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        Introduction

        
            Spark GraphX源码分析

  Spark GraphX是一个新的Spark API，它用于图和分布式图(graph-parallel)的计算。GraphX 综合了 Pregel 和 GraphLab 两者的优点，即接口相对简单，又保证性能，可以应对点分割的图存储模式，胜任符合幂律分布的自然图的大型计算。
本专题会详细介绍GraphX的实现原理，并对GraphX的存储结构以及部分操作作详细分析。

  本专题介绍的内容如下：
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        分布式图计算

        
            分布式图计算

  在介绍GraphX之前，我们需要先了解分布式图计算框架。简言之，分布式图框架就是将大型图的各种操作封装成接口，让分布式存储、并行计算等复杂问题对上层透明，从而使工程师将焦点放在图相关的模型设计和使用上，而不用关心底层的实现细节。
分布式图框架的实现需要考虑两个问题，第一是怎样切分图以更好的计算和保存；第二是采用什么图计算模型。下面分别介绍这两个问题。

1 图切分方式

  图的切分总体上说有点切分和边切分两种方式。


	点切分：通过点切分之后，每条边只保存一次，并且出现在同一台机器上。邻居多的点会被分发到不同的节点上，增加了存储空间，并且有可能产生同步问题。但是，它的优点是减少了网络通信。



	边切分：通过边切分之后，顶点只保存一次，切断的边会打断保存在两台机器上。在基于边的操作时，对于两个顶点分到两个不同的机器的边来说，需要进行网络传输数据。这增加了网络传输的数据量，但好处是节约了存储空间。





  以上两种切分方式虽然各有优缺点，但是点切分还是占有优势。GraphX以及后文提到的Pregel、GraphLab都使用到了点切分。

2 图计算框架

  图计算框架基本上都遵循分布式批同步（Bulk Synchronous Parallell,BSP）计算模式。基于BSP模式，目前有两种比较成熟的图计算框架:Pregel框架和GraphLab框架。

2.1 BSP

2.1.1 BSP基本原理

  在BSP中，一次计算过程由一系列全局超步组成，每一个超步由并发计算、通信和同步三个步骤组成。同步完成，标志着这个超步的完成及下一个超步的开始。
BSP模式的准则是批量同步(bulk synchrony)，其独特之处在于超步(superstep)概念的引入。一个BSP程序同时具有水平和垂直两个方面的结构。从垂直上看,一个BSP程序由一系列串行的超步(superstep)组成,如图所示:


[image: 1.1]



  从水平上看，在一个超步中，所有的进程并行执行局部计算。一个超步可分为三个阶段，如图所示:


[image: 1.2]




	本地计算阶段，每个处理器只对存储在本地内存中的数据进行本地计算。

	全局通信阶段，对任何非本地数据进行操作。

	栅栏同步阶段，等待所有通信行为的结束。



2.1.2 BSP模型特点

  BSP模型有如下几个特点：


	1 将计算划分为一个一个的超步(superstep)，有效避免死锁;



	2 将处理器和路由器分开，强调了计算任务和通信任务的分开，而路由器仅仅完成点到点的消息传递，不提供组合、复制和广播等功能，这样做既掩盖具体的互连网络拓扑，又简化了通信协议；



	3 采用障碍同步的方式、以硬件实现的全局同步是可控的粗粒度级，提供了执行紧耦合同步式并行算法的有效方式





2.2 Pregel框架

  Pregel是一种面向图算法的分布式编程框架，采用迭代的计算模型：在每一轮，每个顶点处理上一轮收到的消息，并发出消息给其它顶点，并更新自身状态和拓扑结构（出、入边）等。

2.2.1 Pregel框架执行过程

  在Pregel计算模式中，输入是一个有向图，该有向图的每一个顶点都有一个相应的由字符串描述的vertex identifier。每一个顶点都有一些属性，这些属性可以被修改，其初始值由用户定义。每一条有向边都和其源顶点关联，并且也拥有一些用户定义的属性和值，并同时还记录了其目的顶点的ID。

  一个典型的Pregel计算过程如下：读取输入，初始化该图，当图被初始化好后，运行一系列的超步，每一次超步都在全局的角度上独立运行，直到整个计算结束，输出结果。
在每一次超步中，顶点的计算都是并行的，并且执行用户定义的同一个函数。每个顶点可以修改其自身的状态信息或以它为起点的出边的信息，从前序超步中接受消息，并传送给其后续超步，或者修改整个图的拓扑结构。边，在这种计算模式中并不是核心对象，没有相应的计算运行在其上。

  算法是否能够结束取决于是否所有的顶点都已经vote标识其自身已经达到halt状态了。在superstep 0中，所有顶点都置于active状态，每一个active的顶点都会在计算的执行中在某一次的superstep中被计算。顶点通过将其自身的状态设置成halt来表示它已经不再active。这就表示该顶点没有进一步的计算需要进行，除非被其他的运算触发，而Pregel框架将不会在接下来的superstep中计算该顶点，除非该顶点收到一个其他superstep传送的消息。
如果顶点接收到消息，该消息将该顶点重新置active，那么在随后的计算中该顶点必须再次deactive其自身。整个计算在所有顶点都达到inactive状态，并且没有消息在传送的时候宣告结束。这种简单的状态机制在下图中描述：


[image: 1.3]



  我们用PageRank为例来说明Pregel的计算过程。

def PageRank(v: Id, msgs: List[Double]) {
// 计算消息和
var msgSum = 0
for (m <- msgs) { msgSum = msgSum + m }
// 更新 PageRank (PR)
A(v).PR = 0.15 + 0.85 * msgSum
// 广播新的PR消息
for (j <- OutNbrs(v)) {
msg = A(v).PR / A(v).NumLinks
send_msg(to=j, msg)
}
// 检查终止
if (converged(A(v).PR)) voteToHalt(v)
}


  以上代码中，顶点v首先接收来自上一次迭代的消息，计算它们的和。然后使用计算的消息和重新计算PageRank，之后程序广播这个重新计算的PageRank的值到顶点v的所有邻居，最后程序判断算法是否应该停止。

2.2.1 Pregel框架的消息模式

  Pregel选择了一种纯消息传递的模式，忽略远程数据读取和其他共享内存的方式，这样做有两个原因。


	第一，消息的传递有足够高效的表达能力，不需要远程读取（remote reads）。



	第二，性能的考虑。在一个集群环境中，从远程机器上读取一个值是会有很高的延迟的，这种情况很难避免。而消息传递模式通过异步和批量的方式传递消息，可以缓解这种远程读取的延迟。





  图算法其实也可以被写成是一系列的链式MapReduce作业。选择不同的模式的原因在于可用性和性能。Pregel将顶点和边在本地机器进行运算，而仅仅利用网络来传输信息，而不是传输数据。
而MapReduce本质上是面向函数的，所以将图算法用MapReduce来实现就需要将整个图的状态从一个阶段传输到另外一个阶段，这样就需要许多的通信和随之而来的序列化和反序列化的开销。另外，在一连串的MapReduce作业中各阶段需要协同工作也给编程增加了难度，这样的情况能够在Pregel的各轮超步的迭代中避免。

2.2.3  Pregel框架的缺点

  这个模型虽然简单，但是缺陷明显，那就是对于邻居数很多的顶点，它需要处理的消息非常庞大，而且在这个模式下，它们是无法被并发处理的。所以对于符合幂律分布的自然图，这种计算模型下很容易发生假死或者崩溃。

2.3 GraphLab框架

  GraphLab将数据抽象成Graph结构，将基于顶点切分的算法的执行过程抽象成Gather、Apply、Scatter三个步骤。以下面的例子作为一个说明。


[image: 1.4]



  示例中，需要完成对V0邻接顶点的求和计算，串行实现中，V0对其所有的邻接点进行遍历，累加求和。而GraphLab中，将顶点V0进行切分，将V0的边关系以及对应的邻接点部署在两台处理器上，各台机器上并行进行部分求和运算，然后通过master（蓝色）顶点和mirror（橘红色）顶点的通信完成最终的计算。

2.3.1 GraphLab框架的数据模型

  对于分割的某个顶点，它会被部署到多台机器，一台机器作为master顶点，其余机器作为mirror。master作为所有mirror的管理者，负责给mirror安排具体计算任务;mirror作为该顶点在各台机器上的代理执行者，与master数据的保持同步。

  对于某条边，GraphLab将其唯一部署在某一台机器上，而对边关联的顶点进行多份存储，解决了边数据量大的问题。

  同一台机器上的所有顶点和边构成一个本地图（local graph）,在每台机器上，存在一份本地id到全局id的映射表。顶点是一个进程上所有线程共享的，在并行计算过程中，各个线程分摊进程中所有顶点的gather->apply->scatter操作。

  我们用下面这个例子说明，GraphLab是怎么构建Graph的。图中，以顶点v2和v3进行分割。顶点v2和v3同时存在于两个进程中，并且两个线程共同分担顶点计算。


[image: 1.5]



2.3.2 GraphLab框架的执行模型

  每个顶点每一轮迭代会经过gather -> apple -> scatter三个阶段。


	Gather阶段，工作顶点的边从连接顶点和自身收集数据。这一阶段对工作顶点、边都是只读的。



	Apply阶段，mirror将gather阶段计算的结果发送给master顶点，master进行汇总并结合上一步的顶点数据，按照业务需求进行进一步的计算，然后更新master的顶点数据，并同步给mirror。Apply阶段中，工作顶点可修改，边不可修改。



	Scatter阶段，工作顶点更新完成之后，更新边上的数据，并通知对其有依赖的邻结顶点更新状态。在scatter过程中，工作顶点只读，边上数据可写。





  在执行模型中，GraphLab通过控制三个阶段的读写权限来达到互斥的目的。在gather阶段只读，apply对顶点只写，scatter对边只写。并行计算的同步通过master和mirror来实现，mirror相当于每个顶点对外的一个接口人，将复杂的数据通信抽象成顶点的行为。

  下面这个例子说明GraphLab的执行模型：


[image: 1.6]



  利用GraphLab实现的PageRank的代码如下所示：

//汇总
def Gather(a: Double, b: Double) = a + b
//更新顶点
def Apply(v, msgSum) {
A(v).PR = 0.15 + 0.85 * msgSum
if (converged(A(v).PR)) voteToHalt(v)
}
//更新边
def Scatter(v, j) = A(v).PR / A(v).NumLinks


  由于gather/scatter函数是以单条边为操作粒度，所以对于一个顶点的众多邻边，可以分别由相应的节点独立调用gather/scatter函数。这一设计主要是为了适应点分割的图存储模式，从而避免Pregel模型会遇到的问题。

3 GraphX

   GraphX也是基于BSP模式。GraphX公开了一个类似Pregel的操作，它是广泛使用的Pregel和GraphLab抽象的一个融合。在GraphX中，Pregel操作者执行一系列的超步，在这些超步中，顶点从之前的超步中接收进入(inbound)消息，为顶点属性计算一个新的值，然后在以后的超步中发送消息到邻居顶点。
不像Pregel而更像GraphLab，消息通过边triplet的一个函数被并行计算，消息的计算既会访问源顶点特征也会访问目的顶点特征。在超步中，没有收到消息的顶点会被跳过。当没有消息遗留时，Pregel操作停止迭代并返回最终的图。

4 参考文献

【1】Preg el: A System for Larg e-Scale Graph Processing

【2】快刀初试：Spark GraphX在淘宝的实践

【3】GraphLab:A New Parallel Framework for Machine Learning


        

    



        
    



        

    
        GraphX简介

        
            GraphX介绍

1 GraphX的优势

  GraphX是一个新的Spark API，它用于图和分布式图(graph-parallel)的计算。GraphX通过引入弹性分布式属性图（Resilient Distributed Property Graph）：
顶点和边均有属性的有向多重图，来扩展Spark RDD。为了支持图计算，GraphX开发了一组基本的功能操作以及一个优化过的Pregel API。另外，GraphX包含了一个快速增长的图算法和图builders的
集合，用以简化图分析任务。

  从社交网络到语言建模，不断增长的规模以及图形数据的重要性已经推动了许多新的分布式图系统（如Giraph和GraphLab）的发展。
通过限制计算类型以及引入新的技术来切分和分配图，这些系统可以高效地执行复杂的图形算法，比一般的分布式数据计算（data-parallel，如spark、MapReduce）快很多。


[image: 2.1]



  分布式图（graph-parallel）计算和分布式数据（data-parallel）计算类似，分布式数据计算采用了一种record-centric的集合视图，而分布式图计算采用了一种vertex-centric的图视图。
分布式数据计算通过同时处理独立的数据来获得并发的目的，分布式图计算则是通过对图数据进行分区（即切分）来获得并发的目的。更准确的说，分布式图计算递归地定义特征的转换函数（这种转换函数作用于邻居特征），通过并发地执行这些转换函数来获得并发的目的。

  分布式图计算比分布式数据计算更适合图的处理，但是在典型的图处理流水线中，它并不能很好地处理所有操作。例如，虽然分布式图系统可以很好的计算PageRank以及label diffusion，但是它们不适合从不同的数据源构建图或者跨过多个图计算特征。
更准确的说，分布式图系统提供的更窄的计算视图无法处理那些构建和转换图结构以及跨越多个图的需求。分布式图系统中无法提供的这些操作需要数据在图本体之上移动并且需要一个图层面而不是单独的顶点或边层面的计算视图。例如，我们可能想限制我们的分析到几个子图上，然后比较结果。
这不仅需要改变图结构，还需要跨多个图计算。


[image: 2.2]



  我们如何处理数据取决于我们的目标，有时同一原始数据可能会处理成许多不同表和图的视图，并且图和表之间经常需要能够相互移动。如下图所示：


[image: 2.3]



  所以我们的图流水线必须通过组合graph-parallel和data- parallel来实现。但是这种组合必然会导致大量的数据移动以及数据复制，同时这样的系统也非常复杂。
例如，在传统的图计算流水线中，在Table View视图下，可能需要Spark或者Hadoop的支持，在Graph View这种视图下，可能需要Prege或者GraphLab的支持。也就是把图和表分在不同的系统中分别处理。
不同系统之间数据的移动和通信会成为很大的负担。

  GraphX项目将graph-parallel和data-parallel统一到一个系统中，并提供了一个唯一的组合API。GraphX允许用户把数据当做一个图和一个集合（RDD），而不需要数据移动或者复制。也就是说GraphX统一了Graph View和Table View，
可以非常轻松的做pipeline操作。

2 弹性分布式属性图

  GraphX的核心抽象是弹性分布式属性图，它是一个有向多重图，带有连接到每个顶点和边的用户定义的对象。
有向多重图中多个并行的边共享相同的源和目的顶点。支持并行边的能力简化了建模场景，相同的顶点可能存在多种关系(例如co-worker和friend)。
每个顶点用一个唯一的64位长的标识符（VertexID）作为key。GraphX并没有对顶点标识强加任何排序。同样，边拥有相应的源和目的顶点标识符。

  属性图扩展了Spark RDD的抽象，有Table和Graph两种视图，但是只需要一份物理存储。两种视图都有自己独有的操作符，从而使我们同时获得了操作的灵活性和执行的高效率。
属性图以vertex(VD)和edge(ED)类型作为参数类型，这些类型分别是顶点和边相关联的对象的类型。

  在某些情况下，在同样的图中，我们可能希望拥有不同属性类型的顶点。这可以通过继承完成。例如，将用户和产品建模成一个二分图，我们可以用如下方式：

class VertexProperty()
case class UserProperty(val name: String) extends VertexProperty
case class ProductProperty(val name: String, val price: Double) extends VertexProperty
// The graph might then have the type:
var graph: Graph[VertexProperty, String] = null


  和RDD一样，属性图是不可变的、分布式的、容错的。图的值或者结构的改变需要生成一个新的图来实现。注意，原始图中不受影响的部分都可以在新图中重用，用来减少存储的成本。
执行者使用一系列顶点分区方法来对图进行分区。如RDD一样，图的每个分区可以在发生故障的情况下被重新创建在不同的机器上。

  逻辑上,属性图对应于一对类型化的集合(RDD),这个集合包含每一个顶点和边的属性。因此，图的类中包含访问图中顶点和边的成员变量。

class Graph[VD, ED] {
  val vertices: VertexRDD[VD]
  val edges: EdgeRDD[ED]
}


  VertexRDD[VD]和EdgeRDD[ED]类是RDD[(VertexID, VD)]和RDD[Edge[ED]]的继承和优化版本。VertexRDD[VD]和EdgeRDD[ED]都提供了额外的图计算功能并提供内部优化功能。

abstract class VertexRDD[VD](
    sc: SparkContext,
    deps: Seq[Dependency[_]]) extends RDD[(VertexId, VD)](sc, deps) 

abstract class EdgeRDD[ED](
    sc: SparkContext,
    deps: Seq[Dependency[_]]) extends RDD[Edge[ED]](sc, deps)


3 GraphX的图存储模式

  Graphx借鉴PowerGraph，使用的是Vertex-Cut( 点分割 ) 方式存储图，用三个RDD存储图数据信息：


	VertexTable(id, data)：id为顶点id， data为顶点属性



	EdgeTable(pid, src, dst, data)：pid 为分区id ，src为源顶点id ，dst为目的顶点id，data为边属性



	RoutingTable(id, pid)：id 为顶点id ，pid 为分区id





  点分割存储实现如下图所示：


[image: 2.3]



  在后文的图构建部分，我们会详细介绍这三个部分。

4 GraphX底层设计的核心点


	1 对Graph视图的所有操作，最终都会转换成其关联的Table视图的RDD操作来完成。一个图的计算在逻辑上等价于一系列RDD的转换过程。因此，Graph最终具备了RDD的3个关键特性：不变性、分布性和容错性。其中最关键的是不变性。逻辑上，所有图的转换和操作都产生了一个新图；物理上，GraphX会有一定程度的不变顶点和边的复用优化，对用户透明。



	2 两种视图底层共用的物理数据，由RDD[VertexPartition]和RDD[EdgePartition]这两个RDD组成。点和边实际都不是以表Collection[tuple]的形式存储的，而是由VertexPartition/EdgePartition在内部存储一个带索引结构的分片数据块，以加速不同视图下的遍历速度。不变的索引结构在RDD转换过程中是共用的，降低了计算和存储开销。



	3 图的分布式存储采用点分割模式，而且使用partitionBy方法，由用户指定不同的划分策略。下一章会具体讲到划分策略。
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        GraphX点切分存储

        
            点分割存储

  在第一章分布式图系统中，我们介绍了图存储的两种方式：点分割存储和边分割存储。GraphX借鉴powerGraph，使用的是点分割方式存储图。这种存储方式特点是任何一条边只会出现在一台机器上，每个点有可能分布到不同的机器上。
当点被分割到不同机器上时，是相同的镜像，但是有一个点作为主点,其他的点作为虚点，当点的数据发生变化时,先更新主点的数据，然后将所有更新好的数据发送到虚点所在的所有机器，更新虚点。
这样做的好处是在边的存储上是没有冗余的，而且对于某个点与它的邻居的交互操作，只要满足交换律和结合律，就可以在不同的机器上面执行，网络开销较小。但是这种分割方式会存储多份点数据，更新点时，
会发生网络传输，并且有可能出现同步问题。

  GraphX在进行图分割时，有几种不同的分区(partition)策略，它通过PartitionStrategy专门定义这些策略。在PartitionStrategy中，总共定义了EdgePartition2D、EdgePartition1D、RandomVertexCut以及
CanonicalRandomVertexCut这四种不同的分区策略。下面分别介绍这几种策略。

1 RandomVertexCut

case object RandomVertexCut extends PartitionStrategy {
    override def getPartition(src: VertexId, dst: VertexId, numParts: PartitionID): PartitionID = {
      math.abs((src, dst).hashCode()) % numParts
    }
  }


  这个方法比较简单，通过取源顶点和目标顶点id的哈希值来将边分配到不同的分区。这个方法会产生一个随机的边分割，两个顶点之间相同方向的边会分配到同一个分区。

2 CanonicalRandomVertexCut

case object CanonicalRandomVertexCut extends PartitionStrategy {
    override def getPartition(src: VertexId, dst: VertexId, numParts: PartitionID): PartitionID = {
      if (src < dst) {
        math.abs((src, dst).hashCode()) % numParts
      } else {
        math.abs((dst, src).hashCode()) % numParts
      }
    }
  }


  这种分割方法和前一种方法没有本质的不同。不同的是，哈希值的产生带有确定的方向（即两个顶点中较小id的顶点在前）。两个顶点之间所有的边都会分配到同一个分区，而不管方向如何。

3 EdgePartition1D

case object EdgePartition1D extends PartitionStrategy {
    override def getPartition(src: VertexId, dst: VertexId, numParts: PartitionID): PartitionID = {
      val mixingPrime: VertexId = 1125899906842597L
      (math.abs(src * mixingPrime) % numParts).toInt
    }
  }


  这种方法仅仅根据源顶点id来将边分配到不同的分区。有相同源顶点的边会分配到同一分区。

4 EdgePartition2D

case object EdgePartition2D extends PartitionStrategy {
    override def getPartition(src: VertexId, dst: VertexId, numParts: PartitionID): PartitionID = {
      val ceilSqrtNumParts: PartitionID = math.ceil(math.sqrt(numParts)).toInt
      val mixingPrime: VertexId = 1125899906842597L
      if (numParts == ceilSqrtNumParts * ceilSqrtNumParts) {
        // Use old method for perfect squared to ensure we get same results
        val col: PartitionID = (math.abs(src * mixingPrime) % ceilSqrtNumParts).toInt
        val row: PartitionID = (math.abs(dst * mixingPrime) % ceilSqrtNumParts).toInt
        (col * ceilSqrtNumParts + row) % numParts
      } else {
        // Otherwise use new method
        val cols = ceilSqrtNumParts
        val rows = (numParts + cols - 1) / cols
        val lastColRows = numParts - rows * (cols - 1)
        val col = (math.abs(src * mixingPrime) % numParts / rows).toInt
        val row = (math.abs(dst * mixingPrime) % (if (col < cols - 1) rows else lastColRows)).toInt
        col * rows + row
      }
    }
  }


  这种分割方法同时使用到了源顶点id和目的顶点id。它使用稀疏边连接矩阵的2维区分来将边分配到不同的分区，从而保证顶点的备份数不大于2 * sqrt(numParts)的限制。这里numParts表示分区数。
这个方法的实现分两种情况，即分区数能完全开方和不能完全开方两种情况。当分区数能完全开方时，采用下面的方法：

 val col: PartitionID = (math.abs(src * mixingPrime) % ceilSqrtNumParts).toInt
 val row: PartitionID = (math.abs(dst * mixingPrime) % ceilSqrtNumParts).toInt
 (col * ceilSqrtNumParts + row) % numParts


  当分区数不能完全开方时，采用下面的方法。这个方法的最后一列允许拥有不同的行数。

val cols = ceilSqrtNumParts
val rows = (numParts + cols - 1) / cols
//最后一列允许不同的行数
val lastColRows = numParts - rows * (cols - 1)
val col = (math.abs(src * mixingPrime) % numParts / rows).toInt
val row = (math.abs(dst * mixingPrime) % (if (col < cols - 1) rows else lastColRows)).toInt
col * rows + row


  下面举个例子来说明该方法。假设我们有一个拥有12个顶点的图，要把它切分到9台机器。我们可以用下面的稀疏矩阵来表示:

          __________________________________
     v0   | P0 *     | P1       | P2    *  |
     v1   |  ****    |  *       |          |
     v2   |  ******* |      **  |  ****    |
     v3   |  *****   |  *  *    |       *  |
          ----------------------------------
     v4   | P3 *     | P4 ***   | P5 **  * |
     v5   |  *  *    |  *       |          |
     v6   |       *  |      **  |  ****    |
     v7   |  * * *   |  *  *    |       *  |
          ----------------------------------
     v8   | P6   *   | P7    *  | P8  *   *|
     v9   |     *    |  *    *  |          |
     v10  |       *  |      **  |  *  *    |
     v11  | * <-E    |  ***     |       ** |
          ----------------------------------

  上面的例子中*表示分配到处理器上的边。E表示连接顶点v11和v1的边，它被分配到了处理器P6上。为了获得边所在的处理器，我们将矩阵切分为sqrt(numParts) * sqrt(numParts)块。
注意，上图中与顶点v11相连接的边只出现在第一列的块(P0,P3,P6)或者最后一行的块(P6,P7,P8)中，这保证了V11的副本数不会超过2 * sqrt(numParts)份，在上例中即副本不能超过6份。

  在上面的例子中，P0里面存在很多边，这会造成工作的不均衡。为了提高均衡，我们首先用顶点id乘以一个大的素数，然后再shuffle顶点的位置。乘以一个大的素数本质上不能解决不平衡的问题，只是减少了不平衡的情况发生。
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        vertices、edges和triplets

        
            GraphX中vertices、edges以及triplets

  vertices、edges以及triplets是GraphX中三个非常重要的概念。我们在前文GraphX介绍中对这三个概念有初步的了解。

1 vertices

  在GraphX中，vertices对应着名称为VertexRDD的RDD。这个RDD有顶点id和顶点属性两个成员变量。它的源码如下所示：

abstract class VertexRDD[VD](
    sc: SparkContext,
    deps: Seq[Dependency[_]]) extends RDD[(VertexId, VD)](sc, deps)


  从源码中我们可以看到，VertexRDD继承自RDD[(VertexId, VD)]，这里VertexId表示顶点id，VD表示顶点所带的属性的类别。这从另一个角度也说明VertexRDD拥有顶点id和顶点属性。

2 edges

  在GraphX中，edges对应着EdgeRDD。这个RDD拥有三个成员变量，分别是源顶点id、目标顶点id以及边属性。它的源码如下所示：

abstract class EdgeRDD[ED](
    sc: SparkContext,
    deps: Seq[Dependency[_]]) extends RDD[Edge[ED]](sc, deps)


  从源码中我们可以看到，EdgeRDD继承自RDD[Edge[ED]]，即类型为Edge[ED]的RDD。Edge[ED]在后文会讲到。

3 triplets

  在GraphX中，triplets对应着EdgeTriplet。它是一个三元组视图，这个视图逻辑上将顶点和边的属性保存为一个RDD[EdgeTriplet[VD, ED]]。可以通过下面的Sql表达式表示这个三元视图的含义:

SELECT src.id, dst.id, src.attr, e.attr, dst.attr
FROM edges AS e LEFT JOIN vertices AS src, vertices AS dst
ON e.srcId = src.Id AND e.dstId = dst.Id


  同样，也可以通过下面图解的形式来表示它的含义：


[image: 3.1]



  EdgeTriplet的源代码如下所示：

class EdgeTriplet[VD, ED] extends Edge[ED] {
  //源顶点属性
  var srcAttr: VD = _ // nullValue[VD]
  //目标顶点属性
  var dstAttr: VD = _ // nullValue[VD]
  protected[spark] def set(other: Edge[ED]): EdgeTriplet[VD, ED] = {
    srcId = other.srcId
    dstId = other.dstId
    attr = other.attr
    this
  }


  EdgeTriplet类继承自Edge类，我们来看看这个父类：

case class Edge[@specialized(Char, Int, Boolean, Byte, Long, Float, Double) ED] (
    var srcId: VertexId = 0,
    var dstId: VertexId = 0,
    var attr: ED = null.asInstanceOf[ED])
  extends Serializable


  Edge类中包含源顶点id，目标顶点id以及边的属性。所以从源代码中我们可以知道，triplets既包含了边属性也包含了源顶点的id和属性、目标顶点的id和属性。
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            图的构建

  GraphX的Graph对象是用户操作图的入口。前面的章节我们介绍过，它包含了边(edges)、顶点(vertices)以及triplets三部分，并且这三部分都包含相应的属性，可以携带额外的信息。

1 构建图的方法

  构建图的入口方法有两种，分别是根据边构建和根据边的两个顶点构建。


	根据边构建图(Graph.fromEdges)



def fromEdges[VD: ClassTag, ED: ClassTag](
      edges: RDD[Edge[ED]],
      defaultValue: VD,
      edgeStorageLevel: StorageLevel = StorageLevel.MEMORY_ONLY,
      vertexStorageLevel: StorageLevel = StorageLevel.MEMORY_ONLY): Graph[VD, ED] = {
    GraphImpl(edges, defaultValue, edgeStorageLevel, vertexStorageLevel)
  }



	根据边的两个顶点数据构建(Graph.fromEdgeTuples)



 def fromEdgeTuples[VD: ClassTag](
      rawEdges: RDD[(VertexId, VertexId)],
      defaultValue: VD,
      uniqueEdges: Option[PartitionStrategy] = None,
      edgeStorageLevel: StorageLevel = StorageLevel.MEMORY_ONLY,
      vertexStorageLevel: StorageLevel = StorageLevel.MEMORY_ONLY): Graph[VD, Int] =
  {
    val edges = rawEdges.map(p => Edge(p._1, p._2, 1))
    val graph = GraphImpl(edges, defaultValue, edgeStorageLevel, vertexStorageLevel)
    uniqueEdges match {
      case Some(p) => graph.partitionBy(p).groupEdges((a, b) => a + b)
      case None => graph
    }
  }


  从上面的代码我们知道，不管是根据边构建图还是根据边的两个顶点数据构建，最终都是使用GraphImpl来构建的，即调用了GraphImpl的apply方法。

2 构建图的过程

  构建图的过程很简单，分为三步，它们分别是构建边EdgeRDD、构建顶点VertexRDD、生成Graph对象。下面分别介绍这三个步骤。

2.1 构建边EdgeRDD

  从源代码看构建边EdgeRDD也分为三步，下图的例子详细说明了这些步骤。
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	1 从文件中加载信息，转换成tuple的形式,即(srcId, dstId)



val rawEdgesRdd: RDD[(Long, Long)] = 
    sc.textFile(input).filter(s => s != "0,0").repartition(partitionNum).map {
      case line =>
        val ss = line.split(",")
        val src = ss(0).toLong
        val dst = ss(1).toLong
        if (src < dst)
          (src, dst)
        else
          (dst, src)
    }.distinct()



	2 入口，调用Graph.fromEdgeTuples(rawEdgesRdd)



  源数据为分割的两个点ID，把源数据映射成Edge(srcId, dstId, attr)对象, attr默认为1。这样元数据就构建成了RDD[Edge[ED]],如下面的代码

val edges = rawEdges.map(p => Edge(p._1, p._2, 1))



	3 将RDD[Edge[ED]]进一步转化成EdgeRDDImpl[ED, VD]



  第二步构建完RDD[Edge[ED]]之后，GraphX通过调用GraphImpl的apply方法来构建Graph。

val graph = GraphImpl(edges, defaultValue, edgeStorageLevel, vertexStorageLevel)
def apply[VD: ClassTag, ED: ClassTag](
      edges: RDD[Edge[ED]],
      defaultVertexAttr: VD,
      edgeStorageLevel: StorageLevel,
      vertexStorageLevel: StorageLevel): GraphImpl[VD, ED] = {
    fromEdgeRDD(EdgeRDD.fromEdges(edges), defaultVertexAttr, edgeStorageLevel, vertexStorageLevel)
  }


  在apply调用fromEdgeRDD之前，代码会调用EdgeRDD.fromEdges(edges)将RDD[Edge[ED]]转化成EdgeRDDImpl[ED, VD]。

def fromEdges[ED: ClassTag, VD: ClassTag](edges: RDD[Edge[ED]]): EdgeRDDImpl[ED, VD] = {
    val edgePartitions = edges.mapPartitionsWithIndex { (pid, iter) =>
      val builder = new EdgePartitionBuilder[ED, VD]
      iter.foreach { e =>
        builder.add(e.srcId, e.dstId, e.attr)
      }
      Iterator((pid, builder.toEdgePartition))
    }
    EdgeRDD.fromEdgePartitions(edgePartitions)
  }


  程序遍历RDD[Edge[ED]]的每个分区，并调用builder.toEdgePartition对分区内的边作相应的处理。

def toEdgePartition: EdgePartition[ED, VD] = {
    val edgeArray = edges.trim().array
    new Sorter(Edge.edgeArraySortDataFormat[ED])
      .sort(edgeArray, 0, edgeArray.length, Edge.lexicographicOrdering)
    val localSrcIds = new Array[Int](edgeArray.size)
    val localDstIds = new Array[Int](edgeArray.size)
    val data = new Array[ED](edgeArray.size)
    val index = new GraphXPrimitiveKeyOpenHashMap[VertexId, Int]
    val global2local = new GraphXPrimitiveKeyOpenHashMap[VertexId, Int]
    val local2global = new PrimitiveVector[VertexId]
    var vertexAttrs = Array.empty[VD]
    //采用列式存储的方式，节省了空间
    if (edgeArray.length > 0) {
      index.update(edgeArray(0).srcId, 0)
      var currSrcId: VertexId = edgeArray(0).srcId
      var currLocalId = -1
      var i = 0
      while (i < edgeArray.size) {
        val srcId = edgeArray(i).srcId
        val dstId = edgeArray(i).dstId
        localSrcIds(i) = global2local.changeValue(srcId,
          { currLocalId += 1; local2global += srcId; currLocalId }, identity)
        localDstIds(i) = global2local.changeValue(dstId,
          { currLocalId += 1; local2global += dstId; currLocalId }, identity)
        data(i) = edgeArray(i).attr
        //相同顶点srcId中第一个出现的srcId与其下标
        if (srcId != currSrcId) {
          currSrcId = srcId
          index.update(currSrcId, i)
        }
        i += 1
      }
      vertexAttrs = new Array[VD](currLocalId + 1)
    }
    new EdgePartition(
      localSrcIds, localDstIds, data, index, global2local, local2global.trim().array, vertexAttrs,
      None)
  }



	toEdgePartition的第一步就是对边进行排序。



  按照srcId从小到大排序。排序是为了遍历时顺序访问，加快访问速度。采用数组而不是Map，是因为数组是连续的内存单元，具有原子性，避免了Map的hash问题，访问速度快。


	toEdgePartition的第二步就是填充localSrcIds,localDstIds, data, index, global2local, local2global, vertexAttrs。



  数组localSrcIds,localDstIds中保存的是通过global2local.changeValue(srcId/dstId)转换而成的分区本地索引。可以通过localSrcIds、localDstIds数组中保存的索引位从local2global中查到具体的VertexId。

  global2local是一个简单的，key值非负的快速hash map：GraphXPrimitiveKeyOpenHashMap, 保存vertextId和本地索引的映射关系。global2local中包含当前partition所有srcId、dstId与本地索引的映射关系。

  data就是当前分区的attr属性数组。

  我们知道相同的srcId可能对应不同的dstId。按照srcId排序之后，相同的srcId会出现多行，如上图中的index desc部分。index中记录的是相同srcId中第一个出现的srcId与其下标。

  local2global记录的是所有的VertexId信息的数组。形如：srcId,dstId,srcId,dstId,srcId,dstId,srcId,dstId。其中会包含相同的srcId。即：当前分区所有vertextId的顺序实际值。

  我们可以通过根据本地下标取VertexId，也可以根据VertexId取本地下标，取相应的属性。

// 根据本地下标取VertexId
localSrcIds/localDstIds -> index -> local2global -> VertexId
// 根据VertexId取本地下标，取属性
VertexId -> global2local -> index -> data -> attr object


2.2 构建顶点VertexRDD

  紧接着上面构建边RDD的代码，我们看看方法fromEdgeRDD的实现。

private def fromEdgeRDD[VD: ClassTag, ED: ClassTag](
      edges: EdgeRDDImpl[ED, VD],
      defaultVertexAttr: VD,
      edgeStorageLevel: StorageLevel,
      vertexStorageLevel: StorageLevel): GraphImpl[VD, ED] = {
    val edgesCached = edges.withTargetStorageLevel(edgeStorageLevel).cache()
    val vertices = VertexRDD.fromEdges(edgesCached, edgesCached.partitions.size, defaultVertexAttr)
      .withTargetStorageLevel(vertexStorageLevel)
    fromExistingRDDs(vertices, edgesCached)
  }


  从上面的代码我们可以知道，GraphX使用VertexRDD.fromEdges构建顶点VertexRDD，当然我们把边RDD作为参数传入。

def fromEdges[VD: ClassTag](
      edges: EdgeRDD[_], numPartitions: Int, defaultVal: VD): VertexRDD[VD] = {
    //1 创建路由表
    val routingTables = createRoutingTables(edges, new HashPartitioner(numPartitions))
    //2 根据路由表生成分区对象vertexPartitions
    val vertexPartitions = routingTables.mapPartitions({ routingTableIter =>
      val routingTable =
        if (routingTableIter.hasNext) routingTableIter.next() else RoutingTablePartition.empty
      Iterator(ShippableVertexPartition(Iterator.empty, routingTable, defaultVal))
    }, preservesPartitioning = true)
    //3 创建VertexRDDImpl对象
    new VertexRDDImpl(vertexPartitions)
  }


  构建顶点VertexRDD的过程分为三步，如上代码中的注释。它的构建过程如下图所示：
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	1 创建路由表



  为了能通过点找到边，每个点需要保存点到边的信息，这些信息保存在RoutingTablePartition中。

private[graphx] def createRoutingTables(
      edges: EdgeRDD[_], vertexPartitioner: Partitioner): RDD[RoutingTablePartition] = {
    // 将edge partition中的数据转换成RoutingTableMessage类型，
    val vid2pid = edges.partitionsRDD.mapPartitions(_.flatMap(
      Function.tupled(RoutingTablePartition.edgePartitionToMsgs)))
  }


  上述程序首先将边分区中的数据转换成RoutingTableMessage类型，即tuple(VertexId,Int)类型。

def edgePartitionToMsgs(pid: PartitionID, edgePartition: EdgePartition[_, _])
    : Iterator[RoutingTableMessage] = {
    val map = new GraphXPrimitiveKeyOpenHashMap[VertexId, Byte]
    edgePartition.iterator.foreach { e =>
      map.changeValue(e.srcId, 0x1, (b: Byte) => (b | 0x1).toByte)
      map.changeValue(e.dstId, 0x2, (b: Byte) => (b | 0x2).toByte)
    }
    map.iterator.map { vidAndPosition =>
      val vid = vidAndPosition._1
      val position = vidAndPosition._2
      toMessage(vid, pid, position)
    }
  }
//`30-0`比特位表示边分区`ID`,`32-31`比特位表示标志位
private def toMessage(vid: VertexId, pid: PartitionID, position: Byte): RoutingTableMessage = {
    val positionUpper2 = position << 30
    val pidLower30 = pid & 0x3FFFFFFF
    (vid, positionUpper2 | pidLower30)
  }


  根据代码，我们可以知道程序使用int的32-31比特位表示标志位，即01: isSrcId ,10: isDstId。30-0比特位表示边分区ID。这样做可以节省内存。
RoutingTableMessage表达的信息是：顶点id和它相关联的边的分区id是放在一起的,所以任何时候，我们都可以通过RoutingTableMessage找到顶点关联的边。


	2 根据路由表生成分区对象



private[graphx] def createRoutingTables(
      edges: EdgeRDD[_], vertexPartitioner: Partitioner): RDD[RoutingTablePartition] = {
    // 将edge partition中的数据转换成RoutingTableMessage类型，
    val numEdgePartitions = edges.partitions.size
    vid2pid.partitionBy(vertexPartitioner).mapPartitions(
      iter => Iterator(RoutingTablePartition.fromMsgs(numEdgePartitions, iter)),
      preservesPartitioning = true)
  }


  我们将第1步生成的vid2pid按照HashPartitioner重新分区。我们看看RoutingTablePartition.fromMsgs方法。

 def fromMsgs(numEdgePartitions: Int, iter: Iterator[RoutingTableMessage])
    : RoutingTablePartition = {
    val pid2vid = Array.fill(numEdgePartitions)(new PrimitiveVector[VertexId])
    val srcFlags = Array.fill(numEdgePartitions)(new PrimitiveVector[Boolean])
    val dstFlags = Array.fill(numEdgePartitions)(new PrimitiveVector[Boolean])
    for (msg <- iter) {
      val vid = vidFromMessage(msg)
      val pid = pidFromMessage(msg)
      val position = positionFromMessage(msg)
      pid2vid(pid) += vid
      srcFlags(pid) += (position & 0x1) != 0
      dstFlags(pid) += (position & 0x2) != 0
    }
    new RoutingTablePartition(pid2vid.zipWithIndex.map {
      case (vids, pid) => (vids.trim().array, toBitSet(srcFlags(pid)), toBitSet(dstFlags(pid)))
    })
  }


  该方法从RoutingTableMessage获取数据，将vid, 边pid, isSrcId/isDstId重新封装到pid2vid，srcFlags，dstFlags这三个数据结构中。它们表示当前顶点分区中的点在边分区的分布。
想象一下，重新分区后，新分区中的点可能来自于不同的边分区，所以一个点要找到边，就需要先确定边的分区号pid, 然后在确定的边分区中确定是srcId还是dstId, 这样就找到了边。
新分区中保存vids.trim().array, toBitSet(srcFlags(pid)), toBitSet(dstFlags(pid))这样的记录。这里转换为toBitSet保存是为了节省空间。

  根据上文生成的routingTables,重新封装路由表里的数据结构为ShippableVertexPartition。ShippableVertexPartition会合并相同重复点的属性attr对象，补全缺失的attr对象。

def apply[VD: ClassTag](
      iter: Iterator[(VertexId, VD)], routingTable: RoutingTablePartition, defaultVal: VD,
      mergeFunc: (VD, VD) => VD): ShippableVertexPartition[VD] = {
    val map = new GraphXPrimitiveKeyOpenHashMap[VertexId, VD]
    // 合并顶点
    iter.foreach { pair =>
      map.setMerge(pair._1, pair._2, mergeFunc)
    }
    // 不全缺失的属性值
    routingTable.iterator.foreach { vid =>
      map.changeValue(vid, defaultVal, identity)
    }
    new ShippableVertexPartition(map.keySet, map._values, map.keySet.getBitSet, routingTable)
  }
//ShippableVertexPartition定义
ShippableVertexPartition[VD: ClassTag](
val index: VertexIdToIndexMap,
val values: Array[VD],
val mask: BitSet,
val routingTable: RoutingTablePartition)


  map就是映射vertexId->attr，index就是顶点集合，values就是顶点集对应的属性集，mask指顶点集的BitSet。

2.3 生成Graph对象

  使用上述构建的edgeRDD和vertexRDD，使用 new GraphImpl(vertices, new ReplicatedVertexView(edges.asInstanceOf[EdgeRDDImpl[ED, VD]])) 就可以生成Graph对象。
ReplicatedVertexView是点和边的视图，用来管理运送(shipping)顶点属性到EdgeRDD的分区。当顶点属性改变时，我们需要运送它们到边分区来更新保存在边分区的顶点属性。
注意，在ReplicatedVertexView中不要保存一个对边的引用，因为在属性运送等级升级后，这个引用可能会发生改变。

class ReplicatedVertexView[VD: ClassTag, ED: ClassTag](
    var edges: EdgeRDDImpl[ED, VD],
    var hasSrcId: Boolean = false,
    var hasDstId: Boolean = false)
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            转换操作

  GraphX中的转换操作主要有mapVertices,mapEdges和mapTriplets三个，它们在Graph文件中定义，在GraphImpl文件中实现。下面分别介绍这三个方法。

1 mapVertices

  mapVertices用来更新顶点属性。从图的构建那章我们知道，顶点属性保存在边分区中，所以我们需要改变的是边分区中的属性。

override def mapVertices[VD2: ClassTag]
    (f: (VertexId, VD) => VD2)(implicit eq: VD =:= VD2 = null): Graph[VD2, ED] = {
    if (eq != null) {
      vertices.cache()
      // 使用方法f处理vertices
      val newVerts = vertices.mapVertexPartitions(_.map(f)).cache()
      //获得两个不同vertexRDD的不同
      val changedVerts = vertices.asInstanceOf[VertexRDD[VD2]].diff(newVerts)
      //更新ReplicatedVertexView
      val newReplicatedVertexView = replicatedVertexView.asInstanceOf[ReplicatedVertexView[VD2, ED]]
        .updateVertices(changedVerts)
      new GraphImpl(newVerts, newReplicatedVertexView)
    } else {
      GraphImpl(vertices.mapVertexPartitions(_.map(f)), replicatedVertexView.edges)
    }
  }


  上面的代码中，当VD和VD2类型相同时，我们可以重用没有发生变化的点，否则需要重新创建所有的点。我们分析VD和VD2相同的情况，分四步处理。


	1 使用方法f处理vertices,获得新的VertexRDD



	2 使用在VertexRDD中定义的diff方法求出新VertexRDD和源VertexRDD的不同





override def diff(other: VertexRDD[VD]): VertexRDD[VD] = {
    val otherPartition = other match {
      case other: VertexRDD[_] if this.partitioner == other.partitioner =>
        other.partitionsRDD
      case _ =>
        VertexRDD(other.partitionBy(this.partitioner.get)).partitionsRDD
    }
    val newPartitionsRDD = partitionsRDD.zipPartitions(
      otherPartition, preservesPartitioning = true
    ) { (thisIter, otherIter) =>
      val thisPart = thisIter.next()
      val otherPart = otherIter.next()
      Iterator(thisPart.diff(otherPart))
    }
    this.withPartitionsRDD(newPartitionsRDD)
  }


  这个方法首先处理新生成的VertexRDD的分区，如果它的分区和源VertexRDD的分区一致，那么直接取出它的partitionsRDD,否则重新分区后取出它的partitionsRDD。
针对新旧两个VertexRDD的所有分区，调用VertexPartitionBaseOps中的diff方法求得分区的不同。

def diff(other: Self[VD]): Self[VD] = {
    //首先判断
    if (self.index != other.index) {
      diff(createUsingIndex(other.iterator))
    } else {
      val newMask = self.mask & other.mask
      var i = newMask.nextSetBit(0)
      while (i >= 0) {
        if (self.values(i) == other.values(i)) {
          newMask.unset(i)
        }
        i = newMask.nextSetBit(i + 1)
      }
      this.withValues(other.values).withMask(newMask)
    }
  }


  该方法隐藏两个VertexRDD中相同的顶点信息，得到一个新的VertexRDD。


	3 更新ReplicatedVertexView



def updateVertices(updates: VertexRDD[VD]): ReplicatedVertexView[VD, ED] = {
    //生成一个VertexAttributeBlock
    val shippedVerts = updates.shipVertexAttributes(hasSrcId, hasDstId)
      .setName("ReplicatedVertexView.updateVertices - shippedVerts %s %s (broadcast)".format(
        hasSrcId, hasDstId))
      .partitionBy(edges.partitioner.get)
    //生成新的边RDD
    val newEdges = edges.withPartitionsRDD(edges.partitionsRDD.zipPartitions(shippedVerts) {
      (ePartIter, shippedVertsIter) => ePartIter.map {
        case (pid, edgePartition) =>
          (pid, edgePartition.updateVertices(shippedVertsIter.flatMap(_._2.iterator)))
      }
    })
    new ReplicatedVertexView(newEdges, hasSrcId, hasDstId)
  }


  updateVertices方法返回一个新的ReplicatedVertexView,它更新了边分区中包含的顶点属性。我们看看它的实现过程。首先看shipVertexAttributes方法的调用。
调用shipVertexAttributes方法会生成一个VertexAttributeBlock，VertexAttributeBlock包含当前分区的顶点属性，这些属性可以在特定的边分区使用。

def shipVertexAttributes(
      shipSrc: Boolean, shipDst: Boolean): Iterator[(PartitionID, VertexAttributeBlock[VD])] = {
    Iterator.tabulate(routingTable.numEdgePartitions) { pid =>
      val initialSize = if (shipSrc && shipDst) routingTable.partitionSize(pid) else 64
      val vids = new PrimitiveVector[VertexId](initialSize)
      val attrs = new PrimitiveVector[VD](initialSize)
      var i = 0
      routingTable.foreachWithinEdgePartition(pid, shipSrc, shipDst) { vid =>
        if (isDefined(vid)) {
          vids += vid
          attrs += this(vid)
        }
        i += 1
      }
      //（边分区id，VertexAttributeBlock（顶点id，属性））
      (pid, new VertexAttributeBlock(vids.trim().array, attrs.trim().array))
    }
  }


  获得新的顶点属性之后，我们就可以调用updateVertices更新边中顶点的属性了，如下面代码所示：

edgePartition.updateVertices(shippedVertsIter.flatMap(_._2.iterator))
//更新EdgePartition的属性
def updateVertices(iter: Iterator[(VertexId, VD)]): EdgePartition[ED, VD] = {
    val newVertexAttrs = new Array[VD](vertexAttrs.length)
    System.arraycopy(vertexAttrs, 0, newVertexAttrs, 0, vertexAttrs.length)
    while (iter.hasNext) {
      val kv = iter.next()
      //global2local获得顶点的本地index
      newVertexAttrs(global2local(kv._1)) = kv._2
    }
    new EdgePartition(
      localSrcIds, localDstIds, data, index, global2local, local2global, newVertexAttrs,
      activeSet)
  }


2 mapEdges

  mapEdges用来更新边属性。

 override def mapEdges[ED2: ClassTag](
      f: (PartitionID, Iterator[Edge[ED]]) => Iterator[ED2]): Graph[VD, ED2] = {
    val newEdges = replicatedVertexView.edges
      .mapEdgePartitions((pid, part) => part.map(f(pid, part.iterator)))
    new GraphImpl(vertices, replicatedVertexView.withEdges(newEdges))
  }


  相比于mapVertices，mapEdges显然要简单得多，它只需要根据方法f生成新的EdgeRDD,然后再初始化即可。

3 mapTriplets：用来更新边属性

  mapTriplets用来更新边属性。

override def mapTriplets[ED2: ClassTag](
      f: (PartitionID, Iterator[EdgeTriplet[VD, ED]]) => Iterator[ED2],
      tripletFields: TripletFields): Graph[VD, ED2] = {
    vertices.cache()
    replicatedVertexView.upgrade(vertices, tripletFields.useSrc, tripletFields.useDst)
    val newEdges = replicatedVertexView.edges.mapEdgePartitions { (pid, part) =>
      part.map(f(pid, part.tripletIterator(tripletFields.useSrc, tripletFields.useDst)))
    }
    new GraphImpl(vertices, replicatedVertexView.withEdges(newEdges))
  }


  这段代码中，replicatedVertexView调用upgrade方法修改当前的ReplicatedVertexView，使调用者可以访问到指定级别的边信息（如仅仅可以读源顶点的属性）。

def upgrade(vertices: VertexRDD[VD], includeSrc: Boolean, includeDst: Boolean) {
    //判断传递级别
    val shipSrc = includeSrc && !hasSrcId
    val shipDst = includeDst && !hasDstId
    if (shipSrc || shipDst) {
      val shippedVerts: RDD[(Int, VertexAttributeBlock[VD])] =
        vertices.shipVertexAttributes(shipSrc, shipDst)
          .setName("ReplicatedVertexView.upgrade(%s, %s) - shippedVerts %s %s (broadcast)".format(
            includeSrc, includeDst, shipSrc, shipDst))
          .partitionBy(edges.partitioner.get)
      val newEdges = edges.withPartitionsRDD(edges.partitionsRDD.zipPartitions(shippedVerts) {
        (ePartIter, shippedVertsIter) => ePartIter.map {
          case (pid, edgePartition) =>
            (pid, edgePartition.updateVertices(shippedVertsIter.flatMap(_._2.iterator)))
        }
      })
      edges = newEdges
      hasSrcId = includeSrc
      hasDstId = includeDst
    }
  }


  最后，用f处理边，生成新的RDD，最后用新的数据初始化图。

4 总结

  调用mapVertices,mapEdges和mapTriplets时，其内部的结构化索引（Structural indices）并不会发生变化，它们都重用路由表中的数据。
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            结构操作

  当前的GraphX仅仅支持一组简单的常用结构性操作。下面是基本的结构性操作列表。

class Graph[VD, ED] {
  def reverse: Graph[VD, ED]
  def subgraph(epred: EdgeTriplet[VD,ED] => Boolean,
               vpred: (VertexId, VD) => Boolean): Graph[VD, ED]
  def mask[VD2, ED2](other: Graph[VD2, ED2]): Graph[VD, ED]
  def groupEdges(merge: (ED, ED) => ED): Graph[VD,ED]
}


  下面分别介绍这四种函数的原理。

1 reverse

  reverse操作返回一个新的图，这个图的边的方向都是反转的。例如，这个操作可以用来计算反转的PageRank。因为反转操作没有修改顶点或者边的属性或者改变边的数量，所以我们可以
在不移动或者复制数据的情况下有效地实现它。

override def reverse: Graph[VD, ED] = {
    new GraphImpl(vertices.reverseRoutingTables(), replicatedVertexView.reverse())
}
def reverse(): ReplicatedVertexView[VD, ED] = {
    val newEdges = edges.mapEdgePartitions((pid, part) => part.reverse)
    new ReplicatedVertexView(newEdges, hasDstId, hasSrcId)
}
//EdgePartition中的reverse
def reverse: EdgePartition[ED, VD] = {
    val builder = new ExistingEdgePartitionBuilder[ED, VD](
      global2local, local2global, vertexAttrs, activeSet, size)
    var i = 0
    while (i < size) {
      val localSrcId = localSrcIds(i)
      val localDstId = localDstIds(i)
      val srcId = local2global(localSrcId)
      val dstId = local2global(localDstId)
      val attr = data(i)
      //将源顶点和目标顶点换位置
      builder.add(dstId, srcId, localDstId, localSrcId, attr)
      i += 1
    }
    builder.toEdgePartition
  }


2 subgraph

  subgraph操作利用顶点和边的判断式（predicates），返回的图仅仅包含满足顶点判断式的顶点、满足边判断式的边以及满足顶点判断式的triple。subgraph操作可以用于很多场景，如获取
感兴趣的顶点和边组成的图或者获取清除断开连接后的图。

override def subgraph(
      epred: EdgeTriplet[VD, ED] => Boolean = x => true,
      vpred: (VertexId, VD) => Boolean = (a, b) => true): Graph[VD, ED] = {
    vertices.cache()
    // 过滤vertices, 重用partitioner和索引
    val newVerts = vertices.mapVertexPartitions(_.filter(vpred))
    // 过滤 triplets
    replicatedVertexView.upgrade(vertices, true, true)
    val newEdges = replicatedVertexView.edges.filter(epred, vpred)
    new GraphImpl(newVerts, replicatedVertexView.withEdges(newEdges))
  }


  该代码显示，subgraph方法的实现分两步：先过滤VertexRDD，然后再过滤EdgeRDD。如上，过滤VertexRDD比较简单，我们重点看过滤EdgeRDD的过程。

def filter(
      epred: EdgeTriplet[VD, ED] => Boolean,
      vpred: (VertexId, VD) => Boolean): EdgeRDDImpl[ED, VD] = {
    mapEdgePartitions((pid, part) => part.filter(epred, vpred))
  }
//EdgePartition中的filter方法
def filter(
      epred: EdgeTriplet[VD, ED] => Boolean,
      vpred: (VertexId, VD) => Boolean): EdgePartition[ED, VD] = {
    val builder = new ExistingEdgePartitionBuilder[ED, VD](
      global2local, local2global, vertexAttrs, activeSet)
    var i = 0
    while (i < size) {
      // The user sees the EdgeTriplet, so we can't reuse it and must create one per edge.
      val localSrcId = localSrcIds(i)
      val localDstId = localDstIds(i)
      val et = new EdgeTriplet[VD, ED]
      et.srcId = local2global(localSrcId)
      et.dstId = local2global(localDstId)
      et.srcAttr = vertexAttrs(localSrcId)
      et.dstAttr = vertexAttrs(localDstId)
      et.attr = data(i)
      if (vpred(et.srcId, et.srcAttr) && vpred(et.dstId, et.dstAttr) && epred(et)) {
        builder.add(et.srcId, et.dstId, localSrcId, localDstId, et.attr)
      }
      i += 1
    }
    builder.toEdgePartition
  }


  因为用户可以看到EdgeTriplet的信息，所以我们不能重用EdgeTriplet，需要重新创建一个，然后在用epred函数处理。这里localSrcIds,localDstIds,local2global等前文均有介绍，在此不再赘述。

3 mask

  mask操作构造一个子图，这个子图包含输入图中包含的顶点和边。它的实现很简单，顶点和边均做inner join操作即可。这个操作可以和subgraph操作相结合，基于另外一个相关图的特征去约束一个图。

override def mask[VD2: ClassTag, ED2: ClassTag] (
      other: Graph[VD2, ED2]): Graph[VD, ED] = {
    val newVerts = vertices.innerJoin(other.vertices) { (vid, v, w) => v }
    val newEdges = replicatedVertexView.edges.innerJoin(other.edges) { (src, dst, v, w) => v }
    new GraphImpl(newVerts, replicatedVertexView.withEdges(newEdges))
  }


4 groupEdges

  groupEdges操作合并多重图中的并行边(如顶点对之间重复的边)。在大量的应用程序中，并行的边可以合并（它们的权重合并）为一条边从而降低图的大小。

 override def groupEdges(merge: (ED, ED) => ED): Graph[VD, ED] = {
    val newEdges = replicatedVertexView.edges.mapEdgePartitions(
      (pid, part) => part.groupEdges(merge))
    new GraphImpl(vertices, replicatedVertexView.withEdges(newEdges))
  }
 def groupEdges(merge: (ED, ED) => ED): EdgePartition[ED, VD] = {
     val builder = new ExistingEdgePartitionBuilder[ED, VD](
       global2local, local2global, vertexAttrs, activeSet)
     var currSrcId: VertexId = null.asInstanceOf[VertexId]
     var currDstId: VertexId = null.asInstanceOf[VertexId]
     var currLocalSrcId = -1
     var currLocalDstId = -1
     var currAttr: ED = null.asInstanceOf[ED]
     // 迭代处理所有的边
     var i = 0
     while (i < size) {
       //如果源顶点和目的顶点都相同
       if (i > 0 && currSrcId == srcIds(i) && currDstId == dstIds(i)) {
         // 合并属性
         currAttr = merge(currAttr, data(i))
       } else {
         // This edge starts a new run of edges
         if (i > 0) {
           // 添加到builder中
           builder.add(currSrcId, currDstId, currLocalSrcId, currLocalDstId, currAttr)
         }
         // Then start accumulating for a new run
         currSrcId = srcIds(i)
         currDstId = dstIds(i)
         currLocalSrcId = localSrcIds(i)
         currLocalDstId = localDstIds(i)
         currAttr = data(i)
       }
       i += 1
     }
     if (size > 0) {
       builder.add(currSrcId, currDstId, currLocalSrcId, currLocalDstId, currAttr)
     }
     builder.toEdgePartition
   }


  在图构建那章我们说明过，存储的边按照源顶点id排过序，所以上面的代码可以通过一次迭代完成对所有相同边的处理。

5 应用举例

// Create an RDD for the vertices
val users: RDD[(VertexId, (String, String))] =
  sc.parallelize(Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")),
                       (5L, ("franklin", "prof")), (2L, ("istoica", "prof")),
                       (4L, ("peter", "student"))))
// Create an RDD for edges
val relationships: RDD[Edge[String]] =
  sc.parallelize(Array(Edge(3L, 7L, "collab"),    Edge(5L, 3L, "advisor"),
                       Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi"),
                       Edge(4L, 0L, "student"),   Edge(5L, 0L, "colleague")))
// Define a default user in case there are relationship with missing user
val defaultUser = ("John Doe", "Missing")
// Build the initial Graph
val graph = Graph(users, relationships, defaultUser)
// Notice that there is a user 0 (for which we have no information) connected to users
// 4 (peter) and 5 (franklin).
graph.triplets.map(
    triplet => triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1
  ).collect.foreach(println(_))
// Remove missing vertices as well as the edges to connected to them
val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")
// The valid subgraph will disconnect users 4 and 5 by removing user 0
validGraph.vertices.collect.foreach(println(_))
validGraph.triplets.map(
    triplet => triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1
  ).collect.foreach(println(_))

/ Run Connected Components
val ccGraph = graph.connectedComponents() // No longer contains missing field
// Remove missing vertices as well as the edges to connected to them
val validGraph = graph.subgraph(vpred = (id, attr) => attr._2 != "Missing")
// Restrict the answer to the valid subgraph
val validCCGraph = ccGraph.mask(validGraph)
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            关联操作

  在许多情况下，有必要将外部数据加入到图中。例如，我们可能有额外的用户属性需要合并到已有的图中或者我们可能想从一个图中取出顶点特征加入到另外一个图中。这些任务可以用join操作完成。
主要的join操作如下所示。

class Graph[VD, ED] {
  def joinVertices[U](table: RDD[(VertexId, U)])(map: (VertexId, VD, U) => VD)
    : Graph[VD, ED]
  def outerJoinVertices[U, VD2](table: RDD[(VertexId, U)])(map: (VertexId, VD, Option[U]) => VD2)
    : Graph[VD2, ED]
}


  joinVertices操作join输入RDD和顶点，返回一个新的带有顶点特征的图。这些特征是通过在连接顶点的结果上使用用户定义的map函数获得的。没有匹配的顶点保留其原始值。
下面详细地来分析这两个函数。

1 joinVertices

def joinVertices[U: ClassTag](table: RDD[(VertexId, U)])(mapFunc: (VertexId, VD, U) => VD)
    : Graph[VD, ED] = {
    val uf = (id: VertexId, data: VD, o: Option[U]) => {
      o match {
        case Some(u) => mapFunc(id, data, u)
        case None => data
      }
    }
    graph.outerJoinVertices(table)(uf)
  }


  我们可以看到，joinVertices的实现是通过outerJoinVertices来实现的。这是因为join本来就是outer join的一种特例。

2 outerJoinVertices

override def outerJoinVertices[U: ClassTag, VD2: ClassTag]
      (other: RDD[(VertexId, U)])
      (updateF: (VertexId, VD, Option[U]) => VD2)
      (implicit eq: VD =:= VD2 = null): Graph[VD2, ED] = {
    if (eq != null) {
      vertices.cache()
      // updateF preserves type, so we can use incremental replication
      val newVerts = vertices.leftJoin(other)(updateF).cache()
      val changedVerts = vertices.asInstanceOf[VertexRDD[VD2]].diff(newVerts)
      val newReplicatedVertexView = replicatedVertexView.asInstanceOf[ReplicatedVertexView[VD2, ED]]
        .updateVertices(changedVerts)
      new GraphImpl(newVerts, newReplicatedVertexView)
    } else {
      // updateF does not preserve type, so we must re-replicate all vertices
      val newVerts = vertices.leftJoin(other)(updateF)
      GraphImpl(newVerts, replicatedVertexView.edges)
    }
  }


  通过以上的代码我们可以看到，如果updateF不改变类型，我们只需要创建改变的顶点即可，否则我们要重新创建所有的顶点。我们讨论不改变类型的情况。
这种情况分三步。


	1 修改顶点属性值



val newVerts = vertices.leftJoin(other)(updateF).cache()


  这一步会用顶点RDD join 传入的RDD，然后用updateF作用joinRDD中的所有顶点，改变它们的值。


	2 找到发生改变的顶点



  val changedVerts = vertices.asInstanceOf[VertexRDD[VD2]].diff(newVerts)



	3 更新newReplicatedVertexView中边分区中的顶点属性



val newReplicatedVertexView = replicatedVertexView.asInstanceOf[ReplicatedVertexView[VD2, ED]]
        .updateVertices(changedVerts)


  第2、3两步的源码已经在转换操作中详细介绍。


        

    



        
    



        

    
        聚合操作

        
            聚合操作

  GraphX中提供的聚合操作有aggregateMessages、collectNeighborIds和collectNeighbors三个，其中aggregateMessages在GraphImpl中实现，collectNeighborIds和collectNeighbors在
GraphOps中实现。下面分别介绍这几个方法。

1 aggregateMessages

1.1 aggregateMessages接口

  aggregateMessages是GraphX最重要的API，用于替换mapReduceTriplets。目前mapReduceTriplets最终也是通过aggregateMessages来实现的。它主要功能是向邻边发消息，合并邻边收到的消息，返回messageRDD。
aggregateMessages的接口如下：

def aggregateMessages[A: ClassTag](
      sendMsg: EdgeContext[VD, ED, A] => Unit,
      mergeMsg: (A, A) => A,
      tripletFields: TripletFields = TripletFields.All)
    : VertexRDD[A] = {
    aggregateMessagesWithActiveSet(sendMsg, mergeMsg, tripletFields, None)
  }


  该接口有三个参数，分别为发消息函数，合并消息函数以及发消息的方向。


	sendMsg： 发消息函数



private def sendMsg(ctx: EdgeContext[KCoreVertex, Int, Map[Int, Int]]): Unit = {
    ctx.sendToDst(Map(ctx.srcAttr.preKCore -> -1, ctx.srcAttr.curKCore -> 1))
    ctx.sendToSrc(Map(ctx.dstAttr.preKCore -> -1, ctx.dstAttr.curKCore -> 1))
}



	mergeMsg：合并消息函数



  该函数用于在Map阶段每个edge分区中每个点收到的消息合并，并且它还用于reduce阶段，合并不同分区的消息。合并vertexId相同的消息。


	tripletFields：定义发消息的方向



1.2 aggregateMessages处理流程

  aggregateMessages方法分为Map和Reduce两个阶段，下面我们分别就这两个阶段说明。

1.2.1 Map阶段

  从入口函数进入aggregateMessagesWithActiveSet函数，该函数首先使用VertexRDD[VD]更新replicatedVertexView, 只更新其中vertexRDD中attr对象。如构建图中介绍的，
replicatedVertexView是点和边的视图，点的属性有变化，要更新边中包含的点的attr。

replicatedVertexView.upgrade(vertices, tripletFields.useSrc, tripletFields.useDst)
val view = activeSetOpt match {
    case Some((activeSet, _)) =>
      //返回只包含活跃顶点的replicatedVertexView
      replicatedVertexView.withActiveSet(activeSet)
    case None =>
      replicatedVertexView
}


  程序然后会对replicatedVertexView的edgeRDD做mapPartitions操作，所有的操作都在每个边分区的迭代中完成，如下面的代码：

 val preAgg = view.edges.partitionsRDD.mapPartitions(_.flatMap {
      case (pid, edgePartition) =>
        // 选择 scan 方法
        val activeFraction = edgePartition.numActives.getOrElse(0) / edgePartition.indexSize.toFloat
        activeDirectionOpt match {
          case Some(EdgeDirection.Both) =>
            if (activeFraction < 0.8) {
              edgePartition.aggregateMessagesIndexScan(sendMsg, mergeMsg, tripletFields,
                EdgeActiveness.Both)
            } else {
              edgePartition.aggregateMessagesEdgeScan(sendMsg, mergeMsg, tripletFields,
                EdgeActiveness.Both)
            }
          case Some(EdgeDirection.Either) =>
            edgePartition.aggregateMessagesEdgeScan(sendMsg, mergeMsg, tripletFields,
              EdgeActiveness.Either)
          case Some(EdgeDirection.Out) =>
            if (activeFraction < 0.8) {
              edgePartition.aggregateMessagesIndexScan(sendMsg, mergeMsg, tripletFields,
                EdgeActiveness.SrcOnly)
            } else {
              edgePartition.aggregateMessagesEdgeScan(sendMsg, mergeMsg, tripletFields,
                EdgeActiveness.SrcOnly)
            }
          case Some(EdgeDirection.In) =>
            edgePartition.aggregateMessagesEdgeScan(sendMsg, mergeMsg, tripletFields,
              EdgeActiveness.DstOnly)
          case _ => // None
            edgePartition.aggregateMessagesEdgeScan(sendMsg, mergeMsg, tripletFields,
              EdgeActiveness.Neither)
        }
    })


  在分区内，根据activeFraction的大小选择是进入aggregateMessagesEdgeScan还是aggregateMessagesIndexScan处理。aggregateMessagesEdgeScan会顺序地扫描所有的边，
而aggregateMessagesIndexScan会先过滤源顶点索引，然后在扫描。我们重点去分析aggregateMessagesEdgeScan。

def aggregateMessagesEdgeScan[A: ClassTag](
      sendMsg: EdgeContext[VD, ED, A] => Unit,
      mergeMsg: (A, A) => A,
      tripletFields: TripletFields,
      activeness: EdgeActiveness): Iterator[(VertexId, A)] = {
    var ctx = new AggregatingEdgeContext[VD, ED, A](mergeMsg, aggregates, bitset)
    var i = 0
    while (i < size) {
      val localSrcId = localSrcIds(i)
      val srcId = local2global(localSrcId)
      val localDstId = localDstIds(i)
      val dstId = local2global(localDstId)
      val srcAttr = if (tripletFields.useSrc) vertexAttrs(localSrcId) else null.asInstanceOf[VD]
      val dstAttr = if (tripletFields.useDst) vertexAttrs(localDstId) else null.asInstanceOf[VD]
      ctx.set(srcId, dstId, localSrcId, localDstId, srcAttr, dstAttr, data(i))
      sendMsg(ctx)
      i += 1
    }


  该方法由两步组成，分别是获得顶点相关信息，以及发送消息。


	获取顶点相关信息



  在前文介绍edge partition时，我们知道它包含localSrcIds,localDstIds, data, index, global2local, local2global, vertexAttrs这几个重要的数据结构。其中localSrcIds,localDstIds分别表示源顶点、目的顶点在当前分区中的索引。
所以我们可以遍历localSrcIds,根据其下标去localSrcIds中拿到srcId在全局local2global中的索引，最后拿到srcId。通过vertexAttrs拿到顶点属性。通过data拿到边属性。


	发送消息



  发消息前会根据接口中定义的tripletFields，拿到发消息的方向。发消息的过程就是遍历到一条边，向localSrcIds/localDstIds中添加数据，如果localSrcIds/localDstIds中已经存在该数据，则执行合并函数mergeMsg。

 override def sendToSrc(msg: A) {
    send(_localSrcId, msg)
  }
  override def sendToDst(msg: A) {
    send(_localDstId, msg)
  }
  @inline private def send(localId: Int, msg: A) {
    if (bitset.get(localId)) {
      aggregates(localId) = mergeMsg(aggregates(localId), msg)
    } else {
      aggregates(localId) = msg
      bitset.set(localId)
    }
  }


  每个点之间在发消息的时候是独立的，即：点单纯根据方向，向以相邻点的以localId为下标的数组中插数据，互相独立，可以并行运行。Map阶段最后返回消息RDD messages: RDD[(VertexId, VD2)]

  Map阶段的执行流程如下例所示：


[image: graphx_aggmsg_map]



1.2.2 Reduce阶段

  Reduce阶段的实现就是调用下面的代码

vertices.aggregateUsingIndex(preAgg, mergeMsg)
override def aggregateUsingIndex[VD2: ClassTag](
      messages: RDD[(VertexId, VD2)], reduceFunc: (VD2, VD2) => VD2): VertexRDD[VD2] = {
    val shuffled = messages.partitionBy(this.partitioner.get)
    val parts = partitionsRDD.zipPartitions(shuffled, true) { (thisIter, msgIter) =>
      thisIter.map(_.aggregateUsingIndex(msgIter, reduceFunc))
    }
    this.withPartitionsRDD[VD2](parts)
  }


  上面的代码通过两步实现。


	1 对messages重新分区，分区器使用VertexRDD的partitioner。然后使用zipPartitions合并两个分区。



	2 对等合并attr, 聚合函数使用传入的mergeMsg函数





def aggregateUsingIndex[VD2: ClassTag](
      iter: Iterator[Product2[VertexId, VD2]],
      reduceFunc: (VD2, VD2) => VD2): Self[VD2] = {
    val newMask = new BitSet(self.capacity)
    val newValues = new Array[VD2](self.capacity)
    iter.foreach { product =>
      val vid = product._1
      val vdata = product._2
      val pos = self.index.getPos(vid)
      if (pos >= 0) {
        if (newMask.get(pos)) {
          newValues(pos) = reduceFunc(newValues(pos), vdata)
        } else { // otherwise just store the new value
          newMask.set(pos)
          newValues(pos) = vdata
        }
      }
    }
    this.withValues(newValues).withMask(newMask)
  }


  根据传参，我们知道上面的代码迭代的是messagePartition，并不是每个节点都会收到消息，所以messagePartition集合最小，迭代速度会快。

  这段代码表示，我们根据vetexId从index中取到其下标pos,再根据下标，从values中取到attr，存在attr就用mergeMsg合并attr，不存在就直接赋值。

  Reduce阶段的过程如下图所示：


[image: graphx_aggmsg_map]



1.3 举例

  下面的例子计算比用户年龄大的追随者（即followers）的平均年龄。

// Import random graph generation library
import org.apache.spark.graphx.util.GraphGenerators
// Create a graph with "age" as the vertex property.  Here we use a random graph for simplicity.
val graph: Graph[Double, Int] =
  GraphGenerators.logNormalGraph(sc, numVertices = 100).mapVertices( (id, _) => id.toDouble )
// Compute the number of older followers and their total age
val olderFollowers: VertexRDD[(Int, Double)] = graph.aggregateMessages[(Int, Double)](
  triplet => { // Map Function
    if (triplet.srcAttr > triplet.dstAttr) {
      // Send message to destination vertex containing counter and age
      triplet.sendToDst(1, triplet.srcAttr)
    }
  },
  // Add counter and age
  (a, b) => (a._1 + b._1, a._2 + b._2) // Reduce Function
)
// Divide total age by number of older followers to get average age of older followers
val avgAgeOfOlderFollowers: VertexRDD[Double] =
  olderFollowers.mapValues( (id, value) => value match { case (count, totalAge) => totalAge / count } )
// Display the results
avgAgeOfOlderFollowers.collect.foreach(println(_))


2 collectNeighbors

  该方法的作用是收集每个顶点的邻居顶点的顶点id和顶点属性。

 def collectNeighbors(edgeDirection: EdgeDirection): VertexRDD[Array[(VertexId, VD)]] = {
    val nbrs = edgeDirection match {
      case EdgeDirection.Either =>
        graph.aggregateMessages[Array[(VertexId, VD)]](
          ctx => {
            ctx.sendToSrc(Array((ctx.dstId, ctx.dstAttr)))
            ctx.sendToDst(Array((ctx.srcId, ctx.srcAttr)))
          },
          (a, b) => a ++ b, TripletFields.All)
      case EdgeDirection.In =>
        graph.aggregateMessages[Array[(VertexId, VD)]](
          ctx => ctx.sendToDst(Array((ctx.srcId, ctx.srcAttr))),
          (a, b) => a ++ b, TripletFields.Src)
      case EdgeDirection.Out =>
        graph.aggregateMessages[Array[(VertexId, VD)]](
          ctx => ctx.sendToSrc(Array((ctx.dstId, ctx.dstAttr))),
          (a, b) => a ++ b, TripletFields.Dst)
      case EdgeDirection.Both =>
        throw new SparkException("collectEdges does not support EdgeDirection.Both. Use" +
          "EdgeDirection.Either instead.")
    }
    graph.vertices.leftJoin(nbrs) { (vid, vdata, nbrsOpt) =>
      nbrsOpt.getOrElse(Array.empty[(VertexId, VD)])
    }
  }


  从上面的代码中，第一步是根据EdgeDirection来确定调用哪个aggregateMessages实现聚合操作。我们用满足条件EdgeDirection.Either的情况来说明。可以看到aggregateMessages的方式消息的函数为：

ctx => {
         ctx.sendToSrc(Array((ctx.dstId, ctx.dstAttr)))
         ctx.sendToDst(Array((ctx.srcId, ctx.srcAttr)))
      },


  这个函数在处理每条边时都会同时向源顶点和目的顶点发送消息，消息内容分别为（目的顶点id，目的顶点属性）、（源顶点id，源顶点属性）。为什么会这样处理呢？
我们知道，每条边都由两个顶点组成，对于这个边，我需要向源顶点发送目的顶点的信息来记录它们之间的邻居关系，同理向目的顶点发送源顶点的信息来记录它们之间的邻居关系。

  Merge函数是一个集合合并操作，它合并同同一个顶点对应的所有目的顶点的信息。如下所示：

(a, b) => a ++ b


  通过aggregateMessages获得包含邻居关系信息的VertexRDD后，把它和现有的vertices作join操作，得到每个顶点的邻居消息。

3 collectNeighborIds

  该方法的作用是收集每个顶点的邻居顶点的顶点id。它的实现和collectNeighbors非常相同。

def collectNeighborIds(edgeDirection: EdgeDirection): VertexRDD[Array[VertexId]] = {
    val nbrs =
      if (edgeDirection == EdgeDirection.Either) {
        graph.aggregateMessages[Array[VertexId]](
          ctx => { ctx.sendToSrc(Array(ctx.dstId)); ctx.sendToDst(Array(ctx.srcId)) },
          _ ++ _, TripletFields.None)
      } else if (edgeDirection == EdgeDirection.Out) {
        graph.aggregateMessages[Array[VertexId]](
          ctx => ctx.sendToSrc(Array(ctx.dstId)),
          _ ++ _, TripletFields.None)
      } else if (edgeDirection == EdgeDirection.In) {
        graph.aggregateMessages[Array[VertexId]](
          ctx => ctx.sendToDst(Array(ctx.srcId)),
          _ ++ _, TripletFields.None)
      } else {
        throw new SparkException("It doesn't make sense to collect neighbor ids without a " +
          "direction. (EdgeDirection.Both is not supported; use EdgeDirection.Either instead.)")
      }
    graph.vertices.leftZipJoin(nbrs) { (vid, vdata, nbrsOpt) =>
      nbrsOpt.getOrElse(Array.empty[VertexId])
    }
  }


  和collectNeighbors的实现不同的是，aggregateMessages函数中的sendMsg函数只发送顶点Id到源顶点和目的顶点。其它的实现基本一致。

ctx => { ctx.sendToSrc(Array(ctx.dstId)); ctx.sendToDst(Array(ctx.srcId)) }
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        缓存操作

        
            缓存操作

  在Spark中，RDD默认是不缓存的。为了避免重复计算，当需要多次利用它们时，我们必须显示地缓存它们。GraphX中的图也有相同的方式。当利用到图多次时，确保首先访问Graph.cache()方法。

  在迭代计算中，为了获得最佳的性能，不缓存可能是必须的。默认情况下，缓存的RDD和图会一直保留在内存中直到因为内存压力迫使它们以LRU的顺序删除。对于迭代计算，先前的迭代的中间结果将填充到缓存
中。虽然它们最终会被删除，但是保存在内存中的不需要的数据将会减慢垃圾回收。只有中间结果不需要，不缓存它们是更高效的。然而，因为图是由多个RDD组成的，正确的不持久化它们是困难的。对于迭代计算，我们建议使用Pregel API，它可以正确的不持久化中间结果。

  GraphX中的缓存操作有cache,persist,unpersist和unpersistVertices。它们的接口分别是：

def persist(newLevel: StorageLevel = StorageLevel.MEMORY_ONLY): Graph[VD, ED]
def cache(): Graph[VD, ED]
def unpersist(blocking: Boolean = true): Graph[VD, ED]
def unpersistVertices(blocking: Boolean = true): Graph[VD, ED]
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            Pregel API

  图本身是递归数据结构，顶点的属性依赖于它们邻居的属性，这些邻居的属性又依赖于自己邻居的属性。所以许多重要的图算法都是迭代的重新计算每个顶点的属性，直到满足某个确定的条件。
一系列的图并发(graph-parallel)抽象已经被提出来用来表达这些迭代算法。GraphX公开了一个类似Pregel的操作，它是广泛使用的Pregel和GraphLab抽象的一个融合。

  GraphX中实现的这个更高级的Pregel操作是一个约束到图拓扑的批量同步（bulk-synchronous）并行消息抽象。Pregel操作者执行一系列的超步（super steps），在这些步骤中，顶点从
之前的超步中接收进入(inbound)消息的总和，为顶点属性计算一个新的值，然后在以后的超步中发送消息到邻居顶点。不像Pregel而更像GraphLab，消息通过边triplet的一个函数被并行计算，
消息的计算既会访问源顶点特征也会访问目的顶点特征。在超步中，没有收到消息的顶点会被跳过。当没有消息遗留时，Pregel操作停止迭代并返回最终的图。

  注意，与标准的Pregel实现不同的是，GraphX中的顶点仅仅能发送信息给邻居顶点，并且可以利用用户自定义的消息函数并行地构造消息。这些限制允许对GraphX进行额外的优化。

  下面的代码是pregel的具体实现。

def apply[VD: ClassTag, ED: ClassTag, A: ClassTag]
     (graph: Graph[VD, ED],
      initialMsg: A,
      maxIterations: Int = Int.MaxValue,
      activeDirection: EdgeDirection = EdgeDirection.Either)
     (vprog: (VertexId, VD, A) => VD,
      sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
      mergeMsg: (A, A) => A)
    : Graph[VD, ED] =
  {
    var g = graph.mapVertices((vid, vdata) => vprog(vid, vdata, initialMsg)).cache()
    // 计算消息
    var messages = g.mapReduceTriplets(sendMsg, mergeMsg)
    var activeMessages = messages.count()
    // 迭代
    var prevG: Graph[VD, ED] = null
    var i = 0
    while (activeMessages > 0 && i < maxIterations) {
      // 接收消息并更新顶点
      prevG = g
      g = g.joinVertices(messages)(vprog).cache()
      val oldMessages = messages
      // 发送新消息
      messages = g.mapReduceTriplets(
        sendMsg, mergeMsg, Some((oldMessages, activeDirection))).cache()
      activeMessages = messages.count()
      i += 1
    }
    g
  }


1 pregel计算模型

  Pregel计算模型中有三个重要的函数，分别是vertexProgram、sendMessage和messageCombiner。


	vertexProgram：用户定义的顶点运行程序。它作用于每一个顶点，负责接收进来的信息，并计算新的顶点值。



	sendMsg：发送消息



	mergeMsg：合并消息





  我们具体分析它的实现。根据代码可以知道，这个实现是一个迭代的过程。在开始迭代之前，先完成一些初始化操作：

var g = graph.mapVertices((vid, vdata) => vprog(vid, vdata, initialMsg)).cache()
// 计算消息
var messages = g.mapReduceTriplets(sendMsg, mergeMsg)
var activeMessages = messages.count()


  程序首先用vprog函数处理图中所有的顶点，生成新的图。然后用生成的图调用聚合操作（mapReduceTriplets，实际的实现是我们前面章节讲到的aggregateMessagesWithActiveSet函数）获取聚合后的消息。
activeMessages指messages这个VertexRDD中的顶点数。

  下面就开始迭代操作了。在迭代内部，分为二步。


	1 接收消息，并更新顶点



 g = g.joinVertices(messages)(vprog).cache()
 //joinVertices的定义
 def joinVertices[U: ClassTag](table: RDD[(VertexId, U)])(mapFunc: (VertexId, VD, U) => VD)
     : Graph[VD, ED] = {
     val uf = (id: VertexId, data: VD, o: Option[U]) => {
       o match {
         case Some(u) => mapFunc(id, data, u)
         case None => data
       }
     }
     graph.outerJoinVertices(table)(uf)
   }


  这一步实际上是使用outerJoinVertices来更新顶点属性。outerJoinVertices在关联操作中有详细介绍。


	2 发送新消息



 messages = g.mapReduceTriplets(
        sendMsg, mergeMsg, Some((oldMessages, activeDirection))).cache()


  注意，在上面的代码中，mapReduceTriplets多了一个参数Some((oldMessages, activeDirection))。这个参数的作用是：它使我们在发送新的消息时，会忽略掉那些两端都没有接收到消息的边，减少计算量。

2 pregel实现最短路径

import org.apache.spark.graphx._
import org.apache.spark.graphx.util.GraphGenerators
val graph: Graph[Long, Double] =
  GraphGenerators.logNormalGraph(sc, numVertices = 100).mapEdges(e => e.attr.toDouble)
val sourceId: VertexId = 42 // The ultimate source
// 初始化图
val initialGraph = graph.mapVertices((id, _) => if (id == sourceId) 0.0 else Double.PositiveInfinity)
val sssp = initialGraph.pregel(Double.PositiveInfinity)(
  (id, dist, newDist) => math.min(dist, newDist), // Vertex Program
  triplet => {  // Send Message
    if (triplet.srcAttr + triplet.attr < triplet.dstAttr) {
      Iterator((triplet.dstId, triplet.srcAttr + triplet.attr))
    } else {
      Iterator.empty
    }
  },
  (a,b) => math.min(a,b) // Merge Message
  )
println(sssp.vertices.collect.mkString("\n"))


  上面的例子中，Vertex Program函数定义如下：

(id, dist, newDist) => math.min(dist, newDist)


  这个函数的定义显而易见，当两个消息来的时候，取它们当中路径的最小值。同理Merge Message函数也是同样的含义。

  Send Message函数中，会首先比较triplet.srcAttr + triplet.attr和triplet.dstAttr，即比较加上边的属性后，这个值是否小于目的节点的属性，如果小于，则发送消息到目的顶点。

3 参考文献

【1】spark源码


        

    



        
    



        

    
        宽度优先遍历

        
            广度优先遍历

val graph = GraphLoader.edgeListFile(sc, "graphx/data/test_graph.txt")

val root: VertexId = 1
val initialGraph = graph.mapVertices((id, _) => if (id == root) 0.0 else
Double.PositiveInfinity)

val vprog = { (id: VertexId, attr: Double, msg: Double) => math.min(attr,msg) }

val sendMessage = { (triplet: EdgeTriplet[Double, Int]) =>
        var iter:Iterator[(VertexId, Double)] = Iterator.empty
        val isSrcMarked = triplet.srcAttr != Double.PositiveInfinity
        val isDstMarked = triplet.dstAttr != Double.PositiveInfinity
        if(!(isSrcMarked && isDstMarked)){
               if(isSrcMarked){
                iter = Iterator((triplet.dstId,triplet.srcAttr+1))
              }else{
                iter = Iterator((triplet.srcId,triplet.dstAttr+1))
               }
        }
        iter
}

val reduceMessage = { (a: Double, b: Double) => math.min(a,b) }

val bfs = initialGraph.pregel(Double.PositiveInfinity, 20)(vprog, sendMessage, reduceMessage)

println(bfs.vertices.collect.mkString("\n"))



        

    



        
    



        

    
        单源最短路径

        
            单源最短路径

import scala.reflect.ClassTag

import org.apache.spark.graphx._

/**
 * Computes shortest paths to the given set of landmark vertices, returning a graph where each
 * vertex attribute is a map containing the shortest-path distance to each reachable landmark.
 */
object ShortestPaths {
  /** Stores a map from the vertex id of a landmark to the distance to that landmark. */
  type SPMap = Map[VertexId, Int]

  private def makeMap(x: (VertexId, Int)*) = Map(x: _*)

  private def incrementMap(spmap: SPMap): SPMap = spmap.map { case (v, d) => v -> (d + 1) }

  private def addMaps(spmap1: SPMap, spmap2: SPMap): SPMap =
    (spmap1.keySet ++ spmap2.keySet).map {
      k => k -> math.min(spmap1.getOrElse(k, Int.MaxValue), spmap2.getOrElse(k, Int.MaxValue))
    }.toMap

  /**
   * Computes shortest paths to the given set of landmark vertices.
   *
   * @tparam ED the edge attribute type (not used in the computation)
   *
   * @param graph the graph for which to compute the shortest paths
   * @param landmarks the list of landmark vertex ids. Shortest paths will be computed to each
   * landmark.
   *
   * @return a graph where each vertex attribute is a map containing the shortest-path distance to
   * each reachable landmark vertex.
   */
  def run[VD, ED: ClassTag](graph: Graph[VD, ED], landmarks: Seq[VertexId]): Graph[SPMap, ED] = {
    val spGraph = graph.mapVertices { (vid, attr) =>
      if (landmarks.contains(vid)) makeMap(vid -> 0) else makeMap()
    }

    val initialMessage = makeMap()

    def vertexProgram(id: VertexId, attr: SPMap, msg: SPMap): SPMap = {
      addMaps(attr, msg)
    }

    def sendMessage(edge: EdgeTriplet[SPMap, _]): Iterator[(VertexId, SPMap)] = {
      val newAttr = incrementMap(edge.dstAttr)
      if (edge.srcAttr != addMaps(newAttr, edge.srcAttr)) Iterator((edge.srcId, newAttr))
      else Iterator.empty
    }

    Pregel(spGraph, initialMessage)(vertexProgram, sendMessage, addMaps)
  }
}



        

    



        
    



        

    
        连通组件

        
            连通图


import scala.reflect.ClassTag

import org.apache.spark.graphx._

/** Connected components algorithm. */
object ConnectedComponents {
  /**
   * Compute the connected component membership of each vertex and return a graph with the vertex
   * value containing the lowest vertex id in the connected component containing that vertex.
   *
   * @tparam VD the vertex attribute type (discarded in the computation)
   * @tparam ED the edge attribute type (preserved in the computation)
   * @param graph the graph for which to compute the connected components
   * @param maxIterations the maximum number of iterations to run for
   * @return a graph with vertex attributes containing the smallest vertex in each
   *         connected component
   */
  def run[VD: ClassTag, ED: ClassTag](graph: Graph[VD, ED],
                                      maxIterations: Int): Graph[VertexId, ED] = {
    require(maxIterations > 0, s"Maximum of iterations must be greater than 0," +
      s" but got ${maxIterations}")

    val ccGraph = graph.mapVertices { case (vid, _) => vid }
    def sendMessage(edge: EdgeTriplet[VertexId, ED]): Iterator[(VertexId, VertexId)] = {
      if (edge.srcAttr < edge.dstAttr) {
        Iterator((edge.dstId, edge.srcAttr))
      } else if (edge.srcAttr > edge.dstAttr) {
        Iterator((edge.srcId, edge.dstAttr))
      } else {
        Iterator.empty
      }
    }
    val initialMessage = Long.MaxValue
    val pregelGraph = Pregel(ccGraph, initialMessage,
      maxIterations, EdgeDirection.Either)(
      vprog = (id, attr, msg) => math.min(attr, msg),
      sendMsg = sendMessage,
      mergeMsg = (a, b) => math.min(a, b))
    ccGraph.unpersist()
    pregelGraph
  } // end of connectedComponents

  /**
   * Compute the connected component membership of each vertex and return a graph with the vertex
   * value containing the lowest vertex id in the connected component containing that vertex.
   *
   * @tparam VD the vertex attribute type (discarded in the computation)
   * @tparam ED the edge attribute type (preserved in the computation)
   * @param graph the graph for which to compute the connected components
   * @return a graph with vertex attributes containing the smallest vertex in each
   *         connected component
   */
  def run[VD: ClassTag, ED: ClassTag](graph: Graph[VD, ED]): Graph[VertexId, ED] = {
    run(graph, Int.MaxValue)
  }
}



        

    



        
    



        

    
        三角计数

        
            三角计数

import scala.reflect.ClassTag

import org.apache.spark.graphx._

/**
 * Compute the number of triangles passing through each vertex.
 *
 * The algorithm is relatively straightforward and can be computed in three steps:
 *
 * <ul>
 * <li> Compute the set of neighbors for each vertex</li>
 * <li> For each edge compute the intersection of the sets and send the count to both vertices.</li>
 * <li> Compute the sum at each vertex and divide by two since each triangle is counted twice.</li>
 * </ul>
 *
 * There are two implementations.  The default `TriangleCount.run` implementation first removes
 * self cycles and canonicalizes the graph to ensure that the following conditions hold:
 * <ul>
 * <li> There are no self edges</li>
 * <li> All edges are oriented src > dst</li>
 * <li> There are no duplicate edges</li>
 * </ul>
 * However, the canonicalization procedure is costly as it requires repartitioning the graph.
 * If the input data is already in "canonical form" with self cycles removed then the
 * `TriangleCount.runPreCanonicalized` should be used instead.
 *
 * {{{
 * val canonicalGraph = graph.mapEdges(e => 1).removeSelfEdges().canonicalizeEdges()
 * val counts = TriangleCount.runPreCanonicalized(canonicalGraph).vertices
 * }}}
 *
 */
object TriangleCount {

  def run[VD: ClassTag, ED: ClassTag](graph: Graph[VD, ED]): Graph[Int, ED] = {
    // Transform the edge data something cheap to shuffle and then canonicalize
    val canonicalGraph = graph.mapEdges(e => true).removeSelfEdges().convertToCanonicalEdges()
    // Get the triangle counts
    val counters = runPreCanonicalized(canonicalGraph).vertices
    // Join them bath with the original graph
    graph.outerJoinVertices(counters) { (vid, _, optCounter: Option[Int]) =>
      optCounter.getOrElse(0)
    }
  }


  def runPreCanonicalized[VD: ClassTag, ED: ClassTag](graph: Graph[VD, ED]): Graph[Int, ED] = {
    // Construct set representations of the neighborhoods
    val nbrSets: VertexRDD[VertexSet] =
      graph.collectNeighborIds(EdgeDirection.Either).mapValues { (vid, nbrs) =>
        val set = new VertexSet(nbrs.length)
        var i = 0
        while (i < nbrs.length) {
          // prevent self cycle
          if (nbrs(i) != vid) {
            set.add(nbrs(i))
          }
          i += 1
        }
        set
      }

    // join the sets with the graph
    val setGraph: Graph[VertexSet, ED] = graph.outerJoinVertices(nbrSets) {
      (vid, _, optSet) => optSet.getOrElse(null)
    }

    // Edge function computes intersection of smaller vertex with larger vertex
    def edgeFunc(ctx: EdgeContext[VertexSet, ED, Int]) {
      val (smallSet, largeSet) = if (ctx.srcAttr.size < ctx.dstAttr.size) {
        (ctx.srcAttr, ctx.dstAttr)
      } else {
        (ctx.dstAttr, ctx.srcAttr)
      }
      val iter = smallSet.iterator
      var counter: Int = 0
      while (iter.hasNext) {
        val vid = iter.next()
        if (vid != ctx.srcId && vid != ctx.dstId && largeSet.contains(vid)) {
          counter += 1
        }
      }
      ctx.sendToSrc(counter)
      ctx.sendToDst(counter)
    }

    // compute the intersection along edges
    val counters: VertexRDD[Int] = setGraph.aggregateMessages(edgeFunc, _ + _)
    // Merge counters with the graph and divide by two since each triangle is counted twice
    graph.outerJoinVertices(counters) { (_, _, optCounter: Option[Int]) =>
      val dblCount = optCounter.getOrElse(0)
      // This algorithm double counts each triangle so the final count should be even
      require(dblCount % 2 == 0, "Triangle count resulted in an invalid number of triangles.")
      dblCount / 2
    }
  }
}



        

    



        
    



        

    
        PageRank

        
            PageRank

import scala.language.postfixOps
import scala.reflect.ClassTag

import org.apache.spark.graphx._
import org.apache.spark.internal.Logging

/**
 * PageRank algorithm implementation. There are two implementations of PageRank implemented.
 *
 * The first implementation uses the standalone [[Graph]] interface and runs PageRank
 * for a fixed number of iterations:
 * {{{
 * var PR = Array.fill(n)( 1.0 )
 * val oldPR = Array.fill(n)( 1.0 )
 * for( iter <- 0 until numIter ) {
 *   swap(oldPR, PR)
 *   for( i <- 0 until n ) {
 *     PR[i] = alpha + (1 - alpha) * inNbrs[i].map(j => oldPR[j] / outDeg[j]).sum
 *   }
 * }
 * }}}
 *
 * The second implementation uses the [[Pregel]] interface and runs PageRank until
 * convergence:
 *
 * {{{
 * var PR = Array.fill(n)( 1.0 )
 * val oldPR = Array.fill(n)( 0.0 )
 * while( max(abs(PR - oldPr)) > tol ) {
 *   swap(oldPR, PR)
 *   for( i <- 0 until n if abs(PR[i] - oldPR[i]) > tol ) {
 *     PR[i] = alpha + (1 - \alpha) * inNbrs[i].map(j => oldPR[j] / outDeg[j]).sum
 *   }
 * }
 * }}}
 *
 * `alpha` is the random reset probability (typically 0.15), `inNbrs[i]` is the set of
 * neighbors which link to `i` and `outDeg[j]` is the out degree of vertex `j`.
 *
 * Note that this is not the "normalized" PageRank and as a consequence pages that have no
 * inlinks will have a PageRank of alpha.
 */
object PageRank extends Logging {


  /**
   * Run PageRank for a fixed number of iterations returning a graph
   * with vertex attributes containing the PageRank and edge
   * attributes the normalized edge weight.
   *
   * @tparam VD the original vertex attribute (not used)
   * @tparam ED the original edge attribute (not used)
   *
   * @param graph the graph on which to compute PageRank
   * @param numIter the number of iterations of PageRank to run
   * @param resetProb the random reset probability (alpha)
   *
   * @return the graph containing with each vertex containing the PageRank and each edge
   *         containing the normalized weight.
   */
  def run[VD: ClassTag, ED: ClassTag](graph: Graph[VD, ED], numIter: Int,
    resetProb: Double = 0.15): Graph[Double, Double] =
  {
    runWithOptions(graph, numIter, resetProb)
  }

  /**
   * Run PageRank for a fixed number of iterations returning a graph
   * with vertex attributes containing the PageRank and edge
   * attributes the normalized edge weight.
   *
   * @tparam VD the original vertex attribute (not used)
   * @tparam ED the original edge attribute (not used)
   *
   * @param graph the graph on which to compute PageRank
   * @param numIter the number of iterations of PageRank to run
   * @param resetProb the random reset probability (alpha)
   * @param srcId the source vertex for a Personalized Page Rank (optional)
   *
   * @return the graph containing with each vertex containing the PageRank and each edge
   *         containing the normalized weight.
   *
   */
  def runWithOptions[VD: ClassTag, ED: ClassTag](
      graph: Graph[VD, ED], numIter: Int, resetProb: Double = 0.15,
      srcId: Option[VertexId] = None): Graph[Double, Double] =
  {
    require(numIter > 0, s"Number of iterations must be greater than 0," +
      s" but got ${numIter}")
    require(resetProb >= 0 && resetProb <= 1, s"Random reset probability must belong" +
      s" to [0, 1], but got ${resetProb}")

    val personalized = srcId isDefined
    val src: VertexId = srcId.getOrElse(-1L)

    // Initialize the PageRank graph with each edge attribute having
    // weight 1/outDegree and each vertex with attribute resetProb.
    // When running personalized pagerank, only the source vertex
    // has an attribute resetProb. All others are set to 0.
    var rankGraph: Graph[Double, Double] = graph
      // Associate the degree with each vertex
      .outerJoinVertices(graph.outDegrees) { (vid, vdata, deg) => deg.getOrElse(0) }
      // Set the weight on the edges based on the degree
      .mapTriplets( e => 1.0 / e.srcAttr, TripletFields.Src )
      // Set the vertex attributes to the initial pagerank values
      .mapVertices { (id, attr) =>
        if (!(id != src && personalized)) resetProb else 0.0
      }

    def delta(u: VertexId, v: VertexId): Double = { if (u == v) 1.0 else 0.0 }

    var iteration = 0
    var prevRankGraph: Graph[Double, Double] = null
    while (iteration < numIter) {
      rankGraph.cache()

      // Compute the outgoing rank contributions of each vertex, perform local preaggregation, and
      // do the final aggregation at the receiving vertices. Requires a shuffle for aggregation.
      val rankUpdates = rankGraph.aggregateMessages[Double](
        ctx => ctx.sendToDst(ctx.srcAttr * ctx.attr), _ + _, TripletFields.Src)

      // Apply the final rank updates to get the new ranks, using join to preserve ranks of vertices
      // that didn't receive a message. Requires a shuffle for broadcasting updated ranks to the
      // edge partitions.
      prevRankGraph = rankGraph
      val rPrb = if (personalized) {
        (src: VertexId, id: VertexId) => resetProb * delta(src, id)
      } else {
        (src: VertexId, id: VertexId) => resetProb
      }

      rankGraph = rankGraph.joinVertices(rankUpdates) {
        (id, oldRank, msgSum) => rPrb(src, id) + (1.0 - resetProb) * msgSum
      }.cache()

      rankGraph.edges.foreachPartition(x => {}) // also materializes rankGraph.vertices
      logInfo(s"PageRank finished iteration $iteration.")
      prevRankGraph.vertices.unpersist(false)
      prevRankGraph.edges.unpersist(false)

      iteration += 1
    }

    rankGraph
  }

  /**
   * Run a dynamic version of PageRank returning a graph with vertex attributes containing the
   * PageRank and edge attributes containing the normalized edge weight.
   *
   * @tparam VD the original vertex attribute (not used)
   * @tparam ED the original edge attribute (not used)
   *
   * @param graph the graph on which to compute PageRank
   * @param tol the tolerance allowed at convergence (smaller => more accurate).
   * @param resetProb the random reset probability (alpha)
   *
   * @return the graph containing with each vertex containing the PageRank and each edge
   *         containing the normalized weight.
   */
  def runUntilConvergence[VD: ClassTag, ED: ClassTag](
    graph: Graph[VD, ED], tol: Double, resetProb: Double = 0.15): Graph[Double, Double] =
  {
      runUntilConvergenceWithOptions(graph, tol, resetProb)
  }

  /**
   * Run a dynamic version of PageRank returning a graph with vertex attributes containing the
   * PageRank and edge attributes containing the normalized edge weight.
   *
   * @tparam VD the original vertex attribute (not used)
   * @tparam ED the original edge attribute (not used)
   *
   * @param graph the graph on which to compute PageRank
   * @param tol the tolerance allowed at convergence (smaller => more accurate).
   * @param resetProb the random reset probability (alpha)
   * @param srcId the source vertex for a Personalized Page Rank (optional)
   *
   * @return the graph containing with each vertex containing the PageRank and each edge
   *         containing the normalized weight.
   */
  def runUntilConvergenceWithOptions[VD: ClassTag, ED: ClassTag](
      graph: Graph[VD, ED], tol: Double, resetProb: Double = 0.15,
      srcId: Option[VertexId] = None): Graph[Double, Double] =
  {
    require(tol >= 0, s"Tolerance must be no less than 0, but got ${tol}")
    require(resetProb >= 0 && resetProb <= 1, s"Random reset probability must belong" +
      s" to [0, 1], but got ${resetProb}")

    val personalized = srcId.isDefined
    val src: VertexId = srcId.getOrElse(-1L)

    // Initialize the pagerankGraph with each edge attribute
    // having weight 1/outDegree and each vertex with attribute 1.0.
    val pagerankGraph: Graph[(Double, Double), Double] = graph
      // Associate the degree with each vertex
      .outerJoinVertices(graph.outDegrees) {
        (vid, vdata, deg) => deg.getOrElse(0)
      }
      // Set the weight on the edges based on the degree
      .mapTriplets( e => 1.0 / e.srcAttr )
      // Set the vertex attributes to (initialPR, delta = 0)
      .mapVertices { (id, attr) =>
        if (id == src) (resetProb, Double.NegativeInfinity) else (0.0, 0.0)
      }
      .cache()

    // Define the three functions needed to implement PageRank in the GraphX
    // version of Pregel
    def vertexProgram(id: VertexId, attr: (Double, Double), msgSum: Double): (Double, Double) = {
      val (oldPR, lastDelta) = attr
      val newPR = oldPR + (1.0 - resetProb) * msgSum
      (newPR, newPR - oldPR)
    }

    def personalizedVertexProgram(id: VertexId, attr: (Double, Double),
      msgSum: Double): (Double, Double) = {
      val (oldPR, lastDelta) = attr
      var teleport = oldPR
      val delta = if (src==id) 1.0 else 0.0
      teleport = oldPR*delta

      val newPR = teleport + (1.0 - resetProb) * msgSum
      val newDelta = if (lastDelta == Double.NegativeInfinity) newPR else newPR - oldPR
      (newPR, newDelta)
    }

    def sendMessage(edge: EdgeTriplet[(Double, Double), Double]) = {
      if (edge.srcAttr._2 > tol) {
        Iterator((edge.dstId, edge.srcAttr._2 * edge.attr))
      } else {
        Iterator.empty
      }
    }

    def messageCombiner(a: Double, b: Double): Double = a + b

    // The initial message received by all vertices in PageRank
    val initialMessage = if (personalized) 0.0 else resetProb / (1.0 - resetProb)

    // Execute a dynamic version of Pregel.
    val vp = if (personalized) {
      (id: VertexId, attr: (Double, Double), msgSum: Double) =>
        personalizedVertexProgram(id, attr, msgSum)
    } else {
      (id: VertexId, attr: (Double, Double), msgSum: Double) =>
        vertexProgram(id, attr, msgSum)
    }

    Pregel(pagerankGraph, initialMessage, activeDirection = EdgeDirection.Out)(
      vp, sendMessage, messageCombiner)
      .mapVertices((vid, attr) => attr._1)
  } // end of deltaPageRank

}
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ABSTRACT

Many practical computing problems concern large graphs.
Standard examples include the Web graph and various so-
cial networks. The scale of these graphs—in some cases bil-
lions of vertices, trillions of edges—poses challenges to their
efficient processing. In this paper we present a computa-
tional model suitable for this task. Programs are expressed
as a sequence of iterations, in each of which a vertex can
receive messages sent in the previous iteration, send mes-
sages to other vertices, and modify its own state and that of
its outgoing edges or mutate graph topology. This vertex-
centric approach is flexible enough to express a broad set of
algorithms. The model has been designed for efficient, scal-
able and fault-tolerant implementation on clusters of thou-
sands of commodity computers, and its implied synchronic-
ity makes reasoning about programs easier. Distribution-
related details are hidden behind an abstract API. The result
is a framework for processing large graphs that is expressive
and easy to program.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming; D.2.13 [Software Engi-
neering|: Reusable Software— Reusable libraries

General Terms
Design, Algorithms

Keywords
Distributed computing, graph algorithms

1. INTRODUCTION

The Internet made the Web graph a popular object of
analysis and research. Web 2.0 fueled interest in social net-
works. Other large graphs—for example induced by trans-
portation routes, similarity of newspaper articles, paths of
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disease outbreaks, or citation relationships among published
scientific work—have been processed for decades. Frequently
applied algorithms include shortest paths computations, dif-
ferent flavors of clustering, and variations on the page rank
theme. There are many other graph computing problems
of practical value, e.g., minimum cut and connected compo-
nents.

Efficient processing of large graphs is challenging. Graph
algorithms often exhibit poor locality of memory access, very
little work per vertex, and a changing degree of parallelism
over the course of execution [31, 39]. Distribution over many
machines exacerbates the locality issue, and increases the
probability that a machine will fail during computation. De-
spite the ubiquity of large graphs and their commercial im-
portance, we know of no scalable general-purpose system
for implementing arbitrary graph algorithms over arbitrary
graph representations in a large-scale distributed environ-
ment.

Implementing an algorithm to process a large graph typ-
ically means choosing among the following options:

1. Crafting a custom distributed infrastructure, typically
requiring a substantial implementation effort that must
be repeated for each new algorithm or graph represen-
tation.

2. Relying on an existing distributed computing platform,
often ill-suited for graph processing. MapReduce [14],
for example, is a very good fit for a wide array of large-
scale computing problems. It is sometimes used to
mine large graphs [11, 30], but this can lead to sub-
optimal performance and usability issues. The basic
models for processing data have been extended to fa-
cilitate aggregation [41] and SQL-like queries [40, 47],
but these extensions are usually not ideal for graph al-
gorithms that often better fit a message passing model.

3. Using a single-computer graph algorithm library, such
as BGL [43], LEDA [35], NetworkX [25], JDSL [20],
Stanford GraphBase [29], or FGL [16], limiting the
scale of problems that can be addressed.

4. Using an existing parallel graph system. The Parallel
BGL [22] and CGMgraph [8] libraries address parallel
graph algorithms, but do not address fault tolerance
or other issues that are important for very large scale
distributed systems.

None of these alternatives fit our purposes. To address dis-
tributed processing of large scale graphs, we built a scalable





and fault-tolerant platform with an API that is sufficiently
flexible to express arbitrary graph algorithms. This paper
describes the resulting system, called Pregel', and reports
our experience with it.

The high-level organization of Pregel programs is inspired
by Valiant’s Bulk Synchronous Parallel model [45]. Pregel
computations consist of a sequence of iterations, called su-
persteps. During a superstep the framework invokes a user-
defined function for each vertex, conceptually in parallel.
The function specifies behavior at a single vertex V' and a
single superstep S. It can read messages sent to V in su-
perstep S — 1, send messages to other vertices that will be
received at superstep S + 1, and modify the state of V' and
its outgoing edges. Messages are typically sent along outgo-
ing edges, but a message may be sent to any vertex whose
identifier is known.

The vertex-centric approach is reminiscent of MapReduce
in that users focus on a local action, processing each item
independently, and the system composes these actions to lift
computation to a large dataset. By design the model is well
suited for distributed implementations: it doesn’t expose
any mechanism for detecting order of execution within a
superstep, and all communication is from superstep S to
superstep S + 1.

The synchronicity of this model makes it easier to reason
about program semantics when implementing algorithms,
and ensures that Pregel programs are inherently free of dead-
locks and data races common in asynchronous systems. In
principle the performance of Pregel programs should be com-
petitive with that of asynchronous systems given enough
parallel slack [28, 34]. Because typical graph computations
have many more vertices than machines, one should be able
to balance the machine loads so that the synchronization
between supersteps does not add excessive latency.

The rest of the paper is structured as follows. Section 2
describes the model. Section 3 describes its expression as
a C++ API. Section 4 discusses implementation issues, in-
cluding performance and fault tolerance. In Section 5 we
present several applications of this model to graph algorithm
problems, and in Section 6 we present performance results.
Finally, we discuss related work and future directions.

2. MODEL OF COMPUTATION

The input to a Pregel computation is a directed graph in
which each vertex is uniquely identified by a string vertex
identifier. Each vertex is associated with a modifiable, user
defined value. The directed edges are associated with their
source vertices, and each edge consists of a modifiable, user
defined value and a target vertex identifier.

A typical Pregel computation consists of input, when the
graph is initialized, followed by a sequence of supersteps sep-
arated by global synchronization points until the algorithm
terminates, and finishing with output.

Within each superstep the vertices compute in parallel,
each executing the same user-defined function that expresses
the logic of a given algorithm. A vertex can modify its state
or that of its outgoing edges, receive messages sent to it
in the previous superstep, send messages to other vertices
(to be received in the next superstep), or even mutate the

!The name honors Leonhard Euler. The Bridges of Konigs-
berg, which inspired his famous theorem, spanned the Pregel
river.
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Figure 1: Vertex State Machine

topology of the graph. Edges are not first-class citizens in
this model, having no associated computation.

Algorithm termination is based on every vertex voting to
halt. In superstep 0, every vertex is in the active state; all
active vertices participate in the computation of any given
superstep. A vertex deactivates itself by voting to halt. This
means that the vertex has no further work to do unless trig-
gered externally, and the Pregel framework will not execute
that vertex in subsequent supersteps unless it receives a mes-
sage. If reactivated by a message, a vertex must explicitly
deactivate itself again. The algorithm as a whole terminates
when all vertices are simultaneously inactive and there are
no messages in transit. This simple state machine is illus-
trated in Figure 1.

The output of a Pregel program is the set of values ex-
plicitly output by the vertices. It is often a directed graph
isomorphic to the input, but this is not a necessary prop-
erty of the system because vertices and edges can be added
and removed during computation. A clustering algorithm,
for example, might generate a small set of disconnected ver-
tices selected from a large graph. A graph mining algorithm
might simply output aggregated statistics mined from the
graph.

Figure 2 illustrates these concepts using a simple example:
given a strongly connected graph where each vertex contains
a value, it propagates the largest value to every vertex. In
each superstep, any vertex that has learned a larger value
from its messages sends it to all its neighbors. When no
further vertices change in a superstep, the algorithm termi-
nates.

We chose a pure message passing model, omitting remote
reads and other ways of emulating shared memory, for two
reasons. First, message passing is sufficiently expressive that
there is no need for remote reads. We have not found any
graph algorithms for which message passing is insufficient.
Second, this choice is better for performance. In a cluster
environment, reading a value from a remote machine in-
curs high latency that can’t easily be hidden. Our message
passing model allows us to amortize latency by delivering
messages asynchronously in batches.

Graph algorithms can be written as a series of chained
MapReduce invocations [11, 30]. We chose a different model
for reasons of usability and performance. Pregel keeps ver-
tices and edges on the machine that performs computation,
and uses network transfers only for messages. MapReduce,
however, is essentially functional, so expressing a graph algo-
rithm as a chained MapReduce requires passing the entire
state of the graph from one stage to the next—in general
requiring much more communication and associated serial-
ization overhead. In addition, the need to coordinate the
steps of a chained MapReduce adds programming complex-
ity that is avoided by Pregel’s iteration over supersteps.
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Figure 2: Maximum Value Example. Dotted lines
are messages. Shaded vertices have voted to halt.

3. THE C++ API

This section discusses the most important aspects of Pre-
gel’s C++ API, omitting relatively mechanical issues.

Writing a Pregel program involves subclassing the prede-
fined Vertex class (see Figure 3). Its template arguments
define three value types, associated with vertices, edges,
and messages. Each vertex has an associated value of the
specified type. This uniformity may seem restrictive, but
users can manage it by using flexible types like protocol
buffers [42]. The edge and message types behave similarly.

The user overrides the virtual Compute () method, which
will be executed at each active vertex in every superstep.
Predefined Vertex methods allow Compute () to query infor-
mation about the current vertex and its edges, and to send
messages to other vertices. Compute () can inspect the value
associated with its vertex via GetValue() or modify it via
MutableValue(). It can inspect and modify the values of
out-edges using methods supplied by the out-edge iterator.
These state updates are visible immediately. Since their vis-
ibility is confined to the modified vertex, there are no data
races on concurrent value access from different vertices.

The values associated with the vertex and its edges are the
only per-vertex state that persists across supersteps. Lim-
iting the graph state managed by the framework to a single
value per vertex or edge simplifies the main computation
cycle, graph distribution, and failure recovery.

3.1 Message Passing

Vertices communicate directly with one another by send-
ing messages, each of which consists of a message value and
the name of the destination vertex. The type of the message
value is specified by the user as a template parameter of the
Vertex class.

A vertex can send any number of messages in a superstep.
All messages sent to vertex V' in superstep S are available,
via an iterator, when V’s Compute() method is called in
superstep S + 1. There is no guaranteed order of messages
in the iterator, but it is guaranteed that messages will be
delivered and that they will not be duplicated.

A common usage pattern is for a vertex V' to iterate over
its outgoing edges, sending a message to the destination ver-
tex of each edge, as shown in the PageRank algorithm in
Figure 4 (Section 5.1 below). However, dest_vertex need

137

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>
class Vertex {
public:
virtual void Compute(MessageIlterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;

const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgelterator GetOutEdgelIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);
void VoteToHalt();

Figure 3: The Vertex API foundations.

not be a neighbor of V. A vertex could learn the identifier
of a non-neighbor from a message received earlier, or ver-
tex identifiers could be known implicitly. For example, the
graph could be a clique, with well-known vertex identifiers
Vi through V;,, in which case there may be no need to even
keep explicit edges in the graph.

When the destination vertex of any message does not ex-
ist, we execute user-defined handlers. A handler could, for
example, create the missing vertex or remove the dangling
edge from its source vertex.

3.2 Combiners

Sending a message, especially to a vertex on another ma-
chine, incurs some overhead. This can be reduced in some
cases with help from the user. For example, suppose that
Compute () receives integer messages and that only the sum
matters, as opposed to the individual values. In that case the
system can combine several messages intended for a vertex
V into a single message containing their sum, reducing the
number of messages that must be transmitted and buffered.

Combiners are not enabled by default, because there is
no mechanical way to find a useful combining function that
is consistent with the semantics of the user’s Compute()
method. To enable this optimization the user subclasses
the Combiner class, overriding a virtual Combine () method.
There are no guarantees about which (if any) messages are
combined, the groupings presented to the combiner, or the
order of combining, so combiners should only be enabled for
commutative and associative operations.

For some algorithms, such as single-source shortest paths
(Section 5.2), we have observed more than a fourfold reduc-
tion in message traffic by using combiners.

3.3 Aggregators

Pregel aggregators are a mechanism for global communica-
tion, monitoring, and data. Each vertex can provide a value
to an aggregator in superstep S, the system combines those
values using a reduction operator, and the resulting value
is made available to all vertices in superstep S + 1. Pregel
includes a number of predefined aggregators, such as min,
max, or sum operations on various integer or string types.

Aggregators can be used for statistics. For instance, a sum
aggregator applied to the out-degree of each vertex yields the





total number of edges in the graph. More complex reduction
operators can generate histograms of a statistic.

Aggregators can also be used for global coordination. For
instance, one branch of Compute() can be executed for the
supersteps until an and aggregator determines that all ver-
tices satisfy some condition, and then another branch can
be executed until termination. A min or max aggregator, ap-
plied to the vertex ID, can be used to select a vertex to play
a distinguished role in an algorithm.

To define a new aggregator, a user subclasses the pre-
defined Aggregator class, and specifies how the aggregated
value is initialized from the first input value and how mul-
tiple partially aggregated values are reduced to one. Aggre-
gation operators should be commutative and associative.

By default an aggregator only reduces input values from
a single superstep, but it is also possible to define a sticky
aggregator that uses input values from all supersteps. This
is useful, for example, for maintaining a global edge count
that is adjusted only when edges are added or removed.

More advanced uses are possible. For example, an aggre-
gator can be used to implement a distributed priority queue
for the A-stepping shortest paths algorithm [37]. Each ver-
tex is assigned to a priority bucket based on its tentative
distance. In one superstep, the vertices contribute their in-
dices to a min aggregator. The minimum is broadcast to
all workers in the next superstep, and the vertices in the
lowest-index bucket relax edges.

3.4 Topology Mutations

Some graph algorithms need to change the graph’s topol-
ogy. A clustering algorithm, for example, might replace each
cluster with a single vertex, and a minimum spanning tree
algorithm might remove all but the tree edges. Just as a
user’s Compute() function can send messages, it can also
issue requests to add or remove vertices or edges.

Multiple vertices may issue conflicting requests in the same
superstep (e.g., two requests to add a vertex V, with dif-
ferent initial values). We use two mechanisms to achieve
determinism: partial ordering and handlers.

As with messages, mutations become effective in the su-
perstep after the requests were issued. Within that super-
step removals are performed first, with edge removal before
vertex removal, since removing a vertex implicitly removes
all of its out-edges. Additions follow removals, with ver-
tex addition before edge addition, and all mutations precede
calls to Compute (). This partial ordering yields determinis-
tic results for most conflicts.

The remaining conflicts are resolved by user-defined han-
dlers. If there are multiple requests to create the same vertex
in the same superstep, then by default the system just picks
one arbitrarily, but users with special needs may specify a
better conflict resolution policy by defining an appropriate
handler method in their Vertex subclass. The same handler
mechanism is used to resolve conflicts caused by multiple
vertex removal requests, or by multiple edge addition or re-
moval requests. We delegate the resolution to handlers to
keep the code of Compute() simple, which limits the inter-
action between a handler and Compute(), but has not been
an issue in practice.

Our coordination mechanism is lazy: global mutations do
not require coordination until the point when they are ap-
plied. This design choice facilitates stream processing. The
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intuition is that conflicts involving modification of a vertex
V are handled by V itself.

Pregel also supports purely local mutations, i.e., a vertex
adding or removing its own outgoing edges or removing it-
self. Local mutations cannot introduce conflicts and making
them immediately effective simplifies distributed program-
ming by using an easier sequential programming semantics.

3.5 Input and output

There are many possible file formats for graphs, such as
a text file, a set of vertices in a relational database, or rows
in Bigtable [9]. To avoid imposing a specific choice of file
format, Pregel decouples the task of interpreting an input file
as a graph from the task of graph computation. Similarly,
output can be generated in an arbitrary format and stored
in the form most suitable for a given application. The Pregel
library provides readers and writers for many common file
formats, but users with unusual needs can write their own
by subclassing the abstract base classes Reader and Writer.

4. IMPLEMENTATION

Pregel was designed for the Google cluster architecture,
which is described in detail in [3]. Each cluster consists
of thousands of commodity PCs organized into racks with
high intra-rack bandwidth. Clusters are interconnected but
distributed geographically.

Our applications typically execute on a cluster manage-
ment system that schedules jobs to optimize resource allo-
cation, sometimes killing instances or moving them to differ-
ent machines. The system includes a name service, so that
instances can be referred to by logical names independent of
their current binding to a physical machine. Persistent data
is stored as files on a distributed storage system, GFS [19],
or in Bigtable [9], and temporary data such as buffered mes-
sages on local disk.

4.1 Basic architecture

The Pregel library divides a graph into partitions, each
consisting of a set of vertices and all of those vertices’ out-
going edges. Assignment of a vertex to a partition depends
solely on the vertex ID, which implies it is possible to know
which partition a given vertex belongs to even if the vertex is
owned by a different machine, or even if the vertex does not
yet exist. The default partitioning function is just hash(ID)
mod N, where N is the number of partitions, but users can
replace it.

The assignment of vertices to worker machines is the main
place where distribution is not transparent in Pregel. Some
applications work well with the default assignment, but some
benefit from defining custom assignment functions to better
exploit locality inherent in the graph. For example, a typical
heuristic employed for the Web graph is to colocate vertices
representing pages of the same site.

In the absence of faults, the execution of a Pregel program
consists of several stages:

1. Many copies of the user program begin executing on
a cluster of machines. One of these copies acts as the
master. It is not assigned any portion of the graph, but
is responsible for coordinating worker activity. The
workers use the cluster management system’s name
service to discover the master’s location, and send reg-
istration messages to the master.





2. The master determines how many partitions the graph
will have, and assigns one or more partitions to each
worker machine. The number may be controlled by
the user. Having more than one partition per worker
allows parallelism among the partitions and better load
balancing, and will usually improve performance. Each
worker is responsible for maintaining the state of its
section of the graph, executing the user’s Compute ()
method on its vertices, and managing messages to and
from other workers. Each worker is given the complete
set of assignments for all workers.

3. The master assigns a portion of the user’s input to
each worker. The input is treated as a set of records,
each of which contains an arbitrary number of vertices
and edges. The division of inputs is orthogonal to the
partitioning of the graph itself, and is typically based
on file boundaries. If a worker loads a vertex that be-
longs to that worker’s section of the graph, the appro-
priate data structures (Section 4.3) are immediately
updated. Otherwise the worker enqueues a message to
the remote peer that owns the vertex. After the input
has finished loading, all vertices are marked as active.

4. The master instructs each worker to perform a super-
step. The worker loops through its active vertices, us-
ing one thread for each partition. The worker calls
Compute () for each active vertex, delivering messages
that were sent in the previous superstep. Messages are
sent asynchronously, to enable overlapping of compu-
tation and communication and batching, but are deliv-
ered before the end of the superstep. When the worker
is finished it responds to the master, telling the master
how many vertices will be active in the next superstep.

This step is repeated as long as any vertices are active,
or any messages are in transit.

5. After the computation halts, the master may instruct
each worker to save its portion of the graph.

4.2 Fault tolerance

Fault tolerance is achieved through checkpointing. At the
beginning of a superstep, the master instructs the workers
to save the state of their partitions to persistent storage,
including vertex values, edge values, and incoming messages;
the master separately saves the aggregator values.

Worker failures are detected using regular “ping” messages
that the master issues to workers. If a worker does not
receive a ping message after a specified interval, the worker
process terminates. If the master does not hear back from
a worker, the master marks that worker process as failed.

When one or more workers fail, the current state of the
partitions assigned to these workers is lost. The master reas-
signs graph partitions to the currently available set of work-
ers, and they all reload their partition state from the most
recent available checkpoint at the beginning of a superstep
S. That checkpoint may be several supersteps earlier than
the latest superstep S’ completed by any partition before
the failure, requiring that recovery repeat the missing su-
persteps. We select checkpoint frequency based on a mean
time to failure model [13], balancing checkpoint cost against
expected recovery cost.

Confined recovery is under development to improve the
cost and latency of recovery. In addition to the basic check-
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points, the workers also log outgoing messages from their as-
signed partitions during graph loading and supersteps. Re-
covery is then confined to the lost partitions, which are re-
covered from checkpoints. The system recomputes the miss-
ing supersteps up to S’ using logged messages from healthy
partitions and recalculated ones from recovering partitions.

This approach saves compute resources during recovery
by only recomputing lost partitions, and can improve the la-
tency of recovery since each worker may be recovering fewer
partitions. Saving the outgoing messages adds overhead, but
a typical machine has adequate disk bandwidth to ensure
that 1/O does not become the bottleneck.

Confined recovery requires the user algorithm to be deter-
ministic, to avoid inconsistencies due to mixing saved mes-
sages from the original execution with new messages from
the recovery. Randomized algorithms can be made deter-
ministic by seeding a pseudorandom number generator de-
terministically based on the superstep and the partition.
Nondeterministic algorithms can disable confined recovery
and fall back to the basic recovery mechanism.

4.3 Worker implementation

A worker machine maintains the state of its portion of
the graph in memory. Conceptually this can be thought of
as a map from vertex ID to the state of each vertex, where
the state of each vertex consists of its current value, a list
of its outgoing edges (the vertex ID for the edge’s target,
and the edge’s current value), a queue containing incoming
messages, and a flag specifying whether the vertex is active.
When the worker performs a superstep it loops through all
vertices and calls Compute (), passing it the current value,
an iterator to the incoming messages, and an iterator to
the outgoing edges. There is no access to incoming edges
because each incoming edge is part of a list owned by the
source vertex, in general on a different machine.

For performance reasons, the active vertex flags are stored
separately from the incoming message queues. Furthermore,
while only a single copy of the vertex and edge values ex-
ists, two copies of the active vertex flags and the incoming
message queue exist: one for the current superstep and one
for the next superstep. While a worker processes its ver-
tices in superstep S it is simultaneously, in another thread,
receiving messages from other workers executing the same
superstep. Since vertices receive messages that were sent in
the previous superstep (see Section 2), messages for super-
steps S and S + 1 must be kept separate. Similarly, arrival
of a message for a vertex V' means that V will be active in
the next superstep, not necessarily the current one.

When Compute() requests sending a message to another
vertex, the worker process first determines whether the des-
tination vertex is owned by a remote worker machine, or
by the same worker that owns the sender. In the remote
case the message is buffered for delivery to the destination
worker. When the buffer sizes reach a threshold, the largest
buffers are asynchronously flushed, delivering each to its des-
tination worker as a single network message. In the local
case an optimization is possible: the message is placed di-
rectly in the destination vertex’s incoming message queue.

If the user has provided a Combiner (Section 3.2), it is
applied when messages are added to the outgoing message
queue and when they are received at the incoming message
queue. The latter does not reduce network usage, but does
reduce the space needed to store messages.





4.4 Master implementation

The master is primarily responsible for coordinating the
activities of workers. Each worker is assigned a unique iden-
tifier at the time of its registration. The master maintains a
list of all workers currently known to be alive, including the
worker’s unique identifier, its addressing information, and
which portion of the graph it has been assigned. The size of
the master’s data structures is proportional to the number
of partitions, not the number of vertices or edges, so a sin-
gle master can coordinate computation for even a very large
graph.

Most master operations, including input, output, compu-
tation, and saving and resuming from checkpoints, are ter-
minated at barriers: the master sends the same request to
every worker that was known to be alive at the time the op-
eration begins, and waits for a response from every worker.
If any worker fails, the master enters recovery mode as de-
scribed in section 4.2. If the barrier synchronization suc-
ceeds, the master proceeds to the next stage. In the case of
a computation barrier, for example, the master increments
the global superstep index and proceeds to the next super-
step.

The master also maintains statistics about the progress of
computation and the state of the graph, such as the total size
of the graph, a histogram of its distribution of out-degrees,
the number of active vertices, the timing and message traf-
fic of recent supersteps, and the values of all user-defined
aggregators. To enable user monitoring, the master runs an
HTTP server that displays this information.

4.5 Aggregators

An aggregator (Section 3.3) computes a single global value
by applying an aggregation function to a set of values that
the user supplies. Each worker maintains a collection of ag-
gregator instances, identified by a type name and instance
name. When a worker executes a superstep for any partition
of the graph, the worker combines all of the values supplied
to an aggregator instance into a single local value: an ag-
gregator that is partially reduced over all of the worker’s
vertices in the partition. At the end of the superstep work-
ers form a tree to reduce partially reduced aggregators into
global values and deliver them to the master. We use a
tree-based reduction—rather than pipelining with a chain
of workers—to parallelize the use of CPU during reduction.
The master sends the global values to all workers at the
beginning of the next superstep.

S. APPLICATIONS

This section presents four examples that are simplified
versions of algorithms developed by Pregel users to solve real
problems: Page Rank, Shortest Paths, Bipartite Matching,
and a Semi-Clustering algorithm.

5.1 PageRank

A Pregel implementation of a PageRank algorithm [7] is
shown in Figure 4. The PageRankVertex class inherits from
Vertex. Its vertex value type is double to store a tentative
PageRank, and its message type is double to carry PageR-
ank fractions, while the edge value type is void because
edges do not store information. We assume that the graph
is initialized so that in superstep 0, the value of each vertex
is 1 / NumVertices(). In each of the first 30 supersteps,
each vertex sends along each outgoing edge its tentative
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class PageRankVertex
: public Vertex<double, void, double> {
public:
virtual void Compute(MessageIterator* msgs) {
if (superstep() >= 1) {
double sum = 0;
for (; !msgs->Done(); msgs—->Next())
sum += msgs->Value();
*MutableValue() =
0.15 / NumVertices() + 0.85 * sum;
}

if (superstep() < 30) {
const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeighbors (GetValue() / n);

} else {
VoteToHalt () ;

}

}
};

Figure 4: PageRank implemented in Pregel.

PageRank divided by the number of outgoing edges. Start-
ing from superstep 1, each vertex sums up the values arriving
on messages into sum and sets its own tentative PageRank
t0 0.15/NumVertices() + 0.85 x sum. After reaching super-
step 30, no further messages are sent and each vertex votes
to halt. In practice, a PageRank algorithm would run until
convergence was achieved, and aggregators would be useful
for detecting the convergence condition.

5.2 Shortest Paths

Shortest paths problems are among the best known prob-
lems in graph theory and arise in a wide variety of applica-
tions [10, 24], with several important variants. The single-
source shortest paths problem requires finding a shortest
path between a single source vertex and every other vertex
in the graph. The s-t shortest path problem requires find-
ing a single shortest path between given vertices s and ¢; it
has obvious practical applications like driving directions and
has received a great deal of attention. It is also relatively
easy—solutions in typical graphs like road networks visit a
tiny fraction of vertices, with Lumsdaine et al [31] observ-
ing visits to 80,000 vertices out of 32 million in one example.
A third variant, all-pairs shortest paths, is impractical for
large graphs because of its O(]V|?) storage requirements.

For simplicity and conciseness, we focus here on the single-
source variant that fits Pregel’s target of large-scale graphs
very well, but offers more interesting scaling data than the
s-t shortest path problem. An implementation is shown in
Figure 5.

In this algorithm, we assume the value associated with
each vertex is initialized to INF (a constant larger than any
feasible distance in the graph from the source vertex). In
each superstep, each vertex first receives, as messages from
its neighbors, updated potential minimum distances from
the source vertex. If the minimum of these updates is less
than the value currently associated with the vertex, then this
vertex updates its value and sends out potential updates to
its neighbors, consisting of the weight of each outgoing edge
added to the newly found minimum distance. In the first
superstep, only the source vertex will update its value (from
INF to zero) and send updates to its immediate neighbors.
These neighbors in turn will update their values and send





class ShortestPathVertex
: public Vertex<int, int, int> {
void Compute(MessageIterator* msgs) {
int mindist = IsSource(vertex_id()) 7 O :
for (; !msgs->Done(); msgs—>Next())
mindist = min(mindist, msgs->Value());
if (mindist < GetValue()) {
*MutableValue() = mindist;
OutEdgelterator iter = GetOutEdgeIterator();
for (; 'iter.Done(); iter.Next())
SendMessageTo (iter.Target(),
mindist + iter.GetValue());

INF;

}
VoteToHalt () ;
}
};

Figure 5: Single-source shortest paths.

class MinIntCombiner : public Combiner<int> {
virtual void Combine(MessageIterator* msgs) {
int mindist = INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());
Output ("combined_source", mindist);
}
};

Figure 6: Combiner that takes minimum of message
values.

messages, resulting in a wavefront of updates through the
graph. The algorithm terminates when no more updates
occur, after which the value associated with each vertex de-
notes the minimum distance from the source vertex to that
vertex. (The value INF denotes that the vertex cannot be
reached at all.) Termination is guaranteed if all edge weights
are non-negative.

Messages in this algorithm consist of potential shorter dis-
tances. Since the receiving vertex is ultimately only inter-
ested in the minimum, this algorithm is amenable to op-
timization using a combiner (Section 3.2). The combiner
shown in Figure 6 greatly reduces the amount of data sent
between workers, as well as the amount of data buffered
prior to executing the next superstep. While the code in
Figure 5 only computes distances, modifying it to compute
the shortest paths tree as well is quite straightforward.

This algorithm may perform many more comparisons than
sequential counterparts such as Dijkstra or Bellman-Ford [5,
15, 17, 24], but it is able to solve the shortest paths problem
at a scale that is infeasible with any single-machine imple-
mentation. More advanced parallel algorithms exist, e.g.,
Thorup [44] or the A-stepping method [37], and have been
used as the basis for special-purpose parallel shortest paths
implementations [12, 32]. Such advanced algorithms can also
be expressed in the Pregel framework. The simplicity of the
implementation in Figure 5, however, together with the al-
ready acceptable performance (see Section 6), may appeal
to users who can’t do extensive tuning or customization.

5.3 Bipartite Matching

The input to a bipartite matching algorithm consists of
two distinct sets of vertices with edges only between the
sets, and the output is a subset of edges with no common
endpoints. A maximal matching is one to which no addi-
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tional edge can be added without sharing an endpoint. We
implemented a randomized maximal matching algorithm [1]
and a maximum-weight bipartite matching algorithm [4]; we
describe the former here.

In the Pregel implementation of this algorithm the ver-
tex value is a tuple of two values: a flag indicating which
set the vertex is in (L or R), and the name of its matched
vertex once known. The edge value has type void (edges
carry no information), and the messages are boolean. The
algorithm proceeds in cycles of four phases, where the phase
index is just the superstep index mod 4, using a three-way
handshake.

In phase 0 of a cycle, each left vertex not yet matched
sends a message to each of its neighbors to request a match,
and then unconditionally votes to halt. If it sent no messages
(because it is already matched, or has no outgoing edges),
or if all the message recipients are already matched, it will
never be reactivated. Otherwise, it will receive a response
in two supersteps and reactivate.

In phase 1 of a cycle, each right vertex not yet matched
randomly chooses one of the messages it receives, sends a
message granting that request, and sends messages to other
requestors denying it. Then it unconditionally votes to halt.

In phase 2 of a cycle, each left vertex not yet matched
chooses one of the grants it receives and sends an acceptance
message. Left vertices that are already matched will never
execute this phase, since they will not have sent a message
in phase 0.

Finally, in phase 3, an unmatched right vertex receives at
most one acceptance message. It notes the matched node
and unconditionally votes to halt—it has nothing further to
do.

5.4 Semi-Clustering

Pregel has been used for several different versions of clus-
tering. One version, semi-clustering, arises in social graphs.

Vertices in a social graph typically represent people, and
edges represent connections between them. Edges may be
based on explicit actions (e.g., adding a friend in a social
networking site), or may be inferred from people’s behav-
ior (e.g., email conversations or co-publication). Edges may
have weights, to represent the interactions’ frequency or
strength.

A semi-cluster in a social graph is a group of people who
interact frequently with each other and less frequently with
others. What distinguishes it from ordinary clustering is
that a vertex may belong to more than one semi-cluster.

This section describes a parallel greedy semi-clustering al-
gorithm. Its input is a weighted, undirected graph (repre-
sented in Pregel by constructing each edge twice, once in
each direction) and its output is at most Crax semi-clusters,
each containing at most Vax vertices, where Chax and Viax
are user-specified parameters.

A semi-cluster c is assigned a score,

Ic 7fBBc
1)/2’

where I, is the sum of the weights of all internal edges, B.
is the sum of the weights of all boundary edges (i.e., edges
connecting a vertex in the semi-cluster to one outside it),
V. is the number of vertices in the semi-cluster, and fgz, the
boundary edge score factor, is a user-specified parameter,
usually between 0 and 1. The score is normalized, i.e., di-
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vided by the number of edges in a clique of size V¢, so that
large clusters do not receive artificially high scores.

Each vertex V maintains a list containing at most Chax
semi-clusters, sorted by score. In superstep 0 V' enters itself
in that list as a semi-cluster of size 1 and score 1, and pub-
lishes itself to all of its neighbors. In subsequent supersteps:

e Vertex V iterates over the semi-clusters ci,...,cr sent
to it on the previous superstep. If a semi-cluster ¢ does
not already contain V', and V. < Mpax, then V is added
to ¢ to form ¢’.

e The semi-clusters ci, ..., ¢, c, ..., ¢}, are sorted by their
scores, and the best ones are sent to V’s neighbors.

e Vertex V updates its list of semi-clusters with the semi-
clusters from ci, ..., ck, ¢, ..., ¢, that contain V.

The algorithm terminates either when the semi-clusters
stop changing or (to improve performance) when the number
of supersteps reaches a user-specified limit. At that point
the list of best semi-cluster candidates for each vertex may
be aggregated into a global list of best semi-clusters.

6. EXPERIMENTS

We conducted various experiments with the single-source
shortest paths (SSSP) implementation of Section 5.2 on a
cluster of 300 multicore commodity PCs. We report run-
times for binary trees (to study scaling properties) and log-
normal random graphs (to study the performance in a more
realistic setting) using various graph sizes with the weights
of all edges implicitly set to 1.

The time for initializing the cluster, generating the test
graphs in-memory, and verifying results is not included in
the measurements. Since all experiments could run in a
relatively short time, failure probability was low, and check-
pointing was disabled.

As an indication of how Pregel scales with worker tasks,
Figure 7 shows shortest paths runtimes for a binary tree
with a billion vertices (and, thus, a billion minus one edges)
when the number of Pregel workers varies from 50 to 800.
The drop from 174 to 17.3 seconds using 16 times as many
workers represents a speedup of about 10.

To show how Pregel scales with graph size, Figure 8 pre-
sents shortest paths runtimes for binary trees varying in size
from a billion to 50 billion vertices, now using a fixed number
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Figure 7: SSSP—1 billion vertex binary tree: vary-
ing number of worker tasks scheduled on 300 multi-
core machines
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Figure 8: SSSP—binary trees: varying graph sizes
on 800 worker tasks scheduled on 300 multicore ma-
chines

of 800 worker tasks scheduled on 300 multicore machines.
Here the increase from 17.3 to 702 seconds demonstrates
that for graphs with a low average outdegree the runtime
increases linearly in the graph size.

Although the previous experiments give an indication of
how Pregel scales in workers and graph size, binary trees are
obviously not representative of graphs encountered in prac-
tice. Therefore, we also conducted experiments with random
graphs that use a log-normal distribution of outdegrees,

1 e—(lnd—p)2/202
V2nod

with 4 = 4 and ¢ = 1.3, for which the mean outdegree is
127.1. Such a distribution resembles many real-world large-
scale graphs, such as the web graph or social networks, where
most vertices have a relatively small degree but some outliers
are much larger—a hundred thousand or more. Figure 9
shows shortest paths runtimes for such graphs varying in
size from 10 million to a billion vertices (and thus over 127
billion edges), again with 800 worker tasks scheduled on 300
multicore machines. Running shortest paths for the largest
graph took a little over 10 minutes.

In all experiments the graph was partitioned among work-
ers using the default partitioning function based on a ran-
dom hash; a topology-aware partitioning function would give
better performance. Also, a naive parallel shortest paths

p(d) = (2)
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Figure 9: SSSP—Ilog-normal random graphs, mean
out-degree 127.1 (thus over 127 billion edges in the
largest case): varying graph sizes on 800 worker
tasks scheduled on 300 multicore machines





algorithm was used; here too a more advanced algorithm
would perform better. Therefore, the results of the experi-
ments in this section should not be interpreted as the best
possible runtime of shortest paths using Pregel. Instead, the
results are meant to show that satisfactory performance can
be obtained with relatively little coding effort. In fact, our
results for one billion vertices and edges are comparable to
the A-stepping results from Parallel BGL [31] mentioned in
the next section for a cluster of 112 processors on a graph of
256 million vertices and one billion edges, and Pregel scales
better beyond that size.

7. RELATED WORK

Pregel is a distributed programming framework, focused
on providing users with a natural API for programming
graph algorithms while managing the details of distribution
invisibly, including messaging and fault tolerance. It is sim-
ilar in concept to MapReduce [14], but with a natural graph
API and much more efficient support for iterative compu-
tations over the graph. This graph focus also distinguishes
it from other frameworks that hide distribution details such
as Sawzall [41], Pig Latin [40], and Dryad [27, 47]. Pregel is
also different because it implements a stateful model where
long-lived processes compute, communicate, and modify lo-
cal state, rather than a dataflow model where any process
computes solely on input data and produces output data
input by other processes.

Pregel was inspired by the Bulk Synchronous Parallel mo-
del [45], which provides its synchronous superstep model
of computation and communication. There have been a
number of general BSP library implementations, for exam-
ple the Oxford BSP Library [38], Green BSP library [21],
BSPIlib [26] and Paderborn University BSP library [6]. They
vary in the set of communication primitives provided, and
in how they deal with distribution issues such as reliability
(machine failure), load balancing, and synchronization. To
our knowledge, the scalability and fault-tolerance of BSP im-
plementations has not been evaluated beyond several dozen
machines, and none of them provides a graph-specific API.

The closest matches to Pregel are the Parallel Boost Graph
Library and CGMgraph. The Parallel BGL [22, 23] specifies
several key generic concepts for defining distributed graphs,
provides implementations based on MPI [18], and imple-
ments a number of algorithms based on them. It attempts
to maintain compatibility with the (sequential) BGL [43] to
facilitate porting algorithms. It implements property maps
to hold information associated with vertices and edges in the
graph, using ghost cells to hold values associated with re-
mote components. This can lead to scaling problems if refer-
ence to many remote components is required. Pregel uses an
explicit message approach to acquiring remote information
and does not replicate remote values locally. The most crit-
ical difference is that Pregel provides fault-tolerance to cope
with failures during computation, allowing it to function in
a huge cluster environment where failures are common, e.g.,
due to hardware failures or preemption by higher-priority
jobs.

CGMgraph [8] is similar in concept, providing a number
of parallel graph algorithms using the Coarse Grained Mul-
ticomputer (CGM) model based on MPI. Its underlying dis-
tribution mechanisms are much more exposed to the user,
and the focus is on providing implementations of algorithms
rather than an infrastructure to be used to implement them.
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CGMgraph uses an object-oriented programming style, in
contrast to the generic programming style of Parallel BGL
and Pregel, at some performance cost.

Other than Pregel and Parallel BGL, there have been
few systems reporting experimental results for graphs at
the scale of billions of vertices. The largest have reported
results from custom implementations of s-t shortest path,
rather than from general frameworks. Yoo et al [46] report
on a BlueGene/L implementation of breadth-first search (s-¢
shortest path) on 32,768 PowerPC processors with a high-
performance torus network, achieving 1.5 seconds for a Pois-
son distributed random graph with 3.2 billion vertices and 32
billion edges. Bader and Madduri [2] report on a Cray MTA-
2 implementation of a similar problem on a 10 node, highly
multithreaded system, achieving .43 seconds for a scale-free
R-MAT random graph with 134 million vertices and 805
million edges. Lumsdaine et al [31] compare a Parallel BGL
result on a x86-64 Opteron cluster of 200 processors to the
BlueGene/L implementation, achieving .43 seconds for an
Erdés-Renyi random graph of 4 billion vertices and 20 bil-
lion edges. They attribute the better performance to ghost
cells, and observe that their implementation begins to get
worse performance above 32 processors.

Results for the single-source shortest paths problem on
an Erdés-Renyi random graph with 256 million vertices and
uniform out-degree 4, using the A-stepping algorithm, are
reported for the Cray MTA-2 (40 processors, 2.37 sec, [32]),
and for Parallel BGL on Opterons (112 processors, 35 sec.,
[31]). The latter time is similar to our 400-worker result for a
binary tree with 1 billion nodes and edges. We do not know
of any reported SSSP results on the scale of our 1 billion
vertex and 127.1 billion edge log-normal graph.

Another line of research has tackled use of external disk
memory to handle huge problems with single machines, e.g.,
[33, 36], but these implementations require hours for graphs
of a billion vertices.

8.  CONCLUSIONS AND FUTURE WORK

The contribution of this paper is a model suitable for
large-scale graph computing and a description of its pro-
duction quality, scalable, fault-tolerant implementation.

Based on the input from our users we think we have suc-
ceeded in making this model useful and usable. Dozens of
Pregel applications have been deployed, and many more are
being designed, implemented, and tuned. The users report
that once they switch to the “think like a vertex” mode
of programming, the API is intuitive, flexible, and easy to
use. This is not surprising, since we have worked with early
adopters who influenced the API from the outset. For ex-
ample, aggregators were added to remove limitations users
found in the early Pregel model. Other usability aspects of
Pregel motivated by user experience include a set of status
pages with detailed information about the progress of Pregel
programs, a unittesting framework, and a single-machine
mode which helps with rapid prototyping and debugging.

The performance, scalability, and fault-tolerance of Pregel
are already satisfactory for graphs with billions of vertices.
We are investigating techniques for scaling to even larger
graphs, such as relaxing the synchronicity of the model to
avoid the cost of faster workers having to wait frequently at
inter-superstep barriers.

Currently the entire computation state resides in RAM.
We already spill some data to local disk, and will continue in





this direction to enable computations on large graphs when
terabytes of main memory are not available.

Assigning vertices to machines to minimize inter-machine
communication is a challenge. Partitioning of the input
graph based on topology may suffice if the topology cor-
responds to the message traffic, but it may not. We would
like to devise dynamic re-partitioning mechanisms.

Pregel is designed for sparse graphs where communica-
tion occurs mainly over edges, and we do not expect that
focus to change. Although care has been taken to support
high fan-out and fan-in traffic, performance will suffer when
most vertices continuously send messages to most other ver-
tices. However, realistic dense graphs are rare, as are al-
gorithms with dense communication over a sparse graph.
Some such algorithms can be transformed into more Pregel-
friendly variants, for example by using combiners, aggrega-
tors, or topology mutations, and of course such computa-
tions are difficult for any highly distributed system.

A practical concern is that Pregel is becoming a piece of
production infrastructure for our user base. We are no longer
at liberty to change the API without considering compati-
bility. However, we believe that the programming interface
we have designed is sufficiently abstract and flexible to be
resilient to the further evolution of the underlying system.
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ABSTRACT

From social networks to language modeling, the growing scale and
importance of graph data has driven the development of numerous
new graph-parallel systems (e.g., Pregel, GraphLab). By restrict-
ing the computation that can be expressed and introducing new
techniques to partition and distribute the graph, these systems can
efficiently execute iterative graph algorithms orders of magnitude
faster than more general data-parallel systems. However, the same
restrictions that enable the performance gains also make it difficult
to express many of the important stages in a typical graph-analytics
pipeline: constructing the graph, modifying its structure, or express-
ing computation that spans multiple graphs. As a consequence,
existing graph analytics pipelines compose graph-parallel and data-
parallel systems using external storage systems, leading to extensive
data movement and complicated programming model.

To address these challenges we introduce GraphX, a distributed
graph computation framework that unifies graph-parallel and data-
parallel computation. GraphX provides a small, core set of graph-
parallel operators expressive enough to implement the Pregel and
PowerGraph abstractions, yet simple enough to be cast in relational
algebra. GraphX uses a collection of query optimization techniques
such as automatic join rewrites to efficiently implement these graph-
parallel operators. We evaluate GraphX on real-world graphs and
workloads and demonstrate that GraphX achieves comparable per-
formance as specialized graph computation systems, while outper-
forming them in end-to-end graph pipelines. Moreover, GraphX
achieves a balance between expressiveness, performance, and ease
of use.

1. INTRODUCTION

From social networks to language modeling, graphs capture the
structure in data and play a central role in the recent advances in ma-
chine learning and data mining. The growing scale and importance
of graph data has driven the development of numerous specialized
systems for graph analytics (e.g., Pregel [[14]], PowerGraph [[10], and
others [7, 5} |21]]). Each system presents a new restricted program-
ming abstraction to compactly express iterative graph algorithms
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Figure 1: Graph Analytics Pipeline: Graph analytics is the pro-
cess of going from raw data, to a graph, to the relevant subgraph,
applying graph algorithms, analyzing the result, and then potentially
repeating the process with a different subgraph. Currently, these
pipelines compose data-parallel and graph-parallel systems through
a distributed file interface. The goal of the GraphX system is to
unify the data-parallel and graph-parallel views of computation into
a single system and to accelerate the entire pipeline.

(e.g., PageRank and connected components). By leveraging the
restricted abstraction in conjunction with the static graph structure,
these systems are able to optimize the data layout and distribute the
execution of complex iterative algorithms on graphs with tens of
billions of vertices and edges.

By restricting the types of computation they express to iter-
ative vertex-centric algorithms on a single static graph, these
graph-parallel systems are able to achieve orders-of-magnitude
performance gains over contemporary data-parallel systems such
as Hadoop MapReduce. However, these same restrictions make
it difficult to express many of the operations found in a typical
graph analytics pipeline (e.g., Figure[I). These operations include
constructing the graph from external sources, modifying the graph
structure (e.g., collapsing groups of vertices), and expressing
computation that spans multiple graphs (e.g., merging two graphs).
For example, while the PowerGraph system can compactly express
and execute algorithms like PageRank several orders of magnitude
faster than contemporary data-parallel systems, it is not well suited
for extracting graphs from a collection of databases, collapsing
vertices within the same domain (i.e.,, constructing a domain
graph), or comparing the PageRank across several web graphs.
Fundamentally, operations that move information outside of the
graph topology or require a more global view are not well suited for
graph-parallel systems.

In contrast, data-parallel systems like MapReduce [§] and
Spark [23]] are well suited for these tasks as they place minimal
constraints on data movement and operate at a more global view. By
exploiting data-parallelism, these systems are highly scalable; more
recent systems like Spark even enable interactive data processing.





However, directly implementing iterative graph algorithms in
these data-parallel abstractions can be challenging and typically
leads to complex joins and excessive data movement due to the
failure to exploit the graph structure or take advantage of any of the
recent developments [5} 6| |10] in distributed graph partitioning and
representation.

As a consequence, existing graph analytics pipelines (e.g., Graph-
Builder [11]]) resort to composing graph-parallel graph analytics
and data-parallel systems for graph loading through external storage
systems such as HDFS. The resulting APIs are tailored to specific
tasks and do not enable users to easily and efficiently compose
graph-parallel and data-parallel operations on their data.

To address these challenges we introduce GraphX, a distributed
graph computation framework which unifies graph-parallel and data-
parallel computation in a single system. GraphX presents a unified
abstraction which allows the same data to be viewed both as a graph
and as tables without data movement or duplication. In addition to
the standard data-parallel operators (e.g., map, reduce, filter, join,
etc.), GraphX introduces a small set of graph-parallel operators in-
cluding subgraph and mrTriplets, which transform graphs through a
highly parallel edge-centric API. We demonstrate that these opera-
tors are expressive enough to implement the Pregel and PowerGraph
abstractions but also simple enough to be cast in relational algebra.

The GraphX system is inspired by the realization that (i) graphs
can be encoded efficiently as tables of edges and vertices with some
simple auxiliary indexing data structures, and (ii) graph computa-
tions can be cast as a sequence of relational operators including
joins and aggregations on these tables. The contributions of this
paper are:

1. adata model that unifies graphs and collections as composable
first-class objects and enables both data-parallel and graph-
parallel operations.

2. identifying a “narrow-waist” for graph computation, consist-
ing of a small, core set of graph-operators cast in classic
relational algebra; we believe these operators can express
all graph computations in previous graph parallel systems,
including Pregel and GraphLab.

3. an efficient distributed graph representation embedded in hor-
izontally partitioned collections and indices, and a collection
of execution strategies that achieve efficient graph computa-
tions by exploiting properties of graph computations.

2. GRAPH PROCESSING SYSTEMS

In contrast to general data processing systems (e.g., MapReduce,
Dryad, and Spark) which compose data-parallel operators to trans-
form collections and are capable of expressing a wide range of
computation, graph processing systems apply vertex-centric logic
to transform data on a graph and exploit the graph structure to
achieve more efficient distributed execution. In this section we in-
troduce the key ideas behind graph-parallel systems and how they
enable substantial performance gains. We then describe how the
same restrictions that enable substantial performance gains limit
the applicability of these systems to many important tasks in graph
analytics.

2.1 Property Graphs

Graph data comes in many forms. The graph can be explicit
(e.g., social networks, web graphs, and financial transaction net-
works) or imposed through modeling assumptions (e.g., collabo-
rative filtering, language modeling, deep learning, and computer
vision). We denote the structure of a graph G = (V, E)) by a set

of verticeaﬂV ={1,...,n} and a set of m directed edges E. The
directed edge (i, 7) € E connects the source vertex ¢ € V with the
target vertex j € V. The resulting graphs can have tens of billions
of vertices and edges and are often highly sparse with complex,
irregular, and often power-law structure.

In most cases attributes (properties) are associated with each
vertex and edge. The properties can be both observed (e.g., user
profiles, time stamps, and weights) as well as model parameters and
algorithm state (e.g., PageRank, latent factors, and messages). We
denote the vertex properties as Py (i) for vertex i € V, the edge
properties as Pz (3, j) for edge (¢, j) € E, and the collection of all
properties as P = (Py, Pg). Note that properties can consist of
arbitrary data (e.g., images, text, and objects).

The combination of graph structure and properties forms a prop-
erty graph [19] G(P) = (V, E, P) which is the basic representa-
tion of graph data and a core part of the GraphX data model. The
property graph is a flexible model of graph data in that it imposes no
constraints on the properties and allows the composition of different
property collections with the same graph structure. For example,
in parsing raw graph data we might begin with G(P) and then
transform the properties f(P) — P’, yielding the new property
graph G(P") which retains the original structure. This separation of
structure and properties is an important part of the GraphX system.

2.2 Graph-Parallel Computation

The recursive nature of graph data (e.g., my interests are a func-
tion of my profile and the interests of my friends) necessitates the
ability to calculate recursive properties on a graph. Algorithms
ranging from PageRank and connected components to label propa-
gation and collaborative filtering recursively define transformations
on vertex and edge properties in terms of functions on the properties
of adjacent vertices and edges. For example, the PageRank of each
vertex may be computed by iteratively recomputing the PageRank
of each vertex as a function of the PageRank of its neighboring
vertices. The corresponding algorithms iteratively propagate in-
formation along the graph structure by transforming intermediate
vertex and edge properties and solving for the fixed-point assign-
ments. This common pattern of iterative local updates forms the
basis of graph-parallel computation.

Graph-parallel computation is the analogue of data-parallel
computation applied to graph data (i.e., property graphs). Just
as data-parallel computation adopts a record-centric view of
collections, graph-parallel computation adopts a vertex-centric view
of graphs. In contrast to data-parallel computation which derives
parallelism by processing independent data on separate resources,
graph-parallel computation derives parallelism by partitioning
the graph (dependent) data across processing resources and then
resolving dependencies (along edges) through iterative computation
and communication. More precisely, graph-parallel computation
recursively defines the transformations of properties in terms of
functions on neighboring properties and achieves parallelism by
executing those transformations in parallel.

2.3 Graph-Parallel Systems

The increasing scale and importance of graph-structured data has
led to the emergence of a range of graph-parallel systems [13] |14,
12,1015k (7, [21]]. Each system is built around a variation of the graph-
parallel abstraction [[10]], which consists of an property graph G =
(V, E, P) and a vertex-program (Q that is instantiated concurrently
as Q(v) for each vertex v € V and can interact with adjacent
vertex-programs through messages (e.g., Pregel [14]) or shared state

'In practice we do not constrain vertex identifiers to the consecutive
integers {1,...,n}.





def PageRank (v: Id, msgs: List[Double]) {

// Compute the message sum

var msgSum = 0

for (m <- msgs) { msgSum = msgSum + m }

// Update the PageRank (PR)

A(v).PR = 0.15 + 0.85 » msgSum

// Broadcast messages with new PR

for (j <- OutNbrs(v)) {
msg = A(v).PR / A(v).NumLinks
send_msg (to=j, msg)

}

// Check for termination

if (converged(A(v).PR)) voteToHalt (v)

Listing 1: PageRank in Pregel

(e.g., GraphLab [12] and PowerGraph [10]). The instantiation of the
vertex-program @Q(v) can read and modify the vertex property P(v)
as well as the properties on adjacent edges P (v, j) for {v,j} € E
and in some cases [|12,|10] even the properties on adjacent vertices
P(j).

The extent to which vertex-programs run concurrently differs
across systems. Most systems (e.g., [[14} |5, |[10]) adopt the bulk
synchronous execution model, in which all vertex-programs run
concurrently in a sequence of super-steps operating on the adjacent
vertex-program state or on messages from the previous super-step.
Others (e.g., [[13} |12} |21} [10]) adopt an asynchronous execution
model in which vertex-programs run as resources become available
and impose constraints on whether neighboring vertex-programs can
run concurrently. While [[13]] demonstrated significant gains from
prioritized asynchronous scheduling, these gains are often offset
by the additional complexity of highly asynchronous systems. The
GraphX system adopts the bulk-synchronous model of computation
because it ensures deterministic execution, simplifies debugging,
and enables fault tolerance.

We will use the PageRank algorithm as a concrete running exam-
ple to illustrate graph-parallel computation. In Listing[T] we express
the PageRank algorithm as a simple Pregel vertex-program. The
vertex-program for the vertex v begins by receiving the messages
(weighted PageRank of neighboring vertices) from the previous
iteration and computing the sum. The PageRank is then recom-
puted using the message sum (with reset probability 0.15). Then
the vertex-program broadcasts its new PageRank value (weighted
by the number of links on that page) to its neighbors. Finally, the
vertex-program assesses whether it has converged (locally) and then
votes to halt. If all vertex-programs vote to halt on the same iteration
the program terminates. Notice that vertex-programs communicate
with neighboring vertex-programs by passing messages along edges
and that the vertex program iterates over its neighboring vertices.

More recently, Gonzalez et al. [10] observed that many vertex-
programs factor along edges both when receiving messages and
when computing messages to neighboring vertices. As a conse-
quence they proposed the gather-apply-scatter (GAS) decomposi-
tion that breaks the vertex-program into purely edge-parallel and
vertex-parallel stages, eliminating the ability to directly iterate over
the neighborhood of a vertex. In Listing[2] we decompose the vertex-
program in Listing[T]into Gather, Apply, and Scatter functions. The
commutative associative gather function is responsible for accumu-
lating the inbound messages, the apply function operates only on the
vertex, and the scatter function computes the message for each edge
and can be safely executed in parallel. The GAS decomposition
enables vertices to be split across machines, increasing parallelism
and addressing the challenge of the high-degree vertices common

def Gather (a: Double, b: Double) = a + b
def Apply (v, msgSum) {
A(v).PR = 0.15 + 0.85 » msgSum
if (converged(A(v).PR)) voteToHalt (v)
}
def Scatter (v, Jj) = A(v).PR / A(v).NumLinks

Listing 2: PageRank in PowerGraph

to many real-world graphs. The GraphX system adopts this more
edge-centric perspective, enabling high-degree vertices to be split
across machines.

The graph-parallel abstraction is sufficiently expressive to sup-
port a wide range of algorithms and at the same time sufficiently
restrictive to enable the corresponding systems to efficiently exe-
cute these algorithms in parallel on large clusters. The static graph
structure constrains data movement (communication) to the static
topology of the graph, enabling the system to optimize the dis-
tributed execution. By leveraging advances in graph partitioning
and representation, these systems are able to reduce communication
and storage overhead. For example, [[10] uses a range of vertex-
based partitioning heuristics to efficiently split large power-law
graphs across the cluster and vertex-replication and pre-aggregation
to reduce communication. Given the result of the previous iteration,
vertex-programs are independent and can be executed in any order,
providing opportunities for better cache efficiency [20]] and on-disk
computation. As graph algorithms proceed, vertex-programs con-
verge at different rates, leading to active sets (the collection of active
vertex-programs) that shrink quickly. For example, when comput-
ing PageRank, vertices with no in-links will converge in the first
iteration. Recent systems [[14} |9} 12} 10| track active vertices and
eliminate data movement and additional computation for vertices
that have converged. Through GraphX we demonstrate that many
of these same optimizations can be integrated into a data-parallel
platform to support scalable graph computation.

2.4 Limitations of Graph-Parallel Systems

The same restrictions that enable graph-parallel systems to out-
perform contemporary data-parallel systems when applied to graph
computation also limit their applicability to many of the operations
found in a typical graph analytics pipeline (e.g., Figure[T). For exam-
ple, while graph-parallel systems can efficiently compute PageRank
or label diffusion, they are not well suited to building graphs from
multiple data sources, coarsening the graph (e.g., building a do-
main graph), or comparing properties across multiple graphs. More
precisely, the narrow view of computation provided by the graph-
parallel abstraction is unable to express operations that build and
transform the graph structure or span multiple independent graphs.
Instead, these operations require data movement beyond the topol-
ogy of the graph and a view of computation at the level of graphs
rather than individual vertices and edges. For example, we might
want to take an existing graph (e.g., customer relationships) and
merge external data (e.g., sales information) prior to applying a
graph-parallel diffusion algorithm (e.g., for ad targeting). Further-
more, we might want to restrict our analysis to several subgraphs
based on (e.g., user demographics or time) and compare the results
requiring both structural modifications as well as the ability to define
computation spanning multiple graphs (e.g., changes in predicted
interests). In this example, the graph-parallel system is well suited
for applying the computationally expensive diffusion algorithm but
not the remaining operations which are fundamental to real-world
analytics tasks.

To address the lack of support for these essential operations, exist-





ing graph-parallel systems either rely on additional graph ETL sup-
port tools (e.g., GraphBuilder [[11]]) or have special internal functions
for specific ETL tasks (e.g., parsing a text file into a property graph).
These solutions are limited in the range of operations they support
and use external storage systems for sharing data across framework
boundaries, incurring extensive data copying and movement. Fi-
nally, these systems do not address the challenge of computation
that spans multiple graphs.

3. THE GraphX LOGICAL ABSTRACTION

The GraphX abstraction unifies the data-parallel and graph-
parallel computation through a data model that presents graphs and
collections as first class objects and a set of primitive operators that
enables their composition. By unifying graphs and collections as
first class composable objects, the GraphX data model is capable of
spanning the entire graph analytics pipeline. By presenting a set
of data-parallel and graph-parallel operators that can be composed
in any order, GraphX allows users to leverage the programming
model best suited for the current task without having to sacrifice
performance or flexibility of future operations. We now describe the
its data model and operators and demonstrate their composability
and expressiveness through example applications.

3.1 The GraphX Data Model

The GraphX data model consists of immutable collections and
property graphs. The immutability constraint simplifies the ab-
straction and enables data reuse and fault tolerance. Collections in
GraphX consist of unordered tuples (i.e., key-value pairs) and repre-
sent unstructured data. The key can be null and does not need to be
unique, and the value can be an arbitrary object. The unordered col-
lection view of data is essential for processing raw input, evaluating
the results of graph computation, and certain graph transformations.
For example, when loading data from a file we might begin with
a collection of strings (with null keys) and then apply relational
operators to obtain a collection of edge properties (keyed by edge),
construct a graph and run PageRank, and finally view the resulting
PageRank values (keyed by vertex identifier) as a collection for
additional analytics.

The property graph G(P) = (V, E, P) combines structural in-
formation, V' and E, with properties P = (Pyv, Pg) describing
the vertices and edges. The vertex identifiers ¢ € V can be arbi-
trary, but the GraphX system currently uses 64-bit integers (without
consecutive ordering constraints). These identifiers may be derived
externally (e.g., user ids) or by applying a hash function to a vertex
property (e.g., page URL). Logically the property graph combines
the vertex and edge property collections consisting of key-value
pairs (i, Py (7)) and ((i,7), Pr(4,j)) respectively. We introduce
the property graph as a first class object in the data model to en-
able graph specific optimizations which span the vertex and edge
property collections and to present a more natural graph-oriented
APL

3.2 The Operators

Computation in the GraphX abstraction is achieved by composing
graph-parallel and data-parallel operators that take graphs and collec-
tions as input and produce new graphs and collections. In selecting
the core set of operators we try to balance the desire for parsimony
with the ability to exploit specific lower-level optimizations. As a
consequence these operators form a narrow interface to the underly-
ing system, enabling the GraphX abstraction to be expressive and
yet feasible to implement and execute efficiently on a wide range
of data-parallel systems. To simplify graph analytics, GraphX ex-
poses a rich API of more complex graph operators (e.g., coarsening,

class Col[K,V] {
def filter(pred: (K,V) => Boolean): Col[K,V]
def map(f: (K,V) => (K2,V2)): Col[K2,V2]
def reduceByKey (reduce: (V, V) => V): Col[K,V]
def leftJoin(a: Col[K, U]): Col[K, (T, U)]

}

Listing 3: Collection operators. The map function takes a collec-
tion of key-value paris of type (K,V) and a UDF which maps to a
new key-value pair of type (K2,V2). Collections are special case
of relational tables, and each collection operator has its relational
counterpart (map vs project, reduceByKey vs aggregates, etc).

class Graph[V,E] {
def Graph(v: Col[(Id,V)], e: Col[(Id,Id,E)],
mergeV: (V, V) =>V,
defaultV: V): Graphl[V,E]

def vertices: Col[Id, V]
def edges: Col[ (Id, Id), E]
def triplets: Coll[ (Id, Id), (V, E, V)]

def mapV(m: (Id, V) => V2):
def mapE (m: Triplet[V,E] => E2):

Graph[V2,E]
Graph[V,E2]
def leftJoin(t: Col[Id, U]): Graph[ (V,U), E]
def subgraph (vPred: (Id, V) => Boolean,
ePred: Triplet[V,E] => Boolean):
Graph[V, E]

def mrTriplets(m: Trplt[V,E] => (M, M),
r: (M, M) => VM,
skipStale: Direction = None):
Col[Id, M]
}

Listing 4: Graph operators: The mapE operator takes a Graph
over vertex and edge properties of type V and E and a map UDF
from triplets to a new edge property and returns the graph with the
new edge properties.

neighborhood aggregation) and even other abstractions (e.g., Pregel)
by composing the basic set of primitive operators.

The GraphX system exposes the standard data-parallel operators
(Listing 3) found in contemporary data-flow systems. The unary
operators filter, map, and reduceByKey each takes a single collection
and produces a new collection with the records removed, trans-
formed, or aggregated. The binary operator leftJoin performs a
standard left outer equi-join by key. Both the map and filter opera-
tors are entirely data-parallel without requiring any data movement
or communication. On the other hand, the reduceByKey and leftJoin
operators may require substantial data movement depending on how
the data is partitioned.

In Listing[d we describe the set of graph-parallel operators that
produce new graphs and collections. These operators join vertex
and edge collections, apply transformations on the properties and
structure, and move data along edges in the graph. In all cases, these
operators express local transformations on the graph (i.e., UDFs
have access to at most a single triplet at a time).

The Graph operator constructs a property graph from vertex and
edge collections. In many applications the vertex collection may
contain duplicate vertex properties or may not contain properties for
vertices in the edge collection. For example when working with web
data, web-links may point to missing pages or pages may have been
crawled multiple times. By applying the merge UDF to duplicate





vertices and substituting the default property for missing vertices,
the Graph operator ensures that the resulting graph is consistent:
without missing or duplicate vertices.

While the Graph operator produces a graph-oriented view of col-
lections, the vertices, edges, and triplets produce collection-oriented
views of a graph. The vertices and edges operators deconstruct
the property graph into the corresponding vertex and edge collec-
tions. The collection views are used when computing aggregates,
analyzing the results of graph computation, or when saving graphs
to external data stores. The triplets operator is logically a three-
way join to form a new collection consisting of key-value pairs
of the form ((¢, j), (P (¢), Pe(4,7), Pv(j))). This essential graph
operator can be concisely cast in terms of relational operators:

SELECT s.Id, t.Id, s.P, e.P, t.P
FROM edges AS e

JOIN vertices AS s, vertices AS t

ON e.srcId = s.Id AND e.dstId = d.Id

By joining properties along edges, the triplets operator enables a
wide range of graph computation. For example, the composition of
the triplets and data-parallel filter operators can be used to extract
edges that span two domains or connect users with different interests.
Furthermore, the triplets operator is used to construct the other
graph-parallel operators (e.g., subgraph and mrTriplets).

The mapV and mapE operators transform the vertex and edge
properties respectively and return the transformed graph. The map
UDF provided to mapV and mapE can only return a new attribute
value and cannot modify the structure (i.e., change the vertex identi-
fiers for the vertex or edge). As a consequence, the resulting graph is
guaranteed to be consistent and can reuse the underlying structural
representation.

In many cases it is necessary to merge external vertex properties
(e.g., merging user profile data with a social network) stored in
a vertex property collection with an existing graph. This can be
accomplished in GraphX using the leftJoin graph operator. leftJoin
takes a collection of vertex properties and returns a new graph that
incorporates the properties into all matching vertices in the graph.
The leftJoin preserves the original graph structure and is logically
equivalent to a left outer equi-join of the vertices with the input
vertex property collection.

Comparing the results of graph computation (e.g., PageRank) on
different slices (i.e., subgraphs) of a graph based on vertex and edge
properties (e.g., time) often reveals trends in the data. To support this
type of analysis we need to be able to efficiently construct subgraphs
and compare properties and structural changes across subgraphs.
The subgraph operator restricts the graph to the vertices and edges
that satisfy the respective predicates. To ensure that the graph is
consistent, all retained edges must satisfy both the source and target
vertex predicate as well as the edge predicate.

The mrTriplets (i.e., Map Reduce Triplets) operator is logically
the composition of the triplets graph-parallel operator with the map
and reduceByKey data-parallel operators. More precisely, the mr-
Triplets operator applies the map UDF to each triplet in the output of
the triplets operator. The map UDF optionally constructs “messages”
(of arbitrary type) to send to the source and target vertices (or both).
All messages destined for the same vertex are aggregated using the
commutative associative reduce UDF and the resulting aggregates
are returned as a collection keyed by the destination vertex. This
can be expressed in the following SQL query:

SELECT t.dstId, r(m(t)) AS sum
FROM triplets AS t GROUPBY t.dstId
WHERE sum IS NOT null
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val graph: Graph[User, Double]
def mapF (t: Triplet [User, Double])
Iterator[Vid, Int] = {

if (t.src.age > t.dst.age) (t.dstId, 1)

else (t.src.age < t.dst.age) (t.srcId, 1)

else Iterator.empty
}
def reduceUDF(a: Int, b: Int): Int = a + b
val seniors = graph.mrTriplets (mapUDF, reduceUDF)

Figure 2: Example use of mrTriplets: The mrTriplets operator
is used to compute the number of more senior neighbors of each
vertex. Note that vertex E does not have a more senior neighbor
and therefore does not appear in the collection.

The constraint that the map UDF only emits messages to the source
or target vertex ensures that data movement remains along edges
in the graph, preserving the graph dependency semantics. By ex-
pressing message computation as an edge-parallel map operation
followed by a commutative associative aggregation, we eliminate
the effect of high degree vertices on communication and parallel
scalability. The mrTriplets operator is the primary building block
of graph-parallel algorithms. For example, in Figure 2] we use the
mrTriplets operator to compute the number of more senior neighbors
for each user in a social network. In the next section we show how
to compose these basic operators to express more complex tasks
like graph coarsening and even implement existing graph-parallel
abstractions.

When solving recursive properties on a graph, vertices typically
only communicate when their values change. As a consequence,
executing the mrTriplets function on all edges can be wasteful es-
pecially only a few vertices have changed. While it is possible
to implement such logic within message calculation, the system
must still invoke the message calculation on all edges. Therefore,
mrTriplets has an optional argument skipStale which by default is
disabled. However, if the skipStale flag is set to Out, for example,
then edges originating from vertices that haven’t changed since mr-
Triplets was last invoked are automatically skipped. In Section[d]we
will see how this flag in conjunction with internal change tracking
can efficiently skip a large fraction of the edges.

3.3 Composing Operators

The GraphX operators can express efficient versions of some
of the most widely adopted graph-parallel abstractions. We have
currently implemented enhanced versions of Pregel and the Power-
Graph abstractions. In Listing[5] we construct an enhanced version
of Pregel built around the more efficient GAS decomposition. The
Pregel abstraction iteratively computes the messages on the active
subgraph using the mrTriplets operator and then applies the mapV
operator to execute the vertex program UDF. In this example we
use change tracking option in mrTriplets to restrict execution to out-
edges of vertices that changed in the previous round. In Section[4]
we show that allowing mrTriplets to track changes enables several





def pregel(g: Graph|[V,E],
vprog: (V, M) =>V,
sendMsg: Triplet[V, E] => VM,
gather: (M, M) => M):
Graph[V, E] = {
def send(t: Triplet[V, EJ]) = {
Iterator(t.dstId, sendMsg(t))
}
var live = g.vertices.count
// Loop until convergence
while (live > 0) {
// Compute the messages
val msgs = g.mrTriplets(send, gather, Out)
// Recelive the messages and run vertex program
g = g.leftJoin (msgs) .mapV (vprog)
// Count the vertices that don’t want to halt
live = g.vertices.filter (v=>!v.halt) .count
}
return g

}

def coarsen(g: Graph[V, EIJ,
pred: Triplet[V, E] => Boolean,
reduce: (V,V) => V): Graphl[V,E]
// Restrict graph to contractable edges
val subG = g.subgraph (v => True, pred)
// Compute connected component id for all V

Il
—

val cc: Col[Id, Id] = ConnectedComp (subG) .vertices

// Merge all vertices in same component

val superVerts = g.vertices.leftJoin(cc) .map {
(vId, (vProp, cc)) => (cc, vProp))

} .reduceByKey (reduce)
// Link remaining edges between components
val invG = g.subgraph (v=>True, !pred)
val remainingEdges =

invG.leftJoin(cc) .triplets.map {

e => ((e.src.cc, e.dst.cc), e.attr)

}
// Return the final graph
Graph (superVerts, remainingEdges)

}

Listing 5: Enhanced Pregel: We implemented a version of Pregel
built around the GAS decomposition to enable degree independence
and at the same allow message computation to read the remote
vertex attributes.

def ConnectedComp (g: Graph[V,E]): Graph[Id, E] = {
// Initialize the vertex properties
g = g.mapV (v => v.id)
def vProg(v: Id, m: Id): Id = {
if (v == m) voteToHalt (v)
return min (v, m)
}
def sendMsg(e: Triplet): Id =
if(e.src.cc > e.dst.cc) (e.dst.cc, None)
else if(e.src.cc < e.dst.cc) (None, e.src.cc)
else (None, None)
def gatherMsg(a: Id, b: Id): Id = min(a, b)
return Pregel (g, vProg, sendMsg, gatherMsqg)
}

Listing 6: Connected Components: We implement the connected
components algorithm using the enhance version of Pregel.

important system optimizations. Unlike the original formulation of
Pregel, our version exposes both the source and target vertex proper-
ties during message calculation. In Section[f.5.2] we demonstrate
how through UDF bytecode inspection in the mrTriplets operator we
can eliminate extra data movement if only one of the source or target
attribute is accessed when computing the message (e.g., PageRank).

In Listing[6]we used our version of Pregel to implement connected
components. The connected components algorithm computes for
each vertex its lowest reachable vertex id. We first initialize the
vertex properties using the vMap operator and then define the three
functions required to use the GAS version of Pregel. The sendMsg
function leverages the triplet view of the edge to only send a message
to neighboring vertices when their component id is larger.

Often groups of connected vertices are better modeled as a single
vertex. In these cases it is desirable to coarsen the graph by aggregat-
ing connected vertices that share a common characteristic (e.g., web
domain) to derive a new graph (e.g., the domain graph). We use the
GraphX abstraction to implement a coarsening in Listing [7]] The
coarsening operation takes an edge predicate and a vertex aggre-
gation function and collapses all edges that satisfy the predicate,
merging their respective vertices. The edge predicate is used to
first construct the subgraph of edges that are to be collapsed. Then
the graph-parallel connected components algorithm is run on the
subgraph. Each connected component corresponds to a super-vertex

Listing 7: Coarsen: The coarsening operator merges vertices con-
nected by edges that satisfy an edge predicate UDF.

in the new coarsened graph with the component id being the lowest
vertex id in the component. The super-vertices are constructed by
aggregating all the vertices with the same component id. Finally,
we update the edges to link together super-vertices and generate the
new graph. The coarsen operator demonstrates the power of a uni-
fied abstraction by combining both data-parallel and graph-parallel
operators in a single graph-analytics task.

4. THE GraphX SYSTEM

The scalability and performance of GraphX is derived from the
design decisions and optimizations made in the physical execution
layer. The design of the physical representation and execution model
is heavily influenced by three characteristics of graph computation.
First, in Section 3] we demonstrated that graph computation can
be modeled as a series of joins and aggregations. Maintaining the
proper indexes can substantially speed up local join and aggregation
performance. Second, as outlined in [[10f], we can minimize com-
munication in real-world graphs by using vertex-cut partitioning, in
which edges are partitioned evenly across a cluster and vertices are
replicated to machines with adjacent edges. Finally, graph computa-
tions are typically iterative and therefore we can afford to construct
indexes. Furthermore, as computation proceeds, the active set of
vertices — those changing between iterations — often decreases.

In the remainder of this section, we introduce Apache Spark, the
open source data-parallel engine on which GraphX was built. We
then describe the physical representation of data and the execution
strategies adopted by GraphX. Along the way, we quantify the
effectiveness of each optimization technique. Readers are referred
to Section ] for details on datasets and experimental setup.

4.1 Apache Spark

GraphX is implemented on top of Spark [23]], a widely used data-
parallel engine. Similar to Hadoop MapReduce, a Spark cluster
consists of a single driver node and multiple worker nodes. The
driver node is responsible for task scheduling and dispatching, while
the worker nodes are responsible for the actual computation and
physical data storage. However, Spark also has several features
that differentiate it from traditional MapReduce engines and are
important to the design of GraphX.

In-Memory Caching: Spark provides the Resilient Distributed
Dataset (RDD) in-memory storage abstraction. RDDs are collec-





tions of objects that are partitioned across a cluster. GraphX uses
RDDs as the foundation for distributed collections and graphs.
Computation DAGs: In contrast to the two-stage MapReduce
topology, Spark supports general computation DAGs by composing
multiple data-parallel operators on RDDs, making it more suitable
for expressing complex data flows. GraphX uses and extends Spark
operators to achieve the unified programming abstraction.
Lineage-Based Fault Tolerance: RDDs and the data-parallel
computations on RDDs are fault-tolerant. Spark can automatically
reconstruct any data or execute tasks lost during failures.
Programmable Partitioning: RDDs can be co-partitioned and
co-located. When joining two RDDs that are co-partitioned and
co-located, GraphX can exploit this property to avoid any network
communication.
Interactive Shell: Spark allows users to interactively execute
Spark commands in a Scala or Python shell. We have extended the
Spark shell to support interactive graph analytics.

4.2 Distributed Graph Representation

GraphX represents graphs internally using two Spark distributed
collections (RDDs) — an edge collection and a vertex collection. By
default, the edges are partitioned according to their configuration in
the input collection (e.g., original placement on HDFS). However,
they can be repartitioned by their source and target vertex ids using a
user-defined partition function. GraphX provides a range of built-in
partitioning functions, including a 2D hash partitioner that provides
an upper bound on communication for the mrTriplets operator that
is O (n\/ﬁ) for p partitions and n vertices. For efficient lookup of
edges by their source and target vertices, the edges within a partition
are clustered by source vertex id, and there is an unclustered index
on target vertex id. The clustered index on source vertex id is a
compressed sparse row (CSR) representation that maps a vertex
id to the block of its out-edges. Section [4.6] discusses how these
indexes are used to accelerate iterative computation.

The vertices are hash partitioned by their vertex ids, and on
each partition, they are stored in a hash index (i.e., clustered by
the hash index). Each vertex partition also contains a bitmask and
routing table. The bitmask enables the set intersection and filtering
required by the subgraph and join operators. Vertices hidden by
the bitmask do not participate in the graph operations. The routing
table contains the join sites for each vertex in the partition and is
used when broadcasting vertices to construct triplets. The routing
table is logically a map from a vertex id to the set of edge partitions
that contain adjacent edges and is derived from the edge table by
collecting the source and target vertex ids for each edge partitions
and aggregating the result by vertex id. The routing table is stored
as a compressed bitmap (i.e., for each edge partition, which vertices
are present).

4.3 Structural Index Reuse

Because the collections and graphs are immutable they can share
the structural indexes associated within each vertex and edge par-
tition to both reduce memory overhead and accelerate local graph
operations. For example, within a vertex partition, we can use the
hash index to perform fast aggregations and the resulting aggregates
would share the same index as the vertices. This shared index en-
ables very efficient joining of the original vertices and the aggregates
by converting the join into coordinated sequential scans (similar to
a merge join). In our benchmarks, index reuse brings down the
runtime of PageRank on the Twitter graph from 27 seconds per iter-
ation to 16 seconds per iteration. Index reuse has the added benefit
of reducing memory allocation, because the indexes are reused in
memory from one collection and graph to the next, and only the
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Figure 3: Distributed representation of a graph: The graph on
the left is represented using distributed collections. It is partitioned
into three edge partitions. The vertices are partitioned by id. Within
each vertex partition, the routing table stores for each edge partition
the set of vertices present. Vertex 6 and adjacent edges (shown
with dotted lines) have been restricted from the graph, so they are
removed from the edges and the routing table. Vertex 6 remains in
the vertex partitions, but it is hidden by the bitmask.

properties are changed.

Most of the GraphX operators preserve the structural indexes to
maximize index reuse. Operators that do not modify the graph struc-
ture (e.g., mapV, mapFE, leftJoin, and mrTriplets) directly preserve
the indexes. To reuse indexes for operations that restrict the graph
structure (e.g., subgraph and innerJoin), GraphX relies on the bit-
mask to construct the restricted graph view. Some of the collections
operations (e.g., g.vertices.map) enable more general transforma-
tions (e.g., renumbering vertices) that destroy the index but have
more restrictive analogues that preserve the index (e.g., g.mapV).
Finally, in some cases extensive index reuse could lead to decreased
efficiency, such as for graphs that are highly filtered. GraphX there-
fore provides a reindex operator for graphs which rebuilds the index
over the visible vertices.

4.4 Graph Operator Execution Strategies

The GraphX abstraction consists of both data-parallel and graph-
parallel operators. For the data-parallel operators we adopt the
standard well-established execution strategies, using indexes when
available. Therefore, in this section we focus on execution strategies
for the graph-parallel operators outlined in Section[3]

The graph-parallel operators defined in Listing[f]are implemented
by transforming the vertex and edge RDDs using the Spark API.
The execution strategies for each operator are as follows:

vertices, edges: Directly extract the vertex and edge RDDs.

mapV, mapE: Transform the internal vertex and edge collections,
preserving the indexes.

leftJoin: Co-partition the input with the vertex attributes, join the
vertex attributes with the co-partitioned input using the internal in-
dexes, and produce a new set of vertex attributes. As a consequence
only the input is shuffled across the network.

triplets: Logically requires a multiway distributed join between the
vertex and edge RDDs. However using the routing map, we move
the execution site of the multiway join to the edges, allowing the
system to shuffle only the vertex data and avoid moving the edges,
which are often orders of magnitude larger than the vertices. The
triplets are assembled at the edges by placing the vertices in a local
hash map and then scanning the edge table.

subgraph: (1) Generate the graph’s triplets, (2) filter the triplets
using the conjunction of the edge triplet predicate and the vertex
predicate on both source and target vertices to produce a restricted
edge set, and (3) filter the vertices using the vertex predicate. To





avoid allocation and provide fast joins between the subgraph and
the original graph, the vertex filter is performed using the bitmask
in the internal vertex collection, as described in Section 3]

innerJoin: (1) Perform an inner join between the input and the
internal vertex collection to produce the new vertex properties, and
(2) ensure consistency by joining the ids in the input collection with
the internal edge collection and dropping invalidated edges.

The distributed join in step 2 is only performed separately when
the user requests the edges of the result. It is redundant for opera-
tions on the triplet view of the graph, such as triplets and mrTriplets,
because the joins in these operations implicitly filter out edges with
no corresponding vertex attributes.

Vertices eliminated by the inner join in step 1 can be removed
using the bitmask in a similar fashion as for subgraph, enabling fast
joins between the resulting vertex set and the original graph. We
exploit this in our Enhanced Pregel implementation, as described in

Section 4511

mrTriplets:  Apply the map UDF to each triplet and aggregate
the resulting messages by target vertex id using the reduce UDF.
Implementing the skipStale argument requires the Incremental View
Maintenance optimization in section[d.5.1] so its implementation is
described there.

4.5 Distributed Join Optimizations

The logical query plan for the mrTriplets operator consists of a
three-way join to bring the source vertex attributes and the target
vertex attributes to the edges and generate the triplets view of the
graph, followed by an aggregation step to apply the map and reduce
UDFs. We use the routing table to ship vertices to edges and set the
edge partition as the join sites, which is equivalent to the idea of
vertex-cut partitioning in PowerGraph. In addition, we describe two
techniques we have developed that further minimize the communi-
cation in the join step. The first applies the concept of incremental
view maintenance to communicate only vertices that change values
after a graph operation, and the second uses bytecode analysis to
automatically rewrite the physical join plan. These techniques en-
able GraphX to present a simple logical view of triplets with the
capability to optimize the communication patterns in the physical
execution plan.

4.5.1 Incremental View Maintenance

We observe that the number of vertices that change in iterative
graph computations usually decreases as the computation converges
to a fixed-point. This presents an opportunity to further optimize the
join in mrTriplets using techniques in incremental view maintenance.
Recall that in order to compute the join, GraphX uses the routing
table to route vertices to the appropriate join sites in the internal
edge RDD. After each graph operation, we update a bit mask to
track which vertex properties have changed. When GraphX needs
to ship the vertices to materialize (in-memory) the replicated vertex
view, it creates the view by shipping only vertices that have changed,
and uses values from the previously materialized replicated vertex
view for vertices that have not changed.

Internally, GraphX maintains a bitmask alongside the replicated
vertex view to record which vertices have changed. The mrTriplets
operator uses this bitmask to support skipStale, which determines for
each edge whether to skip running the map UDF based on whether
the source and/or target vertex of the edge has changed.

Figure[d]illustrates the impact of incrementally maintaining the
replicated vertex view in both PageRank and connected components
on the Twitter graph.

4.5.2 Automatic Join Elimination
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Figure 4: Impact of incrementally maintaining the replicated
vertex view: For both PageRank and connected components, as
vertices converge, communication decreases due to incremental view
maintenance. We suspect the initial steep rise in communication is
due to compression; many early rank update messages are the same
and can be run-length encoded.

The map UDF in the mrTriplets operator may only access one of
the vertices, or none at all, in many algorithms. For example, when
mrTriplets is used to count the degree of each vertex, the map UDF
does not access any vertex attributes In the case of PageRank, only
the source vertex attributes are referenced.

GraphX implements a JVM bytecode analyzer that inspects the
bytecode of the map UDF at runtime for a given mrTriplets query
plan and determines whether the source or target vertex attributes
are referenced. If only the source attributes are referenced, GraphX
automatically rewrites the query plan from a three-way join to a
two-way join. If none of the vertex attributes are referenced, GraphX
eliminates the join entirely. Figure[5|demonstrates the impact of this
physical execution plan rewrite on communication and runtime.

4.6 Sequential Scan vs Index Scan

Recall that in most operators, GraphX uses the structural indexes
and relies on bitmasks to track whether a particular vertex is still
visible. While this reduces the cost of computing index structures
in iterative computations, it also prevents the physical data set from
shrinking in size. For example, in the last iteration of connected
components on the Twitter graph, only a few of the vertices are still
active. However, to execute the mrTriplets on the triplet view we
still need to sequentially scan 1.5 billion edges and verify for each
edge whether its vertices are still visible using the bitmask.

To mitigate this problem, we implement an index scan access
method on the bitmask and switch from sequential scan on edges
to bitmap index scan on vertices when the fraction of active ver-
tices is less than 0.8. This bitmap index scan on vertices exploits
the property that edges are clustered by their source vertex id to
efficiently join vertices and edges together. Figure[f]illustrates the
performance of sequential scan versus index scan in both PageRank
and connected components.

When skipStale is passed to the mrTriplets operator, the index
scan can be further optimized by checking the bitmask for each
vertex id and filtering the index as specified by skipStale rather than
performing the filter on the output of the index scan.

4.7 Additional Engineering Techniques

>The map UDF does access vertex IDs, but they are part of the edge
structure and do not require shipping the vertices.
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Figure 5: Impact of automatic join elimination on communica-
tion and runtime: We ran PageRank for 20 iterations on the Twitter
dataset with join elimination turned on and off. We observe that
automatic join elimination reduces the amount of communication
by almost half and substantially decreases the total execution time
as well.

While implementing GraphX, we discovered that a number of
low level engineering details had significant performance impact.
We sketch some of them here.

Memory-based Shuffle: GraphX relies on Spark’s shuffle mech-
anism for join and aggregation communication. Spark’s default
implementation materializes the shuffle data to disk, hoping that
it will remain in the OS buffer cache when the data is fetched by
remote nodes. In practice, we have found that the extra system calls
and file system journaling adds significant overhead, and the inabil-
ity to control when buffer caches are flushed leads to variability
in communication-intensive workloads like graph algorithms. We
modified the shuffle phase to materialize map outputs in memory
and remove this temporary data using a timer.

Batching and Columnar Structure: In our join code path, rather
than shuffling the vertices one by one, we batch a block of vertices
routed to the same target join site and convert the block from row-
oriented format to column-oriented format. We then apply the LZF
compression algorithm on these blocks to send them. Batching has
a negligible impact on CPU time while improving the compression
ratio of LZF by 10-40% in our benchmarks.

Variable Integer Encoding: Though we use 64-bit integer identi-
fiers for vertices and edges, in most cases the ids are much smaller
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Figure 6: Sequential scan vs index scan: Connected components
(CC) on Twitter graph benefits greatly from switching to index scan
after the 4th iteration, while PageRank (PR) benefits only slightly
because the set of active vertices is large even at the 15th iteration.

than 254, To exploit this fact, during shuffling, we encode integers
using a variable-encoding scheme where for each byte, we use only
the first 7 bits to encode the value, and use the highest order bit
to indicate whether we need another byte to encode the value. In
this case, smaller integers are encoded with fewer bytes. In the
worst case, integers greater than 2°° require 5 bytes to encode. This
technique reduces our communication in PageRank by 20%.

S. SYSTEM EVALUATION

We evaluate the performance of GraphX on specific graph-parallel
computation tasks as well as end-to-end graph analytic pipelines,
comparing to the following systems:

1. Apache Spark 0.8.1: the data-parallel cluster compute en-
gine GraphX builds on. We use Spark to demonstrate the
performance of graph algorithms implemented naively on
data-parallel systems. We chose Spark over Hadoop MapRe-
duce because of Spark’s support for distributed joins and its
reported superior performance [23}[22].

2. Apache Giraph 1.0: an open source implementation of
Google’s Pregel. It is a popular graph computation engine in
the Hadoop ecosystem initially open-sourced by Yahoo!.

3. GraphLab 2.2 (PowerGraph): another open source graph com-
putation engine commonly believed to be one of the fastest
available. Note that GraphLab is implemented in C++, while
both other systems and GraphX run on the JVM. It is expected
that even if all four systems implement identical optimiza-
tions, GraphLab would have an “unfair” advantage due to its
native runtime.

For graph-parallel algorithms, we demonstrate that GraphX is
more than an order of magnitude faster than idiomatic Spark and per-
forms comparably to the specialized systems, while outperforming
them in end-to-end pipelines.

All experiments were conducted on Amazon EC2 using 16
m?2.4xlarge worker nodes in November and December 2013. Each
node had 8 virtual cores, 68 GB of memory, and two hard disks.
The cluster was running 64-bit Linux 3.2.28. We plot the mean and
standard deviation for 10 trials of each experiment.

5.1 Graph-Parallel Performance
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PageRank on Twitter nication mance comparison
D.ataset Edges Vertices due to the joins and aggregation needed to coordinate vertex prop-
LiveJournal 68,993,773 | 4,847,571 erties across partitions containing adjacent edges. The connected
Wikipedia 116,841,365 | 6,556,598 components algorithm does very little communication per iteration
Twitter [3,2] | 1,468,365,182 | 41,652,230 (see Figure[d), negating the benefit of vertex cuts but still incurring

Table 1: Graph datasets

We evaluated the performance of GraphX on PageRank and Con-
nected Components, two well-understood graph algorithms that are
simple enough to serve as an effective measure of the system’s per-
formance rather than the performance of the user-defined functions.

For each system, we ran both algorithms on the Twitter and Live-
Journal social network graphs (see Table[T). We used the implemen-
tations of these algorithms included in the Giraph and PowerGraph
distributions, and we additionally implemented PageRank using
idiomatic Spark dataflow operators.

Figures [Ta] and[7b] show the total runtimes for the connected com-
ponents algorithm running until convergence. On the Twitter graph,
Giraph outperforms GraphX and is as fast as GraphLab despite the
latter’s highly optimized C++ implementation. We conjecture that
this is due to the difference in partitioning strategies: GraphLab and
GraphX use vertex cuts while Giraph uses edge cuts. Vertex cuts
split high-degree vertices across partitions, but incur some overhead

the overhead. In the case of LiveJournal, Giraph is slower because it
uses Hadoop MapReduce for resource scheduling and the overhead
of that (approximately 10 seconds) is quite substantial when the
graph is small.

Figures and|7_H| show the total runtimes for PageRank for 20
iterations on each system, including the idiomatic Spark dataflow
implementation of PageRank. PageRank on GraphX is much faster
than PageRank on Spark, and since GraphX is built on Spark, the
difference can be isolated to the fact that GraphX exploits the graph
structure using vertex cuts, structural indices, and the other opti-
mizations described in Section f] The specialized systems also
outperform the Spark dataflow implementation for similar reasons.

In Figure[§] we plot the strong scaling performance of GraphX
running PageRank on the Twitter follower graph. As we move from
8 to 32 machines (a factor of 4) we see a 3x speedup. However
as we move to 64 machines (a factor of 8) we only see a 3.5x
speedup. While this is hardly linear scaling, it is actually slightly
better than the 3.2x speedup reported by PowerGraph [10]. The
poor scaling performance of PageRank has been attributed by [|10]
to high communication overhead relative to computation.





The fact that GraphX is able to scale slightly better than Power-
Graph is relatively surprising given that the Spark shared-nothing
worker model eliminates the potential for shared memory paral-
lelism and forces the graph to be partitioned across processors and
not machines. However, Figure [9] shows the communication of
GraphX as a function of the number of partitions. Going from 16 to
128 partitions (a factor of 8) yields only around a 2-fold increase in
communication. Returning to the analysis conducted by [[10], we
find that the vertex-cut partitioning adopted by GraphX mitigates
the 8-fold increase in communication due to Spark.

5.2 End-to-End Pipeline Performance

Specialized graph-parallel systems are much faster than data-
parallel systems such as Hadoop MapReduce and Apache Spark
for iterative graph algorithms, but they are not well suited for many
of the operations found in a typical graph analytics pipeline. To
illustrate the unification of graph-parallel and data-parallel analytics
in GraphX, we evaluate the end-to-end performance of each system
in performing a multi-step pipeline that determines the 20 most
important articles in the English Wikipedia by PageRank.

This analytics pipeline contains three stages: (1) parsing an XML
file containing a snapshot of all English Wikipedia articles and
extracting the link graph, (2) computing PageRank on the link graph,
and (3) joining the 20 highest-ranked articles with their full text.
Existing graph processing systems focus only on stage 2, and we
demonstrate that GraphX’s unified approach provides better end-to-
end performance than specialized graph-parallel systems even for
simple pipelines.

Because Giraph and GraphLab do not support general data-
parallel operations such as XML parsing, joins, or top-K, we
implemented these operations in their pipelines by transferring data
to and from a data-parallel system using files. We used Spark and
HDFS for this purpose. The GraphX unified model was capable of
expressing the entire pipeline.

Figure[I0]shows the performance of each system’s pipeline. De-
spite GraphLab’s superior performance on the graph-parallel portion
of the pipeline, GraphX outperforms it in end-to-end runtime by
avoiding the overhead of serialization, replication, and disk I/O at
the stage boundaries. The GraphX pipeline was also simpler and
easier to write due to the unified programming model.

6. RELATED WORK

We have already discussed related work on graph-parallel engines
extensively in Section |2} This section focuses on related work in
RDF and data-parallel systems.

The Semantic Web movement led to several areas of related
work. The Resource Description Framework (RDF) graph [15]
is a flexible representation of data as a graph consisting of sub-
Ject-predicate-object triplets (e.g., NYC-isA-city) viewed as directed

edges (e.g., NYC LN city). The property graph data model adopted
by GraphX contains the RDF graph as a special case [|19]]. The prop-
erty graph corresponding to an RDF graph contains the predicates
as edge properties and the subjects and objects as vertex properties.
In the RDF model the subject and predicate must be a Universal Re-
source Identifier (URI) and the value can either be a URI or a string
literal. As a consequence complex vertex properties (e.g., name, age,
and interests) must actually be expressed as a subgraphs connected
to a URI corresponding to a person. In this sense, the RDF may
be thought of a normalized property graph. As a consequence the
RDF graph does not closely model the original graph structure or
exploit the inherent grouping of fields (e.g., information about a
user), which must therefore be materialized through repeated self
joins. Nonetheless, we adopt some of the core ideas from the RDF

work including the triples view of graphs.

Numerous systems [4} |17, |1]] have been proposed for storing and
executing queries against RDF graphs using query languages such
as SPARQL [18]]. These systems as well as the SPARQL query lan-
guage target subgraph queries and aggregation for OLTP workloads
where the focus is on low-latency rather than throughput and the
query is over small subgraphs (e.g., short paths). Furthermore, this
work is geared towards the RDF graph data models. In contrast,
graph computation systems generally operate on the entire graph by
transforming properties rather than returning subsets of vertices with
a focus on throughput. Nonetheless, we believe that some of the
ideas developed for GraphX (e.g., distributed graph representations)
may be beneficial in the design of low-latency distributed graph
query processing systems.

There has been recent work applying incremental iterative data-
parallel systems to graph computation. Both Ewen et al. [9] and
Murray et al. [16] proposed systems geared towards incremental
iterative data-parallel computation and demonstrated performance
gains for specialized implementations of PageRank. While this
work demonstrates the importance of incremental updates in graph
computation, neither proposed a graph oriented view of the data or
graph specific optimizations beyond incremental data-flows.

7. DISCUSSION

In this work, we revisit the concept of Physical Data Indepen-
dence in the context of graphs and collections. We posit that col-
lections and graphs are not only logical data models presented to
programmers but in fact can be efficiently implemented using the
same physical representation of the underlying data. Through the
GraphX abstraction we proposed a common substrate that allows
these data to be viewed as both collections and graphs and sup-
ports efficient data-parallel and graph-parallel computation using
a combination of in-memory indexing, data storage formats, and
various join optimization techniques. Our experiments show that
this common substrate can match the performance of specialized
graph computation systems and support the composition of graphs
and tables in a single data model. In this section, we discuss the
impact of our discoveries.

Domain Specific Views: Historically, physical independence
focused on the flexibility to implement different physical storage,
indexing, and access strategies without changing the applications.
We argue that physical independence also enables the presentation
of multiple logical views with different semantics and corresponding
constraints on the same physical data. Because each view individ-
ually restricts the computation, the underlying system in turn can
exploit those restrictions to optimize its physical execution strate-
gies. However, by allowing the composition of multiple views, the
system is able to maintain a high degree of generality. Furthermore,
the semantic properties of each view enable the design of domain
specific operators which can be further specialized by the system.
We believe there is opportunity for further research into the compo-
sition of specialized views (e.g., queues and sets) and operators and
their corresponding optimizations.

Graph Computation as Joins: The design of the GraphX sys-
tem revealed a strong connection between distributed graph compu-
tation and distributed join optimizations. When viewed through the
lens of relational operators, graph computation reduces to joining
vertices with edges (i.e., triplets) and then applying aggregations.
These two stages correspond to the Scatter and Gather phases of the
GAS abstraction [[10]]. Likewise, the optimizations used to distribute
and accelerate the GAS abstraction correspond to horizontal parti-
tioning and indexing strategies. In particular, the construction of the
triplets relies heavily on distributed routing tables that resemble the





join site selection optimization in distributed databases. Exploiting
the iterative nature in graph computation, GraphX reuses many of
the intermediate data structures built for joins across iterations, and
employs techniques in incremental view maintenance to optimize
the joins. We hope this connection will inspire further research into
distributed join optimizations for graph computation.

The Narrow Waist: In the design of the GraphX abstraction we
sought to develop a thin extension on top of relational operators with
the goal of identifying the essential data model and core operations
needed to support graph computation and achieve a portable frame-
work that can be embedded in a range of data-parallel platforms.
We restricted our attention to the small set of primitive operators
needed to express existing graph-parallel frameworks such as Pregel
and PowerGraph. In doing so, we identified the property graph
and its tabular analog the unordered type collection as the essential
data-model, as well as a small set of basic operators which can be
cast in relational operators. It is our hope that, as a consequence,
the GraphX design can be adopted by other data-parallel systems,
including MPP databases, to efficiently support a wide range of
graph computations.

Simplified Analytics Pipeline: Some key benefits of GraphX are
difficult to quantify. The ability to stay within a single framework
throughout the analytics process means it is no longer necessary to
learn and support multiple systems or develop the data interchange
formats and plumbing needed to move betweens systems. As a
consequence, it is substantially easier to iteratively slice, transform,
and compute on large graphs and share code that spans a much larger
part of the pipeline. The gains in performance and scalability for
graph computation translate to a tighter analytics feedback loop and
therefore a more efficient work flow. Finally, GraphX creates the
opportunity for rich libraries of graph operators tailored to specific
analytics tasks.

8. CONCLUSION

The growing scale and importance of graph data has driven the
development of specialized graph computation engines capable of in-
ferring complex recursive properties of graph-structured data. How-
ever, these systems are unable to express many of the inherently
data-parallel stages in a typical graph-analytics pipeline. As a con-
sequence, existing graph analytics pipelines [[11] resort to multiple
stages of data-parallel and graph-parallel systems composed through
external storage systems. This approach to graph analytics is ineffi-
cient, difficult to adopt to new workloads, and difficult to maintain.

In this work we introduced GraphX, a distributed graph process-
ing framework that unifies graph-parallel and data-parallel compu-
tation in a single system and is capable of succinctly expressing
and efficiently executing the entire graph analytics pipeline. The
GraphX abstraction unifies the data-parallel and graph-parallel ab-
stractions through a data model that presents graphs and collections
as first-class objects with a set of primitive operators enabling their
composition. We demonstrated that these operators are expressive
enough to implement the Pregel and PowerGraph abstractions but
also simple enough to be cast in relational algebra.

GraphX encodes graphs as collections of edges and vertices along
with simple auxiliary index structures, and represents graph com-
putations as a sequence of relational joins and aggregations. It
incorporates techniques such as incremental view maintenance and
index scans in databases and adapts these techniques to exploit com-
mon characteristics of graph computation workloads. The result is
a system that achieves performance comparable to contemporary
graph-parallel systems in graph computation while retaining the
expressiveness of contemporary data-parallel systems.

We have open sourced GraphX at www.anon-sys.com. Though it

has not been officially released, a brave industry user has success-
fully deployed GraphX and achieved a speedup of two orders of
magnitude over their pre-existing graph analytics pipelines.
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