
A Comprehensive Guide to Machine Learning

Soroush Nasiriany, Garrett Thomas, William Wei Wang, Alex Yang
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

February 9, 2018

2

About

CS 189 is the Machine Learning course at UC Berkeley. In this guide we have created a com-
prehensive course guide in order to share our knowledge with students and the general public,
and hopefully draw the interest of students from other universities to Berkeley’s Machine Learning
curriculum.

We owe gratitude to Professor Anant Sahai and Professor Stella Yu, as this book is heavily inspired
from their lectures. In addition, we are indebted to Professor Jonathan Shewchuk for his machine
learning notes, from which we drew inspiration.

The latest version of this document can be found at http://snasiriany.me/cs189/. Please report
any mistakes to snasiriany@berkeley.edu. Please contact the authors if you wish to redistribute
this document.

Notation

Notation Meaning
R set of real numbers
Rn set (vector space) of n-tuples of real numbers, endowed with the usual inner product
Rm×n set (vector space) of m-by-n matrices
δij Kronecker delta, i.e. δij = 1 if i = j, 0 otherwise
∇f(x) gradient of the function f at x
∇2f(x) Hessian of the function f at x
p(X) distribution of random variable X
p(x) probability density/mass function evaluated at x
E[X] expected value of random variable X
Var(X) variance of random variable X
Cov(X,Y) covariance of random variables X and Y

Other notes:

• Vectors and matrices are in bold (e.g. x,A). This is true for vectors in Rn as well as for
vectors in general vector spaces. We generally use Greek letters for scalars and capital Roman
letters for matrices and random variables.

• We assume that vectors are column vectors, i.e. that a vector in Rn can be interpreted as an
n-by-1 matrix. As such, taking the transpose of a vector is well-defined (and produces a row
vector, which is a 1-by-n matrix).

http://www.eecs189.org/
http://people.eecs.berkeley.edu/~sahai/
https://www1.icsi.berkeley.edu/~stellayu/
https://people.eecs.berkeley.edu/~jrs/
https://people.eecs.berkeley.edu/~jrs/papers/machlearn.pdf
http://snasiriany.me/cs189/
snasiriany@berkeley.edu

Contents

1 Regression, Validation 5

1.1 Regression . 5

1.2 Ordinary least squares . 5

1.3 Ridge Regression . 8

1.4 Feature Engineering . 11

1.5 Hyperparameters and Validation . 12

1.6 Kernel Ridge Regression . 16

1.7 Kernel Trick . 19

2 Probabilistic Models in Machine Learning 21

2.1 MLE and MAP . 21

2.2 Bias-Variance Tradeoff . 28

2.3 Weighted Least Squares . 35

2.4 Multivariate Gaussians . 37

2.5 MLE with Dependent Noise . 40

2.6 MAP with Colored Noise . 41

2.7 Summary of Linear Gaussian Statistical Models . 44

3 Low-Rank approximation 45

3.1 Total Least Squares . 45

3.2 Principal Component Analysis . 49

3.3 Canonical Correlation Analysis . 55

3.4 Dimensionality Reduction . 61

4 Gradient Descent, Newton’s Method 65

4.1 Nonlinear Least Squares . 65

4.2 Gradient Descent . 68

5 Neural Networks 71

3

4 CONTENTS

5.1 Neural Networks . 71

5.2 Training Neural Networks . 76

6 Classification 83

6.1 Classification . 83

6.2 Generative Models . 83

6.3 QDA Classification . 84

6.4 LDA Classification . 86

6.5 LDA vs. QDA: Differences and Decision Boundaries 87

6.6 Discriminative Models . 90

6.7 Least Squares Support Vector Machine . 91

6.8 Logistic Regression . 94

6.9 Multiclass Logistic Regression . 98

6.10 Training Logistic Regression . 100

6.11 Support Vector Machines . 102

7 Duality, Neareset Neighbors, Sparsity 111

7.1 Duality . 111

7.2 The Dual of SVMs . 117

7.3 Nearest Neighbor Classification . 120

7.4 Sparsity and LASSO . 125

7.5 Coordinate Descent . 127

7.6 Sparse Least-Squares . 129

8 Decision Tree Learning 131

8.1 Decision Trees . 131

8.2 Random Forests . 134

8.3 Boosting . 134

9 Deep Learning 139

9.1 Convolutional Neural Nets . 139

Chapter 1

Regression, Validation

1.1 Regression

Our goal in machine learning is to extract a relationship from data. In regression tasks, this
relationship takes the form of a function y = f(x), where y ∈ R is some quantity that can be
predicted from an input x ∈ Rd, which should for the time being be thought of as some collection
of numerical measurements. The true relationship f is unknown to us, and our aim is to recover it
as well as we can from data. Our end product is a function ŷ = h(x), called the hypothesis, that
should approximate f . We assume that we have access to a dataset D = {(xi, yi)}ni=1, where each
pair (xi, yi) is an example (possibly noisy or otherwise approximate) of the input-output mapping
to be learned. Since learning arbitrary functions is intractable, we restrict ourselves to some
hypothesis class H of allowable functions. More specifically, we typically employ a parametric
model, meaning that there is some finite-dimensional vector w ∈ Rd, the elements of which are
known as parameters or weights, that controls the behavior of the function. That is,

hw(x) = g(x,w)

for some other function g. The hypothesis class is then the set of all functions induced by the
possible choices of the parameters w:

H = {hw | w ∈ Rd}

After designating a cost function L, which measures how poorly the predictions ŷ of the hypothesis
match the true output y, we can proceed to search for the parameters that best fit the data by
minimizing this function:

w∗ = arg min
w

L(w)

1.2 Ordinary least squares

Ordinary least squares (OLS) is one of the simplest regression problems, but it is well-understood
and practically useful. It is a linear regression problem, which means that we take hw to be of
the form hw(x) = x>w. We want

yi ≈ ŷi = hw(xi) = x>iw

5

6 CHAPTER 1. REGRESSION, VALIDATION

for each i = 1, . . . , n. This set of equations can be written in matrix form asy1
...
yn

︸ ︷︷ ︸

y

≈

x>1
...

x>n

︸ ︷︷ ︸

X

w1
...
wd

︸ ︷︷ ︸

w

In words, the matrix X ∈ Rn×d has the input datapoint xi as its ith row. This matrix is some-
times called the design matrix. Usually n ≥ d, meaning that there are more datapoints than
measurements.

There will in general be no exact solution to the equation y = Xw (even if the data were perfect,
consider how many equations and variables there are), but we can find an approximate solution by
minimizing the sum (or equivalently, the mean) of the squared errors:

L(w) =

n∑
i=1

(x>iw − yi)2 = min
w
‖Xw − y‖22

Now that we have formulated an optimization problem, we want to go about solving it. We will see
that the particular structure of OLS allows us to compute a closed-form expression for a globally
optimal solution, which we denote w∗ols.

Approach 1: Vector calculus

Calculus is the primary mathematical workhorse for studying the optimization of differentiable
functions. Recall the following important result: if L : Rd → R is continuously differentiable, then
any local optimum w∗ satisfies ∇L(w∗) = 0. In the OLS case,

L(w) = ‖Xw − y‖22
= (Xw − y)>(Xw − y)

= (Xw)>Xw − (Xw)>y − y>Xw + y>y

= w>X>Xw − 2w>X>y + y>y

Using the following results from matrix calculus

∇x(a>x) = a

∇x(x>Ax) = (A + A>)x

the gradient of L is easily seen to be

∇L(w) = ∇w(w>X>Xw − 2w>X>y + y>y)

= ∇w(w>X>Xw)− 2∇w(w>X>y) +∇w(y>y)︸ ︷︷ ︸
0

= 2X>Xw − 2X>y

where in the last line we have used the symmetry of X>X to simplify X>X + (X>X)> = 2X>X.
Setting the gradient to 0, we conclude that any optimum w∗ols satisfies

X>Xw∗ols = X>y

1.2. ORDINARY LEAST SQUARES 7

If X is full rank, then X>X is as well (assuming n ≥ d), so we can solve for a unique solution

w∗ols = (X>X)−1X>y

Note: Although we write (X>X)−1, in practice one would not actually compute the inverse; it
is more numerically stable to solve the linear system of equations above (e.g. with Gaussian
elimination).

In this derivation we have used the condition ∇L(w∗) = 0, which is a necessary but not sufficient
condition for optimality. We found a critical point, but in general such a point could be a local
minimum, a local maximum, or a saddle point. Fortunately, in this case the objective function
is convex, which implies that any critical point is indeed a global minimum. To show that L is
convex, it suffices to compute the Hessian of L, which in this case is

∇2L(w) = 2X>X

and show that this is positive semi-definite:

∀v, v>(2X>X)v = 2(Xv)>Xv = 2‖Xv‖22 ≥ 0

Approach 2: Orthogonal projection

There is also a linear algebraic way to arrive at the same solution: orthogonal projections.

Recall that if V is an inner product space and S a subspace of V , then any v ∈ V can be decomposed
uniquely in the form

v = vS + v⊥

where vS ∈ S and v⊥ ∈ S⊥. Here S⊥ is the orthogonal complement of S, i.e. the set of vectors
that are perpendicular to every vector in S.

The orthogonal projection onto S, denoted PS , is the linear operator that maps v to vS in the
decomposition above. An important property of the orthogonal projection is that

‖v − PSv‖ ≤ ‖v − s‖

for all s ∈ S, with equality if and only if s = Psv. That is,

PSv = arg min
s∈S

‖v − s‖

Proof. By the Pythagorean theorem,

‖v − s‖2 = ‖v − PSv︸ ︷︷ ︸
∈S⊥

+PSv − s︸ ︷︷ ︸
∈S

‖2 = ‖v − PSv‖2 + ‖PSv − s‖2 ≥ ‖v − PSv‖2

with equality holding if and only if ‖PSv − s‖2 = 0, i.e. s = PSv. Taking square roots on both
sides gives ‖v − s‖ ≥ ‖v − PSv‖ as claimed (since norms are nonnegative).

Here is a visual representation of the argument above:

8 CHAPTER 1. REGRESSION, VALIDATION

In the OLS case,

w∗ols = arg min
w

‖Xw − y‖22

But observe that the set of vectors that can be written Xw for some w ∈ Rd is precisely the range
of X, which we know to be a subspace of Rn, so

min
z∈range(X)

‖z− y‖22 = min
w∈Rd

‖Xw − y‖22

By pattern matching with the earlier optimality statement about PS , we observe that Prange(X)y =
Xw∗ols, where w∗ols is any optimum for the right-hand side. The projected point Xw∗ols is always
unique, but if X is full rank (again assuming n ≥ d), then the optimum w∗ols is also unique (as
expected). This is because X being full rank means that the columns of X are linearly independent,
in which case there is a one-to-one correspondence between w and Xw.

To solve for w∗ols, we need the following fact1:

null(X>) = range(X)⊥

Since we are projecting onto range(X), the orthogonality condition for optimality is that y−Py ⊥
range(X), i.e. y −Xw∗ols ∈ null(X>). This leads to the equation

X>(y −Xw∗ols) = 0

which is equivalent to

X>Xw∗ols = X>y

as before.

1.3 Ridge Regression

While Ordinary Least Squares can be used for solving linear least squares problems, it falls short
due to numerical instability and generalization issues. Numerical instability arises when the features
of the data are close to collinear (leading to linearly dependent feature columns), causing the input

1 This result is often stated as part of the Fundamental Theorem of Linear Algebra.

1.3. RIDGE REGRESSION 9

matrix X to lose its rank or have singular values that very close to 0. Why are small singular values
bad? Let us illustrate this via the singular value decomposition (SVD) of X:

X = UΣV>

where U ∈ Rn×n,Σ ∈ Rn×d,V ∈ Rd×d. In the context of OLS, we must have that X>X is invertible,
or equivalently, rank(X>X) = rank(X>) = rank(X) = d. Assuming that X and X> are full column
rank d, we can express the SVD of X as

X = U

[
Σd

0

]
V>

where Σd ∈ Rd×d is a diagonal matrix with strictly positive entries. Now let’s try to expand the
(X>X)−1 term in OLS using the SVD of X:

(X>X)−1 = (V
[
Σd 0

]
U>U

[
Σd

0

]
V>)−1

= (V
[
Σd 0

]
I

[
Σd

0

]
V>)−1

= (VΣ2
dV
>)−1 = (V>)−1(Σ2

d)
−1V−1 = VΣ−2

d V>

This means that (X>X)−1 will have singular values that are the squared inverse of the singular
values of X, potentially leading to extremely large singular values when the singular value of X are
close to 0. Such excessively large singular values can be very problematic for numerical stability
purposes. In addition, abnormally high values to the optimal w solution would prevent OLS from
generalizing to unseen data.

There is a very simple solution to these issues: penalize the entries of w from becoming too large.
We can do this by adding a penalty term constraining the norm of w. For a fixed, small scalar
λ > 0, we now have:

min
w
‖Xw − y‖22 + λ‖w‖22

Note that the λ in our objective function is a hyperparameter that measures the sensitivity to
the values in w. Just like the degree in polynomial features, λ is a value that we must choose
arbitrarily through validation. Let’s expand the terms of the objective function:

f(w) = ‖Xw − y‖22 + λ‖w‖22
= w>X>Xw − 2w>X>y + y>y + λw>w

Finally take the gradient of the objective and find the value of w that achieves 0 for the gradient:

∇wf(w) = 0

2X>Xw − 2X>y + 2λw = 0

(X>X + λI)w = X>y

w∗ridge = (X>X + λI)−1X>y

This value is guaranteed to achieve the (unique) global minimum, because the objective function
is strongly convex. To show that f is strongly convex, it suffices to compute the Hessian of f ,
which in this case is

∇2f(w) = X>X + λI

10 CHAPTER 1. REGRESSION, VALIDATION

and show that this is positive definite (PD):

∀w 6= 0, w>(X>+ λI)w = (Xw)>Xw + λw>w = ‖Xw‖22 + λ‖w‖22 > 0

Since the Hessian is positive definite, we can equivalently say that the eigenvalues of the Hessian are
strictly positive and that the objective function is strongly convex. A useful property of strongly
convex functions is that they have a unique optimum point, so the solution to ridge regression is
unique. We cannot make such guarantees about ordinary least squares, because the corresponding
Hessian could have eigenvalues that are 0. Let us explore the case in OLS when the Hessian has
a 0 eigenvalue. In this context, the term X>X is not invertible, but this does not imply that no
solution exists! In OLS, there always exists a solution, and when the Hessian is PD that solution
is unique; when the Hessian is PSD, there are infinitely many solutions. There always exists a
solution to the expression X>Xw = X>y, because the range of X>X and the range space of X>

are equivalent; since X>y lies in the range of X>, it must equivalently lie in the range of X>X and
therefore there always exists a w that satisfies the equation X>Xw = X>y.

The technique we just described is known as ridge regression, (otherwise known as Tikhonov
regularization in the statistics community). Note that now the expression X>X+λI is invertible,
regardless of rank of X. Let’s find (X>X + λI)−1 through SVD:

(X>X + λI)−1 =

(
V

[
Σr 0
0 0

]
U>U

[
Σr 0
0 0

]
V>+ λI

)−1

=

(
V

[
Σ2
r 0

0 0

]
V>+ λI

)−1

=

(
V

[
Σ2
r 0

0 0

]
V>+ V(λI)V>

)−1

=

V

([
Σ2
r 0

0 0

]
+ λI

)
V>

−1

=

(
V

[
Σ2
r + λI 0
0 λI

]
V>

)−1

= (V>)−1

[
Σ2
r + λI 0
0 λI

]−1

V−1

= V

[
(Σ2

r + λI)−1 0
0 1

λI

]
V>

Now with our slight tweak, the matrix X>X + λI has become full rank and thus invertible. The
singular values have become 1

σ2+λ and 1
λ , meaning that the singular values are guaranteed to be

at most 1
λ , solving our numerical instability issues. Furthermore, we have partially solved the

overfitting issue. By penalizing the norm of x, we encourage the weights corresponding to relevant
features that capture the main structure of the true model, and penalized the weights corresponding
to complex features that only serve to fine tune the model and fit noise in the data.

1.4. FEATURE ENGINEERING 11

1.4 Feature Engineering

We’ve seen that the least-squares optimization problem

min
w∈Rd

‖Xw − y‖22

represents the “best-fit” linear model, by projecting y onto the subspace spanned by the columns
of X. However, the true input-output relationship y = f(x) may be nonlinear, so it is useful to
consider nonlinear models as well. It turns out that we can still do this under the framework of
linear least-squares, by augmenting the data with new features. In particular, we devise some
function φ : Rd → Rp that maps each raw data point x ∈ Rd into a vector of features φ(x). The
matrix Φ ∈ Rn×p, which has φ(xi)

> as its ith row, takes the place of X:

min
w∈Rp

‖Φw − y‖22

Note that the resulting model is still linear with respect to the features, but it is nonlinear with
respect to the original data if φ is nonlinear. The component functions φj are sometimes called
basis functions because our hypothesis is a linear combination of them. In the simplest case,
we could just use the components of x as features (i.e. φj(x) = xj), but in future lectures it will
sometimes be helpful to disambiguate the features of an example from the example itself, so we
encourage this way of thinking now.

Example: Fitting Ellipses

Let’s use least-squares to fit a model for data points that come from an ellipse.

1. Applications and Data: We have n data points D = {(x1,i, x2,i)}ni=1, which may be noisy
(could be off the actual orbit). Our goal is to determine the relationship between the x1 and
x2.

2. Model: Model ellipse in the form w0 +w1x
2
1 +w2x

2
2 +w3x1x2 +w4x1 +w5x2 = 1. There are

6 unknown coefficients (the weights).

3. Optimization Problem: We formulate the problem with least-squares:

min
w
‖Φw − 1‖22

where

Φ =

1 x2

1,1 x2
2,1 x1,1x2,1 x1,1 x2,1

1 x2
1,2 x2

2,2 x1,2x2,2 x1,2 x2,2

...
...

...
...

...
...

1 x2
1,n x2

2,n x1,nx2,n x1,n x2,n

Note that there is no “target” vector y here, so this is not a traditional regression problem.

Polynomial Features

One important class of features is polynomial features. Remember that a polynomial is linear
combination of monomial basis terms. Monomials can be classified in two ways, by their degree
and dimension:

12 CHAPTER 1. REGRESSION, VALIDATION

degree → 0 1 2 3 · · ·
↓ dimension
univariate 1 x x2 x3 · · ·
bivariate 1 x1, x2 x2

1, x
2
2, x1x2 x3

1, x
3
2, x

2
1x2, x1x

2
2 · · ·

A big reason we care polynomial features is that any smooth function can be approximated ar-
bitrarily closely by some polynomial. 2 For this reason, polynomials are said to be universal
approximators.

One downside of polynomials is that as their degree increases, their number of terms increases
rapidly. Specifically, a polynomial of degree d in ` dimensional space has(

`+ d

`

)
=

(`+ d)!

`!d!

terms. To get an idea for how quickly this quantity grows, consider a few examples:

` d
(
`+d
`

)
EXAMPLE

Later we will learn about the kernel trick, a clever mathematical method that allows us to
circumvent this rapidly growing cost in certain cases.

1.5 Hyperparameters and Validation

As before, consider a hypothesis of the form

hw(x) =

p∑
j=1

wjφj(x) = w>φ(x)

Observe that the model order p is not one of the decision variables being optimized when we fit to
the data. For this reason p is called a hyperparameter. We might say more specifically that it is
a model hyperparameter, since it determines the structure of the model.

For another example, recall ridge regression, in which we add an `2 penalty on the parameters
w:

min
w
‖Xw − y‖22 + λ‖w‖22

The regularization weight λ is also a hyperparameter, as it is fixed during the minimization above.
However λ, unlike the previously discussed hyperparameter p, is not a part of the model. Rather,
it is an aspect of the optimization procedure used to fit the model, so we say it is an optimization
hyperparameter. Hyperparameters tend to fall into one of these two categories.

Since hyperparameters are not determined by the data-fitting optimization procedure, how should
we choose their values? A suitable answer to this question requires some discussion of the different
types of error at play.

Types of Error

We have seen that it is common to minimize some measure of how poorly our hypothesis fits the
data we have, but what we actually care about is how well the hypothesis predicts future data.

2Taylor’s theorem gives more precise statements about the approximation error.

1.5. HYPERPARAMETERS AND VALIDATION 13

Let us try to formally distinguish the various types of error. Assume that the data are distributed
according to some (unknown) distribution D, and that we have a loss function ` : R × R → R,
which is to measure the error between the true output y and our estimate ŷ = h(x). The risk (or
true error) of a particular hypothesis h is the expected loss over the whole data distribution:

R(h) = E(x,y)∼D[`(h(x), y)]

Ideally, we would find the hypothesis that minimizes the risk, i.e.

h∗ = arg min
h∈H

R(h)

However, computing this expectation is impossible because we do not have access to the true data

distribution. Rather, we have access to samples (xi, yi)
iid∼ D. These enable us to approximate the

real problem we care about by minimizing the empirical risk (or training error)

R̂train(h) =
1

n

n∑
i=1

`(h(xi), yi)

But since we have a finite number of samples, the hypothesis that performs the best on the training
data is not necessarily the best on the whole data distribution. In particular, if we both train and
evaluate the hypothesis using the same data points, the training error will be a very biased estimate
of the true error, since the hypothesis has been chosen specifically to perform well on those points.

The solution is to set aside some portion (say 30%) of the data, to be called the validation set,
which is disjoint from the training set and not allowed to be used when fitting the model:

Validation Training

We can use this validation set to estimate the true error by the validation error

R̂val(h) =
1

m

m∑
i=1

`(h(xval
i), yval

i)

With this estimate, we have a simple method for choosing hyperparameter values: try a bunch of
configurations of the hyperparameters and choose the one that yields the lowest validation error.

The effect of hyperparameters on error

Note that as we add more features to a linear model, training error can only decrease. This is
because the optimizer can set wi = 0 if feature i cannot be used to reduce training error.

14 CHAPTER 1. REGRESSION, VALIDATION

Model Order
T

ra
in

in
g

E
rr

o
r

Adding more features tends to reduce true error as long as the additional features are useful
predictors of the output. However, if we keep adding features, these begin to fit noise in the
training data instead of the true signal, causing true error to actually increase. This phenomenon
is known as overfitting.

Model Order

T
ru

e
E

rr
or

The validation error tracks the true error reasonably well as long as the validation set is reasonably
large:

Model Order

A
v
g.

V
al

id
at

io
n

E
rr

or

The regularization hyperparameter λ has a somewhat different effect on training error. Observe
that if λ = 0, we recover the exact OLS problem, which is directly minimizing the training error. As
λ increases, the optimizer places less emphasis on the training error and more emphasis on reducing
the magnitude of the parameters. This leads to a degradation in training error as λ grows:

1.5. HYPERPARAMETERS AND VALIDATION 15

Regularization Weight
T

ra
in

in
g

E
rr

o
r

Cross-validation

Setting aside a validation set works well, but comes at a cost, since we cannot use the validation
data for training. Since having more data generally improves the quality of the trained model,
we may prefer not to let that data go to waste, especially if we have little data to begin with
and/or collecting more data is expensive. Cross-validation is an alternative to having a dedicated
validation set.

k-fold cross-validation works as follows:

1. Shuffle the data and partition it into k equally-sized (or as equal as possible) blocks.

2. For i = 1, . . . , k,

• Train the model on all the data except block i.

• Evaluate the model (i.e. compute the validation error) using block i.

1 2 3 4 5 6 · · · k

validate train

validate traintrain

validate traintrain

...

3. Average the k validation errors; this is our final estimate of the true error.

Note that this process (except for the shuffling and partitioning) must be repeated for every hyper-
parameter configuration we wish to test. This is the principle drawback of k-fold cross-validation
as compared to using a held-out validation set – there is roughly k times as much computation
required. This is not a big deal for the relatively small linear models that we’ve seen so far, but it
can be prohibitively expensive when the model takes a long time to train, as is the case in the Big
Data regime or when using neural networks.

16 CHAPTER 1. REGRESSION, VALIDATION

1.6 Kernel Ridge Regression

In ridge regression, we given a vector y ∈ Rn and a matrix X ∈ Rn×l, where n is the number of
training points and l is the dimension of the raw data points. In most settings we don’t want to
work with just the raw feature space, so we augment features to the data points and replace X
with Φ ∈ Rn×d, where φ>i = φ(xi) ∈ Rd. Then we solve a well-defined optimization problem that
involves Φ and y, over the parameters w ∈ Rd. Note the problem that arises here. If we have
polynomial features of degree at most p in the raw l dimensional space, then there are d =

(
l+p
p

)
terms that we need to optimize, which can be very, very large (much larger than the number of
training points n). Wouldn’t it be useful, if instead of solving an optimization problem over d
variables, we could solve an equivalent problem over (potentially much smaller) n variables, and
achieve a computational runtime independent of the number of augmented features? As it turns
out, the concept of kernels (in addition to a technique called the kernel trick) will allow us to
achieve this goal. Recall the solution to ridge regression:

w∗ = (Φ>Φ + λI)−1Φ>y

This operation involves calculating Φ>Φ, which is a d×d matrix and takes O(d2n) time to compute.
The matrix inversion operation takes an additional O(d3) time to compute. What we would really
like is to have an n × n matrix that takes O(n3) to invert. Here’s a simple observation: if we flip
the order of Φ> and Φ, we end up with an n× n matrix ΦΦ>. In fact, the matrix ΦΦ> has a very
intuitive meaning: it is the matrix of inner products between all of the augmented datapoints, which
in loose terms measures the “similarity” among of the datapoints and captures their relationship.
Now let’s see if we could somehow express the solution to ridge regression using the matrix ΦΦ>.

Derivation

For simplicity of notation, let’s revert back to using X instead of Φ (pretend that we are only
working with raw features, our analysis of kernel ridge regression still holds if we use just the raw
features). Rearranging the terms of the original ridge regression solution, we have

w = (X>X + λI)−1X>y

(X>X + λI)w = X>y

X>Xw + λw = X>y

λw = X>y −X>Xw

w =
1

λ
(X>y −X>Xw)

w =
X>y −X>Xw

λ

w = X>
y −Xw

λ

which says that whatever w is, it is some linear combination of the training points xi (because
anything of the form X>v is a linear combination of the columns of X>, which are the training
points). To find w it suffices to find v, where w = X>v.

Recall that the relationship we have to satisfy is X>Xw − λw = X>y. Let’s assume that we had
v, and just substitute X>v in for all the w’s.

X>X(X>v) + λ(X>v) = X>y

1.6. KERNEL RIDGE REGRESSION 17

X>XX>v + X>(λv) = X>y

X>(XX>v + λv) = X>(y)

We can’t yet isolate v and have a closed-form solution for it, but we can make the observation that
if we found an v such that we had

XX>v + λv = y

that would imply that this v also satisfies the above equation. Note that we did not “cancel the
X>’s on both sides of the equation.” We saw that having v satisfy one equation implied that it
satisfied the other as well. So, indeed, we can isolate v in this new equation:

(XX>+ λI)v = y =⇒ v∗ = (XX>+ λI)−1y

and have that the v which satisfies this equation will be such that X>v equals w. We conclude
that the optimal w is

w∗ = X>v∗ = X>(XX>+ λI)−1y

Recall that previously, we derived ridge regression and ended up with

w∗ = (X>X + λI)−1X>y

In fact, these two are equivalent expressions! The question that now arises is which expression
should you pick? Which is more efficient to calculate? We will answer this question after we
introduce kernels.

Linear Algebra Derivation

The previous derivation involved using some intuitive manipulations to achieve the desired answer.
Let’s formalize our derivation using more principled arguments from linear algebra and optimiza-
tion Before we do so, we must first introduce the Fundamental Theorem of Linear Algebra
(FTLA): Suppose that there is a matrix (linear map) X that maps Rl to Rn. Denote N (X) as
the nullspace of X, and R(X) as the range of X. Then the following properties hold:

1. N (X)
⊥
⊕R(X>) = Rl and N (X>)

⊥
⊕R(X) = Rn by symmetry

The symbol ⊕ indicates that we taking a direct sum of N (X) and R(X>), which means that
∀u ∈ Rl there exist unique elements u1 ∈ N (X) and u2 ∈ R(X>) such that u = u1 + u2.
Furthermore, the symbol ⊥ indicates that N (X) and R(X>) are orthogonal subspaces.

2. N (X>X) = N (X) and N (XX>) = N (X>) by symmetry

3. R(X>X) = R(X>) and R(XX>) = R(X) by symmetry.

Here’s where FTLA comes, in the context of kernel ridge regression. We know that we can express
any w ∈ Rl as a unique combination w = w1 + w2, where w1 ∈ R(X>) and w2 ∈ N (X).
Equivalently we can express this as w = X>v + r, where v ∈ Rn and r ∈ N (X). Now, instead of
optimizing over w ∈ Rl, we can optimize over v ∈ Rn and r ∈ Rl, which equates to optimizing over
n+ l variables. However, as we shall see, the optimization over r will be trivial so we just have to
optimize an n dimensional problem.

We know that w = X>v + r, where v ∈ Rn and r ∈ N (X). Let’s now solve ridge regression by
optimizing over the variables v and r instead of w:

v∗, r∗ = arg min
v∈Rn,r∈N (X)

‖Xw − y‖22 + λ‖w‖22

18 CHAPTER 1. REGRESSION, VALIDATION

= arg min
v∈Rn,r∈N (X)

‖X(X>v + r)− y‖22 + λ‖X>v + r‖22

= arg min
v∈Rn,r∈N (X)

‖XX>v +��Xr− y‖22 + λ‖X>v + r‖22

= arg min
v∈Rn,r∈N (X)

(
v>XX>XX>v − 2v>XX>y + y>y

)
+ λ

(
v>XX>v +��

��
2v>Xr + r>r

)
= arg min

v∈Rn,r∈N (X)

(
v>XX>XX>v − 2v>XX>y

)
+ λ

(
v>XX>v + r>r

)
We crossed out Xr and 2v>Xr because r ∈ N (X) and therefore Xr = 0. Now we are optimizing
over L(v, r), which is jointly convex in v and r, because its Hessian is PSD. Let’s show that this
is indeed the case:

∇2
rL(v, r) = 2I � 0

∇r∇vL(v, r) = ∇v∇rL(v, r) = 0

∇2
vL(v, r) = 2XX>XX>+ 2λXX>� 0

Since the cross terms of the Hessian are 0, it suffices that ∇2
rL(v, r) and ∇2

vL(v, r) are PSD to
establish joint convexity. With joint convexity established, we can set the gradient to 0 w.r.t r and
v and obtain the global minimum:

∇rL(v, r∗) = 2r∗ = 0 =⇒ r∗ = 0

Note that r∗ = 0 just so happens in to be in N (X), so it is a feasible point.

∇vL(v∗, r∗) = 2XX>XX>v∗ − 2XX>y + 2λXX>v∗ = 0

=⇒ XX>(XX>+ λI)v∗ = XX>(y)

=⇒ v∗ = (XX>+ λI)−1y

Note that XX>+λI is positive definite and therefore invertible, so we can compute (XX>+λI)−1y.
Even though (XX>+λI)−1y is a critical point for which the gradient is 0, it must achieve the global
minimum because the objective is jointly convex. We conclude that

w∗ = X>(XX>+ λI)−1y

and arrive at the same solution as in the previous derivation.

Kernels

Having derived the kernel ridge regression formulation for the raw data matrix X, we can apply
the exact same logic to the augmented data matrix Φ and replace the optimal expression with

w∗ = Φ>(ΦΦ>+ λI)−1y

Let’s explore the ΦΦ> term in kernel ridge regression in more detail:

ΦΦ>=

φ>1
φ>2
...

φ>n

φ1 φ2 . . . φn

 =

φ>1φ1 φ>1φ2 . . .

φ>2φ1
. . .

... φ>nφn

1.7. KERNEL TRICK 19

Each entry ΦΦ>ij is a dot product between φ(xi) and φ(xj) and can be interpreted as a similarity
measure:

ΦΦ>ij = 〈φi,φj〉 = 〈φ(xi), φ(xj)〉 = k(xi,xj)

where k(., .) is the kernel function. The kernel function takes raw-feature inputs and outputs their
inner product in the augmented feature space. We denote the matrix of k(xi,xj) terms as the
Gram matrix and denote it as K:

K = ΦΦ>=

k(x1,x1) k(x1,x2) . . .

k(x2,x1)
. . .

... k(xn,xn)

Formally, k(x1,x2) is defined to be a valid kernel function if there exists a feature map φ(.) such
that ∀x1,x2,

k(xi,xj) = 〈φ(x1), φ(x2)〉
Equivalently, we can also say that for all sets D = {x1,x2, . . . ,xn}, the Gram matrix K(D) is PSD.

Computing the each Gram matrix entry k(xi,xj) can be done in a straightforward fashion if we
apply the feature map to xi and xj and then take their dot product in the augmented feature space
— this takes O(d) time, where d is the dimensionality of the problem in the augmented feature
space. However, if we use the kernel trick, we can perform this operation in O(l + log p) time,
where l is the dimensionality of the problem in the raw feature space and p is the degree of the
polynomials in the augmented feature space.

1.7 Kernel Trick

Suppose that you are computing k(x, z), using a p-degree polynomial feature map that maps l
dimensional inputs to d = O(lp) dimensional outputs. Let’s take p = 2 and l = 2 as an example.
We have that

k(x, z) = 〈φ(x), φ(z)〉

=
[
x2

1 x2
2

√
2x1x2

√
2x1

√
2x2 1

]>[
z2

1 z2
2

√
2z1z2

√
2z1

√
2z2 1

]
= x2

1z
2
1 + x2

2z
2
2 + 2x1z1x2z2 + 2x1z1 + 2x2z2 + 1

= (x2
1z

2
1 + 2x1z1x2z2 + x2

2z
2
2) + 2x1z1 + 2x2z2 + 1

= (x1z1 + x2z2)2 + 2(x1z1 + x2z2) + 1

= (x>z)2 + 2x>z + 1

= (x>z + 1)2

We can compute k(x, z) either by

1. Raising the inputs to the augmented feature space and take their inner product

2. Computing (x>z + 1)2, which involves an inner product of the raw-feature inputs

Clearly, the latter option is much cheaper to calculate, taking O(l + log p) time, instead of O(lp)
time. In fact, this concept generalizes for any arbitrary l and p, and for p-degree polynomial
features, we have that

k(x, z) = (x>z + 1)p

20 CHAPTER 1. REGRESSION, VALIDATION

The kernel trick makes computations significantly cheaper to perform, making kernelization much
more appealing! The takeaway here is that no matter what the degree p is, the computational
complexity is the same — it is only dependent on the dimensionality of the raw feature space!

Computational Analysis

Back to the original question – in ridge regression, should we compute

w∗ = Φ>(ΦΦ>+ λI)−1y

or
w∗ = (Φ>Φ + λI)−1Φ>y

Let’s compare their computational complexities. Suppose you are given an arbitrary test point
z ∈ Rl, and you would like to compute its predicted value ŷ. Let’s see how these values are
calculated in each case:

1. Kernelized

ŷ = 〈φ(z),w∗〉 = φ(z)>Φ>(ΦΦ>+ λI)−1y =
[
k(x1, z) . . . k(xn, z)

]>
(K + λI)−1y

Computing the K term takes O(n2(l + log p)), and inverting the matrix takes O(n3). These
two computations dominate, for a total computation time of O(n3 + n2(l + log p)).

2. Non-kernelized
ŷ = 〈φ(z),w∗〉 = φ(z)>(Φ>Φ + λI)−1Φ>y

Computing the Φ>Φ term takes O(d2n), and inverting the matrix takes O(d3). These two
computations dominate, for a total computation time of O(d3 + d2n).

Here is the takeaway: if d << n, the non-kernelized method is preferable. Otherwise if n << d,
the kernelized method is preferable.

Chapter 2

Probabilistic Models in Machine
Learning

2.1 MLE and MAP

So far, we’ve explored two approaches of the least squares framework, Ordinary Least Squares and
Ridge Regression:

w∗ols = arg min
w

‖y −Xw‖22 = arg min
w

n∑
i=1

(yi − x>iw)2

w∗ridge = arg min
w

‖y −Xw‖22 + λ‖w‖22 = arg min
w

n∑
i=1

(yi − x>iw)2 + λ

d∑
j=1

w2
j

One question that you may have been asking yourself is why we are using the squared error to
measure the effectiveness of our model, and why we use the `2 norm for the model weights (and
not some other norm). We will justify all of these design choices by exploring the statistical
interpretations of supervised learning methods and in particular, regression methods. In more
concrete terms, we will use a variety of concepts from probability, such as Gaussians, MLE and
MAP, in order to validate what we’ve done so far through a different lens.

Optimization in Model Space

Let’s look at a simple regression model:

f(x) = slope · x+ intercept

Our goal is to find the optimal slope and intercept values that we believe best describe the data.
Each arbitrary (slope, intercept) pair forms a line in data space. However, it can also be viewed
as a single point in model space. Learning the optimal model amounts to fitting a line to the
data points in the data space; it’s equivalent to locating the optimal parameter point in the model
space:

21

22 CHAPTER 2. PROBABILISTIC MODELS IN MACHINE LEARNING

Data as Samples from Distributions

The data that we observe are random samples with different distributions, coverages, and densities.
There are many different distributions that we will encounter, such as Uniform, Gaussian, and
Laplacian. Noise distributions in particular are often assumed to be Gaussian, partly because
most of the noise is captured within 1 or 2 standard deviations of the mean. Let’s state their
properties for convenience.

2.1. MLE AND MAP 23

MLE and MAP for Model Selection

In the context of regression (and all of supervised learning for that matter), we assume a true
underlying model that maps inputs to outputs. Our goal as machine learning experts is to find
a hypothesis model that best represents the true underlying model, by using the data we are
given.

Let’s define more concretely our definition of the data and the model. Our data takes consists of
n (x, y) pairs, just as we have seen before:

D = {(xi, yi)}ni=1

The true underlying model f is a function that maps the inputs xi to the true outputs f(xi). Each
observation yi is simply a noisy version of f(xi):

yi = f(xi) +Ni

Note that f(xi) is a constant, while Ni is a random variable. We always assume that Ni has
zero mean, because otherwise there would be systematic bias in our observations. The Ni’s
could be Gaussian, uniform, Laplacian, etc.. Here, let us assume that they are independent

and identically distributed (i.i.d) and Gaussian: Ni
i.i.d∼ N (0, σ2). We can therefore say that

yi|xi ∼ N (f(xi), σ
2).

Now that we have introduced the data and model, we wish to find a hypothesis model hθ that
best describes the data, while possibly taking into account prior beliefs that we have about the
true model. We can represent this as a probability problem, where the goal is to find the optimal
model that maximizes our probability.

Maximum Likelihood Estimation

In Maximum Likelihood Estimation (MLE), the goal is to find the model that maximizes the
probability of the data. If we parameterize the set of hypothesis models with θ, we can represent

24 CHAPTER 2. PROBABILISTIC MODELS IN MACHINE LEARNING

the problem as:
θ∗mle = arg max

θ
P (data = D| true model = hθ)

More concretely:
θ∗mle = arg max

θ
P (y1, . . . , yn|x1, . . . ,xn, hθ)

Note that we actually conditioned on the xi’s, because we treat them as fixed values of the data.
The only randomness in our data comes from the yi’s (since they are noisy versions of the true
values f(xi)).

We can simplify this expression by viewing the problem as a graphical model. Note that yi only
depends on its parent in the graphical model, xi. It does not depend on the other yj ’s, since all y’s
have independent noise terms. We can therefore simplify the objective:

θ∗mle = arg max
θ

P (y1, . . . yn|x1, . . .xn, hθ) =

n∏
i=1

P (yi|xi, hθ)

Now let’s focus on each individual term P (yi|xi, hθ). We know that yi|xi, hθ ∼ N (hθ(xi), σ
2),

which is cumbersome to work with because Gaussians have exponential terms. So instead we wish
to work with logs, which eliminate the exponential terms:

θ∗mle = arg max
θ

log[P (y1, . . . yn|x1, . . .xn, hθ)] =

n∑
i=1

log[P (yi|xi, hθ)]

Note that with logs we are still working with the same problem, because logarithms are monotonic
functions. In other words we have that:

P (A) < P (B) ⇐⇒ logP (A) < logP (B)

Continuing with logs:

θ∗mle = arg max
θ

n∑
i=1

log[P (yi|xi, hθ)] (2.1)

= arg max
θ

−
(n∑
i=1

(yi − hθ(xi))
2

2σ2

)
− n log

√
2πσ (2.2)

= arg min
θ

(n∑
i=1

(yi − hθ(xi))
2

2σ2

)
+ n log

√
2πσ (2.3)

= arg min
θ

n∑
i=1

(yi − hθ(xi))
2 (2.4)

Note that in step (3) we turned the problem from a maximization problem to a minimization
problem by negating the objective. In step (4) we eliminated the second term and the denominator
in the first term, because they do not depend on the variables we are trying to optimize over.

Now let’s look at the case of regression. In that case our hypothesis has the form hθ(xi) = x>iθ,
where θ ∈ Rd, where d is the number of dimensions of our featurized datapoints. For this specific
setting, the problem becomes:

θ∗mle = arg min
θ∈Rd

n∑
i=1

(yi − x>iθ)2

2.1. MLE AND MAP 25

This is just the Ordinary Least Squares (OLS) problem! We just proved that OLS and MLE for
regression lead to the same answer! We conclude that MLE is a probabilistic justification for why
using squared error (which is the basis of OLS) is a good metric for evaluating a regression model.

Maximum a Posteriori

In Maximum a Posteriori (MAP) Estimation, the goal is to find the model, for which the data
maximizes the probability of the model:

θ∗map = arg max
θ

P (true model = hθ| data = D) (2.1)

= arg max
θ

P (data = D|true model = hθ)P (true model = hθ)

P (data = D)
(2.2)

= arg max
θ

P (data = D|true model = hθ)P (true model = hθ) (2.3)

= arg max
θ

logP (data = D|true model = hθ) + logP (true model = hθ) (2.4)

= arg min
θ

− logP (data = D|true model = hθ)− logP (true model = hθ) (2.5)

Here, we used Bayes’ Rule to re express the objective. In step (3) we represent P (data = D) as
a constant value because it does not depend on the variables we are optimizing over. Notice that
MAP is just like MLE, except we add a term P (hθ) to our objective. This term is the prior over
our true model.

More concretely, we have (just as we did with MLE):

θ∗map = arg min
θ

−
(n∑
i=1

log[P (yi|xi, hθ)]
)
− log[P (hθ)]

Again, just as in MLE, notice that we condition on the xi’s in the whole process because we treat
them as constants. Also, let us assume as before that the noise terms are i.i.d and Gaussian:

Ni
i.i.d∼ N (0, σ2). For the prior term P (hθ), we assume that it follows a shifted and scaled version of

the standard Multivariate Gaussian distribution: hθ ∼ N (θ0, σ
2
hI). Using this specific information,

we now have:

θ∗map = arg min
θ

(∑n
i=1(yi − h(xi))

2

2σ2

)
+
(‖θ − θ0‖2

2σ2
h

)
(2.1)

= arg min
θ

(n∑
i=1

(yi − hθ(xi))
2
)

+
σ2

σ2
h

(
‖θ − θ0‖2

)
(2.2)

Let’s look again at the case for linear regression to illustrate the effect of the prior term when
θ0 = 0. In this context, we refer to the linear hypothesis function hθ(x) = θ>x.

θ∗map = arg min
θ∈Rd

n∑
i=1

(yi − x>iθ)2 +
σ2

σ2
h

d∑
j=1

θ2
j

This is just the Ridge Regression problem! We just proved that Ridge Regression and MAP for
regression lead to the same answer! We can simply set λ = σ2

σ2
h
. We conclude that MAP is a

probabilistic justification for adding the penalized ridge term in Ridge Regression.

26 CHAPTER 2. PROBABILISTIC MODELS IN MACHINE LEARNING

MLE vs. MAP

Based on our analysis of Ordinary Least Squares Regression and Ridge Regression, we should expect
to see MAP perform better than MLE. But is that always the case? Let us revisit at the (slope,
intercept) example from earlier. We already know the true underlying model parameters, and we
will compare them to the values that MLE and MAP select. Let’s start with MLE:

The diagram on the left shows the data space representation of the problem, and the diagram on
the right shows the model space representation. The gray line in the left diagram and the gray
dot in the right diagram are the true underlying model. Using noisy data samples, MLE predicts a
reasonable hypothesis model (as indicated by the green line in the left diagram and the green dot
in the right diagram).

Now, let’s take a look at the hypothesis model from MAP. One question that arises is where the
prior should be centered and what its variance should be. This depends on your belief of what the
true underlying model is. If you have reason to believe that the model weights should all be small,
then the prior should be centered at zero. Let’s look at MAP for a prior that is centered at zero:

2.1. MLE AND MAP 27

For reference, we have marked the MLE estimation from before as a green point and the true model
as a gray point. As we can see from the right diagram, using a prior centered at zero leads us to
skew our prediction of the model weights toward the origin, leading to a less accurate model than
MLE.

Let’s say in our case that we have reason to believe that both model weights should be centered
around the 0.5 to 1 range. As the first set of diagrams below show, our prediction would be better
than MLE. However, if we believe the model weights should be centered around the -0.5 to -1 range,
we would make a much poorer prediction than MLE.

As always, in order to compare our beliefs to see which prior works best in practice, we should use
cross validation!

28 CHAPTER 2. PROBABILISTIC MODELS IN MACHINE LEARNING

2.2 Bias-Variance Tradeoff

Recall from our previous discussion that for a fixed input x, the corresponding measurement Y is
a noisy measurement of the true underlying response f(x):

Y = f(x) +N

Where N is a zero-mean random variable, and is typically represented as a Gaussian distribution.
Our goal in regression is to recover the underlying model f(.) as closely as possible. We previously
mentioned MLE and MAP as two techniques that try to find of reasonable approximation to f(.)
by solving a probabilistic objective. In this section, we would like to form a theoretical metric that
can exactly measure the effectiveness of a hypothesis function h. Keep in mind that this is only a
theoretical metric that cannot be measured in real life, but it can be approximated via empirical
experiments – more on this later.

Before we introduce the metric, let’s make a few subtle statements about the data and hypothesis.
As you may recall from our previous discussion on MLE and MAP, we had a dataset D that
consisted of n (xi, yi) pairs. In that context, we treated the xi’s in our dataset D as fixed values.
In this case however, we treat the xi’s as random variables. Specifically:

D = {X1, Y1; X2, Y2; . . . ; Xn, Yn}

D is a random variable, because it consists of random variables Xi and Yi. (Notice that because
these quantities are random variables, they are all represented by uppercase letters.) Our hypothesis
model h(.) is also a random variable – h(x,D) depends on some arbitrary test input x, as well as
the random variable D that was used to train h. Since D is random, we will have a slightly different
hypothesis model h(.,D) every time we use a new dataset.

Metric

Our objective is to, for a fixed value of x, evaluate how closely the hypothesis can estimate the noisy
observation corresponding to x. Note that we have denoted x here as a lowercase letter because we
are treating it as a fixed constant, while we have denoted the Y and D as uppercase letters because
we are treating them as random variables. Y and D as independent random variables, because
our x and Y have no relation to the set of Xi’s and Yi’s in D. In a way, we can think of D as the
training data, and (x, Y) as the test data – the test point x is not necessarily in the training set
D! Mathematically, we represent our metric as the expected squared error between the hypothesis
and the observation Y = f(x) +N :

ε(x;h) = E[(h(x;D)− Y)2]

The expectation here is over two random variables, D and Y :

ED,Y [(h(x;D)− Y)2] = ED[EY [(h(x;D)− Y)2|D]]

Note that the error is w.r.t the observation Y and not the true underlying model f(x), because we
do not know the true model and only have access to the noisy observations from the true model.

Bias-Variance Decomposition

The error metric is difficult to interpret and work with, so let’s try to decompose it into parts that
are easier to understand. Before we start, let’s find the expectation and variance of Y :

E[Y] = E[f(x) +N] = f(x) + E[N] = f(x)

2.2. BIAS-VARIANCE TRADEOFF 29

Var(Y) = Var(f(x) +N) = Var(N)

Also, in general for any random variable Z, we have that

Var(Z) = E[(Z − E[Z])2] = E[Z2]− E[Z]2 =⇒ E[Z2] = Var(Z) + E[Z]2

Let’s use these facts to decompose the error:

ε(x;h) = E[(h(x;D)− Y)2] = E[h(x;D)2] + E[Y 2]− 2E[h(x;D) · Y]

=
(

Var(h(x;D)) + E[h(x;D)]2
)

+
(

Var(Y) + E[Y]2
)
− 2E[h(x;D)] · E[Y]

=
(
E[h(x;D)]2 − 2E[h(x;D)] · E[Y] + E[Y]2

)
+ Var(h(x;D)) + Var(Y)

=
(
E[h(x;D)]− E[Y]

)2
+ Var(h(x;D)) + Var(Y)

=
(
E[h(x;D)]− f(x)

)2

︸ ︷︷ ︸
bias2 of method

+ Var(h(x;D))︸ ︷︷ ︸
variance of method

+ Var(N)︸ ︷︷ ︸
irreducible error

Recall that for any two independent random variables D and Y , g1(D) and g2(Y) are also in-
dependent, for any functions g1, g2. This implies that h(x;D) and Y are independent, allowing
us to express E[h(x;D) · Y] = E[h(x;D)] · E[Y] in the second line of the derivation. The final
decomposition, also known as the bias-variance decomposition, consists of three terms:

• Bias2 of method: Measures how well the average hypothesis (over all possible training sets)
can come close to the true underlying value f(x), for a fixed value of x. A low bias means
that on average the regressor h(x) accurately estimates f(x).

• Variance of method: Measures the variance of the hypothesis (over all possible training
sets), for a fixed value of x. A low variance means that the prediction does not change much
as the training set varies. An un-biased method (bias = 0) could have a large variance.

• Irreducible error: This is the error in our model that we cannot control or eliminate, because
it is due to errors inherent in our noisy observation Y .

The decomposition allows us to measure the error in terms of bias, variance, and irreducible error.
Irreducible error has no relation with the hypothesis model, so we can fully ignore it in theory when
minimizing the error. As we have discussed before, models that are very complex have very little
bias because on average they can fit the true underlying model value f(x) very well, but have very
high bias and are very far off from f(x) on an individual basis.

Note that the error above is only for a fixed input x, but in regression our goal is to minimize
the average error over all possible values of X. If we know the distribution for X, we can find the
effectiveness of a hypothesis model as a whole by taking an expectation of the error over all possible
values of x: EX[ε(x;h)].

Alternative Decomposition

The previous derivation is short, but may seem somewhat arbitrary. Let’s explore an alternative
derivation. At its core, it uses the technique that E[(Z − Y)2] = E[((Z − E[Z]) + (E[Z] − Y))2]
which decomposes to easily give us the variance of Z and other terms.

ε(x;h) = E[(h(x;D)− Y)2]

30 CHAPTER 2. PROBABILISTIC MODELS IN MACHINE LEARNING

= E
[(
h(x;D)− E[h(x;D)] + E[h(x;D)]− Y

)2]
= E

[(
h(x;D)− E[h(x;D)]

)2]
+ E

[(
E[h(x;D)]− Y

)2]
+ 2E

[(
h(x;D)− E[h(x;D)]

)
·
(
E[h(x;D)]− Y

)]
= E

[(
h(x;D)− E[h(x;D)]

)2]
+ E

[(
E[h(x;D)]− Y

)2]
+ 2
(((

((((
((((E[h(x;D)− E[h(x;D)]] · E[E[h(x;D)]− Y]

= E
[(
h(x;D)− E[h(x;D)]

)2]
+ E

[(
E[h(x;D)]− Y

)2]
= Var((h(x;D)) + E

[(
E[h(x;D)]− Y

)2]
= Var((h(x;D)) + E

[(
E[h(x;D)]− E[Y] + E[Y]− Y

)2]
= Var((h(x;D)) + E

[(
E[h(x;D)]− E[Y]

)2]
+ E[(Y − E[Y])2] + 2

(
E[h(x;D)]− E[Y]

)
·(((((

(E[E[Y]− Y]

= Var((h(x;D)) + E
[(
E[h(x;D)]− E[Y]

)2]
+ E[(Y − E[Y])2]

= Var((h(x;D)) +
(
E[h(x;D)]− E[Y]

)2
+ Var(Y)

= Var((h(x;D)) +
(
E[h(x;D)]− f(x)

)2
+ Var(N)

=
(
E[h(x;D)]− f(x)

)2︸ ︷︷ ︸
bias2 of method

+ Var(h(x;D))︸ ︷︷ ︸
variance of method

+ Var(N)︸ ︷︷ ︸
irreducible error

Experiments

Let’s confirm the theory behind the bias-variance decomposition with an empirical experiment that
measures the bias and variance for polynomial regression with 0 degree, 1st degree, and 2nd degree
polynomials. In our experiment, we will repeatedly fit our hypothesis model to a random training
set. We then find the expectation and variance of the fitted models generated from these training
sets.

Let’s first look at a 0 degree (constant) regression model. We repeatedly fit an optimal constant
line to a training set of 10 points. The true model is denoted by gray and the hypothesis is denoted
by red. Notice that at each time the red line is slightly different due to the different training set
used.

2.2. BIAS-VARIANCE TRADEOFF 31

Let’s combine all of these hypotheses together into one picture to see the bias and variance of our
model.

On the top left diagram we see all of our hypotheses and all training sets used. The bottom left
diagram shows the average hypothesis in cyan. As we can see, this model has low bias for x’s in

32 CHAPTER 2. PROBABILISTIC MODELS IN MACHINE LEARNING

the center of the graph, but very high bias for x’s that are away from the center of the graph. The
diagram in the bottom right shows that the variance of the hypotheses is quite high, for all values
of x.

Now let’s look at a 1st degree (linear) regression model.

The bias is now very low bias for all x’s. The variance is low for x’s in the middle of the graph,

2.2. BIAS-VARIANCE TRADEOFF 33

but higher for x’s that are away from the center of the graph.

Finally, let’s look at a 2nd degree (quadratic) regression model.

The bias is still very low for all x’s. However, the variance is much higher for all values of x.

Let’s summarize our results. We find the bias and the variance empirically and graph them for all
values of x, as shown in the first two graphs. Finally, we take an expectation over the bias and

34 CHAPTER 2. PROBABILISTIC MODELS IN MACHINE LEARNING

variance over all values of x, as shown in the third graph.

Takeaways

Let us conclude by stating some implications of the Bias-Variance Decomposition:

1. Underfitting is equivalent to high bias; most overfitting correlates to high variance.

2. Training error reflects bias but not variance. Test error reflects both. In practice, if the
training error is much smaller than the test error, then there is overfitting.

3. Variance→ 0 as n→∞ .

4. If f is in the set of hypothesis functions, bias will decrease with more data. If f is not in the
set of hypothesis functions, then there is an underfitting problem and more data won’t help.

2.3. WEIGHTED LEAST SQUARES 35

5. Adding good features will decrease the bias, but adding a bad feature rarely increase the bias.
(just set the coefficient of the feature to 0)

6. Adding a feature usually increase the variance, so a feature should only be added if it decreases
bias more than it increases variance.

7. Irreducible error can not be reduced.

8. Noise in the test set only affects Var(N) , but noise in the training set also affects bias and
variance.

9. For real-world data, f is rarely known, and the noise model might be wrong, so we can’t
calculate bias and variance. But we can test algorithms over synthetic data.

2.3 Weighted Least Squares

So far we have used MLE in the context of Gaussian noise to justify the optimization formulation
of regression problems, such as OLS. Let’s apply this dual optimization-probability philosophy to
other regression problems, such as Weighted Least Squares.

Optimization View

The basic idea of weighted least squares is the following: we place more emphasis on the loss
contributed from certain data points over others - that is, we care more about fitting some data
points over others. From an optimization perspective, the problem can be expressed as

w∗wls = arg min
w∈Rd

(n∑
i=1

ωi(yi − x>iw)2
)

This objective is the same as OLS, except that each term in the sum is weighted by a coefficient
ωi. As always, we can vectorize this problem:

w∗wls = arg min
w∈Rd

(y −Xw)>Ω(y −Xw)

Where the i’th row X is x>i , and Ω ∈ Rn×n is a diagonal matrix with Ωi,i = ωi.

We rewrite the WLS objective to an OLS objective:

w∗wls = arg min
w∈Rd

(y −Xw)>Ω(y −Xw)

= arg min
w∈Rd

(y −Xw)>Ω1/2Ω1/2(y −Xw)

= arg min
w∈Rd

(Ω1/2y −Ω1/2Xw)>(Ω1/2y −Ω1/2Xw)

This formulation is identical to OLS except that we have scaled the data matrix and the observation
vector by Ω1/2, and we conclude that

w∗wls =
(

(Ω1/2X)>(Ω1/2X)
)−1(

Ω1/2X
)>

Ω1/2y = (X>ΩX)−1X>Ωy

36 CHAPTER 2. PROBABILISTIC MODELS IN MACHINE LEARNING

Probabilistic View

As in MLE, we assume that our observations y are noisy, but now suppose that some of the yi’s
are more noisy than others. How can we take this into account in our learning algorithm so we can
get a better estimate of the weights?

Our probabilistic model looks like
yi = x>iw + Zi

where the Zi’s are still independent Gaussians random variables, but not necessarily identical:
Zi ∼ N (0, σ2

i). We can morph the problem into an MLE one by scaling the data to make sure all
the Zi’s are identically distributed, by dividing by σi:

yi
σi

=
x>iw

σi
+
Zi
σi

Note that the scaled noise entries are now i.i.d:

Zi
σi

i.i.d∼ N (0, 1)

We rewrite our original problem as a scaled MLE problem:

w∗wls = arg min
w∈Rd

(n∑
i=1

(yiσi −
x>iw
σi

)2

2(1)

)
+ n log

√
2π(1)

The MLE estimate of this scaled problem is equivalent to the WLS estimate of the original problem:

w∗wls = (X>Σ
− 1

2
z Σ

− 1

2
z X)−1X>Σ

− 1

2
z Σ

− 1

2
z y = (X>Σ−1

z X)−1X>Σ−1
z y

where

Σz =

σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
...

...
0 · · · · · · σ2

n

Note that as long as no σ is 0, Σz is invertible. Note that ωi from the optimization perspective is
directly related to σ2

i from the probabilistic perspective: ωi = 1
σ2
i
. As the variance σ2

i of the noise

corresponding to data point i decreases, the weight ωi increases: we are more concerned about
fitting data point i because it is likely to match the true underlying denoised point. Inversely, as
the variance σ2

i increases, the weight ωi decreases: we are less concerned about fitting data point i
because it is noisy and should not be trusted.

Dependent Noise

What if the Zi’s aren’t independent? This usually happens for time series data. Again, we assume
we have a model for how the noise behaves. The noise entries are not independent, but there is a
known process.
e.g. Zi+1 = rZi + Ui where Ui ∼ N (0, 1), i.i.d, −1 ≤ r ≤ 1 (so that it doesn’t blow up)
or a ”sliding window” example (like echo of audio) where Zi = ΣrjUi−j , Ui ∼ N (0, 1).

2.4. MULTIVARIATE GAUSSIANS 37

In general, we can always represent the noise vector as

Z = RU

where Z ∈ Rn, R ∈ Rn×n, U ∈ Rn, and Ui
i.i.d∼ N (0, 1).

Z is a Jointly Gaussian Random Vector. Our goal now is to derive its probability density
formula.

2.4 Multivariate Gaussians

There are three equivalent definitions of a jointly Gaussian (JG) random vector:

1. A random vector Z = (Z1, Z2, . . . , Zk)
> is JG if there exists a base random vector U =

(U1, U2, . . . , Ul)
> whose components are independent standard normal random variables, a

transition matrix R ∈ Rk×l, and a mean vector µ ∈ Rk, such that Z = RU + µ.

2. A random vector Z = (Z1, Z2, . . . , Zk)
> is JG if

∑k
i=1 aiZi is normally distributed for every

a = (a1, a2, . . . , ak)
>∈ Rk.

3. (Non-degenerate case only) A random vector Z = (Z1, Z2, . . . , Zk)
> is JG if

fZ(z) =
1√

| det(Σ)|
1

(
√

2π)k
e−

1

2
(Z−µ)>Σ−1(Z−µ)

Where Σ = E[(Z− µ)(Z− µ)>] = E[(RU)(RU)>] = RE[UU>]R>= RIR>= RR>

Σ is also called the covariance matrix of Z.

Note that all of these conditions are equivalent. In this note we will start by showing a proof that
(1) =⇒ (3). We will leave it as an exercise to prove the rest of the implications needed to show
that the three conditions are in fact equivalent.

Proving (1) =⇒ (3)

In the context of the noise problem we defined earlier, we are starting with condition (1), ie.
Z = RU (in this case k = l = n), and we would like to derive the probability density of Z. Note
that here we removed the µ from consideration because in machine learning we always assume that
the noise has a mean of 0. We leave it as an exercise for the reader to prove the case for an arbitrary
µ.

We will first start by relating the probability density function of U to that of Z. Denote fU(u) as
the probability density for U = u, and similarly denote fZ(z) as the probability density for Z = z.

One may initially believe that fU(u) = fZ(Ru), but this is NOT true. Remember that since there
is a change of variables from U to Z, we must make sure to incorporate the change of variables
constant, which in this case is the absolute value of the determinant of R. Incorporating this
constant, we will have the correct formula:

fU(u) = |det(R)|fZ(Ru)

Let’s see why this is true, with a simple 2D geometric explanation. Define U space to be the 2D
space with axes U1 and U2. Now take any arbitrary region R′ in U space (note that this R′ is

38 CHAPTER 2. PROBABILISTIC MODELS IN MACHINE LEARNING

different from the matrix R that relates U to Z). As shown in the diagram below, we have some
off-centered circular region R′ and we would like to approximate the probability that U takes a
value in this region. We can do so by taking a Riemann sum of the density function fU(.) over
smaller and smaller squares that make up the region R′:

Mathematically, we have that

P (U ⊆ R′) =

∫∫
R′
fU(u1, u2) du1 du2 ≈

∑∑
R′

fU(u1, u2) ∆u1 ∆u2

Now, let’s apply the linear transformation Z = RU, mapping the region R′ in U space, to the
region T (R′) in Z space.

The graph on the right is now Z space, the 2D space with axes Z1 and Z2. Assuming that the
matrix R is invertible, there is a one-to-one correspondence between points in U space to points in
Z space. As we can note in the diagram above, each unit square in U space maps to a parallelogram
in Z space (in higher dimensions, we would use the terms hypercube and parallelepiped). Recall
the relationship between each unit hypercube and the parallelepiped it maps to:

Area(parallelepiped) = |det(R)| ·Area(hypercube)

In this 2D example, if we denote the area of each unit square as ∆u1∆u2, and the area of each unit
parallelepiped as ∆A, we say that

∆A = | det(R)| ·∆u1∆u2

2.4. MULTIVARIATE GAUSSIANS 39

Now let’s take a Riemann sum to find the probability that Z takes a value in T (R′):

P (Z ⊆ T (R′)) =

∫∫
T (R′)

fZ(z1, z2) dz1 dz2

≈
∑ ∑

T (R′)

fZ(z) ∆A

=
∑∑

R′

fZ(Ru) | det(R)|∆u1∆u2

Note the change of variables in the last step: we sum over the squares in U space, instead of
parallelograms in R space.

So far, we have shown that (for any dimension n)

P (U ⊆ R′) =

∫
. . .

∫∫
R′
fU(u) du1du2 . . . dun

and

P (Z ⊆ T (R′)) =

∫
. . .

∫∫
R′
fZ(Ru) |det(R)|du1du2 . . . dun

Notice that these two probabilities are equivalent! The probability that U takes value in R′ must
equal the probability that the transformed random vector Z takes a value in the transformed region
T (R′).

Therefore, we can say that

P (U ⊆ R′) =

∫
. . .

∫∫
R′
fU(u) du1du2 . . . dun

=

∫
. . .

∫∫
R′
fZ(Ru) |det(R)|du1du2 . . . dun

= P (Z ⊆ T (R′))

We conclude that
fU(u) = fZ(Ru) | det(R)|

An almost identical argument will allow us to state that

fZ(z) = fU(R−1u) |det
(
R−1

)
| = 1

| det(R)|
fU(R−1z)

Since the densities for all the Ui’s are i.i.d, and U = R−1Z, we can write the joint density function
of Z as

fZ(z) =
1

|det(R)|
fU(R−1z)

=
1

|det(R)|

n∏
i=1

fUi((R
−1z)i)

=
1

|det(R)|
1

(
√

2π)n
e−

1

2
(R−1z)>(R−1z)

=
1

|det(R)|
1

(
√

2π)n
e−

1

2
z>R−TR−1z

=
1

|det(R)|
1

(
√

2π)n
e−

1

2
z>(RR>)−1z

40 CHAPTER 2. PROBABILISTIC MODELS IN MACHINE LEARNING

Note that (RR>)−1 is simply the covariance matrix for Z:

Cov[Z] = E[ZZ>] = E[RUU>R>] = RE[UU>]R>= RIR>= RR>

Thus the density function of Z can be written as

fZ(z) =
1

|det(R)|
1

(
√

2π)n
e−

1

2
z>Σ−1

Z z

Furthermore, we know that

|det(ΣZ)| = | det
(
RR>

)
|

= | det(R) · det
(
R>
)
|

= | det(R) · det(R)| = |det(R)|2

and therefore

fZ(z) =
1√

det(ΣZ)

1

(
√

2π)n
e−

1

2
z>Σ−1

Z z

2.5 MLE with Dependent Noise

Up to this point, we have been able to easily view regression problems from an optimization
perspective. In the context of dependent noise however, it is much easier to view the problem from
a probabilistic perspective. Note as before that:

y = Xw + Z

Where Z is now a jointly Gaussian random vector. That is, Z ∼ N (0,ΣZ), and y ∼ N (Xw,ΣZ).

Our goal is to maximize the probability of our data over the set of possible w’s:

w∗ = arg max
w∈Rd

1√
det(ΣZ)

1

(
√

2π)n
e−

1

2
(y−Xw)>Σ−1

Z (y−Xw) (2.1)

= arg min
w∈Rd

(y −Xw)>Σ−1
Z (y −Xw) (2.2)

Notice that ΣZ is symmetric, which means it has a good eigen structure, therefore we can take the
advantage interpret this geometrically. ΣZ can be written as

ΣZ = Q

σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
...

...
0 · · · · · · σ2

n

Q>

where Q is orthonormal. This means a multivariate Gaussian can be thought of having its level
sets be the ellipsoid having axis given by Q and amount of stretch given by σs.

Let

RZ = Σ
1

2

Z = Q

σ1 0 · · · 0
0 σ2 · · · 0
...

...
...

...
0 · · · · · · σn

2.6. MAP WITH COLORED NOISE 41

As before, we can scale the data to morph the problem into an MLE problem with i.i.d noise
variables, by premultiplying the data matrix X and the observation vector y by R−1

Z .

In a very similar fashion to the independent noise problem, the MLE of the scaled dependent noise
problem is w∗ = (X>Σ−1

Z X)−1X>Σ−1
Z y.

2.6 MAP with Colored Noise

In the ordinary least squares (OLS) statistical model, we assume that the output Y is a linear
function of the input, plus some Gaussian noise. We take this one step further in maximum a
posteriori (MAP) estimation, where we assume that the weights are a random variable. The
new statistical model is

Y = XW + Z

where Y and Z are n-dimensional random vectors, W is a d-dimensional random variable, and X
is a fixed n× d matrix. Note that random vectors are not notationally distinguished from matrices
here, so keep in mind what each symbol represents.

We have seen that ridge regression can be derived by assuming a prior distribution on W in which
Wi are i.i.d. (univariate) Gaussian, or equivalently,

W ∼ N (0, I)

But more generally, we can allow W to be any multivariate Gaussian:

W ∼ N (µW,ΣW)

Recall that we can rewrite a multivariate Gaussian variable as an affine transformation of a standard
Gaussian variable:

W = Σ
1/2
WV + µW V ∼ N (0, I)

This change of variable is sometimes called the reparameterization trick.

Plugging this parameterization into our previous statistical model gives

Y = X(Σ
1/2
WV + µW) + Z

But this can be re-written
Y −XµW = XΣ

1/2
WV + Z

which we see has the form of the statistical problem that underlies OLS, and therefore

v̂ = (Σ
>/2
W X>XΣ

1/2
W + I)−1Σ

>/2
W X>(y −XµW)

However V is not what we care about – we need to convert back to the actual weights W in order to
make predictions. Since W is completely determined by V (assuming fixed mean and covariance),

ŵ = Σ
1/2
Wv̂ + µW

= µW + Σ
1/2
W(Σ

>/2
W X>XΣ

1/2
W + I)−1Σ

>/2
W X>(y −XµW)

= µW + (X>X + Σ
−>/2
W Σ

− 1/2
W︸ ︷︷ ︸

Σ−1
W

)−1X>(y −XµW)

42 CHAPTER 2. PROBABILISTIC MODELS IN MACHINE LEARNING

Note that there are two terms: the prior mean µW, plus another term that depends on both the
data and the prior. The precision matrix of W’s prior (Σ−1

W) controls how the data fit error affects
our estimate.

To gain intuition, let us consider the simplified case where

ΣW =

σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

n

When the prior variance σ2

j for dimension j is large, the prior is telling us that Wj may take on a
wide range of values. Thus we do not want to penalize that dimension as much, preferring to let
the data fit sort it out. And indeed the corresponding entry in Σ−1

W will be small, as desired.

Conversely if σ2
j is small, there is little variance in the value of Wj , so Wj ≈ µj . As such we penalize

the magnitude of the data-fit contribution to Ŵj more heavily.

Alternative derivation

MAP with colored noise can be expressed as:

U,V
iid∼ N (0, I) (2.1)[

Y
W

]
=

[
RZ XRW

0 RW

] [
U
V

]
(2.2)

where RZ and RW are relationships with W and Z, respectively. Note that the RW appears
twice because our model assumes Y = XW + noise, so if W = RWV, then we must have Y =
XRWV + noise.

We want to find the posterior W | Y = y. The formulation above makes it relatively easy to find
the posterior of Y conditioned on W (see below), but not vice-versa. So let’s pretend instead that

U′,V′
iid∼ N (0, I)[

W
Y

]
=

[
A B
0 D

] [
U′

V′

]
Now W | Y = y is straightforward. Since V′ = D−1Y, the conditional mean and variance of
W | Y = y can be computed as follows:

E[W | Y = y] = E[AU′ + BV′ | Y = y]

= E[AU′ | Y = y] + E[BD−1Y | Y = y]

= AE[U′]︸ ︷︷ ︸
0

+E[BD−1Y | Y = y]

= BD−1y

Var(W | Y = y) = E[(W − E[W])(W − E[W])> | Y = y]

= E[(AU′ + BD−1Y −BD−1Y)(AU′ + BD−1Y −BD−1Y)> | Y = y]

= E[(AU′)(AU′)> | Y = y]

= E[AU′(U′)>A>]

2.6. MAP WITH COLORED NOISE 43

= AE[U′(U′)>]︸ ︷︷ ︸
=Var(U′)=I

A>

= AA>

In both cases above where we drop the conditioning on Y, we are using the fact U′ is independent
of V′ (and thus independent of Y = DV′). Therefore

W | Y = y ∼ N (BD−1y,AA>)

Recall that a Gaussian distribution is completely specified by its mean and covariance matrix. We
see that the covariance matrix of the joint distribution is

E

[[
W
Y

] [
W> Y>

]]
=

[
A B
0 D

][
A> 0
B> D>

]

=

[
AA>+ BB> BD>

DB> DD>

]

=

[
ΣW ΣW,Y

ΣY,W ΣY

]
Matching the corresponding terms, we can express the conditional mean and variance of W | Y = y
in terms of these (cross-)covariance matrices:

BD−1Y = B D>D−>︸ ︷︷ ︸
I

D−1Y = (BD>)(DD>)−1Y = ΣW,YΣ−1
Y Y

AA>= AA>+ BB>−BB>

= AA>+ BB>−B D>D−>︸ ︷︷ ︸
I

D−1D︸ ︷︷ ︸
I

B>

= AA>+ BB>− (BD>)(DD>)−1DB>

= ΣW −ΣW,YΣ−1
Y ΣY,W

We can then apply the same reasoning to the original setup:

E

[[
Y
W

] [
Y> W>

]]
=

[
RZR>Z + XRWR>WX> XRWR>W

RWR>WX> RWR>W

]

=

[
ΣY ΣY,W

ΣW,Y ΣW

]
Therefore after defining ΣZ = RZR>Z, we can read off

ΣW = RWR>W

ΣY = ΣZ + XΣWX>

ΣY,W = XΣW

ΣW,Y = ΣWX>

Plugging this into our estimator yields

ŵ = E[W | Y = y]

= ΣW,YΣ−1
Y y

44 CHAPTER 2. PROBABILISTIC MODELS IN MACHINE LEARNING

= ΣWX>(ΣZ + XΣWX>)−1y

One may be concerned because this expression does not take the form we expect – the inverted
matrix is hitting y directly, unlike in other solutions we’ve seen. But using the Woodbury matrix
identity1, it turns out that we can rewrite this expression as

ŵ = (X>Σ−1
Z X + Σ−1

W)−1X>Σ−1
Z y

which looks more familiar.

2.7 Summary of Linear Gaussian Statistical Models

We have seen a number of related linear models, with varying assumptions about the randomness
in the observations and the weights. We summarize these below:

W
Z N (0, I) N (0,ΣZ)

No prior ŵols = (X>X)−1X>y ŵwls = (X>Σ−1
Z X)−1X>Σ−1

Z y
N (0, λ−1I) ŵridge = (X>X + λI)−1X>y
N (µW,ΣW) ŵ = µW + (X>X + Σ−1

W)−1X>(y −XµW)

1 (A + UCV)−1 = A−1 −A−1U(C−1 + VA−1U)−1VA−1

Chapter 3

Low-Rank approximation

3.1 Total Least Squares

Previously, we have covered Ordinary Least Squares (OLS). which assumes that the dependent
variable y is noisy but the independent variables x are noise-free. We now discuss Total Least
Squares (TLS), which arises in the case where we assume that our x data is also corrupted by
noise. Both LS methods want to get a model that produce an approximation closest to all the
points, but they measure the distance differently. OLS tries to minimize the vertical distance
between the fitted line and data points, while TLS tries to minimize the perpendicular distance.

The red line represents vertical distance, which OLS aims to minimize. The blue line represents
perpendicular distance, which TLS aims to minimize. Note that all blue lines are perpendicular
to the black line (hypothesis model), while all red lines are perpendicular to the x axis.

We might begin with a probabilistic formulation and fit the parameters via maximum likelihood
estimation, as before. Suppose on the plane, we have a true model that we want to recover from
some data points:

yi = axi (1)

and we observe data points in the form

(xi + zxi, yi + zyi) (2)

where the noise terms are normally distributed, i.e. zxi, zyi
iid∼ N (0, 1).

Applying the equation (1) that comes from the true model mentioned above, we rewrite (2) in the

45

46 CHAPTER 3. LOW-RANK APPROXIMATION

form (xi + zxi, axi + zyi), giving
y = ax−azx + zy︸ ︷︷ ︸

∼N (0,a2+1)

(3)

Given these assumptions, we can derive the likelihood for just 1 point under hypothesis a:

P (xi, yi; a) =
1√

2π(a2 + 1)
exp

(
−1

2

(yi − axi)2

a2 + 1

)
(4)

Thus the log likelihood is

logP (xi, yi; a) = constant− 1

2
log
(
a2 + 1

)
− 1

2

(yi − axi)2

a2 + 1
(5)

Observe that a shows up in three places, unlike the form that we are familiar with, where a only
appears in the quadratic term. Our usual strategy of setting the derivative equal to zero to find
a maximizer will not yield a nice system of linear equations in this case, so we’ll try a different
approach.

Solution

To solve the TLS problem, we develop another formulation that can be solved using the singular
value decomposition.

Assume we have n data points, xi ∈ Rd, yi ∈ R, and we stack them to get

(X + e)w = y + f (6)

where w ∈ Rd is the weight, and E and f are noise terms that we add to explain the error in the
model. Our goal is to minimize the Frobenius norm1 of the matrix composed of these error vectors.
Recall that from a probabilistic perspective, finding the most likely value of a Gaussian corresponds
to minimizing the squared distance from the mean. Since we assume the noise is 0-centered, we
want to minimize the sum of squares of each entry in the error matrix, which corresponds exactly to
minimizing the Frobenius norm. Thus we arrive at the following constrained optimization problem:

min
E,f

∥∥∥[E f
]∥∥∥2

f
subject to (X + E)w = y + f

In order to separate out the term being minimized, we rearrange the constraint equation as([
X y

]
+
[
E f

])
︸ ︷︷ ︸

∈Rn×(d+1)

[
w
−1

]
= 0 (7)

In linear algebraic terms, this expression says that the vector
[
w> −1

]>
lies in the nullspace of the

matrix on the left. Note that
[
X y

]
would not be full rank if we observe the data with no noise,

since we would have y = Xw, which implies that the columns are linearly dependent. But the
observations we get have noise, which makes the training data matrix full rank. To compensate,

1 Recall that the Frobenius norm is like the standard Euclidean norm but applied to the elements of a matrix instead of a
vector:

‖A‖2f =
∑
i

∑
j

A2
ij

3.1. TOTAL LEAST SQUARES 47

we must add something to it so that it loses rank, since otherwise the nullspace is just {0} and the
equation cannot be solved. We use the SVD coordinate system to achieve this:

[
X y

]
=
[
u1 . . . ud+1 | Urest

]

σ1 · · · 0
...

. . .
...

0 · · · σd+1
...

. . .
...

0 · · · 0

 v>1

...
v>d+1

 (8)

where σ1 ≥ σ2 ≥ · · · ≥ σd+1 > 0, and U and V are orthogonal matrices. Recall that this implies
that multiplication by U or V does not change the Frobenius norm, so minimizing ‖

[
E f

]
‖2f is

equivalent to minimizing ‖
[
E′ f ′

]
‖2f where E′, f ′ are E, f expressed in the SVD coordinates. Now

our problem reduces to finding E′, f ′ such that
σ1 · · · 0
...

. . .
...

0 · · · σd+1
...

. . .
...

0 · · · 0

+
[
E′ f ′

]
(9)

is not full rank and ‖
[
E′ f ′

]
‖2f is as small as possible. Since the matrix on the left is diagonal, we

can reduce its rank by simply zeroing out one of its diagonal elements. Therefore our perturbation[
E′ f ′

]
will have −σj in the (j, j) position for some j, and zeros everywhere else. To minimize the

size of the perturbation, we decide to eliminate the smallest σj by taking

[
E′ f ′

]
=

0 · · · 0
...

. . .
...

0 · · · −σd+1
...

. . .
...

0 · · · 0

Such a perturbation in SVD coordinates corresponds to a perturbation of

[
E f

]
=
[
u1 . . . ud+1 | Urest

]

0 · · · 0
...

. . .
...

0 · · · −σd+1
...

. . .
...

0 · · · 0

 v>1

...
v>d+1

 = −σd+1ud+1v
>
d+1

in the original coordinate system. It turns out that this choice is optimal, as guaranteed by the
Eckart-Young theorem, which is stated at the end for reference.

The nullspace of our resulting matrix is then

null
([

X y
]

+
[
E f

])
= null

 d∑
j=1

σjujv
>
j

 = span{vd+1}

where the last equality holds because {v1, . . . ,vd+1} form an orthogonal basis for Rd+1. To get the

48 CHAPTER 3. LOW-RANK APPROXIMATION

weight w, we find a scaling α such that
[
w> −1

]>
is in the nullspace, i.e.[

w
−1

]
= αvd+1

Once we have vd+1, or any scalar multiple of it, we simply rescale it so that the second component
is −1, and then the first component gives us w. Since vd+1 is a right-singular vector of

[
X y

]
, it

is an eigenvector of the matrix

[
X y

]>[
X y

]
=

[
X>X X>y
y>X y>y

]
(11)

So to find it we solve [
X>X X>y
y>X y>y

][
w
−1

]
= σ2

d+1

[
w
−1

]
(12)

To gain an extra perspective, ignore the bottom equation (we can do this because we have an extra
degree of freedom) and consider the solution of the top equation:

X>Xw −X>y = σ2
d+1w (13)

which can be rewritten as

(X>X− σ2
d+1I)w = X>y (14)

This result is like ridge regression, but with a negative regularization constant! Why does this make
sense? One of the motivations of ridge regression was to ensure that the matrix being inverted is in
fact nonsingular, and subtracting a scalar multiple of the identity seems like a step in the opposite
direction. We can make sense of this by recalling our original model:

X = Xtrue + Z

where Xtrue are the actual values before noise corruption, and Z is a zero-mean noise term. Then

E[X>X] = E[(Xtrue + Z)>(Xtrue + Z)]

= E[X>trueXtrue] + E[X>trueZ] + E[Z>Xtrue] + E[Z>Z]

= X>trueXtrue + X>true E[Z]︸︷︷︸
0

+E[Z]>︸ ︷︷ ︸
0

Xtrue + E[Z>Z]

= XtrueXtrue + E[Z>Z]

Observe that the off-diagonal terms of E[Z>Z] terms are zero because the ith and jth rows of Z are
independent for i 6= j, and the on-diagonal terms are essentially variances. Thus the −σ2

d+1I term
is there to compensate for the extra noise introduced by our assumptions regarding the independent
variables.

Eckart-Young Theorem

The Eckart-Young theorem essentially says that the best low-rank approximation (in terms of the
Frobenius norm) is obtained by throwing away the smallest singular values.

3.2. PRINCIPAL COMPONENT ANALYSIS 49

Theorem. Suppose A ∈ Rm×n has rank r ≤ min(m,n), and let A = UΣV>=
∑r

i=1 σiuiv
>
i be its

singular value decomposition. Then

Ak =

k∑
i=1

σiuiv
>
i = U

σ1 · · · 0 · · · 0
...

. . . 0 · · · 0
0 0 σk · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

V>

where k ≤ r, is the best rank-k approximation to A in the sense that

‖A−Ak‖f ≤ ‖A− Ã‖f

for any Ã such that rank(Ã) ≤ k.

3.2 Principal Component Analysis

In machine learning, the data we have are often very high-dimensional. There are a number of
reasons why we might want to work with a lower-dimensional representation:

• Visualization (if we can get it down to 2 or 3 dimensions), e.g. for exploratory data analysis

• Reduce computational load

• Reduce noise

Principal Component Analysis (PCA) is an unsupervised dimensionality reduction technique.
Given a matrix of data points, it finds one or more orthogonal directions that capture the largest
amount of variance in the data. Intuitively, the directions with less variance contain less information
and may be discarded without introducing too much error.

Projection

Let us first review the meaning of scalar projection of one vector onto another. If u ∈ Rd is a unit
vector, i.e. ‖u‖ = 1, then the projection of another vector x ∈ Rd onto u is given by x>u. This
quantity tells us roughly how much of the projected vector x lies along the direction given direction
u. Why does this expression make sense? Recall the slightly more general formula which holds for
vectors of any length:

x>u = ‖x‖‖u‖ cos θ

where θ is the angle between the vectors. In this case, since ‖u‖ = 1, the expression simplifies to
x>u = ‖x‖ cos θ. But since cosine gives the ratio of the adjacent side (the projection we want to
find) to the hypotenuse (‖x‖), this is exactly what we want:

50 CHAPTER 3. LOW-RANK APPROXIMATION

Formulating PCA

Let X ∈ Rn×d be our matrix of data, where each row is a d-dimensional data point. We will assume
that the data points have mean zero; otherwise we subtract the mean to make them zero-mean:

X − 1

n
1n1
>
nX, where 1n =

1
...
1

The motivation for this is that we want to find directions of high variance within the data, and
variance is defined relative to the mean of the data. If we did not zero-center the data, the directions
found would be heavily influenced by where the data lie relative to the origin, rather than where
they lie relative to the other data, which is more useful. For example, translating all the data by
some fixed vector could completely change the principal components if we did not center.

Recall that for any random variable Z,

Var(Z) = E[(Z − E[Z])2]

so if E[Z] = 0 then Var(Z) = E[Z2].

Hence once X is zero-mean, the variance of the projections is given by

εPCA var(u) =

n∑
i=1

(x>iu)2 = ‖Xu‖2

where u is constrained to have unit norm. We want to maximize the variance, so the objective
becomes

max
‖u‖=1

εPCA var(u) = max
‖u‖=1

‖Xu‖2 = max
u6=0

‖Xu‖2

‖u‖2
= max

u6=0

u>X>Xu

u>u

The ratio on the right is known as a Rayleigh quotient. We will see that Rayleigh quotients are
heavily related to eigenvalues, so anytime you see one, your eigensense should tingle.

Rayleigh Quotients

Suppose M ∈ Rd×d is a real, symmetric (M = M>) matrix. The Rayleigh quotient of M is defined
as

R(u;M) =
u>Mu

u>u

Denote the eigenvalues of M by λ1 ≥ λ2 ≥ · · · ≥ λd, with corresponding eigenvectors v1, . . . , vd.
That is, Mvj = λjvj for j = 1, · · · , d. If we stack the vj as columns of a matrix V :

V =
[
v1 · · · vd

]

3.2. PRINCIPAL COMPONENT ANALYSIS 51

then the eigenvector equations can be simulatneously written as

MV = V Λ

where
Λ = diag(λ1, · · · , λd)

Then since V is an orthogonal matrix, it is invertible with V −1 = V>, so

V>MV = Λ

Let u be a unit length vector. Since {vj} form a basis, we can write

u =

d∑
j=1

αjvj = V α

Then since V is an orthogonal matrix, ‖α‖ = 1 as well. Now

R(u;M) =
u>Mu

u>u
= α>V>MV α = α>Λα =

d∑
j=1

λjα
2
j

Since we have the constraint α1
1 + · · ·+ α2

d = 1, the right-most expression is a weighted average of
the eigenvalues and hence bounded by the smallest and largest of these:

λd ≤ R(u;M) ≤ λ1

The lower bound is achieved by putting αd = ±1, αj 6=d = 0, and the upper bound by α1 = ±1,
αj 6=1 = 0. The maximizing value can then be recovered by

d∑
j=1

αjvj = ±v1

That is, it is an eigenvector corresponding to the largest eigenvalue! Hence

λd = R(vd;M) ≤ R(u;M) ≤ R(v1;M) = λ1

Finally, note that since the Rayleigh quotient is scale invariant, i.e. R(γu;M) = R(u;M) for any
γ 6= 0, the inequality above holds for any scaling of the vectors, not just unit-length vectors.

Calculating the first principal component

Armed with our knowledge of Rayleigh quotients, the solution to the PCA problem is immediate:

max
‖u‖=1

εPCA var(u) = max
u6=0

u>X>Xu

u>u︸ ︷︷ ︸
R(u,X>X)

= λ1(X>X)

where the maximizer u∗ is a unit eigenvector corresponding to this eigenvalue. Writing X = UΣV>,
we have

X>X = V Σ>U>U︸︷︷︸
I

ΣV>= V Σ>ΣV>

The expression on the right is an eigendecomposition of X>X, so

λ1(X>X) = [Σ>Σ]11 = σ2
1(X)

with corresponding eigenvector v1, which is the first principal component.

52 CHAPTER 3. LOW-RANK APPROXIMATION

Finding multiple principal components

We have seen how to derive the first principal component, which maximizes the variance of the
projected data. But usually we will need more than one direction, since one direction is unlikely
to capture the data well. The basic idea here is to subtract off the contributions of the previ-
ously computed principal components, and then apply the same rule as before to what remains. If
u(1), . . . , u(k−1) denote the principal components already computed, this subtracting off is accom-
plished by

X̂ = X −
k−1∑
j=1

Xu(j)u
>
(j) = X

I − k−1∑
j=1

u(j)u
>
(j)

This expression should be understood as applying the same subtracting transformation to each row
of the data2:

x̂i =

I − k−1∑
j=1

u(j)u
>
(j)

xi = xi −
k−1∑
j=1

u(j)u
>
(j)xi

The vector u(j)u
>
(j)xi should be recognized as the orthogonal projection of xi onto the subspace

spanned by u(j). Hence x̂i is what’s left when you start with xi and then remove all the components

that belong to the subspaces spanned by each u(j).
3

We want to find the direction of largest variance subject to the constraint that it must be orthogonal
to all the previously computed directions. Thus we have a constrained problem of the form

u(k) = arg max
∀j<k: u>u(j)=0

u>X̂>X̂u

u>u

But we don’t want to actually compute X̂. Fortunately, we don’t have to! Consider that if u is
orthogonal to u(1), . . . , u(k−1) (as we constrain it to be), then

X̂u =

X − k−1∑
j=1

Xu(j)u
>
(j)

u = Xu−
k−1∑
j=1

Xu(j) u
>
(j)u︸ ︷︷ ︸
0

= Xu

Thus we can write the optimization problem above as

u(k) = arg max
∀j<k: u>u(j)=0

u>X>Xu

u>u

eliminating the need to compute X̂. Unsurprisingly, the solution to this problem is given by
u(k) = vk, that is, a unit eigenvector corresponding to the kth largest eigenvalue of X>X.

Rather than iteratively computing each new u(j), we can view the problem of finding the first k
principal components as a joint optimization problem over all k directions simultaneously. This
amounts to maximizing the variance as projected onto a k-dimensional subspace:

U = arg max
U>U=I

k∑
j=1

u>(j)X
>Xu(j) = arg max

U>U=I
tr
(
U>X>XU

)
2 To see this, take the transpose of both sides and use the symmetry of I −

∑
j u(j)u

>
(j)

.
3 This is exactly the same idea as the Gram-Schmidt process.

3.2. PRINCIPAL COMPONENT ANALYSIS 53

For matrices U with orthogonal columns we can define

R(U ;M) = R([u1, . . . , uk];M) =

k∑
j=1

R(uj ;M)

As before, the bounds for this expression are given in terms of the smallest and largest eigenvalues,
but now there are k of them:

λ1 + λ2 + · · ·+ λk = R([v1, v2, . . . , vk];M)

≥ R(U ;M)

≥ R([vd−k+1, . . . , vd−1, vd];M)

= λd−k+1 + · · ·+ λd−1 + λd

Hence, projection onto the subspace spanned by the first k leading eigenvectors maximizes the
variance of the projected data. We can find k principal components by computing the SVD,
X = UΣV>, and then taking the first k columns of the matrix V .

Projecting onto the PCA coordinate system

Once we have the principal components, we can use them as a new coordinate system. To do this
we must project the data onto this coordinate system, which can be done in the same way as above
(taking inner products). Each data point xi ∈ Rd becomes a new vector x̃i ∈ Rk, where k is the
number of principal components. The components of the projection write

[x̃i]j = x>iuj

We can compute all these vectors at once more efficiently using a matrix-matrix multiplication

X̃ = XU

where U ∈ Rd×k is a matrix whose columns are the principal components.

Below we plot the result of such a projection in the case d = k = 2:

Figure 3.1: Left:data points; Right: PCA projection of data points

Observe that the data are uncorrelated in the projected space. Also note that this example does
not show the full power of PCA since we have not reduced the dimensionality of the data at all –
the plot is merely to show the PCA coordinate transformation.

54 CHAPTER 3. LOW-RANK APPROXIMATION

Other derivations of PCA

We have given the most common derivation of PCA above, but it turns out that there are other
equivalent ways to arrive at the same formulation. These give us helpful additional perspectives on
what PCA is doing.

Gaussian assumption

Let us assume that the data are generated by a multivariate Gaussian distribution:

xi
iid∼ N (µ,Σ)

Then the maximum likelihood estimate of the covariance matrix Σ is

Σ̂ =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)>=
1

n
X>X

where x̄ is the sample average and the matrix X is assumed to be zero-mean as before. The
eigenvectors of Σ̂ and X>X are the same since they are positive scalar multiples of each other.

The contours of the multivariate Gaussian density form ellipsoids (see Figure 1). The direction of
largest variance (i.e. the first principal component) is the eigenvector corresponding to the smallest

eigenvalue of Σ−1, which is the largest eigenvalue of Σ. We do not know Σ in general, so we use Σ̂
in its place. Thus the principal component is an eigenvector corresponding to the largest eigenvalue
of Σ̂. As mentioned earlier, this matrix has the same eigenvalues and eigenvectors as X>X, so we
arrive at the same solution.

Minimizing reconstruction error

Ordinary least squares minimizes the vertical distance between the fitted line and the data points:

‖y −Xu‖2

We show that PCA can be interpreted as minimizing the perpendicular distance between the
principal component subspace and the data points, so in this sense it is doing the same thing as
total least squares.

The orthogonal projection of a vector x onto the subspace spanned by a unit vector u equals u
scaled by the scalar projection of x onto u:

Pux = (uu>)x = (x>u)u

Suppose we want to minimize the total reconstruction error:

εPCA Err(u) =

n∑
i=1

‖xi − Puxi‖2

=

n∑
i=1

(
‖xi‖2 − ‖Puxi‖2

)
(∗)

=

n∑
i=1

‖xi‖2 −
n∑
i=1

‖(x>iu)u‖2

3.3. CANONICAL CORRELATION ANALYSIS 55

=

n∑
i=1

‖xi‖2 −
n∑
i=1

(x>iu)2

︸ ︷︷ ︸
εPCA V ar(u)

where (∗) holds by the Pythagorean theorem

‖x− Pux‖2 + ‖Pux‖2 = ‖x‖2

since x− Pux ⊥ Pux. Then since the first term
∑

i ‖xi‖2 is constant with respect to u, we have

arg min
u

εPCA Err(u) = arg min
u

constant− εPCA V ar(u) = arg max
u

εPCA V ar(u)

Hence minimizing reconstruction error is equivalent to maximizing projected variance.

3.3 Canonical Correlation Analysis

The Pearson Correlation Coefficient ρ(X,Y) is a way to measure how linearly related (in other
words, how well a linear model captures the relationship between) random variables X and Y .

ρ(X,Y) =
Cov(X,Y)√

Var(X) Var(Y)

Here are some important facts about it:

• It is commutative: ρ(X,Y) = ρ(Y,X)

• It always lies between -1 and 1: −1 ≤ ρ(X,Y) ≤ 1

• It is completely invariant to affine transformations: for any a, b, c, d ∈ R,

ρ(aX + b, cY + d) =
Cov(aX + b, cY + d)√

Var(aX + b) Var(cY + d)

=
Cov(aX, cY)√

Var(aX) Var(cY)

=
a · c · Cov(X,Y)√
a2 Var(X) · c2 Var(Y)

=
Cov(X,Y)√

Var(X) Var(Y)

= ρ(X,Y)

The correlation is defined in terms of random variables rather than observed data. Assume now
that x,y ∈ Rn are vectors containing n independent observations of X and Y , respectively. Recall
the law of large numbers, which states that for i.i.d. Xi with mean µ,

1

n

n∑
i=1

Xi
a.s.−→ µ as n→∞

We can use this law to justify a sample-based approximation to the mean:

Cov(X,Y) = E[(X − E[X])(Y − E[Y])] ≈ 1

n

n∑
i=1

(xi − x̄)(yi − ȳ)

56 CHAPTER 3. LOW-RANK APPROXIMATION

where the bar indicates the sample average, i.e. x̄ = 1
n

∑n
i=1 xi. Then as a special case we have

Var(X) = Cov(X,X) = E[(X − E[X])2] ≈ 1

n

n∑
i=1

(xi − x̄)2

Var(Y) = Cov(Y, Y) = E[(Y − E[Y])2] ≈ 1

n

n∑
i=1

(yi − ȳ)2

Plugging these estimates into the definition for correlation and canceling the factor of 1/n leads us
to the sample Pearson Correlation Coefficient ρ̂:

ρ̂(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2 ·
∑n

i=1(yi − ȳ)2

=
x̃>ỹ√
x̃>x̃ · ỹ>ỹ

where x̃ = x− x̄, ỹ = y − ȳ

Here are some 2-D scatterplots and their corresponding correlation coefficients:

You should notice that:

• The magnitude of ρ̂ increases as X and Y become more linearly correlated.

• The sign of ρ̂ tells whether X and Y have a positive or negative relationship.

• The correlation coefficient is undefined if either X or Y has 0 variance (horizontal line).

Correlation and Gaussians

Here’s a neat fact: if X and Y are jointly Gaussian, i.e.[
X
Y

]
∼ N (0,Σ)

then we can define a distribution on normalized X and Y and have their relationship entirely
captured by ρ(X,Y). First write

ρ(X,Y) =
σxy
σxσy

Then

Σ =

[
σ2
x σxy

σxy σy2

]
=

[
σ2
x ρσxσy

ρσxσy σ2
y

]

3.3. CANONICAL CORRELATION ANALYSIS 57

so [
σ−1
x 0
0 σ−1

y

][
X
Y

]
∼ N

0,

[
σ−1
x 0
0 σ−1

y

]
Σ

[
σ−1
x 0
0 σ−1

y

]>
∼ N

(
0,

[
1 ρ
ρ 1

])

Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a method of modeling the relationship between two
point sets by making use of the correlation coefficient. Formally, given zero-mean random vectors
Xrv ∈ Rp and Yrv ∈ Rq, we want to find projection vectors u ∈ Rp and v ∈ Rq that maximizes the
correlation between X>rvu and Y>rvv:

max
u,v

ρ(X>rvu, Y
>
rvv) = max

u,v

Cov(X>rvu, Y
>
rvv)√

Var(X>rvu) Var(Y>rvv)

Observe that

Cov(X>rvu, Y
>
rvv) = E[(X>rvu− E[X>rvu])(Y>rvv − E[Y>rvv])]

= E[u>(Xrv − E[Xrv])(Yrv − E[Yrv])>v]

= u>E[(Xrv − E[Xrv])(Yrv − E[Yrv])>]v

= u>Cov(Xrv, Yrv)v

which also implies (since Var(Z) = Cov(Z,Z) for any random variable Z) that

Var(X>rvu) = u>Cov(Xrv, Xrv)u

Var(Y>rvv) = v>Cov(Yrv, Yrv)v

so the correlation writes

ρ(X>rvu, Y
>
rvv) =

u>Cov(Xrv, Yrv)u√
u>Cov(Xrv, Xrv)u · v>Cov(Yrv, Yrv)v

Unfortunately, we do not have access to the true distributions of Xrv and Yrv, so we cannot compute
these covariances matrices. However, we can estimate them from data. Assume now that we are
given zero-mean data matrices X ∈ Rn×p and Y ∈ Rn×q, where the rows of the matrix X are i.i.d.
samples xi ∈ Rp from the random variable Xrv, and correspondingly for Yrv. Then

Cov(Xrv, Yrv) = E[(Xrv − E[Xrv]︸ ︷︷ ︸
0

)(Yrv − E[Yrv]︸ ︷︷ ︸
0

)>] = E[XrvY
>
rv] ≈ 1

n

n∑
i=1

xiy
>
i =

1

n
X>Y

where again the sample-based approximation is justified by the law of large numbers. Similarly,

Cov(Xrv, Xrv) = E[XrvX
>
rv] ≈ 1

n

n∑
i=1

xix
>
i =

1

n
X>X

Cov(Yrv, Yrv) = E[YrvY
>
rv] ≈ 1

n

n∑
i=1

yiy
>
i =

1

n
Y>Y

58 CHAPTER 3. LOW-RANK APPROXIMATION

Plugging these estimates in for the true covariance matrices, we arrive at the problem

max
u,v

u>
(

1
nX
>Y
)
u√

u>
(

1
nX
>X
)
u · v>

(
1
nY
>Y
)
v

= max
u,v

u>X>Y v√
u>X>Xu · v>Y>Y v︸ ︷︷ ︸

ρ̂(Xu,Y v)

Let’s try to massage the maximization problem into a form that we can reason with more easily.
Our strategy is to choose matrices to transform X and Y such that the maximization problem is
equivalent but easier to understand.

1. First, let’s choose matrices Wx,Wy to whiten X and Y . This will make the (co)variance
matrices (XWx)>(XWx) and (YWy)

>(YWy) become identity matrices and simplify our ex-
pression. To do this, note that X>X is positive definite (and hence symmetric), so we can
employ the eigendecomposition

X>X = UxSxU
>
x

Since

Sx = diag(λ1(X>X), . . . , λd(X
>X))

where all the eigenvalues are positive, we can define the “square root” of this matrix by taking
the square root of every diagonal entry:

S
1/2
x = diag

(√
λ1(X>X), . . . ,

√
λd(X>X)

)
Then, defining Wx = UxS

−1/2
x U>x, we have

(XWx)>(XWx) = W>xX
>XWx

= UxS
−1/2
x U>xUxSxU

>
xUxS

−1/2
x U>x

= UxS
−1/2
x SxS

−1/2
x U>x

= UxU
>
x

= I

which shows that Wx is a whitening matrix for X. The same process can be repeated to

produce a whitening matrix Wy = UyS
−1/2
y U>y for Y .

Let’s denote the whitened data Xw = XWx and Yw = YWy. Then by the change of variables
uw = W−1

x u, vw = W−1
y v,

max
u,v

ρ̂(Xu, Y v) = max
u,v

(Xu)>Y v√
(Xu)>Xu(Y v)>Y v

= max
u,v

(XWxW
−1
x u)>YWyW

−1
y v√

(XWxW
−1
x u)>XWxW

−1
x u(YWyW

−1
y v)>YWyW

−1
y v

= max
uw,vw

(Xwuw)>Ywvw√
(Xwuw)>Xwuw(Ywvw)>Ywvw

= max
uw,vw

u>wX
>
wYwvw√

u>wX
>
wXwuw · v>wY>wYwvw

3.3. CANONICAL CORRELATION ANALYSIS 59

= max
uw,vw

u>wX
>
wYwvw√

u>wuw · v>wvw︸ ︷︷ ︸
ρ̂(Xwuw,Ywvw)

Note we have used the fact that X>wXw and Y>wYw are identity matrices by construction.

2. Second, let’s choose matrices Dx, Dy to decorrelate Xw and Yw. This will let us simplify
the covariance matrix (XwDx)>(YwDy) into a diagonal matrix. To do this, we’ll make use of
the SVD:

X>wYw = USV>

The choice of U for Dx and V for Dy accomplishes our goal, since

(XwU)>(YwV) = U>X>wYwV = U>(USV>)V = S

Let’s denote the decorrelated data Xd = XwDy and Yd = YwWy. Then by the change of variables
ud = D−1

x uw = D>xuw, vd = D−1
y vw = D>yvw,

max
uw,vw

ρ̂(Xwuw, Ywvw) = max
uw,vw

(Xwuw)>Ywvw√
u>wuw · v>wvw

= max
uw,vw

(XwDxD
−1
x uw)>YwDyD

−1
y vw√

(Dxuw)>Dxuw · (Dyvw)>Dyvw

= max
ud,vd

(Xdud)
>Ydvd√

u>dud · v>dvd

= max
ud,vd

u>dXdYdvd√
u>dud · v>dvd︸ ︷︷ ︸

ρ̂(Xdud,Ydvd)

= max
ud,vd

u>dSvd√
u>dud · v>dvd

Without loss of generality, suppose ud and vd are unit vectors4 so that the denominator becomes
1, and we can ignore it:

max
ud,vd

u>dSvd√
u>dud · v>dvd

= max
‖ud‖=1
‖vd‖=1

u>dSvd
‖ud‖‖vd‖

= max
‖ud‖=1
‖vd‖=1

u>dSvd

The diagonal nature of S implies Sij = 0 for i 6= j, so our simplified objective expands as

u>dSvd =
∑
i

∑
j

(ud)iSij(vd)j =
∑
i

Sii(ud)i(vd)i

where Sii, the singular values of X>wYw, are arranged in descending order. Thus we have a weighted
sum of these singular values, where the weights are given by the entries of ud and vd, which are

4 Why can we assume this? Observe that the value of the objective does not change if we replace ud by αud and vd by βvd,
where α and β are any positive constants. Thus if there are maximizers ud, vd which are not unit vectors, then ud/‖ud‖ and
vd/‖vd‖ (which are unit vectors) are also maximizers.

60 CHAPTER 3. LOW-RANK APPROXIMATION

constrained to have unit norm. To maximize the sum, we “put all our eggs in one basket” and
extract S11 by setting the first components of ud and vd to 1, and the rest to 0:

ud =

1
0
...
0

 ∈ Rp vd =

1
0
...
0

 ∈ Rq

Any other arrangement would put weight on Sii at the expense of taking that weight away from
S11, which is the largest, thus reducing the value of the sum.

Finally we have an analytical solution, but it is in a different coordinate system than our original
problem! In particular, ud and vd are the best weights in a coordinate system where the data has
been whitened and decorrelated. To bring it back to our original coordinate system and find the
vectors we actually care about (u and v), we must invert the changes of variables we made:

u = Wxuw = WxDxud v = Wyvw = WyDyvd

More generally, to get the best k directions, we choose

Ud =

[
Ik

0p−k,k

]
∈ Rp×k Vd =

[
Ik

0q−k,k

]
∈ Rq×k

where Ik denotes the k-dimensional identity matrix. Then

U = WxDxUd V = WyDyVd

Note that Ud and Vd have orthogonal columns. The columns of U and V , which are the projection
directions we seek, will in general not be orthogonal, but they will be linearly independent (since
they come from the application of invertible matrices to the columns of Ud, Vd).

Comparison with PCA

An advantage of CCA over PCA is that it is invariant to scalings and affine transformations of X
and Y . Consider a simplified scenario in which two matrix-valued random variables X,Y satisfy
Y = X + ε where the noise ε has huge variance. What happens when we run PCA on Y ? Since
PCA maximizes variance, it will actually project Y (largely) into the column space of ε! However,
we’re interested in Y ’s relationship to X, not its dependence on noise. How can we fix this? As
it turns out, CCA solves this issue. Instead of maximizing variance of Y , we maximize correlation
between X and Y . In some sense, we want the maximize “predictive power” of information we
have.

CCA regression

Once we’ve computed the CCA coefficients, one application is to use them for regression tasks,
predicting Y from X (or vice-versa). Recall that the correlation coefficient attains a greater value
when the two sets of data are more linearly correlated. Thus, it makes sense to find the k×k weight
matrix A that linearly relates XU and Y V . We can accomplish this with ordinary least squares.

Denote the projected data matrices by Xc = XU and Yc = Y V . Observe that Xc and Yc are
zero-mean because they are linear transformations of X and Y , which are zero-mean. Thus we can
fit a linear model relating the two:

Yc ≈ XcA

3.4. DIMENSIONALITY REDUCTION 61

The least-squares solution is given by

A = (X>cXc)
−1X>cYc

= (U>X>XU)−1U>X>Y V

However, since what we really want is an estimate of Y given new (zero-mean) observations X̃
(or vice-versa), it’s useful to have the entire series of transformations that relates the two. The
predicted canonical variables are given by

Ŷc = X̃cA = X̃U(U>X>XU)−1U>X>Y V

Then we use the canonical variables to compute the actual values:

Ŷ = Ŷc(V
>V)−1V>

= X̃U(U>X>XU)−1(U>X>Y V)(V>V)−1V>

We can collapse all these terms into a single matrix Aeq that gives the prediction Ŷ from X̃:

Aeq = U︸︷︷︸
projection

(U>X>XU)−1︸ ︷︷ ︸
whitening

(U>X>Y V)︸ ︷︷ ︸
decorrelation

(V>V)−1V>︸ ︷︷ ︸
projection back

3.4 Dimensionality Reduction

There are many issues with working in high dimensions. As the dimension d grows, machine learning
algorithms can become more computationally intensive. It also becomes more difficult to visualize
our data - humans are notoriously bad at visualizing beyond 3 dimensions. Additionally, redundant
features can add more noise than signal. There is a widely held belief that most natural data in
high dimensions (for example, data used in genomics) can be represented in a lower dimensional
space.

Dimensionality reduction is an unsupervised method - unlike supervised learning, there are no labels
that we need to match, no classes to predict. As such, defining problems becomes more subjective
and heuristic. One approach to dimensionality reduction is feature selection, in which we remove
features that we deem to be irrelevant based on some criteria. For example, the LASSO provides
this feature selection using L1 regularization.

Another approach to dimensionality reduction is learning latent features. This approach seeks to
find new latent features that are transformations of our given features that represent the data well.

Principal Components Analysis

PCA can be used for dimensionality reduction. Recall that finding the PCA decomposition of
X ∈ Rn×D amounts to finding the SVD

X = USV T

Suppose d << D, and let Ũ , S̃, Ṽ contain the first d columns of U, S, V respectively. Then Ṽ Tx
projects data x into a d-dimensional latent space. This projection into a lower-dimensional space

62 CHAPTER 3. LOW-RANK APPROXIMATION

Figure 3.2: The Swiss Roll dataset is a 2-dimensional manifold embedded in 3 dimensional space. We should
be able to represent it with a 2-dimensional feature space.

will typically cause some loss of information, but if the data really does live in a d-dimensional
subspace, then we should be able to reconstruct x via Ṽ Ṽ Tx and obtain something that is close to
the original x. PCA can be seen as finding a basis for a subspace that minimizes this reconstruction
error (low-rank approximation property).

Sometimes, it does not make sense to find orthogonal directions that capture the maximum variance,
as PCA does. Independent Components Analysis instead seeks directions that are statistically
independent, and is more suitable for some applications.

Nonnegative Matrix Factorization

NMF takes a non-negative matrix X, where each column is a data entry, and approximately factors
it into X = BH, where B is skinny, H is fat, and both these matrices are non-negative. The k-th
column of X is the sum of the columns of B, weighted according to the entries in the k-th column
of H. In this regard, each column of B can be seen as a feature that contributes to the data
in a meaningful way - the number of columns in B is the number of features we are allowed to
reconstruct the data with. If each column of X is a vectorized image, then each column of B will be
a vectorized image. NMF learns a part-based representation of the data, since the reconstruction is
a non-negative linear combination of features of the same dimension as the data. It turns out that
NMF will tend to produce sparser features than PCA. NMF has applications in computer vision
and recommender systems, among other fields.

Multidimensional Scaling

MDS seeks to learn a low-dimensional representation such that pairwise distances between points
are exactly preserved in the latent representation. Specifically, if Xi ∈ RD and Wij = ‖Xi −Xj‖2,
then MDS finds Yi such that ‖Yi − Yj‖2 ≈ Wij . More generally, one can use any dissimilarity
measure d(Xi, Xj) in place of the norm. If the dissimilarity measure is a metric, then MDS is
equivalent to PCA. MDS is typically used to visualize high dimensional data.

Note that while MDS captures interpoint distances in its low-dimensional embedding, it is incapable
of capturing local geometric structure - for example, in the Swiss roll dataset shown above, points
in the red region are dissimilar from points in the blue region, but are relatively close to these points
in distance, so MDS will provide a representation where red and blue points are not separated.

3.4. DIMENSIONALITY REDUCTION 63

Nonlinear Methods

Linear methods such as PCA are not well-suited to capture intrinsic geometric structure in data.
There are several approaches to solving this problem:

• Kernel methods: it is possible to derive a kernelized version of PCA, for example.

• Manifold learning: an n-manifold5 is a surface that locally resembles n-dimensional Euclidean
space. For example, the Swiss roll is a 2-manifold embedded in 3-dimensional space. In
manifold learning, we learn a mapping from data to a low-dimensional manifold - for example,
a mapping from Swiss roll to 2-dimensional plane.

Isometric Feature Mapping (IsoMap)

IsoMap performs MDS on the geodesic distances between points, as follows:

(1) Construct a local neighborhood graph by connecting each point with its k nearest neighbors.

(2) Compute all-pairs shortest path distances (these are the geodesic distances).

(3) Apply MDS on geodesic distances.

If we apply IsoMap to the Swiss roll, we see that while the Euclidean distance between the red and
blue regions is low, the geodesic distance is high - the geodesic distance between points represents
how far we would have to go if we were walking on the Swiss roll manifold in 2 dimensions.

IsoMap has been used effectively for dimensionality reduction in facial data.

Next time: Laplacian Eigenmaps, t-SNE.

5For the mathematically inclined, a manifold is a second-countable Hausdorff topological space such that each point has a
neighborhood homeomorphic to a neighborhood in Euclidean space. Most machine learning researchers do not care for these
definitions and will call almost anything a manifold.

64 CHAPTER 3. LOW-RANK APPROXIMATION

Chapter 4

Gradient Descent, Newton’s Method

4.1 Nonlinear Least Squares

All the models we’ve seen so far are linear in the parameters we’re trying to learn. That is, our
prediction ŷ = f(x; θ) is some linear function of the parameters θ. For example, in OLS, θ = w and
the residuals ri are computed by yi − w>xi, which is linear in the components of w. In the case of
least-squares polynomial regression, the predicted value is not a linear function of the input x, but
it is still a linear function of the parameters.

However, we may have need for models which are nonlinear function of their parameters. We
consider a motivating example first.

Noisy Distance Readings

Suppose we want to estimate the 2D position θ = (θ1, θ2) of some entity, for example a robot.
The information we have to work with are noisy distance estimates Yi ∈ R from m sensors whose
positions Xi ∈ R2 are fixed and known. If we assume i.i.d. Gaussian noise as usual, our statistical
model has the form

Yi = ‖Xi − θ‖+Ni, Ni
iid∼ N (0, σ2), i = 1, . . . ,m

where
‖Xi − θ‖ =

√
(Xi1 − θ1)2 + (Xi2 − θ2)2

Here our prediction is
ŷ = f(x; θ) = ‖x− θ‖

which is clearly not linear in θ.

Formulation from MLE

More generally, let us assume a model similar to the one above, but where f is now some arbitrary
differentiable function and θ ∈ Rd:

Yi = f(Xi; θ) +Ni, Ni
iid∼ N (0, σ2), i = 1, . . . ,m

Note that this implies Yi | Xi ∼ N (f(Xi; θ), σ
2).

65

66 CHAPTER 4. GRADIENT DESCENT, NEWTON’S METHOD

The maximum likelihood estimator is given by

θ̂mle = arg max
θ

logP (y1, . . . , ym | x1, . . . , xm; θ, σ)

= arg max
θ

log

m∏
i=1

P (yi | xi; θ, σ)

= arg max
θ

m∑
i=1

logP (yi | xi; θ, σ)

= arg max
θ

m∑
i=1

log
1√

2πσ2
exp

(
−(yi − f(xi; θ))

2

2σ2

)

= arg max
θ

m∑
i=1

[
−1

2
log
(

2πσ2
)
− 1

2σ2
(yi − f(xi; θ))

2

]

= arg min
θ

m∑
i=1

(yi − f(xi; θ))
2

The last step holds because the first term in the sum is constant w.r.t. the optimization variable
θ, and we flip from max to min because of the negative sign.

Observe that the objective function is a sum of squared residuals as we’ve seen before, even though
the function f is nonlinear in general. For this reason the method is called nonlinear least
squares.

Unfortunately, there is no closed-form solution for θ̂mle in general. Later we will see an iterative
method for computing it.

Solutions to Nonlinear Least Squares

Motivated by the MLE formulation above, we consider the following optimization problem:

min
θ
εLS(θ) = min

θ

∑
i

(yi − f(xi; θ))
2

One way to minimize a function is to use calculus. We know that the gradient of the objective
function at any minimum must be zero, because if it isn’t, we can take a sufficiently small step in
the direction of the negative gradient that the objective function’s value will be reduced.

Thus, the first-order optimality condition that needs to be satisfied is:

∇θεLS = 2
∑
i

(yi − f(xi; θ))∇θf(xi; θ) = 0

In compact matrix notation:

J(θ)>(Y − F (θ)) = 0

where

F (θ) =

f(x1; θ)
...

f(xn; θ)

4.1. NONLINEAR LEAST SQUARES 67

J(θ) =

∇θf(x1; θ)>

...
∇θf(xn; θ)>

 = ∇θF , the Jacobian of F

Observe that when f is linear in θ (i.e. f(xi; θ) = θ>xi), the gradient ∇θεLS will only have θ in one
place because the term ∇θf(xi; θ) will only depend on xi:

∇θεLS = 2
∑
i

(yi − θ>xi)∇θ(θ>xi) = 2
∑
i

(yi − θ>xi)xi

and it is easy to derive a closed-form solution for θ in terms of the yi’s and xi’s:

2X>(Y −Xθ) = 0

2X>Y − 2X>Xθ = 0

X>Y = X>Xθ

θ = (X>X)−1X>Y

It’s just OLS!

If, however, f were not linear in θ, the term ∇θf(xi; θ) would contain more θ terms (since differ-
entiating once wouldn’t be enough to make them go away), and it would not be possible to write
out a closed-form solution for θ.

Remark: Without more assumptions on f , the NLS objective is not convex in general. This
means that the first-order optimality condition is a necessary but not sufficient condition for a
local minimum. That is, it is possible that the derivative is zero for some value of θ, but that value
is not a local minimum. It could be a saddle point, or worse, a local maximum! Even if it is a
minimum, it may not be the global minimum.

The Gauss-Newton algorithm

Since there is no closed-form solution to the nonlinear least squares optimization problem, we resort
to an iterative algorithm, the Gauss-Newton algorithm1, to tackle it. At each iteration, this
method linearly approximates the function F about the current iterate and solves a least-squares
problem involving the linearization in order to compute the next iterate.

Let’s say that we have a “guess” for θ at iteration k, which we denote θ(k). We can then approximate
F (θ) to first order using a Taylor expansion about θ(k):

F (θ) ≈ F̃ (θ) := F (θ(k)) +∇θF (θ(k))(θ − θ(k))

= F (θ(k)) + J(θ(k))∆θ

where ∆θ := θ − θ(k).

Now since F̃ is linear in ∆θ (the Jacobian and F are just constants: functions evaluated at θ(k)),
we can use the closed form solution for ∆θ from the optimality condition to update our current
guess θ(k). Applying the first-order optimality condition from earlier to the objective F̃ yields the
following equation:

0 = JF̃ (θ)>(Y − F̃ (θ)) = J(θ(k))>
(
Y −

(
F (θ(k)) + J(θ(k))∆θ

))
1 For some reason this algorithm was called gradient descent in lecture, but it is not really gradient descent. However,

like gradient descent, it is an iterative, first-order optimization algorithm. Another popular method for solving nonlinear least
squares, the Levenberg-Marquardt algorithm, is a sort of interpolation between Gauss-Newton and gradient descent.

68 CHAPTER 4. GRADIENT DESCENT, NEWTON’S METHOD

Note that we have used the fact that the Jacobian of the linearized function F̃ , evaluated at any θ,
is precisely J(θ(k)). This is because F̃ is affine where the linear map is J(θ(k)), so the best linear
approximation is just that.

Writing J = J(θ(k)) for brevity, we have

J>Y = J>(F (θ(k)) + J∆θ)

J>(Y − F (θ(k))) = J>J(∆θ)

∆θ = (J>J)−1J>(Y − F (θ(k)))

= (J>J)−1J>∆Y

where ∆Y := Y − F (θ(k)). By comparing this solution to OLS, we see that it is effectively solving

∆θ = arg min
δθ
‖Jδθ −∆Y ‖2

Since δF ≈ Jδθ close to θ(k), this is saying that we choose a change to the weights that corrects
for the current error in the function values, but it bases this calculation on the linearization of F .
Recalling that ∆θ = θ − θ(k), we can improve upon our current guess θ(k) with the update

θ(k+1) = θ(k) + ∆θ

= θ(k) + (J>J)−1J>∆Y

Here’s the entire process laid out in steps:

1. Initialize θ(0) with some guess

2. Repeat until convergence:

(a) Compute Jacobian with respect to the current iterate, J = J(θ(k))

(b) Compute ∆Y = Y − F (θ(k))

(c) Update: θ(k+1) = θ(k) + (J>J)−1J>∆Y

Note that the solution found will depend on the initial value θ(0) in general.

The choice for measuring convergence is up to the practitioner. Some common choices include
testing changes in the objective value:∣∣∣∣∣ε(k+1) − ε(k)

ε(k)

∣∣∣∣∣ ≤ threshold

or in the iterates themselves:

max
j

∣∣∣∣∣∣∆θjθ
(k)
j

∣∣∣∣∣∣ ≤ threshold

4.2 Gradient Descent

Gradient descent is an iterative algorithm for finding local minima of differentiable functions. For
an analogy, imagine walking downhill surrounded a thick fog that prevents you from seeing the
height of the land around you, other than being able to tell which direction is steepest.

4.2. GRADIENT DESCENT 69

Recall that the gradient of f at x, denoted ∇f(x), points in the direction of steepest ascent.
Conversely, the negative gradient points in the direction of steepest descent. Therefore, if we take
a small step in the direction of the negative gradient, we will decrease the value of the function.

The update performed is
xi+1 = xi − αi∇f(xi)

where αi > 0 is the step size. We may choose αi to be a fixed constant, but in many cases it is
decayed to zero over the course of training.

70 CHAPTER 4. GRADIENT DESCENT, NEWTON’S METHOD

Chapter 5

Neural Networks

5.1 Neural Networks

Neural networks are a class of compositional function approximators. Unlike other function ap-
proximators we have seen (e.g. polynomials), they are nonlinear in their parameters.

(Aside) In information processing we have several perspectives:

• Procedural perspective – thinking in terms of an imperative programming language

• Functional perspective – mathematical equations and reasoning

• Circuit/graph perspective – information is processed as it flows through the system

We will consider neural nets from the circuit/graph perspective.

Consider the circuits below:

These circuits represent matrix multiplications, with the weights on the edges being the entries of
the matrix. Assuming that the flow of information is from left to right, the circuit on the left is
multiplication by a 3 × 4 matrix, and the circuit on the right is multiplication by a 2 × 4 matrix
followed by multiplication by a 3× 2 matrix.

Are these two circuits equally expressive? Certainly not, as the one on the left has rank at most
2, while the one on the right may have rank 3. However, the one on the left has more layers

71

72 CHAPTER 5. NEURAL NETWORKS

of processing, so it seems like it should be more expressive. The key thing that is missing is
nonlinearity.

Let’s insert a nonlinear function, called an activation function, after these linear computations. We
would like to choose this activation function to make the circuit a universal function approximator.1

A key observation is that piecewise-constant functions are universal function approximators:

The nonlinearity we use, then, is the step function:

u(x) =

{
1 x ≥ 0

0 x < 0

We can build very complicated functions from this simple step function by combining translated
and scaled versions of it. Observe that

• If a, b ∈ R, the function x 7→ u(a + bx) is a translated (and, depending on the sign of b,
possibly flipped) version of the step function:

1 This essentially means that given any continuous function, we can choose the weights such that the output of the circuit
can be made arbitrarily close to the output of the given function for all inputs.

5.1. NEURAL NETWORKS 73

• If c 6= 0, the function x 7→ cu(x) is a vertically scaled version of the step function.

Assume that our circuit has the following structure:

The input x is one-dimensional, and the weight on x to neuron i is bi. We also introduce a constant
1, whose weight ai into neuron i is ai. (This is referred to as the bias, but it has nothing to do
with bias in the sense of the bias-variance tradeoff. It’s just there to provide the network with the
ability to shift the function.) The outputs of the intermediate nodes are ai + bix, and then we pass
each of these through the activation function u. The output of the network is a linear combination
of the outputs of the activation functions:

h(x) =

d∑
i=1

ciu(ai + bix)

where d is the number of intermediate neurons.

Choosing weights

With a proper choice of ai, bi, and ci, this function can approximate any continuous function we
want. But the question remains: given some target function, how do we choose these parameters
in the appropriate way?

Let’s try a familiar technique: least squares. Assume we have training data {(xk, yk)}nk=1. We aim
to solve the optimization problem

min
a,b,c

n∑
k=1

ek︸ ︷︷ ︸
f(a,b,c)

74 CHAPTER 5. NEURAL NETWORKS

where

ek = (yk − h(xk))
2

To run gradient descent, we need derivatives of the loss with respect to our optimization variables.
We compute via the chain rule

∂f

∂ci
=

n∑
k=1

−2(yk − h(xk))
∂h

∂ci
(xk)︸ ︷︷ ︸

=u(ai+bixk)

We see that if this particular step is “off”, as in u(ai + bixk) = 0, then

∂ek
∂ci

= 0

so no update will be made for that example. More notably, consider the derivative with respect to
ai:

∂f

∂ai
=

n∑
k=1

−2(yk − h(xk))
∂h

∂ai
(xk)︸ ︷︷ ︸
0

Similarly,
∂f

∂bi
= 0

The derivative at the jump is undefined, but in practice we will never hit that point of discontinuity.
The bigger issue is that gradient descent will do nothing to optimize the ai and bi weights. Even
though the step function is useful for the purpose of showing the approximation capabilities of neural
networks, it is seldom used in practice because it cannot be trained by conventional gradient-based
methods.

The next simplest universal approximator is the class of piecewise-linear functions. Just as
piecewise-constant functions can be achieved by combinations of the step function as a nonlinearity,
piecewise-linear functions can be achieved by combinations of the rectified linear unit (ReLU)
function

u(x) = max(0, x)

Now we can calculate the gradients:

∂f

∂ci
=

n∑
k=1

−2(yk − h(xk)) max(0, ai + bix)

5.1. NEURAL NETWORKS 75

∂f

∂ai
=

n∑
k=1

−2(yk − h(xk))ci
∂

∂ai
max(0, ai + bix) =

n∑
k=1

−2(yk − h(xk))ci

{0 if ai + bix < 0

1 if ai + bix > 0

∂f

∂bi
=

n∑
k=1

−2(yk − h(xk))ci
∂

∂bi
max(0, ai + bix) =

n∑
k=1

−2(yk − h(xk))ci

{0 if ai + bix < 0

xi otherwise

Crucially, we see that the gradient with respect to a and b is not uniformly zero, unlike with the
step function.

If the ReLU is active, both weights are adjustable. Depending on the gradient of the objective
function, our ReLUs can move to the left or right, increase or decrease their slope, and flip direction.

If the weight initialization turns off the ReLU for every training point, then the gradient descent
updates will not change the parameters of the neuron, and we say it is dead. Random initialization
should result in a reasonable number of active neurons. There are more sophisticated initialization
methods, such as “Glorot” initialization2, which take into account the number of connections and
are more effective in practice. Leaky ReLUs, which have a small slope in the section where the
ReLU is flat (say, u(x) = .01x when x < 0) are sometimes used to provide some small gradient
signal to avoid dead neurons.

Neural networks are universal function approximators

The celebrated neural network universal approximation theorem, due to Kurt Hornik3, tells us that
neural networks are universal function approximators in the following sense.

Theorem. Suppose u : R→ R is nonconstant, bounded, nondecreasing, and continuous4, and let
S ⊆ Rn be closed and bounded. Then for any continuous function f : S → R and any ε > 0, there
exists a neural network with one hidden layer and a finite number of neurons, which we can write

h(x) =

d∑
i=1

ciu(ai + b>ix)

2 See Understanding the difficulty of training deep feedforward neural networks.
3 See Approximation Capabilities of Multilayer Feedforward Networks.
4 Both ReLU and sigmoid satisfy these requirements.

76 CHAPTER 5. NEURAL NETWORKS

such that
|h(x)− f(x)| < ε

for all x ∈ S.

There’s some subtlety in the theorem that’s worth noting. It says that for any given continuous
function, there exists a neural network of finite size that uniformly approximates the given func-
tion. However, it says nothing about how well any particular architecture you’re considering will
approximate the function. It also doesn’t tell us how to compute the weights.

It’s also worth pointing out that in the theorem, the network consists of just one hidden layer. In
practice, people find that using more layers works better.

5.2 Training Neural Networks

ReLUs as Universal Function Approximators

Last time we saw that the second-most simple universal function approximator was the piecewise
linear function. Specifically, we talked about a specific component of piecewise linear functions
called the ReLU, which is defined as f(x) = max(0, x).

In our discussion of neural nets, we saw that we would have the ReLUs act on linear combinations
of neural net units to introduce nonlinearity to the hypothesis function encoded by the neural net.
For example, when acting on one input (and a bias term) our ReLUs will take in arguments of the
form a+ bx. Let’s see an example of how expressive they can be. Suppose we wanted to build this
function from ReLUs:

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

0.5

1

1.5

2

2.5

3

f(x) = x− 2 f(x) = 6− x
f(x) = 2x− 12

All we would need to do is center a ReLU at each hinge of the function and give it the appropriate
parameters. For example, to match f from 0 to 3, we would only need the ReLU defined by
max(0, x − 2). The full function can be matched with this linear combination of ReLUs (and a
constant bias term):

f(x) = −1 + max(0, x− 2)−max(0, x− 2) + max(0, 6− x)−max(0, 5− x) + max(0, 2x− 12)

Here’s the plot on Wolfram Alpha.

https://www.wolframalpha.com/input/?i=plot+f(x)+%3D+max(0,+x-2)+-+max(0,+x-3)+%2B+max(0,+6-x)+-+max(0,+5-x)+-+1+%2B+max(0,+2x-12)

5.2. TRAINING NEURAL NETWORKS 77

Figure 5.1: f(x1, x2) = max(0, 2x1 + 3x2)

In higher dimensions, i.e. when a ReLU takes in an arbitrarily long dot-product as input: f(x) =
max(0, w>x), the unit can be viewed as representative of a “ramp” in the higher-dimensional space.
Here’s a plot of a 3-D ramp:

Derivatives in Neural Nets

We have a very powerful tool at our disposal in neural nets, but it does us no good if we can’t
train them. Let’s talk about how this happens. The output units of a neural net can be thought of
as akin to a regression or hypothesis function determined by the parameters of some model.
For example, in ordinary least-squares regression, we learned a hypothesis function f(x) = w>x
determined by the parameter w. It is just the same with neural nets, except that our hypothesis
function can be arbitrarily complex. Consider the following neural net:

The hypothesis function that this neural net encodes is represented by the two outputs, O =
[O1, O2].

78 CHAPTER 5. NEURAL NETWORKS

Since neural net outputs are not linear functions of their inputs, there is no closed-form solution for
the minimum to any reasonable loss function defined on them. Thus, we resort to using gradient
descent to train them. To run gradient descent, we must calculate the derivative of the loss function
with respect to the parameters of the neural net. In the network depicted above, the parameters
are W = [w1, w2, w3], a, and V = [v1, v2]. These are the values of the model which we are allowed
to tweak. Backpropagation is an efficient manner of computing these gradients that exploits the
nested structure of neural nets.

The Chain Rule

This section is an aside meant to recall your knowledge about the chain rule in multivariable
calculus. Let’s take a look at two slices of our neural net from above.

If you want to compute the derivatives of upstream stuff with respect to the weights on these
connections, you need only consider the input of a single connection at a time. That is to say:

∂L

∂w1
= upstream terms · ∂H1

∂w1

completely independent of x2 and x3.

If you want to compute the derivatives of upstream stuff with respect to the weights downstream
of these connections, you’ll need to sum over the contributions of the inputs to these connections.

5.2. TRAINING NEURAL NETWORKS 79

That is to say:
∂L

∂a
=
∑
i

upstream termsi ·
∂Oi
∂a

Backpropagation

A naive way of calculating the gradients might be to differentiate the loss with respect to each
parameter we’re interested in updating, one at a time. However, because the later layers of a
neural net are just functions of the earlier layers, doing this would be wasteful. We can see this by
taking a look at the derivatives of L with respect to v1, a, and w1 in our example:

∂L

∂v1
=

∂L

∂O1

∂O1

∂v1

∂L

∂a
=

∂L

∂O1

∂O1

∂a
+

∂L

∂O2

∂O2

∂a
∂L

∂w1
=

∂L

∂O1

∂O1

∂w1
+

∂L

∂O2

∂O2

∂w1

You should notice that by invoking the chain rule, we see that the term ∂L
∂O1

is common to all

three derivatives, and the term ∂L
∂O2

is common to the second two. This suggests that we should
consider caching the results of the derivatives of weights in the later layers and reuse them in our
computation of the derivatives of the weights of earlier layers: a dynamic programming approach.

The following is a general outline of how backpropagation might be implemented. Keep in mind
that the specifics, especially those pertaining to the structure of each successive layer, will depend
heavily on the architecture of the neural net in question.

1. The forward pass: populate each unit of the neural net with the value it’s supposed to have
(i.e., invoke all your dot-products and ReLUs).

2. Start at the upstream end, i.e. the outputs. Compute the gradient of the loss function with
respect to the outputs (these are just numbers), and memoize/cache them.

3. Go back one layer. Now, treat your outputs Oi as endpoints of your neural net, and compute
the gradients w.r.t. the previous layer, caching these as well. The contributions to the final
loss should be summed appropriately over the paths through which they influence the loss.

4. Repeat until you hit the last layer (the inputs). You should now have all the necessary
components to compute the derivative of the loss function with respect to any parameter of
the neural net.

Speeding up Gradient Descent

Backpropagation efficiently computes gradients, so we can run gradient descent to optimize neural
nets. However, computing the full gradient may be expensive, particularly if we have a lot of data.
Consider that the loss function in machine learning typically is an average (or sum, but this is the
same up to a constant factor) of errors over the training points:

L(w) =
1

n

n∑
i=1

`(h(xi, w), yi)

80 CHAPTER 5. NEURAL NETWORKS

By the linearity of differentiation, we easily see that

∇L(w) =
1

n

n∑
i=1

∇w`(h(xi, w), yi)

So computing the gradient takes time in linear in n. In the “big data” regime, n is very large, so
this cost may be unacceptable.

For this reason, we have reason to try to approximate the gradient of the loss function of a neural
net by taking a representative random sample of the inputs to calculate the gradient over. Since
gradient descent is an iterative process, we might consider forfeiting the exactness of the update of
each individual iteration in exchange for better speed of computation. If we take the gradient over
a random sample of these training samples at each step, we will get a noisy but unbiased estimate
of the true gradient. The noise in each step is often an acceptable tradeoff in exchange for the
opportunity to take many more steps.

In the regular gradient descent update, we have the policy:

w(k+1) ← w(k) − αk∇wL(w(k))

In stochastic gradient descent, we have the update rule:

w(k+1) ← w(k) − αkGk

where Gk is a random variable which satisfies E[Gk] = ∇L(w(k)). Typically Gk is constructed
by sampling m < n training points uniformly at random (say the index is Ik ⊂ {1, . . . , n}) and
computing the gradient on these points only:

Gk =
1

m

∑
i∈Ik

∇w`(h(xi), yi)

We denote the true optimum by w∗. Our goal is to show the following:

lim
k→∞

E[‖w(k) − w∗‖2] = 0

We make the following assumptions in the analysis below:

1. The loss function f is `-strongly convex; that is, there exists a constant ` > 0 such that
(∇f(x)−∇f(y))>(x− y) ≥ `‖x− y‖2 for all x, y.

2. The expected squared norm of the stochastic gradient is bounded as E[‖Gk‖2] ≤M2 <∞.

We begin by expanding the desired term:

E[‖w(k+1) − w∗‖2]

= E[(w(k+1) − w∗)>(w(k+1) − w∗)]
= E[(w(k) − w∗ − αkGk)>(w(k) − w∗ − αkGk)]
= E[‖w(k) − w∗‖2]− 2αkE[(w(k) − w∗)>Gk] + α2

kE[‖Gk‖2]

For brevity, define
dk = E[‖w(k) − w∗‖2]

Our assumption on the expected squared norm of Gk implies

dk+1 ≤ dk − 2αkE[(w(k) − w∗)>Gk] + α2
kM

2

5.2. TRAINING NEURAL NETWORKS 81

To evaluate the expectation, we condition on the past (i.e. all random decisions that contributed
to w(k), including past choices of points to evaluate the gradient at). By the law of iterated
expectation, we have

E[(w(k) − w∗)>Gk] = Epast

[
E[(w(k) − w∗)>Gk | past]

]
Here the inner expectation is taken over the choice of training points used to compute the stochastic
gradient. But given the past (which includes w(k)), we already know w(k), so

E[(w(k) − w∗)>Gk | past] = (w(k) − w∗)>E[Gk | past]

The current gradient Gk depends on our new choice of evaluation point, which is presumed inde-
pendent of the past and thus E[Gk | past] = E[Gk] = ∇f(w(k)), where the second equality holds
because Gk is an unbiased estimator for the true gradient at w(k). Putting all this together, we
have

E[(w(k) − w∗)>Gk] = Epast[(w
(k) − w∗)>∇f(w(k))]

First order necessary conditions for optimality imply that ∇f(w∗) = 0. Then by the assumption
of `-strong convexity, we have

(w(k) − w∗)>∇f(w(k)) = (w(k) − w∗)>(∇f(w(k))−∇f(w∗)) ≥ `‖w(k) − w∗‖22

Taking expectations yields

E[(w(k) − w∗)>∇f(w(k))] ≥ `E[‖w(k) − w∗‖22] = `dk

Putting this back into our inequality for dk+1, we get

dk+1 ≤ dk − 2αk`dk + α2
kM

2 = (1− 2αk`)dk + α2
kM

2

The α2
kM

2 term was incurred by the randomness in our updates. We can try to send this term to
0 by diminishing the step size αk over time – but decreasing αk will also decrease the effect of the
(1− 2αk`)dk term, so we need to choose our step size carefully.

Setting αk = 1
2`k gives

dk+1 ≤
(

1− 1

k

)
dk +

1

(2`k)2
M2

Let S = M2

(2`)2 so that this inequality becomes

dk+1 ≤
(

1− 1

k

)
dk +

1

k2
S

To analyze this recurrence, we expand the first few terms:

d2 ≤ S

d3 ≤
(

1− 1

2

)
d2 +

1

22
S =

1

1 · 2
S +

1

22
S

d4 ≤
(

1− 1

3

)
d3 +

1

32
S =

1

1 · 3
S +

1

2 · 3
S +

1

32
S

d5 ≤
(

1− 1

4

)
d4 +

1

42
S =

1

1 · 4
S +

1

2 · 4
S +

1

3 · 4
S +

1

42
S

82 CHAPTER 5. NEURAL NETWORKS

Inductively, we find that

dn ≤
S

n− 1

n−1∑
j=1

1

j

Because the harmonic sum
∑n−1

j=1
1
j behaves as ln(n), we see that dn is upper bounded in the limit

by S ln(n)
n → 0. Hence lim

n→∞
dn = 0 as desired.

Chapter 6

Classification

6.1 Classification

The task of classification differs from regression in that we are now interested in assigning a
d-dimensional data point one of a discrete number of classes instead of assigning it a continuous
value. Thus, the task is simpler in that there are fewer choices of labels per data point but more
complicated in that we now need to somehow factor in information about each class to obtain the
classifier that we want.

Here’s a formal definition: Given a training set D = {(xi, ti)}ni=1 of n points, with each data point
xi ∈ Rd paired with a known discrete class label ti ∈ {1, 2, ...,K}, train a classifier which, when fed
any arbitrary d-dimensional data point, classifies that data point as one of the K discrete classes.

Classifiers have strong roots in probabilistic modeling. The idea is that given an arbitrary datapoint
x, we classify x with the class label k∗ that maximizes the posterior probability of the class label
given the data point:

k∗ = arg max
k

P (class = k|x)

Consider the example of digit classification. Suppose we are given dataset of images of handwritten
digits each with known values in the range {0, 1, 2, . . . , 9}. The task is, given an image of a
handwritten digit, to classify it to the correct digit. A generic classifier for this this task would
effectively form a posterior probability distribution over the 10 possible digits and choose the digit
that achieves the maximum posterior probability:

k∗ = arg max
k∈{0,1,2...,9}

P (digit = k|image)

There are two main types of models that can be used to train classifiers: generative models and
discriminative models.

6.2 Generative Models

Generative models involve explicitly forming:

1. A prior probability distribution over all classes k ∈ {1, 2, . . . ,K}

P (k) = P (class = k)

83

84 CHAPTER 6. CLASSIFICATION

2. A conditional probability distribution for each class k

fk(x) = f(x|class k)

In total there are K + 1 probability distributions: 1 for the prior, and K for all of the individual
classes. Note that the prior probability distribution is a categorical distribution over the K discrete
classes, whereas each class conditional probability distribution is a continuous distribution over Rd
(often represented as a Gaussian). Using the prior and the conditional distributions in conjunction,
we conclude (from Bayes’ rule) that we are effectively solving

k∗ = arg max
k

P (class = k|x) = arg max
k

P (k) fk(x)

f(x)
= arg max

k
P (k) fk(x)

In the case of the digit classification, we are solving for

k∗ = arg max
k∈{0,1,2...,9}

P (digit = k) f(image|digit = k)

6.3 QDA Classification

Quadratic Discriminant Analysis (QDA) is a specific generative method in which the class
conditional probability distributions are independent Gaussians: fk(.) ∼ N (µk,Σk).

Note: the term “discriminant” in QDA is misleading: remember that QDA is not a discriminative
method, it is a generative method!

Estimating fk(.)

For a particular class conditional probability distribution fk(.), if we do not have the true means
and covariances µk,Σk, then our best bet is to estimate them empirically with the samples in our
training data that are classified as class k:

µ̂k =
1

nk

∑
ti=k

xi

Σ̂k =
1

nk

∑
ti=k

(xi − µ̂k)(xi − µ̂k)
T

Note that the above formulas are not necessarily trivial and must be formally proven using MLE.
Just to present a glimpse of the process, let’s prove that these formulas hold for the case where we
are dealing with 1-d data points. For notation purposes, assume that Dk = {x1, x2, . . . , xnk} is the
set of all training data points that belong to class k. Note that the data points are i.i.d. Our goal
is to solve the following MLE problem:

µ̂k, σ̂k
2 = arg max

µk,σ2
k

P (x1, x2, ..., xnk |µk, σ2
k)

= arg max
µk,σ2

k

ln
(
P (x1, x2, ..., xnk |µk, σ2

k)
)

= arg max
µk,σ2

k

nk∑
i=1

ln
(
P (xi|µk, σ2

k)
)

6.3. QDA CLASSIFICATION 85

= arg max
µk,σ2

k

nk∑
i=1

−(xi − µk)2

2σ2
k

− ln(σk)−
1

2
ln(2π)

= arg min
µk,σ2

k

nk∑
i=1

(xi − µk)2

2σ2
k

+ ln(σk)

Note that the objective above is not jointly convex, so we cannot simply take derivatives and set
them to 0! Instead, we decompose the minimization over σ2

k and µk into a nested optimization
problem:

min
µk,σ2

k

nk∑
i=1

(xi − µk)2

2σ2
k

+ ln(σk) = min
σ2
k

min
µk

nk∑
i=1

(xi − µk)2

2σ2
k

+ ln(σk)

The optimization problem has been decomposed into an inner problem that optimizes for µk given
a fixed σ2

k, and an outer problem that optimizes for σ2
k given the optimal value µ̂k. Let’s first solve

the inner optimization problem. Given a fixed σ2
k, the objective is convex in µk, so we can simply

take a partial derivative w.r.t µk and set it equal to 0:

∂

∂µk

(nk∑
i=1

(xi − µk)2

2σ2
k

+ ln(σk)
)

=

nk∑
i=1

−(xi − µk)
σ2
k

= 0 =⇒ µ̂k =
1

nk

nk∑
i=1

xi

Having solved the inner optimization problem, we now have that

min
σ2
k

min
µk

nk∑
i=1

(xi − µk)2

2σ2
k

+ ln(σk) = min
σ2
k

nk∑
i=1

(xi − µ̂k)2

2σ2
k

+ ln(σk)

Note that this objective is not convex in σk, so we must instead find the critical point of the
objective that minimizes the objective. Assuming that σk ≥ 0, the critical points are:

• σk = 0: assuming that not all of the points xi are equal to µ̂k, there are two terms that are
at odds with each other: a 1/σ2

k term that blows off to ∞, and a ln(σk) term that blows off
to −∞ as σk → 0. Note that the 1/σ2

k term blows off at a faster rate, so we conclude that

lim
σk→0

nk∑
i=1

(xi − µ̂k)2

2σ2
k

+ ln(σk) =∞

• σk =∞: this case does not lead to the solution, because it gives a maximum, not a minimum.

lim
σk→∞

nk∑
i=1

(xi − µ̂k)2

2σ2
k

+ ln(σk) =∞

• Points at which the derivative w.r.t σ is 0

∂

∂σ

(nk∑
i=1

(xi − µ̂k)2

2σ2
k

+ ln(σk)
)

=

nk∑
i=1

−(xi − µ̂k)2

σ3
k

+
1

σk
= 0 =⇒ σ̂k

2 =
1

nk

nk∑
i=1

(xi − µ̂k)2

We conclude that the optimal point is

σ̂k
2 =

1

nk

nk∑
i=1

(xi − µ̂k)2

86 CHAPTER 6. CLASSIFICATION

QDA Optimization Formulation

Assuming that we know the means and covariances for all the classes, we can use Bayes’ Rule to
directly solve the optimization problem

k∗ = arg max
k

P (k) fk(x)

= arg max
k

(
√

2π)dP (k) fk(x)

= arg max
k

ln
(
P (k)

)
+ ln

(
(
√

2π)dfk(x)
)

= arg max
k

ln
(
P (k)

)
− 1

2
(x− µ̂k)

T Σ̂k
−1

(x− µ̂k)−
1

2
ln
(
|Σ̂k|

)
= Qk(x)

For future reference, let’s use Qk(x) = ln
(√

2π
)d
P (k) fk(x)) to simplify our notation.

6.4 LDA Classification

While QDA is a reasonable approach to classification, we might be interested in simplifying our
model to reduce the number of parameters we have to learn. One way to do this is through Linear
Discriminant Analysis (LDA) classification. Just as in QDA, LDA assumes that the class
conditional probability distributions are normally distributed with different means µk, but LDA is
different from QDA in that it requires all of the distributions to share the same covariance matrix
Σ. This is a simplification which, in the context of the Bias-Variance tradeoff, increases the bias
of our method but may help decrease the variance.

Estimating fk(.)

The training and classification procedures for LDA are almost identical that of QDA. To compute
the within-class means, we still want to take the empirical mean. However, the empirical covariance
is now computed with

Σ̂ =
1

n

n∑
i=1

(xi − µ̂ti)(xi − µ̂ti)
T

One way to understand this formula is as a weighted average of the within-class covariances. Here,
assume we have sorted our training data by class and we can index through the xi’s by specifying
a class k and the index within that class j:

Σ̂ =
1

n

n∑
i=1

(xi − µ̂ti)(xi − µ̂ti)
T

=
1

n

K∑
k=1

nk∑
j=1

(xj,k − µ̂k)(xj,k − µ̂k)
T

=
1

n

K∑
k=1

nk Σk

=

K∑
k=1

nk
n

Σk

6.5. LDA VS. QDA: DIFFERENCES AND DECISION BOUNDARIES 87

6.5 LDA vs. QDA: Differences and Decision Boundaries

Up to this point, we have used the term quadratic in QDA and linear in LDA. These terms signify
the shape of the decision boundary in x-space. Given any two classes, the decision boundary
represents the points in x-space at which the two classes are equally likely.

Let’s study binary (2-class) examples for simplicity. Assume that the two classes in question are
class A and class B. An arbitrary point x can be classified according to three cases:

k∗ =

A P (class = A|x) > P (class = B|x)

B P (class = A|x) < P (class = B|x)

Either A or B P (class = A|x) = P (class = B|x)

The decision boundary is the set of all points in x-space that are classified according to the third
case. Let’s look at the form of the decision boundary according to the different scenarios possible
under QDA and LDA.

Identical Isotropic Gaussian Distributions

The simplest case is when the two classes are equally likely in prior, and their conditional proba-
bility distributions are isotropic with identical covariances. Isotropic Gaussian distributions have
covariances of the form of Σ = σ2I, which means that their isocontours are circles. In this case,
fA(.) and fB(.) have identical covariances of the form ΣA = ΣB = σ2I.

Figure 6.1: Contour plot of two isotropic, identically distributed Gaussians in R2. The circles are the level
sets of the Gaussians.

Geometrically, we can see that the task of classifying a 2-D point into one of the two classes amounts
simply to figuring out which of the means it’s closer to. Using our notation of Qk(x) from before,
this can be expressed mathematically as:

QA(x) = QB(x)

88 CHAPTER 6. CLASSIFICATION

ln
(1

2

)
− 1

2
(x− µ̂A)Tσ2I(x− µ̂A)− 1

2
ln
(
|σ2I|

)
= ln

(1

2

)
− 1

2
(x− µ̂B)Tσ2I(x− µ̂B)− 1

2
ln
(
|σ2I|

)
(x− µ̂A)T (x− µ̂A) = (x− µ̂B)T (x− µ̂B)

The decision boundary is the set of points x for which ||x − µ̂A||2 = ||x − µ̂B||2, which is simply
the set of points that are equidistant from µA and µB. This decision boundary is linear because
the set of points that are equidistant from µA and µB are simply the perpendicular bisector of the
segment connecting µA and µB.

Identical Anisotropic Gaussian Distributions

The next case is when the two classes are equally likely in prior, and their conditional probability
distributions are anisotropic with identical covariances. Anisotropic Gaussian distributions are
simply all Gaussian distributions that are not isotopic.

In order to understand the difference, let’s take a closer look at the covariance matrix Σ. Since
Σ is a symmetric, positive semidefinite matrix, we can decompose it by the spectral theorem into
Σ = VΛVT , where the columns of V form an orthonormal basis in Rd, and Λ is a diagonal matrix
with real, non-negative values. The entries of Λ dictate how elongated or shrunk the distribution is
along each direction. To see why this is the case, let’s consider a zero-mean Gaussian distribution
N (0,Σ). We wish to find its level set f(x) = k, or simply the set of all points x such that
the probability density f(x) evaluates to a fixed constant k. This is equivalent to the level set
ln
(
f(x)

)
= ln(k), which further reduces to xTΣ−1x = c, for some constant c. Without loss of

generality, assume that this constant is 1. The level set xTΣ−1x = 1 is an ellipsoid with axes
v1,v2, . . . ,vd, with lengths

√
λ1,
√
λ2, . . . ,

√
λd, respectively. Each axis of the ellipsoid is the vector√

λivi, and we can verify that

(
√
λivi)

TΣ−1(
√
λivi) = λiv

T
i Σ−1vi = λiv

T
i (Σ−1vi) = λiv

T
i (λ−1

i vi) = vTi vi = 1

In the case of isotropic distributions, the entries of Λ are all identical, meaning the the axes of the
ellipsoid form a circle. In the case of anisotropic distributions, the entries of Λ are not necessarily
identical, meaning that the resulting ellipsoid may be elongated/shruken and also rotated.

6.5. LDA VS. QDA: DIFFERENCES AND DECISION BOUNDARIES 89

Figure 6.2: Two anisotropic, identically distributed Gaussians in R2. The ellipses are the level sets of the
Gaussians.

The case when the two classes are identical anisotropic distributions can be reduced to the isotropic
case simply by performing a change of coordinates that transforms the ellipses back into circles.
Thus, the decision boundary is still linear.

Identical Distributions with Priors

Now, let’s find the decision boundary when the two classes still have identical covariances but are
not necessarily equally likely in prior:

QA(x) = QB(x)

ln
(
P (A)

)
− 1

2
(x− µ̂A)T Σ̂−1(x− µ̂A)− 1

2
ln
(
|Σ̂|
)

= ln
(
P (B)

)
− 1

2
(x− µ̂B)T Σ̂−1(x− µ̂B)

−1

2
ln
(
|Σ̂|
)

ln
(
P (A)

)
− 1

2
(x− µ̂A)T Σ̂−1(x− µ̂A) = ln

(
P (B)

)
− 1

2
(x− µ̂B)T Σ̂−1(x− µ̂B)

2 ln
(
P (A)

)
− xT Σ̂−1x + 2xT Σ̂−1µ̂A − µ̂A

T µ̂A = 2 ln
(
P (B)

)
− xT Σ̂−1x + 2xT Σ̂−1µ̂B − µ̂B

T µ̂B

2 ln
(
P (A)

)
+ 2xT Σ̂−1µ̂A − µ̂A

T µ̂A = 2 ln
(
P (B)

)
+ 2xT Σ̂−1µ̂B − µ̂B

T µ̂B

Simplifying, we have that

xT (Σ̂−1(µ̂A − µ̂B)) +
(

ln
(P (A)

P (B)

)
− µ̂A

T µ̂A − µ̂B
T µ̂B

2

)
= 0

The decision boundary is the level set of a linear function f(x) = wTx + k. Notice the pattern:
the decision boundary is always the level set of a linear function (which itself is linear) as long as
the two class conditional probability distributions share the same covariance matrices. This is the
reason for why LDA has a linear decision boundary.

90 CHAPTER 6. CLASSIFICATION

Nonidentical Distributions

This is certainly not the case in LDA. We have that:

ln
(
P (A)

)
− 1

2
(x− µ̂A)T Σ̂A

−1
(x− µ̂A) = ln

(
P (B)

)
− 1

2
(x− µ̂B)T Σ̂B

−1
(x− µ̂B)

Here, unlike the case when ΣA = ΣB, we cannot cancel out the quadratic terms in x from both
sides of the equation, and thus our decision boundary is now represented by the level set of an
arbitrary quadratic function.

It should now make sense why QDA is short for quadratic discriminant analysis and LDA is short
for linear discriminant analysis!

Generalizing to Multiple Classes

The quadratic nature of the decision boundary in QDA and the linear nature of the decision
boundary in LDA still apply to the general case when there are more than two classes. The
following excellent figures from Professor Shewchuk’s notes illustrate this point:

Figure 6.3: LDA (left) vs QDA (right): a collection of linear vs quadratic level set boundaries

6.6 Discriminative Models

In our discussion of LDA and QDA, we focused on generative models, where we explicitly model
the probability of the data P (X, Y) and choose the class c∗ that maximizes the posterior probability:
c∗ = arg maxc P (Y = c|X). For example, in QDA we model P (X|Y = c) as a Gaussian with an
estimated mean µc and covariance matrix Σc. If we choose a prior P (Y), then our predicted class
for a new test point x is:

c∗ = arg max
c

P (Y = c|X = x) = arg max
c

P (X = x|Y = c)P (Y = c)

The generative approach is flexible and we can actually use our model to generate new samples.
However, LDA and QDA can be inefficient in that they require estimation of a large number of

parameters (ie. the covariance matrices, which have d(d−1)
2 parameters). For 2-class LDA, the

decision boundary is of the form

wTx + k = 0

https://people.eecs.berkeley.edu/~jrs/papers/machlearn.pdf

6.7. LEAST SQUARES SUPPORT VECTOR MACHINE 91

where k,w are estimated parameters. The decision boundary only requires d+ 1 parameters, but
we ended up estimating O(d2) parameters because we needed to determine the class-conditional
Gaussian generative models. LDA is an indirect approach to classification - it estimates parameters
for P (X|Y) and use Bayes’ rule to compute a decision rule, which leads to the discrepancy between
the number of parameters required to specify the generative model and the number of parameters
required to perform classification.

This leads us to the concept of discriminative models, where we bypass learning a generative
model altogether and directly learn a decision boundary for the purpose of classification. The
process of constructing a discriminative model is composed of two key design choices:

1) Representation: how we represent the output of the model (for example, the output of a model
could be any real-valued number that we threshold to perform classification, or the output
could represent a probability)

2) Loss function: how we train and penalize errors

6.7 Least Squares Support Vector Machine

Model and Training

As a first example of a discriminative model, we discuss the Least Squares Support Vector
Machine (LS-SVM). Consider the binary classification problem where the classes are represented
by −1 and +1. One way to classify a data point x is to estimate parameters w, compute wTx, and
classify x to be sign(wTx). Geometrically, the decision boundary this produces is a hyperplane,
wTx = 0.

We need to figure out how to optimize the parameter w. One simple procedure we can try is to fit
a least squares objective:

arg min
w

n∑
i=1

‖yi − sign(wTxi)‖2 + λ‖w‖2

Where xi,w ∈ Rd+1. Note that we have not forgotten about the bias term! Even though we are
dealing with d dimensional data, xi and w are d + 1 dimensional: we add an extra “feature” of 1
to x, and a corresponding bias term of k in w. Note that in practice, we do not want to penalize
the bias term in the regularization term, because the we should be able to work with any affine
transformation of the data and still end up with the same decision boundary. Therefore, rather
than taking the norm of w, we often take the norm of w′, which is every term of w excluding the
corresponding bias term. For simplicity of notation however, let’s just take the norm of w.

Without the regularization term, this would be equivalent to minimizing the number of misclassified
training points. Unfortunately, optimizing this is NP-hard (computationally intractable). However,
we can solve a relaxed version of this problem:

arg min
w

n∑
i=1

‖yi −wTxi‖2 + λ‖w‖2

This method is called the 2-class least squares support vector machine (LS-SVM). Note that in this
relaxed version, we care about the magnitude of wTxi and not just the sign.

92 CHAPTER 6. CLASSIFICATION

One drawback of LS-SVM is that the hyperplane decision boundary it computes does not necessar-
ily make sense for the sake of classification. For example, consider the following set of data points,
color-coded according to the class:

Figure 6.4: Reasonable fit LS-SVM

LS-SVM will classify every data point correctly, since all the +1 points lie on one side of the decision
boundary and all the −1 points lie on the other side. Now if we add another cluster of points as
follows:

Figure 6.5: Poor fit LS-SVM

The original LS-SVM fit would still have classified every point correctly, but now the LS-SVM gets

6.7. LEAST SQUARES SUPPORT VECTOR MACHINE 93

confused and decides that the points at the bottom right are contributing too much to the loss
(perhaps for these points, wTxi = −5 for the original choice of w so even though they are on
the correct side of the original separating hyperplane, they incur a high squared loss and thus the
hyperplane is shifted to accommodate). This problem will be solved when we introduce general
Support Vector Machines (SVM’s).

Feature Extension

Working with linear classifiers in the raw feature space may be extremely limiting, so we may
consider adding features that that allow us to come up with nonlinear classifiers (note that we
are still working with linear classifiers in the augmented feature space). For example, adding
quadratic features allows us to find a linear decision boundary in the augmented quadratic space
that corresponds to a nonlinear “circle” decision boundary projected down into the raw feature
space.

Figure 6.6: Augmenting Features, image courtesy of Prof. Shewchuk

In order implement this idea, we re-express our objective as

arg min
w

n∑
i=1

‖yi −wTφ(xi)‖2 + λ‖w′‖2

Note that φ is a function that takes as input the data in raw feature space, and outputs the data
in augmented feature space.

Neural Network Extension

Instead of using the linear function wTx or augmenting features to the data, we can also directly
use a non-linear function of our choice in the original feature space, such as a neural network. One
can imagine a whole family of discriminative binary classifiers that minimize

arg min
w

n∑
i=1

‖yi − gw(xi)‖2 + λ‖w‖2

where gw(xi) can be any function that is easy to optimize. Then we can classify using the rule

ŷi =

{
1 gw(xi) > θ

−1 gw(xi) ≤ θ

Where θ is some threshold. In LS-SVM, gw(xi) = xTwi and θ = 0. Using a neural network with
non-linearities as gw can produce complex, non-linear decision boundaries.

https://people.eecs.berkeley.edu/~jrs/papers/machlearn.pdf

94 CHAPTER 6. CLASSIFICATION

Multi-Class Extension

We can also adapt this approach to the case where we have multiple classes. Suppose there are K
classes, labeled 1, 2, ...,K. One possible way to extend the approach from binary classification is to
compute gw(xi) and round it to the nearest number from 1 to K. However, this approach gives an
“ordering” to the classes, even if the classes themselves have no natural ordering. This is clearly a
problem. For example, in fruit classification, suppose 1 is used to represent “peach,” 2 is used to
represent “banana,” and 3 is used to represent “apple.” In our numerical representation, it would
appear that peaches are less than bananas, which are less than apples. As a result, if we have an
image that looks like some cross between an apple and a peach, we may simply end up classifying
it as a banana.

The typical way to get around this issue is as follows: if the i-th observation has class k, instead
of using the representation yi = k, we can use the representation yi = ek, the k-th canonical basis
vector. Now there is no relative ordering in the representations of the classes. This method is called
one-hot vector encoding.

When we have multiple classes, each yi is a K-dimensional one-hot vector, so for LS-SVM, we
instead have a K × (d+ 1) weight matrix to optimize over:

arg min
W

n∑
i=1

‖yi −Wxi‖2 + λ‖w‖2

To classify a data point, we compute Wxi and see which component j is the largest - we then
predict xi to be in class j.

6.8 Logistic Regression

Logistic regression is a discriminative classification technique that has a direct probabilistic
interpretation. Suppose that we have the binary classification problem where classes are represented
by 0 and 1. Note that we instead of using −1/ + 1 labels (as in LS-SVM), in logitistic regression
we use 0/1 labels. Logistic regression makes more sense this way because it directly outputs a
probability, which belongs in the range of values between 0 and 1.

In logistic regression, we would like our model to output an estimate of the probability that a data
point is in class 1. We can start with the linear function wTx and convert it to a number between
0 and 1 by applying a sigmoid transformation s(wTx), where s(x) = 1

1+e−x . Thus to classify xi
after learning the weights w, we would estimate the probability as

P (yi = 1|xi) = s(wTxi)

and classify xi as

ŷi =

{
1 if s(wTxi) ≥ 0.5

0 otherwise

6.8. LOGISTIC REGRESSION 95

Figure 6.7: Logistic function. For our purposes, the horizontal axis is the output of the linear function wTxi

and the vertical axis is the output of the logistic function, which can be interpreted as a probability between
0 and 1.

The classifier equivalently classifies xi as

ŷi =

{
1 if wTxi ≥ 0

0 otherwise

In order to train our model, we need a loss function to optimize. One possibility is least squares:

arg min
w

n∑
i=1

‖yi − s(wTxi)‖2 + λ‖w‖2

However, this may not be the best choice. Ordinary least squares regression has theoretical justi-
fications such as being the maximum likelihood objective under Gaussian noise. Least squares for
this classification problem does not have a similar justification.

Instead, the loss function we use for logistic regression is called the log-loss, or cross entropy:

L(w) =

n∑
i=1

yi ln

(
1

s(wTxi)

)
+ (1− yi) ln

(
1

1− s(wTxi)

)
If we define pi = s(wTxi), then using the properties of logs we can write this as

L(w) = −
n∑
i=1

yi ln pi + (1− yi) ln(1− pi)

For each xi, pi represents our predicted probability that its corresponding class is 1. Because
yi ∈ {0, 1}, the loss corresponding to the i-th data point is

Li =

{
− ln pi when yi = 1

− ln(1− pi) when yi = 0

Intuitively, if pi = yi, then we incur 0 loss. However, this is never actually the case. The logistic
function can never actually output a value of exactly 0 or 1, and we will therefore always incur
some loss. If the actual label is yi = 1, then as we lower pi towards 0, the loss for this data point
approaches infinity. The loss function can be derived from a maximum likelihood perspective or an
information-theoretic perspective.

96 CHAPTER 6. CLASSIFICATION

Logistic Loss: Maximum Likelihood Approach

Logistic regression can be derived from a maximum likelihood model. Suppose we observe D =
{(xi, yi)}ni=1, and each observation is sampled from a distribution Yi ∼ Bernoulli(pi), where pi
is a function of xi. We can view P (Yi = 1) = P (Y = 1|xi) as the posterior probability that xi
is classified as 1, and similarly P (Yi = 0) as the posterior probability that xi is classified as 0.
The observation yi is simply sampled from this posterior probability distribution Yi. Thus our
observation yi, which we can view as a “sample,” has probability:

P (Yi = yi) =

{
pi if yi = 1

1− pi if yi = 0

One convenient way to write the likelihood of a single data point is

P (Yi = yi) = pyii (1− pi)(1−yi)

which holds no matter what yi is.

We need a model for the dependency of pi on xi. We have to enforce that pi is a transformation of
xi that results in a number from 0 to 1 (ie. a valid probability). Hence pi cannot be, say, linear in
xi. One way to do achieve the 0-1 normalization is by using the sigmoid function

pi = s(wTxi) =
1

1 + e−wTxi

Now we can estimate the weights w via maximum likelihood. We have the problem

w∗LR = arg max
w

n∏
i=1

P (Yi = yi)

= arg max
w

n∏
i=1

pyii (1− pi)(1−yi)

= arg max
w

ln
[n∏
i=1

pyii (1− pi)(1−yi)
]

= arg max
w

n∑
i=1

yi ln pi + (1− yi) ln(1− pi)

= arg min
w

−
n∑
i=1

yi ln pi + (1− yi) ln(1− pi)

Logistic Loss: Information-Theoretic Perspective

The logistic regression loss function can also be justified from an information-theoretic perspective.
To motivate this approach, we introduce Kullback-Leibler (KL) divergence (also called rel-
ative entropy), which measures the amount that one distribution diverges from another. Given
any two discrete random variables P and Q, the KL divergence from Q to P is defined to be

DKL(P ||Q) =
∑
x

P (x) ln
P (x)

Q(x)

Note that DKL is not a true distance metric, because it is not symmetric, ie. DKL(P ||Q) 6=
DKL(Q||P) in general.

6.8. LOGISTIC REGRESSION 97

In the context of classification, if the class label yi is interpreted as the probability of being class 1,
then logistic regression provides an estimate pi of the probability that the data is in class 1. The
true class label can be viewed as a sampled value from the “true” distribution Pi ∼ Bernoulli(yi).
Pi is not a particularly interesting distribution because all values sampled from it will yield yi:
P (Pi = yi) = 1. Logistic regression yields a distribution Qi ∼ Bernoulli(pi), which is the posterior
probability that estimates the true distribution Pi. Be careful not to mix up the notation between
the random variable Pi and the quantity pi! In the context of this problem pi is associated with
the estimated distribution Qi, not the true distribution Pi.

The KL divergence from Qi to Pi provides a measure of how closely logistic regression can match
the true label. We would like to minimize this KL divergence, and ideally we would try to choose
our weights so that DKL(Pi||Qi) = 0. However, this is impossible for two reasons. First, if we want
DKL(Pi||Qi) = 0, then we would need pi = yi, which is impossible because pi is the output of a
logistic function that can never actually reach 0 or 1. Second, even if we tried tuning the weights so
that DKL(Pi||Qi) = 0, that’s only optimizing one of the data points – we need to tune the weights
so that we can collectively minimize the totality of all of the KL divergences contributed by all
data points.

Therefore, our goal is to tune the weights w (which indirectly affect the pi values and therefore the
estimated distribution Qi), in order to minimize the total sum of KL divergences contributed by
all data points:

w∗LR = arg min
w

n∑
i=1

DKL(Pi||Qi)

= arg min
w

n∑
i=1

yi ln
yi
pi

+ (1− yi) ln
(1− yi)
(1− pi)

= arg min
w

n∑
i=1

yi(ln yi − ln pi) + (1− yi)(ln(1− yi)− ln(1− pi))

= arg min
w

n∑
i=1

(−yi ln pi − (1− yi) ln(1− pi)) + (yi ln yi + (1− yi) ln(1− yi))

= arg min
w

−
n∑
i=1

yi ln pi + (1− yi) ln(1− pi)

= arg min
w

n∑
i=1

H(Pi, Qi)

Note that the yi ln yi + (1− yi) ln(1− yi) component of the KL divergence is a constant, indepen-
dent of our changes to pi. Therefore, we are effectively minimizing the sum of the cross entropies
H(Pi, Qi). We conclude our discussion of KL Divergence by noting the relation between KL diver-
gence and cross entropy:

DKL(Pi||Qi) = H(Pi, Qi)−H(Pi)

where DKL(Pi||Qi) is the KL divergence from Qi to Pi, H(Pi, Qi) is the cross entropy between
Pi and Qi, and H(Pi) is the entropy of Pi. Intuitively, we can think of entropy as the expected
amount of “surprise” of a distribution. Mathematically, we have that

H(P) =
∑
x

−P (x) lnP (x) =
∑
x

P (x) ln
1

P (x)
= EP

[
ln

1

P (x)

]

98 CHAPTER 6. CLASSIFICATION

To simplify the argument, assume that P is a Bernoulli distribution. If P ∼ Bernoulli(1) or
P ∼ Bernoulli(0), there is no surprise at all because we always expect the same value every
time we sample from the distribution. This is justified mathematically by the fact that entropy is
minimized: H(P) = 0. However, when P ∼ Bernoulli(0.5), there is a lot of uncertainty/surprise
and in fact, entropy is maximized.

6.9 Multiclass Logistic Regression

Recall that in logistic regression, we are tuning a weight vector w ∈ Rd+1, which leads to a posterior
distribution Qi ∼ Bernoulli(pi) over the binary classes 0 and 1:

P (Qi = 1) = pi = s(wTxi) =
1

1 + e−wTxi

P (Qi = 0) = 1− s(wTxi) =
e−w

Txi

1 + e−wTxi

Let’s generalize this concept to Multiclass Logistic Regression, where there are K classes. Sim-
ilarly to our discussion of the multi-class LS-SVM, it is important to note that there is no inherent
ordering to the classes, and predicting a class in the continuous range from 1 to K would be a poor
choice. To see why, recall our fruit classification example. Suppose 1 is used to represent peach,
2 is used to represent banana, and 3 is used to represent apple. In our numerical representation,
it would appear that peaches are less than bananas, which are less than apples. As a result, if we
have an image that looks like some cross between an apple and a peach, we may simply end up
classifying it as a banana.

The solution is to use a one-hot vector encoding to represent all of our labels. If the i-th
observation has class k, instead of using the representation yi = k, we can use the representation
yi = ek, the k-th canonical basis vector. For example, in our fruit example, if the i-th image is
classified as “banana”, its label representation would be

yi = [0 1 0]T

Now there is no relative ordering in the representations of the classes. We must modify our weight
representation accordingly to the one-hot vector encoding. Now, there are a set of d + 1 weights
associated with every class, which amounts to a matrix W ∈ RK×(d+1). For each input xi ∈ Rd+1,
each class k is given a “score”

zk = wTk xi

Where wk is the k-th row of the W matrix. In total there are K scores for an input xi:

[wT1 xi wT2 xi . . . wTKxi]

The higher the score for a class, the more likely logistic regression will pick that class. Now that we
have a score system, we must transform all of these scores into a posterior probability distribution
Q. For binary logistic regression, we used the logistic function, which takes the value wTxi and
squashes it to a value between 0 and 1. The generalization to the the logistic function for the multi-
class case is the softmax function. The softmax function takes as input all K scores (formally
known as logits) and an index j, and outputs the probability that the corresponding softmax
distribution takes value j:

softmax(j, {z1, z2, . . . , zK}) =
ezj∑K
k=1 e

zk

6.9. MULTICLASS LOGISTIC REGRESSION 99

The logits induce a softmax distribution, which we can verify is indeed a probability distribution:

1. The entries are between 0 and 1.

2. The entries add up to 1.

On inspection, this softmax distribution is reasonable, because the higher the score of a class, the
higher its probability. In fact, we can verify that the logistic function is a special case of the softmax
function. Assuming that the corresponding weights for class 0 and 1 are w0 and w1, we have that:

P (Qi = 1) =
ew

T
1 xi

ew
T
0 xi + ew

T
1 xi

=
e(w1−w1)Txi

e(w0−w1)Txi + e(w1−w1)Txi
=

1

1 + e−(w1−w0)Txi
= s((w1 − w0)Txi)

P (Qi = 0) =
ew

T
0 xi

ew
T
0 xi + ew

T
1 xi

=
e(w0−w1)Txi

e(w0−w1)Txi + e(w1−w1)Txi
=

e−(w1−w0)Txi

1 + e−(w1−w0)Txi
= 1− s((w1 − w0)Txi)

In the 2-class case, because we are only interested in the difference between w1 and w0, we just use
a change of variables w = w1 − w0. We don’t need to know w1 and w0 individually, because once
we know P (Qi = 1), we know by default that P (Qi = 0) = 1− P (Qi = 1).

Multiclass Logistic Regression Loss Function

Let’s derive the loss function for multiclass logistic regression, using the information-theoretic
perspective. The “true” or more formally the target distribution in this case is P (Pi = j) = yi[j].
In other words, the entire distribution is concentrated on the label for the training example. The
estimated distribution Q comes from multiclass logistic regression, and in this case is the softmax
distribution:

P (Qi = j) =
ew

T
j xi∑K

k=1 e
wTk xi

Now let’s proceed to deriving the loss function. The objective, as always, is to minimize the sum
of the KL divergences contributed by all of the training examples.

W ∗MCLR = arg min
W

n∑
i=1

DKL(Pi||Qi)

= arg min
W

n∑
i=1

K∑
j=1

P (Pi = j) ln
P (Pi = j)

P (Qi = j)

= arg min
W

n∑
i=1

K∑
j=1

yi[j] ln
yi[j]

softmax(j, {wT1 xi, wT1 xi, . . . , wTKxi})

= arg min
W

n∑
i=1

K∑
j=1

yi[j] · ln yi[j]− yi[j] · ln
(

softmax(j, {wT1 xi, wT2 xi, . . . , wTKxi})
)

= arg min
W

−
n∑
i=1

K∑
j=1

yi[j] · ln
(

softmax(j, {wT1 xi, wT1 xi, . . . , wTKxi})
)

= arg min
W

−
n∑
i=1

K∑
j=1

yi[j] · ln
(ew

T
j xi∑K

k=1 e
wTk xi

)

100 CHAPTER 6. CLASSIFICATION

= arg min
W

n∑
i=1

H(Pi, Qi)

Just like binary logistic regression, we can justify the loss function with MLE as well:

W ∗MCLR = arg max
W

n∏
i=1

P (Yi = yi)

= arg max
W

n∏
i=1

K∏
j=1

P (Qi = j)yi[j]

= arg max
W

n∑
i=1

K∑
j=1

yi[j] lnP (Qi = j)

= arg max
W

n∑
i=1

K∑
j=1

yi[j] ln
(ew

T
j xi∑K

k=1 e
wTk xi

)

= arg min
W

−
n∑
i=1

K∑
j=1

yi[j] ln
(ew

T
j xi∑K

k=1 e
wTk xi

)

We conclude that the loss function for multiclass logistic regression is

L(W) = −
n∑
i=1

K∑
j=1

yi[j] · lnP (Qi = j)

6.10 Training Logistic Regression

The logistic regression loss function has no known analytic closed-form solution. Therefore, in order
to minimize it, we can use gradient descent, either in batch form or stochastic form. Let’s examine
the case for batch gradient descent.

Binary Logistic Regression

Recall the loss function

L(w) = −
n∑
i=1

yi ln pi + (1− yi) ln(1− pi)

where

pi = s(wTxi) =
1

1 + e−wTxi

∇wL(w) = ∇w

− n∑
i=1

yi ln pi + (1− yi) ln(1− pi)

6.10. TRAINING LOGISTIC REGRESSION 101

= −
n∑
i=1

yi∇w ln pi + (1− yi)∇w ln(1− pi)

= −
n∑
i=1

yi
pi
∇wpi −

1− yi
1− pi

∇wpi

= −
n∑
i=1

(
yi
pi
− 1− yi

1− pi

)
∇wpi

Note that ∇zs(z) = s(z)(1− s(z)), and from the chain rule we have that

∇wpi = ∇ws(wTxi) = s(wTxi)(1− s(wTxi))xi = pi(1− pi)xi

Plugging in this gradient value, we have

∇wL(w) = −
n∑
i=1

(
yi
pi
− 1− yi

1− pi

)
∇wpi

= −
n∑
i=1

(
yi
pi
− 1− yi

1− pi

)
pi(1− pi)xi

= −
n∑
i=1

(
yi(1− pi)− (1− yi)(pi)

)
xi

= −
n∑
i=1

(yi − pi)xi

We conclude that the gradient of the loss function with respect to the parameters is

∇wL(w) = −
n∑
i=1

(yi − pi)xi = −XT (y − p)

where y, p ∈ Rn. The gradient descent update is thus

w = w − ε∇wL(w)

It does not matter what initial values we pick for w, because the loss function L(w) is convex and
does not have any local minima. Let’s prove this, by first finding the Hessian of the loss function.
The k, lth entry of the Hessian is the partial derivative of the gradient with respect to wk and wl:

Hkl =
∂2L(w)

∂wk∂wl

=
∂

∂wk
−

n∑
i=1

(yi − pi)xil

=

n∑
i=1

∂

∂wk
pixil

=

n∑
i=1

pi(1− pi)xikxil

102 CHAPTER 6. CLASSIFICATION

We conclude that

H =

n∑
i=1

pi(1− pi)xixTi

To prove that L(w) is convex in w, we need to show that wTHw ≥ 0, ∀w:

wTHw = wT
n∑
i=1

pi(1− pi)xixTi w =

n∑
i=1

(wTxi)
2pi(1− pi) ≥ 0

Multiclass Logistic Regression

Instead of finding the gradient with respect to all of the parameters of the matrix W , let’s find
them with respect to one row of W at a time:

∇wlL(W) = ∇wl

− n∑
i=1

K∑
j=1

yi[j] · ln
(ew

T
j xi∑K

k=1 e
wTk xi

)
= −

n∑
i=1

K∑
j=1

yi[j] · ∇wl

(
ln

ew
T
j xi∑K

k=1 e
wTk xi

)

= −
n∑
i=1

K∑
j=1

yi[j] ·

∇wlwTj xi −∇wl ln

K∑
k=1

ew
T
k xi

= −

n∑
i=1

K∑
j=1

yi[j] ·

(
1{j = l}xi −

ew
T
l xi∑K

k=1 e
wTk xi

xi

)

= −
n∑
i=1

K∑
j=1

yi[j] ·

(
1{j = l} − ew

T
l xi∑K

k=1 e
wTk xi

)
xi

= −
n∑
i=1

(
1{yi = l} − P (Qi = l)

)
xi

= −XT
(
1{yi = l} − P (Q = l)

)
Note the use of indicator functions: 1{j = l} evaluates to 1 if j = l, otherwise 0. Also note that
since yi is a one-hot vector encoding, it evaluates to 1 only for one entry and 0 for all other entries.
We can therefore simplify the expression by only considering the j for which yi[j] = 1. The gradient
descent update for wl is

wl = wl − ε∇wlL(W)

Just as with binary logistic regression, it does not matter what initial values we pick for W , because
the loss function L(W) is convex and does not have any local minima.

6.11 Support Vector Machines

So far we’ve explored generative models (LDA) and discriminative models (logistic regres-
sion), but in both of these methods, we tasked ourselves with modeling some kind of probability
distribution. One observation about classification is that in the end, if we only care about assigning

6.11. SUPPORT VECTOR MACHINES 103

each data point a class, all we really need to know do is find a “good” decision boundary, and we
can skip thinking about the distributions. Support Vector Machines (SVMs) are an attempt
to model decision boundaries directly in this spirit.

Here’s the setup for the problem:

• Given: training dataset D = {(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ {−1,+1}

• Goal: find a d − 1 dimensional hyperplane decision boundary H which separates the +1’s
from the −1’s.

Motivation for SVMs

In order to motivate SVMs, we first have to understand the much simpler perceptron classifier and
its shortcomings. Given that the training data is linearly separable, the perceptron algorithm
finds a d− 1 dimensional hyperplane that perfectly separates the +1’s from the −1’s. Mathemat-
ically, the goal is to learn a weight vector w ∈ Rd and a bias term b ∈ R, that satisfy the linear
separability constraints:

∀i,

{
wTxi − b ≥ 0 if yi = 1

wTxi − b ≤ 0 if yi = −1

Equivalently,
∀i, yi(w

Txi − b) ≥ 0

The resulting decision boundary is a hyperplane H = {x : wTx− b = 0}. All points on the positive
side of the hyperplane are classified as +1, and all points on the negative side are classified as −1.

Note that perceptrons have two major shortcomings that as we shall see, SVMs can overcome. First
of all, if the data is not linearly separable, the perceptron fails to find a stable solution. As we shall
see, soft-margin SVMs fix this issue by allowing best-fit decision boundaries even when the data is
not linearly separable. Second, if the data is linearly separable, the perceptron could find infinitely
many decision boundaries – if (w, b) is a pair that separates the data points, then the perceptron
could also end up choosing a slightly different (w, b + ε) pair. Some hyperplanes are better than
others, but the perceptron cannot distinguish between them. This leads to generalization issues.

Figure 6.8: Two possible decision boundaries under the perceptron. The X’s and C’s represent the +1’s and
−1’s respectively.

In the figure above, we consider two potential linear separators that satisfy the constraints. One
could imagine that if we observed new test points that are nearby the region of C’s in the training

104 CHAPTER 6. CLASSIFICATION

data, they should also be of class C. The orange separator would incorrectly classify some of these
new test points, while the black separator would most likely still be able to classify them correctly.
To the eyes of the perceptron algorithm, both the orange and black lines are perfectly valid decision
boundaries. Therefore, the perceptron may not be able to generalize well to unseen data.

Hard-Margin SVMs

Hard-Margin SVMs solve the generalization problem of perceptrons by maximizing the margin,
formally known as the minimum distance from the decision boundary to any of the training points.

Figure 6.9: The optimal decision boundary (as shown) maximizes the margin.

Intuitively, maximizing the margin allows us to generalize better to unseen data, because the
decision boundary with the maximum margin is as far away from the training data as possible and
the boundary cannot be violated unless the unseen data contains outliers.

Simply put, the goal of hard-margin SVMs is to find a hyperplane H that maximizes the margin
m. Let’s formalize an optimization problem for hard-margin SVMs. The variables we are trying to
optimize over are the margin m and the parameters of the hyperplane, w and b. The objective is
to maximize the margin m, subject to the following constraints:

• All points classified as +1 are to the positive side of the hyperplane and their distance to H
is greater than the margin

• All points classified as −1 are to the negative side of the hyperplane and their distance to H
is greater than the margin

• The margin is non-negative.

Let’s express the first two constraints mathematically.

First, note that the vector w is perpendicular to the hyperplane H = {x : wTx− b = 0}.

6.11. SUPPORT VECTOR MACHINES 105

Figure 6.10: Image courtesy Professor Shewchuk’s notes.

Proof: consider any two points on H, x0 and x1. We will show that (x1 − x0) ⊥ ((x1 + w) − x1).
Note that

(x1 − x0)T ((x1 + w)− x1) = (x1 − x0)Tw = xT1 w − xT0 w = b− b = 0

Since w is perpendicular to H, the (shortest) distance from any arbitrary point z to the hyperplane
H is determined by a scaled multiple of w. If we take any point on the hyperplane x0, the distance
from z to H is the length of the projection from z − x0 to the vector w, which is

D =
|wT (z − x0)|
‖w‖2

=
|wT z − wTx0|
‖w‖2

=
|wT z − b|
‖w‖2

Figure 6.11: Shortest distance from z to H is determined by projection of z − x0 onto w

Therefore, the distance from any of the training points xi to H is

|wTxi − b|
‖w‖2

In order to ensure that positive points are on the positive side of the hyperplane outside a margin
of size m, and that negative points are on the negative side of the hyperplane outside a margin of
size m, we can express the constraint

yi
(wTxi − b)
‖w‖2

≥ m

https://people.eecs.berkeley.edu/~jrs/papers/machlearn.pdf

106 CHAPTER 6. CLASSIFICATION

Putting everything together, we have the following optimization problem:

max
m,w,b

m

s.t. yi
(wTxi − b)
‖w‖2

≥ m ∀i

m ≥ 0

(6.1)

Maximizing the margin m means that there exists at least one point on the positive side of the
hyperplane and at least one point on the negative side whose distance to the hyperplane is exactly
equal to m. These points are the support vectors, hence the name “support vector machines”.

Through a series of optimization steps, we can simplify the problem by removing the margin variable
and just optimizing the parameters of the hyperplane. In order to do so, we have to first introduce
two new variables w′ and b′ that capture the relationship between the three original variables m,
w, and b.

max
m,w,b,w′,b′

1

‖w′‖2
s.t. yi(w

′Txi − b′) ≥ 1 ∀i
m ≥ 0

w′ =
w

‖w‖2m

b′ =
b

‖w‖2m

(6.2)

Having introduced the new variables w′ and b′, the old variables m,w, and b are no longer relevant
to the optimization problem, and we can remove them. The previous optimization problem is
equivalent to

max
w′,b′

1

‖w′‖2
s.t. yi(w

′Txi − b′) ≥ 1 ∀i
(6.3)

Let’s verify that (2) and (3) are equivalent. We will show that

1. The optimal value of (2) is at least as good as the optimal value of (3). Assume that
the optimal values for (3) are w′∗ and b′∗. One feasible point for (2) is (m,w, b, w′, b′) =
(1
‖w′‖

2

, w′∗, b′∗, w′∗, b′∗), which leads to the same objective value as (3). Therefore, the optimal

value of (2) is at least as good as that of (3).

2. The optimal value of (3) is at least as good as the optimal value of (2). Assume that the
optimal values for (2) are (m∗, w∗, b∗, w′∗, b′∗). One feasible point for (3) is (w′, b′) = (w′∗, b′∗)
which leads to the same objective value as (2). Therefore, the optimal value of (3) is at least
as good as that of (2).

We can rewrite objective so that the problem is a minimization rather than a maximization:

min
w′,b′

1

2

∥∥w′∥∥2

2

s.t. yi(w
′Txi − b′) ≥ 1 ∀i

(6.4)

6.11. SUPPORT VECTOR MACHINES 107

At last, we have formulated the hard-margin SVM optimization problem! Using the notation w
and b, the objective of hard-margin SVMs is

min
w,b

1

2
‖w‖22

s.t. yi(w
Txi − b) ≥ 1 ∀i

(6.5)

Soft-Margin SVMs

The hard-margin SVM optimization problem has a unique solution only if the data are linearly
separable, but it has no solution otherwise. This is because the constraints are impossible to satisfy
if we can’t draw a hyperplane that separates the +1’s from the −1’s. In addition, hard-margin
SVMs are very sensitive to outliers – for example, if our data is class-conditionally distributed
Gaussian such that the two Gaussians are far apart, if we witness an outlier from class +1 that
crosses into the typical region for class −1, then hard-margin SVM will be forced to compromise a
more generalizable fit in order to accommodate for this point. Our next goal is to come up with
a classifier that is not sensitive to outliers and can work even in the presence of data that is not
linearly separable. To this end, we’ll talk about Soft-Margin SVMs.

A soft-margin SVM modifies the constraints from the hard-margin SVM by allowing some points
to violate the margin. Formally, it introduces slack variables ξi, one for each training point, into
the constraints:

yi(w
Txi − b) ≥ 1− ξi

ξi ≥ 0

which, is a less-strict, softer version of the hard-margin SVM constraints because it says that each
point xi need only be a ”distance” of 1−ξi of the separating hyperplane instead of a hard ”distance”
of 1.

(By the way, the Greek letter ξ is spelled ”xi” and pronounced ”zai”. ξi is pronounced ”zai-eye.”)

These constraints would be fruitless if we didn’t bound the values of the ξi’s, because by setting them
to large values, we are essentially saying that any point may violate the margin by an arbitrarily
large distance...which makes our choice of w meaningless. We modify the objective function to be:

min
w,b,,ξi

1

2
‖w‖2 + C

n∑
i=1

ξi

Where C is a hyperparameter tuned through cross-validation. Putting the objective and constraints
together, the soft-margin SVM optimization problem is

min
w,b,ξi

1

2
||w||2 + C

n∑
i=1

ξi

s.t. yi(w
Txi − b) ≥ 1− ξi ∀i

ξi ≥ 0 ∀i

(6.6)

The table below compares the effects of having a large C versus a small C. As C goes to infinity,
the penalty for having non-zero ξi goes to infinity, and thus we force the ξi’s to be zero, which is
exactly the setting of the hard-margin SVM.

108 CHAPTER 6. CLASSIFICATION

small C large C
Desire maximize margin keep ξi’s small or zero
Danger underfitting overfitting
Outliers less sensitive more sensitive

SVMs as Tikhonov Regularization Learning

Consider the following regularized regression problem:

min
1

n

n∑
i=1

L(yi, w
Txi − b) + λ‖w‖2

In the context of classification, the loss function that we would like to optimize is 0-1 step loss:

Lstep(y, w
Tx− b) =

{
1 y(wTx− b) < 0

0 y(wTx− b) ≥ 0

The 0-1 loss is 0 if x is correctly classified and 1 otherwise. Thus minimizing 1
n

∑n
i=1 L(yi, w

Txi−b)
directly minimizes classification error on the training set. However, the 0-1 loss is difficult to
optimize: it is neither convex nor differentiable (see Figure 8.1).

Figure 6.12: Step (0-1) loss, hinge loss, and squared loss. Squared loss is convex and differentiable, hinge
loss is only convex, and step loss is neither.

We can try to modify the 0-1 loss to be convex. The points with y(wTx− b) ≥ 0 should remain at
0 loss, but we may consider allowing a linear penalty “ramp” for misclassified points. This leads
us to the hinge loss, as illustrated in Figure 8.1:

Lhinge(y, w
Tx+ b) = max(1− y(wTx− b), 0)

Thus the regularized regression problem becomes

min
w,b

1

n

n∑
i=1

max(1− yi(wTxi − b), 0) + λ‖w‖2

Recall that the original soft-margin SVM optimization problem is

min
w,b,ξi

1

2
||w||2 + C

n∑
i=1

ξi

s.t. yi(w
Txi − b) ≥ 1− ξi ∀i

ξi ≥ 0 ∀i

6.11. SUPPORT VECTOR MACHINES 109

We claim these two formulations are actually equivalent. Manipulating the first constraint, we have
that

ξi ≥ 1− yi(wTxi − b)

Combining with the constraint ξi ≥ 0, we have that

ξi ≥ max(1− yi(wTxi − b), 0)

At the optimal value of the optimization problem, these inequalities must be tight. Otherwise,
we could lower each ξi to equal max(1 − yi(wTxi − b), 0) and decrease the value of the objective
function. Thus we can rewrite the soft-margin SVM optimization problem as

min
w,b,ξi

1

2
||w||2 + C

n∑
i=1

ξi

s.t. ξi = max(1− yi(wTxi − b), 0) ∀i
(6.7)

Simplifying further, we can remove the constraints:

min
w,b

1

2
||w||2 + C

n∑
i=1

max(1− yi(wTxi − b), 0) (6.8)

If we divide by Cn (which does not change the optimal solution of the optimization problem), we can
see that this formulation is equivalent to the regularized regression problem, with λ = 1

2Cn . Thus
we have two interpretations of soft-margin SVM: either as finding a max-margin hyperplane that is
allowed to make some mistakes via slack variables ξi, or as regularized empirical risk minimization
with the hinge loss.

110 CHAPTER 6. CLASSIFICATION

Chapter 7

Duality, Neareset Neighbors, Sparsity

7.1 Duality

Previously, in our investigation of SVMs, we formulated a constrained optimization problem that
we can solve to find the optimal parameters for our hyperplane decision boundary. Recall the setup
of soft-margin SVMs:

• yi’s: ±1, representing positive or negative class

• xi’s: feature vectors in Rd

• ξi’s: slack variables representing how much an xi is allowed to violate the margin

• C: a hyperparameter describing how severely we penalize slack

• The optimization problem for w ∈ Rd and t ∈ R, the parameters of the SVM:

min
w,t,ξi

1

2
||w||2 + C

n∑
i=1

ξi

s.t. yi(w
Txi − t) ≥ 1− ξi ∀i

ξi ≥ 0 ∀i

Now, we will investigate the dual of this problem, which will motivate our discussion of kernels.
Before we do so, we first have to understand the primal and dual of an optimization problem.

Primal and Dual of an Optimization Problem

All optimization problems and be expressed in the standard form

min
x

f0(x)

s.t. fi(x) ≤ 0 i = 1, . . . ,m

hj(x) = 0 j = 1, . . . , n

(7.1)

For the purposes of our discussion, assume that x ∈ Rd. The main components of an optimization
problem are:

111

112 CHAPTER 7. DUALITY, NEARESET NEIGHBORS, SPARSITY

• The objective function f0(x)

• The inequality constraints: expressions involving fi(x)

• The equality constraints: expressions involving hj(x)

Working with the constraints can be cumbersome and challenging to manipulate, and it would be
ideal if we could somehow turn this constrained optimization problem into an unconstrained one.
One idea is to re-express the optimization problem into

min
x
L(x) (7.2)

where

L(x) =

{
f0(x) if fi(x) ≤ 0, ∀i ∈ [1,m] and hj(x) = 0, ∀j ∈ [1, n]

∞ otherwise

Note that the unconstrained optimization problem above is equivalent to the original constrained
problem. Even though the unconstrained problem considers values that violate the constraints (and
therefore are not in the feasible set for the constrained optimization problem), it will effectively
ignore them because they are treated as ∞ in a minimization problem.

Even though we are now dealing with an unconstrained problem, it still is difficult to solve the
optimization problem, because we still have to deal with all of the casework in the objective function
L(x). In order to solve this issue, we have to introduce dual variables, specifically one set of dual
variables for the equality constraints, and one set for the inequality constraints. If we only take
into account the dual variables for the equality constraints, the optimization problem now becomes

min
x

max
ν
L(x, ν) (7.3)

where

L(x, ν) =

{
f0(x) +

∑n
j=1 νjhj(x) if fi(x) ≤ 0, ∀i ∈ [1,m]

∞ otherwise

We are still working with an unconstrained optimization problem, except that now, we are opti-
mizing over two sets of variables: the primal variables x ∈ Rd and the dual variables ν ∈ Rn.
Also note that the optimization problem has now become a nested one, with an inner optimization
problem the maximizes over the dual variables, and an outer optimization problem that minimizes
over the primal variables. Let’s examine why this optimization problem is equivalent to the original
constrained optimization problem:

• Any x that violates the inequality constraints is still treated as ∞ by the outer minimization
problem over x and therefore ignored

• For any x that violates the equality constraints (meaning that ∃j s.t. hj(x) 6= 0), the inner
maximization problem over ν can choose νj as ∞ if hj(x) > 0 (or νj as −∞ if hj(x) < 0) to
cause the inner maximization blow off to∞, therefore being ignored by the outer minimization
over x

• For any x that does not violate any of the equality or inequality constraints, the inner maxi-
mization problem over ν is simply equal to f0(x)

7.1. DUALITY 113

This solution comes at a cost – in an effort to remove the equality constraints, we had to add in
dual variables, one for each inequality constraint. With this in mind, let’s try to do the same for
the inequality constraints. Adding in dual variable λi to represent each inequality constraint, we
now have

min
x

max
λ,ν

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

n∑
j=1

νjhj(x)

s.t. λi ≥ 0 i = 1, . . . ,m

(7.4)

For convenience, we can place the constraints involving λ into the optimization variable.

min
x

max
λ≥0,ν

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

n∑
j=1

νjhj(x)

This optimization problem above is otherwise known as the primal (not to be confused with the
primal variables), and its optimal value is indeed equivalent to that of the original constrained
optimization problem.

p∗ = min
x

max
λ≥0,ν

L(x, λ, ν)

We can verify that this is indeed the case:

• For any x that violates the inequality constraints (meaning that ∃i ∈ [1,m] s.t. fi(x) > 0),
the inner maximization problem over λ can choose λi as ∞ to cause the inner maximization
blow off to ∞, therefore being ignored by the outer minimization over x

• For any x that violates the equality constraints (meaning that ∃j s.t. hj(x) 6= 0), the inner
maximization problem over ν can choose νj as ∞ if hj(x) > 0 (or νj as −∞ if hj(x) < 0) to
cause the inner maximization blow off to∞, therefore being ignored by the outer minimization
over x

• For any x that does not violate any of the equality or inequality constraints, in the inner
maximization problem over ν, the expression

∑n
j=1 νjhj(x) evaluates to 0 no matter what the

value of ν is, and in the inner maximization problem over λ, the expression
∑m

i=1 λifi(x) can
at maximum be 0, because λi is constrained to be non-negative, and fi(x) is non-positive.
Therefore, at best, the maximization problem sets λifi(x) = 0, and

max
λ≥0,ν

L(x, λ, ν) = f0(x)

In its full form, the objective L(x, λ, ν) is called the Lagrangian, and it takes into account the
unconstrained set of primal variables x ∈ Rd, the constrained set of dual variables λ ∈ Rn cor-
responding to the inequality constraints, and the unconstrained set of dual variables ν ∈ Rm
corresponding to the equality constraints. Note that our dual variables λi are in fact constrained,
so ultimately we were not able to turn the original optimization problem into an unconstrained
one, but our constraints are much simpler than before.

The dual of this optimization problem is still over the same optimization objective, except that
now we swap the order of the maximization of the dual variables and the minimization of the primal
variables.

d∗ = max
λ≥0,ν

min
x
L(x, λ, ν) = max

λ≥0,ν
g(λ, ν)

The dual is effectively a maximization problem (over the dual variables):

d∗ = max
λ≥0,ν

g(λ, ν)

114 CHAPTER 7. DUALITY, NEARESET NEIGHBORS, SPARSITY

where
g(λ, ν) = min

x
L(x, λ, ν)

The dual is very useful to work with, because now the inner optimization problem over x is an
unconstrained problem!

Strong Duality and KKT Conditions

It is always true that the solution to the primal problem is at least as large as the solution to the
dual problem:

p∗ ≥ d∗ (7.5)

This condition is know as weak duality.

Proof. We know that

∀x, λ ≥ 0, ν max
λ̃≥0,ν̃

L(x, λ̃, ν̃) ≥ L(x, λ, ν) ≥ min
x̃
L(x̃, λ, ν)

More compactly,
∀x, λ ≥ 0, ν max

λ̃≥0,ν̃
L(x, λ̃, ν̃) ≥ min

x̃
L(x̃, λ, ν)

Since this is true for all x, λ ≥ 0, ν this is true in particular when we set

x = arg min
x̃

max
λ̃≥0,ν̃

L(x̃, λ̃, ν̃)

and
λ, ν = arg max

λ̃≥0,ν̃

min
x̃
L(x̃, λ̃, ν̃)

We therefore know that

p∗ = min
x̃

max
λ̃≥0,ν̃

L(x̃, λ̃, ν̃) ≥ max
λ̃≥0,ν̃

min
x̃
L(x̃, λ̃, ν̃) = d∗

The difference p∗ − d∗ is known as the duality gap. In the case of strong duality, the duality
gap is 0. That is, we can swap the order of the minimization and maximization and up with the
same optimal value:

p∗ = d∗ (7.6)

There are several useful theorems detailing the existence of strong duality, such as Slater’s the-
orem, which states that if the primal problem is convex, and there exists an x that can strictly
meet the inequality constraints and meet the equality constraints, then strong duality holds. Given
that strong duality holds, the Karush-Kuhn-Tucker (KKT) conditions can help us find the
solutions to the dual variables of the optimization problem. The KKT conditions are composed of:

1. Primal feasibility (inequalities)
fi(x) ≤ 0, ∀i ∈ [1,m]

2. Primal feasibility (equalities)
hj(x) = 0, ∀j ∈ [1, n]

7.1. DUALITY 115

3. Dual feasibility
λi ≥ 0, ∀i ∈ [1,m]

4. Complementary Slackness
λifi(x) = 0, ∀i ∈ [1,m]

5. Stationarity

∇xf0(x) +

m∑
i=1

λi∇xfi(x) +

n∑
j=1

νj∇xhj(x) = 0

Let’s see how the KKT conditions relate to strong duality.

Theorem 1. If x∗ and λ∗, ν∗ are the primal and dual solutions respectively, with zero duality gap
(i.e. strong duality holds), then x∗, λ∗, ν∗ also satisfy the KKT conditions.

Proof. KKT conditions 1, 2, 3 are trivially true, because the primal solution x∗ must satisfy the
primal constraints, and the dual solution λ∗, ν∗ must satisfy the dual constraints. Now, let’s prove
conditions 4 and 5. We know that since strong duality holds, we can say that

p∗ = f0(x∗) = g(λ∗, ν∗) = d∗

= min
x
L(x, λ∗, ν∗)

≤ L(x∗, λ∗, ν∗)

= f0(x∗) +

m∑
i=1

λ∗i fi(x
∗) +

�
��
�
��
�n∑

j=1

ν∗j hj(x
∗)

= f0(x∗) +

m∑
i=1

λ∗i fi(x
∗)

≤ f0(x∗)

In the fourth step, we can cancel the terms involving hj(x
∗) because we know that the primal

solution must satisfy hj(x
∗) = 0. In the fifth step, we know that λ∗i fi(x

∗) ≤ 0, because λ∗i ≥ 0
in order to satisfy the dual constraints, and fi(x

∗) ≤ 0 in order to satisfy the primal constraints.
Since we established that f0(x∗) = minx L(x, λ∗, ν∗) ≤ L(x∗, λ∗, ν∗) ≤ f0(x∗), we know that all
of the inequalities hold with equality and therefore L(x∗, λ∗, ν∗) = minx L(x, λ∗, ν∗). This implies
KKT condition 5 (stationarity), that

∇xf0(x∗) +

m∑
i=1

λ∗i∇xfi(x∗) +

n∑
j=1

ν∗j∇∗xhj(x∗) = 0

Finally, note that due to the equality f0(x∗)+
∑m

i=1 λ
∗
i fi(x

∗) = f0(x∗), we know that
∑m

i=1 λ
∗
i fi(x

∗) =
0. This combined with the fact that ∀i λ∗i fi(x

∗) ≤ 0, establishes KKT condition 4 (complementary
slackness):

λ∗i fi(x
∗) = 0, ∀i ∈ [1,m]

The theorem above establishes that in the presence of strong duality, if the solutions are optimal,
then they satisfy the KKT conditions. Let’s prove a statement that is almost (but not quite) the
converse, which will be much more helpful for solving optimization problems.

116 CHAPTER 7. DUALITY, NEARESET NEIGHBORS, SPARSITY

Theorem 2. If x̄ and λ̄, ν̄ satisfy the KKT conditions, and the primal problem is convex, then they
are the optimal solutions to the primal and dual problems with zero duality gap.

Proof. If x̄ and λ̄, ν̄ satisfy KKT conditions 1, 2, 3 we know that they are at least feasible for the
primal and dual problem. From the KKT stationarity condition we know that

∇xf0(x̄) +

m∑
i=1

λ̄i∇xfi(x̄) +

n∑
j=1

ν̄j∇∗xhj(x̄) = 0

Since the primal problem is convex, we know that L(x, λ, ν) is convex in x, and if the gradient of
L(x, λ̄, ν̄) at x̄ is 0, we know that

x̄ = arg min
x

L(x, λ̄, ν∗)

Therefore, we know that the optimal primal values for the primal problem optimize the inner
optimization problem of the dual problem, and

g(λ̄, ν̄) = f0(x̄) +

m∑
i=1

λ̄ifi(x̄) +

n∑
j=1

ν̄jhj(x̄)

By the primal feasibility conditions for hj(x) and the complementary slackness condition, we know
that

g(λ̄, ν̄) = f0(x̄)

Now, all we have to do is to prove that x̄ and λ̄, ν̄ are primal and dual optimal, respectively. Note
that since weak duality always holds, we know that

p∗ ≥ d∗ = max
λ≥0,ν

g(λ, ν) ≥ g(λ̃, ν̃), ∀λ̃ ≥ 0, ν̃

Since we know that p∗ ≥ g(λ, ν), we can also say that

f0(x)− p∗ ≤ f0(x)− g(λ, ν)

And if we have that f0(x̄) = g(λ̄, ν̄) as we deduced earlier, then

f0(x̄)− p∗ ≤ f0(x̄)− g(λ̄, ν̄) = 0 =⇒ p∗ ≥ f0(x̄)

Since p∗ is the minimum value for the primal problem, we can go further by saying that p∗ ≥ f0(x̄)
holds with equality and

p∗ = f0(x̄) = g(λ̄, ν̄) = d∗

Therefore, we have proven that x̄ and λ̄, ν̄ are primal and dual optimal respectively, with zero
duality gap. We eventually arrived at the conclusion that strong duality does indeed hold.

Let’s pause for a second to understand what we’ve found so far. Given an optimization problem,
its primal problem is an optimization problem over the primal variables, and its dual problem is
an optimization problem over the dual variables. If strong duality holds, then we can solve the
dual problem and arrive at the same optimal value. In order to solve the dual, we have to first
solve the unconstrained inner optimization problem over the primal variables and then solve the
constrained outer optimization problem over the dual variables. But how do we even know in the
first place that strong duality holds? This is where KKT comes into play. If the the primal problem
is convex and the KKT conditions hold, we can solve for the dual variables easily and also verify
strong duality does indeed hold. We shall do just that, in our discussion of SVMs.

7.2. THE DUAL OF SVMS 117

7.2 The Dual of SVMs

Let’s apply our knowledge of duality to find the dual of the soft-margin SVM optimization problem.

min f(w,t,ξ)︷ ︸︸ ︷
min
w,t,ξ

1

2
||w||2 + C

n∑
i=1

ξi

(1− ξi)− yi(wTxi − t) ≤ 0 and − ξi ≤ 0︸ ︷︷ ︸
g(w,t,ξ)≤0

Let’s identify the primal and dual variables for the SVM problem. We will have

• Primal variables w, t, and ξi

• Dual variables αi corresponding to each constraint of the form yi(w
Txi − t) ≥ 1− ξi

• Dual variables βi corresponding to each constraint of the form ξi ≥ 0

For the purposes of notation, note that we are using α and β in place of λ, and there are no dual
variables corresponding to ν because there are no equality constraints. The lagrangian for the SVM
problem is:

L(w, t, ξ, α, β) =
1

2
||w||2 + C

n∑
i=1

ξi +

n∑
i=1

αi((1− ξi)− yi(wTxi − t)) +

n∑
i=1

βi(−ξi)

=
1

2
||w||2 −

n∑
i=1

αiyi(w
Txi − t) +

n∑
i=1

αi +

n∑
i=1

(C − αi − βi)ξi

(7.7)

Thus, the dual is:

max
α,β≥0

g(α, β) = min
w,t,ξ

1

2
||w||2 −

n∑
i=1

αiyi(w
Txi − t) +

n∑
i=1

αi +

n∑
i=1

(C − αi − βi)ξi (7.8)

Let’s use the KKT conditions to find the optimal dual variables. Verify that the primal problem
is convex in the primal variables. We know that from the stationarity conditions, evaluated at the
optimal dual values α∗ and β∗, and the optimal primal values w∗, t∗, ξ∗i :

∂L
∂wi

=
∂L
∂t

=
∂L
∂ξi

= 0

• ∇wL = w∗ −
∑n

i=1 α
∗
i yixi = 0 =⇒ w∗ =

∑n
i=1 α

∗
i yixi. This tells us that w∗ is going to be a

weighted combination of the positive-class xi’s and negative-class xi’s.

• ∂L
∂t =

∑n
i=1 α

∗
i yi = 0. This tells us that the weights α∗i will be equally distributed among

positive- and negative- class training points.

• ∂L
∂ξi

= C − α∗i − β∗i = 0 =⇒ 0 ≤ α∗i ≤ C. This tells us that the weights α∗i are restricted to
being less than the hyperparameter C.

118 CHAPTER 7. DUALITY, NEARESET NEIGHBORS, SPARSITY

Verify that the other KKT also hold, establishing strong duality. Using these observations, we can
eliminate some terms of the dual problem.

L(w, t, ξ, α∗, β∗) =
1

2
||w||2 −

n∑
i=1

α∗i yi(w
Txi − t) +

n∑
i=1

α∗i +

n∑
i=1

(C − α∗i − β∗i)ξi

=
1

2
||w||2 −

n∑
i=1

α∗i yi(w
Txi) + t

n∑
i=1

α∗i yi︸ ︷︷ ︸
=0

+

n∑
i=1

α∗i +

n∑
i=1

(C − α∗i − β∗i)ξi︸ ︷︷ ︸
=0

=
1

2
||w||2 −

n∑
i=1

α∗i yi(w
Txi) +

n∑
i=1

α∗i

We can also rewrite all the optimal primal variables w∗, t∗, ξ∗ in terms of the optimal dual variables
α∗i :

g(α∗, β∗) = min
w,t,ξ
L(w, t, ξ, α∗, β∗)

= L(w∗, t∗, ξ∗, α∗, β∗)

=
1

2
||

n∑
i=1

α∗i yixi||2 −
n∑
i=1

α∗i yi((

n∑
j=1

α∗jyjxj)
Txi) +

n∑
i=1

α∗i

=
1

2
||

n∑
i=1

α∗i yixi||2 −
n∑
i=1

(α∗i yix
T
i (

n∑
j=1

α∗jyjxj)) +

n∑
i=1

α∗i

= α∗T1− 1

2
α∗TQα∗

where Qij = yi(x
T
i xj)yj (and Q = (diag y)XXT (diag y)).

Now, we can write the final form of the dual, which is only in terms of α and x and y (Note that
we have eliminated all references to β):

max
α

αT1− 1

2
αTQα

s.t.

n∑
i=1

αiyi = 0

0 ≤ αi ≤ C i = 1, . . . , n

(7.9)

Geometric intuition

We’ve seen that the optimal value of the dual problem in terms of α is equivalent to the optimal
value of the primal problem in terms of w, t, and ξ. But what do these dual values αi even mean?
That’s a good question!

We know that the following KKT conditions are enforced:

• Stationarity
C − α∗i − β∗i = 0

• Complementary slackness

α∗i · ((1− ξ∗i)− yi(w∗Txi − t∗)) = 0

7.2. THE DUAL OF SVMS 119

β∗i · ξ∗i = 0

Here are some noteworthy relationships between αi and the properties of the SVMs:

• Case 1: α∗i = 0. In this case, we know β∗i = C, which is nonzero, and therefore ξ∗i = 0. That
is, if for point i we have that α∗i = 0 by the dual problem, then we know that there is no slack
given to this point. Looking at the other complementary slackness condition, this makes sense
because if α∗i = 0, then yi(w

∗Txi − t∗) − (1 − ξ∗i) may be any value, and if we’re minimizing
the sum of our ξi’s, we should have ξ∗i = 0. So, point i lies on or outside the margin.

• Case 2: α∗i is nonzero. If this is the case, then we know β∗i = C − α∗i ≥ 0

– Case 2.1: α∗i = C. If this is the case, then we know β∗i = 0, and therefore ξ∗i may be
exactly 0 or nonzero. So, point i lies on or inside the margin.

– Case 2.2: 0 < α∗i < C. In this case, then β∗i is nonzero and ξ∗i = 0. But this is different
from Case 1 because with α∗i nonzero, we can divide by α∗i in the complementary slackness

condition and arrive at the fact that 1 − yi(w∗Txi − t∗) = 0 =⇒ yi(w
∗Txi − t∗) = 1,

which means xi lies exactly on the margin determined by w∗ and t∗. So, point i lies on
the margin.

Finally, let’s reconstruct the optimal primal values w∗, t∗, ξ∗i from the optimal dual values α∗:

w∗ =

n∑
i=1

α∗i yixi

t∗ = mean(w∗Txi ∀i : 0 < α∗i < C)

ξ∗i =

{
1− yi(w∗Txi − t∗) if α∗i = C,

0 otherwise

(7.10)

120 CHAPTER 7. DUALITY, NEARESET NEIGHBORS, SPARSITY

7.3 Nearest Neighbor Classification

In classification, it is reasonable to conjecture that data points that are sufficiently close to one
another should be of the same class. For example, in fruit classification, perturbing a few pixels in
an image of a banana should still result in something that looks like a banana. The k-nearest-
neighbors (k-NN) classifier is based on this observation. Assuming that there is no preprocessing
of the training data, the training time for k-NN is effectively O(1). To train this classifier, we simply
store our training data for future reference.1 For this reason, k-NN is sometimes referred to as “lazy
learning.” The major work of k-NNs in done at testing time: to predict on a test data point z,
we compute the k closest training data points to z, where “closeness” can be quantified in some
distance function such as Euclidean distance - these are the k nearest neighbors to z. We then
find the most common class y among these k neighbors and classify z as y (that is, we perform a
majority vote). For binary classification, k is usually chosen to be odd so we can break ties cleanly.
Note that k-NN can also be applied to regression tasks — in that case k-NN would return the
average label of the k nearest points.

(a) 1-NN on 3 classes (b) 2-NN on 5 classes

Figure 7.1: Voronoi diagram for k-NN. Points in a region shaded a certain color will be classified as that
color. Test points in a region shaded with a combination of 2 colors have those colors as their 2 nearest
neighbors.

Choosing k

Nearest neighbors can produce very complex decision functions, and its behavior is highly dependent
on the choice of k.

1Sometimes we store the data in a specialized structure called a k-d tree. This data structure is out of scope for this course,
but it usually allows for faster (average-case O(logn)) nearest neighbors queries.

7.3. NEAREST NEIGHBOR CLASSIFICATION 121

(a) k = 1 (b) k = 15

Figure 7.2: Voronoi diagram for k = 1 vs. k = 15. Figure from Introduction to Statistical Learning.

Choosing k = 1, we achieve an optimal training error of 0 because each training point will classify
as itself, thus achieving 100% accuracy on itself. However, k = 1 overfits to the training data, and
is a terrible choice in the context of the bias-variance tradeoff. Increasing k leads to an increase in
training error, but a decrease in testing error and achieves better generalization. At one point, if
k becomes too large, the algorithm will underfit the training data, and suffer from huge bias. In
general, in order to select k we use cross-validation.

Figure 7.3: Training and Testing error as a function of k. Figure from Introduction to Statistical Learning.

Bias-Variance Analysis

Let’s justify this reasoning formally for k-NN applied to regression tasks. Suppose we are given
a training dataset D = {(xi, yi)}ni=1, where the labels yi are real valued scalars. We model our

122 CHAPTER 7. DUALITY, NEARESET NEIGHBORS, SPARSITY

hypothesis h(z) as

h(z) =
1

k

n∑
i=1

N(xi, z, k)

where the function N is defined as

N(xi, z, k) =

{
yi if xi is one of the k closest points to z

0 o.w.

Suppose also we assume our labels yi = f(xi) + ε, where ε is the noise that comes from N (0, σ2)
and f is the true function. Let x1 . . . xk be the k closest points. Let’s first derive the bias2 of our
model for the given dataset D.

(
E[h(z)]− f(z)

)2
=

E

1

k

n∑
i=1

N(xi, z, k)

− f(z)

2

=

E

1

k

k∑
i=1

yi

− f(z)

2

=

1

k

k∑
i=1

E[yi]− f(z)

2

=

1

k

k∑
i=1

E[f(xi) + ε]− f(z)

2

=

1

k

k∑
i=1

f(xi)− f(z)

2

When k −→ ∞, then 1
k

∑k
i=1 f(xi) goes to the average label for x. When k = 1, then the bias

is simply f(x1) − f(z). Assuming x1 is close enough to f(z), the bias would likely be small when
k = 1 since it’s likely to share a similar label. Meanwhile, when k −→∞, the bias doesn’t depend
on the training points at all which like will restrict it to be higher.

Now, let’s derive the variance of our model.

V ar[h(z)] = V ar

1

k

k∑
i=1

yi

 =
1

k2

k∑
i=1

V ar[f(xi) + ε]

=
1

k2

k∑
i=1

V ar[ε]

=
1

k2

k∑
i=1

σ2 =
1

k2
kσ2 =

σ2

k

The variance goes to 0 when k −→∞, and is maximized at k = 1.

Properties

Computational complexity: We require O(n) space to store a training set of size n. There is no
runtime cost during training if we do not use specialized data structures to store the data. However,
predictions take O(n) time, which is costly. There has been research into approximate nearest
neighbors (ANN) procedures that quickly find an approximation for the nearest neighbor - some
common ANN methods are Locality-Sensitive Hashing and algorithms that perform dimensionality
reduction via randomized (Johnson-Lindenstrauss) distance-preserving projections.2

2ANN methods are beyond the scope of this course, but are useful in real applications.

7.3. NEAREST NEIGHBOR CLASSIFICATION 123

Flexibility: When k > 1, k-NN can be modified to output predicted probabilities P (Y |X) by
defining P (Y |X) as the proportion of nearest neighbors to X in the training set that have class Y .
k-NN can also be adapted for regression — instead of taking the majority vote, take the average
of the y values for the nearest neighbors. k-NN can learn very complicated, non-linear decision
boundaries.

Non-parametric: k-NN is a non-parametric method, which means that the number of parameters
in the model grows with n, the number of training points. This is as opposed to parametric
methods, for which the number of parameters is independent of n. Some examples of parametric
models include linear regression, LDA, and neural networks.

Behavior in high dimensions: k-NN does not behave well in high dimensions. As the dimension
increases, data points drift farther apart, so even the nearest neighbor to a point will tend to be
very far away.

Theoretical properties: 1-NN has impressive theoretical guarantees for such a simple method. Cover
and Hart, 1967 prove that as the number of training samples n approaches infinity, the expected
prediction error for 1-NN is upper bounded by 2ε∗, where ε∗ is the Bayes (optimal) error. Fix and
Hodges, 1951 prove that as n and k approach infinity and if k

n → 0, then the k nearest neighbor
error approaches the Bayes error.

Curse of Dimensionality

To understand why k-NN does not perform well in high-dimensional space, we first need to un-
derstand the properties of metric spaces. In high-dimensional spaces, much of our low-dimensional
intuition breaks down. Here is one classical example. Consider a ball in Rd centered at the origin
with radius r, and suppose we have another ball of radius r − ε centered at the origin. In low
dimensions, we can visually see that much of the volume of the outer ball is also in the inner ball.

In general, the volume of the outer ball is proportional to rd, while the volume of the inner ball is
proportional to (r − ε)d. Thus the ratio of the volume of the inner ball to that of the outer ball is

(r − ε)d

rd
=

(
1− ε

r

)d
≈ e−εd/r −→

d→∞
0

Hence as d gets large, most of the volume of the outer ball is concentrated in the annular region
{x : r − ε < x < r} instead of the inner ball.

High dimensions also make Gaussian distributions behave counter-intuitively. SupposeX ∼ N (0, σ2I).

If Xi are the components of X and R is the distance from X to the origin, then R2 =
∑d

i=1X
2
i . We

124 CHAPTER 7. DUALITY, NEARESET NEIGHBORS, SPARSITY

have E(R2) = dσ2, so in expectation a random Gaussian will actually be reasonably far from the
origin. If σ = 1, then R2 is distributed chi-squared with d degrees of freedom. One can show that
in high dimensions, with high probability 1 − O(e−d

ε

), this multivariate Gaussian will lie within
the annular region {X : |R2 − E(R2)| ≤ d1/2+ε} where E(R2) = dσ2 (one possible approach is to
note that as d→∞, the chi-squared approaches a Gaussian by the CLT, and use a Chernoff bound
to show exponential decay). This phenomenon is known as concentration of measure. Without
resorting to more complicated inequalities, we can show a simple, weaker result:

Theorem: If Xi ∼ N (0, σ2), i = 1, ..., d are independent and R2 =
∑d

i=1X
2
i , then for every ε > 0,

the following holds:

lim
d→∞

P (|R2 − E(R2)| ≥ d
1

2
+ε) = 0

Thus in the limit, the squared radius is concentrated about its mean.

Proof. From the formula for the variance of a chi-squared distribution, we see that V ar(R2) = 2dσ4.
Applying a Chebyshev bound yields

P (|R2 − E(R2)| ≥ d
1

2
+ε) ≤ 2dσ4

d1+2ε
−→
d→∞

0

Thus a random Gaussian will lie within a thin annular region away from the origin in high dimen-
sions with high probability, even though the mode of the Gaussian bell curve is at the origin. This
illustrates the phenomenon in high dimensions where random data is spread very far apart. The
k-NN classifier was conceived on the principle that nearby points should be of the same class -
however, in high dimensions, even the nearest neighbors that we have to a random test point will
tend to be far away, so this principle is no longer useful.

Improving k-NN

There are two main ways to improve k-NN and overcome the shortcomings we have discussed.

1. Obtain more training data.

2. Reduce the dimensionality of the features and/or pick better features. Consider other choices
of distance function.

One example of reducing the dimensionality in image space is to lower the resolution of the image
— while this is throwing some of the original pixel features away, we may still be able to get the
same or better performance with a nearest neighbors method.

We can also modify the distance function. For example, we have a whole family of Minkowski
distances that are induced by the Lp norms:

Dp(x, z) =

 d∑
i=1

|xi − zi|p
 1

p

Without preprocessing the data, 1-NN with the L3 distance outperforms 1-NN with L2 on MNIST.

7.4. SPARSITY AND LASSO 125

We can also use kernels to compute distances in a different feature space. For example, if k is a
kernel with associated feature map Φ and we want to compute the Euclidean distance from Φ(x)
to Φ(z), then we have

‖Φ(x)− Φ(z)‖22 = Φ(x)TΦ(x)− 2Φ(x)TΦ(z) + Φ(z)TΦ(z)

= k(x, x)− 2k(x, z) + k(z, z)

Thus if we define D(x, z) =
√
k(x, x)− 2k(x, z) + k(z, z), then we can perform Euclidean nearest

neighbors in Φ-space without explicitly representing Φ by using the kernelized distance function
D.

7.4 Sparsity and LASSO

Sparsity for SVMs

Recall the objective function of the soft-margin SVM problem:

min
w,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

Note that if a point xi has a nonzero slack ξi > 0, by definition it must lie inside the margin. Due
to the heavy penalty factor C for violating the margin there are relatively few such points, and
thus the slack vector ξ is sparse — most of its entries are 0. We are interested in explaining why
this phenomenon occurs in this specific optimization problem, and identifying the key properties
that determine sparse solutions for arbitrary optimization problems.

To reason about the SVM case, let’s see how changing some arbitrary slack variable ξi affects the
loss. A unit decrease in ξi results in a “reward” of C, and is captured by the partial derivative
∂L
∂ξi

. Note that no matter what the current value of ξi is, the reward for decreasing ξi is constant.
Of course, decreasing ξi may change the boundary and thus the cost attributed to the size of the
margin ‖w‖2. The overall reward for decreasing ξi is either going to be worth the effort (greater
than cost incurred from w) or not worth the effort (less than cost incurred from w). Intuitively, ξi
will continue to decrease until it hits a lower-bound “equilibrium” — which is often just 0.

Now consider the following formulation (constraints omitted for brevity again):

min
w,ξ

1

2
‖w‖2 + C

n∑
i=1

ξ2
i

The reward for decreasing ξi is no longer constant — at any point, a unit decrease in ξi results in a
“reward” of 2Cξi. As ξi approaches 0, the rewards get smaller and smaller, reaching infinitesimal
values. On the other hand, decreasing ξi causes a finite increase in the cost incurred by the ‖w‖2
— the same increase in cost as in the previous example. Intuitively, we can reason that there will
be a threshold value ξ∗i such that decreasing ξi further will no longer outweigh the cost incurred by
the size of the margin, and that the ξi’s will halt their descent before they hit zero.

There are many motivations for designing optimization problems with sparse solutions. One advan-
tage of sparse solutions is that they speed up testing time. In the context of primal problems, if the
weight vector w is sparse, then after we compute w in training, we can discard features/dimensions
with 0 weight, as they will contribute nothing to the evaluation of the hypothesized regression
values of test points. A similar reasoning applies to dual problems with dual weight vector v,

126 CHAPTER 7. DUALITY, NEARESET NEIGHBORS, SPARSITY

allowing us to discard the training points corresponding to dual weight 0, ultimately allowing for
faster evaluation of our hypothesis function on test points.

LASSO

Given the motivations for sparsity in SVMs, let’s modify the ridge regression objective to achieve
sparsity as well. The least absolute shrinkage and selection operator (LASSO) developed
in 1996 by Robert Tibshirani, is one method that achieves this desired effect. LASSO is identical
to the ridge regression objective, except that the L2-norm (squared) penalizing w is now changed
to an L1-norm (with no squaring term):

min
w
‖Xw − y‖2 + λ‖w‖1

The L1-norm of w is a sum of absolute values of its entries:

‖z‖1 =

d∑
i=1

|wi|

Compare this to the L2-norm squared of w, the sum of squared values of its entries:

‖z‖2 =

d∑
i=1

w2
i

Just as in ridge regression, there is a statistical justification for using the L1-norm. Whereas
ridge regression assumes a Gaussian prior over the weights w, LASSO assumes a Laplace prior
(otherwise known as a double exponential distribution) over the weights w.

Let’s understand why such a simple change from the L2 to L1-norm inherently leads to a sparse
solution. For any particular component wi of w, note that the corresponding loss in LASSO is
the absolute value |wi|, while the loss in ridge regression is the squared term w2

i . In the case of
LASSO the “reward” for decreasing wi by a unit amount is a constant λ, while for ridge regression
the equivalent “reward” is 2λwi, which depends on the value of wi. Thus for the same reasons
as we presented for SVMs, LASSO achieves sparsity while ridge regression does not. There is a
compelling geometric argument behind this reasoning as well.

7.5. COORDINATE DESCENT 127

Figure 7.4: Comparing contour plots for LASSO (left) vs. ridge regression (right).

Suppose for simplicity that we are only working with 2-dimensional data points and are thus
optimizing over two weight variables w1 and w2. In both figures above, the red ellipses represent
isocontours in w-space of the squared loss ‖Xw − y‖2. In ridge regression, each isocontour of
λ‖w‖22 is represented by a circle, one of which is shown in the right figure. Note that the optimal
w will only occur at points of tangency between the red ellipse and the blue circle. Otherwise
we could always move along the isocontour of one of the functions (keeping its overall cost fixed)
while improving the value of the the other function, thereby improving the overall value of the
loss function. We can’t really infer much about these points of tangency other than the fact that
the blue circle centered at the origin draws the optimal point closer to the origin (ridge regression
penalizes large weights).

Now, let’s examine the LASSO case. The red ellipses represent the same objective ‖Xw − y‖2,
but now the L1 regularization term λ‖w‖1 is represented by diamond isocontours. As with ridge
regression, note that the optimal point in w-space must occur at points of tangency between the
ellipse and the diamond. Due to the “pointy” property of the diamonds, tangency is very likely to
happen at the corners of the diamond because they are single points from which the rest of the
diamond draws away from. And what are the corners of the diamond? Why, they are points at
which one component of w is 0!

7.5 Coordinate Descent

Note that the LASSO objective function is convex but not differentiable, due to the “pointiness”
of the L1-norm. This is a problem for gradient descent techniques — in particular, LASSO zeros
out features, and once these weights are set to 0 the objective function becomes non-differentiable.
Coordinate descent is an alternative optimization algorithm that can solve convex but non-
differentiable problems such as LASSO.

While SGD focuses on iteratively optimizing the value of the objective L(w) for each sample in the
training set, coordinate descent iteratively optimizes the value of the objective for each feature.

128 CHAPTER 7. DUALITY, NEARESET NEIGHBORS, SPARSITY

Algorithm 1 Coordinate Descent

while w has not converged do
pick a feature index i
update wi to arg minwi L(w)

end while

Coordinate descent is guaranteed to find the global minimum if L is jointly convex. No such
guarantees can be made however if L is only elementwise convex, since it may have local minima.
To understand why, let’s start by understanding elementwise vs joint convexity. Suppose you are
trying to minimize f(x, y), a function of two scalar variables x and y. For simplicity, assume that f
is twice differentiable, so we can take its hessian. f(x, y) is element-wise convex in x if its hessian
is psd when y is fixed:

∂2

∂x∂x
f(x, y) ≥ 0

Same goes for element-wise convexity in y.

f(x, y) is jointly convex in x and y if its hessian ∇2f(x, y) is psd. Note that being element-wise
convex in both x and y does not imply joint convexity in x and y (consider f(x, y) = x2 + y2− 4xy
as an example). However, being joint convexity in x and y does imply being element-wise convex
in both x and y.

Now, if f(x, y) was jointly convex, then we could find the gradient wrt x and y individually, set them
to 0, and be guaranteed that would be the global minimum. Can we do this if f(x, y) is element-
wise convex in both x and y? Actually not always. Even though it is true that minx,y f(x, y) =
minx miny f(x, y), we can’t always just set gradients to 0 if f(x, y) is not jointly convex. The reason
for this is that while the inner optimization problem over y is convex, the outer optimization problem
over x may no longer be convex. In the case when joint convexity is not reached, there is no clean
strategy to find global minimum and we must analyze all of the critical points to find the minimum.

In the case of LASSO, the objective function is jointly convex, so we can use coordinate descent.
There are a few details to be filled in, namely the choice of which feature to update and how wi
is updated. One simple way is to just pick a random feature i each iteration. After choosing the
feature, we have to update wi ← arg minwi L(w). For LASSO, it turns out there is a closed-form
solution (note that we are only minimizing with respect to one feature instead of all the features).

The LASSO objective is ‖Xw − y‖22 + λ‖w‖1. It will be convenient to separate the terms that
depend on wi from those that don’t. Denoting xj as the j-th column of X, we have

L(w) = ‖Xw − y‖22 + λ‖w‖1

= ‖
d∑
j=1

wjxj − y‖22 + λ|wi|+ λ
∑
j 6=i
|wj |

= ‖wixi + C(1)‖22 + λ|wi|+ C(2)

where C(1) =
∑

j 6=iwjxj − y and C(2) = λ
∑

j 6=i |wj |. The objective can in turn be written as

L(w) = λ|wi|+ C(2) +

n∑
j=1

(wixj,i + C
(1)
j)2

Suppose the optimal wi is strictly positive: wi > 0. Setting the partial derivative of the objective

7.6. SPARSE LEAST-SQUARES 129

wrt w∗i to 0, we obtain

∂L

∂wi
= λ+

n∑
j=1

2xj,i(w
∗
i xj,i + C

(1)
j) = 0 =⇒ w∗i =

−λ−
∑n

j=1 2xj,iC
(1)
j∑n

j=1 2x2
j,i

Denoting a = −
∑n

j=1 2xj,iC
(1)
j and b =

∑n
j=1 2x2

j,i, we have

w∗i =
−λ+ a

b

But this only holds if the right hand side, −λ+a
b , is actually positive. If it is negative or 0, then this

means there is no optimum in (0,∞).

When w∗i < 0, then similar calculations will lead to

w∗i =
λ+ a

b

Again, this only holds if λ+a
b is actually negative. If it is positive or 0, then there is no optimum in

(−∞, 0).

If neither the conditions −λ+a
b > 0 or λ+a

b < 0 hold, then there is no optimum in (−∞, 0) or (0,∞).
But the LASSO objective is convex in wi and has an optimum somewhere, thus in this case w∗i = 0.
For this to happen, −λ+a

b ≤ 0 and λ+a
b ≥ 0. Rearranging, we can see this is equivalent to |a| ≤ λ.

To summarize:

w∗i =

0 if |a| ≤ λ
−λ+a
b if −λ+a

b > 0
λ+a
b if λ+a

b < 0

where

a = −
n∑
j=1

2xj,iC
(1)
j , b =

n∑
j=1

2x2
j,i

The term a
b is the least squares solution (without regularization), so we can see that the regu-

larization term tries to pull the least squares update towards 0. This is not a gradient-descent
based update — we have a closed-form solution for the optimum wi, given all the other weights
are fixed constants. We can also see explicitly how the LASSO objective induces sparsity — a is
some function of the data and the other weights, and when |a| ≤ λ, we set wi = 0 in this iteration
of coordinate descent. By increasing λ, we increase the threshold for |a| to be set to 0, and our
solution becomes more sparse.

Note that during the optimization, weights can be set to 0, but they can also be “reactivated” after
they have been set to 0 in a previous iteration, since a is affected by factors other than wi.

7.6 Sparse Least-Squares

Suppose we want to solve the least squares objective, subject to a constraint that w is sparse.
Mathematically this is expressed as

min
w

‖Xw − y‖22
s.t. ‖w‖0 ≤ k

130 CHAPTER 7. DUALITY, NEARESET NEIGHBORS, SPARSITY

Note that the L0-norm of w is simply the number of non-zero elements in w. This optimization
problem aims to minimize the residual error between our prediction Xw and y while ensuring that
the solution w is sparse. Solving this optimization problem is NP-hard, so we instead aim to find a
computationally feasible alternative method that can approximate the optimal solution. Matching
pursuit is a greedy algorithm that achieves this goal.

Matching Pursuit Algorithm

Recall that in ordinary least squares, we minimize the residual error ‖Xw − y‖22 by projecting y
onto the subspace spanned by the columns of X, thereby obtaining a linear combination w∗ of the
columns of X that minimizes the residual error. Matching pursuit is a greedy algorithm that starts
with with a completely sparse solution (w = 0) and iteratively “builds up” w until the the sparsity
constraint ‖w‖0 ≤ k can no longer be met. The algorithm is as follows:

Algorithm 2 Matching Pursuit

initialize the residual r = y
initialize the weights w = 0
while ‖w‖0 < k do

find the index i for which the residual is minimized: i = arg maxj〈r, xj〉/‖xj‖
update the i’th entry of the weight vector to wi = 〈r, xi〉/‖xi‖2
update the new residual value: r = y −Aw

end while

At each step of the algorithm, we pick the coordinate i such that xi (the i-th column of X corre-
sponding to feature i, not datapoint i) minimizes the residual r. This equates to finding the index
i for which the length of the projection onto xi is maximized:

i = arg max
j

〈r, xj〉
‖xj‖

Let’s see why this is true. When we project the residual r on the vector xj , the resulting projection
has length 〈r, xj〉/‖xj‖. The length of the new residual follows from pythagoras theorem:

‖rold‖2 = ‖rnew‖2 +

(
〈r, xj〉
‖xj‖

)2

=⇒ i = arg max
j

〈r, xj〉
‖xj‖

We move wi to the optimum projection value and repeat greedily at each iteration. While matching
pursuit is not guaranteed to find the optimal w∗, in practice it works well for most applications.
Setting the number of iterations is typically determined through cross-validation.

Chapter 8

Decision Tree Learning

8.1 Decision Trees

A decision tree is a type of classifier which classifies things by repeatedly posing questions of the
form, “Is feature xi greater than value v?” You can visualize such a thing as a tree, where each
node consists of a split-feature, split-value pair (xi, v) and the leaves are possible classes. Here’s a
picture:

Note that a class may appear multiple times at the leaves of the decision tree. Picking a split-
feature, split-value pair essentially carves up the feature space into chunks, and you can imagine
that having enough of these pairs lets you create an arbitrarily complex classifier that can perfectly
overfit any training set (unless two training points of different classes coincide).

When we consider the task of building this tree, we want to ask ourselves a couple of things:

• How do we pick the split-feature, split-value pairs?

• How do we know when to stop growing the tree?

Let’s address the first point. Intuitively, when we pick a feature to split on, we want choose the
one which maximizes how sure we are of the classes of the two resulting chunks. If we had a bunch

131

132 CHAPTER 8. DECISION TREE LEARNING

of data points and the barrier represented by the line xi = v perfectly split them such that all the
instances of the positive class were on one side and all the instances of the negative class were on
the other, then the split (xi, v) is a pretty good one.

Now, to concretely talk about the idea of “how sure” we are, we’ll use the ideas of surprise and
entropy. The numerical surprise of observing that a random variable X takes on value k is:

log
1

P (X = k)
= − logP (X = k)

The entropy of a random variable H(X) is:

H(X) = E[surprise]

= EX [log
1

P (X = k)
]

=
∑
k

P (X = k) log
1

P (X = k)

Here’s a graph of entropy vs. P (X = k) for a binary discrete random variable X (as in, k ∈ {0, 1}):

Observe that (1) it’s convex and (2) it’s maximized when the probability distribution is even with
respect to the outcomes. That is to say, a coin that is completely fair (P (X = 0) = P (X = 1) = 0.5)
has more entropy than a coin that is biased. This is because we are less sure of the outcome of the
fair coin than the biased coin overall. Even though we are more surprised when the biased coin
comes up as its more unlikely outcome, the way that entropy is defined gives a higher uncertainty
score to the fair coin. In general, a random variable has more entropy when the distribution of
its outcomes is closer to uniform and less entropy when the distribution is highly skewed to one
outcome.

An assumption

By the way, it’s strange that entropy is defined for random variables when there are no
random variables in a training set. To address this, we make the assumption that a random
variable X on the possible classes is representative of our training set. The distribution of X
is defined by our training points (xi, yi), where P (X = cj) = nj

n with nj being the number
of training points whose yi is cj .

So now we know that when we choose a split-feature, split-value pair, we want to reduce entropy in
some way. First, let Yfi,v be an indicator function that is 1 for a data point if its feature fi is less
than v. Note that Y is not a random variable, though we will use it in some notations that make

8.1. DECISION TREES 133

it appear like one. When we consider splitting one set of points represented by random variable X
with split-key (fi, v), there are a few entropies we should consider.

• H(X)

• H(X|Y = 1). That is, the entropy of the set of points whose fi is less than v.

• H(X|Y = 0). That is, the entropy of the set of points whose fi is not less than v.

In some ways H(X) is non-negotiable: we start with the set of points represented by X, and they
have some entropy, and now we wish to carve up those points in a way to minimize the entropy
remaining. Thus, the thing we want to minimize is a weighted average of the two sides of the split,
where the weights are (proportional to) the sizes of two sides:

Minimize P (X < v)H(X|Y = 1) + P (X ≥ v)H(X|Y = 0)

=P (Y = 1)H(X|Y = 1) + P (Y = 0)H(X|Y = 0)

An equivalent way of seeing this is that we want to maximize the information we’ve learned, which
represented by how much H(X) gets reduced after learning Y :

Maximize H(X)− P (Y = 1)H(X|Y = 1) + P (Y = 0)H(X|Y = 0)︸ ︷︷ ︸
H(X|Y)

.

For general indicator functions Y , we want to maximize something called the mutual information
I(X;Y). This depends on the conditional entropy of X given Y :

H(X|Y = y) =
∑
k

P (X = k|Y = y) log
1

P (X = k|Y = y)

H(X|Y) =
∑
y

P (Y = y)H(X|Y = y)

I(X;Y) = H(X)−H(X|Y)

Note that I(X;Y) is nonnegative and it’s zero only if the resulting sides of the split have the same
distribution of classes as the original set of points. Let’s say you were using a decision tree to
classify emails as spam and ham. The precedng statement says, you gain no information if you
take a set of (20 ham, 10 spam) and split it on some feature to give you sets of (12 ham, 6 spam); (8
ham, 4 spam) because the empirical distribution of those two resulting sets is equal to the original
one.

Now that we have addressed how to pick splits, let’s talk about when to stop growing the tree. We
know that decision trees are powerful tools because they can be used to represent any arbitrarily
complex decision boundaries. Thus, it is very easy to overfit them. One way to do this is to keep
carving up the feature space until the leaves are entirely pure (as in, they only contain points of a
single class). As a result, when training decision trees, we always want to keep in mind a couple of
heuristics for stopping early:

• Limited depth: keep track of the depth of each split, and don’t go past some depth t

• Information gain criteria: stop carving once your splits don’t reward you with enough infor-
mation (i.e., set a threshold for I(X;Y))

134 CHAPTER 8. DECISION TREE LEARNING

• Pruning: This isn’t a method for stopping early. Rather it’s the strategy of growing your
tree out as far as you can, and then combining splits back together if doing so reduces your
validation error.

All of these thresholds can be tuned with cross-validation.

8.2 Random Forests

Another way to combat overfitting is the use of random forests. A random forest is a set of
decision trees whose outputs are averaged together in some way (usually majority vote) to produce
the final answer to a classification problem. In addition, each tree of the forest will have some
elements of randomness to them. Let’s think about why this randomness is necessary.

Imagine you took the same set of training points and you built k decision trees on them with the
method of choosing splits described in the previous section. What could you say about these k
trees? Answer: They would all be the exact same trees in terms of what splits are chosen! Why:
because there is only one best split of a set of training points, and if we use the same algorithm on
the same set of training points, we’ll get the same result.

There are two options: (1) change our algorithm for each tree, or (2) change our training points.
The algorithm is pretty good, so let’s change the training points. In particular, we’ll use the method
of bagging: for each tree, we sample with replacement some constant number of training points
to “bag” and use for training. This will avoid the problem of having identical decision trees...

...Or will it? Imagine that you had an extremely predictive feature, like the appearance of the
word “viagra” for classifying spam, for your classification task. Then, even if you took a random
subsample of training points, your k trees would still be very similar, most likely choosing to split
on the same features. Thus, the randomness of our trees will come from:

• bagging: random subsample of training points per tree

• enforcing that a random subsample of features be used for each tree

Both the size of the random subsample of training points and the number of features per tree are
hyperparameters intended to be tuned through cross-validation.

Remember why this is a good idea: One decision tree by itself is prone to overfitting to the training
set. However, if we have a bunch of them that are diverse and uncorrelated, then we can be more
sure that their average is closer to the true classifier.

8.3 Boosting

We have seen that in the case of random forests, combining many imperfect models can produce
a single model that works very well. This is the idea of ensemble methods. However, random
forests treat each member of the forest equally, taking a majority vote or an average over their
outputs. The idea of boosting is to combine the models (typically called weak learners in this
context) in a more principled manner. Roughly, we want to:

• Treat each of the weak classifiers (e.g., trees in a random forest) as “features”

• Hunt for better “features” based on the current performance of the overall classifier

8.3. BOOSTING 135

The key idea is as follows: to improve our classifier, we should focus on finding learners that
correctly classify the points which the overall boosted classifier is currently getting wrong. Boosting
algorithms implement this idea by associating a weight with each training point and iteratively
reweighting so that misclassified points have relatively high weights. Intuitively, some points are
“harder” to classify than others, so the algorithm should focus its efforts on those.

AdaBoost

There are many flavors of boosting. We will discuss one of the most popular versions, known as
AdaBoost (short for adaptive boosting). Its developers won the Gödel Prize for this work.

Algorithm

We present the algorithm first, then derive it later.

1. Initialize the weight of all n training points to 1
n .

2. Repeat for m = 1, . . . ,M :

(a) Build a classifier Gm with data weighted according to wi.

(b) Compute the weighted error em =
∑
i misclassified wi∑

i wi
.

(c) Re-weight the training points as

wi ← wi ·

√

1−em
em

if misclassified√
em

1−em otherwise

(d) Optional: normalize the weights wi to sum to 1.

We first address the issue of step (a): how do we train a classifier if we want to weight different
samples differently? One common way to do this is to resample from the original training set
every iteration to create a new training set that is fed to the next classifier. Specifically, we create
a training set of size n by sampling n values from the original training data with replacement,
according to the distribution wi. (This is why we might renormalize the weights in step (d).) This
way, data points with large values of wi are more likely to be included in this training set, and the
next classifier will place higher priority on such data points.

Suppose that our weak learners always produce an error em < 1/2. To make sense of the formulas
we see in the algorithm, note that for step (c), if the i-th data point is misclassified, then the

weight wi gets increased by a factor of
√

1−em
em

(more priority placed on sample i), while if it

is classified correctly, the priority gets decreased. AdaBoost does have a weakness in that this
aggressive reweighting can cause the classifier to focus too much on certain training examples – if
the data is noisy with outliers, then this will weaken the boosting algorithm’s performance.

We have not yet discussed how to make a prediction given our classifiers (say, G1, . . . , GM). One
conceivable method is to use logistic regression with Gm(x) as features. However, a smarter choice
that is based on the AdaBoost algorithm is to set

αm =
1

2
ln

(
1− em
em

)

136 CHAPTER 8. DECISION TREE LEARNING

and classify x by sign(
∑

m αmGm(x)). Note that this choice of αm (derived later) gives high weight
to classifiers that have low error:

• As em → 0, 1−em
em
→∞, so αm →∞.

• As em → 1, 1−em
em
→ 0, so αm → −∞.

We now proceed to demystify the formulas in the algorithm by presenting a matching pursuit
interpretation of AdaBoost.

Derivation of AdaBoost

Suppose we have computed classifiers G1, ..., Gm−1 along with their corresponding weights αk and
we want to compute the next classifier Gm along with its weight αm. The output of our model so
far is Fm−1(x) :=

∑m−1
i=1 αiGi(x), and we want to minimize the risk:

arg min
αm,Gm

n∑
i=1

L(yi, Fm−1(xi) + αmGm(xi))

for some suitable loss function L. Loss functions we have previously used include mean squared
error for linear regression, cross-entropy loss for logistic regression, and hinge loss for SVM. For
AdaBoost, we use the exponential loss:

L(y, h(x)) = e−yh(x)

This loss function is illustrated in Figure 8.1. We have exponential decay as we increase the input
– thus if yh(x) is large and positive (so h(x) has the correct sign and high magnitude), our loss
is decreasing exponentially. Conversely, if yh(x) is a large negative value, our loss is increasing
exponentially, and thus we are heavily penalized for confidently making an incorrect prediction.

Figure 8.1: The exponential loss provides exponentially increasing penalty for confident incorrect predictions.
This figure is from Cornell CS4780 notes.

We can write the AdaBoost optimization problem with exponential loss as follows:

αm, Gm = arg min
α,G

n∑
i=1

e−yi(Fm−1(xi)+αG(xi))

8.3. BOOSTING 137

= arg min
α,G

n∑
i=1

e−yiFm−1(xi)e−yiαG(xi)

The term w
(m)
i := e−yiFm−1(x) is a constant with respect to our optimization variables. We can split

out this sum into the components with correctly classified points and incorrectly classified points:

αm, Gm = arg min
α,G

∑
yi=G(x)

w
(m)
i e−α +

∑
yi 6=G(x)

w
(m)
i e+α (∗)

= arg min
α,G

(eα − e−α)
∑

yi 6=G(xi)

w
(m)
i + e−α

n∑
i=1

w
(m)
i

For a fixed value of α, the second term does not depend on G. Thus we can see that the best choice

of Gm(x) is the classifier that minimizes the error given the weights w
(m)
i . Let

em =

∑
yi 6=Gm(xi)

w
(m)
i∑

iw
(m)
i

Once we have obtained Gm, we can solve for αm: by dividing (∗) by the constant
∑n

i=1w
(m)
i , we

obtain

αm = arg min
α

(1− em)e−α + eme
α

which has the solution (left as exercise)

αm =
1

2
ln

(
1− em
em

)
as claimed earlier.

From the optimal αm, we can derive the weights:

w
(m+1)
i = exp

(
−yiFm(xi)

)
= exp

(
−yi[Fm−1(xi) + αmGm(xi)]

)
= w

(m)
i exp

(
−yiGm(xi)αm

)
= w

(m)
i exp

(
−yiGm(xi)

1

2
ln

(
1− em
em

))

= w
(m)
i exp

ln

(1− em
em

)− 1

2
yiGm(xi)

= w
(m)
i

(
1− em
em

)− 1

2
yiGm(xi)

Here we see that the multiplicative factor is
√

em
1−em when yi = Gm(xi) and

√
1−em
em

otherwise. This

completes the derivation of the algorithm.

As a final note about the intuition, we can view these α updates as pushing towards a solution
in some direction until we can no longer improve our performance. More precisely, whenever we

138 CHAPTER 8. DECISION TREE LEARNING

compute αm (and thus w(m+1)), for the incorrectly classified entries, we have

∑
yi 6=Gm(xi)

w
(m+1)
i =

∑
yi 6=Gm(xi)

w
(m)
i

√
1− em
em

Dividing the right-hand side by
∑n

i=1w
(m)
i , we obtain em

√
1−em
em

=
√
em(1− em). Similarly, for

the correctly classified entries, we have∑
yi=Gm(xi)

w
(m+1)
i∑n

i=1w
(m)
i

= (1− em)

√
em

1− em
=
√
em(1− em)

Thus these two quantities are the same once we have adjusted our α, so the misclassified and
correctly classified sets both get equal total weight.

This observation has an interesting practical implication. Even after the training error goes to zero,
the AdaBoost test error may continue to decrease. This may be counter-intuitive, as one would
expect the classifier to be overfitting to the training data at this point. One interpretation for this
phenomenon is that even though the boosted classifier has achieved perfect training error, it is still
refining its fit in a max-margin fashion, which increases its generalization capabilities.

Chapter 9

Deep Learning

9.1 Convolutional Neural Nets

A convolutional neural net is just like a regular neural net, except more complicated (con-
voluted). But in some ways, a convolutional neural net can actually be a simpler model than a
fully-connected neural net.

We’ll be talking about convolutional neural networks (ConvNets) mostly in the framework of
image classification. First, let’s recall what one layer of a regular neural net looks like:

Remember that each layer consists of units which represent a single number. The values on the
units of some layer are determined by the values of the units behind them and the weights on the
edges in between the layers. More specifically, the vector of numbers representing layer 2, say y,
can be represented by linear combinations Wx of the vector representing layer 1. If we were dealing
with images, each unit of the input layer might be the intensity of a single pixel of the image.

The fully-connected architecture of units has a lot of weights to learn. For just a small 32 × 32
image, there would be 1024 input units and at least as many weights just between the first two
layers. Now, let’s look at how a ConvNet which deals with images uses its weights differently.

139

140 CHAPTER 9. DEEP LEARNING

Notice that some of the layers are called “conv” and “pool.” These layers are the new ideas that
ConvNets introduce to the neural net architecture.

Convolutional Layers

A convolutional layer is determined by convolving a kernel about the previous layer. The
kernel is just a fancy name for an array of weights, and convolving means that we slide the array
of weights across the pixels of the previous layer and compute the sum of the elementwise products
(kind of like a 2D dot-product). Here is a picture that illustrates this:

In the above picture, we extracted 6 activation values from 12 input values (we would supposedly
pass the dot-products through some kind of nonlinearity as well). In a regular fully-connected neural
net, we would have used 6 × 12 = 72 weights to accomplish this. However, in this convolutional
layer, we only used 4 weights. This is because we made use of weight sharing, as in:

1. the weights w, x, y, z were shared among all the pixels of the input

2. the individual units of the output layer were all determined by the same weights w, x, y, z

Compare this to the fully-connected architecture where for each output unit, there is a separate
weight to learn for each input unit. This kind of strategy decreases the complexity of our model
(there are fewer weights), but it makes sense for image processing because there are lots of repeated

9.1. CONVOLUTIONAL NEURAL NETS 141

patterns in images, and if you have one kernel which can detect some kind of phenomenon, then it
would make sense to use it elsewhere in the image.

How do kernels detect things, anyways? The short answer is: they will produce large values in the
areas of the image which appear most similar to them. Consider a simple kernel [1 − 1]. This
kernel will have produce large values for which the left pixel is bright and the right pixel is dark.
Conversely, it will produce small values for which the left pixel is dark and the right pixel is bright.

Figure 9.1: Left: a sample image.
Right: the output of convolving the [1 − 1] kernel about the image.

Notice how the output image has high values (white) in the areas where the original image turned
from bright to dark (like the right hand side of the figure), and it has low values (black) in the
areas where the original image turned from dark to bright (like the left hand side of the figure).
This kernel can be thought of as a simple edge detector! As another example, consider the kernel:0.6 0.2 0

0.2 0 0.2
0 0.2 0.6

If this was convolved about an image, it would detect edges at a positive 45-degree angle.

Just a few more things on convolutional layers:

1. You can stack the outputs of multiple kernels together to form a convolutional layer.

Figure 9.2: Here, we slid 6 separate 5× 5× 3 kernels across the original image to produce 6 activation maps
in the next convolutional layer. Each activation map can also be referred to as a channel.

2. To save memory, you can have your kernel stride across the image by multiple pixels.

142 CHAPTER 9. DEEP LEARNING

3. Zero-padding is sometimes used to control the exact dimensions of the convolutional layer.

4. As you add more convolutional layers, the effective receptive field of each successive layer
increases. That is to say, as you go downstream (of the layers), the value of any single unit
is informed by an increasingly large patch of the original image. For example. If you use
two successive layers of 3× 3 kernels, any one unit in the first convolutional layer is informed
by 9 separate image pixels. Any one unit in the second convolutional layer is informed by
9 separate units of the first convolutional layer, which could informed by up to 9 × 9 = 81
original pixels.

Figure 9.3: The highlighted unit in the downstream layer uses information from all the highlighted units in
the input layer.

5. You can think of convolutional layers as a complexity-regularized version of fully-connected
layers.

Pooling Layers

A pooling layer does not involve more weights. Instead, it is a layer whose purpose is solely to
downsample AKA pool AKA gather AKA consolidate the previous layer. It does this by sliding a
window of some size across the units of a layer of the ConvNet and choosing (somehow) one value
to effectively “represent” all the units captured by the window. You can tweak the nature of a
pooling layer in a few orthogonal ways.

1. How to pool? In max-pooling, the representative value just becomes the largest of all the units
in the window. In average-pooling, the representative value is the average of all the units in
the window.

9.1. CONVOLUTIONAL NEURAL NETS 143

2. In which direction to pool?

(a) Spatial pooling pools values within the same channel. This has the capability of intro-
ducing translational invariance to your model.

Figure 9.4: Here, the input layer of the right image is a translated version of the input layer of the left image,
but because of max-pooling, the next layer looks more or less the same.

(b) Cross-channel pooling pools values across different channels. This has the capability of
introducing transformational invariance to your model.

Figure 9.5: Here, we have an example where our convolutional layer is represented by 3 kernels. Suppose
they were each good for detecting the number 5 in some degree of rotation. If we pooled across the three
channels determined by these kernels, then no matter what orientation of the number “5” we got as input
to our ConvNet, the pooling layer would have a large response!

3. “Lossiness” of pooling. This is determined by the stride of the pooling window. If you stride
by a large amount, you potentially lose more information, but you conserve memory.

If you now look back at the picture of the ConvNet near the beginning of this note, you should have
a better idea of what each layer is doing. The ConvNet in that picture is Yann Lecun’s LeNet,
which is used to classify handwritten alphanumeric characters!

CNN Architectures

Convolutional Neural Networks were first applied successfully to the ImageNet challenge in 2012
and continue to outperform computer vision techniques that do not use neural networks. Here are
a few of the architectures that have been developed over the years.

AlexNet (Krizhevsky et al, 2012)

Key characteristics:

• Conv filters of varying sizes - for example, the first layer has 11× 11 conv filters

• First use of ReLU, which fixed the problem of saturating gradients in the predominant tanh
activation.

144 CHAPTER 9. DEEP LEARNING

Figure 9.6: AlexNet architecture. Reference: “ImageNet Classification with Deep Convolutional Neural
Networks,” NIPS 2012.

• Several layers of convolution, max pooling, some normalization. Three fully connected layers
at the end of the network (these comprise the majority of the weights in the network).

• Around 60 million weights, over half of which are in the first fully connected layer following
the last convolution.

• Trained over two GPU’s - the top and bottom divisions in Figure 9.6 were due to the need to
separate training onto two GPU’s. There was limited communication between the GPU’s, as
illustrated by the arrows that go between the top and bottom.

• Dropout in first two FC layers - prevents overfitting

• Heavy data augmentation. One form is image translation and reflection: for example, an
elephant facing the left is the same class as an elephant facing the right. The second form is
altering the intensity of RGB color channels: different cameras can have different lighting on
the same objects, so it is necessary to account for this.

VGGNet (Simonyan and Zisserman, 2014)

Reference paper: “Very Deep Convolutional Networks for Large-Scale Image Recognition,” ICLR
2015.1 Key characteristics:

• Only uses 3×3 convolutional filters. Blocks of conv-conv-conv-pool layers are stacked together,
followed by fully connected layers at the end (the number of convolutional layers between
pooling layers can vary). Note that a stack of 3 3 × 3 conv filters has the same effective
receptive field as one 7× 7 conv filter. To see this, imagine sliding a 3× 3 filter over a 7× 7
image - the result is a 5× 5 image. Do this twice more and the result is a 1× 1 cell - sliding
one 7×7 filter over the original image would also result in a 1×1 cell. The computational cost
of the 3× 3 filters is lower - a stack of 3 such filters over C channels requires 3 ∗ (32C) weights
(not including bias weights), while one 7 × 7 filter would incur a higher cost of 72C learned
weights. Deeper, more narrow networks can introduce more non-linearities than shallower,
wider networks due to the repeated composition of activation functions.

1VGG stands for the “Visual Geometry Group” at Oxford where this was developed.

9.1. CONVOLUTIONAL NEURAL NETS 145

GoogLeNet (Szegedy et al, 2014)

Also codenamed as “Inception.”2 Published in CVPR 2015 as “Going Deeper with Convolutions.”
Key characteristics:

Figure 9.7: Inception Module

• Deeper than previous networks (22 layers), but more computationally efficient (5 million
parameters - no fully connected layers).

• Network is composed of stacked sub-networks called “Inception modules.” The naive Incep-
tion module (a) runs convolutional layers in parallel and concatenates the filters together.
However, this can be computationally inefficient. The dimensionality reduction Inception
module (b) performs 1× 1 convolutions that act as dimensionality reduction. This lowers the
computational cost and makes it tractable to stack many Inception modules together.

ResNet (He et al, 2015)

Figure 9.8: Building block for the ResNet from “Deep Residual Learning for Image Recognition,” CVPR
2016. If the desired function to be learned is H(x), we instead learn the residual F(x) := H(x) − x, so the
output of the network is F(x) + x = H(x).

Key characteristics:

2“In this paper, we will focus on an efficient deep neural network architecture for computer vision, codenamed Inception,
which derives its name from the Network in network paper by Lin et al [12] in conjunction with the famous we need to go
deeper internet meme [1].” The authors seem to be meme-friendly.

146 CHAPTER 9. DEEP LEARNING

• Very deep (152 layers). Residual blocks (Figure 9.8) are stacked together - each individual
weight layer in the residual block is implemented as a 3 × 3 convolution. There are no FC
layers until the final layer.

• Residual blocks solve the “vanishing gradient” problem: the gradient signal diminishes in
layers that are farther away from the end of the network. Let L be the loss, Y be the output
at a layer, x be the input. Regular neural networks have gradients that look like

∂L

∂x
=
∂L

∂Y

∂Y

∂x

but the derivative of Y with respect to x can be small. If we use a residual block where
Y = F (x) + x, we have

∂Y

∂x
=
∂F (x)

∂x
+ 1

The +x term in the residual block always provides some default gradient signal so the signal
is still backpropagated to the front of the network. This allows the network to be very deep.

To conclude this section, we note that the winning ImageNet architectures have all increased in
depth over the years. While both shallow and deep neural networks are known to be universal
function approximators, there is growing empirical and theoretical evidence that deep neural net-
works can require fewer (even exponentially fewer) parameters than shallow nets to achieve the
same approximation performance. There is also evidence that deep neural networks possess better
generalization capabilities than their shallow counterparts. The performance, generalization, and
optimization benefits of adding more layers is an ongoing component of theoretical research.

Towards an Understanding of Convolutional Nets

We know that a convolutional net learns features, but these may not be directly useful to visualize.
There are several methods available that enable us to better understand what convolutional nets
actually learn. These include:

• Visualizing filters - can give an idea of what types of features the network learns, such as
edge detectors. This only works in the first layer. Visualizing activations - can see sparsity
in the responses as the depth increases. One can also visualize the feature map before a
fully connected layer by conducting a nearest neighbor search in feature space. This helps
to determine if the features learned by the CNN are useful - for example, in pixel space, an
elephant on the left side of the image would not be a neighbor of an elephant on the right side
of the image, but in a translation-invariant feature space these pictures might be neighbors.

• Reconstruction by deconvolution - isolate an activation and reconstruct the original image
based on that activation alone to determine its effect.

• Activation maximization - Hubel and Wiesel’s experiment, but computationally

• Saliency maps - find what locations in the image make a neuron fire

• Code inversion - given a feature representation, determine the original image

• Semantic interpretation - interpret the activations semantically (for example, is the CNN
determining whether or not an object is shiny when it is trying to classify?)

See Stella’s slides for images of these techniques in practice.

	Regression, Validation
	Regression
	Ordinary least squares
	Ridge Regression
	Feature Engineering
	Hyperparameters and Validation
	Kernel Ridge Regression
	Kernel Trick

	Probabilistic Models in Machine Learning
	MLE and MAP
	Bias-Variance Tradeoff
	Weighted Least Squares
	Multivariate Gaussians
	MLE with Dependent Noise
	MAP with Colored Noise
	Summary of Linear Gaussian Statistical Models

	Low-Rank approximation
	Total Least Squares
	Principal Component Analysis
	Canonical Correlation Analysis
	Dimensionality Reduction

	Gradient Descent, Newton's Method
	Nonlinear Least Squares
	Gradient Descent

	Neural Networks
	Neural Networks
	Training Neural Networks

	Classification
	Classification
	Generative Models
	QDA Classification
	LDA Classification
	LDA vs. QDA: Differences and Decision Boundaries
	Discriminative Models
	Least Squares Support Vector Machine
	Logistic Regression
	Multiclass Logistic Regression
	Training Logistic Regression
	Support Vector Machines

	Duality, Neareset Neighbors, Sparsity
	Duality
	The Dual of SVMs
	Nearest Neighbor Classification
	Sparsity and LASSO
	Coordinate Descent
	Sparse Least-Squares

	Decision Tree Learning
	Decision Trees
	Random Forests
	Boosting

	Deep Learning
	Convolutional Neural Nets

