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Basic 



						Sum of squares of even and odd natural numbers

				
						

				
			We know sum squares of first n natural numbers is n(n+1)(2n+1)/6.  

How to compute sum of squares of first n even natural numbers?

We need to compute 22 + 42 + 62 + …. + (2n)2 

EvenSum = 22 + 42 + 62 + .... + (2n)2 
        = 4 x (12 + 22 + 32 + .... + (n)2)
        = 4n(n+1)(2n+1)/6
        = 2n(n+1)(2n+1)/3


Example


Sum of squares of first 3 even numbers =
                 2n(n+1)(2n+1)/3
               = 2*3(3+1)(2*3+1)/3
               = 56
22 + 42 + 62 = 4 + 16 + 36 = 56






How to compute sum of squares of first n odd natural numbers?

We need to compute 12 + 32 + 52 + …. + (2n-1)2 

OddSum  = (Sum of Squares of all 2n numbers) - 
          (Sum of squares of first n even numbers)
        = 2n*(2n+1)*(2*2n + 1)/6 - 2n(n+1)(2n+1)/3
        = 2n(2n+1)/6 [4n+1 - 2(n+1)] 
        = n(2n+1)/3 * (2n-1)
        = n(2n+1)(2n-1)/3


Example:

Sum of squares of first 3 odd numbers = n(2n+1)(2n-1)/3
                                      = 3(2*3+1)(2*3-1)/3
                                      = 35
12 + 32 + 52 = 1 + 9 + 25 = 35

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
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						Mean, Variance and Standard Deviation

				
						

				
			Mean is average of a given set of data. Let us consider below example

[image:  2,\ 4,\ 4,\ 4,\ 5,\ 5,\ 7,\ 9 ]

These eight data points have the mean (average) of 5:

[image:  \frac{2 + 4 + 4 + 4 + 5 + 5 + 7 + 9}{8} = 5. ]

 

Variance is sum of squares of differences between all numbers and means.

Deviation for above example. First, calculate the deviations of each data point from the mean, and square the result of each:



        
          
          
          
        

            
[image:  \begin{array}{lll} (2-5)^2 = (-3)^2 = 9 && (5-5)^2 = 0^2 = 0 \\ (4-5)^2 = (-1)^2 = 1 && (5-5)^2 = 0^2 = 0 \\ (4-5)^2 = (-1)^2 = 1 && (7-5)^2 = 2^2 = 4 \\ (4-5)^2 = (-1)^2 = 1 && (9-5)^2 = 4^2 = 16. \\ \end{array} ]

variance = [image: \frac{9 + 1 + 1 + 1 + 0 + 0 + 4 + 16}{8}] = 4.

 

Standard Deviation is square root of variance. It is a measure of the extent to which data varies from the mean.

Standard Deviation (for above data)  = [image: \sqrt{ 4 }] = 2

Why did mathematicians chose square and then square root to find deviation, why not simply take difference of values?

One reason is the sum of differences becomes 0 according to definition of mean.  Sum of absolute differences could be an option, but with absolute differences it was difficult to prove many nice theorems. [Source: MIT Video Lecture at 1:19]

 

Some Interesting Facts:

1) Value of standard deviation is 0 if all entries in input are same.

2) If we add (or subtract) a number say 7 to all values in input set, mean is increased (or decreased) by 7, but standard deviation doesn’t change.

3) If we multiply all values in input set by a number 7, both mean and standard deviation are multiplied by 7. But if we multiply all input values with a negative number say -7, mean is multiplied by -7, but standard deviation is multiplied by 7.

 

Below questions have been asked in previous year GATE exams

http://quiz.geeksforgeeks.org/gate-gate-cs-2012-question-64/

 

References:

https://en.wikipedia.org/wiki/Standard_deviation

http://staff.argyll.epsb.ca/jreed/math30p/statistics/standardDeviation.htm

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
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Set Theory



						Introduction of Set theory

				
						

				
			A Set is a unordered collection of objects, known as elements or members of the set.

An element ‘a’ belong to a set A can be written as ‘a ∈ A’,  ‘a ∉ A’ denotes that a is not an element of the set A.

 

Representation of a Set 

A set can be represented by various methods. 3 common methods used for representing set:

1. Statement form.

2. Roaster form or tabular form method.

3. Set Builder method.

 

 



        
          
          
          
        

            
Statement form

In this representation, well defined description of the elements of the set is given. Below are some examples of same.

1. The set of all even number less than 10.

2. The set of number less than 10 and more than 1.

 

Roster form

In this representation, elements are listed within the pair of brackets {} and are separated by commas. Below are two examples.

1. Let N is the set of natural numbers less than 5.

N = { 1 , 2 , 3, 4 }.

2. The set of all vowels in english alphabet.

V = { a , e , i , o , u }.

 

Set builder form

In set builder set is describe by a property that its member must satisfy.

1. {x : x is even number divisible by 6 and less than 100}.

2. {x : x is natural number less than 10}.

 

Equal sets

Two sets are said to be equal if both have same elements. For example A = {1, 3, 9, 7} and B = {3, 1, 7, 9} are equal sets.

NOTE: Order of elements of a set doesn’t matter.

 

Subset

A set A is said to be subset of another set B if and only if every element of set A is also a part of other set B.

Denoted by ‘⊆‘.

‘A ⊆ B ‘ denotes A is a subset of B.

To prove A is subset of B, we need to simply show that if x belongs to A then x also belongs to B.

To prove A is not a subset of B, we need find out one element which is part of set A but not belong to set B.

[image: asubsetB]

‘U’ denotes the universal set.

Above Venn Diagram shows that A is Subset of B.

 

Size of a Set

Size of a set can be finite or infinite.

For example

Finite set: Set of natural numbers less than 100.
Infinite set: Set of real numbers.

Size of the set S is known as Cardinality number, denoted as |S|.

Example: Let A be a set of odd positive integers less than 10.

Solution : A = {1,3,5,7,9}, Cardinality of the set is 5, i.e.,|A| = 5.

Note: Cardinality of null set is 0.

 

Power Sets

Power set is the set all possible subset of the set S. Denoted by P(S).

Example : What is the power set of {0,1,2}?

Solution: All possible subsets

{∅}, {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}.

Note : Empty set and set itself is also member of this set of subsets.

 

Cardinality of power set is

[image: 2^n]

, where n is number of element in a set.

 

Cartesian Products

Let A and B be two sets. Cartesian product of A and B is denoted by A × B, is the set of all ordered pairs (a,b), where a belong to A and B belong to B.

A × B = {(a, b) | a ∈ A ∧ b ∈ B}.

Example 1. What is Cartesian product of A = {1,2} and B = {p,q,r}.

Solution : A × B ={(1,p), (1,q), (1,r), (2,p), (2,q), (2,r) };



Cardinality of A × B  is N*M, where N is the Cardinality of A and M is the cardinality of B.

Note : A × B is not same as B × A.

 

 

Below are some Gate Previous question

http://quiz.geeksforgeeks.org/gate-gate-cs-2015-set-2-question-28/

http://quiz.geeksforgeeks.org/gate-gate-cs-2015-set-1-question-26/

 

Set Theory continue..

References

https://en.wikipedia.org/wiki/Cartesian_product

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
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						Set Operations (Set theory)

				
						

				
			Union

Union of the sets A and B, denoted by A ∪ B, is the set of distinct element belongs to set A or set B, or both.

[image: AUB]

Above is the Venn Diagram of A U B.

Example : Find the union of A = {2, 3, 4} and B = {3, 4, 5};

Solution : A ∪ B = {2, 3, 4, 5}.

 



        
          
          
          
        

            
Intersection

Intersection of the sets A and B, denoted by A ∩ B, is the set of elements belongs to both A and B i.e. set of common element in A and B.

[image: AinterB]

Above is the Venn Diagram of A ∩ B.

Example: Consider the previous sets A and B. Find out A ∩ B.

Solution : A ∩ B = {3, 4}.

 

Disjoint

Two sets are said to be disjoint if their their intersection is the empty set .i.e sets have no common elements.

[image: AdijointB]

Above is the Venn Diagram of A disjoint B.

For Example

Let A = {1, 3, 5, 7, 9} and B = { 2, 4 ,6 , 8} .

A and B are disjoint set both of them have no common elements.

 

Set Difference

Difference between sets is denoted by ‘A – B’ , is the set containing elements of set A but not in B. i.e all elements of A except the element of B.

[image: A-B]

Above is the Venn Diagram of A-B.

 

Complement

Complement of a set A, denoted by

[image: A^\complement]

, is the set of all the element except A. Complement of the set A is U – A.

[image: Acomplemnt]

Above is the Venn Diagram of

[image: A^\complement]

 

Example : Let A = {0, 2, 4, 6, 8} , B = {0, 1, 2, 3, 4} and C = {0, 3, 6, 9}. What are A ∪ B ∪ C and A ∩ B ∩ C ?

Solution : Set A ∪ B ∪ C contains elements which are present in at least one of A, B and C.

A ∪ B ∪ C = {0, 1, 2, 3, 4, 6, 8, 9}.

Set A ∩ B ∩ C contains element which are present in all the sets A, B and C .i.e { 0 }.

 

See this for Set Theory Introduction.

 

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
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						Partial Orders and Lattices

				
						

				
			Relations can be used to order some or all the elements of a set. For instance, the set of Natural numbers is ordered by the relation [image: \leq] such that for every ordered pair [image: (x,y)] in the relation, the natural number [image: x] comes before the natural number [image: y] unless both are equal.

Formally,

“A relation [image: R] on set [image: A] is called a partial ordering or partial order if it is reflexive, anti-symmetric and transitive. A set [image: A] together with a partial ordering [image: R] is called a partially ordered set or poset. The poset is denoted as [image: (S,R)].”


	
Example – Show that the inclusion relation [image: \subseteq] is a partial ordering on the power set of a set [image: A].


	
Solution – Since every set [image: S\subseteq S], [image: \subseteq] is reflexive. If [image: S\subseteq R] and [image: R\subseteq S] then [image: R = S], which means [image: \subseteq ] is anti-symmetric. It is transitive as [image: R\subseteq S] and [image: S\subseteq T] implies [image: R\subseteq T].

Hence, [image: \subseteq] is a partial ordering on [image: P(S)], and [image: (P(S), \subseteq)] is a poset.




Important Note : The symbol [image: \preceq] is used to denote the relation in any poset. The notation [image: a \prec b] is used to denote [image: a \preceq b] but [image: a \neq b].

Comparability :

Let [image: a] and [image: b] be the elements of a poset [image: (S, \preceq)], then [image: a] and [image: b] are said to comparable if either [image: a \preceq b] or [image: b \preceq a]. Otherwise, [image: a] and [image: b] are said to be incomparable.



        
          
          
          
        

            

	
Example – In the poset [image: (Z^+, \mid)] (where [image: Z^+] is the set of all positive integers and [image: \mid] is the divides relation) are the integers 3 and 9 comparable? Are 7 and 10 comparable?


	
Solution – 3 and 9 are comparable since [image: 3 | 9] i.e. 3 divides 9. But 7 and 10 are not comparable since [image: 7 \nmid 10] and [image: 10 \nmid 7].




Total Order :

It is possible in a poset that for two elements [image: a] and [image: b] neither [image: a\preceq b] nor [image: b\preceq a] i.e. the elements [image: a] and [image: b] are incomparable. But in some cases, such as the poset [image: (Z^+, \leq)], every element is comparable to every other element.

A poset [image: (S, \preceq)] is called totally ordered if every two elements of [image: S] are comparable.
[image: \preceq] is called a total order. A totally ordered set is also called a chain.


Hasse Diagrams :

A partial order, being a relation, can be represented by a di-graph. But most of the edges do not need to be shown since it would be redundant.

For instance, we know that every partial order is reflexive, so it is redundant to show the self-loops on every element of the set on which the partial order is defined.

Every partial order is transitive, so all edges denoting transitivity can be removed.

The directions on the edges can be ignored if all edges are presumed to have only one possible direction, conventionally upwards.

In general, a partial order on a finite set can be represented using the following procedure –


	Remove all self-loops from all the vertices. This removes all edges showing reflexivity.

	Remove all edges which are present due to transitivity i.e. if [image: (a,b)] and [image: (b,c)]

 are in the partial order, then remove the edge [image: (a,c)]. Furthermore if [image: (c,d)] is in the partial order, then remove the edge [image: (a,d)]. 

	Arrange all edges such that the initial vertex is below the terminal vertex.

	Remove all arrows on the directed edges, since all edges point upwards.



For example, the poset [image: (\{1, 2, 3, 4\}, \leq)] would be converted to a Hasse diagram like –

[image: ]

The last figure in the above diagram contains sufficient information to find the partial ordering. This diagram is called a Hasse Diagram.

Extremums in Posets : Elements of posets that have certain extremal properties are important for many applications.


	Maximal Elements- An element [image: a] in the poset is said to be maximal if there is no element [image: b] in the poset such that [image: a \prec b].

	Minimal Elements- An element [image: a] in the poset is said to be minimal if there is no element [image: b] in the poset such that [image: b \prec a].



Maximal and Minimal elements are easy to find in Hasse diagrams. They are the topmost and bottommost elements respectively.

For example, in the hasse diagram described above, “1” is the minimal element and “4” is the maximal element. Since maximal and minimal are unique, they are also the greatest and least element of the poset.

Important Note : If the maximal or minimal element is unique, it is called the greatest or least element of the poset respectively.

Bounds in Posets :

It is somtimes possible to find an element that is greater than or equal to all the elements in a subset [image: A] of poset [image: (S, \preceq)]. Such an element is called the upper bound of [image: A]. Similarly, we can also find the lower bound of [image: A].

These bounds can be further constrained to get the least upper bound and the greatest lower bound. These bounds are elements which are less than or greater than all the other upper bounds or lower bounds respectively.


	Example – Find the least upper bound and greatest lower bound of the following subsets- [image: \{b, c\}], [image: \{g, e, a\}], [image: \{e, f\}].


[image: ]

	Solution – For the set [image: \{b, c\}]

The upper bounds are – [image: e, f, h, i]. So the least upper bound is [image: e].

The lower bounds are – [image: a]. So the greatest lower bound is [image: a].

For the set [image: \{g, e, a\}]

The upper bounds are – [image: h]. So the least upper bound is [image: h].

The lower bounds are – [image: a]. So the greatest lower bound is [image: a].

For the set [image: \{e, f\}]

The upper bounds are – [image: f, h, i]. So the least upper bound is [image: f].

The lower bounds are – [image: e, c, b, a]. So the greatest lower bound is [image: e].




Lattices – A Poset in which every pair of elements has both, a least upper bound and a greatest

lower bound is called a lattice.

There are two binary operations defined for lattices –


	 Join – The join of two elements is their least upper bound. It is denoted by [image: \vee], not to be confused with disjunction.

	 Meet – The meet of two elements is their greatest lower bound. It is denoted by [image: \wedge], not to be confused with conjunction.



Sub Lattice –  A sublattice of lattice [image: L] is a subset [image: S\subseteq L] such that if [image: a,b \in S], [image: a\wedge b \in S] and [image: a\vee b \in S].

Identities for join and meet –

      [image:  \begin{flalign*} &\bullet\: x\wedge x = x\:&&and\: x\vee x = x \\ &\bullet\: x\wedge y = y\wedge x\:&&and\: x\vee y = y\vee x \\ &\bullet\: (x\wedge y)\wedge z = x\wedge (y\wedge z)\:&&and\: (x\vee y)\vee z = x\vee (y\vee z) \\ &\bullet\: x\wedge (y\vee x) = x\:&&and\: x\vee (y\wedge x) = x \\ \end{flalign*} ]

Distributive laws may or may not hold true for a lattice :


	[image: x \wedge (y\vee z) = (x\wedge y) \vee (x\wedge z)]

	[image: x \vee (y\wedge z) = (x\vee y) \wedge (x\vee z)]



Note – A lattice is called a distributive lattice if the distributive laws hold for it.

But Semidistributive laws hold true for all lattices :


	[image: x \wedge (y\vee z) \geq (x\wedge y) \vee (x\wedge z)]

	[image: x \vee (y\wedge z) \leq (x\vee y) \wedge (x\vee z)]



Two important properties of Distributive Lattices –


	In any distributive lattice [image: a\wedge y = a \wedge x] and [image: a\vee y = a \vee x] together imply that [image: x = y].

	 If [image: a\wedge x = O] and [image: a\vee x = I], where [image: O] and [image: I] are the least and greatest element of lattice, then [image: a] and [image: x] are said to be a complementary pair. [image: O] and [image: I] are a trivially complementary pair.



GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.

1. GATE CS 2007, Question 26

2. GATE CS 2006, Question 4

3. GATE CS 2005, Question 9

4. GATE CS 2004, Question 73

5. GATE CS 2015 Set-1, Question 44

References-



Partially Ordered Set – Wikipedia

Lattices – Wikipedia

Discrete Mathematics and its Applications, by Kenneth H Rosen
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Matrix and Linear Equations



						Matrix Introduction

				
						

				
			A matrix represents a collection of numbers arranged in an order of rows and columns. It is necessary to enclose the elements of a matrix in parentheses or brackets.

A matrix with 9 elements is shown below.

[image: ]

This Matrix [M] has 3 rows and 3 columns. Each element of matrix [M] can be referred to by its row and column number. For example, a23=6

Order of a Matrix :

The order of a matrix is defined in terms of its number of rows and columns.

Order of a matrix = No. of rows ×No. of columns

Therefore Matrix [M] is a matrix of order 3 × 3.

Transpose of a Matrix :

The transpose [M]T of an m x n matrix [M] is the n x m matrix obtained by interchanging the rows and columns of [M].

if A= [aij] mxn , then AT = [bij] nxm where bij = aji

Properties of transpose of a matrix:



        
          
          
          
        

            

	(AT)TT = A

	 (A+B)TT = ATT + BTT

	(AB)TT = BTTATT



Singular and Nonsingular Matrix:


	Singular Matrix: A square matrix is said to be singular matrix if its determinant is zero i.e. |A|=0

	Nonsingular Matrix: A square matrix is said to be non-singular matrix if its determinant is non-zero.



Properties of Matrix addition and multiplication:


	A+B = B+A (Commutative)

	(A+B)+C = A+ (B+C) (Associative)

	AB ≠ BA (Not Commutative)

	(AB) C = A (BC) (Associative)

	A (B+C) = AB+AC (Distributive)



Square Matrix: A square Matrix has as many rows as it has columns. i.e. no of rows = no of columns.

Symmetric matrix: A square matrix is said to be symmetric if the transpose of original matrix is equal to its original matrix. i.e. (AT) = A.

Skew-symmetric: A skew-symmetric (or antisymmetric or antimetric[1]) matrix is a square matrix whose transpose equals its negative.i.e. (AT) = -A.

Diagonal Matrix: A matrix is said to be diagonal matrix where all the off diagonal elements are 0. In other words, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero. The term usually refers to square matrices.

Identity Matrix: A diagonal matrix with 1s and only 1s on the diagonal. Identity matrix is denoted as I.

Orthogonal Matrix: A matrix is said to be orthogonal if AAT = ATA = I

Idemponent Matrix: A matrix is said to be idemponent if A2 = A

Involutary Matrix: A matrix is said to be Involutary if A2 = I.

Note: Every Square Matrix can uniquely be expressed as the sum of a symmetrix matrix and skew symmetric matrix. A = 1/2 (AT + A) + 1/2 (A – AT).

Adjoint of a square matrix:

 [image: ]

Properties of Adjoint:


	A(Adj A) = (Adj A) A = |A| In

	 Adj(AB) = (Adj B).(Adj A)



 Inverse of a square matrix:

A-1 = Adj A / |A| ; |A|#0

Properties of inverse:

1. (A-1)-1 = A

2. (AB)-1 = B-1A-1

3. only a non singular square matrix can have an inverse.

Where should we use inverse matrix?

If you have a set of simultaneous equations:

7x + 2y + z = 21

3y – z = 5

-3x + 4y – 2x = -1

As we know when AX = B, then X = A-1B so we calculate inverse of A and by multiplying it B, we can get the values of x, y and z.

Trace of a matrix: trace of a matrix is denoted as tr(A) which is used only for square matrix and equals the sum of the diagonal elements of the matrix. For example:

[image: ]

This article is contributed by Nitika Bansal. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
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						System of Linear Equations

				
						

				
			 

Trace of a matrix :

Let A=[aij] nxn is a square matrix of order n, then the sum of diagonal elements is called the trace of a matrix which is denoted by tr(A). tr(A) = a11 + a22 + a33+ ……….+ ann

Properties of trace of matrix:

Let A and B be any two square matrix of order n, then


	tr(kA) = k tr(A) where k is a scalar.

	tr(A+B) = tr(A)+tr(B)

	tr(A-B) = tr(A)-tr(B)

	tr(AB) = tr(BA)



Solution of a system of linear equations:

Linear equations can have three kind of possible solutions:


	No Solution

	Unique Solution

	Infinite Solution



Rank of a matrix: Rank of matrix is the number of non-zero rows in the row reduced form or the maximum number of independent rows or the maximum number of independent columns.

Let A be any mxn matrix and it has square sub-matrices of different orders. A matrix is said to be of rank r, if it satisfies the following properties:



        
          
          
          
        

            

	It has at least one square sub-matrices of order r who has non-zero determinant.

	All the determinants of square sub-matrices of order (r+1) or higher than r are zero.



Rank is denoted as P(A).

if A is a non-singular matrix of order n, then rank of A = n i.e. P(A) = n.

Properties of rank of a matrix:


	If A is a null matrix then P(A) = 0 i.e. Rank of null matrix is zero.

	If In is the nxn unit matrix then P(A) = n.

	Rank of a matrix A mxn , P(A) <= min(m,n).="" thus="" p(a)="" <="m" and="">


	P(A nxn ) = n if |A| ≠ 0 < n if |A|=0.

	If P(A) = m and P(B)=n then P(AB) <= min(m,n).<="" li="">


	If A and B are square matrices of order n then P(AB) ≥ P(A) + P(B) – n.

	If Am×1 is a non zero column matrix and B1×n is a non zero row matrix then P(AB) = 1.

	The rank of a skew symmetric matrix cannot be equal to one.



System of homogeneous linear equations AX = 0.


	X = 0. is always a solution; means all the unknowns has same value as zero. (This is also called trivial solution)

	If P(A) = number of unknowns, unique solution.

	If P(A) < number of unknowns, infinite number of solutions.



System of non-homogenous linear equations AX = B.


	If P[A:B] ≠ P(A), No solution.

	If P[A:B] = P(A) => the number of unknown variables, unique solution.

	If P[A:B] = P(A) < number of unknown, infinite number of solutions.



Here P[A:B] is rank of gauss elimination representation of AX = B.

There are two states of Linear equation system:


	Consistent State: A System of equations having one or more solutions is called a consistent system of equations.

	Inconsistent State: A System of equations having no solutions is called inconsistent system of equations.



Linear dependence and Linear independence of vector:

Linear Dependence: A set of vectors X1 ,X2 ….Xr is said to be linearly dependent if there exist r scalars k1 ,k2 …..kr such that: k1 X1 + k2X2 +……..kr Xr = 0.

Linear Independence: A set of vectors X1 ,X2….Xr is said to be linearly dependent if there exist r scalars k1,k2 …..krsuch that: k1X1+ k2 X2+……..krXr = 0 implies k1 = k2 =……. = kr = 0.

How to determine linear dependency and independency ??

Let X1, X2 ….Xr be the given vectors. Construct a matrix with the given vectors as its rows.


	If the rank of the matrix of the given vectors is less than the number of vectors, then the vectors are linearly dependent.

	If the rank of the matrix of the given vectors is equal to number of vectors, then the vectors are linearly independent.



Reference:

http://www.dr-eriksen.no/teaching/GRA6035/2010/lecture2-hand.pdf

This article is contributed by Nitika Bansal.
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						L U Decomposition of a System of Linear Equations

				
						

				
			L U decomposition of a matrix is the factorization of a given square matrix into two triangular matrices, one upper triangular matrix and one lower triangular matrix, such that the product of these two matrices gives the original matrix. It was introduced by Alan Turing in 1948, who also created the turing machine.

This method of factorizing a matrix as a product of two triangular matrices has various applications such as solution of a system of equations, which itself is an integral part of many applications such as finding current in a circuit and solution of discrete dynamical system problems; finding the inverse of a matrix and finding the determinant of the matrix.

Basically, the L U decomposition method comes handy whenever it is possible to model the problem to be solved into matrix form. Conversion to the matrix form and solving with triangular matrices makes it easy to do calculations in the process of finding the solution. 

A square matrix A can be decomposed into two square matrices L and U such that A = L U where U is an upper triangular matrix formed as a result of applying Gauss Elimination Method on A; and L is a lower triangular matrix with diagonal elements being equal to 1.

For A = [image: \begin{bmatrix}   a_{11} & a_{12} & a_{13} \\   a_{21} & a_{22} & a_{23} \\   a_{31} & a_{32} & a_{33}  \end{bmatrix}], we have L = [image: \begin{bmatrix}   1 & 0 & 0 \\   l_{21} & 1 & 0 \\   l_{31} & l_{32} & 1  \end{bmatrix}] and U = [image: \begin{bmatrix}   u_{11} & u_{12} & u_{13} \\   0 & u_{22} & u_{23} \\   0 & 0 & u_{33}  \end{bmatrix}] ; such that A = L U.




Gauss Elimination Method

According to the Gauss Elimination method:

1. Any zero row should be at the bottom of the matrix.

2. The first non zero entry of each row should be on the right hand side of the first non zero entry of the preceding row.

This method reduces the matrix to row echelon form.



        
          
          
          
        

            
Steps for L U Decomposition

Given a set of linear equations, first convert them into matrix form A X = C where A is the coefficient matrix, X is the variable matrix and C is the matrix of numbers on the right hand side of the equations.

Now, reduce the coefficient matrix A ,  i.e., matrix obtained from the coefficients of variables in all the given equations such that for ‘n’ variables we have an nXn matrix, to row echelon form using Gauss Elimination Method. The matrix so obtained is U.

To find L, we have two methods. The first one is to assume the remaining elements as some artificial variables, make equations using A = L U and solve them to find those artificial variables.

The other method is that the remaining elements are the multiplier coefficients because of which the respective positions became zero in the U matrix. (This method is a little tricky to understand by words but would get clear in example below)

Now, we have A (the nXn coefficient matrix), L (the nXn lower triangular matrix), U (the nXn upper triangular matrix), X (the nX1 matrix of variables) and C (the nX1 matrix of numbers on the right hand side of the equations).

The given system of equations is A X = C. We substitute A = L U. Thus, we have L U X = C.

We put Z = U X, where Z is a matrix or artificial variables and solve for L Z = C first and then solve for U X = Z to find X or the values of the variables, which was required.

Example:

Solve the following system of equations using LU Decomposition method:

      [image:  \begin{equation*} x_1 + x_2 + x_3 = 1 \end{equation*} \begin{equation*} 4x_1 + 3x_2 - x_3 = 6  \end{equation*} \begin{equation*} 3x_1 + 5x_2 + 3x_3 = 4 \end{equation*} ]

Solution: Here, we have 

A = [image: \begin{bmatrix}   1 & 1 & 1 \\   4 & 3 & -1 \\   3 & 5 & 3  \end{bmatrix} , X = \begin{bmatrix}   x_1 \\   x_2 \\   x_3  \end{bmatrix} ] and [image:  C = \begin{bmatrix}   1 \\   6 \\   4  \end{bmatrix}] such that A X = C.

Now, we first consider [image: \begin{bmatrix}   1 & 1 & 1 \\   4 & 3 & -1 \\   3 & 5 & 3  \end{bmatrix}] and convert it to row echelon form using Gauss Elimination Method. 

So, by doing 

 (1)    [image:  \begin{equation*} R_2 \to R_2 - 4R_1  \end{equation*} ]

 (2)    [image:  \begin{equation*} R_3 \to R_3 - 3R_1   \end{equation*} ]

we get

[image: \begin{bmatrix}   1 & 1 & 1 \\   4 & 3 & -1 \\   3 & 5 & 3  \end{bmatrix} \sim ] [image: \begin{bmatrix}  1 & 1 & 1 \\   0 & -1 & -5 \\   0 & 2 & 0  \end{bmatrix}] 

Now, by doing


 (3)    [image:  \begin{equation*} R_3 \to R_3 - (-2)R_2 \end{equation*} ]

we get

[image:  \sim \begin{bmatrix}   1 & 1 & 1 \\   0 & -1 & -5 \\   0 & 0 & -10  \end{bmatrix}]

(Remember to always keep  ‘ – ‘ sign in between, replace ‘ + ‘ sign by two ‘ – ‘ signs)

Hence, we get L = [image:  \begin{bmatrix}   1 & 0 & 0 \\   4 & 1 & 0 \\   3 & -2 & 1  \end{bmatrix}] and U = [image:  \begin{bmatrix}   1 & 1 & 1 \\   0 & -1 & -5 \\   0 & 0 & -10  \end{bmatrix}]

(notice that in L matrix, [image:  l_{21} = 4 ] is from (1), [image:  l_{31} = 3 ] is from (2) and [image:  l_{32} = -2 ] is from (3))

Now, we assume Z  [image:  = \begin{bmatrix}   z_1 \\   z_2 \\   z_3   \end{bmatrix}] and solve L Z = C.

[image:  \begin{bmatrix}   1 & 0 & 0 \\   4 & 1 & 0 \\   3 & -2 & 1  \end{bmatrix}  \begin{bmatrix}   z_1 \\   z_2 \\   z_3   \end{bmatrix}] [image:  = \begin{bmatrix}   1 \\   6 \\   4  \end{bmatrix}]

So, we have [image:  z_1 = 1 , ] [image:  4z_1 + z_2 = 6 , ] [image:  3z_1 - 2z_2 + z_3 = 4  .]

Solving, we get [image:  z_1 =  1 ], [image:  z_2 = 2 ] and [image:  z_3 = 5 ] .

Now, we solve U X = Z

[image:  \begin{bmatrix}   1 & 1 & 1 \\   0 & -1 & -5 \\   0 & 0 & -10  \end{bmatrix} \begin{bmatrix}   x_1 \\   x_2 \\   x_3  \end{bmatrix}] [image:  = \begin{bmatrix}   1 \\   2 \\   5  \end{bmatrix}]

Therefore, we get [image:  x_1 + x_2 + x_3 = 1  ,] [image:  -x_2 - 5x_3 = 2] , [image: -10x_3 = 5 .]

Thus, the solution to the given system of linear equations is [image:  x_1 = 1  ], [image:  x_2 = 0.5  ], [image:  x_3 =  -0.5 ]  and hence the matrix X = [image: \begin{bmatrix}   1 \\   0.5 \\   -0.5  \end{bmatrix}]

 

Exercise:

In the LU decomposition of the matrix


| 2  2 |
| 4  9 |



, if the diagonal elements of U are both 1, then the lower diagonal entry l22 of L is (GATE CS 2015)

(A) 4

(B) 5

(C) 6

(D) 7

For Solution, see http://quiz.geeksforgeeks.org/gate-gate-cs-2015-set-1-question-28/

This article is compiled by Nishant Arora. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
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						Eigen Values and Eigen Vectors

				
						

				
			Eigen vector of a matrix A is a vector represented by a matrix X such that when X is multiplied with matrix A, then the direction of the resultant matrix remains same as vector X.

Mathematically, above statement can be represented as:

AX = λX 

where A is any arbitrary matrix, λ are eigen values and X is an eigen vector corresponding to each eigen value.

Here, we can see that AX is parallel to X. So, X is an eigen vector.



        
          
          
          
        

            
 

Method to find eigen vectors and eigen values of any square matrix A

We know that,

AX = λX

=> AX – λX = 0

             => (A – λI) X = 0 …..(1)

Above condition will be true only if (A – λI) is singular. That means, 

|A – λI| = 0 …..(2)

(2) is known as characteristic equation of the matrix.

The roots of the characteristic equation are the eigen values of the matrix A.

Now, to find the eigen vectors, we simply put each eigen value into (1) and solve it by Gaussian elimination, that is, convert the augmented matrix (A – λI) = 0 to row echelon form and solve the linear system of equations thus obtained.

 

Some important properties of eigen values


	
Eigen values of real symmetric and hermitian matrices are real



	
Eigen values of real skew symmetric and skew hermitian matrices are either pure imaginary or zero



	
Eigen values of unitary and orthogonal matrices are of unit modulus |λ| = 1



	
If λ1, λ2…….λn are the eigen values of A, then kλ1, kλ2…….kλn are eigen values of kA



	
If λ1, λ2…….λn are the eigen values of A, then 1/λ1, 1/λ2…….1/λn are eigen values of A-1



	
If λ1, λ2…….λn are the eigen values of A, then λ1k, λ2k…….λnk are eigen values of Ak



	
Eigen values of A = Eigen Values of AT (Transpose)



	
Sum of Eigen Values = Trace of A (Sum of diagonal elements of A)



	
Product of Eigen Values = |A|



	
Maximum number of distinct eigen values of A = Size of A



	
If A and B are two matrices of same order then, Eigen values of AB = Eigen values of BA





 

This article has been contributed by Saurabh Sharma.

If you would like to contribute, please email us your interest at contribute@geeksforgeeks.org
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Functions 



						Classes (Injective, surjective, Bijective) of Functions

				
						

				
			A function f from A to B is an assignment of exactly one element of B to each element of A (A and B are non-empty sets). A is called Domain of f and B is called co-domain of f. If b is the unique element of B assigned by the function f to the element a of A, it is written as f(a) = b. f maps A to B. means f is a function from A to B, it is written as f: A -.> B

Terms related to functions:


	 Domain and co-domain – if f is a function from set A to set B, then A is called Domain and B is called co-domain.

	 Range – Range of f is the set of all images of elements of A. Basically Range is subset of co- domain.

	 Image and Pre-Image – b is the image of a and a is the pre-image of b if f(a) = b.



Properties of Function:


	Addition and multiplication: let f1 and f2 are two functions from A to B, then f1 + f2 and f1.f2 are defined as-:

           (f1+f2)x = f1(x) + f2(x). (addition)

           (f1f2)x = f1(x) f2(x). (multiplication)
       



	Equality: Two functions are equal only when they have same domain, same co-domain and same mapping elements from domain to co-domain.






Types of functions:



        
          
          
          
        

            

	One to one function(Injective): A function is called one to one function if for all elements of a and b in A such that f(a) = f(b), i.e. a = b.  It never maps distinct elements of its domain to the same element of its co-domain.

[image: fun_1]



	Onto Function (surjective): If every element b in B has a corresponding element a in A such that f(a) = b. It is not required that a is unique; The function f may map one or more elements of A to the same element of B.

[image: fun_2]



	One to one correspondence function(Bijective/Invertible): A function is Bijetcive function if it is both one to one and onto function.
[image: 8]



	Inverse Functions:Bijection function are also known as invertible function because they have inverse function property. The inverse of bijection f is denoted as f-1. It is a function which assigns to b, a unique element a such that f(a) = b. hence f-1 (b) = a.



Some Useful functions -:


Strictly Increasing and Strictly decreasing functions: A function f is strictly increasing if f(x) > f(y) when x>y. A function f is strictly decreasing if f(x) < f(y) when x<y. Increasing and decreasing functions: A function f is strictly increasing if f(x) >= f(y) when x>y. A function f is strictly decreasing if f(x) <= f(y)="" when x<y. Function Composition: let g be a function from B to C and f be a function from A to B, the composition of f and g, which is denoted as fog(a)= f(g(a)).

Properties of function composition:


	fog ≠ gof

	f-1 of = f-1 (f(a)) = f-1(b) = a.

	fof-1 = f(f-1 (b)) = f(a) = b.

	If f and g both are one to one function, then fog is also one to one.

	If and g both are onto function, then fog is also onto.

	If and fog both are one to one function, then g is also one to one.

	If f and fog are onto, then it is not necessary that g is also onto.

	(fog)-1 = g-1 o f-1




Some Important Points:


	A function is one to one if it is either strictly increasing or strictly decreasing.

	one to one function never assigns the dame value to two different domain elements.

	For onto function, range and co-domain are equal.

	A function f is not bijection, inverse function of f cannot be defined.






This article is contributed by Nitika Bansal
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Mean Value Theorem



						Lagrange’s Mean Value Theorem

				
						

				
			Suppose f(x) be a function satisfying three conditions:

1) f(x) is continuous in the closed interval a <= x="" <="b</p">


2) f(x) is differentiable in the open interval a < x < b

 

Then according to Lagrange’s Theorem, there exists at least one point ‘c’ in the open interval (a, b) such that:



        
          
          
          
        

            
f ‘ (c) = [f(a) – f(b) ] / (b – a)

 

We can visualize Lagrange’s Theorem by the following figure



[image: f3]

 

In simple words, Lagrange’s theorem says that if there is a path between two points A(a, f(a)) and B(b, f(a)) in a 2-D plain then there will be at least one point ‘c’ on the path such that the slope of the tangent at point ‘c’, i.e.,  (f ‘ (c)) is equal to the average slope of the path, i.e., f ‘ (c) = [f(a) – f(b) ] / (b – a)

 

This article has been contributed by Saurabh Sharma.
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						Rolle’s Mean Value Theorem

				
						

				
			Suppose f(x) be a function satisfying three conditions:

1) f(x) is continuous in the closed interval a <= x="" <="b</p">


2) f(x) is differentiable in the open interval a < x < b

3) f(a) = f(b)

 



        
          
          
          
        

            
Then according to Rolle’s Theorem, there exists at least one point ‘c’ in the open interval (a, b) such that:

f ‘ (c) = 0

 

We can visualize Rolle’s theorem from the figure(1)





[image: im]

Figure(1)


 

In the above figure the function satisfies all three conditions given above. So, we can apply Rolle’s theorem, according to which there exists at least one point ‘c’ such that:

f ‘ (c) = 0

which means that there exists a point at which the slope of the tangent at that is equal to 0. We can easily see that at point ‘c’ slope is 0.

 

Similarly, there could be more than one points at which slope of tangent at those points will be 0. Figure(2) is one of the example where exists more than one point satisfying Rolle’s theorem.

[image: f2]

Figure(2)
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Probability 



						Conditional Probability

				
						

				
			Conditional probability P(A | B) indicates the probability of even ‘A’ happening given that the even B happened. 

    [image: P(A|B) = \frac{P(A \cap B)}{P(B)}]


We can easily understand above formula using below diagram. Since B has already happened, the sample space reduces to B.  So the probability of A happening becomes P(A ∩ B) divided by P(B)

[image: conditional_probab]     




Example:

In a batch, there are 80% C programmers, and 40% are Java and C programmers. What is the probability that a C programmer is also Java programmer?


Let A --> Event that a student is Java programmer
    B --> Event that a student is C programmer
    P(A|B) = P(A ∩ B) / P(B)
           = (0.4) / (0.8)
           = 0.5
So there are 50% chances that student that knows C also 
knows Java 






Product Rule:

Derived from above definition of conditional probability by multiplying both sides with P(B)






   P(A ∩ B) = P(B) * P(A|B) 




Exercise:

1) What is the value of P(A|A)?



        
          
          
          
        

            
2) Let P(E) denote the probability of the event E. Given P(A) = 1, P(B) = 1/2, the values of P(A | B) and P(B | A) respectively are (GATE CS 2003)

(A) 1/4, 1/2

(B) 1/2, 1/14

(C) 1/2, 1

(D) 1, 1/2

See this for solution.




References:

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2010/video-lectures/lecture-19-conditional-probability/
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						Bayes’s formula for Conditional Probability

				
						

				
			We strongly recommend to refer below post as a per-requisite for this. 

Conditional Probability




Bayes’s formula

Below is Bayes’s formula.

[image: P(A|B) = \frac{P(B|A)P(A)}{P(B)}]

The formula provides relationship between P(A|B) and P(B|A). It is mainly derived form conditional probability formula discussed in the previous post.

Consider the below forrmulas for conditional probabilities P(A|B) and P(B|A)

    [image: P(A|B) = \frac{P(A \cap B)}{P(B)}]  —-(1)

    [image: P(B|A) = \frac{P(B \cap A)}{P(A)}]  —-(2)



        
          
          
          
        

            
Since P(B ∩ A) = P(A ∩ B), we can replace P(A ∩ B) in first formula with P(B|A)P(A)

After replacing, we get the given formula. 




Example : Box P has 2 red balls and 3 blue balls and box Q has 3 red balls and 1 blue ball. A ball is selected as follows:


(i)  Select a box
(ii) Choose a ball from the selected box such that each ball in
     the box is equally likely to be chosen. The probabilities of
     selecting boxes P and Q are (1/3) and (2/3), respectively.  



Given that a ball selected in the above process is a red ball, the probability that it came from the box P is (GATE CS 2005)

(A) 4/19

(B) 5/19

(C) 2/9

(D) 19/30

Solution:


R --> Event that red ball is selected
B --> Event that blue ball is selected
P --> Event that box P is selected
Q --> Event that box Q is selected

We need to calculate P(P|R)?
[image: P(P|R) = \frac{P(R|P)P(P)}{P(R)}]

P(R|P) = A red ball selected from box P
       = 2/5
P(P) = 1/3
P(R) = P(P)*P(R|P) + P(Q)*P(R|Q)
     = (1/3)*(2/5) + (2/3)*(3/4)
     = 2/15 + 1/2
     = 19/30

Putting above values in the Bayes's Formula
P(P|R) = (2/5)*(1/3) / (19/30)
       = 4/19






Exercise A company buys 70% of its computers from company X and 30% from company Y.  Company X produces 1 faulty computer per 5 computers and company Y produces 1 faulty computer per 20 computers.  A computer is found faulty what is the probability that it was bought from company X?




Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
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						Probability Distributions Set 5 (Poisson Distribution)

				
						

				
			The previous article covered the Binomial Distribution. This article talks about another Discrete Probability Distribution, the Poisson Distribution. 

Introduction –

Suppose an event can occur several times within a given unit of time. When the total number of occurrences of the event is unknown, we can think of it as a random variable. This random variable follows the Poisson Distribution. The Poisson distribution is a limiting case of the Binomial distribution when the number of trials becomes very large and the probability of success is small.

As we know from the previous article the probability of ‘x’ success in ‘n’ trials in a Binomial Experiment with success probability ‘p’, is-

[image:  P(x) = \binom{n}{x} p^x (1-p)^{n-x} ]

Let us denote the Expected value of the Random Variable by [image: \lambda].So-

[image:  \lambda = np\\ p = \dfrac{\lambda}{n}\\ \text{And, }\\ q = 1-p = 1 - \dfrac{\lambda}{n}\\ \text{Rewriting P(x) in terms of} \lambda\\ P(x) = \binom{n}{x} \bigg(\dfrac{\lambda}{n}\bigg)^x \bigg(1-\dfrac{\lambda}{n}\bigg)^{n-x}\\ \text{Expanding the binomial coefficient}\\ P(x) = \dfrac{n.(n-1).(n-2)...(n-x+1)}{x!} \bigg(\dfrac{\lambda}{n}\bigg)^x \bigg(1-\dfrac{\lambda}{n}\bigg)^{n-x}\\ P(x) = \dfrac{n}{n} \dfrac{n-1}{n}...\dfrac{n-x+1}{n} \bigg(\dfrac{\lambda ^x}{x!}\bigg) \bigg(1-\dfrac{\lambda}{n}\bigg)^{n} \bigg(1-\dfrac{\lambda}{n}\bigg)^{-x}\\ \text{As n tends to infinity, P(x) is-}\\ P(x) = \dfrac{e^{-\lambda} \lambda ^x}{x!} ]

Expected Value –

The Expected Value of the Poisson distribution can be found by summing up products of Values with their respective probabilities.



        
          
          
          
        

            
      [image:  \begin{flalign*} E[X] &= \sum \limits_{x=0}^{\infty} xp_X(x)\\ &= \sum \limits_{x=0}^{\infty} x\dfrac{e^{-\lambda} \lambda ^x}{x!}\\ &= 0 + \sum \limits_{x=1}^{\infty} x\dfrac{e^{-\lambda} \lambda ^x}{x!} \hspace{3cm}\text{First term is 0 since x=0}\\ &\text{Let x = y + 1}\\ &= \sum \limits_{y=0}^{\infty} (y+1)\dfrac{e^{-\lambda} \lambda ^{y+1}}{(y+1)!}\\ &= \sum \limits_{y=0}^{\infty} (y+1)\dfrac{e^{-\lambda} \lambda ^{y} \lambda}{(y)!(y+1)}\\ &= \lambda \sum \limits_{y=0}^{\infty} \dfrac{e^{-\lambda} \lambda ^{y}}{(y)!}\\ &= \lambda \sum \limits_{y=0}^{\infty} p_Y(y)\\ &= \lambda \end{flalign*} ]

Variance and Standard Deviation –

The Variance of the Poisson distribution can be found using the Variance Formula-

[image:  Var[X] = E[X^2] - E[X]^2\\ ]

      [image:  \begin{flalign*} E[X^2] &= \sum \limits_{x=0}^{\infty} x^2 p_X(x)\\ &= \sum \limits_{x=0}^{\infty} x^2\dfrac{e^{-\lambda} \lambda ^x}{x!}\\ &= 0 + \sum \limits_{x=1}^{\infty} x^2 \dfrac{e^{-\lambda} \lambda ^x}{x!} \hspace{3cm}\text{First term is 0 since x=0}\\ &\text{Let x = y + 1}\\ &= \sum \limits_{y=0}^{\infty} (y+1)^2\dfrac{e^{-\lambda} \lambda ^{y+1}}{(y+1)!}\\ &= \sum \limits_{y=0}^{\infty} (y+1)^2\dfrac{e^{-\lambda} \lambda ^{y} \lambda}{(y)!(y+1)}\\ &= \lambda \sum \limits_{y=0}^{\infty} (y+1)\dfrac{e^{-\lambda} \lambda ^{y}}{(y)!}\\ &= \lambda \sum \limits_{y=0}^{\infty} (y+1)p_Y(y)\\ &= \lambda \bigg( \sum \limits_{y=0}^{\infty} yp_Y(y) + \sum \limits_{y=0}^{\infty} p_Y(y) \bigg)\\ &= \lambda (\lambda + 1)\\ &= \lambda ^2 + \lambda \end{flalign*}  ]

Therefore we have Variance as-

      [image:  \begin{flalign*} Var[X] &= E[X^2] - E[X]^2\\ &= \lambda^2 + \lambda - \lambda^2\\ &= \lambda \end{flalign*} ]

Also the standard Deviation-

[image:  \sigma = \sqrt{\lambda}\\ ]

Relation with Exponential Distribution –

The number of occurrences of an event within a unit of time has a Poisson distribution with parameter [image: \lambda] if the time elapsed between two successive occurrences of the event has an exponential distribution with parameter [image: \lambda] and it is independent of previous occurrences.


	Example- For the case of the thin copper wire, suppose that the number of flaws follows a Poisson distribution with a mean of 2.3 flaws per millimeter. Determine the probability of exactly two flaws in 2 millimeter of wire.


	Solution- Let X denote the number of flaws in 1 millimeter of wire. The first step we need to do is to find the parameter [image: \lambda] which is nothing but the Expected value of the random variable. In this case we are given the Expected number of flaws in 1 millimeter of wire. We need to find the Expected number of flaws in 2 millimeter of wire.

Expected number of flaws in 2 millimeter of wire = 2*np = [image: 2\lambda] = 2*2.3 = 4.6

Therefore,

[image:  P(X=2) = e^{-4.6} \dfrac{(4.6)^2}{2!} = 0.099 \text{ or } 0.1 ]




GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.

1. GATE CS 2013, Question 2

References-
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						Prosecutor’s Fallacy

				
						

				
			Prosecutor’s fallacy is a very famous but neglected application of Baye’s rule.

Prosecutor’s fallacy is a fallacy in statistical reasoning. This very famous problem uncovers a loop hole in our logical way of thinking. It is confusion between conditional probabilities – probability of A given B and the probability of B given A.

So let’s start and understand what this Prosecutor’s fallacy is all about!

A person commits a crime in a city with a population of say 500000.DNA information is discovered at the crime scene. This information leads to say 10 suspects and one of them is brought to trial. So now we have a defendant in court! Is He/She innocent?

To solve this case, we need the following events:

1.    I : The event that the defendant is innocent.

2.    Ic : The event that the defendant is guilty.

3.    Ev : The event that the defendant matches the information collected at the crime scene – Evidence.

The conditional probabilities that corresponds to these events are as follows:

1.    P(Ev|I) : probability that an innocent person matches the evidence.

2.    P(I|Ev): probability that a person who matches the description is innocent.



        
          
          
          
        

            
The prosecutor makes the following argument :

A random person has a 1 in 100000 chance of matching the damning evidence. Therefore, if a person has the damning evidence then the person must be guilty.

In other words:

An innocent person has a 1 in 100000 chance of matching the damning evidence Ev. Therefore, if the defendant has the damning evidence, there is a 1 in 100000 chance that the defendant is innocent. Which means that the defendant must be guilty.

By making this argument he has committed Prosecutor’s fallacy.

Mathematically,

P(Ev|I) : 1/100000

P(I|Ev) = P(Ev|I) = 1/100000. 

With this probability anyone can state that the person is guilty and must be punished. But WAIT! This probability is not correct. The prosecutor has changed what is uncertain and the condition around. These two probabilities are usually different.

So what do we do now! How to calculate the correct value of P(I|Ev)?

The solution is to use Baye’s rule to calculate the actual value of P(I|Ev).

P(I|Ev) = P(Ev|I) * P(I)/P(Ev)


	What is the probability of P(I|Ev)?

	Illustration –

	Assumptions:

	Guilty person is among the 500000 adults living in the area.

	The Guilty person also matches the Evidence (Ev).





	Probability that a person is innocent:

        P(I) : 499,999 / 500000 = 0.999998



	Probability that a person is not innocent:

        P(Ic) : 1 / 500000 = 0.000002



	Probability that the guilty person matches the damning evidence.

        P(Ev|Ic) : 1 i.e. Guilty person matching evidence is 1 i.e. a 100%



	Use Baye’s rule-

	P(Ev) = P(Ev|I)*P(I) + P(Ev|Ic)*P(Ic)

	=0.00001*0.999998 + 1*0.000002

	=0.000012







	P(I|Ev) = P(Ev|I) * P(I)/P(Ev)

	=0.00001 * 0.999998/0.00012







	P(Ic|Ev) = 1 – P(I|Ev) = 0.16667


      





	Therefore, there is a 1/6 chance that a person matching the damning evidence (Ev) is guilty

  and a 5/6 chance that a person matching the damning evidence is innocent.

	Hence, there is a high chance that the person despite matching the damning evidence is innocent.







Source: An Intuitive Introduction to Probability
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						Random Variables

				
						

				
			Random variable is basically a function which maps from the set of sample space to set of real numbers.  The purpose is to get an idea about result of a particular situation where we are given probabilities of different outcomes.  See below example for more clarity.

Example :


Suppose that two coins (unbiased) are tossed 

X = number of heads. [X is a random variable 
                                or function]

Here, the sample space S = {HH, HT, TH, TT}. 

The output of the function will be :
      X(HH) = 2
      X(HT) = 1
      X(TH) = 1
      X(TT) = 0




Formal definition :

X: S -> R

X = random variable (It is usually denoted using capital letter)

S = set of sample space

R = set of real numbers

Suppose a random variable X takes m different values i.e. sample space X = {x1, x2, x3………xm} with probabilities P(X=xi) = pi; where 1 ≤ i ≤ m. The probabilities must satisfy the following conditions :


	0 <= 1="" pi="" <="1;" where="">


	 p1 + p2 + p3 + ……. + pm = 1 Or we can say 0 ≤ pi ≤ 1 and ∑pi = 1. 



Hence possible values for random variable X are 0, 1, 2.

X = {0, 1, 2} where m = 3

P(X=0) = probability that number of heads is 0 = P(TT) = 1/2*1/2 = 1⁄4.

P(X=1) = probability that number of heads is 1 = P(HT | TH) = 1/2*1/2 + 1/2*1/2 = 1⁄2.

P(X=2) = probability that number of heads is 2 = P(HH) = 1/2*1/2 = 1⁄4.

Here, you can observe that

1) 0 ≤ p1, p2, p3 ≤ 1

2) p1 + p2 + p3 = 1/4 + 2/4 + 1/4 = 1



        
          
          
          
        

            
Example :

Suppose a dice is thrown X = outcome of the dice. Here, the sample space S = {1, 2, 3, 4, 5, 6}. The output of the function will be:


	P(X=1) = 1/6

	P(X=2) = 1/6

	P(X=3) = 1/6

	P(X=4) = 1/6

	P(X=5) = 1/6

	P(X=6) = 1/6



See if there is any random variable then there must be some distribution associated with it.

[image: RandomVariable]



Discrete Random Variable:

A random variable X is said to be discrete if it takes on finite number of values. The probability function associated with it is said to be PMF = Probability mass function.

P(xi) = Probability that X = xi = PMF of X = pi.


	 0 ≤ pi ≤ 1.

	 ∑pi = 1 where sum is taken over all possible values of x.



The examples given above are discrete random variables.

Example:- Let S = {0, 1, 2}

[image: randon_var_2]

Find the value of P (X=0):

Sol:- We know that sum of all probabilities is equals to 1.

==> p1 + p2 + p3 = 1

==> p1 + 0.3 + 0.5 = 1

==> p1 = 0.2

 

Continuous Random Variable:

A random variable X is said to be continuous if it takes on infinite number of values. The probability function associated with it is said to be PDF = Probability density function

PDF: If X is continuous random variable.

P (x < X < x + dx) = f(x)*dx.




	0 ≤ f(x) ≤ 1; for all x

	∫ f(x) dx = 1 over all values of x





Then P (X) is said to be PDF of the distribution.

Example:- Compute the value of P (1 < X < 2).

Such that f(x) = k*x^3; 0 ≤ x ≤ 3
                = 0; otherwise
f(x) is a density function


Solution:- If a function f is said to be density function, then sum of all probabilities is equals to 1. Since it is a continuous random variable Integral value is 1 overall sample space s.

==> K*[x^4]/4 = 1   [Note that [x^4]/4 is integral of x^3]

==> K*[3^4 – 0^4]/4 = 1

==> K = 4/81

The value of P (1 < X < 2) = k*[X^4]/4 = 4/81 * [16-1]/4 = 15/81.


Next Topic : 

Linearity of Expectation

Reference:

MIT Video Lecture
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Discrete Mathematics



						Introduction and types of Relations

				
						

				
			Relation or Binary relation R from set A to B is a subset of AxB which can be defined as

 aRb <=> (a,b) € R <=> R(a,b).

A Binary relation R on a single set A is defined as a subset of AxA. For two distinct set, A and B with cardinalities m and n, the maximum cardinality of the relation R from A to B is mn.



Domain and Range:

if there are two sets A and B and Relation from A to B is R(a,b), then domain is defined as the set { a | (a,b) € R for some b in B} and Range is defined as the set {b | (a,b) € R for some a in A}.




Types of Relation:


	Empty Relation: A relation R on a set A is called Empty if the set A is empty set.

	Full Relation: A binary relation R on a set A and B is called full if AXB.

	Reflexive Relation: A relation R on a set A is called reflexive if (a,a) € R holds for every element a € A .i.e. if set A = {a,b} then R = {(a,a), (b,b)} is reflexive relation.

	Irreflexive relation : A relation R on a set A is called reflexive if no (a,a) € R holds for every element a € A.i.e. if set A = {a,b} then R = {(a,b), (b,a)} is irreflexive relation.

	Symmetric Relation: A relation R on a set A is called symmetric if (b,a) € R holds when (a,b) € R.i.e. The relation R={(4,5),(5,4),(6,5),(5,6)} on set A={4,5,6} is symmetric.

	AntiSymmetric Relation: A relation R on a set A is called antisymmetric if (a,b)€ R and (b,a) € R then a = b is called antisymmetric.i.e. The relation R = {(a,b)→R|a ≤ b} is anti-symmetric since a ≤ b and b ≤ a implies a = b.

	Transiitive Relation: A relation R on a set A is called transitive if (a,b) € R and (b,c) € R then (a,c) € R for all a,b,c € A.i.e. Relation R={(1,2),(2,3),(1,3)} on set A={1,2,3} is transitive.

	Equivalence Relation: A relation is an Equivalence Relation if it is reflexive, symmetric, and transitive. i.e. relation R={(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2),(1,3),(3,1)} on set A={1,2,3} is equivalence relation as it is reflexive, symmetric, and transitive.

	Asymmetric relation: Asymmetric relation is opposite of symmetric relation. A relation R on a set A is called asymmetric if no (b,a) € R when (a,b) € R.




Important Points:

1. Symmetric and anti-symmetric relations are not opposite because a relation R can contain both the properties or may not.

2. A relation is asymmetric if and only if it is both anti-symmetric and irreflexive.

3. Number of different relation from a set with n elements to a set with m elements is 2mn

Ex: 
     if R ={r1,r2,r3......rn} and S ={s1,s2,s3.....sm} 
     then Cartesian product of R and S is:
      R X S = {(r1,s1), (r1,s2), (r1,s3).........,(r1,sn), 
               (r2,s1),(r2,s2),(r2,s3)..........,(r2,sn),
                ................. 
               (rn,s1),(rn,s2),(rn,s3),.........,(rn,sn)}
This set of ordered pairs contains mn pairs. 
Now these pairs can be present in R X S or can be absent. 
So total number of possible relation = 2mn


4. Number of Reflexive Relations on a set with n elements : 2n(n-1).

A relation has ordered pairs (a,b). Now a can be chosen in n ways and same for b. So set of ordered pairs contains n2 pairs.  Now for a reflexive relation, (a,a) must be present in these ordered pairs. And there will be total n pairs of (a,a), so number of ordered pairs will be n2-n pairs.  So total number of reflexive relations is equal to 2n(n-1).

5. Number of Symmetric Relations on a set with n elements : 2n(n+1)/2.



        
          
          
          
        

            
A relation has ordered pairs (a,b). Now for a symmetric relation, if (a,b) is present in R, then (b,a) must be present in R.

In Matrix form, if a12 is present in relation, then a21 is also present in relation and As we know reflexive relation is part of symmetric relation.

So from total n2 pairs, only n(n+1)/2 pairs will be chosen for symmetric relation. So total number of symmetric relation will be 2n(n+1)/2.

6. Number of Anti-Symmetric Relations on a set with n elements: 2n 3n(n-1)/2.

A relation has ordered pairs (a,b). For anti-symmetric relation, if (a,b) and (b,a) is present in relation R, then a = b.(That means a is in relation with itself for any a).

So for (a,a), total number of ordered pairs = n and total number of relation = 2n.

if (a,b) and (b,a) both are not present in relation or Either (a,b) or (b,a) is not present in relation. So there are three possibilities and total number of ordered pairs for this condition is n(n-1)/2. (selecting a pair is same as selecting the two numbers from n without repetition) As we have to find number of ordered pairs where a ≠ b. it is like opposite of symmetric relation means total number of ordered pairs = (n2) – symmetric ordered pairs(n(n+1)/2) = n(n-1)/2. So, total number of relation is 3n(n-1)/2. So total number of anti-symmetric relation is 2n.3n(n-1)/2.

7. Number of Asymmetric Relations on a set with n elements : 3n(n-1)/2.

In Asymmetric Relations, element a can not be in relation with itself. (i.e. there is no aRa ∀ a∈A relation.) And Then it is same as Anti-Symmetric Relations.(i.e. you have three choice for pairs (a,b) (b,a)). Therefore there are 3n(n-1)/2 Asymmetric Relations possible.

8. Irreflexive Relations on a set with n elements : 2n(n-1).

A relation has ordered pairs (a,b). For Irreflexive relation, no (a,a) holds for every element a in R. It is also opposite of reflexive relation.

Now for a Irreflexive relation, (a,a) must not be present in these ordered pairs means total n pairs of (a,a) is not present in R, So number of ordered pairs will be n2-n pairs.

So total number of reflexive relations is equal to 2n(n-1).

9. Reflexive and symmetric Relations on a set with n elements : 2n(n-1)/2.

A relation has ordered pairs (a,b). Reflexive and symmetric Relations means (a,a) is included in R and (a,b)(b,a) pairs can be included or not. (In Symmetric relation for pair (a,b)(b,a) (considered as a pair). whether it is included in relation or not) So total number of Reflexive and symmetric Relations is 2n(n-1)/2 .
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						Graph Theory Basics – Set 2

				
						

				
			Prerequisite – Graph Theory Basics – Set 1

A graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense “related”. The objects of the graph correspond to vertices and the relations between them correspond to edges. A graph is depicted diagrammatically as a set of dots depicting vertices connected by lines or curves depicting edges.

Formally,

“A graph [image: G = (V, E)] consists of [image: V], a non-empty set of vertices (or nodes) and [image: E], a set of edges. Each edge has either one or two vertices associated with it, called its endpoints.”

Types of graph :There are several types of graphs distinguished on the basis of edges, their direction, their weight etc.

1. Simple graph – A graph in which each edge connects two different vertices and where no two edges connect the same pair of vertices is called a simple graph. For example, Consider the following graph –

[image: ]

The above graph is a simple graph, since no vertex has a self-loop and no two vertices have more than one edge connecting them.

The edges are denoted by the vertices that they connect- [image: \{A,B\}] is the edge connecting vertices [image: A] and [image: B].

2. Multigraph – A graph in which multiple edges may connect the same pair of vertices is called a multigraph.

Since there can be multiple edges between the same pair of vertices, the multiplicity of edge tells the number of edges between two vertices.

[image: ]

The above graph is a multigraph since there are multiple edges between [image: B] and [image: C]. The multiplicity of the edge [image: \{B, C\}] is 2.



        
          
          
          
        

            
In some graphs, unlike the one’s shown above, the edges are directed. This means that the relation between the objects is one-way only and not two-way. The direction of the edges may be important in some applications. 

Based on whether the edges are directed or not we can have directed graphs and undirected graphs. This property can be extended to simple graphs and multigraphs to get simple directed or undirected simple graphs and directed or undirected multigraphs. 

Basic graph Terminology :

In the above discussion some terms regarding graphs have already been explained such as vertices, edges, directed and undirected edges etc. There are more terms which describe properties of vertices and edges.


	Adjacency – In a graph [image: G] two vertices [image: u] and [image: v] are said to be adjacent if they are the endpoints of an edge. The edge [image: \{u, v\} -  e] is said to be incident with the vertices.

In case the edge is directed, [image: u] is said to be adjacent to [image: v] and [image: v] is said to be adjacent from [image: u]. Here, [image: u] is said to be the intitial vertex and [image: v] is said to the terminal vertex.


	Degree – The degree of a vertex is the number of edges incident with it, except the self-loop which contributes twice to the degree of the vertex. Degree of a vertex [image: u] is denoted as [image: deg(u)].

In case of directed graphs, the degree is further classified as in-degree and out-degree. The in-degree of a vertex is the number of edges with the given vertex as the terminal vertex. The out-degree of a vertex is the number of edges with the given vertex as the initial vertex. In-degree is denoted as [image: deg^-(u)] and out-degree is denoted as [image: deg^+(u)].

For example in the directed graph shown above depicting flights between cities, the in-degree of the vertex “Delhi” is 3 and its out-degree is also 3.




Note: If a vertex has zero degree, it is called isolated. If the degree is one then it’s called pendant.

Handshaking Theorem :

What would one get if the degrees of all the vertices of a graph are added. In case of an undirected graph, each edge contributes twice, once for its initial vertex and second for its terminal vertex. So the sum of degrees is equal to twice the number of edges. This fact is stated in the Handshaking Theorem.

Let [image: G = (V, E)] be an undirected graph with [image: e] edges. Then
[image: 2e = \sum_{u\in V} deg(u)]

In case G is a directed graph,
[image: \sum_{u\in V} deg^-(u) = \sum_{u\in V} deg^+(u) = |E|]


The handshaking theorem, for undirected graphs, has an interesting result –

An undirected graph has an even number of vertices of odd degree.


Proof : Let [image: V_{1}] and [image: V_{2}] be the sets of vertices of even and odd degrees respectively.

We know by the handshaking theorem that,

[image: 2e = \sum_{u\in V} deg(u)]

So,

[image: 2e = \sum_{u\in V} deg(u) = \sum_{u\in V_{1}} deg(u) + \sum_{u\in V_{2}} deg(u)]

The sum of degrees of vertices with even degrees is even. The LHS is also even, which means that the sum of degrees of vertices with odd degrees must be even.

Thus, the number of vertices with odd degree is even.

Some special Simple Graphs :

1. Complete Graphs – A simple graph of [image: n] vertices having exactly one edge between each pair of vertices is called a complete graph. A complete graph of [image: n] vertices is denoted by [image: K_{n}]. Total number of edges are n*(n-1)/2 with n vertices in complete graph.

[image: Complete Graphs, K2, K3.. to K7]

2. Cycles – Cycles are simple graphs with vertices [image: n \geq 3] and edges [image: \{1, 2\},\: \{2, 3\}...\: \{n-1, n\}\: and\: \{n, 1\}]. Cycle with [image: n] vertices is denoted as [image: C_{n}]. Total number of edges are n with n vertices in cycle graph.

[image: Cycles- C4, C5, C6 and C7]

3. Wheels – A wheel is just like a cycle, with one additional vertex which is connected to every other vertex. Wheels of [image: n] vertices with 1 addition vertex are denoted by [image: W_{n}]. Total number of edges are 2*(n-1) with n vertices in wheel graph.

[image: Wheels- W4, W5, W6 and W7]

4. Hypercube – The Hypercube or n-cube is a graph with [image: 2^n] vertices each represented by a n-bit string. The vertices which differ by at most 1-bit are connected by edges. A hypercube of [image: n] vertices is denoted by [image: Q_{n}]. Total number of edges are n*[image: 2^{n-1}] with [image: 2^n] vertices in cube graph.

[image: ]

5. Bipartite Graphs – A simple graph [image: G] is said to be bipartite if its vertex set [image: V] can be divided into two disjoint sets such that every edge in [image: G] has its initial vertex in the first set and the terminal vertex in the second set. Total number of edges are (n*m) with (n+m) vertices in bipartite graph.

[image: Bipartite Graph example]

Theorem – A simple graph is bipartite if and only if it is possible to assign one of two

different colors to each vertex of the graph so that no two adjacent are assigned the

same color.

A bipartite graph with [image: m] and [image: n] vertices in its two disjoint subsets is said to be complete if there is an edge from every vertex in the first set to every vertex in the second set, for a total of [image: mn] edges. A complete bipartite graph with [image: m] vertices in the first set and [image: n] vertices in the second set is denoted as [image: K_{m,n}].

[image: ]

GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.

1. GATE CS 2013, Question 25

2. GATE CS 2014 Set-1, Question 61

3. GATE CS 2006, Question 71

4. GATE CS 2002, Question 25
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6. GATE CS 2014 Set-2, Question 13
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						Representations of Matrices and Graphs in Relations

				
						

				
			Previously, we have already discussed Relations and their basic types.

Combining Relation:

Suppose R is a relation from set A to B and S is a relation from set B to C, the combination of both the relations is the relation which consists of ordered pairs (a,c) where a Є A and c Є C and there exist an element b Є B for which (a,b) Є R and (b,c) Є S. This is represented as RoS.



Inverse Relation:

A relation R is defined as (a,b) Є R from set A to set B, then the inverse relation is defined as (b,a) Є R from set B to set A. Inverse Relation is represented as R-1

R-1 = {(b,a) | (a,b) Є R}.



Complementary Relation:

Let R be a relation from set A to B, then the complementary Relation is defined as- {(a,b) } where (a,b) is not Є R.



Represenation of Relations:

Relations can be represented as- Matrices and Directed graphs.



Relation as Matrices:

A relation R is defined as from set A to set B,then the matrix representation of relation is MR= [mij] where

mij = { 1, if (a,b) Є R

           0, if (a,b) Є R }



Properties:


	A relation R is reflexive if the matrix diagonal elements are 1.

[image: {\displaystyle \begin{bmatrix}  1&  &  & \\   &  1&  & \\   &  & 1 & \\   &  &  & 1 \end{bmatrix}}]



	A relation R is irreflexive if the matrix diagonal elements are 0.

	A relation R is symmetric if the transpose of relation matrix is equal to its original relation matrix. i.e. MR = (MR)T.

[image: {\displaystyle \begin{bmatrix}  ..& 1 &  & \\   1&  ..&0  & \\   &  0& .. &1 \\   &  & 0 & .. \end{bmatrix}}]


        
          
          
          
        

            


	A relation R is antisymmetric if either mij = 0 or mji =0 when i≠j.

	A relation follows join property i.e. the join of matrix M1 and M2 is M1 V M2 which is represented as R1 U R2 in terms of relation.

	A relation follows meet property i.r. the meet of matrix M1 and M2 is M1 ^ M2 which is represented as R1 Λ R2 in terms of relation.



Relations as Directed graphs:

A directed graph consists of nodes or vertices connected by directed edges or arcs. Let R is relation from set A to set B defined as (a,b) Є R, then in directed graph-it is represented as edge(an arrow from a to b) between (a,b).



Properties:


	A relation R is reflexive if there is loop at every node of directed graph.

	A relation R is irreflexive if there is no loop at any node of directed graphs.

	A relation R is symmetric if for every edge between distinct nodes, an edge is always present in opposite direction.

	A relation R is asymmetric if there are never two edges in opposite direction between distinct nodes.

	A relation R is transitive if there is an edge from a to b and b to c, then there is always an edge from a to c.



Example:

The directed graph of relation R = {(a,a),(a,b),(b,b),(b,c),(c,c),(c,b),(c,a)} is represented as :

[image: ]

Since, there is loop at every node,it is reflexive but it is neither symmetric nor antisymmetric as there is an edge from a to b but no opposite edge from b to a and also directed edge from b to c in both directions. R is not transitive as there is an edge from a to b and b to c but no edge from a to c.
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						Closure of Relations and Equivalence Relations

				
						

				
			Prerequisite : Introduction to Relations, Representation of Relations 

Combining Relations :

As we know that relations are just sets of ordered pairs, so all set operations apply to them as well. Two relations can be combined in several ways such as –


	Union – [image: R_{1} \cup R_{2}] consists of all ordered pairs from both relations. Duplicate ordered pairs removed from Union. 

	 Intersection – [image: R_{1} \cap R_{2}] consists of ordered pairs which are in both relations.

	 Difference – [image: R_{1} - R_{2}] consists of all ordered pairs only in [image: R_{1}], but not in [image: R_{2}].

	 Symmetric Difference – [image: R_{1} \oplus R_{2}] consists of all ordered pairs which are either  in [image: R_{1}] or [image: R_{2}] but not both.



There is another way two relations can be combined that is analogous to the composition of functions.

Composition – Let [image: R] be a relation from [image: A] to [image: B] and [image: S] be a relation from [image: B] to [image: C], then the composite of [image: R] and [image: S], denoted by [image: S\circ R], is the relation consisting of ordered pairs [image: (a,c)] where [image: a \in A, c \in C] and for which there exists an element [image: b \in B] such that [image: (a, b) \in R] and [image: (b, c) \in S].



        
          
          
          
        

            

	Example – What is the composite of the relations [image: R] and [image: S] where [image: R] is a relation from [image: \{1, 2, 3\}] to [image: \{1, 2, 3, 4\}] with [image: R = \{(1,1), (1,4), (2,3), (3,1), (3,4)\}] and [image: S] is a relation from [image: \{1, 2, 3, 4\}] to [image: \{0, 1, 2\}] with [image: S = \{(1,0), (2,0), (3,1), (3,2), (4,1)\}]?


	
Solution – By computing all ordered pairs where the first element belongs to [image: R] and the second element belongs to [image: S], we get –

[image: S\circ R = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}]




Composition of Relation on itself :

A relation can be composed with itself to obtain a degree of separation between the elements of the set on which [image: R] is defined.

Let [image: R] be a relation on the set [image: A].
The powers [image: R^n] where [image: n = 1, 2,....,] are defined recursively by -
[image: R^1 = R] and [image: R^{n+1} = R^n \circ R].


Theorem – Let [image: R] be a relation on set A, represented by a di-graph. There is a path of length [image: n], where [image: n] is a positive integer, from [image: a] to [image: b] if and only if [image: (a,b) \in R^n].

Important Note : A relation [image: R] on set [image: A] is transitive if and only if [image: R^n \subset R] for [image: n = 1, 2, 3,....]

Closure of Relations :

 Consider a relation [image: R] on set [image: A]. [image: R] may or may not have a property [image: P], such as reflexivity, symmetry, or transitivity.

If there is a relation [image: S] with property [image: P] containing [image: R] such that [image: S] is the subset
of every relation with property [image: P] containing [image: R], then [image: S] is called the closure of
[image: R] with respect to [image: P].


We can obtain closures of relations with respect to property [image: P] in the following ways –


	 Reflexive Closure – [image: \Delta = \{(a,a)\:|\:a\in A\}] is the diagonal relation on set [image: A]. The reflexive closure of relation [image: R] on set [image: A] is [image: R\cup \Delta].

	 Symmetric Closure – Let [image: R] be a relation on set [image: A], and let [image: R^{-1}] be the inverse of [image: R]. The symmetric closure of relation [image: R] on set [image: A] is [image: R\cup R^{-1}].

	 Transitive Closure – Let [image: R] be a relation on set [image: A]. The connectivity relation is defined as – [image: R^* = \bigcup\limits_{n=1}^{\infty} R^n]. The transitive closure of [image: R] is [image: R^*].



Example – Let [image: R] be  a relation on set [image: \{1, 2, 3, 4\}] with [image: R = \{(1,1), (1,4), (2,3), (3,1), (3,4)\}]. Find the reflexive, symmetric, and transitive closure of R.

Solution –

For the given set, [image: \Delta = \{(1, 1), (2, 2), (3, 3), (4, 4)\}]. So the reflexive closure of [image: R] is [image: R \cup \Delta = \{(1,1), (1,4), (2,2), (2,3), (3,1), (3,3),  (3,4), (4,4)\}]

For the symmetric closure we need the inverse of [image: R], which is

[image: R^{-1} = \{(1,1), (1,3), (3,2), (4,1), (4,3)\}].

The symmetric closure of [image: R] is-

[image: \{(1,1), (1,3), (1,4), (2,3), (3,1), (3,2), (3,4), (4,1), (4,3)\}]

For the transitive closure, we need to find [image: R^*].

[image: \therefore] we need to find [image: R^1, R^2, ... ,] until [image: R^{n} = R^{n-1}]. We stop when this condition is achieved since finding higher powers of [image: R] would be the same.

[image: R^{1} = \{(1,1), (1,4), (2,3), (3,1), (3,4)\}]

[image: R^{2} = \{(1,1), (1,4), (2,1), (2,4), (3,1), (3,4)\}]

[image: R^{3} = \{(1,1), (1,4), (2,1), (2,4), (3,1), (3,4)\}]

Since, [image: R^{2} = R^{3}] we stop the process.

Transitive closure, [image: R^* = R^1 \cup R^2] –

[image: \{(1,1), (1,4), (2,1), (2,3), (2,4), (3,1), (3,4)\}]

Equivalence Relations :

Let [image: R] be a relation on set [image: A]. If [image: R] is reflexive, symmetric, and transitive then it is said to be a equivalence relation.

Consequently, two elements [image: a] and [image: b] related by an equivalence relation are said to be equivalent. 

Example – Show that the relation

[image: R = \{(a,b)\:|\: a\equiv b (mod\:m)\}] is an equivalence relation. [image: a\equiv b (mod\:m)] is the congruence modulo [image: m] function. It is true if and only if [image: m] divides [image: a-b].

Solution – To show that the relation is an equivalence relation we must prove that the relation is reflexive, symmetric and transitive.


	 Reflexive – For any element [image: a], [image: a - a = 0] is divisible by [image: m].

[image: \therefore a \equiv a (mod\:m)]. So, congruence modulo [image: m] is reflexive.

	 Symmetric – For any two elements [image: a] and [image: b], if [image: (a,b)\in R] or [image: a\equiv b (mod\:m)] i.e. [image: a - b] is divisible by [image: m], then [image: b - a] is also divisible by [image: m].

[image: \therefore b\equiv a (mod\:m)]. So Congruence Modulo [image: m] is symmetric.

	 Transitive – For any three elements [image: a], [image: b], and [image: c] if [image: (a,b), (b,c) \in R] then-

[image: (a-b) mod\:m = 0]

[image: (b-c) mod\:m = 0]

Adding both equations,

      [image:  \begin{flalign*} &\Rightarrow (a-b) mod\:m + (b-c) mod\:m = 0\\ &\Rightarrow (a-b+b-c) mod\:m = 0\\ &\Rightarrow (a-c) mod\:m = 0 \end{flalign} ]

[image: \therefore a \equiv c (mod\:m)]. So, [image: R] is transitive.


Since the relation [image: R] is reflexive, symmetric, and transitive, we conclude that [image: R] is an equivalence relation.

Equivalence Classes :

Let [image: R] be an equivalence relation on set [image: A].

We know that if [image: (a,b) \in R] then [image: a] and [image: b] are said to be equivalent with respect to [image: R].

The set of all elements that are related to an element [image: a] of [image: A] is called the
equivalence class of [image: a]. It is denoted by [image: [a]_{R}] or simply [image: [a]] if there is only one
relation to consider.
Formally,
[image: [a]_{R} = \{s\: |\: (a,s) \in R\}]


Any element [image: b \in [a]_{R}] is said to be the representative of [image: [a]_{R}].

Important Note : All the equivalence classes of a Relation [image: R] on set [image: A] are either equal or disjoint and their union gives the set [image: A].

[image: \bigcup[a]_{R} = A]

The equivalence classes are also called partitions since they are disjoint and their union gives the set on which the relation is defined


	Example : What are the equivalence classes of the relation Congruence Modulo [image: m]?


	Solution : Let [image: a] and [image: b] be two numbers such that [image: a \equiv b\:(mod\:m)]. This means that the remainder obtained by dividing [image: a] and [image: b] with [image: m] is the same.

Possible values for the remainder- [image: 0, 1, 2, ..., m-1]

Therefore, there are [image: m] equivalence classes – [image: [0]_{m}, [1]_{m}, ...,[m-1]_{m}]

[image: [0]_{m} = \{...,-2m, -m, 0, m, 2m,..., \}]

[image: [1]_{m} = \{...,-2m + 1, -m + 1, 1, m + 1, 2m + 1,..., \}]

[image: .]

[image: .]

[image: [m-1]_{m} = \{...,-2m - 1, -m - 1 , m - 1, 2m - 1,..., \}]




GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.

1. GATE CS 2013, Question 1

2. GATE CS 2005, Question 42

3. GATE CS 2001, Question 2

4. GATE CS 2000, Question 28
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						Algebraic Structure

				
						

				
			Algebraic Structure

A non empty set S is called an algebraic structure w.r.t binary operation (*) if (a*b) belongs to S for all (a*b) belongs to S, i.e (*) is closure operation on ‘S’.

Ex : S = {1,-1} is algebraic structure under *

As 1*1 = 1, 1*-1 = -1, -1*-1 = 1 all results belongs to S.

But above is not algebraic structure under + as 1+(-1) = 0 not belongs to S.

Semi Group

An algebraic structure (S,*) is called a semigroup if a*(b*c)=(a*b)*c for all a,b,c belongs to S or elements follow associative property under * .



        
          
          
          
        

            
Ex : (Set of integers, +), and (Matrix ,*) are examples of semigroup.

Monoid

A Semigroup (S,*) is called a monoid if there exists an element e in S such that (a*e) = (e*a) = a for all a in S. This element is called identity element of S w.r.t *.

Ex : (Set of integers,*) is Monoid as 1 is an integer which is also identity element .

(Set of natural numbers, +) is not Monoid as there doesn’t exists any identity element. But this is Semigroup.

But (Set of whole numbers, +) is Monoid with 0 as identity element.

Group

A monoid (S,*) is called Group if to each element there exists an element b such that (a*b) = (b*a) = e . Here e is called identity element an b is called inverse of the corresponding element.

(Set of rational number , *) is not Group because there doesn’t exists inverse for 0 Thus for a Group:

It should be

1) Algebric Structure

2) Semigroup

3) Moniod

4) have inverse.

 

Abelian Group

A group (G,*) is said to be abelian if (a*b) = (b*a) for all a,b belongs to G. Thus Commutative property should hold.

This article is contributed by Abhishek Kumar.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
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						The Pigeonhole Principle

				
						

				
			Suppose that a flock of 20 pigeons flies into a set of 19 pigeonholes to roost. Because there are 20 pigeons but only 19 pigeonholes, a least one of these 19 pigeonholes must have at least two

pigeons in it. To see why this is true, note that if each pigeonhole had at most one pigeon in it, at most 19 pigeons, one per hole, could be accommodated. This illustrates a general principle called the pigeonhole principle, which states that if there are more pigeons than pigeonholes, then there must be at least one pigeonhole with at least two pigeons in it.

[image: ]

 

Theorem –

I) If “A” is the average number of pigeons per hole, where A is not an integer then


	At least one pigeon hole contains ceil[A] (smallest integer greater than or equal to A) pigeons

	Remaining pigeon holes contains at most floor[A] (largest integer less than or equal to A) pigeons



Or



        
          
          
          
        

            
II) We can say as, if n + 1 objects are put into n boxes, then at least one box contains two or more objects.

    The abstract formulation of the principle: Let X and Y be finite sets and let f: X –> Y be a function.


	If X has more elements than Y, then f is not one-to-one.

	If X and Y have the same number of elements and f is onto, then f is one-to-one.

	If X and Y have the same number of elements and f is one-to-one, then f is onto.



Pigeonhole principle is one of the simplest but most useful ideas in mathematics. We will see more applications that proof of this theorem.


	Example – 1: If (Kn+1) pigeons are kept in n pigeon holes where K is a positive integer, what is the average no. of pigeons per pigeon hole?
Solution: average number of pigeons per hole = (Kn+1)/n

= K + 1/n

Therefore at least a pigeonholes contains (K+1) pigeons i.e., ceil[K +1/n] and remaining contain at most K i.e., floor[k+1/n] pigeons.

i.e., the minimum number of pigeons required to ensure that at least one pigeon hole contains (K+1) pigeons is (Kn+1).


	Example – 2: A bag contains 10 red marbles, 10 white marbles, and 10 blue marbles. What is the minimum no. of marbles you have to choose randomly from the bag to ensure that we get 4 marbles of same color?
Solution: Apply pigeonhole principle.

No. of colors (pigeonholes) n = 3

No. of marbles (pigeons) K+1 = 4

Therefore the minimum no. of marbles required = Kn+1

By simplifying we get Kn+1 = 10.

Verification: ceil[Average] is [Kn+1/n] = 4

[Kn+1/3] = 4

Kn+1 = 10

i.e., 3 red + 3 white + 3 blue + 1(red or white or blue) = 10





Pigeonhole principle strong form –

Theorem: Let q1, q2, . . . , qn be positive integers.

If q1+ q2+ . . . + qn − n + 1 objects are put into n boxes, then either the 1st box contains at least q1 objects, or the 2nd box contains at least q2 objects, . . ., the nth box contains at least qn objects.

 

Application of this theorem is more important, so let us see how we apply this theorem in problem solving.


	Example – 1: In a computer science department, a student club can be formed with either 10 members from first year or 8 members from second year or 6 from third year or 4 from final year. What is the minimum no. of students we have to choose randomly from department to ensure that a student club is formed?
Solution: we can directly apply from the above formula where,

q1 =10, q2 =8, q3 =6, q4 =4 and n=4

Therefore the minimum number of students required to ensure department club to be formed is

10 + 8 + 6 + 4 – 4 + 1 = 25


	Example – 2: A box contains 6 red, 8 green, 10 blue, 12 yellow and 15 white balls. What is the minimum no. of balls we have to choose randomly from the box to ensure that we get 9 balls of same color?
Solution: Here in this we cannot blindly apply pigeon principle. First we will see what happens if we apply above formula directly.

From the above formula we have get answer 47 because 6 + 8 + 10 + 12 + 15- 5 + 1 = 47

But it is not correct. In order to get the correct answer we need to include only blue, yellow and white balls because red and green balls are less than 9. But we are picking randomly so we include after we apply pigeon principle.

i.e., 9 blue + 9 yellow + 9 white – 3 + 1 = 25

Since we are picking randomly so we can get all the red and green balls before the above 25 balls. Therefore we add 6 red + 8 green + 25 = 39

We can conclude that in order to pick 9 balls of same color randomly, one has to pick 39 balls from a box.




 

References:

http://www2.fiit.stuba.sk/~kvasnicka/Mathematics%20for%20Informatics/Rosen_Discrete_Mathematics_and_Its_Applications_7th_Edition.pdf
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Mathematical Logic | Propositional Logic



						Introduction to Propositional Logic | Set 1

				
						

				
			What is Logic?

Logic is the basis of all mathematical reasoning, and of all automated reasoning. The rules of logic specify the meaning of mathematical statements. These rules help us understand and reason with statements such as – 

[image:  \exists x ] such that [image:  x\neq a^2 + b^2, ] where [image:  \:x,a,b\in Z ]


Which in Simple English means “There exists an integer that is not the sum of two squares”.

Importance of Mathematical Logic

The rules of logic give precise meaning to mathematical statements. These rules are used to distinguish between valid and invalid mathematical arguments.

Apart from its importance in understanding mathematical reasoning, logic has numerous applications in Computer Science, varying from design of digital circuits, to the construction of computer programs and verification of correctness of programs.

Propositional Logic

What is a proposition?

A proposition is the basic building block of logic. It is defined as a declarative sentence that is either True or False, but not both.

The Truth Value of a proposition is True(denoted as T) if it is a true statement, and False(denoted as F) if it is a false statement.

For Example,



        
          
          
          
        

            
1. The sun rises in the East and sets in the West.
2. 1 + 1 = 2
3. 'b' is a vowel.


All of the above sentences are propositions, where the first two are Valid(True) and the third one is Invalid(False).

Some sentences that do not have a truth value or may have more than one truth value are not propositions.

For Example,

1. What time is it?
2. Go out and play.
3. x + 1 = 2.


The above sentences are not propositions as the first two do not have a truth value, and the third one may be true or false.

To represent propositions, propositional variables are used. By Convention, these variables are represented by small alphabets such as [image: p,\:q,\:r,\:s].

The area of logic which deals with propositions is called propositional calculus or propositional logic.

It also includes producing new propositions using existing ones. Propositions constructed using one or more propositions are called compound propositions. The propositions are combined together using Logical Connectives or Logical Operators.

Truth Table

Since we need to know the truth value of a proposition in all possible scenarios, we consider all the possible combinations of the propositions which are joined together by Logical Connectives to form the given compound proposition. This compilation of all possible scenarios in a tabular format is called a truth table.

Most Common Logical Connectives-

1. Negation – If [image: p] is a proposition, then the negation of [image: p] is denoted by [image: \neg p], which when translated to simple English means-

“It is not the case that [image: p]” or simply “not [image: p]“.

The truth value of [image: \neg p] is the opposite of the truth value of [image: p].

The truth table of [image: \neg p] is-

[image:  \begin{tabular}{ |c|c| }      \hline     p & \neg p \\     \hline     \hline     T & F \\     \hline     F & T \\       \hline \end{tabular} ]


Example,

The negation of “It is raining today”, is “It is not the case that is raining today” or simply “It is not raining today”.

2. Conjunction –  For any two propositions [image: p] and [image: q], their conjunction is denoted by [image: p\wedge q], which means “[image: p] and [image: q]“. The conjuction [image: p\wedge q] is True when both [image: p] and [image: q] are True, otherwise False.

The truth table of [image: p\wedge q] is-

[image:  \begin{tabular}{ |c|c|c| }      \hline     p & q & p\wedge q\\     \hline     \hline     T & T & T\\     \hline     T & F & F\\     \hline     F & T & F\\     \hline     F & F & F\\     \hline     \end{tabular} ]


Example,

The conjunction of the propositions [image: p] – “Today is Friday” and [image: q] – “It is raining today”, [image: p\wedge q] is “Today is Friday and it is raining today”. This proposition is true only on rainy Fridays and is false on any other rainy day or on Fridays when it does not rain.

3. Disjunction –  For any two propositions [image: p] and [image: q], their disjunction is denoted by [image: p\vee q], which means “[image: p] or [image: q]“. The disjuction [image: p\vee q] is True when either [image: p] or [image: q] is True, otherwise False.

The truth table of [image: p\vee q] is-

[image:  \begin{tabular}{ |c|c|c| }      \hline     p & q & p\vee q\\     \hline     \hline     T & T & T\\     \hline     T & F & T\\     \hline     F & T & T\\     \hline     F & F & F\\     \hline     \end{tabular} ]


Example,

The disjunction of the propositions [image: p] – “Today is Friday” and [image: q] – “It is raining today”, [image: p\vee q] is “Today is Friday or it is raining today”. This proposition is true on any day that is a Friday or a rainy day(including rainy Fridays) and is false on any day other than Friday when it also does not rain.

4. Exclusive Or –  For any two propositions [image: p] and [image: q], their exclusive or is denoted by [image: p\oplus q], which means “either [image: p] or [image: q] but not both”. The exclusive or [image: p\oplus q] is True when either [image: p] or [image: q] is True, and False when both are true or both are false.

The truth table of [image: p\oplus q] is-

[image:  \begin{tabular}{ |c|c|c| }      \hline     p & q & p\oplus q\\     \hline     \hline     T & T & F\\     \hline     T & F & T\\     \hline     F & T & T\\     \hline     F & F & F\\     \hline     \end{tabular} ]


Example,

The exclusive or of the propositions [image: p] – “Today is Friday” and [image: q] – “It is raining today”, [image: p\oplus q] is “Either today is Friday or it is raining today, but not both”. This proposition is true on any day that is a Friday or a rainy day(not including rainy Fridays) and is false on any day other than Friday when it does not rain or rainy Fridays.

5. Implication –  For any two propositions [image: p] and [image: q], the statement “if [image: p] then [image: q]” is called an implication and it is denoted by [image: p\rightarrow q].

In the implication [image: p\rightarrow q], [image: p] is called the hypothesis or antecedent or premise and [image: q] is called the conclusion or consequence.

The implication is [image: p\rightarrow q] is also called a conditional statement.

The implication is false when [image: p] is true and [image: q] is false otherwise it is true. The truth table of [image: p\rightarrow q] is-

[image:  \begin{tabular}{ |c|c|c| }      \hline     p & q & p\rightarrow q\\     \hline     \hline     T & T & T\\     \hline     T & F & F\\     \hline     F & T & T\\     \hline     F & F & T\\     \hline     \end{tabular} ]


You might wonder that why is [image: p\rightarrow q] true when [image: p] is false. This is because the implication guarantees that when [image: p] and [image: q] are true then the implication is true. But the implication does not guarantee anything when the premise [image: p] is false. There is no way of knowing whether or not the implication is false since [image: p] did not happen.

This situation is similar to the “Innocent until proven Guilty” stance, which means that the implication [image: p\rightarrow q] is considered true until proven false. Since we cannot call the implication [image: p\rightarrow q] false when [image: p] is false, our only alternative is to call it true.

This follows from the Explosion Principle which says-

“A False statement implies anything”

Conditional statements play a very important role in mathematical reasoning, thus a variety of terminology is used to express [image: p\rightarrow q], some of which are listed below.

"if [image: p], then [image: q]"
"[image: p] is sufficient for [image: q]"
"[image: q] when [image: p]"
"a necessary condition for [image: p] is [image: q]"
"[image: p] only if [image: q]"
"[image: q] unless [image: \neg p]"
"[image: q] follows from [image: p]"


Example,

“If it is Friday then it is raining today” is a proposition which is of the form [image: p\rightarrow q]. The above proposition is true if it is not Friday(premise is false) or if it is Friday and it is raining, and it is false when it is Friday but it is not raining.

6. Biconditional or Double Implication –  For any two propositions [image: p] and [image: q], the statement “[image: p] if and only if(iff) [image: q]” is called a biconditional and it is denoted by [image: p\leftrightarrow q].

The statement [image: p\leftrightarrow q] is also called a bi-implication.

[image: p\leftrightarrow q] has the same truth value as [image: (p\rightarrow q) \wedge (q\rightarrow p)]

The implication is true when [image: p] and [image: q] have same truth values, and is false otherwise. The truth table of [image: p\leftrightarrow q] is-

[image:  \begin{tabular}{ |c|c|c| }      \hline     p & q & p\leftrightarrow q\\     \hline     \hline     T & T & T\\     \hline     T & F & F\\     \hline     F & T & F\\     \hline     F & F & T\\     \hline     \end{tabular} ]


Some other common ways of expressing [image: p\leftrightarrow q] are-

"[image: p] is necessary and sufficient for [image: q]"
"if [image: p] then [image: q], and conversely"
"[image: p] iff [image: q]"


Example,

“It is raining today if and only if it is Friday today.” is a proposition which is of the form [image: p\leftrightarrow q]. The above proposition is true if it is not Friday and it is not raining or if it is Friday and it is raining, and it is false when it is not Friday or it is not raining.

Exercise:

1) Consider the following statements:

  P: Good mobile phones are not cheap.
  Q: Cheap mobile phones are not good.
  L: P implies Q
  M: Q implies P<>
  N: P is equivalent to Q

Which one of the following about L, M, and N is CORRECT?(Gate 2014)

(A) Only L is TRUE.

(B) Only M is TRUE.

(C) Only N is TRUE.

(D) L, M and N are TRUE.

For solution, see GATE | GATE-CS-2014-(Set-3) | Question 11

 

2) Which one of the following is not equivalent to p⇔q   (Gate 2015)

[image:  (A)(\neg p \vee q)\wedge(p \vee \neg q )  (B)(\neg p \vee q)\wedge(q \rightarrow p )   (C)(\neg p \wedge q)\vee(p \wedge \neg q )  (D)(\neg p \wedge \neg q)\vee(p \wedge q ) ]

For solution, see GATE | GATE-CS-2015 (Set 1) | Question 65
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						Introduction to Propositional Logic | Set 2

				
						

				
			Prerequisite :  Introduction to Propositional Logic – Set 1

De Morgan’s Law :

In propositional logic and boolean algebra, De Morgan’s laws are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British mathematician. The rules allow the expression of conjunctions and disjunctions purely in terms of each other via negation.

In formal language, the rules are written as –


	[image:  \neg (p\wedge q) \equiv \neg p \vee \neg q ]

	[image:  \neg (p\vee q) \equiv \neg p \wedge \neg q ]



Proof by Truth Table –

[image:   \begin{tabular}{ ||c||c||c||c||c||c||c||c||c||c|| }     \hline     p & q & \neg p & \neg q & p\wedge q & \neg p\vee \neg q & p\vee q & \neg p\wedge \neg q \\     \hline     T & T & F & F & T & F & T & F \\     \hline     T & F & F & T & F & T & T & F \\     \hline     F & T & T & F & F & T & T & F \\     \hline     F & F & T & T & F & T & F & T \\     \hline \end{tabular} ]


Special Conditional Statements :



        
          
          
          
        

            
As we know that we can form new propositions using existing propositions and logical connectives. New conditional statements can be formed starting with a conditional statement [image: p\rightarrow q].

In particular, there are three related conditional statements that occur so often that they have special names. 


	Implication : [image: p\rightarrow q]

	Converse : The converse of the proposition [image: p\rightarrow q] is [image: q\rightarrow p]

	Contrapositive : The contrapositive of the proposition [image: p\rightarrow q] is [image: \neg q\rightarrow \neg p]

	Inverse : The inverse of the proposition [image: p\rightarrow q] is [image: \neg p\rightarrow \neg q]



To summarise,

[image:  \begin{tabular}{ ||c||c|| }      \hline     Statement & If p, then q\\     \hline     \hline     Converse & If q, then p \\     \hline     Contrapositive & If not q, then not p \\       \hline     Inverse & If not p, then not q\\     \hline \end{tabular} ]


Note : It is interesting to note that the truth value of the conditional statement [image: p\rightarrow q] is the same as it’s contrapositive, and the truth value of the Converse of [image: p\rightarrow q] is the same as the truth value of its Inverse.

When two compound propositions always have the same truth value, they are said to be equivalent.

Therefore,


	[image: p\rightarrow q \equiv \neg q\rightarrow \neg p ]

	[image: q\rightarrow p \equiv \neg p\rightarrow \neg q ]



[image:   \begin{tabular}{ ||c||c||c||c||c||c||c||c|| }     \hline     p & q & \neg p & \neg q & p\rightarrow q & \neg q\rightarrow \neg p & q\rightarrow p & \neg p\rightarrow \neg q \\     \hline     T & T & F & F & T & T & T & T \\     \hline     T & F & F & T & F & F & T & T \\     \hline     F & T & T & F & T & T & F & F \\     \hline     F & F & T & T & T & T & T & T \\     \hline \end{tabular} ]


Example :

Implication : If today is Friday, then it is raining.

The given proposition is of the form [image: p\rightarrow q], where [image: p] is “Today is Friday” and [image: q] is “It is raining today”.

Contrapositive, Converse, and Inverse of the given proposition respectively are-


	Converse : If it is raining, then today is Friday

	Contrapositive :If it is not raining, then today is not Friday

	Inverse : If today is not Friday, then it is not raining



Implicit use of Biconditionals :

The last article, part one of this topic, ended with a discussion of bi-conditionals, what it is and its truth table. In Natural Language bi-conditionals are not always explicit. In particular, the iff construction (if and only if) is rarely used in common language. Instead, bi-conditionals are often expressed using “if, then” or an “only if” construction. The other part of the “if and only if” is implicit, i.e. the converse is implied but not stated.

For example consider the following statement,

“If you complete your homework, then you can go out and play”. What is really meant is “You can go out and play if and only if you complete your homework”. This statement is logically equivalent to two statements, “If you complete your homework, then you can go out and play” and “You can go out and play only if you complete your homework”.

Because of this imprecision in Natural Language, an assumption needs to be made whether a conditional statement in natural language includes its converse or not.

Precedence order of Logical Connectives :

Logical connectives are used to construct compound propositions by joining existing propositions. Although parenthesis can be used to specify the order in which the logical operators in the compound proposition need to be applied, there exists a precedence order in Logical Operators.

The precedence Order is-

[image:  \begin{tabular}{ ||c||c|| }     \hline     Operator & Precedence \\     \hline     \hline     \neg & 1 \\     \hline         \wedge & 2 \\     \vee & 3 \\     \hline     \rightarrow & 4 \\     \leftrightarrow & 5 \\     \hline \end{tabular} ]


Here, higher the number lower the precedence.

Translating English Sentences :

As mentioned above in this article, Natural Languages such as English are ambiguous i.e. a statement may have multiple interpretations. Therefore it is important to convert these sentences into mathematical expressions involving propositional variables and logical connectives.

The above process of conversion may take certain reasonable assumptions about the intended meaning of the sentence. Once the sentences are translated into logical expressions they can be analyzed further to determine their truth values. Rules of Inference can then further be used to reason about the expressions.

Example :

“You can access the Intenet from campus only if you are a computer science major or you are not a freshman.”

The above statement could be considered as a single proposition but it would be more useful to break it down into simpler propositions. That would make it easier to analyze its meaning and to reason with it.

The above sentence could be broken down into three propositions,

[image: p] - "You can access the Internet from campus."
[image: q] - "You are a computer science major."
[image: r] - "You are a freshman."


Using logical connectives we can join the above-mentioned propositions to get a logical expression of the given statement.

“only if” is one way to express a conditional statement, (as discussed in Part-1 of this topic in previous Article),

Therefore the logical expression would be –

[image: p\rightarrow (q\vee \neg r)]


GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.

1. GATE CS 2009, Question 24

2. GATE CS 2014 Set-1, Question 63

3. GATE CS 2006, Question 28

4. GATE CS 2002, Question 8

5. GATE CS 2000, Question 30

6. GATE CS 2015 Set-1, Question 24
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						Propositional Equivalences

				
						

				
			Introduction

Two logical expressions are said to be equivalent if they have the same truth value in all cases. Sometimes this fact helps in proving a mathematical result by replacing one expression with another equivalent expression, without changing the truth value of the original compound proposition.

Types of propositions based on Truth values

There are three types of propositions when classified according to their truth values

1. Tautology - A proposition which is always true, is called a tautology.
2. Contradiction - A proposition which is always false, is called a contradiction.
3. Contingency - A proposition that is neither a tautology nor a contradiction is 
                called a contingency.


Example,

1. [image: p \vee \neg p ] is a tautology.
2. [image: p \wedge \neg p ] is a contradiction.
3. [image: p \vee q ] is a contingency.


Definition of Logical Equivalence

Formally,

Two propositions [image: p] and [image: q] are said to be logically equivalent if [image: p \leftrightarrow q] is a Tautology. The notation [image: p\equiv q] is used to denote that [image: p] and [image: q] are logically equivalent.

One way of proving that two propositions are logically equivalent is to use a truth table. The truth table must be identical for all combinations for the given propositions to be equivalent. But this method is not always feasible since the propositions can be increasingly complex both in the number of propositional variables used and size of the expression.

In this case, there needs to be a better way to prove that the two given propositions are logically equivalent. That better way is to construct a mathematical proof which uses already established logical equivalences to construct additional more useful logical equivalences.

Some basic established logical equivalences are tabulated below-

[image:   \begin{tabular}{ ||c||c|| }      \hline     Equivalence & Name of Identity\\     \hline          \hline     p\wedge T \equiv p &  Identity Laws\\     p\vee F \equiv p &  \\     \hline          p\wedge F \equiv F &  Domination Laws\\     p\vee T \equiv T &  \\     \hline          p\wedge p \equiv p &  Idempotent Laws\\     p\vee p \equiv p &  \\     \hline          \neg(\neg p) \equiv p &  Double Negation Law\\     \hline          p\wedge q \equiv q\wedge p &  Commutative Laws\\     p\vee q \equiv q\vee p &  \\     \hline          (p\wedge q) \wedge r\equiv p\wedge (q \wedge r) &  Associative Laws\\     (p\vee q) \vee r\equiv p\vee (q \vee r) &  \\     \hline      p\wedge (q \vee r)\equiv (p\wedge q)\vee (p\wedge r) &  Ditributive Laws\\     p\vee (q \wedge r)\equiv (p\vee q)\wedge (p\vee r) &  \\     \hline          \hline      \neg(p\wedge q) \equiv \neg p \vee \neg q &  De Morgan's Laws\\     \neg(p\vee q) \equiv \neg p \wedge \neg q &  \\     \hline      p\wedge (p \vee q)\equiv p &  Absorption Laws\\     p\vee (p \wedge q)\equiv p &  \\     \hline          p\wedge \neg p \equiv F &  Negation Laws\\     p\vee \neg p \equiv T &  \\     \hline \end{tabular} ]


The above Logical Equivalences used only conjunction, disjunction and negation. Other logical Equivalences using conditionals and bi-conditionals are-



        
          
          
          
        

            
[image:  \begin{tabular}{ ||c|| } \hline p\rightarrow q \equiv \neg p\vee q \\  p\rightarrow q \equiv \neg q\rightarrow \neg p \\ p\wedge q \equiv \neg(q\rightarrow \neg p)\\ (p\rightarrow q)\wedge (p\rightarrow r) \equiv p\rightarrow (q\wedge r)\\ (p\rightarrow r)\wedge (q\rightarrow r) \equiv (p\vee q)\rightarrow r\\ (p\rightarrow q)\vee (p\rightarrow r) \equiv p\rightarrow (q\vee r)\\ (p\rightarrow r)\vee (q\rightarrow r) \equiv (p\wedge q)\rightarrow r\\  \hline \end{tabular} \quad \begin{tabular}{ ||c|| } \hline p\leftrightarrow q \equiv (p\rightarrow q) \wedge (q\rightarrow p) \\ p\leftrightarrow q \equiv \neg p \leftrightarrow \neg q \\ p\leftrightarrow q \equiv (p\wedge q) \vee (\neg p \wedge \neg q) \\ \neg (p\leftrightarrow q) \equiv p\leftrightarrow \neg q\\ \hline \end{tabular} ]


Example,

Show that [image: \neg (p\rightarrow q) \equiv p\wedge \neg q].

Considering LHS,
      [image:  \begin{align*} \neg (p\rightarrow q) &\equiv \neg(\neg p \vee q) && \text Using\:first\:equivalence\:of\:Conditionals\\ &\equiv \neg(\neg p) \wedge \neg q&& \text Using\:De\:Morgan's\:law\\ &\equiv p\wedge \neg q&& \text Using\:Double\:negation\:law \end{align} ]



Another example,

Show that [image: \neg(p\vee (\neg p \wedge q)) \equiv \neg p \wedge \neg q].

Considering LHS,
      [image:  \begin{align*} \neg(p\vee (\neg p \wedge q)) &\equiv \neg p \wedge \neg(\neg p \wedge q) && \text Using\:De\:Morgan's\:law\\ &\equiv\neg p \wedge (\neg(\neg p) \vee \neg q)&& \text Using\:De\:Morgan's\:law\\ &\equiv\neg p \wedge (p \vee \neg q)&& \text Using\:Double\:negation\:law\\ &\equiv(\neg p \wedge p)\vee (\neg p \wedge \neg q)&& \text Using\:Distributive\:law\\ &\equiv F \vee (\neg p \wedge \neg q) && \text Using\:Negation\:Law\\ &\equiv \neg p \wedge \neg q && \text Using\:Identity\:Law \end{align} ]



The above examples could easily be solved using a truth table. But this can only be done for a proposition having a small number of propositional variables. When the number of variables grows the truth table method becomes impractical.

For a proposition having 20 variables, [image: 2^{20}] rows have to be evaluated in the truth table. This may be easy to do with a computer, but even a computer would fail in computing the truth table of a proposition having 1000 variables.

GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.

1. GATE CS 2008, Question 33

2. GATE CS 2014 Set-2, Question 63

3. GATE CS 2006, Question 27

4. GATE CS 2015 Set-3, Question 65
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						Rules of Inference

				
						

				
			Prerequisite: Predicates and Quantifiers Set 2, Propositional Equivalences

Every Theorem in Mathematics, or any subject for that matter, is supported by underlying proofs. These proofs are nothing but a set of arguments that are conclusive evidence of the validity of the theory.

The arguments are chained together using Rules of Inferences to deduce new statements and ultimately prove that the theorem is valid.

Important Definitions :

1. Argument – A sequence of statements, premises, that end with a conclusion.

2. Validity – A deductive argument is said to be valid if and only if it takes a form that makes it impossible for the premises to be true and the conclusion nevertheless to be false.

3. Fallacy – An incorrect reasoning or mistake which leads to invalid arguments.

Structure of an Argument :

As defined, an argument is a sequence of statements called premises which end with a conclusion.



        
          
          
          
        

            
Premises - [image: p_{1},\:p_{2},\:p_{3},..., \:p_{n}]
Conclusion - [image: q]


[image: if(p_{1}\wedge p_{2}\wedge p_{3}\wedge ... \wedge p_{n})\rightarrow q] is a tautology, then the argument is termed valid otherwise termed as invalid. The argument is written as –

[image:  \begin{tabular}{l} First\:Premise\\ Second\:Premise\\ Third\:Premise\\ .\\ .\\ Nth\:Premise\\ \hline \therefore Conclusion \end{tabular} ]


Rules of Inference :

Simple arguments can be used as building blocks to construct more complicated valid arguments. Certain simple arguments that have been established as valid are very important in terms of their usage. These arguments are called Rules of Inference.

The most commonly used Rules of Inference are tabulated below –

[image:   \begin{tabular}{||c||c||c||} \hline Rule of Inference & Tautology & Name\\ \hline  \rule{0pt}{8ex} \shortstack[l]{p \\ p\rightarrow q \\ \rule{1cm}{0.5pt}\\ \therefore q}& (p\wedge (p\rightarrow q)) \rightarrow q & Modus Ponens \\ \hline  \rule{0pt}{8ex} \shortstack[l]{\neg q \\ p\rightarrow q \\ \rule{1cm}{0.5pt}\\ \therefore \neg p}& (\neg q \wedge (p\rightarrow q)) \rightarrow \neg p & Modus Tollens \\ \hline  \rule{0pt}{8ex} \shortstack[l]{p\rightarrow q \\ q\rightarrow r \\ \rule{1.3cm}{0.5pt}\\ \therefore p \rightarrow r}& ((p\rightarrow q) \wedge (q\rightarrow r)) \rightarrow (p\rightarrow r) & Hypothetical syllogism \\ \hline  \rule{0pt}{8ex} \shortstack[l]{ \neg p \\ p\vee q \\ \rule{0.8cm}{0.5pt}\\ \therefore q} & (\neg p \wedge (p\vee q)) \rightarrow q & Disjunctive Syllogism \\ \hline  \rule{0pt}{8ex} \shortstack[l]{p \\ \rule{1.5cm}{0.5pt} \\ \therefore (p \vee q)}& p\rightarrow (p\vee q) & Addition \\ \hline  \rule{0pt}{8ex} \shortstack[l]{ (p\wedge q)\rightarrow r \\ \rule{2.3cm}{0.5pt}\\ \therefore p\rightarrow (q\rightarrow r)} & ((p\wedge q)\rightarrow r) \rightarrow (p\rightarrow (q\rightarrow r)) & Exportation\\ \hline  \rule{0pt}{8ex} \shortstack[l]{p\vee q\\\neg p\vee r \\ \rule{1.2cm}{0.5pt} \\ \therefore q\vee r}& ((p\vee q) \wedge(\neg p\vee r)) \rightarrow q\vee r & Resolution \\ \hline   \end{tabular}  ]


Similarly, we have Rules of Inference for quantified statements –

[image:  \begin{tabular}{||l||l||} \hline Rule of Inference & Name\\ \hline \hline  \rule{0pt}{6ex} \shortstack[l]{\forall xP(x) \\ \rule{1cm}{0.5pt}\\ \therefore P(c)} & Universal instantiation \\ \hline  \rule{0pt}{6ex} \shortstack[l]{P(c) for an arbitrary c\\ \rule{4cm}{0.5pt}\\ \therefore \forall xP(x)} & Universal generalization \\ \hline  \rule{0pt}{6ex} \shortstack[l]{\exists xP(x)\\ \rule{3cm}{0.5pt} \\ \therefore P(c)\:for\:some\:c} & Existential instantiation \\ \hline  \rule{0pt}{6ex} \shortstack[l]{P(c) for some c \\ \rule{2.6cm}{0.5pt}\\ \therefore \exists xP(x)} & Existential generalization \\ \hline \end{tabular} ]


Let’s see how Rules of Inference can be used to deduce conclusions from given arguments or check the validity of a given argument.

Example : Show that the hypotheses

“It is not sunny this afternoon and it is colder than yesterday”,

“We will go swimming only if it is sunny”,

“If we do not go swimming, then we will take a canoe trip”, and

“If we take a canoe trip, then we will be home by sunset”

lead to the conclusion

“We will be home by sunset”.

The first step is to identify propositions and use propositional variables to represent them.

[image: p-] “It is sunny this afternoon”

[image: q-] “It is colder than yesterday”

[image: r-] “We will go swimming”

[image: s-] “We will take a canoe trip”

[image: t-] “We will be home by sunset”

The hypotheses are –

[image: \neg p \wedge q], [image: r\rightarrow p], [image: \neg r \rightarrow s], and [image: s\rightarrow t].

The conclusion is –

[image: t]

To deduce the conclusion we must use Rules of Inference to construct a proof using the given hypotheses.

[image:  \begin{tabular}{||l||l||} \hline Step & Reason\\ \hline \hline 1. \neg p \wedge q & Hypothesis\\ 2. \neg p & Simplification\\ 3. r \rightarrow p & Hypothesis\\ 4. \neg r  & Modus Tollens using (2) and (3)\\ 5. \neg r \rightarrow s & Hypothesis\\ 6. s & Modus Ponens using (4) and (5)\\ 7. s\rightarrow t & Hypothesis\\ 8. t & Modus Ponens Using (6) and (7)\\ \hline \end{tabular} ]

Resolution Principle :

To understand the Resolution principle, first we need to know certain definitions.


	 Literal – A variable or negation of a variable. Eg- [image: p, \neg q] 

	 Sum – Disjunction of literals. Eg- [image: p\vee \neg q]

	 Product – Conjunction of literals. Eg- [image: p \wedge \neg q]

	 Clause – A disjunction of literals i.e. it is a sum.

	 Resolvent – For any two clauses [image: C_{1}] and [image: C_{2}], if there is a literal [image: L_{1}] in [image: C_{1}] that is complementary to a literal [image: L_{2}] in [image: C_{2}], then removing both and joining the remaining clauses through a disjunction produces another clause [image: C]. [image: C] is called the resolvent of [image: C_{1}] and [image: C_{2}]



For example,

 
[image: C_{1} = p\vee q\vee r ]
[image: C_{2} = \neg p\vee \neg s \vee t ]


Here, [image: \neg p] and [image: p] are complementary to each other. Removing them and joining the remaining clauses with a disjunction gives us-

[image: q\vee r \vee \neg s\vee t]

We could skip the removal part and simply join the clauses to get the same resolvent.

[image: \since p \vee \neg p \equiv T\: and,\: T \vee q \equiv q]

This is also the Rule of Inference known as Resolution.

Theorem – If [image: C] is the resolvent of [image: C_{1}] and [image: C_{2}], then [image: C] is also the logical consequence of [image: C_{1}] and [image: C_{2}].

The Resolution Principle – Given a set [image: S] of clauses, a (resolution) deduction of [image: C] from [image: S] is a finite sequence [image: C_{1}, C_{2},..., C_{k}] of clauses such that each [image: C_{i}] is either a clause in [image: S] or a resolvent of clauses preceding [image: C] and [image: C_{k} = C].

We can use the resolution principle to check the validity of arguments or deduce conclusions from them. Other Rules of Inference have the same purpose, but Resolution is unique. It is complete by it’s own. You would need no other Rule of Inference to deduce the conclusion from the given argument.

To do so, we first need to convert all the premises to clausal form. The next step is to apply the resolution Rule of Inference to them step by step until it cannot be applied any further.

For example, consider that we have the following premises –

[image:  p\rightarrow (q\vee r) ]
[image: s\rightarrow \neg r ]
[image: p\wedge s ]


The first step is to convert them to clausal form –

[image: C_{1}: \:\neg p\vee q\vee r] 
[image: C_{2}: \:\neg s\vee \neg r]
[image: C_{3}: \:p]
[image: C_{4}: \:s]

From the resolution of [image: C_{1}] and [image: C_{2}], [image: C_{5}:\: \neg p\vee q\vee \neg s]
From the resolution of [image: C_{5}] and [image: C_{3}], [image: C_{6}:\: q\vee \neg s]
From the resolution of [image: C_{6}] and [image: C_{4}], [image: C_{7}:\: q]
Therefore, the conclusion is [image: q].


GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.

1. GATE CS 2004, Question 70

2. GATE CS 2015 Set-2, Question 13
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						Predicates and Quantifiers | Set 1

				
						

				
			Prerequisite : Introduction to Propositional Logic

Introduction

Consider the following example. We need to convert the following sentence into a mathematical statement using propositional logic only.

"Every person who is 18 years or older, is eligible to vote."


The above statement cannot be adequately expressed using only propositional logic. The problem in trying to do so is that propositional logic is not expressive enough to deal with quantified variables. It would have been easier if the statement were referring to a specific person. But since it is not the case and the statement applies to all people who are 18 years or older, we are stuck.

Therefore we need a more powerful type of logic.

Predicate Logic

Predicate logic is an extension of Propositional logic. It adds the concept of predicates and quantifiers to better capture the meaning of statements that cannot be adequately expressed by propositional logic.

What is a predicate?



        
          
          
          
        

            
Consider the statement, “[image: x] is greater than 3″. It has two parts. The first part, the variable [image: x], is the subject of the statement. The second part, “is greater than 3”, is the predicate. It refers to a property that the subject of the statement can have.

The statement “[image: x] is greater than 3″ can be denoted by [image: P(x)] where [image: P] denotes the predicate “is greater than 3” and [image: x] is the variable.

The predicate [image: P] can be considered as a function. It tells the truth value of the statement [image: P(x)] at [image: x]. Once a value has been assigned to the variable [image: x], the statement [image: P(x)] becomes a proposition and has a truth value.

In general, a statement involving n variables [image: x1, x2, x3,.. , xn] can be denoted by [image: P(x1, x2, x3,.. , xn)]. Here [image: P] is also referred to as n-place predicate or a n-ary predicate.


	
Example 1: Let [image: P(x)] denote the statement “[image: x] > 10″. What are the truth values of [image: P(11)] and [image: P(5)]?

Solution: [image: P(11)] is equivalent to the statement 11 > 10, which is True.

[image: P(5)] is equivalent to the statement 5 > 10, which is False.



	
Example 2: Let [image: R(x,y)] denote the statement “[image: x = y + 1]“.  What is the truth value of the propositions [image: R(1,3)] and [image: R(2,1)]?

Solution: [image: R(1,3)] is the statement 1 = 3 + 1, which is False.

[image: R(2,1)] is the statement 2 = 1 + 1, which is True.




What are quantifiers?

In predicate logic, predicates are used alongside quantifiers to express the extent to which a predicate is true over a range of elements. Using quantifiers to create such propositions is called quantification.

There are two types of quantification-

1. Universal Quantification- Mathematical statements sometimes assert that a property is true for all the values of a variable in a particular domain, called the domain of discourse. Such a statement is expressed using universal quantification.

The universal quantification of [image: P(x)] for a particular domain is the proposition that asserts that [image: P(x)] is true for all values of [image: x] in this domain. The domain is very important here since it decides the possible values of [image: x]. The meaning of the universal quantification of [image: P(x)] changes when the domain is changed. The domain must be specified when a universal quantification is used, as without it, it has no meaning.

Formally,
The universal quantification of [image: P(x)] is the statement
"[image: P(x)] for all values of [image: x] in the domain"

The notation [image: \forall P(x)] denotes the universal quantification of [image: P(x)].
Here [image: \forall] is called the universal quantifier.
[image: \forall P(x)] is read as "for all [image: x] [image: P(x)]". 



	
Example 1: Let [image: P(x)] be the statement “[image: x + 2 ] > [image: x]“. What is the truth value of the statement [image: \forall xP(x)]?

Solution: As [image: x+2] is greater than [image: x] for any real number, so [image: P(x) \equiv T] for all [image: x] or [image: \forall xP(x) \equiv T].




2. Existential Quantification- Some mathematical statements assert that there is an element with a certain property. Such statements are expressed by existential quantification. Existential quantification can be used to form a proposition that is true if and only if [image: P(x)] is true for at least one value of [image: x] in the domain. 

Formally,
The existential quantification of [image: P(x)] is the statement
"There exists an element [image: x] in the domain such that [image: P(x)]"

The notation [image: \exists P(x)] denotes the existential quantification of [image: P(x)].
Here [image: \exists] is called the existential quantifier. 
[image: \exists P(x)] is read as "There is atleast one such [image: x] such that [image: P(x)]". 



	
Example : Let [image: P(x)] be the statement “[image: x] > 5″. What is the truth value of the statement [image: \exists xP(x)] ?

Solution:  [image: P(x)] is true for all real numbers greater than 5 and false for all real numbers less than 5. So [image: \exists xP(x) \equiv T].




To summarise,

[image:  \begin{tabular}{||c||c||c||} \hline Statement & When True? & When False? \\ \hline \hline \forall P(x) & P(x) is\:true\:for\:all\:x & There\:is\:an\:x\:for\:which\:P(x)\:is\:false \\ \hline \exists P(x) & There\:is\:an\:x\:for\:which\:P(x)\:is\:true & P(x) is\:false\:for\:all\:x \\ \hline \end{tabular} ]


Now if we try to convert the statement, given in the beginning of this article, into a mathematical statement using predicate logic, we would get something like-

[image:  \forall P(x) \leftrightarrow Q(x) \\]
Here, P(x) is the statement "x is 18 years or older and,
Q(x) is the statement "x is eligible to vote".



Notice that the given statement is not mentioned as a biconditional and yet we used one. This is because Natural language is ambiguous sometimes, and we made an assumption. This assumption was made since it is true that a person can vote if and only if he/she is 18 years or older. Refer Introduction to Propositional Logic for more explanation.

Other Quantifiers –

Although the universal and existential quantifiers are the most important in Mathematics and Computer Science, they are not the only ones. In Fact, there is no limitation on the number of different quantifiers that can be defined, such as “exactly two”, “there are no more than three”, “there are at least 10”, and so on.

Of all the other possible quantifiers, the one that is seen most often is the uniqueness quantifier, denoted by [image: \exists !]. 

The notation [image: \exists !xP(x)] states "There exists a unique [image: x] such that [image: P(x)] is true".


Quantifiers with restricted domains

As we know that quantifiers are meaningless if the variables they bind do not have a domain. The following abbreviated notation is used to restrict the domain of the variables-

[image: \forall x] > 0, [image: x^2] > 0.

The above statement restricts the domain of [image: x], and is a shorthand for writing another proposition, that says [image: x > 0], in the statement.

If we try to rewrite this statement using an implication, we would get-

[image: \forall x (x] > [image: 0\: \rightarrow \: x^2] >[image:  0)]

Similarly a statement using Existential quantifier can be restated using a conjuction between the domain restricting proposition and the actual predicate.

1. Restriction of a universal quantification is the same as the 
universal quantification of a conditional statement.
2. Restriction of a existentital quantification is the same as the 
existential quantification of a conjunction. 


Definitions to Note

1. Binding variables- A variable whose occurrence is bound by a quantifier is called 
a bound variable. Variables not bound by any quantifiers are called free variables.
2. Scope- The part of the logical expression to which a quantifier is applied is called
the scope of the quantifier.


This topic has been covered in two parts. The second part of this topic is explained in another article – Predicates and Quantifiers – Set 2

References-
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Logical Equivalences involving Quantifiers

Two logical statements involving predicates and quantifiers are considered equivalent if and only if they have the same truth value no matter which predicates are substituted into these statements irrespective of the domain used for the variables in the propositions.

There are two very important equivalences involving quantifiers, given below-

1.  [image: \forall x(P(x)\wedge Q(x)) \equiv \forall xP(x) \wedge \forall xQ(x)]

2.  [image: \exists x(P(x)\vee Q(x)) \equiv \exists xP(x) \vee \exists xQ(x)] 


One is compelled to think whether the equivalences would hold if the conjunction is replaced with disjunction in (1) and disjunction is replaced with conjunction in (2). The answer may seem like Yes, but on second thought, you would realize that the answer is No.

To prove why they are not equivalent, we must understand what makes two statements equivalent. As explained in the previous article Propositional Equivalences two statements [image: P] and [image: Q] are equivalent if-

[image: P\Leftrightarrow Q], which can also be restated as [image: P\Rightarrow Q \wedge Q\Rightarrow P].


If they are equivalent then,

[image: \forall x(P(x)\vee Q(x)) \Leftrightarrow \forall xP(x) \vee \forall xQ(x)] and,

[image: \exists x(P(x)\wedge Q(x)) \Leftrightarrow \exists xP(x) \wedge \exists xQ(x)]

both must be true.



        
          
          
          
        

            
Let us first check for [image: \forall x(P(x)\vee Q(x)) \Leftrightarrow \forall xP(x) \vee \forall xQ(x)].
Is [image: \forall x(P(x)\vee Q(x)) \Rightarrow \forall xP(x) \vee \forall xQ(x)] true?
No.

Proof – Suppose that the Hypothesis [image: \forall x(P(x)\vee Q(x))] is true. That means there are certain [image: x] for which [image: P(x)] is true and others where [image: Q(x)] is true.

It is also possible that for some [image: x] both [image: P(x)] and [image: Q(x)] are true. But in any case, all [image: x] must either satisfy [image: P(x)] or [image: Q(x)] or both, since the hypothesis is true.

The conclusion(RHS) is true when the disjunction is true. As is clear from the above reasoning that [image: P(x)] is true for some values of [image: x] and [image: Q(x)] for some.

Thus both [image: \forall xP(x)] and [image: \forall xQ(x)] are false, since neither of them are true for all values of [image: x].

In the case where [image: P(x)] and [image: Q(x)] hold for all [image: x] then this equivalence is true, but otherwise it is false.

So, [image: \forall xP(x) \vee \forall xQ(x) \equiv F]. According to our assumption, the hypothesis is true, but our conclusion turned out to be false. This cannot be true for a conditional, therefore the conditional

[image: \forall x(P(x)\vee Q(x)) \Rightarrow \forall xP(x) \vee \forall xQ(x)] is false.

Since one conditional is false, the complete biconditional is false.
Hence, [image: \forall x(P(x)\vee Q(x)) \not\equiv \forall xP(x) \vee \forall xQ(x)].


In a similar way, it can also be proved that,

[image: \exists x(P(x)\wedge Q(x)) \not\equiv \exists xP(x) \wedge \exists xQ(x)]

As an exercise prove the above non-equivalence and also the equivalences involving quantifiers stated above. Remember to prove the bi-conditional and not just one conditional.

Negating Quantified statements

Consider the statement “Every Computer Science Graduate has taken a course in Discrete Mathematics.”

The above statement is a universal quantification, [image: xP(x)]

where [image: P(x)] is the statement “x has taken a course in Discrete Mathematics” and the domain of [image: x] is all Computer Science Graduates.

The negation of this statement is “It is not the case that every computer science graduate has taken a course in Discrete Mathematics” or simply “There is a computer science graduate who has not taken a course in Discrete Mathematics”.

The above statement can be expressed using an existential quantification.

[image: \exists x \neg P(x)]

Thus, we get the following logical equivalence-

[image: \neg \forall xP(x) \equiv \exists x \neg P(x)]

Similarly,

[image: \neg \exists xP(x) \equiv \forall x \neg P(x)]

These equivalences are nothing but rules for negations of quantifiers. They are also known as De Morgans’s laws for quantifiers.

In summary,
[image:  \begin{tabular}{||c||c||c||c||} \hline Negation & Equivalent statement & When true? & When false?\\ \hline \hline \neg \exists xP(x) & \forall x \neg P(x) & P(x) \equiv F,\:for\:all\:x & P(x) \equiv T, \:for\:some\:x \\ \hline \neg \forall xP(x) & \exists x \neg P(x) & \neg P(x) \equiv T,\:for\:some\:x & P(x) \equiv T, \:for\:all\:x \\ \hline \end{tabular} ]


Nested Quantifiers

It is possible to use two quantifiers such that one quantifier is within the scope of the other one. In such cases the quantifiers are said to be nested.

For example, [image: \forall x \exists y (x + y = 0)]

The above statement is read as “For all [image: x], there exists a [image: y] such that [image: x +  y = 0].

Note: The relative order in which the quantifiers are placed is important unless all the quantifiers are of the same kind i.e. all are universal quantifiers or all are existential quantifiers.

In summary,
[image:  \begin{tabular}{||c||c||c||} \hline Statement & When true? & When False? \\ \hline \hline \forall x \forall y P(x,y) & P(x,y) \equiv T\: for\: every\: (x,\:y)& P(x,y) \equiv F \: for \:some\:(x,\:y)\\ \forall y \forall x P(x,y) & & \\ \hline   \forall x \exists y P(x,y) &  \shortstack{For\:every\:x\:there\:is\:a\:y\:such\:that \\ P(x,y) \equiv T}&\shortstack{There\:is\:an\:x\:such\:that\\P(x,y) \equiv F \: for \:all\:y}\\[3ex] \hline  \exists x \forall y P(x,y) &\shortstack{There\:is\:an\:x\:such\:that\\P(x,y) \equiv T \: for \:all\:y}&  \shortstack{For\:every\:x\:there\:is\:a\:y\:such\:that\\P(x,y) \equiv F\:}\\[3ex] \hline  \exists x \exists y P(x,y) & P(x,y) \equiv T\: for\: some\: (x,\:y)& P(x,y) \equiv F \: for \:all\:(x,\:y)\\ \exists y \exists x P(x,y) & & \\ \hline \end{tabular} ]


GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.

1. GATE CS 2012, Question 17

2. GATE CS 2013, Question 27

3. GATE CS 2013, Question 47

4. GATE CS 2010, Question 30

5. GATE CS 2009, Question 26

6. GATE CS 2005, Question 36

7. GATE CS 2016 Set-2, Question 37

Majority of the questions asked in GATE from Discrete Mathematics focus on Predicate Logic. Almost all of them involve quantifiers. 
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