enough for you to program on your own, it’s probably not big enough to be a good example for software engineering!)

    Once you’ve found a project, start by identifying and describing the stakeholders for your project. (This project will work best if you have at least two different stakeholders.) Try to find all the stakeholders, remembering that some of them might only have an indirect interest in your software. For example, if you are making a database to store customer information, the customers whose information is being stored have some interest in your software even though they never use it directly; for example, they will want the software to be secure so that their data cannot be stolen. Write up a description about each stakeholder, giving as much background detail as possible. Who are they? What interest do they have in the software? How much technical knowledge do they have? …

    Interview one of the stakeholders to find out what they want the software to do. Write up the requirements for your software, giving some detail about each requirement. Try to distinguish between functional and non-functional requirements. Make sure you find out from your stakeholder which things are most important to them. This way you can give each requirement a priority (for example high, medium, low), so that if you would actually build the software you could start with the most important features.

    For the other stakeholders, try to imagine what their requirements would be. In particular, try to figure out how the requirements would differ from the other stakeholders. It’s possible that two stakeholders have the same requirements but in that case maybe they have different priorities? See if you can list any potential disagreements or conflicts between your stakeholders? If so, how would you go about resolving them?

    16.3. DESIGN: HOW DO WE BUILD IT?

    Once you have decided what your software needs to be able to do, you can actually build it. But just blindly starting to program is likely to get you into trouble; remember that most software is huge and very complex. You need to somehow minimise the amount of complexity in software, otherwise it will become impossible to understand and maintain for other developers in the future.

    Software design is all about managing this complexity and making sure that the software we create has a good structure. Before we start writing any code, we design the structure of our software in the design phase of the project. When you talk about software design, many people will think that you’re talking about designing what the software will look like. Here, we’re actually going to look at designing the internal structure of software.

    So how can we design software in a way that it doesn’t end up hugely complex and impossible to understand? Here, we give you an introduction to two important approaches: subdivision and abstraction. Those are pretty scary words, but as you’ll see soon, the concepts behind them are surprisingly simple.

    You can probably already guess what subdivision means: We break the software into many smaller parts that can be built independently. Each smaller part may again be broken into even smaller parts and so on. As we saw in the introduction, a lot of software is so large and complex that a single person cannot understand it all; we can deal much more easily with smaller parts. Large software is developed by large teams so different people can work on different parts and develop them in parallel, independently of each other. For example, for your cafeteria project, you might work on developing the database that records what food the cafeteria sells and how much each item costs, while your friend works on the actual phone app that students will use to order food.

    Once we have developed all the different parts, all we need to do is make them communicate with each other. If the different parts have been designed well, this is relatively easy. Each part has a so-called interface which other parts can use to communicate with it. For example, your part of the cafeteria project should provide a way for another part to find out what food is offered and how much each item costs. This way, your friend who is working on the phone app for students can simply send a request to your part and get this information. Your friend shouldn’t need to know exactly how your part of the system works; they should just be able to send off a request and trust that the answer they get from your part is correct. This way, each person working on the project only needs to understand how their own part of the software works.

    Ok, so let’s talk about the second concept, abstraction. Have you ever thought about why you can drive a car without knowing how its engine works? Or how you can use a computer without knowing much about hardware? Maybe you know what a processor and a hard drive is but could you build your own computer? Could your parents? We don’t need to know exactly how computers or cars work internally to be able to use them thanks to abstraction!

    If we look more closely at a computer, we can see that it actually has a number of layers of abstraction. Right at the bottom, we have the hardware, including the processor, RAM, hard disk and various complicated looking circuit boards, cables and plugs.

    When you boot your computer, you start running the operating system. The operating system is in charge of communicating with the hardware, usually through special driver software. Once you’ve started your computer, you can run programs, for example your browser. The browser actually doesn’t communicate with the hardware directly but always goes through the operating system.

    Finally, you’re the top layer of the system. You use the program but you will (hopefully) never have to interact with the more complicated parts of the operating system such as driver software, let alone the hardware. In this way, you can use the computer without ever having to worry about these things.

    

    We call a system like this a layered system. You can have any number of layers you want but each layer can only communicate with the one directly below it. The operating system can directly access the hardware but a program running on the computer can’t. You can use programs but hopefully will never have to access the hardware or the more complex parts of the operating system such as drivers. This again reduces the complexity of the system because each layer only needs to know about the layer directly below it, not any others.

    Each layer in the system needs to provide an interface so that the layer above it can communicate with it. For example, a processor provides a set of instructions to the operating system; the operating system provides commands to programs to create or delete files on the hard drive; a program provides buttons and commands so that you can interact with it.

    One layer knows nothing about the internal workings of the layer below; it only needs to know how to use the layer’s interface. In this way, the complexity of lower layers is completely hidden, or abstracted. Each layer represents a higher level of abstraction.

    So each layer hides some complexity, so that as we go up the layers things remain manageable. Another advantage of having layers is that we can change one layer without affecting the others, as long as we keep the layer’s interface the same of course. For example, your browser’s code might change but you might never notice as long as the browser still looks and works the same as before. Of course, if the browser stops working or new buttons appear suddenly you know that something has changed.

    We can have the same “layered” approach inside a single program. For example, websites are often designed as so-called three-tier systems with three layers: a database layer, a logic layer and a presentation layer. The database layer usually consists of a database with the data that the website needs. For example, Facebook has a huge database where it keeps information about its users. For each user, it stores information about who their friends are, what they have posted on their wall, what photos they have added, and so on. The logic layer processes the data that it gets from the database. Facebook’s logic layer, for example, will decide which posts to show on your “Home” feed, which people to suggest as new friends, etc. Finally, the presentation layer gets information from the logic layer which it displays. Usually, the presentation layer doesn’t do much processing on the information it gets but simply creates the HTML pages that you see.

    

    
      Curiosity: Reuse - Kangaroos and Helicopters
    

    Since building software is so difficult and time-consuming, a popular idea has been to reuse existing software. Not surprisingly, we call this software reuse. It’s a great idea in theory (why recreate something that already exists?) but turns out to be difficult to put into practice partly because existing software is also huge and complicated. Usually when you reuse software, you want only a small part of the existing software’s functionality, rather than everything.

    An interesting story that illustrates the problems with software reuse (although it is unfortunately not completely accurate, seehttp://www.snopes.com/humor/nonsense/kangaroo.asp) is that of helicopters and kangaroos. The Australian Air Force was developing a new helicopter simulator to train pilots. They wanted the simulator to be as realistic as possible and therefore decided to include herds of kangaroos in the simulation. To save time, they reused code from another simulator which included foot soldiers and simply changed the icons of the soldiers to kangaroos.

    Once the program was finished, they demonstrated it to some pilots. One of the pilots decided to fly the helicopter close to a herd of kangaroos to see what would happen. The kangaroos scattered to take cover when the helicopter approached (so far so good) but then, to the pilot’s extreme surprise, pulled out their guns and missile launchers and fired at the helicopter. It seemed the programmer had forgotten to remove that part of the code from the original simulator.

    16.3.1. PROJECT: DESIGNING YOUR SOFTWARE

    Think back to the requirements you found in the analysis project described above. In this project, we will look at how to design the software.

    Start by thinking about how the software you are trying to build can be broken up into smaller parts. Maybe there is a database or a user interface or a website? For example, imagine you are writing software to control a robot. The robot needs to use its sensors to follow a black line on the ground until it reach a target. The software for your robot should have a part that interacts with the sensors to get information about what they “see”. It should then pass this information to another part, which analyses the data and decides where to move next. Finally, you should have a part of the software which interacts with the robot’s wheels to make it move in a given direction.

    Try to break down your software into as many parts as possible (remember, small components are much easier to build!) but don’t go too far - each part should perform a sensible task and be relatively independent from the rest of the system.

    For each part that you have identified, write a brief description about what it does. Then think about how the parts would interact. For each part, ask yourself which other parts it needs to communicate with directly. Maybe a diagram could help visualise this?

    16.4. TESTING: DID WE BUILD THE RIGHT THING / DOES IT WORK?

    We’ve decided what our software should do (analysis) and designed its internal structure (design), and the system has been programmed according to the design. Now, of course, we have to test it to make sure it works correctly.

    Testing is an incredibly important part of developing software. We cannot really release software that still has lots of bugs to our customers. (Well, we could but our customers wouldn’t be very happy about it.) Remember that software bugs can have both very small and very large effects. On the less serious end of the scale, they might make a program difficult to use or crash your computer. On the other hand, they can cost millions of dollars and even endanger human life. More testing might have prevented the Ariane 5 failure or might have discovered the Therac bug which ended up killing 3 patients.

    Unfortunately, testing is again really difficult because of the size and complexity of software. If a piece of software would take years to read and understand, imagine how long it would take to fully test it!

    When we test software, we try lots of different inputs and see what outputs or behaviour the software produces. If the output is incorrect, we have found a bug.

    
      Curiosity: Bugs and Moths
    

    

    In 1947, engineers working on a computer called the Mark II were investigating a computer error and found that it was caused by a moth which had become trapped inside the computer! Since then, we use the word bug to refer to computer errors. Of course, today we use the word to refer to errors in programs, rather than actual insects trapped in the computer.

    The problem with testing is that it can only show the presence of errors, not their absence! If you get an incorrect output from the program, you know that you have found a bug. But if you get a correct output, can you really conclude that the program is correct? Not really. The software might work in this particular case but you cannot assume that it will work in other cases. No matter how thoroughly you test a program, you can never really be 100% sure that it’s correct. In theory, you would have to test every possible input to your system, but that’s not usually possible. Imagine testing Google for everything that people could search for! But even if we can’t test everything, we can try as many different test cases as possible and hopefully at least decrease the probability of bugs.

    As with design, we can’t possibly deal with the entire software at once, so we again just look at smaller pieces, testing one of them at a time. We call this approach unit testing. A unit test is usually done by a separate program which runs the tests on the program that you’re writing. That way you can run the tests as often as you like — perhaps once a day, or even every time there is a change to the program. It’s not unusual to write a unit test program before you write the actual program. It might seem like wasted work to have to write two programs instead of one, but being able to have your system tested carefully any time you make a change greatly improves the reliability of your final product, and can save a lot of time trying to find bugs in the overall system, since you have some assurance that each unit is working correctly.

    Once all the separate pieces have been tested thoroughly, we can test the whole system to check if all the different parts work together correctly. This is calledintegration testing. Some testing can be automated while other testing needs to be done manually by the software engineer.

    If I give you a part of the software to test, how would you start? Which test inputs would you use? How many different test cases would you need? When would you feel reasonably sure that it all works correctly?

    There are two basic approaches you can take, which we call black-box testing and white-box testing. With black-box testing, you simply treat the program as a black box and pretend you don’t know how it’s structured and how it works internally. You give it test inputs, get outputs and see if the program acts as you expected.

    But how do you select useful test inputs? There are usually so many different ones to choose from. For example, imagine you are asked to test a program that takes a whole number and outputs its successor, the next larger number (e.g. give it 3 and you get 4, give it -10 and you get -9, etc). You can’t try the program for all numbers so which ones do you try?

    You observe that many numbers are similar and if the program works for one of them it’s probably safe to assume it works for other similar numbers. For example, if the program works as you expect when you give it the number 3, it’s probably a waste of time to also try 4, 5, 6 and so on; they are just so similar to 3.

    This is the concept of equivalence classes. Some inputs are so similar, you should only pick one or two and if the software works correctly for them you assume that it works for all other similar inputs. In the case of our successor program above, there are two big equivalence classes, positive numbers and negative numbers. You might also argue that zero is its own equivalence class, since it is neither positive nor negative.

    For testing, we pick a couple of inputs from each equivalence class. The inputs at the boundary of equivalence classes are usually particularly interesting. Here, we should definitely test -1 (this should output 0), 0 (this should output 1) and 1 (this should output 2). We should also try another negative and positive number not from the boundary, such as -48 and 57. Finally, it can be interesting to try some very large numbers, so maybe we’ll take -2,338,678 and 10,462,873. We have only tested 7 different inputs, but these inputs will probably cover most of the interesting behaviour of our software and should reveal most bugs.

    Of course, you might also want to try some invalid inputs, for example “hello” (a word) or “1,234” (a number with a comma in it) or “1.234” (a number with a decimal point). Often, test cases like these can get programs to behave in a very strange way or maybe even crash because the programmer hasn’t considered that the program might be given invalid inputs. Remember that especially human users can give you all sorts of weird inputs, for example if they misunderstand how the program should be used. In case of an invalid input, you probably want the program to tell the user that the input is invalid; you definitely don’t want it to crash!

    Black-box testing is easy to do but not always enough because sometimes finding the different equivalence classes can be difficult if you don’t know the internal structure of the program. When we do white-box testing, we look at the code we are testing and come up with test cases that will execute as many different lines of code as possible. If we execute each line at least once, we should be able to discover a lot of bugs. We call this approach code coverage and aim for 100% coverage, so that each line of code is run at least once. In reality, even 100% code coverage won’t necessarily find all bugs though, because one line of code might work differently depending on inputs and values of variables in a program. Still, it’s a pretty good start.

    Unit testing is very useful for finding bugs. It helps us find out if the program works as we intended. Another important question during testing is if the software does what the customer wanted (Did we build the right thing?). Acceptance testing means showing your program to your stakeholders and getting feedback about what they like or don’t like. Any mistakes that we made in the analysis stage of the project will probably show up during acceptance testing. If we misunderstood the customer during the interview, our unit tests might pass (i.e. the software does what we thought it should) but we may still have an unhappy customer.

    Different stakeholders can be very different, for example in terms of technical skills, or even could have given us conflicting requirements for the software. It’s therefore of course possible to get positive feedback from one stakeholder and negative feedback from another.

    16.4.1. PROJECT: ACCEPTANCE TESTING

    For this project, choose a small program such as a Windows desktop gadget or an Apple dashboard widget. (For example, you can find a good selection of Windows gadgets at http://www.thoosje.com/desktop-gadgets-gallery.html) Pick something that you find particularly interesting or useful! Start by reading the description of the program to find out what it does before you try it out.

    Next, think about a stakeholder for this software. Who would use it and why? Briefly write down some background information about the stakeholder (as in the analysis project) and their main requirements. Note which requirements would be most important to them and why.

    Now, you can go ahead and install the program and play around with it. Try to imagine that you are the stakeholder that you described above. Put yourself in this person’s shoes. How would they feel about this program? Does it meet your requirements? What important features are missing? Try to see if you can find any particular problems or bugs in the program. (Tip: sometimes giving programs unexpected input, for example a word when they were expecting a number, can cause some interesting behaviour.)

    Write up a brief acceptance test report about what you found. Try to link back to the requirements that you wrote down earlier, noting which have been met (or maybe partially met) and which haven’t. Do you think that overall the stakeholder would be happy with the software? Do you think that they would be likely to use it? Which features would you tell the software developers to implement next?

    16.5. SOFTWARE PROCESSES

    So far in this chapter, you’ve learned about different phases of software development: analysis, design and testing. But how do these phases fit together? At what time during the project do we do what activity? That’s the topic of software processes.

    The obvious answer would be to start with analysis to figure out what we want to build, then design the structure of the software, implement everything and finally test the software. This is the simplest software process called the waterfall process.

    

    The waterfall process is borrowed from other kinds of engineering. If we want to build a bridge, we go through the same phases of analysis, design, implementation and testing: we decide what sort of bridge we need (How long should it be? How wide? How much load should it be able to support?), design the bridge, build it and finally test it before we open it to the public. It’s been done that way for many decades and works very well, for bridges at least.

    We call this process the waterfall process because once you “jump” from one phase of the project to the next, you can’t go back up to the previous one. In reality, a little bit of backtracking is allowed to fix problems from previous project phases but such backtracking is usually the exception. If during the testing phase of the project you suddenly find a problem with the requirements you certainly won’t be allowed to go back and rewrite the requirements.

    

    An advantage of the waterfall process is that it’s very simple and easy to follow. At any point in the project, it’s very clear what stage of the project you are at. This also helps with planning: if you’re in the testing stage you know you’re quite far into the project and should finish soon. For these reasons, the waterfall process is very popular with managers who like to feel in control of where the project is and where it’s heading.

    
      Curiosity: Hofstadter’s law
    

    Your manager and customer will probably frequently ask you how much longer the project is going to take and when you will finally have the finished program. Unfortunately, it’s really difficult to know how much longer a project is going to take. According to Hofstadter’s law, “It always takes longer than you expect, even when you take into account Hofstadter’s Law.”

    Because it’s just so nice and simple, the waterfall process is still in many software engineering textbooks and is widely used in industry. The only problem with this is that the waterfall process just does not work for most software projects.

    So why does the waterfall process not work for software when it clearly works very well for other engineering products like bridges (after all, most bridges seem to hold up pretty well...)? First of all, we need to remember that software is very different from bridges. It is far more complex. Understanding the plans for a single bridge and how it works might be possible for one person but the same is not true for software. We cannot easily look at software as a whole (other than the code) to see its structure. It is not physical and thus does not follow the laws of physics. Since software is so different from other engineering products, there really is no reason why the same process should necessarily work for both.

    To understand why the waterfall process doesn’t work, think back to our section about analysis and remember how hard it is to find the right requirements for software. Even if you manage to communicate with the customers and resolve conflicts between the stakeholders, the requirements could still change while you’re developing the software. Therefore, it is very unlikely that you will get the complete and correct requirements for the software at the start of your project.

    If you make mistakes during the analysis phase, most of them are usually found in the testing stage of the project, particularly when you show the customer your software during acceptance testing. At this point, the waterfall process doesn’t allow you to go back and fix the problems you find. Similarly, you can’t change the requirements halfway through the process. Once the analysis phase of the project is finished, the waterfall process “freezes” the requirements. In the end of your project, you will end up with software that hopefully fulfills those requirements, but it is unlikely that those will be the correct requirements. You end up having to tell the customer that they got what they asked for, not what they needed. If they’ve hired you, they’ll be annoyed; it it’s software that you’re selling (such as a smartphone app), people just won’t bother buying it.

    You can also get things wrong at other points in the project. For example, you might realise while you’re writing the code that the design you came up with doesn’t really work. But the waterfall process tells you that you have to stick with it anyway and make it work somehow.

    

    Design by Paragon Innovations and drawn by Project Cartoon

    So if the waterfall process doesn’t work, what can we do instead? Most modern software development processes are based on the concept of iteration. We do a bit of analysis, followed by some design, some programming and some testing. (We call this one iteration.) This gives us a rather rough prototype of what the system will look like. We can play around with the prototype, show it to customers and see what works and what doesn’t. Then, we do the whole thing again. We refine our requirements and do some more design, programming and testing to make our prototype better (another iteration). Over time, the prototype grows into the final system, getting closer and closer to what we want.

    

    The advantage with this approach is that if you make a mistake, you will find it soon (probably when you show the prototype to the customer the next time) and have the opportunity to fix it. The same is true if requirements change suddenly; you are flexible and can respond to changes quickly. You also get a lot of feedback from the customers as they slowly figures out what they need.

    There are a number of different software processes that use iteration (we call them iterative processes); a famous one is the spiral model. Although the details of the different processes vary, they all use the same iteration structure and tend to work very well for software.

    Apart from the question of what we do at what point of the project, another interesting question addressed by software processes is how much time we should spend on the different project phases. You might think that the biggest part of a software project is programming, but in a typical project, programming usually takes up only about 20% of the total time! 40% is spent on analysis and design and another 40% on testing. This shows that software engineering is so much more than programming.

    Once you’ve finished developing your program and given it to the customer, the main part of the software project is over. Still, it’s important that you don’t just stop working on it. The next part of the project, which can often go on for years, is called maintenance. During this phase you fix bugs, provide customer support and maybe add new features that customers need.

    
      Curiosity: Brooks’s law
    

    Imagine that your project is running late and your customer is getting impatient. Your first instinct might be to ask some of your friends if they can help out so that you have more people working on the project. Brooks’s law, however, suggests that that is exactly the wrong thing to do!

    Brooks’s law states that “adding manpower to a late software project makes it later.” This might seem counterintuitive at first because you would assume that more people would get more work done. However, the overhead of getting new people started on the project (getting them to understand what you are trying to build, your design, the existing code, and so on) and of managing and coordinating the larger development team actually makes things slower rather than faster in the short term.

    16.5.1. ACTIVITY: FUN WITH THE WATERFALL PROCESS

    The waterfall process is simple and commonly used but doesn’t really work in practice. In this activity, you’ll get to see why. First, you will create a design which you then pass on to another group. They have to implement your design exactly and are not allowed to make any changes, even if it doesn’t work!

    You need a deck of cards and at least 6 people. Start by dividing up into groups of about 3-4 people. You need to have at least 2 groups. Each group should grab two chairs and put them about 30cm apart. The challenge is to build a bridge between the two chairs using only the deck of cards!

    Before you get to build an actual bridge, you need to think about how you are going to make a bridge out of cards. Discuss with you team members how you think this could work and write up a short description of your idea. Include a diagram to make your description understandable for others.

    Now exchange your design with another group. Use the deck of cards to try to build your bridge to the exact specification of the other group. You may not alter their design in any way (you are following the waterfall process here!). As frustrating as this can be (especially if you know how to fix the design), if it doesn’t work, it doesn’t work!

    If you managed to build the bridge, congratulations to you and the group that managed to write up such a good specification! If you didn’t, you now have a chance to talk to the other group and give them feedback about the design. Tell them about what problems you had and what worked or didn’t work. The other group will tell you about the problems they had with your design!

    Now, take your design back and improve it, using what you just learnt about building bridges out of cards and what the other group told you. You can experiment with cards as you go, and keep changing the design as you learn about what works and what doesn’t (this is an agile approach). Keep iterating (developing ideas) until you get something that works.

    Which of these two approaches worked best — designing everything first, or doing it in the agile way?

    16.5.2. ACTIVITY: A NAVIGATION LANGUAGE

    In this activity, you will develop a language for navigating around your school. Imagine that you need to describe to your friend how to get to a particular classroom. This language will help you give a precise description that your friend can easily follow.

    First, figure out what your language has to do (i.e. find the requirements). Will your language be for the entire school or only a small part? How exact will the descriptions be? How long will the descriptions be? How easy will they be to follow for someone who does / doesn’t know your language? How easy will it be to learn? …

    Now, go ahead and design the language. Come up with different commands (e.g. turn left, go forward 10, …). Make sure you have all the commands you need to describe how to get from one place in your school to any other!

    Finally, test the language using another student. Don’t tell them where they’re going, just give them instructions and see if they follow them correctly. Try out different cases until you are sure that your language works and that you have all the commands that you need. If you find any problems, go back and fix them and try again!

    Note down how much time each of the different phases of the project take you. When you have finished, discuss how much time you spent on each phase and compare with other students. Which phase was the hardest? Which took the longest? Do you think you had more time for some of the phases? What problems did you encounter? What would you do differently next time around?

    16.5.3. ACTIVITY: BLOCK BUILDING (PRECISE COMMUNICATION)

    Communicating clearly with other software engineers and customers is essential for software engineers. In this activity, you get to practice communicating as precisely as possible!

    Divide up into pairs, with one creator and one builder in each pair. Each person needs a set of at least 10 coloured building blocks (e.g. lego blocks). Make sure that each pair has a matching set of blocks or this activity won’t work!

    The two people in each pair should not be able to see each other but need to be able to hear each other to communicate. Put up a screen between the people in each pair or make them face in opposite directions. Now, the creator builds something with their blocks. The more creative you are the more interesting this activity will be!

    When the creator has finished building, it’s the builders turn. His or her aim is to build an exact replica of the creator’s structure (but obviously without knowing what it looks like). The creator should describe exactly what they need to do with the blocks. For example, the creator could say “Put the small red block on the big blue block” or “Stand two long blue blocks up vertically with a one block spacing between them, and then balance a red block on top of them”. But the creator should not describe the building as a whole (“Make a doorframe.”).

    When the builder thinks they are done, compare what you built! How precise was your communication? Which parts were difficult to describe for the creator / unclear for the builder? Switch roles so that you get to experience both sides!

    16.6. AGILE SOFTWARE DEVELOPMENT

    Agile software development has become popular over the last 10 years; the two most famous agile processes are called XP and Scrum. Agile software development is all about being extremely flexible and adaptive to change. Most other software processes try to manage and control changes to requirements during the process; agile processes accept and expect change.

    Agile processes work similarly to iterative processes in that they do a number of iterations of analysis, design, implementation and testing. However, these iterations are extremely short, each usually lasting only about 2 weeks.

    In many other processes, documentation is important. We document the requirements so that we can look back at them; we document our design so that we can refer back to it when we program the system. Agile software processes expect things to change all the time. Therefore, they do very little planning and documentation because documenting things that will change anyway is a bit of a waste of time.

    Agile processes include lots of interesting principles that are quite different from standard software development. We look at the most interesting ones here. If you want to find out more, have a look at Agile Academy on Youtube which has lots of videos about interesting agile practices! There’s also another video here which explains the differences between agile software development and the waterfall process.

    Here are some general principles used for agile programming:

    
      Pair-programming
    

    Programming is done in pairs with one person coding while the other person watches and looks for bugs and special cases that the other might have missed. It’s simply about catching small errors before they become bugs. After all, 4 eyes see more than 2.

    You might think that pair-programming is not very efficient and that it would be more productive to have programmers working separately; that way, they can write more code more quickly, right? Pair-programming is about reducing errors. Testing, finding and fixing bugs is hard; trying not to create them in the first place is easier. As a result, pair-programming has actually been shown to be more efficient than everyone programming by themselves!

    
      YAGNI
    

    YAGNI stands for “You ain’t gonna need it” and tells developers to keep things simple and only design and implement the things that you know you are really going to need. It can be tempting to think that in the future you might need feature x and so you may as well already create it now. But remember that requirements are likely to change so chances are that you won’t need it after all.

    
      
    

    You ain’t gonna need it!

    
      Constant testing
    

    Agile processes take testing very seriously. They usually rely on having lots of automated unit tests that are run at least once a day. That way, if a change is made (and this happens often), we can easily check if this change has introduced an unexpected bug.

    
      Refactoring
    

    There are many different ways to design and program a system. YAGNI tells you to start by doing the simplest thing that’s possible. As the project develops, you might have to change the original, simple design. This is called refactoring.

    Refactoring means to change your design or implementation without changing the program’s behaviour. After a refactoring, the program will work exactly the same, but will be better structured in some way. Unit tests really come in handy here because you can use them to check that the code works the same way before and after the refactoring.

    Refactoring only works on software because it is “soft” and flexible. The same concept does not really work for physical engineering products. Imagine that when building a bridge, for example, you started off by doing the simplest possible thing (putting a plank over the river) and then continually refactored the bridge to get the final product.

    
      Courage
    

    “Courage” might seem like an odd concept in the context of software development. In agile processes, things change all the time and therefore programmers need to have the courage to make changes to the code as needed, fix the problems that need to be fixed, correct the design where needed, throw away code that doesn’t work etc. This might not seem like a big deal, but it can actually be quite scary to change code, particularly if the code is complicated or has been written by a different person. Unit tests really help by giving you courage: you’ll feel more confident to change the code if you have tests that you can run to check your work later.

    
      Test-driven development
    

    In standard software development, we first write some code and then test it. This makes sense: we need the code before we can test it, right? Test-driven development tells you to do the exact opposite!

    Before you write a piece of code, you should write a test for the code that you are about to write. This forces you to think about exactly what you’re trying to do and what special cases there are. Of course, if you try to run the test, it will fail (since the functionality it is testing does not yet exist). When you have a failing test, you can then write code to make the test pass.

    
      Programmer welfare
    

    Software developers should not work more than 40 hours per week. If they do overtime one week they should not do more overtime the following week. This helps keep software developers happy and makes sure they don’t get overworked.

    
      Customer involvement
    

    A customer representative should be part of the developing team (ideally spending full-time with the team), on hand to answer questions or give feedback at all times. This is important to be able to quickly change the requirements or direction of the project. If you have to wait 2 weeks until you can get feedback from your customer, you will not be able to adapt to change very quickly!

    Although having a customer on the development team is a great idea in theory, it is quite hard to achieve in practice. Most customers simply want to tell you their requirements, pay you and then get the software delivered 5 months later. It’s rare to find a customer who is willing and has the time to be more involved in the project.

    
      Curiosity: Christopher Alexander
    

    So far, we’ve mainly compared software development to engineering and building bridges, but you might have noticed that it’s also pretty similar to architecture. In fact, software development (in particular agile software development) has borrowed a lot of concepts from architecture. An architect called Christopher Alexander, for example, suggested involving customers in the design process. Sound familiar? Several other suggestions from Christopher Alexander were also picked up by the agile development community and as a result his thinking about architecture has shaped how we think about software development. This is despite the fact that Christopher Alexander knew nothing about software. He was apparently very surprised when he found out how well known he is among software developers!

    16.6.1. PROJECT: SOFTWARE PROCESSES

    This project will provide insight into a real software engineering process, but you’ll need to find a software engineer who is prepared to be interviewed about their work. It will be ideal if the person works in a medium to large size company, and they need to be part of a software engineering team (i.e. not a lone programmer).

    The project revolves around interviewing the person about the process they went through for some software development they did recently. They may be reluctant to talk about company processes, in which case it may help to assure them that you will keep their information confidential (your project should only be viewed by you and those involved in supervising and marking it; you should state its confidential nature clearly at the start so that it doesn’t later get used as an exemplar).

    You need to do substantial preparation for the interview. Find out about the kind of software that the company makes. Read up about software engineering (in this chapter) so that you know the main terminology and techniques.

    Now prepare a list of questions for the interviewee. These should find out what kind of software development processes they use, what aspects your interviewee works on, and what the good and bad points are of the process, asking for examples to illustrate this.

    You should take extensive notes during the interview (and record it if the person doesn’t mind).

    You then need to write up what you have learned, describing the process, discussing the techniques used, illustrating it with examples, and evaluating how well the process works.

    16.7. THE WHOLE STORY!

    In this chapter, we’ve tried to give you an introduction to the challenges of creating software and some techniques that software engineers use to overcome them. We’ve really only scratched the surface of software analysis, design, testing and software processes; there are entire books about each of these areas!

    It can be difficult to understand the importance of some of the problems and techniques we have described here if you have never worked on a larger software project yourself. Some may seem blindingly obvious to you, others may seem irrelevant. When you work on your first large project, come back to this chapter and hopefully you’ll recognise some of the problems we have described here!
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    ALC

    Apple Lossless Coding, a lossless compression method for audio.

    Algorithm

    Algorithm a process for achieving an outcome, normally for a general problem such as searching, sorting, finding an optimal path through a map and so on.

    Algorithm analysis

    Algorithm analysis working out the complexity of an algorithm.

    Algorithm complexity

    Algorithm complexity how long the algorithm takes to run (or how much memory it uses). These are almost always specified in terms of the size of input.

    Alphabet

Alphabets

    In formal languages, this is the set of characters that might be processed. For many compilers and text processing systems the alphabet is the set of all ASCII characters, but for example, for a finite state automaton controlled by an “up” and “down” button, the alphabet is just the two symbols “up” and “down”. For systems processing binary numbers, the alphabet would usually be “0” and “1”. Many of the small examples just use a small alphabet of a few characters (typically “a”, “b”, “c” etc.) to keep things simple.

    ASCII

    ASCII the commonly used code for representing characters as 8-bit numbers (although only 7 of the 8 bits are usually used).

    Attack

    Gaining access to or decrypting a file that is using encryption, without having the key. There are several types of attacks, some of which are also defined in this list.

    Binary Number System

    The base 2 number system, i.e. numbers only made up of the digits “0” and “1”. All numbers that can be represented in the decimal number system can be uniquely represented in the binary number system.

    Binary search

    Binary search searching a sorted list by looking at the middle item, and then searching the appropriate half recursively (used for phone books, dictionaries and computer algorithms).

    Bit

    Bit short for “binary digit” - a digit that is either 0 or 1.

    Brute force attack

    A type of attack that is carried out by trying every possible key.

    Bubble sort

    Bubble sort a sorting algorithm based on swapping adjacent items that are out of order. It is not a good method, but serves as an example of a slow method in contrast to others like quicksort.

    Byte

    Byte a group of 8 bits, able to represent numbers from 0 to 255, can store one ASCII character (also known as an octet).

    Caesar Cipher

    A very simple cipher that offsets each letter in the alphabet by a certain amount, specified by the key. It is no longer used in practice due to being very easy to attack.

    Chatterbot

    An AI system that has text conversations with the user, typically based on simple pattern matching.

    Check digit

    An extra digit that is added onto the end of a number such as an ISBN, credit card number, or barcode number. This digit is calculated using a formula based on the other digits in the number. Error detection works by using the check equation to determine whether or not the check digit is as expected.

    Check equation

    An equation that is used to check whether or not the check digit for a number is correct.

    Chomsky hierarchy

    A hierarchy of types of languages ranging from the simple “regular expression” through to unrestricted grammars. Each level of the hierarchy can describe more complex rules, but is also harder to implement. It is named after the linguist Noam Chomsky.

    Cipher

    An algorithm used to encrypt a piece of plain text.

    Cipher text

    Text which has been encrypted.

    Compiler

    Compiler translates an entire program written in a high level language to machine language in advance before running it.

    Complexity

    Complexity how long it takes to solve a problem. A problem has an inherent complexity (minimum time needed to solve it); any algorithm to solve the problem will have a higher complexity (take at least that long). See also algorithm complexity.

    Compression

    Compression making a file smaller by removing redundant information (typically using standards like zip, jpeg, mpeg, mp3).

    Decimal Number System

    The standard base 10 number system that is used in everyday math, using the digits “0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, and “9”.

    Decrypt

Decryption

Decipher

    Getting the plain text for a piece of cipher text by either using the key or an attack.

    Encryption

    Encryption changing the representation of data so it can’t be read by an eavesdropper who doesn’t have the encryption key.

    Encryption key

    Encryption key the password or secret code that will unlock an encrypted file.

    Error correction

    Correcting an error that has been detected in some data. This can be demonstrated in the Parity trick, where a person is able to flip the changed bit back over so it is correct again (after they have “detected” which bit was incorrect). Not all error control schemes are able to correct errors; some are only able to detect them.

    Error detection

    Detecting when an error has occurred in some data, such as a number getting typed incorrectly or a bit getting flipped. Some simple examples of this are parity bits or a check digit.

    Feature

    A function available on a digital device or software, such as copy/paste, autofocus, voice dialling or undo. Features are often used to sell a device, but having features (functionality) should not be confused with people being able to use the device effectively (usability).

    Feedback

    Responding to or acknowledging a user action. Users find the devices hard to use if the feedback is slow, confusing, or non-existent.

    Finite state automaton

FSA

    A simple notation for processing input symbols to determine if they obey some specified. An FSA has a starting state, transitions between states based on the next input symbol, and “accepting” states, which indicate that the input is accepted if the processing ends up in one.

    Frequency Analysis Attack

    An attack on substitution ciphers that takes advantage of the fact that some letters are generally more common than others in a piece of text (e.g. in English, the letter “e” is usually the most common letter) by looking at which letters appear the most in the cipher text and guessing that they must be the substitutions for the most common letters.

    GIF

    A lossless image compression system typically used for small images with few colours in them (in practice it can be lossy because it has only 256 colours, and if the original has more colours then some will be lost).

    Gigabyte

    About 1000 megabytes (1,000,000 kilobytes and 1,000,000,000 bytes). This is 8,000 million individual bits (i.e. 0’s and 1’s). [Like a kilobyte, there are other definitions, such as 1024x1024x1024 bytes, but usually this level of accuracy isn’t important]. Commonly referred to as a “GB”.

    Grammar

    Rules that specify a language, typically used for defining programming languages.

    Graphics

    Graphics in computer science, designing algorithms that can produce images on a computer.

    HCI

    HCI human computer interaction; an area of computer science looking at how people interact with a digital device, with an emphasis on the quality of the experience to complete tasks.

    Heuristic

    A heuristic is rule or guideline, usually devised from experience. The term is used in both HCI and algorithms. In HCI, heuristics are often used as a benchmark to evaluate interfaces — they aren’t strict rules, but usually highlight issues with designs. A very common set is given at www.useit.com . In algorithms, and heuristic is an approximate solution to a problem; it doesn’t guarantee to give the best possible answer (such as the shortest route on a map), but by using simple rules the calculation can be done quickly, and the solution is hopefully good enough for practical use.

    Hexadecimal

    The base 16 number system. Uses the digits “0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”, “A”, “B”, “C”, “D”, “E”, and “F”. All numbers that can be represented in decimal can be uniquely represented in hexadecimal (just like binary). It is most often used as a shorthand notation for binary, by assigning 1 hexadecimal digit to each 4 bit pattern (the assigning is done in numeric order).

    Hexadecimal colour codes

    A representation for colours that tells the computer how much red, blue, and green light to display in a pixel (to make the desired colour). Uses 1 byte for each of these 3 primary colours, which is 3 bytes (24 bits) in total. These 24 bits are often written as 6 hexadecimal digits to make them easier for humans to read, which is why they are called “Hexadecimal colour codes”. They are commonly encountered when specificying colours in HTML for web pages.

    High level language

    High level language a programming language that is designed for humans to read and write (e.g. Java, Python, C, C#, Basic, Scratch…) as opposed to machine languages.

    Insertion sort

    Start with an empty list, and insert each item in the correct place; this is a relatively slow method, usually between selection sort and quick sort in speed.

    Intelligent Systems

    Intelligent systems an area of computer science that investigates ways to simulate or approximate human intelligence on computers; often referred to as artificial intelligence (AI).

    Interface

    The part of a computer, software, or electronic device that a human interacts with, whether this is by sight, hearing, or touch.

    Interpreter

    Interpreter runs a programming language by translating each line of code as it is execute.

    ISBN

    Stands for International Standard Book Number. Every published book has one of these numbers on the back of it. ISBN is significant to error control coding because it uses a check digit for error detection.

    JPEG

    A lossy image compression system typically used for photographs.

    Key (in algorithms)

    It is an item of data that is being searched for or sorted, and therefore will be compared with other data.

    Key (in cryptography)

    The password or secret value that is used to encrypt and decrypt an encrypted file (without having to use an “attack”). Some widely used methods have different keys for encryption and decryption.

    Kilobyte

    About 1000 bytes. This is 8,000 individual bits (i.e. 0’s and 1’s). [We say “about” 1000 bytes because the term is ambiguous and it is often taken as 1024 bytes; however, rounding it to 1000 is close enough for most calculations]. Commonly referred to as a “KB”.

    Known plain-text Attack

    Working out the key or method of encryption (cipher) based on having access to both the original plain-text and its encrypted form.

    Language

    A set of strings, typically obeying some rules defined by a regular expression or grammar e.g. all strings containing the letter “a” exactly twice, or all strings that are legal Java programs.

    Lexical analysis

    When compiling a computer program, working out what the components of the program are e.g. identifiers, keywords, integers.

    Linear Complexity

    Linear complexity grows in proportion to the size of the problem - if the problem is twice as big, it will take roughly twice as long to solve.

    Logarithm

    Logarithm is a very slow growing mathematical function written as \log n. In computer science logarithms are usually in base 2, that is, \log_2 n, which is the inverse of the incredibly fast growing exponent function 2^n. Logarithms are not needed to understand the material in this book, but they are used a lot in computer science and are a useful concept to understand. Logarithms happen to come up a lot with algorithms, and the two words are often confused. The value \log_2 n is just the number of times you can halve n until you get down to 1; for example, \log_2 32is 5, and :math:log_2 1024 is 10. Binary search takes \log_2 n steps to search nitems; storing the number n in binary takes \log_2 n bits.

    Lossless

    A compression method that does not cause any loss of data. This means that the uncompressed file will be identical to the original file that was compressed (which is important for text). In the case of images and sound, it means they will be of the same quality before and after compression. For example, ZIP and ALC use lossless compression.

    Lossy

    A compression method that trades off quality for file size. Lossy compression methods can make files smaller than lossless compression methods can, but the quality of the resulting file will be lower. For example, MP3 and JPEG use lossy compression.

    Machine language

    The native language for instructions for a computer, not very easy for humans to read and write.

    Megabyte

    About 1000 kilobytes (1,000,000 bytes). This is 8 million individual bits (i.e. 0’s and 1’s). [Like a kilobyte, there are other definitions, such as 1024x1024 bytes, but usually this level of accuracy isn’t important]. Commonly referred to as a “MB”.

    MP3

    A lossy audio compression system.

    Nibble

    4 bits (half a byte), sometimes called a nybble.

    Nielson’s Heuristics

    A widely used set of heuristics for evaluating computer interfaces that was devised by Jakob Nielson (available from http://useit.com).

    Octal

    The base 8 number system. Like hexadecimal, it is significant to computer scientists as it allows a shorthand notation for writing binary numbers. Octal assigns a digit to each possible 3 bit pattern. Note: You probably don’t need to know this for the achievement standard, although it is included here in case you come across the term.

    Parity

    Adding an extra bit to a set of bits to make it so that there is an even number of 1’s. Storing the parity makes it possible to detect and correct errors later. [This is known as an even parity bit; an odd parity bit is also possible where the extra bit ensures there is an odd number of 1’s]

    Parse tree

    The structure derived by parsing some input.

    Parsing

    Reading some input (typically a computer program) and making sense of it by breaking it into parts according to their function.

    Pattern matching

    Finding strings of characters that match simple rules, typically based on a regular expression.

    Plain Text

    Text before it has been encrypted or after it has been decrypted (so essentially text in plain language, without any encryption).

    PNG

    A lossless image compression system typically used for small images with few colours in them.

    Quadratic complexity

    Quadratic complexity grows with the square of the size of the problem - if the problem is twice as big, it will take roughly 4 times as long to solve.

    Quick sort

    Quick sort pick an item at random, put all the smaller items in a group on its left and the larger items in a group on its right. Now do quick sort on the two groups. This is one of the better sorting algorithms, and is good for comparing with others. Students don’t need to understand how it works, but some may be curious.

    Redundant Bits

    Extra bits that are not part of the actual data but instead have been added for error detection and possibly error correction.

    Regular expression

    A simple expression used for pattern matching, typically using characters combined with “*” (repetition), “|” (selecting one or the other) and parenthesis (to group operations). Some systems allow more complex patterns such as ”.” (matches any character), “{n}” (repeated n times), and “\d” (digit).

    Search

    Find a key in a large amount of data.

    Selection sort

    Selection sort select the smallest item, then the second smallest, and so on. This is not a very fast algorithm, but it’s not as bad as bubble sort, and provides a good contrast with quick sort.

    Sort

    Sort puts keys (numbers, names or other values) in order from smallest to largest (outside computer science this is usually called ordering).

    String

Strings

    A sequence of characters or symbols from an alphabet. For example, the two-character strings that can be made from the alphabet {“a”,”b”} are “aa”, “ab”, “ba” and “bb”.

    Substitution Cipher

    A type of cipher that works simply by replacing each letter or combination of letters in a plain text with a certain other letter or combination of letters to make up the cipher text. The result of this is that each unique letter combination of letters in the plain text (e.g. “t”) is represented by the same unique letter combination of letters in the cipher text (e.g. “y”) Caesar Cipher is a simple example of a substitution cipher. Substitution ciphers are vulnerable to Frequency Analysis Attacks, so are not used in practice.

    Syntactically correct

    A string is syntactically correct if it matches the specifications for a formal language. For example, the string “()(())” is correct for a grammar that gives the rules for balanced parentheses. In a computer program, a syntax error is when a character occurs in the input which isn’t allowed, and the program is therefore not syntactically correct.

    Syntax

    Syntax rules about what text can appear in a programming language, used by a compiler or interpreter and therefore need to be followed by a programmer to avoid syntax errors.

    Syntax diagram

    Also known as railway (or railroad) diagrams, these are a graphical representation of a grammar using arrows (the “train tracks”) to show the options for each component of a language.

    Task

    Something a user might do with a piece of software or electronic device to achieve a goal. In the case of a cellphone this might be “send a text message” or in the case of a microwave it might be “heat up yesterday’s leftovers”. Interfaces are best evaluated when considering how they help a user to perform a task.

    Time complexity

    Time complexity the usual meaning of the complexity of an algorithm; this makes it clear that we’re talking about the time taken. Normally it’s expressed in terms of steps, not real time on a particular computer, as different computers are different speeds.

    Unicode

    Unicode an extension of ASCII; it supports characters from multiple languages, using 16 bits per character.

    Usability heuristic

    See Heuristic.

    User

    The human using the computer system or electronic device.

    Visual computing

    Visual computing designing systems that can perceive, process, understand and generate images; images typically come from scanners and cameras, and may be displayed on monitors, head mounted displays, or as movies.
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    This chapter is for help on getting the interactives (previously referred to as widgets) working. The current interactives are prototypes and have not been heavily tested across different browsers and operating systems. Most of the interactives will work in the latest version of Chrome.

    The interactives are currently not designed for mobile or touch devices, but are a focus when we redesign them over the coming months.

    17.3.1. WEBGL ON WINDOWS, LINUX AND MAC OS X

    The graphics chapter makes a lot of use of the WebGL system, which can render 3D images in a web browser. It is relatively new, so older browsers and operating systems may not have it setup correctly.

    17.3.1.1. QUICK FIXES

    If you are using an up-to-date version of Chrome or Firefox and the drivers for your operating system are up-to-date and the computer has a suitable GPU, then it should work. It won’t be possible to use it in Internet Explorer. For Safari you will need to adjust some settings. The details for getting WebGL set up are below.

    
      Updating your operating system
    

    If you’re on Windows, make sure you have the Microsoft DirectX runtime installed — this is a free download from Microsoft. Once you’ve done that, make sure that you’ve got the very latest versions of the drivers for your graphics card. We recommend doing this manually, there are good tutorials on the internet. There is a goodvideo here that explains how to do this. The easiest way is to install an free driver update program like SlimDriver which will find missing and out-of-date drivers.

    For MacOS: 1. Click the Apple logo. 2. On the “Apple” menu, click “Software Update.” 3. If there is a Mac OS X update available, you can install it. If there is a graphics driver update, it will be included in the Mac OS X update.

    
      Updating your browser
    

    This depends on which browser you are using. If you can use Chrome it can be a little easier to get working.

    
      	Firefox: just make sure you have version 4 or higher.

      	Chrome: all you need to do is install it, or if you’re already using it, just check whether it’s updated itself to version 10 or later — this will almost certainly have happened automatically (it was released in March 2011), but you can check from the “About Google Chrome” option on the tools menu to confirm.

      	Safari: on Macs, OS X 10.7 has WebGL support, but it’s switched off by default. To switch it on, enable the developer menu and check the “Enable WebGL” option.

    

    All older version of these browsers require manual enabling of WebGL. For more information on getting a WebGL implementation follow this link.

    17.3.1.2. TROUBLE IN LINUX, WINDOWS OR MAC OS X

    If the above doesn’t work then you may unfortunately have a blacklisted GPU / graphics card, or your graphics drivers may be out of date because the company has discontinued their support. In most cases we can get around this (see below).

    You can find an explanation of blacklisted cards/GPU’s for Chrome. As of January 2013 the “blacklisted” Chrome GPU’s are as follows; some may be removed from the list later.

    
      All operating systems
    

    
      	NVIDIA GeForce FX Go5200

    

    
      Windows
    

    
      	Intel GMA 945

      	ATI FireMV 2400

    

    
      Mac
    

    
      	ATI Radeon HD2400

      	ATI Radeon 2600 series

      	ATI Radeon X1900

      	ATI Radeon HD 6490M on OS X 10.6

      	GeForce 7300 GT

    

    
      Linux
    

    
      	AMD/ATI cards

      	Nvidia QuadroFX 1500

      	Nvidia cards with Nouveau drivers

      	Nvidia cards with Nvidia drivers older than 295

      	Optimus dual-GPU configurations

      	Intel for Mesa drivers earlier than 7.9 (just update drivers)

    

    17.3.1.3. THE WORK-AROUND

    To work around this it is easiest done in Chrome by typing “about:flags” in the address bar, it will open a page. On this page find “Override software rendering list” in the list and click ‘enable’. Then look for and click the “relaunch google chrome” button or close all chrome browser windows and restart/reload Chrome.

    In Firefox type “about:flags” in the address bar. (On this page there is a search input available) Search in this for “force-enabled”. Double click on bothlayers.acceleration.force-enabled and webgl.force-enabled which will set their value true. Then close all firefox browser windows and restart/reload firefox.

    17.3.1.4. EXTRA TROUBLE

    Graphics drivers must be working, some graphics cards are not fully compatible with some operating systems. In the case of Linux OS make sure is fully updated ie. Intel Mesa drivers should be higher than 7.9 otherwise it will default to software rendering.

    17.3.1.5. DIAGNOSE YOUR GPU IN CHROME

    You can diagnose what’s happening by typing ‘chrome://gpu’ in the location bar. You can also see your driver version in here and other details.

    If webgl is enabled then you should get a graphics feature status, ie. - Canvas: Hardware accelerated - WebGL: Hardware accelerated - WebGL multisampling: Hardware accelerated - Flash 3D: Hardware accelerated - Flash Stage3D: Hardware accelerated

    The GL_RENDERER also should have the name of your GPU, otherwise if its not working correctly it may have something like “Software Rasterizer” and will be really slow. In this case again check your drivers are up to date.

  
    This document provides a brief introduction to teachers on the Computer Science Field Guide assessment guides for NCEA Achievement standard AS91074 (1.44).

    17.4.1. TOPICS

    1.44 has bullet points for the following three topics in computer science.

    
      	Algorithms

      	Programming Languages

      	Human Computer Interaction

    

    Each of these topics has a chapter in the Computer Science Field Guide, which this assessment guide is based on.

    Currently, we provide two different assessment guides for algorithms (sorting and searching), and one for each of human computer interaction and programming languages. Note that students only need to follow one assessment guide for each of the three topics (i.e. they do not need to do both searching and sorting for the topic of algorithms).

    17.4.2. SORTING VS SEARCHING FOR ALGORITHMS

    For the topic of algorithms, students can demonstrate their understanding of algorithms and their costs by using either sorting algorithms or searching algorithms as their example.

    For students who are weak at math, searching algorithms is probably the better choice. Sorting algorithms requires either being good at understanding trends from data in a table or understanding how to read trends from a graph in order to achieve merit or excellence, whereas the cost of Searching algorithms can easily be seen by students carrying out the algorithms themselves.

    Sorting algorithms provide a slightly richer range of possibilities, including more ways to demonstrate how they work in a student’s report, and intriguing new approaches to a common and easily described task that may not have been obvious.

    17.4.3. ORDER OF TOPICS

    The three topics can be completed in any order, although the first bullet point in each level (comparing algorithms, programs, and informal instructions) is probably best left until both algorithms and programming languages have been completed, since they can provide examples to illustrate the points in the first bullet points.

    Covering Human Computer Interaction first may make the Algorithms topic more relevant to students. In many cases, a not so good algorithm will take a second to run, whereas a better algorithm will take less than a tenth of a second. This is very significant in terms of a good user interface, so covering HCI first will make students more aware of issues like this.

    17.4.4. PERSONALISATION AND STUDENT VOICE

    It is important that students use personalised examples to base their explanations around, and that the explanations are in their own words, and based on their example (rather than being a paraphrase from wikipedia, for example).

    Personalised means that the student’s example is different to their classmates. For example, they may have a program that prints their name or favourite saying, they may use a different number of items to sort or search through, their choice of the values being sorted or searched in examples is unique, and they may carry out their own usability exploration of a device they chose, and report on it in their own words.

    If the teacher provides too many headings or leading questions for students to structure their work, this can reduce the opportunity for the report to reflect a personal understanding.

    17.4.5. REPORT LENGTH

    It is important to note that the page limit given by NZQA is not a target. The markers prefer reports that are short and to the point, and the requirements of the standard can easily be met within the limit.

    The page limit for 1.44 is now 10 pages to cover the three topics. A possible breakdown that leaves one additional page is:

    
      	Algorithms: 4 pages

      	Programming Languages: 2 pages

      	Human Computer Interaction: 3 pages

    

    The assessment guides provide further guidance on how to stay within these limits. Students should be mindful of the recommended limits while they are working on their reports, in order to avoid having to delete work they put a lot of effort into.

    Some hints to reduce total length

    
      	Only include what is relevant to the standard. While covering additional material in class is valuable for learning, additional content that doesn’t demonstrate understanding of the topics and bullet points in the standard is only a distraction in the report.

      	Resize screenshots and photos so that they are still readable, although don’t take up unnecessary space. Use cropping to show the relevant parts of the image.

      	Don’t leave unnecessary space in the report. It both looks untidy and makes it more difficult for the marker to find what they are looking for.

    

    17.4.6. PRESENTING THE REPORT

    Always check your report trying to think of it from the marker’s point of view. A common mistake is to put in graphs without labels on the axes, so the marker doesn’t know what the graph is showing. Also make sure you give units for measurements (e.g. 5 seconds, 5 minutes?). If you refer to colour in an image don’t print the report in black and white!

    If you are using examples, don’t use ones taken from the Field Guide or other sources - make up your own. For sorting and searching, makes up a set of numbers or words (perhaps about 8, but not 2 or 3) to demonstrate the algorithms. For HCI, use your own device. For algorithms, don’t use the “glass of water” example in the Field Guide - think of your own example to show that you’ve understood the point!

    17.4.7. GENERAL ADVICE

    In 2012 we did a study that looked over 151 student submissions for 1.44 in 2011. This was the first year 1.44 was offered, although the lessons learnt are still relevant, particularly for teachers teaching the standard for the first time. A WIPSCE paper was written presenting our findings of how well students approached the standard and our recommendations for avoiding pitfalls. Our key findings are reflected in the teacher guides, although reading the entire paper would be worthwhile.

    The paper was Bell, T., Newton, H., Andreae, P., & Robins, A. (2012). The introduction of Computer Science to NZ High Schools — an analysis of student work. In M. Knobelsdorf & R. Romeike (Eds.), The 7th Workshop in Primary and Secondary Computing Education (WiPSCE 2012). Hamburg, Germany. Available from:http://nzacditt.org.nz/system/files/Student-work-WiPCSE2012-final-submission-dl.pdf

  
    This is a guide for students attempting the Algorithms topic of digital technologies achievement standard 1.44 (AS91074).

    In order to fully cover the standard, you will also need to have done projects covering the topics of Programming Languages and Human Computer Interaction in the standard, and included these in your report.

    17.5.1. OVERVIEW

    The topic of Algorithms has the following bullet points in achievement standard 1.44, which this guide covers. This guide separates them into two categories.

    17.5.1.1. COMPARING ALGORITHMS, PROGRAMS, AND INFORMAL INSTRUCTIONS

    Achieved (A1): “describing the key characteristics, and roles of algorithms, programs and informal instructions”

    Merit (M1): “explaining how algorithms are distinct from related concepts such as programs and informal instructions”

    Excellence (E1): “comparing and contrasting the concepts of algorithms, programs, and informal instructions”

    17.5.1.2. DETERMINING THE COST OF ALGORITHMS AND UNDERSTANDING VARIOUS KINDS OF STEPS IN ALGORITHMS

    Achieved (A2): “describing an algorithm for a task, showing understanding of the kinds of steps that can be in an algorithm, and determining the cost of an algorithm for a problem of a particular size”

    Merit (M2): “showing understanding of the way steps in an algorithm for a task can be combined in sequential, conditional, and iterative structures and determining the cost of an iterative algorithm for a problem of size n”

    Excellence (E2): “determining and comparing the costs of two different iterative algorithms for the same problem of size n”

    As with all externally assessed Digital Technology reports, you should base your explanations around personalised examples.

    17.5.2. READING FROM THE COMPUTER SCIENCE FIELD GUIDE

    You should read and work through the interactives in the following sections of the CS Field Guide in order to prepare yourself for the assessed project.

    2.1 - What’s the bigger picture?

    2.2 - Searching Algorithms

    17.5.3. PROJECT

    This project involves understanding linear search and binary search.

    17.5.3.1. WRITING YOUR REPORT FOR THE MAIN BULLET POINTS THAT COVER ALGORITHMS

    
      Achieved
    

    Try both the box searching interactives linked to in the field guide. For one of them you have to use linear search, and for the other you have to use binary search.

    Pick one of these algorithms to focus on for achieved. Carry out the interactive and then take a screenshot. Show on your screenshot which boxes you opened, and put how many boxes you opened. The number of boxes you opened is the cost of the algorithm in this particular case.

    If you did the search with this same number of boxes lots of times (but with different numbers in the boxes), on average how many boxes would you need to check? This is the cost for a problem of this particular size (the problem size is the number of boxes).

    Describe (in your own words with a few sentences) the overall process you carried out to search through the boxes. Try and make your explanation general, e.g. if you gave the instructions to somebody who needs to know how to search 100 boxes, or 500 boxes, the instructions would be meaningful.

    
      Merit/ Excellence
    

    For merit, you need to make it clear that you understand that algorithms can contain iterative, conditional, and sequential steps. If you don’t know what these terms mean, go have another look at the field guide. Get a Scratch program (or another language if you are fairly confident with understanding the language) that implements your sorting algorithm. Take a screenshot of it, or a large part of it (you want to ensure that the screenshot takes up no more than half a page in the report, but is still readable) and open it in a drawing program such as paint. Add arrows and notes showing a part of the algorithm that is sequential, part that is conditional, and part that is iterative.

    It should be obvious by now that binary search is far better than linear search! Although you still might say, why not just use a faster computer? To explore this possibility, you are now going to analyse what happens with a huge amount of data. Pick a really large number (e.g. in the billions, or even bigger - this is the amount of data that large online companies have to search). Imagine you have this number of boxes that you have to search. Rather than actually carrying out the searching, you are going to determine how long it would take if you use linear search, and how long it would take if you used binary search. Computer scientists call thisanalysing an algorithm, and often it is better to work out how long an algorithm can be expected to take before waiting years for it to run and wondering if it will ever complete.

    
      Remember that you can use the big number calculator and the time calculator in the field guide.
    

    How many boxes on average will you have to search if you use a linear search?

    What about with binary search? If you are unsure on how to calculate this, remember that each box you check cuts the number of boxes you still need to consider in half. Therefore, you can determine approximately how many boxes you will need to check by continually halving the total number of boxes until it gets down to 1. You should include all the working (i.e. the result of each division by 2) in your report.

    Don’t worry if your answer isn’t perfect; it’s okay to be within 5 or so of the correct answer. This means that if while halving your number it never gets down to exactly 1 (e.g. it gets down to 1.43 and then 0.715), your answer will be near enough. As long as you have halved your number repeatedly until it gets down to a number that is less than 1, your answer will be accurate.

    Calculate how long it would take for each algorithm, assuming you have a computer that can look in a million boxes per second. Don’t worry about being too accurate (e.g. just round to the nearest second, minute, hour, day, month, or year).

    You should see a very big difference between the two numbers. What will happen if you have twice as many boxes? What about four times as many? How long will it take for each algorithm? You should easily be able to calculate these numbers based on your previous calculations.

    Include a table in your report that shows the time it would take for your 15 digit number of boxes using each algorithm, and then for two times, four times, and eight times the number of boxes. If you are keen you could look at 128 times as well (that is doubling the problem size 7 times).

    Write about what you observe in the time increase when you have doubled the number of boxes.

    With such a large number of boxes, how important is it to use binary search if you can? Imagine if you were a computer scientist with the task of searching these boxes, and in order to do your work you need to search for many pieces of data each day. What would happen if you were trying to use linear search?

    17.5.3.2. WRITING THE PART OF YOUR REPORT THAT ADDRESSES “COMPARING ALGORITHMS/ PROGRAMS/ INFORMAL INSTRUCTIONS”

    
      Achieved/ Merit/ Excellence
    

    We recommend doing this part after you have done programming languages.

    All three levels (A/M/E) are subsumed by the E requirement, so you should try to do that i.e. “comparing and contrasting the concepts of algorithms, programs, and informal instructions”. You should refer to examples you used in your report or include additional examples (e.g. a program used as an example in the programming languages topic, or an algorithm describing the searching process, etc). If you are confused, have another look at the field guide. You should only need to write a few sentences to address this requirement.

    17.5.4. HINTS FOR SUCCESS

    
      	Don’t confuse “algorithm cost” with the “algorithm length”. The number of lines in the algorithm or program normally unrelated to the cost. Cost is the time the algorithm actually takes to run, or the number of comparisons that have to be made. You can find more information in the Field Guide if you are not sure.

      	Resize screenshots/ photos so that they are large enough to see what is on them, but not taking up unnecessary space.

    

    17.5.5. RECOMMENDED NUMBER OF PAGES

    Within the 4 pages recommended for algorithms, a possible breakdown is:

    
      	1 ½ pages: Screenshots and explanations of you carrying out a chosen algorithm (Achieved)

      	¼ page: General instructions for carrying out your chosen algorithm (Achieved)

      	½ page: Example of the iterative, conditional, and sequential steps that can be in an algorithm (Merit)

      	1 ½ pages: Your investigation and data collected for merit/ excellence. Including results and discussion (Merit/ Excellence)

      	¼ page: Explanation of the difference between algorithms, programs, and informal instructions (Achieved/ Merit/ Excellence)

    

    These are maximums, not targets!

    For the topic of searching algorithms you probably won’t need this much space (sorting algorithms tends to require more space). In particular, you should only need 1 page to introduce your chosen algorithm for achieved, and 1 page or less for your investigation for merit/ excellence. This might allow you to allocate more pages to one of the other two topics.

    Note that if you go over 4 pages for Algorithms, then you may have to use fewer pages for one of the other two topics, which could be problematic. No other material should be included for Algorithms.

  
    This is a guide for students attempting the Algorithms topic of digital technologies achievement standard 1.44 (AS91074).

    In order to fully cover the standard, you will also need to have done projects covering the topics of Programming Languages and Human Computer Interaction in the standard, and included these in your report.

    17.6.1. OVERVIEW

    The topic of Algorithms has the following bullet points in achievement standard 1.44, which this guide covers. This guide separates them into two categories.

    17.6.1.1. COMPARING ALGORITHMS, PROGRAMS, AND INFORMAL INSTRUCTIONS

    Achieved (A1): “describing the key characteristics, and roles of algorithms, programs and informal instructions”

    Merit (M1): “explaining how algorithms are distinct from related concepts such as programs and informal instructions”

    Excellence (E1): “comparing and contrasting the concepts of algorithms, programs, and informal instructions”

    17.6.1.2. DETERMINING THE COST OF ALGORITHMS AND UNDERSTANDING VARIOUS KINDS OF STEPS IN ALGORITHMS

    Achieved (A2): “describing an algorithm for a task, showing understanding of the kinds of steps that can be in an algorithm, and determining the cost of an algorithm for a problem of a particular size”

    Merit (M2): “showing understanding of the way steps in an algorithm for a task can be combined in sequential, conditional, and iterative structures and determining the cost of an iterative algorithm for a problem of size n”

    Excellence (E2): “determining and comparing the costs of two different iterative algorithms for the same problem of size n”

    As with all externally assessed Digital Technology reports, you should base your explanations around personalised examples.

    17.6.2. READING FROM THE COMPUTER SCIENCE FIELD GUIDE

    You should read and work through the interactives in the following sections of the CS Field Guide in order to prepare yourself for the assessed project.

    2.1 - What’s the bigger picture?

    2.3 - Sorting Algorithms

    Note that 2.2 is not necessary for this project, as 2.2 focuses on searching algorithms, whereas this project focuses on sorting algorithms.

    17.6.3. PROJECT

    This project involves understanding how selection sort works and the types of steps that can be in it and other algorithms, and then comparing the cost of selection sort and quicksort.

    17.6.3.1. WRITING YOUR REPORT FOR THE MAIN BULLET POINTS THAT COVER ALGORITHMS

    
      Achieved
    

    Carry out selection sort on a small amount of data. You can do this either using the balance scale interactive in the field guide (recommended), a physical set of balance scales if your school has them (normal scales that show the exact weights are unsuitable), or as a trace you did using pencil and paper (not recommended). Count how many comparisons you made to sort the items.

    Take screenshots/ photos of you using the interactive or balance scales to do the sorting. Three or four pictures would be ideal (i.e. one showing the initial state of the scales and weights, one or two in the middle where you are comparing weights, and one at the end where all the weights are sorted). Use a drawing program to draw on each of the pictures and show which weights have been sorted so far, and which have not. Put on the screenshots how many comparisons have been made so far in the sorting process. Write a short explanation of what is happening in the images. Make sure you include the total number of comparisons that was needed to sort the items in your report.

    Describe (in your own words with a few sentences) the overall process you carried out to sort the weights or numbers. Try and make your explanation general, e.g. if you gave the instructions to somebody who needs to know how to sort 100 numbers, or 500 numbers, the instructions would be meaningful.

    
      Merit
    

    For merit, you need to make it clear that you understand that algorithms can contain iterative, conditional, and sequential steps. If you don’t know what these terms mean, go have another look at the field guide. Get a Scratch program (or another language if you are fairly confident with understanding the language) that implements selection sort. Take a screenshot of it, or a large part of it (you want to ensure that the screenshot takes up no more than half a page in the report, but is still readable) and open it in a drawing program such as paint. Add arrows and notes showing a part of the algorithm that is sequential, part that is conditional, and part that is iterative.

    Remember that some algorithms are a lot faster than others, especially as the size of the problem gets bigger. It isn’t necessarily the case that if you try to sort twice as many items then it will take twice as long. As a quick warm up investigation to give you some idea of this, try the following.

    Get an implementation of selection sort (there are some linked to at the end of the chapter in the field guide). Start by choosing a number between 10 and 20. How many comparisons does it take to sort that many randomly generated numbers with your chosen algorithm? Now, try sorting twice as many numbers. How many comparisons did it take now? Does it take twice as many? Now, try sorting 10 times as many numbers. Does it take 10 times as many comparisons? How many more times the original problem size’s number of comparisons does it actually take? Hopefully you are starting to see a trend here.

    If you aren’t attempting excellence, include the numbers you got from the warm up investigation, along with an explanation of the trend you found. If you are attempting excellence, you should do the warm up investigation as it will help you (and will only take a few minutes), but you don’t need to write about it.

    
      Excellence
    

    You probably found in the activity for merit that selection sort isn’t a very good algorithm. So how much better is quicksort? Does the difference become more noticeable as you try to sort more numbers? For your report, you are going to compare selection sort with quicksort. Your objective is to show how much the difference in comparisons between selection sort and quicksort changes as the number of items to be sorted is increased.

    Choose 10 numbers in the range of 1 to 1000 (you will need a good variety of numbers, some high and some low. Do not pick the same numbers as your classmates!) For each of your 10 numbers, try sorting that many values with each of the sorting algorithms. Record your results in a table that has a column for the problem size, a column for how many comparisons selection sort used, and a column for how many comparisons quicksort used.

    The best way of visualising the data you have just collected is to make a graph (e.g. using Excel). Your graph should have 2 lines; one for quicksort and one for selection sort, showing how the number of comparisons increases as the size of the problem goes up. Make sure you label the graph well. A simple way of making the graph is to use a scatter plot and put in lines connecting the dots (make sure the data for the graph is increasing order with the smallest problem sizes first and largest last so that the line gets drawn properly). Ask your teacher for guidance if you are having difficulty with excel.

    Look at your graph. Does the rate of increase for the two algorithms seem to be quite different? Discuss what your graph shows. If you aren’t sure what to include in the discussion of your findings, you could consider the following questions (optional).

    
      	What happens to the number of comparisons when you double how many numbers you are sorting with quicksort? What about when you sort 10 times as many numbers? How is this different to when you used selection sort at the start?

      	What is the largest problem you can solve within a few seconds using selection sort? What about with quicksort?

      	If you had a database with 1 million people in it and you needed to sort them by age, which of the two algorithms would you choose? Why? What would happen if you chose the other algorithm?

    

    17.6.3.2. WRITING THE PART OF YOUR REPORT THAT ADDRESSES “COMPARING ALGORITHMS/ PROGRAMS/ INFORMAL INSTRUCTIONS”

    
      Achieved/ Merit/ Excellence
    

    We recommend doing this part after you have done programming languages.

    All three levels (A/M/E) are subsumed by the E requirement, so you should try to do that i.e. “comparing and contrasting the concepts of algorithms, programs, and informal instructions”. You should refer to examples you used in your report or include additional examples (e.g. a program used as an example in the programming languages topic, or an algorithm describing the sorting process, etc). If you are confused, have another look at the field guide. You should only need to write a few sentences to address this requirement.

    17.6.4. HINTS FOR SUCCESS

    
      	Don’t confuse “algorithm cost” with the “algorithm length”. The number of lines in the algorithm or program normally unrelated to the cost. Cost is the time the algorithm actually takes to run, or the number of comparisons that have to be made. You can find more information in the Field Guide if you are not sure.

      	While we recommend using the balance scales interactive, if you do include a pen and paper trace, don’t give yourself more than 5 or 6 values to sort, and use an efficient layout that ensures the entire trace takes no more than about half a page.

      	Resize screenshots/ photos so that they are large enough to see what is on them, but not taking up unnecessary space.

      	Be sure to label the axis of your graph clearly so that the marker knows what your graph shows.

    

    17.6.5. RECOMMENDED NUMBER OF PAGES

    Within the 4 pages we recommend for algorithms, a possible breakdown is:

    
      	1 ½ pages: Screenshots and explanations of you carrying out a chosen algorithm and determining the cost of it for your example problem (Achieved)

      	¼ page: General instructions for carrying out your chosen algorithm (Achieved)

      	½ page: Example of the iterative, conditional, and sequential steps that can be in an algorithm (Merit)

      	1 ½ pages: Your investigation and data collected for merit/ excellence. Including results and discussion (Merit/ Excellence)

      	¼ page: Explanation of the difference between algorithms, programs, and informal instructions (Achieved/ Merit/ Excellence)

    

    These are maximums, not targets!

    Note that if you go over 4 pages for Algorithms, then you may have to use fewer pages for one of the other two topics, which could be problematic. No other material should be included for Algorithms.

  
    This is a guide for students attempting Human Computer Interaction in digital technologies achievement standard 1.44 (AS91074).

    In order to fully cover the standard, you will also need to have done projects covering the topics of Algorithms and Programming Languages, and included these in your report.

    17.7.1. OVERVIEW

    Human Computer Interaction has the following bullet points in achievement standard 1.44, which this guide covers.

    Achieved: “describing the role of a user interface and factors that contribute to its usability”

    Merit: “explaining how different factors of a user interface contribute to its usability”

    Excellence: “discussing how different factors of a user interface contribute to its usability by comparing and contrasting related interfaces”

    As with all externally assessed reports, you should base your explanations around personalised examples.

    17.7.2. READING FROM THE COMPUTER SCIENCE FIELD GUIDE

    You should read and work through the interactives in the following sections of the CS Field Guide in order to prepare yourself for the assessed project.

    Read all of these sections, as they give the necessary introduction of the topic

    3.1 - What’s the Big Picture?

    3.2 - Users and Tasks

    Read one (or both if you are keen) of these sections as they will give you some ideas for evaluating an interface in your project.

    3.3 - Interface Usability

    3.4 - Usability Heuristics

    17.7.3. PROJECT

    In this project, you will carry out a usability evaluation carrying out a specific task with a chosen interface. Unless you are good at seeing things from other people’s perspectives, it is best to find a helper who will carry out the task with the interface with you observing them

    17.7.3.1. CHOOSING AN INTERFACE

    The interface you choose should be one your helper is not familiar with,

    Because you will need to compare related interfaces for excellence, make sure you choose an interface for which you will also be able to find a second related interface to compare with (e.g. two different alarm clocks). The second interface should also be one you are not familiar with (otherwise you will be biased).

    Your interface should also be specific. By this we mean it should just have one obvious function. e.g. texting capabilities of a cellphone, file chooser on a computer, etc. iPhone vs Samsung Phone, or Windows vs Macintosh are too general as there are thousands of aspects to these interfaces! You would need to pick specific apps or programs within them that typically only need a few steps to complete a task.

    Some possible pairs of interfaces you could use are:

    
      	Online booking systems for two different airlines (e.g. Air NZ vs Jetstar)

      	Two different friend’s cell phones

      	Two different email clients you have never used before (don’t forget about the many webmail clients. Even signing up for webmail addresses could prove to be challenging in some cases!)

      	
        Try heating something in 2 different microwaves. Cheap microwaves are notorious for being inconsistent and illogical to use. [Note that running a microwave with nothing in it will damage it! You would be best to put something inside it while you are experimenting with its interface. Water in a microwave safe glass is fine]

      

      	Find a couple of apps/ programs/ for setting an alarm (many exist). You could choose ones that go on a phone or on your computer, or one of each. A physical alarm clock would be good.

      	Two different drawing programs you have never used before

    

    Note that an interface you designed yourself is unsuitable because you will know how it works in great detail.

    17.7.3.2. CHOOSING A TASK WITH THE INTERFACE

    Once you have chosen an interface, you need to think of one or two common tasks that are carried out with your chosen interface. The tasks should be specific. Some tasks (depending on the interfaces you chose) could be:

    
      	Setting an alarm that will ring at 4:25am tomorrow to catch an early flight (or for a more sophisticated interface, at 7:25am on Monday, Tuesday, Wednesday, and Friday i.e. all weekdays except Thursday)

      	Sending a text to a friend that says “What are you doing at 3pm today? :-)” [Symbols are good to include in the message]

      	Changing a phone background to a photo you found online

      	Heating some food or water in a microwave for 1 minute, 20 seconds

      	Booking the cheapest flight that will arrive before 11 AM in Auckland from Christchurch, on the next Saturday (stop once you get to the part that asks for payment details!)

      	Draw a smiley face with a drawing program. Put your name below the smiley face.

    

    17.7.3.3. WRITING YOUR REPORT

    In order to satisfy the requirements of the standard, you should do the following and include all your answers in your report. A photos and screenshots of your interface and various aspects of it are useful to include.

    
      Achieved
    

    What is the purpose of the interface(s) you have chosen? How will they help the user achieve their task?

    
      Achieved/ Merit (Note that this is needed for achieved, but should also cover merit)
    

    Try carrying out your chosen task with one of the interfaces, or observe a helper carrying out the task. Take notes of every time you or your helper are confused, select an incorrect option (or menu), something happens you didn’t expect (no matter how minor it is), something happens that wastes time, etc. (there is some more detail on doing this here: http://www.cs4fn.org/usability/cogwalkthrough.php)

    Think back to sections 3.3 and/or 3.4 of the book. Explain the characteristics of the interface that caused the problems you identified. Which characteristics of the interface made it easy for the user to figure out how to carry out the task?

    Be sure to briefly describe the context of each characteristic (e.g. what was the user trying to accomplish at the time? What were they expecting to see happen)? You should explain 2 or 3 characteristics (2 is fine if you are attempting excellence, as you will have 4 characteristics between the 2 interfaces which is enough!).

    
      Excellence
    

    Carry out the chosen task with the second interface, and do the same as you did for Achieved/Merit with it (consider similar characteristics to before, and focus on seeing if the second interface has similar issues to the first interface). What was different between the two interfaces? Which interface did you (or your helper) prefer using? Why? If you were designing an interface that could be used for the same task, which ideas would you take from each interface?

    17.7.4. HINTS FOR SUCCESS

    
      	Be careful to talk about interface usability rather than just features. For example, a cell phone might have a fancy camera able to take very high resolution photos (a feature), but what we’re interested in is how easy it actually is for somebody to take a photo with the camera (a usability factor), especially how easy it is to go from having the phone in your pocket to getting the photo, or from taking the photo to sharing or printing it.

      	If your helper struggles to complete the task with the interface, it is likely to be because the interface was not designed well for them. This gives you great material for your project - look for the reasons they had trouble and don’t blame them, as it isn’t their fault.

      	Choose an interface that you or your helper rarely/ never use, otherwise you may be blind to usability issues because you’ve got used to working with them!

      	Don’t evaluate an interface you designed yourself. As we said in the book, the designer knows the interface really well, and is the worst person to evaluate it!

      	The page limit given by NZQA for the length of your report includes your work on algorithms and programming languages. The limit provides enough space to write an excellent report, but to avoid blowing out the page length:

      	Try to keep photos/ screenshots large enough to see, but not so large they take up needless amounts of space.

      	If you write concisely and clearly, you may be able to cover all the requirements with a page or less of writing (excluding pictures). This is fine, and in fact desirable for the marker as long as you have covered all the requirements.

    

    17.7.5. RECOMMENDED NUMBER OF PAGES

    Within the 3 pages we recommend for Human Computer Interaction, you should include a few images of your interface, and some explanations of the usability factors. For the project outlined above, a possible breakdown is:

    
      	½ page of text introducing the topic, your chosen interface, and chosen tasks. (Achieved)

      	½ page of text explaining the usability factors identified in the first observation. (Achieved/Merit)

      	½ page of text explaining usability factors identified in the second observation (Excellence)

      	½ page of text discussing comparing the two interfaces (Excellence)

      	Up to 1 page worth of images (mixed with the above); ensure they are shrunk down enough that they are legible but not wasting space. You may decided instead to do a little more writing and include a fewer images.

    

    These are maximums, not targets!

    The key to this topic is writing succinctly. Be careful to not ramble. You might not be able to include everything you wanted to; this is okay. Just prioritise and focus on the most interesting 2 or 3 issues for each interface.

    Note that if you go over 3 or 4 pages for Human Computer Interaction, then you may have to use fewer pages for one of the other two topics, which could be problematic.

    No other material should be included for Human Computer Interaction. For example, don’t include a list of heuristics explaining each one, or a list of general usability factors. You should only describe factors that directly relate to your chosen user interfaces.

  
    This is a guide for students writing about the topic of Programming Languages in Digital Technologies achievement standard 1.44 (AS91074).

    In order to fully cover the standard, you will also need to have done projects covering the topics of Algorithms and Human Computer Interaction, and included these in your report.

    17.8.1. OVERVIEW

    Programming Languages has the following bullet points in achievement standard 1.44, which this guide covers. Note that merit is split into two bullet points.

    Achieved: “describing the role and characteristics of programming languages, including the different roles and characteristics of high level languages and low level (or machine) languages, and the function of a compiler”

    Merit: “explaining how the characteristics of programming languages, including the different characteristics of high level and low level (or machine) languages, are important for their roles”

    Merit: “explaining the need for programs to translate between high and low level languages”

    Excellence: “comparing and contrasting high level and low level (or machine) languages, and explaining different ways in which programs in a high level programming language are translated into a machine language

    As with all externally assessed reports, you should base your explanations around personalised examples.

    17.8.2. READING FROM THE COMPUTER SCIENCE FIELD GUIDE

    You should read and work through the interactives and activities in the following sections of the CS Field Guide in order to prepare yourself for the assessed project.

    4.1 - What’s the Big Picture? (and an introduction to what programming is, intended for those of you with limited programming experience)

    4.2 - Machine Code (Low Level Languages)

    4.3 - A Babel of Programming Languages (High Level Languages)

    4.4 - How does the Computer Process your Program? (Compilers and Interpreters)

    Note that you don’t need to read about all the programming languages in 4.3. It is important that you actually do the activities in 4.2 (and 4.1 if you don’t know much about programming).

    17.8.3. PROJECT

    This project consists of two main components. The first involves making a couple of examples

    17.8.3.1. MAKING EXAMPLES FOR YOUR REPORT

    You will need two examples of programs to include in your report; one that is in a high level language and one that is in a low level language. For the high level language example, you should use a program you wrote yourself, or make a small modification of a high level language program from the field guide

    Include your program examples in your report as either screenshots or plain text. Note that the Hints for Success section has some advice on displaying code in a report.

    Briefly explain what each of the programs does (ideally you should have run them). e.g. does it add numbers, or does it print some output?. You do not need to explain how it does it (i.e. no need to explain what each statement in the program does). What output do your programs give? The purpose of this is to show the marker that you do know what your example does.

    17.8.3.2. HIGH AND LOW LEVEL LANGUAGES (ACHIEVED/MERIT/ EXCELLENCE)

    What is the main difference(s) you see between the high level language and the low level language? Why would a human not want to program in the language shown in your low level programming language example? What made modifying the low level programs in section 4.2 of the field guide challenging? Given that a human probably doesn’t want to program in a low level language, why do we need low level programming languages at all? What is their purpose?

    When you wrote your high level program (or modified an existing program), what features of the language made this easier compared to when you attempted to modify a low level program? Why are there many different high level programming languages?

    In order to make your answers really clear, you might like to quote a few lines of your code examples which illustrate the points you make (e.g. some code that is cryptic and some code that you can tell easily what it does).

    17.8.3.3. COMPILERS AND INTERPRETERS (ACHIEVED/MERIT/ EXCELLENCE)

    If you have a compiler for the language your high level program example is written in, how would you use it to allow the computer to run your program? (Even if your language is an interpreted one, such as Python, just explain what would happen if you had a compiler for it, as technically a compiler could be written for any language).

    If you have access to a compiler, you could explain how you have to use it, and show an example of its output (the compiled program)

    What about an interpreter? How does the interpreter’s function differ from a compiler in the way interpreted programs and compiled programs are run? Which is mostly used?

    Here are some more ideas for comparing compilers and interpreters: One way to consider the difference is to explain what happens if a program is transferred from one computer to another. Does it still run on the other computer? Does someone else need the same compiler or interpreter to run your software? Can you type in each line of a program and have it executed as you type it, or does the whole program have to be available before it can be run?

    17.8.4. HINTS FOR SUCCESS

    
      	You should easily be able to explain the concepts in half to one page of writing (in addition to the program examples). Any more than this is probably unnecessary.

      	Don’t use large programs in the examples. Keep it to 5 to 10 lines (slightly fewer is okay!) for the high level program, and a bit more for the low level program. A good trick for displaying the low level program without wasting space is to use 2 columns, because the low level language statements are so short ( you could remove the comments in the code). If using a screenshot, get 2 screenshots with roughly half the program each and put them side by side, and if using text directly in report, just format it to 2 columns.

      	If displaying the program examples as plain text in your report, then make the font size smaller for the code to try and prevent lines splitting (8pt or 9pt should be fine, as long as your explanations in the rest of your report are using the font size that NZQA requires!) Preferably use a fixed width font for program code as a variable width font can mess up the layout.

      	If displaying the program examples as screenshots and the editor background is darker than the text colour, invert the colours using an image editor so as to make it easier to read on paper, and not waste black ink/toner!

      	Paraphrasing definitions of high level languages, low level languages, compilers, and interpreters from Wikipedia or another site is not satisfactory for the standard. The marker needs to see what you understand, not what Wikipedia understands! You can show your understanding by explaining the ideas using your own examples.

    

    17.8.5. RECOMMENDED NUMBER OF PAGES

    Within the 2 pages we recommend using for programming languages, a possible breakdown is:

    
      	½ page: Example of low level program

      	
        ½ page: Example of high level program

      

      	½ page: High Level and Low Level languages discussion

      	½ page: Compilers and Interpreters discussion

    

    These are maximums, not targets!

    Note that if you go over 2 pages for Programming Languages, then you may have to use fewer pages for one of the other two topics, which could be problematic. No other material should be included for Programming Languages

  
    This document provides a brief introduction to teachers on the Computer Science Field Guide assessment guides for NCEA Achievement standard AS91371 (2.44).

    17.9.1. TOPICS

    2.44 has bullet points for the following topics in computer science.

    
      	Representing Data using Bits

      	Encoding (split into 3 sub topics) - Compression - Error Control Coding - Encryption

      	Human Computer Interaction (different to 1.44)

    

    Each of these topics has a chapter in the Computer Science Field Guide, which this assessment guide is based on.

    There are multiple assessment guides for representing data and the encoding topics, of which students need to do a subset. The following explanations outline what students should cover.

    Note that the topics can be covered independently, although using a common context for all or most of them (such as considering an mp3 player or photo display that represents data using bits, uses encoding and has an interface that can be evaluated) can make personalisation easier.

    17.9.1.1. REPRESENTING DATA USING BITS

    Students should choose at least two data types and cover the “ways in which different types of data can be represented using bits” in order to get achieved, and they should choose at least two different representations for each of their chosen data types for the merit level. (While two representations of two types is sufficient to meet the exact requirements of the standard, it needn’t take a lot of space to go a little beyond this, and this can be more convincing for showing student understanding compared with doing the bare minimum.) The following table shows common types of data that students could choose (they should choose two rows from the table to meet the achieved requirement). For merit they should should choose an alternative representation with a different number of bits; examples are shown in the “Merit” column.

    Data Type | Achieved | Merit |

| sliderBinary Numbers (Whole numbers)slider | sliderPositive numbersslider | sliderNegative numbers (simple sign bit) or Floating pointslider or Twos complement |

| sliderCharacters/ Textslider | sliderASCIIslider | sliderUnicodeslider |

| sliderImages/ Coloursslider | slider24 bit colourslider | sliderColour with fewer bitsslider |

| sliderSoundslider | WAV file representation (16 bit, 44KHz) | Higher or lower quality sound (24 bit, 8 bit) and/or different sample rates |

    Note that data types and representations currently covered in the field guide are in italics. Binary numbers is a prerequisite for colours, and are recommended for all students. Students who struggle with binary numbers should just aim to represent a few numbers in binary (e.g. their age, birthday, etc) and then move onto representing text.

    In general, we recommend choosing binary numbers for all projects.

    If students are using a common device as an example, chances are they won’t be able to find out how it represents data, but they could say how they would represent the data if they had to write the program that is running on the device e.g. how they might store the name of a song, a date, the length of a file, the number of tracks etc. These will typically have minimum and maximum values that will dictate the number of bits needed to store them.

    This topic does not have excellence requirements.

    17.9.1.2. ENCODING

    For the standard, students need to describe each of the three encoding topics in order to get achieved, and do a more in-depth project on one in order to get merit or excellence.

    Students should choose do projects that cover one of the following selections (i.e. just the shaded entries).

    | Compression | Error Control Coding | Encryption |

| Achieved | Achieved | Achieved |

| Merit | Merit | Merit |

| Excellence | Excellence | Excellence |

    OR

    | Compression | Error Control Coding | Encryption |

| Achieved | Achieved | Achieved |

| Merit | Merit | Merit |

| Excellence | Excellence | Excellence |

    OR

    | Compression | Error Control Coding | Encryption |

| Achieved | Achieved | Achieved |

| Merit | Merit | Merit |

| Excellence | Excellence | Excellence |

    Note that some assessment guides provide projects that cover only achieved, and others go to excellence. For topics that students are only covering to achieved, they can either follow an achieved guide, or the achieved component of an excellence guide.

    At the excellence level students are required to evaluate “a widely used system for compression coding, error control coding, or encryption”. The guides discuss some widely used systems, but the thing to note is that only one system need be considered (e.g. JPEG is a widely used compression system, so evaluating JPEG would be sufficient; an alternative would be checksums used in bar codes). The evaluation would need to involve a comparison with not using the system, so for JPEG it might be with a RAW or BMP file; for bar codes, it would be to consider what would be different if a check digit isn’t used.

    One issue to be aware of is that the data representation section includes reducing the number of bits (the “bit depth”) for images and sound to reduce the space that they take. This overlaps with the idea of compression, but is should not be used for the compression part of the standards, as it’s a very crude way to reduce file size, but not generally regarded as a compression method that takes advantage of the content of a file to make it smaller. For example, students could use examples of images with 16-bit and 24 colour to illustrate two representations of a type of data for data representation, but they should use an image compression method like JPEG, GIF and PNG to illustrate compressing image files.

    Another issue is that hexadecimal is not a good example for students to use as a different representation of data, as it is simply a shorthand for binary. Writing a number as 01111010 (binary) or 7A (hexadecimal) represents exactly the same bits stored on a computer with exactly the same meaning; the latter is easier for humans to read and write, but both are 8-bit representations that have the same range of values. It is a useful shorthand, but shouldn’t be used as a second representation for a type of data, or as a different type of data.

    17.9.1.3. HUMAN COMPUTER INTERACTION

    Human Computer Interaction is straightforward, and we provide one 2.44 guide for it. Note that the requirements for 2.44 HCI are different to 1.44 HCI.

    17.9.2. ORDER OF TOPICS

    The three topics can be completed in any order, although encoding is best covered after representing data.

    It may be a good idea to cover Human Computer Interaction (HCI) first, as students should already have some familiarity with it if they did 1.44, and it can help if they are able to start work on it early, then work on the other topics, and come back to HCI once they’ve had a while to reflect on the issues.

    17.9.3. PERSONALISATION AND STUDENT VOICE

    It is important that students use personalised examples to base their explanations around, and that the explanations are in their own words, and based on their example (rather than being a paraphrase from wikipedia, for example).

    Personalised means that the student’s example is different to their classmates. For example, they may represent their age or name using bits, carry out the parity trick (error control coding) with a friend choosing random combinations and take photos, and they may carry out their own usability exploration of a device they chose, and report on it in their own words.

    17.9.4. REPORT LENGTH

    It is important to note that the page limit given by NZQA is not a target. The markers prefer reports that are short and to the point.

    A possible breakdown is:

    
      	Representing Data using Bits: 2 pages (1 per data type)

      	Encoding: 5 pages (1 for each achieved project and 3 for the achieved/ merit/ excellence project)

      	Human Computer Interaction: 3 pages

    

    The assessment guides provide further guidance on how to stay within these limits. With 2.44, it is particularly important to try and keep each individual project in the report within the recommended limit, as space is tighter than for 1.44 and 3.44.

    Some hints to reduce total length

    
      	Only include what is relevant to the standard. While covering additional material in class is valuable for learning, additional content that doesn’t demonstrate understanding of the topics in the standard is only a distraction in the report.

      	Resize screenshots and photos so that they are still readable, although don’t take up unnecessary space. Use cropping to show the relevant parts of the image.

      	Don’t leave unnecessary spaces in the report. It both looks untidy and makes it more difficult for the marker to find what they are looking for.

    

  
    This is a guide for students attempting Representing Data using Bits in digital technologies achievement standard 1.44 (AS91074). You will need to cover twodifferent types of data to meet the requirements of the standard (each assessment guide only covers one).

    In order to fully cover the standard, you will also need to have done one more project for representing data using bits and projects covering the topics of Encodingand Human Computer Interaction, and included these in your report.

    17.10.1. OVERVIEW

    The topic of representing data using bits has the following bullet points in achievement standard 1.44, which this guide covers. Note that there is no excellence criteria for this topic. This assessment guide only covers one of the two types of data required for achieved.

    Achieved: “describing ways in which different types of data can be represented using bits”

    Merit: “comparing and contrasting different ways in which different types of data can be represented using bits and discussing the implications”

    As with all externally assessed reports, you should base your explanations around personalised examples.

    17.10.2. READING FROM THE COMPUTER SCIENCE FIELD GUIDE

    You should read and work through the interactives in the following sections of the CS Field Guide in order to prepare yourself for the assessed project.

    Read all of these sections, as they give the necessary introduction of the topic

    5.1 - What’s the Big Picture? (General information about bits)

    5.4 - Representing numbers with bits (Relevant to the achieved criteria)

    5.8 - Computers representing numbers in practice (Relevant to the merit criteria)

    17.10.3. PROJECT

    17.10.3.1. WRITING YOUR REPORT

    
      Achieved
    

    For Achieved, you need to demonstrate that you know how to convert decimal numbers (convention notation with 10 digits) into binary numbers. You can use a tool to help you do this, although you need to be able to describe how the answer was derived. You should show the binary representation for at least three numbers. Some ideas of numbers you could use are:

    
      	Your street number

      	The day and month of your date of birth

      	Your age

      	The age(s) of your sibling(s)

    

    Some more challenging ones if you are keen:

    
      	Your year of birth (e.g. 2002)

      	The population of a city or country

      	The distance between some cities (e.g. airline flight distances)

    

    Briefly describe how a number is converted to binary.

    
      Merit
    

    The material about representing numbers in practice may be challenging, so don’t worry if you need to read over it a couple of times!

    Think of a few different examples for different sized integers (both signed and unsigned ones) of a piece of data that you could store in that sized integer. For example, the age of a person could be stored in an 8 bit unsigned integer (people can’t be a negative age!), and the number of students in your school could be stored in an 8 bit or 16 bit integer, depending on how big your school is. Try to include examples of signed and unsigned integers, and of at least two different integer sizes. This means you will need at least three examples.

    The field guide gives some other examples (e.g. programming languages and IP addresses) that are affected by the number of bits used to represent a number.

    What are the consequences of making a wrong decision about how many bits to use to represent a number? In practice, how much of an issue is each of the consequences? Relate your answer to your examples above.

    Optional extra: Give an example of a situation where a 32 bit integer would not be suitable. What do we do in practice to address this problem?

    17.10.4. HINTS FOR SUCCESS

    
      	Remember that this part of the standard only goes up to the merit level. While you need to do some evaluation for merit, you should be mindful that the other topics go up to the excellence level, so they should make up the bulk of your in-depth discussions.

      	Remember to do a second project on a different type of data for the merit level.

      	Be careful to use personalised examples (i.e. represent different numbers to your classmates). It may be a good idea to pick a larger number (e.g. in the millions) to minimise the chance of it being the same as others.

    

    17.10.5. RECOMMENDED NUMBER OF PAGES

    We recommend that this project does not take up more than 1 page. Examples should be small, and discussions should be short and to the point, keeping in mind that there is no excellence criteria for this topic.

  
    This is a guide for students attempting Representing Data using Bits in digital technologies achievement standard 1.44 (AS91074). You will need to cover twodifferent types of data to meet the requirements of the standard (each assessment guide only covers one). See the introduction for the 2.44 guides for more details on choosing topics; this guide covers the “characters/text” type of data.

    In order to fully cover the standard, you will also need to have done one more project for representing data using bits and projects covering the topics of Encodingand Human Computer Interaction, and included these in your report.

    17.11.1. OVERVIEW

    The topic of representing data using bits has the following bullet points in achievement standard 1.44, which this guide covers. Note that there is no excellence criteria for this topic. This assessment guide only covers one of the two types of data required for achieved.

    Achieved: “describing ways in which different types of data can be represented using bits”

    Merit: “comparing and contrasting different ways in which different types of data can be represented using bits and discussing the implications”

    As with all externally assessed reports, you should base your explanations around personalised examples.

    17.11.2. READING FROM THE COMPUTER SCIENCE FIELD GUIDE

    You should read and work through the interactives in the following sections of the CS Field Guide in order to prepare yourself for the assessed project.

    Read all of these sections, as they give the necessary introduction of the topic

    5.1 - What’s the Big Picture? (General information about bits)

    5.2 - Getting Started

    5.3 - Representing text with bits

    5.7 - General representations of text (Required for Merit)

    17.11.3. PROJECT

    17.11.3.1. WRITING YOUR REPORT

    
      Achieved
    

    For Achieved, you need to demonstrate that you know how to convert characters into binary numbers. ASCII, which uses 8-bit codes, is a simple system to explore for this. You should show the binary representation for a few characters; the easiest way to do this is to show the ASCII code for your name.

    Briefly describe the relationship between characters and their ASCII code. A few sentences is fine.

    
      Merit
    

    The most common longer code for characters is Unicode, which actually covers multiple lengths of representations. You could show a conversion to Unicode for the characters in your name, but to contrast the power of Unicode, it’s ideal to show the representation of some characters that wouldn’t be possible in ASCII e.g. choose a Chinese (Simplified Chinese) or Japanese (Kanji) name for a city and explain how the characters would be represented. Discuss why more bits are needed for these character sets.

    Use your example to discuss the tradeoffs that are made by using a 16-bit character representation, and to explain the limitations of the ASCII code.

    You could also use the 5-bit Baudot code to contrast different representations of text, and again explain the tradeoffs between this and either ASCII or Unicode.

    17.11.4. HINTS FOR SUCCESS

    
      	Remember that this part of the standard only goes up to the merit level. While you need to do some evaluation for merit, you should be mindful that the other topics go up to the excellence level, so they should make up the bulk of your in-depth discussions.

      	Remember to do a second project on a different type of data for the merit level.

      	Be careful to use personalised examples (i.e. represent words that are personal to you such as your name or street name).

    

    17.11.5. RECOMMENDED NUMBER OF PAGES

    We recommend that this project does not take up more than 1 page. Examples should be small, and discussions should be short and to the point, keeping in mind that there is no excellence criteria for this topic.

  
    This is a guide for students attempting Representing Data using Bits in digital technologies achievement standard 1.44 (AS91074). You will need to cover twodifferent types of data to meet the requirements of the standard (each assessment guide only covers one). See the introduction for the 2.44 guides for more details on choosing topics; this guide covers the “images/colour” type of data.

    In order to fully cover the standard, you will also need to have done one more project for representing data using bits and projects covering the topics of Encodingand Human Computer Interaction, and included these in your report.

    17.12.1. OVERVIEW

    The topic of representing data using bits has the following bullet points in achievement standard 1.44, which this guide covers. Note that there is no excellence criteria for this topic. This assessment guide only covers one of the two types of data required for achieved.

    Achieved: “describing ways in which different types of data

    Merit: “comparing and contrasting different ways in which different types of data can be represented using bits and discussing the implications”

    As with all externally assessed reports, you should base your explanations around personalised examples.

    17.12.2. READING FROM THE COMPUTER SCIENCE FIELD GUIDE

    You should read and work through the interactives in the following sections of the CS Field Guide in order to prepare yourself for the assessed project.

    Read all of these sections, as they give the necessary introduction of the topic

    5.1 - What’s the Big Picture? (General information about bits)

    5.4 - Representing Numbers With Bits (Relevant to the achieved criteria)

    5.6 - Representing Images With Bits (Relevant to the achieved criteria)

    5.6.1 - Representing High Quality Images Using Bits (Relevant to the achieved criteria)

    5.6.3 - Representing colours using fewer bits (Relevant to the merit criteria)

    17.12.3. PROJECT

    17.12.3.1. WRITING YOUR REPORT

    
      Achieved
    

    Using the colour matcher (note that it is at the start of section 5.6.3), choose a colour you like by clicking on the image. Try and match up the 24 bit colour hexagon to be the same colour as your selected colour. Don’t worry about the 8 bit hexagon yet. If you have trouble, the interactive will help you.

    Once you have matched up the colour, make a screenshot of the colour matcher which you can include in your report.

    You should now have 3 numbers; one for each of red, green, and blue. Convert each of these numbers into 8 bit binary numbers. These 3 numbers put together make up the 24 bit number that represents your colour. Show your working in your report, and explain how you arrived at your answer.

    
      Merit
    

    For merit, you need to show what happens when fewer bits are used to represent each colour in an image. There are several ways you can go about this; we recommend exploring the various interactives on colour representation and experimenting with them.

    Include at least one screenshot of an interactive and your personalised example which shows what happens when fewer bits are used to represent the colours in the image.

    What is the benefit of using fewer bits? What happens to the images when fewer bits are used? Are there certain kinds of images where it matters a lot? Are there other cases where the benefits of fewer bits outweigh the downsides?

    17.12.4. HINTS FOR SUCCESS

    
      	Remember that this part of the standard only goes up to the merit level. While you need to do some evaluation for merit, you should be mindful that the other topics go up to the excellence level, so they should make up the bulk of your in depth evaluations.

      	Remember to do a second project on a different type of data

      	You may need to reread the section on representing numbers using bits if you cannot remember how to convert the numbers into binary. Additionally you could also look at the worked example for the large block of purple in the previous section.

      	Choose a colour that has at least two of the three colour components somewhere in the middle of the slider. Examples such as 0, 255, and 1 are not helpful for showing your knowledge of binary representation.

      	Make sure the screenshots are large enough to be seen, but no larger!

    

    17.12.5. RECOMMENDED NUMBER OF PAGES

    We recommend that this project does not take up more than 1 page. Examples should be small, and discussions should be short and to the point, keeping in mind that there is no excellence criteria for this topic.

  
    This is a guide for students attempting compression (one of the three encoding subtopics) in digital technologies achievement standard 2.44 (AS91371).

    Remember that you only need to do one of the three encoding topics (Compression, Encryption, and Error Control Coding) to the excellence level. The other two only need to be done to the achieved level. This guide is suitable for both doing compression to the excellence level, but can also be used for the achieved level for compression.

    In order to fully cover the standard, you will also need to have done projects covering the topics of encryption and error control coding to at least the achieved level, and projects covering the topics of representing data using bits and human computer interaction, and include these in your report.

    17.13.1. OVERVIEW

    Encoding has the following bullet points in achievement standard 2.44 which this guide covers.

    Achieved: “describing the concept of encoding information using compression coding, error control coding, and encryption; and typical uses of encoded information”

    Merit: “discussing how a widely used technology is enabled by one or more of compression coding, error control coding, and encryption”

    Excellence: “evaluating a widely used system for compression coding, error control coding, or encryption”

    As with all externally assessed reports, you should base your explanations around personalised examples.

    17.13.2. READING FROM THE COMPUTER SCIENCE FIELD GUIDE

    You should read and work through the interactives in the following sections of the CS Field Guide in order to prepare yourself for the assessed project.

    Read all of these sections, as they give the necessary introduction of the topics

    7.1 - What’s the Big Picture?

    7.2 - Run Length Encoding

    17.13.3. PROJECT

    For the achieved criteria you will show how run length encoding works to compress a simple image. For the merit and excellence criteria you will investigate how and why run length encoding is used by fax machines, and then evaluate how effective it is for this purpose. If you have chosen to focus on error control coding or encryption for merit and excellence, then you only need to meet the achieved criteria for this project.

    17.13.3.1. WRITING YOUR REPORT

    
      Achieved
    

    Make a grid of squares (any size is fine, but it should be at least 6x6) and draw a picture by filling some of the squares with black and leave others white. Underneath (or alongside each row), show how a computer could represent your image using run length encoding. You should not worry about how it is represented at the bit level. It is fine to just use normal numbers which are comma separated

    Count how many characters are needed to represent your image in its original form (i.e. how many squares does it contain?). Count how many characters were used in your run length encoding representation. Don’t forget to include the commas! How well did run length encoding compress your image?

    Explain why you would want to use run length encoding on an image. Think about a more typical image, such as a scan of a page of writing - what sort of runs of black and white pixels will that have? What is the purpose of compression?

    
      Merit/ Excellence
    

    As discussed in the field guide, fax machines use run length encoding. What advantages does this provide to fax machines sending and receiving faxes?

    Is run length encoding guaranteed to always make the amount of data needed to represent the image smaller? Try and come up with an example (to include in your report) where the amount of space required to store your image with run length encoding is more than the original representation. What about an example where it is a very small amount of data? You can use the following interactive (written by Hannah Taylor, a digital technologies teacher) to help you experiment and to quickly generate examples.

    
      
      http://taylormade.io/run-length-encoding.html
    

    You should have found that in some cases the compression is really good, and in others it makes things worse! You might remember from the book that it is impossible to design a lossless text compression method that makes every possible input smaller. What matters though is how good the compression is for its intended application. What would you expect a typical fax message to look like? (You might like to include an example, although shrink the image down so that it is less than ¼ of the page tall.)

    17.13.4. HINTS FOR SUCCESS

    
      	
        When you make your image for the achieved level, make it a real image rather than a grid containing random black and white squares.

      

      	
        Put compression in its own section (your report should have suitable headings and subheadings for each topic to make it clear for the marker) and ensure that you briefly introduce the topic. It is important that your report clearly demonstrates that you know the difference between encryption, error control coding, and compression, and what their different purposes are.

      

      	
        If you did compression only to the achieved level, half to one page should be enough. If you did merit and excellence, a couple of pages should be enough (shrink down the examples as much as is reasonable, particularly if you included a lot of them)

      

      	While you could potentially go into the details of how the computer represents the compressed image at the bit level, this is not necessary. The purpose of the encoding topic in 2.44 is for you to investigate the general ideas of how encoding works rather than the precise details of the representation with bits (simpler representations with bits are already covered in the first bullet point of the standard).

    

  
    This is a guide for students attempting encryption (one of the three encoding subtopics) in digital technologies achievement standard 2.44 (AS91371).

    Remember that you only need to do one of the three encoding topics (Compression, Encryption, or Error Control Coding) to the excellence level. The other two only need to be done to the achieved level. This guide is suitable for both doing encryption to the excellence level, but can also be used for the achieved level for encryption.

    In order to fully cover the standard, you will also need to have done projects covering the topics of error control coding and compression to at least the achieved level, and projects covering the topics of representing data using bits and human computer interaction, and included these in your report.

    17.14.1. OVERVIEW

    Encoding has the following bullet points in achievement standard 2.44 which this guide covers.

    Achieved: “describing the concept of encoding information using compression coding, error control coding, and encryption; and typical uses of encoded information”

    Merit: “discussing how a widely used technology is enabled by one or more of compression coding, error control coding, and encryption”

    Excellence: “evaluating a widely used system for compression coding, error control coding, or encryption”

    As with all externally assessed reports, you should base your explanations around personalised examples.

    17.14.2. READING FROM THE COMPUTER SCIENCE FIELD GUIDE

    You should read and work through the activities in the following sections of the CS Field Guide in order to prepare yourself for the assessed project.

    Read all of these sections, as they give the necessary introduction of the topics

    8.1 - What’s the Big Picture?

    8.2 - Substitution Ciphers

    8.3 - Problems with Substitution Ciphers (Needed only for Merit/ Excellence)

    8.4 - Public Key Cryptosystems (Needed only for Merit/ Excellence)

    8.5 - The RSA Cryptosystem

    Note that for this project, reading the field guide material thoroughly and doing all the activities is particularly important in order to understand and do a good project at the merit/ excellence level.

    17.14.3. PROJECT

    For the achieved criteria you will show an example of the Caeser cipher and describe how by using a key, plaintext can be converted to ciphertext, and then theciphertext can be converted back to plaintext by anybody who has the key.

    For the merit and excellence criteria, you will show an example of the RSA cryptosystem, describing how its differences to Caesar cipher allow it to be used in practice, and then you will show the kinds of attacks and limitations that make the Caesar cipher unsuitable in practice, and discuss whether or not similar limitations exist in RSA.

    17.14.3.1. WRITING YOUR REPORT

    
      Achieved
    

    Do the following to make an example to include in your report.

    
      	Write a short sentence that you could send to a classmate (must be appropriate to include in your report). This message is your plain text.

      	Choose a number between 1 and 25 that will be your encryption key.

      	Make a conversion table that shows how each letter in your plain text should be changed using your key.

      	Encrypt your plain text message using your chosen key in order to obtain your ciphertext.

    

    Include your plain text, key, conversion table, and ciphertext in your report. Be sure to clearly label each of these four parts of your example using the correct terminology. What will your classmate need to decrypt the message?

    Why is encryption so important in computer science? (assuming the cipher is one that is a lot more difficult to break than Caesar cipher!)

    
      Merit/ Excellence
    

    Generate a pair of RSA keys using the field guide interactive, and encrypt a message with the public key using the other field guide interactive. Then, show how it can be decrypted with the private key. Include the keys, plaintext, ciphertext, and a brief explanation of how public key cryptosystems such as RSA are used, and why they are so useful.

    What kinds of systems in the world depend on RSA being able to resist attacks? What kinds of things would happen if somebody came up with a good way of breaking RSA?

    In order to do a good evaluation of RSA cryptosystems, you will need to show why particular attacks will not work, and how some potential issues are addressed. Some of this will involve comparing to Caesar cipher. Show personalised examples of the following (come up with your own messages, don’t just copy the field guide ones!) Remember that the interactives in the field guide will help you to generate personalised examples.

    
      	Caesar cipher vs RSA on messages that are very similar (show an example for both algorithms so you can compare them)

      	The use of random padding in order to ensure that even if the same plaintext is encrypted more than once with the same public key, the ciphertext for each occurrence is different.

      	How long a typical sized RSA key might take to break (make sensible assumptions about the number of bits in the key, the number of computers able to work on breaking it, computer speed, etc). Make sure you discuss the implications, and how much (or little) slightly modifying your assumptions would change the overall conclusion.

    

    For each of your examples, explain why the issue is very important to address (what kinds of attacks could be carried out if the issue had been overlooked?)

    RSA isn’t perfect, and there are a few ways to potentially break it which you should have read about in the field guide. What is at least one of these problems? How is it addressed? Is this solution guaranteed to always work?

    Discuss what you have found from this evaluation: is RSA a good cryptosystem?

    17.14.4. HINTS FOR SUCCESS

    
      	Display your examples using the standard font size.

      	Put encryption in its own section (your report should have suitable headings and subheadings for each topic to make it clear for the marker) and ensure that you briefly introduce the topic. It is important that your report clearly demonstrates that you know the difference between encryption, error control coding, and compression, and what their different purposes are.

      	You should be able to discuss this material, with examples, in about 2 or 3 pages of your report.

    

  
    This is a guide for students attempting error control coding (one of the three encoding subtopics) in digital technologies achievement standard 2.44 (AS91371).

    Remember that you only need to do one of the three encoding topics (Compression, Encryption, or Error Control Coding) to the excellence level. The other two only need to be done to the achieved level. This guide is suitable for both doing error control coding to the excellence level, but can also be used for the achieved level for error control coding.

    In order to fully cover the standard, you will also need to have done projects covering the topics of encryption and compression to at least the achieved level, and projects covering the topics of representing data using bits and human computer interaction, and included these in your report.

    17.15.1. OVERVIEW

    Encoding has the following bullet points in achievement standard 2.44 which this guide covers.

    Achieved: “describing the concept of encoding information using compression coding, error control coding, and encryption; and typical uses of encoded information”

    Merit: “discussing how a widely used technology is enabled by one or more of compression coding, error control coding, and encryption”

    Excellence: “evaluating a widely used system for compression coding, error control coding, or encryption”

    As with all externally assessed reports, you should base your explanations around personalised examples.

    17.15.2. READING FROM THE COMPUTER SCIENCE FIELD GUIDE

    You should read and work through the interactives in the following sections of the CS Field Guide in order to prepare yourself for the assessed project.

    Read all of these sections, as they give the necessary introduction of the topics

    9.1 - What’s the Big Picture?

    9.3 - Check digits on barcodes and other numbers

    17.15.3. PROJECT

    For the achieved criteria you will show how the barcode on a product you chose has a check digit which helps to ensure that when a shop assistant scans or enters the number into a computer, that the computer is able to notify them if it was entered incorrectly. For the merit and excellence criteria, you will explain why this is so important, and evaluate how effective it is.

    17.15.3.1. WRITING YOUR REPORT

    
      Achieved
    

    Find some products with barcodes on them, and the checker will tell you whether or not it is a correct barcode. Try a few others. Does it ever seem to say a number was wrong? Now try change one digit in a barcode. Does it ever still say the barcode is correct? Choose one product to take a photo of the barcode, and describe how the last digit is a check digit that ensures the number was entered correctly (it’s a good idea to include the calculation that was used to calculate the check digit’s value). Show that when you enter the number into the barcode and change one of the digits, the last digit is no longer correct.

    Explain why you would want to use a check digit on a barcode. What is the purpose of error control coding?

    
      Merit/ Excellence
    

    What could be some of the implications of a number being entered incorrectly, and this not being detected? What kinds of things could happen to the shop?

    Think of what some of the common errors could be if somebody was manually entering the number into a computer. What mistakes are easy to make? (clue: missing a digit or swapping 2 adjacent digits are common mistakes, however there are others as well). Also think about what could cause errors if a scanner was being used to read the barcode.

    Using the barcodes you found earlier, replicate some of the common errors that would occur when a person manually enters the number into the computer by entering the mistakes into the checker. Try lots of variations of the errors, and see if the errors are always detected. Which errors always seem to be detected? Which do not? Discuss whether or not the check digits decrease the chances of errors, particularly common ones. Do you think that sometimes mistakes do go undetected? Remember that really obscure errors (such as getting 3 digits in a row incorrect) will probably never occur in practice, and the intention of the check digit is to pick up small mistakes.

    Your discussion should include a few examples of common errors you tried replicating (use screenshots), and whether or not the check digit was able to detect them.

    17.15.4. HINTS FOR SUCCESS

    
      	Put error control coding in its own section (your report should have suitable headings and subheadings for each topic to make it clear for the marker) and ensure that you briefly introduce the topic. It is important that your report clearly demonstrates that you know the difference between encryption, error control coding, and compression, and what their different purposes are.

      	Be sure to shrink down examples so they do not take up too much space. A barcode only needs to be big enough for the numbers to be readable; it does not need to take up half a page!

      	For merit, you should not just paraphrase information. You need to use your own thinking to generate some of the answers, as your own experiences should enable you to come up with a lot of the answers. As an example, you should already know that if you bought something from the shop, and the scanner read the barcode wrong, and you were charged twice as much, you would not be happy about it! The implications of not having the technology are an important part of the discussion — what would happen if these systems weren’t used?

      	For excellence, don’t simply discuss whether or not the algorithm is good without examples. You must have examples so that your work is personalised. Show some of the errors and whether or not they generate the correct check digit. If you find examples with simple common errors where the error did give the correct check digit, this is really good to show.

      	You should be able to discuss this material, with examples, in about 2 or 3 pages of your report.

    

  
    This is a guide for students attempting Artificial Intelligence in digital technologies achievement standard 3.44. This guide is not official, although we intend for it to be helpful, and welcome any feedback.

    In order to fully cover the standard, you will also need to have done a project in one other 3.44 topic. The other project should be in either Software Engineering, Complexity and Tractability, Formal Languages, Network Protocols, or Graphics and Visual Computing.

    Note that the project in this guide focuses on using the Turing Test to evaluate Chatbots. Another guide exists which has a project that instead focusses on the actual algorithms and techniques used by Chatbots in an attempt to sound intelligent. Either of these are sufficient to cover a “key algorithm or technique” from the field of Artificial Intelligence.

    17.16.1. OVERVIEW

    You will need to complete a 3.44 project in two different areas of computer science. Each project needs to satisfy all bullet points in the standard.

    Achieved: [A1]

    Achieved: [A2] “describing examples of practical applications of selected areas to demonstrate the use of key algorithms and/or techniques from these areas“

    Merit: [M1] “explaining how key algorithms or techniques are applied in selected areas”

    Merit: [M2] “explaining examples of practical applications of selected areas to demonstrate the use of key algorithms and/or techniques from these areas”

    Excellence: [E1] “discussing examples of practical applications of selected areas to demonstrate the use of key algorithms and/or techniques from these areas”

    Excellence: [E2] “evaluating the effectiveness of algorithms, techniques, or applications from selected areas”

    The terminology in the 3.44 standard can be challenging to understand because it applies to six different areas. The following list describes how the terminology of the standard maps onto this project.

    Selected Area: Intelligent Systems (Artificial Intelligence)

    Key Problem: Determining whether or not a computer program is able to have a conversation with a human and seem like another human.

    Algorithms/ Techniques: Turing Test

    Practical Application: Using the Turing Test to evaluate if a chatbot is able to have a human-like conversation.

    In summary, to satisfy the standard you might do the following:

    
      	Describe the key problem

      	Explain how the Turing Test can be used to evaluate a chatbot

      	Explain (Describe) how you evaluated a chatbot with the Turing Test, in order to demonstrate the use of the Turing Test in Artificial Intelligence.

      	Discuss other related applications of the Turing Test

      	Evaluate how effective the Turing Test is at addressing the key problem

    

    17.16.2. READING FROM THE COMPUTER SCIENCE FIELD GUIDE

    You should read and work through the interactives in the following sections of the CS Field Guide in order to prepare yourself for the assessed project.

    10.1 - What’s the Big Picture?

    10.2 - Chatterbots and the Turing Test

    You will be doing the activity in 10.2.6 (Run your own turing test) as the main part of your project.

    17.16.3. PROJECT

    The Turing Test is used to evaluate computer programs that are attempting to have a conversation like a human. In this project, you will carry out your own Turing test with an online chatbot, and report on the process and your findings.

    17.16.3.1. CARRYING OUT THE TURING TEST

    Choose a chatbot and carry out the Turing test with the help of a classmate, as described in activity 10.2.6. Include both the conversations that were generated as a result of carrying out the Turing test in your report.

    17.16.3.2. WRITING YOUR REPORT

    
      Achieved/ Merit
    

    Briefly describe what the purpose of the Turing Test is. What problem in computer science does it address? Note that this should be at the start of your report, and written clearly (considering starting the sentence with “A key problem in Artificial Intelligence is…”), so that it is clear to the marker what problem the remainder of your report addresses.

    Explain what you did to carry out your Turing Test. Which external factors did you have to be careful of in order to ensure that the test was “fair”? Include a copy of the two conversations. Is there anything you did in your turing test that did not work very well? Were any of the questions you asked “unfair” to the chatbot?

    Which conversation do you think was the chatbot and which do you think was your classmate? How could you tell? Refer to some lines in your conversations (some which you think were definitely not a human). Were you correct?

    
      Excellence
    

    Discuss other possible applications of the Turing Test or similar tests for other programs that are supposed to be intelligent. How would you go about carrying out such a test? For example, what if you wanted to evaluate whether or not a computer played a game in a “human like” way? (As people may prefer to play against something that seems human).

    Discuss whether or not the Turing test is a good test of intelligence, giving reasons for your answer and using examples from your chatterbot experiments. What parts of human intelligence would the Turing test not capture? Are there are other ways of testing whether or not a computer is able to have a conversation like a human?

    You might like to do some additional reading for ideas for your discussion.

    
      
      http://en.wikipedia.org/wiki/Turing_test#Strengths_of_the_test
    

    
      
      http://en.wikipedia.org/wiki/Turing_test#Weaknesses_of_the_test
    

    17.16.4. HINTS FOR SUCCESS

    
      	
        Some students have used quiz show-like questions instead of trying to have conversations. It is important to try and have a conversation rather than just ask lots of unrelated questions. A conversation does best at revealing a Chatbot’s limitations. For example, this conversation isn’t very good. And infact, many of the lines could have been human responses.

        
          	judge: What is your favourite colour?

          	ALICE: My favorite color is green. What is yours?

          	judge: What do you do?

          	ALICE: judge, I talk to people on the web. What do you do?

          	judge: What is your name?

          	ALICE: My name is ALICE.

          	judge: How long have you been alive?

          	ALICE: 16 years.

          	judge: What is your favourite movie?

          	ALICE: My favorite movie is Casablanca. Have you seen it?

          	judge: What is your favourite song?

          	ALICE: My favorite song is Imagine. Do you know it?

          	judge: What is your favourite food?

          	ALICE: I require only electricity.

          	judge: What is 10 + 20 ?

          	ALICE: 10 times 10 = 100.

          	judge: What is 79 - 7

          	ALICE: I would look into the web for that knowledge.

        

        Whereas this next conversation reveals the Chatbot’s limited ability to hold a conversation, as we were attempting to make it do.

        
          	judge: What is your favourite colour?

          	ALICE: My favorite color is green. What is yours?

          	judge: Mine is Purple

          	ALICE: purple is a very nice color.

          	judge: Why isn’t it your favourite colour?

          	ALICE: My mind does not contain an explanation for it.

          	judge: What does your mind contain?

          	ALICE: What do you think it does?

          	judge: I would have no idea

          	ALICE: How much would you pay for it?

          	judge: Nothing, sorry

          	ALICE: Really nothing?

          	judge: Yeah, you’re a worthless chatbot...

          	ALICE: Aha.. Yes.

        

        You will need to base your responses on the last response you received rather than attempting to use a list of predefined questions.

      

      	
        You don’t need to say the same things to the chatbot and the human. Just try and hold a conversation with both, and mostly go with whatever direction the conversation is going (although do try one or two subject changes as well to see what happens!). Just pretend you are having a casual conversation with somebody you don’t know very well.

      

      	
        Offensive words or topics could land you in a ton of trouble if included in your submitted report. If a chatbot says something inappropriate, censor it. Choose a classmate to work with who is likely to be sensible if you want to do well (if they do say anything offensive, don’t include it in your report).

      

      	
        If you have nobody to work with, consider doing the related project which focuses mostly on the chatbots and the techniques they use to try and sound intelligent.

      

      	You should be able to write up the project in about 4 pages.

    

  
    The initial version of the guide being developed in 2012/2013 is intended to cover the new NZ achievement standards in CS. However, there are other topics that aren’t covered that would be good to mention, and they are recorded here as possible future chapters to add.

    17.17.1. COMPUTABILITY

    http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html Ed Dalley’s story about the halting problem cs4fn

    17.17.2. LOGIC CIRCUITS

    Gates (see unplugged Peruvian activity) http://www.cs4fn.org/binary/nim/nim.php uses xor Online logic simulator? Binary additions (see also marble and wood logic devices, and other non-electronic ones) Logic: http://courses.cs.vt.edu/csonline/MachineArchitecture/Lessons/index.html

    17.17.3. BIG DATA/CLOUD COMPUTING

    http://en.wikipedia.org/wiki/Big_data http://www.nsf.gov/cise/csbytes/newsletter/vol1/vol1i11.html

    There is some background at: http://www.techamericafoundation.org/bigdata

    The Google data center gallery has cool pictures: http://www.google.com/about/datacenters/gallery/#/ or could tie in with Computational Science (from ACM curriculum)

    Shadi to help Mark at Monterey interested

    main concepts?

    
      	CAP theorem, mapreduce

      	using an API e.g. google maps, twitter

      	low level - uploading data (mashup?); higher level - APIs

    

    17.17.4. PARALLEL/CONCURRENT COMPUTING

    Some people advocate teaching this first because all computers have multiprocessors and data centres. It might be the same chapter as “Big data”, but there are other approaches. For beginners, StarLogo and Scratch can be used to teach concurrent processes and the issues that arise. There’s bound to be an unplugged activity that could show issues like race conditions.

    
      
      http://www.cs4fn.org/parallelcomputing/parallelrats.php
    

    
      
      http://dl.acm.org/citation.cfm?id=2414446&picked=prox&CFID=269871400&CFTOKEN=70782049
    

    ACM curriculum has a lot of material on this

    Teaching map-reduce: http://dl.acm.org/citation.cfm?id=2414448

    17.17.5. DATABASES (OR INFORMATION MANAGEMENT?)

    and other stuff from the Information branch of the DT standards?

    17.17.6. OPERATING SYSTEMS

    Or related topics? http://www.cl.cam.ac.uk/freshers/raspberrypi/tutorials/os/ From nand to Tetris project Architecture, memory management, security, VMs, devices, file systems, fault tolerance, performance evaluation Operating systems on-a-stick e.g. schools.pconme.com Operating systems:http://courses.cs.vt.edu/csonline/OS/Lessons/index.html

    17.17.7. INFORMATION ASSURANCE AND SECURITY

    From the new ACM curriculum; could include forensics? http://www.nsf.gov/cise/csbytes/newsletter/vol1/vol1i12.htmlhttp://www.nsf.gov/cise/csbytes/newsletter/vol2/vol2i3.html

    
      	might use some stuff from cryptography?

      	Doxd game

      	Mark at Monterey may contribute

      	http://www.nsf.gov/cise/csbytes/newsletter/vol2/vol2i13.html - information privacy

    

    17.17.8. MOBILE COMPUTING

    Not sure if it’s a general area, but probably a few things that could be covered

    17.17.9. SOCIAL AND PROFESSIONAL ISSUES

    Ethics? Communication? Digital divide, social implications, professional communities, codes of conduct, intellectual property, open source movement, privacy, sustainability (green computing), computer crime, how companies make money (e.g. Skype p2p, Google and Facebook with private information)

    17.17.10. QUANTUM COMPUTING

    http://en.wikipedia.org/wiki/Quantum_computer http://www.howstuffworks.com/quantum-computer.htm http://plato.stanford.edu/entries/qt-quantcomp/www.youtube.com/watch?v=sICXOwOwS4E

  
    The following guide has been written to help those wishing to adapt this system. Modifying the system can be quite a large task, especially in setup. We are not releasing the full package of files for automated generation process, as this includes personal login data to networks, etc. However, we do want to share this project as much as possible, therefore this guide has been written for those wish to take the time to adapt the system.

    If you are wanting a local copy of the files to host on your local network, or wish to clarify or add something to the guide below, please contact Jack Morgan. The guide is definitely not complete in it’s current state, but is being expanded frequently.

    The textbook is licensed under a Creative Commons Attribution Non-Commerical Share Alike license. Full details on this license, including a human readable summary, can be found here.

    Note

    Code experience recommended

    The following guide to setup your own Sphinx system is quite code heavy, so moderate experience with programming is recommended. For those who get stuck with Sphinx creation, the Sphinx community is very active, you can find them here.

    17.18.1. PROCESS OF TEXTBOOK CREATION

    The textbook uses a documentation generator by the name of Sphinx, orginally created to generate Python documentation.

    
      
    

    The textbook is written in a notation called ReStructured Text (or ReST), which acts much like a relaxed version of LaTeX. Details on how to use the ReStructured Text markup (plus how it fits into Sphinx) can be found here. The advantages of using the ReST format, is that if we ever want to switch away from the Sphinx system, we can plug the source material straight into the new system with minimal configuration.

    Most pages on the textbook website (except for a couple of special cases: homepage etc) are written in the ReST format, and you can view the source code by clicking the ‘Show Source’ link in the sidebar. For example, the source for this page can be found in the sidebar.

    The Sphinx system then processes these files, and generates the relevant HTML requires for the website. From this stage onwards, many tweaks have been made to the system, the source and the generation process to produce the material we wanted. These details are too numerous to go into detail about, however some good links to read for running your own Sphinx setup include:

    
      	
        First Steps with Sphinx
      

      	
        Sphinx Markup Constructs
      

      	
        Sphinx Configuration File
      

      	
        HTML Theming
      

      	
        Build Options
      

      	Available Sphinx Builders (What is produced on the generation: HTML, PDF etc)

      	
        Math support in Sphinx
      

    

    17.18.2. VERSIONING

    For this textbook, several versions were created for different purposes. To designate content to different versions, we decided the student version would be the base version, as other versions build on top of this. Adding and designating content to another version (for example: a teacher’s note) is done with the only command in the text files.

    The versions we created are as follows:

    
      	Student’s version

      	Teacher’s version (include comments for teachers)

      	Development version (includes raw development material)

    

    And each version are created in the following types:

    
      	Website (HTML output)

      	Paper (LaTeX/PDF output)

      	Portable (ePub/MOBI output) using an experimental builder

    

    You would generally create all the versions from the same source files (ie student version would just not include teachers notes), however we wanted to customise the website even further. Our textbook is generated by one system, from one main source and three minor sources (one for each version) into multiple outputs. The minor sources include files that needed to be different for each version. Some of these files include the Sphinx Configuration file (conf.py file) which dictated the appearance for the seperate versions (teacher version is green while student version is blue), and what was included in the sidebar (hiding the source files from students to prevent them from easily being able to access answers). This proved to be quite a complicated system to setup, however the system now has an extreme amount of power in customisation ability.

    17.18.3. PDF GENERATION

    Guide on PDF generation to be released at a later date (when it’s ready).

    17.18.4. EPUB/MOBI GENERATION

    Guide on ePub/MOBIgeneration to be released at a later date (when it’s ready).

    17.18.5. HOW TO ADD CONTENT

    Guide on how to add content to be released at a later date (when it’s ready).

    17.18.6. UPDATE SCRIPT

    Guide on the update script to be released at a later date (when it’s ready).

    17.18.7. VISUAL APPEARANCE/CSS

    Guide on editing the appearance of the site to be released at a later date (when it’s ready).

  
    The "Computer Science Field Guide" is a online resource for teaching Computer Science to students. This guide is being developed as an online interactive textbook to support the new achievement standards in Computer Science that are being rolled out in New Zealand from 2011 to 2013. Eventually it will expand to support other curricula, but the initial focus is to meet the urgent need of resources in NZ.

    The Introduction chapter is good place to start to find out the goals of the site. The chapters are in various stages of development, but the chapter on graphics is a good example of a fairly complete version, and the formal languages chapter is a good example of how we're taken advanced concepts and packaged them for high school students.

    INTERACTIVES

    The following interactives are used in our online resource to teach concepts or particular ideas to students.

    
      Click to load the

Algorithm Sorting interactive
    

    
      Click to load the

binary number interactive
    

  OEBPS/images/http/box.kancloud.cn/2015-11-05_563b176dd1b1c.png





OEBPS/images/http/box.kancloud.cn/2015-11-05_563b176fe7d41.png
19|

13

17

16

15

14

13

12)

11

10

10111

12113

14115

16

17

18l 19






OEBPS/images/http/box.kancloud.cn/2015-11-05_563b176f6322e.png
cos4s) 0 sins)
o 1 0 |x
Sin@S) 0 cos@s)

‘Add Matrx | | Add Vector

ouput

' TOTIOT 0 7071077 [ 70.71068
y|=| o 10 o v + 0
2 ~7.07107 0 7.07107 ~70.71068

zx7n7m7+yxu+zx7n7w7 70, 71nss
= 2x0+yx10+2x0
2% ~T.0T107+yx 0+2xT707107] |[-70. 71063

Zx04+yx104+2%0+0

2 X TOT107+yx 0+ 2 x T.0T107 +70.71068
2 % ~T.0T107 +y x 0+ 2 x T.07107 + ~T0.71068





OEBPS/images/http/box.kancloud.cn/2015-11-05_563b176fd62f3.png
19|

13

17

16

15

14

13

12)

11

10

10111

12113

14115

16117

18l 19






OEBPS/images/Cover.jpg
Computer Science
Field Guide

O

INTRODUCTION

CANTERBURY
CANTERBUE






OEBPS/images/http/box.kancloud.cn/2015-11-05_563b176db2aab.png





OEBPS/images/http/box.kancloud.cn/2015-11-05_563b1770492cf.png
19|

13

17

16

15

14

13

12)

11

10

10111

12113

14115

16

17

18l 19






OEBPS/images/http/box.kancloud.cn/2015-11-05_563b176eb9d8e.png





OEBPS/images/http/box.kancloud.cn/2015-11-05_563b17695cc1f.png
X=[10352

X+ | [x-Y ] [x2y | [xsv ] [xay | [x] [Clear

Answer =(3,242,397,044,705,127,243, 923,074, 21|
/100,194, 625,385, 316,349, 441,243,750, |
572, 611,026,027,393, 447,253, 441,207, 2|
51,333,237, 532,750,110, 410,173, 332, 52|
s, 536,571,752, 512,179, 150,097, 221, 30¢|
1,404,299, 942,724,124, 672






