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1. Introduction

This chapter begins by discussing what statistics are and why the study of statistics
1s important. Subsequent sections cover a variety of topics all basic to the study of

statistics. The only theme common to all of these sections is that they cover
concepts and ideas important for other chapters in the book.

. What are Statistics?

. Importance of Statistics
. Descriptive Statistics

. Inferential Statistics
Variables

Percentiles

. Measurement

. Levels of Measurement
Distributions
Summation Notation

. Linear Transformations

oA S D am oo aQ®m »

Logarithms

M. Exercises
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What Are Statistics
by Mikki Hebl

Learning Objectives

1. Describe the range of applications of statistics

2. Identify situations in which statistics can be misleading
3. Define “Statistics”

Statistics include numerical facts and figures. For instance:

 The largest earthquake measured 9.2 on the Richter scale.

* Men are at least 10 times more likely than women to commit murder.

e One in every 8 South Africans is HIV positive.

* By the year 2020, there will be 15 people aged 65 and over for every new baby
born.

The study of statistics involves math and relies upon calculations of numbers. But
it also relies heavily on how the numbers are chosen and how the statistics are
interpreted. For example, consider the following three scenarios and the
interpretations based upon the presented statistics. You will find that the numbers
may be right, but the interpretation may be wrong. Try to identify a major flaw
with each interpretation before we describe it.

1) A new advertisement for Ben and Jerry's ice cream introduced in
late May of last year resulted in a 30% increase in ice cream sales for
the following three months. Thus, the advertisement was effective.

A major flaw is that ice cream consumption generally increases in the
months of June, July, and August regardless of advertisements. This
effect is called a history effect and leads people to interpret outcomes
as the result of one variable when another variable (in this case, one
having to do with the passage of time) is actually responsible.

2) The more churches in a city, the more crime there is. Thus,
churches lead to crime.

11



A major flaw is that both increased churches and increased crime rates
can be explained by larger populations. In bigger cities, there are both
more churches and more crime. This problem, which we will discuss
in more detail in Chapter 6, refers to the third-variable problem.
Namely, a third variable can cause both situations; however, people
erroneously believe that there is a causal relationship between the two
primary variables rather than recognize that a third variable can cause
both.

3) 75% more interracial marriages are occurring this year than 25
years ago. Thus, our society accepts interracial marriages.

A major flaw is that we don't have the information that we need. What
is the rate at which marriages are occurring? Suppose only 1% of
marriages 25 years ago were interracial and so now 1.75% of
marriages are interracial (1.75 is 75% higher than 1). But this latter
number is hardly evidence suggesting the acceptability of interracial
marriages. In addition, the statistic provided does not rule out the
possibility that the number of interracial marriages has seen dramatic
fluctuations over the years and this year is not the highest. Again,
there is simply not enough information to understand fully the impact
of the statistics.

As a whole, these examples show that statistics are not only facts and figures; they
are something more than that. In the broadest sense, “statistics” refers to a range of
techniques and procedures for analyzing, interpreting, displaying, and making
decisions based on data.

12



Importance of Statistics
by Mikki Hebl

Learning Objectives
1. Give examples of statistics encountered in everyday life
2. Give examples of how statistics can lend credibility to an argument

Like most people, you probably feel that it is important to “take control of your

life.” But what does this mean? Partly, it means being able to properly evaluate the

data and claims that bombard you every day. If you cannot distinguish good from

faulty reasoning, then you are vulnerable to manipulation and to decisions that are

not in your best interest. Statistics provides tools that you need in order to react

intelligently to information you hear or read. In this sense, statistics is one of the

most important things that you can study.

To be more specific, here are some claims that we have heard on several

occasions. (We are not saying that each one of these claims is true!)

4 out of 5 dentists recommend Dentine.

o Almost 85% of lung cancers in men and 45% in women are tobacco-related.

o Condoms are effective 94% of the time.

» Native Americans are significantly more likely to be hit crossing the street than
are people of other ethnicities.

« People tend to be more persuasive when they look others directly in the eye and
speak loudly and quickly.

o Women make 75 cents to every dollar a man makes when they work the same
job.

A surprising new study shows that eating egg whites can increase one's life span.

 People predict that it is very unlikely there will ever be another baseball player
with a batting average over 400.

o There is an 80% chance that in a room full of 30 people that at least two people
will share the same birthday.

e 79.48% of all statistics are made up on the spot.

All of these claims are statistical in character. We suspect that some of them sound
familiar; if not, we bet that you have heard other claims like them. Notice how
diverse the examples are. They come from psychology, health, law, sports,
business, etc. Indeed, data and data interpretation show up in discourse from
virtually every facet of contemporary life.

13



Statistics are often presented in an effort to add credibility to an argument or
advice. You can see this by paying attention to television advertisements. Many of
the numbers thrown about in this way do not represent careful statistical analysis.
They can be misleading and push you into decisions that you might find cause to
regret. For these reasons, learning about statistics is a long step towards taking
control of your life. (It is not, of course, the only step needed for this purpose.) The
present electronic textbook is designed to help you learn statistical essentials. It
will make you into an intelligent consumer of statistical claims.

You can take the first step right away. To be an intelligent consumer of
statistics, your first reflex must be to question the statistics that you encounter. The
British Prime Minister Benjamin Disraeli is quoted by Mark Twain as having said,
“There are three kinds of lies -- lies, damned lies, and statistics.” This quote
reminds us why it is so important to understand statistics. So let us invite you to
reform your statistical habits from now on. No longer will you blindly accept
numbers or findings. Instead, you will begin to think about the numbers, their
sources, and most importantly, the procedures used to generate them.

We have put the emphasis on defending ourselves against fraudulent claims
wrapped up as statistics. We close this section on a more positive note. Just as
important as detecting the deceptive use of statistics is the appreciation of the
proper use of statistics. You must also learn to recognize statistical evidence that
supports a stated conclusion. Statistics are all around you, sometimes used well,
sometimes not. We must learn how to distinguish the two cases.

Now let us get to work!

14



Descriptive Statistics
by Mikki Hebl

Prerequisites
e none

Learning Objectives
1. Define “descriptive statistics”
2. Distinguish between descriptive statistics and inferential statistics

Descriptive statistics are numbers that are used to summarize and describe data.
The word “data” refers to the information that has been collected from an
experiment, a survey, an historical record, etc. (By the way, “data” is plural. One
piece of information is called a “datum.”) If we are analyzing birth certificates, for
example, a descriptive statistic might be the percentage of certificates issued in
New York State, or the average age of the mother. Any other number we choose to
compute also counts as a descriptive statistic for the data from which the statistic is
computed. Several descriptive statistics are often used at one time to give a full
picture of the data.

Descriptive statistics are just descriptive. They do not involve generalizing
beyond the data at hand. Generalizing from our data to another set of cases is the
business of inferential statistics, which you'll be studying in another section. Here
we focus on (mere) descriptive statistics.

Some descriptive statistics are shown in Table 1. The table shows the
average salaries for various occupations in the United States in 1999.

15



Table 1. Average salaries for various occupations in 1999.

$112,760 pediatricians

$106,130 dentists

$100,090 podiatrists

$76,140 physicists

$53,410 architects,

$49,720 school, clinical, and counseling
psychologists

$47,910 flight attendants

$39,560 elementary school teachers

$38,710 police officers

$18,980 floral designers

Descriptive statistics like these offer insight into American society. It is interesting
to note, for example, that we pay the people who educate our children and who
protect our citizens a great deal less than we pay people who take care of our feet
or our teeth.

For more descriptive statistics, consider Table 2. It shows the number of
unmarried men per 100 unmarried women in U.S. Metro Areas in 1990. From this
table we see that men outnumber women most in Jacksonville, NC, and women
outnumber men most in Sarasota, FL. You can see that descriptive statistics can be
useful if we are looking for an opposite-sex partner! (These data come from the
Information Please Almanac.)

Table 2. Number of unmarried men per 100 unmarried women in U.S. Metro Areas

in 1990.
Cities with mostly Men per 100 Cities with mostly Men per 100
men Women women Women
1. Jacksonville, NC 224 1. Sarasota, FL 66
2. Killeen-Temple, TX 123 2. Bradenton, FL 68
3. Fayetteville, NC 118 3. Altoona, PA 69
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4. Brazoria, TX 117 4. Springfield, IL 70

5. Lawton, OK 116 5. Jacksonville, TN 70
6. State College, PA 113 6. Gadsden, AL 70
7. Clarksville- 113 7. Wheeling, WV 70

Hopkinsville, TN-KY

8. Anchorage, Alaska 112 8. Charleston, WV 71

9. Salinas-Seaside- 112 9. St. Joseph, MO 71
Monterey, CA

10. Bryan-College 111 10. Lynchburg, VA 71
Station, TX

NOTE: Unmarried includes never-married, widowed, and dworced persons, 15 years or older.

These descriptive statistics may make us ponder why the numbers are so disparate
in these cities. One potential explanation, for instance, as to why there are more
women in Florida than men may involve the fact that elderly individuals tend to
move down to the Sarasota region and that women tend to outlive men. Thus, more
women might live in Sarasota than men. However, in the absence of proper data,
this is only speculation.

You probably know that descriptive statistics are central to the world of
sports. Every sporting event produces numerous statistics such as the shooting
percentage of players on a basketball team. For the Olympic marathon (a foot race
of 26.2 miles), we possess data that cover more than a century of competition. (The
first modern Olympics took place in 1896.) The following table shows the winning
times for both men and women (the latter have only been allowed to compete since
1984).

Table 3. Winning Olympic marathon times.

Women
Year Winner Country Time
1984 | Joan Benoit USA 2:24:52
1988 | Rosa Mota POR 2:25:40
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1992 | Valentina Yegorova uT 2:32:41
1996 | Fatuma Roba ETH 2:26:05
2000 | Naoko Takahashi JPN 2:23:14
2004 Mizuki Noguchi JPN 2:26:20
Men

Year Winner Country Time

1896 | Spiridon Louis GRE 2:58:50
1900 [ Michel Theato FRA 2:59:45
1904 | Thomas Hicks USA 3:28:53
1906 Billy Sherring CAN 2:51:23
1908 | Johnny Hayes USA 2:55:18
1912 | Kenneth McArthur S. Afr. 2:36:54
1920 Hannes Kolehmainen FIN 2:32:35
1924 | Albin Stenroos FIN 2:41:22
1928 | Boughra El Ouafi FRA 2:32:57
1932 | Juan Carlos Zabala ARG 2:31:36
1936 | Sohn Kee-Chung JPN 2:29:19
1948 | Delfo Cabrera ARG 2:34:51
1952 | Emil Ztopek CZE 2:23:03
1956 | Alain Mimoun FRA 2:25:00
1960 | Abebe Bikila ETH 2:15:16
1964 | Abebe Bikila ETH 2:12:11
1968 | Mamo Wolde ETH 2:20:26
1972 | Frank Shorter USA 2:12:19
1976 | Waldemar Cierpinski E.Ger 2:09:55
1980 | Waldemar Cierpinski E.Ger 2:11:03
1984 | Carlos Lopes POR 2:09:21
1988 | Gelindo Bordin ITA 2:10:32
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1992 Hwang Young-Cho S. Kor 2:13:23

1996 | Josia Thugwane S. Afr. 2:12:36
2000 | Gezahenge Abera ETH 2:10.10
2004 Stefano Baldini ITA 2:10:55

There are many descriptive statistics that we can compute from the data in the
table. To gain insight into the improvement in speed over the years, let us divide
the men's times into two pieces, namely, the first 13 races (up to 1952) and the
second 13 (starting from 1956). The mean winning time for the first 13 races is 2
hours, 44 minutes, and 22 seconds (written 2:44:22). The mean winning time for
the second 13 races is 2:13:18. This is quite a difference (over half an hour). Does
this prove that the fastest men are running faster? Or is the difference just due to
chance, no more than what often emerges from chance differences in performance
from year to year? We can't answer this question with descriptive statistics alone.
All we can affirm is that the two means are “suggestive.”

Examining Table 3 leads to many other questions. We note that Takahashi
(the lead female runner in 2000) would have beaten the male runner in 1956 and all
male runners in the first 12 marathons. This fact leads us to ask whether the gender
gap will close or remain constant. When we look at the times within each gender,
we also wonder how far they will decrease (if at all) in the next century of the
Olympics. Might we one day witness a sub-2 hour marathon? The study of
statistics can help you make reasonable guesses about the answers to these
questions.
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Inferential Statistics
by Mikki Hebl

Prerequisites
o Chapter 1: Descriptive Statistics

Learning Objectives

Distinguish between a sample and a population

Define inferential statistics

Identify biased samples

Distinguish between simple random sampling and stratified sampling
Distinguish between random sampling and random assignment

b=

Populations and samples

In statistics, we often rely on a sample --- that is, a small subset of a larger set of
data --- to draw inferences about the larger set. The larger set is known as the
population from which the sample is drawn.

Example #1: You have been hired by the National Election Commission to
examine how the American people feel about the fairness of the voting
procedures in the U.S. Who will you ask?

It is not practical to ask every single American how he or she feels about the
fairness of the voting procedures. Instead, we query a relatively small number of
Americans, and draw inferences about the entire country from their responses. The
Americans actually queried constitute our sample of the larger population of all
Americans. The mathematical procedures whereby we convert information about
the sample into intelligent guesses about the population fall under the rubric of
inferential statistics.

A sample is typically a small subset of the population. In the case of voting
attitudes, we would sample a few thousand Americans drawn from the hundreds of
millions that make up the country. In choosing a sample, it is therefore crucial that
it not over-represent one kind of citizen at the expense of others. For example,
something would be wrong with our sample if it happened to be made up entirely
of Florida residents. If the sample held only Floridians, it could not be used to infer
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the attitudes of other Americans. The same problem would arise if the sample were
comprised only of Republicans. Inferential statistics are based on the assumption
that sampling is random. We trust a random sample to represent different segments
of society in close to the appropriate proportions (provided the sample is large
enough; see below).

Example #2: We are interested in examining how many math classes have
been taken on average by current graduating seniors at American colleges :
and universities during their four years in school. Whereas our population in
the last example included all US citizens, now it involves just the graduating :
seniors throughout the country. This is still a large set since there are ;
thousands of colleges and universities, each enrolling many students. (New
York University, for example, enrolls 48,000 students.) It would be
prohibitively costly to examine the transcript of every college senior. We
therefore take a sample of college seniors and then make inferences to the
entire population based on what we find. To make the sample, we might first :
choose some public and private colleges and universities across the United |
States. Then we might sample 50 students from each of these institutions.
Suppose that the average number of math classes taken by the people in our :
sample were 3.2. Then we might speculate that 3.2 approximates the number |
we would find if we had the resources to examine every senior in the entire i
population. But we must be careful about the possibility that our sample is
non-representative of the population. Perhaps we chose an overabundance of
math majors, or chose too many technical institutions that have heavy math i
requirements. Such bad sampling makes our sample unrepresentative of the
population of all seniors.

To solidify your understanding of sampling bias, consider the following
example. Try to identify the population and the sample, and then reflect on
whether the sample is likely to yield the information desired.
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Example #3: A substitute teacher wants to know how students in the class :
did on their last test. The teacher asks the 10 students sitting in the front row
to state their latest test score. He concludes from their report that the class
did extremely well. What 1s the sample? What is the population? Can you
identify any problems with choosing the sample in the way that the teacher
did?

In Example #3, the population consists of all students in the class. The sample is
made up of just the 10 students sitting in the front row. The sample is not likely to
be representative of the population. Those who sit in the front row tend to be more
interested in the class and tend to perform higher on tests. Hence, the sample may
perform at a higher level than the population.

Example #4: A coach is interested in how many cartwheels the average
college freshmen at his university can do. Eight volunteers from the

freshman class step forward. After observing their performance, the coach
concludes that college freshmen can do an average of 16 cartwheels in a row |
without stopping. ;

In Example #4, the population is the class of all freshmen at the coach's university.
The sample is composed of the 8 volunteers. The sample is poorly chosen because
volunteers are more likely to be able to do cartwheels than the average freshman;
people who can't do cartwheels probably did not volunteer! In the example, we are
also not told of the gender of the volunteers. Were they all women, for example?
That might affect the outcome, contributing to the non-representative nature of the
sample (if the school is co-ed).

Simple Random Sampling

Researchers adopt a variety of sampling strategies. The most straightforward is
simple random sampling. Such sampling requires every member of the population
to have an equal chance of being selected into the sample. In addition, the selection
of one member must be independent of the selection of every other member. That
is, picking one member from the population must not increase or decrease the
probability of picking any other member (relative to the others). In this sense, we
can say that simple random sampling chooses a sample by pure chance. To check
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your understanding of simple random sampling, consider the following example.
What is the population? What is the sample? Was the sample picked by simple
random sampling? Is it biased?

Example #5: A research scientist is interested in studying the experiences of
twins raised together versus those raised apart. She obtains a list of twins
from the National Twin Registry, and selects two subsets of individuals for
her study. First, she chooses all those in the registry whose last name begins
with Z. Then she turns to all those whose last name begins with B. Because
there are so many names that start with B, however, our researcher decides
to incorporate only every other name into her sample. Finally, she mails out
a survey and compares characteristics of twins raised apart versus together.

In Example #5, the population consists of all twins recorded in the National Twin
Registry. It is important that the researcher only make statistical generalizations to
the twins on this list, not to all twins in the nation or world. That is, the National
Twin Registry may not be representative of all twins. Even if inferences are limited
to the Registry, a number of problems affect the sampling procedure we described.
For instance, choosing only twins whose last names begin with Z does not give
every individual an equal chance of being selected into the sample. Moreover, such
a procedure risks over-representing ethnic groups with many surnames that begin
with Z. There are other reasons why choosing just the Z's may bias the sample.
Perhaps such people are more patient than average because they often find
themselves at the end of the line! The same problem occurs with choosing twins
whose last name begins with B. An additional problem for the B's is that the
“every-other-one” procedure disallowed adjacent names on the B part of the list
from being both selected. Just this defect alone means the sample was not formed
through simple random sampling.

Sample size matters

Recall that the definition of a random sample is a sample in which every member
of the population has an equal chance of being selected. This means that the
sampling procedure rather than the results of the procedure define what it means
for a sample to be random. Random samples, especially if the sample size is small,
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are not necessarily representative of the entire population. For example, if a
random sample of 20 subjects were taken from a population with an equal number
of males and females, there would be a nontrivial probability (0.06) that 70% or
more of the sample would be female. (To see how to obtain this probability, see the
section on the binomial distribution in Chapter 5.) Such a sample would not be
representative, although it would be drawn randomly. Only a large sample size
makes it likely that our sample is close to representative of the population. For this
reason, inferential statistics take into account the sample size when generalizing
results from samples to populations. In later chapters, you'll see what kinds of
mathematical techniques ensure this sensitivity to sample size.

More complex sampling

Sometimes it is not feasible to build a sample using simple random sampling. To
see the problem, consider the fact that both Dallas and Houston are competing to
be hosts of the 2012 Olympics. Imagine that you are hired to assess whether most
Texans prefer Houston to Dallas as the host, or the reverse. Given the
impracticality of obtaining the opinion of every single Texan, you must construct a
sample of the Texas population. But now notice how difficult it would be to
proceed by simple random sampling. For example, how will you contact those
individuals who don’t vote and don’t have a phone? Even among people you find
in the telephone book, how can you identify those who have just relocated to
California (and had no reason to inform you of their move)? What do you do about
the fact that since the beginning of the study, an additional 4,212 people took up
residence in the state of Texas? As you can see, it is sometimes very difficult to
develop a truly random procedure. For this reason, other kinds of sampling
techniques have been devised. We now discuss two of them.

Random assignment

In experimental research, populations are often hypothetical. For example, in an
experiment comparing the effectiveness of a new anti-depressant drug with a
placebo, there is no actual population of individuals taking the drug. In this case, a
specified population of people with some degree of depression is defined and a
random sample is taken from this population. The sample is then randomly divided
into two groups; one group is assigned to the treatment condition (drug) and the
other group is assigned to the control condition (placebo). This random division of
the sample into two groups is called random assignment. Random assignment is

24



critical for the validity of an experiment. For example, consider the bias that could
be introduced if the first 20 subjects to show up at the experiment were assigned to
the experimental group and the second 20 subjects were assigned to the control
group. It is possible that subjects who show up late tend to be more depressed than
those who show up early, thus making the experimental group less depressed than
the control group even before the treatment was administered.

In experimental research of this kind, failure to assign subjects randomly to
groups is generally more serious than having a non-random sample. Failure to
randomize (the former error) invalidates the experimental findings. A non-random
sample (the latter error) simply restricts the generalizability of the results.

Stratified Sampling

Since simple random sampling often does not ensure a representative sample, a
sampling method called stratified random sampling is sometimes used to make the
sample more representative of the population. This method can be used if the
population has a number of distinct “strata” or groups. In stratified sampling, you
first identify members of your sample who belong to each group. Then you
randomly sample from each of those subgroups in such a way that the sizes of the
subgroups in the sample are proportional to their sizes in the population.

Let's take an example: Suppose you were interested in views of capital
punishment at an urban university. You have the time and resources to interview
200 students. The student body is diverse with respect to age; many older people
work during the day and enroll in night courses (average age is 39), while younger
students generally enroll in day classes (average age of 19). It is possible that night
students have different views about capital punishment than day students. If 70%
of the students were day students, it makes sense to ensure that 70% of the sample
consisted of day students. Thus, your sample of 200 students would consist of 140
day students and 60 night students. The proportion of day students in the sample
and in the population (the entire university) would be the same. Inferences to the
entire population of students at the university would therefore be more secure.
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Variables

by Heidi Ziemer

Prerequisites
enone

Learning Objectives

1. Define and distinguish between independent and dependent variables

2. Define and distinguish between discrete and continuous variables

3. Define and distinguish between qualitative and quantitative variables

Independent and dependent variables

Variables are properties or characteristics of some event, object, or person that can
take on different values or amounts (as opposed to constants such as st that do not
vary). When conducting research, experimenters often manipulate variables. For
example, an experimenter might compare the effectiveness of four types of
antidepressants. In this case, the variable is “type of antidepressant.” When a
variable is manipulated by an experimenter, it is called an independent variable.
The experiment seeks to determine the effect of the independent variable on relief
from depression. In this example, relief from depression is called a dependent
variable. In general, the independent variable is manipulated by the experimenter
and its effects on the dependent variable are measured.

Example #1: Can blueberries slow down aging? A study indicates that
antioxidants found in blueberries may slow down the process of aging. In
this study, 19-month-old rats (equivalent to 60-year-old humans) were fed
either their standard diet or a diet supplemented by either blueberry,
strawberry, or spinach powder. After eight weeks, the rats were given
memory and motor skills tests. Although all supplemented rats showed
improvement, those supplemented with blueberry powder showed the most
notable improvement.

1. What is the independent variable? (dietary supplement: none, blueberry,
strawberry, and spinach)



2. What are the dependent variables? (memory test and motor skills test)

Example #2: Does beta-carotene protect against cancer? Beta-carotene
supplements have been thought to protect against cancer. However, a study
published in the Journal of the National Cancer Institute suggests this is
false. The study was conducted with 39,000 women aged 45 and up. These
women were randomly assigned to receive a beta-carotene supplement or a
placebo, and their health was studied over their lifetime. Cancer rates for
women taking the beta-carotene supplement did not differ systematically
from the cancer rates of those women taking the placebo.

1. What is the independent variable? (supplements: beta-carotene or
placebo)

2. What is the dependent variable? (occurrence of cancer)

Example #3: How bright is right? An automobile manufacturer wants to
know how bright brake lights should be in order to minimize the time
required for the driver of a following car to realize that the car in front is
stopping and to hit the brakes.

1. What is the independent variable? (brightness of brake lights)

2. What is the dependent variable? (time to hit brakes)

Levels of an Independent Variable

If an experiment compares an experimental treatment with a control treatment,
then the independent variable (type of treatment) has two levels: experimental and
control. If an experiment were comparing five types of diets, then the independent
variable (type of diet) would have 5 levels. In general, the number of levels of an
independent variable is the number of experimental conditions.
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Qualitative and Quantitative Variables

An important distinction between variables is between qualitative variables and
quantitative variables. Qualitative variables are those that express a qualitative
attribute such as hair color, eye color, religion, favorite movie, gender, and so on.
The values of a qualitative variable do not imply a numerical ordering. Values of
the variable “religion” differ qualitatively; no ordering of religions is implied.
Qualitative variables are sometimes referred to as categorical variables.
Quantitative variables are those variables that are measured in terms of numbers.
Some examples of quantitative variables are height, weight, and shoe size.

In the study on the effect of diet discussed previously, the independent
variable was type of supplement: none, strawberry, blueberry, and spinach. The
variable “type of supplement” is a qualitative variable; there is nothing quantitative
about it. In contrast, the dependent variable “memory test” is a quantitative
variable since memory performance was measured on a quantitative scale (number
correct).

Discrete and Continuous Variables

Variables such as number of children in a household are called discrete variables
since the possible scores are discrete points on the scale. For example, a household
could have three children or six children, but not 4.53 children. Other variables
such as “time to respond to a question” are continuous variables since the scale is
continuous and not made up of discrete steps. The response time could be 1.64
seconds, or it could be 1.64237123922121 seconds. Of course, the practicalities of
measurement preclude most measured variables from being truly continuous.
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Percentiles
by David Lane

Prerequisites
enone

Learning Objectives
1. Define percentiles
2. Use three formulas for computing percentiles

A test score in and of itself is usually difficult to interpret. For example, if you
learned that your score on a measure of shyness was 35 out of a possible 50, you
would have little idea how shy you are compared to other people. More relevant is
the percentage of people with lower shyness scores than yours. This percentage is
called a percentile. If 65% of the scores were below yours, then your score would
be the 65th percentile.

Two Simple Definitions of Percentile

There is no universally accepted definition of a percentile. Using the 65th
percentile as an example, the 65th percentile can be defined as the lowest score that
is greater than 65% of the scores. This is the way we defined it above and we will
call this “Definition 1.” The 65th percentile can also be defined as the smallest
score that is greater than or equal to 65% of the scores. This we will call
“Definition 2.” Unfortunately, these two definitions can lead to dramatically
different results, especially when there is relatively little data. Moreover, neither of
these definitions is explicit about how to handle rounding. For instance, what rank
is required to be higher than 65% of the scores when the total number of scores is
507 This is tricky because 65% of 50 is 32.5. How do we find the lowest number
that is higher than 32.5% of the scores? A third way to compute percentiles
(presented below) is a weighted average of the percentiles computed according to
the first two definitions. This third definition handles rounding more gracefully
than the other two and has the advantage that it allows the median to be defined
conveniently as the 50th percentile.
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A Third Definition

Unless otherwise specified, when we refer to “percentile,” we will be referring to
this third definition of percentiles. Let's begin with an example. Consider the 25th
percentile for the 8 numbers in Table 1. Notice the numbers are given ranks
ranging from 1 for the lowest number to 8 for the highest number.

Table 1. Test Scores.

Number Rank
3 1
5 2
7 3
8 4
9 5
11 6
13 7
15 8

The first step is to compute the rank (R) of the 25th percentile. This is done using
the following formula:

P
R=——Xx(N+1
100 (V+1)

where P is the desired percentile (25 in this case) and N is the number of numbers
(8 in this case). Therefore,

R = 25 ><(8+1)—9—225
100 4T

If R is an integer, the Pth percentile is be the number with rank R. When R is not
an integer, we compute the Pth percentile by interpolation as follows:

1. Define IR as the integer portion of R (the number to the left of the decimal
point). For this example, IR = 2.

2. Define FR as the fractional portion of R. For this example, FR = 0.25.
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3. Find the scores with Rank Ir and with Rank Ir + 1. For this example, this means

the score with Rank 2 and the score with Rank 3. The scores are 5 and 7.

4. Interpolate by multiplying the difference between the scores by Fr and add the
result to the lower score. For these data, this is (0.25)(7 - 5)+5=5.5.

Therefore, the 25th percentile is 5.5. If we had used the first definition (the smallest
score greater than 25% of the scores), the 25th percentile would have been 7. If we

had used the second definition (the smallest score greater than or equal to 25% of
the scores), the 25th percentile would have been 5.
For a second example, consider the 20 quiz scores shown in Table 2.

Table 2. 20 Quiz Scores.

Score

Rank

© © 000 N N NOO O O oo ;v b

©

10
10
10

0 N O o~ WN -

N ) A A ama A A a A =
O ©W 0o NOoO b~ WDN -~ O ©

We will compute the 25th and the 85th percentiles. For the 25th,

25 21
R=—-x(20+1)=—=525

100
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IR=5and FR = 0.25.

Since the score with a rank of IR (which is 5) and the score with a rank of IR + 1
(which is 6) are both equal to 5, the 25th percentile is 5. In terms of the formula:

25th percentile = (.25) x (5-5) + 5= 5.

For the 85th percentile,

85
R=—+-X(2 1) =17.
100 (20+1) 85

IR=17and FR =0.85

Caution: FR does not generally equal the percentile to be
computed as it does here.

The score with a rank of 17 is 9 and the score with a rank of 18 is 10. Therefore,
the 85th percentile is:

(0.85)(10-9) + 9 = 9.85

Consider the 50th percentile of the numbers 2,3, 5,9.

R = >0 Xx(4+1)=25
100 T

IR=2and FR =0.5.

The score with a rank of IR is 3 and the score with a rank of IR + 1 is 5. Therefore,
the 50th percentile is:

(0.5)(5-3) +3=4.

Finally, consider the 50th percentile of the numbers 2,3,5,9, 11.

R = >0 x(5+1)=3
100 B

IR=3and FR = 0.
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Whenever FR =0, you simply find the number with rank IR. In this case, the third
number is equal to 5, so the 50th percentile is 5. You will also get the right answer
if you apply the general formula:

50th percentile = (0.00) (9 - 5) + 5= 5.
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Levels of Measurement
by Dan Osherson and David M. Lane

Prerequisites
e Chapter 1: Variables

Learning Objectives

1. Define and distinguish among nominal, ordinal, interval, and ratio scales

2. ldentify a scale type

3. Discuss the type of scale used in psychological measurement

4. Give examples of errors that can be made by failing to understand the proper
use of measurement scales

Types of Scales

Before we can conduct a statistical analysis, we need to measure our dependent
variable. Exactly how the measurement is carried out depends on the type of
variable involved in the analysis. Different types are measured differently. To
measure the time taken to respond to a stimulus, you might use a stop watch. Stop
watches are of no use, of course, when it comes to measuring someone's attitude
towards a political candidate. A rating scale is more appropriate in this case (with
labels like “very favorable,” “somewhat favorable,” etc.). For a dependent variable
such as “favorite color,” you can simply note the color-word (like “red”) that the
subject offers.

Although procedures for measurement differ in many ways, they can be
classified using a few fundamental categories. In a given category, all of the
procedures share some properties that are important for you to know about. The
categories are called “scale types,” or just “scales,” and are described in this
section.

Nominal scales

When measuring using a nominal scale, one simply names or categorizes
responses. Gender, handedness, favorite color, and religion are examples of
variables measured on a nominal scale. The essential point about nominal scales is
that they do not imply any ordering among the responses. For example, when
classifying people according to their favorite color, there is no sense in which
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green is placed “ahead of”” blue. Responses are merely categorized. Nominal scales
embody the lowest level of measurement.

Ordinal scales

A researcher wishing to measure consumers' satisfaction with their microwave
ovens might ask them to specify their feelings as either “very dissatisfied,”
“somewhat dissatisfied,” “somewhat satisfied,” or “very satisfied.” The items in
this scale are ordered, ranging from least to most satisfied. This is what
distinguishes ordinal from nominal scales. Unlike nominal scales, ordinal scales
allow comparisons of the degree to which two subjects possess the dependent
variable. For example, our satisfaction ordering makes it meaningful to assert that
one person is more satisfied than another with their microwave ovens. Such an
assertion reflects the first person's use of a verbal label that comes later in the list
than the label chosen by the second person.

On the other hand, ordinal scales fail to capture important information that
will be present in the other scales we examine. In particular, the difference between
two levels of an ordinal scale cannot be assumed to be the same as the difference
between two other levels. In our satisfaction scale, for example, the difference
between the responses “very dissatisfied” and “somewhat dissatisfied” is probably
not equivalent to the difference between “somewhat dissatisfied” and “somewhat
satisfied.” Nothing in our measurement procedure allows us to determine whether
the two differences reflect the same difference in psychological satisfaction.
Statisticians express this point by saying that the differences between adjacent
scale values do not necessarily represent equal intervals on the underlying scale
giving rise to the measurements. (In our case, the underlying scale is the true
feeling of satisfaction, which we are trying to measure.)

What if the researcher had measured satisfaction by asking consumers to
indicate their level of satisfaction by choosing a number from one to four? Would
the difference between the responses of one and two necessarily reflect the same
difference in satisfaction as the difference between the responses two and three?
The answer is No. Changing the response format to numbers does not change the
meaning of the scale. We still are in no position to assert that the mental step from
1 to 2 (for example) is the same as the mental step from 3 to 4.
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Interval scales

Interval scales are numerical scales in which intervals have the same interpretation
throughout. As an example, consider the Fahrenheit scale of temperature. The
difference between 30 degrees and 40 degrees represents the same temperature
difference as the difference between 80 degrees and 90 degrees. This is because
each 10-degree interval has the same physical meaning (in terms of the kinetic
energy of molecules).

Interval scales are not perfect, however. In particular, they do not have a true
zero point even if one of the scaled values happens to carry the name “zero.” The
Fahrenheit scale illustrates the issue. Zero degrees Fahrenheit does not represent
the complete absence of temperature (the absence of any molecular kinetic energy).
In reality, the label “zero” is applied to its temperature for quite accidental reasons
connected to the history of temperature measurement. Since an interval scale has
no true zero point, it does not make sense to compute ratios of temperatures. For
example, there is no sense in which the ratio of 40 to 20 degrees Fahrenheit is the
same as the ratio of 100 to 50 degrees; no interesting physical property is preserved
across the two ratios. After all, if the “zero” label were applied at the temperature
that Fahrenheit happens to label as 10 degrees, the two ratios would instead be 30
to 10 and 90 to 40, no longer the same! For this reason, it does not make sense to
say that 80 degrees is “twice as hot” as 40 degrees. Such a claim would depend on
an arbitrary decision about where to “start” the temperature scale, namely, what
temperature to call zero (whereas the claim is intended to make a more
fundamental assertion about the underlying physical reality).

Ratio scales

The ratio scale of measurement is the most informative scale. It is an interval scale
with the additional property that its zero position indicates the absence of the
quantity being measured. You can think of a ratio scale as the three earlier scales
rolled up in one. Like a nominal scale, it provides a name or category for each
object (the numbers serve as labels). Like an ordinal scale, the objects are ordered
(in terms of the ordering of the numbers). Like an interval scale, the same
difference at two places on the scale has the same meaning. And in addition, the
same ratio at two places on the scale also carries the same meaning.

The Fahrenheit scale for temperature has an arbitrary zero point and is
therefore not a ratio scale. However, zero on the Kelvin scale is absolute zero. This
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makes the Kelvin scale a ratio scale. For example, if one temperature is twice as
high as another as measured on the Kelvin scale, then it has twice the kinetic
energy of the other temperature.

Another example of a ratio scale is the amount of money you have in your
pocket right now (25 cents, 55 cents, etc.). Money is measured on a ratio scale
because, in addition to having the properties of an interval scale, it has a true zero
point: if you have zero money, this implies the absence of money. Since money has
a true zero point, it makes sense to say that someone with 50 cents has twice as
much money as someone with 25 cents (or that Bill Gates has a million times more
money than you do).

What level of measurement is used for psychological variables?

Rating scales are used frequently in psychological research. For example,
experimental subjects may be asked to rate their level of pain, how much they like
a consumer product, their attitudes about capital punishment, their confidence in an
answer to a test question. Typically these ratings are made on a 5-point or a 7-point
scale. These scales are ordinal scales since there is no assurance that a given
difference represents the same thing across the range of the scale. For example,
there is no way to be sure that a treatment that reduces pain from a rated pain level
of 3 to a rated pain level of 2 represents the same level of relief as a treatment that
reduces pain from a rated pain level of 7 to a rated pain level of 6.

In memory experiments, the dependent variable is often the number of items
correctly recalled. What scale of measurement is this? You could reasonably argue
that it is a ratio scale. First, there is a true zero point; some subjects may get no
items correct at all. Moreover, a difference of one represents a difference of one
item recalled across the entire scale. It is certainly valid to say that someone who
recalled 12 items recalled twice as many items as someone who recalled only 6
items.

But number-of-items recalled is a more complicated case than it appears at
first. Consider the following example in which subjects are asked to remember as
many items as possible from a list of 10. Assume that (a) there are 5 easy items and
5 difficult items, (b) half of the subjects are able to recall all the easy items and
different numbers of difficult items, while (c) the other half of the subjects are
unable to recall any of the difficult items but they do remember different numbers
of easy items. Some sample data are shown below.
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Subject Easy Items Difficult ltems Score

A 0 0 1 1 0 0 0 0 0 0 2
B 1 0 1 1 0 0 0 0 0 0 3
C 1 1 1 1 1 1 1 0 0 0 7

D 1 1 1 1 1 0 1 1 0 1 8

Let's compare (i) the difference between Subject A's score of 2 and Subject B's
score of 3 and (i1) the difference between Subject C's score of 7 and Subject D's
score of 8. The former difference is a difference of one easy item; the latter
difference is a difference of one difficult item. Do these two differences necessarily
signify the same difference in memory? We are inclined to respond “No” to this
question since only a little more memory may be needed to retain the additional
easy item whereas a lot more memory may be needed to retain the additional hard
item. The general point is that it is often inappropriate to consider psychological
measurement scales as either interval or ratio.

Consequences of level of measurement

Why are we so interested in the type of scale that measures a dependent variable?
The crux of the matter is the relationship between the variable's level of
measurement and the statistics that can be meaningfully computed with that
variable. For example, consider a hypothetical study in which 5 children are asked
to choose their favorite color from blue, red, yellow, green, and purple. The
researcher codes the results as follows:

Color Code

Blue
Red
Yellow
Green
Purple

a b~ WODN -

This means that if a child said her favorite color was “Red,” then the choice was
coded as “2,” if the child said her favorite color was “Purple,” then the response
was coded as 5, and so forth. Consider the following hypothetical data:
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Subject Color Code

Blue
Blue
Green
Green
Purple

a b~ WODN -
(&) I N A

Each code is a number, so nothing prevents us from computing the average code
assigned to the children. The average happens to be 3, but you can see that it would
be senseless to conclude that the average favorite color is yellow (the color with a
code of 3). Such nonsense arises because favorite color is a nominal scale, and
taking the average of its numerical labels is like counting the number of letters in
the name of a snake to see how long the beast is.

Does it make sense to compute the mean of numbers measured on an ordinal
scale? This is a difficult question, one that statisticians have debated for decades.
The prevailing (but by no means unanimous) opinion of statisticians is that for
almost all practical situations, the mean of an ordinally-measured variable is a
meaningful statistic. However, there are extreme situations in which computing the
mean of an ordinally-measured variable can be very misleading.
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Distributions
by David M. Lane and Heidi Ziemer

Prerequisites
e Chapter 1: Variables

Learning Objectives

Define “distribution”

Interpret a frequency distribution

Distinguish between a frequency distribution and a probability distribution
Construct a grouped frequency distribution for a continuous variable
Identify the skew of a distribution

Identify bimodal, leptokurtic, and platykurtic distributions

AN B W N

Distributions of Discrete Variables

I recently purchased a bag of Plain M&M's. The M&M's were in six different
colors. A quick count showed that there were 55 M&M's: 17 brown, 18 red, 7
yellow, 7 green, 2 blue, and 4 orange. These counts are shown below in Table 1.

Table 1. Frequencies in the Bag of M&M's

Color Frequency
Brown 17
Red 18
Yellow 7
Green 7
Blue 2
Orange 4

This ta