
GeeksForGeeks Operating Systems Lecture Notes

From: https://www.geeksforgeeks.org/operating-systems/


Basics



						 Introduction of Operating System – Set 1

				
						

				
			An operating system acts as an intermediary between the user of a computer and computer hardware. The purpose of an operating system is to provide an environment in which a user can execute programs in a convenient and efficient manner.

An operating system is software that manages the computer hardware. The hardware must provide appropriate mechanisms to ensure the correct operation of the computer system and to prevent user programs from interfering with the proper operation of the system.

Operating System – Definition:


	An operating system is a program that controls the execution of application programs and acts as an interface between the user of a computer and the computer hardware.

	A more common definition is that the operating system is the one program running at all times on the computer (usually called the kernel), with all else being application programs.

	An operating system is concerned with the allocation of resources and services, such as memory, processors, devices and information. The operating system correspondingly includes programs to manage these resources, such as a traffic controller, a scheduler, memory management module, I/O programs, and a file system.



Functions of Operating system – Operating system performs three functions:


	Convenience: An OS makes a computer more convenient to use.

	Efficiency: An OS allows the computer system resources to be used in an efficient manner.

	Ability to Evolve: An OS should be constructed in such a way as to permit the effective development, testing and introduction of new system functions without at the same time interfering with service.



Operating system as User Interface –



        
          
          
          
        

            

	User

	System and application programs

	Operating system

	Hardware



Every general purpose computer consists of the hardware, operating system, system programs, and application programs. The hardware consists of memory, CPU, ALU, and I/O devices, peripheral device and storage device. System program consists of compilers, loaders, editors, OS etc. The application program consists of business program, database programs.

[image: ]



Fig1: Conceptual view of a computer system


Every computer must have an operating system to run other programs. The operating system and coordinates the use of the hardware among the various system programs and application programs for a various users. It simply provides an environment within which other programs can do useful work.

The operating system is a set of special programs that run on a computer system that allows it to work properly. It performs basic tasks such as recognizing input from the keyboard, keeping track of files and directories on the disk, sending output to the display screen and controlling peripheral devices.

OS is designed to serve two basic purposes:


	It controls the allocation and use of the computing System’s resources among the various user and tasks.

	It provides an interface between the computer hardware and the programmer that simplifies and makes feasible for coding, creation, debugging of application programs.



The Operating system must support the following tasks. The task are:


	Provides the facilities to create, modification of programs and data files using and editor.

	Access to the compiler for translating the user program from high level language to machine language.

	Provide a loader program to move the compiled program code to the computer’s memory for execution.

	Provide routines that handle the details of I/O programming.



I/O System Management –

The module that keeps track of the status of devices is called the I/O traffic controller. Each I/O device has a device handler that resides in a separate process associated with that device.

The I/O subsystem consists of


	A memory Management component that includes buffering caching and spooling.

	A general device driver interface.



Drivers for specific hardware devices.

Assembler –

Input to an assembler is an assembly language program. Output is an object program plus information that enables the loader to prepare the object program for execution. At one time, the computer programmer had at his disposal a basic machine that interpreted, through hardware, certain fundamental instructions. He would program this computer by writing a series of ones and Zeros (Machine language), place them into the memory of the machine.

Compiler –

 The High level languages- examples are FORTRAN, COBAL, ALGOL and PL/I are processed by compilers and interpreters. A compiler is a program that accepts a source program in a “high-level language “and produces a corresponding object program. An interpreter is a program that appears to execute a source program as if it was machine language. The same name (FORTRAN, COBAL etc.) is often used designate both a compiler and its associated language.

Loader –

A Loader is a routine that loads an object program and prepares it for execution. There are various loading schemes: absolute, relocating and direct-linking. In general, the loader must load, relocate and link the object program. Loader is a program that places programs into memory and prepares them for execution. In a simple loading scheme, the assembler outputs the machine language translation of a program on a secondary devices and a loader is places in core. The loader places into memory the machine language version of the user’s program and transfers control to it. Since the loader program is much smaller than the assembler, those makes more core available to user’s program.

History of Operating system –

 Operating system has been evolving through the years. Following Table shows the history of OS.



	Generation
	Year
	Electronic device used
	Types of OS Device



	First
	1945-55
	Vaccum Tubes
	Plug Boards



	Secondt
	1955-65
	Transistors
	Batch Systems



	Third
	1965-80
	Integerated Circuits(IC)
	Multiprogramming



	Fourth
	Since 1980
	Large Scale Integration
	PC





Types of Operating System –


	Batch Operating System- Sequence of jobs in a program on a computer without manual interventions.

	Time sharing operating System- allows many users to share the computer resources.(Max utilization of the resources).

	Distributed operating System- Manages a group of different computers and make appear to be a single computer.

	Network operating system- computers running in different operating system can participate in common network (It is used for security purpose).

	Real time operating system – meant applications to fix the deadlines.



Examples of Operating System are –


	Windows  operating System (GUI based, PC)

	Linux  operating System (Personal workstations, ISP,File and print server, Three-tier client/Server)

	MAC  Operating System (Macintosh), used for personal computers and work stations.

	Android operating System (used in mobile applications)




References –

Operating System Concepts – Book

Introduction to Operating System – NPTEL



          
          
          
            

This article is contributed by Aluka Madhavi. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Types of Operating Systems

				
						

				
			An Operating System performs all the basic tasks like managing file,process, and memory. Thus operating system acts as manager of all the resources, i.e. resource manager. Thus operating system becomes an interface between user and machine.

Types of Operating Systems: Some of the widely used operating systems are as follows-

1. Batch Operating System –

This type of operating system do not interact with the computer directly. There is an operator which takes similar jobs having same requirement and group them into batches. It is the responsibility of operator to sort the jobs with similar needs.



        Advantages of Batch Operating System:



        
          
          
          
        

            

	It is very difficult to guess or know the time required by any job to complete. Processors of the batch systems knows how long the job would be when it is in queue

	Multiple users can share the batch systems

	The idle time batch system is very less

	It is easy to manage large work repeatedly in batch systems



        Disadvantages of Batch Operating System:


	The computer operators should be well known with batch systems

	Batch systems are hard to debug

	It is sometime costly

	The other jobs will have to wait for an unknown time if any job fails



Examples of Batch based Operating System: Payroll System, Bank Statements etc.

2. Time-Sharing Operating Systems –

Each task has given some time to execute, so that all the tasks work smoothly. Each user gets time of CPU as they use single system. These systems are also known as Multitasking Systems. The task can be from single user or from different users also. The time that each task gets to execute is called quantum. After this time interval is over OS switches over to next task.



Advantages of Time-Sharing OS: 


	Each task gets an equal opportunity

	Less chances of duplication of software

	CPU idle time can be reduced



Disadvantages of Time-Sharing OS:


	Reliability problem

	One must have to take care of security and integrity of user programs and data

	Data communication problem



Examples of Time-Sharing OSs are: Multics, Unix etc.

3. Distributed Operating System –

These types of operating system is a recent advancement in the world of computer technology and are being widely accepted all-over the world and, that too, with a great pace. Various autonomous interconnected computers communicate each other using a shared communication network. Independent systems possess their own memory unit and CPU. These are referred as loosely coupled systems or distributed systems. These systems processors differ in sizes and functions. The major benefit of working with these types of operating system is that it is always possible that one user can access the files or software which are not actually present on his system but on some other system connected within this network i.e., remote access is enabled within the devices connected in that network.



Advantages of Distributed Operating System:


	Failure of one will not affect the other network communication, as all systems are independent from each other

	Electronic mail increases the data exchange speed

	Since resources are being shared, computation is highly fast and durable

	Load on host computer reduces

	These systems are easily scalable as many systems can be easily added to the network

	Delay in data processing reduces



Disadvantages of Distributed Operating System:


	Failure of the main network will stop the entire communication

	To establish distributed systems the language which are used are not well defined yet

	These types of systems are not readily available as they are very expensive. Not only that the underlying software is highly complex and not understood well yet



Examples of Distributed Operating System are- LOCUS etc.

4. Network Operating System –

These systems runs on a server and provides the capability to manage data, users, groups, security, applications, and other networking functions. These type of operating systems allows shared access of files, printers, security, applications, and other networking functions over a small private network. One more important aspect of Network Operating Systems is that all the users are well aware of the underlying configuration, of all other users within the network, their individual connections etc. and that’s why these computers are popularly known as tightly coupled systems.



Advantages of Network Operating System:


	Highly stable centralized servers

	Security concerns are handled through servers

	New technologies and hardware up-gradation are easily integrated to the system

	Server access are possible remotely from different locations and types of systems



Disadvantages of Network Operating System:


	Servers are costly

	User has to depend on central location for most operations

	Maintenance and updates are required regularly



Examples of Network Operating System are: Microsoft Windows Server 2003, Microsoft Windows Server 2008, UNIX, Linux, Mac OS X, Novell NetWare, and BSD etc.

5. Real-Time Operating System –

These types of OSs serves the real-time systems. The time interval required to process and respond to inputs is very small. This time interval is called response time.

Real-time systems are used when there are time requirements are very strict like missile systems, air traffic control systems, robots etc.

Two types of Real-Time Operating System which are as follows:


	Hard Real-Time Systems:

These OSs are meant for the applications where time constraints are very strict and even the shortest possible delay is not acceptable. These systems are built for saving life like automatic parachutes or air bags which are required to be readily available in case of any accident. Virtual memory is almost never found in these systems.

	Soft Real-Time Systems:

These OSs are for applications where for time-constraint is less strict.





Advantages of RTOS:


	Maximum Consumption: Maximum utilization of devices and system,thus more output from all the resources 

	Task Shifting: Time assigned for shifting tasks in these systems are very less. For example in older systems it takes about 10 micro seconds in shifting one task to another and in latest systems it takes 3 micro seconds.

	Focus on Application: Focus on running applications and less importance to applications which are in queue.

	Real time operating system in embedded system: Since size of programs are small, RTOS can also be used in embedded systems like in transport and others.

	Error Free: These types of systems are error free.

	Memory Allocation: Memory allocation is best managed in these type of systems.



Disadvantages of RTOS:


	Limited Tasks: Very few task run at the same time and their concentration is very less on few applications to avoid errors.

	Use heavy system resources: Sometimes the system resources are not so good and they are expensive as well.

	Complex Algorithms: The algorithms are very complex and difficult fro the designer to write on.

	Device driver and interrupt signals: It needs specific device drivers and interrupt signals to response earliest to interrupts.

	Thread Priority: It is not good to set thread priority as these systems are very less pron to switching tasks.

Examples of Real-Time Operating Systems are: Scientific experiments, medical imaging systems, industrial control systems, weapon systems, robots, air traffic control systems, etc.



          
          
          
            



akash1295

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	





						 Real time systems

				
						

				
			Real time system means that the system is subjected to real time, i.e., response should be guaranteed within a specified timing constraint or system should meet the specified deadline. For example: flight control system, real time monitors etc. 

Types of real time systems based on timing constraints:


	Hard real time system –

This type of sytem can never miss its deadline. Missing the deadline may have disastrous consequences.The usefulness of result produced by a hard real time system decreases abruptly and may become negative if tardiness increases. Tardiness means how late a real time system completes its task with respect to its deadline. Example: Flight controller system.



	Soft real time system –

This type of system can miss its deadline occasionally with some acceptably low probability. Missing the deadline have no disastrous consequences. The usefulness of result produced by a soft real time system decreases gradually with increase in tardiness. Example: Telephone switches.




Reference model of real time system: Our reference model is characterized by three elements:


	A workload model: It specifies the application supported by system.


	A resource model: It specifies the resources available to the application.


	Algorithms: It specifies how the application system will use resources.




Terms related to real time system:


	Job – A job is a small piece of work that can be assigned to a processor and may or may not require resources.


	Task – A set of related jobs that jointly provide some system functionality.


	Release time of a job – It is the time at which job becomes ready for execution.


	Execution time of a job – It is the time taken by  job to finish its execution.


	Deadline of a job – It is the time by which a job should finish its execution. Deadline is of two types: absolute deadline and relative deadline.


	Response time of a job – It is the length of time from release time of a job to the instant when it finishes.


	Maximum allowable response time of a job is called its relative deadline.


	Absolute deadline of a job is equal to its relative deadline plus its release time.


	Processors are also known as active resources. They are essential for execution of a job. A job must have one or more processors in order to execute and proceed towards completion. Example: computer, transmission links.


	Resources are also known as passive resources. A job may or may not require a resource during its execution. Example: memory, mutex


	Two resources are identical if they can be used interchangeably else they are heterogeneous.






          
          
          
            



priyanka dahiya

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Difference between multitasking, multithreading and multiprocessing

				
						

				
			
	Multiprogramming – A computer running more than one program at a time (like running Excel and Firefox simultaneously).

	Multiprocessing – A computer using more than one CPU at a time.

	Multitasking – Tasks sharing a common resource (like 1 CPU).

	Multithreading is an extension of multitasking.



1. Multi programming –

In a modern computing system, there are usually several concurrent application processes which want to execute. Now it is the responsibility of the Operating System to manage all the processes effectively and efficiently.

One of the most important aspects of an Operating System is to multi program.

In a computer system, there are multiple processes waiting to be executed, i.e. they are waiting when the CPU will be allocated to them and they begin their execution. These processes are also known as jobs. Now the main memory is too small to accommodate all of these processes or jobs into it. Thus, these processes are initially kept in an area called job pool. This job pool consists of all those processes awaiting allocation of main memory and CPU.

CPU selects one job out of all these waiting jobs, brings it from the job pool to main memory and starts executing it. The processor executes one job until it is interrupted by some external factor or it goes for an I/O task.

Non-multi programmed system’s working –


	In a non multi programmed system, As soon as one job leaves the CPU and goes for some other task (say I/O ), the CPU becomes idle. The CPU keeps waiting and waiting until this job (which was executing earlier) comes back and resumes its execution with the CPU. So CPU remains free for all this while.

	Now it has a drawback that the CPU remains idle for a very long period of time. Also, other jobs which are waiting to be executed might not get a chance to execute because the CPU is still allocated to the earlier job.

This poses a very serious problem that even though other jobs are ready to execute, CPU is not allocated to them as the CPU is allocated to a job which is not even utilizing it (as it is busy in I/O tasks).

	It cannot happen that one job is using the CPU for say 1 hour while the others have been waiting in the queue for 5 hours. To avoid situations like this and come up with efficient utilization of CPU, the concept of multi programming came up.



The main idea of multi programming is to maximize the CPU time.

Multi programmed system’s working –


	In a multi-programmed system, as soon as one job goes for an I/O task, the Operating System interrupts that job, chooses another job from the job pool (waiting queue), gives CPU to this new job and starts its execution. The previous job keeps doing its I/O operation while this new job does CPU bound tasks. Now say the second job also goes for an I/O task, the CPU chooses a third job and starts executing it. As soon as a job completes its I/O operation and comes back for CPU tasks, the CPU is allocated to it.

	In this way, no CPU time is wasted by the system waiting for the I/O task to be completed.

Therefore, the ultimate goal of multi programming is to keep the CPU busy as long as there are processes ready to execute. This way, multiple programs can be executed on a single processor by executing a part of a program at one time, a part of another program after this, then a part of another program and so on, hence executing multiple programs. Hence, the CPU never remains idle.



In the image below, program A runs for some time and then goes to waiting state. In the mean time program B begins its execution. So the CPU does not waste its resources and gives program B an opportunity to run.





        
          
          
          
        

            
2. Multiprocessing –

In a uni-processor system, only one process executes at a time.

Multiprocessing is the use of two or more CPUs (processors) within a single Computer system. The term also refers to the ability of a system to support more than one processor within a single computer system. Now since there are multiple processors available, multiple processes can be executed at a time. These multi processors share the computer bus, sometimes the clock, memory and peripheral devices also.

Multi processing system’s working –


	With the help of multiprocessing, many processes can be executed simultaneously. Say processes P1, P2, P3 and P4 are waiting for execution. Now in a single processor system, firstly one process will execute, then the other, then the other and so on.

	But with multiprocessing, each process can be assigned to a different processor for its execution. If its a dual-core processor (2 processors), two processes can be executed simultaneously and thus will be two times faster, similarly a quad core processor will be four times as fast as a single processor. 



Why use multi processing –


	The main advantage of multiprocessor system is to get more work done in a shorter period of time. These types of systems are used when very high speed is required to process a large volume of data. Multi processing  systems can save money in comparison to single processor systems because the processors can share peripherals and power supplies.

	It also provides increased reliability in the sense that if one processor fails, the work does not halt, it only slows down. e.g. if we have 10 processors and 1 fails, then the work does not halt, rather the remaining 9 processors can share the work of the 10th processor.  Thus the whole system runs only 10 percent slower, rather than failing altogether.





Multiprocessing refers to the hardware (i.e., the CPU units) rather than the software (i.e., running processes). If the underlying hardware provides more than one processor then that is multiprocessing.

Difference between Multi programming and Multi processing –


	A System can be both multi programmed by having multiple programs running at the same time and multiprocessing by having more than one physical processor.  The difference between multiprocessing and multi programming is that Multiprocessing is basically executing multiple processes at the same time on multiple processors, whereas multi programming is keeping several programs in main memory and executing them concurrently using a single CPU only.

	Multiprocessing occurs by means of parallel processing whereas Multi programming occurs by switching from one process to other (phenomenon called as context switching).



3. Multitasking –

As the name itself suggests, multi tasking refers to execution of multiple tasks (say processes, programs, threads etc.) at a time. In the modern operating systems, we are able to play MP3 music, edit documents in Microsoft Word, surf the Google Chrome all simultaneously, this is accomplished by means of multi tasking.

Multitasking is a logical extension of multi programming. The major way in which multitasking differs from multi programming is that multi programming works on the concept of context switching whereas multitasking is solely based on time sharing systems.

Multi tasking system’s working –


	In a time sharing system, each process is assigned some specific quantum of time for which a process is meant to execute. Say there are 4 processes P1, P2, P3, P4 ready to execute. So each of them are assigned some time quantum for which they will execute e.g time quantum of 5 nanoseconds (5 ns). As one process begins execution (say P2), it executes for that quantum of time (5 ns). After 5 ns the CPU starts the execution of the other process (say P3) for the specified quantum of time.

	Thus the CPU makes the processes to share time slices between them and execute accordingly. As soon as time quantum of one process expires, another process begins its execution. 

	Here also basically a context switch is occurring but it is occurring so fast that the user is able to interact with each program separately while it is running. This way, the user is given the illusion that multiple processes/ tasks are executing simultaneously. But actually only one process/ task is executing at a particular instant of time. In multitasking, time sharing is best manifested because each running process takes only a fair quantum of the CPU time.



In a more general sense, multitasking refers to having multiple programs, processes, tasks, threads running at the same time. This term is used in modern operating systems when multiple tasks share a common processing resource (e.g., CPU and Memory).




	As depicted in the above image, At any time the CPU is executing only one task while other tasks are waiting for their turn. The illusion of parallelism is achieved when the CPU is reassigned to another task. i.e all the three tasks A, B and C are appearing to occur simultaneously because of time sharing. 

	So for multitasking to take place, firstly there should be multiprogramming i.e. presence of multiple programs ready for execution. And secondly the concept of time sharing.



4. Multi threading –

A thread is a basic unit of CPU utilization. Multi threading is an execution model that allows a single process to have multiple code segments (i.e., threads) running concurrently within the “context” of that process.

e.g. VLC media player, where one thread is used for opening the VLC media player, one thread for playing a particular song and another thread for adding new songs to the playlist.

Multi threading is the ability of a process to manage its use by more than one user at a time and to manage multiple requests by the same user without having to have multiple copies of the program.

Multi threading system’s working –

Example 1 –


	Say there is a web server which processes client requests. Now if it executes as a single threaded process, then it will not be able to process multiple requests at a time. Firstly one client will make its request and finish its execution and only then, the server will be able to process another client request. This is really costly, time consuming and tiring task. To avoid this, multi threading can be made use of.

	Now, whenever a new client request comes in, the web server simply creates a new thread for processing this request and resumes its execution to hear more client requests. So the web server has the task of listening to new client requests and creating threads for each individual request. Each newly created thread processes one client request, thus reducing the burden on web server.



Example 2 –


	We can think of threads as child processes that share the parent process resources but execute independently. Now take the case of a GUI. Say we are performing a calculation on the GUI (which is taking very long time to finish). Now we can not interact with the rest of the GUI until this command finishes its execution. To be able to interact with the rest of the GUI, this command of calculation should be assigned to a separate thread. So at this point of time, 2 threads will be executing i.e. one for calculation, and one for the rest of the GUI. Hence here in a single process, we used multiple threads for multiple functionality.



The image below completely describes the VLC player example:



Advantages of Multi threading –


	Benefits of Multi threading include increased responsiveness. Since there are multiple threads in a program, so if one thread is taking too long to execute or if it gets blocked, the rest of the threads keep executing without any problem. Thus the whole program remains responsive to the user by means of remaining threads.

	Another advantage of multi threading is that it is less costly. Creating brand new processes and allocating resources is a time consuming task, but since threads share resources of the parent process, creating threads and switching between them is comparatively easy. Hence multi threading is the need of modern Operating Systems.





          
          
          
            


					
		
		Difference Between
GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						Types of computer memory (RAM and ROM)

				
						

				
			Memory is the best essential element of a computer because computer can’t perform simple tasks. Computer memory is of two basic type – Primary memory / Volatile memory and Secondary memory / non-volatile memory. Random Access Memory (RAM) is volatile memory and Read Only Memory (ROM) is non-volatile memory.

[image: ]

1. Random Access Memory (RAM) –


	It is also called as read write memory or the main memory or the primary memory.

	The programs and data that the CPU requires during execution of a program are stored in this memory.

	It is a volatile memory as the data loses when the power is turned off.

	RAM is further classified into two types- SRAM (Static Random Access Memory) and DRAM (Dynamic Random Access Memory).



[image: ]

2. Read Only Memory (ROM) –


	Stores crucial information essential to operate the system, like the program essential to boot the computer.

	It is not volatile.

	Always retains its data.

	Used in embedded systems or where the programming needs no change.

	Used in calculators and peripheral devices.

	ROM is further classified into 4 types- ROM, PROM, EPROM, and EEPROM.




Types of Read Only Memory (ROM) –


	PROM (Programmable read-only memory) – It can be programmed by user. Once programmed, the data and instructions in it cannot be changed.


	EPROM (Erasable Programmable read only memory) – It can be reprogrammed. To erase data from it, expose it to ultra violet light. To reprogram it, erase all the previous data.


	EEPROM (Electrically erasable programmable read only memory) – The data can be erased by applying electric field, no need of ultra violet light. We can erase only portions of the chip.




[image: ]



          
          
          
            



Deepanshi_Mittal

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		Computer Organization & Architecture
GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						Difference between 32-bit and 64-bit operating systems

				
						

				
			In computing, there exist two type processor i.e., 32-bit and 64-bit. These processor tells us how much memory a processor can have access from a CPU register. For instance,

A 32-bit system can access 232 memory addresses, i.e 4 GB of RAM or physical memory.

A 64-bit system can access 264 memory addresses, i.e actually 18-Billion GB of RAM. In short, any amount of memory greater than 4 GB can be easily handled by it.



Most computers made in the 1990s and early 2000s were 32-bit machines. The CPU register stores memory addresses, which is how the processor accesses data from RAM. One bit in the register can reference an individual byte in memory, so a 32-bit system can address a maximum of 4 GB (4,294,967,296 bytes) of RAM. The actual limit is often less around 3.5 GB, since part of the register is used to store other temporary values besides memory addresses. Most computers released over the past two decades were built on a 32-bit architecture, hence most operating systems were designed to run on a 32-bit processor.

A 64-bit register can theoretically reference 18,446,744,073,709,551,616 bytes, or 17,179,869,184 GB (16 exabytes) of memory. This is several million times more than an average workstation would need to access. What’s important is that a 64-bit computer (which means it has a 64-bit processor) can access more than 4 GB of RAM. If a computer has 8 GB of RAM, it better have a 64-bit processor. Otherwise, at least 4 GB of the memory will be inaccessible by the CPU.

A major between 32-bit processors and 64-bit processors is the number of calculations per second they can perform, which affects the speed at which they can complete tasks. 64-bit processors can come in dual core, quad core, six core, and eight core versions for home computing. Multiple cores allow for an increased number of calculations per second that can be performed, which can increase the processing power and help make a computer run faster. Software programs that require many calculations to function smoothly can operate faster and more efficiently on the multi-core 64-bit processors, for the most part.



        
          
          
          
        

            
Advantages of 64-bit over 32-bit


	
    Using 64-bit one can do a lot in multi-tasking, user can easily switch between various applications without any windows hanging problems.


	
    Gamers can easily plays High graphical games like Modern Warfare, GTA V, or use high-end softwares like Photoshop or CAD which takes a lot of memory, since it makes multi-tasking with big softwares easy and efficient for users. However upgrading the video card instead of getting a 64-bit processor would be more beneficial.




Note:


	A computer with a 64-bit processor can have a 64-bit or 32-bit version of an operating system installed. However, with a 32-bit operating system, the 64-bit processor would not run at its full capability.

	
    On a computer with a 64-bit processor, we can’t run a 16-bit legacy program. Many 32-bit programs will work with a 64-bit processor and operating system, but some older 32-bit programs may not function properly, or at all, due to limited or no compatibility.




References: https://www.computerhope.com/issues/ch001498.htm



          
          
          
            



Shubham Bansal 13

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		Difference Between
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						What happens when we turn on computer?

				
						

				
			A computer without a program running is just an inert hunk of electronics. The first thing a computer has to do when it is turned on is start up a special program called an operating system. The operating system’s job is to help other computer programs to work by handling the messy details of controlling the computer’s hardware.

An overview of the boot process



[image: sequence]



The boot process is something that happens every time you turn your computer on. You don’t really see it, because it happens so fast. You press the power button come back a few minutes later and Windows XP, or Windows Vista, or whatever Operating System you use is all loaded.

The BIOS chip tells it to look in a fixed place, usually on the lowest-numbered hard disk (the boot disk) for a special program called a boot loader (under Linux the boot loader is called Grub or LILO). The boot loader is pulled into memory and started. The boot loader’s job is to start the real operating system.


Functions of BIOS



POST (Power On Self Test) The Power On Self Test happens each time you turn your computer on. It sounds complicated and thats because it kind of is. Your computer does so much when its turned on and this is just part of that.



It initializes the various hardware devices. It is an important process so as to ensure that all the devices operate smoothly without any conflicts. BIOSes following ACPI create tables describing the devices in the computer.



The POST first checks the bios and then tests the CMOS RAM. If there is no problems with this then POST continues to check the CPU, hardware devices such as the Video Card, the secondary storage devices such as the Hard Drive, Floppy Drives, Zip Drive or CD/DVD Drives.If some errors found then an error message is displayed on screen or a number of beeps are heard. These beeps are known as POST beep codes.

Master Boot Record



The Master Boot Record (MBR) is a small program that starts when the computer is booting, in order to find the operating system (eg. Windows XP). This complicated process (called the Boot Process) starts with the POST (Power On Self Test) and ends when the Bios searches for the MBR on the Hard Drive, which is generally located in the first sector, first head, first cylinder (cylinder 0, head 0, sector 1).



        
          
          
          
        

            
A typical structure looks like:





[image: mbr]





The bootstrap loader is stored in the master boot record (MBR) on the computer’s hard drive. When the computer is turned on or restarted, it first performs the power-on self-test, also known as POST. If the POST is successful and no issues are found, the bootstrap loader will load the operating system for the computer into memory. The computer will then be able to quickly access, load, and run the operating system.



init



init is the last step of the kernel boot sequence. It looks for the file /etc/inittab to see if there is an entry for initdefault. It is used to determine initial run-level of the system. A run-level is used to decide the initial state of the operating system.

Some of the run levels are:

Level

	0 –> System Halt 

	1 –> Single user mode

	3 –> Full multiuser mode with network

	5 –> Full multiuser mode with network and X display manager

	6 –> Reboot



The above design of init is called SysV- pronounced as System five. Several other implementations of init have been written now. Some of the popular implementatios are systemd and upstart. Upstart is being used by ubuntu since 2006. More details of the upstart can be found here.



The next step of init is to start up various daemons that support networking and other services. X server daemon is one of the most important daemon. It manages display, keyboard, and mouse. When X server daemon is started you see a Graphical Interface and a login screen is displayed.



References :

http://www.tldp.org/HOWTO/Unix-and-Internet-Fundamentals-HOWTO/bootup.html

https://www.computerhope.com/jargon/b/bootload.htm

http://www.dewassoc.com/kbase/hard_drives/master_boot_record.htm

This article is contributed by Saket Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		GBlog
Operating Systems
Technical Scripter
 OS Basics

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						UEFI(Unified Extensible Firmware Interface) and how is it different from BIOS

				
						

				
			The Unified Extensible Firmware Interface (UEFI), like BIOS (Basic Input Output System) is a firmware that runs when the computer is booted. It initializes the hardware and loads the operating system into the memory. However, being the more modern solution and overcoming various limitations of BIOS, UEFI is all set to replace the former.

But what makes BIOS outdated?

Present in all IBM PC-compatible personal computers, BIOS has been around since the late 1970s. Since then, it has incorporated some major improvements such as addition of a user interface, and advanced power management functions, which allow BIOS to easily configure the PCs and create better power management plans. Yet, it hasn’t advanced as much as the computer hardware and software technology since the 70s.

Limitations of BIOS


	BIOS can boot from drives of less than 2 TB. 3+ TB drives are now standard, and a system with a BIOS can’t boot from them.



	BIOS runs in 16-bit processor mode, and has only 1 MB space to execute.



	It can’t initialize multiple hardware devices at once, thus leading to slow booting process.




Difference between the Booting Process with UEFI and the Booting Process with BIOS





	Booting Process With BIOS : When BIOS begins it’s execution, it first goes for the Power-On Self Test (POST), which ensures that the hardware devices are functioning correctly. After that, it checks for the Master Boot Record in the first sector of the selected boot device. From the MBR, the location of the Boot-Loader is retrieved, which, after being loaded by BIOS into the computer’s RAM, loads the operating system into the main memory.



	Booting Process With UEFI : Unlike BIOS, UEFI doesn’t look for the MBR in the first sector of the Boot Device. It maintains a list of valid boot volumes called EFI Service Partitions. During the POST procedure the UEFI firmware scans all of the bootable storage devices that are connected to the system for a valid GUID Partition Table (GPT), which is an improvement over MBR. Unlike the MBR, GPT doesn’t contain a Boot-Loader. The firmware itself scans the GPT to find an EFI Service Partition to boot from, and directly loads the OS from the right partition. If it fails to find one, it goes back the BIOS-type Booting process called ‘Legacy Boot’.






Advantages of UEFI over BIOS





	Breaking Out Of Size Limitations : The UEFI firmware can boot from drives of 2.2 TB or larger with the theoretical upper limit being 9.4 zettabytes, which is roughly 3 times the size of the total information present on the Internet. This is due to the fact that GPT uses 64-bit entries in it’s table, thereby dramatically expanding the possible boot-device size.



	Speed and performance : UEFI can run in 32-bit or 64-bit mode and has more addressable address space than BIOS, which means your boot process is faster.



	More User-Friendly Interface : Since UEFI can run in 32-bit and 64-bit mode, it provides better UI configuration that has better graphics and also supports mouse cursor.



	Security: UEFI also provides the feature of Secure Boot. It allows only authentic drivers and services to load at boot time, to make sure that no malware can be loaded at computer startup. It also requires drivers and the Kernel to have digital signature, which makes it an effective tool in countering piracy and boot-sector malware.





UEFI doesn’t require a Boot-Loader, and can also operate alongside BIOS, supporting legacy boot, which in turn, makes it compatible with older operating systems. Intel plans to completely replace BIOS with UEFI, for all it’s chipsets, by 2020.



          
          
          
            



ParthDutt

Intern Technical Content Writing at GeeksforGeeks







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		Difference Between
GBlog
 Operating Systems

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	


System Structure



						 Microkernel

				
						

				
			Kernel is the core part of an operating system which manages system resources. It also acts like a bridge between application and hardware of the computer. It is one of the first programs loaded on start-up (after the Bootloader).

[image: ]

Kernel mode and User mode of CPU operation

(Thanks Sulbha Sharma for contributing this section)

The CPU can execute certain instruction only when it is in the kernel mode. These instruction are called privilege instruction. They allow implementation of special operation whose execution by the user program could interface with the functioning of operating system or activity of another user program. For example, instruction for managing memory protection.


	The operating system puts the CPU in kernel mode when it is executing in the kernel so, that kernel can execute some special operation.

	The operating system puts the CPU in user mode when a user program is in execution so, that user program cannot interface with the operating system program.

	User-level instruction does not require special privilege. Example are ADD,PUSH,etc.



[image: Transistion from user to kernel mode]



        
          
          
          
        

            
The concept of modes can be extended beyond two, requiring more than a single mode bit CPUs that support virtualization use one of these extra bits to indicate when the virtual machine manager, VMM, is in control of the system. The VMM has more privileges than ordinary user programs, but not so many as the full kernel.

System calls are typically implemented in the form of software interrupts, which causes the hardware’s interrupt handler to transfer control over to an appropriate interrupt handler, which is part of the operating system, switching the mode bit to kernel mode in the process. The interrupt handler checks exactly which interrupt was generated, checks additional parameters ( generally passed through registers ) if appropriate, and then calls the appropriate kernel service routine to handle the service requested by the system call.

User programs’ attempts to execute illegal instructions ( privileged or non-existent instructions ), or to access forbidden memory areas, also generate software interrupts, which are trapped by the interrupt handler and control is transferred to the OS, which issues an appropriate error message, possibly dumps data to a log ( core ) file for later analysis, and then terminates the offending program.

What is Microkernel?

Microkernel is one of the classification of the kernel. Being a kernel it manages all system resources. But in a microkernel, the user services and kernel services are implemented in different address space. The user services are kept in user address space, and kernel services are kept under kernel address space, thus also reduces the size of kernel and size of operating system as well.

[image: ]

It provides minimal services of process and memory management. The communication between client program/application and services running in user address space is established through message passing, reducing the speed of execution microkernel. The Operating System remains unaffected as user services and kernel services are isolated so if any user service fails it does not affect kernel service. Thus it adds to one of the advantages in a microkernel. It is easily extendable i.e. if any new services are to be added they are added to user address space and hence requires no modification in kernel space. It is also portable, secure and reliable.

Microkernel Architecture –

Since kernel is the core part of the operating system, so it is meant for handling the most important services only. Thus in this architecture only the most important services are inside kernel and rest of the OS services are present inside system application program. Thus users are able to interact with those not-so important services within the system application. And the microkernel is solely responsible for the most important services of operating system they are named as follows:


	Inter process-Communication

	Memory Management

	CPU-Scheduling



Advantages of Microkernel –


	The architecture of this kernel is small and isolated hence it can function better.

	Expansion of the system is easier, it is simply added in the system application without disturbing the kernel. 



Eclipse IDE is a good example of Microkernel Architecture.

Read next – Monolithic Kernel and key differences from Microkernel



          
          
          
            



akash1295

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Monolithic Kernel and key differences from Microkernel

				
						

				
			Apart from microkernel, Monolithic Kernel is another classification of Kernel. Like microkernel this one also manages system resources between application and hardware, but user services and kernel services are implemented under same address space. It increases the size of the kernel, thus increases size of operating system as well.

This kernel provides CPU scheduling, memory management, file management and other operating system functions through system calls. As both services are implemented under same address space, this makes operating system execution faster.

Below is the diagrammatic representation of Monolithic Kernel:

[image: ]

If any service fails the entire system crashes, and it is one of the drawbacks of this kernel. The entire operating system needs modification if user adds a new service. 



        
          
          
          
        

            
Advantages of Monolithic Kernel –


	One of the major advantage of having monolithic kernel is that it provides CPU scheduling, memory management, file management and other operating system functions through system calls.

	The other one is that it is a single large process running entirely in a single address space.

	It is a single static binary file. Example of some Monolithic Kernel based OSs are: Unix, Linux, Open VMS, XTS-400, z/TPF.



Disadvantages of Monolithic Kernel –


	One of the major disadvantage of monolithic kernel is that, if anyone service fails it leads to entire system failure.

	If user has to add any new service. User needs to modify entire operating system.



Key differences between Monolithic Kernel and Microkernel –

[image: ]



          
          
          
            



akash1295

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Introduction of System Call

				
						

				
			In computing, a system call is the programmatic way in which a computer program requests a service from the kernel of the operating system it is executed on. A system call is a way for programs to interact with the operating system. A computer program makes a system call when it makes a request to the operating system’s kernel. System call provides the services of the operating system to the user programs via Application Program Interface(API). It provides an interface between a process and operating system to allow user-level processes to request services of the operating system. System calls are the only entry points into the kernel system. All programs needing resources must use system calls.

Services Provided by System Calls :


	 Process creation and management

	 Main memory management

	 File Access, Directory and File system management

	 Device handling(I/O)

	 Protection

	 Networking, etc.


Types of System Calls : There are 5 different categories of system calls –


	Process control: end, abort, create, terminate, allocate and free memory.

	 File management: create, open, close, delete, read file etc.

	 Device management

	 Information maintenance

	 Communication



Examples of Windows and Unix System Calls – 




	
	Windows
	Unix



	
Process Control
	CreateProcess()
ExitProcess()
WaitForSingleObject()
	fork()
exit()
wait()



	

File Manipulation
	CreateFile()
ReadFile()
WriteFile()
CloseHandle()
	open()
read()
write()
close()



	
Device Manipulation
	SetConsoleMode()
ReadConsole()
WriteConsole()
	ioctl()
read()
write()



	
Information Maintenance
	GetCurrentProcessID()
SetTimer()
Sleeo()
	getpid()
alarm()
sleep()



	
Communication
	CreatePipe()
CreateFileMapping()
MapViewOfFile()
	pipe()
shmget()
mmap()



	
Protection
	SetFileSecurity()
InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()
	chmod()
umask()
chown()









Reference –http://www.cs.columbia.edu/~jae/4118/L02-intro2-osc-ch2.pdf



          
          
          
            



Samit Mandal

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	





						Dual Mode operations in OS

				
						

				
			An error in one program can adversely effect many processes, it might modify data of another program, or also can effect the operating system. For example, if a process stuck in infinite loop then this infinite loop could effect correct operation of other processes. So to ensure the proper execution of the operating system there are two modes of operation:

User mode –

When the computer system run user application like creating a text document or using any application program, then the system is in user mode. When the user application requests for a service from the operating system or an interrupt occurs or system call, then there there will be a transition from user to kernel mode to fulfill the requests.

Note: To switch from kernel mode to user mode, mode bit should be 1.

Given below image describes what happen interrupt occurs:

[image: ]

Kernel Mode –

When system boots then hardware starts in kernel mode and when operating system is loaded then it start user application in user mode. To provide protection to the hardware, we have privileged instructions which execute only in kernel mode. If user attempt to run privileged instruction in user mode then it will treat instruction as illegal and traps to OS. Some of the privileged instructions are:


	Handling Interrupts

	To switch from user mode to kernel mode.

	Input Output management.



Note: To switch from user mode to kernel mode mode bit should be 0.

Read next – User Level thread Vs Kernel Level thread



          
          
          
            



shivani.mittal

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	




CPU Scheduling



						 Process Management | Introduction

				
						

				
			Program vs Process

A process is a program in execution. For example, when we write a program in C or C++ and compile it, the compiler creates a binary code. The original code and Binary code, both are programs. When we actually run the binary code, it becomes a process.

 A process is an ‘active’ entity as opposed to a program which is considered to be a ‘passive’ entity. A single program can create many processes when run multiple times, for example when we open a .exe or binary file multiple times, many instances begin (many processes are created).

What does a process look like in Memory?

[image: process]

Text Section:A Process is also sometimes known as the Text Section. It also includes the current activity represented by the value of Program Counter.

Stack: Stack contains the temporary data such as function parameters, returns address and local variables.

Data Section: Contains the global variable.

Heap Section: Dynamically allocated memory to process during its run time.

Refer this for more details of sections.

 



        
          
          
          
        

            
Attributes or Characteristics of a Process

A process has following Attributes.

1. Process Id:    A unique identifier assigned by operating system
2. Process State: Can be ready, running, .. etc
3. CPU registers: Like Program Counter (CPU registers must be saved and 
                  restored when a process is swapped out and in of CPU)
5. Accounts information:
6. I/O status information: For example devices allocated to process, 
                           open files, etc
8. CPU scheduling information: For example Priority (Different processes 
                               may have different priorities, for example
                               a short process may be assigned a low priority
                               in the shortest job first scheduling)

All the above attributes of a process are also known as Context of the process.

Every Process has its known Program control Block(PCB) i.e each process will have a unique PCB. All the Above Attributes are the part of the PCB.

 

States of Process:

A process is in one of the following states

1. New: Newly Created Process (or) being created process.

2. Ready: After creation Process moves to Ready state, i.e., 
          process is ready for execution.

3. Run: Currently running process in CPU (only one process at
        a time can be under execution in a single processor).

4. Wait (or Block): When process request for I/O request.

5. Complete (or Terminated): Process Completed its execution.

6. Suspended Ready: When ready queue becomes full, some processes 
                    are moved to suspend ready state

7. Suspended Block: When waiting queue becomes full.

[image: process-states]

Context Switching

The process of saving the context of one process and loading the context of other process is known as Context Switching. In simple term, it is like loading and unloading of the process from running state to ready state.

When does Context switching happen?

1. When a high priority process comes to ready state, compared to priority of running process

2. Interrupt Occurs

3. User and Kernel mode switch: (It is not necessary though)

4. Preemptive CPU scheduling used.

Context Switch vs Mode Switch

A mode switch occurs when CPU privilege level is changed, for example when a system call is made or a fault occurs. The kernel works in more privileged mode than a standard user task. If a user process wants to access things which are only accessible to the kernel, a mode switch must occur. The currently executing process need not be changed during a mode switch.

A mode switch typically occurs for a process context switch to occur. Only the Kernel can cause a context switch.

CPU Bound vs I/O Bound Processes:

A CPU Bound Process requires more amount of CPU time or spends more time in the running state.

I/O Bound Process requires more amount of I/O time and less CPU time. I/O Bound process more time in the waiting state.

 

Exercise:

1. Which of the following need not necessarily be saved on a context switch between processes? (GATE-CS-2000)

(A) General purpose registers

(B) Translation lookaside buffer

(C) Program counter

(D) All of the above

Answer (B)

Explanation:

In a process context switch, the state of the first process must be saved somehow, so that, when the scheduler gets back to the execution of the first process, it can restore this state and continue.The state of the process includes all the registers that the process may be using, especially the program counter, plus any other operating system specific data that may be necessary.A Translation look-aside buffer (TLB) is a CPU cache that memory management hardware uses to improve virtual address translation speed. A TLB has a fixed number of slots that contain page table entries, which map virtual addresses to physical addresses. On a context switch, some TLB entries can become invalid, since the virtual-to-physical mapping is different. The simplest strategy to deal with this is to completely flush the TLB.

2. The time taken to switch between user and kernel modes of execution be t1 while the time taken to switch between two processes be t2. Which of the following is TRUE? (GATE-CS-2011)

(A) t1 > t2

(B) t1 = t2

(C) t1 < t2

(D) nothing can be said about the relation between t1 and t2.

Answer: (C)

Explanation: Process switching involves mode switch. Context switching can occur only in kernel mode.

Quiz on Process Management

References:

http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/3_Processes.html

http://cs.nyu.edu/courses/spring11/G22.2250-001/lectures/lecture-04.html

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



          
          
          
            


					
		
		Operating Systems
 cpu-scheduling
GATE

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						Operating Systems | States of a process

				
						

				
			Prerequisite – Introduction, Process Scheduler

States of a process are as following:




	New (Create) – In this step process is about to create but not yet created, it is the program which is present in secondary memory that will be picked up by OS to create the process.


	Ready – New -> Ready to run. After creation of process, the process enters the ready state i.e. into the main memory. The process here is ready to run and is waiting to get the CPU time for its execution.


	Run – The process is running in the main memory.


	Blocked or wait – Whenever the process requests the I/O it enters the blocked or wait state. It is executed in the main memory and it doesn’t require CPU. Once the I/O operation is completed the process goes to ready state.


	Terminated or completed – Process is killed as well as PCB is deleted.


	Suspend ready – Set of process that were initially in ready state but lack of main memory caused them to go to suspend ready, it is a  secondary memory.


	Suspend wait or suspend blocked – Similar to suspend ready but uses the process which was performing I/O operation and lack of main memory caused them to move to secondary memory.

When work is finished it may go to suspend ready.




CPU and IO Bound Processes:

If process is having lots of CPU operation then it is called CPU bound process. Similarly, If process is having lots of IO operation then it is called IO bound process.

Types of schedulers:


	Long term – performance – Makes decision about how many processes should be made to stay in the ready state this decides the degree of multiprogramming. Once decision is taken it lasts for long time hence called long term scheduler.


	Short term – Context switching time – Short term scheduler will decide which process to be executed next and then it will call dispatcher. Dispatcher is a software that moves process from ready to run and vice versa. In other words, it is context switching.


	Medium term – Swapping time – Suspension decision is taken by medium term scheduler. Medium term scheduler is used for swapping that is moving the process from main memory to secondary and vice versa.




Multiprogramming – We have many processes ready to run. There are two types of multiprogramming:


	Pre-emption – Process is forcefully removed from CPU. Pre-emption is also called as time sharing or multitasking.


	Non pre-emption – Processes are not removed until they complete the execution.




Degree of multiprogramming –

The number of process that can reside in the ready state at maximum decides the degree of multiprogramming, e.g., if degree of programming = 100 means 100 processes can reside in the ready state at maximum.



          
          
          
            



Aniket_Dusey

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		GATE CS
Operating Systems
 Operating Systems

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Process Table and Process Control Block (PCB)

				
						

				
			While creating a process the operating system performs several operations. To identify these process, it must identify each process, hence it assigns a process identification number (PID) to each process. As the operating system supports multi-programming, it needs to keep track of the all the processes. For this task, the process control block (PCB) is used to track the process’s execution status. Each block of memory contains information about the process state, program counter, stack pointer, status of opened files, scheduling algorithms, etc. All these information is required and must be saved when the process is switched from one state to another. When the process made transitions from one state to another, the operating system must update information in the process’s PCB.

A process control block (PCB) contains information about the process, i.e. registers, quantum, priority, etc. The process table is an array of PCB’s, that means logically contains a PCB for all of the current processes in the system.

[image: ]


	Pointer – It is a stack pointer which is required to be saved when the process is switched from one state to another to retain the current position of the process.

	Process state – It stores the respective state of the process.

	Process number – Every process is assigned with a unique id is known as processed which stores the process identifier.

	Program counter – It stores the counter which contains the address of the next instruction that is to be executed for the process.

	Register – These are the CPU registers which includes: accumulator, base, registers and general purpose registers.

	Memory limits – This field contains the information about memory management system used by operating system. This may include the page tables, segment tables etc.

	Open files list – This information includes the list of files opened for a process.



Miscellaneous accounting and status data – This field includes the information about the amount of CPU used, time constraints, jobs or process number, etc.

The process control block stores the register content also known as execution content of the processor when it was blocked from running. This execution content architecture enables operating system to restore a process’s execution context when the process returns to the running state. When the process made transitions from one state to another, the operating system update its information in the process’s PCB. Operating system maintains pointers to each process’s PCB in a process table so that it can access the PCB quickly.

[image: ]



          
          
          
            

This article is contributed by Rajshree Srivastava. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Process Scheduler

				
						

				
			There are three types of process scheduler.

1. Long Term or job scheduler It bring the new process to the ‘Ready State’.  It controls Degree of Multi-programming, i.e., number of process present in ready state at any point of time. 

2. Short term or CPU scheduler: It is responsible for selecting one process from ready state for scheduling it on the running state. Note: Short term scheduler only selects the process to schedule it doesn’t load the process on running.

Dispatcher is responsible for loading the selected process by Short Term scheduler on the CPU (Ready to Running State) Context switching is done by dispatcher only. A dispatcher does following:

1)    Switching context.

2)    Switching to user mode.

3)    Jumping to the proper location in the newly loaded program.

3. Medium term scheduler It is responsible for suspending and resuming the process. It mainly does swapping (moving processes from main memory to disk and vice versa).

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



          
          
          
            


					
		
		Operating Systems
 CPU Scheduling

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Process Management | CPU Scheduling

				
						

				
			Scheduling of processes/work is done to finish the work on time.

Below are different time with respect to a process.

Arrival Time:       Time at which the process arrives in the ready queue.
Completion Time:    Time at which process completes its execution.
Burst Time:         Time required by a process for CPU execution.
Turn Around Time:   Time Difference between completion time and arrival time.          
     Turn Around Time = Completion Time - Arrival Time

Waiting Time(W.T): Time Difference between turn around time and burst time.
     Waiting Time = Turn Around Time - Burst Time

 

Why do we need scheduling?

A typical process involves both I/O time and CPU time. In a uniprogramming system like MS-DOS, time spent waiting for I/O is wasted and CPU is free during this time. In multiprogramming systems, one process can use CPU while another is waiting for I/O. This is possible only with process scheduling.

 



        
          
          
          
        

            
Objectives of Process Scheduling Algorithm

Max CPU utilization [Keep CPU as busy as possible]
Fair allocation of CPU.
Max throughput [Number of processes that complete their execution per time unit]
Min turnaround time [Time taken by a process to finish execution]
Min waiting time [Time a process waits in ready queue]
Min response time [Time when a process produces first response]

 

Different Scheduling Algorithms

First Come First Serve (FCFS): Simplest scheduling algorithm that schedules according to arrival times of processes.

Shortest Job First(SJF): Process which have the shortest burst time are scheduled first.

Shortest Remaining Time First(SRTF): It is preemptive mode of SJF algorithm in which jobs are schedule according to shortest remaining time.

Round Robin Scheduling: Each process is assigned a fixed time in cyclic way.

Priority Based scheduling (Non Preemptive): In this scheduling, processes are scheduled according to their priorities, i.e., highest priority process is schedule first. If priorities of two processes match, then schedule according to arrival time.

Highest Response Ratio Next (HRRN) In this scheduling, processes with highest response ratio is scheduled. This algorithm avoids starvation.

Response Ratio = (Waiting Time + Burst time) / Burst time

Multilevel Queue Scheduling: According to the priority of process, processes are placed in the different queues. Generally high priority process are placed in the top level queue. Only after completion of processes from top level queue, lower level queued processes are scheduled.

Multi level Feedback Queue Scheduling:  It allows the process to move in between queues. The idea is to separate processes according to the characteristics of their CPU bursts. If a process uses too much CPU time, it is moved to a lower-priority queue.

 

Some useful facts about Scheduling Algorithms:

1) FCFS can cause long waiting times, especially when the first job takes too much CPU time.

2) Both SJF and Shortest Remaining time first algorithms may cause starvation. Consider a situation when long process is there in ready queue and shorter processes keep coming.

3) If time quantum for Round Robin scheduling is very large, then it behaves same as FCFS scheduling.

4) SJF is optimal in terms of average waiting time for a given set of processes,i.e., average waiting time is minimum with this scheduling, but problems is, how to know/predict time of next job.

 

Exercise:

1. Consider a system which require 40 time units of burst time.The Multilevel feedback queue scheduling is used and time quantum is 2 unit for top queue and is incremented by 5 unit at each level, then in what queue the process will terminate the execution?

 

2. Which of the following is false about SJF?

S1: It causes minimum average waiting time

S2: It can cause starvation

(A) Only S1

(B) Only S2

(C) Both S1 and S2

(D) Neither S1 nor S2

Answer (D)

S1 is true SJF will always give minimum average waiting time.

S2 is true SJF can cause starvation .

 

3. Consider the following table of arrival time and burst time for three processes P0, P1 and P2. (GATE-CS-2011)

Process   Arrival time   Burst Time
P0            0 ms          9 ms
P1            1 ms          4 ms
P2            2 ms          9 ms

The pre-emptive shortest job first scheduling algorithm is used. Scheduling is carried out only at arrival or completion of processes. What is the average waiting time for the three processes?

(A) 5.0 ms

(B) 4.33 ms

(C) 6.33

(D) 7.33

Solution :

Answer: – (A)

Process P0 is allocated processor at 0 ms as there is no other process in ready queue. P0 is preempted after 1 ms as P1 arrives at 1 ms and burst time for P1 is less than remaining time of P0. P1 runs for 4ms. P2 arrived at 2 ms but P1 continued as burst time of P2 is longer than P1. After P1 completes, P0 is scheduled again as the remaining time for P0 is less than the burst time of P2.

P0 waits for 4 ms, P1 waits for 0 ms and P2 waits for 11 ms. So average waiting time is (0+4+11)/3 = 5.

 

4. Consider the following set of processes, with the arrival times and the CPU-burst times given in milliseconds (GATE-CS-2004)

  Process   Arrival Time    Burst Time
    P1          0              5
    P2          1              3
    P3          2              3
    P4          4              1

What is the average turnaround time for these processes with the preemptive shortest remaining processing time first (SRPT) algorithm ?

(A) 5.50

(B) 5.75

(C) 6.00

(D) 6.25

Answer (A)

Solution:

The following is Gantt Chart of execution




	P1
	P2
	P4
	P3
	P1



	1
	4
	5
	8
	12





Turn Around Time = Completion Time – Arrival Time

Avg Turn Around Time  =  (12 + 3 + 6+  1)/4 = 5.50

 

5. An operating system uses Shortest Remaining Time first (SRT) process scheduling algorithm. Consider the arrival times and execution times for the following processes:

Process  Execution time  Arrival time
P1             20            0
P2             25            15
P3             10            30
P4             15            45

What is the total waiting time for process P2?

(A) 5

(B) 15

(C) 40

(D) 55

Answer (B)

At time 0, P1 is the only process, P1 runs for 15 time units.

At time 15, P2 arrives, but P1 has the shortest remaining time. So P1 continues for 5 more time units.

At time 20, P2 is the only process. So it runs for 10 time units

At time 30, P3 is the shortest remaining time process. So it runs for 10 time units

At time 40, P2 runs as it is the only process. P2 runs for 5 time units.

At time 45, P3 arrives, but P2 has the shortest remaining time. So P2 continues for 10 more time units.

P2 completes its ececution at time 55

Total waiting time for P2 = Complition time - (Arrival time + Execution time)
                          = 55 - (15 + 25)
                          = 15





Please refer Quiz on CPU Scheduling for more questions.

 

References:

http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/5_CPU_Scheduling.html

http://codex.cs.yale.edu/avi/os-book/OS8/os8c/slide-dir/PDF-dir/ch5.pdf

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



          
          
          
            


					
		
		Operating Systems
 CPU Scheduling

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						Measure the time spent in context switch?

				
						

				
			A Context switch is the time spent between two processes (i.e., bringing a waiting process into execution and sending an executing process into waiting state). This happens in multitasking.The operating system must bring the state information if waiting process into memory and save the state information of the currently running process.

In order to solve this problem, we would like to record the timestamps of the first and last instruction of the swapping processes.The context switch time is the difference between the two processes.

Let’s take an example: Assume there are only two processes, P1 and P2.

P1 is executing and P2 is waiting for execution. At some point, the operating system must swap P1 and P2, let’s assume it happens at the nth instruction of P1. If t(x, k) indicates the timestamp in microseconds of the kth instruction of process x, then the context switch would take t(2, 1) – t(1, n).

Another issue is that swapping is governed by the scheduling algorithm of the operating system and there may be many kernel level threads which are also doing context switches. Other processes could be contending for the CPU or the kernel handling interrupts. The user does not have any control over these extraneous context switches. For instance, if at time t(1, n) the kernel decides to handle an interrupt, then the context switch time would be overstated.

In order to avoid these obstacles, we must construct an environment such that after P1 executes, the task scheduler immediately selects P2 to run. This may be accomplished by constructing a data channel, such as a pipe between P1 and P2.



        
          
          
          
        

            
That is, let’s allow P1 to be the initial sender and P2 be the receiver. Initially, P2 is blocked(sleeping) as it awaits the data token. When P1 executes, it delivers the data token over the data channel to P2 and immediately attempts to read the response token. A context switch results and the task scheduler must selects another process to run.Since P2 is now in a ready-to-run state, it is a desirable candidate to be selected by the task scheduler for execution.When P2 runs, the role of P1 and P2 are swapped. P2 is now acting as the sender and P1 as the blocked receiver.

To summaries –


	P2 blocks awaiting data from P1

	P1 marks the starting time.

	P1 sends token to P2.

	P1 attempts to read a response token from P2. This induces a context switch.

	P2 is scheduled and receives the token.

	P2 sends a response token to P1.

	P2 attempts read a response token from P1. This induces a context switch.

	P1 is scheduled and receives the token.

	P1 marks the end time.



The key is that the delivery of a data token induces a context switch. Let Td and Tr be the time it takes to deliver and receive a data token, respectively, and let Tc be the amount of time spent in a context switch. At step 2, P1 records the timestamp of the delivery of the token, and at step 9, it records the timestamp of the response. The amount of time elapsed, T, between these events may be expressed by:

 T = 2 * (Td + Tc + Tr)


This formula arises because of the following events:


	P1 sends the token (3)

	CPU context switches (4)

	P2 receives it (5)

	P2 then sends the response token (6)

	CPU context switches (7)

	and finally, P1 receives it (8)



GATE CS Practice Questions –


	GATE-CS-2006 | Question 85

	GATE CS 1998 | Question 52 





          
          
          
            



brahmanisai

Studying in National Institute Of Technology Raipur
Computer Science
Interested in diving into computer languages
Placed in Capgemini







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Difference between dispatcher and scheduler

				
						

				
			Schedulers are special system software which handle process scheduling in various ways. Their main task is to select the jobs to be submitted into the system and to decide which process to run. There are three types of Scheduler:


	Long term (job) scheduler – Due to smaller size of main memory initially all program are stored in secondary memory. When they are stored or loaded in main memory they are called process. This is decision of long term scheduler that how many process will stay in ready queue. Hence, in simple words long term scheduler decides degree of multi-programming of system.




	Medium term scheduler – Most often, a running process needs I/O operation which doesn’t requires CPU. Hence during execution of a process when a I/O operation is required then operating system sends that process from running queue to blocked queue. When a process completes its I/O operation then it should again shifted to ready queue. ALL these decisions are taken by medium term scheduler. Medium-term scheduling is a part of swapping.




	Short term (CPU) scheduler – When there are lots of processes in main memory initially all are present in ready queue. Among all of the process a single process is to be selected for execution. This decision is handled by short term scheduler.
Lets have a look on the figure given below. It may make more clear view for you.

[image: ]


        
          
          
          
        

            
Dispatcher –

Dispatcher is a special program which comes into play after scheduler. When scheduler completed its job of selecting a process, then after it is the dispatcher which takes that process to the desired state/queue. The dispatcher is the module that gives control of the CPU to the process selected by the short-term scheduler. This function involves the following:


	Switching context


	Switching to user mode


	Jumping to proper location in user program to restart that program






Difference between the Scheduler and Dispatcher –

Consider a situation, where various process residing in ready queue and waiting for execution. But CPU can’t execute all the process of ready queue simultaneously, operating system have to choose a particular process on the basis of scheduling algorithm used. So, this procedure of selecting a process among various process is done by scheduler. Now here the task of scheduler completed. Now dispatcher comes into picture as scheduler have decide a process for execution, it is dispatcher who takes that process from ready queue to the running status, or you can say that providing CPU to that process is the task of dispatcher.

Example –

There are 4 process in ready queue, i.e., P1, P2, P3, P4; They all are arrived at t0, t1, t2, t3 respectively. First in First out scheduling algorithm is used. So, scheduler decided that first of all P1 has came, so this is to be executed first. Now dispatcher takes P1 to the running state. 

[image: ]




	Properties
	DISPATCHER
	SCHEDULER





	Definition:
	Dispatcher is a module that gives control of CPU to the process selected by short term scheduler
	Scheduler is something which selects a process among various processes



	Types:
	There are no diifrent types in dispatcher.It is just a code segment.
	There are 3 types of scheduler i.e. Long-term, Short-term, Medium-term






	Dependency:
	Working of dispatcher is dependednt on scheduler.Means dispatcher have to wait untill scheduler selects a process.
	Scheduler works idependently.It works immediately when needed



	Algorithm:
	Dispatcher has no specific algorithm for its implementation
	Scheduler works on various algorithm  such as FCFS, SJF, RR etc. 



	Time Taken:
	The time taken by dispatcher is called dispatch latency.
	TIme taken by scheduler is usually negligible.Hence we neglect it.



	Functions:
	Dispatcher is also responsible for:Context Switching, Switch to user mode, Jumping to proper location when process again restarted
	The only work of scheduler is selection of processes.







          
          
          
            


Himanshukumarpatel

Check out this Author's contributed articles.





If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		Difference Between
GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	







						Program for FCFS Scheduling | Set 1

				
						

				
			Given n processes with their burst times, the task is to find average waiting time and average turn around time using FCFS scheduling algorithm.

First in, first out (FIFO), also known as first come, first served (FCFS), is the simplest scheduling algorithm. FIFO simply queues processes in the order that they arrive in the ready queue.

 In this, the process that comes first will be executed first and next process starts only after the previous gets fully executed.

Here we are considering that arrival time for all processes is 0.

How to compute below times in Round Robin using a program?


	Completion Time:    Time at which process completes its execution.

	Turn Around Time:   Time Difference between completion time and arrival time.  Turn Around Time = Completion Time – Arrival Time 

	Waiting Time(W.T): Time Difference between turn around time and burst time.

     Waiting Time = Turn Around Time – Burst Time





In this post, we have assumed arrival times as 0, so turn around and completion times are same.

[image: ]

Implementation:

1-  Input the processes along with their burst time (bt).
2-  Find waiting time (wt) for all processes.
3-  As first process that comes need not to wait so 
    waiting time for process 1 will be 0 i.e. wt[0] = 0.
4-  Find waiting time for all other processes i.e. for
     process i -> 
       wt[i] = bt[i-1] + wt[i-1] .
5-  Find turnaround time = waiting_time + burst_time 
    for all processes.
6-  Find average waiting time = 
                 total_waiting_time / no_of_processes.
7-  Similarly, find average turnaround time = 
                 total_turn_around_time / no_of_processes.





Recommended: Please try your approach on {IDE} first, before moving on to the solution.





        
          
          
          
        

            
// C++ program for implementation of FCFS 
// scheduling
#include<iostream>
using namespace std;

// Function to find the waiting time for all 
// processes
void findWaitingTime(int processes[], int n, 
                          int bt[], int wt[])
{
    // waiting time for first process is 0
    wt[0] = 0;

    // calculating waiting time
    for (int  i = 1; i < n ; i++ )
        wt[i] =  bt[i-1] + wt[i-1] ;
}

// Function to calculate turn around time
void findTurnAroundTime( int processes[], int n, 
                  int bt[], int wt[], int tat[])
{
    // calculating turnaround time by adding
    // bt[i] + wt[i]
    for (int  i = 0; i < n ; i++)
        tat[i] = bt[i] + wt[i];
}

//Function to calculate average time
void findavgTime( int processes[], int n, int bt[])
{
    int wt[n], tat[n], total_wt = 0, total_tat = 0;

    //Function to find waiting time of all processes
    findWaitingTime(processes, n, bt, wt);

    //Function to find turn around time for all processes
    findTurnAroundTime(processes, n, bt, wt, tat);

    //Display processes along with all details
    cout << "Processes  "<< " Burst time  "
         << " Waiting time  " << " Turn around time\n";

    // Calculate total waiting time and total turn 
    // around time
    for (int  i=0; i<n; i++)
    {
        total_wt = total_wt + wt[i];
        total_tat = total_tat + tat[i];
        cout << "   " << i+1 << "\t\t" << bt[i] <<"\t    "
            << wt[i] <<"\t\t  " << tat[i] <<endl;
    }

    cout << "Average waiting time = " 
         << (float)total_wt / (float)n;
    cout << "\nAverage turn around time = " 
         << (float)total_tat / (float)n;
}

// Driver code
int main()
{
    //process id's
    int processes[] = { 1, 2, 3};
    int n = sizeof processes / sizeof processes[0];

    //Burst time of all processes
    int  burst_time[] = {10, 5, 8};

    findavgTime(processes, n,  burst_time);
    return 0;
}


Output:

Processes  Burst time  Waiting time  Turn around time
 1        10     0         10
 2        5     10         15
 3        8     15         23
Average waiting time = 8.33333
Average turn around time = 16


Important Points:


	Non-preemptive 

	Average Waiting Time is not optimal

	Cannot utilize resources in parallel : Results in Convoy effect (Consider a situation when many IO bound processes are there and one CPU bound process. The IO bound processes have to wait for CPU bound process when CPU bound process acquires CPU. The IO bound process could have better taken CPU for some time, then used IO devices).



Source : http://web.cse.ohio-state.edu/~agrawal/660/Slides/jan18.pdf

In Set-2 we will be discussing the processes with different arrival time.

This article is contributed by Sahil Chhabra (akku). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Operating Systems
 CPU Scheduling
cpu-scheduling

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	





						Program for FCFS Scheduling | Set 2 (Processes with different arrival times)

				
						

				
			We have already discussed FCFS Scheduling of processes with same arrival time. In this post, scenario when processes have different arrival times are discussed. Given n processes with their burst times and arrival times, the task is to find average waiting time and average turn around time using FCFS scheduling algorithm.

FIFO simply queues processes in the order they arrive in the ready queue. Here, the process that comes first will be executed first and next process will start only after the previous gets fully executed.


	Completion Time:    Time at which process completes its execution.

	Turn Around Time:   Time Difference between completion time and arrival time.  Turn Around Time = Completion Time – Arrival Time 

	Waiting Time(W.T): Time Difference between turn around time and burst time.

     Waiting Time = Turn Around Time – Burst Time



[image: ff2_]

[image: ff23_]

Process     Wait Time : Service Time - Arrival Time
   P0                        0 - 0   = 0
   P1                        5 - 1   = 4
   P2                        8 - 2   = 6
   P3                        16 - 3  = 13

Average Wait Time: (0 + 4 + 6 + 13) / 4 = 5.75


Service Time : Service time means amount of time after which a process can start  execution. It is  summation of burst time of previous processes (Processes that came before)

Changes in code as compare to code of FCFS with same arrival time:

To find waiting time: Time taken by all processes before the current process to be started (i.e. burst time of all previous processes) – arrival time of current process

wait_time[i] = (bt[0] + bt[1] +…… bt[i-1] ) – arrival_time[i]

Implementation:

1- Input the processes along with their burst time(bt)
   and arrival time(at)
2- Find waiting time for all other processes i.e. for
   a given process  i:
       wt[i] = (bt[0] + bt[1] +...... bt[i-1]) - at[i] 
3- Now find turn around time 
          = waiting_time + burst_time for all processes
4- Average waiting time = 
                    total_waiting_time / no_of_processes
5- Average turn around time = 
                 total_turn_around_time / no_of_processes





Recommended: Please try your approach on {IDE} first, before moving on to the solution.





        
          
          
          
        

            
// C++ program for implementation of FCFS
// scheduling with different arrival time
#include<iostream>
using namespace std;

// Function to find the waiting time for all
// processes
void findWaitingTime(int processes[], int n, int bt[],
                                   int wt[], int at[])
{
    int service_time[n];
    service_time[0] = 0;
    wt[0] = 0;

    // calculating waiting time
    for (int i = 1; i < n ; i++)
    {
        // Add burst time of previous processes
        service_time[i] = service_time[i-1] + bt[i-1];

        // Find waiting time for current process =
        // sum - at[i]
        wt[i] = service_time[i] - at[i];

        // If waiting time for a process is in negative
        // that means it is already in the ready queue
        // before CPU becomes idle so its waiting time is 0
        if (wt[i] < 0)
            wt[i] = 0;
    }
}

// Function to calculate turn around time
void findTurnAroundTime(int processes[], int n, int bt[],
                                      int wt[], int tat[])
{
    // Calculating turnaround time by adding bt[i] + wt[i]
    for (int i = 0; i < n ; i++)
        tat[i] = bt[i] + wt[i];
}

// Function to calculate average waiting and turn-around
// times.
void findavgTime(int processes[], int n, int bt[], int at[])
{
    int wt[n], tat[n];

    // Function to find waiting time of all processes
    findWaitingTime(processes, n, bt, wt, at);

    // Function to find turn around time for all processes
    findTurnAroundTime(processes, n, bt, wt, tat);

    // Display processes along with all details
    cout << "Processes " << " Burst Time " << " Arrival Time "
         << " Waiting Time " << " Turn-Around Time "
         << " Completion Time \n";
    int total_wt = 0, total_tat = 0;
    for (int i = 0 ; i < n ; i++)
    {
        total_wt = total_wt + wt[i];
        total_tat = total_tat + tat[i];
        int compl_time = tat[i] + at[i];
        cout << " " << i+1 << "\t\t" << bt[i] << "\t\t"
             << at[i] << "\t\t" << wt[i] << "\t\t "
             << tat[i]  <<  "\t\t " << compl_time << endl;
    }

    cout << "Average waiting time = "
         << (float)total_wt / (float)n;
    cout << "\nAverage turn around time = "
         << (float)total_tat / (float)n;
}

// Driver code
int main()
{
    // Process id's
    int processes[] = {1, 2, 3};
    int n = sizeof processes / sizeof processes[0];

    // Burst time of all processes
    int burst_time[] = {5, 9, 6};

    // Arrival time of all processes
    int arrival_time[] = {0, 3, 6};

    findavgTime(processes, n, burst_time, arrival_time);

    return 0;
}


Output:

Processes  Burst Time  Arrival Time  Waiting Time  Turn-Around Time  Completion Time 
 1        5        0        0         5         5
 2        9        3        2         11         14
 3        6        6        8         14         20
Average waiting time = 3.33333
Average turn around time = 10


This article is contributed by Sahil Chhabra (akku). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Operating Systems
 CPU Scheduling
cpu-scheduling

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						Convoy Effect in Operating Systems

				
						

				
			Prerequisites : Basics of FCFS Scheduling (Program for FCFS Scheduling | Set 1, Program for FCFS Scheduling | Set 2 )

Convoy Effect is phenomenon associated with the First Come First Serve (FCFS) algorithm, in which the whole Operating System slows down due to few slow processes.  

[image: ]

FCFS algorithm is non-preemptive in nature, that is, once CPU time has been allocated to a process, other processes can get CPU time only after the current process has finished. This property of FCFS scheduling leads to the situation called Convoy Effect.

Suppose there is one CPU intensive (large burst time) process in the ready queue, and several other processes with relatively less burst times but are Input/Output (I/O) bound (Need I/O operations frequently).



        
          
          
          
        

            
The following then takes place – 


	The I/O bound processes are first allocated CPU time. As they are less CPU intensive, the quickly get executed and then goto I/O queues.

	Now, the CPU intensive process is allocated CPU time. As its burst time is high, it takes time to complete.

	While the CPU intensive process is being executed, the I/O bound processes complete their I/O operations and are moved back to ready queue.

	However, the I/O bound processes are made to wait as the CPU intensive process still hasn’t finished. This leads to I/O devices being idle.

	When the CPU intensive process gets over, it is sent to the I/O queue so that it can access and I/O device.

	Meanwhile, the I/O bound processes get their required CPU time and move back to I/O queue.

	However, they are made to wait because the CPU intensive process is still accessing an I/O device. As a result, the CPU is sitting idle now.



Hence in Convoy Effect, one slow process slows down the performance of the entire set of processes, and leads to wastage of CPU time and other devices.

To avoid Convoy Effect, preemptive scheduling algorithms like Round Robin Scheduling can be used – as the smaller processes don’t have to wait much for CPU time – making their execution faster and leading to less resources sitting idle.

References – 


	A. Silberschatz, P. Galvin, G. Gagne, “Operating Systems Concepts (8th Edition)”, Wiley India Pvt. Ltd.



This article is contributed by Sanchit Agarwal. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Operating Systems
Technical Scripter
 CPU Scheduling

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						Program for Shortest Job First (or SJF) scheduling | Set 1 (Non- preemptive)

				
						

				
			Shortest job first (SJF) or shortest job next, is a scheduling policy that selects the waiting process with the smallest execution time to execute next. SJN is a non-preemptive algorithm. 


	Shortest Job first has the advantage of having minimum average waiting time among all scheduling algorithms.

	It is a Greedy Algorithm. 

	It may cause starvation if shorter processes keep coming. This problem can be solved using the concept of aging.

	It is practically infeasible as Operating System may not know burst time and therefore may not sort them.  While it is not possible to predict execution time, several methods can be used to estimate the execution time for a job, such as a weighted average of previous execution times. SJF can be used in specialized environments where accurate estimates of running time are available.



Algorithm:

1- Sort all the processes in increasing order 
   according to burst time.
2- Then simply, apply FCFS.


[image: ]

How to compute below times in Round Robin using a program?


	Completion Time:    Time at which process completes its execution.

	Turn Around Time:   Time Difference between completion time and arrival time.  Turn Around Time = Completion Time – Arrival Time 

	Waiting Time(W.T): Time Difference between turn around time and burst time.

     Waiting Time = Turn Around Time – Burst Time



In this post, we have assumed arrival times as 0, so turn around and completion times are same.




Recommended: Please try your approach on {IDE} first, before moving on to the solution.





        
          
          
          
        

            
// C++ program to implement Shortest Job first
#include<bits/stdc++.h>
using namespace std;

struct Process
{
   int pid; // Process ID
   int bt;  // Burst Time
};

// This function is used for sorting all
// processes in increasing order of burst
// time
bool comparison(Process a, Process b)
{
     return (a.bt < b.bt);
}

// Function to find the waiting time for all
// processes
void findWaitingTime(Process proc[], int n, int wt[])
{
    // waiting time for first process is 0
    wt[0] = 0;

    // calculating waiting time
    for (int i = 1; i < n ; i++ )
        wt[i] = proc[i-1].bt + wt[i-1] ;
}

// Function to calculate turn around time
void findTurnAroundTime(Process proc[], int n,
                        int wt[], int tat[])
{
    // calculating turnaround time by adding
    // bt[i] + wt[i]
    for (int i = 0; i < n ; i++)
        tat[i] = proc[i].bt + wt[i];
}

//Function to calculate average time
void findavgTime(Process proc[], int n)
{
    int wt[n], tat[n], total_wt = 0, total_tat = 0;

    // Function to find waiting time of all processes
    findWaitingTime(proc, n, wt);

    // Function to find turn around time for all processes
    findTurnAroundTime(proc, n, wt, tat);

    // Display processes along with all details
    cout << "\nProcesses "<< " Burst time "
         << " Waiting time " << " Turn around time\n";

    // Calculate total waiting time and total turn
    // around time
    for (int i = 0; i < n; i++)
    {
        total_wt = total_wt + wt[i];
        total_tat = total_tat + tat[i];
        cout << " " << proc[i].pid << "\t\t"
             << proc[i].bt << "\t " << wt[i]
             << "\t\t " << tat[i] <<endl;
    }

    cout << "Average waiting time = "
         << (float)total_wt / (float)n;
    cout << "\nAverage turn around time = "
         << (float)total_tat / (float)n;
}

// Driver code
int main()
{
    Process proc[] = {{1, 6}, {2, 8}, {3, 7}, {4, 3}};
    int n = sizeof proc / sizeof proc[0];

    // Sorting processes by burst time.
    sort(proc, proc + n, comparison);

    cout << "Order in which process gets executed\n";
    for (int i = 0 ; i < n; i++)
        cout << proc[i].pid <<" ";

    findavgTime(proc, n);
    return 0;
}


Output:

Order in which process gets executed
4 1 3 2 
Processes  Burst time  Waiting time  Turn around time
 4        3     0         3
 1        6     3         9
 3        7     9         16
 2        8     16         24
Average waiting time = 7
Average turn around time = 13


In Set-2 we will discuss the preemptive version of SJF i.e. Shortest Remaining Time First

This article is contributed by Sahil Chhabra (akku). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Greedy
Operating Systems
 CPU Scheduling
cpu-scheduling

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						Program for Shortest Job First (SJF) scheduling | Set 2 (Preemptive)

				
						

				
			

In previous post, we have discussed Set 1 of SJF i.e. non-preemptive. In this post we will discuss the preemptive version of SJF known as Shortest Remaining Time First (SRTF).

In this scheduling algorithm, the process with the smallest amount of time remaining until completion is selected to execute. Since the currently executing process is the one with the shortest amount of time remaining by definition, and since that time should only reduce as execution progresses, processes will always run until they complete or a new process is added that requires a smaller amount of time.

Preemptive SJF: Example




	Process
	Duration
	Order
	Arrival Time





	P1
	9
	1
	0



	P2
	2
	2
	2





[image: Preemptive-SJF-Diagram]

P1 waiting time: 4-2 = 2
P2 waiting time: 0
The average waiting time(AWT): (0 + 2) / 2 = 1

Advantage:

1- Short processes are handled very quickly.

2- The system also requires very little overhead since it only makes a decision when a process completes or a new process is added.

3- When a new process is added the algorithm only needs to compare the currently executing process with the new process, ignoring all other processes currently waiting to execute.

Disadvantage:

1- Like shortest job first, it has the potential for process starvation.

2- Long processes may be held off indefinitely if short processes are continually added.

Source:Wiki




Recommended: Please try your approach on {IDE} first, before moving on to the solution.





        
          
          
          
        

            
Implementation:
1- Traverse until all process gets completely
   executed.
   a) Find process with minimum remaining time at
     every single time lap.
   b) Reduce its time by 1.
   c) Check if its remaining time becomes 0 
   d) Increment the counter of process completion.
   e) Completion time of current process = 
     current_time +1;
   e) Calculate waiting time for each completed 
     process.
   wt[i]= Completion time - arrival_time-burst_time
   f)Increment time lap by one.
2- Find turnaround time (waiting_time+burst_time).



C/C++



// C++ program to implement Shortest Remaining
// Time First
#include <bits/stdc++.h>
using namespace std;

struct Process {
    int pid; // Process ID
    int bt; // Burst Time
    int art; // Arrival Time
};

// Function to find the waiting time for all
// processes
void findWaitingTime(Process proc[], int n,
                                int wt[])
{
    int rt[n];

    // Copy the burst time into rt[]
    for (int i = 0; i < n; i++)
        rt[i] = proc[i].bt;

    int complete = 0, t = 0, minm = INT_MAX;
    int shortest = 0, finish_time;
    bool check = false;

    // Process until all processes gets
    // completed
    while (complete != n) {

        // Find process with minimum
        // remaining time among the
        // processes that arrives till the
        // current time`
        for (int j = 0; j < n; j++) {
            if ((proc[j].art <= t) &&
            (rt[j] < minm) && rt[j] > 0) {
                minm = rt[j];
                shortest = j;
                check = true;
            }
        }

        if (check == false) {
            t++;
            continue;
        }

        // Reduce remaining time by one
        rt[shortest]--;

        // Update minimum
        minm = rt[shortest];
        if (minm == 0)
            minm = INT_MAX;

        // If a process gets completely
        // executed
        if (rt[shortest] == 0) {

            // Increment complete
            complete++;

            // Find finish time of current
            // process
            finish_time = t + 1;

            // Calculate waiting time
            wt[shortest] = finish_time -
                        proc[shortest].bt -
                        proc[shortest].art;

            if (wt[shortest] < 0)
                wt[shortest] = 0;
        }
        // Increment time
        t++;
    }
}

// Function to calculate turn around time
void findTurnAroundTime(Process proc[], int n,
                        int wt[], int tat[])
{
    // calculating turnaround time by adding
    // bt[i] + wt[i]
    for (int i = 0; i < n; i++)
        tat[i] = proc[i].bt + wt[i];
}

// Function to calculate average time
void findavgTime(Process proc[], int n)
{
    int wt[n], tat[n], total_wt = 0,
                    total_tat = 0;

    // Function to find waiting time of all
    // processes
    findWaitingTime(proc, n, wt);

    // Function to find turn around time for
    // all processes
    findTurnAroundTime(proc, n, wt, tat);

    // Display processes along with all
    // details
    cout << "Processes "
        << " Burst time "
        << " Waiting time "
        << " Turn around time\n";

    // Calculate total waiting time and
    // total turnaround time
    for (int i = 0; i < n; i++) {
        total_wt = total_wt + wt[i];
        total_tat = total_tat + tat[i];
        cout << " " << proc[i].pid << "\t\t"
            << proc[i].bt << "\t\t " << wt[i]
            << "\t\t " << tat[i] << endl;
    }

    cout << "\nAverage waiting time = "
        << (float)total_wt / (float)n;
    cout << "\nAverage turn around time = "
        << (float)total_tat / (float)n;
}

// Driver code
int main()
{
    Process proc[] = { { 1, 6, 1 }, { 2, 8, 1 },
                    { 3, 7, 2 }, { 4, 3, 3 } };
    int n = sizeof(proc) / sizeof(proc[0]);

    findavgTime(proc, n);
    return 0;
}





Java



// Java program to implement Shortest Remaining
// Time First

class Process
{
    int pid; // Process ID
    int bt; // Burst Time
    int art; // Arrival Time
    
    public Process(int pid, int bt, int art)
    {
        this.pid = pid;
        this.bt = bt;
        this.art = art;
    }
}

public class GFG 
{
    // Method to find the waiting time for all
    // processes
    static void findWaitingTime(Process proc[], int n,
                                     int wt[])
    {
        int rt[] = new int[n];
     
        // Copy the burst time into rt[]
        for (int i = 0; i < n; i++)
            rt[i] = proc[i].bt;
     
        int complete = 0, t = 0, minm = Integer.MAX_VALUE;
        int shortest = 0, finish_time;
        boolean check = false;
     
        // Process until all processes gets
        // completed
        while (complete != n) {
     
            // Find process with minimum
            // remaining time among the
            // processes that arrives till the
            // current time`
            for (int j = 0; j < n; j++) 
            {
                if ((proc[j].art <= t) &&
                  (rt[j] < minm) && rt[j] > 0) {
                    minm = rt[j];
                    shortest = j;
                    check = true;
                }
            }
     
            if (check == false) {
                t++;
                continue;
            }
     
            // Reduce remaining time by one
            rt[shortest]--;
     
            // Update minimum
            minm = rt[shortest];
            if (minm == 0)
                minm = Integer.MAX_VALUE;
     
            // If a process gets completely
            // executed
            if (rt[shortest] == 0) {
     
                // Increment complete
                complete++;
     
                // Find finish time of current
                // process
                finish_time = t + 1;
     
                // Calculate waiting time
                wt[shortest] = finish_time -
                             proc[shortest].bt -
                             proc[shortest].art;
     
                if (wt[shortest] < 0)
                    wt[shortest] = 0;
            }
            // Increment time
            t++;
        }
    }
     
    // Method to calculate turn around time
    static void findTurnAroundTime(Process proc[], int n,
                            int wt[], int tat[])
    {
        // calculating turnaround time by adding
        // bt[i] + wt[i]
        for (int i = 0; i < n; i++)
            tat[i] = proc[i].bt + wt[i];
    }
     
    // Method to calculate average time
    static void findavgTime(Process proc[], int n)
    {
        int wt[] = new int[n], tat[] = new int[n];
        int  total_wt = 0, total_tat = 0;
     
        // Function to find waiting time of all
        // processes
        findWaitingTime(proc, n, wt);
     
        // Function to find turn around time for
        // all processes
        findTurnAroundTime(proc, n, wt, tat);
     
        // Display processes along with all
        // details
        System.out.println("Processes " +
                           " Burst time " +
                           " Waiting time " +
                           " Turn around time");
     
        // Calculate total waiting time and
        // total turnaround time
        for (int i = 0; i < n; i++) {
            total_wt = total_wt + wt[i];
            total_tat = total_tat + tat[i];
            System.out.println(" " + proc[i].pid + "\t\t"
                             + proc[i].bt + "\t\t " + wt[i]
                             + "\t\t" + tat[i]);
        }
     
        System.out.println("Average waiting time = " +
                          (float)total_wt / (float)n);
        System.out.println("Average turn around time = " +
                           (float)total_tat / (float)n);
    }
    
    // Driver Method
    public static void main(String[] args)
    {
         Process proc[] = { new Process(1, 6, 1), 
                            new Process(2, 8, 1),
                            new Process(3, 7, 2), 
                            new Process(4, 3, 3)};
        
         findavgTime(proc, proc.length);
    }
}










Output:

Processes  Burst time  Waiting time  Turn around time
 1        6         3        9
 2        8         16        24
 3        7         8        15
 4        3         0        3
Average waiting time = 6.75
Average turn around time = 12.75


This article is contributed by Sahil Chhabra. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Greedy
Operating Systems
 CPU Scheduling

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Shortest Job First scheduling with predicted burst time

				
						

				
			Prerequisite – CPU Scheduling, SJF – Set 1 (Non- preemptive), Set 2 (Preemptive)

Shortest Job First (SJF)  is an optimal scheduling algorithm as it gives maximum Throughput and minimum average waiting time(WT) and turn around time (TAT) but it is not practically implementable because Burst-Time of a process can’t be predicted in advance.

We may not know the length of the next CPU burst, but we may be able to predict its value. We expect the next CPU burst will be similar in length to the previous ones. By computing an approximation of the length of the next CPU burst, we can pick the process with the shortest predicted CPU burst.

There are two methods by which we can predict the burst time of the process :

1. Static method – We can predict the Burst-Time by two factors :



        
          
          
          
        

            

	Process size –

Let say we have Process Pold having size 200 KB which is already executed and its Burst-time is 20 Units of time, now lets say we have a New Process Pnew having size 201 KB which is yet to be executed.

We take Burst-Time of already executed process Pold which is almost of same size as that of New process as Burst-Time of New Process Pnew.

	Process type –

We can predict Burst-Time depending on the Type of Process. Operating System process(like scheduler, dispatcher, segmentation, fragmentation) are faster than User process( Gaming, application softwares ). Burst-Time for any New O.S process can be predicted from any old O.S process of similar type and same for User process.

Note – Static method for burst time prediction is not reliable as it is always not predicted correctly.

2. Dynamic method – Let ti be the actual Burst-Time of ith process and Τn+1 be the predicted Burst-time for n+1th process.


	Simple average – Given n processes ( P1, P2… Pn)
Τn+1 = 1/n(Σi=1 to n ti)



	Exponential average (Aging) –
Τn+1 = αtn + (1 - α)Τn

where α = is smoothing factor and 0 <= α <= 1 , 

tn = actual burst time of nth process,

Τn = predicted burst time of nth process.

General term, 

αtn + (1 - α)αtn-1 + (1 - α)2αtn-2...+ (1 - α)jαtn-j...+ (1 - α)n+1Τ0 

Τ0 is a constant or overall system average.





Smoothening factor (α) – It controls the relative weight of recent and past history in our prediction.


	If α = 0, Τn+1 = Τn i.e. no change in value of initial predicted burst time.

	If α = 1, Τn+1 = tn i.e. predicted Burst-Time of new process will always change according to actual      Burst-time of nth process.

	If α = 1/2, recent and past history are equally weighted.






Example –

Calculate the exponential averaging with T1 = 10, α = 0.5 and the algorithm is SJF with previous runs as 8, 7, 4, 16.

(a) 9

(b) 8

(c) 7.5

(d) None

Explanation :

Initially T1 = 10 and α = 0.5 and the run times given are 8, 7, 4, 16 as it is shortest job first,

So the possible order in which these processes would serve will be 4, 7, 8, 16 since SJF is a non-preemptive technique.

So, using formula: T2 = α*t1 + (1-α)T1

so we have,

T2 = 0.5*4 + 0.5*10 = 7, here t1 = 4 and T1 = 10

T3 = 0.5*7 + 0.5*7 = 7, here t1 = 7 and T1 = 7

T4 = 0.5*8 + 0.5*7 = 7.5, here t1 = 8 and T1 = 7

So the future prediction for 4th process will be T4 = 7.5 which is the option(c).

This article is contributed by Yash Singla. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	





						Program for Round Robin scheduling | Set 1

				
						

				
			Round Robin is a CPU scheduling algorithm where each process is assigned a fixed time slot in a cyclic way.


	It is simple, easy to implement, and starvation-free as all processes get fair share of CPU.

	One of the most commonly used technique in CPU scheduling as a core.

	It is preemptive as processes are assigned CPU only for a fixed slice of time at most.

	The disadvantage of it is more overhead of context switching.



Illustration:

[image: round-robin]

How to compute below times in Round Robin using a program?


	Completion Time:    Time at which process completes its execution.

	Turn Around Time:   Time Difference between completion time and arrival time.  Turn Around Time = Completion Time – Arrival Time 

	Waiting Time(W.T): Time Difference between turn around time and burst time.

     Waiting Time = Turn Around Time – Burst Time



In this post, we have assumed arrival times as 0, so turn around and completion times are same.

The tricky part is to compute waiting times. Once waiting times are computed, turn around times can be quickly computed.



        
          
          
          
        

            
Steps to find waiting times of all processes:

1- Create an array rem_bt[] to keep track of remaining
   burst time of processes. This array is initially a 
   copy of bt[] (burst times array)
2- Create another array wt[] to store waiting times
   of processes. Initialize this array as 0.
3- Initialize time : t = 0
4- Keep traversing the all processes while all processes
   are not done. Do following for i'th process if it is
   not done yet.
    a- If rem_bt[i] > quantum
       (i)  t = t + quantum
       (ii) bt_rem[i] -= quantum;
    c- Else // Last cycle for this process
       (i)  t = t + bt_rem[i];
       (ii) wt[i] = t - bt[i]
       (ii) bt_rem[i] = 0; // This process is over


Once we have waiting times, we can compute turn around time tat[i] of a process as sum of waiting and burst times, i.e., wt[i] + bt[i]

Below is implementation of above steps.                


C/C++



// C++ program for implementation of RR scheduling
#include<iostream>
using namespace std;

// Function to find the waiting time for all
// processes
void findWaitingTime(int processes[], int n,
             int bt[], int wt[], int quantum)
{
    // Make a copy of burst times bt[] to store remaining
    // burst times.
    int rem_bt[n];
    for (int i = 0 ; i < n ; i++)
        rem_bt[i] =  bt[i];

    int t = 0; // Current time

    // Keep traversing processes in round robin manner
    // until all of them are not done.
    while (1)
    {
        bool done = true;

        // Traverse all processes one by one repeatedly
        for (int i = 0 ; i < n; i++)
        {
            // If burst time of a process is greater than 0
            // then only need to process further
            if (rem_bt[i] > 0)
            {
                done = false; // There is a pending process

                if (rem_bt[i] > quantum)
                {
                    // Increase the value of t i.e. shows
                    // how much time a process has been processed
                    t += quantum;

                    // Decrease the burst_time of current process
                    // by quantum
                    rem_bt[i] -= quantum;
                }

                // If burst time is smaller than or equal to
                // quantum. Last cycle for this process
                else
                {
                    // Increase the value of t i.e. shows
                    // how much time a process has been processed
                    t = t + rem_bt[i];

                    // Waiting time is current time minus time
                    // used by this process
                    wt[i] = t - bt[i];

                    // As the process gets fully executed
                    // make its remaining burst time = 0
                    rem_bt[i] = 0;
                }
            }
        }

        // If all processes are done
        if (done == true)
          break;
    }
}

// Function to calculate turn around time
void findTurnAroundTime(int processes[], int n,
                        int bt[], int wt[], int tat[])
{
    // calculating turnaround time by adding
    // bt[i] + wt[i]
    for (int i = 0; i < n ; i++)
        tat[i] = bt[i] + wt[i];
}

// Function to calculate average time
void findavgTime(int processes[], int n, int bt[],
                                     int quantum)
{
    int wt[n], tat[n], total_wt = 0, total_tat = 0;

    // Function to find waiting time of all processes
    findWaitingTime(processes, n, bt, wt, quantum);

    // Function to find turn around time for all processes
    findTurnAroundTime(processes, n, bt, wt, tat);

    // Display processes along with all details
    cout << "Processes "<< " Burst time "
         << " Waiting time " << " Turn around time\n";

    // Calculate total waiting time and total turn
    // around time
    for (int i=0; i<n; i++)
    {
        total_wt = total_wt + wt[i];
        total_tat = total_tat + tat[i];
        cout << " " << i+1 << "\t\t" << bt[i] <<"\t "
             << wt[i] <<"\t\t " << tat[i] <<endl;
    }

    cout << "Average waiting time = "
         << (float)total_wt / (float)n;
    cout << "\nAverage turn around time = "
         << (float)total_tat / (float)n;
}

// Driver code
int main()
{
    // process id's
    int processes[] = { 1, 2, 3};
    int n = sizeof processes / sizeof processes[0];

    // Burst time of all processes
    int burst_time[] = {10, 5, 8};

    // Time quantum
    int quantum = 2;
    findavgTime(processes, n, burst_time, quantum);
    return 0;
}





Java



// Java program for implementation of RR scheduling

public class GFG 
{
    // Method to find the waiting time for all
    // processes
    static void findWaitingTime(int processes[], int n,
                 int bt[], int wt[], int quantum)
    {
        // Make a copy of burst times bt[] to store remaining
        // burst times.
        int rem_bt[] = new int[n];
        for (int i = 0 ; i < n ; i++)
            rem_bt[i] =  bt[i];
     
        int t = 0; // Current time
     
        // Keep traversing processes in round robin manner
        // until all of them are not done.
        while(true)
        {
            boolean done = true;
     
            // Traverse all processes one by one repeatedly
            for (int i = 0 ; i < n; i++)
            {
                // If burst time of a process is greater than 0
                // then only need to process further
                if (rem_bt[i] > 0)
                {
                    done = false; // There is a pending process
     
                    if (rem_bt[i] > quantum)
                    {
                        // Increase the value of t i.e. shows
                        // how much time a process has been processed
                        t += quantum;
     
                        // Decrease the burst_time of current process
                        // by quantum
                        rem_bt[i] -= quantum;
                    }
     
                    // If burst time is smaller than or equal to
                    // quantum. Last cycle for this process
                    else
                    {
                        // Increase the value of t i.e. shows
                        // how much time a process has been processed
                        t = t + rem_bt[i];
     
                        // Waiting time is current time minus time
                        // used by this process
                        wt[i] = t - bt[i];
     
                        // As the process gets fully executed
                        // make its remaining burst time = 0
                        rem_bt[i] = 0;
                    }
                }
            }
     
            // If all processes are done
            if (done == true)
              break;
        }
    }
     
    // Method to calculate turn around time
    static void findTurnAroundTime(int processes[], int n,
                            int bt[], int wt[], int tat[])
    {
        // calculating turnaround time by adding
        // bt[i] + wt[i]
        for (int i = 0; i < n ; i++)
            tat[i] = bt[i] + wt[i];
    }
     
    // Method to calculate average time
    static void findavgTime(int processes[], int n, int bt[],
                                         int quantum)
    {
        int wt[] = new int[n], tat[] = new int[n];
        int total_wt = 0, total_tat = 0;
     
        // Function to find waiting time of all processes
        findWaitingTime(processes, n, bt, wt, quantum);
     
        // Function to find turn around time for all processes
        findTurnAroundTime(processes, n, bt, wt, tat);
     
        // Display processes along with all details
        System.out.println("Processes " + " Burst time " +
                      " Waiting time " + " Turn around time");
     
        // Calculate total waiting time and total turn
        // around time
        for (int i=0; i<n; i++)
        {
            total_wt = total_wt + wt[i];
            total_tat = total_tat + tat[i];
            System.out.println(" " + (i+1) + "\t\t" + bt[i] +"\t " +
                              wt[i] +"\t\t " + tat[i]);
        }
     
        System.out.println("Average waiting time = " +
                          (float)total_wt / (float)n);
        System.out.println("Average turn around time = " +
                           (float)total_tat / (float)n);
    }
    
    // Driver Method
    public static void main(String[] args)
    {
        // process id's
        int processes[] = { 1, 2, 3};
        int n = processes.length;
     
        // Burst time of all processes
        int burst_time[] = {10, 5, 8};
     
        // Time quantum
        int quantum = 2;
        findavgTime(processes, n, burst_time, quantum);
    }
}





C#



// C# program for implementation of RR
// scheduling
using System;

public class GFG {
    
    // Method to find the waiting time
    // for all processes
    static void findWaitingTime(int []processes,
             int n, int []bt, int []wt, int quantum)
    {
        
        // Make a copy of burst times bt[] to 
        // store remaining burst times.
        int []rem_bt = new int[n];
        
        for (int i = 0 ; i < n ; i++)
            rem_bt[i] = bt[i];
    
        int t = 0; // Current time
    
        // Keep traversing processes in round
        // robin manner until all of them are
        // not done.
        while(true)
        {
            bool done = true;
    
            // Traverse all processes one by
            // one repeatedly
            for (int i = 0 ; i < n; i++)
            {
                // If burst time of a process
                // is greater than 0 then only
                // need to process further
                if (rem_bt[i] > 0)
                {
                    
                    // There is a pending process
                    done = false;
    
                    if (rem_bt[i] > quantum)
                    {
                        // Increase the value of t i.e.
                        // shows how much time a process
                        // has been processed
                        t += quantum;
    
                        // Decrease the burst_time of 
                        // current process by quantum
                        rem_bt[i] -= quantum;
                    }
    
                    // If burst time is smaller than
                    // or equal to quantum. Last cycle
                    // for this process
                    else
                    {
                        
                        // Increase the value of t i.e.
                        // shows how much time a process
                        // has been processed
                        t = t + rem_bt[i];
    
                        // Waiting time is current
                        // time minus time used by 
                        // this process
                        wt[i] = t - bt[i];
    
                        // As the process gets fully 
                        // executed make its remaining
                        // burst time = 0
                        rem_bt[i] = 0;
                    }
                }
            }
    
            // If all processes are done
            if (done == true)
            break;
        }
    }
    
    // Method to calculate turn around time
    static void findTurnAroundTime(int []processes,
               int n, int []bt, int []wt, int []tat)
    {
        // calculating turnaround time by adding
        // bt[i] + wt[i]
        for (int i = 0; i < n ; i++)
            tat[i] = bt[i] + wt[i];
    }
    
    // Method to calculate average time
    static void findavgTime(int []processes, int n,
                             int []bt, int quantum)
    {
        int []wt = new int[n];
        int []tat = new int[n];
        int total_wt = 0, total_tat = 0;
    
        // Function to find waiting time of
        // all processes
        findWaitingTime(processes, n, bt, wt, quantum);
    
        // Function to find turn around time
        // for all processes
        findTurnAroundTime(processes, n, bt, wt, tat);
    
        // Display processes along with
        // all details
        Console.WriteLine("Processes " + " Burst time " +
                    " Waiting time " + " Turn around time");
    
        // Calculate total waiting time and total turn
        // around time
        for (int i = 0; i < n; i++)
        {
            total_wt = total_wt + wt[i];
            total_tat = total_tat + tat[i];
            Console.WriteLine(" " + (i+1) + "\t\t" + bt[i] 
                         + "\t " + wt[i] +"\t\t " + tat[i]);
        }
    
        Console.WriteLine("Average waiting time = " +
                        (float)total_wt / (float)n);
        Console.Write("Average turn around time = " +
                        (float)total_tat / (float)n);
    }
    
    // Driver Method
    public static void Main()
    {
        // process id's
        int []processes = { 1, 2, 3};
        int n = processes.Length;
    
        // Burst time of all processes
        int []burst_time = {10, 5, 8};
    
        // Time quantum
        int quantum = 2;
        findavgTime(processes, n, burst_time, quantum);
    }
}

// This code is contributed by nitin mittal.










Output:

Processes  Burst time  Waiting time  Turn around time
 1        10     13         23
 2        5     10         15
 3        8     13         21
Average waiting time = 12
Average turn around time = 19.6667


This article is contributed by Sahil Chhabra (akku). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Operating Systems
 cpu-scheduling

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Selfish Round Robin Scheduling

				
						

				
			Prerequisite – Program for Round Robin scheduling

In the traditional Round Robin scheduling algorithm all processes were treated equally for processing. The objective of the Selfish Round Robin is to give better service to processes that have been executing for a while than to newcomers. Its a more logical and superior implementation compared to the normal Round Robin algorithm.



Implimentation :-


	Processes in the ready list are partitioned into two lists: NEW and ACCEPTED.

	The New processes wait while Accepted processes are serviced by the Round Robin.

	Priority of a new process increases at rate ‘a’ while the priority of an accepted process increases at rate ‘b’.

	When the priority of a new process reaches the priority of an accepted process, that new process becomes accepted.

	If all accepted processes finish, the highest priority new process is accepted.



Let’s trace out the general working of this algorithm :-

STEP 1 : Assume that initially there are no ready processes, when the first one, A, arrives. It has priority 0 to begin with. Since there are no other accepted processes, A is accepted immediately.

STEP 2 : After a while another process, B, arrives. As long as b / a < 1, B’s priority will eventually catch up to A’s, so it is accepted; now both A and B have the same priority.

STEP 3 : All accepted processes share a common priority (which rises at rate b ); that makes this policy easy to implement i.e any new process’s priority is bound to get accepted at some point. So no process has to experience starvation.

STEP 4 : Even if b / a > 1, A will eventually finish, and then B can be accepted.

Adjusting the parameters a and b : 
          -> If b / a >= 1, a new process is not accepted 
                 until all the accepted processes have finished, so SRR becomes FCFS. 
          -> If b / a = 0, all processes are accepted immediately, so SRR becomes RR. 
          -> If 0 < b / a < 1, accepted processes are selfish, but not completely.


Example on Selfish Round Robin –



        
          
          
          
        

            
[image: 1]

Solution (where a = 2 and b = 1) – 

[image: 2]

Explanation –

Process A gets accepted as soon as it comes at time t = 0. So its priority is increased only by ‘b’ i.e ‘1’ after each second. B enters at time t = 1 and goes to the waiting queue. So its priority gets increased by ‘a’ i.e. ‘2’ at time t = 2. At this point priority of A = priority of B = 2. 

So now both process A & B are in the accepted queue and are executed in a round robin fashion. At time t = 3 process C enters the waiting queue. At time t = 6 the priority of process C catches up to the priority of process B and then they start executing in a Round Robin manner. When B finishes execution at time t = 10, D is automatically promoted to the accepted queue. 

Similarly  when D finishes execution at time t = 15, E is automatically promoted to the accepted queue.



          
          
          
            



Siddhant-Bajaj

Interested in everything CS/IT  Aspire with my Acer Aspire R11 to crack GATE2019  Avid Follower of Ravindrababu Ravula Trying my best to keep right up my alley with competitive coding Open Source and Web Development Projects I am somewhat good at Chess and spend loads of time on geeksforgeeks







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		Operating Systems
 CPU Scheduling

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						Program for Priority Scheduling | Set 1

				
						

				
			Priority scheduling is a non-preemptive algorithm and one of the most common scheduling algorithms in batch systems. Each process is assigned a priority. Process with the highest priority is to be executed first and so on.

Processes with the same priority are executed on first come first served basis. Priority can be decided based on memory requirements, time requirements or any other resource requirement.

Implementation :

1- First input the processes with their burst time 
   and priority.
2- Sort the processes, burst time and priority
   according to the priority.
3- Now simply apply FCFS algorithm.


[image: prior]

Note: A major problem with priority scheduling is indefinite blocking or starvation. A solution to the problem of indefinite blockage of the low-priority process is aging. Aging is a technique of gradually increasing the priority of processes that wait in the system for a long period of time.




Recommended: Please try your approach on {IDE} first, before moving on to the solution.





        
          
          
          
        

            
// C++ program for implementation of FCFS
// scheduling
#include<bits/stdc++.h>
using namespace std;

struct Process
{
    int pid;  // Process ID
    int bt;   // CPU Burst time required
    int priority; // Priority of this process
};

// Function to sort the Process acc. to priority
bool comparison(Process a, Process b)
{
    return (a.priority > b.priority);
}

// Function to find the waiting time for all
// processes
void findWaitingTime(Process proc[], int n,
                     int wt[])
{
    // waiting time for first process is 0
    wt[0] = 0;

    // calculating waiting time
    for (int  i = 1; i < n ; i++ )
        wt[i] =  proc[i-1].bt + wt[i-1] ;
}

// Function to calculate turn around time
void findTurnAroundTime( Process proc[], int n,
                         int wt[], int tat[])
{
    // calculating turnaround time by adding
    // bt[i] + wt[i]
    for (int  i = 0; i < n ; i++)
        tat[i] = proc[i].bt + wt[i];
}

//Function to calculate average time
void findavgTime(Process proc[], int n)
{
    int wt[n], tat[n], total_wt = 0, total_tat = 0;

    //Function to find waiting time of all processes
    findWaitingTime(proc, n, wt);

    //Function to find turn around time for all processes
    findTurnAroundTime(proc, n, wt, tat);

    //Display processes along with all details
    cout << "\nProcesses  "<< " Burst time  "
         << " Waiting time  " << " Turn around time\n";

    // Calculate total waiting time and total turn
    // around time
    for (int  i=0; i<n; i++)
    {
        total_wt = total_wt + wt[i];
        total_tat = total_tat + tat[i];
        cout << "   " << proc[i].pid << "\t\t"
             << proc[i].bt << "\t    " << wt[i]
             << "\t\t  " << tat[i] <<endl;
    }

    cout << "\nAverage waiting time = "
         << (float)total_wt / (float)n;
    cout << "\nAverage turn around time = "
         << (float)total_tat / (float)n;
}

void priorityScheduling(Process proc[], int n)
{
    // Sort processes by priority
    sort(proc, proc + n, comparison);

    cout<< "Order in which processes gets executed \n";
    for (int  i = 0 ; i <  n; i++)
        cout << proc[i].pid <<" " ;

    findavgTime(proc, n);
}

// Driver code
int main()
{
    Process proc[] = {{1, 10, 2}, {2, 5, 0}, {3, 8, 1}};
    int n = sizeof proc / sizeof proc[0];
    priorityScheduling(proc, n);
    return 0;
}


Output:

Order in which processes gets executed 
1 3 2 
Processes  Burst time  Waiting time  Turn around time
 1        10     0         10
 3        8     10         18
 2        5     18         23

Average waiting time = 9.33333
Average turn around time = 17


In this post, the processes with arrival time 0 are discussed.  In next set, we will be considering different arrival times to evaluate waiting times.

This article is contributed by Sahil Chhabra (akku). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Operating Systems
 CPU Scheduling
cpu-scheduling

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Priority Scheduling with different arrival time – Set 2

				
						

				
			
Prerequisite – Program for Priority Scheduling – Set 1

Priority scheduling is a non-preemptive algorithm and one of the most common scheduling algorithms in batch systems. Each process is assigned first arrival time (less arrival time process first) if two processes have same arrival time, then compare to priorities (highest process first). Also, if two processes have same priority then compare to process number (less process number first). This process is repeated while all process get executed.

Implementation –


	First input the processes with their arrival time, burst time and priority.

	Sort the processes, according to arrival time if two process arrival time is same then sort according process priority if two process priority are same then sort according to process number.

	Now simply apply FCFS algorithm.



[image: ]

Gantt Chart – 

[image: ]

Examples –

Input :
process no-> 1 2 3 4 5 
arrival time-> 0 1 3 2 4
burst time-> 3 6 1 2 4
priority-> 3 4 9 7 8
Output :
Process_no Start_time Complete_time Trun_Around_Time Wating_Time
1          0           3            3           0
2          3           9            8           2
4          9           11           9           7
3          11          12           9           8
5          12          16           12          8
Average Wating Time is : 5.0
Average Trun Around time is : 8.2






Recommended: Please try your approach on {IDE} first, before moving on to the solution.





        
          
          
          
        

            
Code –

// Write Java code here
import java.util.*;

/// Data Structure
class Process {
    int at, bt, pri, pno;
    Process(int pno, int at, int bt, int pri)
    {
        this.pno = pno;
        this.pri = pri;
        this.at = at;
        this.bt = bt;
    }
}

/// Gantt chart structure
class GChart {
    // process number, start time, complete time,
    // turn around time, waiting time
    int pno, stime, ctime, wtime, ttime;
}

// user define comparative method (first arrival first serve,
// if arrival time same then heigh priority first)
class MyComparator implements Comparator {

    public int compare(Object o1, Object o2)
    {

        Process p1 = (Process)o1;
        Process p2 = (Process)o2;
        if (p1.at < p2.at)
            return (-1);

        else if (p1.at == p2.at && p1.pri > p2.pri)
            return (-1);

        else
            return (1);
    }
}


// class to find Gantt chart
class FindGantChart {
    void findGc(LinkedList queue)
    {

        // initial time = 0
        int time = 0;

        // priority Queue sort data according
        // to arrival time or priority (ready queue)
        TreeSet prique = new TreeSet(new MyComparator());

        // link list for store processes data
        LinkedList result = new LinkedList();

        // process in ready queue from new state queue
        while (queue.size() > 0)
            prique.add((Process)queue.removeFirst());

        Iterator it = prique.iterator();

        // time set to according to first process
        time = ((Process)prique.first()).at;

        // scheduling process
        while (it.hasNext()) {

            // dispatcher dispatch the
            // process ready to running state
            Process obj = (Process)it.next();

            GChart gc1 = new GChart();
            gc1.pno = obj.pno;
            gc1.stime = time;
            time += obj.bt;
            gc1.ctime = time;
            gc1.ttime = gc1.ctime - obj.at;
            gc1.wtime = gc1.ttime - obj.bt;

            /// store the exxtreted process
            result.add(gc1);
        }

        // create object of output class and call method
        new ResultOutput(result);
    }
}


class ResultOutput {

    ResultOutput(LinkedList result)
    {

        double wavg = 0, tavg = 0;
        int totalprocess = result.size();
        System.out.println("Process_no\tStart_time\t"+
        "Complete_time\tTrun_Around_Time\tWating_Time");

        // dispalay the process details
        while (result.size() > 0) {

            GChart obj = (GChart)result.poll();
            wavg += obj.wtime;
            tavg += obj.ttime;
            System.out.println(obj.pno + "\t\t" +
            obj.stime + "\t\t" + obj.ctime + "\t\t" +
            obj.ttime + "\t\t\t" + obj.wtime);
        }

        // display the average waiting time
        //and average turn around time
        System.out.println("Average Wating Time is : "
        + (wavg / totalprocess));

        System.out.println("Average Trun Around time is : "
         + (tavg / totalprocess));
    }
}


// Driver code
class Priority_Preemption {

    public static void main(String args[])
    {

        // link list for store the
        // process with details (new state)
        LinkedList queue = new LinkedList();

        int arrivaltime[] = { 1, 2, 3, 4, 5 };
        int bursttime[] = { 3, 5, 1, 7, 4 };
        int priority[] = { 3, 4, 1, 7, 8 };

        for (int i = 0; i < 5; i++)

            // insert in new state(queue)
            queue.addLast(new Process(i + 1, arrivaltime[i], 
            bursttime[i], priority[i]));

        FindGantChart obj = new FindGantChart();
        obj.findGc(queue);

    }

}




Output –

Process_no Start_time Complete_time Trun_Around_Time Wating_Time
1           1           4              3            0
2           4           9              7            2
3           9           10             7            6
4          10           17             13           6
5          17           21             16           12
Average Wating Time is : 5.2
Average Trun Around time is : 9.2


This article is contributed by Amit Verma . If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Algorithms
GATE CS
Java
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Starvation and Aging  in Operating Systems

				
						

				
			Prerequisites :  Priority Scheduling 

We have already discussed about the priority scheduling in this post. It is one of the most common scheduling algorithms in batch systems. Each process is assigned a priority. Process with the highest priority is to be executed first and so on.

In this post we will discuss a major problem related to priority scheduling and it’s solution.

Starvation or indefinite blocking is phenomenon associated with the Priority scheduling algorithms, in which a process ready to run for CPU can wait indefinitely because of low priority. In heavily loaded computer system, a steady stream of higher-priority processes can prevent a low-priority process from ever getting the CPU.

There has been rumors that in 1967 Priority Scheduling was used in IBM 7094 at MIT , and  they found a low-priority process that had not been submitted till 1973.



        
          
          
          
        

            
[image: prior]

As we see in the above example process having higher priority than other processes getting CPU earlier. We can think of a scenario in which only one process is having very low-priority (for example 127) and we are giving other process with high-priority, this can lead indefinitely waiting for the process for CPU which is having low-priority, this leads to Starvation. Further we have also discuss about the solution of starvation.

Differences between Deadlock and Starvation in OS :


	
Deadlock occurs when none of the processes in the set is able to move ahead due to occupancy of the required resources by some other process as shown in the figure below, on the other hand Starvation occurs when a process waits for an indefinite period of time to get the resource it requires.


	
Other name of deadlock is Circular Waiting. Other name of starvation is Lived lock.


	
When deadlock occurs no process can make progress, while in starvation apart from the victim process other processes can progress or proceed.




Solution to Starvation : Aging

Aging is a technique of gradually increasing the priority of processes that wait in the system for a long time.For example, if priority range from 127(low) to 0(high), we could increase the priority of a waiting process by 1 Every 15 minutes. Eventually even a process with an initial priority of 127 would take no more than 32 hours for priority 127 process to age to a priority-0 process.

[image: ] 

This article is contributed by Saloni Gupta. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Highest Response Ratio Next (HRRN) Scheduling

				
						

				
			Prerequisite – CPU Scheduling

Given n processes with their Arrival times and Burst times, the task is to find average waiting time and average turn around time using HRRN scheduling algorithm.

The name itself states that we need to find the response ratio of all available processes and select the one with the highest Response Ratio. A process once selected will run till completion.

Criteria – Response Ratio

 Mode – Non-Preemptive

 Response Ratio = (W + S)/S

Here, W is the waiting time of the process so far and S is the Burst time of the process.




Performance of HRRN –


	Shorter Processes are favoured.

	Aging without service increases ratio, longer jobs can get past shorter jobs.



[image: HRRN Scheduling Example.]

Gantt Chart –



        
          
          
          
        

            
[image: HRRN Scheduling Example Soolution]

Explanation –


	At t = 0 we have only one process available, so A gets scheduled.

	Similarly at t = 3 we have only one process available, so B gets scheduled.

	Now at t = 9 we have 3 processes available, C, D and E. Since, C, D and E were available after 4, 6 and 8 units respectively. Therefore, waiting time for C, D and E are (9 – 4 =)5, (9 – 6 =)3, and (9 – 8 =)1 unit respectively.

	Using the formula given above we calculate the Response Ratios of C, D and E respectively as 2.25, 1.6 and 1.5.

	Clearly C has the highest Response Ratio and so it gets scheduled

	Next at t = 13 we have 2 jobs available D and E.

	Response Ratios of D and E are 2.4 and 3.5 respectively.

	So process E is selected next and process D is selected last.



Implementation of HRRN Scheduling –


	Input the number of processes, their arrival times and burst times.

	Sort them according to their arrival times.

	At any given time calculate the response ratios and select the appropriate process to be scheduled.

	Calculate the turn around time as completion time – arrival time.

	Calculate the waiting time as turn around time – burst time.

	Turn around time divided by the burst time gives the normalized turn around time.

	Sum up the waiting and turn around times of all processes and divide by the number of processes to get the average waiting and turn around time.



Code –

#include <stdio.h>

// Defining process details
struct process {
    char name;
    int at, bt, ct, wt, tt;
    int completed;
    float ntt;
} p[10];

int n;

// Sorting Processes by Arrival Time
void sortByArrival()
{
    struct process temp;
    int i, j;

    // Selection Sort applied
    for (i = 0; i < n - 1; i++) {
        for (j = i + 1; j < n; j++) {

            // Check for lesser arrival time
            if (p[i].at > p[j].at) {

                // Swap earlier process to front
                temp = p[i];
                p[i] = p[j];
                p[j] = temp;
            }
        }
    }
}

void main()
{
    int i, j, t, sum_bt = 0;
    char c;
    float avgwt = 0, avgtt = 0;
    n = 5;

    // predefined arrival times
    int arriv[] = { 0, 2, 4, 6, 8 };

    // predefined burst times
    int burst[] = { 3, 6, 4, 5, 2 };

    // Initializing the structure variables
    for (i = 0, c = 'A'; i < n; i++, c++) {
        p[i].name = c;
        p[i].at = arriv[i];
        p[i].bt = burst[i];

        // Variable for Completion status
        // Pending = 0
        // Completed = 1
        p[i].completed = 0;

        // Variable for sum of all Burst Times
        sum_bt += p[i].bt;
    }

    // Sorting the structure by arrival times
    sortByArrival();
    printf("\nName\tArrival Time\tBurst Time\tWaiting Time");
    printf("\tTurnAround Time\t Normalized TT");
    for (t = p[0].at; t < sum_bt;) {

        // Set lower limit to response ratio
        float hrr = -9999;

        // Response Ratio Variable
        float temp;

        // Variable to store next processs selected
        int loc;
        for (i = 0; i < n; i++) {

            // Checking if process has arrived and is Incomplete
            if (p[i].at <= t && p[i].completed != 1) {

                // Calculating Response Ratio
                temp = (p[i].bt + (t - p[i].at)) / p[i].bt;

                // Checking for Highest Response Ratio
                if (hrr < temp) {

                    // Storing Response Ratio
                    hrr = temp;

                    // Storing Location
                    loc = i;
                }
            }
        }

        // Updating time value
        t += p[loc].bt;

        // Calculation of waiting time
        p[loc].wt = t - p[loc].at - p[loc].bt;

        // Calculation of Turn Around Time
        p[loc].tt = t - p[loc].at;

        // Sum Turn Around Time for average
        avgtt += p[loc].tt;

        // Calculation of Normalized Turn Around Time
        p[loc].ntt = ((float)p[loc].tt / p[loc].bt);

        // Updating Completion Status
        p[loc].completed = 1;

        // Sum Waiting Time for average
        avgwt += p[loc].wt;
        printf("\n%c\t\t%d\t\t", p[loc].name, p[loc].at);
        printf("%d\t\t%d\t\t", p[loc].bt, p[loc].wt);
        printf("%d\t\t%f", p[loc].tt, p[loc].ntt);
    }
    printf("\nAverage waiting time:%f\n", avgwt / n);
    printf("Average Turn Around time:%f\n", avgtt / n);
}


Output –

Name    Arrival Time    Burst Time    Waiting Time    TurnAround Time     Normalized TT
A        0        3        0        3        1.000000
B        2        6        1        7        1.166667
C        4        4        5        9        2.250000
E        8        2        5        7        3.500000
D        6        5        9        14        2.800000
Average waiting time:4.000000
Average Turn Around time:8.000000



This article is contributed by Siddhant Bajaj. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Multilevel Queue Scheduling

				
						

				
			Prerequisite : CPU Scheduling

It may happen that processes in the ready queue can be divided into different classes where each class has its own scheduling needs. For example, a common division is a foreground (interactive) process and background (batch) processes.These two classes have different scheduling needs. For this kind of situation Multilevel Queue Scheduling is used.Now, let us see how it works.

Ready Queue is divided into separate queues for each class of processes. For example, let us take three different types of process System processes, Interactive processes and Batch Processes. All three process have there own queue. Now,look at the below figure.

[image: ]

All three different type of processes have there own queue. Each queue have its own Scheduling algorithm. For example, queue 1 and queue 2 uses Round Robin while queue 3 can use FCFS to schedule there processes.   

Scheduling among the queues : What will happen if all the queues have some processes? Which process should get the cpu? To determine this Scheduling among the queues is necessary. There are two ways to do so –



        
          
          
          
        

            

	Fixed priority preemptive scheduling method – Each queue has absolute priority over lower priority queue. Let us consider following priority order queue 1 > queue 2 > queue 3.According to this algorithm no process in the batch queue(queue 3) can run unless queue 1 and 2 are empty. If any batch process (queue 3) is running and any system (queue 1) or Interactive process(queue 2) entered the ready queue the batch process is preempted.

	Time slicing – In this method each queue gets certain portion of CPU time and can use it to schedule its own processes.For instance, queue 1 takes 50 percent of CPU time queue 2 takes 30 percent and queue 3 gets 20 percent of CPU time.



Example Problem :

Consider below table of four processes under Multilevel queue scheduling.Queue number denotes the queue of the process.

[image: ]

Priority of queue 1 is greater than queue 2. queue 1 uses Round Robin (Time Quantum = 2) and queue 2 uses FCFS.

Below is the gantt chart of the problem :

[image: ]

At starting both queues have process so process in queue 1 (P1, P2) runs first (because of higher priority) in the round robin fashion and completes after 7 units then process in queue 2 (P3) starts running (as there is no process in queue 1) but while it is running P4 comes in queue 1 and interrupts P3 and start running for 5 second and after its completion P3 takes the CPU and completes its execution.

This article is contributed by Ashish Sharma. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Multilevel Feedback Queue Scheduling

				
						

				
			Prerequisite – CPU Scheduling, Multilevel Queue Scheduling

This Scheduling is like Multilevel Queue(MLQ) Scheduling but in this process can move between the queues.  Multilevel Feedback Queue Scheduling (MLFQ) keep analyzing the behavior (time of execution) of processes and according to which it changes its priority.Now, look at the diagram and explanation below to understand it properly.

[image: ]

Now let us suppose that queue 1 and 2 follow round robin with time quantum 4 and 8 respectively and queue 3 follow FCFS.One implementation of MFQS is given below –


	When a process starts executing then it first enters queue 1.

	In queue 1 process executes for 4 unit and if it completes in this 4 unit or it gives CPU for I/O operation in this 4 unit than the priority of this process does not change and if it again comes in the ready queue than it again starts its execution in Queue 1.

	If a process in queue 1 does not complete in 4 unit then its priority gets reduced and it shifted to queue 2.

	Above points 2 and 3 are also true for queue 2 processes but the time quantum is 8 unit.In a general case if a process does not complete in a time quantum than it is shifted to the lower priority queue.

	In the last queue, processes are scheduled in FCFS manner.

	A process in lower priority queue can only execute only when higher priority queues are empty.

	A process running in the lower priority queue is interrupted by a process arriving in the higher priority queue.



Well, above implementation may differ for example the last queue can also follow Round-robin Scheduling.

Problems in the above implementation – A process in the lower priority queue can suffer from starvation due to some short processes taking all the CPU time.

Solution – A simple solution can be to boost the priority of all the process after regular intervals and place them all in the highest priority queue.

What is the need of such complex Scheduling?


	Firstly, it is more flexible than the multilevel queue scheduling.

	To optimize turnaround time algorithms like SJF is needed which require the running time of processes to schedule them. But the running time of the process is not known in advance. MFQS runs a process for a time quantum and then it can change its priority(if it is a long process). Thus it learns from past behavior of the process and then predicts its future behavior.This way it tries to run shorter process first thus optimizing turnaround time.

	MFQS also reduces the response time.



Example –

Consider a system which has a CPU bound process, which requires the burst time of 40 seconds.The multilevel Feed Back Queue scheduling algorithm is used and the queue time quantum ‘2’ seconds and in each level it is incremented by ‘5’ seconds.Then how many times the process will be interrupted and on which queue the process will terminate the execution?



        
          
          
          
        

            
Solution –

Process P needs 40 Seconds for total execution.

At Queue 1 it is executed for 2 seconds and then interrupted and shifted to queue 2.

At Queue 2 it is executed for 7 seconds and then interrupted and shifted to queue 3.

At Queue 3 it is executed for 12 seconds and then interrupted and shifted to queue 4.

At Queue 4 it is executed for 17 seconds and then interrupted and shifted to queue 5.

At Queue 5 it executes for 2 seconds and then it completes.

Hence the process is interrupted 4 times and completes on queue 5.

This article is contributed by Ashish Sharma. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Lottery Process Scheduling

				
						

				
			Prerequisite – CPU Scheduling, Process Management

Lottery Scheduling is type of process scheduling, somewhat different from other Scheduling. Processes are scheduled in a random manner. Lottery scheduling can be preemptive or non-preemptive. It also solves the problem of starvation. Giving each process at least one lottery ticket guarantees that it has non-zero probability of being selected at each scheduling operation.

In this scheduling every process have some tickets and scheduler picks a random ticket and process having that ticket is the winner and it is executed for a time slice and then another ticket is picked by the scheduler. These tickets represent the share of processes. A process having a higher number of tickets give it more chance to get chosen for execution.

Example – If we have two processes A and B having 60 and 40 tickets respectively out of total 100 tickets. CPU share of A is 60% and that of B is 40%.These shares are calculated probabilistically and not deterministically. 

Explanation –


	We have two processes A and B. A has 60 tickets (ticket number 1 to 60) and B have 40 tickets (ticket no. 61 to 100).

	Scheduler picks a random number from 1 to 100. If the picked no. is from 1 to 60 then A is executed otherwise B is executed.

	An example of 10 tickets picked by Scheduler may look like this –
Ticket number -  73 82 23 45 32 87 49 39 12 09.
Resulting Schedule -  B  B  A  A  A  B  A  A  A  A.




	A is executed 7 times and B is executed 3 times. As you can see that A takes 70% of CPU and B takes 30% which is not the same as what we need as we need A to have 60% of CPU and B should have 40% of CPU.This happens because shares are calculated probabilistically but in a long run(i.e when no. of tickets picked is more than 100 or 1000) we can achieve a share percentage of approx. 60 and 40 for A and B respectively.



Ways to manipulate tickets –



        
          
          
          
        

            

	Ticket Currency –

Scheduler give a certain number of tickets to different users in a currency and users can give it to there processes in a different currency. E.g. Two users A and B are given 100 and 200 tickets respectively. User A is running two process and give 500 tickets to each in A’s own currency. B is running 1 procees and gives it all 20 tickets in B’s currency. Now at the time of scheduling tickets of each process are converted into global currency i.e A’s process will have 50 tickets each and B’s process will have 200 tickets and scheduling is done on this basis.

	Transfer Tickets –

A process can pass its tickets to another process.

	Ticket inflation –

With this technique a process can temporarily raise or lower the number of tickets it own.



References –

Lottery scheduling – Wikipedia

eecs.berkeley.edu

This article is contributed by Ashish Sharma. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Multiple-Processor Scheduling

				
						

				
			In multiple-processor scheduling multiple CPU’s are available and hence Load Sharing becomes possible. However multiple processor scheduling is more complex as compared to single processor scheduling. In multiple processor scheduling there are cases when the processors are identical i.e. HOMOGENEOUS, in terms of their functionality, we can use any processor available to run any process in the queue.

Approaches to Multiple-Processor Scheduling –

One approach is when all the scheduling decisions and I/O processing are handled by a single processor which is called the Master Server and the other processors executes only the user code. This is simple and reduces the need of data sharing. This entire scenario is called Asymmetric Multiprocessing.

A second approach uses Symmetric Multiprocessing where each processor is self scheduling. All processes may be in a common ready queue or each processor may have its own private queue for ready processes. The scheduling proceeds further by having the scheduler for each processor examine the ready queue and select a process to execute.

Processor Affinity –

Processor Affinity means a processes has an affinity for the processor on which it is currently running.

When a process runs on a specific processor there are certain effects on the cache memory. The data most recently accessed by the process populate the cache for the processor and as a result successive memory access by the process are often satisfied in the cache memory. Now if the process migrates to another processor, the contents of the cache memory must be invalidated for the first processor and the cache for the second processor must be repopulated. Because of the high cost of invalidating and repopulating caches, most of the SMP(symmetric multiprocessing) systems try to avoid migration of processes from one processor to another and try to keep a process running on the same processor. This is known as PROCESSOR AFFINITY.

There are two types of processor affinity:



        
          
          
          
        

            

	Soft Affinity – When an operating system has a policy of attempting to keep a process running on the same processor but not guaranteeing it will do so, this situation is called soft affinity.

	Hard Affinity – Some systems such as Linux also provide some system calls that support Hard Affinity which allows a process to migrate between processors.



Load Balancing –

Load Balancing is the phenomena which keeps the workload evenly distributed across all processors in an SMP system. Load balancing is necessary only on systems where each processor has its own private queue of process which are eligible to execute. Load balancing is unnecessary because once a processor becomes idle it immediately extracts a runnable process from the common run queue. On SMP(symmetric multiprocessing), it is important to keep the workload balanced among all processors to fully utilize the benefits of having more than one processor else one or more processor will sit idle while other processors have high workloads along with lists of processors awaiting the CPU.

There are two general approaches to load balancing :


	Push Migration – In push migration a task routinely checks the load on each processor and if it finds an imbalance then it evenly distributes load on each processors by moving the processes from overloaded to idle or less busy processors.

	Pull Migration – Pull Migration occurs when an idle processor pulls a waiting task from a busy processor for its execution.



Multicore Processors –

In multicore processors multiple processor cores are places on the same physical chip. Each core has a register set to maintain its architectural state and thus appears to the operating system as a separate physical processor. SMP systems that use multicore processors are faster and consume less power than systems in which each processor has its own physical chip.

However multicore processors may complicate the scheduling problems. When processor accesses memory then it spends a significant amount of time waiting for the data to become available. This situation is called MEMORY STALL. It occurs for various reasons such as cache miss, which is accessing the data that is not in the cache memory. In such cases the processor can spend upto fifty percent of its time waiting for data to become available from the memory. To solve this problem recent hardware designs have implemented multithreaded processor cores in which two or more hardware threads are assigned to each core. Therefore if one thread stalls while waiting for the memory, core can switch to another thread.

There are two ways to multithread a processor :


	Coarse-Grained Multithreading – In coarse grained multithreading a thread executes on a processor until a long latency event such as a memory stall occurs, because of the delay caused by the long latency event, the processor must switch to another thread to begin execution. The cost of switching between threads is high as the instruction pipeline must be terminated before the other thread can begin execution on the processor core. Once this new thread begins execution it begins filling the pipeline with its instructions.

	Fine-Grained Multithreading – This multithreading switches between threads at a much finer level mainly at the boundary of an instruction cycle. The architectural design of fine grained systems include logic for thread switching and as a result the cost of switching between threads is small.



Virtualization and Threading –

In this type of multiple-processor scheduling even a single CPU system acts like a multiple-processor system. In a system with Virtualization, the virtualization presents one or more virtual CPU’s to each of virtual machines running on the system and then schedules the use of physical CPU’S among the virtual machines. Most virtualized environments have one host operating system and many guest operating systems. The host operating system creates and manages the virtual machines and each virtual machine has a guest operating system installed and applications running within that guest.Each guest operating system may be assigned for specific use cases,applications, and users,including time sharing or even real-time operation. Any guest operating-system scheduling algorithm that assumes a certain amount of progress in a given amount of time will be negatively impacted by the virtualization. In a time sharing operating system that tries to allot 100 milliseconds to each time slice to give users a reasonable response time. A given 100 millisecond time slice may take much more than 100 milliseconds of virtual CPU time. Depending on how busy the system is, the time slice may take a second or more which results in a very poor response time for users logged into that virtual machine. The net effect of such scheduling layering is that individual virtualized operating systems receive only a portion of the available CPU cycles, even though they believe they are receiving all cycles and that they are scheduling all of those cycles.Commonly, the time-of-day clocks in virtual machines are incorrect because timers take no longer to trigger than they would on dedicated CPU’s. 

Virtualizations can thus undo the good scheduling-algorithm efforts of the operating systems within virtual machines.  

Reference –

Operating System Principles – Galvin



          
          
          
            



Ayush_Pandey_22

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	


Process Synchronization



						 Process Synchronization | Introduction

				
						

				
			On the basis of synchronization, processes are categorized as one of the following two types:


	Independent Process : Execution of one process does not affects the execution of other processes.

	Cooperative Process : Execution of one process affects the execution of other processes.



Process synchronization problem arises in the case of Cooperative process also because resources are shared in Cooperative processes.

 

Critical Section Problem

Critical section is a code segment that can be accessed by only one process at a time. Critical section contains shared variables which need to be synchronized to maintain consistency of data variables.

[image: critical section problem]

In the entry section, the process requests for entry in the Critical Section.

 

Any solution to the critical section problem must satisfy three requirements:


	Mutual Exclusion : If a process is executing in its critical section, then no other process is allowed to execute in the critical section.

	Progress : If no process is in the critical section, then no other process from outside can block it from entering the critical section.

	Bounded Waiting :  A bound must exist on the number of times that other processes are allowed to enter their critical sections after a process has made a request to enter its critical section and before that request is granted.



 

Peterson’s Solution

Peterson’s Solution is a classical software based solution to the critical section problem.



        
          
          
          
        

            
In Peterson’s solution, we have two shared variables:


	boolean flag[i] :Initialized to FALSE, initially no one is interested in entering the critical section

	int turn : The process whose turn is to enter the critical section.



[image: peterson]

 

Peterson’s Solution preserves all three conditions :


	Mutual Exclusion is assured as only one process can access the critical section at any time.

	Progress is also assured, as a process outside the critical section does not blocks other processes from entering the critical section.

	Bounded Waiting is preserved as every process gets a fair chance.

 

Disadvantages of Peterson’s Solution


	It involves Busy waiting

	It is limited to 2 processes.



 

TestAndSet

TestAndSet is a hardware solution to the synchronization problem. In TestAndSet, we have a shared lock variable which can take either of the two values, 0 or 1.

0 Unlock
1 Lock


Before entering into the critical section, a process inquires about the lock. If it is locked, it keeps on waiting till it become free and if it is not locked, it takes the lock and executes the  critical section.

In TestAndSet, Mutual exclusion and progress are preserved but bounded waiting cannot be preserved.

 

Question : The enter_CS() and leave_CS() functions to implement critical section of a process are realized using test-and-set instruction as follows:

void enter_CS(X)
{
  while test-and-set(X) ;
}

void leave_CS(X)
{
  X = 0;
}


In the above solution, X is a memory location associated with the CS and is initialized to 0. Now, consider the following statements:

I. The above solution to CS problem is deadlock-free

II. The solution is starvation free.

III. The processes enter CS in FIFO order.

IV. More than one process can enter CS at the same time.

 

Which of the above statements is TRUE?

(A) I

(B) II and III

(C) II and IV

(D) IV

Click here for the Solution.

 

Semaphores

A Semaphore is an integer variable, which can be accessed only through two operations wait() and signal().

There are two types of semaphores : Binary Semaphores and Counting Semaphores


	Binary Semaphores : They can only be either 0 or 1. They are also known as mutex locks, as the locks can provide mutual exclusion. All the processes can share the same mutex semaphore that is initialized to 1. Then, a process has to wait until the lock becomes 0. Then, the process can make the mutex semaphore 1 and start its critical section. When it completes its critical section, it can reset the value of mutex semaphore to 0 and some other process can enter its critical section.

	Counting Semaphores : They can have any value and are not restricted over a certain domain. They can be used to control access a resource that has a limitation on the number of simultaneous accesses. The semaphore can be initialized to the number of instances of the resource. Whenever a process wants to use that resource, it checks if the number of remaining instances is more than zero, i.e., the process has an instance available. Then, the process can enter its critical section thereby decreasing the value of the counting semaphore by 1. After the process is over with the use of the instance of the resource, it can leave the critical section thereby adding 1 to the number of available instances of the resource.



 

References

www.csee.wvu.edu/~jdmooney/classes/cs550/notes/tech/mutex/Peterson.html

http://iit.qau.edu.pk/books/OS_8th_Edition.pdf

 

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



          
          
          
            


					
		
		GATE CS
Operating Systems
 Process Synchronization

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	





						 Critical Section

				
						

				
			Critical Section:

In simple terms a critical section is group of instructions/statements or region of code that need to be executed atomically (read this post for atomicity), such as accessing a resource (file, input or output port, global data, etc.).

In concurrent programming, if one thread tries to change the value of shared data at the same time as another thread tries to read the value (i.e. data race across threads), the result is unpredictable.

The access to such shared variable (shared memory, shared files, shared port, etc…) to be synchronized. Few programming languages have built in support for synchronization.

It is critical to understand the importance of race condition while writing kernel mode programming (a device driver, kernel thread, etc.). since the programmer can directly access and modifying kernel data structures.



        
          
          
          
        

            
A simple solution to critical section can be thought as shown below,

acquireLock();
Process Critical Section
releaseLock();

A thread must acquire a lock prior to executing critical section. The lock can be acquired by only one thread. There are various ways to implement locks in the above pseudo code. Let us discuss them in future articles.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		GATE CS
Operating Systems
 Process Synchronization

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						Inter Process Communication

				
						

				
			A process can be of two type:


	 Independent process.

	Co-operating process.



An independent process is not affected by the execution of other processes while a co-operating process can be affected by other executing processes. Though one can think that those processes, which are running independently, will execute very efficiently but in practical, there are many situations when co-operative nature can be utilised for increasing computational speed, convenience and modularity. Inter process communication (IPC) is a mechanism which allows processes to communicate each other and synchronize their actions. The communication between these processes can be seen as a method of co-operation between them. Processes can communicate with each other using these two ways:




	Shared Memory

	Message passing



The Figure 1 below shows a basic structure of communication between processes via shared memory method and via message passing.

An operating system can implement both method of communication. First, we will discuss the shared memory method of communication and then message passing. Communication between processes using shared memory requires processes to share some variable and it completely depends on how programmer will implement it. One way of communication using shared memory can be imagined like this: Suppose process1 and process2 are executing simultaneously and they share some resources or use some information from other process, process1 generate information about certain computations or resources being used and keeps it as a record in shared memory. When process2 need to use the shared information, it will check in the record stored in shared memory and take note of the information generated by process1 and act accordingly. Processes can use shared memory for extracting information as a record from other process as well as for delivering any specific information to other process. 

Let’s discuss an example of communication between processes using shared memory method.

[image: ]



        
          
          
          
        

            
i) Shared Memory Method

Ex: Producer-Consumer problem  

There are two processes: Producer and Consumer. Producer produces some item and Consumer consumes that item. The two processes shares a common space or memory location known as buffer where the item produced by Producer is stored and from where the Consumer consumes the item if needed. There are two version of this problem: first one is known as unbounded buffer problem in which Producer can keep on producing items and there is no limit on size of buffer, the second one is known as bounded buffer problem in which producer can produce up to a certain amount of item and after that it starts waiting for consumer to consume it. We will discuss the bounded buffer problem. First, the Producer and the Consumer will share some common memory, then producer will start producing items. If the total produced item is equal to the size of buffer, producer will wait to get it consumed by the Consumer. Sim-

ilarly, the consumer first check for the availability of the item and if no item is available, Consumer will wait for producer to produce it. If there are items available, consumer will consume it. The pseudo code are given below:


Shared Data between the two Processes

#define buff_max 25
#define mod %

    struct item{

        // diffrent member of the produced data 
        // or consumed data    
        ---------
    }
    
    // An array is needed for holding the items. 
    // This is the shared place which will be  
    // access by both process   
    // item shared_buff [ buff_max ];
     
    // Two variables which will keep track of 
    // the indexes of the items produced by producer 
    // and consumer The free index points to 
    // the next free index. The full index points to 
    // the first full index. 
    int free_index = 0;
    int full_index = 0;
  



Producer Process Code

item nextProduced;
    
    while(1){
        
        // check if there is no space 
        // for production.
        // if so keep waiting.
        while((free_index+1) mod buff_max == full_index);
        
        shared_buff[free_index] = nextProduced;
        free_index = (free_index + 1) mod buff_max;
    }


Consumer Process Code

item nextConsumed;
    
    while(1){
        
        // check if there is an available 
        // item  for consumption. 
        // if not keep on waiting for 
        // get them produced.
        while((free_index == full_index);
        
        nextConsumed = shared_buff[full_index];
        full_index = (full_index + 1) mod buff_max;
    }



In the above code, The producer will start producing again when the (free_index+1) mod buff max will be free because if it it not free, this implies that there are still items that can be consumed by the Consumer so there is no need to produce more. Similarly, if free index and full index points to the same index, this implies that there are no item to consume.





ii) Messaging Passing Method

Now, We will start our discussion for the communication between processes via message passing. In this method, processes communicate with each other without using any kind of of shared memory. If two processes p1 and p2 want to communicate with each other, they proceed as follow:




	Establish a communication link (if a link already exists, no need to establish it again.)

	Start exchanging messages using basic primitives.

We need at least two primitives:

– send(message, destinaion) or send(message)

– receive(message, host) or receive(message)



[image: ]


The message size can be of fixed size or of variable size. if it is of fixed size, it is easy for OS designer but complicated for programmer and if it is of variable size then it is easy for programmer but complicated for the OS designer. A standard message can have two parts: header and body.

The header part is used for storing Message type, destination id, source id, message length and control information. The control information contains information like what to do if runs out of buffer space, sequence number, priority. Generally, message is sent using FIFO style.




Message Passing through Communication Link.

Direct and Indirect Communication link

Now, We will start our discussion about the methods of implementing communication link. While implementing the link, there are some questions which need to be kept in mind like :


	How are links established?

	Can a link be associated with more than two processes?

	How many links can there be between every pair of communicating processes?

	 What is the capacity of a link? Is the size of a message that the link can accommodate fixed or variable?

	Is a link unidirectional or bi-directional?



A link has some capacity that determines the number of messages that can reside in it temporarily for which Every link has a queue associated with it which can be either of zero capacity or of bounded capacity or of unbounded capacity. In zero capacity, sender wait until receiver inform sender that it has received the message. In non-zero capacity cases, a process does not know whether a message has been received  or not after the send operation. For this, the sender must communicate to receiver explicitly. Implementation of the link depends on the situation, it can be either a Direct communication link or an In-directed communication link.

 Direct Communication links are implemented when the processes use specific process identifier for the communication but it is hard to identify the sender ahead of time.

For example: the print server.



In-directed Communication is done via a shred mailbox (port), which consists of queue of messages. Sender keeps the message in mailbox and receiver picks them up.




Message Passing through Exchanging the Messages.

Synchronous and Asynchronous Message Passing:

A process that is blocked is one that is waiting for some event, such as a resource becoming available or the completion of an I/O operation. IPC is possible between the processes on same computer as well as on the processes running on different computer i.e. in networked/distributed system. In both cases, the process may or may not be blocked while sending a message or attempting to receive a message so Message passing may be blocking or non-blocking. Blocking is considered synchronous and blocking send means the sender will be blocked until the message is received by receiver. Similarly, blocking receive has the receiver block until a message is available. Non-blocking is considered asynchronous and Non-blocking send has the sender sends the message and continue. Similarly, Non-blocking receive has the receiver receive a valid message or null. After a careful analysis, we can come to a conclusion that, for a sender it is more natural to be non-blocking after message passing as there may be a need to send the message to different processes But the sender expect acknowledgement from receiver in case the send fails. Similarly, it is more natural for a receiver to be blocking after issuing the receive as the information from the received message may be used for further execution but at the same time, if the message send keep on failing, receiver will have to wait for indefinitely. That is why we also consider the other possibility of message passing. There are basically three most preferred combinations:


	Blocking send and blocking receive

	Non-blocking send and Non-blocking receive

	Non-blocking send and Blocking receive (Mostly used)



In Direct message passing, The process which want to communicate must explicitly name the recipient or sender of communication.

 e.g. send(p1, message) means send the message to p1.

similarly, receive(p2, message) means receive the message from p2.

In this method of communication, the communication link get established automatically, which can be either unidirectional or bidirectional, but one link can be used between one pair of the sender and receiver and one pair of sender and receiver should not possess more than one pair of link. Symmetry and asymmetry between the sending and receiving can also be implemented i.e. either both process will name each other for sending and receiving the messages or only sender will name receiver for sending the message and there is no need for receiver for naming the sender for receiving the message.The problem with this method of communication is that if the name of one process changes, this method will not work.



In Indirect message passing, processes uses mailboxes (also referred to as ports) for sending and receiving messages. Each mailbox has a unique id and processes can communicate only if they share a mailbox. Link established only if processes share a common mailbox and a single link can be associated with many processes. Each pair of processes can share several communication links and these link may be unidirectional or bi-directional. Suppose two process want to communicate though Indirect message passing, the required operations are: create a mail box, use this mail box for sending and receiving messages, destroy the mail box. The standard primitives used are : send(A, message) which means send the message to mailbox A. The primitive for the receiving the message also works in the same way e.g. received (A, message). There is a problem in this mailbox implementation. Suppose there are more than two processes sharing the same mailbox and suppose the process p1 sends a message to the mailbox, which process will be the receiver? This can be solved by either forcing that only two processes can share a single mailbox or enforcing that only one process is allowed to execute the receive at a given time or select any process randomly and notify the sender about the receiver. A mailbox can be made private to a single sender/receiver pair and can also be shared between multiple sender/receiver pairs. Port is an implementation of such mailbox which can have multiple sender and single receiver. It is used in client/server application (Here server is the receiver). The port is owned by the receiving process and created by OS on the request of the receiver process and can be destroyed either on request of the same receiver process or when the receiver terminates itself. Enforcing that only one process is allowed to execute the receive can be done using the concept of mutual exclusion. Mutex mailbox is create which is shared by n process. Sender is non-blocking and sends the message. The first process which executes the receive will enter in the critical section and all other processes will be blocking and will wait.



Now, lets discuss the Producer-Consumer problem using message passing concept. The producer place items (inside messages) in the mailbox and the consumer can consume item when at least one message present in the mailbox. The code are given below:



Producer Code

void Producer(void){
        
        int item;
        Message m;
        
        while(1){
            
            receive(Consumer, &m);
            item = produce();
            build_message(&m , item ) ;
            send(Consumer, &m);
        }
    }


Consumer Code

void Consumer(void){
        
        int item;
        Message m;
        
        while(1){
            
            receive(Producer, &m);
            item = extracted_item();
            send(Producer, &m);
            consume_item(item);
        }
    }


Examples of IPC systems


	 Posix : uses shared memory method.

	Mach : uses message passing

	Windows XP : uses message passing using local procedural calls




Communication in client/server Architecture:

There are various mechanism:


	Pipe

	Socket

	Remote Procedural calls (RPCs)



The above three methods will be discussed later article as all of them are quite conceptual and deserve their own separate articles.



References:


	 Operating System Concepts by Galvin et al.

	Lecture notes/ppt of Ariel J. Frank, Bar-Ilan University



More Reference:

http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf

https://www.youtube.com/watch?v=lcRqHwIn5Dk




This article is contributed by Durgesh Pandey. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above. If you like GeeksforGeeks and would like to contribute, you can also write an article and mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.



          
          
          
            


					
		
		GATE CS
Operating Systems
 Process Synchronization

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						IPC through shared memory

				
						

				
			Inter Process Communication through shared memory is a concept where two or more process can access the common memory. And communication is done via this shared memory where changes made by one process can be viewed by anther process.

The problem with pipes, fifo and message queue – is that for two process to exchange information. The information has to go through the kernel.


	Server reads from the input file.

	The server writes this data in a message using either a pipe, fifo or message queue.

	The client reads the data from the IPC channel,again requiring the data to be copied from kernel’s IPC buffer to the client’s buffer.

	Finally the data is copied from the client’s buffer.

 

A total of four copies of data are required (2 read and 2 write). So, shared memory provides a way by letting two or more processes share a memory segment. With Shared Memory the data is only copied twice – from input file into shared memory and from shared memory to the output file.

SYSTEM CALLS USED ARE:



        
          
          
          
        

            

ftok(): is use to generate a unique key.

shmget():  int shmget(key_t,size_tsize,intshmflg); upon successful completion, shmget() returns an identifier for the shared memory segment.

shmat(): Before you can use a shared memory segment, you have to attach yourself

to it using shmat(). void *shmat(int shmid ,void *shmaddr ,int shmflg);

shmid is shared memory id. shmaddr specifies specific address to use but we should set

it to zero and OS will automatically choose the address.

shmdt(): When you’re done with the shared memory segment, your program should

detach itself from it using shmdt(). int shmdt(void *shmaddr);

shmctl(): when you detach from shared memory,it is not destroyed. So, to destroy

shmctl() is used.  shmctl(int shmid,IPC_RMID,NULL);




SHARED MEMORY FOR WRITER PROCESS

#include <iostream>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>
using namespace std;

int main()
{
    // ftok to generate unique key
    key_t key = ftok("shmfile",65);

    // shmget returns an identifier in shmid
    int shmid = shmget(key,1024,0666|IPC_CREAT);

    // shmat to attach to shared memory
    char *str = (char*) shmat(shmid,(void*)0,0);

    cout<<"Write Data : ";
    gets(str);

    printf("Data written in memory: %s\n",str);
    
    //detach from shared memory 
    shmdt(str);

    return 0;
}


SHARED MEMORY FOR READER PROCESS

#include <iostream>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>
using namespace std;

int main()
{
    // ftok to generate unique key
    key_t key = ftok("shmfile",65);

    // shmget returns an identifier in shmid
    int shmid = shmget(key,1024,0666|IPC_CREAT);

    // shmat to attach to shared memory
    char *str = (char*) shmat(shmid,(void*)0,0);

    printf("Data read from memory: %s\n",str);
    
    //detach from shared memory 
    shmdt(str);
  
    // destroy the shared memory
    shmctl(shmid,IPC_RMID,NULL);
   
    return 0;
}


Output:

[image: ]



          
          
          
            



shubham_rana_77

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		C
Operating Systems
 system-programming

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	





						IPC using Message Queues

				
						

				
			Prerequisite : Inter Process Communication

A message queue is a linked list of messages stored within the kernel and identified by a message queue identifier. A new queue is created or an existing queue opened by msgget().

New messages are added to the end of a queue by msgsnd(). Every message has a positive long integer type field, a non-negative length, and the actual data bytes (corresponding to the length), all of which are specified to msgsnd() when the message is added to a queue. Messages are fetched from a queue by msgrcv(). We don’t have to fetch the messages in a first-in, first-out order. Instead, we can fetch messages based on their type field.

All processes can exchange information through access to a common system message queue. The sending process places a message (via some (OS) message-passing module) onto a queue which can be read by another process. Each message is given an identification or type so that processes can select the appropriate message. Process must share a common key in order to gain access to the queue in the first place.

[image: ]

System calls used for message queues:

ftok(): is use to generate a unique key.

msgget(): either returns the message queue identifier for a newly created message 
queue or returns the identifiers for a queue which exists with the same key value.

msgsnd(): Data is placed on to a message queue by calling msgsnd().

msgrcv(): messages are retrieved from a queue.

msgctl(): It performs various operations on a queue. Generally it is use to 
destroy message queue.





Recommended: Please try your approach on {IDE} first, before moving on to the solution.





        
          
          
          
        

            
MESSAGE QUEUE FOR WRITER PROCESS

// C Program for Message Queue (Writer Process)
#include <stdio.h>
#include <sys/ipc.h>
#include <sys/msg.h>

// structure for message queue
struct mesg_buffer {
    long mesg_type;
    char mesg_text[100];
} message;

int main()
{
    key_t key;
    int msgid;

    // ftok to generate unique key
    key = ftok("progfile", 65);

    // msgget creates a message queue
    // and returns identifier
    msgid = msgget(key, 0666 | IPC_CREAT);
    message.mesg_type = 1;

    printf("Write Data : ");
    gets(message.mesg_text);

    // msgsnd to send message
    msgsnd(msgid, &message, sizeof(message), 0);

    // display the message
    printf("Data send is : %s \n", message.mesg_text);

    return 0;
}


MESSAGE QUEUE FOR READER PROCESS

// C Program for Message Queue (Reader Process)
#include <stdio.h>
#include <sys/ipc.h>
#include <sys/msg.h>

// structure for message queue
struct mesg_buffer {
    long mesg_type;
    char mesg_text[100];
} message;

int main()
{
    key_t key;
    int msgid;

    // ftok to generate unique key
    key = ftok("progfile", 65);

    // msgget creates a message queue
    // and returns identifier
    msgid = msgget(key, 0666 | IPC_CREAT);

    // msgrcv to receive message
    msgrcv(msgid, &message, sizeof(message), 1, 0);

    // display the message
    printf("Data Received is : %s \n", 
                    message.mesg_text);

    // to destroy the message queue
    msgctl(msgid, IPC_RMID, NULL);

    return 0;
}


Output:

[image: ]



          
          
          
            



shubham_rana_77

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		C
Operating Systems
 system-programming

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Semaphores in operating system

				
						

				
			Prerequisite: process-synchronization, Mutex vs Semaphore

Semaphore is a simply a variable. This variable is used to solve critical section problem and to achieve process synchronization in the multi processing environment.

The two most common kinds of semaphores are counting semaphores and binary semaphores. Counting semaphore can take non-negative integer values and Binary semaphore can take the value 0 & 1. only. 

Now let us see how it do so.

First look at two operations which can be used to access and change the value of semaphore variable.

[image: P-and-V-operation-in-OS]



        
          
          
          
        

            
Some point regarding P and V operation


	P operation is also called wait, sleep or down operation and V operation is also called signal, wake-up or up operation.

	Both operations are atomic and semaphore(s) is always initialized to one.

	A critical section is surrounded by both operations to implement process synchronization.See below image.critical section of Process P is in between P and V operation.



[image: ]

Now, let us see how it implements mutual exclusion. Let there be two processes P1 and P2 and a semaphore s is initialized as 1. Now if suppose P1 enters in its critical section then the value of semaphore s becomes 0. Now if P2 wants to enter its critical section then it will wait until s > 0, this can only happen when P1 finishes its critical section and calls V operation on semaphore s. This way mutual exclusion is achieved. Look at the below image for details.

[image: ]

The description above is for binary semaphore which can take only two values 0 and 1. There is one other type of semaphore called counting semaphore which can take values greater than one.

Now suppose there is a resource whose number of instance is 4. Now we initialize S = 4 and rest is same as for binary semaphore. Whenever process wants that resource it calls  P or wait function and when it is done it calls V or signal function. If value of S becomes zero than a process has to wait until S becomes positive. For example, Suppose there are 4 process P1, P2, P3, P4 and they all call wait operation on S(initialized with 4). If another process P5 wants the resource then it should wait until one of the four process calls signal function and value of semaphore becomes positive.

Problem in this implementation of semaphore 

Whenever any process waits then it continuously checks for semaphore value (look at this line while (s==0); in P operation) and waste CPU cycle. To avoid this another implementation is provided below.


P(Semaphore s)
{
    s = s - 1;
    if (s < 0) {

        // add process to queue
        block();
    }
}

V(Semaphore s)
{
    s = s + 1;
    if (s >= 0) {

        // remove process p from queue
        wakeup(p);
    }
}




In this implementation whenever process waits it is added to a waiting queue of processes associated with that semaphore. This is done through system call block() on that process. When a process is completed it calls signal function and one process in the queue is resumed. It uses wakeup() system call.

This article is contributed by Ashish Sharma. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						Mutex vs Semaphore

				
						

				
			What are the differences between Mutex vs Semaphore? When to use mutex and when to use semaphore?

Concrete understanding of Operating System concepts is required to design/develop smart applications. Our objective is to educate  the reader on these concepts and learn from other expert geeks.

As per operating system terminology, mutex and semaphore are kernel resources that provide synchronization services (also called as synchronization primitives). Why do we need such synchronization primitives? Won’t be only one sufficient? To answer these questions, we need to understand few keywords. Please read the posts on atomicity and critical section. We will illustrate with examples to understand these concepts well, rather than following usual OS textual description.

The producer-consumer problem:

Note that the content is generalized explanation. Practical details vary with implementation.



        
          
          
          
        

            
Consider the standard producer-consumer problem. Assume, we have a buffer of 4096 byte length. A producer thread collects the data and writes it to the buffer. A consumer thread processes the collected data from the buffer. Objective is, both the threads should not run at the same time.

Using Mutex:

A mutex provides mutual exclusion, either producer or consumer can have the key (mutex) and proceed with their work. As long as the buffer is filled by producer, the consumer needs to wait, and vice versa.

At any point of time, only one thread can work with the entire buffer. The concept can be generalized using semaphore.

Using Semaphore:

A semaphore is a generalized mutex. In lieu of single buffer, we can split the 4 KB buffer into four 1 KB buffers (identical resources). A semaphore can be associated with these four buffers. The consumer and producer can work on different buffers at the same time.

Misconception:

There is an ambiguity between binary semaphore and mutex. We might have come across that a mutex is binary semaphore. But they are not! The purpose of mutex and semaphore are different. May be, due to similarity in their implementation a mutex would be referred as binary semaphore.

Strictly speaking, a mutex is locking mechanism used to synchronize access to a resource. Only one task (can be a thread or process based on OS abstraction) can acquire the mutex. It means there is ownership associated with mutex, and only the owner can release the lock (mutex).

Semaphore is signaling mechanism (“I am done, you can carry on” kind of signal). For example, if you are listening songs (assume it as one task) on your mobile and at the same time your friend calls you, an interrupt is triggered upon which an interrupt service routine (ISR) signals the call processing task to wakeup.

General Questions:

1. Can a thread acquire more than one lock (Mutex)?

Yes, it is possible that a thread is in need of more than one resource, hence the locks. If any lock is not available the thread will wait (block) on the lock.

2. Can a mutex be locked more than once?

A mutex is a lock. Only one state (locked/unlocked) is associated with it. However, a recursive mutex can be locked more than once (POSIX complaint systems), in which a count is associated with it, yet retains only one state (locked/unlocked). The programmer must unlock the mutex as many number times as it was locked.

3. What happens if a non-recursive mutex is locked more than once.

Deadlock. If a thread which had already locked a mutex, tries to lock the mutex again, it will enter into the waiting list of that mutex, which results in deadlock. It is because no other thread can unlock the mutex. An operating system implementer can exercise care in identifying the owner of mutex and return if it is already locked by same thread to prevent deadlocks.

4. Are binary semaphore and mutex same?

No. We suggest to treat them separately, as it is explained signalling vs locking mechanisms. But a binary semaphore may experience the same critical issues (e.g. priority inversion) associated with mutex. We will cover these in later article.

A programmer can prefer mutex rather than creating a semaphore with count 1.

5. What is a mutex and critical section?

Some operating systems use the same word critical section in the API. Usually a mutex is costly operation due to protection protocols associated with it. At last, the objective of mutex is atomic access. There are other ways to achieve atomic access like disabling interrupts which can be much faster but ruins responsiveness. The alternate API makes use of disabling interrupts.

6. What are events?

The semantics of mutex, semaphore, event, critical section, etc… are same. All are synchronization primitives. Based on their cost in using them they are different. We should consult the OS documentation for exact details.

7. Can we acquire mutex/semaphore in an Interrupt Service Routine?

An ISR will run asynchronously in the context of current running thread. It is not recommended to query (blocking call) the availability of synchronization primitives in an ISR. The ISR are meant be short, the call to mutex/semaphore may block the current running thread. However, an ISR can signal a semaphore or unlock a mutex.

8. What we mean by “thread blocking on mutex/semaphore” when they are not available?

Every synchronization primitive has a waiting list associated with it. When the resource is not available, the requesting thread will be moved from the running list of processor to the waiting list of the synchronization primitive. When the resource is available, the higher priority thread on the waiting list gets the resource (more precisely, it depends on the scheduling policies).

9. Is it necessary that a thread must block always when resource is not available?

Not necessary. If the design is sure ‘what has to be done when resource is not available‘, the thread can take up that work (a different code branch). To support application requirements the OS provides non-blocking API.

For example POSIX pthread_mutex_trylock() API. When mutex is not available the function returns immediately whereas the API pthread_mutex_lock() blocks the thread till resource is available.

References:

http://www.netrino.com/node/202

http://doc.trolltech.com/4.7/qsemaphore.html

Also compare mutex/semaphores with Peterson’s algorithm and Dekker’s algorithm. A good reference is the Art of Concurrency book. Also explore reader locks and writer locks in Qt documentation.

Exercise:

Implement a program that prints a message “An instance is running” when executed more than once in the same session. For example, if we observe word application or Adobe reader in Windows, we can see only one instance in the task manager. How to implement it?

Article compiled by Venki. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Articles
Operating Systems
 Process Synchronization

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						Process Synchronization | Monitors

				
						

				
			Monitor is one of the ways to achieve Process synchronization. Monitor is supported by programming languages to achieve mutual exclusion between processes. For example Java Synchronized methods. Java provides wait() and notify() constructs. 

1. It is the collection of condition variables and procedures combined together in a special kind of module or a package.

2. The processes running outside the monitor can’t access the internal variable of monitor but can call procedures of the monitor.

3. Only one process at a time can execute code inside monitors.

Syntax of Monitor

[image: monitors]

Condition Variables



        
          
          
          
        

            
Two different operations are performed on the condition variables of the monitor.

Wait.
signal.

let say we have 2 condition variables

condition x, y; //Declaring variable

 

Wait operation

x.wait() : Process performing wait operation on any condition variable are suspended. The suspended processes are placed in block queue of that condition variable.

Note: Each condition variable has its unique block queue.

 

Signal operation

x.signal(): When a process performs signal operation on condition variable, one of the blocked processes is given chance.

If (x block queue empty)
  // Ignore signal
else
  // Resume a process from block queue.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



          
          
          
            


					
		
		Operating Systems
 Process Synchronization

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						Peterson’s Algorithm for Mutual Exclusion | Set 1 (Basic C implementation)

				
						

				
			Problem: Given 2 process i and j, you need to write a program that can guarantee mutual exclusion between the two without any additional hardware support.

Solution: There can be multiple ways to solve this problem, but most of them require additional hardware support. The simplest and the most popular way to do this is by using Peterson Algorithm for mutual Exclusion. It was developed by Peterson in 1981 though the initial work in this direction by done by Theodorus Jozef Dekker who came up with Dekker’s algorithm in 1960, which was later refined by Peterson and came to be known as Peterson’s Algorithm.

Basically, Peterson’s algorithm provides guaranteed mutual exclusion by using only the shared memory. It uses two ideas in the algorithm, 


	Willingness to acquire lock.

	Turn to acquire lock.



Prerequisite : Multithreading in C

Explanation:

The idea is that first a thread expresses its desire to acquire lock and sets  flag[self] = 1 and then gives the other thread a chance to acquire the lock. If the thread desires to acquire the lock, then, it gets the lock and then passes the chance to the 1st thread. If it does not desire to get the lock then the while loop breaks and the 1st thread gets the chance.



        
          
          
          
        

            
Implementation in C language

// Filename: peterson_spinlock.c
// Use below command to compile:
// gcc -pthread peterson_spinlock.c -o peterson_spinlock

#include <stdio.h>
#include <pthread.h>
#include"mythreads.h"

int flag[2];
int turn;
const int MAX = 1e9;
int ans = 0;

void lock_init()
{
    // Initialize lock by reseting the desire of
    // both the threads to acquire the locks.
    // And, giving turn to one of them.
    flag[0] = flag[1] = 0;
    turn = 0;
}

// Executed before entering critical section
void lock(int self)
{
    // Set flag[self] = 1 saying you want to acquire lock
    flag[self] = 1;

    // But, first give the other thread the chance to
    // acquire lock
    turn = 1-self;

    // Wait until the other thread looses the desire
    // to acquire lock or it is your turn to get the lock.
    while (flag[1-self]==1 && turn==1-self) ;
}

// Executed after leaving critical section
void unlock(int self)
{
    // You do not desire to acquire lock in future.
    // This will allow the other thread to acquire
    // the lock.
    flag[self] = 0;
}

// A Sample function run by two threads created 
// in main()
void* func(void *s)
{
    int i = 0;
    int self = (int *)s;
    printf("Thread Entered: %d\n", self);

    lock(self);

    // Critical section (Only one thread
    // can enter here at a time)
    for (i=0; i<MAX; i++)
        ans++;

    unlock(self);
}

// Driver code
int main()
{
    // Initialized the lock then fork 2 threads
    pthread_t p1, p2;
    lock_init();

    // Create two threads (both run func) 
    pthread_create(&p1, NULL, func, (void*)0);
    pthread_create(&p2, NULL, func, (void*)1);

    // Wait for the threads to end.
    pthread_join(p1, NULL);
    pthread_join(p2, NULL);

    printf("Actual Count: %d | Expected Count: %d\n",
                                        ans, MAX*2);

    return 0;
}


// mythread.h (A wrapper header file with assert
// statements)
#ifndef __MYTHREADS_h__
#define __MYTHREADS_h__

#include <pthread.h>
#include <assert.h>
#include <sched.h>

void Pthread_mutex_lock(pthread_mutex_t *m)
{
    int rc = pthread_mutex_lock(m);
    assert(rc == 0);
}
                                                                                
void Pthread_mutex_unlock(pthread_mutex_t *m)
{
    int rc = pthread_mutex_unlock(m);
    assert(rc == 0);
}
                                                                                
void Pthread_create(pthread_t *thread, const pthread_attr_t *attr, 	
	       void *(*start_routine)(void*), void *arg)
{
    int rc = pthread_create(thread, attr, start_routine, arg);
    assert(rc == 0);
}

void Pthread_join(pthread_t thread, void **value_ptr)
{
    int rc = pthread_join(thread, value_ptr);
    assert(rc == 0);
}

#endif // __MYTHREADS_h__


Output:

Thread Entered: 1
Thread Entered: 0
Actual Count: 2000000000 | Expected Count: 2000000000


The produced output is 2*109 where 109 is incremented by both threads.

This article is contributed by Pinkesh Badjatiya . If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Operating Systems
 Process Synchronization
system-programming

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						Peterson’s Algorithm for Mutual Exclusion | Set 2 (CPU Cycles and Memory Fence)

				
						

				
			Problem: Given 2 process i and j, you need to write a program that can guarantee mutual exclusion between the two without any additional hardware support.

We strongly recommend to refer below basic solution discussed in previous article.

Peterson’s Algorithm for Mutual Exclusion | Set 1

We would be resolving 2 issues in the previous algorithm.

 Wastage of CPU clock cycles 

In layman terms, when a thread was waiting for its turn, it ended in a long while loop which tested the condition millions of times per second thus doing unnecessary computation. There is a better way to wait, and it is known as “yield”.

To understand what it does, we need to dig deep into how the Process scheduler works in Linux. The idea mentioned here is a simplified version of the scheduler, the actual implementation has lots of complications.



        
          
          
          
        

            
Consider the following example,

There are three processes, P1, P2 and P3. Process P3 is such that it has a while loop similar to the one in our code, doing not so useful computation, and it exists from the loop only when P2 finishes its execution. The scheduler puts all of them in a round robin queue. Now, say the clock speed of processor is 1000000/sec, and it allocates 100 clocks to each process in each iteration. Then, first P1 will be run for 100 clocks (0.0001 seconds), then P2(0.0001 seconds) followed by P3(0.0001 seconds), now since there are no more processes, this cycle repeats untill P2 ends and then followed by P3’s execution and eventually its termination.

This is a complete waste of the 100 CPU clock cycles. To avoid this, we mutually give up the CPU time slice, i.e. yield, which essentially ends this time slice and the scheduler picks up the next process to run. Now, we test our condition once, then we give up the CPU. Considering our test takes 25 clock cycles, we save 75% of our computation in a time slice. To put this graphically,

[image: ]

Considering the processor clock speed as 1MHz this is a lot of saving!.

Different distributions provide different function to achieve this functionality. Linux provides sched_yield().

void lock(int self)
{
    flag[self] = 1;
    turn = 1-self;

    while (flag[1-self] == 1 &&
           turn == 1-self)
 
        // Only change is the addition of
        // sched_yield() call
        sched_yield();
}


 Memory fence.

The code in earlier tutorial might have worked on most systems, but is was not 100% correct. The logic was perfect, but most modern CPUs employ performance optimizations that can result in out-of-order execution. This reordering of memory operations (loads and stores) normally goes unnoticed within a single thread of execution, but can cause unpredictable behaviour in concurrent programs.

Consider this example,

 while (f == 0);
 
 // Memory fence required here
 print x;


In the above example, the compiler considers the 2 statements as independent of each other and thus tries to increase the code efficiency by re-ordering them, which can lead to problems for concurrent programs. To avoid this we place a memory fence to give hint to the compiler about the possible relationship between the statements across the barrier.

So the order of statements, 


flag[self] = 1;

turn = 1-self;

while (turn condition check)

    yield();




has to be exactly the same in order for the lock to work, otherwise it will end up in a deadlock condition.

To ensure this, compilers provide a instruction that prevent ordering of statements across this barrier. In case of gcc, its __sync_synchronize().

So the modified code becomes,

Full Implementation in C:

// Filename: peterson_yieldlock_memoryfence.c
// Use below command to compile:
// gcc -pthread peterson_yieldlock_memoryfence.c -o peterson_yieldlock_memoryfence

#include<stdio.h>
#include<pthread.h>
#include "mythreads.h"

int flag[2];
int turn;
const int MAX = 1e9;
int ans = 0;

void lock_init()
{
    // Initialize lock by reseting the desire of
    // both the threads to acquire the locks.
    // And, giving turn to one of them.
    flag[0] = flag[1] = 0;

    turn = 0;
}

// Executed before entering critical section
void lock(int self)
{
    // Set flag[self] = 1 saying you want
    // to acquire lock
    flag[self]=1;

    // But, first give the other thread the
    // chance to acquire lock
    turn = 1-self;

    // Memory fence to prevent the reordering
    // of instructions beyond this barrier.
    __sync_synchronize();

    // Wait untill the other thread looses the
    // desire to acquire  lock or it is your
    // turn to get the lock.
    while (flag[1-self]==1 && turn==1-self)

        // Yield to avoid wastage of resources.
        sched_yield();
}

// Executed after leaving critical section
void unlock(int self)
{
    // You do not desire to acquire lock in future.
    // This will allow the other thread to acquire
    // the lock.
    flag[self]=0;
}

// A Sample function run by two threads created
// in main()
void* func(void *s)
{
    int i = 0;
    int self = (int *)s;
    printf("Thread Entered: %d\n",self);
    lock(self);

    // Critical section (Only one thread
    // can enter here at a time)
    for (i=0; i<MAX; i++)
        ans++;

    unlock(self);
}

// Driver code
int main()
{    
    pthread_t p1, p2;

    // Initialize the lock 
    lock_init();

    // Create two threads (both run func)
    Pthread_create(&p1, NULL, func, (void*)0);
    Pthread_create(&p2, NULL, func, (void*)1);

    // Wait for the threads to end.
    Pthread_join(p1, NULL);
    Pthread_join(p2, NULL);

    printf("Actual Count: %d | Expected Count:"
           " %d\n",ans,MAX*2);

    return 0;
}




// mythread.h (A wrapper header file with assert
// statements)
#ifndef __MYTHREADS_h__
#define __MYTHREADS_h__

#include <pthread.h>
#include <assert.h>
#include <sched.h>

void Pthread_mutex_lock(pthread_mutex_t *m)
{
    int rc = pthread_mutex_lock(m);
    assert(rc == 0);
}
                                                                                
void Pthread_mutex_unlock(pthread_mutex_t *m)
{
    int rc = pthread_mutex_unlock(m);
    assert(rc == 0);
}
                                                                                
void Pthread_create(pthread_t *thread, const pthread_attr_t *attr,     
           void *(*start_routine)(void*), void *arg)
{
    int rc = pthread_create(thread, attr, start_routine, arg);
    assert(rc == 0);
}

void Pthread_join(pthread_t thread, void **value_ptr)
{
    int rc = pthread_join(thread, value_ptr);
    assert(rc == 0);
}

#endif // __MYTHREADS_h__


Output:

Thread Entered: 1
Thread Entered: 0
Actual Count: 2000000000 | Expected Count: 2000000000


This article is contributed by Pinkesh Badjatiya . If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Operating Systems
 Process Synchronization

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Peterson’s Algorithm (Using processes and shared memory)

				
						

				
			Prerequisite – synchronization, Critical Section



Problem:The producer consumer problem (or bounded buffer problem) describes two processes, the producer and the consumer, which share a common, fixed-size buffer used as a queue. Producer produce an item and put it into buffer. If buffer is already full then producer will have to wait for an empty block in buffer. Consumer consume an item from buffer. If buffer is already empty then consumer will have to wait for an item in buffer. Implement Peterson’s Algorithm for the two processes using shared memory such that there is mutual exclusion between them. The solution should have free from synchronization problems.

[image: Producer-Consumer]

Peterson’s algorithm –



        
          
          
          
        

            

// code for producer (j)

// producer j is ready
// to produce an item
flag[j] = true;

// but consumer (i) can consume an item
turn = i;

// if consumer is ready to consume an item
// and if its consumer's turn
while (flag[i] == true && turn == i)

    { // then producer will wait }

    // otherwise producer will produce
    // an item and put it into buffer (critical Section)

    // Now, producer is out of critical section
    flag[j] = false;
    // end of code for producer

    //--------------------------------------------------------
    // code for consumer i

    // consumer i is ready
    // to consume an item
    flag[i] = true;

    // but producer (j) can produce an item
    turn = j;

    // if producer is ready to produce an item
    // and if its producer's turn
    while (flag[j] == true && turn == j)

        { // then consumer will wait }

        // otherwise consumer will consume
        // an item from buffer (critical Section)

        // Now, consumer is out of critical section
        flag[i] = false;
// end of code for consumer




Explanation of Peterson’s algorithm –

Peterson’s Algorithm is used to synchronize two processes. It uses two variables, a bool array flag of size 2 and an int variable turn to accomplish it.

In the solution i represents the Consumer and j represents the Producer. Initially the flags are false. When a process wants to execute it’s critical section, it sets it’s flag to true and turn as the index of the other process. This means that the process wants to execute but it will allow the other process to run first. The process performs busy waiting  until the other process has finished it’s own critical section.

After this the current process enters it’s critical section and adds or removes a random number from the shared buffer. After completing the critical section, it sets it’s own flag to false, indication it does not wish to execute anymore.

The program runs for a fixed amount of time before exiting. This time can be changed by changing value of the the macro RT.

// C program to implement Peterson’s Algorithm
// for producer-consumer problem.
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdbool.h>
#define _BSD_SOURCE
#include <sys/time.h>
#include <stdio.h>

#define BSIZE 8 // Buffer size
#define PWT 2 // Producer wait time limit
#define CWT 10 // Consumer wait time limit
#define RT 10 // Program run-time in seconds

int shmid1, shmid2, shmid3, shmid4;
key_t k1 = 5491, k2 = 5812, k3 = 4327, k4 = 3213;
bool* SHM1;
int* SHM2;
int* SHM3;

int myrand(int n) // Returns a random number between 1 and n
{
    time_t t;
    srand((unsigned)time(&t));
    return (rand() % n + 1);
}

int main()
{
    shmid1 = shmget(k1, sizeof(bool) * 2, IPC_CREAT | 0660); // flag
    shmid2 = shmget(k2, sizeof(int) * 1, IPC_CREAT | 0660); // turn
    shmid3 = shmget(k3, sizeof(int) * BSIZE, IPC_CREAT | 0660); // buffer
    shmid4 = shmget(k4, sizeof(int) * 1, IPC_CREAT | 0660); // time stamp

    if (shmid1 < 0 || shmid2 < 0 || shmid3 < 0 || shmid4 < 0) {
        perror("Main shmget error: ");
        exit(1);
    }
    SHM3 = (int*)shmat(shmid3, NULL, 0);
    int ix = 0;
    while (ix < BSIZE) // Initializing buffer
        SHM3[ix++] = 0;

    struct timeval t;
    time_t t1, t2;
    gettimeofday(&t, NULL);
    t1 = t.tv_sec;

    int* state = (int*)shmat(shmid4, NULL, 0);
    *state = 1;
    int wait_time;

    int i = 0; // Consumer
    int j = 1; // Producer

    if (fork() == 0) // Producer code
    {
        SHM1 = (bool*)shmat(shmid1, NULL, 0);
        SHM2 = (int*)shmat(shmid2, NULL, 0);
        SHM3 = (int*)shmat(shmid3, NULL, 0);
        if (SHM1 == (bool*)-1 || SHM2 == (int*)-1 || SHM3 == (int*)-1) {
            perror("Producer shmat error: ");
            exit(1);
        }

        bool* flag = SHM1;
        int* turn = SHM2;
        int* buf = SHM3;
        int index = 0;

        while (*state == 1) {
            flag[j] = true;
            printf("Producer is ready now.\n\n");
            *turn = i;
            while (flag[i] == true && *turn == i)
                ;

            // Critical Section Begin
            index = 0;
            while (index < BSIZE) {
                if (buf[index] == 0) {
                    int tempo = myrand(BSIZE * 3);
                    printf("Job %d has been produced\n", tempo);
                    buf[index] = tempo;
                    break;
                }
                index++;
            }
            if (index == BSIZE)
                printf("Buffer is full, nothing can be produced!!!\n");
            printf("Buffer: ");
            index = 0;
            while (index < BSIZE)
                printf("%d ", buf[index++]);
            printf("\n");
            // Critical Section End

            flag[j] = false;
            if (*state == 0)
                break;
            wait_time = myrand(PWT);
            printf("Producer will wait for %d seconds\n\n", wait_time);
            sleep(wait_time);
        }
        exit(0);
    }

    if (fork() == 0) // Consumer code
    {
        SHM1 = (bool*)shmat(shmid1, NULL, 0);
        SHM2 = (int*)shmat(shmid2, NULL, 0);
        SHM3 = (int*)shmat(shmid3, NULL, 0);
        if (SHM1 == (bool*)-1 || SHM2 == (int*)-1 || SHM3 == (int*)-1) {
            perror("Consumer shmat error:");
            exit(1);
        }

        bool* flag = SHM1;
        int* turn = SHM2;
        int* buf = SHM3;
        int index = 0;
        flag[i] = false;
        sleep(5);
        while (*state == 1) {
            flag[i] = true;
            printf("Consumer is ready now.\n\n");
            *turn = j;
            while (flag[j] == true && *turn == j)
                ;

            // Critical Section Begin
            if (buf[0] != 0) {
                printf("Job %d has been consumed\n", buf[0]);
                buf[0] = 0;
                index = 1;
                while (index < BSIZE) // Shifting remaining jobs forward
                {
                    buf[index - 1] = buf[index];
                    index++;
                }
                buf[index - 1] = 0;
            } else
                printf("Buffer is empty, nothing can be consumed!!!\n");
            printf("Buffer: ");
            index = 0;
            while (index < BSIZE)
                printf("%d ", buf[index++]);
            printf("\n");
            // Critical Section End

            flag[i] = false;
            if (*state == 0)
                break;
            wait_time = myrand(CWT);
            printf("Consumer will sleep for %d seconds\n\n", wait_time);
            sleep(wait_time);
        }
        exit(0);
    }
    // Parent process will now for RT seconds before causing child to terminate
    while (1) {
        gettimeofday(&t, NULL);
        t2 = t.tv_sec;
        if (t2 - t1 > RT) // Program will exit after RT seconds
        {
            *state = 0;
            break;
        }
    }
    // Waiting for both processes to exit
    wait();
    wait();
    printf("The clock ran out.\n");
    return 0;
}


Output:

Producer is ready now.

Job 9 has been produced
Buffer: 9 0 0 0 0 0 0 0 
Producer will wait for 1 seconds

Producer is ready now.

Job 8 has been produced
Buffer: 9 8 0 0 0 0 0 0 
Producer will wait for 2 seconds

Producer is ready now.

Job 13 has been produced
Buffer: 9 8 13 0 0 0 0 0 
Producer will wait for 1 seconds

Producer is ready now.

Job 23 has been produced
Buffer: 9 8 13 23 0 0 0 0 
Producer will wait for 1 seconds

Consumer is ready now.

Job 9 has been consumed
Buffer: 8 13 23 0 0 0 0 0 
Consumer will sleep for 9 seconds

Producer is ready now.

Job 15 has been produced
Buffer: 8 13 23 15 0 0 0 0 
Producer will wait for 1 seconds

Producer is ready now.

Job 13 has been produced
Buffer: 8 13 23 15 13 0 0 0 
Producer will wait for 1 seconds

Producer is ready now.

Job 11 has been produced
Buffer: 8 13 23 15 13 11 0 0 
Producer will wait for 1 seconds

Producer is ready now.

Job 22 has been produced
Buffer: 8 13 23 15 13 11 22 0 
Producer will wait for 2 seconds

Producer is ready now.

Job 23 has been produced
Buffer: 8 13 23 15 13 11 22 23 
Producer will wait for 1 seconds

The clock ran out.


This article is contributed by Nabaneet Roy. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Algorithms
GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Dekker’s algorithm

				
						

				
			Prerequisite – Process Synchronization, Inter Process Communication

To obtain such a mutual exclusion, bounded waiting, and progress there have been several algorithms implemented, one of which is Dekker’s Algorithm. To understand the algorithm let’s understand the solution to the critical section problem first.

A process is generally represented as :

do {
    //entry section
        critical section
    //exit section
        remainder section
} while (TRUE);


The solution to critical section problem must ensure following three conditions: 


	Mutual Exclusion

	Progress

	Bounded Waiting



One of solution for ensuring above all factors is Peterson’s solution.

Another one is Dekker’s Solution. Dekker’s algorithm was the first provably-correct solution to the critical section problem. It allows two threads to share a single-use resource without conflict, using only shared memory for communication. It avoids the strict alternation of a naïve turn-taking algorithm, and was one of the first mutual exclusion algorithms to be invented.

Although there are many versions of Dekker’s Solution, the final or 5th version is the one that satisfies all of the above conditions and is the most efficient of them all. 



        
          
          
          
        

            
Note – Dekker’s Solution, mentioned here, ensures mutual exclusion between two processes only, it could be extended to more than two processes with the proper use of arrays and variables.

Algorithm – It requires both an array of Boolean values and an integer variable:

var flag: array [0..1] of boolean;
turn: 0..1;
repeat

        flag[i] := true;
        while flag[j] do
                if turn = j then
                begin
                        flag[i] := false;
                        while turn = j do no-op;
                        flag[i] := true;
                end;

                critical section

        turn := j;
        flag[i] := false;

                remainder section

until false;


First Version of Dekker’s Solution – The idea is to use common or shared thread number between processes and stop the other process from entering its critical section if the shared thread indicates the former one already running.


Main()
{

    int thread_number = 1;
    startThreads();
}

Thread1()
{
    do {

        // entry section
        // wait until threadnumber is 1
        while (threadnumber == 2)
            ;

        // critical section

        // exit section
        // give access to the other thread
        threadnumber = 2;

        // remainder section

    } while (completed == false)
}

Thread2()
{

    do {

        // entry section
        // wait until threadnumber is 2
        while (threadnumber == 1)
            ;

        // critical section

        // exit section
        // give access to the other thread
        threadnumber = 1;

        // remainder section

    } while (completed == false)
}




The problem arising in the above implementation is lockstep synchronization, i.e each thread depends on the other for its execution. If one of the processes completes, then the second process runs, gives access to the completed one and waits for its turn, however, the former process is already completed and would never run to return the access back to the latter one. Hence, the second process waits infinitely then.

Second Version of Dekker’s Solution – To remove lockstep synchronization, it uses two flags to indicate its current status and updates them accordingly at the entry and exit section.


Main()
{

    // flags to indicate if each thread is in
    // its critial section or not.
    boolean thread1 = false;
    boolean thread2 = false;

    startThreads();
}

Thread1()
{

    do {

        // entry section
        // wait until thread2 is in its critical section
        while (thread2 == true)
            ;

        // indicate thread1 entering its critical section
        thread1 = true;

        // critical section

        // exit section
        // indicate thread1 exiting its critical section
        thread1 = false;

        // remainder section

    } while (completed == false)
}

Thread2()
{

    do {

        // entry section
        // wait until thread1 is in its critical section
        while (thread1 == true)
            ;

        // indicate thread2 entering its critical section
        thread2 = true;

        // critical section

        // exit section
        // indicate thread2 exiting its critical section
        thread2 = false;

        // remainder section

    } while (completed == false)
}




The problem arising in the above version is mutual exclusion itself. If threads are preempted (stopped) during flag updation ( i.e during current_thread = true ) then, both the threads enter their critical section once the preempted thread is restarted, also the same can be observed at the start itself, when both the flags are false.

Third Version of Dekker’s Solution – To re-ensure mutual exclusion, it sets the flags before entry section itself.


Main()
{

    // flags to indicate if each thread is in
    // queue to enter its critical section
    boolean thread1wantstoenter = false;
    boolean thread2wantstoenter = false;

    startThreads();
}

Thread1()
{

    do {

        thread1wantstoenter = true;

        // entry section
        // wait until thread2 wants to enter
        // its critical section
        while (thread2wantstoenter == true)
            ;

        // critical section

        // exit section
        // indicate thread1 has completed
        // its critical section
        thread1wantstoenter = false;

        // remainder section

    } while (completed == false)
}

Thread2()
{

    do {

        thread2wantstoenter = true;

        // entry section
        // wait until thread1 wants to enter
        // its critical section
        while (thread1wantstoenter == true)
            ;

        // critical section

        // exit section
        // indicate thread2 has completed
        // its critical section
        thread2wantstoenter = false;

        // remainder section

    } while (completed == false)
}




The problem with this version is deadlock possibility. Both threads could set their flag as true simultaneously and both will wait infinitely later on.

Fourth Version of Dekker’s Solution – Uses small time interval to recheck the condition, eliminates deadlock and ensures mutual exclusion as well.


Main()
{

    // flags to indicate if each thread is in
    // queue to enter its critical section
    boolean thread1wantstoenter = false;
    boolean thread2wantstoenter = false;

    startThreads();
}

Thread1()
{

    do {

        thread1wantstoenter = true;

        while (thread2wantstoenter == true) {

            // gives access to other thread
            // wait for random amount of time
            thread1wantstoenter = false;

            thread1wantstoenter = true;
        }

        // entry section
        // wait until thread2 wants to enter
        // its critical section

        // critical section

        // exit section
        // indicate thread1 has completed
        // its critical section
        thread1wantstoenter = false;

        // remainder section

    } while (completed == false)
}

Thread2()
{

    do {

        thread2wantstoenter = true;

        while (thread1wantstoenter == true) {

            // gives access to other thread
            // wait for random amount of time
            thread2wantstoenter = false;

            thread2wantstoenter = true;
        }

        // entry section
        // wait until thread1 wants to enter
        // its critical section

        // critical section

        // exit section
        // indicate thread2 has completed
        // its critical section
        thread2wantstoenter = false;

        // remainder section

    } while (completed == false)
}




The problem with this version is the indefinite postponement. Also, random amount of time is erratic depending upon the situation in which the algorithm is being implemented, hence not an acceptable solution in business critical systems.

Dekker’s Algorithm : Final and completed Solution – -Idea is to use favoured thread notion to determine entry to the critical section. Favoured thread alternates between the thread providing mutual exclusion and avoiding deadlock, indefinite postponement or lockstep synchronization.


Main()
{

    // to denote which thread will enter next
    int favouredthread = 1;

    // flags to indicate if each thread is in
    // queue to enter its critical section
    boolean thread1wantstoenter = false;
    boolean thread2wantstoenter = false;

    startThreads();
}

Thread1()
{
    do {

        thread1wantstoenter = true;

        // entry section
        // wait until thread2 wants to enter
        // its critical section
        while (thread2wantstoenter == true) {

            // if 2nd thread is more favored
            if (favaouredthread == 2) {

                // gives access to other thread
                thread1wantstoenter = false;

                // wait until this thread is favored
                while (favouredthread == 2)
                    ;

                thread1wantstoenter = true;
            }
        }

        // critical section

        // favor the 2nd thread
        favouredthread = 2;

        // exit section
        // indicate thread1 has completed
        // its critical section
        thread1wantstoenter = false;

        // remainder section

    } while (completed == false)
}

Thread2()
{

    do {

        thread2wantstoenter = true;

        // entry section
        // wait until thread1 wants to enter
        // its critical section
        while (thread1wantstoenter == true) {

            // if 1st thread is more favored
            if (favaouredthread == 1) {

                // gives access to other thread
                thread2wantstoenter = false;

                // wait until this thread is favored
                while (favouredthread == 1)
                    ;

                thread2wantstoenter = true;
            }
        }

        // critical section

        // favour the 1st thread
        favouredthread = 1;

        // exit section
        // indicate thread2 has completed
        // its critical section
        thread2wantstoenter = false;

        // remainder section

    } while (completed == false)
}




This version guarantees a complete solution to the critical solution problem.

References –

Dekker’s Algorithm -csisdmz.ul.ie

Dekker’s algorithm – Wikipedia



          
          
          
            



Sudarshan Khasnis

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		Algorithms
GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Bakery Algorithm

				
						

				
			Prerequisite – Critical Section, Process Synchronization, Inter Process Communication

The Bakery algorithm is one of the simplest known solutions to the mutual exclusion problem for the general case of N process. Bakery Algorithm is a critical section solution for N processes. The algorithm preserves the first come first serve property.


	Before entering its critical section, the process receives a number. Holder of the smallest number enters the critical section.

	 If processes Pi and Pj receive the same number,
if i < j 
Pi is served first; 
else 
Pj is served first.



	The numbering scheme always generates numbers in increasing order of enumeration; i.e., 1, 2, 3, 3, 3, 3, 4, 5, …



Notation –  lexicographical order (ticket #, process id #) – Firstly the ticket number is compared. If same then the process ID is compared next, i.e.-

– (a, b) < (c, d) if a < c or if a = c and b < d
– max(a [0], . . ., a [n-1]) is a number, k, such that k >= a[i]  for i = 0, . . ., n - 1

Shared data – choosing is an array [0..n – 1] of boolean values; & number is an array [0..n – 1] of integer values. Both are initialized to False & Zero respectively.

Algorithm Pseudocode –

repeat
    choosing[i] := true;
    number[i] := max(number[0], number[1], ..., number[n - 1])+1;
    choosing[i] := false;
    for j := 0 to n - 1
        do begin
            while choosing[j] do no-op;
            while number[j] != 0
                and (number[j], j) < (number[i], i) do no-op;
        end;

        critical section
    
    number[i] := 0;
    
        remainder section

until false;


Explanation –

Firstly the process sets its “choosing” variable to be TRUE indicating its intent to enter critical section. Then it gets assigned the highest ticket number corresponding to other processes. Then the “choosing” variable is set to FALSE indicating that it now has a new ticket number. This is in-fact the most important and confusing part of the algorithm.

It is actually a small critical section in itself ! The very purpose of the first three lines is that if a process is modifying its TICKET value then at that time some other process should not be allowed to check its old ticket value which is now obsolete. This is why inside the for loop before checking ticket value we first make sure that all other processes have the “choosing” variable as FALSE. 

After that we proceed to check the ticket values of processes where process with least ticket number/process id gets inside the critical section. The exit section just resets the ticket value to zero.

Code – Here’s the C code implementation of the Bakery Algorithm. Run the following in a UNIX environment –




Recommended: Please try your approach on {IDE} first, before moving on to the solution.





        
          
          
          
        

            

// Importing the thread library
#include "pthread.h"

#include "stdio.h"

// Importing POSIX Operating System API library
#include "unistd.h"

#include "string.h"

// This is a memory barrier instruction.
// Causes compiler to enforce an ordering
// constraint on memory operations.
// This means that operations issued prior
// to the barrier will be performed
// before operations issued after the barrier.
#define MEMBAR __sync_synchronize()
#define THREAD_COUNT 8

volatile int tickets[THREAD_COUNT];
volatile int choosing[THREAD_COUNT];

// VOLATILE used to prevent the compiler
// from applying any optimizations.
volatile int resource;

void lock(int thread)
{

    // Before getting the ticket number
    //"choosing" variable is set to be true
    choosing[thread] = 1;

    MEMBAR;
    // Memory barrier applied

    int max_ticket = 0;

    // Finding Maximum ticket value among current threads
    for (int i = 0; i < THREAD_COUNT; ++i) {

        int ticket = tickets[i];
        max_ticket = ticket > max_ticket ? ticket : max_ticket;
    }

    // Allotting a new ticket value as MAXIMUM + 1
    tickets[thread] = max_ticket + 1;

    MEMBAR;
    choosing[thread] = 0;
    MEMBAR;

    // The ENTRY Section starts from here
    for (int other = 0; other < THREAD_COUNT; ++other) {

        // Applying the bakery algorithm conditions
        while (choosing[other]) {
        }

        MEMBAR;

        while (tickets[other] != 0 && (tickets[other]
                                           < tickets[thread]
                                       || (tickets[other]
                                               == tickets[thread]
                                           && other < thread))) {
        }
    }
}

// EXIT Section
void unlock(int thread)
{

    MEMBAR;
    tickets[thread] = 0;
}

// The CRITICAL Section
void use_resource(int thread)
{

    if (resource != 0) {
        printf("Resource was acquired by %d, but is still in-use by %d!\n",
               thread, resource);
    }

    resource = thread;
    printf("%d using resource...\n", thread);

    MEMBAR;
    sleep(2);
    resource = 0;
}

// A simplified function to show the implementation
void* thread_body(void* arg)
{

    long thread = (long)arg;
    lock(thread);
    use_resource(thread);
    unlock(thread);
    return NULL;
}

int main(int argc, char** argv)
{

    memset((void*)tickets, 0, sizeof(tickets));
    memset((void*)choosing, 0, sizeof(choosing));
    resource = 0;

    // Declaring the thread variables
    pthread_t threads[THREAD_COUNT];

    for (int i = 0; i < THREAD_COUNT; ++i) {

        // Creating a new thread with the function
        //"thread_body" as its thread routine
        pthread_create(&threads[i], NULL, &thread_body, (void*)((long)i));
    }

    for (int i = 0; i < THREAD_COUNT; ++i) {

        // Reaping the resources used by
        // all threads once their task is completed !
        pthread_join(threads[i], NULL);
    }

    return 0;
}




Output:

[image: Output]



          
          
          
            



Siddhant-Bajaj

Interested in everything CS/IT  Aspire with my Acer Aspire R11 to crack GATE2019  Avid Follower of Ravindrababu Ravula Trying my best to keep right up my alley with competitive coding Open Source and Web Development Projects I am somewhat good at Chess and spend loads of time on geeksforgeeks







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Dining Philosopher Problem Using Semaphores

				
						

				
			Prerequisite – Process Synchronization, Semaphores, Dining-Philosophers Solution Using Monitors

The Dining Philosopher Problem – The Dining Philosopher Problem states that K philosophers seated around a circular table with one chopstick between each pair of philosophers. There is one chopstick between each philosopher. A philosopher may eat if he can pickup the two chopsticks adjacent to him. One chopstick may be picked up by any one of its adjacent followers but not both. 



Semaphore Solution to Dining Philosopher –

Each philosopher is represented by the following pseudocode:



        
          
          
          
        

            
process P[i]
 while true do
   {  THINK;
      PICKUP(CHOPSTICK[i], CHOPSTICK[i+1 mod 5]);
      EAT;
      PUTDOWN(CHOPSTICK[i], CHOPSTICK[i+1 mod 5])
   }


There are three states of philosopher : THINKING, HUNGRY and EATING. Here there are two semaphores : Mutex and a semaphore array for the philosophers. Mutex is used such that no two philosophers may access the pickup or putdown at the same time. The array is used to control the behavior of each philosopher. But, semaphores can result in deadlock due to programming errors.

Code –


#include <pthread.h>
#include <semaphore.h>
#include <stdio.h>

#define N 5
#define THINKING 2
#define HUNGRY 1
#define EATING 0
#define LEFT (phnum + 4) % N
#define RIGHT (phnum + 1) % N

int state[N];
int phil[N] = { 0, 1, 2, 3, 4 };

sem_t mutex;
sem_t S[N];

void test(int phnum)
{
    if (state[phnum] == HUNGRY
        && state[LEFT] != EATING
        && state[RIGHT] != EATING) {
        // state that eating
        state[phnum] = EATING;

        sleep(2);

        printf("Philosopher %d takes fork %d and %d\n",
                      phnum + 1, LEFT + 1, phnum + 1);

        printf("Philosopher %d is Eating\n", phnum + 1);

        // sem_post(&S[phnum]) has no effect
        // during takefork
        // used to wake up hungry philosophers
        // during putfork
        sem_post(&S[phnum]);
    }
}

// take up chopsticks
void take_fork(int phnum)
{

    sem_wait(&mutex);

    // state that hungry
    state[phnum] = HUNGRY;

    printf("Philosopher %d is Hungry\n", phnum + 1);

    // eat if neighbours are not eating
    test(phnum);

    sem_post(&mutex);

    // if unable to eat wait to be signalled
    sem_wait(&S[phnum]);

    sleep(1);
}

// put down chopsticks
void put_fork(int phnum)
{

    sem_wait(&mutex);

    // state that thinking
    state[phnum] = THINKING;

    printf("Philosopher %d putting fork %d and %d down\n",
           phnum + 1, LEFT + 1, phnum + 1);
    printf("Philosopher %d is thinking\n", phnum + 1);

    test(LEFT);
    test(RIGHT);

    sem_post(&mutex);
}

void* philospher(void* num)
{

    while (1) {

        int* i = num;

        sleep(1);

        take_fork(*i);

        sleep(0);

        put_fork(*i);
    }
}

int main()
{

    int i;
    pthread_t thread_id[N];

    // initialize the semaphores
    sem_init(&mutex, 0, 1);

    for (i = 0; i < N; i++)

        sem_init(&S[i], 0, 0);

    for (i = 0; i < N; i++) {

        // create philosopher processes
        pthread_create(&thread_id[i], NULL,
                       philospher, &phil[i]);

        printf("Philosopher %d is thinking\n", i + 1);
    }

    for (i = 0; i < N; i++)

        pthread_join(thread_id[i], NULL);
}




Note –  The below program may compile only with C compilers with semaphore and pthread library.

References –

Solution of Dining Philosophers – cs.gordon.edu

Solution of Dining Philosophers – cs.indiana.edu



          
          
          
            



Subham Biswas

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Dining-Philosophers Solution Using Monitors

				
						

				
			Prerequisite: Monitor, Process Synchronization

Dining-Philosophers Problem –  N philosophers seated around a circular table 

[image: ]


	 There is one chopstick between each philosopher 

	 A philosopher must pick up its two nearest chopsticks in order to eat 

	 A philosopher must pick up first one chopstick, then the second one, not both at once 



We need an algorithm for allocating these limited resources(chopsticks) among several processes(philosophers) such that solution is free from deadlock and free from starvation. 

There exist some algorithm to solve Dining – Philosopher Problem, but they may have deadlock situation. Also, a deadlock-free solution is not necessarily starvation-free. Semaphores can result in deadlock due to programming errors. Monitors alone are not sufficiency to solve this, we need monitors with condition variables 



        
          
          
          
        

            
 Monitor-based Solution to Dining Philosophers 

We illustrate monitor concepts by presenting a deadlock-free solution to the dining-philosophers problem. Monitor is used to control access to state variables and condition variables. It only tells when to enter and exit the segment. This solution imposes the restriction that a philosopher may pick up her chopsticks only if both of them are available.

To code this solution, we need to distinguish among three states in which we may find a philosopher. For this purpose, we introduce the following data structure: 

THINKING –  When philosopher doesn’t want to gain access to either fork.

HUNGRY –  When philosopher wants to enter the critical section.

EATING –  When philosopher has got both the forks, i.e., he has entered the section.

Philosopher i can set the variable state[i] = EATING only if her two neighbors are not eating

(state[(i+4) % 5] != EATING) and (state[(i+1) % 5] != EATING).


// Dining-Philosophers Solution Using Monitors
monitor DP
{
    status state[5];
    condition self[5];

    // Pickup chopsticks
    Pickup(int i)
    {
        // indicate that I’m hungry
        state[i] = hungry;

        // set state to eating in test()
        // only if my left and right neighbors 
        // are not eating
        test(i);

        // if unable to eat, wait to be signaled
        if (state[i] != eating)
            self[i].wait;
    }

    // Put down chopsticks
    Putdown(int i)
    {

        // indicate that I’m thinking
        state[i] = thinking;

        // if right neighbor R=(i+1)%5 is hungry and
        // both of R’s neighbors are not eating,
        // set R’s state to eating and wake it up by 
        // signaling R’s CV
        test((i + 1) % 5);
        test((i + 4) % 5);
    }

    test(int i)
    {

        if (state[(i + 1) % 5] != eating
            && state[(i + 4) % 5] != eating
            && state[i] == hungry) {

            // indicate that I’m eating
            state[i] = eating;

            // signal() has no effect during Pickup(),
            // but is important to wake up waiting
            // hungry philosophers during Putdown()
            self[i].signal();
        }
    }

    init()
    {

        // Execution of Pickup(), Putdown() and test()
        // are all mutually exclusive,
        // i.e. only one at a time can be executing
for
    i = 0 to 4

        // Verify that this monitor-based solution is
        // deadlock free and mutually exclusive in that
        // no 2 neighbors can eat simultaneously
        state[i] = thinking;
    }
} // end of monitor




Above Program is a monitor solution to the dining-philosopher problem.

We also need to declare

condition self[5];

This allows philosopher i to delay herself when she is hungry but is unable to obtain the chopsticks she needs. We are now in a position to describe our solution to the dining-philosophers problem. The distribution of the chopsticks is controlled by the monitor Dining Philosophers. Each philosopher, before starting to eat, must invoke the operation pickup(). This act may result in the suspension of the philosopher process. After the successful completion of the operation, the philosopher may eat. Following this, the philosopher invokes the putdown() operation. Thus, philosopher i must invoke the operations pickup() and putdown() in the following sequence:

DiningPhilosophers.pickup(i);
              ...
              eat
              ...
DiningPhilosophers.putdown(i);


It is easy to show that this solution ensures that no two neighbors are eating simultaneously and that no deadlocks will occur. We note, however, that it is possible for a philosopher to starve to death.

This article is contributed by Mayank Rana. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						Readers-Writers Problem | Set 1 (Introduction and Readers Preference Solution)

				
						

				
			Consider a situation where we have a file shared between many people.


	If one of the people tries editing the file, no other person should be reading or writing at the same time, otherwise changes will not be visible to him/her.

	However if some person is reading the file, then others may read it at the same time.



Precisely in OS we call this situation as the readers-writers problem

Problem parameters:


	One set of data is shared among a number of processes

	Once a writer is ready, it performs its write. Only one writer may write at a time

	If a process is writing, no other process can read it

	If at least one reader is reading, no other process can write

	Readers may not write and only read



Solution when Reader has the Priority over Writer

Here priority means, no reader should wait if the share is currently opened for reading.



        
          
          
          
        

            
Three variables are used: mutex, wrt, readcnt to implement solution


	semaphore mutex, wrt; // semaphore mutex is used to ensure mutual exclusion when readcnt is updated i.e. when any reader enters or exit from the critical section and semaphore wrt is used by both readers and writers

	int readcnt;  //    readcnt tells the number of processes performing read in the critical section, initially 0



Functions for sempahore :

– wait() : decrements the semaphore value.

– signal() : increments the semaphore value.

Writer process:


	Writer requests the entry to critical section.

	If allowed i.e. wait() gives a true value, it enters and performs the write. If not allowed, it keeps on waiting.

	It exits the critical section.



do {
    // writer requests for critical section
    wait(wrt);  
   
    // performs the write

    // leaves the critical section
    signal(wrt);

} while(true);

Reader process:


	Reader requests the entry to critical section.

	If allowed:

	it increments the count of number of readers inside the critical section. If this reader is the first reader entering, it locks the wrt semaphore to restrict the entry of writers if any reader is inside.

	It then, signals mutex as any other reader is allowed to enter while others are already reading.

	After performing reading, it exits the critical section. When exiting, it checks if no more reader is inside, it signals the semaphore “wrt” as now, writer can enter the critical section.





	If not allowed, it keeps on waiting.



do {
    
   // Reader wants to enter the critical section
   wait(mutex);

   // The number of readers has now increased by 1
   readcnt++;                          

   // there is atleast one reader in the critical section
   // this ensure no writer can enter if there is even one reader
   // thus we give preference to readers here
   if (readcnt==1)     
      wait(wrt);                    

   // other readers can enter while this current reader is inside 
   // the critical section
   signal(mutex);                   

   // current reader performs reading here
   wait(mutex);   // a reader wants to leave

   readcnt--;

   // that is, no reader is left in the critical section,
   if (readcnt == 0) 
       signal(wrt);         // writers can enter

   signal(mutex); // reader leaves

} while(true);

Thus, the mutex ‘wrt‘ is queued on both readers and writers in a manner such that preference is given to readers if writers are also there. Thus, no reader is waiting simply because a writer has requested to enter the critical section.

Article contributed by Ekta Goel. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



          
          
          
            


					
		
		Operating Systems
 Process Synchronization

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Reader-Writers solution using Monitors

				
						

				
			Prerequisite – Process Synchronization, Monitors, Readers-Writers Problem

Considering a shared Database our objectives are:


	Readers can access database only when there are no writers.

	Writers can access database only when there are no readers or writers.

	Only one thread can manipulate the state variables at a time.



Basic structure of a solution –

Reader()
   Wait until no writers
   Access database
   Check out – wake up a waiting writer
Writer()
   Wait until no active readers or writers
   Access database
   Check out – wake up waiting readers or writer


–Now let’s suppose that a writer is active and a mixture of readers and writers now show up.

Who should get in next?

–Or suppose that a writer is waiting and an endless of stream of readers keep showing up.

Would it be fair for them to become active?

So we’ll implement a kind of back-and-forth form of fairness:





	Once a reader is waiting, readers will get in next.

	If a writer is waiting, one writer will get in next.







Implementation of the solution using monitors:-


	The methods should be executed with mutual exclusion i.e. At each point in time, at most one thread may be executing any of its methods.

	Monitors also provide a mechanism for threads to temporarily give up exclusive access, in order to wait for some condition to be met, before regaining exclusive access and resuming their task.

	Monitors also have a mechanism for signaling other threads that such conditions have been met.

	So in this implementation only mutual exclusion is not enough. Threads attempting an operation may need to wait until some assertion P holds true.

	While a thread is waiting upon a condition variable, that thread is not considered to occupy the monitor, and so other threads may enter the monitor to change the monitor’s state.






Recommended: Please try your approach on {IDE} first, before moving on to the solution.





        
          
          
          
        

            
Code –


// STATE VARIABLES
// Number of active readers; initially = 0
int NReaders = 0;

// Number of waiting readers; initially = 0
int WaitingReaders = 0;

// Number of active writers; initially = 0
int NWriters = 0;

// Number of waiting writers; initially = 0
int WaitingWriters = 0;

Condition canRead = NULL;
Condition canWrite = NULL;

Void BeginWrite()
{

    // A writer can enter if there are no other
    // active writers and no readers are waiting
    if (NWriters == 1 || NReaders > 0) {

        ++WaitingWriters;
        wait(CanWrite);
        --WaitingWriters;
    }

    NWriters = 1;
}

Void EndWrite()
{

    NWriters = 0;

    // Checks to see if any readers are waiting
    if (WaitingReaders)

        Signal(CanRead);

    else

        Signal(CanWrite);
}

Void BeginRead()
{

    // A reader can enter if there are no writers
    // active or waiting, so we can have
    // many readers active all at once
    if (NWriters == 1 || WaitingWriters > 0) {

        ++WaitingReaders;

        // Otherwise, a reader waits (maybe many do)
        Wait(CanRead);

        --WaitingReaders;
    }

    ++NReaders;
    Signal(CanRead);
}

Void EndRead()
{

    // When a reader finishes, if it was the last reader,
    // it lets a writer in (if any is there).
    if (--NReaders == 0)

        Signal(CanWrite);
}




Understanding the solution:-


    
	It wants to be fair.





	If a writer is waiting, readers queue up.

	If a reader (or another writer) is active or waiting, writers queue up.

	This is mostly fair, although once it lets a reader in, it lets ALL waiting readers in all at once, even if some showed up “after” other waiting writers.






    


	The code is “simplified” because we know there can only be one writer at a time.





    
	It also takes advantage of the fact that signal is a no-op if nobody is waiting.





	In the “EndWrite” code (it signals CanWrite without checking for waiting writers)

	In the EndRead code (same thing)

	In StartRead (signals CanRead at the end)





With Semaphores we never did have a “fair” solution of this sort. In fact it can be done but the code is quite tricky. Here the straightforward solution works in the desired way! Monitors are less error-prone and also easier to understand.





          
          
          
            



Siddhant-Bajaj

Interested in everything CS/IT  Aspire with my Acer Aspire R11 to crack GATE2019  Avid Follower of Ravindrababu Ravula Trying my best to keep right up my alley with competitive coding Open Source and Web Development Projects I am somewhat good at Chess and spend loads of time on geeksforgeeks







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Lock variable synchronization mechanism

				
						

				
			Prerequisites –  Process Synchronization

A lock variable provides the simplest synchronization mechanism for processes. Some noteworthy points regarding Lock Variables are-


	Its a software mechanism implemented in user mode, i.e. no support required from the Operating System.

	Its a busy waiting solution (keeps the CPU busy even when its technically waiting).

	It can be used for more than two processes.



When Lock = 0 implies critical section is vacant (initial value ) and Lock = 1 implies critical section occupied.

The pseudocode looks something like this –

Entry section - while(lock != 0);
                Lock = 1;
//critical section
Exit section - Lock = 0;


A more formal approach to the Lock Variable method for process synchronization can be seen in the following code snippet :



        
          
          
          
        

            

char buffer[SIZE];
int count = 0,
    start = 0,
    end = 0;
struct lock l;

// initialize lock variable
lock_init(&l);

void put(char c)
{

    // entry section
    lock_acquire(&l);

    // critical section begins
    while (count == SIZE) {

        lock_release(&l);
        lock_acquire(&l);
    }

    count++;
    buffer[start] = c;
    start++;

    if (start == SIZE) {

        start = 0;
    }

    // critical section ends
    // exit section
    lock_release(&l);
}

char get()
{

    char c;

    // entry section
    lock_acquire(&l);

    // critical section begins
    while (count == 0) {

        lock_release(&l);
        lock_acquire(&l);
    }

    count--;
    c = buffer[end];
    end++;

    if (end == SIZE) {

        end = 0;
    }

    // critical section ends
    // exit section
    lock_release(&l);

    return c;
}




Here we can see a classic implementation of the reader-writer’s problem. The buffer here is the shared memory and many processes are either trying to read or write a character to it. To prevent any ambiguity of data we restrict concurrent access by using a lock variable. We have also applied a constraint on the number of readers/writers that can have access.

Now every Synchronization mechanism is judged on the basis of three primary parameters :


	Mutual Exclusion.

	Progress.

	Bounded Waiting.



Of which mutual exclusion is the most important of all parameters. The Lock Variable doesn’t provide mutual exclusion in some cases. This fact can be best verified by writing its pseudo-code in the form of an assembly language code as given below.

1. Load Lock, R0 ; (Store the value of Lock in Register R0.)
2. CMP R0, #0 ; (Compare the value of register R0 with 0.)
3. JNZ Step 1 ; (Jump to step 1 if value of R0 is not 0.)
4. Store #1, Lock ; (Set new value of Lock as 1.)
Enter critical section
5. Store #0, Lock ; (Set the value of lock as 0 again.)


Now let’s suppose that processes P1 and P2 are competing for Critical Section and their sequence of execution be as follows (initial alue of Lock = 0) –


	P1 executes statement 1 and gets pre-empted.

	P2 executes statement 1, 2, 3, 4 and enters Critical Section and gets pre-empted.

	P1 executes statement 2, 3, 4 and also enters Critical Section.



Here initially the R0 of process P1 stores lock value as 0 but fails to update the lock value as 1. So when P2 executes it also finds the LOCK value as 0 and enters Critical Section by setting LOCK value as 1. But the real problem arises when P1 executes again it doesn’t check the updated value of Lock. It only checks the previous value stored in R0 which was 0 and it enters critical section.

This is only one possible sequence of execution among many others. Some may even provide mutual exclusion but we cannot dwell on that. According to murphy’s law “Anything that can go wrong will go wrong“. So like all easy things the Lock Variable Synchronization method comes with its fair share of Demerits but its a good starting point for us to develop better Synchronization Algorithms to take care of the problems that we face here. 

This article is contributed by Siddhant Bajaj 2. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						Priority Inversion : What the heck !

				
						

				
			Let us first put ‘priority inversion’ in the context of the Big Picture i.e. where does this come from. 

In Operating System, one of the important concepts is Task Scheduling. There are several Scheduling methods such as First Come First Serve, Round Robin, Priority based scheduling etc. Each scheduling method has its pros and cons. As you might have guessed, Priority Inversion comes under Priority based Scheduling. Basically, it’s a problem which arises sometimes when Priority based scheduling is used by OS. In Priority based scheduling, different tasks are given different priority so that higher priority tasks can intervene lower priority tasks if possible. 

So, in a priority based scheduling, if lower priority task (L) is running and if a higher priority task (H) also needs to run, the lower priority task (L) would be preempted by higher priority task (H). Now, suppose both lower and higher priority tasks need to share a common resource (say access to the same file or device) to achieve their respective work. In this case, since there’s resource sharing and task synchronization is needed, several methods/techniques can be used for handling such scenarios. For for sake of our topic on Priority Inversion, let us mention a synchronization method say mutex. Just to recap on mutex, a task acquires mutex before entering critical section (CS) and releases mutex after exiting critical section (CS). While running in CS, a task access this common resource. More details on this can be referred here. Now, say both L and H shares a common Critical Section (CS) i.e. same mutex is needed for this CS.

Coming to our discussion of priority inversion, let us examine some scenarios.

1) L is running but not in CS ; H needs to run; H preempts L ; H starts running ; H relinquishes or releases control ; L resumes and starts running

2) L is running in CS ; H needs to run but not in CS; H preempts L ; H starts running ; H relinquishes control ; L resumes and starts running.

3) L is running in CS ; H also needs to run in CS ; H waits for L to come out of CS ; L comes out of CS ; H enters CS and starts running

Please note that the above scenarios don’t show the problem of any Priority Inversion (not even scenario 3). Basically, so long as lower priority task isn’t running in shared CS, higher priority task can preempt it. But if L is running in shared CS and H also needs to run in CS, H waits until L comes out of CS. The idea is that CS should be small enough so that it doesn’t result in H waiting for long time while L was in CS. That’s why writing CS code requires careful consideration. In any of the above scenarios, priority inversion (i.e. reversal of priority) didn’t occur because the tasks are running as per the design.



        
          
          
          
        

            
Now let us add another task of middle priority say M. Now the task priorities are in the order of L < M < H. In our example, M doesn’t share the same Critical Section (CS). In this case, the following sequence of task running would result in ‘Priority Inversion’ problem.

4) L is running in CS ; H also needs to run in CS ; H waits for L to come out of CS ; M interrupts L and starts running ; M runs till completion and relinquishes control ; L resumes and starts running till the end of CS ; H enters CS and starts running.

Note that neither L nor H share CS with M.

Here, we can see that running of M has delayed the running of both L and H. Precisely speaking, H is of higher priority and doesn’t share CS with M; but H had to wait for M. This is where Priority based scheduling didn’t work as expected because priorities of M and H got inverted in spite of not sharing any CS. This problem is called Priority Inversion. This is what the heck was Priority Inversion ! In a system with priority based scheduling, higher priority tasks can face this problem and it can result in unexpected behavior/result. In general purpose OS, it can result in slower performance. In RTOS, it can result in more severe outcomes. The most famous ‘Priority Inversion’ problem was what happened at Mars Pathfinder.

If we have a problem, there has to be solution for this. For Priority Inversion as well, there’re different solutions such as Priority Inheritance etc. This is going to be our next article 🙂

 But for the inpatients, this can be referred for time being.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.




          
          
          
            


					
		


		Articles
Operating Systems
 Process Synchronization

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	





						What’s difference between Priority Inversion and Priority Inheritance ?

				
						

				
			Both of these concepts come under Priority scheduling in Operating System. But are they same ?

In one line, Priority Inversion is a problem while Priority Inheritance is a solution. Literally, Priority Inversion means that priority of tasks get inverted and Priority Inheritance means that priority of tasks get inherited. Both of these phenomena happen in priority scheduling. Basically, in Priority Inversion, higher priority task (H) ends up waiting for middle priority task (M) when H is sharing critical section with lower priority task (L) and L is already in critical section. Effectively, H waiting for M results in inverted priority i.e. Priority Inversion. One of the solution for this problem is Priority Inheritance. In Priority Inheritance, when L is in critical section, L inherits priority of H at the time when H starts pending for critical section. By doing so, M doesn’t interrupt L and H doesn’t wait for M to finish. Please note that inheriting of priority is done temporarily i.e. L goes back to its old priority when L comes out of critical section.

More details on these can be found here.

 Please do Like/Tweet/G+1 if you find the above useful. Also, please do leave us comment for further clarification or info. We would love to help and learn 🙂




          
          
          
            


					
		


		Difference Between
Operating Systems
 Process Synchronization

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	




Deadlock



						 Process Management | Deadlock Introduction

				
						

				
			A process in operating systems uses different resources and uses resources in following way.

1) Requests a resource

2) Use the resource

2) Releases the resource




Deadlock is a situation where a set of processes are blocked because each process is holding a resource and waiting for another resource acquired by some other process.

Consider an example when two trains are coming toward each other on same track and there is only one track, none of the trains can move once they are in front of each other. Similar situation occurs in operating systems when there are two or more processes hold some resources and wait for resources held by other(s). For example, in the below diagram, Process 1 is holding Resource 1 and waiting for resource 2 which is acquired by process 2, and process 2 is waiting for resource 1.

[image: deadlock]




Deadlock can arise if following four conditions hold simultaneously (Necessary Conditions) 

Mutual Exclusion: One or more than one resource are non-sharable (Only one process can use at a time)

Hold and Wait: A process is holding at least one resource and waiting for resources.

No Preemption: A resource cannot be taken from a process unless the process releases the resource.

Circular Wait: A set of processes are waiting for each other in circular form.




Methods for handling deadlock

There are three ways to handle deadlock

1) Deadlock prevention or avoidance: The idea is to not let the system into deadlock state.



        
          
          
          
        

            
2) Deadlock detection and recovery: Let deadlock occur, then do preemption to handle it once occurred.

3) Ignore the problem all together: If deadlock is very rare, then let it happen and reboot the system. This is the approach that both Windows and UNIX take.




Exercise:

  1) Suppose n processes, P1, …. Pn share m identical resource units, which can be reserved and released one at a time. The maximum resource requirement of process Pi is Si, where Si > 0. Which one of the following is a sufficient condition for ensuring that deadlock does not occur? (GATE CS 2005)

[image: ]

(A) A

(B) B

(C) C

(D) D

For solution, see Question 4 of https://www.geeksforgeeks.org/operating-systems-set-16/




See QUIZ ON DEADLOCK for more questions.




References:

http://www2.latech.edu/~box/os/ch07.pdf

http://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/7_Deadlocks.html

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



          
          
          
            


					
		
		Operating Systems
 Deadlocks

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						Deadlock Detection And Recovery

				
						

				
			In the previous post, we have discussed Deadlock Prevention and Avoidance. In this post, Deadlock Detection and Recovery technique to handle deadlock is discussed. 

Deadlock Detection

1. If resources have single instance:

In this case for Deadlock detection we can run an algorithm to check for cycle in the Resource Allocation Graph. Presence of cycle in the graph is the sufficient condition for deadlock.

[image: deadlock] 

In the above diagram, resource 1 and resource 2 have single instances. There is a cycle R1–>P1–>R2–>P2. So Deadlock is Confirmed. 

2. If there are multiple instances of resources:

Detection of cycle is necessary but not sufficient condition for deadlock detection, in this case system may or may not be in deadlock varies according to different situations.



        
          
          
          
        

            
Deadlock Recovery

Traditional operating system such as Windows doesn’t deal with deadlock recovery as it is time and space consuming process. Real time operating systems use Deadlock recovery.

Recovery method

1. Killing the process.


     killing all the process involved in deadlock.
     
     Killing process one by one. After killing each 
     process check for deadlock again keep repeating 
     process till system recover from deadlock.



2. Resource Preemption

Resources are preempted from the processes involved in deadlock, preempted resources are allocated to other processes, so that their is a possibility of recovering the system from deadlock. In this case system go into starvation.

See Quiz on Deadlock.  

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



          
          
          
            


					
		
		Operating Systems
 Deadlocks

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						Deadlock Prevention And Avoidance

				
						

				
			Deadlock Characteristics

As discussed in the previous post, deadlock has following characteristics.

Mutual Exclusion.
Hold and Wait.
No preemption.
Circular wait.

 

Deadlock Prevention

We can prevent Deadlock by eliminating any of the above four condition.

 



        
          
          
          
        

            
Eliminate Mutual Exclusion 

It is not possible to dis-satisfy the mutual exclusion because some resources, such as the tap drive and printer, are inherently non-shareable.

 

Eliminate Hold and wait

1. Allocate all required resources to the process before start of its execution, this way hold and wait condition is eliminated but it will lead to low device utilization. for example, if a process requires printer at a later time and we have allocated printer before the start of its execution printer will remained blocked till it has completed its execution.

2. Process will make new request for resources after releasing the current set of resources. This solution may lead to starvation.

[image: holdnwait]

Eliminate No Preemption

Preempt resources from process when resources required by other high priority process.

 

Eliminate Circular Wait

Each resource will be assigned with a numerical number. A process can request for the resources only in increasing order of numbering.

For Example, if P1 process is allocated R5 resources, now next time if P1 ask for R4, R3 lesser than R5 such request will not be granted, only request for resources more than R5 will be granted.

 

 

Deadlock Avoidance

Deadlock avoidance can be done with Banker’s Algorithm.

Banker’s Algorithm

Bankers’s Algorithm is resource allocation and deadlock avoidance algorithm which test all the request made by processes for resources, it check for safe state, if after granting request system remains in the safe state it allows the request and if their is no safe state it don’t allow the request made by the process.

Inputs to Banker’s Algorithm

1. Max need of resources by each process.

2. Currently allocated resources by each process.

3. Max free available resources in the system.

Request will only be granted under below condition.

1. If request made by process is less than equal to max need to that process.

2. If request made by process is less than equal to freely availbale resource in the system.

Example

Total resources in system:
A B C D
6 5 7 6

Available system resources are:
A B C D
3 1 1 2

Processes (currently allocated resources):
    A B C D
P1  1 2 2 1
P2  1 0 3 3
P3  1 2 1 0

Processes (maximum resources):
    A B C D
P1  3 3 2 2
P2  1 2 3 4
P3  1 3 5 0

Need = maximum resources - currently allocated resources.
Processes (need resources):
    A B C D
P1  2 1 0 1
P2  0 2 0 1
P3  0 1 4 0

Following are Gate Previous Year Question

http://quiz.geeksforgeeks.org/gate-gate-cs-2014-set-1-question-41/

http://quiz.geeksforgeeks.org/gate-gate-cs-2014-set-3-question-41/

http://quiz.geeksforgeeks.org/gate-gate-cs-2010-question-46/

References

https://en.wikipedia.org/wiki/Banker’s_algorithm

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



          
          
          
            


					
		
		Articles
Operating Systems
 Deadlocks

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	



						 Banker’s Algorithm

				
						

				
			The banker’s algorithm is a resource allocation and deadlock avoidance algorithm that tests for safety by simulating the allocation for predetermined maximum possible amounts of all resources, then makes an “s-state” check to test for possible activities, before deciding whether allocation should be allowed to continue.

Following Data structures are used to implement the Banker’s Algorithm:

Let ‘n’ be the number of processes in the system and ‘m’ be the number of resources types.

Available : 


	It is a 1-d array of size ‘m’ indicating the number of available resources of each type.

	Available[ j ] = k means there are ‘k’ instances of resource type Rj



Max :



        
          
          
          
        

            

	It is a 2-d array of size ‘n*m’ that defines the maximum demand of each process in a system.

	Max[ i, j ] = k means process Pi may request at most ‘k’ instances of resource type Rj.



Allocation :


	It is a 2-d array of size ‘n*m’ that defines the number of resources of each type currently allocated to each process.

	Allocation[ i, j ] = k means process Pi is currently allocated ‘k’ instances of resource type Rj



Need :


	 It is a 2-d array of size ‘n*m’ that indicates the remaining resource need of each process.

	Need [ i,  j ] = k means process Pi currently allocated ‘k’ instances of resource type Rj

	Need [ i,  j ] = Max [ i,  j ] – Allocation [ i,  j ]



Allocationi specifies the resources currently allocated to process Pi and Needi specifies the additional resources that process Pi may still request to complete its task.

Banker’s algorithm consist of Safety algorithm and Resource request algorithm

Safety Algorithm

The algorithm for finding out whether or not a system is in a safe state can be described as follows:


1) Let Work and Finish be vectors of length ‘m’ and ‘n’ respectively.

Initialize: Work = Available

Finish[i] = false; for i=1, 2, 3, 4….n



2) Find an i such that both

a) Finish[i] = false

b) Needi <= work="" if="" no="" such="" i="" exists="" goto="" step="" (4)="" <="" p="">


3) Work = Work + Allocation

Finish[i] = true

goto step (2)



4) if finish [i] = true for all i

then the system is in a safe state








Resource-Request Algorithm

Let Requesti be the request array for process Pi. Requesti [j] = k means process Pi wants k instances of resource type Rj. When a request for resources is made by process Pi, the following actions are taken:


1) If Requesti <= need






						Operating System  | Resource Allocation Graph (RAG)

				
						

				
			As Banker’s algorithm using some kind of table like allocation, request, available all that thing to understand what is the state of the system. Similarly, if you want to understand the state of the system instead of using those table, actually tables are very easy to represent and understand it, but then still you could even represent the same information in the graph. That graph is called Resource Allocation Graph (RAG).

So, resource allocation graph is explained to us what is the state of the system in terms of processes and resources. Like how many resources are available, how many are allocated and what is the request of each process. Everything can be represented in terms of the diagram. One of the advantages of having a diagram is, sometimes it is possible to see a deadlock directly by using RAG, but then you might not be able to know that by looking at the table. But the tables are better if the system contains lots of process and resource and Graph is better if the system contains less number of process and resource.

      We know that any graph contains vertices and edges. So RAG also contains vertices and edges. In RAG vertices are two type –

1. Process vertex – Every process will be represented as a process vertex.Generally, the process will be represented with a circle.

2. Resource vertex – Every resource will be represented as a resource vertex. It is also two type –


	Single instance type resource – It represents as a box, inside the box, there will be one dot.So the number of dots indicate how many instances are present of each resource type.

	Multi-resource instance type resource – It also represents as a box, inside the box, there will be many dots present.



[image: ]

Now coming to the edges of RAG.There are two types of edges in RAG –



        
          
          
          
        

            
1. Assign Edge –  If you already assign a resource to a process then it is called Assign edge.

2. Request Edge –  It means in future the process might want some resource to complete the execution, that is called request edge.

[image: ]

So, if a process is using a resource, an arrow is drawn from the resource node to the process node. If a process is requesting a resource, an arrow is drawn from the process node to the resource node.



Example 1 (Single instances RAG) –

[image: ]

If there is a cycle in the Resource Allocation Graph and each resource in the cycle provides only one instance, then the processes will be in deadlock. For example, if process P1 holds resource R1, process P2 holds resource R2 and process P1 is waiting for R2 and process P2 is waiting for R1, then process P1 and process P2 will be in deadlock.

[image: ]

Here’s another example, that shows Processes P1 and P2 acquiring resources R1 and R2 while process P3 is waiting to acquire both resources. In this example, there is no deadlock because there is no circular dependency.

      So cycle in single-instance resource type is the sufficient condition for deadlock.


Example 2 (Multi-instances RAG) –

[image: ]

From the above example, it is not possible to say the RAG is in a safe state or in an unsafe state.So to see the state of this RAG, let’s construct the allocation matrix and request matrix.

[image: ]


	The total number of processes are three; P1, P2 & P3 and the total number of resources are two; R1 & R2.

Allocation matrix –

	For constructing the allocation matrix, just go to the resources and see to which process it is allocated.

	R1 is allocated to P1, therefore write 1 in allocation matrix and similarly, R2 is allocated to P2 as well as P3 and for the remaining element just write 0.

Request matrix –

	In order to find out the request matrix, you have to go to the process and see the outgoing edges.

	P1 is requesting resource R2, so write 1 in the matrix and similarly, P2 requesting R1 and for the remaining element write 0.

So now available resource is = (0, 0).

Checking deadlock (safe or not) –

[image: hgh-1]

So, there is no deadlock in this RAG.Even though there is a cycle, still there is no deadlock.Therefore in multi-instance resource cycle is not sufficient condition for deadlock.

[image: ]

Above example is the same as the previous example except that, the process P3 requesting for resource R1.

So the table becomes as shown in below.

[image: ]

So,the Available resource is = (0, 0), but requirement are (0, 1), (1, 0) and (1, 0).So you can’t fulfill any one requirement.Therefore, it is in deadlock.

       Therefore, every cycle in a multi-instance resource type graph is not a deadlock, if there has to be a deadlock, there has to be a cycle.So, in case of RAG with multi-instance resource type, the cycle is a necessary condition for deadlock, but not sufficient.




 


GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.


	GATE CS 2009, Question 60

	GATE CS 2014 (Set 1), Question 65



Reference –

A. Silberschatz, P. Galvin, G. Gagne, “Operating Systems Concepts (8th Edition)”, Wiley India Pvt. Ltd.

This article is contributed by Samit Mandal. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						Program for Banker’s Algorithm | Set 1 (Safety Algorithm)

				
						

				
			Prerequisite: Banker’s Algorithm

The banker’s algorithm is a resource allocation and deadlock avoidance algorithm that tests for safety by simulating the allocation for predetermined maximum possible amounts of all resources, then makes an “s-state” check to test for possible activities, before deciding whether allocation should be allowed to continue.

Following Data structures are used to implement the Banker’s Algorithm:

Let ‘n’ be the number of processes in the system and ‘m’ be the number of resources types.

Available : 


	It is a 1-d array of size ‘m’ indicating the number of available resources of each type.

	Available[ j ] = k means there are ‘k’ instances of resource type Rj



Max :


	It is a 2-d array of size ‘n*m’ that defines the maximum demand of each process in a system.

	Max[ i, j ] = k means process Pi may request at most ‘k’ instances of resource type Rj.



Allocation :


	It is a 2-d array of size ‘n*m’ that defines the number of resources of each type currently allocated to each process.

	Allocation[ i, j ] = k means process Pi is currently allocated ‘k’ instances of resource type Rj



Need :


	 It is a 2-d array of size ‘n*m’ that indicates the remaining resource need of each process.

	Need [ i,  j ] = k means process Pi currently allocated ‘k’ instances of resource type Rj

	Need [ i,  j ] = Max [ i,  j ] – Allocation [ i,  j ]



Allocationi specifies the resources currently allocated to process Pi and Needi specifies the additional resources that process Pi may still request to complete its task.

Banker’s algorithm consist of Safety algorithm and Resource request algorithm

Safety Algorithm

 The algorithm for finding out whether or not a system is in a safe state can be described as follows:


	 Let Work and Finish be vectors of length ‘m’ and ‘n’ respectively.

 Initialize: Work= Available

 Finish [i]=false; for i=1,2,……,n



	Find an i such that both

a) Finish [i]=false

b) Need_i<=work


if no such i exists goto step (4)



	 Work=Work + Allocation_i

 Finish[i]= true

 goto step(2)



	 If Finish[i]=true for all i,

then the system is in safe state.






Safe sequence is the sequence in which the processes can be safely executed.

In this post, implementation of Safety algorithm of Banker’s Algorithm is done.




Recommended: Please try your approach on {IDE} first, before moving on to the solution.





        
          
          
          
        

            
// C++ program to illustrate Banker's Algorithm
#include<iostream>
using namespace std;

// Number of processes
const int P = 5;

// Number of resources
const int R = 3;

// Function to find the need of each process
void calculateNeed(int need[P][R], int maxm[P][R],
                   int allot[P][R])
{
    // Calculating Need of each P
    for (int i = 0 ; i < P ; i++)
        for (int j = 0 ; j < R ; j++)

            // Need of instance = maxm instance -
            //                    allocated instance
            need[i][j] = maxm[i][j] - allot[i][j];
}

// Function to find the system is in safe state or not
bool isSafe(int processes[], int avail[], int maxm[][R],
            int allot[][R])
{
    int need[P][R];

    // Function to calculate need matrix
    calculateNeed(need, maxm, allot);

    // Mark all processes as infinish
    bool finish[P] = {0};

    // To store safe sequence
    int safeSeq[P];

    // Make a copy of available resources
    int work[R];
    for (int i = 0; i < R ; i++)
        work[i] = avail[i];

    // While all processes are not finished
    // or system is not in safe state.
    int count = 0;
    while (count < P)
    {
        // Find a process which is not finish and
        // whose needs can be satisfied with current
        // work[] resources.
        bool found = false;
        for (int p = 0; p < P; p++)
        {
            // First check if a process is finished,
            // if no, go for next condition
            if (finish[p] == 0)
            {
                // Check if for all resources of
                // current P need is less
                // than work
                int j;
                for (j = 0; j < R; j++)
                    if (need[p][j] > work[j])
                        break;

                // If all needs of p were satisfied.
                if (j == R)
                {
                    // Add the allocated resources of
                    // current P to the available/work
                    // resources i.e.free the resources
                    for (int k = 0 ; k < R ; k++)
                        work[k] += allot[p][k];

                    // Add this process to safe sequence.
                    safeSeq[count++] = p;

                    // Mark this p as finished
                    finish[p] = 1;

                    found = true;
                }
            }
        }

        // If we could not find a next process in safe
        // sequence.
        if (found == false)
        {
            cout << "System is not in safe state";
            return false;
        }
    }

    // If system is in safe state then
    // safe sequence will be as below
    cout << "System is in safe state.\nSafe"
         " sequence is: ";
    for (int i = 0; i < P ; i++)
        cout << safeSeq[i] << " ";

    return true;
}

// Driver code
int main()
{
    int processes[] = {0, 1, 2, 3, 4};

    // Available instances of resources
    int avail[] = {3, 3, 2};

    // Maximum R that can be allocated
    // to processes
    int maxm[][R] = {{7, 5, 3},
                     {3, 2, 2},
                     {9, 0, 2},
                     {2, 2, 2},
                     {4, 3, 3}};

    // Resources allocated to processes
    int allot[][R] = {{0, 1, 0},
                      {2, 0, 0},
                      {3, 0, 2},
                      {2, 1, 1},
                      {0, 0, 2}};

    // Check system is in safe state or not
    isSafe(processes, avail, maxm, allot);

    return 0;
}


Output:

System is in safe state.
Safe sequence is: 1 3 4 0 2


Illustration : 

Considering a system with five processes P0 through P4 and three resources types A, B, C. Resource type A has 10 instances, B has 5 instances and type C has 7 instances. Suppose at time t0 following snapshot of the system has been taken:

[image: ]

We must determine whether the new system state is safe. To do so, we need to execute Safety algorithm on the above given allocation chart.

[image: banker's algorithm]

Following is the resource allocation graph:

[image: Bankers]

Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2 > satisfies safety requirement.

This article is contributed by Sahil Chhabra (akku). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Operating Systems
 cpu-scheduling
Process Synchronization

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						 Banker’s Algorithm : Print all the safe state (or safe sequences)

				
						

				
			Prerequisite – Resource Allocation Graph (RAG), Banker’s Algorithm, Program for Banker’s Algorithm

Banker’s Algorithm is a resource allocation and deadlock avoidance algorithm. This algorithm test for safety simulating the allocation for predetermined maximum possible amounts of all resources, then makes an “s-state” check to test for possible activities, before deciding whether allocation should be allowed to continue.

In simple terms, it checks if allocation of any resource will lead to deadlock or not, OR is it safe to allocate a resource to a process and if not then resource is not allocated to that process. Determining a safe sequence(even if there is only 1) will assure that system will not go into deadlock.

Banker’s algorithm is generally used to find if a safe sequence exist or not. But here we will determine the total number of safe sequences and print all safe sequences.

The data structure used are: 


	Available vector

	Max Matrix

	Allocation Matrix

	Need Matrix



Example:

Input :  
[image: ] 
[image: ]

Output : Safe sequences are:
P2--> P4--> P1--> P3
P2--> P4--> P3--> P1
P4--> P2--> P1--> P3
P4--> P2--> P3--> P1

There are total 4 safe-sequences


Explanation –

Total resources are R1 = 10, R2 = 5, R3 = 7 and allocated resources are R1 = (0+2+3+2 =) 7, R2 = (1+0+0+1 =) 2, R3 = (0+0+2+1 =) 3. Therefore, remaining resources are R1 = (10 – 7 =) 3, R2 = (5 – 2 =) 3, R3 = (7 – 3 =) 4. 

Remaining available = Total resources – allocated resources

and

Remaining need = max – allocated

[image: ]

So, we can start from either P2 or P4. We can not satisfy remaining need from available resources of either P1 or P3 in first or second attempt step of Banker’s algorithm. There are only four possible safe sequences. These are :

P2–> P4–> P1–> P3

P2–> P4–> P3–> P1

P4–> P2–> P1–> P3

P4–> P2–> P3–> P1




Recommended: Please try your approach on {IDE} first, before moving on to the solution.





        
          
          
          
        

            
Code –

// CPP Program to Print all possible safe sequences using banker's algorithm
#include <iostream>
#include <string.h>
#include <vector>
// total number of process
#define P 4
// total number of resources
#define R 3

// total safe-sequences
int total = 0;

using namespace std;

// function to check if process
// can be allocated or not
bool is_available(int process_id, int allocated[][R],
                  int max[][R], int need[][R], int available[])
{

    bool flag = true;

    // check if all the available resources
    // are less greater than need of process
    for (int i = 0; i < R; i++) {

        if (need[process_id][i] > available[i])
            flag = false;
    }

    return flag;
}

// Print all the safe-sequences
void safe_sequence(bool marked[], int allocated[][R], int max[][R],
                   int need[][R], int available[], vector<int> safe)
{

    for (int i = 0; i < P; i++) {

        // check if it is not marked
        // already and can be allocated
        if (!marked[i] && is_available(i, allocated, max, need, available)) {

            // mark the process
            marked[i] = true;

            // increase the available
            // by deallocating from process i
            for (int j = 0; j < R; j++)
                available[j] += allocated[i][j];

            safe.push_back(i);
            // find safe sequence by taking process i
            safe_sequence(marked, allocated, max, need, available, safe);
            safe.pop_back();

            // unmark the process
            marked[i] = false;

            // decrease the available
            for (int j = 0; j < R; j++)
                available[j] -= allocated[i][j];
        }
    }

    // if a safe-sequence is found, display it
    if (safe.size() == P) {

        total++;
        for (int i = 0; i < P; i++) {

            cout << "P" << safe[i] + 1;
            if (i != (P - 1))
                cout << "--> ";
        }

        cout << endl;
    }
}

// Driver Code
int main()
{

    // allocated matrix of size P*R
    int allocated[P][R] = { { 0, 1, 0 },
                            { 2, 0, 0 },
                            { 3, 0, 2 },
                            { 2, 1, 1 } };

    // max matrix of size P*R
    int max[P][R] = { { 7, 5, 3 },
                      { 3, 2, 2 },
                      { 9, 0, 2 },
                      { 2, 2, 2 } };

    // Initial total resources
    int resources[R] = { 10, 5, 7 };

    // available vector of size R
    int available[R];

    for (int i = 0; i < R; i++) {

        int sum = 0;
        for (int j = 0; j < P; j++)
            sum += allocated[j][i];

        available[i] = resources[i] - sum;
    }

    // safe vector for displaying a safe-sequence
    vector<int> safe;

    // marked of size P for marking allocated process
    bool marked[P];
    memset(marked, false, sizeof(marked));

    // need matrix of size P*R
    int need[P][R];
    for (int i = 0; i < P; i++)
        for (int j = 0; j < R; j++)
            need[i][j] = max[i][j] - allocated[i][j];

    cout << "Safe sequences are:" << endl;
    safe_sequence(marked, allocated, max, need, available, safe);

    cout << "\nThere are total " << total << " safe-sequences" << endl;
    return 0;
}


Output:

Safe sequences are:
P2--> P4--> P1--> P3
P2--> P4--> P3--> P1
P4--> P2--> P1--> P3
P4--> P2--> P3--> P1

There are total 4 safe-sequences




          
          
          
            



shubham_rana_77

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		Algorithms
GATE CS
Matrix
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









Processes & Threads









						 Thread

				
						

				
			What is a Thread?

A thread is a path of execution within a process. Also, a process can contain multiple threads. 

Why Multithreading?

Thread is also known as lightweight process. The idea is achieve parallelism by dividing a process into multiple threads. For example, in a browser, multiple tabs can be different threads. MS word uses multiple threads, one thread to format the text, other thread to process inputs etc. More advantages of multithreading are discussed below

Process vs Thread?

The typical difference is that threads within the same process run in a shared memory space, while processes run in separate memory spaces.

Threads are not independent of one other like processes as a result threads shares with other threads their code section, data section and OS resources like open files and signals. But, like process, a thread has its own program counter (PC), a register set, and a stack space.

Advantages of Thread over Process

1. Responsiveness:  If the process is divided into multiple threads, if one thread completed its execution, then its output can be immediately responded.

2. Faster context switch: Context switch time between threads is less compared to process context switch. Process context switch is more overhead for CPU.

3. Effective Utilization of Multiprocessor system:  If we have multiple threads in a single process, then we can schedule multiple threads on multiple processor. This will make process execution faster.

4. Resource sharing:  Resources like code, data and file can be shared among all threads within a process.

Note : stack and registers can’t be shared among the threads. Each thread have its own stack and registers.

5. Communication: Communication between multiple thread is easier as thread shares common address space. while in process we have to follow some specific communication technique for communication between two process.



        
          
          
          
        

            
6. Enhanced Throughput of the system:  If process is divided into multiple threads and each thread function is considered as one job, then the number of jobs completed per unit time is increased. Thus, increasing the throughput of the system.

Types of Thread

There are two types of thread.

User Level Thread

Kernel Level Thread.

Refer User Thread vs Kernel Thread for more details.

Below are Previous Year Gate Questions on Threads:

http://quiz.geeksforgeeks.org/gate-gate-cs-2011-question-16/

http://quiz.geeksforgeeks.org/gate-gate-cs-2007-question-17/

http://quiz.geeksforgeeks.org/gate-gate-cs-2014-set-1-question-30/

References:

Process Vs Thread

Multithreading in C

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Operating Systems
 Processes & Threads

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						 User Level thread Vs Kernel Level thread

				
						

				
			

	 User level thread 
	 Kernel level thread 



	User thread are implemented by users.
	kernel threads are implemented by OS. 



	OS doesn’t recognized user level threads.
	Kernel threads are recognized by OS. 



	Implementation of User threads is easy.
	Implementation of Kernel thread is complicated.



	Context switch time is less.
	Context switch time is more.



	Context switch requires no hardware support.
	Hardware support is needed.



	 If one user level thread perform blocking operation then entire process will be blocked.
	 If one kernel thread perform blocking operation then another thread can continue execution.


	Example : Java thread, POSIX threads.
	Example : Window Solaris.






Below is the Previous Year Gate Question

http://quiz.geeksforgeeks.org/gate-gate-cs-2007-question-17/



References:

http://www.cs.iit.edu/~cs561/cs450/ChilkuriDineshThreads/dinesh%27s%20files/User%20and%20Kernel%20Level%20Threads.html

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



          
          
          
            


					
		
		Operating Systems
 Processes & Threads

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						 Process-based and Thread-based Multitasking

				
						

				
			Prerequisite – Thread, Difference between multitasking, multithreading and multiprocessing

A multitasking operating system is an operating system that gives you the perception of 2 or more tasks/jobs/processes running at the same time. It does this by dividing system resources amongst these tasks/jobs/processes and switching between the tasks/jobs/processes while they are executing over and over again. Usually CPU processes only one task at a time but the switching is so fast that it looks like CPU is executing multiple processes at a time. They can support either preemptive multitasking, where the OS doles out time to applications (virtually all modern OSes) or cooperative multitasking, where the OS waits for the program to give back control (Windows 3.x, Mac OS 9 and earlier), leading to hangs and crashes. Also known as Timesharing, multitasking is a logical extension of multiprogramming.

Multitasking programming is of two types –


	Process-based Multitasking 

	Thread-based Multitasking.



Process Based Multitasking Programming –


	In process based multitasking two or more processes and programs can be run concurrently.

	In process based multitasking a process or a program is the smallest unit.

	Program is a bigger unit.

	Process based multitasking requires more overhead.

	Process requires its own address space.

	Process to Process communication is expensive.

	Here, it is unable to gain access over idle time of CPU.

	It is comparatively heavy weight.

	It has slower data rate multi-tasking.



Example – We can listen to music and browse internet at the same time. The processes in this example are the music player and browser.

Thread Based Multitasking Programming –


	In thread based multitasking two or more threads can be run concurrently.

	In thread based multitasking a thread is the smallest unit.

	Thread is a smaller unit.

	Thread based multitasking requires less overhead.

	Threads share same address space.

	Thread to Thread communication is not expensive.

	It allows taking gain access over idle time taken by CPU.

	It is comparatively light weight.

	It has faster data rate multi-tasking.



Examples – Using a browser we can navigate through the webpage and at the same time download a file. In this example, navigation is one thread and downloading is another thread. Also in a word-processing application like MS Word, we can type text in one thread and spell checker checks for mistakes in another thread.



          
          
          
            



Anshika Goyal

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		GATE CS
Operating Systems
Technical Scripter
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						Multi threading models

				
						

				
			Many operating systems support kernel thread and user thread in a combined way. Example of such system is Solaris. Multi threading model are of three types.

Many to many model.
Many to one model.
one to one model.

Many to Many Model

In this model, we have multiple user threads multiplex to same or lesser number of kernel level threads. Number of kernel level threads are specific to the machine, advantage of this model is if a user thread is blocked we can schedule others user thread to other kernel thread. Thus, System doesn’t block if a particular thread is blocked.

[image: many_to_many]

Many to One Model



        
          
          
          
        

            
In this model, we have multiple user threads mapped to one kernel thread. In this model when a user thread makes a blocking system call entire process blocks. As we have only one kernel thread and only one user thread can access kernel at a time, so multiple threads are not able access multiprocessor at the same time. 

[image: many_to_many]

One to One Model

In this model, one to one relationship between kernel and user thread. In this model multiple thread can run on multiple processor. Problem with this model is that creating a user thread requires the corresponding kernel thread.

[image: many_to_many]

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



          
          
          
            


					
		
		Operating Systems
 Processes & Threads

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						Zombie Processes and their Prevention

				
						

				
			Prerequisites: fork() in C, Zombie Process

Zombie state : When a process is created in UNIX using fork() system call, the address space of the Parent process is replicated. If the parent process calls wait() system call, then the execution of parent is suspended until the child is terminated. At the termination of the child, a ‘SIGCHLD’ signal is generated which is delivered to the parent by the kernel. Parent, on receipt of ‘SIGCHLD’ reaps the status of the child from the process table. Even though, the child is terminated, there is an entry in the process table corresponding to the child where the status is stored. When parent collects the status, this entry is deleted. Thus, all the traces of the child process are removed from the system. If the parent decides not to wait for the child’s termination and it executes its subsequent task, then at the termination of the child, the exit status is not read. Hence, there remains an entry in the process table even after the termination of the child. This state of the child process is known as the Zombie state. 

// A C program to demonstrate working of
// fork() and process table entries.
#include<stdio.h>
#include<unistd.h>
#include<sys/wait.h>
#include<sys/types.h>

int main()
{
    int i;
    int pid = fork();

    if (pid == 0)
    {
        for (i=0; i<20; i++)
            printf("I am Child\n");
    }
    else
    {
        printf("I am Parent\n");
        while(1);
    }
}


Output : 
[image: zombie1_1]

Now check the process table using the following command in the terminal
$ ps -eaf
[image: zombie1_2]
Here the entry [a.out] defunct  shows the zombie process.


Why do we need to prevent the creation of Zombie process?

There is one process table per system. The size of the process table is finite. If too many zombie processes are generated, then the process table will be full. That is, the system will not be able to generate any new process, then the system will come to a standstill. Hence, we need to prevent the creation of zombie processes.

Different ways in which creation of Zombie can be prevented

1. Using wait() system call : When the parent process calls wait(), after the creation of child, it indicates that, it will wait for the child to complete and it will reap the exit status of the child. The parent process is suspended(waits in a waiting queue) until the child is terminated. It must be understood that during this period, the parent process does nothing just waits.

// A C program to demonstrate working of
// fork()/wait() and Zombie processes
#include<stdio.h>
#include<unistd.h>
#include<sys/wait.h>
#include<sys/types.h>

int main()
{
    int i;
    int pid = fork();
    if (pid==0)
    {
        for (i=0; i<20; i++)
            printf("I am Child\n");
    }
    else
    {
        wait(NULL);
        printf("I am Parent\n");
        while(1);
    }
}


2. By ignoring the SIGCHLD signal : When a child is terminated, a corresponding SIGCHLD signal is delivered to the parent, if we call the ‘signal(SIGCHLD,SIG_IGN)’, then the SIGCHLD signal is ignored by the system, and the child process entry is deleted from the process table. Thus, no zombie is created. However, in this case, the parent cannot know about the exit status of the child.



        
          
          
          
        

            
// A C program to demonstrate ignoring 
// SIGCHLD signal to prevent Zombie processes
#include<stdio.h>
#include<unistd.h>
#include<sys/wait.h>
#include<sys/types.h>

int main()
{
    int i;
    int pid = fork();
    if (pid == 0)
        for (i=0; i<20; i++)
            printf("I am Child\n");
    else
    {
        signal(SIGCHLD,SIG_IGN);
        printf("I am Parent\n");
        while(1);
    }
}


3. By using a signal handler : The parent process installs a signal handler for the SIGCHLD signal. The signal handler calls wait() system call within it. In this senario, when the child terminated, the SIGCHLD is delivered to the parent.On receipt of SIGCHLD, the corresponding handler is activated, which in turn calls the wait() system call. Hence, the parent collects the exit status almost immediately and the child entry in the process table is cleared. Thus no zombie is created.

// A C program to demonstrate handling of
// SIGCHLD signal to prevent Zombie processes.
#include<stdio.h>
#include<unistd.h>
#include<sys/wait.h>
#include<sys/types.h>

void func(int signum)
{
    wait(NULL);
}

int main()
{
    int i;
    int pid = fork();
    if (pid == 0)
        for (i=0; i<20; i++)
            printf("I am Child\n");
    else
    {
        signal(SIGCHLD, func);
        printf("I am Parent\n");
        while(1);
    }
}


Output :
[image: zom_final]
Here no any [a.out] defunct i.e. no any Zombie process is created.


This article is contributed by Kishlay Verma. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		C
Linux-Unix
Operating Systems
 Processes & Threads
system-programming
Unix/Linux

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						Zombie Processes and their Prevention

				
						

				
			Prerequisites: fork() in C, Zombie Process

Zombie state : When a process is created in UNIX using fork() system call, the address space of the Parent process is replicated. If the parent process calls wait() system call, then the execution of parent is suspended until the child is terminated. At the termination of the child, a ‘SIGCHLD’ signal is generated which is delivered to the parent by the kernel. Parent, on receipt of ‘SIGCHLD’ reaps the status of the child from the process table. Even though, the child is terminated, there is an entry in the process table corresponding to the child where the status is stored. When parent collects the status, this entry is deleted. Thus, all the traces of the child process are removed from the system. If the parent decides not to wait for the child’s termination and it executes its subsequent task, then at the termination of the child, the exit status is not read. Hence, there remains an entry in the process table even after the termination of the child. This state of the child process is known as the Zombie state. 

// A C program to demonstrate working of
// fork() and process table entries.
#include<stdio.h>
#include<unistd.h>
#include<sys/wait.h>
#include<sys/types.h>

int main()
{
    int i;
    int pid = fork();

    if (pid == 0)
    {
        for (i=0; i<20; i++)
            printf("I am Child\n");
    }
    else
    {
        printf("I am Parent\n");
        while(1);
    }
}


Output : 
[image: zombie1_1]

Now check the process table using the following command in the terminal
$ ps -eaf
[image: zombie1_2]
Here the entry [a.out] defunct  shows the zombie process.


Why do we need to prevent the creation of Zombie process?

There is one process table per system. The size of the process table is finite. If too many zombie processes are generated, then the process table will be full. That is, the system will not be able to generate any new process, then the system will come to a standstill. Hence, we need to prevent the creation of zombie processes.

Different ways in which creation of Zombie can be prevented

1. Using wait() system call : When the parent process calls wait(), after the creation of child, it indicates that, it will wait for the child to complete and it will reap the exit status of the child. The parent process is suspended(waits in a waiting queue) until the child is terminated. It must be understood that during this period, the parent process does nothing just waits.

// A C program to demonstrate working of
// fork()/wait() and Zombie processes
#include<stdio.h>
#include<unistd.h>
#include<sys/wait.h>
#include<sys/types.h>

int main()
{
    int i;
    int pid = fork();
    if (pid==0)
    {
        for (i=0; i<20; i++)
            printf("I am Child\n");
    }
    else
    {
        wait(NULL);
        printf("I am Parent\n");
        while(1);
    }
}


2. By ignoring the SIGCHLD signal : When a child is terminated, a corresponding SIGCHLD signal is delivered to the parent, if we call the ‘signal(SIGCHLD,SIG_IGN)’, then the SIGCHLD signal is ignored by the system, and the child process entry is deleted from the process table. Thus, no zombie is created. However, in this case, the parent cannot know about the exit status of the child.



        
          
          
          
        

            
// A C program to demonstrate ignoring 
// SIGCHLD signal to prevent Zombie processes
#include<stdio.h>
#include<unistd.h>
#include<sys/wait.h>
#include<sys/types.h>

int main()
{
    int i;
    int pid = fork();
    if (pid == 0)
        for (i=0; i<20; i++)
            printf("I am Child\n");
    else
    {
        signal(SIGCHLD,SIG_IGN);
        printf("I am Parent\n");
        while(1);
    }
}


3. By using a signal handler : The parent process installs a signal handler for the SIGCHLD signal. The signal handler calls wait() system call within it. In this senario, when the child terminated, the SIGCHLD is delivered to the parent.On receipt of SIGCHLD, the corresponding handler is activated, which in turn calls the wait() system call. Hence, the parent collects the exit status almost immediately and the child entry in the process table is cleared. Thus no zombie is created.

// A C program to demonstrate handling of
// SIGCHLD signal to prevent Zombie processes.
#include<stdio.h>
#include<unistd.h>
#include<sys/wait.h>
#include<sys/types.h>

void func(int signum)
{
    wait(NULL);
}

int main()
{
    int i;
    int pid = fork();
    if (pid == 0)
        for (i=0; i<20; i++)
            printf("I am Child\n");
    else
    {
        signal(SIGCHLD, func);
        printf("I am Parent\n");
        while(1);
    }
}


Output :
[image: zom_final]
Here no any [a.out] defunct i.e. no any Zombie process is created.


This article is contributed by Kishlay Verma. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		C
Linux-Unix
Operating Systems
 Processes & Threads
system-programming
Unix/Linux

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						 Remote Procedure call (RPC)

				
						

				
			Remote Procedure Call (RPC) is a powerful technique for constructing distributed, client-server based applications. It is based on extending the conventional local procedure calling, so that the called procedure need not exist in the same address space as the calling procedure. The two processes may be on the same system, or they may be on different systems with a network connecting them. 

 When making a Remote Procedure Call:

[image: ]

1. The calling environment is suspended, procedure parameters are transferred across the network to the environment where the procedure is to execute, and the procedure is executed there.

2. When the procedure finishes and produces its results, its results are transferred back to the calling environment, where execution resumes as if returning from a regular procedure call.



        
          
          
          
        

            
NOTE: RPC is especially well suited for client-server (e.g. query-response)  interaction in which the flow of control alternates between the caller and callee. Conceptually, the client and server do not both execute at the same time. Instead, the thread of execution jumps from the caller to the callee and then back again.

                 Working of RPC

[image: ]

The following steps take place during a RPC:

1. A client invokes a client stub procedure, passing parameters in the usual way. The client stub resides within the client’s own address space.

2. The client stub marshalls(pack) the parameters into a message. Marshalling includes converting the representation of the parameters into a standard format, and copying each parameter into the message.

3. The client stub passes the message to the transport layer, which sends it to the remote server machine.

4. On the server, the transport layer passes the message to a server stub, which demarshalls(unpack) the parameters and calls the desired server routine using the regular procedure call mechanism.

5. When the server procedure completes, it returns to the server stub (e.g., via a normal procedure call return), which marshalls the return values into a message. The server stub then hands the message to the transport layer.

6. The transport layer sends the result message back to the client transport layer, which hands the message back to the client stub.

7. The client stub demarshalls the return parameters and execution returns to the caller.

RPC ISSUES


	Issues that must be addressed:



1. RPC Runtime: RPC run-time system, is a library of routines and a set of services that handle the network communications that underlie the RPC mechanism. In the course of an RPC call, client-side and server-side run-time systems’ code handle binding, establish communications over an appropriate protocol, pass call data between the client and server, and handle communications errors.

2. Stub: The function of the stub is to provide transparency to the programmer-written application code. 

On the client side, the stub handles the interface between the client’s local procedure call and the run-time system, marshaling and unmarshaling data, invoking the RPC run-time protocol, and if requested, carrying out some of the binding steps. 

On the server side, the stub provides a similar interface between the run-time system and the local manager procedures that are executed by the server.

3. Binding: How does the client know who to call, and where the service resides? 

The most flexible solution is to use dynamic binding and find the server at run time when the RPC is first made. The first time the client stub is invoked, it contacts a name server to determine the transport address at which the server resides.

 Binding consists of two parts:


	Naming:

  Remote procedures are named through interfaces. An interface uniquely identifies a particular service, describing the types and numbers of its arguments. It is similar in purpose to a type definition in programming languauges.

	Locating:

 Finding the transport address at which the server actually resides. Once we have the transport address of the service, we can send messages directly to the server.




A Server having a service to offer exports an interface for it. Exporting an interface registers it with the system so that clients can use it.

A Client must import an (exported) interface before communication can begin.

ADVANTAGES

1. RPC provides ABSTRACTION  i.e message-passing nature of network communication is hidden from the user.

2. RPC often omits many of the protocol layers to improve performance. Even a small performance improvement is important because a program may invoke RPCs often. 

3. RPC enables the usage of the applications in the distributed environment, not only in the local environment.

4. With RPC code re-writing / re-developing effort is minimized.

5. Process-oriented and thread oriented models supported by RPC.

Refrences:


	https://web.cs.wpi.edu/~cs4514/b98/week8-rpc/week8-rpc.html

	https://users.cs.cf.ac.uk/Dave.Marshall/C/node33.html



This article is contributed by Yash Singla. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	








Memory Management









						Different Types of RAM (Random Access Memory )

				
						

				
			RAM(Random Access Memory) is a part of computer’s Main Memory which is directly accessible by CPU. RAM is used to Read and Write data into it which is accessed by CPU randomly. RAM is volatile in nature, it means if the power goes off, the stored information is lost. RAM is used to store the data that is currently processed by the CPU. Most of the programs and data that are modifiable are stored in RAM. 

Integrated RAM chips are available in two form:


	SRAM(Static RAM)

	DRAM(Dynamic RAM)



The block diagram of RAM chip is given below.

[image: ]

SRAM



        
          
          
          
        

            
The SRAM memories consist of circuits capable of retaining the stored information as long as the power is applied. That means this type of memory requires constant power. SRAM memories are used to build Cache Memory.

SRAM Memory Cell: Static memories(SRAM) are memories that consist of circuits capable of retaining their state as long as power is on. Thus this type of memories is called volatile memories. The below figure shows a cell diagram of SRAM. A latch is formed by two inverters connected as shown in the figure. Two transistors T1 and T2 are used for connecting the latch with two bit lines. The purpose of these transistors is to act as switches that can be opened or closed under the control of the word line, which is controlled by the address decoder. When the word line is at 0-level, the transistors are turned off and the latch remains its information. For example, the cell is at state 1 if the logic value at point A is 1 and at point B is 0. This state is retained as long as the word line is not activated.

[image: ]

For Read operation, the word line is activated by the address input to the address decoder. The activated word line closes both the transistors (switches) T1 and T2. Then the bit values at points A and B can transmit to their respective bit lines. The sense/write circuit at the end of the bit lines sends the output to the processor.

For Write operation, the address provided to the decoder activates the word line to close both the switches. Then the bit value that to be written into the cell is provided through the sense/write circuit and the signals in bit lines are then stored in the cell.

DRAM

DRAM stores the binary information in the form of electric charges that applied to capacitors. The stored information on the capacitors tend to lose over a period of time and thus the capacitors must be periodically recharged to retain their usage. The main memory is generally made up of DRAM chips.

DRAM Memory Cell: Though SRAM is very fast, but it is expensive because of its every cell requires several transistors. Relatively less expensive RAM is DRAM, due to the use of one transistor and one capacitor in each cell, as shown in the below figure., where C is the capacitor and T is the transistor. Information is stored in a DRAM cell in the form of a charge on a capacitor and this charge needs to be periodically recharged.

For storing information in this cell, transistor T is turned on and an appropriate voltage is applied to the bit line. This causes a known amount of charge to be stored in the capacitor. After the transistor is turned off, due to the property of the capacitor, it starts to discharge. Hence, the information stored in the cell can be read correctly only if it is read before the charge on the capacitors drops below some threshold value.

[image: ]

Types of DRAM

There are mainly 5 types of DRAM:


	
Asynchronous DRAM (ADRAM): The DRAM described above is the asynchronous type DRAM. The timing of the memory device is controlled asynchronously. A specialized memory controller circuit generates the necessary control signals to control the timing. The CPU must take into account the delay in the response of the memory.


	
Synchronous DRAM (SDRAM): These RAM chips’ access speed is directly synchronized with the CPU’s clock. For this, the memory chips remain ready for operation when the CPU expects them to be ready. These memories operate at the CPU-memory bus without imposing wait states. SDRAM is commercially available as modules incorporating multiple SDRAM chips and forming the required capacity for the modules.


	
Double-Data-Rate SDRAM (DDR SDRAM): This faster version of SDRAM performs its operations on both edges of the clock signal; whereas a standard SDRAM performs its operations on the rising edge of the clock signal. Since they transfer data on both edges of the clock, the data transfer rate is doubled. To access the data at high rate, the memory cells are organized into two groups. Each group is accessed separately.


	
Rambus DRAM (RDRAM): The RDRAM provides a very high data transfer rate over a narrow CPU-memory bus. It uses various speedup mechanisms, like synchronous memory interface, caching inside the DRAM chips and very fast signal timing. The Rambus data bus width is 8 or 9 bits.


	
Cache DRAM (CDRAM): This memory is a special type DRAM memory with an on-chip cache memory (SRAM) that acts as a high-speed buffer for the main DRAM.




Difference between SRAM and DRAM

Below table lists some of the differences between SRAM and DRAM:

[image: ]



          
          
          
            



SAYAN KUMAR PAL

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		Computer Organization & Architecture
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						 Buddy System – Memory allocation technique

				
						

				
			Prerequisite – Partition Allocation Methods

Static partition schemes suffer from the limitation of having the fixed number of active processes and the usage of space may also not be optimal. The buddy system is a memory allocation and management algorithm that manages memory in power of two increments. Assume the memory size is 2U, suppose a size of S is required.


	If 2U-1<S<=2U: Allocate the whole block

	Else: Recursively divide the block equally and test the condition at each time, when it satisfies, alloacate the block and get out the loop.



System also keep the record of all the unallocated blocks each and can merge these different size blocks to make one big chunk.

Advantage –


	Easy to implement a buddy system

	Allocates block of correct size

	It is easy to merge adjacent holes

	Fast to allocate memory and de-allocating memory



Disadvantage –


	It requires all allocation unit to be powers of two

	It leads to  internal fragmentation



Example –

Consider a system having buddy system with physical address space 128 KB.Calculate the size of partition for 18 KB process.

Solution –

[image: ]

So, size of partition for 18 KB process = 32 KB. It divides by 2, till possible to get minimum block to fit 18 KB. 



          
          
          
            



Samit Mandal

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						 Memory Management |Partition Allocation Method

				
						

				
			In operating system, following are four common memory management techniques.

Single contiguous allocation:  Simplest allocation method used by MS-DOS.  
                All memory (except some reserved for OS) is available to 
                a process.

Partitioned allocation: Memory is divided in different blocks

Paged memory management: Memory is divided in fixed sized units called 
                page frames, used in virtual memory environment.

Segmented memory management: Memory is divided in different segments (a 
                segment is logical grouping of process' data or code)
                In this management, allocated memory does'nt  have to 
                be contiguous.

Most of the operating systems (for example Windows and Linux) use Segmentation with Paging.  A process is divided in segments and individual segments have pages.  

In Partition Allocation, when there are more than one partition freely available to accommodate a process’s request, a partition must be selected.  To choose a particular partition, a partition allocation method is needed. A partition allocation method is considered better if it avoids internal fragmentation.

Below are the various partition allocation schemes :

1. First Fit: In the first fit, partition is allocated which is first
    sufficient from the top of Main Memory.

2. Best Fit  Allocate the process to the partition which is first 
    smallest sufficient partition among the free available partition.

3. Worst Fit  Allocate the process to the partition which is largest
    sufficient among the freely available partitions available in
    the main memory. 

4. Next Fit Next fit is similar to the first fit but it will search
    for the first sufficient partition from the last allocation point.

Is Best-Fit really best?

Although, best fit  minimizes the wastage space, it consumes a lot of processor time for searching the block which is close to required size.  Also, Best-fit may perform poorer than other algorithms in some cases.  For example, see below exercise.



        
          
          
          
        

            
 

Exercise: Consider the requests from processes in given order 300K, 25K, 125K and 50K. Let there be two blocks of memory available of size 150K followed by a block size 350K.

Which of the following partition allocation schemes can satisfy above requests?

A) Best fit but not first fit.

B) First fit but not best fit.

C) Both First fit & Best fit.

D) neither first fit nor best fit.

Solution: Let us try all options.

Best Fit:

300K is allocated from block of size 350K.  50 is left in the block.

25K is allocated from the remaining 50K block.  25K is left in the block.

125K is allocated from 150 K block. 25K is left in this block also.

50K can’t be allocated even if there is 25K + 25K space available.

First Fit:

300K request is allocated from 350K block, 50K is left out.

25K is be allocated from 150K block, 125K is  left out.

Then 125K and 50K are allocated to remaining left out partitions.

So, first fit can handle requests.

So option B is the correct choice.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



          
          
          
            


					
		
		Operating Systems
 Memory Management

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						 Paging

				
						

				
			Paging is a memory management scheme that eliminates the need for contiguous allocation of physical memory. This scheme permits the physical address space of a process to be non – contiguous.


	Logical Address or Virtual Address (represented in bits): An address generated by the CPU

	Logical Address Space or Virtual Address Space( represented in words or bytes): The set of all logical addresses generated by a program

	Physical Address (represented in bits): An address actually available on memory unit

	Physical Address Space (represented in words or bytes): The set of all physical addresses corresponding to the logical addresses



Example: 


	If Logical Address = 31 bit, then Logical Address Space = 231 words = 2 G words (1 G = 230)

	If Logical Address Space = 128 M words = 27 * 220 words, then Logical Address = log2 227 = 27 bits

	If Physical Address = 22 bit, then Physical Address Space = 222 words = 4 M words (1 M = 220)

	If Physical Address Space = 16 M words = 24 * 220 words, then Physical Address = log2 224 = 24 bits



The mapping from virtual to physical address is done by the memory management unit (MMU) which is a hardware device and this mapping is known as paging technique.


	The Physical Address Space is conceptually divided into a number of fixed-size blocks, called frames.



	The Logical address Space is also splitted into fixed-size blocks, called pages.


	Page Size = Frame Size



Let us consider an example:



        
          
          
          
        

            

	Physical Address = 12 bits, then Physical Address Space = 4 K words

	Logical Address = 13 bits, then Logical Address Space = 8 K words

	Page size = frame size = 1 K words (assumption)



[image: size]

 

Address generated by CPU is divided into


	Page number(p): Number of bits required to represent the pages in Logical Address Space or Page number

	Page offset(d): Number of bits required to represent particular word in a page or page size of Logical Address Space or word number of a page or page offset.



Physical Address is divided into


	Frame number(f): Number of bits required to represent the frame of Physical Address Space or Frame number.

	Frame offset(d): Number of bits required to represent particular word in a frame or frame size of Physical Address Space or word number of a frame or frame offset.



 

The hardware implementation of page table can be done by using dedicated registers. But the usage of register for the page table is satisfactory only if page table is small. If page table contain large number of entries then we can use TLB(translation Look-aside buffer), a special, small, fast look up hardware cache.


	The TLB is associative, high speed memory.

	Each entry in TLB consists of two parts: a tag and a value.

	When this memory is used, then an item is compared with all tags simultaneously.If the item is found, then corresponding value is returned.

[image: Size1]

 

Main memory access time = m

If page table are kept in main memory,

Effective access time = m(for page table) + m(for particular page in page table)

[image: save2]

 

Questions asked in GATE on Paging:

GATE CS 2001 Question 46

 

This article has been contributed by Vikash Kumar. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



          
          
          
            


					
		
		Operating Systems
 Memory Management

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	











						 Memory management – mapping virtual address to physical addresses

				
						

				
			Memory consists of large array of words or arrays, each of which has address associated with it. Now the work of CPU is to fetch instructions from the memory based program counter. Now further these instruction may cause loading or storing to specific memory address. 

Address binding is the process of mapping from one address space to another address space. Logical address is address generated by CPU during execution whereas Physical Address refers to location in memory unit(the one that is loaded into memory).Note that user deals with only logical address(Virtual address). The logical address undergoes translation by the MMU or address translation unit in particular. The output of this process is the appropriate physical address or the location of code/data in RAM. 

An address binding can be done in three different ways:

 Compile Time – It work is to generate logical address(also known as virtual address). If you know that during compile time where process will reside in memory then absolute address is generated.

 Load time – It will generate physical address.If at the compile time it is not known where process will reside then relocatable address will be generated. In this if address changes then we need to reload the user code.



        
          
          
          
        

            
 Execution time- It helps in differing between physical and logical address.This is used if process can be moved from one memory to another during execution(dynamic linking-Linking that is done during load or run time).

MMU(Memory Management Unit)-

The run time mapping between Virtual address and Physical Address is done by hardware device known as MMU.

In memory management, Operating System will handle the processes and moves the processes between disk and memory for execution . It keeps the track of available and used memory.

Instruction-execution cycle Follows steps:


	 First instruction is fetched from memory e.g. ADD A,B 

	 Then these instructions are decoded i.e., Addition of A and B 

	 And further loading or storing at some particular memory location takes place. 



Basic Hardware

As main memory and registers are built into processor and CPU can access these only.So every instructions should be written in direct access storage

devices.


	 If CPU access instruction from register then it can be done in one CPU clock cycle as registers are built into CPU.

	 If instruction resides in main memory then it will be accessed via memory bus that will take lot of time. So remedy to this add fast memory in between CPU and main memory i.e. adding cache for transaction.

	 Now we should insure that process resides in legal address.

	 Legal address  consists of base register(holds smallest physical address) and limit register(size of range).



For example:

Base register = 300040
limit register = 120900 
then legal address = (300040+120900)= 420940(inclusive).
legal address = base register+ limit register


How processes are  mapped from disk to memory


	 Usually process resides in disk in form of binary executable file.

	 So to execute process it should reside in main memory.

	 Process is moved from disk to memory based on memory management in use.

	 The processes waits in disk in form of ready queue to acquire memory.



Procedure of mapping of disk and memory  

Normal procedure is that process is selected from input queue and loaded in memory. As process executes it accesses data and instructions from memory and  as soon as it completes it will release memory and now memory will be available for other processes.

MMU scheme –

 CPU------- MMU------Memory 

[image: MMU scheme]


	 CPU will generate logical address for eg: 346 

	 MMU will generate relocation register(base register) for eg:14000 

	 In Memory physical address is located eg:(346+14000= 14346) 



Reference and Image Source:

https://users.dimi.uniud.it/~antonio.dangelo/OpSys/materials/Operating_System_Concepts.pdf

This article is contributed by Vaishali Bhatia.If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						 Page Table Entries

				
						

				
			Prerequisite –  Paging

Page table has page table entries where each page table entry stores a frame number and optional status (like protection) bits. Many of status bits used in the virtual memory system. The most important thing in PTE is frame Number.

Page table entry has the following information –

[image: ]


	Frame Number – It gives the frame number in which the current page you are looking for is present. The number of bits required depends on the number of frames.
Number of bits for frame = Size of physical memory/frame size




	Present/Absent bit – Present or absent bit says whether a particular page you are looking for is present or absent. In case if it is not present, that is called Page Fault. It is set to 0 if the corresponding page is not in memory. Used to control page fault by the operating system to support virtual memory. Sometimes this bit is also known as valid/invalid bits.

	Protection bit – Protection bit says that what kind of protection you want on that page. So, these bit for the protection of the page frame (read, write etc).

	Referenced bit – Referenced bit will say whether this page has been referred in the last clock cycle or not. It is set to 1 by hardware when the page is accessed.

	Caching enabled/disabled – Some times we need the fresh data. Let us say the user is typing some information from the keyboard and your program should run according to the input given by the user. In that case, the information will come into the main memory. Therefore main memory contains the latest information which is typed by the user. Now if you try to put that page in the cache, that cache will show the old information. So whenever freshness is required, we don’t want to go for caching or many levels of the memory.The information present in the closest level to the CPU and the information present in the closest level to the user might be different. So we want the information has to be consistency, which means whatever information user has given, CPU should be able to see it as first as possible. That is the reason we want to disable caching. So, this bit enables or disable caching of the page.

	Modified bit – Modified bit says whether the page has been modified or not. Modified means sometimes you might try to write something on to the page. If a page is modified, then whenever you should replace that page with some other page, then the modified information should be kept on the hard disk or it has to be written back or it has to be saved back. It is set to 1 by hardware on write-access to page which is used to avoid writing when swapped out. Sometimes this modified bit is also called as the Dirty bit.






        
          
          
          
        

            
GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.


	GATE CS 2001, Question 46

	GATE CS 2004, Question 66

	GATE CS 2015 (Set 1), Question 65






This article is contributed by Samit Mandal. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	











						Virtual Memory

				
						

				
			Virtual Memory is a storage allocation scheme in which secondary memory can be addressed as though it were part of main memory. The addresses a program may use to reference memory are distinguished from the addresses the memory system uses to identify physical storage sites, and program generated addresses are translated automatically to the corresponding machine addresses.

The size of virtual storage is limited by the addressing scheme of the computer system and amount of secondary memory is available not by the actual number of the main storage locations.

It is a technique that is implemented using both hardware and software. It maps memory addresses used by a program, called virtual addresses, into physical addresses in computer memory.


	All memory references within a process are logical addresses that are dynamically translated into physical addresses at run time. This means that a process can be swapped in and out of main memory such that it occupies different places in main memory at different times during the course of execution.

	A process may be broken into number of pieces and these pieces need not be continuously located in the main memory during execution. The combination of dynamic run-time addres translation and use of page or segment table permits this.



If these characteristics are present then, it is not necessary that all the pages or segments are present in the main memory during execution. This means that the required pages need to be loaded into memory whenever required. Virtual memory is implemented using Demand Paging or Demand Segmentation.


Demand Paging :

The process of loading the page into memory on demand (whenever page fault occurs) is known as demand paging.

The process includes the following steps :

[image: virtual_mem]


	If CPU try to refer a page that is currently not available in the main memory, it generates an interrupt indicating memory access fault.

	The OS puts the interrupted process in a blocking state. For the execution to proceed the OS must bring the required page into the memory.

	The OS will search for the required page in the logical address space.

	The required page will be brought from logical address space to physical address space. The page replacement algorithms are used for the decision making of replacing the page in physical address space.

	The page table will updated accordingly.

	The signal will be sent to the CPU to continue the program execution and it will place the process back into ready state.



Hence whenever a page fault occurs these steps are followed by the operating system and the required page is brought into memory.



        
          
          
          
        

            

Advantages :


	More processes may be maintained in the main memory: Because we are going to load only some of the pages of any particular process, there is room for more processes. This leads to more efficient utilization of the processor because it is more likely that at least one of the more numerous processes will be in the ready state at any particular time.

	A process may be larger than all of main memory: One of the most fundamental restrictions in programming is lifted. A process larger than the main memory can be executed because of demand paging. The OS itself loads pages of a process in main memory as required.

	It allows greater multiprogramming levels by using less of the available (primary) memory for each process.



Page Fault Service Time :

The time taken to service the page fault is called as page fault service time. The page fault service time includes the time taken to perform all the above six steps.

Let Main memory access time is: m
Page fault service time is: s
Page fault rate is : p
Then, Effective memory access time = (p*s) + (1-p)*m


Swapping:

Swapping a process out means removing all of its pages from memory, or marking them so that they will be removed by the normal page replacement process. Suspending a process ensures that it is not runnable while it is swapped out. At some later time, the system swaps back the process from the secondary storage to main memory. When a process is busy swapping pages in and out then this situation is called thrashing.

[image: swaping]


Thrashing :

[image: virtual_mem_2]

At any given time, only few pages of any process are in main memory and therefore more processes can be maintained in memory. Furthermore time is saved because unused pages are not swapped in and out of memory. However, the OS must be clever about how it manages this scheme. In the steady state practically, all of main memory will be occupied with process’s pages, so that the processor and OS has direct access to as many processes as possible. Thus when the OS brings one page in, it must throw another out. If it throws out a page just before it is used, then it will just have to get that page again almost immediately. Too much of this leads to a condition called Thrashing. The system spends most of its time swapping pages rather than executing instructions. So a good page replacement algorithm is required.



In the given diagram, initial degree of multi programming upto some extent of point(lamda), the CPU utilization is very high and the system resources are utilized 100%. But if we further increase the degree of multi programming the CPU utilization will drastically fall down and the system will spent more time only in the page replacement and the time taken to complete the execution of the process will increase. This situation in the system is called as thrashing.



Causes of Thrashing :


	High degree of multiprogramming : If the number of processes keeps on increasing in the memory than number of frames allocated to each process will be decreased. So, less number of frames will be available to each process. Due to this, page fault will occur more frequently and more CPU time will be wasted in just swapping in and out of pages and the utilization will keep on decreasing.
For example:

Let free frames = 400

Case 1: Number of process = 100

Then, each process will get 4 frames.

Case 2: Number of process = 400

Each process will get 1 frame.

Case 2 is a condition of thrashing, as the number of processes are increased,frames per process are decreased. Hence CPU time will be consumed in just swapping pages.



	Lacks of Frames:If a process has less number of frames then less pages of that process will be able to reside in memory and hence more frequent swapping in and out will be required. This may lead to thrashing. Hence sufficient amount of frames must be allocated to each process in order to prevent thrashing.




Recovery of Thrashing :


	Do not allow the system to go into thrashing by instructing the long term scheduler not to bring the processes into memory after the threshold.

	If the system is already in thrashing then instruct the mid term schedular to suspend some of the processes so that we can recover the system from thrashing.






This article is contributed by Aakansha yadav 



          
          
          
            


					
		
		Operating Systems
 Memory Management

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						Virtual Memory | Questions

				
						

				
			Advantages


	Large virtual memory.

	More efficient use of memory.

	Unconstrained multiprogramming. There is no limit on degree of multiprogramming.



Disadvantages


	Number of tables and amount of processor overhead for handling page interrupts are greater than in the case of the simple paged management techniques.

	Due to lack of an explicit constraint on a job’s address space size.



A way to control Thrashing 

Set the lower and upper bounds of page fault rate for each process. Using the above step, establish ‘acceptable’ page fault rate.


	If actual rate is lower than lower bound, decrease the number of frames

	If actual rate is larger than upper bound, increase the number of frames.



Q1. Virtual memory is 

(a) Large secondary memory

(b) Large main memory

(c) Illusion of large main memory

(d) None of the above






        
          
          
          
        

            
Answer: (c) 

Explanation: Virtual memory is illusion of large main memory.




Q2. Thrashing occurs when

(a)When a page fault occurs

(b) Processes on system frequently access pages not memory

(c) Processes on system are in running state

(d) Processes on system are in waiting state



Answer: (b) 

Explanation: Thrashing occurs when processes on system require more memory than it has. If processes do not have “enough” pages, the page fault rate is very high. This leads to:

– low CPU utilization

– operating system spends most of its time swapping to disk

The above situation is called thrashing





Q3. A computer system supports 32-bit virtual addresses as well as 32-bit physical addresses. Since the virtual address space is of the same size as the physical address space, the operating system designers decide to get rid of the virtual memory entirely. Which one of the following is true?  

(a) Efficient implementation of multi-user support is no longer possible

(b) The processor cache organization can be made more efficient now

(c)  Hardware support for memory management is no longer needed

(d)  CPU scheduling can be made more efficient now



Answer: (c)

Explanation: For supporting virtual memory, special hardware support is needed from Memory Management Unit. Since operating system designers decide to get rid of the virtual memory entirely, hardware support for memory management is no longer needed.

This article is contributed by Mithlesh Upadhyay



          
          
          
            


					
		
		Operating Systems
 Memory Management

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						 Inverted Page Table

				
						

				
			Prerequisite – Paging, Page table entries, Segmentation

Most of the Operating Systems implement a separate pagetable for each process, i.e. for ‘n’ number of processes running on a Multiprocessing/ Timesharing operating system, there are ‘n’ number of pagetables stored in the memory. Sometimes when a process is very large in size and it occupies virtual memory then with the size of the process, it’s pagetable size also increases substantially.

Example: A process of size 2 GB with:
Page size = 512 Bytes
Size of page table entry = 4 Bytes, then
Number of pages in the process = 2 GB / 512 B = 222
PageTable Size = 222 * 22 = 224 bytes

Through this example, it can be concluded that for multiple processes running simultaneously in an OS, a considerable part of memory is occupied by pagetables only.

Operating Systems also incorporate multilevel paging schemes which further increase the space requirement for storing the page tables and a large amount of memory is invested in storing them. The amount of memory occupied by the page tables can turn out to be a huge overhead and is always unacceptable as main memory is always a scarce-resource. Various efforts are made to utilize the memory efficiently and to maintain a good balance in the level of multi programming and efficient CPU utilization.

Inverted Page Table –

An alternate approach is to use the Inverted Page Table structure that consists of one page table entry for every frame of the main memory. So the number of page table entries in the Inverted Page Table reduces to the number of frames in physical memory and a single page table is used to represent the paging information of all the processes. 

Through inverted page table, the overhead of storing an individual pagetable for every process gets eliminated and only a fixed portion of memory is required to store the paging information of all the processes together. This technique is called as inverted paging as the indexing is done with respect to the frame number instead of the logical page number. Each entry in the page table contains the following fields.



        
          
          
          
        

            

	Page number – It specifies the page number range of the logical address.



	Process id – An inverted page table contains the address space information of all the processes in execution. Since two different processes can have similar set of virtual addresses, it becomes necessary in Inverted Page Table to store a process Id of each process to identify it’s address space uniquely. This is done by using the combination of PId and Page Number. So this Process Id acts as an address space identifier and ensures that a virtual page for a particular process is mapped correctly to the corresponding physical frame.



	Control bits – These bits are used to store extra paging-related information. These include the valid bit, dirty bit, reference bits, protection and locking information bits.



	Chained pointer – It may be possible sometime that two or more processes share a part of main memory. In this case, two or more logical pages map to same Page Table Entry then a chaining pointer is used to map the details of these logical pages to the root page table.




Working – The operation of an inverted page table is shown below. 

[image: ]

The virtual address generated by the CPU contains the fields 






						 Swap Space

				
						

				
			A computer has sufficient amount of  physical memory but most of times we need more so we swap some memory on disk. Swap space is a space on hard disk which is a substitute of physical memory. It is used as virtual memory which contains process memory image. Whenever our computer run short of physical memory it uses it’s virtual memory and stores information in memory on disk. Swap space helps the computer’s operating system in pretending that it have more RAM than it actually has. It is also called as swap file.This interchange of data between virtual memory and real memory is called as swapping and space on disk as “swap space”.

Virtual memory is a combination of RAM and disk space that running processes can use. Swap space is the portion of virtual memory that is on the hard disk, used when RAM is full.

Swap space can be useful to computer in various ways:


	It can be used as a single contiguous memory which reduces i/o operations to read or write a file.

	Applications which are not used or are used less can be kept in swap file.

	Having sufficient swap file helps the system keep some physical memory free all the time.

	The space in physical memory which has been freed due to swap space can be used by OS for some other important tasks.



In operating systems such as Windows, Linux, etc systems provide a certain amount of swap space by default which can be changed by users according to their needs. If you don’t want to use virtual memory you can easily disable it all together but in case if you run out of memory then kernel will kill some of the processes in order to create a sufficient amount of space in physical memory. So it totally depends upon user whether he wants to use swap space or not.



          
          
          
            



ShrutiBhatla

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						 Page Fault Handling

				
						

				
			
A page fault occurs when a program attempts to access data or code that is in its address space, but is not currently located in the system RAM. So when page fault occurs then following sequence of events happens :

[image: ]


	The computer hardware traps to the kernel and program counter (PC) is saved on the stack. Current instruction state information is saved in CPU registers.

	An assembly program is started to save the general registers and other volatile information to keep the OS from destroying it.

	Operating system finds that a page fault has occurred and tries to find out which virtual page is needed. Some times hardware register contains this required information. If not, the operating system must retrieve PC, fetch instruction and find out what it was doing when the fault occurred.

	Once virtual address caused page fault is known, system checks to see if address is valid and checks if there is no protection access problem.

	If the virtual address is valid, the system checks to see if a page frame is free. If no frames are free, the page replacement algorithm is run to remove a page.

	If frame selected is dirty, page is scheduled for transfer to disk, context switch takes place, fault process is suspended and another process is made to run until disk transfer is completed.

	As soon as page frame is clean, operating system looks up disk address where needed page is, schedules disk operation to bring it in.

	When disk interrupt indicates page has arrived, page tables are updated to reflect its position, and frame marked as being in normal state.

	Faulting instruction is backed up to state it had when it began and PC is reset. Faulting is scheduled, operating system returns to routine that called it.

	Assembly Routine reloads register and other state information, returns to user space to continue execution.



References –

cs.uttyler.edu

professormerwyn.wordpress.com

This article is contributed by Swasthik. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						 Segmentation

				
						

				
			A Memory Management technique in which memory is divided into variable sized chunks which can be allocated to processes. Each chunk is called a Segment. A table stores the information about all such segments and is called Segment Table.

Segment Table – It maps two dimensional Logical address into one dimensional Physical address. It’s each table entry has:


	Base Address: It contains the starting physical address where the segments reside in memory.

	Limit: It specifies the length of the segment.



[image: ]

Translation of Two dimensional Logical Address to one dimensional Physical Address.

[image: ]



        
          
          
          
        

            
Address generated by the CPU is divided into:


	Segment number (s): Number of bits required to represent the segment.

	Segment offset (d): Number of bits required to represent the size of the segment.



Advantages of Segmentation –


	No Internal fragmentation.

	Segment Table consumes less space in comparison to Page table in paging.



Disadvantage of Segmentation –


	As processes are loaded and removed from the memory, the free memory space is broken into little pieces, causing External fragmentation.



This article has been contributed by Vikash Kumar. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



          
          
          
            


					
		
		GATE CS
Operating Systems
 Memory Management

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						Memory Segmentation in 8086 Microprocessor

				
						

				
			Prerequisite – Segmentation

Segmentation is the process in which the main memory of the computer is divided into different segments and each segment has its own base address. It is basically used to enhance the speed of execution of the computer system, so that processor is able to fetch and execute the data from the memory easily and fast.

Need for Segmentation –

The Base Interface Unit (BIU) contains four 16 bit special purpose registers (mentioned below) called as Segment Registers. 


	Code segment register (CS): is used fro addressing memory location in the code segment of the memory, where the executable program is stored.


	
Data segment register (DS): points to the data segment of the memory where the data is stored.

	Extra Segment Register (ES): also refers to a segment in the memory which is another data segment in the memory.

	Stack Segment Register (SS): is used fro addressing stack segment of the memory. The stack segment is that segment of memory which is used to store stack data.



The number of address lines in 8086 is 20, 8086 BIU will send 20bit address, so as to access one of the 1MB memory locations. The four segment registers actually contain the upper 16 bits of the starting addresses of the four memory segments of 64 KB each with which the 8086 is working at that instant of time. A segment is a logical unit of memory that may be up to 64 kilobytes long. Each segment is made up of contiguous memory locations. It is independent, separately addressable unit. Starting address will always be changing. It will not be fixed. 

Note that the 8086 does not work the whole 1MB memory at any given time. However it works only with four 64KB segments within the whole 1MB memory.

Bellow is the one way of positioning four 64 kilobyte segments within the 1M byte memory space of an 8086.



        
          
          
          
        

            


Types Of Segmentation –


	Overlapping Segment – A segment starts at a particular address and its maximum size can go up to 64kilobytes. But if another segment starts along this 64kilobytes location of the first segment, then the two are said to be Overlapping Segment.


	Non-Overlapped Segment – A segment starts at a particular address and its maximum size can go up to 64kilobytes. But if another segment starts before this 64kilobytes location of the first segment, then the two segments are said to be Non-Overlapped Segment.




Advantages of the Segmentation The main advantages of segmentation are as follows:


	It provides a powerful memory management mechanism.


	Data related or stack related operations can be performed in different segments.


	Code related operation can be done in separate code segments.


	It allows to processes to easily share data.


	It allows to extend the address ability of the processor, i.e. segmentation allows the use of 16 bit registers to give an addressing capability of 1 Megabytes. Without segmentation, it would require 20 bit registers.


	It is possible to enhance the memory size of code data or stack segments beyond 64 KB by allotting more than one segment for each area.






          
          
          
            



Astha_Singh

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		Computer Organization & Architecture
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						 Program for Next Fit algorithm in Memory Management

				
						

				
			Prerequisite: Partition allocation methods

What is Next Fit ?

Next fit is a modified version of ‘first fit’. It begins as first fit to find a free partition but when called next time it starts searching from where it left off, not from the beginning. This policy makes use of a roving pointer. The pointer roves along the memory chain to search for a next fit. This helps in, to avoid the usage of memory always from the head (beginning) of the free block chain. 

What are its advantage over first fit ?


	First fit is a straight and fast algorithm, but tends to cut large portion of free parts into small pieces due to which, processes that needs large portion of memory block would not get anything even if the sum of all small pieces is greater than it required which is so called external fragmentation problem.

	Another problem of first fit is that it tends to allocate memory parts at the begining of the memory, which may leads to more internal fragements at the begining. Next fit tries to address this problem by starting search for the free portion of parts not from the start of the memory, but from where it ends last time.

	Next fit is a very fast searching algorithm and is also comparatively faster than First Fit and Best Fit Memory Management Algorithms.



Example:
Input :  blockSize[] = {5, 10, 20};
     processSize[] = {10, 20, 30};
Output:
Process No.     Process Size    Block no.
 1              10              2
 2              20              3
 3              30              Not Allocated




Recommended: Please try your approach on {IDE} first, before moving on to the solution.





        
          
          
          
        

            
Algorithm:    


	Input the number of memory blocks and their sizes and initializes all the blocks as free.

	Input the number of processes and their sizes.

	Start by picking each process and check if it can be assigned to current block, if yes, allocate it the required memory and check for next process but from the block where we left not from starting.

	
If current block size is smaller then keep checking the further blocks.



[image: Next-Fit]

// C/C++ program for next fit
// memory management algorithm
#include <bits/stdc++.h>
using namespace std;

// Function to allocate memory to blocks as per Next fit
// algorithm
void NextFit(int blockSize[], int m, int processSize[], int n)
{
    // Stores block id of the block allocated to a
    // process
    int allocation[n], j = 0;

    // Initially no block is assigned to any process
    memset(allocation, -1, sizeof(allocation));

    // pick each process and find suitable blocks
    // according to its size ad assign to it
    for (int i = 0; i < n; i++) {

        // Do not start from beginning
        while (j < m) {

            if (blockSize[j] >= processSize[i]) {

                // allocate block j to p[i] process
                allocation[i] = j;

                // Reduce available memory in this block.
                blockSize[j] -= processSize[i];

                break;
            }

            // mod m will help in traversing the blocks from
            // starting block after we reach the end. 
            j = (j + 1) % m;
        }
    }

    cout << "\nProcess No.\tProcess Size\tBlock no.\n";
    for (int i = 0; i < n; i++) {
        cout << " " << i + 1 << "\t\t" << processSize[i] 
             << "\t\t";
        if (allocation[i] != -1)
            cout << allocation[i] + 1;
        else
            cout << "Not Allocated";
        cout << endl;
    }
}

// Driver program
int main()
{
    int blockSize[] = { 5, 10, 20 };
    int processSize[] = { 10, 20, 5 };
    int m = sizeof(blockSize) / sizeof(blockSize[0]);
    int n = sizeof(processSize) / sizeof(processSize[0]);

    NextFit(blockSize, m, processSize, n);

    return 0;
}



Output:

Process No.    Process Size    Block no.
 1               10              2
 2               20              3
 3               5               1




This article is contributed by Akash Gupta. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Greedy
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						 Overlays in Memory Management

				
						

				
			The main problem in Fixed partitioning is the size of a process has to be limited by the maximum size of the partition, which means a process can never be span over another.In order to solve this problem, earlier people have used some solution which is called as Overlays.

The concept of overlays is that whenever a process is running it will not use the complete program at the same time, it will use only some part of it.Then overlays concept says that whatever part you required, you load it an once the part is done, then you just unload it, means just pull it back and get the new part you required and run it.

Formally,

“The process of transferring a block of program code or other data into internal memory, replacing what is already stored”.

Sometimes it happens that compare to the size of the biggest partition, the size of the program will be even more, then, in that case, you should go with overlays.

So overlay is a technique to run a program that is bigger than the size of the physical memory by keeping only those instructions and data that are needed at any given time.Divide the program into modules in such a way that not all modules need to be in the memory at the same time.

Advantage –


	Reduce memory requirement

	Reduce time requirement



Disadvantage –



        
          
          
          
        

            

	Overlap map must be specified by programmer

	Programmer must know memory requirement

	Overlaped module must be completely disjoint

	Programmming design of overlays structure is complex and not possible in all cases



Example –

The best example of overlays is assembler.Consider the assembler has 2 passes, 2 pass means at any time it will be doing only one thing, either the 1st pass or the 2nd pass.Which means it will finish 1st pass first and then 2nd pass.Let assume that available main memory size is 150KB and total code size is 200KB

Pass 1.......................70KB
Pass 2.......................80KB
Symbol table.................30KB
Common routine...............20KB


As the total code size is 200KB and main memory size is 150KB, it is not possible to use 2 passes together.So, in this case, we should go with the overlays technique.According to the overlays concept at any time only one pass will be used and both the passes always need symbol table and common routine.Now the question is if overlays-driver* is 10KB, then what is the minimum partition size required?For pass 1 total memory needed is = (70KB + 30KB + 20KB + 10KB) = 130KB and for pass 2 total memory needed is = (80KB + 30KB + 20KB + 10KB) = 140KB.So if we have minimum 140KB size partition then we can run this code very easily.

*Overlays driver:-It is the user responsibility to take care of overlaying, the operating system will not provide anything.Which means the user should write even what part is required in the 1st pass and once the 1st pass is over, the user should write the code to pull out the pass 1 and load the pass 2.That is what is the responsibility of the user, that is known as the Overlays driver.Overlays driver will just help us to move out and move in the various part of the code.

Question –

The overlay tree for a program is as shown below:

[image: ]

What will be the size of the partition (in physical memory) required to load (and

run) this program?

(a) 12 KB (b) 14 KB (c) 10 KB (d) 8 KB

Explanation –

Using the overlay concept we need not actually have the entire program inside the main memory.Only we need to have the part which are required at that instance of time, either we need Root-A-D or Root-A-E or Root-B-F or Root-C-G part.

Root+A+D = 2KB + 4KB + 6KB = 12KB
Root+A+E = 2KB + 4KB + 8KB = 14KB
Root+B+F = 2KB + 6KB + 2KB = 10KB
Root+C+G = 2KB + 8KB + 4KB = 14KB


So if we have 14KB size of partition then we can run any of them.

Answer -(b) 14KB

This article is contributed by Samit Mandal. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						 Page Replacement Algorithms

				
						

				
			In a operating systems that use paging for memory management, page replacement algorithm are needed to decide which page needed to be replaced when new page comes in. Whenever a new page is referred and not present in memory, page fault occurs and Operating System replaces one of the existing pages with newly needed page.  Different page replacement algorithms suggest different ways to decide which page to replace. The target for all algorithms is to reduce number of page faults.

Page Fault – A page fault is a type of interrupt, raised by the hardware when a running program accesses a memory page that is mapped into the virtual address space, but not loaded in physical memory.

Page Replacement Algorithms :


	First In First Out (FIFO) –

This is the simplest page replacement algorithm. In this algorithm, operating system keeps track of all pages in the memory in a queue, oldest page is in the front of the queue. When a page needs to be replaced page in the front of the queue is selected for removal.

For example-1, consider page reference string 1, 3, 0, 3, 5, 6 and 3 page slots.


        
          
          
          
        

            
Initially all slots are empty, so when 1, 3, 0 came they are allocated to the empty slots —> 3 Page Faults.

when 3 comes, it is already in  memory so —> 0 Page Faults.

Then 5 comes, it is not available in  memory so it replaces the oldest page slot i.e 1. —>1 Page Fault.

Finally 6 comes, it is also not available in memory so it replaces the oldest page slot i.e 3 —>1 Page Fault.

Example-2, Let’s have a reference string: a, b, c, d, c, a, d, b, e, b, a, b, c, d and the size of the frame be 4.

[image: fifo]

There are 9 page faults using FIFO algorithm.

Belady’s anomaly – Belady’s anomaly proves that it is possible to have more page faults when increasing the number of page frames while using the First in First Out (FIFO) page replacement algorithm.  For example, if we consider reference string 3, 2, 1, 0, 3, 2, 4, 3, 2, 1, 0, 4 and 3 slots, we get 9 total page faults, but if we increase slots to 4, we get 10 page faults. 


	Optimal Page replacement –

In this algorithm, pages are replaced which are not used for the longest duration of time in the future.

Let us consider page reference string 7 0 1 2 0 3 0 4 2 3 0 3 2 and 4 page slots.

Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots —> 4 Page faults

0 is already there so —> 0 Page fault.

when 3 came it will take the place of 7 because it is not used for the longest duration of time in the future.—>1 Page fault.

0 is already there so —> 0 Page fault..

4 will takes place of 1 —> 1 Page Fault.



Now for the further page reference string —> 0 Page fault because they are already available in the memory.

Example-2, Let’s have a reference string: a, b, c, d, c, a, d, b, e, b, a, b, c, d and the size of the frame be 4.

[image: optimal]

There are 6 page faults using optimal algorithm.

Optimal page replacement is perfect, but not possible in practice as operating system cannot know future requests. The use of Optimal Page replacement is to set up a benchmark so that other replacement algorithms can be analyzed against it.


 

	Least Recently Used –

In this algorithm page will be replaced which is least recently used.

Let say the page reference string 7 0 1 2 0 3 0 4 2 3 0 3 2 . Initially we have 4 page slots empty.

Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots —> 4 Page faults

0 is already their so —> 0 Page fault.

when 3 came it will take the place of 7 because it is least recently used —>1 Page fault

0 is already in memory so —> 0 Page fault.

4 will takes place of 1 —> 1 Page Fault

Now for the further page reference string —> 0 Page fault because they are already available in the memory.

Example-2, Let’s have a reference string: a, b, c, d, c, a, d, b, e, b, a, b, c, d and the size of the frame be 4.

[image: lru]

There are 7 page faults using LRU algorithm.





GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.


	Memory Management | Question 1

	Memory Management | Question 10

	GATE CS 2014 (Set-1), Question 65

	GATE CS 2012, Question 40

	GATE CS 2007, Question 56

	GATE CS 2007, Question 82

	GATE CS 2007, Question 83

	GATE CS 2014 (Set-3), Question 65

	GATE CS 2002 Question 23

	GATE CS 2001, Question 21

	GATE CS 2010, Question 24



Reference –

Bélády’s anomaly

 

This article has been improved by RajshreeSrivastava. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



          
          
          
            


					
		
		GATE CS
Operating Systems
 Memory Management

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						Program for Page Replacement Algorithms | Set 1 ( LRU)

				
						

				
			Prerequisite: Page Replacement Algorithms

In operating systems that use paging for memory management, page replacement algorithm are needed to decide which page needed to be replaced when new page comes in. Whenever a new page is referred and not present in memory, page fault occurs and Operating System replaces one of the existing pages with newly needed page.  Different page replacement algorithms suggest different ways to decide which page to replace. The target for all algorithms is to reduce number of page faults.

In Least Recently Used (LRU) algorithm is a Greedy algorithm where the page to be replaced is least recently used. The idea is based on locality of reference, the least recently used page is not likely 

Let say the page reference string 7 0 1 2 0 3 0 4 2 3 0 3 2 . Initially we have 4 page slots empty.

Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots —> 4 Page faults

0 is already their so —> 0 Page fault.

when 3 came it will take the place of 7 because it is least recently used —>1 Page fault

0 is already in memory so —> 0 Page fault.

4 will takes place of 1 —> 1 Page Fault

Now for the further page reference string —> 0 Page fault because they are already available in the memory.

[image: LRU]

Given memory capacity (as number of pages it can hold) and a string representing pages to be referred, write a function to find number of page faults.





                                                Recommended: Please solve it on “PRACTICE ” first, before moving on to the solution.

                                            







        
          
          
          
        

            
Let capacity be the number of pages that
memory can hold.  Let set be the current
set of pages in memory.

1- Start traversing the pages.
 i) If set holds less pages than capacity.
   a) Insert page into the set one by one until 
      the size  of set reaches capacity or all
      page requests are processed.
   b) Simultaneously maintain the recent occurred
      index of each page in a map called indexes.
   c) Increment page fault
 ii) Else 
   If current page is present in set, do nothing.
   Else 
     a) Find the page in the set that was least 
     recently used. We find it using index array.
     We basically need to replace the page with
     minimum index.
     b) Replace the found page with current page.
     c) Increment page faults.
     d) Update index of current page.

2. Return page faults.


Below is implementation of above steps.


C++



//C++ implementation of above algorithm
#include<bits/stdc++.h>
using namespace std;

// Function to find page faults using indexes
int pageFaults(int pages[], int n, int capacity)
{
    // To represent set of current pages. We use
    // an unordered_set so that we quickly check
    // if a page is present in set or not
    unordered_set<int> s;

    // To store least recently used indexes
    // of pages.
    unordered_map<int, int> indexes;

    // Start from initial page
    int page_faults = 0;
    for (int i=0; i<n; i++)
    {
        // Check if the set can hold more pages
        if (s.size() < capacity)
        {
            // Insert it into set if not present
            // already which represents page fault
            if (s.find(pages[i])==s.end())
            {
                s.insert(pages[i]);

                // increment page fault
                page_faults++;
            }

            // Store the recently used index of
            // each page
            indexes[pages[i]] = i;
        }

        // If the set is full then need to perform lru
        // i.e. remove the least recently used page
        // and insert the current page
        else
        {
            // Check if current page is not already
            // present in the set
            if (s.find(pages[i]) == s.end())
            {
                // Find the least recently used pages
                // that is present in the set
                int lru = INT_MAX, val;
                for (auto it=s.begin(); it!=s.end(); it++)
                {
                    if (indexes[*it] < lru)
                    {
                        lru = indexes[*it];
                        val = *it;
                    }
                }

                // Remove the indexes page
                s.erase(val);

                // insert the current page
                s.insert(pages[i]);

                // Increment page faults
                page_faults++;
            }

            // Update the current page index
            indexes[pages[i]] = i;
        }
    }

    return page_faults;
}

// Driver code
int main()
{
    int pages[] = {7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2};
    int n = sizeof(pages)/sizeof(pages[0]);
    int capacity = 4;
    cout << pageFaults(pages, n, capacity);
    return 0;
}





Java



// Java implementation of above algorithm

import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;

class Test
{
    // Method to find page faults using indexes
    static int pageFaults(int pages[], int n, int capacity)
    {
        // To represent set of current pages. We use
        // an unordered_set so that we quickly check
        // if a page is present in set or not
        HashSet<Integer> s = new HashSet<>(capacity);
     
        // To store least recently used indexes
        // of pages.
        HashMap<Integer, Integer> indexes = new HashMap<>();
     
        // Start from initial page
        int page_faults = 0;
        for (int i=0; i<n; i++)
        {
            // Check if the set can hold more pages
            if (s.size() < capacity)
            {
                // Insert it into set if not present
                // already which represents page fault
                if (!s.contains(pages[i]))
                {
                    s.add(pages[i]);
     
                    // increment page fault
                    page_faults++;
                }
     
                // Store the recently used index of
                // each page
                indexes.put(pages[i], i);
            }
     
            // If the set is full then need to perform lru
            // i.e. remove the least recently used page
            // and insert the current page
            else
            {
                // Check if current page is not already
                // present in the set
                if (!s.contains(pages[i]))
                {
                    // Find the least recently used pages
                    // that is present in the set
                    int lru = Integer.MAX_VALUE, val=Integer.MIN_VALUE;
                    
                    Iterator<Integer> itr = s.iterator();
                    
                    while (itr.hasNext()) {
                        int temp = itr.next();
                        if (indexes.get(temp) < lru)
                        {
                            lru = indexes.get(temp);
                            val = temp;
                        }
                    }
                
                    // Remove the indexes page
                    s.remove(val);
     
                    // insert the current page
                    s.add(pages[i]);
     
                    // Increment page faults
                    page_faults++;
                }
     
                // Update the current page index
                indexes.put(pages[i], i);
            }
        }
     
        return page_faults;
    }
    
    // Driver method
    public static void main(String args[])
    {
        int pages[] = {7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2};
       
        int capacity = 4;
        
        System.out.println(pageFaults(pages, pages.length, capacity));
    }
}
// This code is contributed by Gaurav Miglani










Output:

6


Note : We can also find the number of page hits. Just have to maintain a separate count.

If the current page is already in the memory then that must be count as Page-hit.

We will discuss other Page-replacement Algorithms in further sets.

This article is contributed by Sahil Chhabra. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		GATE CS
Greedy
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						Program for Optimal Page Replacement Algorithm

				
						

				
			Prerequisite: Page Replacement Algorithms

In operating systems, whenever a new page is referred and not present in memory, page fault occurs and Operating System replaces one of the existing pages with newly needed page. Different page replacement algorithms suggest different ways to decide which page to replace. The target for all algorithms is to reduce number of page faults.

In this algorithm, OS replaces the page that will not be used for the longest period of time in future.

Examples :

Input : Number of frames, fn = 3
        Reference String, pg[] = {7, 0, 1, 2,
               0, 3, 0, 4, 2, 3, 0, 3, 2, 1,
               2, 0, 1, 7, 0, 1};
Output : No. of hits = 11 
         No. of misses = 9

Input : Number of frames, fn = 4 
        Reference String, pg[] = {7, 0, 1, 2, 
                  0, 3, 0, 4, 2, 3, 0, 3, 2};
Output : No. of hits = 7
         No. of misses = 6





Recommended: Please try your approach on {IDE} first, before moving on to the solution.





        
          
          
          
        

            
The idea is simple, for every reference we do following :     


	If referred page is already present, increment hit count.

	If not present, find if a page that is never referenced in future. If such a page exists, replace this page with new page. If no such page exists, find a page that is referenced farthest in future. Replace this page with new page.



[image: ]

// CPP program to demonstrate optimal page
// replacement algorithm.
#include <bits/stdc++.h>
using namespace std;

// Function to check whether a page exists
// in a frame or not
bool search(int key, vector<int>& fr)
{
    for (int i = 0; i < fr.size(); i++)
        if (fr[i] == key)
            return true;
    return false;
}

// Function to find the frame that will not be used
// recently in future after given index in pg[0..pn-1]
int predict(int pg[], vector<int>& fr, int pn, int index)
{
    // Store the index of pages which are going
    // to be used recently in future
    int res = -1, farthest = index;
    for (int i = 0; i < fr.size(); i++) {
        int j;
        for (j = index; j < pn; j++) {
            if (fr[i] == pg[j]) {
                if (j > farthest) {
                    farthest = j;
                    res = i;
                }
                break;
            }
        }

        // If a page is never referenced in future,
        // return it.
        if (j == pn)
            return i;
    }

    // If all of the frames were not in future,
    // return any of them, we return 0. Otherwise
    // we return res.
    return (res == -1) ? 0 : res;
}

void optimalPage(int pg[], int pn, int fn)
{
    // Create an array for given number of
    // frames and initialize it as empty.
    vector<int> fr;

    // Traverse through page reference array
    // and check for miss and hit.
    int hit = 0;
    for (int i = 0; i < pn; i++) {

        // Page found in a frame : HIT
        if (search(pg[i], fr)) {
            hit++;
            continue;
        }

        // Page not found in a frame : MISS

        // If there is space available in frames.
        if (fr.size() < fn)
            fr.push_back(pg[i]);

        // Find the page to be replaced.
        else {
            int j = predict(pg, fr, pn, i + 1);
            fr[j] = pg[i];
        }
    }
    cout << "No. of hits = " << hit << endl;
    cout << "No. of misses = " << pn - hit << endl;
}

// Driver Function
int main()
{
    int pg[] = { 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2 };
    int pn = sizeof(pg) / sizeof(pg[0]);
    int fn = 4;
    optimalPage(pg, pn, fn);
    return 0;
}


Output:

No. of hits = 7
No. of misses = 6


	The above implementation can optimized using hashing. We can use an unordered_set in place of vector so that search operation can be done in O(1) time.

	Note that optimal page replacement algorithm is not practical as we cannot predict future. However it is used as a reference for other page replacement algorithms. 





          
          
          
            



rishabh_jain

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		Greedy
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						Allocating kernel memory (buddy system and slab system)

				
						

				
			Prerequisite – Buddy System

Two strategies for managing free memory that is assigned to kernel processes:

1. Buddy system –

Buddy allocation system is an algorithm in which a larger memory block is divided into small parts to satisfy the request. This algorithm is used to give best fit. The two smaller parts of block are of equal size and called as buddies. In the same manner one of the two buddies will further divide into smaller parts until the request is fulfilled. Benefit of this technique is that the two buddies can combine to form the block of larger size according to the memory request.

Example – If the request of 25Kb is made then block of size 32Kb is allocated.

[image: ]

Four Types of Buddy System –



        
          
          
          
        

            

	Binary buddy system

	Fibonacci buddy system

	Weighted buddy system

	Tertiary buddy system



 Why buddy system?

If the  partition size and procees size are different then poor match occurs and may use space inefficiently.

It is easy to implement and efficient then dynamic allocation.

Binary buddy system –

The buddy system maintains a list of the free blocks of each size (called a free list), so that it is easy to find ablock of the desired size, if one is available. If no block of the requested size is available, Allocate searches for the first nonempty list for blocks of atleast the size requested. In either case, a block is removed from the free list.

Example – Assume the size of memory segment is initially 256kb and the kernel rquests 25kb of memory. The segment is initially divided into two buddies. Let we call A1 and A2 each 128kb in size. One of these buddies is further divided into two 64kb buddies let say B1 and B2. But the next highest power of 25kb is 32kb so, either B1 or B2 is further divided into two 32kb buddies(C1 and C2) and finally one of these buddies is used to satisfy the 25kb request. A split block can only be merged with its unique buddy block, which then reforms the larger block they were split from.

Fibonacci buddy system –

This is the system in which blocks are divided into sizes which are fibonacci numbers. It satisfy the following relation:

  Zi = Z(i-1)+Z(i-2)

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 144, 233, 377, 610. The address calculation for the binary and weighted buddy systems is straight forward, but the original procedure for the Fibonacci buddy system was either limited to a small, fixed number of block sizes or a time consuming computation.

Advantages –


	In comparison to other simpler techniques such as dynamic allocation, the buddy memory system has little external fragmentation.

	The buddy memory allocation system is implemented with the use of a binary tree to represent used or unused split memory blocks.

	The buddy system is very fast to allocate or deallocate memory.

	In buddy systems, the cost to allocate and free a block of memory is low compared to that of best-fit or first-fit algorithms. 

	Other advantage is coalescing.

	Address calculation is easy.



What is coalescing?

It is defined as how quickly adjacent buddies can be combined to form larger segments this is known as coalescing.

For example, when the kernel releases the C1 unit it was allocated, the system can coalesce C1 and C2 into a 64kb segment. This segment B1 can in turn be coalesced with its buddy B2 to form a 128kb segment. Ultimately we can end up with the original 256kb segment.

Drawback –

The main drawback in buddy system is internal fragmentation as larger block of memory is acquired then required. For example if a 36 kb request is made then it can only be satisfied by 64 kb segment and reamining memory is wasted.

2. Slab Allocation –

A second strategy for allocating kernel memory is known as slab allocation. It eliminates fragmentation caused by allocations and deallocations. This method is  used to retain allocated memory that contains a data object of a certain type for reuse upon subsequent allocations of objects of the same type. In slab allocation  memory chunks suitable to fit data objects of certain type or size are preallocated. Cache does not free the space immediately after use although it keeps track of data which are required frequently so that whenever request is made the data will reach very fast. Two terms required are:


	Slab – A slab is made up of one or more physically contiguous pages.  The slab is the actual container of data associated with objects of the specific kind of the containing cache.

	Cache – Cache represents a small amount of very fast memory. A cache consists of one or more slabs. There is a single cache for each unique kernel data structure.



[image: 12]

Example –


	A separate cache for a data structure representing processes descriptors

	Separate cache for file objects

	Separate cache for semaphores etc.



Each cache is populated with objects that are instantiations of the kernel data structure the cache represents. For example the cache representing semaphores stores instances of semaphore objects, the cache representing process descriptors stores instances of process descriptor objects.

 Implementation –

The slab allocation algorithm uses caches to store kernel objects. When a cache is created a number of objects which are initially marked as free are allocated to the cache. The number of objects in the cache depends on size of the associated slab.

Example – A 12 kb slab (made up of three contiguous 4 kb pages) could store six 2 kb objects. Initially all objects in the cache are marked as free. When a new object for a kernel data structure is needed, the allocator can assign any free object from the cache to satisfy the request. The object assigned from the cache is marked as used.

In linux, a slab may in one of three possible states:


	Full – All objects in the slab are marked as used

	Empty – All objects in the slab are marked as free

	Partial – The slab consists of both



The slab allocator first attempts to satisfy the request with a free object in a partial slab. If none exists, a free object is assigned from an empty slab. If no empty slabs are available, a new slab is allocated from contiguous physical pages and assigned to a cache.

Benefits of slab allocator –


	No memory is wasted due to fragmentation because each unique kernel data structure has an associated cache.

	Memory request can be satisfied quickly. 

	The slab allocating scheme is particularly effective for managing when objects are frequently allocated or deallocated. The act of allocating and releasing memory can be a time consuming process. However, objects are created in advance and thus can be quickly allocated from the cache. When the kernel has finished with an object and releases it, it is marked as free and return to its cache, thus making it immediately available for subsequent request from the kernel.





          
          
          
            



shubham tyagi 4

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		GATE CS
Operating Systems
Technical Scripter
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						Static and Dynamic Libraries | Set 1

				
						

				
			When a C program is compiled, the compiler generates object code. After generating the object code, the compiler also invokes linker. One of the main tasks for linker is to make code of library functions (eg printf(), scanf(), sqrt(), ..etc) available to your program. A linker can accomplish this task in two ways, by copying the code of library function to your object code, or by making some arrangements so that the complete code of library functions is not copied, but made available at run-time. 

Static Linking and Static Libraries is the result of the linker making copy of all used library functions to the executable file.  Static Linking creates larger binary files, and need more space on disk and main memory. Examples of static libraries (libraries which are statically linked) are, .a files in Linux and .lib files in Windows. 

Steps to create a static library Let us create and use a Static Library in UNIX or UNIX like OS.

1. Create a C file that contains functions in your library.

/* Filename: lib_mylib.c */
#include <stdio.h>
void fun(void)
{
  printf("fun() called from a static library");
}


We have created only one file for simplicity.  We can also create multiple files in a library.

2. Create a header file for the library



        
          
          
          
        

            
/* Filename: lib_mylib.h */
void fun(void);


3. Compile library files. 

 gcc -c lib_mylib.c -o lib_mylib.o 

4.  Create static library. This step is to bundle multiple object files in one static library (see ar for details).  The output of this step is static library.

 ar rcs lib_mylib.a lib_mylib.o 

5. Now our static library is ready to use. At this point we could just copy lib_hello_static.a somewhere else to use it.  For demo purposes, let us keep the library in the current directory.  

Let us create a driver program that uses above created static library.

1. Create a C file with main function

/* filename: driver.c  */
#include "lib_mylib.h"
void main() 
{
  fun();
}


2. Compile the driver program. 

gcc -c driver.c -o driver.o

3. Link the compiled driver program to the static library. Note that -L. is used to tell that the static library is in current folder (See this for details of -L and -l options). 

gcc -o driver driver.o -L. -l_mylib

4. Run the driver program 

./driver 
fun() called from a static library

Following are some important points about static libraries.

1. For a static library, the actual code is extracted from the library by the linker and used to build the final executable at the point you compile/build your application.

2. Each process gets its own copy of the code and data. Where as in case of dynamic libraries it is only code shared, data is specific to each process. For static libraries memory footprints are larger. For example, if all the window system tools were statically linked, several tens of megabytes of RAM would be wasted for a typical user, and the user would be slowed down by a lot of paging.

3. Since library code is connected at compile time, the final executable has no dependencies on the the library at run time i.e. no additional run-time loading costs, it means that you don’t need to carry along a copy of the library that is being used and you have everything under your control and there is no dependency.

4. In static libraries, once everything is bundled into your application, you don’t have to worry that the client will have the right library (and version) available on their system.

5. One drawback of static libraries is, for any change(up-gradation) in the static libraries, you have to recompile the main program every time. 

6. One major advantage of static libraries being preferred even now “is speed”. There will be no dynamic querying of symbols in static libraries. Many production line software use static libraries even today.




Dynamic linking and Dynamic Libraries Dynamic Linking doesn’t require the code to be copied, it is done by just placing name of the library in the binary file. The actual linking happens when the program is run, when both the binary file and the library are in memory.  Examples of Dynamic libraries (libraries which are linked at run-time) are, .so in Linux and .dll in Windows.

We will soon be covering more points on Dynamic Libraries and steps to create them.

This article is compiled by Abhijit Saha and reviewed by GeeksforGeeks team. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Operating Systems
 Memory Management
system-programming

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						Working with Shared Libraries | Set 1

				
						

				
			This article is not for those algo geeks. If you are interested in systems related stuff, just read on…

Shared libraries are useful in sharing code which is common across many applications. For example, it is more economic to pack all the code related to TCP/IP implementation in a shared library. However, data can’t be shared as every application needs its own set of data. Applications like, browser, ftp, telnet, etc… make use of the shared ‘network’ library to elevate specific functionality.

Every operating system has its own representation and tool-set to create shared libraries. More or less the concepts are same. On Windows every object file (*.obj, *.dll, *.ocx, *.sys, *.exe etc…) follow a format called Portalbe Executable. Even shared libraries (called as Dynamic Linked Libraries or DLL in short) are also represented in PE format. The tool-set that is used to create these libraries need to understand the binary format. Linux variants follow a format called Executable and Linkable Format (ELF). The ELF files are position independent (PIC) format. Shared libraries in Linux are referred as shared objects (generally with extension *.so). These are similar to DLLs in Windows platform. Even shared object files follow the ELF binary format.

Remember, the file extensions (*.dll, *.so, *.a, *.lib, etc…) are just for programmer convenience. They don’t have any significance. All these are binary files. You can name them as you wish. Yet ensure you provide absolute paths in building applications.

In general, when we compile an application the steps are simple. Compile, Link and Load. However, it is not simple. These steps are more versatile on modern operating systems.



        
          
          
          
        

            
When you link your application against static library, the code is part of your application. There is no dependency. Even though it causes the application size to increase, it has its own advantages. The primary one is speed as there will be no symbol (a program entity) resolution at runtime. Since every piece of code part of the binary image, such applications are independent of version mismatch issues. However, the cost is on fixing an issue in library code. If there is any bug in library code, entire application need to be recompiled and shipped to the client. In case of dynamic libraries, fixing or upgrading the libraries is easy. You just need to ship the updated shared libraries. The application need not to recompile, it only need to re-run. You can design a mechanism where we don’t need to restart the application.

When we link an application against a shared library, the linker leaves some stubs (unresolved symbols) to be filled at application loading time. These stubs need to be filled by a tool called, dynamic linker at run time or at application loading time. Again loading of a library is of two types, static loading and dynamic loading. Don’t confuse between static loading vs static linking and dynamic loading vs dynamic linking.

For example, you have built an application that depends on libstdc++.so which is a shared object (dynamic libary). How does the application become aware of required shared libraries? (If you are interested, explore the tools tdump from Borland tool set, objdump or nm or readelf tools on Linux).

Static loading:


	In static loading, all of those dependent shared libraries are loaded into memory even before the application starts execution. If loading of any shared library fails, the application won’t run.

	A dynamic loader examines application’s dependency on shared libraries. If these libraries are already loaded into the memory, the library address space is mapped to application virtual address space (VAS) and the dynamic linker does relocation of unresolved symbols.

	If these libraries are not loaded into memory (perhaps your application might be first to invoke the shared library), the loader searches in standard library paths and loads them into memory, then maps and resolves symbols. Again loading is big process, if you are interested write your own loader :). 

	While resolving the symbols, if the dynamic linker not able to find any symbol (may be due to older version of shared library), the application can’t be started.



Dynamic Loading:


	As the name indicates, dynamic loading is about loading of library on demand.

	For example, if you want a small functionality from a shared library. Why should it be loaded at the application load time and sit in the memory? You can invoke loading of these shared libraries dynamically when you need their functionality. This is called dynamic loading. In this case, the programmer aware of situation ‘when should the library be loaded’. The tool-set and relevant kernel provides API to support dynamic loading, and querying of symbols in the shared library.



More details in later articles.

Note: If you come across terms like loadable modules or equivalent terms, don’t mix them with shared libraries. They are different from shared libraries  The kernels provide framework to support loadable modules.

Working with Shared Libraries | Set 2

Exercise:

1. Assuming you have understood the concepts, How do you design an application (e.g. Banking) which can upgrade to new shared libraries without re-running the application.

— Venki. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Operating Systems
 Memory Management
system-programming

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						Working with Shared Libraries | Set 2

				
						

				
			We have covered basic information about shared libraries in the previous post. In the current article we will learn how to create shared libraries on Linux.

Prior to that we need to understand how a program is loaded into memory, various (basic) steps involved in the process.

Let us see a typical “Hello World” program in C. Simple Hello World program screen image is given below.

[image: Hello World]

We were compiling our code using the command “gcc -o sample shared.c” When we compile our code, the compiler won’t resolve implementation of the function printf(). It only verifies the syntactical checking. The tool chain leaves a stub in our application which will be filled by dynamic linker. Since printf is standard function the compiler implicitly invoking its shared library. More details down.



        
          
          
          
        

            
We are using ldd to list dependencies of our program binary image. In the screen image, we can see our sample program depends on three binary files namely, linux-vdso.so.1, libc.so.6 and /lib64/ld-linux-x86-64.so.2.

The file VDSO is fast implementation of system call interface and some other stuff, it is not our focus (on some older systems you may see different file name in liue of *.vsdo.*). Ignore this file. We have interest in the other two files.

The file libc.so.6 is C implementation of various standard functions. It is the file where we see printf definition needed for our Hello World. It is the shared library needed to be loaded into memory to run our Hello World program.

The third file /lib64/ld-linux-x86-64.so.2 is infact an executable that runs when an application is invoked. When we invoke the program on bash terminal, typically the bash forks itself and replaces its address space with image of program to run (so called fork-exec pair). The kernel verifies whether the libc.so.6 resides in the memory. If not, it will load the file into memory and does the relocation of libc.so.6 symbols. It then invokes the dynamic linker (/lib64/ld-linux-x86-64.so.2) to resolve unresolved symbols of application code (printf in the present case). Then the control transfers to our program main. (I have intensionally omitted many details in the process, our focus is to understand basic details).

Creating our own shared library:

Let us work with simple shared library on Linux. Create a file library.c with the following content.

[image: library]

The file library.c defines a function signum which will be used by our application code. Compile the file library.c file using the following command.

gcc -shared -fPIC -o liblibrary.so library.c

The flag -shared instructs the compiler that we are building a shared library. The flag -fPIC is to generate position independent code (ignore for now). The command generates a shared library liblibrary.so in the current working directory. We have our shared object file (shared library name in Linux) ready to use.

Create another file application.c with the following content.

[image: application]

In the file application.c we are invoking the function signum which was defined in a shared library. Compile the application.c file using the following command.

gcc application.c -L /home/geetanjali/coding/ -llibrary -o sample

The flag -llibrary instructs the compiler to look for symbol definitions that are not available in the current code (signum function in our case). The option -L is hint to the compiler to look in the directory followed by the option for any shared libraries (during link time only). The command generates an executable named as “sample“.

If you invoke the executable, the dynamic linker will not be able to find the required shared library. By default it won’t look into current working directory. You have to explicitly instruct the tool chain to provide proper paths. The dynamic linker searches standard paths available in the LD_LIBRARY_PATH and also searches in system cache (for details explore the command ldconfig). We have to add our working directory to the LD_LIBRARY_PATH environment variable. The following command does the same.

export LD_LIBRARY_PATH=/home/geetanjali/coding/:$LD_LIBRARY_PATH

You can now invoke our executable as shown.

./sample

Sample output on my system is shown below.

[image: output]

Note: The path /home/geetanjali/coding/ is working directory path on my machine. You need to use your working directory path where ever it is being used in the above commands.

Stay tuned, we haven’t even explored 1/3rd of shared library concepts. More advanced concepts in the later articles.

Exercise:

It is workbook like article. You won’t gain much unless you practice and do some research.

1. Create similar example and write your won function in the shared library. Invoke the function in another application.

2. Is (Are) there any other tool(s) which can list dependent libraries?

3. What is position independent code (PIC)?

4. What is system cache in the current context? How does the directory /etc/ld.so.conf.d/* related in the current context?

— Venki. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Operating Systems
 Memory Management
system-programming

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						Named Pipe or FIFO with example C program

				
						

				
			In computing, a named pipe (also known as a FIFO) is one of the methods for intern-process communication.  


	It is an extension to the traditional pipe concept on Unix. A traditional pipe is “unnamed” and lasts only as long as the process.

	 A named pipe, however, can last as long as the system is up, beyond the life of the process. It can be deleted if no longer used.

	 Usually a named pipe appears as a file, and generally processes attach to it for inter-process communication. A FIFO file is a special kind of file on the local storage which allows two or more processes to communicate with each other by reading/writing to/from this file. 

	A FIFO special file is entered into the filesystem by calling mkfifo() in C. Once we have created a FIFO special file in this way, any process can open it for reading or writing, in the same way as an ordinary file. However, it has to be open at both ends simultaneously before you can proceed to do any input or output operations on it.



Creating a FIFO file

In order to create a FIFO file, a function calls i.e. mkfifo is used.

int mkfifo(const char *pathname, mode_t mode); 


mkfifo() makes a FIFO special file with name pathname. Here mode specifies the FIFO’s permissions.  It is modified by the process’s umask in the usual way: the permissions of the created file are (mode & ~umask).

Using FIFO

As named pipe(FIFO) is a kind of file, we can use all the system calls associated with it i.e. open, read, write, close.

Example Programs to illustrate the named pipe.

There are two programs that use same FIFO. The program 1 writes first, then reads. The program 2 reads first, then writes. They both keep doing it until terminated.



        
          
          
          
        

            

Program 1(Writes first)



// C program to implement one side of FIFO
// This side writes first, then reads
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int main()
{
    int fd;

    // FIFO file path
    char * myfifo = "/tmp/myfifo";

    // Creating the named file(FIFO)
    // mkfifo(<pathname>, <permission>)
    mkfifo(myfifo, 0666);

    char arr1[80], arr2[80];
    while (1)
    {
        // Open FIFO for write only
        fd = open(myfifo, O_WRONLY);

        // Take an input arr2ing from user.
        // 80 is maximum length
        fgets(arr2, 80, stdin);

        // Write the input arr2ing on FIFO
        // and close it
        write(fd, arr2, strlen(arr2)+1);
        close(fd);

        // Open FIFO for Read only
        fd = open(myfifo, O_RDONLY);

        // Read from FIFO
        read(fd, arr1, sizeof(arr1));

        // Print the read message
        printf("User2: %s\n", arr1);
        close(fd);
    }
    return 0;
}





Program 2(Reads First)



// C program to implement one side of FIFO
// This side reads first, then reads
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int main()
{
    int fd1;

    // FIFO file path
    char * myfifo = "/tmp/myfifo";

    // Creating the named file(FIFO)
    // mkfifo(<pathname>,<permission>)
    mkfifo(myfifo, 0666);

    char str1[80], str2[80];
    while (1)
    {
        // First open in read only and read
        fd1 = open(myfifo,O_RDONLY);
        read(fd1, str1, 80);

        // Print the read string and close
        printf("User1: %s\n", str1);
        close(fd1);

        // Now open in write mode and write
        // string taken from user.
        fd1 = open(myfifo,O_WRONLY);
        fgets(str2, 80, stdin);
        write(fd1, str2, strlen(str2)+1);
        close(fd1);
    }
    return 0;
}






Output: Run the two programs simultaneously on two terminals.

[image: pic1]

[image: pic2]

[image: pic3]

[image: pic4]

[image: pic5]

[image: pic6]

[image: pic7]

[image: pic8]




This article is contributed by Kishlay Verma. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		C
Linux-Unix
Operating Systems
 Unix/Linux

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						Tracing memory usage in Linux

				
						

				
			Often it’s necessary to trace memory usage of the system in order to determine the program that consumes all CPU resources or the program that is responsible to slowing down the activities of the CPU. Tracing memory usage also becomes necessary to determine the load on the server. Parsing the usage data enables the servers to be able to balance the load and serve the user’s request without slowing down the system.


	free  Displays the amount of memory which is currently available and used by the system(both physical and swapped). free command gathers this data by parsing /proc/meminfo. By default, the amount of memory is display in kilobytes.
free command in UNIX

    

watch -n 5 free -m watch command is used to execute a program periodically.

    

    According to the image above, there is a total of 2000 MB of RAM and 1196 MB of swap space allotted to Linux system. Out of this 2000 MB of RAM, 834 MB is currently used where as 590 MB is free. Similarly for swap space, out of 1196 MB, 0 MB is use and 1196 MB is free currently in the system.


        
          
          
          
        

            


	vmstat  vmstat command is used to display virtual memory statistics of the system. This command reports data about the memory, paging, disk and CPU activities, etc. The first use of this command returns the data averages since the last reboot. Further uses returns the data based on sampling periods of length delays.
    

vmstat -d Reports disk statistics

    

vmstat -s Displays the amount of memory used and available

    



	top  top command displays all the currently running process in the system. This command displays the list of processes and thread currently being handled by the kernel. top command can also be used to monitor the total amount of memory usage.
    

 top -H Threads-mode operation
    Displays individual thread that are currently in the system. Without this command 
option, a summation of all thread in each process is displayed.

    



	/proc/meminfo  This file contains all the data about the memory usage. It provides the current memory usage details rather than old stored values.
    



	htop  htop is an interactive process viewer. This command is similar to top command except that it allows to scroll vertically and horizontally to allows users to view all processes running on the system, along with their full command line as well as viewing them as a process tree, selecting multiple processes and acting on them all at once.
working of htop command in UNIX:







Reference:


	Ubuntu Manual



This article is contributed by Mayank Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Linux-Unix
Operating Systems
 linux-command
Unix/Linux

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









Disk Management









						File Systems

				
						

				
			A file is a collection of related information that is recorded on secondary storage. Or file is a collection of logically related entities. From user’s perspective a file is the smallest allotment of logical secondary storage.








	Attributes
	Types
	Operations





	Name
	Doc
	Create



	Type
	Exe
	Open



	Size
	Jpg
	Read



	Creation Data
	Xis
	Write



	Author
	C
	Append



	Last Modified
	Java
	Truncate



	protection
	class
	Delete



	
	
	Close

















	File type
	Usual extension
	Function





	Executable
	exe, com, bin
	Read to run machine language program



	Object
	obj, o
	Compiled, machine language not linked



	Source Code
	C, java, pas, asm, a
	Source code in various languages



	Batch
	bat, sh
	Commands to the command interpreter



	Text
	txt, doc
	Textual data, documents



	Word Processor
	wp, tex, rrf, doc
	Various word processor formats



	Archive
	arc, zip, tar
	Related files grouped into one compressed file



	Multimedia
	mpeg, mov, rm
	For containing audio/video information











FILE DIRECTORIES:

Collection of files is a file directory. The directory contains information about the files, including attributes, location and ownership. Much of this information, especially that is concerned with storage, is managed by the operating system. The directory is itself a file, accessible by various file management routines.



Information contained in a device directory are:


	Name

	Type

	Address

	Current length

	Maximum length

	Date last accessed

	Date last updated

	Owner id

	Protection information



Operation performed on directory are:


	Search for a file

	Create a file

	Delete a file

	List a directory

	Rename a file

	Traverse the file system




Advantages of maintaining directories are:


	Efficiency: A file can be located more quickly.

	Naming: It becomes convenient for users as two users can have same name for different files or may have different name for same file.

	Grouping: Logical grouping of files can be done by properties e.g. all java programs, all games etc.




SINGLE-LEVEL DIRECTORY

In this a single directory is maintained for all the users.



        
          
          
          
        

            

	Naming problem: Users cannot have same name for two files.

	Grouping problem: Users cannot group files according to their need.



[image: file_sys_5]



TWO-LEVEL DIRECTORY

In this separate directories for each user is maintained.


	Path name:Due to two levels there is a path name for every file to locate that file.

	Now,we can have same file name for different user.

	Searching is efficient in this method.



[image: file_sys_6]



TREE-STRUCTURED DIRECTORY :

Directory is maintained in the form of a tree. Searching is efficient and also there is grouping capability. We have absolute or relative path name for a file.

[image: file_sys_7]



FILE ALLOCATION METHODS

 1. Continuous Allocation: A single continuous set of blocks is allocated to a file at the time of file creation. Thus, this is a pre-allocation strategy, using variable size portions. The file allocation table needs just a single entry for each file, showing the starting block and the length of the file. This method is best from the point of view of the individual sequential file. Multiple blocks can be read in at a time to improve I/O performance for sequential processing. It is also easy to retrieve a single block. For example, if a file starts at block b, and the ith block of the file is wanted, its location on secondary storage is simply b+i-1.

[image: file_sys_8]



Disadvantage


	External fragmentation will occur, making it difficult to find contiguous blocks of space of sufficient length. Compaction algorithm will be necessary to free up additional space on disk.

	Also, with pre-allocation, it is necessary to declare the size of the file at the time of creation.



2. Linked Allocation(Non-contiguous allocation) : Allocation is on an individual block basis. Each block contains a pointer to the next block in the chain. Again the file table needs just a single entry for each file, showing the starting block and the length of the file. Although pre-allocation is possible, it is more common simply to allocate blocks as needed. Any free block can be added to the chain. The blocks need not be continuous. Increase in file size is always possible if free disk block is available. There is no external fragmentation because only one block at a time is needed but there can be internal fragmentation but it exists only in the last disk block of file.



Disadvantage:


	Internal fragmentation exists in last disk block of file.

	There is an overhead of maintaining the pointer in every disk block.

	If the pointer of any disk block is lost, the file will be truncated.

	It supports only the sequencial access of files.




3. Indexed Allocation:

It addresses many of the problems of contiguous and chained allocation. In this case, the file allocation table contains a separate one-level index for each file: The index has one entry for each block allocated to the file. Allocation may be on the basis of fixed-size blocks or variable-sized blocks. Allocation by blocks eliminates external fragmentation, whereas allocation by variable-size blocks improves locality. This allocation technique supports both sequential and direct access to the file and thus is the most popular form of file allocation.

[image: file_sys_9]



Disk Free Space Management

Just as the space that is allocated to files must be managed ,so the space that is not currently allocated to any file must be managed. To perform any of the file allocation techniques,it is necessary to know what blocks on the disk are available. Thus we need a disk allocation table in addition to a file allocation table.The following are the approaches used for free space management.


	Bit Tables : This method uses a vector containing one bit for each block on the disk. Each entry for a 0 corresponds to a free block and each 1 corresponds to a block in use.

For example: 00011010111100110001

In this vector every bit correspond to a particular vector and 0 implies that, that particular block is free and 1 implies that the block is already occupied. A bit table has the advantage that it is relatively easy to find one or a contiguous group of free blocks. Thus, a bit table works well with any of the file allocation methods. Another advantage is that it is as small as possible.


	Free Block List : In this method, each block is assigned a number sequentially and the list of the numbers of all free blocks is maintained in a reserved block of the disk.



[image: file_sys_10]




This article is contributed by Aakansha yadav 



          
          
          
            


					
		
		Operating Systems
 File & Disk Management

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						 Unix File System

				
						

				
			Unix file system is a logical method of organizing and storing large amount of information in a way which makes it easy manage. The file is the smallest unit in which information is stored. The Unix file system has several important features. All data in Unix is organized into files.All files are organized into directories. These directories are organized into a tree-like structure called the file system.

Files in Unix System organized in multi-level hierarchy structure called a directory tree. At the very top of the file system is a directory called “root” which is represented by a “/”. All other files are “descendants” of root.

[image: ]

Directories or Files and their description –


	/ :     The slash / character alone denotes the root of the filesystem tree.

	/bin : Stands for “binaries” and contains certain fundamental utilities, such as ls or cp, which are generally needed by all users.

	/boot : Contains all the files that are required for successful booting process.

	/dev : Stands for “devices”. Contains file representations of peripheral devices and pseudo-devices.

	/etc : Contains system-wide configuration files and system databases. Originally also contained “dangerous maintenance utilities” such as init,but these have typically been moved to /sbin or elsewhere.

	/home : Contains the home directories for the users. 

	/lib : Contains system libraries, and some critical files such as kernel modules or device drivers.

	/media : Default mount point for removable devices, such as USB sticks, media players, etc.

	/mnt : Stands for “mount”. Contains filesystem mount points. These are used, for example, if the system uses multiple hard disks or hard disk partitions. It is also often used for remote (network) filesystems, CD-ROM/DVD drives, and so on.

	/proc : procfs virtual filesystem showing information about processes as files.

	/root : The home directory for the superuser “root” – that is, the system administrator. This account’s home directory is usually on the initial filesystem, and hence not in /home (which may be a mount point for another filesystem) in case specific maintenance needs to be performed, during which other filesystems are not available. Such a case could occur, for example, if a hard disk drive suffers physical failures and cannot be properly mounted.

	/tmp : A place for temporary files. Many systems clear this directory upon startup; it might have tmpfs mounted atop it, in which case its contents do not survive a reboot, or it might be explicitly cleared by a startup script at boot time.

	/usr : Originally the directory holding user home directories,its use has changed. It now holds executables, libraries, and shared resources that are not system critical, like the X Window System, KDE, Perl, etc. However, on some Unix systems, some user accounts may still have a home directory that is a direct subdirectory of /usr, such as the default as in Minix. (on modern systems, these user accounts are often related to server or system use, and not directly used by a person).

	/usr/bin : This directory stores all binary programs distributed with the operating system not residing in /bin, /sbin or (rarely) /etc.

	/usr/include : Stores the development headers used throughout the system. Header files are mostly used by the #include directive in C/C++ programming language.

	/usr/lib : Stores the required libraries and data files for programs stored within /usr or elsewhere.

	/var : A short for “variable.” A place for files that may change often – especially in size, for example e-mail sent to users on the system, or process-ID lock files.

	/var/log : Contains system log files.

	/var/mail : The place where all the incoming mails are stored. Users (other than root) can access their own mail only. Often, this directory is a symbolic link to /var/spool/mail.

	/var/spool : Spool directory. Contains print jobs, mail spools and other queued tasks.

	/var/tmp : A place for temporary files which should be preserved between system reboots.



Types of Unix files – The UNIX files system contains several different types of files : 

[image: ]



        
          
          
          
        

            
1. Ordinary files –  An ordinary file is a file on the system that contains data, text, or program instructions.


	Used to store your information, such as some text you have written or an image you have drawn. This is the type of file that you usually work with.

	Always located within/under a directory file.

	Do not contain other files.

	In long-format output of ls -l, this type of file is specified by the “-” symbol.



2. Directories –  Directories store both special and ordinary files. For users familiar with Windows or Mac OS, UNIX directories are equivalent to folders. A directory file contains an entry for every file and subdirectory that it houses. If you have 10 files in a directory, there will be 10 entries in the directory. Each entry has two components.

(1) The Filename

(2) A unique identification number for the file or directory (called the inode number)

	Branching points in the hierarchical tree.

	Used to organize groups of files.

	May contain ordinary files, special files or other directories.

	Never contain “real” information which you would work with (such as text). Basically, just used for organizing files. 

	All files are descendants of the root directory, ( named / ) located at the top of the tree. 

In long-format output of ls –l , this type of file is specified by the “d” symbol.

3. Special Files –  Used to represent a real physical device such as a printer, tape drive or terminal, used for Input/Ouput (I/O) operations. Device or special files are used for device Input/Output(I/O) on UNIX and Linux systems. They appear in a file system just like an ordinary file or a directory.

On UNIX systems there are two flavors of special files for each device, character special files and block special files :


	When a character special file is used for device Input/Output(I/O), data is transferred one character at a time. This type of access is called raw device access.

	When a block special file is used for device Input/Output(I/O), data is transferred in large fixed-size blocks. This type of access is called block device access.



For terminal devices, it’s one character at a time. For disk devices though, raw access means reading or writing in whole chunks of data – blocks, which are native to your disk.


	In long-format output of ls -l, character special files are marked by the “c” symbol.

	In long-format output of ls -l, block special files are marked by the “b” symbol.



4. Pipes –   UNIX allows you to link commands together using a pipe. The pipe acts a temporary file which only exists to hold data from one command until it is read by another.A Unix pipe provides a one-way flow of data.The output or result of the first command sequence is used as the input to the second command sequence. To make a pipe, put a vertical bar (|) on the command line between two commands.For example: who | wc -l 

In long-format output of ls –l , named pipes are marked by the “p” symbol.

5. Sockets –  A Unix socket (or Inter-process communication socket) is a special file which allows for advanced inter-process communication. A Unix Socket is used in a client-server application framework. In essence, it is a stream of data, very similar to network stream (and network sockets), but all the transactions are local to the filesystem.

In long-format output of ls -l, Unix sockets are marked by “s” symbol.

6. Symbolic Link –  Symbolic link is  used for referencing some other file of the file system.Symbolic link is also known as Soft link. It contains a text form of the path to the file it references. To an end user, symbolic link will appear to have its own name, but when you try reading or writing data to this file, it will instead reference these operations to the file it points to. If we delete the soft link itself , the data file would still be there.If we delete the source file or move it to a different location, symbolic file will not function properly. 

In long-format output of ls –l , Symbolic link are marked by the “l” symbol (that’s a lower case L). 

Reference –

UNIX – Concepts and Applications | Sumitabha Das |Tata McGraw Hill |4th Edition

This article is contributed by Saloni Gupta . If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						 File Directory | Path Name

				
						

				
			Prerequisite – File Systems

Hierarchical Directory Systems –

Directory is maintained in the form of a tree.Each user can have as many directories as are needed so, that files can be grouped together in natural way.

Advantages of this structure:


	Searching is efficient

	Groping capability of files increase



When the file system is organized as a directory tree, some way is needed for specifying file names.



        
          
          
          
        

            
Two different methods are commonly used:


	Absolute Path name – In this method, each file is given an absolute path name consisting of the path from the root directory to the file. As an example, the path /usr/ast/mailbox means that the root directory contains a subdirectory usr, which in turn contains a subdirectory ast, which contains the file mailbox.
Absolute path names always start at the root directory and are unique.

In UNIX the components of the path are separated by /. In Windows the separator is \.

           Windows \usr\ast\mailbox

           UNIX  /usr\ast\mailbox



	Relative Path name – This is used in conjunction with the concept of the working directory (also called the current directory).A user can designate one directory as the current working directory, in which case all path names not beginning at the root directory are taken relative to the working directory.
For example, if the current working directory is /usr/ast, then the file whose absolute path is /usr/ast/mailbox can be referenced simply as mailbox.

In other words, the UNIX

command :  cp /usr/ast/mailbox /usr/ast/mailbox.bak

and the command :  cp mailbox mailbox.bak

do exactly the same thing if the working directory is /usr/ast.





 When to use which approach ? 

Some programs need to access a specific file without regard to what the working directory is. In that case, they should always use absolute path names. For example, a spelling checker might need to read /usr/lib/dictionary to do its work. It should use the full, absolute path name in this case because it does not know what the working directory will be when it is called. The absolute path name will always work, no matter what the working directory is.

Of course, if the spelling checker needs a large number of files from /usr/lib, an alternative approach is for it to issue a system call to change its working directory to /usr/lib, and then use just dictionary as the first parameter to open. By explicitly changing the working directory, it knows for sure where it is in the directory tree, so it can then use relative paths.



          
          
          
            



chirag darji

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						File Allocation Methods

				
						

				
			The allocation methods define how the files are stored in the disk blocks. There are three main disk space or file allocation methods.


	Contiguous Allocation

	Linked Allocation

	Indexed Allocation



The main idea behind these methods is to provide:


	Efficient disk space utilization.

	Fast access to the file blocks.



All the three methods have their own advantages and disadvantages as discussed below:

1. Contiguous Allocation

In this scheme, each file occupies a contiguous set of blocks on the disk. For example, if a file requires n blocks and is given a block b as the starting location, then the blocks assigned to the file will be: b, b+1, b+2,……b+n-1. This means that given the starting block address and the length of the file (in terms of blocks required), we can determine the blocks occupied by the file.

The directory entry for a file with contiguous allocation contains



        
          
          
          
        

            

	Address of starting block

	Length of the allocated portion.



The file ‘mail’ in the following figure starts from the block 19 with length = 6 blocks. Therefore, it occupies 19, 20, 21, 22, 23, 24 blocks.

[image: pic]

Advantages:


	Both the Sequential and Direct Accesses are supported by this. For direct access, the address of the kth block of the file which starts at block b can easily be obtained as (b+k).

	This is extremely fast since the number of seeks are minimal because of contiguous allocation of file blocks.



Disadvantages:


	This method suffers from both internal and external fragmentation. This makes it inefficient in terms of memory utilization.

	Increasing file size is difficult because it depends on the availability of contiguous memory at a particular instance.



2. Linked List Allocation

In this scheme, each file is a linked list of disk blocks which need not be contiguous. The disk blocks can be scattered anywhere on the disk.

The directory entry contains a pointer to the starting and the ending file block. Each block contains a pointer to the next block occupied by the file.

The file ‘jeep’ in following image shows how the blocks are randomly distributed. The last block (25) contains -1 indicating a null pointer and does not point to any other block. 

[image: linked]

Advantages:


	This is very flexible in terms of file size. File size can be increased easily since the system does not have to look for a contiguous chunk of memory.

	This method does not suffer from external fragmentation. This makes it relatively better in terms of memory utilization.



Disadvantages:


	Because the file blocks are distributed randomly on the disk, a large number of seeks are needed to access every block individually. This makes linked allocation slower.

	It does not support random or direct access. We can not directly access the blocks of a file. A block k of a file can be accessed by traversing k blocks sequentially (sequential access ) from the starting block of the file via block pointers.

	Pointers required in the linked allocation incur some extra overhead.



3. Indexed Allocation

In this scheme, a special block known as the Index block contains the pointers to all the blocks occupied by a file. Each file has its own index block. The ith entry in the index block contains the disk address of the ith file block. The directory entry contains the address of the index block as shown in the image:

[image: indexed]

Advantages:


	This supports direct access to the blocks occupied by the file and therefore provides fast access to the file blocks.

	It overcomes the problem of external fragmentation.



Disadvantages:


	The pointer overhead for indexed allocation is greater than linked allocation.

	For very small files, say files that expand only 2-3 blocks, the indexed allocation would keep one entire block (index block) for the pointers which is inefficient in terms of memory utilization. However, in linked allocation we lose the space of only 1 pointer per block.



For files that are very large, single index block may not be able to hold all the pointers.

Following mechanisms can be used to resolve this:


	Linked scheme: This scheme links two or more index blocks together for holding the pointers. Every index block would then contain a pointer or the address to the next index block.

	Multilevel index: In this policy, a first level index block is used to point to the second level index blocks which inturn points to the disk blocks occupied by the file. This can be extended to 3 or more levels depending on the maximum file size.

	Combined Scheme: In this scheme, a special block called the Inode (information Node) contains all the information about the file such as the name, size, authority, etc and the remaining space of Inode is used to store the Disk Block addresses which contain the actual file as shown in the image below. The first few of these pointers in Inode point to the direct blocks i.e the pointers contain the addresses of the disk blocks that contain data of the file. The next few pointers point to indirect blocks. Indirect blocks may be single indirect, double indirect or triple indirect. Single Indirect block is the disk block that does not contain the file data but the disk address of the blocks that contain the file data. Similarly, double indirect blocks do not contain the file data but the disk address of the blocks that contain the address of the blocks containing the file data.

[image: inode]



This article is contributed by Saloni Baweja. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Operating Systems
Technical Scripter
 File & Disk Management

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						 Secondary memory – Hard disk drive

				
						

				
			A hard disk is a memory storage device which looks like this:



The disk is divided into tracks. Each track is further divided into sectors. The point to be noted here is that outer tracks are bigger in size than the inner tracks but they contain the same number of sectors and have equal storage capacity. This is because the storage density is high in sectors of the inner tracks where as the bits are sparsely arranged in sectors of the outer tracks. Some space of every sector is used for formatting. So, the actual capacity of a sector is less than the given capacity. 

Read-Write(R-W) head moves over the rotating hard disk. It is this Read-Write head that performs all the read and write operations on the disk and hence, position of the R-W head is a major concern. To perform a read or write operation on a memory location, we need to place the R-W head over that position. Some important terms must be noted here:


	Seek time – The time taken by the R-W head to reach the desired track from it’s current position.


	Rotational latency – Time taken by the sector to come under the R-W head.


	Data transfer time – Time taken to transfer the required amount of data. It depends upon the rotational speed.


	Controller time – The processing time taken by the controller.


	Average Access time – seek time + Average Rotational latency + data transfer time + controller time.




In questions, if the seek time and controller time is not mentioned, take them to be zero.



        
          
          
          
        

            
If the amount of data to be transferred is not given, assume that no data is being transferred. Otherwise, calculate the time taken to transfer the given amount of data.

The average of rotational latency is taken when the current position of R-W head is not given. Because, the R-W may be already present at the desired position or it might take a whole rotation to get the desired sector under the R-W head. But, if the current position of the R-W head is given then the rotational latency must be calculated.

Example –

Consider a hard disk with:

4 surfaces

64 tracks/surface

128 sectors/track

256 bytes/sector


	What is the capacity of the  hard disk?

Disk capacity = surfaces * tracks/surface * sectors/track * bytes/sector

Disk capacity = 4 * 64 * 128 * 256

Disk capacity = 8 MB



	The disk is rotating at 3600 RPM, what is the data transfer rate?

60 sec -> 3600 rotations

1 sec -> 60 rotations

Data transfer rate = number of rotations per second * track capacity * number of surfaces (since 1 R-W head is used for each surface)

Data transfer rate = 60 * 128 * 256 * 4

Data transfer rate = 7.5 MB/sec



	The disk is rotating at 3600 RPM, what is the average access time?

Since, seek time, controller time and the amount of data to be transferred is not given, we consider all the three terms as 0.

Therefore, Average Access time = Average rotational delay

Rotational latency => 60 sec -> 3600 rotations

                       1 sec ->   60 rotations

Rotational latency = (1/60) sec = 16.67 msec.

Average Rotational latency = (16.67)/2

                           = 8.33 msec.

Average Access time = 8.33 msec.



	Another example: GATE IT 2007 | Question 44






          
          
          
            



MohitMalhotra

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		Computer Organization & Architecture
GATE CS
Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						Disk Scheduling Algorithms

				
						

				
			Disk scheduling is is done by operating systems to schedule I/O requests arriving for disk. Disk scheduling is also known as I/O scheduling.

Disk scheduling is important because:


	Multiple I/O requests may arrive by different processes and only one I/O request can be served at a time by disk controller. Thus other I/O requests need to wait in waiting queue and need to be scheduled.

	Two or more request may be far from each other so can result in greater disk arm movement.

	Hard drives are one of the slowest parts of computer system and thus need to be accessed in an efficient manner.



There are many Disk Scheduling Algorithms but before discussing them let’s have a quick look at some of the important terms:


	Seek Time:Seek time is the time taken to locate the disk arm to a specified track where the data is to be read or write. So the disk scheduling algorithm that gives minimum average seek time is better.

	Rotational Latency: Rotational Latency is the time taken by the desired sector of disk to rotate into a position so that it can access the read/write heads. So the disk scheduling algorithm that gives minimum rotational latency is better.

	Transfer Time: Transfer time is the time to transfer the data. It depends on the rotating speed of the disk and number of bytes to be transferred.

	Disk Access Time: Disk Access Time is:



             
      Disk Access Time = Seek Time + 
                         Rotational Latency + 
                         Transfer Time

[image: os1]


	Disk Response Time: Response Time is the average of time spent by a request waiting to perform its I/O operation. Average Response time is the response time of the all requests. Variance Response Time is measure of how individual request are serviced with respect to average response time. So the disk scheduling algorithm that gives minimum variance response time is better.



Disk Scheduling Algorithms



        
          
          
          
        

            

	FCFS: FCFS is the simplest of all the Disk Scheduling Algorithms. In FCFS, the requests are addressed in the order they arrive in the disk queue.



Advantages:


	Every request gets a fair chance

	No indefinite postponement



Disadvantages:


	Does not try to optimize seek time

	May not provide the best possible service




	SSTF: In SSTF (Shortest Seek Time First), requests having shortest seek time are executed first. So, the seek time of every request is calculated in advance in queue and then they are scheduled according to their calculated seek time. As a result, the request near the disk arm will get executed first. SSTF is certainly an improvement over FCFS as it decreases the average response time and increases the throughput of system.



Advantages:


	Average Response Time decreases

	Throughput increases



Disadvantages:


	Overhead to calculate seek time in advance

	Can cause Starvation for a request if it has higher seek time as compared to incoming requests

	High variance of response time as SSTF favours only some requests




	SCAN: In SCAN algorithm the disk arm moves into a particular direction and services the requests coming in its path and after reaching the end of disk, it reverses its direction and again services the request arriving in its path. So, this algorithm works like an elevator and hence also known as elevator algorithm. As a result, the requests at the midrange are serviced more and those arriving behind the disk arm will have to wait.



Advantages:


	High throughput

	Low variance of response time

	Average response time



Disadvantages:


	Long waiting time for requests for locations just visited by disk arm




	CSCAN: In SCAN algorithm, the disk arm again scans the path that has been scanned, after reversing its direction. So, it may be possible that too many requests are waiting at the other end or there may be zero or few requests pending at the scanned area.



These situations are avoided in CSAN algorithm in which the disk arm instead of reversing its direction goes to the other end of the disk and starts servicing the requests from there. So, the disk arm moves in a circular fashion and this algorithm is also similar to SCAN algorithm and hence it is known as C-SCAN (Circular SCAN).

Advantages:


	Provides more uniform wait time compared to SCAN




	LOOK: It is similar to the SCAN disk scheduling algorithm except the difference that the disk arm in spite of going to the end of the disk goes only to the last request to be serviced in front of the head and then reverses its direction from there only. Thus it prevents the extra delay which occurred due to unnecessary traversal to the end of the disk.




	CLOOK: As LOOK is similar to SCAN algorithm, in similar way, CLOOK is similar to CSCAN disk scheduling algorithm. In CLOOK, the disk arm inspite of going to the end goes only to the last request to be serviced in front of the head and then from there goes to the other end’s last request. Thus, it also prevents the extra delay which occurred due to unnecessary traversal to the end of the disk.



Each algorithm is unique in its own way.Overall Performance depends on number and type of requests.

Exercise

1) Suppose a disk has 201 cylinders, numbered from 0 to 200. At some time the disk arm is at cylinder 100, and there is a queue of disk access requests for cylinders 30, 85, 90, 100, 105, 110, 135 and 145. If Shortest-Seek Time First (SSTF) is being used for scheduling the disk access, the request for cylinder 90 is serviced after servicing ____________ number of requests. (GATE CS 2014

(A) 1

(B) 2

(C) 3

(D) 4

See this for solution.

2) Consider an operating system capable of loading and executing a single sequential user process at a time. The disk head scheduling algorithm used is First Come First Served (FCFS). If FCFS is replaced by Shortest Seek Time First (SSTF), claimed by the vendor to give 50% better benchmark results, what is the expected improvement in the I/O performance of user programs? (GATE CS 2004)

(A) 50%

(B) 40%

(C) 25%

(D) 0%

See this for solution.

3)  Suppose the following disk request sequence (track numbers) for a disk with 100 tracks is given: 45, 20, 90, 10, 50, 60, 80, 25, 70. Assume that the initial position of the R/W head is on track 50. The additional distance that will be traversed by the R/W head when the Shortest Seek Time First (SSTF) algorithm is used compared to the SCAN (Elevator) algorithm (assuming that SCAN algorithm moves towards 100 when it starts execution) is _________ tracks

(A) 8

(B) 9

(C) 10

(D) 11

See this for solution.

4) Consider a typical disk that rotates at 15000 rotations per minute (RPM) and has a transfer rate of 50 × 10^6 bytes/sec. If the average seek time of the disk is twice the average rotational delay and the controller’s transfer time is 10 times the disk transfer time, the average time (in milliseconds) to read or write a 512 byte sector of the disk is _____________

See this for solution.

This article is contributed by Ankit Mittal. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Operating Systems
 File & Disk Management

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						What exactly Spooling is all about?

				
						

				
			


SPOOL is an acronym for simultaneous peripheral operations on-line.  It is a kind of buffering mechanism or a process in which data is temporarily held to be used and executed by a device, program or the system. Data is sent to and stored in memory or other volatile storage until the program or computer requests it for execution.

In a computer system peripheral equipments, such as printers and punch card readers etc (batch processing), are very slow relative to the performance of the rest of the system. Getting input and output from the system was quickly seen to be a bottleneck. Here comes the need for spool.

Spooling works like a typical request queue where data, instructions and processes from multiple sources are accumulated for execution later on. Generally, it is maintained on computer’s physical memory, buffers or the I/O device-specific interrupts. The spool is processed in FIFO manner i.e. whatever first instruction is there in the queue will be popped and executed.

Applications/Implementations of Spool:

1) The most common can be found in I/O devices like keyboard printers and mouse. For example, In printer, the documents/files that are sent to the printer are first stored in the memory or the printer spooler. Once the printer is ready, it fetches the data from the spool and prints it.



        
          
          
          
        

            
Even experienced a situation when suddenly for some seconds your mouse or keyboard stops working? Meanwhile, we usually click again and again here and there on the screen to check if its working or not. When it actually starts working, what and wherever we pressed during its hang state gets executed very fast because all the instructions got stored in the respective device’s spool.

2) A batch processing system uses spooling to maintain a queue of ready-to-run jobs which can be started as soon as the system has the resources to process them.

3) Spooling is capable of overlapping I/O operation for one job with processor operations for another job. i.e. multiple processes can write documents to a print queue without waiting and resume with their work.

4) E-mail: an email is delivered by a MTA (Mail Transfer Agent) to a temporary storage area where it waits to be picked up by the MA (Mail User Agent)

5) Can also be used for generating Banner pages (these are the pages used in computerized printing in order to separate documents from each other and to identify e.g. the originator of the print request by username, an account number or a bin for pickup. Such pages are used in office environments where many people share the small number of available resources).




About the Author: 

Ekta is a  very active contributor on Geeksforgeeks. Currently studying at Delhi Technological University.She has also made a Chrome extention for  www.geeksquiz.com to practice MCQs  randomly.She can be reached at  github.com/Ekta1994

If you also wish to showcase your blog here, please see GBlog for guest blog writing on GeeksforGeeks.



          
          
          
            


					
		
		GBlog
Operating Systems
 Processes & Threads

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









Misc









						Important Linux Commands (leave, diff, cal, ncal, locate and ln)

				
						

				
			Linux provides some important tricks. Here’s a few and important one’s:


	leave — remind you when you have to leave

    Syntax:

 leave +hhmm

    leave waits until the specified time (within the next 12 hours), then reminds you that you have to leave by writing to the TTY that you executed leave on. You are reminded 5 minutes and 1 minute before the actual time, at the time, and every minute thereafter.

    Options: hhmm  The time of day is in the form hhmm where hh is a time in hours (on a 12 or 24 hour clock), and mm are minutes.





	diff – compare files line by line

    Syntax: 

diff file1 file2

    Compare FILES line by line.


        
          
          
          
        

            
    

diff -q file1 file2 

    report only when files differ

    
    


	cal, ncal — displays a calendar and the date of Easter

    Syntax: 

cal

    The cal utility displays a simple calendar in traditional format and ncal offers an alternative layout, more options and the date of Easter. The new format is a little cramped but it makes a year fit on a 25×80 terminal.  If arguments are not specified, the current month is displayed.

    


    


	locate – find files by name

    Syntax: 

locate file_name

    locate  reads one or more databases prepared by updatedb(8) and writes file names matching at least one of the PATTERNs to standard output, one per line.

    
    


	passwd – change user password

    Syntax: 

passwd

    The passwd command changes passwords for user accounts. A normal user may only change the password for his/her own account, while the superuser may change the password for any account.  passwd also changes the account or associated password validity period.

    
    


	ln – make links between files

    Syntax: 

ln existing_file_name file2_name

    create  a  link  to  TARGET  with  the name specified

    
    




This article is contributed by Mayank Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Linux-Unix
Operating Systems
 linux-command
Unix/Linux

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						Introduction to Linux Shell and Shell Scripting

				
						

				
			If you are using any major operating system you are indirectly interacting to shell. If you are running Ubuntu, Linux Mint or any other Linux distribution, you are interacting to shell every time you use terminal. In this article I will discuss about linux shells and shell scripting so before understanding shell scripting we have to get familiar with following terminologies – 


	Kernel

	Shell

	Terminal


What is Kernel

The kernel is a computer program that is the core of a computer’s operating system, with complete control over everything in the system. It manages following resources of the Linux system – 


	File management

	Process management

	I/O management

	Memory management

	Device management etc.


It is often mistaken that Linus Torvalds has developed Linux OS, but actually he is only responsible for development of Linux kernel.

Complete Linux system =  Kernel + GNU system utilities and libraries + other management scripts + installation scripts.

What is Shell



        
          
          
          
        

            
A shell is special user program which provide an interface to user to use operating system services. Shell accept human readable commands from user and convert them into something which kernel can understand. It is a command language interpreter  that execute commands read  from input devices such as keyboards or from files. The shell gets started when the user logs in or start the terminal.



[image: linux shell]linux shell





Shell is broadly classified into two categories – 


	Command Line Shell

	Graphical shell



Command Line Shell

Shell can be accessed by user using a command line interface. A special program called Terminal in linux/macOS or Command Prompt in Windows OS is provided to type in the human readable commands such as “cat”, “ls” etc. and then it is being execute. The result is then displayed on the terminal to the user. A terminal in Ubuntu 16.4 system looks like this –



[image: linux command line]linux command line





In above screenshot “ls” command with “-l” option is executed. 

It will list all the files in current working directory in long listing format.

Working with command line shell is bit difficult for the beginners because it’s hard to memorize so many commands. It is very powerful, it allows user to store commands in a file and execute them together. This way any repetitive task can be easily automated. These files are usually called batch files in Windows and Shell Scripts in Linux/macOS systems. 

Graphical Shells

Graphical shells provide means for manipulating programs based on graphical user interface (GUI), by allowing for operations such as opening, closing, moving and resizing windows, as well as switching focus between windows. Window OS or Ubuntu OS can be considered as good example which provide GUI to user for interacting with program. User do not need to type in command for every actions.A typical GUI in Ubuntu system –



[image: GUI shell]GUI shell





There are several shells are available for Linux systems like – 


	BASH (Bourne Again SHell) – It is most widely used shell in Linux systems. It is used as default login shell in Linux systems and in macOS. It can also be installed on Windows OS.

	CSH (C SHell) – The C shell’s syntax and usage are very similar to the C programming language.

	KSH (Korn SHell) – The Korn Shell also was the base for the POSIX Shell standard specifications etc.




Each shell does the same job but understand different commands and provide different built in functions.

Shell Scripting

Usually shells are interactive that mean, they accept command as input from users and execute them. However some time we want to execute a bunch of commands routinely, so we have type in all commands each time in terminal.

As shell can also take commands as input from file we can write these commands in a file and can execute them in shell to avoid this repetitive work. These files are called Shell Scripts or Shell Programs. Shell scripts are similar to the batch file in MS-DOS. Each shell script is saved with .sh file extension eg. myscript.sh

A shell script have syntax just like any other programming language. If you have any prior experience with any programming language like Python, C/C++ etc. it would be very easy to get started with it.

A shell script comprises following elements – 


	Shell Keywords – if, else, break etc.

	Shell commands – cd, ls, echo, pwd, touch etc.

	Functions

	Control flow – if..then..else, case and shell loops  etc. 



Why do we need shell scripts

There are many reasons to write shell scripts –


	To avoid repetitive work and automation

	System admins use shell scripting for routine backups

	System monitoring

	Adding new functionality to the shell etc.



Advantages of shell scripts


	The command and syntax are exactly the same as those directly entered in command line, so programmer do not need to switch to entirely different syntax

	Writing shell scripts are much quicker

	Quick start

	Interactive debugging etc.



Disadvantages of shell scripts


	Prone to costly errors, a single mistake can change the command which might be harmful

	Slow execution speed

	Design flaws within the language syntax or implementation

	Not well suited for large and complex task

	Provide minimal data structure unlike other scripting languages. etc



Simple demo of shell scripting using Bash Shell

If you work on terminal, something you  traverse deep down in directories. Then for coming few directories up in path we have to execute command like this as shown below to get to the “python” directory –

[image: ]

It is quite frustrating, so why not we can have a utility where we just have to type the name of directory and we can directly jump to that without executing “cd ../” command again and again. Save the script as “jump.sh”

# !/bin/bash

# A simple bash script to move up to desired directory level directly

function jump()
{
    # original value of Internal Field Separator
    OLDIFS=$IFS

    # setting field separator to "/" 
    IFS=/

    # converting working path into array of directories in path
    # eg. /my/path/is/like/this
    # into [, my, path, is, like, this]
    path_arr=($PWD)

    # setting IFS to original value
    IFS=$OLDIFS

    local pos=-1

    # ${path_arr[@]} gives all the values in path_arr
    for dir in "${path_arr[@]}"
    do
        # find the number of directories to move up to
        # reach at target directory 
        pos=$[$pos+1]
        if [ "$1" = "$dir" ];then

            # length of the path_arr
            dir_in_path=${#path_arr[@]}

            #current working directory
            cwd=$PWD
            limit=$[$dir_in_path-$pos-1]
            for ((i=0; i<limit; i++))
            do
                cwd=$cwd/..
            done
            cd $cwd
            break
        fi
    done
}


For now we cannot execute our shell script because it do not have permissions. We have to make it executable by typing following command – 

$ chmod -x path/to/our/file/jump.sh


Now to make this available on every terminal session, we have to put this in “.bashrc” file.

“.bashrc” is a shell script that Bash shell runs whenever it is started interactively. The purpose of a .bashrc file is to provide a place where you can set up variables, functions and aliases, define our prompt and define other settings that we want to use whenever we open a new terminal window.

Now open terminal and type following command – 

$ echo “source ~/path/to/our/file/jump.sh”>> ~/.bashrc


Now open you terminal and try out new “jump” functionality by typing following command-

$ jump dir_name


just like below screenshot –

[image: ]

Resources for learning Bash Scripting


	https://bash.cyberciti.biz/guide/The_bash_shell

	http://tldp.org/LDP/abs/html/



References


	https://en.wikipedia.org/wiki/Shell_script

	https://en.wikipedia.org/wiki/Shell_(computing)



This article is contributed by Atul Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.





          
          
          
            


					
		
		Linux-Unix
Operating Systems
 Unix/Linux

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	





















						‘crontab’ in Linux with Examples

				
						

				
			The crontab is a list of commands that you want to run on a regular schedule, and also the name of the command used to manage that list. Crontab stands for “cron table, ” because it uses the job scheduler cron to execute tasks; cron itself is named after “chronos, ” the Greek word for time.cron is the system process which will automatically perform tasks for you according to a set schedule. The schedule is called the crontab, which is also the name of the program used to edit that schedule.

Linux Crontab Format

MIN HOUR DOM MON DOW CMD


Crontab Fields and Allowed Ranges (Linux Crontab Syntax)

Field    Description    Allowed Value
MIN      Minute field    0 to 59
HOUR     Hour field      0 to 23
DOM      Day of Month    1-31
MON      Month field     1-12
DOW      Day Of Week     0-6
CMD      Command         Any command to be executed.


Examples of Cron jobs

1. Scheduling a Job For a Specific Time

The basic usage of cron is to execute a job in a specific time as shown below. This will execute the Full backup shell script (full-backup) on 10th June 08:30 AM.



        
          
          
          
        

            
The time field uses 24 hours format. So, for 8 AM use 8, and for 8 PM use 20.

30 08 10 06 * /home/maverick/full-backup


30 – 30th Minute

08 – 08 AM

10 – 10th Day

06 – 6th Month (June)

* – Every day of the week

2.To view the Crontab entries


	View Current Logged-In User’s Crontab entries : To view your crontab entries type crontab -l from your unix account.

[image: ]

	View Root Crontab entries : Login as root user (su – root) and do crontab -l.
[image: ]


	To view crontab entries of other Linux users : Login to root and use -u {username} -l.

[image: ]



3.To edit Crontab Entries

Edit Current Logged-In User’s Crontab entries.To edit a crontab entries, use crontab -e. By default this will edit the current logged-in users crontab.

[image: ]

4.To schedule a job for every minute using Cron.

Ideally you may not have a requirement to schedule a job every minute. But understanding this example will will help you understand the other examples.

* * * * * CMD


The * means all the possible unit — i.e every minute of every hour through out the year. More than using this * directly, you will find it very useful in the following cases.

When you specify */5 in minute field means every 5 minutes.

When you specify 0-10/2 in minute field mean every 2 minutes in the first 10 minute.

Thus the above convention can be used for all the other 4 fields.

5.To schedule a job for more than one time (e.g. Twice a Day)

The following script take a incremental backup twice a day every day.

This example executes the specified incremental backup shell script (incremental-backup) at 11:00 and 16:00 on every day. The comma separated value in a field specifies that the command needs to be executed in all the mentioned time.

00 11, 16 * * * /home/maverick/bin/incremental-backup


00 – 0th Minute (Top of the hour)

11, 16 – 11 AM and 4 PM

* – Every day

* – Every month

* – Every day of the week

6.To schedule a job for certain range of time (e.g. Only on Weekdays)

If you wanted a job to be scheduled for every hour with in a specific range of time then use the following.


	Cron Job everyday during working hours :

This example checks the status of the database everyday (including weekends) during the working hours 9 a.m – 6 p.m

00 09-18 * * * /home/maverick/bin/check-db-status


00 – 0th Minute (Top of the hour)

09-18 – 9 am, 10 am, 11 am, 12 am, 1 pm, 2 pm, 3 pm, 4 pm, 5 pm, 6 pm

* – Every day

* – Every month

* – Every day of the week


	Cron Job every weekday during working hours :

This example checks the status of the database every weekday (i.e excluding Sat and Sun) during the working hours 9 a.m – 6 p.m.

00 09-18 * * 1-5 /home/maverick/bin/check-db-status


00 – 0th Minute (Top of the hour)

09-18 – 9 am, 10 am, 11 am, 12 am, 1 pm, 2 pm, 3 pm, 4 pm, 5 pm, 6 pm

* – Every day

* – Every month

1-5 -Mon, Tue, Wed, Thu and Fri (Every Weekday)




7.To schedule a background Cron job for every 10 minutes.

Use the following, if you want to check the disk space every 10 minutes.

*/10 * * * * /home/maverick/check-disk-space


It executes the specified command check-disk-space every 10 minutes through out the year. But you may have a requirement of executing the command only during certain hours or vice versa. The above examples shows how to do those things.Instead of specifying values in the 5 fields, we can specify it using a single keyword as mentioned below.

There are special cases in which instead of the above 5 fields you can use @ followed by a keyword — such as reboot, midnight, yearly, hourly.

Cron special keywords and its meaning

Keyword    Equivalent
@yearly    0 0 1 1 *
@daily     0 0 * * *
@hourly    0 * * * *
@reboot    Run at startup.


8.To schedule a job for first minute of every year using @yearly

If you want a job to be executed on the first minute of every year, then you can use the @yearly cron keyword as shown below.This will execute the system annual maintenance using annual-maintenance shell script at 00:00 on Jan 1st for every year.

@yearly /home/maverick/bin/annual-maintenance


9.To schedule a Cron job beginning of every month using @monthly

It is as similar as the @yearly as above. But executes the command monthly once using @monthly cron keyword.This will execute the shell script tape-backup at 00:00 on 1st of every month.

@monthly /home/maverick/bin/tape-backup


10.To schedule a background job every day using @daily

Using the @daily cron keyword, this will do a daily log file cleanup using cleanup-logs shell script at 00:00 on every day.

@daily /home/maverick/bin/cleanup-logs "day started"


11.To execute a linux command after every reboot using @reboot

Using the @reboot cron keyword, this will execute the specified command once after the machine got booted every time.

@reboot CMD


Reference : Linux man page for cron

This article is contributed by Kishlay Verma. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Linux-Unix
Operating Systems
 linux-command
Unix/Linux

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	









						mindepth and maxdepth in Linux find() command for limiting search to a specific directory.

				
						

				
			How to limit search a specified directory in linux?

There is a command in linux to search for files in a directory hierarchy known as ‘find’. It searches the directory tree rooted at each given starting-point by evaluating the given expression from left to right, according to the rules of precedence, until the outcome is known (the left hand side is false for and operations, true for or), at which point find moves on to the next file name.  If no starting-point is specified, `.’ is assumed.

The find command by default travels down the entire directory tree recursively, which is time and resource consuming. However the depth of directory traversal can be specified(which are mindepth and maxdepth).

What are mindepth and maxdepth levels?



	maxdepth levels : Descend at most levels (a non-negative integer) levels of          directories below the starting-points. -maxdepth 0 means only apply the tests and actions to the starting-points themselves.

	mindepth levels : Do not apply any tests or actions at levels less than levels            (a non-negative integer).  -mindepth 1 means process all files except the starting-points.





Given below some examples to illustrate how depth of the directory travesal can be specified using mindepth and maxdepth


	Find the passwd file under all sub-directories starting from root directory.
find / -name passwd

[image: step1-1]



	Find the passwd file under root and one level down. (i.e root — level 1, and one sub-directory — level 2)
find / -maxdepth 2 -name passwd

[image: ]



	Find the passwd file under root and two levels down. (i.e root — level 1, and two sub-directories — level 2 and 3 )
find / -maxdepth 3 -name passwd

[image: ]



	Find the password file between sub-directory level 2 and 4.
find / -mindepth 3 -maxdepth 5 -name passwd

[image: ]





There are two other ways to limit search a directory in linux :



    
	grep
 Grep searches the named input FILEs (or standard input if no files are named, or the file name – is given) for lines containing a match to the given PATTERN.By default, grep prints the matching lines.
Examples of grep :

You can search the current directory with grep as follows:

[image: ]

To check whether a directory exists or not
[image: ]

Find the directory under root directory.
[image: ]

Find the directory under root and one levels down.
[image: ]

[image: ]

[image: ]


    


	ack






























 Ack is designed as a replacement for 99% of the uses of grep. Ack searches the named input FILEs (or standard input if no files are named, or the file name – is given) for lines containing a match to the given PATTERN . By default, ack prints the matching lines.

Ack can also list files that would be searched, without actually searching them, to let you take advantage of ack’s file-type filtering capabilities. Ack does not have a max-depth option


Examples of ack :

To check a particular directory under the root
[image: ]

[image: ]

[image: ]

[image: ]


Reference : Linux manual page

This article is contributed by Kishlay Verma. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



          
          
          
            


					
		
		Linux-Unix
Operating Systems
 linux-command
Unix/Linux

           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	













Quick Links









						Last Minute Notes – Operating Systems

				
						

				
			See Last Minute Notes on all subjects here.

Operating Systems: It is the interface between the user and the computer hardware.


Type’s of OS:


	Batch OS: A set of similar jobs are stored in the main memory for execution. A job gets assigned to the CPU, only when the execution of the previous job completes.

	Multiprogramming OS: The main memory consists of jobs waiting for CPU time. The OS selects one of the processes and assigns it the CPU time. Whenever the executing process needs to wait for any other operation (like I/O), the OS selects another process from the job queue and assigns it the CPU. This way, the CPU is never kept idle and the user gets the flavor of getting multiple tasks done at once.

	Multitasking OS: Multitasking OS combines the benefits of Multiprogramming OS and CPU scheduling to perform quick switches between jobs. The switch is so quick that the user can interact with each program as it runs

	Time Sharing OS: Time sharing systems require interaction with the user to instruct the OS to perform various tasks. The OS responds with an output. The instructions are usually given through an input device like the keyboard.

	Real Time OS : Real Time OS are usually built for dedicated systems to accomplish a specific set of tasks within deadlines.



Threads

A thread is a light weight process and forms a basic unit of CPU utilization. A process can perform more

than one task at the same time by including multiple threads.



	A thread has its own program counter, register set, and stack

	A thread shares with other threads of the same process the code section, the data section, files and signals.





A new thread, or a child process of a given process, can be introduced by using the fork() system call. A process with n fork() system calls generates 2n – 1 child processes.

There are two types of threads:




	User threads

	Kernel threads







Example : Java thread, POSIX threads.Example : Window Solaris.



        
          
          
          
        

            
 




	User level thread
	Kernel level thread



	User thread are implemented by users.
	kernel threads are implemented by OS.



	OS doesn’t recognized user level threads.
	Kernel threads are recognized by OS.



	Implementation of User threads is easy.
	Implementation of Kernel thread is complicated.



	Context switch time is less.
	Context switch time is more.



	Context switch requires no hardware support.
	Hardware support is needed.



	If one user level thread perform blocking operation then entire process will be blocked.
	If one kernel thread perform blocking operation then another thread can continue execution.





 

Process:

A process is a program under execution. The value of program counter (PC) indicates the address of the current instruction of the process being executed. Each process is represented by a Process Control Block (PCB).

 

Process Scheduling:

Below are different time with respect to a process.

Arrival Time:       Time at which the process arrives in the ready queue.
Completion Time:    Time at which process completes its execution.
Burst Time:         Time required by a process for CPU execution.
Turn Around Time:   Time Difference between completion time and arrival time.          
     Turn Around Time = Completion Time - Arrival Time

Waiting Time(W.T): Time Difference between turn around time and burst time.
     Waiting Time = Turn Around Time - Burst Time

 

Why do we need scheduling?

A typical process involves both I/O time and CPU time. In a uniprogramming system like MS-DOS, time spent waiting for I/O is wasted and CPU is free during this time. In multiprogramming systems, one process can use CPU while another is waiting for I/O. This is possible only with process scheduling.

 

Objectives of Process Scheduling Algorithm

Max CPU utilization [Keep CPU as busy as possible]
Fair allocation of CPU.
Max throughput [Number of processes that complete their execution per time unit]
Min turnaround time [Time taken by a process to finish execution]
Min waiting time [Time a process waits in ready queue]
Min response time [Time when a process produces first response]

 

Different Scheduling Algorithms

First Come First Serve (FCFS): Simplest scheduling algorithm that schedules according to arrival times of processes.

Shortest Job First(SJF): Process which have the shortest burst time are scheduled first.

Shortest Remaining Time First(SRTF): It is preemptive mode of SJF algorithm in which jobs are schedule according to shortest remaining time.

Round Robin Scheduling: Each process is assigned a fixed time in cyclic way.

Priority Based scheduling (Non Preemptive): In this scheduling, processes are scheduled according to their priorities, i.e., highest priority process is schedule first. If priorities of two processes match, then schedule according to arrival time.

Highest Response Ratio Next (HRRN) In this scheduling, processes with highest response ratio is scheduled. This algorithm avoids starvation.

Response Ratio = (Waiting Time + Burst time) / Burst time

Multilevel Queue Scheduling: According to the priority of process, processes are placed in the different queues. Generally high priority process are placed in the top level queue. Only after completion of processes from top level queue, lower level queued processes are scheduled.

Multi level Feedback Queue Scheduling:  It allows the process to move in between queues. The idea is to separate processes according to the characteristics of their CPU bursts. If a process uses too much CPU time, it is moved to a lower-priority queue.

 

Some useful facts about Scheduling Algorithms:

1) FCFS can cause long waiting times, especially when the first job takes too much CPU time.

2) Both SJF and Shortest Remaining time first algorithms may cause starvation. Consider a situation when long process is there in ready queue and shorter processes keep coming.

3) If time quantum for Round Robin scheduling is very large, then it behaves same as FCFS scheduling.

4) SJF is optimal in terms of average waiting time for a given set of processes. SJF gives minimum average waiting time, but problems with SJF is how to know/predict time of next job.



 



The Critical Section Problem

Critical Section: The portion of the code in the program where shared variables are accessed and/or updated.

Remainder Section: The remaining portion of the program excluding the Critical Section.

Race around Condition: The final output of the code depends on the order in which the variables are accessed. This is termed as the race around condition.

A solution for the critical section problem must satisfy the following three conditions:


	Mutual Exclusion: If a process Pi is executing in its critical section, then no other process is allowed to enter into the critical section. 

	Progress: If no process is executing in the critical section, then the decision of a process to enter a critical section cannot be made by any other process that is executing in its remainder section. The selection of the process cannot be postponed indefinitely. 

	Bounded Waiting: There exists a bound on the number of times other processes can enter into the critical section after a process has made request to access the critical section and before the requested is granted.



 

Synchronization Tools

Semaphores: A semaphore is an integer variable that is accessed only through two atomic operations, wait () and signal (). An atomic operation is executed in a single CPU time slice without any pre-emption.

Semaphores are of two types:



	
Counting Semaphore: A counting semaphore is an integer variable whose value can range over an unrestricted domain.

	Mutex: Binary Semaphores are called Mutex. These can have only two values, 0 or 1. The operations wait () and signal () operate on these in a similar fashion.


 

Deadlock

A situation where a set of processes are blocked because each process is holding a resource and waiting for another resource acquired by some other process.

Deadlock can arise if following four conditions hold simultaneously (Necessary Conditions) 

Mutual Exclusion: One or more than one resource are non-sharable (Only one process can use at a time)

Hold and Wait: A process is holding at least one resource and waiting for resources.

No Preemption: A resource cannot be taken from a process unless the process releases the resource.

Circular Wait: A set of processes are waiting for each other in circular form.

 

Methods for handling deadlock

There are three ways to handle deadlock

1) Deadlock prevention or avoidance: The idea is to not let the system into deadlock state.

2) Deadlock detection and recovery: Let deadlock occur, then do preemption to handle it once occurred.

3) Ignore the problem all together: If deadlock is very rare, then let it happen and reboot the system. This is the approach that both Windows and UNIX take.

Banker’s Algorithm:

This algorithm handles multiple instances of the same resource. 

Example: The table of the system at a given instant:




	Process
	Max
	Allocation
	Available
	Need-Max-Allocation





	
	A    B   C
	A    B   C
	A    B   C
	A    B   C



	P0
	0    0   1
	0    0   1
	
	0    0   0



	P1
	1    7   5
	1    0   0
	
	0    7   5



	P2
	2    3   5
	1    3   5
	
	1    0   0



	P3
	0    6   5
	0    6   3
	
	0    0   2



	Total = 
	
	2    9   9
	1    5   2
	





Memory Management:

These techniques allow the memory to be shared among multiple processes.

Overlays: The memory should contain only those instructions and data that are required at a given time.

Swapping: In a multiprogramming program, the instructions that have used the time slice are swapped out from the memory.


 

Memory Management Techniques:

1: Single Partition Allocation Schemes: The memory is divided into two parts. One part is kept for use by the OS and the other for use by the users.

2: Multiple Partition Schemes: 

Fixed Partition: The memory is divided into fixed size partitions.

Variable Partition: The memory is divided into variable sized partitions.

Variable partition allocation schemes:

First Fit: The arriving process is allotted the first hole of memory in which it fits completely.

Best Fit: The arriving process is allotted the hole of memory in which it fits the best by leaving the minimum memory empty.

Worst Fit: The arriving process is allotted the hole of memory in which it leaves the maximum gap. Note: Best fit does necessarily give the best results for memory allocation.


 

1. Paging: The physical memory is divided into equal sized frames. The main memory is divided into fixed size pages. The size of a physical memory frame is equal to the size of a virtual memory frame. 

2. Segmentation: Segmentation is implemented to give users view of memory. The logical address space is a collection of segments. Segmentation can be implemented with or without the use of paging.


 

Page Fault

A page fault is a type of interrupt, raised by the hardware when a running program accesses a memory page that is mapped into the virtual address space, but not loaded in physical memory.

 

Page Replacement Algorithms

First In First Out

This is the simplest page replacement algorithm. In this algorithm, operating system keeps track of all pages in the memory in a queue, oldest page is in the front of the queue. When a page needs to be replaced page in the front of the queue is selected for removal.

For example, consider page reference string 1, 3, 0, 3, 5, 6 and 3 page slots.

Initially all slots are empty, so when 1, 3, 0 came they are allocated to the empty slots —> 3 Page Faults.

when 3 comes, it is already in  memory so —> 0 Page Faults.

Then 5 comes, it is not available in  memory so it replaces the oldest page slot i.e 1. —>1 Page Fault.

Finally 6 comes, it is also not available in memory so it replaces the oldest page slot i.e 3 —>1 Page Fault.

 

Belady’s anomaly

Belady’s anomaly proves that it is possible to have more page faults when increasing the number of page frames while using the First in First Out (FIFO) page replacement algorithm.  For example, if we consider reference string      3     2     1     0     3     2     4     3     2     1     0     4 and 3 slots, we get 9 total page faults, but if we increase slots to 4, we get 10 page faults.

 

Optimal Page replacement

In this algorithm, pages are replaced which are not used for the longest duration of time in the future.

Let us consider page reference string 7 0 1 2 0 3 0 4 2 3 0 3 2 and 4 page slots.

Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots —> 4 Page faults

0 is already there so —> 0 Page fault.

when 3 came it will take the place of 7 because it is not used for the longest duration of time in the future.—>1 Page fault.

0 is already there so —> 0 Page fault..

4 will takes place of 1 —> 1 Page Fault.



Now for the further page reference string —> 0 Page fault because they are already available in the memory.

Optimal page replacement is perfect, but not possible in practice as operating system cannot know future requests. The use of Optimal Page replacement is to set up a benchmark so that other replacement algorithms can be analyzed against it.

 

Least Recently Used

In this algorithm page will be replaced which is least recently used.

Let say the page reference string 7 0 1 2 0 3 0 4 2 3 0 3 2 . Initially we have 4 page slots empty.

Initially all slots are empty, so when 7 0 1 2 are allocated to the empty slots —> 4 Page faults

0 is already their so —> 0 Page fault.

when 3 came it will take the place of 7 because it is least recently used —>1 Page fault

0 is already in memory so —> 0 Page fault.

4 will takes place of 1 —> 1 Page Fault

Now for the further page reference string —> 0 Page fault because they are already available in the memory.

 

This article has been contributed by Pushp Sra.


 

Please comment below if you find anything wrong in the above post or you wish to add something related to the topic.



          
          
          
            


					
		
		Operating Systems
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	










OEBPS/Images/f6c0f285768ea0a55b873721cf775837.jpg
top - 11:31:06 up 34 min, 1 user, load average: 0.56, 0.48, 0.45

Tasks: 185 total, 1 running, 184 sleeping, 0 stopped, © zombie

%Cpu(s): 69.7 us, 16.6 sy, 0.0 ni, 19.7 id, 0.0 wa, 0.0 hi, 6.0 si, 0.0 st

KiB Mem : 2048332 total, 620024 free, 846748 used, 581560 buff/cache

KiB Swap: 1225724 total, 1225724 free, 6 used. 1020508 avail Mem
PID USER s 5iM

1489 mayank 20  © 1606888 300376 74740 S 103.3 14.7  6: compiz

2469 mayank 20 © 619304 30292 25480 S 23.2 1.5 O: gnome-scre+
824 root 20 @ 348852 88060 32632 S 15.9 4.3 1: Xorg

1307 mayank 20 @ 517480 25812 21380 S 3.6 1.3 0: banfdaemon
1236 mayank 20 @ 43808 4444 2968 S 3.3 0.2 0: dbus -daemon
1374 mayank 20 @ 565796 38772 24952 S 2.6 1.9 0: unity-pane+
1815 mayank 20 @ 656180 36232 28556 S 2.3 1.8 0: gnone- tern+
1297 mayank 20 @ 358360 10620 7112 S 2.0 0.5 0: ibus-daemon
1326 mayank 20 @ 472292 29448 24484 S 1.0 1.4 0: ibus-ui-gt+
1353 mayank 20 @ 656216 45152 32756 S 1.0 2.2 0: hud-service
1887 mayank 20 @ 908040 47960 25820 S 1.0 2.3  0: sublime_te+
2457 mayank 20 © 41800 3740 3184 R 6.7 0.2 0: top

7 root 20 o o o @5 0.3 0.0 0 rcu_sched

1248 mayank 20 @ 86348 8940 8336 S 0.3 0.4 0: window-sta+
1275 mayank 20 @ 32848 1640 1240 S 0.3 0.1 0: upstart-db+
1381 mayank 20 @ 42896 3892 3448 S 0.3 0.2 0: dbus -daemon
1535 mayank 20 @ 1354676 46448 35016 S 0.3 2.3  O: nautilus






OEBPS/Images/c37b4c538f3c780e261960709aa6f167.jpg
© @ mayank@mayank-VirtualBox: ~/Desktop

mayank@mayank-VirtualBox:~/Desktop$ diff -q 1 2
Files 1 and 2 differ
mayank@mayank-VirtualBo:

~/pesktops I






OEBPS/Images/f5c89016522a26c539b85ad77c9287d9.jpg
Operating CPU

System

‘Web Browser





OEBPS/Images/e69273e642d541fe3e355a5476157d9c.jpg





OEBPS/Images/fc2046ae9ac105647b365f79fb1baff6.jpg
Logical Address

Physical Address

CPU P d
PageNo. Frame No.
o 00
Pageiny_Yes
cache?, 2 i
LB hit
7 1
s
No i
o
1
2
L 10
4 LB miss
5
6
7

Page Table or Page Map Table






OEBPS/Images/a4bace0490c3462c4637f14e20e0d4d4.jpg
Allocation MAX Available
Process

ABC ABC ABC
Po 010 753 3 3 2
P1 200 322
P2 30 2 9 0 2
P3 2 11 222
P4 00 2 433






OEBPS/Images/c079451c9d30759a7bc67bb93e099797.jpg
=6

Total Page faults





OEBPS/Images/dba675622b0f95c888e241678f8cb7f6.jpg
mayank@nayank-VirtualBox:~$ cat /proc/meminfo
MemTotal: 2048332 kB
MemFree: 653044 kB
MemAvailable: 1056824 kB
Buffers: 45796 kB
Cached: 480700 kB
SwapCached: o kB
Active: 1035404 kB
Inactive: 245340 kB
Active(anon): 755212 kB
Inactive(anon): 7664 kB
Active(file): 280192 kB
Inactive(file): 237676 kB
Unevictable: 32 kB
Mlocked: 32 kB
SwapTotal: 1225724 kB
SwapFree: 1225724 k8
Dirty: 20 kB
Writeback: o kB
AnonPages : 754284 kB
Mapped: 183780 kB
Shmen: 8624 kB
Slab: 57204 kB
SReclaimable: 35160 kB






OEBPS/Images/a31439dc97b744581fd7029be28dbfa7.jpg
Allocation

Request
Process Resource Resource
R1 R2 R1 R2
P1 1 0 ) 1
P2 0 t L 0
P3 1 0






OEBPS/Images/ca33e59e8a6745787447102234c6acd5.jpg
mayank@mayank-VirtualBox:~$ leave 0537
Alarm set for Mon Jun 5 17:37. (pid 3474)
Just one more minute!

mayank@mayank-VirtualBox:~5 Time to leave!





OEBPS/Images/ba4eb35c6a78dc7e0385f95d38804c54.jpg
Client Machine Server Machine

Server

Call Becse Return

RPC Runtimg

Receive  Send

Call Packet

Result Packet

Implementation of RPC mechanism





OEBPS/Images/dd92eaabe3d09b00719551b29c9171f1.jpg





OEBPS/Images/d2baee09a34f79e9b81b3a883cc39970.jpg
11 12 13 14

10

a

age frames

FAULTS






OEBPS/Images/f1cec1e9ea764b4e2a741358e8003d6c.jpg
File B
1 2 3 4
6 7 8 g
11 12 13 14
16 17 18 9
1
21 22 23, 24 8
3
14
2 ? 2 2
26 7 28 29 28
31 32 33 34

File allocation table

File name Index block






OEBPS/Images/f760562ab5559539b49645b58663f3b8.jpg
mayank@nayank-VirtualBox:~5 ncal

June 2017
su 411 18 25
Mo 12 19 26
Tu 6 13 20 27
e 714 21 28
Th 1 8152229
Fr 2 916 23 30

Sa 3 10 17 24
mayank@mayank-VirtualBox:~$ [l





OEBPS/Images/0ab00db00cf531184f2fb9919ea52dc5.jpg
Page Table





OEBPS/Images/7fba766013162846b2bc44e09b45ef49.jpg





OEBPS/Images/13e13f09e1a4bf07a85ef72f591cd8b4.jpg
Figure 1 - Shared Memory and Message Passing





OEBPS/Images/fb29e993c23460bebffee36f74427669.jpg
nnnnnnnnn

...........





OEBPS/Images/80b2756031fadfa63527584598f63eeb.jpg
DRAM

SRAM

1. Constructed of tiny capacitors
that leak electricity.

1.Constructed of circuits similar to D

flip-flops.

2.Requires a recharge every few

milliseconds to maintain its data.

2.Holds its contents as long as power
is available.

3.Inexpensive.

3.Expensive.

4. Slower than SRAM.

4, Faster than DRAM.

5. Can store many bits per chip.

5. Can not store many bits per chip.

6. Uses less power.

6.Uses more power.

7.Generates less heat.

7.Generates more heat.

8. Used for main memory.

8. Used for cache.

Difference between SRAM and DRAM






OEBPS/Images/d10cd4cbfe691c961a7677ddf7e2ef13.jpg
Application

VES, System calls

IPC, File System

Scheduler vitual Memory

Device Driver, Dispatcher

Hardware

Monolithic Kernel






OEBPS/Images/cbfd7c6c62b044a7f65fb7ff4248e6a5.jpg
SENDING
PROCESS

MESSAGE
PASSING
MODULE

RECEIVING
PROCESS

MESSAGE
PASSING
MODULE

TYPE

MESSAGE

MESSAGE QUEUE






OEBPS/Images/f6e7ab73ad9b77d1cc65d2d74cea9bfa.jpg
137:-' 19 1 -~/@¥W/ass3.c
302:> ~/EEY/ass6/user1.c
386:> ~ /By talk2.c

a40:> ~/E8Y/talkl.c

545:> ~/[E8/ass3.c

.bash_history

58:cd

75:cd

139:cd

175:cd
examples.desktop
4:Name=Fples

28:Name[en_AU
29:Name[en_CA
30:Name[en_GB.
91:Name[sco] ples

122:Commen ple_content for Ubuntu

146: Conment[en_AU]=] ple content for Ubuntu
147:Conment[en_CA ple content for Ubuntu
148: Conment[en_GB’ ple content for Ubuntu
207: Conment[sco]-| ple content fur Ubuntu
maverick@maverick-Inspiron-5548:~5 I

ples
ples
ples






OEBPS/Images/0327c9b5da99b4f74bdf45681e500e99.jpg
Max

R2 R3

R1

Allocation

R3

R1

Process

P1

P2

P3

P4






OEBPS/Images/a394bef988e1df5bb945720df72f3583.jpg





OEBPS/Images/2c35d144fa4d6b7a1db1a02750d38601.jpg
Number of frames = Physical Address Space / Frame size = 4K / 1K =!

Number of pages = Logical Address Space / Page size= 8K /1K=8) =23

Togical Address|

Physical Address

) 13 bit ) 12 bit i
3 10 R2 4 10
cPU P ‘ d ‘ f d
[page number]
P f [frame number]
B =
access 0 0
page 1
number| 2 1
3
j (2):0=110), —
: 2 29 words
L 10
6 B 20
7
frame number] B
Page Map Table (PMT) i banary Physical Memory

or Page table






OEBPS/Images/92cb18be9de73139e58083317cd60636.jpg
14

13

12

11
a

10

1
a

age frames

FAULTS





OEBPS/Images/17ec7248aea12a72501e0f520da7244f.jpg
T





OEBPS/Images/18ef51f5723de7373ceadba0c504645b.jpg
CPU Utilzation

Degree of Multiprogramming





OEBPS/Images/f276d2898661dac4fe76de21aefe3e66.jpg
Available

B

Max

B C
5
2
0

2
3

2

9

Allocation

B
1

200

30
1

00

2

2

Process

Po

Py

P2

Ps

Pa






OEBPS/Images/152655c3ecf68da21074d6d9dddd948c.jpg
Priority|

127 Time





OEBPS/Images/7172af3e5d740ee221945388da2c2dec.jpg
Applications

'

RTOS- Kernel

BSP

i

Custom Hardware






OEBPS/Images/b42f56e53676be3e677ef670cb53aa70.jpg
Track Sector Track

Disk Sector





OEBPS/Images/05c3a853881e3632370ca6fa88a0b553.jpg





OEBPS/Images/6dca901b061b40294807609cda8c2154.jpg
do {

entry section

critical section

exit section

remainder section

} while (TRUE);






OEBPS/Images/e8fcb3220f9e3e2af4269f9625cabe2c.jpg
Philosopher

~,

PN | —
p noodles
Vo

chopstick





OEBPS/Images/84e3c505de9aee9141cad43e1347511b.jpg





OEBPS/Images/6ca74b2f6cf5df7faa91a88cbefafd17.jpg
Free DBA

Disk Block






OEBPS/Images/8cae0da09c7b7a1fd5bafa3dac040dd3.jpg
grep: Desktop: Is a directory
grep: Documents: Is a directory
grep: Downloads: Is a directory

grep: kv: Is a directory

maverick@maverick-Inspiron-5548:
maverick@maverick-Inspiron-5548:
maverick@maverick-Inspiron-5548:
maverick@maverick-Inspiron-5548:

maverick@maverick-Inspiron-5548:

~$ grep -- foo
~$ grep -- foo
~$ grep -- foo
~$ grep -- foo

~s 1

Desktop
Documents
Downloads

kv





OEBPS/Images/e04dba56807f51fd48800238a868e8f0.jpg
Total Resources

R1
10

R2
5

R3






OEBPS/Images/f9c7f8222c679eca7a430db7d9c32ade.jpg
Process

P3
P2
P1

P3
P2
P1

- [ o)
[ [ -(end)

Round-Robin Scheduling i

.(yield) .(yield) -(end)
] am W
(] IR B

Round-Robin Scheduling (with yield)

CPU time(in clocks)





OEBPS/Images/23f3bd02f78239cb502459d72938c814.jpg
mayank@mayan|
This is second file
Geeks for Geeks
mayank@mayank-VirtualBo:
mayank@mayank-VirtualBo:
This is second file
Geeks for Geeks
mayank@mayank-VirtualBox:~/Desktops [l






OEBPS/Images/83f77fb8777d3a4a6ce922274c3ff7ec.jpg
Root | 2KB
v
4KB| A 6KB| B C | 8KB
8KB ] 2KB 4KB
6KB| D E F G






OEBPS/Images/b661ad17e8dc2aa5827647856e9dca98.jpg
CPU

Logical Address

s d

segment Table

d{ Base Add

Base Add. + Limit

Physical Address Space





OEBPS/Images/726c96f231863d81be302bbb80051815.jpg
page is on
backing store

operating
system

reference

®

load M |« S [

restart | page table
instruction|
free frame |«
reset page bring in
table missing page
physical

memory





OEBPS/Images/01e4ba0c04ccab3176275dba0245ceb2.jpg
do {

flag[i] = TRUE ;
turn=j;
while (flag[j] && turn==j);

critial section

flagli] = FALSE ;

remainder section

} while (TRUE) ;






OEBPS/Images/58a299035560dfc2d8534c38dfb8e4af.jpg
1. SRAM has lower access time, so it s faster
compared to DRAM.

1. DRAM has higher access time, so itis
slower than SRAM.

2. SRAM is costlier than DRAM.

2. DRAM costs less compared to SRAM..

3. SRAM requires constant power supply,
which means this type of memory consumes
more power.

3. DRAM offers reduced power consumption,
due to the fact that the information is stored

in the capacitor.

2. Due to complex internal circuitry, less
storage capacity is available compared to the
same physical size of DRAM memory chip.

4. Due to the small internal circuitry in the
one-bit memory cell of DRAM, the large
storage capacity is available.

5. SRAM has low packaging density.

5. DRAM has high packaging density.






OEBPS/Images/ad62e9e24ee8790ce311c3ea5d62aac1.jpg
Caller (client process) Callee (Server process)
1 waiting for request

Request message
(contains remote
procedure's parameter)

\ i Receive request and

start procedure execution

Call procedure

waiting for reply
Procedure executes

/ Y Send reply
'
'

Reply message
(contains result of
procedure execution)

Resume execution

aiting for next request

Remote procedure call model





OEBPS/Images/105041b36ed398b0a7935639c278dee0.jpg
P1is holdingR1 P2 is holding R2

P3 is waiting for R1 P3 is waiting for R2

R1 R2

SINGLE INSTANCE RESOURCE TYPE WITHOUT DEADLOCK





OEBPS/Images/f408a85c4160bf8249999fa077bddfbf.jpg
maverick@maverick-Inspiron-5548:~5 crontab -1
Edit this file to introduce tasks to be run by cron.

Each task to run has to be defined through a single line
indicating with different fields when the task will be run
and what command to run for the task

To define the time you can provide concrete values for

minute (n), hour (h), day of month (dom), month (mon),

and day of week (dow) or use '*' in these fields (for 'any').#
Notice that tasks will be started based on the cron's system
daemon's notion of time and timezones.

Output of the crontab jobs (including errors) is sent through
email to the user the crontab file belongs to (unless redirected).

For example, you can run a backup of all your user accounts
at 5 a.m every week with:
85 * * 1 tar -zcf /var/backups/hone.tgz /home/

For more information see the manual pages of crontab(5) and cron(8)

RERRRRRRARRRRERRERRERER

m b don mon dow  command
maverick@maverick-Inspiron-5548:~$ I





OEBPS/Images/19d03965c06f7189f6c02a3ecbcb1d90.jpg
Memory Allocation before and after allocation of 16 M of memory

8

22

20

Last 14

Allocated

L.

10|

24

Before
Allocation

First
Fit
Best 6
Fit
4
Allocated
Block
O Free
Block
me "
‘Allocation
10]
Next
Fit
8

After
Allocation





OEBPS/Images/f99483fc1acc3118342c5a9b0818ffa3.jpg
Scheduling Example

Thread | Arrival Time | CPU Burst Length
A 0 3
B 2 6
c 4 4
D 6 5
E 8 2






OEBPS/Images/b0432479a4e6e0c870016edd639fc9bf.jpg
Four segment registers

Physical

- Highest address

| <¢—Top of Extra Segmet

InBIU
Es | 7 0o | o 0
Cs| 3 0 0 0
ss | s o] o 0
pDs | 2 o | o 0

*

Segment registers hold
the upper 16 bits of the
starting addresses of
four memory segments
that 8086 is working with
at any particular time.

|<4— Bottom of Extra Segment

<&— Top of Stack Segment

@ Bottom of Saick Segment
<a— Top of Code Segment

4— Botiom Of Code Segment

|<4— Top of Data Segment

addess memory
FFFFFH
TFFFFH
A
s Extra
2| | Segment
M
70000 H
SFFFF i
g Stack
2| | segment
L—— 50000 H
3FFFFH
s|| Code
3 Segment
\
- 30000 H
2FFFFH
A
s Data
3| | Segment
20000 H

|<¢— Bottom of Data Segment





OEBPS/Images/679ce71f382219e2ca09a0a8967f4cc2.jpg





OEBPS/Images/62591ffacf1ce3965b0a7af8a7c0820c.jpg
root@maverick-Inspiron-5548:/home/maverick# find / -maxdepth 2 -name passwd
/etc/passwd

root@maverick-Inspiron-5548:/home/maverick# [l





OEBPS/Images/86b6504d005b4566dc372340d9751059.jpg





OEBPS/Images/64d500d24baa820a70e448273d511c54.jpg
©® @ siddhant@siddhant-Aspire-R3-131T: ~

siddhant@siddhant-Aspire-R3-131T:~§ ./a.out
using resource.
using resource.
using resource.
using resource.
using resource.
using resource.
using resource.
using resource.
siddhant@siddhant-Aspire-R3-1317:~§ [l

NS auWNMNE=





OEBPS/Images/e8fc342b5a86a8de384ec9a27a48887b.jpg
©©© overide@Atul-HP: ~/Mydata/project/python

Joveride@atul-Hp: ~/Mydata/project/python/projects/machine_learning/Dsfromscratch/hypothe
siss jump python
overide@Atul-HP:~/Mydata/project/pythons Il






OEBPS/Images/302c032be612703ca76ab38c8906fc7d.jpg





OEBPS/Images/57d9149decf4ab398a22f17ed61976ea.jpg
Process State

Program Counte

Open File Lists

Misc. Accounting
and Status Data

Process Control Block





OEBPS/Images/d94f18132e947e270c30ecd836d1a2b7.jpg
tmp/crontab.7jJqlD/crontab

@l Edit this file to introduce tasks to be run by cron.

g
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Each task to run has to be defined through a single line
indicating with different fields when the task will be run
and what command to run for the task

To define the time you can provide concrete values for

minute (n), hour (h), day of month (dom), month (mon),

and day of week (dow) or use '*' in these fields (for 'any').#
Notice that tasks will be started based on the cron's system
daemon's notion of time and timezones.

Output of the crontab jobs (including errors) is sent through
email to the user the crontab file belongs to (unless redirected).

For example, you can run a backup of all your user accounts
at 5 a.m every week with:
85 * * 1 tar -zcf /var/backups/hone.tgz /home/

RY write out [0 where Is cut Text [W Justify [ Cur Pos
Read File 3\ Replace Uncut Textl To Spell [





OEBPS/Images/2a90bb48de81e616e64cde8b1d576231.jpg





OEBPS/Images/73c92d727572859d391e17d4779ff827.jpg
«—— Disk Access Time — >

«———o-— — Disk Response TIm¢ —m8 —M





OEBPS/Images/f3da36445424445a74da1617ad4078a5.jpg
Resource allocation Graph showing
number of instances of a resource
allocated to a process.





OEBPS/Images/d982ad8497b6c1583020b217266f19d2.jpg
Philosopher






OEBPS/Images/efae9567acf12aa6a2f63fe0b6b5f72f.jpg
grep: ./Exam/ass3: Is a directory

grep: ./Exam/ass5: Is a directory

grep: ./Documents: Is a directory

grep: ./.gconf: Is a directory

grep: ./.gconf/apps: Is a directory

grep: ./.cache: Is a directory

grep: ./.cache/logrotate: Is a directory

-/
-/
-/
-/
grep: ./.cache/fontconfig: Is a directory
grep: ./.cache/winetricks: Is a directory
grep: ./.cache/google-chrome: Is a directory
grep: ./.cache/thunderbird: Is a directory
grep: ./.cache/ibus: Is a directory
grep: ./.cache/thumbnails: Is a directory
grep: ./.cache/update-manager-core: Is a directory
grep: ./.cache/mozilla: Is a directory
grep: ./.cache/evolution: Is a directory
grep: ./.cache/shotwell: Is a directory
grep: ./.cache/pip: Is a directory
grep: ./.cache/compizconfig-1: Is a directory
grep: ./.cache/upstart: Is a directory
grep: ./.cache/gnome-screenshot: Is a directory
grep: ./.cache/gstreamer-1.0: Is a directory
grep: ./.cache/unity-tweak-tool: Is a directory
grep: ./.cache/gnome-software: Is a directory
-/

grep: ./.cache/wallpaper: Is a directory
maverick@maverick-Inspiron-5548:~$ [|






OEBPS/Images/8bf1ecdc5f3cd66f24a79dd02ef7f637.jpg
ayank@mayank-VirtualBox:~/Desktop$ passwd
changing password for mayank.

(current) UNIX password:

Enter new UNIX password:

Retype new UNIX password:

You must choose a longer password

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfull
mayank@mayank-VirtualBox:~/Desktop$






OEBPS/Images/478613943050192d62455d1dabd854e5.jpg
Client 1 Client 2

File Server

Client 3 Client 3





OEBPS/Images/f72496867a5b005126b54c68df953fbb.jpg





OEBPS/Images/012bc75fb169c0f5da122a60d7ead003.jpg
Processes Bursttime | Arrival Time | Service Time

Po
P1

P2
P3






OEBPS/Images/9012297e4f2f06154954f29c45df8c70.jpg
Directory

file start end
jeep 9






OEBPS/Images/bb2b556c3f87ccad6ad2351d37d675d2.jpg
Waiting
For

Resource 1

Assigned

Assigned
to

Waiting
For

Resource 2





OEBPS/Images/8fe4c31c0c3e60ddb4f432c1687fe1c6.jpg
Round Robin Example:

Suppose time quantum is 1 unit.

[p1 2 [p3 [Pt [z [p3 [Pt 2 [p3 [p2 |
0 10

P1 waiting time : 4 The average waiting time(AWT) : (4+6+6)/3=5.33
P2 waiting time: 6

P3 waiting time: 6





OEBPS/Images/6b38b275c2f43bde417cf925d48c6e42.jpg
maverick@maverick-Inspiron-5548:~$ find . -naxdepth 2 -exec grep foo {} \;
Is a directory

./Music: TIs a directory

.gnupg: Is a directory

.gnupg/private-keys-vi.d: Is a directory

.gnupg/S.gpg-agent: No such device or address

.mozilla: Is a directory

.mozilla/firefox: Is a directory

.mozilla/extensions: Is a directory

: Is a directory

./.pki: Is a directory

./.pki/nssdb: Is a directory

./FALCONN-1.2: Is a directory

./FALCONN-1.2/external: Is a directory

./FALCONN-1.2/src: TIs a directory

./FALCONN-1.2/examples: Is a directory

./FALCONN-1.2/doc: Is a directory

./Public: Is a directory

file ./google-chrome-stable_current_amd64.deb matches

./.thunderbird: Is a directory

./.thunderbird/Crash Reports: Is a directory

./.thunderbird/huojdbaj.default: Is a directory

./Templates: Is a directory

./.compiz: Is a directory

./.compiz/session: Is a directory

./Desktop: Is a directory

=






OEBPS/Images/7a9bf69a9cbbd61758ae3c932d679ae2.jpg
Types of memory
i

|E'AE|

ROM

[sRAM]

[DRAM] [PrROM]

EPROM

[EEPROM]

Classification of computer memory





OEBPS/Images/8ea46d1605c93d0431099a703cc575de.jpg





OEBPS/Images/798a5b369facd0d223c5b95cbf7bba53.jpg





OEBPS/Images/a52086fca507ba05752b0263b34f51e0.jpg
Recent

Home
Desktop
Documents
Downloads
Music
Pictures
Videos

Trash

max_loot.py

@

quick_hullpy

L]

knearest.py

L]

min_offerings.py

L]

sumtree.py

L]

longest_even_
length_sum.py

L]

pattern.py





OEBPS/Images/19e93d08239ccc4bbbc49176112b08a8.jpg





OEBPS/Images/3fa404816d77a60f1117582357d30978.jpg
Suspend Resume

Ready
Suspended

Terminate

Suspend Resume

Blocked
Suspended





OEBPS/Images/abdbcefc2ecbf140bbc93b1fc502c691.jpg
Basic MBR Disk

Master Boot code

1st Partition Table
Entery

2nd Partition Table
Entery

3rd Partition Table
Entery

4th partition Table
Entery
0x55 a

Primary Partition (C:)
Primary Partition (E:)

Primary PArtition (F:)

Logical Drive (G:)

Logical Drive (H:)

Logical Drive (n:)

Partition
[~ Table

Extended
[~ Partition

Master
| Boot
Record






OEBPS/Images/7f7d847f1f67e94f60985a266466ce70.jpg





OEBPS/Images/896249bb9ad53360b9d15572de081ee6.jpg
m=3,
Work = Available

Work =|[2(3 [0

Step 1 of Safety Algo

Fori

Need;=0,1,1 53
Finh (31 -l and N, < o

50 P, must be keptin safes sequence

7,45 01,0

Step 3
Work = Work + Allocation, v

\Work=1{7 |5 |5
61 2 3 4

0 1 2 3 4 £
i Finish =
Finish = [falseJfalselfalsefalselfalse Work ~ SR s Aoz, sera| | |finsh= [trvefuruelfalseliruetrve
£ 2 A B_ON L2
Fori-0 * Step 2 work={7 43 o
Needo =7,4,3 (3230 =1 2 3 4 R
Finish [0 is false and (Needo > Wor Finish - [Fabselruelfaselirucla Finish 2} i false and (Needs< Wo
So Po must wait But Need < Work fnish = [1ase] Fsejtruellase So P, must be kept in safe sequence
£ - -
Fori=1 v Step 2 Fori v Step 2
7,55 3,0,2 Step 3
Need1=0,2,0 020 %30 Need,=4,3,1 Work = Work + Allocation, "
Finish [1];;2? and ‘Need, < Worl Finish [4] ~ false and ) B C
S0Py mu eptin sate sequence So Pxmust be kept in safe sequence Work=10]5 | 7
L2 > 0 1 3 4
2,30 3,02 Step 3 743 0,07 o
Work = Work + Allocation; Work = Work + Allocation Step 3 Finish= [true [true[true[trueftrue
m 3
Work =15 L3 ‘/21\ s Work=([7 [4 |5 Finish [l =truefor0<i <n 54
Hence the system is in Safe state
Finish = [false]truelfalse[false]false] i 0 t 2 3 /4
= Fini false|true [false|true |true;
For Step 2 C_ The safe sequence is P1,P3, Pz ,Po,Py
Fori=0 v Step 2
Need,=6, 0,0 Needo =7,4,3 S

So P2_must wait

.0, o
Finish [2] is false an

Finish [0 is false and Need < Wor}
'So Pymust be kept in safe sequence






OEBPS/Images/08d4cd8c4c3ef403abb5bb2f7b2c4a65.jpg
andres@andres: ~/Programs/0S

rch Terminal Help
andres@andres:
: Geeks for Geeks

Data written in memory: Geeks for Geeks

andres@andres:

andres@andres: ~/Programs/0S

andres@andres: $ . /reader
Data read from memory: Geeks for Geeks

andres@andres: S D





OEBPS/Images/5f54b4c67a87a04b50c9afdc4fe9ad36.jpg
ABC
Request,= 1,0,2

To decide whether the request is granted we use Resource Request algorithm

Step 1 B . Step 3
02 152V Available = Available — Request: P
questy < Need, Allocation, = Allocations + Request:

Need: = Need: - Request:

Step2
;0,2 3,3, Process | Allocation Need Available
uest; < Availab
AB C A B C A B C
P 010 7 43 23 0
Py 3 025 0 2 0>
P2 302 6 0 0
Ps 211 0 1 1
Pa 002 4 3 1






OEBPS/Images/eb31dc54fd748aeeacef8a3db8482afc.jpg
maverick@maverick-Inspiron-5548:~$ grep -- foo *
grep: Desktop: Is a directory

grep: Documents: Is a directory

grep: Downloads: Is a directory

grep: Exam: Is a directory

grep: FALCONN-1.2: Is a directory

Binary file google-chrome-stable_current_and64.deb matches
grep: kv: Is a directory

grep: Music: Is a directory

grep: Pictures: Is a directory

grep: Public: Is a directory

grep: Templates: Is a directory

grep: Videos: Is a directory
maverick@maverick-Inspiron-5548:~5 [l






OEBPS/Images/32ab8f5ef2f7da3a561f268c65f4510b.jpg





OEBPS/Images/3c62287ea8ef59ad9bd658e0a7731e5b.jpg
File A
‘mimE B B
5 6 7 8 o[l
File B
ol [
15 16 17 15[ o
File C

File allocation table

File name _ Start block Length
File A 2 3
File B 9 5
File C 18 8
File D 30 2
File E 26 3






OEBPS/Images/aee02db2cc5a8cc8fe7cc4da475854fe.jpg
mayank@mayank-VirtualBox:~/Desktop$ locate BST
/home/mayank /Desktop/may fcp/BST.c

/home /mayank /Desktop/may fcp/BST1.c

/home /mayank /Desktop/nay fcp/ModifiedssT.c
mayank@mayank-VirtualBox:~/Desktops I





OEBPS/Images/883fe4628280fc27b034cb0c181f03e1.jpg
R1

P1is holdingR1 P2 is waiting for R1

P2 is holding R2
P1 is waiting for R2

P3is holding R2

R2

MULTI INSTANCES WITHOUT DEADLOCK





OEBPS/Images/abc3cab754ee6b456869c0664161cf39.jpg





OEBPS/Images/a1967a1b0c5f5b1267f979dd5f7c9757.jpg





OEBPS/Images/603ae90c83d9b01e104474eb1ac70c0f.jpg
User process

User process executing retumn from system call

Kernel process Trap mode return mode.
bit=0 bit=0

execute system call






OEBPS/Images/cf9c0af30b70a9f6c2fc9657c4cce5b2.jpg
user mode

(mode bit = 1)
set mode bit = set mode bit = 1
before switching before switching
1o kemel mode 1o user mode

kernel mode

(mode bit = 0)






OEBPS/Images/9984cde915adbf4c5394fdf54708bb42.jpg
master file
directory @

user file

Directory mn






OEBPS/Images/32e05abb4aaf22ea66c8eb0b4a1d7e4f.jpg
irtualBo;

mayank@nayan /Desktops diff 1 2
1,2c1,2

< Geeks for Geeks

< This is first file

\ No newline at end of file

> This is second file

> Geeks for Geeks

\ No newline at end of file
mayank@nayank-VirtualBox:~/Desktops Time to leave!

That was the last time I'll tell you. Bye.





OEBPS/Images/b89269381fbccd9f2846a2daea9371ef.jpg
Job 1

Job 2

>{ Batch

g

Operating
System

Batch

H

Jobn

Batch

[1

CPU






OEBPS/Images/3316ceb71f35c192444b6ab32ccaed85.jpg
Size Microkernel is It is larger than
smaller in size microkernel

Execution Slow Execution Fast Execution

Extendible It is easily It is hard to extend

extendible

Security If a service If a service crashes,
crashes, it does the whole system
effects on working  |crashes in monolithic
on the microkernel |kemel.

Code To write a To write a monolithic
microkernel more kemel less code is
code is required required

Example QNX, Symbian, Linux,BSDs(FreeBS
L4Linux etc. D,OpenBSD,NetBS

D)etc.






OEBPS/Images/01e30b291bb1b259bb5b1bc422b1118b.jpg
Edge

Assign
Edge

l

Request
Edge

©
I






OEBPS/Images/04cdbf1b3c6f753c4a47c6b55540eb01.jpg
©© O overide@Atul-HP: ~/Mydata/project/python
~/Mydata/project/python/projectslnach\ne learning/Dsfromscratch/hypothe

Ay
overtde@ntul HP ~/Hydata/project/python$ 1






OEBPS/Images/a5f4f28bf7343e4ae4574fd2701108de.jpg
VLC Media Player

t1,t2,t3 are threads






OEBPS/Images/e1150567b10645ca3665fb44aacdad07.jpg
fusiened

waitng F

Resource 2





OEBPS/Images/6b02720af52b8e512ccefbacc3b47ce3.jpg
Pl 10
P2 5
P3 8
P1 | P3 | P2
0 10 18 23






OEBPS/Images/b7632c3b008330af8ef416f9a2c170e1.jpg
TLB accesstime =c

[When hit occurs]

miss ratio * (cHm+m)

N s

[For main memory access






OEBPS/Images/8757862b4e3ec9862808f0379f901e49.jpg





OEBPS/Images/29256d672c1e17da76f5bb8983c3e070.jpg
I T






OEBPS/Images/22ae60752f6df56f11d1e7fd2dd6f9c0.jpg
Process Max “Allocation ‘Available Needed
RL R2 R3 RL R2 R3 RL R2 R3 RL R2 R3
P1 7 5 3 0 1 o0 3 3 4 7 4 3
P2 3 2 2 2 0 0 12
P3 5 0 3 0 o 6 0 0
2 2 2 o 2 1 1 0 1 1
7 2 3






OEBPS/Images/e055937a4e230938622038eee4717bc4.jpg
maverick@maverick-Inspiron-5548:~$ ack -n Desktop
.dnrc

Hioesktoo)

exanples.desktop
B Entry]
maverick@maverick-Inspiron-5548:~$ I






OEBPS/Images/b029689aa5642e2757baa35f6c569df7.jpg
P11s holding R1

(+1)

P1is waiting for R2

R2
HOLD AND WAIT





OEBPS/Images/f78d29332b2074dd66ebad5c8ac0f3fa.jpg
18 KB fits best here





OEBPS/Images/babcc209d337345f7564ce52264a00a3.jpg
F Optional Information ﬁ

Frame Number Present/Absent | Protection |Reference | Caching| Dirty

PAGE TABLE ENTRY





OEBPS/Images/fdd8b52f17589284dc7dc73918134f35.jpg
maverick@maverick-Inspiron-5548:~$ find . -maxdepth 1 -exec grep foo {} \;

Is a directory

./Music: Is a directory
./.gnupg: Is a directory
./.mozilla: Is a directory
./kv: Is a directory

./.pki: Is a directory
./FALCONN-1.2: Is a directory
./Public: Is a directory

File ./google-chrome-stable_current_ande4.deb matches
./-thunderbird: Is a directory
./Templates: Is a directory
./.compiz: Is a directory
./Desktop: Is a directory
./.wine: Is a directory
./Pictures: Is a directory
./.config: Is a directory
./Videos: Is a directory
./Downloads: Is a directory
./.gnome: Is a directory
./.local: Is a directory
./Exam: Is a directory
./Documents: Is a directory
./.gconf: Is a directory

grep: ./.cache: Is a directory
maverick@maverick-Inspiron-5548:~5 ||






OEBPS/Images/b83c4178c4ce80eec9d5ef1ae683ce64.jpg





OEBPS/Images/28d9dbf7439b9908a34e240a00846b2e.jpg
P1

P2

P1

P2

P3

P4

P3

10

15

20





OEBPS/Images/ddedeeb8f25725b7d594494cb6a24d88.jpg
P(Semaphores){

while(! ); /* wait until s=0 */
s=s-1;
}
Note that there is
V(Semaphores){ Semicolon after while.
s=s+1; The code gets stuck

} Here while sis 0.






OEBPS/Images/583af49b80c3e79149b38255006cc8e7.jpg
(a) vi,s;<m (b) vi,s;<n

(c) is,<(m+n) (d) is,<(m*n)
i=1 i=1





OEBPS/Images/9975ee4bdc3da86b0502fcf8e78918bb.jpg
P1is holdingR1 P2 is waiting for R1

P2 is holding R2

P3is holding R2

P1 is waiting for R2

R2

MULTI INSTANCES WITH DEADLOCK





OEBPS/Images/5923db0a6faad5e12f58b32b4328ed37.jpg
Many to Many Mod

User Threads

Kernel Threads





OEBPS/Images/dbe20742554e485a6dac9f0f7b2fe953.jpg





OEBPS/Images/6edfc979459d34592c551c2b44a431bd.jpg
m=3,n=5
Work = Available

Step 1 of Safety Algo

Work=(3]3 |2
D 29 8
Finish = | falselfalse|false|false|false,

‘, Step 2

Finish [3] = false and

S0 P, must be kept in safes: sequence

& 3.2 21,1 Step 3
Work = Work + Allocations
B

Fori Step 2

*
Needo =7, 4,3
Finish [0] is false and Needo

So Po_must wait But Need < Work

Work=\7[4 |3
01 2 3 4

Finish = [false[true[falseftrue]false]

745 01,0 Swep3
[Work = Work + Allocation,

\Work={7 |5 |5
Zaseis: 2l e

Finish = [true [true[false[true]true

Fori=2
Need;=6,0,0
Finish |2] s false and

For Step 2
Needi=1,2,2 e

Finish [1] is false and A
So P1 must be kept in safe sequence

3,32 2,00 Step 3
Work =Work + Allocation;

work (T3 12)

0 1 2 3 4
Finish = | false]true]false[false]false]

Need;=6,0,0
Finish (2] is false an
S0 P2 must wait

0 1 2 3 a
Finish = | falsetrue false|true true

Fori / Sep2 Step 3

Need,=4,3,1 1

Finish [4] = false and o

S0 Psmust be kept in safe sequence B
7,4,3 0,0,2

Work = Work +Allocation, 2 e

Work=([7 |4 |5 Finish [i] =truefor0<i <n P |

Hence the system is in Safe state

Step 2

[Finish [0] Isfalse and'Need < Wor

|So Pymust be kept in safe sequence

The safe sequence is P1,P3, P« ,Po,P,





OEBPS/Images/cc2f56e6a66bb574ba4cdb75a7c0a63b.jpg
Many to One Model

2 Vs Threes

Kernel Threads





OEBPS/Images/170b36dc3b0aec0f317a8e0ac217f0a7.jpg
maverick@maverick-Inspiron-5548:~5 ack -n Exam

.vininfo
s8:-' 1 0 ~/BEfl/ass6/userl.c
62:-' 50 9 ~/[3W/talk2.c

63:-' 1 o ~/EEl/talkz.c
64:-' 63 0 ~/[3EW/talki.c
65:-' 1 0 ~/[EEl/talki.c
66:-' 5 0 ~/[@E/ass3.c

67:-' 1 0 ~/E&Y/ass3.c

68:-' 19 1 ~/[@&W/ass3.c
69:-' 20 1 ~/[@&W/ass3.c
70:-' 21 3 ~/[@&G/ass3.c
71:-' 22 3 ~/[@@G/ass3.c

72:- 5 0 ~/@&M/ass3.c

73:-' 1 0 ~/E&Y/ass3.c

74:-' 19 1 ~/[@&W/ass3.c
75:-' 20 1 ~/[@&W/ass3.c
76:-' 21 3 ~/[@&G/ass3.c
770 22 3 ~/[@8W/ass3.c
78:-' 50 9 ~/@EN/talk2.c
79:-' 1 0 ~/EEl/talkz.c
80:-' 63 0 ~/[3EW/talki.c
81:-' 1 0 ~/EEl/talki.c
82:-' 5 0 -~/ 3L /ass3.c





OEBPS/Images/f9e40d447479266b9ca91597503ad7d9.jpg
R1

P1is holdingR1 P2 is waiting for R1

P2 is holding R2
P1 is waiting for R2

R2

SINGLE INSTANCE RESOURCE TYPE WITH DEADLOCK





OEBPS/Images/cbbf8951ea407aad377c6105f38f4325.jpg
Dispatcher takes P1 to running state
P4 P3 P2 P1 CPU (Running)

Scheduler selects
process P1





OEBPS/Images/d07f48e281a621987db6fa2f241eda67.jpg
End

Queue(s)

Ready Queue

o

Long Term





OEBPS/Images/6800e06290b03569d9b87c14c247d9e2.jpg
item 2

item 1

Buffer





OEBPS/Images/55764ac506157b3b36202c6c865f6b8a.jpg





OEBPS/Images/17974340a3142ef04e9b52dd00bcf45a.jpg
10

15

4564

02 4678914

20






OEBPS/Images/112852cafcfd03c30842d658d2544e88.jpg
Program A

Wait
Wait
Program B
m Wait m Wit
Combined

A B Wait A B Wait





OEBPS/Images/414f1406fd96623f67892e7f08b43b1c.jpg





OEBPS/Images/4d554324b30fec1cb29159f429ed7c96.jpg
Classification of Unix File System :

[ Ordinary Files

[ Directories
[—> Special Files
f——> Pipes

[—— Sockets

—— Symbolic Links





OEBPS/Images/a54cbba642d83a4c47f9230028498705.jpg
mayank@nayank-VirtualBox:~$ cal

June 2017
Su Mo Tu We Th Fr Sa
12 3

4B 6 7 8 910
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

mayank@mayank-VirtualBox:~$ [l





OEBPS/Images/dc17c7e6c17bfa2890cc6ff0f8e3a488.jpg
Relocation
register

physical
address

logical
address






OEBPS/Images/8bf712ad9df2880e9c7a71eb13fede1b.jpg
Receiving
Process

Message
passing
module

passing
module

_

Processld Message





OEBPS/Images/7ad3d6e7a935896a5d2246074fa1a07d.jpg
Non Preemptive SJF

Example)

Arrival Time

PA(3) P1(6
0 3
[Process Wating Time
P1 0
P2 3
3 9
P4 16

P3(7
16

Thetotal time : 24

P2(8)

The average waiting time (AWT):

( 0+3+9+16)/4=7

24






OEBPS/Images/03edb4f0d176b8f0ddc987a384b0daa7.jpg
9 - bit address bus ADO - AD8

R/W

8- bit data bus

Chip selection lines






OEBPS/Images/3dab9333355b983ff15c240c056b258f.jpg
Logical View of Segmentation

segment 0

segment 2

segment 3

segment 1

segment 4

Logical Address Space

sk o

Segment Number

base address

500

2500

1500

4600

3800

Segment Table.

segment 0
1100

1500
segment 2
1900

segment 1

3300

segment 3

Physical Address Space





OEBPS/Images/b83d1c3c6e70d711dce4edd4de31100e.jpg





OEBPS/Images/ebbcc4ee6e47352b57c1f43214c0d135.jpg
P1 | P4 | P2 | P5 P3‘
0 1 21 49 65 67





OEBPS/Images/503647ddd966e6592b2d826fe51afd0d.jpg





OEBPS/Images/8b0b8e735c853d7504bca2badffcfa69.jpg
Directory

file index block
jeep 19





OEBPS/Images/628788fda0821c8249c0eed80555b89a.jpg





OEBPS/Images/b3d01ea63f3a4c5dbcd8a1b0964d8d70.jpg
Allocation

Request
Process Resource Resource
R1 R2 R1 R2
P1 1 0 ) 1
P2 0 t L 0
P3 & 0






OEBPS/Images/ac227258c5390c9e7b049c3d02b8dea8.jpg
Process P

// Some code
P(s);

// critical section
V(s);

// remainder section






OEBPS/Images/b12491135ee2f2251f2fc2062e93ade5.jpg





OEBPS/Images/d8bc81b00c5afbaf482ceb7a764493fa.jpg
Kernel

[CPU) Memory) Devices






OEBPS/Images/f5f86baa0a3bce65e2e788f1def7aed6.jpg
3kb
objects

7kb
objects

kernel objects

Caches

Slabs

—|

i

physical
contigious
pages





OEBPS/Images/59d169644d4c3ab4ec677dec05625257.jpg
Available=0 0 (As P3 does not require any extra resource to complete the execution and after
P3 0 1 completionP3 release its own resource)

New Available=0 1 (As using new available resource we can satisfy the requirment of process P1
P1 1 0 andP1 alsorelease its prevous resource)

New Available=1 1 (Now easily we can satisfy the requirement of process P2)
P2 0 1

New Available= 1 2





OEBPS/Images/0e0186649d7c2fe36699ce40ea4a1137.jpg
Monitor Demo //Name of Monitor

{

variables;
condition variables;

procedure p1
prodecure p2

Syntax of Monitor






OEBPS/Images/2370b78ec64909d340cb4a132a9b0d20.jpg





OEBPS/Images/564acb611e28803af436419962a5969f.jpg
Executing in non
ciitical section

Executing in non
P riical ssction

‘updates S=0,
| pExecuting in non

Critical section

Exits ciitical section
and updates S=1






OEBPS/Images/ca246ce6d07306865c6aa32d785040f2.jpg
16

22





OEBPS/Images/3b05c9b543f39a269c6a276d55189400.jpg
Fori=3 7,45 01,0
Available Need; =0, 1,1 Work = Work + Allocationy
01,1 532 A B c

Work = Finish(3] = false and Needs < Work

T Work =
Finish = [T 2058 (2058 (8 2 | So P3 must be kept in safe sequence 5 - a
R True|True False[True [True |

532 21,1
Work = Work + Allocationy
A B c

Fori=
Needo

7.4,3

7,43 3,32 Needz =6, 0, 0

Finish[0] = false and Needg > Work 600 755

Finishi2] = false and Need; < Work |

Work
L e s
RiE ] False{True Falsefirucl[False]
2,2 Fori=4 =
o 122 332 [lNeeds=431 o 802
Finish[1] = false and Need; < Work fork = Work + Allocation
Finish4] A B c
7
So P, must be kept in safe sequence Jli Work

POl (Trucfc [T

So Ppmust wait  But Need <= Work!

So P, must be kept in safe sequence.

Fori=
Need;

1

So P must be kept in safe sequence

3,32 200
Work = Work + Allocation

7,73 00,2
Work = Work + Allocations

Aob Tz o
P I Work . M Finish [i] = true for 0 <=i<=n

I~ = . A Hence the system is in safe state
R Fals{True [FalsdFalsclFalsel WSRO olsd True| Falsq True]True]

J For 0
Need, =6, 0,0 Needo 4,3 The safe sequence is

600 532 7,43 7,45 Py, P3, Py, Pg, Py
Finishf2] = false and Need, > Work fll Finish{0] = false and Need, < Work

So P, must wait So Py must be kept in safe sequence






OEBPS/Images/ce8d1ae0003e8a5bc68d17cb32e11d23.jpg
maverick@maverick-Inspiron-5548:~$ ack -n Pictures
.vininfo

27:'0 41 o ~/@EEIEE/practice.c

39:-' 41 0 -~/ A0S /practice.c

ao:-' 1_o -/ QUSUIEE practice.c

141:> - /FREIEE /practice.c

.bash_histor;

maverick@maverick-Inspiron-5548:~$ I





OEBPS/Images/3ffe3826b004d2e17ddb1cb0a7d4cf97.jpg
maverick@maverick-Inspiron-5548:~$ sudo su

[sudo] password for maverick:

root@naverick-Inspiron-5548: /home/maverick# find / -name passwd
/etc/passwd

/etc/cron.daily/passwd

/etc/pan.d/passwd

Jusr/bin/passud

Jusr/share/bash-conpletion/completions/passud
Jusr/share/lintian/overrides/passwd
Jusr/share/doc/passwd
root@maverick-Inspiron-5548:/home/maverick# |





OEBPS/Images/903460a0ef32b2dfc82f750aa16288e6.jpg
........ CPUn

MEMORY





OEBPS/Images/bce5908f507b1d1de8b3e7e16d381ec3.jpg
Process Arrival Time CPU Burst Time Queue Number
P1 0 4 1
P2 0 3 1
P3 0 8 2
P4 10 5 1






OEBPS/Images/3a2b59c8d6f29c1f6fcb4f7f55180fe1.jpg
grep:
grep:
grep:
grep:
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
grep:
grep:
grep:
grep:
grep:
grep:
grep:
grep:
arep:

./.wine: Is a directory

./.wine/drive_c: Is a directory
./.wine/dosdevices: Is a directory

./Pictures: Is a directory

file ./Pictures/bin.png matches

file ./Pictures/process_on_port.png matches
file ./Pictures/step3.png matches

file ./Pictures/etc.png matches

file ./Pictures/kernel_interface2.png matches
file ./Pictures/dev.png matches

file ./Pictures/usr_bin.png matches

file ./Pictures/pid_names..png matches

file ./Pictures/kernel_interface_table.png matches
file ./Pictures/boot.png matches

file ./Pictures/usr_local.png matches

file ./Pictures/mnt.png matches

file ./Pictures/kernel.png matches

./.config: Is a directory

./.config/compiz-1: Is a directory
./.config/gnone-control-center: Is a directory
./.config/cairo-dock: Is a directory
./.config/eog: Is a directory
./.config/google-chrome: Is a directory
./.config/ibus: Is a directory
./.config/gnone-session: Is a directory
./.config/libaccounts-glib: Is a directory





OEBPS/Images/6a122c136573f309e16dd2665c6c259f.jpg
L CHLEEEEEEEEEEEEE e 61.4%] Tasks: 99, 221 thr; 1 running
2 DHCEDEEEEEEEEETEE T Errrrrrrr 68.8%]  Load average: 0.82 0.54 0.37
memCITTTTTTTTTTTTTTTTITTTITITT]  724M/1.95G]  Uptime: 00:09:23

swp[ 0K/1.17G]

1550 mayank 20 0 1557M 236M 73304 S 33.0 11.8 0:23.97 compiz

785 root 20 © 323M 82760 33820 S 30.2 4.0 0:19.76 /usr/lib/xorg/Xorg -core :0 -seat s
1549 mayank 20 0 1557M 236M 73304 S 30.2 11.8 0:23.93 compiz

2647 mayank 20 0 604M 31880 24992 S 7.6 1.6 0:00.63 /usr/bin/gnome-screenshot --gapplic
2592 mayank 20 0 26140 4652 3244 R 2.1 0.2 0:00.72 htop

1765 mayank 20 © 316M 18088 13184 S 1.4 0.9 0:00.34 /usr/lib/x86_64-linux-gnu/zeitgeist
1791 mayank 20 0 640M 35232 28168 S 0.7 1.7 0:03.21 /usr/lib/gnome-terninal/gnome-termi
1545 mayank 20 © 1557M 236M 73304 S 0.7 11.8 0:00.42 compiz

1758 mayank 20 0 413M 11376 7876 S 0.7 0.6 0:00.26 /usr/bin/zeitgeist-daemon

1333 mayank 20 0 162M 724 4525 0.7 0.0 0:00.04 gpg-agent --homedir /home/mayank/.g
1342 mayank 20 0 505M 26372 21112 S 0.0 1.3 0:01.35 /usr/lib/x86_64-linux-gnu/banf/bamf
1407 mayank 20 0 545M 39900 25068 S 0.0 1.5 0:01.54 /usr/lib/x86_64-linux-gnu/unity/uni
1269 mayank 20 043784 4412 2956 S 0.0 0.2 0:01.58 dbus-daemon --fork --session --addr
1355 mayank 20 0 461M 29428 24492 S 0.0 1.4 0:00.82 /usr/lib/ibus/ibus-ui-gtk3

1421 mayank 20 0 545M 39900 25068 S 0.0 1.5 0:00.26 /usr/lib/x86_64-linux-gnu/unity/uni
1344 mayank 20 0 349M 8448 7232 S 0.0 0.4 0:00.54 /usr/bin/ibus-daemon --daemonize
1331 mayank 25 © 349M 8448 7232 S 0.0 0.4 0:00.87 /usr/bin/ibus-daemon --daemonize
1452 _mayank 0 174M 5044 4380 S_0.0 0.2

0:00.30 /usr/lib/dconf/dcon ervice
FlIlI-Fz-IIIanIHII-Fs-Fs-IWII_FB IFol |F 10}






OEBPS/Images/10a9200d36a8455b9b401ad882e5a221.jpg





OEBPS/Images/a148f712b0d816a6b3b62252b4f8ac01.jpg
® ™ mayank@mayank-VirtualBox: ~

mayank@mayank-VirtualBox:~$ free

total used free shared buff/cache available
Mem: 2048332 651720 854076 9804 542536 1218068
Swap: 1225724 0 1225724





OEBPS/Images/23d0c5287568dd13bf3b464b0a6706f2.jpg
bin\ dev
h k
pwd

P

etc home lib mnt proc

passwd
mthomas  stul

bin class_stuff profile

foo bar

root

sbin tmp usr

bin





OEBPS/Images/782e1b30005ec044dec3c14ff54008fa.jpg
© - © root@maverick-Inspiron-5548: /home/maverick

root@naverick-Inspiron-5548: /home/maverick# crontab -u maverick -1
Edit this file to introduce tasks to be run by cron.

Each task to run has to be defined through a single line
indicating with different fields when the task will be run
and what command to run for the task

To define the time you can provide concrete values for

minute (m), hour (h), day of month (dom), month (mon),

and day of week (dow) or use '*' in these fields (for 'any').#
Notice that tasks will be started based on the cron's system
daemon's notion of time and timezones.

# Output of the crontab jobs (including errors) is sent through
email to the user the crontab file belongs to (unless redirected).

For example, you can run a backup of all your user accounts

at 5 a.m every week with:

85 * * 1 tar -zcf /var/backups/hone.tgz /home/

For more information see the manual pages of crontab(5) and cron(8)

m h dom mon dow  command
oot@maverick-Inspiron-5548:/home/maverick# J|

i
i
i
i
i
i
i
i
i
i
i
i
#
i
i
i
i
i
i
i
i
i
-





OEBPS/Images/a9983f44b192ec70bead453985cd293d.jpg





OEBPS/Images/b3abac03a03ba31966e7238be3772b6b.jpg





OEBPS/Images/6393d5969983d71bcf5d7078461884b0.jpg





OEBPS/Images/70e0f8512a4b52248bc35ae8f0c9cf50.jpg
RAM ROM

1. Temporary Storage. 1. Permanent storage.

2. Store data in MBs. 2. Store data in GBs.

3. Volatile. 3. Non-volatile.

4.Used in normal operations. 4. Used for startup process of
computer.

5. Writing data is faster. 5. Writing data is slower.

Difference between RAM and ROM






OEBPS/Images/5fd2e31a05d8ddddd9b72a4c70b21280.jpg
701203 042303212@901%701





OEBPS/Images/7314f2f1dbd2540baa119b4dc5a20e78.jpg
Longer job Shorter jobs

e o o, o

Figure - The Conv Visualized






OEBPS/Images/3345342bfdf6744ae40253f6658322ca.jpg
@O0 overide@Atul-HP: ~

overide@atul-HP:~5 1s

overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide@atul-wp:~s Il

5
2
2
6
2
7
1
1
1
2
1
2
5
2
2
2
2
2
2
2

-l

overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide
overide

acadenv
acadview_deno
anaconda3

Desktop

Documents
Downloads
examples. desktop
hs_err_pid1971.1log
hs_err_pid2006.1log
Music

Mydata

newbin

nltk_data

Pictures

Public

scripts

Templates

test

Videos

xdn-helper






OEBPS/Images/f16170b1354fa9012932fb889171cdc7.jpg
Process table and process control block





OEBPS/Images/b14bef81d45bdd8bcdb7456031dcc3f1.jpg
Processname  Amival time Service required
A 0 3
B 1 5
c 3 2 5
D 5 5 15
E 12 5 20






OEBPS/Images/f47d4458184ad3a88312d796a271fed4.jpg





OEBPS/Images/63794d4ac8c41ae4dbec0f5a18364ab5.jpg
root@naverick-Inspiron-5548: /home/maverick# find / -maxdepth 3 -name passwd
/etc/passwd

/etc/cron.daily/passwd

/etc/pan.d/passwd

Jusr /bin/passwd
root@maverick-Inspiron-5548:/home/maverick# I






OEBPS/Images/bc526710f139d7603e9d591399db8760.jpg
mayank@nayank-VirtualBox:~$ vnstat -s

2048332 K total memory
825884 K used memory
1040164 K active memory
249348 K inactive memory
648144 K free memory

43768 K buffer memory
530536 K swap cache
1225724 K total swap

0 K used swap

1225724 K free swap

33836 non-nice user cpu ticks
551 nice user cpu ticks
7957 system cpu ticks
254530 idle cpu ticks
8798 I0-wait cpu ticks
© IRQ cpu ticks
447 softirq cpu ticks
© stolen cpu ticks
532371 pages paged in
27500 pages paged out
© pages swapped in
© pages swapped out
416705 interrupts






OEBPS/Images/b4d5cac30c51afa82cbd27a48a2da241.jpg
Gantt Chart -






OEBPS/Images/a02e52408e70df515ea8b965224a4037.jpg
top - 11:34:37 up 38 min, 1 user, load average: 0.71, 0.46, 0.43

Threads: 426 total, 2 ru