
GeeksForGeeks Microprocessor Lecture Notes

From: https://www.geeksforgeeks.org/microprocessor-tutorials/

8085 Basic

						Registers of 8085 microprocessor

				
						

				
			A microprocessor is a multipurpose, programmable, clock-driven, register-based electronic device that reads binary instructions from a storage device called memory, accepts binary data as input and processes data according to those instructions and provide results as output. A 8085 microprocessor, is a second generation 8-bit microprocessor and is the base for studying and using all the microprocessor available in the market.

Registers in 8085:

(a) General Purpose Registers –

The 8085 has six general-purpose registers to store 8-bit data; these are identified as- B, C, D, E, H, and L. These can be combined as register pairs – BC, DE, and HL, to perform some 16-bit operation. These registers are used to store or copy temporary data, by using instructions, during the execution of the program.

(b) Specific Purpose Registers –

	Accumulator:

The accumulator is an 8-bit register (can store 8-bit data) that is the part of the arithmetic and logical unit (ALU). After performing arithmetical or logical operations, the result is stored in accumulator. Accumulator is also defined as register A.

	Flag registers:
[image:]

The flag register is a special purpose register and it is completely different from other registers in microprocessor. It consists of 8 bits and only 5 of them are useful. The other three are left vacant and are used in the future Intel versions.These 5 flags are set or reset (when value of flag is 1, then it is said to be set and when value is 0, then it is said to be reset) after an operation according to data condition of the result in the accumulator and other registers. The 5 flag registers are:

	 Sign Flag: It occupies the seventh bit of the flag register, which is also known as the most significant bit. It helps the programmer to know whether the number stored in the accumulator is positive or negative. If the sign flag is set, it means that number stored in the accumulator is negative, and if reset, then the number is positive.

	Zero Flag:: It occupies the sixth bit of the flag register. It is set, when the operation performed in the ALU results in zero(all 8 bits are zero), otherwise it is reset. It helps in determining if two numbers are equal or not.

	Auxillary Carry Flag: It occupies the fourth bit of the flag register. In an arithmetic operation, when a carry flag is generated by the third bit and passed on to the fourth bit, then Auxillary Carry flag is set. If not flag is reset. This flag is used internally for BCD(Binary-Coded decimal Number) operations.
Note – This is the only flag register in 8085 which is not accessible by user.

	Parity FlagL: It occupies the second bit of the flag register. This flag tests for number of 1’s in the accumulator. If the accumulator holds even number of 1’s, then this flag is set and it is said to even parity. On the other hand if the number of 1’s is odd, then it is reset and it is said to be odd parity.

	Carry Flag: It occupies the zeroth bit of the flag register. If the arithmetic operation results in a carry(if result is more than 8 bit), then Carry Flag is set; otherwise it is reset.

(c) Memory Registers –

There are two 16-bit registers used to hold memory addresses. The size of these registers is 16 bits because the memory addresses are 16 bits. They are :-

	Program Counter: This register is used to sequence the execution of the instructions. The function of the program counter is to point to the memory address from which the next byte is to be fetched. When a byte (machine code) is being fetched, the program counter is incremented by one to point to the next memory location.

	Stack Pointer: It is used as a memory pointer. It points to a memory location in read/write memory, called the stack. It is always incremented/decremented by 2 during push and pop operation.

Example –

Here two binary numbers are added. The result produced is stored in the accumulator. Now lets check what each bit means. Refer to the below explanation simultaneously to connect them with the example.

	Sign Flag (7th bit): It is reset(0), which means number stored in the accumulator is positive.

	Zero Flag (6th bit): It is reset(0), thus result of the operations performed in the ALU is non-zero.

	Auxiliary Carry Flag (4th bit): We can see that b3 generates a carry which is taken by b4, thus auxiliary carry flag gets set (1).

	Parity Flag (2nd bit): It is reset(0), it means that parity is odd. The accumulator holds odd number of 1’s.

	Carry Flag (0th bit): It is set(1), output results in more than 8 bit.

Astha_Singh

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Flag register in 8085 microprocessor

				
						

				
			Prerequisite – Registers of 8085 microprocessor

The Flag register is a Special Purpose Register. Depending upon the value of result after any arithmetic and logical operation the flag bits become set (1) or reset (0). In 8085 microprocessor, flag register consists of 8 bits and only 5 of them are useful.

The 5 flags are:

	Sign Flag (S) – After any operation if the MSB (B(7)) of the result is 1, it in indicates the number is negative and the sign flag becomes set, i.e. 1. If the MSB is 0, it indicates the number is positive and the sign flag becomes reset i.e. 0.

from 00H to 7F, sign flag is 0

from 80H to FF, sign flag is 1

1- MSB is 1 (negative)

0- MSB is 0 (positive)

Example:

MVI A 30 (load 30H in register A)

MVI B 40 (load 40H in register B)

SUB B (A = A – B)

These set of instructions will set the sign flag to 1 as 30 – 40 is a negative number.

MVI A 40 (load 40H in register A)

MVI B 30 (load 30H in register B)

SUB B (A = A – B)

These set of instructions will reset the sign flag to 0 as 40 – 30 is a negative number.

	Zero Flag (Z) – After any arithmetical or logical operation if the result is 0 (00)H, the zero flag becomes set i.e. 1, otherwise it becomes reset i.e. 0.

00H zero flag is 1.

from 01H to FFH zero flag is 0

1- zero result

0- non-zero result

Example:

MVI A 10 (load 10H in register A)

SUB A (A = A – A)

These set of instructions will set the zero flag to 1 as 10H – 10H is 00H

	Auxiliary Cary Flag (AC) – This flag is used in BCD number system(0-9). If after any arithmetic or logical operation D(3) generates any carry and passes on to B(4) this flag becomes set i.e. 1, otherwise it becomes reset i.e. 0. This is the only flag register which is not accessible by the programmer
1-carry out from bit 3 on addition or borrow into bit 3 on subtraction

0-otherwise

Example:

MOV A 2B (load 2BH in register A)

MOV B 39 (load 39H in register B)

ADD B (A = A + B)

These set of instructions will set the auxiliary carry flag to 1, as on adding 2B and 39, addition of lower order nibbles B and 9 will generate a carry.

	Parity Flag (P) – If after any arithmetic or logical operation the result has even parity, an even number of 1 bits, the parity register becomes set i.e. 1, otherwise it becomes reset i.e. 0.
1-accumulator has even number of 1 bits

0-accumulator has odd parity

Example:

MVI A 05 (load 05H in register A)

This instruction will set the parity flag to 1 as the BCD code of 05H is 00000101, which contains even number of ones i.e. 2.

	Carry Flag (CY) – Carry is generated when performing n bit operations and the result is more than n bits, then this flag becomes set i.e. 1, otherwise it becomes reset i.e. 0.

During subtraction (A-B), if A>B it becomes reset and if (A<B) it becomes set.

Carry flag is also called borrow flag.

1-carry out from MSB bit on addition or borrow into MSB bit on subtraction

0-no carry out or borrow into MSB bit

Example:

MVI A 30 (load 30H in register A)

MVI B 40 (load 40H in register B)

SUB B (A = A – B)

These set of instructions will set the carry flag to 1 as 30 – 40 generates a carry/borrow.

MVI A 40 (load 40H in register A)

MVI B 30 (load 30H in register B)

SUB B (A = A – B)

These set of instructions will reset the sign flag to 0 as 40 – 30 does not generate any carry/borrow.

Yash_R

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Addressing modes in 8085 microprocessor

				
						

				
			Prerequiste – Addressing modes

The way of specifying data to be operated by an instruction is called addressing mode.

Types of addressing modes –

In 8085 microprocessor there are 5 types of addressing modes:

	Immediate Addressing Mode –

In immediate addressing mode the source operand is always data. If the data is 8-bit, then the instruction will be of 2 bytes, if the data is of 16-bit then the instruction will be of 3 bytes.

Examples:

MVI B 45 (move the data 45H immediately to register B)

LXI H 3050 (load the H-L pair with the operand 3050H immediately)

JMP address (jump to the operand address immediately)

	Register Addressing Mode –

In register addressing mode, the data to be operated is available inside the register(s) and register(s) is(are) operands. Therefore the operation is performed within various registers of the microprocessor.

Examples:

MOV A, B (move the contents of register B to register A)

ADD B (add contents of registers A and B and store the result in register A)

INR A (increment the contents of register A by one)

	Direct Addressing Mode –

In direct addressing mode, the data to be operated is available inside a memory location and that memory location is directly specified as an operand. The operand is directly available in the instruction itself.

Examples:

LDA 2050 (load the contents of memory location into accumulator A)

LHLD address (load contents of 16-bit memory location into H-L register pair)

IN 35 (read the data from port whose address is 01)

	Register Indirect Addressing Mode –

IN register indirect addressing mode, the data to be operated is available inside a memory location and that memory location is indirectly specified b a register pair.

Examples:

MOV A, M (move the contents of the memory location pointed by the H-L pair to the accumulator)

LDAX B (move contains of B-C register to the accumulator)

LXIH 9570 (load immediate the H-L pair with the address of the location 9570)

	Implied/Implicit Addressing Mode –

In implied/implicit addressing mode the operand is hidden and the data to be operated is available in the instruction itself.

Examples:

CMA (finds and stores the 1’s complement of the contains of accumultor A in A)

RRC (rotate accumulator A right by one bit)

RLC (rotate accumulator A left by one bit)

Yash_R

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Arithmetic instructions in 8085 microprocessor

				
						

				
			Arithmetic Instructions are the instructions which perform basic arithmetic operations such as addition, subtraction and a few more. In 8085 microprocessor, the destination operand is generally the accumulator. In 8085 microprocessor, the destination operand is generally the accumulator.

Following is the table showing the list of arithmetic instructions:

	Opcode
	Operand
	Explanation
	Example

	ADD
	R
	A = A + R
	ADD B

	ADD
	M
	A = A + Mc
	ADD 2050

	ADI
	8-bit data
	A = A + 8-bit data
	ADD 50

	ADC
	R
	A = A + R + prev. carry
	ADC B

	ADC
	M
	A = A + Mc + prev. carry
	ADC 2050

	ACI
	8-bit data
	A = A + 8-bit data + prev. carry
	ACI 50

	SUB
	R
	A = A – R
	SUB B

	SUB
	M
	A = A – Mc
	SUB 2050

	SUI
	8-bit data
	A = A – 8-bit data
	SUI 50

	SBB
	R
	A = A – R – prev. carry
	SBB B

	SBB
	M
	A = A – Mc -prev. carry
	SBB 2050

	SBI
	8-bit data
	A = A – 8-bit data – prev. carry
	SBI 50

	INR
	R
	R = R + 1
	INR B

	INR
	M
	M = Mc + 1
	INR 2050

	INX
	r.p.
	r.p. = r.p. + 1
	INX H

	DCR
	R
	R = R – 1
	DCR B

	DCR
	M
	M = Mc – 1
	DCR 2050

	DCX
	r.p.
	r.p. = r.p. – 1
	DCX H

	DAD
	r.p.
	HL = HL + r.p.
	DAD H

In the table,

R stands for register

M stands for memory

Mc stands for memory contents

r.p. stands for register pair

Yash_R

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Logical instructions in 8085 microprocessor

				
						

				
			Logical instructions are the instructions which perform basic logical operations such as AND, OR, etc. In 8085 microprocessor, the destination operand is always the accumulator. Here logical operation works on a bitwise level.

Following is the table showing the list of logical instructions:

	OPCODE
	OPERAND
	DESTINATION
	EXAMPLE

	ANA
	R
	A = A AND R
	ANA B

	ANA
	M
	A = A AND Mc
	ANA 2050

	ANI
	8-bit data
	A = A AND 8-bit data
	ANI 50

	ORA
	R
	A = A OR R
	ORA B

	ORA
	M
	A = A OR Mc
	ORA 2050

	ORI
	8-bit data
	A = A OR 8-bit data
	ORI 50

	XRA
	R
	A = A XOR R
	XRA B

	XRA
	M
	A = A XOR Mc
	XRA 2050

	XRI
	8-bit data
	A = A XOR 8-bit data
	XRI 50

	CMA
	none
	A = 1’s compliment of A
	CMA

	CMP
	R
	Compares R with A and triggers the flag register
	CMP B

	CMP
	M
	Compares Mc with A and triggers the flag register
	CMP 2050

	CPI
	8-bit data
	Compares 8-bit data with A and triggers the flag register
	CPI 50

	RRC
	none
	Rotate accumulator right without carry
	RRC

	RLC
	none
	Rotate accumulator left without carry
	RLC

	RAR
	none
	Rotate accumulator right with carry
	RAR

	RAL
	none
	Rotate accumulator left with carry
	RAR

	CMC
	none
	Compliments the carry flag
	CMC

	STC
	none
	Sets the carry flag
	STC

In the table,

R stands for register

M stands for memory

Mc stands for memory contents

Read related post: Arithmetic instructions in 8085 microprocessor

Yash_R

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Data transfer instructions in 8085 microprocessor

				
						

				
			Data tranfer instructions are the instructions which transfers data in the microprocessor. They are also called copy instructions.

Following is the table showing the list of logical instructions:

	OPCODE
	OPERAND
	EXPLANATION
	EXAMPLE

	MOV
	Rd, Rs
	Rd = Rs
	MOV A, B

	MOV
	Rd, M
	Rd = Mc
	MOV A, 2050

	MOV
	M, Rs
	M = Rs
	MOV 2050, A

	MVI
	Rd, 8-bit data
	Rd = 8-bit data
	MVI A, 50

	MVI
	M, 8-bit data
	M = 8-bit data
	MVI 2050, 50

	LDA
	16-bit address
	A = contents at address
	LDA 2050

	STA
	16-bit address
	contents at address = A
	STA 2050

	LHLD
	16-bit address
	directly loads at H & L registers
	LHLD 2050

	SHLD
	16-bit address
	directly stores from H & L registers
	SHLD 2050

	LXI
	r.p., 16-bit data
	loads the specified register pair with data
	LXI H, 3050

	LDAX
	r.p.
	indirectly loads at the accumulator A
	LDAX H

	STAX
	16-bit address
	indirectly stores from the accumulator A
	STAX 2050

	XCHG
	none
	exchanges H with D, and L with E
	XCHG

	PUSH
	r.p.
	pushes r.p. to the stack
	PUSH H

	POP
	r.p.
	pops the stack to r.p.
	POP H

	IN
	8-bit port address
	inputs contents of the specified port to A
	IN 15

	OUT
	8-bit port address
	outputs contents of A to the specified port
	OUT 15

	
	
	
	

In the table,

R stands for register

M stands for memory

r.p. stands for register pair

Yash_R

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Branching instructions in 8085 microprocessor

				
						

				
			Branching instructions refer to the act of switching execution to a different instruction sequence as a result of executing a branch instruction.

The three types of branching instructions are:

	Jump (unconditional and conditional)

	Call (unconditional and conditional)

	Return (unconditional and conditional)

1. Jump Instructions – The jump instruction transfers the program sequence to the memory address given in the operand based on the specified flag. Jump instructions are 2 types: Unconditional Jump Instructions and Conditional Jump Instructions.

(a) Unconditional Jump Instructions: Transfers the program sequence to the described memory address.

	OPCODE
	OPERAND
	EXPLANATION
	EXAMPLE

	JMP
	address
	Jumps to the address
	JMP 2050

(b) Conditional Jump Instructions: Transfers the program sequence to the described memory address only if the condition in satisfied.

	OPCODE
	OPERAND
	EXPLANATION
	EXAMPLE

	JC
	address
	Jumps to the address if carry flag is 1
	JC 2050

	JNC
	address
	Jumps to the address if carry flag is 0
	JNC 2050

	JZ
	address
	Jumps to the address if zero flag is 1
	JZ 2050

	JNZ
	address
	Jumps to the address if zero flag is 0
	JNZ 2050

	JPE
	address
	Jumps to the address if parity flag is 1
	JPE 2050

	JPO
	address
	Jumps to the address if parity flag is 0
	JPO 2050

	JM
	address
	Jumps to the address if sign flag is 1
	JM 2050

	JP
	address
	Jumps to the address if sign flag 0
	JP 2050

2. Call Instructions – The call instruction transfers the program sequence to the memory address given in the operand. Before transferring, the address of the next instruction after CALL is pushed onto the stack. Call instructions are 2 types: Unconditional Call Instructions and Conditional Call Instructions.

(a) Unconditional Call Instructions: It transfers the program sequence to the memory address given in the operand.

	OPCODE
	OPERAND
	EXPLANATION
	EXAMPLE

	CALL
	address
	Unconditionally calls
	CALL 2050

(b) Conditional Call Instructions: Only if the condition is satisfied, the instructions executes.

	OPCODE
	OPERAND
	EXPLANATION
	EXAMPLE

	CC
	address
	Call if carry flag is 1
	CC 2050

	CNC
	address
	Call if carry flag is 0
	CNC 2050

	CZ
	address
	Calls if zero flag is 1
	CZ 2050

	CNZ
	address
	Calls if zero flag is 0
	CNZ 2050

	CPE
	address
	Calls if carry flag is 1
	CPE 2050

	CPO
	address
	Calls if carry flag is 0
	CPO 2050

	CM
	address
	Calls if sign flag is 1
	CM 2050

	CP
	address
	Calls if sign flag is 0
	CP 2050

3. Return Instructions – The return instruction transfers the program sequence from the subroutine to the calling program. Jump instructions are 2 types: Unconditional Jump Instructions and Conditional Jump Instructions.

(a) Unconditional Return Instruction: The program sequence is transferred unconditionally from the subroutine to the calling program.

	OPCODE
	OPERAND
	EXPLANATION
	EXAMPLE

	RET
	none
	Return from the subroutine unconditionally
	RET

(b) Conditional Return Instruction: The program sequence is transferred unconditionally from the subroutine to the calling program only is the condition is satisfied.

	OPCODE
	OPERAND
	EXPLANATION
	EXAMPLE

	RC
	none
	Return from the subroutine if carry flag is 1
	RC

	RNC
	none
	Return from the subroutine if carry flag is 0
	RNC

	RZ
	none
	Return from the subroutine if zero flag is 1
	RZ

	RNZ
	none
	Return from the subroutine if zero flag is 0
	RNZ

	RPE
	none
	Return from the subroutine if parity flag is 1
	RPE

	RPO
	none
	Return from the subroutine if parity flag is 0
	RPO

	RM
	none
	Returns from the subroutine if sign flag is 1
	RM

	RP
	none
	Returns from the subroutine if sign flag is 0
	RP

Yash_R

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Reset Accumulator (8085 & 8086 microprocessor)

				
						

				
			1. Problem – Write the 8085 instructions which reset the accumulator.

Solution – There are 4 instructions to reset the accumulator in 8085. These instructions are:

	S.No.
	MNEMONICS
	COMMENT

	1
	MVI A, 00
	A <- 00

	2
	ANI 00
	A AND 00

	3
	XRA A
	A XOR A

	4
	SUB A
	A <- A – A

Explanation –

	MVI A, 00: instruction copies 00 to A.

	ANI 00: instruction performs bit by bit AND operation of source operand (i.e. 00) to the destination operand (i.e. the accumulator A) and store the result in accumulator A.

	XRA A: instruction performs XOR operation between source operand and destination operand and store the result in the accumulator. Here, source and destination operand both are same i.e. A. Therefore, the result after performing XOR operation, stored in the accumulator is 00.

	SUB A: operation subtracts the contents of source operand(here, source register is A) from the contents of accumulator and store the result in the accumulator itself. Since, the source and destination operand are same. Therefore, accumulator A = 00.

2. Problem – Write 8086 instructions which are used to reset accumulator.

Solution – There are 4 instructions in 8086 to reset the accumulator. These instructions are:

	S.No.
	MNEMONICS
	COMMENT

	1
	MOV AX, 0000
	AX <- 0000

	2
	AND AX, 0000
	AX <- AX AND 0000

	3
	XOR AX, AX
	AX <- AX XOR AX

	4
	SUB AX, AX
	AX <- AX – AX

Explanation – Register AX is used.

	MOV AX, 0000: copies 0000 to AX.

	 AND AX, 0000: operation performs bit by bit ANDs the source operand (0000) to the destination operand and store the result in AX.

	XOR AX, AX: performs the XOR operation in values of source register and destination register and store the result in AX. The source and destination operands, both are same. Therefore, AX = 0.

	SUB AX, AX: operation subtracts the value of source operand from the value of destination operand and store the result in AX. Here, both the operands are same .Therefore, AX = 0.

ChitraNayal

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Difference between CALL and JUMP instructions

				
						

				
			CALL instruction is used to call a subroutine. Subroutines are often used to perform tasks that need to be performed frequently. The JMP instruction is used to cause the PLC to skip over rungs.

The differences Between CALL and JUMP instructions are:

	SERIAL NO.
	JUMP
	CALL

	1.
	Program control is transferred to a memory location which is in the main program
	Program Control is transferred to a memory location which is not a part of main program

	2.
	Immediate Addressing Mode
	Immediate Addressing Mode + Register Indirect Addressing Mode

	3.
	Initialisation of SP(Stack Pointer) is not mandatory
	Initialisation of SP(Stack Pointer) is mandatory

	4.
	Value of Program Counter(PC) is not transferred to stack
	Value of Program Counter(PC) is transferred to stack

	5.
	After JUMP, there is no return instruction
	After CALL, there is a return instruction

	6.
	Value of SP does not changes
	Value of SP is decremented by 2

	7.
	10 T states are required to execute this instruction
	18 T states are required to execute this instruction

	8.
	3 Machine cycles are required to execute this instruction
	5 Machine cycles are required to execute this instruction

harshit-chhabra

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

8085 Mathematical

						8085 program to add two 8 bit numbers

				
						

				
			Problem – Write an assembly language program to add two 8 bit numbers stored at address 2050 and address 2051 in 8085 microprocessor. Starting address of program is taken as 2000.

Example –

Algorithm –

	First add contents of memory location 2050 and 2051 using “ADD” instruction and storing at 3050

	The carry generated is recovered using “ADC” command and is stored at memory location 3051

Program –

	Memory Address
	Mnemonics
	Comment

	2000
	LHLD 2050
	H←2051, L←2050

	2003
	MOV A, L
	A←L

	2004
	ADD H
	A←A+H

	2005
	MOV L, A
	L←A

	2006
	MVI A 00
	A←00

	2008
	ADC A
	A←A+A+carry

	2009
	MOV H, A
	H←A

	200A
	SHLD 3050
	H→3051, L→3050

	200D
	HLT
	

Explanation –

	LHLD 2050 moves the contents of 2050 memory location (3B) in L register and contents of 2051 memory location (F9) in H register

	MOV A, L copies contents of L register (3B) to A (Accumulator)

	ADD H adds contents of A (Accumulator) and H register (F9). The result is stored in A itself. For all arithmetic instructions A is by default an operand and A stores the result as well

	MOV L, A copies contents of A (34) to L

	MVI A 00 moves immediate data (i.e., 00) to A

	ADC A adds contents of A(00), contents of register specified (i.e A) and carry (1). As ADC is also an arithmetic operation, A is by default an operand and A stores the result as well

	MOV H, A copies contents of A (01) to H

	SHLD 3050 moves the contents of L register (34) in 3050 memory location and contents of H register (01) in 3051 memory location

	HLT stops executing the program and halts any further execution

AnmolAgarwal

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to add two 16 bit numbers

				
						

				
			Problem – Write an assembly language program to add two 16 bit numbers by using:

	(a) 8 bit operation

	(b) 16 bit operation

Example –

(a) Addition of 16 bit numbers using 8 bit operation – It is a lengthy method and requires more memory as compared to 16 bit operation.

Algorithm –

	Load the lower part of first number in B register

	Load the lower part of second number in A (accumulator)

	Add both the numbers and store

	Load the higher part of first number in B register

	Load the higher part of second number in A (accumulator)

	Add both the numbers with carry from the lower bytes (if any) and store at the next location

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENTS

	2000
	LDA 2050
	A ← 2050

	2003
	MOV B, A
	B ← A

	2004
	LDA 2052
	A ← 2052

	2007
	ADD B
	A ← A+B

	2008
	STA 3050
	A → 3050

	200B
	LDA 2051
	A ← 2051

	200E
	MOV B, A
	B ← A

	200F
	LDA 2053
	A ← 2053

	2012
	ADC B
	A ← A+B+CY

	2013
	STA 3051
	A → 3051

	2016
	HLT
	Stops execution

Explanation –

	LDA 2050 stores the value at 2050 in A (accumulator)

	MOV B, A stores the value of A into B register

	LDA 2052 stores the value at 2052 in A

	ADD B add the contents of B and A and store in A

	STA 3050 stores the result in memory location 3050

	LDA 2051 stores the value at 2051 in A

	MOV B, A stores the value of A into B register

	LDA 2053 stores the value at 2053 in A

	ADC B add the contents of B, A and carry from the lower bit addition and store in A

	STA 3051 stores the result in memory location 3051

	HLT stops execution

(b) Addition of 16 bit numbers using 16 bit operation – It is a very short method and less memory is also required as compared to 8 bit operation.

Algorithm –

	Load both the lower and the higher bits of first number at once

	Copy the first number to another register pair

	Load both the lower and the higher bits of second number at once

	Add both the register pairs and store the result in a memory location

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENTS

	2000
	LHLD 2050
	A ← 2050

	2003
	XCHG
	D ← H & E ← L

	2004
	LHLD 2052
	A ← 2052

	2007
	DAD D
	H ← H+D & L ← L+E

	2008
	SHLD 3050
	A → 3050

	200B
	HLT
	Stops execution

Explanation –

	LHLD 2050 loads the value at 2050 in L register and that in 2051 in H register (first number)

	XCHG copies the content of H to D register and L to S register

	LHLD 2052 loads the value at 2052 in L register and that in 2053 in H register (second number)

	DAD D adds the value of H with D and L with E and stores the result in H and L

	SHLD 3050 stores the result at memory location 3050

	HLT stops execution

Sakshi_98

I like to do coding in C++C and java programming languages HTML and CSS always intersts me Sharing knowleged is the best way according to me to increase ones knwoledge

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to add three 16 bit numbers stored in registers

				
						

				
			Problem – Write an assembly language program to add three 16 bit numbers stored in register HL, DE, BC and store the result in DE with minimum number of instructions.

Example –

Assumptions –

	Numbers to be added are already stored in register HL, DE, BC

	Numbers stored in register are such that final result should not be greater than FFFF

DAD D performs the following task:

 H <- H + D
 L <- L + E

 DAD instruction take one argument and that argument can be register B, D, H or SP XCHG instruction exchanges the content of register D with H and E with L

Algorithm –

	Add the content of DE register in HL and store the result in HL by help of DAD instruction

	Move the content of register B in D and C in E

	Repeat step 1

	Use XCHG instruction to swap the content of DE with HL. We will get the result in DE

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	2000
	DAD D
	H <- H + D, L <- L + E

	2001
	MOV D, B
	D <- B

	2002
	MOV E, C
	E <- C

	2003
	DAD D
	H <- H + D, L <- L + E

	2004
	XCHG
	Swap content of HL with DE

	

	2005
	HLT
	END

Explanation –

	DAD D – adds the content of register D in H and register E in L and store the result in HL

	MOV D, B – moves the value of register B in register D

	MOV E, C moves the value of register C in register E

	Same as step 1

	XCHG – exchange the content of register H with register D and L with E.

	HLT – stops executing the program and halts any further execution

AmishTandon

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to add 2-BCD numbers

				
						

				
			Problem – Write a program to add 2-BCD numbers where starting address is 2000 and the numbers is stored at 2500 and 2501 memory addresses and store sum into 2502 and carry into 2503 memory address.

Example –

Algorithm –

	Load 00H in a register (for carry)

	Load content from memory into register pair

	Move content from L register to accumulator

	Add content of H register with accumulator

	Add 06H if sum is greater than 9 or Auxillary Carry is not zero

	If carry flag is not equal to 1, go to step 8

	Increment carry register by 1

	Store content of accumulator into memory

	Move content from carry register to accumulator

	Store content of accumulator into memory

	Stop

 Program –

	Memory
	Mnemonics
	Operands
	Comment

	2000
	MVI
	C, 00H
	[C] <- 00H, carry

	2002
	LHLD
	[2500]
	[H-L] <- [2500]

	2005
	MOV
	A, L
	[A] <- [L]

	2006
	ADD
	H
	[A] <- [A] + [H]

	2007
	DAA
	
	Add 06 if sum > 9 or AC = 1

	2008
	JNC
	200C
	Jump if no carry

	200B
	INR
	C
	[C] <- [C] + 1

	200C
	STA
	[2502]
	[A] -> [2502], sum

	200F
	MOV
	A, C
	[A] <- [C]

	2010
	STA
	[2503]
	[A] -> [2503], carry

	2013
	HLT
	
	Stop

Explanation – Registers A, C, H, L are used for general purpose

	MVI is used to move data immediately into any of registers (2 Byte)

	LHLD is used to load register pair direct using 16-bit address (3 Byte instruction)

	MOV is used to transfer the data from memory to accumulator (1 Byte)

	ADD is used to add accumulator with any of register (1 Byte instruction)

	STA is used to store data from accumulator into memory address (3 Byte instruction)

	DAA is used to check if sum > 9 or AC = 1 add 06 (1 Byte instruction)

	JNC is used jump if no carry to given memory location (3 Byte instruction)

	INR is used to increase given register by 1 (1 Byte instruction)

	HLT is used to halt the program

ujjwal57

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to subtract two 8-bit numbers with or without borrow

				
						

				
			Problem – Write a program to subtract two 8-bit numbers with or without borrow where first number is at 2500 memory address and second number is at 2501 memory address and store the result into 2502 and borrow into 2503 memory address.

Example –

Algorithm –

	Load 00 in a register C (for borrow)

	Load two 8-bit number from memory into registers

	Move one number to accumulator

	Subtract the second number with accumulator

	If borrow is not equal to 1, go to step 7

	Increment register for borrow by 1

	Store accumulator content in memory

	Move content of register into accumulator

	Store content of accumulator in other memory location

	Stop

 Program –

	Memory
	Mnemonics
	Operands
	Comment

	2000
	MVI
	C, 00
	[C] <- 00

	2002
	LHLD
	2500
	[H-L] <- [2500]

	2005
	MOV
	A, H
	[A] <- [H]

	2006
	SUB
	L
	[A] <- [A] – [L]

	2007
	JNC
	200B
	Jump If no borrow

	200A
	INR
	C
	[C] <- [C] + 1

	200B
	STA
	2502
	[A] -> [2502], Result

	200E
	MOV
	A, C
	[A] <- [C]

	2010
	STA
	2503
	[A] -> [2503], Borrow

	2013
	HLT
	
	Stop

Explanation – Registers A, H, L, C are used for general purpose:

	MOV is used to transfer the data from memory to accumulator (1 Byte)

	LHLD is used to load register pair directly using 16-bit address (3 Byte instruction)

	MVI is used to move data immediately into any of registers (2 Byte)

	STA is used to store the content of accumulator into memory(3 Byte instruction)

	INR is used to increase register by 1 (1 Byte instruction)

	JNC is used to jump if no borrow (3 Byte instruction)

	SUB is used to subtract two numbers where one number is in accumulator(1 Byte)

	HLT is used to halt the program

See for: 8086 program to subtract two 16-bit numbers with or without borrow

ujjwal57

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to multiply two 8 bit numbers

				
						

				
			Problem – Multiply two 8 bit numbers stored at address 2050 and 2051. Result is stored at address 3050 and 3051. Starting address of program is taken as 2000.

Example –

Algorithm –

	We are taking adding the number 43 seven(7) times in this example.

	As the multiplcation of two 8 bit numbers can be maximum of 16 bits so we need register pair to store the result.

Program –

	Memory Address
	Mnemonics
	Comment

	2000
	LHLD 2050
	H←2051, L←2050

	2003
	XCHG
	H↔D, L↔E

	2004
	MOV C, D
	C←D

	2005
	MVI D 00
	D←00

	2007
	LXI H 0000
	H←00, L←00

	200A
	DAD D
	HL←HL+DE

	200B
	DCR C
	C←C-1

	200C
	JNZ 200A
	If Zero Flag=0, goto 200A

	200F
	SHLD 3050
	H→3051, L→3050

	2012
	HLT
	

Explanation – Registers used: A, H, L, C, D, E

	LHLD 2050 loads content of 2051 in H and content of 2050 in L

	XCHG exchanges contents of H with D and contents of L with E

	MOV C, D copies content of D in C

	MVI D 00 assigns 00 to D

	LXI H 0000 assigns 00 to H and 00 to L

	DAD D adds HL and DE and assigns the result to HL

	DCR C decreaments C by 1

	JNZ 200A jumps program counter to 200A if zero flag = 0

	SHLD stores value of H at memory location 3051 and L at 3050

	HLT stops executing the program and halts any further execution

Read next: Assembly language program (8085 microprocessor) to add two 8 bit numbers

AnmolAgarwal

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to multiply two 8 bit numbers using logical instructions

				
						

				
			Prerequisite – Logical instructions in 8085 microprocessor

Problem – Write a assembly language program multiply two 8 bit numbers and store the result at memory address 3050 in 8085 microprocessor.

Example –

[image:]

The value of accumulator(A) after using RLC instruction is:

A = 2n*A

Where n = number of times RLC instruction is used.

Assumptions –

Assume that the first number is stored at register B, and second number is stored at register C. And the result must not have any carry.

Algorithm –

	Assign the value 05 to register B

	Assign the value 04 to register C

	Move the content of B in A

	Rotate accumulator left without carry

	Rotate accumulator left without carry

	Store the content of accumulator at memory address 3050

	Halt of the program

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENTS

	2000
	MVI B 05
	B <- 05

	2002
	MVI C 04
	C <- 04

	2004
	MOV A, B
	A <- B

	2005
	RLC
	rotate the content of A without carry

	2006
	RLC
	rotate the content of A without carry

	2007
	STA 3050
	3050 <- A

	200A
	HLT
	End of the program

Explanation –

	MVI B 05: assign the value 05 to B register.

	MVI C 04: assign the value 04 to C register.

	MOV A, B: move the content of register B to register A.

	RLC: rotate the content of accumulator left without carry.

	RLC: rotate the content of accumulator left without carry.

	STA 3050: store the content of register A at memory location 3050

	HLT: stops the execution of the program.

AnamikaSharma2

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to find sum of digits of 8 bit number

				
						

				
			Problem – Write an assembly language program in 8085 microprocessor to find sum of digit of an 8 bit number.

Example –

Assumptions – Addresses of input data and output data are 2050 and 3050 respectively.

Algorithm –

	Load value stored at memory location 2050 in accumulator A

	Move the value of accumulator A in register B

	Perform masking of nibbles i.e. do AND operation of accumulator A with OF by help of ANI instruction. We will get lower nibble value in accumulator A

	Move the value of accumulator A in register C

	Move the value of register B in accumulator A

	Reverse the number which is stored in accumulator A by using RLC instruction 4 times and again do masking of nibbles as done in step 3

	Add value of register C in accumulator A

	Store the value of A in memory location 3050

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	2000
	LDA 2050
	A <- M[2050]

	2003
	MOV B, A
	B <- A

	2004
	ANI 0F
	A <- A (AND) 0F

	2006
	MOV C, A
	C <- A

	2007
	MOV A, B
	A <- B

	2008
	RLC
	Rotate left without carry

	2009
	RLC
	Rotate left without carry

	200A
	RLC
	Rotate left without carry

	200B
	RLC
	Rotate left without carry

	200C
	ANI 0F
	A <- A (AND) 0F

	200E
	ADD C
	A <- A + C

	200F
	STA 3050
	M[3050] <- A

	2012
	HLT
	END

Explanation – Registers used A, B, C

	LDA 2050 –loads the content of memory location 2050 in accumulator A

	MOV B, A –moves the value of accumulator A in register B

	ANI 0F –performs AND operation in value of accumulator A and 0F

	MOV C, A –moves the value of accumulator A in register C

	MOV A, B –moves the value of register B in accumulator A

	RLC –instruction rotate the value of accumulator A, left by 1 bit. Since it is performed 4 times therefore this will reverse the number i.e swaps the lower order nibble with higher order nibble

	Repeat step 3

	ADD C –add the content of register of C in accumulator A

	STA 3050 –stores value of A in 3050

	HLT –stops executing the program and halts any further execution

AmishTandon

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to find the sum of a series

				
						

				
			Problem – Write a program to find the sum of a series where series starts from 3001 memory address and count of series is at 3000 memory address where starting address of the given program is 2000 store result into 4000 memory address.

Example –

Algorithm –

	Move 00 to register B immediately for carry

	Load the data of memory [3000] into H immediately

	Move value of memory into register C

	Decrease C by 1

	Increase H-L pair by 1

	Move value of memory into accumulator

	Increase H-L pair by 1

	Add value of memory with accumulator

	Jump if no carry to step 11

	Increase value of register B by one

	Decrease register C by 1

	Jump if not zero to step-7

	Store content of accumulator into memory [4000] (result)

	Move content of register B into accumulator

	Store content of accumulator into memory [4001] (carry)

	Stop

 Program –

	Memory
	Mnemonics
	Operands
	Comment

	2000
	MVI
	B, 00
	[B] <- 00

	2002
	LXI
	H, [3000]
	[H-L] <- [3000]

	2005
	MOV
	C, M
	[C] <- [M]

	2006
	DCR
	C
	[C] <- [C] – 1

	2007
	INX
	H
	[H-L] <- [H-L] + 1

	2008
	MOV
	A, M
	[A] <- [M]

	2009
	INX
	H
	[H-L] <- [H-L] + 1

	200A
	ADD
	M
	[A] <- [A] + [M]

	200B
	JNC
	200F
	jump if no carry

	200E
	INR
	B
	[B] <- [B] + 1

	200F
	DCR
	C
	[C] <- [C] – 1

	2010
	JNZ
	2009
	jump if not zero

	2013
	STA
	[4000]
	result

	2016
	MOV
	A, B
	[A] <- [B]

	2017
	STA
	[4001]
	carry

	201A
	HLT
	
	Stop

Explanation – Registers A, B, C, H are used for general purpose.

	MVI is used to load an 8-bit given register immediately (2 Byte instruction)

	LXI is used to load register pair immediately using 16-bit address (3 Byte instruction)

	MOV is used to transfer the data from accumulator to register(any) or register(any) to accumulator (1 Byte)

	RAR is used to shift ‘A’ right with carry (1 Byte instruction)

	STA is used to store data from accumulator into memory direct using 16-bit address (3 Byte instruction)

	INR is used to increase given register by 1 (1 Byte instruction)

	JNC is used to jump to the given step if their is no carry (3 Byte instruction)

	JNZ is used to jump to the given step if their is not zero (3 Byte instruction)

	DCR is used to decrease given register by 1 (1 Byte instruction)

	INX is used to increase register pair by 1 (1 Byte instruction)

	ADD is used to add value of accumulator with the given value (1 Byte instruction)

	HLT is used to halt the program

ujjwal57

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to find the factorial of a number

				
						

				
			Problem – Write an assembly language program for calculating the factorial of a number using 8085 microprocessor.

Example –

Input : 04H
Output : 18H
as 04*03*02*01 = 24 in decimal => 18H

[image: Data result store]

In 8085 microprocessor, no direct instruction exists to multiply two numbers, so multiplication is done by repeated addition as 4×3 is equivalent to 4+4+4 (i.e., 3 times).

Load 04H in D register -> Add 04H 3 times -> D register now contains 0CH -> Add 0CH 2 times -> D register now contains 18H -> Add 18H 1 time -> D register now contains 18H -> Output is 18H

[image: factorial iterations]

Algorithm –

	Load the data into register B

	To start multiplication set D to 01H

	Jump to step 7

	Decrements B to multiply previous number

	Jump to step 3 till value of B>0

	Take memory pointer to next location and store result

	Load E with contents of B and clear accumulator

	Repeatedly add contents of D to accumulator E times

	Store accumulator content to D

	Go to step 4

	Address
	Label
	Mnemonic
	Comment

	2000H
	Data
	
	Data Byte

	2001H
	Result
	
	Result of factorial

	2002H
	
	LXI H, 2000H
	Load data from memory

	2005H
	
	MOV B, M
	Load data to B register

	2006H
	
	MVI D, 01H
	Set D register with 1

	2008H
	FACTORIAL
	CALL MULTIPLY
	Subroutine call for multiplication

	200BH
	
	DCR B
	Decrement B

	200CH
	
	JNZ FACTORIAL
	Call factorial till B becomes 0

	200FH
	
	INX H
	Increment memory

	2010H
	
	MOV M, D
	Store result in memory

	2011H
	
	RST
	Exit

	2100H
	MULTIPLY
	MOV E, B
	Transfer contents of B to C

	2101H
	
	MVI A, 00H
	Clear accumulator to store result

	2103H
	MULTIPLYLOOP
	ADD D
	Add contents of D to A

	2104H
	
	DCR E
	Decrement E

	2105H
	
	JNZ MULTIPLYLOOP
	Repeated addition

	2108H
	
	MOV D, A
	Transfer contents of A to D

	2109H
	
	RET
	Return from subroutine

Explanation –

	First set register B with data.

	Set register D with data by calling MULTIPLY subroutine one time.

	Decrement B and add D to itself B times by calling MULTIPLY subroutine as 4*3 is equivalent to 4+4+4 (i.e., 3 times).

	Repeat the above step till B reaches 0 and then exit the program.

	The result is obtained in D register which is stored in memory

aastha98

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to count the number of ones in contents of register B

				
						

				
			Problem – Write an assembly language program to count the number of ones in contents of register B and store the result at memory location 3050.

Example –

[image:]

Algorithm –

	Convert the decimal number in Accumulator to its binary equivalent

	Rotate the digits of the binary number right without carry

	Apply a loop till count is not zero to change the values of D register and count

	Copy the value of D register to accumulator and store the result

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENTS

	2000
	MVI B 75
	B ← 75

	2002
	MVI C 08
	C ← 75

	2004
	MVI D 00
	D ← 00

	2006
	MOV A, B
	A ← B

	2007
	RRC
	Rotate right without carry

	2008
	JNC 200C
	Jump if Not Carry

	200B
	INR D
	D ← D+1

	200C
	DCR C
	C ← C-1

	200D
	JNZ 2007
	Jump if Not Zero

	2010
	MOV A, D
	A ← D

	2011
	STA 3050
	A → 3050

	2014
	HLT
	Stops execution

Explanation –

	 MVI B 75 moves 75 decimal number into B register

	 MVI C 08 moves 08 decimal number into C register, which is taken as counter as the number is of 8 bites

	 MVI D 00 moves 00 number into d register

	 MOV A, B moves the contents of B register into A (accumulator) register

	 RRC rotates the contents of A (which is 75 with binary equivalent 01110101) right

 [image:]

	 JNC 200C jumps to 200C address and perform the instructions written there if the carry flag is not zero

	 INR D increases the value of D register by adding one to its contents

	 DCR C decreases the value of C register by subtracting one from its contents

	JNZ 2007 jumps to 2007 address and perform the instructions written there if the zero flag is not zero

	 MOV A, D moves the contents of B register into A register

	 STA 3050 store the contents of A at 3050 memory location

	 HLT stops execution

Sakshi_98

I like to do coding in C++C and java programming languages HTML and CSS always intersts me Sharing knowleged is the best way according to me to increase ones knwoledge

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to find square root of a number

				
						

				
			Problem – Write an assembly language program in 8085 microprocessor to find square root of a number.

Example –

[image:]

Assumptions –

Number, whose square root we need to find is stored at memory location 2050 and store the final result in memory location 3050.

Algorithm –

	Assign 01 to register D and E

	Load the value, stored at memory location 2050 in accumulator A

	Subtract value stored at accumulator A from register D

	Check if accumulator holds 0, if true then jump to step 8

	Increment value of register D by 2

	Increment value of register E by 1

	Jump to step 3

	Move value stored at register E in A

	Store the value of A in memory location 3050

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	2000
	MVI D, 01
	D <- 01

	2002
	MVI E, 01
	E <- 01

	2004
	LDA 2050
	A <- M[2050]

	2007
	SUB D
	A <- A – D

	2008
	JZ 2011
	Jump if ZF = 0 to memory location 2011

	200B
	INC D
	D <- D + 1

	200C
	INC D
	D <- D + 1

	200D
	INC E
	E <- E + 1

	200E
	JMP 2007
	Jump to memory location 2007

	2011
	MOV A, E
	A <- E

	2012
	STA 3050
	A -> M[3050]

	2015
	HLT
	END

Explanation – Registers used A, D, E:

	MVI D, 01 – initialize register D with 01

	MVI E, 01 – initialize register E with 01

	LDA 2050 – loads the content of memory location 2050 in accumulator A

	SUB D – subtract value of D from A

	JZ 2011 – make jump to memory location 2011 if zero flag is set

	INR D – increments value of register D by 1. Since it is used two times, therefore value of D is incremented by 2

	INR E – increments value of register E by 1

	JMP 2007 – make jump to memory location 2007

	MOV A, E – moves the value of register E in accumulator A

	STA 3050 – stores value of A in 3050

	HLT – stops executing the program and halts any further execution

AmishTandon

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to find 1’s and 2’s complement of 8-bit number

				
						

				
			Problem – Write a program to find 1’s and 2’s complement of 8-bit number where starting address is 2000 and the number is stored at 3000 memory address and store result into 3001 and 3002 memory address.

Example –

Algorithm –

	Load the data from memory 3000 into A (accumulator)

	Complement content of accumulator

	Store content of accumulator in memory 3001 (1’s complement)

	Add 01 to Accumulator content

	Store content of accumulator in memory 3002 (2’s complement)

	Stop

Program –

	Memory
	Mnemonics
	Operands
	Comment

	2000
	LDA
	[3000]
	[A] <- [3000]

	2003
	CMA
	
	[A] <- [A^]

	2004
	STA
	[3001]
	1’s complement

	2007
	ADI
	01
	[A] <- [A] + 01

	2009
	STA
	[3002]
	2’s complement

	200C
	HLT
	
	Stop

Explanation –

	A is an 8-bit accumulator which is used to load and store the data directly

	LDA is used to load accumulator direct using 16-bit address (3 Byte instruction)

	CMA is used to complement content of accumulator (1 Byte instruction)

	STA is used to store accumulator direct using 16-bit address (3 Byte instruction)

	ADI is used to add data into accumulator immediately (2 Byte instruction)

	HLT is used to halt the program

ujjwal57

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to find 1’s and 2’s complement of 16-bit number

				
						

				
			Prerequisite – 8085 program to find 1’s and 2’s complement of 8-bit number

Problem – – Write a program to find 1’s and 2’s complement of 16-bit number where starting address is 2000 and the number is stored at 3000 memory address and store result into 3002 and 3004 memory address.

Example –

Algorithm –

	Load a 16-bit number from memory 3000 into a register pair (H-L)

	Move content of register L to accumulator

	Complement content of accumulator

	Move content of accumulator to register L

	Move content of register H to accumulator

	Complement content of accumulator

	Move content of accumulator to register H

	Store content of register pair in memory 3002 (1’s complement)

	Increment content of register pair by 1

	Store content of register pair in memory 3004 (2’s complement)

	Stop

 Program –

	Memory
	Mnemonics
	Operands
	Comment

	2000
	LHLD
	[3000]
	[H-L] <- [3000]

	2003
	MOV
	A, L
	[A] <- [L]

	2004
	CMA
	
	[A] <- [A^]

	2005
	MOV
	L, A
	[L] <- [A]

	2006
	MOV
	A, H
	[A] <- [H]

	2007
	CMA
	
	[A] <- [A^]

	2008
	MOV
	H, A
	[H] <- [A]

	2009
	SHLD
	[3002]
	1’s complement

	200C
	INX
	H
	[H-L] <- [H-L] + 1

	200D
	SHLD
	[3004]
	2’s complement

	2010
	HLT
	
	Stop

Explanation –

	A is an 8-bit accumulator which is used to load and store the data

	LHLD is used to load register pair H-L direct using 16-bit address (3 Byte instruction)

	MOV is used to transfer the data from accumulator to register(any) or register(any) to accumulator (1 Byte)

	CMA is used to complement content of accumulator (1 Byte instruction)

	SHLD is used to store data from register pair H-L into memory direct using 16-bit address (3 Byte instruction)

	INX is used to increase H-L register pair by 1 (1 Byte instruction)

	HLT is used to halt the program

ujjwal57

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to find 2’s complement of the contents of Flag Register

				
						

				
			Problem – Write an assembly language program in 8085 microprocessor to find 2’s complement of the contents of Flag Register.

Example –

Algorithm –

	Initialize the value of Stack Pointer (SP) to 3999

	Push the contents of PSW (Register pair formed by Accumulator and Flag Register) into the memory stack

	Pop the contents from the stack into register pair BC

	Move the contents of register C to A

	Take 1’s complement of the contents of A

	Increment the contents of A by 1

	Move the contents of A to C

	Push the contents of register pair BC into the stack

	Pop the contents of stack into PSW

	Stop

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	2000
	LXI SP 3999
	SP <- 3999

	2003
	PUSH PSW
	PUSH value of Accumulator and Flag into the stack

	2004
	POP B
	POP value from Top of stack into register pair BC

	2005
	MOV A, C
	A <- C

	2006
	CMA
	A = 1’S complement of A

	2007
	INR A
	A = A + 1

	2008
	MOV C, A
	C <- A

	2009
	PUSH B
	PUSH value of register pair BC into stack

	200A
	POP PSW
	POP value from Top of stack into Accumulator and Flag

	200B
	HLT
	Stop

Explanation –

	LXI SP 3999 is used to initialize the value of Stack Pointer(SP) to 3999.

	PUSH PSW is used to push the contents of PSW into the memory stack.

	POP B is used to pop the contents from the top of stack into register pair BC.

	MOV A, C moves the contents of register C to A.

	CMA takes 1’s complement of the contents of A.

	INR A increments the contents of A by 1.

	MOV C, A moves the contents of A to C.

	PUSH B is used to push the contents of register pair BC into the stack.

	POP PSW is used to pop the contents of stack into PSW.

	HLT is used to end the program.

harshit-chhabra

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization and Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to find nth power of a number

				
						

				
			Problem – Write an assembly language code for calculating the nth power of a number using 8085 microprocessor.

Example –

Input : Base=>02H
 Exponent=>03H
Output :08H

In 8085 microprocessor, no direct instruction exists to multiply two numbers, so multiplication is done by repeated addition as 4*4 is equivalent to 4+4+4+4(ie 4 times).

Load 02H(base) to register B and 03H(exponent) to register C -> set D register to 02H -> Add 02H B(ie 2) times -> D register now contains 04H -> Add 04H B(ie 2) times -> D register now contains 08H -> Output is 08H.

Algorithm –

	Load the base into register B and exponent into register C.

	To start multiplication set D to 01H.

	Jump to step 7.

	Decrements C.

	Jump to step 3 till value of C>0.

	Take memory pointer to next location and store result.

	Load E with contents of B and clear accumulator.

	Repeatedly add contents of D to accumulator E times.

	Store accumulator content to D.

	Go to step 4.

Program –

	Address
	Label
	Mnemonic
	Comment

	2000H
	Base
	
	Data Byte for base

	2001H
	Exponent
	
	Data Byte for exponent

	2002H
	Result
	
	Result of factorial

	
	
	
	

	2003H
	
	LXI H, 2000H
	Load data from memory

	2006H
	
	MOV B, M
	Load base to B register

	2007H
	
	INX H
	Increment memory

	2008H
	
	MOV C, M
	Load exponent to C register

	2009H
	
	MVI D, 01H
	Set D register to 1

	200BH
	POWER_LOOP
	CALL MULTIPLY
	Subroutine call for multiplication

	200EH
	
	DCR C
	Decrement C

	200FH
	
	JNZ POWER_LOOP
	Call power_loop till C becomes 0

	2012H
	
	INX H
	Increment memory

	2013H
	
	MOV M, D
	Store result in memory

	2014H
	
	RST
	Exit

	
	
	
	

	2100H
	MULTIPLY
	MOV E, B
	Transfer contents of B to E

	2101H
	
	MVI A, 00H
	Clear accumulator to store result

	2103H
	MULTIPLYLOOP
	ADD D
	Add contents of D to A

	2104H
	
	DCR E
	Decrement E

	2105H
	
	JNZ MULTIPLYLOOP
	Repeated addition

	2108H
	
	MOV D, A
	Transfer contents of A to D

	2109H
	
	RET
	Return from subroutine

Explanation –

	Set register B with base and register C with exponent.

	Set register D with base by calling MULTIPLY subroutine one time.

	Decrement C and add D to itself B times by calling MULTIPLY subroutine.

	Repeat the above step till C reaches 0 and then exit the program.

	The result is obtained in D register which is stored in memory

aastha98

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to check whether the given number is even or odd

				
						

				
			Problem – Write an assembly language program in 8085 microprocessor to check whether the 8 bit number which is stored at memory location 2050 is even or odd. If even, store 22 at memory location 3050 otherwise store 11 at memory location 3050.

Example –

[image:]

[image:]

A number is said to be odd if its lower bit is 1 otherwise even. Therefore to identify whether the number is even or odd, we perform AND operation with 01 by the help of ANI instruction. If number is odd then we will get 01 otherwise 00 in accumulator. ANI instruction also affect the flags of 8085. Therefore if accumulator contains 00 then zero flag becomes set otherwise reset.

Algorithm –

	Load the content of memory location 2050 in accumulator A.

	Perform AND operation with 01 in value of accumulator A by the help of ANI instruction.

	Check if zero flag is set, i.e if ZF = 1 then store 22 in accumulator A otherwise store 11 in A.

	Store the value of A in memory location 3050

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	2000
	LDA 2050
	A <- M[2050]

	2003
	ANI 01
	A <- A (AND) 01

	2005
	JZ 200D
	Jump if ZF = 1

	2008
	MVI A 11
	A <- 11

	200A
	JMP 200F
	Jump to memory location

	200D
	MVI A 22
	A <- 22

	200F
	STA 3050
	M[3050] <- A

	2012
	HLT
	END

Explanation – Registers used A:

	LDA 2050 –loads the content of memory location 2050 in accumulator A

	ANI 01 –performs AND operation between accumulator A and 01 and store the result in A

	JZ 200D –jump to memory location 200D if ZF = 1

	MVI A 11 –assign 11 to accumulator

	JMP 200F –jump to memory location 200F

	MVI A 22 –assign 22 to accumulator

	STA 3050 –stores value of A in 3050

	HLT –stops executing the program and halts any further execution

AmishTandon

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to find square of a 8 bit number

				
						

				
			Problem – Write an assembly language program in 8085 microprocessor to find square of 8 bit number.

Example –

Assumption – Addresses of input data and out data are 2050 and 3050 respectively.

Approach – Combine the content of registers H and L, the resultant content can be used to indirectly point to memory location and that memory location is specified by M. To find square of any number, keep on adding that number in accumulator A which initially contains 0 by that number of times whose square we need to find.

Algorithm –

	Assign 20 to register H, 50 to register L and 00 to accumulator A

	Load the content of memory location which is specified by M in register B

	Add content of M in accumulator A and decrement value of B by 01

	Check if B holds 00, if true then store the value of A at memory location 3050 otherwise go to step 3

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	2000
	MVI H 20
	H <- 20

	2002
	MVI L 50
	L <- 50

	2004
	MVI A 00
	A <- 00

	2006
	MOV B, M
	B <- M

	2007
	ADD M
	A <- A + M

	2008
	DCR B
	B <- B – 01

	2009
	JNZ 2007
	Jump if ZF = 0

	200C
	STA 3050
	M[3050] <- A

	200F
	HLT
	END

Explanation – Registers used A, H, L, B and indirect memory M:

	MVI H 20 – initialize register H with 20

	MVI L 50 – initialize register L with 50

	MVI A 00 – initialize accumulator A with 00

	MOV B, M – moves the content of memory location which is indirectly specified by M in register B

	ADD M – add the content of memory location which is indirectly specified by M in accumulator A

	DCR B – decrement value of register B by 1

	JNZ 2007 – jump to memory location 2007 if ZF = 0, i.e register B does not contain 0

	STA 3050 – stores value of A in 3050

	HLT – stops executing the program and halts any further execution

AmishTandon

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to find maximum and minimum of 10 numbers

				
						

				
			Problem – Write an assembly language program in 8085 microprocessor to find maximum and minimum of 10 numbers.

Example –

Minimum: 01H, Maximum: FFH

In CMP instruction:

If Accumulator > Register then carry and zero flags are reset

If Accumulator = Register then zero flag is set

If Accumulator < Register then carry flag is set

Assumption – List of numbers from 2050H to 2059H and output at 2060H and 2061H.

Algorithm –

	Maximum number is stored in B register and minimum in C register

	Load counter in D register

	Load starting element in Accumulator, B and C register

	Compare Accumulator and B register

	If carry flag is not set then transfer contents of Accumulator to B. Else, compare Accumulator with C register, if carry flag is set transfer contents of Accumulator to C

	Decrement D register

	If D>0 take next element in Accumulator and go to point 4

	If D=0, store B and C register in memory

	End of program

Program-

	Address
	Label
	Instruction
	Comment

	2000H
	
	LXI H, 2050H
	Load starting address of list

	2003H
	
	MOV B, M
	Store maximum

	2004H
	
	MOV C, M
	Store minimum

	2005H
	
	MVI D, 0AH
	Counter for 10 elements

	2007H
	LOOP
	MOV A, M
	Retrieve list element in Accumulator

	2008H
	
	CMP B
	Compare element with maximum number

	2009H
	
	JC MIN
	Jump to MIN if not maximum

	200CH
	
	MOV B, A
	Transfer contents of A to B as A > B

	200DH
	MIN
	CMP C
	Compare element with minimum number

	200EH
	
	JNC SKIP
	Jump to SKIP if not minimum

	2011H
	
	MOV C, A
	Transfer contents of A to C if A < minimum

	2012H
	SKIP
	INX H
	Increment memory

	2013H
	
	DCR D
	Decrement counter

	2014H
	
	JNZ LOOP
	Jump to LOOP if D > 0

	2017H
	
	LXI H, 2060H
	Load address to store maximum

	201AH
	
	MOV M, B
	Move maximum to 2060H

	201BH
	
	INX H
	Increment memory

	201CH
	
	MOV M, C
	Move minimum to 2061H

	201DH
	
	HLT
	Halt

Explanation –

	One by one all elements are compared with B and C register.

	Element is compared with maximum, if it greater than maximum then it is stored in B register. Else, it is compared with minimum and if it is less than minimum then it stored in C regiter.

	Loop executes 10 number of times.

	At the end of 10 iterations, maximum and minimum are stored at 2060H and 2061H respectively.

aastha98

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to find larger of two 8 bit numbers

				
						

				
			Problem – Write a program in 8085 microprocessor to find out larger of two 8-bit numbers, where numbers are stored in memory address 2050 and 2051, and store the result into memory address 3050.

Example –

[image:]

Algorithm –

	Load two numbers from memory 2050 & 2051 to register L and H .

	Move one number(H) to Accumulator A and subtract other number(L) from it.

	if result is positive then move the number(H) to A and store value of A at memory address 3050 and stop else move the number(L) to A and store value of A at memory address 3050 and stop.

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	2000
	LHLD 2050
	H<-(data at 2051)&L<-(data at 2050)

	2003
	MOV A, H
	A<-H

	2004
	SUB L
	A<-A-L

	2005
	JP 200D
	JUMP TO 200D IF NO. IS POSITIVE

	2008
	MOV A, L
	A<-L

	2009
	STA 3050
	A->(in memory 3050)

	200C
	HLT
	STOP

	200D
	MOV A, H
	A<-H

	200E
	STA 3050
	A->(in memory 3050)

	2011
	HLT
	STOP

Explanation –

	 LHLD 2050: load data from memory 2050 & 2051 to register L and H.

	 MOV A, H: transfer contents of register H to A.

	 SUB L: subtract contents of register L from A and store it to A.

	 JP 200D: jump to address 200D if result is positive.

	 MOV A, L: transfer contents of register L to A.

	 STA 3050: store data of A to memory address 3050.

	 HLT:: END.

	 MOV A, H: transfer contents of register H to A.

	 STA 3050: store data of A to memory address 3050.

	 HLT: END.

amber1998

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to find smallest number between two numbers

				
						

				
			Problem – Write an assembly language program to find smallest number between two number’s.

Example –

Algorithm –

	Load the content from memory location

	Move content of Accumulator into Register B

	Load the content from Memory location

	Compare the content of Register B

	If carry flag is equal to 1 go to step 7

	Move content of Register B into Accumulator

	Store the content into Memory

	End of program

Program –

	Memory
	Memonics
	Use Operand
	Comments

	2000
	LDA
	[2500]
	[A]<-[2500]

	2003
	MOV B, A
	
	[B]<-[A]

	2004
	LDA
	2501
	[A]<-[2501]

	2007
	CMP B
	
	[A]<-[A]-[B]

	2008
	JC *
	[200C]
	jump carry

	200B
	MOV B, A
	
	[A]<-[B]

	200C
	STA
	[2502]
	[A]->[2502]

	200F
	HLT
	
	STOP

Explanation –

	LDA is used to load accumulator (3 Byte instruction).

	CMP is used to compaire the content of accumulator (1 Byte instruction).

	STA is used to store accumulator direct using 16-bit address (3 Byte instruction).

	JC jump if carry (3 Byte instruction).

faizanahmad1

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to find maximum of two 8 bit numbers

				
						

				
			Problem – Write a assembly language program to find maximum of two 8 bit numbers in 8085 microprocessor.

Assumptions – Starting memory locations and output memory locations are 2050, 2051 and 3050 respectively.

Example –

[image:]

Algorithm –

	Load value in the accumulator

	Then, copy the value to any of the register

	Load next value in the accumulator

	Compare both values

	Check carry flag, if reset then jump to the required address to store the value

	Copy the result in the accumulator

	Store the result at the required address

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENTS

	2000
	LDA 2050
	A<-25

	2003
	MOV B, A
	B<-25

	2004
	LDA 2051
	A<-15

	2007
	CMP B
	A-B

	2008
	JNC 200C
	Jump if Carry flag is Reset(Carry flag = 0)

	200B
	MOV A, B
	A<-25

	200C
	STA 3050
	3050<-25

	200F
	HLT
	Terminates the program

Explanation –

	LDA 2050: loads value at memory location 2050

	MOV B, A: assigns value of A to B

	LDA 2051: loads value at memory location 2051

	CMP B: compare values by subtracting B from A

	JNC 200C: jump at memory location 200C if carry flag is Reset(Carry flag = 0)

	STA 3050: store result at memory location 3050

	HLT: terminates the program

aishwarya.27

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to count number of once in the given 8-bit number

				
						

				
			Problem – Write a program to count number of once in the given 8-bit number use register B to display the count of once where starting address is 2000 and the number is stored at 3000 memory address and store result into 3001 memory address.

Example –

Algorithm –

	Move 00 to register B immediately for count

	Move 08 to register C immediately for shifting

	Load the data of memory [3000] into accumulator

	Rotate ‘A’ right with carry

	Jump if no carry to step-7

	Otherwise increase register B by 1

	Decrease register C by 1

	Jump if not zero to step-4

	Move content of register B into accumulator

	Store content of accumulator into memory [3001] (number of count)

	Stop

 Program –

	Memory
	Mnemonics
	Operands
	Comment

	2000
	MVI
	B, 00
	[B] <- 00

	2002
	MVI
	C, 08
	[C] <- 08

	2004
	LDA
	[3000]
	[A] <- [3000]

	2007
	RAR
	
	rotate ‘A’ right with carry

	2008
	JNC
	200C
	jump if no carry

	200B
	INR
	B
	[B] <- [B] + 1

	200C
	DCR
	C
	[C] <- [C] – 1

	200D
	JNZ
	2007
	jump if not zero

	2010
	MOV
	A, B
	[A] <- [B]

	2011
	STA
	[3001]
	number of once

	2014
	HLT
	
	Stop

Explanation – Registers A, B and C are used for general purpose.

	MVI is used to load an 8-bit given register immediately (2 Byte instruction)

	LDA is used to load accumulator direct using 16-bit address (3 Byte instruction)

	MOV is used to transfer the data from accumulator to register(any) or register(any) to accumulator (1 Byte)

	RAR is used to shift ‘A’ right with carry (1 Byte instruction)

	STA is used to store data from accumulator into memory direct using 16-bit address (3 Byte instruction)

	INR is used to increase given register by 1 (1 Byte instruction)

	JNC is used to jump to the given step if their is no carry (3 Byte instruction)

	JNZ is used to jump to the given step if their is not zero (3 Byte instruction)

	DCR is used to decrease given register by 1 (1 Byte instruction)

	HLT is used to halt the program

ujjwal57

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

8085 Misc

						8085 program to convert an 8 bit number into Grey number

				
						

				
			Prerequisite – Binary to/from Gray Code

Problem – Write an assembly language program in 8085 which convert an 8 bit number into grey number

Example –

Assumption – 8 bit number (input) is stored at memory location 2050 and output to be stored at memory location 3050.

Algorithm –

	Load the content of memory location 2050 in Accumulator

	Reset carry flag i.e. CY = 0

	Rotate the contents of Accumulator right by 1 bit with carry and perform xor operation with initial value of input

	Store the result at memory location 3050

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	2000
	LDA 2050
	A <- M[2050]

	2003
	MOV B, A
	B <- A

	2004
	STC
	CY = 1

	2005
	CMC
	CY <- complement of CY

	2006
	RAR
	Rotate 1 bit right with carry

	2007
	XRA B
	A <- A XOR B

	2008
	STA 3050
	M[3050] <- A

	200B
	HLT
	End of program

Explanation –

	LDA 2050 loads the content of memory location 2050 in accumulator

	MOV B, A transfers the content of register A in register B

	STC sets the carry flag i.e. CY becomes 1

	CMC complements the carry flag i.e. CY becomes 0

	RAR rotate the content of accumulator by 1 bit along with carry flag

	XRA B performs the xor operation in values of register A and register B and store the result in A

	STA 3050 stores the value of accumulator in memory location 3050

	HLT stops executing the program and halts any further execution

AmishTandon

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to convert binary numbers to gray

				
						

				
			Prerequisite – Binary to/from Gray Code

Problem – Write an assembly language program in 8085 microprocessor to convert binary numbers to gray.

Example –

Algorithm –

	Set the Carry Flag (CY) to 0.

	Load the data from address 2050 in A.

	Move the data of A(accumulator) into register B.

	Rotate the bits of A to right.

	XOR the contents of register A and B.

	Store the result at memory address 3050.

	Stop.

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	2000
	STC
	CY <- 1

	2001
	CMC
	CY <- 1's Compliment of CY

	2002
	LDA 2050
	A <- 2050

	2005
	MOV B,A
	B <- A

	2006
	RAR
	Rotate accumulator right with carry

	2007
	XRA B
	A = A XOR B

	2008
	STA 3050
	3050 <- A

	200B
	HLT
	Stop

Explanation –

	STC is used to set carry flag (CY) to 1.

	CMC is used to take 1’s compliment of the contents of carry flag (CY).

	LDA 2050 is used load the data from address 2050 in A.

	MOV B, A is used to move the data of A into B.

	RAR is used to rotate the bits of A along with carry flag (CY) to right one time.

	XRA B is used to perform XOR operation between the contents of register A and B.

	STA 3050 is used to store the contents of A to 3050.

	HLT is used end the program.

harshit-chhabra

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization and Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to convert gray to binary

				
						

				
			Problem – Write an assembly language program in 8085 microprocessor to convert gray numbers to binary.

Example –

Algorithm –

	Load the data from address 2050 in A

	Move the data 07 in C

	Move the data of A to B

	Extract the MSB (Most Significant Bit) of data available in A

	Rotate the bits of A to right

	Take AND between data in A and 7F

	Take XOR between the data present in A and B

	Decrements the contents of C

	If Zero Flag (ZF) is not set go to step 4 else go to step 9

	Store the result at memory address 3050

	Stop

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	2000
	LDA 2050
	A <- 2050

	2003
	MVI C, 07
	C <- 07

	2005
	MOV B, A
	B <- A

	2006
	ANI 80
	A = A AND 80

	2008
	RRC
	Rotate A to Right without carry

	2009
	ANI 7F
	A = A AND 7F

	200B
	XRA B
	A = A XOR B

	200C
	DCR C
	C = C – 1

	200D
	JNZ 2008
	JUMP to 2008 if ZF = 0

	2011
	STA 3050
	3050 <- A

	2014
	HLT
	Stop

Explanation–

	LDA 2050 is used to load the data from address 2050 in A

	MVI C, 07 is used to move the data 07 in C

	MOV B, A moves the data of A to B

	ANI 80 extracts the MSB(Most Significant Bit) of data available in A

	RRC rotates the bits of A to right without carry

	ANI 7F is used to tTake AND between data in A and 7F

	XRA B takes XOR between the data present in A and B

	DCR C is used to decrement the contents of C

	JNZ 2008 is used to jump to address 2008 if ZF = 0

	STA 3050 is used to store the result at memory address 3050

	HLT is used to end the program

harshit-chhabra

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization and Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to convert 8 bit BCD number into ASCII Code

				
						

				
			Problem – Write an assembly level language program to convert 8 bit BCD number to its respective ACSII Code.

Assumptions –

 Starting address of program: 2000

 Input memory location: 2050

 Output memory location: 3050 and 3051

ASCII Code for Digits 0 – 9

[image:]

Example –

Algorithm –

	Input the content of 2050 in accumulator

	Move content of Accumulator to register B

	Separate the least significant digit using AND with 0F and ADD 30 to accumulator

	Store content of accumulator to memory location 3050

	Move content of register B to Accumulator

	Separate the most significant digit using AND with F0

	Rotate Content of Accumulator 4 times

	ADD 30 to accumulator

	Store content of accumulator to memory location 3051

Program –

	Address
	Mnemonics
	Comments

	2000
	LDA 2050
	A <- [2050]

	2003
	MOV B, A
	B <- A

	2004
	ANI 0F
	A <- A & 0F

	2006
	ADI 30
	A <- A + 30

	2008
	STA 3050
	[3050]<-A

	200B
	MOV A, B
	A <- B

	200C
	ANI F0
	A <- A & F0

	200E
	RLC
	Rotate A left

	200F
	RLC
	Rotate A left

	2010
	RLC
	Rotate A left

	2011
	RLC
	Rotate A left

	2012
	ADI 30
	A <- A + 30

	2014
	STA 3051
	[3051]<-A

	2017
	HLT
	Stop Execution

Explanation –

	LDA 2050 load the content of memory location 2050 to accumulator

	MOV B, A copy the content of accumulator to register B

	ANI 0F AND the content of accumulator with immediate data 0F

	ADI 30 ADD 30 to accumulator

	STA 3050 store the content of accumulator to memory location 3050

	MOV A, B copy the content of register B to accumulator

	ANI F0 AND the content of accumulator with immediate data F0

	RLC rotate the content of accumulator left without carry

	RLC rotate the content of accumulator left without carry

	RLC rotate the content of accumulator left without carry

	RLC rotate the content of accumulator left without carry

	ADI 30 ADD 30 to accumulator

	STA 3051 store the content of accumulator to memory location 3051

	HLT stops the execution of program

Ankit_Bisht

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 code to convert binary number to ASCII code

				
						

				
			Problem – Assembly level program in 8085 which converts a binary number into ASCII number.

Example –

Assumptions – Binary number which have to convert in ASCII value is stored at memory location 2050 and output will be displayed at memory location 3050 and 3051.

Algorithm –

	Load the content of 2050.

	Then separate the LSB of the no. using ANI 0F instruction and MSB of the number by again loading the content of 2050 and rotate it by one bit 4 times to get reverse of the number and then again use ANI 0F to separate the digit.

	If the digit is more than or equal to 0A (in hexadecimal) then add 37 otherwise add 30 to convert into ASCII value (For checking the number is greater than or equal to A then use instruction: CPI 0A and then check the carry flag, if it is 0 then it means digit is greater than or equal to A and if 1 digit is less than A).

	Now Store the ASCII values of both the digits in 3050 and 3051 respectively.

Program –

Main routine:

	ADDRESS
	MNEMONICS
	COMMENTS

	2000
	LDA 2050
	A<-[2050]

	2003
	CALL 2500
	go to address 2500

	2006
	STA 3050
	A->[3050]

	2009
	LDA 2050
	A<-[2050]

	200C
	RLC
	Rotate the number by one bit to left without carry

	200D
	RLC
	Rotate the number by one bit to left without carry

	200E
	RLC
	Rotate the number by one bit to left without carry

	200F
	RLC
	Rotate the number by one bit to left without carry

	2010
	CALL 2500
	go to address 2500

	2013
	STA 3051
	A->[3051]

	2016
	HLT
	Terminates the program

Sub routine:

	ADDRESS
	MNEMONICS
	COMMENTS

	2500
	ANI 0F
	A<-[A] AND 0F

	2502
	CPI 0A
	[A]-0A

	2504
	JNC 250A
	Jump to [250A] if carryflag is 0

	2507
	ADI 30
	A<-[A]+30

	2509
	RET
	Return to the next instruction from where subroutine address was called in main routine

	250A
	ADI 37
	A<-[A]+37

	250C
	RET
	Return to the next instruction from where subroutine address was called in main routine

Explanation –

Main routine:

	LDA 2050: This instruction will load the number from address 2050 to the accumulator.

	CALL 2500: This instruction will stop executing the main routine instructions after it and will move to the subroutine address 2500 for performing the subtask and after performing subroutine instructions it will come back to mainroutine and execute the instructions after CALL 2500.

	STA 3050: This instruction will store the result (performed in subroutine) of Accumulator to address 3050.

	LDA 2050: This instruction will again load the number from address 2050 to the accumulator as the earlier loaded number is changed in accumulator.

	RLC: Rotate the contents of Accumulator by one bit left side without carry.

	RLC: Rotate the contents of Accumulator by one bit left side without carry.

	RLC: Rotate the contents of Accumulator by one bit left side without carry.

	RLC: Rotate the contents of Accumulator by one bit left side without carry.

 (Applying RLC 4 times it will reverse the contents of the Accumulator)

	9. CALL 2500: This instruction will stop executing the main routine instructions after it and will move to the subroutine address 2500 for performing the subtask and after performing subroutine instructions it will come back to mainroutine and execute the instructions after CALL 2500.

	10. STA 3051: This instruction will store the result (performed in subroutine) of Accumulator to address 3051.

	11. HLT: This instruction will terminate the program.

Sub routine:

	ANI 0F: This instruction will separate the LSB of the number present in Accumulator and stores the result back in Accumulator.

	CPI 0A: This instruction will compare the content of Accumulator with 0A i.e. [A]-0A.

	JNC 205A: If the carryflag becomes 0 then it will jump to 205A otherwise move to the next instruction.

	ADI 30: It will add 30 to the content of Accumulator and again store the result back in Accumulator.

	RET: Now it will move back to the main routine after the next instruction of CALL and start executing instructions of main routine.

	ADI 37: It will add 37 to the content of Accumulator and again store the result back in Accumulator.

	RET: Now it will move back to the main routine after the next instruction of CALL and start executing instructions of main routine.

Next article: 8085 program to convert 8 bit BCD number into ASCII Code

AashutoshChauhan

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to search a number in an array of n numbers

				
						

				
			Problem – Write an assembly language program in 8085 to search a given number in an array of n numbers. If number is found, then store F0 in memory location 3051 otherwise store 0F in 3051.

Assumptions – Count of elements in an array is stored at memory location 2050. Array is stored from starting memory address 2051 and number which user want to search is stored at memory location 3050.

Examples –

Algorithm –

	Make the memory pointer points to memory location 2050 by help of LXI H 2050 instruction

	Store value of array size in register C

	Store number to be search in register B

	Increment memory pointer by 1 so that it points to next array index

	Store element of array in accumulator A and compare it with value of B

	If both are same i.e. if ZF = 1 then store F0 in A and store the result in memory location 3051 and go to step 9

	Otherwise store 0F in A and store it in memory location 3051

	Decrement C by 01 and check if C is not equal to zero i.e. ZF = 0, if true go to step 3 otherwise go to step 9

	End of program

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	2000
	LXI H 2050
	H <- 20, L <- 50

	2003
	MOV C, M
	C <- M

	2004
	LDA 3050
	A <- M[3050]

	2007
	MOV B, A
	B <- A

	2008
	INX H
	HL <- HL + 0001

	2009
	MOV A, M
	A <- M

	200A
	CMP B
	A – B

	200B
	JNZ 2014
	Jump if ZF = 0

	200E
	MVI A F0
	A <- F0

	2010
	STA 3051
	M[3051] <- A

	2013
	HLT
	END

	2014
	MVI A 0F
	A <- 0F

	2016
	STA 3051
	M[3051] <- A

	2019
	DCR C
	C <- C – 01

	201A
	JNZ 2008
	Jump if ZF = 0

	201D
	HLT
	END

Explanation – Registers used A, B, C, H, L and indirect memory M:

	LXI H 2050 – initialize register H with 20 and register L with 50

	MOV C, M – assign content of indirect memory location, M which is represented by registers H and L to register C

	LDA 3050 – loads the content of memory location 3050 in accumulator A

	MOV B, A – move the content of A in register B

	INX H – increment HL by 1, i.e. M is incremented by 1 and now M will point to next memory location

	MOV A, M – move the content of memory location M in accumulator A

	CMP B – subtract B from A and update flags of 8085

	JNZ 2014 – jump to memory location 2014 if zero flag is reset i.e. ZF = 0

	MVI A F0 – assign F0 to A

	STA 3051 – stores value of A in 3051

	HLT – stops executing the program and halts any further execution

	MVI A 0F – assign 0F to A

	STA 3051 – stores value of A in 3051

	DCR C – decrement C by 01

	JNZ 2008 – jump to memory location 2008 if zero flag is reset

	HLT – stops executing the program and halts any further execution

AmishTandon

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Assembly language program to find largest number in an array

				
						

				
			Problem – Determine largest number in an array of n elements. Value of n is stored at address 2050 and array starts from address 2051. Result is stored at address 3050. Starting address of program is taken as 2000.

Example –

Algorithm –

	We are taking first element of array in A

	Comparing A with other elements of array, if A is smaller then store that element in A otherwise compare with next element

	The value of A is the answer

Program –

	Memory Address
	Mnemonics
	Comment

	2000
	LXI H 2050
	H←20, L←50

	2003
	MOV C, M
	C←M

	2004
	DCR C
	C←C-01

	2005
	INX H
	HL←HL+0001

	2006
	MOV A, M
	A←M

	2007
	INX H
	HL←HL+0001

	2008
	CMP M
	A-M

	2009
	JNC 200D
	If Carry Flag=0, goto 200D

	200C
	MOV A, M
	A←M

	200D
	DCR C
	C←C-1

	200E
	JNZ 2007
	If Zero Flag=0, goto 2007

	2011
	STA 3050
	A→3050

	2014
	HLT
	

Explanation – Registers used: A, H, L, C

	LXI 2050 assigns 20 to H and 50 to L

	MOV C, M copies content of memory (specified by HL register pair) to C (this is used as a counter)

	DCR C decrements value of C by 1

	INX H increases value of HL by 1. This is done to visit next memory location

	MOV A, M copies content of memory (specified by HL register pair) to A

	INX H increases value of HL by 1. This is done to visit next memory location

	CMP M compares A and M by subtracting M from A. Carry flag and sign flag becomes set if A-M is negative

	JNC 200D jumps program counter to 200D if carry flag = 0

	MOV A, M copies content of memory (specified by HL register pair) to A

	DCR C decrements value of C by 1

	JNZ 2007 jumps program counter to 2007 if zero flag = 0

	STA 3050 stores value of A at 3050 memory location

	HLT stops executing the program and halts any further execution

AnmolAgarwal

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Arrays
Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program for bubble sort

				
						

				
			Prerequisite – Bubble Sort

Problem – Write an assembly language program in 8085 microprocessor to sort a given list of n numbers using Bubble Sort.

Example –

Assumption – Size of list is stored at 2040H and list of numbers from 2041H onwards.

Algorithm –

	Load size of list in C register and set D register to be 0

	Decrement C as for n elements n-1 comparisons occur

	Load the starting element of the list in Accumulator

	Compare Accumulator and next element

	If accumulator is less than next element jump to step 8

	Swap the two elements

	Set D register to 1

	Decrement C

	If C>0 take next element in Accumulator and go to point 4

	If D=0, this means in the iteration, no exchange takes place consequently we know that it won’t take place in further iterations so the loop in exited and program is stopped

	Jump to step 1 for further iterations

Program –

	Address
	Label
	Instruction
	Comment

	2000H
	START
	LXI H, 2040H
	Load size of array

	2003H
	
	MVI D, 00H
	Clear D register to set up a flag

	2005H
	
	MOV C, M
	Set C register with number of elements in list

	2006H
	
	DCR C
	Decrement C

	2007H
	
	INX H
	Increment memory to access list

	2008H
	CHECK
	MOV A, M
	Retrieve list element in Accumulator

	2009H
	
	INX H
	Increment memory to access next element

	200AH
	
	CMP M
	Compare Accumulator with next element

	200BH
	
	JC NEXTBYTE
	If accumulator is less then jump to NEXTBYTE

	200EH
	
	MOV B, M
	Swap the two elements

	200FH
	
	MOV M, A
	

	2010H
	
	DCX H
	

	2011H
	
	MOV M, B
	

	2012H
	
	INX H
	

	2013H
	
	MVI D, 01H
	If exchange occurs save 01 in D register

	2015H
	NEXTBYTE
	DCR C
	Decrement C for next iteration

	2016H
	
	JNZ CHECK
	Jump to CHECK if C>0

	2019H
	
	MOV A, D
	Transfer contents of D to Accumulator

	201AH
	
	CPI 01H
	Compare accumulator contents with 01H

	201CH
	
	JZ START
	Jump to START if D=01H

	201FH
	
	HLT
	HALT

Explanation-

	Retrive an element in accumulator.

	Compare it with next element, if it is greater then swap otherwise move to next index.

	If in one entire loop there has been no exchange, halt otherwise start the whole iteration again.

	The following approach has two loops, one nested inside other so-
Worst and Average Case Time Complexity: O(n*n). Worst case occurs when array is reverse sorted.

Best Case Time Complexity: O(n). Best case occurs when array is already sorted.

aastha98

Sophomore at Netaji Subhas Institute of Technology

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to swap two 8-bit numbers

				
						

				
			Problem – Write an assembly language program to swap two 8-bit numbers stored in 8085 microprocessor.

Assumption – Suppose there are two 8-bit numbers. One 8-bit number is stored at location 2500 memory address and another is stored at location 2501 memory address. Let 05 is stored at location 2500 and 06 is stored at location 2501 (not necessarily, can be any two 8-bit numbers).

Example –

Algorithm –

	Load accumulator with the content of any one location (either 2500 or 2501 or any given location).

	Move the contents of accumulator to any register (say B) so that another location’s content can be loaded to accumulator and the previous data of accumulator get saved in register.

	Store the content of accumulator to another location (data of 2501 to 2500).

	Load accumulator with content of register and then store it to another address location.

Program –

	Address
	Mnemonics
	Comments

	2000
	LDA 2500
	A<-[2500]

	2003
	MOV B,A
	B<-A

	2004
	LDA 2501
	A<-[2501]

	2007
	STA 2500
	2500<-[A]

	200A
	MOV A,B
	A<-B

	200B
	STA 2501
	2501<-[A]

	200E
	HLT
	Terminates the program

Explanation –

	LDA 2500 – Load accumulator with content of location 2500

	MOV B,A – Copy content of accumulator to register B

	LDA 2501 – Load accumulator with content of location 2501

	STA 2500 – Store content of accumulator to location 2500

	MOV A,B – Copy content of register B to accumulator

	STA 2501 – Store content of accumulator to location 2501

	HLT – Terminates the program

Deepanshi_Mittal

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to swap two 8 bit numbers using Direct addressing mode

				
						

				
			Problem – Write a program to swap two 8-bit numbers using direct addressing mode where starting address is 2000 and the first 8-bit number is stored at 3000 and the second 8-bit number is stored at 3001 memory address.

Example –

Algorithm –

	Load a 8-bit number from memory 3000 into accumulator

	Move value of accumulator into register H

	Load a 8-bit number from memory 3001 into accumulator

	Move value of accumulator into register D

	Exchange both the register pairs

	Stop

 Program –

	Memory
	Mnemonics
	Operands
	Comment

	2000
	LDA
	[3000]
	[A] <- [3000]

	2003
	MOV
	H, A
	[H] <- [A]

	2004
	LDA
	[3001]
	[A] <- [3001]

	2007
	MOV
	D, A
	[D] <- [A]

	2008
	XCHG
	
	[H-L] [D-E]

	2009
	HLT
	
	Stop

Explanation – Registers A, H, D are used for general purpose.

	LDA is used to load accumulator direct using 16-bit address (3 Byte instruction)

	MOV is used to transfer the data (1 Byte instruction)

	XCHG is used to exchange the data of both the register pair (H-L), (D-E) (1 Byte instruction)

	HLT is used to halt the program.

ujjwal57

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to swap two 16 bit numbers using Direct addressing mode

				
						

				
			Problem – Write a program to swap two 16-bit numbers using direct addressing mode where starting address is 2000 and the first 16-bit number is stored at 3000 and the second 16-bit number is stored at 3002 memory address.

Example –

Algorithm –

	Load a 16-bit number from memory 3000 into a register pair (H-L)

	Exchange the register pairs

	Load a 16-bit number from memory 3002 into a register pair (H-L)

	Exchange both the register pairs

	Stop

 Program –

	Memory
	Mnemonics
	Operands
	Comment

	2000
	LHLD
	[3000]
	[H-L] <- [3000]

	2003
	XCHG
	
	[H-L] [D-E]

	2004
	LHLD
	[3002]
	[H-L] <- [3002]

	2007
	XCHG
	
	[H-L] [D-E]

	2008
	HLT
	
	Stop

Explanation – Registers (H-L) pair, (D-E) pair are used for general purpose.

	LHLD is used to load register pair H-L direct using 16-bit address (3 Byte instruction)

	XCHG is used to exchange the data of both the register pair (H-L), (D-E) (1 Byte instruction)

	HLT is used to halt the program.

ujjwal57

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to exchange a block of bytes in memory

				
						

				
			Problem – Write an assembly level program in 8085 microprocessor to exchange a block of 4 bytes staring from address 2001 with data starting from address 3001.

[image:]

Algorithm –

	Take a count equal to 4

	Store the starting address of both blocks in 2 different register pairs

	Now exchange the contents at the addresses in both register pairs

	Increment the values of both register pairs

	Decrements count by 1

	If count is not equal to 0 repeat steps 3 to 5

	MEMORY ADDRESS
	MNEMONICS
	COMMENTS

	2500
	LXI D 2001
	D <= 20, E <= 01

	2503
	LXI H 3001
	H <= 20, L <= 01

	2506
	MVI C 04
	C <= 04

	2508
	MOV B, M
	B <= M[H-L]

	2509
	LDAX D
	A <= M[D-E]

	250A
	MOV M, A
	M[H-L] <= A

	250B
	MOV A, B
	A <= B

	250C
	STAX D
	M[D-E] <= A

	250D
	INX H
	[H-L] <= [H-L] + 1

	250E
	INX D
	[D-E] <= [D-E] + 1

	250F
	DCR C
	C <= C – 1

	2510
	JNZ 2508
	JUMP TO 2508 IF C NOT EQUAL TO 0

	2513
	HLT
	STOP THE PROGRAM

Explanation –

	LXI D 2001 – Loads register pair, that is in this case, D=20 and E=01

 LXI H 3001 – H=30 and L=01

	MVI C 04 – Assigns immediate data, eg.- here C=04

MVI A 45 – assigns A(accumulator) with 45, A=45

	MOV B, M – Here M is the data in H – L register pair and it serves as an address. Copies content at address stored in M to register B

	LDAX D – Here Accumulator is loaded with the data stored at address formed by register pair D – E

	MOV M, A – Here A’s content is copied to address which is stored in M.

 MOV A, B – Copies content of register B to A

	STAX D – Stores the content of A (accumulator) in the address formed by register pair D – E.

	INX H – Increment the content of register pair H – L

	INX H – Increment the content of register pair D – E

	DCR C – Decrements the content of register C

	JNZ 2508 – If value of register C is not equal to 0 then jump to address 2508

	HLT – Stop execution of program

RishabhMalik

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to access and exchange the content of Flag register with register B

				
						

				
			Problem – Write an assembly language program in 8085 microprocessor to access Flag register and exchange the content of flag register F with register B.

Example –

Assumptions – Initial values of flag register, register B and stack pointer are is 00, 3F, and 3FFF respectively.

PSW stands for PROGRAM STATUS WORD. PSW combines accumulator A and flag register F.

Algorithm –

	Push the value of PSW in memory stack by help of PUSH instruction

	Pop the value of Flag register and store it in register H by help of POP instruction

	Move the value of register H in register C

	Move the value of register B in register H

	Move the value of register C in register B

	Push the value of register H in memory stack by help of PUSH instruction

	Pop the value of PSW from memory stack using POP instruction

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	2000
	PUSH PSW
	Push value of accumulator and flag in stack

	2001
	POP H
	Pop value from TOP of memory stack in H

	2002
	MOV C, H
	C <- H

	2003
	MOV H, B
	H <- B

	2004
	MOV B, C
	B <- C

	2005
	PUSH H
	Push the value of register H

	2006
	POP PSW
	Pop value of flag register and Accumulator

	2007
	HLT
	END

Explanation – Registers used A, B, C, H, F

	PUSH PSW instruction performs the following task:
 SP <- SP - 1
 M[SP] <- A
 SP <- SP - 1
 M[SP] <- F

	POP H instruction performs the following task:
 H <- M[SP]
 SP <- SP + 1

	MOV C, H – moves the value of H in register C

	MOV H, B – moves the value of B in register H, hence H is updated

	MOV B, C – moves the value of C in register B, hence B is updated

	PUSH H performs the following task:
 SP <- SP - 1
 M[SP] <- H

	POP PSW performs the following task:

 F <- M[SP]
 SP <- SP + 1
 A <- M[SP]
 SP <- SP + 1

	HLT – stops executing the program and halts any further execution

AmishTandon

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8085 program to move blocks of bits from source location to a destination location

				
						

				
			Problem – Write a program to move blocks of bits from source location starting at 2500 to destination location starting from 2600 where size of blocks is 05 bytes.

Example –

Algorithm –

	Load register pair H-L with the address 2500H

	Load register pair D-E with the address 2600H

	Move the content at memory location into accumulator

	Store the content of accumulator into memory pointed by D-E

	Increment value of register pair H-L and D-E by 1

	Decrements value of register C by 1

	If zero flag not equal to 1, go to step 3

	Stop

 Program –

	Memory
	Mnemonics
	Operands
	Comment

	2000
	MVI
	C, 05
	[C] <- 05

	2002
	LXI
	H, 2500
	[H-L] <- 2500

	2005
	LXI
	D, 2600
	[D-E] <- 2600

	2008
	MOV
	A, M
	[A] <- [[H-L]]

	2009
	STAX
	D
	[A] -> [[D-E]]

	200A
	INX
	H
	[H-L] <- [H-L] + 1

	200B
	INX
	D
	[D-E] <- [D-E] + 1

	200C
	DCR
	C
	[C] <- [C] – 1

	200D
	JNZ
	2008
	Jump if not zero to 2008

	2010
	HLT
	
	Stop

Explanation – Registers A, D, E, H, L, C are used for general purpose:

	MOV is used to transfer the data from memory to accumulator (1 Byte)

	LXI is used to load register pair immediately using 16-bit address (3 Byte instruction)

	MVI is used to move data immediately into any of registers (2 Byte)

	STAX is used to store accumulator into register pair indirectly (3 Byte instruction)

	DCR is used to decrease register by 1 (1 Byte instruction)

	INX is used to increase register pair by 1 (1 Byte instruction)

	JNZ is used to jump if not zero to given memory location (3 Byte instruction)

	HLT is used to halt the program

ujjwal57

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Assembly program to transfer the status of switches

				
						

				
			Problem – Write an assembly language program in 8085 of interfacing between 8085 and 8255. 8 switches are connected at port A. Transfer the status of these switches into port B where LEDs are connected.

Example –

Input port is A and output port is B.

Algorithm –

	Construct the control word register

	Input the data from port A

	Display the result in port B

Program –

	Mnemonics
	Comments

	MVI A, 90
	A ← 92

	OUT 83
	Control Register ← A

	IN 80
	A → Port A;

	OUT 81
	Port C A ← A

	RET
	Return

Explanation –

	MVI A, 92 means that the value of control register is 92.
D7=1 as it is in I/O mode
D6=0 & D5=0 as Poet A is in m0 mode
D4=1 as Port A is taking input
D3=0 & D0=0 as Port C is not taking part
D2=0 as mode of Port B is m0
D1=0as Port B is displaying the result

	OUT 83 putting the vaue of A in 83H which is the port number of port control register.

	IN 80 taking input from 80H which is the port number of port A.

	OUT 81 displaying the result in 81H which is the port number of port B.

	RET return

Sakshi_98

I like to do coding in C++C and java programming languages HTML and CSS always intersts me Sharing knowleged is the best way according to me to increase ones knwoledge

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Differences between 8085 and 8086 microprocessor

				
						

				
			In the changing world of technologies, the devices used are also changing. Let us take a look at the changes between 8085 series of microprocessors and 8086 series of microprocessors.

	Serial No.
	8085 microprocessor
	8086 microprocessor

	1
	The data bus is of 8 bits.
	The data bus is of 16 bits.

	2
	The address bus is of 16 bits.
	The address bus is of 20 bits.

	3
	The memory capacity is 64 KB.
	The memory capacity is 1 MB.

	4
	The input/output port addresses are of 8 bits.
	The input/output port addresses are of 8 bits.

	5
	The operating frequency is 3 MHz.
	The operating frequency is 5 MHz.

	6
	It not have multiplication and division instructions.
	It have multiplication and division instructions.

	7
	It does not support pipe-lining.
	It supports pipe-lining as it has two independent units Execution Unit (EU) and Bus Interface Unit (BIU).

	8
	It does not support instruction queue.
	It supports instruction queue.

	9
	Memory space is not segmented.
	Memory space is segmented.

	10
	It consists of 5 flags(Sign Flag, Zero Flag, Auxiliary Carry Flag, Parity Flag, Carry Flag).
	It consists of 9 flags(Overflow Flag, Direction Flag, Interrupt Flag, Trap Flag, Sign Flag, Zero Flag, Auxiliary Carry Flag, Parity Flag, Carry Flag).

Sakshi_98

I like to do coding in C++C and java programming languages HTML and CSS always intersts me Sharing knowleged is the best way according to me to increase ones knwoledge

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Interface 8255 with 8085 microprocessor for addition

				
						

				
			Problem – Interface 8255 with 8085 microprocessor and write an assembly program which determine the addition of contents of port A and port B and store the result in port C.

Example –

[image:]

[image:]

Algorithm –

	Construct the control word register

	Input the data from port A and port B

	Add the contents of port A and port B

	Display the result in port C

Program –

	Mnemonics
	Comments

	MVI A, 90
	A ← 92

	OUT 83
	Control Register ← A

	IN 80
	A ← Port A;

	MOV B, A
	B ← A;

	IN 81
	A ← Port B;

	ADD B
	A ← A+B;

	OUT 82
	Port C ← A

	RET
	Return

Explanation –

	MVI A, 92 means that the value of control regidter is 92.
D7=1 as it is in I/O mode.
D6=0 & D5=0 as Poet A is in m0 mode.
D4=1 as Port A is taking input.
D3=0 & D0=0 as Port C is not taking part.
D2=0 as mode of Port B is m0.
D1=1as Port B is taking the input.

	OUT 83 putting the vaue of A in 83H which is the port number of port control register.

	IN 80 taking input from 80H which is the port number of port A.

	MOV B, A copies the content of A register to B register.

	IN 81 take input feom 81H which is the port number of port B.

	ADD B add the contents of A register and B register.

	OUT 82 displaying the result in 81H which is the port number of port C.

	RET return

Sakshi_98

I like to do coding in C++C and java programming languages HTML and CSS always intersts me Sharing knowleged is the best way according to me to increase ones knwoledge

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

8086 Basic

						General purpose registers in 8086 microprocessor

				
						

				
			General purpose registers are used to store temporary data within the microprocessor. There are 8 general purpose registers in 8086 microprocessor.

Figure – General purpose registers

	AX – This is the accumulator. It is of 16 bits and is divided into two 8-bit registers AH and AL to also perform 8-bit instructions.

It is generally used for arithmetical and logical instructions but in 8086 microprocessor it is not mandatory to have accumulator as the destination operand.

Example:

ADD AX, AX (AX = AX + AX)

	BX – This is the base register. It is of 16 bits and is divided into two 8-bit registers BH and BL to also perform 8-bit instructions.

It is used to store the value of the offset.

Example:

MOV BL, [500] (BL = 500H)

	CX – This is the counter register. It is of 16 bits and is divided into two 8-bit registers CH and CL to also perform 8-bit instructions.

It is used in looping and rotation.

Example:

MOV CX, 0005
LOOP

	DX – This is the data register. It is of 16 bits and is divided into two 8-bit registers DH and DL to also perform 8-bit instructions.

It is used in multiplication an input/output port addressing.

Example:

MUL BX (DX, AX = AX * BX)

	SP – This is the stack pointer. It is of 16 bits.

It points to the topmost item of the stack. If the stack is empty the stack pointer will be (FFFE)H. It’s offset address relative to stack segment.

	BP – This is the base pointer. It is of 16 bits.

It is primary used in accessing parameters passed by the stack. It’s offset address relative to stack segment.

	SI – This is the source index register. It is of 16 bits.

It is used in the pointer addressing of data and as a source in some string related operations. It’s offset is relative to data segment.

	DI – This is the destination index register. It is of 16 bits.

It is used in the pointer addressing of data and as a destination in some string related operations.It’s offset is relative to extra segment.

Yash_R

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Flag register of 8086 microprocessor

				
						

				
			Prerequisite – Flag register in 8085 microprocessor

The Flag register is a Special Purpose Register. Depending upon the value of result after any arithmetic and logical operation the flag bits become set (1) or reset (0).

Figure – Format of flag register

There are total 9 flags in 8086 and the flag register is divided into two types:

(a) Status Flags – There are 6 flag registers in 8086 microprocessor which become set(1) or reset(0) depending upon condition after either 8-bit or 16-bit operation. These flags are conditional/status flags. 5 of these flags are same as in case of 8085 microprocessor and their working is also same as in 8085 microprocessor. The sixth one is the overflow flag.

The 6 status flags are:

	Sign Flag (S)

	Zero Flag (Z)

	Auxiliary Cary Flag (AC)

	 Parity Flag (P)

	Carry Flag (CY)

These first five flags are defined here

	Overflow Flag (O) – This flag will be set (1) if the result of a signed operation is too large to fit in the number of bits available to represent it, otherwise reset (0). After any operation, if D[6] generates any carry and passes to D[7] OR if D[6] does not generates carry but D[7] generates, overflow flag becomes set, i.e., 1. If D[6] and D[7] both generate carry or both do not generate any carry, then overflow flag becomes reset, i.e., 0.
Example: On adding bytes 100 + 50 (result is not in range -128…127), so overflow flag will set.

MOV AL, 50 (50 is 01010000 which is positive)
MOV BL, 32 (32 is 00110010 which is positive)
ADD AL, BL (82 is 10000010 which is negative)

Overflow flag became set as we added 2 +ve numbers and we got a -ve number.

(b) Control Flags – The control flags enable or disable certain operations of the microprocessor. There are 3 control flags in 8086 microprocessor and these are:

	Directional Flag (D) – This flag is specifically used in string instructions.

If directional flag is set (1), then access the string data from higher memory location towards lower memory location.

If directional flag is reset (0), then access the string data from lower memory location towards higher memory location.

	Interrupt Flag (I) – This flag is for interrupts.

If interrupt flag is set (1), the microprocessor will recognize interrupt requests from the peripherals.

If interrupt flag is reset (0), the microprocessor will not recognize any interrupt requests and will ignore them.

	Trap Flag (T) – This flag is used for on-chip debugging. Setting trap flag puts the microprocessor into single step mode for debugging. In single stepping, the microprocessor executes a instruction and enters into single step ISR.

If trap flag is set (1), the CPU automatically generates an internal interrupt after each instruction, allowing a program to be inspected as it executes instruction by instruction.

If trap flag is reset (0), no function is performed.

Yash_R

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Addressing modes in 8086 microprocessor

				
						

				
			Prerequisite – Addressing modes, Addressing modes in 8085 microprocessor

The way of specifying data to be operated by an instruction is known as addressing modes. This specifies that the given data is an immediate data or an address. It also specifies whether the given operand is register or register pair.

Types of addressing modes:

	Register mode – In this type of addressing mode both the operands are registers.

Example:

MOV AX, BX
XOR AX, DX
ADD AL, BL

	Immediate mode – In this type of addressing mode the source operand is a 8 bit or 16 bit data. Destination operand can never be immediate data.

Example:

MOV AX, 2000
MOV CL, 0A
ADD AL, 45
AND AX, 0000

Note that to initialize the value of segment register an register is required.

MOV AX, 2000
MOV CS, AX

	Displacement or direct mode – In this type of addressing mode the effective address is directly given in the instruction as displacement.

Example:

MOV AX, [DISP]
MOV AX, [0500]

	Register indirect mode – In this addressing mode the effective address is in SI, DI or BX.

Example:

MOV AX, [DI]
ADD AL, [BX]
MOV AX, [SI]

	Based indexed mode – In this the effective address is sum of base register and index register.
Base register: BX, BP
Index register: SI, DI

The physical memory address is calculated according to the base register.

Example:

MOV AL, [BP+SI]
MOV AX, [BX+DI]

	Indexed mode – In this type of addressing mode the effective address is sum of index register and displacement.

Example:

MOV AX, [SI+2000]
MOV AL, [DI+3000]

	Based mode – In this the effective address is the sum of base register and displacement.

Example:

MOV AL, [BP+ 0100]

	Based indexed displacement mode – In this type of addressing mode the effective address is the sum of index register, base register and displacement.

Example:

MOV AL, [SI+BP+2000]

	String mode – This addressing mode is related to string instructions. In this the value of SI and DI are auto incremented and decremented depending upon the value of directional flag.

Example:

MOVS B
MOVS W

	Input/Output mode – This addressing mode is related with input output operations.

Example:

IN A, 45
OUT A, 50

	Relative mode –

In this the effective address is calculated with reference to instruction pointer.

Example:

JNZ 8 bit address
IP=IP+8 bit address

SrishtiGoel

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Arithmetic instructions in 8086 microprocessor

				
						

				
			Arithmetic Instructions are the instructions which perform basic arithmetic operations such as addition, subtraction and a few more. Unlike in 8085 microprocessor, in 8086 microprocessor the destination operand need not be the accumulator.

Following is the table showing the list of arithmetic instructions:

	OPCODE
	OPERAND
	EXPLANATION
	EXAMPLE

	ADD
	D, S
	D = D + S
	ADD AX, [2050]

	ADC
	D, S
	D = D + S + prev. carry
	ADC AX, BX

	SUB
	D, S
	D = D – S
	SUB AX, [SI]

	SBB
	D, S
	D = D – S – prev. carry
	SBB [2050], 0050

	MUL
	8-bit register
	AX = AL * 8-bit reg.
	MUL BH

	MUL
	16-bit register
	DX AX = AX * 16-bit reg.
	MUL CX

	IMUL
	8 or 16 bit register
	performs signed multiplication
	IMUL CX

	DIV
	8-bit register
	AX = AX / 8-bit reg. ; AL = quotient ; AH = remainder
	DIV BL

	DIV
	16-bit register
	DX AX / 16-bit reg. ; AX = quotient ; DX = remainder
	DIV CX

	IDIV
	8 or 16 bit register
	performs signed division
	IDIV BL

	INC
	D
	D = D + 1
	INC AX

	DEC
	D
	D = D – 1
	DEC [2050]

	CBW
	none
	converts signed byte to word
	CBW

	CWD
	none
	converts signed byte to double word
	CWD

	NEG
	D
	D = 2’s compliment of D
	NEG AL

	DAA
	none
	decimal adjust accumulator
	DAA

	DAS
	none
	decimal adjust accumulator after subtraction
	DAS

	AAA
	none
	ASCII adjust accumulator after addition
	AAA

	AAS
	none
	ASCII adjust accumulator after subtraction
	AAS

	AAM
	none
	ASCII adjust accumulator after multiplication
	AAM

	AAD
	none
	ASCII adjust accumulator after division
	AAD

Here D stands for destination and S stands for source.

D and S can either be register, data or memory address.

Yash_R

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
Misc
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Logical instructions in 8086 microprocessor

				
						

				
			Logical instructions are the instructions which perform basic logical operations such as AND, OR, etc. In 8086 microprocessor, the destination operand need not be the accumulator.

Following is the table showing the list of logical instructions:

	OPCODE
	OPERAND
	DESTINATION
	EXAMPLE

	AND
	D, S
	D = D AND S
	AND AX, 0010

	OR
	D, S
	D = D OR S
	OR AX, BX

	NOT
	D
	D = NOT of D
	NOT AL

	XOR
	D, S
	D = D XOR S
	XOR AL, BL

	TEST
	D, S
	performs bit-wise AND operation and affects the flag registor
	TEST [0250], 06

	SHR
	D, C
	shifts each bit in D to the right C times and 0 is stored at MSB position
	SHR AL, 04

	SHL
	D, C
	shifts each bit in D to the left C times and 0 is stored at LSB position
	SHL AX, BL

	ROR
	D, C
	rotates all bits in D to the right C times
	ROR BL, CL

	ROL
	R, C
	rotates all bits in D to the left C times
	ROL BX, 06

	RCR
	D, C
	rotates all bits in D to the right along with carry flag C times
	RCR BL, CL

	RCL
	R, C
	rotates all bits in D to the left along with carry flag C times
	RCL BX, 06

Here D stands for destination, S stands for source and C stands for count.

They can either be register, data or memory address.

Yash_R

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Data transfer instructions in 8086 microprocessor

				
						

				
			Data tranfer instructions are the instructions which transfers data in the microprocessor. They are also called copy instructions.

Following is the table showing the list of data transfer instructions:

	OPCODE
	OPERAND
	EXPLANATION
	EXAMPLE

	MOV
	D, S
	D = S
	MOV AX, [SI]

	PUSH
	D
	pushes D to the stack
	PUSH DX

	POP
	D
	pops the stack to D
	POP AS

	PUSHA
	none
	put all the registers into the stack
	PUSHA

	POPA
	none
	gets words from the stack to all registers
	POPA

	XCHG
	D, S
	exchanges contents of D snd S
	XCHG [2050], AX

	IN
	D, S
	copies a byte or word from S to D
	IN AX, DX

	OUT
	D, S
	copies a byte or word from D to S
	OUT 05, AL

	XLAT
	none
	translates a byte in AL using a table in the memory
	XLAT

	LAHF
	none
	loads AH with the lower byte of the flag register
	LAHF

	SAHF
	none
	stores AH register to lower byte of the flag register
	SAHF

	PUSHF
	none
	copies the flag register at the top of the stack
	PUSHF

	POPF
	none
	copies a word at the top of the stack to the flag register
	POPF

Here D stands for destination and S stands for source.

D and S can either be register, data or memory address.

Yash_R

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Process control instructions in 8086 microprocessor

				
						

				
			Process control instructions are the instructions which control the processor’s action by setting(1) or resetting(0) the values of flag registers.

Following is the table showing the list of process control instructions:

	OPCODE
	OPERAND
	EXPLPANATION
	EXAMPLE

	STC
	none
	sets carry flag to 1
	STC

	CLC
	none
	resets carry flag to 0
	CLC

	CMC
	none
	compliments the carry flag
	CMC

	STD
	none
	sets directional flag to 1
	STD

	CLD
	none
	resets directional flag to 0
	CLD

	STI
	none
	sets the interrupt flag to 1
	STI

	CLI
	none
	resets the interrupt flag to 0
	CLI

Yash_R

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Reset Accumulator (8085 & 8086 microprocessor)

				
						

				
			1. Problem – Write the 8085 instructions which reset the accumulator.

Solution – There are 4 instructions to reset the accumulator in 8085. These instructions are:

	S.No.
	MNEMONICS
	COMMENT

	1
	MVI A, 00
	A <- 00

	2
	ANI 00
	A AND 00

	3
	XRA A
	A XOR A

	4
	SUB A
	A <- A – A

Explanation –

	MVI A, 00: instruction copies 00 to A.

	ANI 00: instruction performs bit by bit AND operation of source operand (i.e. 00) to the destination operand (i.e. the accumulator A) and store the result in accumulator A.

	XRA A: instruction performs XOR operation between source operand and destination operand and store the result in the accumulator. Here, source and destination operand both are same i.e. A. Therefore, the result after performing XOR operation, stored in the accumulator is 00.

	SUB A: operation subtracts the contents of source operand(here, source register is A) from the contents of accumulator and store the result in the accumulator itself. Since, the source and destination operand are same. Therefore, accumulator A = 00.

2. Problem – Write 8086 instructions which are used to reset accumulator.

Solution – There are 4 instructions in 8086 to reset the accumulator. These instructions are:

	S.No.
	MNEMONICS
	COMMENT

	1
	MOV AX, 0000
	AX <- 0000

	2
	AND AX, 0000
	AX <- AX AND 0000

	3
	XOR AX, AX
	AX <- AX XOR AX

	4
	SUB AX, AX
	AX <- AX – AX

Explanation – Register AX is used.

	MOV AX, 0000: copies 0000 to AX.

	 AND AX, 0000: operation performs bit by bit ANDs the source operand (0000) to the destination operand and store the result in AX.

	XOR AX, AX: performs the XOR operation in values of source register and destination register and store the result in AX. The source and destination operands, both are same. Therefore, AX = 0.

	SUB AX, AX: operation subtracts the value of source operand from the value of destination operand and store the result in AX. Here, both the operands are same .Therefore, AX = 0.

ChitraNayal

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Difference between CALL and JUMP instructions

				
						

				
			CALL instruction is used to call a subroutine. Subroutines are often used to perform tasks that need to be performed frequently. The JMP instruction is used to cause the PLC to skip over rungs.

The differences Between CALL and JUMP instructions are:

	SERIAL NO.
	JUMP
	CALL

	1.
	Program control is transferred to a memory location which is in the main program
	Program Control is transferred to a memory location which is not a part of main program

	2.
	Immediate Addressing Mode
	Immediate Addressing Mode + Register Indirect Addressing Mode

	3.
	Initialisation of SP(Stack Pointer) is not mandatory
	Initialisation of SP(Stack Pointer) is mandatory

	4.
	Value of Program Counter(PC) is not transferred to stack
	Value of Program Counter(PC) is transferred to stack

	5.
	After JUMP, there is no return instruction
	After CALL, there is a return instruction

	6.
	Value of SP does not changes
	Value of SP is decremented by 2

	7.
	10 T states are required to execute this instruction
	18 T states are required to execute this instruction

	8.
	3 Machine cycles are required to execute this instruction
	5 Machine cycles are required to execute this instruction

harshit-chhabra

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

8086 Mathematical

						8086 program to add two 8 bit BCD numbers

				
						

				
			Problem – Write a program in 8086 microprocessor to find out the addition of two 8-bit BCD numbers, where numbers are stored from starting memory address 2000 : 500 and store the result into memory address 2000 : 600 and carry at 2000 : 601.

Example –

Algorithm –

	Load data from offset 500 to register AL (first number)

	Load data from offset 501 to register BL (second number)

	Add these two numbers (contents of register AL and register BL)

	Apply DAA instruction (decimal adjust)

	Store the result (content of register AL) to offset 600

	Set register AL to 00

	Add contents of register AL to itself with carry

	Store the result (content of register AL) to offset 601

	Stop

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	400
	MOV AL, [500]
	AL<-[500]

	404
	MOV BL, [501]
	BL<-[501]

	408
	ADD AL, BL
	AL<-AL+BL

	40A
	DAA
	DECIMAL ADJUST AL

	40B
	MOV [600], AL
	AL->[600]

	40F
	MOV AL, 00
	AL<-00

	411
	ADC AL, AL
	AL<-AL+AL+cy(prev)

	413
	MOV [601], AL
	AL->[601]

	417
	HLT
	END

Explanation –

	 MOV AL, [500]: load data from offset 500 to register AL

	 MOV BL, [501]: load data from offset 501 to register BL

	 ADD AL, BL: ADD contents of registers AL AND BL

	 DAA: decimal adjust AL

	 MOV [600], AL: store data from register AL to offset 600

	 MOV AL, 00: set value of register AL to 00

	 ADC AL, AL: add contents of register AL to AL with carry

	 MOV [601], AL: store data from register AL to offset 601

	 HLT: stop

amber1998

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to add two 16-bit numbers with or without carry

				
						

				
			Problem – Write a program to add two 16-bit numbers where starting address is 2000 and the numbers are at 3000 and 3002 memory address and store result into 3004 and 3006 memory address.

Example –

[image:]

Algorithm –

	Load 0000H into CX register (for carry)

	Load the data into AX(accumulator) from memory 3000

	Load the data into BX register from memory 3002

	Add BX with Accumulator AX

	Jump if no carry

	Increment CX by 1

	Move data from AX(accumulator) to memory 3004

	Move data from CX register to memory 3006

	Stop

Program –

	Memory
	Mnemonics
	Operands
	Comment

	2000
	MOV
	CX, 0000
	[CX] <- 0000

	2003
	MOV
	AX, [3000]
	[AX] <- [3000]

	2007
	MOV
	BX, [3002]
	[BX] <- [3002]

	200B
	ADD
	AX, BX
	[AX] <- [AX] + [BX]

	200D
	JNC
	2010
	Jump if no carry

	200F
	INC
	CX
	[CX] <- [CX] + 1

	2010
	MOV
	[3004], AX
	[3004] <- [AX]

	2014
	MOV
	[3006], CX
	[3006] <- [CX]

	2018
	HLT
	
	Stop

Explanation –

	MOV is used to load and store data.

	ADD is used to add two numbers where their one number is in accumulator or not.

	JNC is a 2-bit command which is used to check whether the carry is generated from accumulator or not.

	INC is used to increment an register by 1.

	HLT is used to stop the program.

	AX is an accumulator which is used to load and store the data.

	BX, CX are general purpose registers where BX is used for storing second number and CX is used to store carry.

ujjwal57

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to add two 16 bit BCD numbers with carry

				
						

				
			Problem – Write an assembly language program to add two 16 bit BCD numbers with carry in 8086 microprocessor.

Example –

[image:]

Algorithm –

	Load the lower part of both the 16 bit BCD numbers in different locations.

	Add each number by adding first its lower part.

	Repeat the above step also by adding the carry if any.

	Make the lower part of register 00 and add the carry. This is done to obtain the carry.

	Display all the mumbers with highest part as carry, middle part as addition of the higher BCD 8 bits and lower part as the lower BCD 8 bits.

Program –

	Memory Address
	Mnemonics
	Comments

	0400
	MOV AL, [500]
	AL ← [500]

	0404
	MOV BL, [502]
	BL ← [502]

	0408
	ADD AL, BL
	AL ← AL+BL

	040A
	DAA
	Decimal Adjust AL

	040B
	MOV [600], AL
	AL → [600]

	040F
	MOV AL, [501[
	AL ← [501]

	0413
	MOV BL, 503
	BL ← [503]

	0417
	ADC AL, BL
	AL ← AL+BL+CY

	0419
	DAA
	Decimal Adjust AL

	041A
	MOV [601], AL
	AL → [601]

	041E
	MOV AL, 00
	AL ← 00H

	0420
	ADC AL, AL
	AL ← AL+AL+CY

	0422
	MOV [602], AL
	AL → [602]

	0426
	HLT
	Stop Execution

Explanation –

	MOV AL, [500] moves the value stored at memory location 500 to AL register.

	MOV BL, [502] moves the value stored at memory location 500 to BL register.

	ADD AL, BL add the values in AL and BL registers.

	DAA adds 6 to the digit which is greater than 9.

	MOV [600], AL display the added value to memory location 600.

	MOV AL, [501] moves the value stored at memory location 501 to AL register.

	MOV BL, [503] moves the value stored at memory location 503 to BL register.

	ADC AL, BL add the values in AL and BL registers and carry (if any).

	MOV BL, [503] moves the value stored at memory location 503 to BL register.

	MOV [601], ALdisplay the added value to memory location 601.

	MOV AL, 00 moves 00 in AL register.

	ADC AL, AL add the values in AL and AL registers and carry (if any).

	MOV [602], AL display the added value to memory location 602.

	HLT stops execution.

Next related article – 8086 program to add two 8 bit BCD numbers

Sakshi_98

I like to do coding in C++C and java programming languages HTML and CSS always intersts me Sharing knowleged is the best way according to me to increase ones knwoledge

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to subtract two 8 bit BCD numbers

				
						

				
			Problem – Write a program in 8086 microprocessor to find out the Subtraction of two 8-bit BCD numbers, where numbers are stored from starting memory address 2000 : 500 and store the result into memory address 2000 : 600 and carry (borrow) at 2000 : 601.

Example –

[image:]

Algorithm –

	Load data from offset 500 to register AL (first number)

	Load data from offset 501 to register BL (second number)

	Subtract these two numbers (contents of register AL and register BL)

	Apply DAS instruction (decimal adjust)

	Store the result (content of register AL) to offset 600

	Set register AL to 00

	Add contents of register AL to itself with carry (borrow)

	Store the result (content of register AL) to offset 601

	Stop

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	400
	MOV AL, [500]
	AL<-[500]

	404
	MOV BL, [501]
	BL<-[501]

	408
	SUB AL, BL
	AL<-AL-BL

	40A
	DAS
	DECIMAL ADJUST AL

	40B
	MOV [600], AL
	AL->[600]

	40F
	MOV AL, 00
	AL<-00

	411
	ADC AL, AL
	AL<-AL+AL+cy(prev)

	413
	MOV [601], AL
	AL->[601]

	417
	HLT
	END

Explanation –

	 MOV AL, [500] load data from offset 500 to register AL.

	 MOV BL, [501] load data from offset 501 to register BL.

	 SUB AL, BL subtract contents of registers AL AND BL.

	 DAS decimal adjust AL.

	 MOV [600], AL store data from register AL to offset 600.

	 MOV AL, 00 set value of register AL to 00.

	 ADC AL, AL add contents of register AL to AL with borrow.

	 MOV [601], AL store data from register AL to offset 601.

	 HLT End.

amber1998

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to subtract two 16-bit numbers with or without borrow

				
						

				
			Problem – Write a program to subtract two 16-bit numbers where starting address is 2000 and the numbers are at 3000 and 3002 memory address and store result into 3004 and 3006 memory address.

Example –

[image:]

Algorithm –

	 Load 0000H into CX register (for borrow)

	 Load the data into AX(accumulator) from memory 3000

	 Load the data into BX register from memory 3002

	 Subtract BX with Accumulator AX

	 Jump if no borrow

	 Increment CX by 1

	 Move data from AX(accumulator) to memory 3004

	 Move data from CX register to memory 3006

	 Stop

Program –

	Memory
	Mnemonics
	Operands
	Comment

	2000
	MOV
	CX, 0000
	[CX] <- 0000

	2003
	MOV
	AX, [3000]
	[AX] <- [3000]

	2007
	MOV
	BX, [3002]
	[BX] <- [3002]

	200B
	SUB
	AX, BX
	[AX] <- [AX] – [BX]

	200D
	JNC
	2010
	Jump if no borrow

	200F
	INC
	CX
	[CX] <- [CX] + 1

	2010
	MOV
	[3004], AX
	[3004] <- [AX]

	2014
	MOV
	[3006], CX
	[3006] <- [CX]

	2018
	HLT
	
	Stop

Explanation –

	MOV is used to load and store data.

	SUB is used to subtract two numbers where their one number is in accumulator or not.

	JNC is a 2-bit command which is used to check whether the borrow is generated from accumulator or not.

	INC is used to increment an register by 1.

	HLT is used to stop the program.

	AX is an accumulator which is used to load and store the data.

	BX, CX are general purpose registers where BX is used for storing second number and CX is used to store borrow.

ujjwal57

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to multiply two 8 bit numbers

				
						

				
			Problem – Write a program in 8086 microprocessor to multiply two 8-bit numbers, where numbers are stored from offset 500 and store the result into offset 600.

Examples – Inputs and output are given in Hexadecimal representation.

[image:]

Algorithm –

	Load data from offset 500 to register AL (first number)

	Load data from offset 501 to register BL (second number)

	Multiply them (AX=AL*BL)

	Store the result (content of register AX) to offset 600

	Stop

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	400
	MOV SI, 500
	SI=500

	403
	MOV DI, 600
	DI=600

	406
	MOV AL, [SI]
	AL<-[SI]

	408
	INC SI
	SI=SI+1

	409
	MOV BL, [SI]
	BL<-[SI]

	40B
	MUL BL
	AX=AL*BL

	40D
	MOV [DI], AX
	AX->[DI]

	40F
	HLT
	END

Explanation –

	 MOV SI, 500 set 500 to SI

	 MOV DI, 600 set 600 to DI

	 MOV AL, [SI] load contents of offset SI to register AL

	 INC SI increase value of SI by 1

	 MOV BL, [SI] load contents of offset SI to register BL

	 MUL BL multiply contents of register AL and BL

	 MOV [DI], AX store the result (contents of register AX) to offset DI

	 HLT End.

amber1998

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to multiply two 16-bit numbers

				
						

				
			Problem – Write a program to multiply two 16-bit numbers where starting address is 2000 and the numbers are at 3000 and 3002 memory address and store result into 3004 and 3006 memory address.

Example –

Algorithm –

	First load the data into AX(accumulator) from memory 3000

	Load the data into BX register from memory 3002

	Multiply BX with Accumulator AX

	Move data from AX(accumulator) to memory

	Move data from DX to AX

	Move data from AX(accumulator) to memory

	Stop

Program –

	Memory
	Mnemonics
	Operands
	Comment

	2000
	MOV
	AX, [3000]
	[AX] <- [3000]

	2004
	MOV
	BX, [3002]
	[BX] <- [3002]

	2008
	MUL
	BX
	[AX] <- [AX] * [BX]

	200A
	MOV
	[3004], AX
	[3004] <- AX

	200E
	MOV
	AX, DX
	[AX] <- [DX]

	2010
	MOV
	[3006], AX
	[3006] <- AX

	2014
	HLT
	
	Stop

Explanation –

	MOV is used to load and store data.

	MUL is used to multiply two 16-bit numbers.

	HLT is used to stop the program.

	AX is an accumulator which is used to store the result.

	BX, DX are general purpose registers where BX is used for multiplication and DX is used for result.

ujjwal57

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to divide a 16 bit number by an 8 bit number

				
						

				
			Problem – Write an assembly language program in 8086 microprocessor to divide a 16 bit number by an 8 bit number.

Example –

[image: division of 16 bit number by an 8 bit number]

Algorithm –

	Assign value 500 in SI and 600 in DI

	Move the contents of [SI] in BL and increment SI by 1

	Move the contents of [SI] and [SI + 1] in AX

	Use DIV instruction to divide AX by BL

	Move the contents of AX in [DI].

	Halt the program.

Assumption – Initial value of each segment register is 00000.

Calculation of physical memory address –

Memory Address = Segment Register * 10(H) + offset,

where Segment Register and Offset is decided on the basis of following table.

	OPERATIONS
	SEGMENT REGISTER
	OFFSET

	Instruction fetching
	Code Segment
	Instruction Pointer

	Data operation
	Data Segment
	Base Register [BX], Displacement [DISP]

	Stack operation
	Stack Segment
	Stack Pointer (SP), Base Pointer (BP)

	String as a source
	Data Segment
	Source Indexed (SI)

	String as a destination
	Extra Segment
	Destination Indexed (DI)

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	0400
	MOV SI, 500
	SI <- 500

	0403
	MOV DI, 600
	DI <- 600

	0406
	MOV BL, [SI]
	BL <- [SI]

	0408
	INC SI
	SI <- SI + 1

	0409
	MOV AX, [SI]
	AX <- [SI]

	040B
	DIV BL
	AX <- AX / BL

	040D
	MOV [DI], AX
	[DI] <- AX

	040F
	HLT
	End of program

Explanation – Registers used AX, BL, SI, DI

	MOV SI, 500 assigns 500 to SI

	MOV DI, 600 assigns 600 to DI

	MOV BL, [SI] moves the content of [SI] to BL register i.e. value of divisor will be stored in BL

	INC SI increment the content of SI by 1

	MOV AX, [SI] moves the content of [SI] and [SI + 1] to AX register i.e. value of dividend will be stored in AX

	DIV BL divide the content of AX by BL, after execution of this instruction the quotient get stored in AL and remainder in AH

	MOV [DI], AX moves the content of AX to [DI]

	HLT stops executing the program and halts any further execution

AmishTandon

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to find sum of odd numbers in a given series

				
						

				
			Problem – Write an Assembly Language Program to find sum of odd numbers in a given series containing 8 bit numbers stored in a continuous memory location and store the result in another memory location.

Example –

Example Explanation –

	500 offset stores the counter value of the series and the elements of the series starts from 501 to 504 offset.

	In this example, we have 4 terms only. Adding the odd terms (found in BL register) 15+07 in AL register and result gets stored (1C) in AL register.

	The result from AL register gets stored in 600 offset.

Assumptions –

	The counter value which tells that how many numbers are there in the series is stored at memory location 500.

	The elements of the series are stored in a continous memory location starting from 501.

	The result is stored at a memory location 600.

	The starting address of the program is 400.

Test –

Syntax: TEST d, s

It performs AND operation of destination(d) and source(s) but result is not stored only flags ate modified.

Algorithm –

	Load data from offset 500 to register CL.

	Increment the value of offset.

	Load 00H into CH register.

	Load 00H into AL register.

	Load data from offset to register BL.

	Use TEST instruction to check whether data in BL is even or odd, if zero flag is set means data is even then go to step 7 otherwise data is odd then go to step 8.

	Jump to memory location 413H.

	Add the data of AL and BL registers and store the result in AL register.

	Increment the value of offset.

	Jump to memory location 40AH if content of CX is not equal to zero otherwise go to step 11.

	Load the data from AL register to memory location 600.

1

	End

Program –

	Address
	Mnemonics
	Comments

	400
	MOV SI, 500
	SI<-500

	403
	MOV CL, [SI]
	CL<-[SI]

	405
	INC SI
	SI<-SI+1

	406
	MOV CH, 00
	CH<-00

	408
	MOV AL, 00
	AL<-00

	40A
	MOV BL, [SI]
	BL<-[SI]

	40C
	TEST BL, 01
	BL.01

	40F
	JZ 413
	Jump to 413 memory location if zero flag is set

	411
	ADD AL, BL
	AL<-AL+BL

	413
	INC SI
	SI<-SI+1

	414
	LOOP 40A
	jump to 40A memory location if content of CX is not equal to zero

	416
	MOV [600], AL
	[600], AL

	41A
	HLT
	end

Explanation –

	MOV SI, 500 load the value 500 to SI.

	MOV CL, [SI] loads the data of offset SI into CL register.

	INC SI increases the value of SI by one.

	MOV CH, 00 loads the value 00 into CH register.

	MOV AL, 00 loads the value 00 into AL register.

	MOV BL, [SI] loads the data of offset SI into BL register.

	TEST BL, 01 AND operation of content of BL and value 01 and flag registers are modified.

	JZ 413 jump to 413 memory location if zero flag is set.

	ADD AL, BL add the contents of AL and BL registers and store the result in AL register.

	INC SI increases the value of SI by one.

	LOOP 40A jump to 40A memory location if value of CX is not equal to zero.

	MOV [600], AL loads the content of AL register to memory location 600.

	HALT end

priyankagujral

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to find average of n numbers

				
						

				
			Problem – Write an assembly language program in 8086 microprocessor to find average of n eight bit numbers.

Example –

Algorithm –

	Assign value 500 in SI and 600 in DI

	Move the contents of [SI] in CL

	Move 0000 in AX

	Move the contents of CL to BL

	Increment the value of SI by 1

	Add the contents of AL and [SI]

	Add 00 to AH with previous carry

	Increment the value of SI by 1

	Decrements the value of CL by 1

	If Zero Flag (ZF) is not set go to step 6 else go to step 11

	Divide the contents of AX by BL

	Move the contents of AX in [DI]

	Halt the program

Program –

	OFFSET
	MNEMONICS
	COMMENT

	400
	MOV SI, 500
	SI <- 500

	403
	MOV DI, 600
	DI <- 600

	406
	MOV AX, 0000
	AX = 0000

	409
	MOV CL, [SI]
	 CL <- [SI]

	40B
	MOV BL, CL
	 BL <- CL

	40D
	INC SI
	SI = SI + 1

	40E
	ADD AL, [SI]
	AL = AL + [SI]

	410
	ADC AH, 00
	AH = AH + 00 + cy

	412
	INC SI
	SI = SI + 1

	413
	DEC CL
	CL = CL – 1

	415
	JNZ 40E
	JUMP if ZF = 0

	417
	DIV BL
	AX = AX / BL

	419
	MOV [DI], AX
	[DI] <- AX

	41B
	HLT
	Stop

Explanation –

	MOV SI, 500 is used to move offset 500 to Starting Index(SI).

	MOV DI, 600 is used to move offset 600 to Destination Index(DI).

	MOV AX, 0000 is used to move data 0000 to AX.

	MOV CL, [SI] is used to move the contents of [SI] to BL.

	MOV BL, CL is used to copy contents of CL to BL.

	INC SI is used to increment contents of SI by 1.

	ADD AL, [SI] is used to add contents of [SI] to AL.

	ADC AH, 00 is used to 00 along with previous cy to AH.

	INC SI is used to increment contents of SI by 1.

	DEC CL is used to decrement contents of CL by 1.

	JNZ 40E is used to jump to offset 40E if value of ZF = 0.

	DIV BL is used to multiply contents of AX by BL.

	MOV [DI], AX is used to move the contents of AX to [DI].

	HLT stops executing the program and halts any further execution.

harshit-chhabra

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization and Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to find the factorial of a number

				
						

				
			Prerequisite – 8085 program to find the factorial of a number

Problem – Write an assembly language program for calculating the factorial of a number using 8086 microprocessor

Examples –

Input : 04H
Output : 18H
as In Decimal : 4*3*2*1 = 24
 In Hexadecimal : 24 = 18H

Input : 06H
Output : 02D0H
as In Decimal : 6*5*4*3*2*1 = 720
 In Hexadecimal : 720 = 02D0H

Assumptions –

Starting address of program: 0400

Input memory location: 0500

Output memory location: 0600 and 0601

Important –

If the Given Number is a 16-bit number, the AX register is automatically used as the second parameter and the product is stored in the DX:AX register pair. This means that the DX register holds the high part and the AX register holds the low part of a 32-bit number.

In 8086 microprocessor, user have direct instruction (MUL) to multiply two numbers, so we don’t have to add Multiplicand by Multiplier times like in 8085

Advantage of 8086 over 8085 (In case of Multiply):

	Don’t have to write a bulky code as 8086 has a small code

	Easy to remember

	Already have multiplication Instruction

Algorithm –

	Input the Number whose factorial is to be find and Store that Number in CX Register (Condition for LOOP Instruction)

	Insert 0001 in AX(Condition for MUL Instruction) and 0000 in DX

	Multiply CX with AX until CX become Zero(0) using LOOP Instruction

	Copy the content of AX to memory location 0600

	Copy the content of DX to memory location 0601

	Stop Execution

Program –

	ADDRESS
	MNEMONICS
	COMMENTS

	0400
	MOV CX, [0500]
	CX <- [0500]

	0404
	MOV AX, 0001
	AX <- 0001

	0407
	MOV DX, 0000
	DX <- 0000

	040A
	MUL CX
	DX:AX <- AX * CX

	040C
	LOOP 040A
	Go To [040A] till CX->00

	0410
	MOV [0600], AX
	[0600]<-AX

	0414
	MOV [0601], DX
	[0601]<-DX

	0418
	HLT
	Stop Execution

Explanation –

	MOV CX, [0500] loads 0500 Memory location content to CX Register

	MOV AX, 0001 loads AX register with 0001

	MOV DX, 0000 loads DX register with 0000

	MUL CX multiply AX with CX and store result in DX:AX pair

	LOOP 040A runs loop till CX not equal to Zero

	MOV [0600], AX store AX register content to memory location 0600

	MOV [0601], DX store DX register content to memory location 0601

	HLT stops the execution of program

Ankit_Bisht

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to find Square Root of a number

				
						

				
			Problem – Write an assembly language program in 8086 microprocessor to find square root of a number.

Example –

Algorithm –

	Move the input data in register AX

	Move the data 0000 in CX and FFFF in BX

	Add 0002 to the contents of BX

	Increment the content of CX by 1

	Subtract the contents of AX and BX

	If Zero Flag(ZF) is not set go to step 3 else go to step 7

	Store the data from CX to offset 600

	Stop

Program –

	OFFSET
	MNEMONICS
	COMMENT

	0400
	MOV AX, [500]
	AX <- [500]

	0404
	MOV CX, 0000
	CX <- 0000

	0407
	MOV BX, FFFF
	BX <- FFFF

	040A
	ADD BX, 02
	BX = BX + 02

	040E
	INC CX
	C = C + 1

	040F
	SUB AX, BX
	AX = AX – BX

	0411
	JNZ 040A
	JUMP to 040A if ZF = 0

	0413
	MOV [600], CX
	[600] <- CX

	0417
	HLT
	Stop

Explanation –

	 M0V AX, [500] is used to move the data from offset 500 to register AX

	MOV CX 0000 is used to move 0000 to register CX

	MOV BX FFFF is used to move FFFF to register BX

	ADD BX, 02 is used to add BX and 02

	INC CX is used to increment the content of CX by 1

	SUB AX, BX is used to subtract contents of AX with BX

	JNZ 040A is used to jump to address 040A if zero flag(ZF) is 0

	MOV [600], CX is used to store the contents of CX to offset 600

	HLT is used end the program

harshit-chhabra

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization and Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

8086 Misc

						8086 program to convert binary to Grey code

				
						

				
			Prerequisite – Binary to/from Gray Code

Problem – Write a program to convert Binary number to Grey code 8-bit number where starting address is 2000 and the number is stored at 2500 memory address and store result into 2600 memory address.

Example –

Algorithm –

	Move value at [2500] into AL

	Move AL into BL

	Logical shift right AL one time

	XOR BL with AL (Logically) and store into BL

	Move content of BL into 2600

	Stop

Program –

	Memory
	Mnemonics
	Operands
	Comment

	2000
	MOV
	AL, [2500]
	[AL] <- [2500]

	2004
	MOV
	BL, AL
	[BL] <- [AL]

	2006
	SHR
	AL, 01
	Shift Right one time

	2008
	XOR
	BL, AL
	[BL] <- [BL] @ AL

	200A
	MOV
	[2600], BL
	[2600] <- [BL]

	200E
	HLT
	
	Stop

Explanation – Registers AL, BL are used for general purpose

	MOV is used to transfer the data

	SHR is used to shift right (logically) up to counter is not zero

	XOR is used to exclusive-or of two values (logically)

	HLT is used to halt the program

See for 8085 program to convert binary numbers to gray

ujjwal57

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to convert an 8 bit BCD number into hexadecimal number

				
						

				
			Problem – Write an assembly language program in 8086 microprocessor to convert an 8 bit BCD number into hexadecimal number.

Example –

[image:]

Assumption –

Initial value of segment register is 00000.

Calculation of physical memory address:

Memory Address = Segment Register * 10(H) + Offset

where Segment Register is 00000 (Assumption) and Offset is given in the program.

Algorithm –

	Assign value 500 in SI and 600 in DI.

	Move the contents of [SI] in BL.

	Use AND instruction to calculate AND between 0F and contents of BL.

	Move the contents of [SI] in AL.

	Use AND instruction to calculate AND between F0 and contents of AL.

	Move 04 in CL.

	Use ROR instruction on AL.

	Move 0A in DL.

	Use MUL instruction to multiply AL with DL.

	Use ADD instruction to add AL with BL.

	Move the contents of AL in [DI].

	Halt the program.

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	0400
	MOV SI, 500
	SI <- 500

	0403
	MOV DI, 600
	DI <- 600

	0406
	MOV BL, [SI]
	BL <- [SI]

	0408
	AND BL, 0F
	BL = BL AND 0F

	040A
	MOV AL, [SI]
	AL <- [SI]

	040C
	AND AL, F0
	BL = AL AND F0

	040E
	MOV CL, 04
	CL = 04

	0410
	ROR AL, CL
	Rotate AL

	0412
	MOV DL, 0A
	DL = 0A

	0414
	MUL DL
	AX = AL * DL

	0416
	ADD AL, BL
	AL = AL + BL

	0418
	MOV [DI], AL
	[DI] <- AL

	041A
	HLT
	End of Program

Explanation – Registers used SI, DI, AL, BL, CL, DL.

	MOV SI,500 is used to move offset 500 to Starting Index(SI)

	MOV DI,600 is used to move offset 600 to Destination Index(DI)

	MOV BL,[SI] is used to move the contents of [SI] to BL

	AND BL,0F is used to mask the higher order nibble from BL

	MOV AL,[SI] is used to move the contents of [SI] to AL

	AND AL,F0 is used to mask the lower order nibble from BL

	MOV CL,04 is used to move 04 to CL

	ROR AL,CL is used to reverse the contents of AL

	MOV DL,0A is used to move 0A to DL

	MUL DL is used to multiply contents of AL with DL

	ADD AL,BL is used to add contents of AL and BL

	MOV [DI],AL is used to move the contents of AL to [DI]

	HLT stops executing the program and halts any further execution

harshit-chhabra

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization and Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to convert ASCII to BCD number

				
						

				
			Problem – Write a program to convert ASCII to BCD 8-bit number where starting address is 2000 and the number is stored at 2500 memory address and store result into 2600 memory address.

Example –

Algorithm –

	Move value at [2500] into AL

	Move AL into AH

	Move 04 into CL

	Logical shift right AH up to CL times

	AND AX with 0F0F (Logical multiplication)

	OR AX with 3030 (Logical addition)

	Move content of accumulator AX into 2600

	Stop

 Program –

	Memory
	Mnemonics
	Operands
	Comment

	2000
	MOV
	AL, [2500]
	[AL] <- [2500]

	2004
	MOV
	AH, AL
	[AH] <- [AL]

	2006
	MOV
	CL, 04
	[CL] <- 04

	2008
	SHR
	AH, CL
	Shift Right up to CL is not zero

	200A
	AND
	AX, 0F0F
	[AX] <- [AX] * 0F0F

	200D
	OR
	AX, 3030
	[AX] <- [AX] + 3030

	2010
	MOV
	[2600], AX
	[2600] <- [AX]

	2014
	HLT
	
	Stop

Explanation – Registers AX (AH, AL), CL are used for general purpose

	MOV is used to transfer the data

	SHR is used to shift right (logically) up to counter register is not zero

	AND is used to multiplication (logically)

	OR is used for addition (logically)

	HLT is used to halt the program

ujjwal57

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to determine largest number in an array of n numbers

				
						

				
			Problem – Write a program in 8086 microprocessor to find out the largest among 8-bit n numbers, where size “n” is stored at memory address 2000 : 500 and the numbers are stored from memory address 2000 : 501 and store the result (largest number) into memory address 2000 : 600.

Example –

Algorithm –

	Load data from offset 500 to register CL and set register CH to 00 (for count).

	Load first number(value) from next offset (i.e 501) to register AL and decrease count by 1.

	Now compare value of register AL from data(value) at next offset, if that data is greater than value of register AL then update value of register AL to that data else no change, and increase offset value for next comparison and decrease count by 1 and continue this till count (value of register CX) becomes 0.

	Store the result (value of register AL) to memory address 2000 : 600.

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	400
	MOV SI, 500
	SI<-500

	403
	MOV CL, [SI]
	CL<-[SI]

	405
	MOV CH, 00
	CH<-00

	407
	INC SI
	SI<-SI+1

	408
	MOV AL, [SI]
	AL<-[SI]

	40A
	DEC CL
	CL<-CL-1

	40C
	INC SI
	SI<-SI+1

	40D
	CMP AL, [SI]
	AL-[SI]

	40F
	JNC 413
	JUMP TO 413 IF CY=0

	411
	MOV AL, [SI]
	AL<-[SI]

	413
	INC SI
	SI<-SI+1

	414
	LOOP 40D
	CX<-CX-1 & JUMP TO 40D IF CX NOT 0

	416
	MOV [600], AL
	AL->[600]

	41A
	HLT
	END

Explanation –

	MOV SI, 500 : set the value of SI to 500

	MOV CL, [SI] : load data from offset SI to register CL

	MOV CH, 00 : set value of register CH to 00

	INC SI : increase value of SI by 1.

	MOV AL, [SI] : load value from offset SI to register AL

	DEC CL : decrease value of register CL by 1

	INC SI : increase value of SI by 1

	CMP AL, [SI] : compares value of register AL and [SI] (AL-[SI])

	JNC 413 : jump to address 413 if carry not generated

	MOV AL, [SI] : transfer data at offset SI to register AL

	INC SI : increase value of SI by 1

	LOOP 40C : decrease value of register CX by 1 and jump to address 40D if value of register CX is not zero

	MOV [600], AL : store the value of register AL to offset 600

	HLT : stop

amber1998

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to find the min value in a given array

				
						

				
			Problem – Write a program to find the min value in a given array in assembly 8086 microprocessor

Example –

Assumptions – Starting address of input array is 0500 and and store the result at address 0600

Algorithm –

	Assign value 500 in SI and 600 in DI

	Move the contents of [SI] in CL and increment SI by 1

	Assign the value 00 H to CH

	Move the content of [SI] in AL

	Decrease the value of CX by 1

	Increase the value of SI by 1

	Move the contents of [SI] in BL

	Compare the value of BL with AL

	Jump to step 11 if carry flag is set

	Move the contents of BL in AL

	Jump to step 6 until the value of CX becomes 0, and decrease CX by 1

	Move the contents of AL in [DI]

	Halt the program

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENTS

	0400
	MOV SI, 500
	SI <- 500

	0403
	MOV DI, 600
	DI <- 600

	0406
	MOV CL, [SI]
	CL <- [SI]

	0408
	MOV CH, 00
	CH <- 00

	040A
	INC SI
	SI <- SI+1

	040B
	MOV AL, [SI]
	AL <- [SI]

	040D
	DEC CX
	CX <- CX-1

	040E
	INC SI
	SI <- SI+1

	040F
	MOV BL, [SI]
	BL <- [SI]

	0411
	CMP AL, BL
	AL-BL

	0413
	JC 0417
	Jump if carry is 1

	0415
	MOV AL, BL
	AL <- BL

	0417
	LOOP 040E
	Jump if CX not equal to 0

	0419
	MOV [DI], AL
	[DI] <- AL

	041B
	HLT
	End of the program

Explanation –

	MOV SI, 500 assigns 500 to SI

	MOV DI, 600 assigns 600 to DI

	MOV CL, [SI] moves the content of [SI] to CL register

	MOV CH, 00 assign 00 to CH register

	INC SI increase the value SI by 1

	MOV AL, [SI] moves the content of [SI] to AL register

	DEC CX decrease the content of CX register by 1

	INC SI increase the value SI by 1

	MOV BL, [SI] moves the content of [SI] to BL register

	CMP AL, BL subtract the value of BL register from AL and it modify flag registers

	JC 0417 jump to 0417 address if carry flag is set

	MOV AL, BL moves the content of BL register to AL register

	LOOP 040E runs loop till CX not equal to Zero and decrease the value of CX by 1

	MOV [DI], AL moves the content of AL to [DI]

	HLT stops the execution of program

AnamikaSharma2

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to sort an integer array in ascending order

				
						

				
			Problem – Write a program in 8086 microprocessor to sort numbers in ascending order in an array of n numbers, where size “n” is stored at memory address 2000 : 500 and the numbers are stored from memory address 2000 : 501.

Example –

Example explanation:

	Pass-1:
F9 F2 39 05
F2 F9 39 05
F2 39 F9 05
F2 39 05 F9 (1 number got fix)

	Pass-2:
F2 39 05 F9
39 F2 05 F9
39 05 F2 F9 (2 number got fix)

	Pass-3:
39 05 F2 F9
05 39 F2 F9 (sorted)

Algorithm –

	Load data from offset 500 to register CL (for count).

	Travel from starting memory location to last and compare two numbers if first number is greater than second number then swap them.

	First pass fix the position for last number.

	Decrease the count by 1.

	Again travel from starting memory location to (last-1, by help of count) and compare two numbers if first number is greater than second number then swap them.

	Second pass fix the position for last two numbers.

	Repeate.

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENT

	400
	MOV SI, 500
	SI<-500

	403
	MOV CL, [SI]
	CL<-[SI]

	405
	DEC CL
	CL<-CL-1

	407
	MOV SI, 500
	SI<-500

	40A
	MOV CH, [SI]
	CH<-[SI]

	40C
	DEC CH
	CH<-CH-1

	40E
	INC SI
	SI<-SI+1

	40F
	MOV AL, [SI]
	AL<-[SI]

	411
	INC SI
	SI<-SI+1

	412
	CMP AL, [SI]
	AL-[SI]

	414
	JC 41C
	JUMP TO 41C IF CY=1

	416
	XCHG AL, [SI]
	SWAP AL AND [SI]

	418
	DEC SI
	SI<-SI-1

	419
	XCHG AL, [SI]
	SWAP AL AND [SI]

	41B
	INC SI
	SI<-SI+1

	41C
	DEC CH
	CH<-CH-1

	41E
	JNZ 40F
	JUMP TO 40F IF ZF=0

	420
	DEC CL
	CL<-CL-1

	422
	JNZ 407
	JUMP TO 407 IF ZF=0

	424
	HLT
	END

Explanation –

	MOV SI, 500: set the value of SI to 500.

	MOV CL, [SI]: load data from offset SI to register CL.

	DEC CL: decrease value of register CL BY 1.

	MOV SI, 500: set the value of SI to 500.

	MOV CH, [SI]: load data from offset SI to register CH.

	DEC CH: decrease value of register CH BY 1.

	INC SI: increase value of SI BY 1.

	MOV AL, [SI]: load value from offset SI to register AL.

	INC SI: increase value of SI BY 1.

	CMP AL, [SI]: compares value of register AL and [SI] (AL-[SI]).

	JC 41C: jump to address 41C if carry generated.

	XCHG AL, [SI]: exchange the contents of register AL and SI.

	DEC SI: decrease value of SI by 1.

	XCHG AL, [SI]: exchange the contents of register AL and SI.

	INC SI: increase value of SI by 1.

	DEC CH: decrease value of register CH by 1.

	JNZ 40F: jump to address 40F if zero flat reset.

	DEC CL: decrease value of register CL by 1.

	JNZ 407: jump to address 407 if zero flat reset.

	HLT: stop.

amber1998

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program for selection sort

				
						

				
			Problem – Write an assembly language program in 8086 microprocessor to sort a given array of n numbers using Selection Sort.

Assumptions – The number of elements in the array is stored at offset 500. The array starts from offset 501.

Example –

Algorithm –

	We first find the smallest number in the array.

	Swap the smallest number from the first element of the array.

	Keep repeating the process till all elements are traversed.

Program –

	Offset
	Mnemonics
	Comment

	400
	MOV DI, 501
	DI < – 501

	403
	MOV SI, 500
	SI < – 500

	406
	MOV CL, [SI]
	CL < – [SI]

	408
	XOR CH, CH
	CH < – CH ^(XOR) CH

	40A
	INC SI
	SI < – SI+0001

	40B
	DEC CX
	CX < – CX-0001

	40C
	MOV BX, SI
	BX < – SI

	40E
	MOV AH, CL
	AH < – CL

	410
	INC AH
	AH < – AH+01

	412
	MOV AL, [SI]
	AL < – [SI]

	414
	INC SI
	SI < – SI+0001

	415
	DEC AH
	AH < – AH-01

	417
	CMP AL, [SI]
	AL-[SI]

	419
	JC 41F
	If Carry Flag = 1, goto offset 41F

	41B
	MOV AL, [SI]
	AL < – [SI]

	41D
	MOV BX, SI
	BX < – SI

	41F
	INC SI
	SI < – SI+0001

	420
	DEC AH
	AH < – AH-01

	422
	JNZ 417
	If Zero Flag = 0, goto offset 417

	424
	MOV DL, [BX]
	DL < – [BX]

	426
	XCHG DL, [DI]
	DL < – > [DI]

	428
	XCHG DL, [BX]
	DL < – > [BX]

	42A
	INC DI
	DI < – DI+0001

	42B
	MOV SI, DI
	SI < – DI

	42D
	LOOP 40C
	CX < – CX-0001; If Zero Flag = 0, goto offset 40C.

	42F
	HLT
	End of program.

Explanation – Registers AH, AL, BX, CX, DL, SI, DI are used for general purpose:

AL - Stored the smallest number
AH - Stores the counter for the inner loop
BX - Stores the offset of the smallest
 number of each iteration of the outer loop
CX - Stores the counter for the outer loop
DL - Helps in swapping the elements
SI - Pointer
DI - Pointer

	MOV SI, 500: stores 0500 in SI.

	MOV CL, [SI]: stores the content at offset SI in CL.

	XOR CH, CH: stores the result of logical operation XOR b/w CH and CH in CH.

	INC SI: increase the value of SI by 1.

	DEC CX: decrease the value of CX by 1.

	MOV AH, CL: stores the contents of CL in AH.

	CMP AL, [SI]: compares the content of AL with content at offset SI. If AL < [SI] – Sets Carry Flag(i.e. Carry Flag = 1).

	JC 41F: jumps to offset 041F, if carry flag is set(1).

	JNZ 417: jumps to offset 0417, if zero flag is reset(0).

	XCHG DL, [BX]: swaps the content of DL with content at offset BX.

	LOOP 40C: decrease the value of CX by 1 and check whether Zero Flag is set(1) or not. If Zero Flag is reset(0), then it jumps to offset 040C.

	HLT: terminates the program.

AbhinavSharma2

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
Sorting
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to transfer a block of 4 bytes by using string instructions

				
						

				
			Problem – Write a program to transfer a block of 4 bytes, starting address is 0500 and transfer the block at address 0600 by using string instructions.

Example –

Assumptions – Assume that there are 4 blocks in memory addresses 0500, 0501, 0502, 0503.

Algorithm –

	Assign value 500 in SI and 600 in DI

	Assign the value 0000 H to AX

	Move the content of AX in DS

	Move the content of AX in ES

	Assign the value 0004 H to CX

	Clear the directional flag

	Repeat until CX=0, Move string block

	Halt of the program

Program –

	MEMORY ADDRESS
	MNEMONICS
	COMMENTS

	0400
	MOV SI, 500
	SI <- 500

	0403
	MOV DI, 600
	DI <- 600

	0406
	MOV AX, 0000
	AX <- 0000

	0409
	MOV DS, AX
	DS <- AX

	040B
	MOV ES, AX
	ES <- AX

	040D
	MOV CX, 0004
	CX <- 0004

	0410
	CLD
	CLEAR DIRECTIONAL FLAG

	0411
	REP
	REPEAT UNTIL CX=0

	0412
	MOVSB
	MOVE THE BLOCK

	0413
	HLT
	END OF THE PROGRAM

Explanation –

	MOV SI, 500 assigns 500 to SI

	MOV DI, 600 assigns 600 to DI

	MOV AX, 00 assign 0000 to AX register

	MOV DS, AX moves the content of AX to DS segment

	MOV ES, AX moves the content of AX to ES segment

	MOV CX, 0004 assign 0000 to CX register

	CLD clear the directional flag

	REP repeat until CX=0

	MOVSB move string block

	HLT stops the execution of the program.

AnamikaSharma2

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to transfer a block of bytes by using string instruction

				
						

				
			Problem – Write an assembly language program to transfer a block of bytes from one memory location to another memory location by using string instruction.

Example –

Example –

	In this example, the counter value stored in CX register is 4.

	The block of data which is stored from memory location starting from 501 to 504 offset is transferred to another memory location which is starting from 600 to 603 offset.

Assumptions –

	The value of counter which tells the number of bytes to be transferred is stored at offset 500.

	The 8-bit data which have to be transfer is stored in continuous memory location starting from 501.

	The data is transferred to a continous memory location starting from 600.

	The value of DS and ES is taken equal to 0000.

	the program starts from offset 400.

CLD instruction is used to clear the directional flag, i.e., DF=0. Now, value of SI and DI will be increased.

 SI=SI+1
 DI=DI+1

REP instruction is used to repeat the step until value of CX is not equal to zero and value of CX is decremented by one at every step, i.e.,

CX=CX-1

MOVSB instruction is used to transfer bytes only from source memory location (MADS) to destination memory location (MAES).

MADS-->MAES
where MADS=DS*10+SI
 MAES=ES*10+DI

Here, value of SI and DI is updated automatically.

if DF=0, SI=SI+1 and DI=DI+1

Algorithm –

	set the value of offset SI equal to 500.

	set the value of offset DI equal to 600.

	load the value 0000 into register AX.

	load the data of AX register into DS(data segment).

	load the data of AX register into ES(extra segment).

	load the data of offset SI into CL register and load value 00 into CH register.

	increment the value of SI by one.

	clear the directional flag so that data is read from lower memory to higher memory location.

	check the value of CX, if not equal to zero then repeat step 10 otherwise go to step 11.

	transfer the data from source memory location to destination memory location and decrease the value of CX by one.

	Stop.

Program –

	Address
	Mnemonics
	Comments

	0400
	MOV SI, 500
	SI<-500

	0403
	MOV DI, 00
	DI<-600

	0406
	MOV AX, 0000
	AX<-0000

	0409
	MOV DS, AX
	DS<-AX

	040B
	MOV ES, AX
	ES<-AX

	040D
	MOV CL, [SI]
	CL<-[SI]

	0410
	MOV CH, 00
	CH<-00

	0412
	INC SI
	SI<-SI+1

	0413
	CLD
	clears the directional flag

	0414
	REP
	repeat until CX is not equal to zero

 and CX=CX-1 at every step

	0415
	MOVSB
	transfer the data from source to destination memory location

	0416
	HLT
	end

Explaination –

	MOV SI, 500: load the value 500 into offet SI.

	MOV DI, 600: load the value 600 into offset DI.

	MOV AX, 0000: load the value 0000 into AX register.

	MOV DS, AX: load the value of AX register into DS (data segment).

	MOV ES, AX: load the value of AX register into ES (extra segment).

	MOV CL, [SI]: load the data of offset SI into CL register.

	MOV CH, 00: load value 00 into CH register.

	INC SI: increment the value of SI by one.

	CLD: clears the directional flag i.e. DF=0.

	REP: repeat until value of CX is not equal to zero and decrement the value of CX by one at each step.

	MOVSB: transfer the data from source memory location to destination memory location.

	HLT: end.

priyankagujral

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Differences between 8085 and 8086 microprocessor

				
						

				
			In the changing world of technologies, the devices used are also changing. Let us take a look at the changes between 8085 series of microprocessors and 8086 series of microprocessors.

	Serial No.
	8085 microprocessor
	8086 microprocessor

	1
	The data bus is of 8 bits.
	The data bus is of 16 bits.

	2
	The address bus is of 16 bits.
	The address bus is of 20 bits.

	3
	The memory capacity is 64 KB.
	The memory capacity is 1 MB.

	4
	The input/output port addresses are of 8 bits.
	The input/output port addresses are of 8 bits.

	5
	The operating frequency is 3 MHz.
	The operating frequency is 5 MHz.

	6
	It not have multiplication and division instructions.
	It have multiplication and division instructions.

	7
	It does not support pipe-lining.
	It supports pipe-lining as it has two independent units Execution Unit (EU) and Bus Interface Unit (BIU).

	8
	It does not support instruction queue.
	It supports instruction queue.

	9
	Memory space is not segmented.
	Memory space is segmented.

	10
	It consists of 5 flags(Sign Flag, Zero Flag, Auxiliary Carry Flag, Parity Flag, Carry Flag).
	It consists of 9 flags(Overflow Flag, Direction Flag, Interrupt Flag, Trap Flag, Sign Flag, Zero Flag, Auxiliary Carry Flag, Parity Flag, Carry Flag).

Sakshi_98

I like to do coding in C++C and java programming languages HTML and CSS always intersts me Sharing knowleged is the best way according to me to increase ones knwoledge

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Differences between 8086 and 8088 microprocessors

				
						

				
			Though the architecture and instruction set of both 8086 and 8088 processors are same, still there are differences between them.

Following is the table listing the differences between the 2 microprocessors:

	S. No.
	8086 microprocessor
	8088 microprocessor

	1
	The data bus is of 16 bits.
	The data bus is of 8 bits.

	2
	It has 3 available clock speeds (5 MHz, 8 MHz (8086-2) and 10 MHz (8086-1)).
	It has 3 available clock speeds (5 MHz, 8 MHz)

	3
	The memory capacity is 512 kB.
	The memory capacity is implemented as a single 1 MX 8 memory banks.

	4
	It has memory control pin (M/IO) signal.
	It has complemented memory control pin (IO/M) signal of 8086.

	5
	It has Bank High Enable (BHE) signal.
	It has Status Signal (SSO).

	6
	It can read or write either 8-bit or 16-bit word at the same time.
	It can read only 8-bit word at the same time.

	7
	Input/Output voltage level is measured at 2.5 mA.
	Input/Output voltage level is measured at 2.0 mA

	8
	It has 6 byte instruction queue.
	It has 4 byte instruction queue as it can fetch only 1 byte at a time.

	9
	It draws a maximum supply current of 360 mA.
	It draws a maximum supply current of 340 mA.

Sakshi_98

I like to do coding in C++C and java programming languages HTML and CSS always intersts me Sharing knowleged is the best way according to me to increase ones knwoledge

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
Difference Between
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8255 microprocessor operating modes

				
						

				
			There are 2 modes in 8255 microprocessor:

1. Bit set reset (BSR) mode – This mode is used to set or reset the bits of port C only, and selected when the most significant bit (D7) in the control register is 0. Control Register is as follows:

[image:]

This mode affects only one bit of port C at a time because, as user set the bit, it remains set until and unless user changes it. User needs to load the bit pattern in control register to change the bit.

2. Input/output mode (I/O) – This mode is selected when the most significant bit (D7) in the control register is 1.

	Mode 0 – Simple or basic I/O mode:

Port A, B and C can work either as input function or as output function. The outputs are latched but the inputs are not latched. It has interrupt handling capability.

	Mode 1 – Handshake or strobbed I/O:

In this either port A or B can work and port C bits are used to provide handshaking. The outputs as well as inputs are latched. It has interrupt handling capability. Before actual data transfer there is transmission of signal to match speed of CPU and printer.

Example: When CPU wants to send data to slow peripheral device like printer, it will send handshaking signal to printer to tell whether it is ready or not to transfer the data. When printer will be ready it will send one acknowledgement to CPU then there will be transfer of data through data bus.

[image:]

	Mode 3 – Bidirectional I/O:

In this mode only port A will work, port B can either is in mode 0 or 1 and port C bits are used as handshake signal. The outputs as well as inputs are latched. It has interrupt handling capability. Control Register is as follows:

[image:]

The most significant bit (D7) is 1 for the I/O mode and 0 for the BSR mode.

D6 & D5It is used to set the port A mode.

D4 is used to tell whether port A is taking input or displaying the result. If it is 1 then it is taking input otherwise displaying output.

D3 is used to tell whether port C higher bites is taking input or displaying the result. If it is 1 then it is taking input otherwise displaying output.

D2 tells the mode of port B. If it is 0 then port B is in m0 mode otherwise in m1 mode.

D1 is used to tell whether port B is taking input or displaying the result. If it is 1 then it is taking input otherwise displaying output.

D0 is used to tell whether port C lower bits is taking input or displaying the result. If it is 1 then it is taking input otherwise displaying output.

When 8255 microprocessor is reset, it will clear the control word register contents, setting all the ports to input mode.

Sakshi_98

I like to do coding in C++C and java programming languages HTML and CSS always intersts me Sharing knowleged is the best way according to me to increase ones knwoledge

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization & Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						8086 program to search a number in a string

				
						

				
			Problem – Write an assembly language program in 8086 microprocessor to search a number in a string of 5 bytes, store the offset where the element is found and the number of iterations used to find the number.

Example –

Algorithm –

	Move 2000 in AX and assign it to ES

	Assign value 600 to DI

	Move 25 in AL

	Move 0005 in CX

	Move the contents of CX to BX

	Clear the value of Directional Flag (DF)

	Repeat step 7 till Zero Flag (ZF) is not set

	Scan byte from [DI] and check its difference with contents of AL. Update the value of DI

	Decrements the value of DI by 1

	Subtract the value of BX by CX

	Decrements the value of BX by 1

	Halt the program

Program –

	OFFSET
	MNEMONICS
	COMMENT

	400
	MOV AX, 2000
	AX <- 2000

	403
	MOV ES, AX
	ES <- AX

	405
	MOV DI, 600
	DI <- 600

	408
	MOV AL, 25
	 AL = 25

	40A
	MOV CX, 0005
	 CX = 0005

	40D
	MOV BX, CX
	 BX <- CX

	40F
	CLD
	DF = 0 so that memory is accessed

from lower byte to higher byte

	410
	REPNE SCAS B
	Repeat till ZF = 0. Scan value from [DI] and

compare with AL, Increment DI

	414
	DEC DI
	DI = DI – 1

	415
	MOV DX, DI
	DX = DI

	417
	SUB BX, CX
	BX = BX – CX

	419
	DEC BX
	BX = BX – 1

	41B
	HLT
	Stop

Explanation –

	MOV AX, 2000 is used to move data to register AX.

	MOV ES, AX is used to move the data of AX to segment register ES.

	MOV DI, 600 is used to move offset 600 to Destination Index(DI).

	MOV AX, 25 is used to move data to AL.

	MOV CX, 0005 is used to move data to CX.

	MOV BX, CX is used to copy contents of CX to BX.

	CLD is used to clear the value of Directional Flag (DF), so that memory is accessed from lower byte to higher byte.

	REPNE SCAS B is used to scan data from DI and compare it with data from AL, if equal go to next step else increment the value of DI by 1 and repeat this step.

	DEC DI is used to decrement contents of DI by 1.

	MOV DX, DI is used to move the contents of DI to DX.

	SUB BX, CX is used to subtract the contents of BX by CX.

	DEC BX is used to decrement contents of BX by 1.

	HLT stops executing the program and halts any further execution.

harshit-chhabra

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Computer Organization and Architecture
 microprocessor
system-programming

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

OEBPS/Images/71ff5864d194423430f8535352c421b1.jpg

OEBPS/Images/ea18137def80c1d0c7254dfd191632e5.jpg
D7 D6 D5 D4 D3 D2 D1 DO
1 0 0 1 0 0 0 0
1 T T 2)

OEBPS/Images/cc5aebd5bc438d6fe0edeed8be2c8117.jpg
List: | 42H | 21H | 01H | 1FH | FFH | 25H | 32H | 34H | 0AH | ABH

OEBPS/Images/838a4014b12ace7fd55a8588af37518b.jpg
Memory Address > 2051 2050

Carry

1

Memory Address > | 3051 m

OEBPS/Images/362ab3d5d6fc164ec1d23f934c640c01.jpg
Example 1:

Memory Address

Data

Example 2 :

Memory Address

Data

Input Output
0500 0601 0600
04 00 18
0500 0601 0600
06 02 DO

OEBPS/Images/a1fd7bd1461ef1b097f46db572a66d8c.jpg
2000H

2001H

2002H

BASE

EXPONENT

RESULT

OEBPS/Images/b4efbc94a9915ea614533b38e5ce7990.jpg
Input Data — > m

Memory Address(offset) —_> 500 501

borrow

Output Data — > ﬂ

Memory Address(offset) — > m 601

OEBPS/Images/ae4d3fb437a61eb7b06ff6881c8f6a99.jpg
Input Data >
Memory Address 2| 2050

Output Data >
Memory Address > m

OEBPS/Images/2d00e0f111c8d26aeced25c130d9ee23.jpg

OEBPS/Images/ce5b8f1d48fb5d51a3dde358e825544f.jpg

OEBPS/Images/d0d3f619d59a02efc5a5f3e2d88858a4.jpg
Input Data

Memory
Address|

Output Data

Memory Address

04 03 05 06 08
500 501 502 503 504
03 05 06 08
600 601 602 603

OEBPS/Images/dcb72d4d5c4ac8527fab9011c593bf86.jpg
Input Data >
Memory Address > m

Memory Address => m

OEBPS/Images/f90b5bf38d8baf3eafde107a6d63cb2f.jpg

OEBPS/Images/ab3a7c029fbea3e3e3da1ad3d555b604.jpg
Registers B, C and D after each MULTIPLY function call

024

02H

02H

03H

02H

01H

02H

02H+02H=04H

04H+04H=08H

OEBPS/Images/570c3cba7fec302c61723c65a0dd49fb.jpg
OUTPUT

OEBPS/Images/3c68424cf3e9df952484e7b35aa8db89.jpg
Input Datac=>
Memory Address >

Swapped Data 3>
Memory Address >

D H
31 12
3001 | 3000
D H
12 31
3001 | 3000

OEBPS/Images/e8be4d148cc2e11bd0f38ac5155e88db.jpg

OEBPS/Images/bdac6d1a6578351da01677329b4a9a9b.jpg
Input Data — >
Memory Address >

Output Data — >

Memory Address > 3050

OEBPS/Images/72da7a2adaf5923f855a8adac940b0e2.jpg
Data Result

2000H 2001H

04H 18H

OEBPS/Images/da950537395f1b772e56a0c46fe4021d.jpg
Input Data

Offset

Output Data

Offset

VY

VY

19 00
500 501
05
600

OEBPS/Images/dfe677eef6c432350640f5162107e3f3.jpg
0

Input Data={>| 05

Memory Address > | 3000

where 05 5> 0000 0101

or;ce

Output Data > | 02

Memory Address > | 3001

OEBPS/Images/11e518c7557cba33bc57d8edfd6a31c9.jpg
Input Data > m
Memory Address > m

Memory Address => m

OEBPS/Images/8353a2150dff509b5bc7cb2487b4a8bc.jpg
OUTPUT DATA :

MEMORY LOCATION —={>>

CARRY

OEBPS/Images/ce3de5d2ba244a327c954a6c3da08801.jpg
BX

l_l_l

Memory Address >

Carry

Output Data 3> m
Memory Address =>| 3007

w
o
o
<

OEBPS/Images/accf8cc2333a8a75d0b1d2c7f8e3931e.jpg
INPUT
DATA

¢ A B B

MEMORY

OEBPS/Images/3e0fd3d0ae61d5407e6293642bd461e4.jpg
Input Data > 04

Memory Address > 2050

Output Data > 06

Memory Address > 3050

OEBPS/Images/32ada80096e612672d69082431c82edf.jpg
Input Data

Memory
Address

Output Data

04 15 28 07 08
500 | 501 502 503 | 504
1C
600

Memory Address

OEBPS/Images/94150f66de78717f4e8036489cfefc13.jpg
KEY ASCII(HEX) BINARY BBCD(UNPACKED)
0 30 0110000 0000 0000
1 31 0110001 0000 0001
2 32 0110010 0000 0010
3 33 0110011 0000 0011
4 34 0110100 0000 0100
5 35 0110101 0000 0101
6 36 0110110 0000 0110
7 37 0110111 0000 0111
8 38 0111000 0000 1000
9 39 0111001 0000 1001

OEBPS/Images/ddcbf6877743b228a0ea9830bb5ac80f.jpg
DATA |::>| F2 14] 39 |
ADDRESS =>|_2050 | 2051 [2052 | 2053 | 2054 |

OUTPUT

DATACD> OF
ADDRESS =>[3050 |_3051

OEBPS/Images/b83d1c3c6e70d711dce4edd4de31100e.jpg

OEBPS/Images/d96bd38577520767a016f0f82edad009.jpg
Input Data

Offset

Output Data

Offset

VY

VY

25

500

19

600

OEBPS/Images/bd969be2daf34cfcb2700223e253ca90.jpg
Hil' D-E

Input Datac>>| EO 60 31 12
Memory Address =>| 3003 | 3002 | 3001 | 3000

Hil' D-E

Swapped Data »| 31 12 EO 60

Memory Address > | 3003 | 3002 | 3001 | 3000

OEBPS/Images/064c6f7a0820ff65577c7539559360e3.jpg

OEBPS/Images/362f33a9c70a71d4fa29d5feb3ac48d3.jpg
o7=0] 06 [05 [os [o5 [0z [o1 [00
T_T a1
PC bit number
0 : Reset

1: Set

OEBPS/Images/926fac3963042e9cf919e66172f66739.jpg
DATA ::> F2 14 [39 |
ADDRESS =>[2050 | 2051 [2052 | 2053 | 2054 |
OUTPUT

s HirH
ADDRESS =>[_3050] 3051 |

OEBPS/Images/f95ecde944ec05659c72ad3666d8e272.jpg
FEA AN NN N NN

OEBPS/Images/6e3c476172229b40af2ff937ca6cdda9.jpg
mmm j

PA mode selection 1/0 function of PB 1/O function of PCL
00: mO0 I/O func of PCU 0:1/0 0:0/p
01:ml1 /0 function of PA 0:0/P 1:0/r 1:1/P
1X:m2 0:0/P 1:1/p

1:1/P

PB mode selection
0:m0
Lmi

OEBPS/Images/39190f7f1282e8d5b90602f3407bb8ce.jpg
number of elements elements of array
in an array)

/1
wpvancs> [0 [[[= [|
Memory Address 9> | 2050 | 2051 | 2052 | 2053 | 2054

largest element

\V
Output Data > “
Memory Address > m

OEBPS/Images/7cfd4c93af8ee98102d9ff07867cfaaa.jpg
Input Datac=>
Memory Address >

Output Data >
Memory Address >

0

05

3000

2's
|

1;5

FB

FA

3002

3001

OEBPS/Images/b3946f3802423e15ae7b1195f7a5cd61.jpg
Input Datac=>
Memory Address >

Output Data >
Memory Address >

H-L

I_I_I

03

04

2501

2500

Borrow Refult

01

01

2503

2502

OEBPS/Images/9897221eb79c5cfa5047569fd1dadfed.jpg
QO

OEBPS/Images/5d74e47973b95d3e3e5230f15a0d0e7c.jpg
AH

remainder quotient

OEBPS/Images/bf856a23ed4fe69236169a9a9890456e.jpg
Strobe

R —

Busy

OEBPS/Images/8a2b3cdbe8cf4d558240a10b3db3a8ac.jpg
Diz Du Do Ds Dg D7 Ds Ds Ds D3 D D Do

[Jolo[1[T[s]z acl [p[Jer

OEBPS/Images/271dcc087cdfe10c02e1f4883c536e9a.jpg
e e | = |
Memory address mm

Output data ﬂ
Memory saaress | 3050 |

OEBPS/Images/7449c00e3e48059ac17e5e6f6841b072.jpg
INPUTDATA=>[4A]
ADDRESS =>[2050 |

OUTPUTDATA=>[a1 [34 |
ADDRESS =>[3050 | 3051 |

OEBPS/Images/95f44bac65445ab6c2778b94ec366c42.jpg
Memory Input

I

[2500] 12
[2501] 18
Memory Output

b

[2502] 12

OEBPS/Images/ffd347a52b6d3c8a913bdf0c99453987.jpg
=
s

OUTPUT
— 04 18 AD 05
DATA ----
MEMORY
ADDRESS:> 0600 0601 0602 0603

OEBPS/Images/7495d22effabc5e7cd7687a31bcf52e8.jpg
B C

D E
ENEN

H L

OEBPS/Images/cb743266b04ba5a646f8fa2fdaaae4c2.jpg
Memory Address > | 3051 m

OEBPS/Images/c4b177a6118ac579a666e2390c19dde7.jpg
ADDRESS

DATA

2500

05

2501

06

ADDRESS

DATA

2500

OS(—‘

2501

05 QSWE"”T

OEBPS/Images/2face3d067256f770ce52ddd39aaa5dc.jpg
Memory Address(offset) = >

Memory Address(offset) = > 601 m

OEBPS/Images/39eeb22e81f71e92523a6b36682f5343.jpg
D1

D3 D2

OH O-HOHA Ol

OCOddHOOHA

OO0 O il

OEBPS/Images/ae0f5b1b71433d3dd212055b10db1a3c.jpg

OEBPS/Images/d36e90b0dfac083abe5aff80b311e5cd.jpg
ASCIII No.

Input Datac>| 57
Memory Address > | 2500

BCD number

Output Data p»| 35 37

Memory Address > | 2601 | 2600

OEBPS/Images/d5cd2d31713fd2f6ccaa1fbc7be27260.jpg

OEBPS/Images/799cf2dede2d818dd3f9304f6986ef91.jpg
D6 D5 Mode
0 o mo
o 0 m
0 X m2

OEBPS/Images/76863b1bd2576a964aa56ccbc137b14a.jpg
BX AX
T 1 T 1

Input Data={>| 07 08 04 03

Memory Address =>| 3003 | 3002 | 3001 | 3000

Multiplicant
1

Output Data p»| 00 1C 35 18

Memory Address —>| 3007 | 3006 | 3005 | 3004

OEBPS/Images/b07dd502efb7a6d936cf90127ee92cef.jpg
Registers B and D after each MULTIPLY function call

B 04H 03H 02H 01H

D (Hexadecimal) 01H 04H 0CH 18H

D (Decimal) 01 04 12 2

OEBPS/Images/d3bb71e92da37f3450c95a408db5caff.jpg
Input Data

Offset

Output Data

=>
=>

=>

CcD 45 32 25 8A
600 601 602 603 604
0603 0003
DX BX

OEBPS/Images/35b30e062cb59bc24e62a7d7f02de76b.jpg
OUTPUT

OEBPS/Images/d07eadc7d02fd93b74558182b6740553.jpg
Input Datac=>
Memory Address >

Output Data >
Memory Address >

H-L

34

74

2501

2500

Ca[ry

01

08

2503

2502

OEBPS/Images/f47d4458184ad3a88312d796a271fed4.jpg

OEBPS/Images/aff43e551b386c03df195bb986d8299e.jpg
Memory Address(offset) — >

Ripiteln €5
Mismory Hidestafoatic-

OEBPS/Images/57170bfef73fb168d94e24f42a76783a.jpg
ADDRESS 2001 2002 2003 2004 INPUT

ADDRESS 3001 3002 3003 3004

ADDRESS 2001 2002 2003 2004 OUTPUT

ADDRESS 3001 3002 3003 3004

OEBPS/Images/a3aaba6b82a721ce0956ddf4e0a19a73.jpg
Binalry No.
Input Data={>| 99
Memory Address > | 2500

GreyI Code

Output Data > | D5
Memory Address > | 2600

OEBPS/Images/6c78d4f50bde09fca449bf69332b774b.jpg
Input Data

Offset

Output Data

Offset

VY

VY

03

45 32 8A
500 501 502 503
40 01
600 601

OEBPS/Images/6d40d6ce386cb8cfb09687f12bd60532.jpg
INPUT DATA OF FIRST NO.

MEMORY LOCATION

66 45
2051 2050

33 22

INPUT DATA OF 2ND NO.

YRR

MEMORY LOCATION 2053 2052

OEBPS/Images/77bd13ae987153763cae69786ea6d0dc.jpg
07 [o6 | os [04 Jo3s Jo2 Jor | oo
(1 [oJo st fofofsfo

OEBPS/Images/e4fc7e23bb04831496678ac635ff53cd.jpg
Memory Address(offset) >

Memory Address(offset) — > m

OEBPS/Images/2c84670f58a9d0ef0a82d2e4a2f807b1.jpg
le

One Byte Number

Upper nible Lower nible
<« > -

1 Auxillary Carry

1 01 1]1 0 1 0

+ 01 1 0/1 001
00 1 0/0 0 11
Pl
Carry
B, B, B, B, B
0 — |1 — 0

Value of flags

OEBPS/Images/c3d9f572b81995feafe47a4cf25b6a3a.jpg

OEBPS/Images/ac886cd10f2b35acbd5a31441a310e35.jpg
OUTPUT

OEBPS/Images/c1826ad9767e673ab1e38a33a7ea2ea2.jpg
Input Data=l> | 07 02
Memory Address=> | 3001 | 3000
2's 1's
1 1
I 1 —
Output Data =>| F9 FE F8 FD
Memory Address =>| 3005 | 3004 | 3003 | 3002

OEBPS/Images/52b8481a20bc715213465be29ca06b50.jpg
Size

INPUT:

List

35H

10H

02H

21H

FOH

05H

List

OUTPUT:

02H

10H

21H

35H

FOH

OEBPS/Images/dfceed2746070884eded33ccfe38c602.jpg
numbers
1

Input Data={>| 05

Memory Address o>| 3004

Output Data >

I 1 count
04 03 02 04
3003 | 3002 | 3001| 3000
carry result
00 OE
4001 | 4000

Memory Address >

OEBPS/Images/455d7e5507bd80bcc90586aac28fe209.jpg
Number of elements in array

INPUT DATA ->
OFFSET ->

Array Elements

i

G

OUTPUT DATA ->
OFFSET ->

04 11 F7 E4 32
500 501 502 503 504
Sorted Array
11 32 E4 F7
501 502 503 504

OEBPS/Images/9c390addb34aa9cc8f214f7179a42d9b.jpg
Input Data >

Memory Address(offset) >

Output Data —> 40
Memory Address(offset) > 600

OEBPS/Images/0cf74a23b743e5982f7c0cf791cb674d.jpg
Memory Location —>
Input Data E=>

Memory Location == [602 | 601 [600 |
Output Data ——>| 1 | 80 | 13 |

OEBPS/Images/6fc4dbaf1b2fe217d0c6906fba80980b.jpg
Input Data > 0B

Memory Address > 2050

Output Data > oD

Memory Address > 3050

OEBPS/Images/8e544231bda84f22253d5eb3107f8bf4.jpg
BX AX
—— '
Memory Address > mm 3001 m
Borrow Result

Memory Address =>| 3007

OEBPS/Images/99a7fa3acdb3521f5360534b68742e68.jpg
fig(a)-Bit position of various flags in flag registers of 8085

OEBPS/Images/b81b292702f008782feb58d86c75da28.jpg
Input

Memory
Address

Input Data

Output

Memory
Address

Output Data

2050

98

3050 3051
38 39

OEBPS/Images/d8a6f50d9e53634213a850a9e6d2deb1.jpg
INPUT [or]

Flag register B register

Flag register B register

OEBPS/Images/7f41315312a36da4cc53e8abad503c83.jpg
Input Datac>| 05 04 03 02 01

Memory Address =>>| 2504 | 2503 | 2502 [2501 | 2500

Moveld Data

Output Data p»| 05 04 03 02 01

Memory Address =>| 2604 | 2603 | 2602 | 2601 | 2600

OEBPS/Images/5ca347981fc0ac514ccf6e5270959c48.jpg

OEBPS/Images/9c04caf4ca1cd96316722811dc436622.jpg
Input Data ——>|

7%

Register ——>|

Output Data —>|

Memory Location ——>|

3050

