
GeeksForGeeks Digital Electronics and Logic Design Lecture Notes

From: https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/

Number System and Representation

						Number System and base conversions | Digital Electronics

				
						

				
			Electronic and Digital systems may use a variety of different number systems, (e.g. Decimal, Hexadecimal, Octal, Binary).

A number N in base or radix b can be written as:

(N)b = dn-1 dn-2 — — — — d1 d0 . d-1 d-2 — — — — d-m

In the above, dn-1 to d0 is integer part, then follows a radix point, and then d-1 to d-m is fractional part.

dn-1 = Most significant bit (MSB)

d-m = Least significant bit (LSB)

[image:]

How to convert a number from one base to another?

Follow the example illustrations:

1. Decimal to Binary

(10.25)10

[image:]

Note: Keep multiplying the fractional part with 2 until decimal part 0.00 is obtained.

(0.25)10 = (0.01)2

Answer: (10.25)10 = (1010.01)2

2. Binary to Decimal

(1010.01)2

1×23 + 0x22 + 1×21+ 0x20 + 0x2 -1 + 1×2 -2 = 8+0+2+0+0+0.25 = 10.25

(1010.01)2 = (10.25)10

3. Decimal to Octal

(10.25)10

(10)10 = (12)8

Fractional part:

0.25 x 8 = 2.00

Note: Keep multiplying the fractional part with 8 until decimal part .00 is obtained.

(.25)10 = (.2)8

Answer: (10.25)10 = (12.2)8

4. Octal to Decimal

(12.2)8

1 x 81 + 2 x 80 +2 x 8-1 = 8+2+0.25 = 10.25

(12.2)8 = (10.25)10

5. Hexadecimal and Binary

To convert from Hexadecimal to Binary, write the 4-bit binary equivalent of hexadecimal.

[image:]

(3A)16 = (00111010)2

To convert from Binary to Hexadecimal, group the bits in groups of 4 and write the hex for the 4-bit binary. Add 0's to adjust the groups.

1111011011

(001111011011)2 = (3DB)16

This article is contributed by Kriti Kushwaha.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
 base-conversion

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Floating Point Representation | Digital Logic

				
						

				
			
1. To convert the floating point into decimal, we have 3 elements in a 32-bit floating point representation:

 i) Sign

 ii) Exponent

 iii) Mantissa

	Sign bit is the first bit of the binary representation. '1' implies negative number and '0' implies positive number.

Example: 11000001110100000000000000000000 This is negative number.

	Exponent is decided by the next 8 bits of binary representation. 127 is the unique number for 32 bit floating point representation. It is known as bias. It is determined by 2k-1 -1 where 'k' is the number of bits in exponent field.
There are 2 exponent bits in 8-bit representation and 8 exponent bits in 32-bit representation.

Thus

bias = 3 for 8 bit conversion (22-1 -1 = 4-1 = 3)

bias = 127 for 32 bit conversion. (28-1 -1 = 128-1 = 127)

Example: 01000001110100000000000000000000

10000011 = (131)2

131-127 = 4

Hence the exponent of 2 will be 4 i.e. 24 = 16.

	Mantissa is calculated from the remaining 24 bits of the binary representation. It consists of '1' and a fractional part which is determined by:
Example:

01000001110100000000000000000000

The fractional part of mantissa is given by:

1*(1/2) + 0*(1/4) + 1*(1/8) + 0*(1/16) +……… = 0.625

Thus the mantissa will be 1 + 0.625 = 1.625

The decimal number hence given as: Sign*Exponent*Mantissa = (-1)*(16)*(1.625) = -26

2. To convert the decimal into floating point, we have 3 elements in a 32-bit floating point representation:

 i) Sign (MSB)

 ii) Exponent (8 bits after MSB)

 iii) Mantissa (Remaining 23 bits)

	Sign bit is the first bit of the binary representation. '1' implies negative number and '0' implies positive number.

 Example: To convert -17 into 32-bit floating point representation Sign bit = 1

	Exponent is decided by the nearest smaller or equal to 2n number. For 17, 16 is the nearest 2n. Hence the exponent of 2 will be 4 since 24 = 16. 127 is the unique number for 32 bit floating point representation. It is known as bias. It is determined by 2k-1 -1 where 'k' is the number of bits in exponent field.
Thus bias = 127 for 32 bit. (28-1 -1 = 128-1 = 127)

Now, 127 + 4 = 131 i.e. 10000011 in binary representation.

	Mantissa: 17 in binary = 10001.
Move the binary point so that there is only one bit from the left. Adjust the exponent of 2 so that the value does not change. This is normalizing the number. 1.0001 x 24. Now, consider the fractional part and represented as 23 bits by adding zeros.

00010000000000000000000

Thus the floating point representation of -17 is 1 10000011 00010000000000000000000

Related Link:

https://www.youtube.com/watch?v=03fhijH6e2w

More questions on number representation:

http://quiz.geeksforgeeks.org/number-representation/

This article is contributed by Kriti Kushwaha

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

Programs

						Program for Binary To Decimal Conversion

				
						

				
			Given a binary number as input, we need to write a program to convert the given binary number into equivalent decimal number.

Examples:

Input : 111
Output : 7

Input : 1010
Output : 10

Input: 100001
Output: 33

 Recommended: Please solve it on “PRACTICE ” first, before moving on to the solution.

The idea is to extract the digits of given binary number starting from right most digit and keep a variable dec_value. At the time of extracting digits from the binary number, multiply the digit with the proper base (Power of 2) and add it to the variable dec_value. At the end, the variable dec_value will store the required decimal number.

For Example:

If the binary number is 111.

dec_value = 1*(2^2) + 1*(2^1) + 1*(2^0) = 7

Below diagram explains how to convert (1010) to equivalent decimal value:

[image: binary2decimal]

Below is the implementation of above idea :

C++

// C++ program to convert binary to decimal
#include<iostream>
using namespace std;

// Function to convert binary to decimal
int binaryToDecimal(int n)
{
 int num = n;
 int dec_value = 0;

 // Initializing base value to 1, i.e 2^0
 int base = 1;

 int temp = num;
 while (temp)
 {
 int last_digit = temp % 10;
 temp = temp/10;

 dec_value += last_digit*base;

 base = base*2;
 }

 return dec_value;
}

// Driver program to test above function
int main()
{
 int num = 10101001;

 cout < <binaryToDecimal(num)<<endl;
}

PHP

<?php
// PHP program to convert
// binary to decimal

// Function to convert
// binary to decimal
function binaryToDecimal($n)
{
 $num = $n;
 $dec_value = 0;

 // Initializing base value
 // to 1, i.e 2^0
 $base = 1;

 $temp = $num;
 while ($temp)
 {
 $last_digit = $temp % 10;
 $temp = $temp / 10;

 $dec_value += $last_digit
 * $base;
 $base = $base*2;
 }
 return $dec_value;
}

 // Driver Code
 $num = 10101001;
 echo binaryToDecimal($num),"\n";

// This code is contributed by ajit
?>

						Program for Decimal to Binary Conversion

				
						

				
			Given a decimal number as input, we need to write a program to convert the given decimal number into equivalent binary number.

Examples:

Input : 7
Output : 111

Input : 10
Output : 1010

Input: 33
Output: 100001

 Recommended: Please solve it on “PRACTICE ” first, before moving on to the solution.

Algorithm:

	Store the remainder when the number is divided by 2 in an array.

	Divide the number by 2

	Repeat the above two steps until the number is greater than zero.

	Print the array in reverse order now.

For Example:

If the binary number is 10.

Step 1: Remainder when 10 is divided by 2 is zero. Therefore, arr[0] = 0.

Step 2: Divide 10 by 2. New number is 10/2 = 5.

Step 3: Remainder when 5 is divided by 2 is 1. Therefore, arr[1] = 1.

Step 4: Divide 5 by 2. New number is 5/2 = 2.

Step 5: Remainder when 2 is divided by 2 is zero. Therefore, arr[2] = 0.

Step 6: Divide 2 by 2. New number is 2/2 = 1.

Step 7: Remainder when 1 is divided by 2 is 1. Therefore, arr[3] = 1.

Step 8: Divide 1 by 2. New number is 1/2 = 0.

Step 9: Since number becomes = 0. Print the array in reverse order. Therefore the equivalent binary number is 1010.

Below diagram shows an example of converting the decimal number 17 to equivalent binary number.

[image:]

Below is the implementation of above idea.

C/C++

// C++ program to convert a decimal
// number to binary number

#include <iostream>
using namespace std;

// function to convert decimal to binary
void decToBinary(int n)
{
 // array to store binary number
 int binaryNum[1000];

 // counter for binary array
 int i = 0;
 while (n > 0) {

 // storing remainder in binary array
 binaryNum[i] = n % 2;
 n = n / 2;
 i++;
 }

 // printing binary array in reverse order
 for (int j = i - 1; j >= 0; j--)
 cout << binaryNum[j];
}

// Driver program to test above function
int main()
{
 int n = 17;
 decToBinary(n);
 return 0;
}

Java

// Java program to convert a decimal
// number to binary number
import java.io.*;

class GFG
{
 // function to convert decimal to binary
 static void decToBinary(int n)
 {
 // array to store binary number
 int[] binaryNum = new int[1000];

 // counter for binary array
 int i = 0;
 while (n > 0)
 {
 // storing remainder in binary array
 binaryNum[i] = n % 2;
 n = n / 2;
 i++;
 }

 // printing binary array in reverse order
 for (int j = i - 1; j >= 0; j--)
 System.out.print(binaryNum[j]);
 }

 // driver program
 public static void main (String[] args)
 {
 int n = 17;
 decToBinary(n);
 }
}

// Contributed by Pramod Kumar

C#

// C# program to convert a decimal
// number to binary number
using System;

public class GFG
{

 // function to convert decimal
 // to binary
 static void decToBinary(int n)
 {
 // array to store binary number
 int[] binaryNum = new int[1000];

 // counter for binary array
 int i = 0;
 while (n > 0)
 {
 // storing remainder in
 // binary array
 binaryNum[i] = n % 2;
 n = n / 2;
 i++;
 }

 // printing binary array
 // in reverse order
 for (int j = i - 1; j >= 0; j--)
 Console.Write(binaryNum[j]);
 }

 // Driver Code
 public static void Main ()
 {
 int n = 17;
 decToBinary(n);
 }
}

// This code is contributed by Sam007.

						Program for decimal to octal conversion

				
						

				
			Given a decimal number as input, we need to write a program to convert the given decimal number into equivalent octal number. i.e convert the number with base value 10 to base value 8. The base value of a number system determines the number of digits used to represent a numeric value. For example, the binary number system uses two digits 0 and 1, octal number system uses 8 digits from 0-7 and decimal number system uses 10 digits 0-9 to represent any numeric value.

Examples:

Input : 16
Output : 20

Input : 10
Output : 12

Input: 33
Output: 41

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Algorithm:

	Store the remainder when the number is divided by 8 in an array.

	Divide the number by 8 now

	Repeat the above two steps until the number is not equal to 0.

	Print the array in reverse order now.

For Example:

If the given decimal number is 16.

Step 1: Remainder when 16 is divided by 8 is 0. Therefore, arr[0] = 0.

Step 2: Divide 16 by 8. New number is 16/8 = 2.

Step 3: Remainder when 2 is divided by 8 is 2. Therefore, arr[1] = 2.

Step 4: Divide 2 by 8. New number is 2/8 = 0.

Step 5: Since number becomes = 0. Stop repeating steps and print the array in reverse order. Therefore the equivalent octal number is 20.

Below diagram shows an example of converting the decimal number 33 to equivalent octal number.

[image: decToOctal]

Below is the implementation of above idea.

C/C++

// C++ program to convert a decimal
// number to octal number

#include <iostream>
using namespace std;

// function to convert decimal to octal
void decToOctal(int n)
{

 // array to store octal number
 int octalNum[100];

 // counter for octal number array
 int i = 0;
 while (n != 0) {

 // storing remainder in octal array
 octalNum[i] = n % 8;
 n = n / 8;
 i++;
 }

 // printing octal number array in reverse order
 for (int j = i - 1; j >= 0; j--)
 cout << octalNum[j];
}

// Driver program to test above function
int main()
{
 int n = 33;

 decToOctal(n);

 return 0;
}

Java

// Java program to convert a decimal
// number to octal number
import java.io.*;

class GFG
{
 // Function to convert decimal to octal
 static void decToOctal(int n)
 {
 // array to store octal number
 int[] octalNum = new int[100];

 // counter for octal number array
 int i = 0;
 while (n != 0)
 {
 // storing remainder in octal array
 octalNum[i] = n % 8;
 n = n / 8;
 i++;
 }

 // Printing octal number array in reverse order
 for (int j = i - 1; j >= 0; j--)
 System.out.print(octalNum[j]);
 }

 // driver program
 public static void main (String[] args)
 {
 int n = 33;
 decToOctal(n);
 }
}

// Contributed by Pramod Kumar

C#

// C# program to convert a decimal
// number to octal number
using System;

class GFG {

 // Function to convert decimal to octal
 static void decToOctal(int n)
 {

 // array to store octal number
 int []octalNum = new int[100];

 // counter for octal number array
 int i = 0;
 while (n != 0)
 {

 // storing remainder in octal array
 octalNum[i] = n % 8;
 n = n / 8;
 i++;
 }

 // Printing octal number array in
 // reverse order
 for (int j = i - 1; j >= 0; j--)
 Console.Write(octalNum[j]);
 }

 // driver program
 public static void Main ()
 {
 int n = 33;

 decToOctal(n);
 }
}

// This code is contributed by nitin mittal.

						Program for octal to decimal conversion

				
						

				
			Given an octal number as input, we need to write a program to convert the given octal number into equivalent decimal number.

Examples:

Input : 67
Output : 55

Input : 512
Output : 330

Input: 123
Output: 83

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

The idea is to extract the digits of given octal number starting from right most digit and keep a variable dec_value. At the time of extracting digits from the octal number, multiply the digit with the proper base (Power of 8) and add it to the variable dec_value. At the end, the variable dec_value will store the required decimal number.

For Example:

If the octal number is 67.

dec_value = 6*(8^1) + 7*(8^0) = 55

Below diagram explains how to convert octal number (123) to equivalent decimal value:

[image:]

Below is the implementation of above idea.

C/C++

// C++ program to convert octal to decimal
#include <iostream>
using namespace std;

// Function to convert octal to decimal
int octalToDecimal(int n)
{
 int num = n;
 int dec_value = 0;

 // Initializing base value to 1, i.e 8^0
 int base = 1;

 int temp = num;
 while (temp) {

 // Extracting last digit
 int last_digit = temp % 10;
 temp = temp / 10;

 // Multiplying last digit with appropriate
 // base value and adding it to dec_value
 dec_value += last_digit * base;

 base = base * 8;
 }

 return dec_value;
}

// Driver program to test above function
int main()
{
 int num = 67;

 cout << octalToDecimal(num) << endl;
}

Java

// Java program to convert octal to decimal
import java.io.*;

class GFG {

 // Function to convert octal to decimal
 static int octalToDecimal(int n)
 {
 int num = n;
 int dec_value = 0;

 // Initializing base value to 1, i.e 8^0
 int base = 1;

 int temp = num;
 while (temp > 0) {
 // Extracting last digit
 int last_digit = temp % 10;
 temp = temp / 10;

 // Multiplying last digit with appropriate
 // base value and adding it to dec_value
 dec_value += last_digit * base;

 base = base * 8;
 }
 return dec_value;
 }

 // driver program
 public static void main(String[] args)
 {
 int num = 67;
 System.out.println(octalToDecimal(num));
 }
}

// Contributed by Pramod Kumar

C#

// C# program to convert octal to
// decimal
using System;

class GFG {

 // Function to convert octal
 // to decimal
 static int octalToDecimal(int n)
 {
 int num = n;
 int dec_value = 0;

 // Initializing base value
 // to 1, i.e 8^0
 int b_ase = 1;

 int temp = num;
 while (temp > 0)
 {

 // Extracting last digit
 int last_digit = temp % 10;
 temp = temp / 10;

 // Multiplying last digit
 // with appropriate base
 // value and adding it to
 // dec_value
 dec_value += last_digit
 * b_ase;

 b_ase = b_ase * 8;
 }
 return dec_value;
 }

 // driver program
 public static void Main()
 {
 int num = 67;

 Console.WriteLine(
 octalToDecimal(num));
 }
}

// This code is contributed by vt_m.

PHP

<?php
// PHP program to convert octal to decimal

// Function to convert
// octal to decimal
function octalToDecimal($n)
{

 $num = $n;
 $dec_value = 0;

 // Initializing base value
 // to 1, i.e 8^0
 $base = 1;

 $temp = $num;
 while ($temp)
 {

 // Extracting last digit
 $last_digit = $temp % 10;
 $temp = $temp / 10;

 // Multiplying last digit
 // with appropriate base
 // value and adding it
 // to dec_value
 $dec_value += $last_digit * $base;

 $base = $base * 8;
 }

 return $dec_value;
}

 // Driver Code
 $num = 67;
 echo octalToDecimal($num);

// This code is contributed by anuj_67
?>

						Program for hexadecimal to decimal

				
						

				
			Given a hexadecimal number as input, we need to write a program to convert the given hexadecimal number into equivalent decimal number.

Examples:

Input : 67
Output : 55

Input : 512
Output : 330

Input: 123
Output: 83

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

We know that in hexadecimal number uses 16 symbols {0, 1, 2, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} to represent all numbers. Here, (A, B, C, D, E, F) represents (10, 11, 12, 13, 14, 15).

The idea is to extract the digits of given hexadecimal number starting from right most digit and keep a variable dec_value. At the time of extracting digits from the hexadecimal number, multiply the digit with the proper base (Power of 16) and add it to the variable dec_value. At the end, the variable dec_value will store the required decimal number.

For Example:

If the hexadecimal number is 1A.

dec_value = 1*(16^1) + 10*(16^0) = 26

Below diagram explains how to convert hexadecimal number (1AB) to equivalent decimal value:

[image:]

Below is the implementation of above idea.

C/C++

// C++ program to convert hexadecimal to decimal
#include<iostream>
#include<string.h>
using namespace std;

// Function to convert hexadecimal to decimal
int hexadecimalToDecimal(char hexVal[])
{
 int len = strlen(hexVal);

 // Initializing base value to 1, i.e 16^0
 int base = 1;

 int dec_val = 0;

 // Extracting characters as digits from last character
 for (int i=len-1; i>=0; i--)
 {
 // if character lies in '0'-'9', converting
 // it to integral 0-9 by subtracting 48 from
 // ASCII value.
 if (hexVal[i]>='0' && hexVal[i]<='9')
 {
 dec_val += (hexVal[i] - 48)*base;

 // incrementing base by power
 base = base * 16;
 }

 // if character lies in 'A'-'F' , converting
 // it to integral 10 - 15 by subtracting 55
 // from ASCII value
 else if (hexVal[i]>='A' && hexVal[i]<='F')
 {
 dec_val += (hexVal[i] - 55)*base;

 // incrementing base by power
 base = base*16;
 }
 }

 return dec_val;
}

// Driver program to test above function
int main()
{
 char hexNum[] = "1A";
 cout << hexadecimalToDecimal(hexNum) << endl;
 return 0;
}

Java

// Java program to convert hexadecimal to decimal
import java.io.*;

class GFG
{
 // Function to convert hexadecimal to decimal
 static int hexadecimalToDecimal(String hexVal)
 {
 int len = hexVal.length();

 // Initializing base value to 1, i.e 16^0
 int base = 1;

 int dec_val = 0;

 // Extracting characters as digits from last character
 for (int i=len-1; i>=0; i--)
 {
 // if character lies in '0'-'9', converting
 // it to integral 0-9 by subtracting 48 from
 // ASCII value
 if (hexVal.charAt(i) >= '0' && hexVal.charAt(i) <= '9')
 {
 dec_val += (hexVal.charAt(i) - 48)*base;

 // incrementing base by power
 base = base * 16;
 }

 // if character lies in 'A'-'F' , converting
 // it to integral 10 - 15 by subtracting 55
 // from ASCII value
 else if (hexVal.charAt(i) >= 'A' && hexVal.charAt(i) <= 'F')
 {
 dec_val += (hexVal.charAt(i) - 55)*base;

 // incrementing base by power
 base = base*16;
 }
 }
 return dec_val;
 }

 // driver program
 public static void main (String[] args)
 {
 String hexNum = "1A";
 System.out.println(hexadecimalToDecimal(hexNum));
 }
}

// Contributed by Pramod Kumar

Boolean Algebra and Logic Gates

						Mathematics | Representation of Boolean Functions

				
						

				
			A Boolean function is described by an algebraic expression consisting of binary variables, the constants 0 and 1, and the logic operation symbols [image: +,\:.\:,\:^\prime]

For a given set of values of the binary variables involved, the boolean function can have a value of 0 or 1. For example, the boolean function [image: F= x^\prime y + z] is defined in terms of three binary variables [image: x,\:y,\:z]. The function is equal to 1 if [image: x=0] and [image: y=1] simultaneously or [image: z=1].

Every boolean function can be expressed by an algebraic expression, such as one mentioned above, or in terms of a Truth Table. A function may be expressed through several algebraic expressions, on account of them being logically equivalent, but there is only one unique truth table for every function.

A Boolean function can be transformed from an algebraic expression into a circuit diagram composed of logic gates connected in a particular structure. Circuit diagram for [image: F]–

[image:]

Canonical and Standard Forms –

Any binary variable can take one of two forms, [image: x] or [image: x^\prime]. A boolean function can be expressed in terms of [image: n] binary variables. If all the binary variables are combined together using the AND operation, then there are a total of [image: 2^n] combinations since each variable can take two forms.

Each of the combinations is called a minterm or standard product. A minterm is represented by [image: m_i] where [image: i] is the decimal equivalent of the binary number the minterm is designated.

Important Note – In a minterm, the binary variable is un-primed if the variable is 1 and it is primed if the variable is 0 i.e. if the minterm is [image: xy^\prime] then that means [image: x=1] and [image: y=0].

For example, for a boolean function in two variables the minterms are –

[image: m_0=x^\prime y^\prime,\:m_1=x^\prime y,\:m_2=x y^\prime,\:m_3=x y]

In a similar way, if the variables are combined together with OR operation, then the term obtained is called a maxterm or standard sum. A maxterm is represented by [image: M_i] where [image: i] is the decimal equivalent of the binary number the maxterm is designated.

Important Note – In a maxterm, the binary variable is un-primed if the variable is 0 and it is primed if the variable is 1 i.e. if the minterm is [image: x^\prime+y] then that means [image: x=1] and [image: y=0].

For example, for a boolean function in two variables the minterms are –

[image: M_0=x+y,\:M_1=x+y^\prime,\:M_2=x^\prime + y,\:M_3=x^\prime + y^\prime]

Minterms and Maxterms for function in 3 variables –

[image:]

Relation between Minterms and Maxterms – Each minterm is the complement of it’s corresponding maxterm.

For example, for a boolean function in two variables –

[image: m_0=x^\prime y^\prime]
[image: (m_0)^\prime=(x^\prime y^\prime)^\prime]
[image: (m_0)^\prime=(x^\prime)^\prime + (y^\prime)^\prime]
[image: (m_0)^\prime=x+y=M_0]
In general [image: m_i = (M_i)^\prime] or [image: M_i = (m_i)^\prime]

Constructing Boolean Functions – Now that we know what minterms and maxterms are, we can use them to construct boolean expressions.

“A Boolean function can be expressed algebraically from a given truth table by forming a minterm for each combination of the variables that produces a 1 in the function and then taking the OR of all those terms.”

For example, consider two functions [image: f_1] and [image: f_2] with the following truth tables –

[image: \begin{tabular}{||c||c||c||c||c||} \hline x&y&z&f_1&f_2\\ \hline \hline 0&0&0&0&0\\ \hline 0&0&1&1&0\\ \hline 0&1&0&0&0\\ \hline 0&1&1&0&1\\ \hline 1&0&0&1&0\\ \hline 1&0&1&0&1\\ \hline 1&1&0&0&1\\ \hline 1&1&1&1&1\\ \hline \end{tabular}]

The function [image: f_1] is 1 for the following combinations of [image: x,\:y,\:z]– 001,100,111

The corresponding minterms are- [image: x^\prime y^\prime z], [image: x y^\prime z^\prime], [image: xyz].

Therefore the algebraic expression for [image: f_1] is-

[image: f_1(x,y,z) = x^\prime y^\prime z + x y^\prime z^\prime + xyz]

[image: f_1(x,y,z) = m_1 + m_4 +m_7]

Similary, the algebraic expression for [image: f_2] is-

[image: f_2(x,y,z) = m_3 + m_5 + m_6 + m_7]

If we use De Morgans Law on [image: f_1] and [image: f_2] all 1’s become 0 and all 0’s become 1. Therefore we get-

[image: f_1(x,y,z)^\prime = m_0 + m_2 +m_3 + m_5 + m_6]

[image: f_2(x,y,z)^\prime = m_0 + m_1 + m_2 + m_4]

On using De Morgans Law again-

[image: f_1(x,y,z) = (m_0 + m_2 +m_3 + m_5 + m_6)^\prime]

[image: f_1(x,y,z) = m_0^\prime . m_2^\prime . m_3^\prime . m_5^\prime . m_6^\prime]

[image: f_1(x,y,z) = M_0 . M_2 . M_3 . M_5 . M_6]

and

[image: f_2(x,y,z) = (m_0 + m_1 + m_2 + m_4)^\prime]

[image: f_2(x,y,z) = m_0^\prime . m_1^\prime . m_2^\prime . m_4^\prime]

[image: f_2(x,y,z) = M_0 . M_1 . M_2 . M_4]

We can conclude from the above that boolean functions can be expressed as a sum of minterms or a product of maxterms.

“Boolean functions expressed as a sum of minterms or product of maxterms are said to be in canonical form.

	Example 1 – Express the following boolean expression in SOP and POS forms-

[image: F=x+y^\prime z]

	Solution – The expression can be transformed into SOP form by adding missing variables in each term by multiplying by [image: k+k^\prime = 1] where [image: k] is the missing variable.

It follows from the fact that – [image: 1.x = x.1 = x]

[image: F=x(y+y^\prime)+y^\prime z\\ F=xy+xy^\prime+y^\prime z\\ F=xy(z+z^\prime)+xy^\prime(z+z^\prime)+(x+x^\prime)y^\prime z\\ F=xyz + xyz^\prime + xy^\prime z + xy^\prime z^\prime + xy^\prime z + x^\prime y^\prime z]

On rearranging the minterms in ascending order

[image: F=x^\prime y^\prime z + xy^\prime z^\prime + xy^\prime z + xyz^\prime + xyz\\ F=m_1 + m_4 + m_5 + m_6 + m_7]

If we want the POS form, we can double negate the SOP form as stated above to get-

[image: F=M_0.M_2.M_3]

The SOP and POS forms have a short notation of representation-

[image: F(x,y,z) = \sum(1,4,5,6,7)\\ F(x,y,z) = \prod(0,2,3)\\]

Standard Forms –

Canonical forms are basic forms obtained from the truth table of the function. These forms are usually not used to represent the function as they are cumbersome to write and it is preferable to represent the function in the least number of literals possible.

There are two types of standard forms –

	Sum of Products(SOP)- A boolean expression involving AND terms with one or more literals each, OR’ed together.

	Product of Sums(POS) A boolean expression involving OR terms with one or more literals each, AND’ed together, e.g.
SOP- [image: x^\prime + xy +yz^\prime]
POS- [image: (x^\prime).(x + y).(y + z^\prime)]

Note – The above expressions are not equivalent, they are just examples.

GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.

1. GATE CS 2010, Question 6

2. GATE CS 2008, Question 7

3. GATE CS 2014 Set-1, Question 17

References-

Digital Design 5th Edition, by Morris Mano and Michael Ciletti

This article is contributed by Chirag Manwani. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
Engineering Mathematics
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Canonical and Standard Form

				
						

				
			Canonical Form – In Boolean algebra,Boolean function can be expressed as Canonical Disjunctive Normal Form known as minterm and some are expressed as Canonical Conjunctive Normal Form known as maxterm .

In Minterm, we look for the functions where the output results in “1” while in Minterm we look for function where the output results in “0”.

We perform Sum of minterm also known as Sum of products (SOP) .

We perform Product of Maxterm also known as Product of sum (POS).

Boolean functions expressed as a sum of minterms or product of maxterms are said to be in canonical form.

Standard Form – A Boolean variable can be expressed in either true form or complemented form. In standard form Boolean function will contain all the variables in either true form or complemented form while in canonical number of variables depends on the output of SOP or POS.

A Boolean function can be expressed algebraically from a given truth table by forming a :

	minterm for each combination of the variables that produces a 1 in the function and then taking the OR of all those terms.

	maxterm for each combination of the variables that produces a 0 in the function and then taking the AND of all those terms.

Truth table representing minterm and maxterm –

[image:]

From the above table it is clear that minterm is expressed in product format and maxterm is expressed in sum format.

 Sum of minterms –

The minterms whose sum defines the Boolean function are those which give the 1’s of the function in a truth table. Since the function can be either 1 or 0 for each minterm, and since there are 2^n minterms, one can calculate all the functions that can be formed with n variables to be (2^(2^n)). It is sometimes convenient to express a Boolean function in its sum of minterm form.

	Example – Express the Boolean function F = A + B’C as a sum of minterms.

	Solution –

A = A(B + B’) = AB + AB’

This function is still missing one variable, so

A = AB(C + C’) + AB'(C + C’) = ABC + ABC’+ AB’C + AB’C’

The second term B’C is missing one variable; hence,

B’C = B’C(A + A’) = AB’C + A’B’C

Combining all terms, we have

F = A + B’C = ABC + ABC’ + AB’C + AB’C’ + A’B’

But AB’C appears twice, and

according to theorem 1 (x + x = x), it is possible to remove one of those occurrences. Rearranging the minterms in ascending order, we finally obtain

F = A’B’C + AB’C + AB’C + ABC’ + ABC

= m1 + m4 + m5 + m6 + m7

SOP is represented as Sigma(1, 4, 5, 6, 7)

Product of maxterms –

Each of the 2^2n functions of n binary variables can be also expressed as a product of maxterms. To express a Boolean function as a product of maxterms, it must first be brought into a form of OR terms.

	Example – Express the Boolean function F = xy + x’z as a product of maxterms

	Solution –

F = xy + x’z

= (xy + x’)(xy + z)

= (x + x’)(y + x’)(x + z)(y + z)

= (x’ + y)(x + z)(y + z)

 x’ + y = x’ + y + zz’

 = (x’+ y + z)(x’ + y + z’) x + z

= x + z + yy’

 = (x + y + z)(x + y’ + z) y + z

 = y + z + xx’

 = (x + y + z)(x’ + y + z)

F = (x + y + z)(x + y’ + z)(x’ + y + z)(x’ + y + z’)

= M0*M2*M4*M5

POS is represented as Pi(0, 2, 4, 5)

Conversion between Canonical Forms –

The complement of a function expressed as the sum of minterms equals the sum of minterms missing from the original function. This is because the original function is expressed by those minterms which make the function equal to 1, whereas its complement is a 1 for those minterms for which the function is a 0.

	Example –
F(A, B, C) = Sigma(1, 4, 5, 6, 7)

F'(A, B, C) = Sigma(0, 2, 3) = m0 + m2 + m3

Now, if we take the complement of F’ by DeMorgan’s theorem, we obtain F in a different form:

 F = (m0 + m2 + m3)’

= m0’m2’m3′

= M0*M2*M3

= PI(0, 2, 3)

Conversion in standard form –

The two canonical forms of Boolean algebra are basic forms that one obtains from reading a given function from the truth table. These forms are very seldom the ones with the least number of literals, because each minterm or maxterm must contain, by definition, all the variables, either complemented or uncomplemented.

	Example – Convert Boolean expression in standard form F=y’+xz’+xyz

	Solution – F = (x+x’)y'(z+z’)+x(y+y’)z’ +xyz

F = xy’z+ xy’z’+x’y’z+x’y’z’+ xyz’+xy’z’+xyz

This article is contributed by Vaishali Bhatia. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Functional Completeness

				
						

				
			A set of operations is said to be functionally complete or universal if and only if every switching function can be expressed by means of operations in it. A set of Boolean functions is functionally complete, if all other Boolean functions can be constructed from this set and a set of input variables are provided, e.g.

	Set A = {+,*,’ (OR, AND, complement) } are functionally complete.

	Set B = {+,’} are functionally complete

	Set C = {*,’} are functionally complete

Post’s Functional Completeness Theorem – Important closed classes of functions:

	T0 – class of all 0-preserving functions, such as f(0, 0, … , 0) = 0.

	 T1 – class of all 1-preserving functions, such as f(1, 1, … , 1) = 1.

	S – class of self-dual functions, such as f(x1, … ,xn) = ¬ f(¬x1, … , ¬xn).

	M – class of monotonic functions, such as : {x1, … ,xn} ≤ {x1, … ,xn}, if xi ≤ yi

if {x1, … ,xn} ≤ {x1, … ,xn}

then f(x1, … ,xn) ≤ f(x1, … ,xn)

	L – class of linear functions, which can be presented as: f(x1, … ,xn) = a0 + a1·x1 + … + an·xn ; ai {0, 1}.

Theorem – A system of Boolean functions is functionally complete if and only if for each of the five defined classes T0, T1, S, M, L, there is a member of F which does not belong to that class.

These are minimal functionally complete operator sets –

One element –

{↑}, {↓}.

Two elements –

[image: {\displaystyle \{\vee ,\neg \}}, {\displaystyle \{\wedge ,\neg \}},] [image: {\displaystyle \{\to ,\neg \}}, {\displaystyle \{\gets ,\neg \}},] [image: {\displaystyle \{\to ,\bot \}}, {\displaystyle \{\gets ,\bot \}},] [image: {\displaystyle \{\to ,\nleftrightarrow \}}, {\displaystyle \{\gets ,\nleftrightarrow \}},] [image: {\displaystyle \{\to ,\nrightarrow \}}, {\displaystyle \{\to ,\nleftarrow \}},] [image: {\displaystyle \{\gets ,\nrightarrow \}}, {\displaystyle \{\gets ,\nleftarrow \}},] [image: {\displaystyle \{\nrightarrow ,\neg \}}, {\displaystyle \{\nleftarrow ,\neg \}},] [image: {\displaystyle \{\nrightarrow ,\top \}}, {\displaystyle \{\nleftarrow ,\top \}},] [image: {\displaystyle \{\nrightarrow ,\leftrightarrow \}}, {\displaystyle \{\nleftarrow ,\leftrightarrow \}}.]

Three elements –

[image: {\displaystyle \{\lor ,\leftrightarrow ,\bot \}},] [image: {\displaystyle \{\lor ,\leftrightarrow ,\nleftrightarrow \}},] [image: {\displaystyle \{\lor ,\nleftrightarrow ,\top \}},] [image: {\displaystyle \{\land ,\leftrightarrow ,\bot \}},] [image: {\displaystyle \{\land ,\leftrightarrow ,\nleftrightarrow \}},] [image: {\displaystyle \{\land ,\nleftrightarrow ,\top \}}.]

Examples on functional Completeness –

	Check if function F(A,B,C) = A’+BC’ is functionally complete?

	Explanation – Let us start by putting all variables as ‘A’ so it becomes

F(A,A,A) = A’+A.A’ = A’—-(i)

F(B,B,B) = B’+B.B’ = B’—(ii)

Now substitute F(A,A,A) in place of variable ‘A’ and F(B,B,B) in place of variable ‘C’

F(F(A,A,A),B,F(B,B,B)) = (A’)’+B.(B’)’ = A+B—(iii)

from (i) and (ii) complement is derived and from (iii) operator ‘+’ is derived so this function is functionally complete as from above if function contains {+,’} is functionally complete.

	Check if function F(A,B) = A’+B is functionally complete?

	Explanation – Let us start by putting all variables as ‘A’ so it becomes

F(A,A) = A’+A’ = 1—-(i)

F(B,B) = B’+B’ = 1—(ii)

F(A,0) = A’+0 = A’—(iv)

Now substitute F(A,0) in place of variable ‘A’

F(F(A,0),B) = (A’)’+B = A+B—(iii)

from (iv) complement is derived and from (iii) operator ‘+’ is derived so this function is functionally complete as from above if function contains {+,’} is partially functionally complete .

	Check if function F(A,B) = A’B is functionally complete?

	Explanation – Let us start by putting all variables as ‘A’ so it becomes

F(A,A) = A’.A’ = 0—-(i)

F(A,0) = A’.0 = 0—(ii)

F(A,1) = A’.1 = A’—(iv)

Now substitute F(A,1) in place of variable ‘A’

F(F(A,1),B) = (A’)’*B = A*B—(iii)

from (iv) complement is derived and from (iii) operator ‘*’ is derived so this function is functionally complete as from above if function contains {*,’} is partially functionally complete .

Note – If the function becomes functionally complete by substituting ‘0’ or ‘1’ then it is known as partially functionally complete.

	Check if function F(A,B) = A’B+AB’ (EX-OR) is functionally complete?

	Explanation – Let us start by putting all variables as ‘A’ so it becomes

F(A,1) = A’.1 + A.0 = A’—-(i)

F(A’,B) = AB + A’B’–(ii)

F(A’,B’) = AB’ + A’B–(iii)

F(A,B’) = A’B’ = AB—(iv)

So there is no way to get {+,*,’} according to condition. So EX-OR is non functionally complete .

	 Consider the operations

f(X, Y, Z) = X’YZ + XY’ + Y’Z’ and g(X′, Y, Z) = X′YZ + X′YZ′ + XY

Which one of the following is correct?

(A) Both {f} and {g} are functionally complete

(B) Only {f} is functionally complete

(C) Only {g} is functionally complete

(D) Neither {f} nor {g} is functionally complete

	Explanation – See GATE CS 2015 (Set 1) | Question 65

References –

Post’s Functional Completeness Theorem

Functional completeness – Wikipedia

This article is contributed by Vaishali Bhatia. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect<, or="" you="" want="" to="" share="" more="" information="" about="" the="" topic="" discussed="" above.="" <="" p="">

					
		

		Digital Electronics & Logic Design
Engineering Mathematics
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Logic Gates

				
						

				
			In Boolean Algebra, there are three basic operations, [image: +,\:.\:,\:^\prime] which are analogous to disjunction, conjunction, and negation in propositional logic. Each of these operations has a corresponding logic gate. Apart from these there are a few other logic gates as well.

Logic Gates –

	AND gate(.) – The AND gate gives an output of 1 if both the two inputs are 1, it gives 0 otherwise.

	OR gate(+) – The OR gate gives an output of 1 if either of the two inputs are 1, it gives 0 otherwise.

	NOT gate(‘) – The NOT gate gives an output of 1 input is 0 and vice-versa.

	XOR gate([image: \oplus]) – The XOR gate gives an output of 1 if either both inputs are different, it gives 0 if they are same.

Three more logic gates are obtained if the output of above-mentioned gates is negated.

	NAND gate([image: \uparrow])- The NAND gate (negated AND) gives an output of 1 if both inputs are 0, it gives 1 otherwise.

	NOR gate([image: \downarrow])- The NOR gate (negated OR) gives an output of 1 if both inputs are 0, it gives 1 otherwise.

	XNOR gate([image: \odot])- The XNOR gate (negated XOR) gives an output of 1 both inputs are same and 0 if both are different.

Every Logic gate has a graphical representation or symbol associated with it. Below is an image which shows the graphical symbols and truth tables associated with each logic gate.

[image:]

Universal Logic Gates –

Out of the seven logic gates discussed above, NAND and NOR are also known as universal gates since they can be used to implement any digital circuit without using any other gate. This means that every gate can be created by NAND or NOR gates only.

Implementation of three basic gates using NAND and NOR gates is shown below –

[image:]

For the XOR gate, NAND and NOR implementation is –

	Implemented Using NAND –
[image:]

	Implemented using NOR –
[image:]

Note – For implementing XNOR gate, a single NAND or NOR gate can be added to the above circuits to negate the output of the XOR gate.

GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.

1. GATE CS 2013, Question 21

2. GATE CS 2012, Question 10

3. GATE CS 2007, Question 33

4. GATE CS 2005, Question 15

Reference –

Digital Design, 5th edition by Morris Mano and Michael Ciletti

This article is contributed by Chirag Manwani. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

Gate Level Minimization

						K-Map (Karnaugh Map)

				
						

				
			

In many digital circuits and practical problems we need to find expression with minimum variables. We can minimize Boolean expressions of 3, 4 variables very easily using K-map without using any Boolean algebra theorems. K-map can take two forms Sum of Product (SOP) and Product of Sum (POS) according to the need of problem. K-map is table like representation but it gives more information than TRUTH TABLE. We fill grid of K-map with 0’s and 1’s then solve it by making groups.

Steps to solve expression using K-map-

	Select K-map according to the number of variables.

	Identify minterms or maxterms as given in problem.

	For SOP put 1’s in blocks of K-map respective to the minterms (0’s elsewhere).

	For POS put 0’s in blocks of K-map respective to the maxterms(1’s elsewhere).

	Make rectangular groups containing total terms in power of two like 2,4,8 ..(except 1) and try to cover as many elements as you can in one group.

	From the groups made in step 5 find the product terms and sum them up for SOP form.

SOP FORM

	 K-map of 3 variables-

Z= ∑A,B,C(1,3,6,7)

[image: de1]

From red group we get product term—

A’C

From green group we get product term—

AB

Summing these product terms we get- Final expression (A’C+AB)

	K-map for 4 variables

F(P,Q,R,S)=∑(0,2,5,7,8,10,13,15)

[image: de2]

From red group we get product term—

QS

From green group we get product term—

Q’S’

Summing these product terms we get- Final expression (QS+Q’S’)

POS FORM

	 K-map of 3 variables-

F(A,B,C)=π(0,3,6,7)[image: kmap-pos-q1]

From red group we find terms

A B C’

Taking complement of these two

A’ B’ C

Now sum up them

(A’ + B’ + C)

From green group we find terms

B C

Taking complement of these two terms

B’ C’

Now sum up them

(B’+C’)

From brown group we find terms

A’ B’ C’

Taking complement of these two

A B C

Now sum up them

(A + B + C)

We will take product of these three terms :Final expression (A’ + B’ + C) (B’ + C’) (A + B + C)

2. K-map of 4 variables-

F(A,B,C,D)=π(3,5,7,8,10,11,12,13)

[image: de4]

From green group we find terms

C’ D B

Taking their complement and summing them

(C+D’+B’)

From red group we find terms

C D A’

Taking their complement and summing them

(C’+D’+A)

From blue group we find terms

A C’ D’

Taking their complement and summing them

(A’+C+D)

From brown group we find terms

A B’ C

Taking their complement and summing them

(A’+B+C’)

Finally we express these as product –(C+D’+B’).(C’+D’+A).(A’+C+D).(A’+B+C’)

PITFALL– *Always remember POS ≠ (SOP)’

*The correct form is (POS of F)=(SOP of F’)’

Quiz on K-MAP

This article is contributed by Anuj Bhatam. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Implicants in K-Map

				
						

				
			Prerequisite – K – Map (Karnaugh Map)

Implicant is a product/minterm term in Sum of Products (SOP) or sum/maxterm term in Product of Sums (POS) of a Boolean function. E.g., consider a boolean function, F = AB + ABC + BC. Implicants are AB, ABC and BC.

	Prime Implicants –

A group of square or rectangle made up of bunch of adjacent minterms which is allowed by definition of K-Map are called prime implicants(PI) i.e. all possible groups formed in K-Map.

Example:

[image:]

	Essential Prime Implicants –

These are those subcubes(groups) which cover atleast one minterm that can’t be covered by any other prime implicant. Essential prime implicants(EPI) are those prime implicants which always appear in final solution.

Example:

[image:]

	Redundant Prime Implicants –

The prime implicants for which each of its minterm is covered by some essential prime implicant are redundant prime implicants(RPI). This prime implicant never appears in final solution.

Example:

[image:]

	Selective Prime Implicants

The prime implicants for which are neither essential nor redundant prime implicants are called selective prime implicants(SPI). These are also known as non-essential prime implicants. They may appear in some solution or may not appear in some solution.

Example:

[image:]

Example-1: Given F = ∑(1, 5, 6, 7, 11, 12, 13, 15), find number of implicant, PI, EPI, RPI and SPI.

[image:]

No. of Implicants = 8
No. of Prime Implicants(PI) = 5
No. of Essential Prime Implicants(EPI) = 4
No. of Redundant Prime Implicants(RPI) = 1
No. of Selective Prime Implicants(SPI) = 0

Example-2: Given F = ∑(0, 1, 5, 8, 12, 13), find number of implicant, PI, EPI, RPI and SPI.

[image:]

No. of Implicants = 6
No. of Prime Implicants(PI) = 6
No. of Essential Prime Implicants(EPI) = 0
No. of Redundant Prime Implicants(RPI) = 0
No. of Selective Prime Implicants(SPI) = 6

Example-3: Given F = ∑(0, 1, 5, 7, 15, 14, 10), find number of implicant, PI, EPI, RPI and SPI.

[image:]

No. of Implicants = 7
No. of Prime Implicants(PI) = 6
No. of Essential Prime Implicants(EPI) = 2
No. of Redundant Prime Implicants(RPI) = 0
No. of Selective Prime Implicants(SPI) = 4

Example-4: GATE IT 2006 | Question 35

Ankit87

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
Engineering Mathematics
GATE CS
Technical Scripter

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Variable entrant map (VEM)

				
						

				
			Prerequisite – Karnaugh Map (K-map)

K-map is the best manual technique to solve Boolean equations, but it becomes difficult to manage when number of variables exceed 5 or 6. So, a technique called Variable Entrant Map (VEM) is used to increase the effective size of k-map. It allows a smaller map to handle large number of variables. This is done by writing output in terms of input.

Example – A 3-variable function can be defined as a function of 2-variables if the output is written in terms of third variable.

Consider a function F(A,B,C) = (0,1,2,5)

[image:]

If we define F in terms of ‘C’, then this function can be written as:

[image:]

And the VEM for this is:

[image:]

Advantages of using VEM –

	A VEM can be used to plot more than ‘n’ variables using an ‘n’ variable K-map.

	It is commonly used to solve problems involving multiplexers.

Minimization procedure for VEM – Now, let’s see how to find SOP expression if a VEM is given.

	Write all the variables(original and complimented forms are treated as two different variables) in the map as 0, leave 0’s, minterms and don’t cares as it is and obtain the SOP expression.

	(a) Select one variable and make all occurrences of that variable as 1, write minterms (1’s) as don’t cares, leave 0’s and don’t cares as it is. Now, obtain the SOP expression.

 (b) Multiply the obtained SOP expression with the concerned variable.

	Repeat step 2 for all the variables in the k-map.

	SOP of VEM is obtained by ORing all the obtained SOP expressions.

Let’s apply the above procedure on a sample VEM (X is used to represent don’t care):

[image:]

Step 1: Write all the variables as 0 (D and D’ are considered as two different variables), leave minterms, 0’s and don’t cares as it is and obtain the SOP expression.

[image:]

 SOP obtained: A'C

Step 2:

(a) Replace all occurances of D with 1, all occurrences of D’ with 0 and all 1’s with don’t care. Leave 0’s and don’t cares as it is.

[image:]

(b) Multiply the obtained SOP with the concerned variable.

SOP obtained: AC'D

Step 3: Repeat step 2 for D’

(a) Replace all occurrences of D’ with 1, all occurrences of D with 0 and all 1’s with don’t care. Leave 0’s and don’t cares as it is.

[image:]

(b) Multiply the obtained SOP with the concerned variable.

SOP obtained: CD'

Step 4: SOP of VEM is obtained by ORing all the obtained SOP expressions. Therefore, the SOP expression for the given VEM is:

A'C + AC'D + CD'

MohitMalhotra

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Minimization of Boolean Functions

				
						

				
			As discussed in the “Representation of Boolean Functions” every boolean function can be expressed as a sum of minterms or a product of maxterms. Since the number of literals in such an expression is usually high, and the complexity of the digital logic gates that implement a Boolean function is directly related to the complexity of the algebraic expression from which the function is implemented, it is preferable to have the most simplified form of the algebraic expression.

The process of simplifying the algebraic expression of a boolean function is called minimization. Minimization is important since it reduces the cost and complexity of the associated circuit.

For example, the function [image: F=x^\prime y^\prime z + x^\prime yz + xy^\prime] can be minimized to [image: F=x^\prime z + xy^\prime]. The circuits associated with above expressions is –

[image:]

It is clear from the above image that the minimized version of the expression takes a less number of logic gates and also reduces the complexity of the circuit substantially. Minimization is hence important to find the most economic equivalent representation of a boolean function.

Minimization can be done using Algebraic Manipulation or K-Map method. Each method has it’s own merits and demerits.

Minimization using Algebraic Manipulation –

This method is the simplest of all methods used for minimization. It is suitable for medium sized expressions involving 4 or 5 variables. Algebraic manipulation is a manual method, hence it is prone to human error.

Common Laws used in algebraic manipulation :

	[image: \:A + A^\prime = 1]

	[image: \:A + A^\prime B = A + B]

	[image: \:A + AB = A]

	Example 1 – Minimize the following boolean function using algebraic manipulation-

[image: F=ABC^\prime D^\prime + ABC^\prime D + AB^\prime C^\prime D + ABCD + AB^\prime CD + ABCD^\prime \\ + AB^\prime CD^\prime]

	Solution – Properties refer to the three common laws mentioned above.
 [image: \begin{align*} F=\:&ABC^\prime(D^\prime + D) +AB^\prime C^\prime D + ACD(B + B^\prime) &&\\ &\:+ ACD^\prime(B + B^\prime)&&\\ =\:&ABC^\prime +AB^\prime C^\prime D + ACD +ACD^\prime && \text{Using Property-1}\\ =\:&ABC^\prime +AB^\prime C^\prime D + AC(D +D^\prime)&&\\ =\:&ABC^\prime +AB^\prime C^\prime D + AC && \text{Using Property-1}\\ =\:&A(BC^\prime +C)+AB^\prime C^\prime D &&\\ =\:&A(B+C)+AB^\prime C^\prime D&& \text{Using Property-2}\\ =\:&AB +AC+AB^\prime C^\prime D &&\\ =\:&AB + AC + A C^\prime D && \text{Using Property-2}\\ =\:&AB + AC + AD && \text{Using Property-2}\\ \end{align*}]

Minimization using K-Map –

The Algebraic manipulation method is tedious and cumbersome. The K-Map method is faster and can be used to solve boolean functions of upto 5 variables. Please refer this link to learn more about K-Map.

	Example 2 – Consider the same expression from example-1 and minimize it using K-Map.

	Solution – The following is a 4 variable K-Map of the given expression.

[image:]

The above figure highlights the prime implicants in green, red and blue.

The green one spans the whole third row, which gives us – [image: AB]

The red one spans 4 squares, which gives us – [image: AD]

The blue one spans 4 squares, which gives us – [image: AC]

So, the minimized boolean expression is- [image: AB+AC+AD]

GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.

1. GATE CS 2012, Question 30

2. GATE CS 2007, Question 32

3. GATE CS 2014 Set-3, Question 17

4. GATE CS 2005, Question 18

5. GATE CS 2004, Question 17

6. GATE CS 2003, Question 45

7. GATE CS 2002, Question 12

References-

K-Map – Wikipedia

Digital Design, 5th edition by Morris Mano and Michael Ciletti

This article is contributed by Chirag Manwani. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Consensus theorem

				
						

				
			Prerequisite – Properties of Boolean algebra, Minimization of Boolean Functions

Redundancy theorem is used as a Boolean algebra trick in Digital Electronics. It is also known as Consensus Theorem:

 AB + A'C + BC = AB + A'C

The consensus or resolvent of the terms AB and A’C is BC. It is the conjunction of all the unique literals of the terms, excluding the literal that appears unnegated in one term and negated in the other.

The conjunctive dual of this equation is:

(A+B).(A'+C).(B+C) = (A+B).(A'+C)

In the second line, we omit the third product term BC.Here, the term BC is known as Redundant term. In this way we use this theorem to simply the Boolean Algebra. Conditions for applying Redundancy theorem are:

	Three variables must present in the expression.Here A, B and C are used as variables.

	Each variables is repeated twice.

	One variable must present in complemented form.

After applying this theorem we can only take those terms which contains the complemented variable.

Proof – We can also prove it like this:

Y = AB + A'C + BC
Y = AB + A'C + BC.1
Y = AB + A'C + BC.(A + A')
Y = AB + A'C + ABC + A'BC
Y = AB(1 + C) + A'C(1 + B)
Y = AB + A'C

Example-1.

F = AB + BC' + AC

Here, we have three variables A, B and C and all are repeated twice. The variable C is present in complemented form. So, all the conditions are satisfied for applying this theorem.

[image:]

After applying Redundancy theorem we can write only the terms containing complemented variables (i.e, C) and omit the Redundancy term i.e., AB.

 .'. F = BC' + AC

Example-2.

F = (A + B).(A' + C).(B + C)

Three variables are present and all are repeated twice. The variable A is present in complemented form.Thus, all the three conditions of this theorem is satisfied.

[image:]

After applying Redundancy theorem we can write only the terms containing complemented variables (i.e, A) and omit the Redundancy term i.e., (B + C).

.'. F = (A + B).(A' + C)

Consider the following equation:

Y = AB + A'C + BC

The third product term BC is a redundant consensus term. If A switches from 1 to 0 while B=1 and C=1, Y remains 1. During the transition of signal A in logic gates, both the first and second term may be 0 momentarily. The third term prevents a glitch since its value of 1 in this case is not affected by the transition of signal A.

Thus. it is important to remove Logic Redundancy because it causes unnecessary network complexity and raises the cost of implementation.

So, in this way we can minimize a Boolean expression to solve it.

SUDIPTADANDAPAT

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
Engineering Mathematics
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

Combinational Logic Circuits

						Half Adder

				
						

				
			Half Adder (HA)

[image: halfadder1]

Truth Table

[image: ha_truth]

Logical Expression

Sum = A XOR B

Carry = A AND B

Implementation

[image: halfadder]

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Digital Electronics | Half Subtractor

				
						

				
			Half Subtractor (HS)

[image: halfsub]

Truth Table

[image: hs_truthtable]

Logical Expression

Difference = A XOR B

Borrow =

[image: \overline{A}B]

Implementation

[image: halfadder]

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Half Adder and Half Subtractor using NAND NOR gates

				
						

				
			Implementation of Half Adder using NAND gates :

Total 5 NAND gates are required to implement half adder.

[image:]

Implementation of Half Adder using NOR gates :

Total 5 NOR gates are required to implement half adder.

[image:]

Implementation of Half Subtractor using NAND gates :

Total 5 NAND gates are required to implement half subtractor.

[image:]

Implementation of Half Subtractor using NOR gates :

Total 5 NOR gates are required to implement half subtractor.

[image:]

This article is contributed by Sumouli Choudhury

					
		
		Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Full Adder | Digital Electronics

				
						

				
			Full Adder is the adder which adds three inputs and produces two outputs. The first two inputs are A and B and the third input is an input carry as C-IN. The output carry is designated as C-OUT and the normal output is designated as S which is SUM.

A full adder logic is designed in such a manner that can take eight inputs together to create a byte-wide adder and cascade the carry bit from one adder to the another.

[image:]

Full Adder Truth Table:

[image:]

Logical Expression for SUM:

= A’ B’ C-IN + A’ B C-IN’ + A B’ C-IN’ + A B C-IN

= C-IN (A’ B’ + A B) + C-IN’ (A’ B + A B’)

= C-IN XOR (A XOR B)

= (1,2,4,7)

Logical Expression for C-OUT:

= A’ B C-IN + A B’ C-IN + A B C-IN’ + A B C-IN

= A B + B C-IN + A C-IN

= (3,5,6,7)

Another form in which C-OUT can be implemented:

= A B + A C-IN + B C-IN (A + A’)

= A B C-IN + A B + A C-IN + A’ B C-IN

= A B (1 +C-IN) + A C-IN + A’ B C-IN

= A B + A C-IN + A’ B C-IN

= A B + A C-IN (B + B’) + A’ B C-IN

= A B C-IN + A B + A B’ C-IN + A’ B C-IN

= A B (C-IN + 1) + A B’ C-IN + A’ B C-IN

= A B + A B’ C-IN + A’ B C-IN

= AB + C-IN (A’ B + A B’)

Therefore COUT = AB + C-IN (A EX – OR B)

[image:]

Full Adder logic circuit.

Implementation of Full Adder using Half Adders

2 Half Adders and a OR gate is required to implement a Full Adder.

[image:]

With this logic circuit, two bits can be added together, taking a carry from the next lower order of magnitude, and sending a carry to the next higher order of magnitude.

Implementation of Full Adder using NAND gates:

[image:]

Implementation of Full Adder using NOR gates:

Total 9 NOR gates are required to implement a Full Adder.

[image:]

This article is contributed by Sumouli Choudhury

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Full Subtractor

				
						

				
			A full subtractor is a combinational circuit that performs subtraction of two bits, one is minuend and other is subtrahend, taking into account borrow of the previous adjacent lower minuend bit. This circuit has three inputs and two outputs. The three inputs A, B and Bin, denote the minuend, subtrahend, and previous borrow, respectively. The two outputs, D and Bout represent the difference and output borrow, respectively.

[image:]

Truth Table –

[image:]

From above table we can draw the K-Map as shown for “difference” and “borrow”.

[image:]

[image:]

Logical expression for difference –

D = A’B’Bin + A’BBin’ + AB’Bin’ + ABBin
 = Bin(A’B’ + AB) + Bin’(AB’ + A’B)
 = Bin(A XNOR B) + Bin’(A XOR B)
 = Bin (A XOR B)’ + Bin’(A XOR B)
 = Bin XOR (A XOR B)
 = (A XOR B) XOR Bin

Logical expression for borrow –

Bout = A’B’Bin + A’BBin’ + A’BBin + ABBin
 = A’B’Bin +A’BBin’ + A’BBin + A’BBin + A’BBin + ABBin
 = A’Bin(B + B’) + A’B(Bin + Bin’) + BBin(A + A’)
 = A’Bin + A’B + BBin

OR

Bout = A’B’Bin + A’BBin’ + A’BBin + ABBin
 = Bin(AB + A’B’) + A’B(Bin + Bin’)
 = Bin(A XNOR B) + A’B
 = Bin (A XOR B)’ + A’B

Logic Circuit for Full Subtractor –

[image:]

Implementation of Full Subtractor using Half Subtractors –

2 Half Subtractors and an OR gate is required to implement a Full Subtractor.

[image:]

Reference – Full Subtractor – Wikipedia

This article is contributed by Harshita Pandey. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Code Converters – BCD(8421) to/from Excess-3

				
						

				
			Prerequisite – Number System and base conversions

Excess-3 binary code is a unweighted self-complementary BCD code.

Self-Complementary property means that the 1’s complement of an excess-3 number is the excess-3 code of the 9’s complement of the corresponding decimal number. This property is useful since a decimal number can be nines’ complemented (for subtraction) as easily as a binary number can be ones’ complemented; just by inverting all bits.

For example, the excess-3 code for 3(0011) is 0110 and to find the excess-3 code of the complement of 3, we just need to find the 1’s complement of 0110 -> 1001, which is also the excess-3 code for the 9’s complement of 3 -> (9-3) = 6.

Converting BCD(8421) to Excess-3 –

As is clear by the name, a BCD digit can be converted to it’s corresponding Excess-3 code by simply adding 3 to it.

Let [image: A,\:B,\:C,\:and\:D] be the bits representing the binary numbers, where [image: D] is the LSB and [image: A] is the MSB, and

Let [image: w,\:x,\:y,\:and\:z] be the bits representing the gray code of the binary numbers, where [image: z] is the LSB and [image: w] is the MSB.

The truth table for the conversion is given below. The X’s mark don’t care conditions.

[image: \begin{tabular}{||c|c|c|c||c|c|c|c||} \hline \multicolumn{4}{||c||}{BCD(8421)} & \multicolumn{4}{|c||}{Excess-3}\\ \hline A & B & C & D & w & x & y & z \\ \hline \hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ \hline \hline 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ \hline 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ \hline \hline 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ \hline 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 & X & X & X & X \\ \hline 1 & 0 & 1 & 1 & X & X & X & X \\ \hline \hline 1 & 1 & 0 & 0 & X & X & X & X \\ \hline 1 & 1 & 0 & 1 & X & X & X & X \\ \hline 1 & 1 & 1 & 0 & X & X & X & X \\ \hline 1 & 1 & 1 & 1 & X & X & X & X \\ \hline \hline \end{tabular}]

To find the corresponding digital circuit, we will use the K-Map technique for each of the Excess-3 code bits as output with all of the bits of the BCD number as input.

[image: 35777]

Corresponding minimized Boolean expressions for Excess-3 code bits –

[image: w = A+BC+BD\\ x = B^\prime C + B^\prime D +BC^\prime D^\prime\\ y = CD + C^\prime D^\prime \\ z = D^\prime]

The corresponding digital circuit-

[image:]

Converting Excess-3 to BCD(8421) –

Excess-3 code can be converted back to BCD in the same manner.

Let [image: A,\:B,\:C,\:and\:D] be the bits representing the binary numbers, where [image: D] is the LSB and [image: A] is the MSB, and

Let [image: w,\:x,\:y,\:and\:z] be the bits representing the gray code of the binary numbers, where [image: z] is the LSB and [image: w] is the MSB.

The truth table for the conversion is given below. The X’s mark don’t care conditions.

[image: \begin{tabular}{||c|c|c|c||c|c|c|c||} \hline \multicolumn{4}{||c||}{Excess-3} & \multicolumn{4}{|c||}{BCD}\\ \hline w & x & y & z & A & B & C & D \\ \hline \hline 0 & 0 & 0 & 0 & X & X & X & X \\ \hline 0 & 0 & 0 & 1 & X & X & X & X \\ \hline 0 & 0 & 1 & 0 & X & X & X & X \\ \hline 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ \hline \hline 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ \hline \hline 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ \hline 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ \hline 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ \hline \hline 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ \hline 1 & 1 & 0 & 1 & X & X & X & X \\ \hline 1 & 1 & 1 & 0 & X & X & X & X \\ \hline 1 & 1 & 1 & 1 & X & X & X & X \\ \hline \hline \end{tabular}]

K-Map for D-

[image:]

K-Map for C-

[image:]

K-Map for B-

[image:]

K-Map for A-

[image:]

Corresponding minimized boolean expressions for Excess-3 code bits –

[image: A = wx+wyz\\ B = x^\prime y^\prime + x^\prime z^\prime +xyz\\ C = y^\primez+ yz^\prime \\ D = z^\prime]

The corresponding digital circuit –

Here [image: E_3,\:E_2,\:E_1,\:and\:E_0] correspond to [image: w,\:x,\:y,\:and\:z] and [image: B_3,\:B_2,\:B_1,\:and\:B_0] correspond to [image: A,\:B,\:C,\:and\:D].

[image: Excess-3 to BCD]

References-

Digital Design, 5th edition by Morris Mano and Michael Ciletti

Excess-3 – Wikipedia

This article is contributed by Chirag Manwani. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Code Converters – Binary to/from Gray Code

				
						

				
			Prerequisite – Number System and base conversions

Gray Code system is a binary number system in which every successful pair of numbers differs in only one bit. It is used in applications in which the normal sequence of binary numbers generated by the hardware may produce an error or ambiguity during the transition from one number to the next.

For example, the states of a system may change from 3(011) to 4(100) as- 011 — 001 — 101 — 100. Therefore there is a high chance of a wrong state being read while the system changes from the initial state to the final state.

This could have serious consequences for the machine using the information. The Gray code eliminates this problem since only one bit changes its value during any transition between two numbers.

Converting Binary to Gray Code –

Let [image: b_0,\:b_1,\:b_2\:,\:and\:b_3] be the bits representing the binary numbers, where [image: b_0] is the LSB and [image: b_3] is the MSB, and

Let [image: g_0,\:g_1,\:g_2\:,\:and\:g_3] be the bits representing the gray code of the binary numbers, where [image: g_0] is the LSB and [image: g_3] is the MSB.

The truth table for the conversion is-

[image: \begin{tabular}{||c|c|c|c||c|c|c|c||} \hline \multicolumn{4}{||c||}{Binary} & \multicolumn{4}{|c||}{Gray Code}\\ \hline b_3 & b_2 & b_1 & b_0 & g_3 & g_2 & g_1 & g_0 \\ \hline \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ \hline \hline 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ \hline 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ \hline \hline 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ \hline 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ \hline 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline \hline 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \hline 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ \hline 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ \hline \hline \end{tabular}]

To find the corresponding digital circuit, we will use the K-Map technique for each of the gray code bits as output with all of the binary bits as input.

K-map for [image: b_0]–

[image:]

K-map for [image: b_1]–

[image:]

K-map for [image: b_2]–

[image:]

K-map for [image: b_3]–

[image:]

Corresponding minimized boolean expressions for gray code bits –

[image: g_0 = b_0b_1^\prime + b_1b_0^\prime = b_0 \oplus b_1\\ g_1 = b_2b_1^\prime + b_1b_2^\prime = b_1 \oplus b_2\\ g_2 = b_2b_3^\prime + b_3b_2^\prime = b_2 \oplus b_3\\ g_3 = b_3]

The corresponding digital circuit –

[image:]

Converting Gray Code to Binary –

Converting gray code back to binary can be done in a similar manner.

Let [image: b_0,\:b_1,\:b_2\:,\:and\:b_3] be the bits representing the binary numbers, where [image: b_0] is the LSB and [image: b_3] is the MSB, and

Let [image: g_0,\:g_1,\:g_2\:,\:and\:g_3] be the bits representing the gray code of the binary numbers, where [image: g_0] is the LSB and [image: g_3] is the MSB.

Truth table-

[image: \begin{tabular}{||c|c|c|c||c|c|c|c||} \hline \multicolumn{4}{||c||}{Gray Code} & \multicolumn{4}{|c||}{Binary}\\ \hline g_3 & g_2 & g_1 & g_0 & b_3 & b_2 & b_1 & b_0\\ \hline \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ \hline \hline 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ \hline \hline 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ \hline 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ \hline 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ \hline \hline 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ \hline \hline \end{tabular}]

Using K-map to get back the binary bits from the gray code –

K-map for [image: b_0]–

[image:]

K-map for [image: b_1]–

[image:]

K-map for [image: b_2]–

[image:]

K-map for [image: b_3]–

[image:]

Corresponding Boolean expressions –

 [image: \begin{align*} b_0 &=g_3^\prime g_2^\prime g_1^\prime g_0 + g_3^\prime g_2^\prime g_1g_0^\prime + g_3^\prime g_2g_1^\prime g_0^\prime + g_3^\prime g_2g_1g_0 +g_3g_2^\prime g_1^\prime g_0^\prime + g_3g_2^\prime g_1g_0 \\ &\:\:\:+g_3g_2g_1^\prime g_0 + g_3g_2g_1g_0^\prime \\ &= g_3^\prime g_2^\prime(g_1^\prime g_0 + g_1g_0^\prime) + g_3^\prime g_2(g_1^\prime g_0^\prime + g_1g_0) +g_3g_2^\prime(g_1^\prime g_0^\prime + g_1g_0)\\ &\:\:\:+g_3g_2 (g_1^\prime g_0 + g_1g_0^\prime) \\ &= g_3^\prime g_2^\prime(g_0\oplus g_1) + g_3^\prime g_2(g_0\odot g_1)+g_3g_2^\prime(g_0\odot g_1) + g_3g_2 (g_0\oplus g_1) \\ &= (g_0\oplus g_1)(g_2\odot g_3) + (g_0\odot g_1)(g_2\oplus g_3)\\ &= g_3\oplus g_2\oplus g_1\oplus g_0\\ b_1 &= g_3^\prime g_2^\prime g_1 + g_3^\prime g_2g_1^\prime + g_3g_2g_1 + g_3g_2^\prime g_1^\prime \\ &= g_3^\prime(g_2^\prime g_1 + g_2g_1^\prime) + g_3(g_2g_1 + g_2^\prime g_1^\prime) \\ &= g_3^\prime(g_2\oplus g_1) + g_3(g_2\odot g_1) \\ &= g_3\oplus g_2\oplus g_1\\ b_2 &= g_3^\prime g_2 + g_3g_2^\prime\\ &= g_3\oplus g_2\\ b_3 &= g_3 \end{align*}]

Corresponding digital circuit –

[image:]

References –

Digital Design, 5th edition by Morris Mano and Michael Ciletti

This article is contributed by Chirag Manwani. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS
 gray-code

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						BCD to 7 Segment Decoder

				
						

				
			Prerequisite – Number System and base conversions, BCD(8421)

In Binary Coded Decimal (BCD) encoding scheme each of the decimal numbers(0-9) is represented by its equivalent binary pattern(which is generally of 4-bits).

Whereas, Seven segment display is an electronic device which consists of seven Light Emitting Diodes (LEDs) arranged in a some definite pattern (common cathode or common anode type), which is used to display Hexadecimal numerals(in this case decimal numbers,as input is BCD i.e., 0-9).

Two types of seven segment LED display:

	Common Cathode Type: In this type of display all cathodes of the seven LEDs are connected together to the ground or -Vcc(hence,common cathode) and LED displays digits when some ‘HIGH’ signal is supplied to the individual anodes.

	Common Anode Type: In this type of display all the anodes of the seven LEDs are connected to battery or +Vcc and LED displays digits when some ‘LOW’ signal is supplied to the individual cathodes.

But, seven segment display does not work by directly supplying voltage to different segments of LEDs. First, our decimal number is changed to its BCD equivalent signal then BCD to seven segment decoder converts that signals to the form which is fed to seven segment display.

This BCD to seven segment decoder has four input lines (A, B, C and D) and 7 output lines (a, b, c, d, e, f and g), this output is given to seven segment LED display which displays the decimal number depending upon inputs.

Truth Table – For common cathode type BCD to seven segment decoder:

Note –

	For Common Anode type seven segment LED display, we only have to interchange all ‘0s’ and ‘1s’ in the output side i.e., (for a, b, c, d, e, f, and g replace all ‘1’ by ‘0’ and vice versa) and solve using K-map.

	Output for first combination of inputs (A, B, C and D) in Truth Table corresponds to ‘0’ and last combination corresponds to ‘9’. Similarly rest corresponds from 2 to 8 from top to bottom.

	BCD numbers only range from 0 to 9,thus rest inputs from 10-F are invalid inputs.

Example –

Explanation –

For combination where all the inputs (A, B, C and D) are zero (see Truth Table), our output lines are a = 1, b = 1, c = 1, d = 1, e = 1, f = 1 and g = 0. So 7 segment display shows ‘zero’ as output.

Similarly, for combination where one of the input is one (D = 1) and rest are zero,our output lines are a = 0, b = 1, c = 1, d = 0, e = 0, f = 0 and g = 0. So only LEDs ‘b’ and ‘c’ (see diagram above) will glow and 7 segment display shows ‘one’ as output.

K-Maps:

#for a:

[image: a]

#for b:

[image: b]

#for c:

[image: c]

#for d:

[image: d]

#for e:

[image: e]

#for f:

[image: f]

#for g:

[image: g]

Applications –

Seven-segment displays are used to display the digits in calculators, clocks, various measuring instruments, digital watches and digital counters.

sanjal_katiyar

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Parallel Adder & Parallel Subtractor

				
						

				
			Prerequisite – Full adder, Full Subtractor

Parallel Adder –

A single full adder performs the addition of two one bit numbers and an input carry. But a Parallel Adder is a digital circuit capable of finding the arithmetic sum of two binary numbers that is greater than one bit in length by operating on corresponding pairs of bits in parallel. It consists of full adders connected in a chain where the output carry from each full adder is connected to the carry input of the next higher order full adder in the chain. A n bit parallel adder requires n full adders to perform the operation. So for the two-bit number, two adders are needed while for four bit number, four adders are needed and so on. Parallel adders normally incorporate carry lookahead logic to ensure that carry propagation between subsequent stages of addition does not limit addition speed.

Working of parallel Adder –

	As shown in the figure, firstly the full adder FA1 adds A1 and B1 along with the carry C1 to generate the sum S1 (the first bit of the output sum) and the carry C2 which is connected to the next adder in chain.

	Next, the full adder FA2 uses this carry bit C2 to add with the input bits A2 and B2 to generate the sum S2(the second bit of the output sum) and the carry C3 which is again further connected to the next adder in chain and so on.

	The process continues till the last full adder FAn uses the carry bit Cn to add with its input An and Bn to generate the last bit of the output along last carry bit Cout.

Parallel Subtractor –

A Parallel Subtractor is a digital circuit capable of finding the arithmetic difference of two binary numbers that is greater than one bit in length by operating on corresponding pairs of bits in parallel. The parallel subtractor can be designed in several ways including combination of half and full subtractors, all full subtractors or all full adders with subtrahend complement input.

[image:]

Working of Parallel Subtractor –

	As shown in the figure, the parallel binary subtractor is formed by combination of all full adders with subtrahend complement input.

	This operation considers that the addition of minuend along with the 2’s complement of the subtrahend is equal to their subtraction.

	Firstly the 1’s complement of B is obtained by the NOT gate and 1 can be added through the carry to find out the 2’s complement of B. This is further added to A to carry out the arithmetic subtraction.

	The process continues till the last full adder FAn uses the carry bit Cn to add with its input An and 2’s complement of Bn to generate the last bit of the output along last carry bit Cout.

Advantages of parallel Adder/Subtractor –

	The parallel adder/subtractor performs the addition operation faster as compared to serial adder/subtractor.

	Time required for addition does not depend on the number of bits.

	The output is in parallel form i.e all the bits are added/subtracted at the same time.

	It is less costly.

Disadvantages of parallel Adder/Subtractor –

	Each adder has to wait for the carry which is to be generated from the previous adder in chain.

	The propagation delay(delay associated with the travelling of carry bit) is found to increase with the increase in the number of bits to be added.

Reference – Adder – Wikipedia

Harshita Pandey

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Carry Look-Ahead Adder

				
						

				
			Motivation behind Carry Look-Ahead Adder :

In ripple carry adders, for each adder block, the two bits that are to be added are available instantly. However, each adder block waits for the carry to arrive from its previous block. So, it is not possible to generate the sum and carry of any block until the input carry is known. The [image: i^{th}] block waits for the [image: i-1^{th}] block to produce its carry. So there will be a considerable time delay which is carry propagation delay.

Consider the above 4-bit ripple carry adder. The sum [image: S_{4}] is produced by the corresponding full adder as soon as the input signals are applied to it. But the carry input [image: C_{4}] is not available on its final steady state value until carry [image: C_{3}] is available at its steady state value. Similarly [image: C_{3}] depends on [image: C_{2}] and [image: C_{2}] on [image: C_{1}]. Therefore, though the carry must propagate to all the stages in order that output [image: S_{3}] and carry [image: C_{4}] settle their final steady-state value.

The propagation time is equal to the propagation delay of each adder block, multiplied by the number of adder blocks in the circuit. For example, if each full adder stage has a propagation delay of 20 nanoseconds, then [image: S_{3}] will reach its final correct value after 60 (20 × 3) nanoseconds. The situation gets worse, if we extend the number of stages for adding more number of bits.

Carry Look-ahead Adder :

A carry look-ahead adder reduces the propagation delay by introducing more complex hardware. In this design, the ripple carry design is suitably transformed such that the carry logic over fixed groups of bits of the adder is reduced to two-level logic. Let us discuss the design in detail.

[image:]

[image:]

Consider the full adder circuit shown above with corresponding truth table. We define two variables as ‘carry generate’ [image: G_{i}] and ‘carry propagate’ [image: P_{i}] then,

[image: P_{i} = A_{i} \oplus B_{i} \newline G_{i} = A_{i} B_{i}]

The sum output and carry output can be expressed in terms of carry generate [image: G_{i}] and carry propagate [image: P_{i}] as

[image: S_{i} = P_{i} \oplus C_{i} \newline C_{i} +1 = G_{i} + P_{i} C_{i}]

where [image: G_{i}] produces the carry when both [image: A_{i}], [image: B_{i}] are 1 regardless of the input carry. [image: P_{i}] is associated with the propagation of carry from [image: C_{i}] to [image: C_{i} + 1].

The carry output Boolean function of each stage in a 4 stage carry look-ahead adder can be expressed as

[image: C_{1} = G_{0} + P_{0} C_{in} \newline C_{2} = G_{1} + P_{1} C_{1} = G_{1} + P_{1} G_{0} + P_{1} P_{0} C_{in} \newline C_{3} = G_{2} + P_{2} C_{2} = G_{2} + P_{2} G_{1} + P_{2} P_{1} G_{0} + P_{2} P_{1} P_{0} C_{in} \newline C_{4} = G_{3} + P_{3} C_{3} = G_{3} + P_{3} G_{2} + P_{3} P_{2} G_{1} + P_{3} P_{2} P_{1} G_{0} + P_{3} P_{2} P_{1} P_{0} C_{in} \newline]

From the above Boolean equations we can observe that [image: C_{4}] does not have to wait for [image: C_{3}] and [image: C_{2}] to propagate but actually [image: C_{4}] is propagated at the same time as [image: C_{3}] and [image: C_{2}]. Since the Boolean expression for each carry output is the sum of products so these can be implemented with one level of AND gates followed by an OR gate.

The implementation of three Boolean functions for each carry output ([image: C_{2}], [image: C_{3}] and [image: C_{4}]) for a carry look-ahead carry generator shown in below figure.

[image:]

Time Complexity Analysis :

We could think of a carry look-ahead adder as made up of two “parts”

	The part that computes the carry for each bit.

	The part that adds the input bits and the carry for each bit position.

The [image: log(n)] complexity arises from the part that generates the carry, not the circuit that adds the bits.

Now, for the generation of the [image: n^{th}] carry bit, we need to perform a AND between (n+1) inputs. The complexity of the adder comes down to how we perform this AND operation. If we have AND gates, each with a fan-in (number of inputs accepted) of k, then we can find the AND of all the bits in [image: log_{k}(n+1)] time. This is represented in asymptotic notation as [image: \Theta(log n)].

Advantages and Disadvantages of Carry Look-Ahead Adder :

Advantages –

	The propagation delay is reduced.

	It provides the fastest addition logic.

Disadvantages –

	The Carry Look-ahead adder circuit gets complicated as the number of variables increase.

	 The circuit is costlier as it involves more number of hardware.

GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.

	GATE CS 2016 (Set-1), Question 43

	GATE CS 2004, Question 90

	GATE CS 2007, Question 85

	GATE CS 2006, Question 85

	GATE CS 1997, Question 15

References –

iitkgp.virtual-labs

Carry-lookahead adder – Wikipedia

Samujjal Das

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Magnitude Comparator

				
						

				
			A magnitude digital Comparator is a combinational circuit that compares two digital or binary numbers in order to find out whether one binary number is equal, less than or greater than the other binary number. We logically design a circuit for which we will have two inputs one for A and other for B and have three output terminals, one for A > B condition, one for A = B condition and one for A < B condition.

[image:]

1-Bit Magnitude Comparator –

A comparator used to compare two bits is called a single bit comparator. It consists of two inputs each for two single bit numbers and three outputs to generate less than, equal to and greater than between two binary numbers.

The truth table for a 1-bit comparator is given below:

[image:]

From the above truth table logical expressions for each output can be expressed as follows:

A>B: AB'
A<B: A'B
A=B: A'B' + AB

From the above expressions we can derive the following formula:

[image:]

By using these Boolean expressions, we can implement a logic circuit for this comparator as given below:

[image:]

2-Bit Magnitude Comparator –

A comparator used to compare two binary numbers each of two bits is called a 2-bit Magnitude comparator. It consists of four inputs and three outputs to generate less than, equal to and greater than between two binary numbers.

The truth table for a 2-bit comparator is given below:

[image:]

From the above truth table K-map for each output can be drawn as follows:

[image:]

[image:]

[image:]

From the above K-maps logical expressions for each output can be expressed as follows:

A>B:A1B1’ + A0B1’B0’ + A1A0B0’
A=B: A1’A0’B1’B0’ + A1’A0B1’B0 + A1A0B1B0 + A1A0’B1B0’
 : A1’B1’ (A0’B0’ + A0B0) + A1B1 (A0B0 + A0’B0’)
 : (A0B0 + A0’B0’) (A1B1 + A1’B1’)
 : (A0 Ex-Nor B0) (A1 Ex-Nor B1)
A<B:A1’B1 + A0’B1B0 + A1’A0’B0

By using these Boolean expressions, we can implement a logic circuit for this comparator as given below:

[image:]

4-Bit Magnitude Comparator –

A comparator used to compare two binary numbers each of four bits is called a 4-bit magnitude comparator. It consists of eight inputs each for two four bit numbers and three outputs to generate less than, equal to and greater than between two binary numbers.

In a 4-bit comparator the condition of A>B can be possible in the following four cases:

	If A3 = 1 and B3 = 0

	If A3 = B3 and A2 = 1 and B2 = 0

	If A3 = B3, A2 = B2 and A1 = 1 and B1 = 0

	If A3 = B3, A2 = B2, A1 = B1 and A0 = 1 and B0 = 0

Similarly the condition for A<B can be possible in the following four cases:

	If A3 = 0 and B3 = 1

	If A3 = B3 and A2 = 0 and B2 = 1

	If A3 = B3, A2 = B2 and A1 = 0 and B1 = 1

	If A3 = B3, A2 = B2, A1 = B1 and A0 = 0 and B0 = 1

The condition of A=B is possible only when all the individual bits of one number exactly coincide with corresponding bits of another number.

From the above statements logical expressions for each output can be expressed as follows:

AA, 831331 r: (A3 EioNor 33)A2132′ a (A3 Ex-Nor 133) (A2 Ex-Nor 132)A131′ a (A3 Ex-Nor 33) (A2 ENor132) (Al Ex-Nor 31)A01301

,13: A3’03 a (A3 Ex-Nor 33)A211:12 a (A3 Ex-Nor 83) (A2 Ex-Nor 132)Ar131 a (A3 Ex-Nor 33) (A2 Ex-Nor32) (Al Ex-Nor 131)A0N30

A=B: (A3 Ex-Nor B3) (A2 Ex-Nor 82) (Al Ex-Nor BI) (AO Ex-Nor BO)

By using these Boolean expressions, we can implement a logic circuit for this comparator as given below:

[image:]

Cascading Comparator –

A comparator performing the comparison operation to more than four bits by cascading two or more 4-bit comparators is called cascading comparator. When two comparators are to be cascaded, the outputs of the lower-order comparator are connected to corresponding inputs of the higher-order comparator.

[image:]

Applications of Comparators –

	Comparators are used in central processing units (CPUs) and microcontrollers (MCUs).

	These are used in control applications in which the binary numbers representing physical variables such as temperature, position, etc. are compared with a reference value.

	Comparators are also used as process controllers and for Servo motor control.

	Used in password verification and biometric applications.

References –

Digital comparator – Wikipedia

Comparator – epgp.inflibnet

Harshita Pandey

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						BCD Adder

				
						

				
			BCD stand for binary coded decimal. Suppose, we have two 4-bit numbers A and B. The value of A and B can varies from 0(0000 in binary) to 9(1001 in binary) because we are considering decimal numbers.

[image:]

The output will varies from 0 to 18, if we are not considering the carry from the previous sum. But if we are considering the carry, then the maximum value of output will be 19 (i.e. 9+9+1 = 19).

When we are simply adding A and B, then we get the binary sum. Here, to get the output in BCD form, we will use BCD Adder.

Example 1:

Input :
A = 0111 B = 1000
Output :
Y = 1 0101

Explanation: We are adding A(=7) and B(=8).
The value of binary sum will be 1111(=15).
But, the BCD sum will be 1 0101,
where 1 is 0001 in binary and 5 is 0101 in binary.

Example 2:

Input :
A = 0101 B = 1001
Output :
Y = 1 0100

Explanation: We are adding A(=5) and B(=9).
The value of binary sum will be 1110(=14).
But, the BCD sum will be 1 0100,
where 1 is 0001 in binary and 4 is 0100 in binary.

Note – If the sum of two number is less then or equal to 9, then the value of BCD sum and binary sum will be same otherwise they will differ by 6(0110 in binary).

Now, lets move to the table and find out the logic when we are going to add “0110”.

[image:]

We are adding “0110” (=6) only to the second half of the table.

The conditions are:

	If C’ = 1 (Satisfies 16-19)

	If S3′.S2′ = 1 (Satisfies 12-15)

	If S3′.S1′ = 1 (Satisfies 10 and 11)

So, our logic is

C' + S3'.S2' + S3'.S1' = 1

Implementation :

[image:]

Read related articles: BCD to 7 Segment Decoder, BCD(8421) to/from Excess-3

SUDIPTADANDAPAT

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Encoders and Decoders

				
						

				
			Prerequisite – Encoder, Decoders

Binary code of N digits can be used to store 2N distinct elements of coded information. This is what encoders and decoders are used for. Encoders convert 2N lines of input into a code of N bits and Decoders decode the N bits into 2N lines.

1. Encoders –

An encoder is a combinational circuit that converts binary information in the form of a 2N input lines into N output lines, which represent N bit code for the input. For simple encoders, it is assumed that only one input line is active at a time.

As an example, let’s consider Octal to Binary encoder. As shown in the following figure, an octal-to-binary encoder takes 8 input lines and generates 3 output lines.

[image:]

Truth Table –

	D7
	D6
	D5
	D4
	D3
	D2
	D1
	D0
	X
	Y
	Z

	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0

	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	1

	0
	0
	0
	0
	0
	1
	0
	0
	0
	1
	0

	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	1

	0
	0
	0
	1
	0
	0
	0
	0
	1
	0
	0

	0
	0
	1
	0
	0
	0
	0
	0
	1
	0
	1

	0
	1
	0
	0
	0
	0
	0
	0
	1
	1
	0

	1
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1

As seen from the truth table, the output is 000 when D0 is active; 001 when D1 is active; 010 when D2 is active and so on.

Implementation –

From the truth table, the output line Z is active when the input octal digit is 1, 3, 5 or 7. Similarly, Y is 1 when input octal digit is 2, 3, 6 or 7 and X is 1 for input octal digits 4, 5, 6 or 7. Hence, the Boolean functions would be:

X = D4 + D5 + D6 + D7
Y = D2 +D3 + D6 + D7
Z = D1 + D3 + D5 + D7

Hence, the encoder can be realised with OR gates as follows:

[image:]

One limitation of this encoder is that only one input can be active at any given time. If more than one inputs are active, then the output is undefined. For example, if D6 and D3 are both active, then, our output would be 111 which is the output for D7. To overcome this, we use Priority Encoders.

Another ambiguity arises when all inputs are 0. In this case, encoder outputs 000 which actually is the output for D0 active. In order to avoid this, an extra bit can be added to the output, called the valid bit which is 0 when all inputs are 0 and 1 otherwise.

Priority Encoder –

A priority encoder is an encoder circuit in which inputs are given priorities. When more than one inputs are active at the same time, the input with higher priority takes precedence and the output corresponding to that is generated.

Let us consider the 4 to 2 priority encoder as an example.

From the truth table, we see that when all inputs are 0, our V bit or the valid bit is zero and outputs are not used. The x’s in the table show the don’t care condition, i.e, it may either be 0 or 1. Here, D3 has highest priority, therefore, whatever be the other inputs, when D3 is high, output has to be 11. And D0 has the lowest priority, therefore the output would be 00 only when D0 is high and the other input lines are low. Similarly, D2 has higher priority over D1 and D0 but lower than D3 therefore the output would be 010 only when D2 is high and D3 are low (D0 & D1 are don’t care).

Truth Table –

	D3
	D2
	D1
	D0
	X
	Y
	V

	0
	0
	0
	0
	x
	x
	0

	0
	0
	0
	1
	0
	0
	1

	0
	0
	1
	x
	0
	1
	1

	0
	1
	x
	x
	1
	0
	1

	1
	x
	x
	x
	1
	1
	1

Implementation –

It can clearly be seen that the condition for valid bit to be 1 is that at least any one of the inputs should be high. Hence,

V = D0 + D1 + D2 + D3

For X:

[image:]

=> X = D2 + D3

For Y:

[image:]

=> Y = D1 D2’ + D3

Hence, the priority 4-to-2 encoder can be realized as follows:

[image:]

2. Decoders –

A decoder does the opposite job of an encoder. It is a combinational circuit that converts n lines of input into 2n lines of output.

Let’s take an example of 3-to-8 line decoder.

Truth Table –

	X
	Y
	Z
	D0
	D1
	D2
	D3
	D4
	D5
	D6
	D7

	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0

	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	0

	0
	1
	0
	0
	0
	1
	0
	0
	0
	0
	0

	0
	1
	1
	0
	0
	0
	1
	0
	0
	0
	0

	1
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0

	1
	0
	1
	0
	0
	0
	0
	0
	1
	0
	0

	1
	1
	0
	0
	0
	0
	0
	0
	0
	1
	0

	1
	1
	1
	0
	0
	0
	0
	0
	0
	0
	1

Implementation –

D0 is high when X = 0, Y = 0 and Z = 0. Hence,

D0 = X’ Y’ Z’

Similary,

D1 = X’ Y’ Z
D2 = X’ Y Z’
D3 = X’ Y Z
D4 = X Y’ Z’
D5 = X Y’ Z
D6 = X Y Z’
D7 = X Y Z

Hence,

[image:]

me_l

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Encoder

				
						

				
			An Encoder is a combinational circuit that performs the reverse operation of Decoder.It has maximum of 2^n input lines and ‘n’ output lines, hence it encodes the information from 2^n inputs into an n-bit code. It will produce a binary code equivalent to the input, which is active High. Therefore, the encoder encodes 2^n input lines with ‘n’ bits.

[image:]

4 : 2 Encoder –

The 4 to 2 Encoder consists of four inputs Y3, Y2, Y1 & Y0 and two outputs A1 & A0. At any time, only one of these 4 inputs can be ‘1’ in order to get the respective binary code at the output. The figure below shows the logic symbol of 4 to 2 encoder :

[image:]

The Truth table of 4 to 2 encoder is as follows :

[image:]

Logical expression for A1 and A0 :

A1 = Y3 + Y2
A0 = Y3 + Y1

The above two Boolean functions A1 and A0 can be implemented using two input OR gates :

[image:]

 8 : 3 Encoder (Octal to Binary) –

The 8 to 3 Encoder or octal to Binary encoder consists of 8 inputs : Y7 to Y0 and 3 outputs : A2, A1 & A0. Each input line corresponds to each octal digit and three outputs generate corresponding binary code.

The figure below shows the logic symbol of octal to binary encoder:

[image:]

The truth table for 8 to 3 encoder is as follows :

[image:]

Logical expression for A2, A1 and A0 :

A2 = Y7 + Y6 + Y5 + Y4
A1 = Y7 + Y6 + Y3 + Y2
A0 = Y7 + Y5 + Y3 + Y1

The above two Boolean functions A2, A1 and A0 can be implemented using four input OR gates :

[image:]

Decimal to BCD Encoder –

The decimal to binary encoder usually consists of 10 input lines and 4 output lines. Each input line corresponds to the each decimal digit and 4 outputs correspond to the BCD code. This encoder accepts the decoded decimal data as an input and encodes it to the BCD output which is available on the output lines. The figure below shows the logic symbol of decimal to BCD encoder :

[image:]

The truth table for decimal to BCD encoder is as follows:

[image:]

Logical expression for A3, A2, A1 and A0 :

 A3 = Y9 + Y8
 A2 = Y7 + Y6 + Y5 +Y4
 A1 = Y7 + Y6 + Y3 +Y2
 A0 = Y9 + Y7 +Y5 +Y3 + Y1

The above two Boolean functions can be implemented using OR gates :

[image:]

Priority Encoder –

A 4 to 2 priority encoder has 4 inputs : Y3, Y2, Y1 & Y0 and 2 outputs : A1 & A0. Here, the input, Y3 has the highest priority, whereas the input, Y0 has the lowest priority. In this case, even if more than one input is ‘1’ at the same time, the output will be the (binary) code corresponding to the input, which is having higher priority.

The truth table for priority encoder is as follows :

[image:]

[image:]

[image:]

The above two Boolean functions can be implemented as :

[image:]

Drawbacks of Normal Encoders –

	There is an ambiguity, when all outputs of encoder are equal to zero.

	If more than one input is active High, then the encoder produces an output, which may not be the correct code.

So, to overcome these difficulties, we should assign priorities to each input of encoder. Then, the output of encoder will be the (code corresponding to the active High inputs, which has higher priority.

Uses of Encoders –

	Encoders are very common electronic circuits used in all digital systems.

	Encoders are used to translate the decimal values to the binary in order to perform the binary functions such as addition, subtraction, multiplication, etc.

	Other applications especially for Priority Encoders may include detecting interrupts in microprocessor applications.

GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.

	GATE CS 2013, Question 65

	GATE CS 2014 (Set 3), Question 65

References –

Encoder – Wikipedia

Priority encoder – Wikipedia

This article is contributed by Harshita Pandey. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Binary Decoder

				
						

				
			In Digital Electronics, discrete quantities of information are represented by binary codes. A binary code of n bits is capable of representing up to 2^n distinct elements of coded information. The name “Decoder” means to translate or decode coded information from one format into another, so a digital decoder transforms a set of digital input signals into an equivalent decimal code at its output. A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2^n unique output lines.

[image:]

Binary Decoder –

	Binary Decoders are another type of digital logic device that has inputs of 2-bit, 3-bit or 4-bit codes depending upon the number of data input lines, so a decoder that has a set of two or more bits will be defined as having an n-bit code, and therefore it will be possible to represent 2^n possible values.

	If a binary decoder receives n inputs it activates one and only one of its 2^n outputs based on that input with all other outputs deactivated. If the n -bit coded information has unused combinations, the decoder may have fewer than 2^n outputs.

	Example, an inverter (NOT-gate) can be classified as a 1-to-2 binary decoder as 1-input and 2-outputs is possible. i.e an input A can give either A or A complement as the output.

	Then we can say that a standard combinational logic decoder is an n-to-m decoder, where m <= 2^n, and whose output, Q is dependent only on its present input states.

	Their purpose is to generate the 2^n (or fewer) minterms of n input variables. Each combination of inputs will assert a unique output.

A Binary Decoder converts coded inputs into coded outputs, where the input and output codes are different and decoders are available to “decode” either a Binary or BCD (8421 code) input pattern to typically a Decimal output code.

Practical “binary decoder” circuits include, 2-to-4, 3-to-8 and 4-to-16 line configurations.

2-to-4 Binary Decoder –

The 2-to-4 line binary decoder depicted above consists of an array of four AND gates. The 2 binary inputs labelled A and B are decoded into one of 4 outputs, hence the description of 2-to-4 binary decoder. Each output represents one of the minterms of the 2 input variables, (each output = a minterm).

The binary inputs A and B determine which output line from Q0 to Q3 is “HIGH” at logic level “1” while the remaining outputs are held “LOW” at logic “0” so only one output can be active (HIGH) at any one time. Therefore, whichever output line is “HIGH” identifies the binary code present at the input, in other words it “decodes” the binary input.

Some binary decoders have an additional input pin labelled “Enable” that controls the outputs from the device. This extra input allows the decoders outputs to be turned “ON” or “OFF” as required. Output is only generated when the Enable input has value 1; otherwise, all outputs are 0. Only a small change in the implementation is required: the Enable input is fed into the AND gates which produce the outputs.

If Enable is 0, all AND gates are supplied with one of the inputs as 0 and hence no output is produced. When Enable is 1, the AND gates get one of the inputs as 1, and now the output depends upon the remaining inputs. Hence the output of the decoder is dependent on whether the Enable is high or low.

GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.

	GATE CS 2007, Question 85

	GATE CS 20130, Question 65

References –

electronicshub – Binary Decoder

This article is contributed by Arushi Dhamija. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Combinational circuits using Decoder

				
						

				
			Prerequisite- Binary Decoder, Multiplexers

A Decoder is a combinational circuit that converts binary information from [image: n] input lines to [image: 2^n] unique output lines. Apart from the Input lines, a decoder may also have an Enable input line.

Decoder as a De-Multiplexer –

A Decoder with Enable input can function as a demultiplexer. A demultiplexer is a circuit that receives information from a single line and directs it to one of [image: 2^n] possible output lines.

A [image: 2^n] demultiplexor receives as input, [image: n] selection lines and one Input line. These selection lines are used to select one output line out of [image: 2^n] possible lines. To implement a [image: 2^n] demultiplexor, we use a [image: n:2^n] decoder with Enable input. The [image: n] selection lines of the demultiplexer are the [image: n] input lines that the decoder gets and the one input line of demulitplexer is the Enable input of the Decoder.

Making 1:4 demultiplexer using 2:4 Decoder with Enable input. Let A, B be the selection lines and EN be the input line for the demultiplexer.

The decoder shown below functions as a 1:4 demultiplexer when EN is taken as a data input line and A and B are taken as the selection inputs. The single input variable E has a path to all four outputs, but the input information is directed to only one of the output lines, as specified by the binary combination of the two selection lines A and B. This can be verified from the truth table of the circuit.

[image: 333]

Truth Table-

[image: \begin{tabular}{|c|c|c||c|c|c|c|} \hline E & A & B & D_0 & D_1 & D_2 & D_3\\ \hline \hline 0 & X & X & 0 & 0 & 0 & 0\\ \hline 1 & 0 & 0 & 1 & 0 & 0 & 0\\ \hline 1 & 0 & 1 & 0 & 1 & 0 & 0\\ \hline 1 & 1 & 0 & 0 & 0 & 1 & 0\\ \hline 1 & 1 & 1 & 0 & 0 & 0 & 1\\ \hline \end{tabular}]

Combinational Logic Implementation using Decoder –

A decoder takes [image: n] input lines and has [image: 2^n] output lines. These output lines can provide the [image: 2^n] minterms of [image: n] input variables.

Since any boolean function can be expressed as a sum of minterms, a decoder that can generate these minterms along with external OR gates that form their logical sums, can be used to form a circuit of any boolean function.

For example, if we need to implement the logic of a full adder, we need a 3:8 decoder and OR gates. The input to the full adder, first and second bits and carry bit, are used as input to the decoder. Let x, y and z represent these three bits. Sum and Carry outputs of a full adder have the following truth tables-

[image: \begin{tabular}{|c|c|c||c|c|} \hline x & y & z & S & C\\ \hline \hline 0 & 0 & 0 & 0 & 0\\ \hline 0 & 0 & 1 & 1 & 0\\ \hline 0 & 1 & 0 & 1 & 0\\ \hline 0 & 1 & 1 & 0 & 1\\ \hline 1 & 0 & 0 & 1 & 0\\ \hline 1 & 0 & 1 & 0 & 1\\ \hline 1 & 1 & 0 & 0 & 1\\ \hline 1 & 1 & 1 & 1 & 1\\ \hline \end{tabular}]

Therefore we have-

[image: S = \sum (1, 2, 4, 7)]

[image: C = \sum (3, 5, 6, 7)]

The following circuit diagram shows the implementation of Full adder using a 3:8 Decoder and OR gates.

[image:]

References-

Digital Design, 5th edition by Morris Mano and Michael Ciletti

cmkmanwani

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Multiplexers | Digital Electronics

				
						

				
			It is a combinational circuit which have many data inputs and single output depending on control or select inputs.​ For N input lines, log n (base2) selection lines, or we can say that for 2n input lines, n selection lines are required. Multiplexers are also known as “Data n selector, parallel to serial convertor, many to one circuit, universal logic circuit​”. Multiplexers are mainly used to increase amount of the data that can be sent over the network within certain amount of time and bandwidth.

[image:]

Now the implementation of 4:1 Multiplexer using truth table and gates.

[image:]

[image:]

Multiplexer can act as universal combinational circuit. All the standard logic gates can be implemented with multiplexers.

a) Implementation of NOT gate using 2 : 1 Mux

NOT Gate :

[image:]

We can analyze it

Y = x’.1 + x.0 = x’

It is NOT Gate using 2:1 MUX.

The implementation of NOT gate is done using “n” selection lines. It cannot be implemented using “n-1” selection lines. Only NOT gate cannot be implemented using “n-1” selection lines.

b) Implementation of AND gate using 2 : 1 Mux

AND GATE

[image:]

This implementation is done using “n-1” selection lines.

c) Implementation of OR gate using 2 : 1 Mux using “n-1” selection lines.

OR GATE

[image:]

Implementation of NAND, NOR, XOR and XNOR gates requires two 2:1 Mux. First multiplexer will act as NOT gate which will provide complemented input to the second multiplexer.

d) Implementation of NAND gate using 2 : 1 Mux

NAND GATE

[image:]

e) Implementation of NOR gate using 2 : 1 Mux

NOR GATE

[image:]

f) Implementation of EX-OR gate using 2 : 1 Mux

EX-OR GATE

[image:]

g) Implementation of EX-NOR gate using 2 : 1 Mux

EX-NOR GATE

[image:]

Implementation of Higher order MUX using lower order MUX

a) 4 : 1 MUX using 2 : 1 MUX

Three(3) ​2 : 1 MUX are required to implement 4 : 1 MUX.

[image:]

Similarly,

While 8 : 1 MUX require seven(7) ​2 : 1 MUX, 16 : 1 MUX require fifteen(15) ​2 :1 MUX, 64 : 1 MUX requires sixty three(63)​ 2 : 1 MUX.

Hence, we can draw a conclusion,

2n : 1 MUX requires (2n- 1) 2 : 1 MUX.

b) 16 : 1 MUX using 4 : 1 MUX

[image:]

In general, to implement B : 1 MUX using A : 1 MUX , one formula is used to implement the same.

B / A = K1,

K1/ A = K2,

K2/ A = K3

………………

KN-1 / A = KN = 1 (till we obtain 1 count of MUX).

And then add all the numbers of MUXes = K1 + K2 + K3 + …. + KN.

For example​ : To implement 64 : 1 MUX using 4 : 1 MUX

Using the above formula, we can obtain the same.

64 / 4 = 16

16 / 4 = 4

4 / 4 = 1 (till we obtain 1 count of MUX)

Hence, total number of 4 : 1 MUX are required to implement 64 : 1 MUX = 16 + 4 + 1 = 21.

An example to implement a boolean function if minimal and don’t care terms are given using MUX​.

f (A, B, C) = Σ (1, 2, 3, 5, 6) with don’t care (7) using 4 : 1 MUX using as

a) AB as select : ​Expanding the minterms to its boolean form and will see its 0 or 1 value in Cth place so that they can be placed in that manner.

[image:]

b) AC as select : Expanding the minterms to its boolean form and will see its 0 or 1 value in Bth place so that they can be place in that manner.

[image:]

c) BC as select : ​Expanding the minterms to its boolean form and will see its 0 or 1 value in Ath place so that they can be place in that manner.

[image:]

This article is contributed by Sumouli Choudhury.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

Flip-Flops and Sequential Circuits

						Flip-flop types and their Conversion

				
						

				
			Flip-flop is a circuit that maintains a state until directed by input to change the state. A basic flip-flop can be constructed using two-NAND or two-NOR gates.

Types of flip-flops:

	RS Flip Flop

	JK Flip Flop

	D Flip Flop

	T Flip Flop

Logic diagrams and truth tables of the different types of flip-flops are as follows:

S-R Flip Flop :

[image: SR_flip]

J-K Flip Flop:

[image: JK_flip]

D Flip Flop :

[image: D- logic diag]

[image: D flip flop]

T Flip Flop :

[image: T- logic diag]

[image: T flip flop]

Conversion for FlipFlops :-

EXCITATION TABLE:

[image: flip_1]

Steps To Convert from One FlipFlop to Other :

Let there be required flipflop to be constructed using sub-flipflop:

	Draw the truth table of required flipflop.

	Write the corresponding outputs of sub-flipflop to be used from the excitation table.

	Draw K-Maps using required flipflop inputs and obtain excitation functions for sub-flipflop inputs.

	Construct logic diagram according to the functions obtained.

i) Convert SR To JK FlipFlop

[image: flip_2]

Excitation Functions:

[image: flip_3]

ii) Convert SR To D FlipFlop:

[image: flip_4]

Excitation Functions:

S = D

R = D‘

[image: flip_5]

[image: flip_6]

This article is contributed by Kriti Kushwaha .

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Master Slave JK Flip Flop

				
						

				
			Prerequisite – Flip-flop types and their Conversion

Race Around Condition In JK Flip-flop – For J-K flip-flop, if J=K=1, and if clk=1 for a long period of time, then Q output will toggle as long as CLK is high, which makes the output of the flip-flop unstable or uncertain. This problem is called race around condition in J-K flip-flop. This problem (Race Around Condition) can be avoided by ensuring that the clock input is at logic “1” only for a very short time. This introduced the concept of Master Slave JK flip flop.

Master Slave JK flip flop –

The Master-Slave Flip-Flop is basically a combination of two JK flip-flops connected together in a series configuration. Out of these, one acts as the “master” and the other as a “slave”. The output from the master flip flop is connected to the two inputs of the slave flip flop whose output is fed back to inputs of the master flip flop.

In addition to these two flip-flops, the circuit also includes an inverter. The inverter is connected to clock pulse in such a way that the inverted clock pulse is given to the slave flip-flop. In other words if CP=0 for a master flip-flop, then CP=1 for a slave flip-flop and if CP=1 for master flip flop then it becomes 0 for slave flip flop.

[image:]

Working of a master slave flip flop –

	When the clock pulse goes to 1, the slave is isolated; J and K inputs may affect the state of the system. The slave flip-flop is isolated until the CP goes to 0. When the CP goes back to 0, information is passed from the master flip-flop to the slave and output is obtained.

	Firstly the master flip flop is positive level triggered and the slave flip flop is negative level triggered, so the master responds before the slave.

	If J=0 and K=1, the high Q’ output of the master goes to the K input of the slave and the clock forces the slave to reset, thus the slave copies the master.

	If J=1 and K=0, the high Q output of the master goes to the J input of the slave and the Negative transition of the clock sets the slave, copying the master.

	If J=1 and K=1, it toggles on the positive transition of the clock and thus the slave toggles on the negative transition of the clock.

	If J=0 and K=0, the flip flop is disabled and Q remains unchanged.

Timing Diagram of a Master flip flop –

[image:]

	When the Clock pulse is high the output of master is high and remains high till the clock is low because the state is stored.

	Now the output of master becomes low when the clock pulse becomes high again and remains low until the clock becomes high again.

	Thus toggling takes place for a clock cycle.

	When the clock pulse is high, the master is operational but not the slave thus the output of the slave remains low till the clock remains high.

	When the clock is low, the slave becomes operational and remains high until the clock again becomes low.

	Toggling takes place during the whole process since the output is changing once in a cycle.

This makes the Master-Slave J-K flip flop a Synchronous device as it only passes data with the timing of the clock signal.

Harshita Pandey

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Introduction of Sequential Circuits

				
						

				
			A Sequential circuit combinational logic circuit that consists of inputs variable (X), logic gates (Computational circuit), and output variable (Z).

[image:]

Combinational circuit produces an output based on input variable only, but Sequential circuit produces an output based on current input and previous input variables. That means sequential circuits include memory elements which capable of storing binary information. That binary information defines the state of the sequential circuit at that time. A latch capable of storing one bit of information.

[image:]

As shown in figure there are two types of input to the combinational logic :

	External inputs which not controlled by the circuit.

	Internal inputs which are a function of a previous output states.

Secondary inputs are state variables produced by the storage elements, where as secondary outputs are excitations for the storage elements.

Types of Sequential Circuits – There are two types of sequential circuit :

	Asynchronous sequential circuit – These circuit do not use a clock signal but uses the pulses of the inputs. These circuits are faster than synchronous sequential circuits because there is clock pulse and change their state immediately when there is a change in the input signal. We use asynchronous sequential circuits when speed of operation is important and independent of internal clock pulse.
[image:]

But these circuits are more difficult to design and their output is uncertain.

	Synchronous sequential circuit – These circuit uses clock signal and level inputs (or pulsed) (with restrictions on pulse width and circuit propagation). The output pulse is the same duration as the clock pulse for the clocked sequential circuits. Since they wait for the next clock pulse to arrive to perform the next operation, so these circuits are bit slower compared to asynchronous. Level output changes state at the start of an input pulse and remains in that until the next input or clock pulse.
[image:]

We use synchronous sequential circuit in synchronous counters, flip flops, and in the design of MOORE-MEALY state management machines.

We use sequential circuits to design Counters, Registers, RAM, MOORE/MEALY Machine and other state retaining machines.

GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.

	GATE CS 2010, Question 65

	GATE CS 1999, Question 33

	GATE CS 2014 (Set 3), Question 65

References –

Sequential Circuits

Sequential logic – Wikipedia

This article is contributed by Mithlesh Upadhyay. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Synchronous Sequential Circuits | Digital Logic

				
						

				
			Steps to solve a problem:

1. Draw the state diagram from the problem statement or from the given state table.

Example: Serial Adder.

The functioning of serial adder can be depicted by the following state diagram. X1 and X2 are inputs, A and B are states representing carry.

[image:]

2. Draw the state table. If there is any redundant state then reduce the state table.

[image:]

3. Select state assignment i.e. assign binary numbers to the states according to total number states. Also decide the memory element (flip-flops) for the circuit.

A -> 0

B -> 1

4. Replace the assignments in the state table to obtain Transition table:

[image:]

5. Separate the output table from the transition table.

[image:]

z = x1x’2y+x’1x2y’+x1x2y+x1x’2y’

6. Excitation table for the flip-flop is obtained from the transition table using the output of flip-flop.

Excitation table for D flip-flop:

[image:]

D = x1 x2 +x1 y+x2 y

7. Draw the circuit diagram using gates and flip-flops.

[image:]

This article is contributed by Kriti Kushwaha

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Asynchronous Sequential Circuits

				
						

				
			Prerequisite – Introduction of Sequential Circuits

Sequential circuits are those which use previous and current input variables by storing their information and placing them back into the circuit on the next clock (activation) cycle.

There are two types of input to the combinational logic. External inputs which come from outside the circuit design which are not controlled by the circuit Internal inputs which are functions of a previous output state.

Asynchronous sequential circuits do not use clock signals as synchronous circuits do. Instead, the circuit is driven by the pulses of the inputs which means the state of the circuit changes when the inputs change. Also, they don’t use clock pulses. The change of internal state occurs when there is a change in the input variable. Their memory elements are either un-clocked flip-flops or time-delay elements. They are similar to combinational circuits with feedback.

Advantages –

	No clock signal, hence no waiting for a clock pulse to begin processing inputs, therefore fast. Their speed is faster and theoretically limited only by propagation delays of the logic gates.

	Robust handling. Higher performance function units, which provide average-case completion rather than worst-case completion. Lower power consumption because no transistor transitions when it is not performing a useful computation. Absence of clock drivers reduce power consumption. Less severe electromagnetic interference (EMI).

	More tolerant to process variations and external voltage fluctuations. Achieve high performance while gracefully handling variable input and output rates and mismatched pipeline stage delays. Freedom from difficulties of distributing a high-fan-out, timing-sensitive clock signal. Better modularity.

	Less assumptions about the manufacturing process. Circuit speed adapts to changing temperature and voltage conditions. Immunity to transistor-to-transistor variability in the manufacturing process, which is one of the most serious problems faced by the semiconductor industry

Disadvantages –

	Some asynchronous circuits may require extra power for certain operations.

	More difficult to design and subject to problems like sensitivity to the relative arrival times of inputs at gates. If transitions on two inputs arrive at almost the same time, the circuit can go into the wrong state depending on slight differences in the propagation delays of the gates which is known as race condition.

	Number of circuit elements (transistors) maybe double that of synchronous circuits. Fewer people are trained in this style compared to synchronous design. Difficult to test and debug. Their output is uncertain.

	Performance of asynchronous circuits may be reduced in architectures that have a complex data path. Lack of dedicated, asynchronous design-focused commercial EDA tools.

References –

Asynchronous circuit – Wikipedia

Asynchronous Sequential Circuits – viden

smriti satyanarayana

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

Register and Counters

						Counters in Digital Logic

				
						

				
			According to Wikipedia, in digital logic and computing, a Counter is a device which stores (and sometimes displays) the number of times a particular event or process has occurred, often in relationship to a clock signal. Counters are used in digital electronics for counting purpose, they can count specific event happening in the circuit. For example, in UP counter a counter increases count for every rising edge of clock. Not only counting, a counter can follow the certain sequence based on our design like any random sequence 0,1,3,2… .They can also be designed with the help of flip flops.

Counter Classification

Counters are broadly divided into two categories

	Asynchronous counter

	Synchronous counter

1. Asynchronous Counter

In asynchronous counter we don’t use universal clock, only first flip flop is driven by main clock and the clock input of rest of the following counters is driven by output of previous flip flops. We can understand it by following diagram-[image: digi1]

It is evident from timing diagram that Q0 is changing as soon as the rising edge of clock pulse is encountered, Q1 is changing when rising edge of Q0 is encountered(because Q0 is like clock pulse for second flip flop) and so on. In this way ripples are generated through Q0,Q1,Q2,Q3 hence it is also called RIPPLE counter.

2. Synchronous Counter

Unlike the asynchronous counter, synchronous counter has one global clock which drives each flip flop so output changes in parallel. The one advantage of synchronous counter over asynchronous counter is, it can operate on higher frequency than asynchronous counter as it does not have cumulative delay because of same clock is given to each flip flop.

[image: digi2]

 Synchronous counter circuit

[image: digi3]

Timing diagram synchronous counter

From circuit diagram we see that Q0 bit gives response to each falling edge of clock while Q1 is dependent on Q0, Q2 is dependent on Q1 and Q0 , Q3 is dependent on Q2,Q1 and Q0.

Decade Counter

A decade counter counts ten different states and then reset to its initial states. A simple decade counter will count from 0 to 9 but we can also make the decade counters which can go through any ten states between 0 to 15(for 4 bit counter).

	Clock pulse
	Q3
	Q2
	Q1
	Q0

	0
	0
	0
	0
	0

	1
	0
	0
	0
	1

	2
	0
	0
	1
	0

	3
	0
	0
	1
	1

	4
	0
	1
	0
	0

	5
	0
	1
	0
	1

	6
	0
	1
	1
	0

	7
	0
	1
	1
	1

	8
	1
	0
	0
	0

	9
	1
	0
	0
	1

	10
	0
	0
	0
	0

 Truth table for simple decade counter

[image: digi4]

Decade counter circuit diagram

We see from circuit diagram that we have used nand gate for Q3 and Q1 and feeding this to clear input line because binary representation of 10 is—

1010

And we see Q3 and Q1 are 1 here, if we give NAND of these two bits to clear input then counter will be clear at 10 and again start from beginning.

Important point: Number of flip flops used in counter are always greater than equal to (log2 n) where n=number of states in counter.

Some previous years gate questions on Counters

Q1. Consider the partial implementation of a 2-bitt counter using T flip-flops following the sequence 0-2-3-1-0, as shown below

[image: digi5]

To complete the circuit, the input X should be

(A) Q2′

 (B) Q2 + Q1

 (C) (Q1 ⊕ Q2)’

 (D) Q1 ⊕ Q2 (GATE-CS-2004)

Solution:

From circuit we see

T1=XQ1’+X’Q1—-(1)

AND

T2=(Q2 ⊕ Q1)’—-(2)

AND DESIRED OUTPUT IS 00->10->11->01->00

SO X SHOULD BE Q1Q2’+Q1’Q2 SATISFYING 1 AND 2.

SO ANS IS (D) PART.

Q2. The control signal functions of a 4-bit binary counter are given below (where X is “don’t care”)

 The counter is connected as follows:

[image: digi6]

Assume that the counter and gate delays are negligible. If the counter starts at 0, then it cycles through the following sequence:

(A) 0,3,4

(B) 0,3,4,5

 (C) 0,1,2,3,4

 (D) 0,1,2,3,4,5 (GATE-CS-2007)

Solution:

Initially A1 A2 A3 A4 =0000

Clr=A1 and A3

So when A1 and A3 both are 1 it again goes to 0000

Hence 0000(init.) -> 0001(A1 and A3=0)->0010 (A1 and A3=0) -> 0011(A1 and A3=0) -> 0100 (A1 and A3=1)[clear condition satisfied] ->0000(init.) so it goes through 0->1->2->3->4

Ans is (C) part.

Quiz on Digital Logic

Article contributed by Anuj Batham, Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		Digital Electronics & Logic Design
 counter

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Design counter for given sequence

				
						

				
			Prerequisite – Counters

Problem – Design synchronous counter for sequence: 0 → 1 → 3 → 4 → 5 → 7 → 0, using T flip-flop.

Explanation – For given sequence, state transition diagram as following below:

[image:]

State transition table logic:

	Present State
	Next State

	0
	1

	1
	3

	3
	4

	4
	5

	5
	7

	7
	0

State transition table for given sequence:

	Present State
	Next State

	Q3
	Q2
	Q1
	Q3(t+1)
	Q2(t+1)
	Q1(t+1)

	0
	0
	0
	0
	0
	1

	0
	0
	1
	0
	1
	1

	0
	1
	1
	1
	0
	0

	1
	0
	0
	1
	0
	1

	1
	0
	1
	1
	1
	1

	1
	1
	1
	0
	0
	0

T flip-flop – If value of Q changes either from 0 to 1 or from 1 to 0 then input for T flip-flop is 1 else input value is 0.

	Qt
	Qt+1
	T

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	0

Draw input table of all T flip-flops by using the excitation table of T flip-flop. As nature of T flip-flop is toggle in nature. Here, Q3 as Most significant bit and Q1 as least significant bit.

	Input table of Flip-Flops

	T3
	T2
	T1

	0
	0
	1

	0
	1
	1

	1
	1
	0

	0
	0
	0

	0
	1
	0

	1
	1
	1

Find value of T3, T2, T1 in terms of Q3, Q2, Q1 using K-Map (Karnaugh Map):

Therefore,

T3 = Q2

Therefore,

T2 = Q1 + Q2

Therefore,

T1 = Q3’Q2’ + Q3Q2

Now, you can design required circuit using expressions of K-maps:

[image: 66666]

nikhiljain17

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						n-bit Johnson Counter

				
						

				
			Prerequisite – Counters

Johnson counter also known as creeping counter, is an example of synchronous counter. In Johnson counter, the complemented output of last flip flop is connected to input of first flip flop and to implement n-bit Johnson counter we require n flip-flop.It is one of the most important type of shift register counter. It is formed by the feedback of the output to its own input.Johnson counter is a ring with an inversion.Another name of Johnson counter are:creeping counter, twisted ring counter, walking counter, mobile counter and switch tail counter.

 Total number of used and unused states in n-bit Johnson counter:

 number of used states=2n

 number of unused states=2n – 2*n

 Example:

If n=4

 4-bit Johnson counter

Initially, suppose all flip-flops are reset.

[image: 11]

Truth Table:

[image: 22]

where,

CP is clock pulse and

Q1, Q2, Q3, Q4 are the states.

Question: Determine the total number of used and unused states in 4-bit Johnson counter.

Answer: Total number of used states= 2*n

 = 2*4

 = 8

Total number of unused states= 2n – 2*n

 = 24-2*4

 = 8

Everything has some advantages and disadvantages.

Advantages of Johnson counter:

	The Johnson counter has same number of flip flop but it can count twice the number of states the ring counter can count.

	It can be implemented using D and JK flip flop.

	Johnson ring counter is used to count the data in a continuous loop.

	Johnson counter is a self-decoding circuit.

Disadvantages of Johnson counter:

	Johnson counter doesn’t count in a binary sequence.

	In Johnson counter more number of states remain unutilized than the number of states being utilized.

	The number of flip flops needed is one half the number of timing signals.

	It can be constructed for any number of timing sequence.

Applications of Johnson counter:

	Johnson counter is used as a synchronous decade counter or divider circuit.

	It is used in hardware logic design to create complicated Finite states machine. ex: ASIC and FPGA design.

	The 3 stage Johnson counter is used as a 3 phase square wave generator which produces 1200 phase shift.

	It is used to divide the frequency of the clock signal by varrying their feedback.

azkia anam

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Amortized analysis for increment in counter

				
						

				
			Amortized analysis refers to determining the time-averaged running time for a sequence (not an individual) operation. It is different from average case analysis because here, we don’t assumes that the data arranged in average (not very bad) fashion like we do for average case analysis for quick sort. That is, amortized analysis is worst case analysis but for a sequence of operation rather than individual one. It applies to the method that consists for the sequence of operation, where vast majority of operation is cheap but some of the operation are expensive. This can be visualized with the help of binary counter which is implemented below.

Let’s see this by implementing a increment counter in C. First, let’s see how counter increment works.

Let a variable i contains a value 0 and we performs i++ many time. Since, on hardware every operation is performed in binary form. Let binary number stored in 8 bit. So, value is 00000000. Let’s increment many time. So, the pattern we finds are as :

00000000, 00000001, 00000010, 00000011, 00000100, 00000101, 00000110, 00000111, 00001000 and so on …..

Steps :

1. Iterate from rightmost and make all one to zero until finds first zero.

2. After iteration, if index is greater than or equal to zero, then make zero lie on that position to one.

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

#include <bits / stdc++.h>
using namespace std;

int main()
{
 char str[] = "10010111";
 int length = strlen(str);
 int i = length - 1;
 while (str[i] == '1') {
 str[i] = '0';
 i--;
 }
 if (i >= 0)
 str[i] = '1';
 printf("% s", str);
}

Output:

10011000

On a simple look on program or algorithm, its running cost looks proportional to the number of bit but in real, it is not proportional to number of bit. Let’s see how !

Let’s assume that increment operation is performed k time. We see that in every increment, its rightmost bit is getting flipped. So, number of flipping for LSB is k. For, second rightmost is flipped after a gap, i.e., 1 time in 2 increment. 3rd rightmost – 1 time in 4 increment. 4th rightmost – 1 time in 8 increment. So, number of flipping is k/2 for 2nd rightmost bit, k/4 for 3rd rightmost bit, k/8 for 4th rightmost bit and so on …

Total cost will be the total number of flipping, that is,

C(k) = k + k/2 + k/4 + k/8 + k/16 + …… which is Geometric Progression series and also,

C(k) < k + k/2 + k/4 + k/8 + k/16 + k/32 + …… up to infinity

So, C(k) < k/(1-1/2)

and so, C(k) < 2k

So, C(k)/k < 2

Hence, we find that average cost for increment a counter for one time is constant and it does not depend on the number of bit. We conclude that increment of a counter is constant cost operation.

Refernces :

	 http://www.cs.cornell.edu/courses/cs3110/2013sp/supplemental/recitations/rec21.html

	http://faculty.cs.tamu.edu/klappi/csce411-s17/csce411-amortized3.pdf

kaditya139

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Analysis
Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Ripple Counter

				
						

				
			Prerequisite – Counters, n-bit Johnson Counter

A counter is basically used to count the number of clock pulses applied to a flip-flop. It can also be used for Frequency divider, time measurement, frequency measurement, distance measurement and also for generating square waveforms. In this, the flip-flops are asynchronous counters and are supplied with different clock signals, there may be a delay in producing output.

Also, a few numbers of logic gates are needed to design asynchronous counters. So they are elementary in design and also are less expensive.

Ripple counter –

A n-bit ripple counter can count up to 2n states. It is also known as MOD n counter. It is known as ripple counter because of the way the clock pulse ripples its way through the flip-flops. Some of the features of ripple counter are:

	It is an asynchronous counter.

	Different flip-flops are used with a different clock pulse.

	All the flip-flops are used in toggle mode.

	Only one flip-flop is applied with an external clock pulse and another flip-flop clock is obtained from the output of the previous flip-flop.

	The flip-flop applied with external clock pulse act as LSB (Least Significant Bit) in the counting sequence.

A counter may be an up counter that counts upwards or can be a down counter that counts downwards or can do both i.e.count up as well as count downwards depending on the input control. The sequence of counting usually gets repeated after a limit. When counting up, for n-bit counter the count sequence goes from 000, 001, 010, … 110, 111, 000, 001, … etc. When counting down the count sequence goes in the opposite manner: 111, 110, … 010, 001, 000, 111, 110, … etc.

A 3-bit Ripple counter using JK flip-flop –

[image:]

In the circuit shown in above figure, Q0(LSB) will toggle for every clock pulse because JK flip-flop works in toggle mode when both J and K are applied 1, 1 or high input. The following counter will toggle when the previous one changes from 1 to 0

Truth Table –

The 3-bit ripple counter used in the circuit above has eight different states, each one of which represents a count value. Similarly, a counter having n flip-flops can have a maximum of 2 to the power n states. The number of states that a counter owns is known as its mod (modulo) number. Hence a 3-bit counter is a mod-8 counter.

A mod-n counter may also be described as a divide-by-n counter. This is because the most significant flip-flop (the furthest flip-flop from the original clock pulse) produces one pulse for every n pulses at the clock input of the least significant flip-flop (the one triggers by the clock pulse). Thus, the above counter is an example of a divide-by-4 counter.

Timing diagram – Let us assume that the clock is negative edge triggered so above counter will act as an up counter because the clock is negative edge triggered and output is taken from Q.

Counters are used very frequently to divide clock frequencies and their uses mainly involve in digital clocks and in multiplexing. The widely known example of the counter is parallel to serial data conversion logic.

Himanshi_Singh

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS
 counter

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Shift Registers

				
						

				
			A Flip flops can be used to store a single bit of binary data (1or 0). However in order to store multiple bits of data we need multiple flip flops. N flip flops are to be connected in an order to store n bits of data. A Register is a device which is used to store such information. It is a group of flip flops connected in series used to store multiple bits of data.

The information stored within these registers can be transferred with the help of shift registers. Shift Register is a group of flip flops used to store multiple bits of data. The bits stored in such registers can be made to move within the registers and in/out of the registers by applying clock pulses. An n-bit shift register can be formed by connecting n flip-flops where each flip flop stores a single bit of data.

The registers which will shift the bits to left are called “Shift left registers”.

The registers which will shift the bits to right are called “Shift right registers”.

Shift registers are basically of 4 types. These are:

	Serial In Serial Out shift register

	Serial In parallel Out shift register

	Parallel In Serial Out shift register

	Parallel In parallel Out shift register

 Serial-In Serial-Out Shift Register (SISO) –

The shift register, which allows serial input (one bit after the other through a single data line) and produces a serial output is known as Serial-In Serial-Out shift register. Since there is only one output, the data leaves the shift register one bit at a time in a serial pattern, thus the name Serial-In Serial-Out Shift Register.

The logic circuit given below shows a serial-in serial-out shift register. The circuit consists of four D flip-flops which are connected in a serial manner. All these flip-flops are synchronous with each other since the same clock signal is applied to each flip flop.

[image:]

The above circuit is an example of shift right register, taking the serial data input from the left side of the flip flop. The main use of a SISO is to act as a delay element.

 Serial-In Parallel-Out shift Register (SIPO) –

The shift register, which allows serial input (one bit after the other through a single data line) and produces a parallel output is known as Serial-In Parallel-Out shift register.

The logic circuit given below shows a serial-in parallel-out shift register. The circuit consists of four D flip-flops which are connected. The clear (CLR) signal is connected in addition to clock signal to all the 4 flip flops in order to RESET them. The output of the first flip flop is connected to the input of the next flip flop and so on. All these flip-flops are synchronous with each other since the same clock signal is applied to each flip flop.

[image:]

The above circuit is an example of shift right register, taking the serial data input from the left side of the flip flop and producing a parallel output. They are used in communication lines where demultiplexing of a data line into several parallel line is required because the main use of SIPO register is to convert serial data into parallel data.

Parallel-In Serial-Out Shift Register (PISO) –

The shift register, which allows parallel input (data is given separately to each flip flop and in a simultaneous manner) and produces a serial output is known as Parallel-In Serial-Out shift register.

The logic circuit given below shows a parallel-in serial-out shift register. The circuit consists of four D flip-flops which are connected. The clock input is directly connected to all the flip flops but the input data is connected individually to each flip flop through a multiplexer at input of every flip flop. The output of the previous flip flop and parallel data input are connected to the input of the MUX and the output of MUX is connected to the next flip flop. All these flip-flops are synchronous with each other since the same clock signal is applied to each flip flop.

[image:]

 A Parallel in Serial out (PISO) shift register us used to convert parallel data to serial data.

 Parallel-In Parallel-Out Shift Register (PIPO) –

The shift register, which allows parallel input (data is given separately to each flip flop and in a simultaneous manner) and also produces a parallel output is known as Parallel-In parallel-Out shift register.

The logic circuit given below shows a parallel-in parallel-out shift register. The circuit consists of four D flip-flops which are connected. The clear (CLR) signal and clock signals are connected to all the 4 flip flops. In this type of register there are no interconnections between the individual flip-flops since no serial shifting of the data is required. Data is given as input separately for each flip flop and in the same way, output also collected individually from each flip flop.

[image:]

A Parallel in Parallel out (PIPO) shift register is used as a temporary storage device and like SISO Shift register it acts as a delay element.

 Bidirectional Shift Register –

If we shift a binary number to the left by one position, it is equivalent to multiplying the number by 2 and if we shift a binary number to the right by one position, it is equivalent to dividing the number by 2.To perform these operations we need a register which can shift the data in either direction.

Bidirectional shift registers are the registers which are capable of shifting the data either right or left depending on the mode selected. If the mode selected is 1(high), the data will be shifted towards the right direction and if the mode selected is 0(low), the data will be shifted towards the left direction.

The logic circuit given below shows a Bidirectional shift register. The circuit consists of four D flip-flops which are connected. The input data is connected at two ends of the circuit and depending on the mode selected only one and gate is in the active state.

[image:]

Shift Register Counter –

Shift Register Counters are the shift registers in which the outputs are connected back to the inputs in order to produce particular sequences. These are basically of two types:

	 Ring Counter –
A ring counter is basically a shift register counter in which the output of the first flip flop is connected to the next flip flop and so on and the output of the last flip flop is again fed back to the input of the first flip flop, thus the name ring counter. The data pattern within the shift register will circulate as long as clock pulses are applied.

The logic circuit given below shows a Ring Counter. The circuit consists of four D flip-flops which are connected. Since the circuit consists of four flip flops the data pattern will repeat after every four clock pulses as shown in the truth table below:

[image:]

[image:]

A Ring counter is generally used because it is self-decoding. No extra decoding circuit is needed to determine what state the counter is in.

	 Johnson Counter –

A Johnson counter is basically a shift register counter in which the output of the first flip flop is connected to the next flip flop and so on and the inverted output of the last flip flop is again fed back to the input of the first flip flop. They are also known as twisted ring counters.

 The logic circuit given below shows a Johnson Counter. The circuit consists of four D flip-flops which are connected. An n-stage Johnson counter yields a count sequence of 2n different states, thus also known as mod-2n counter. Since the circuit consists of four flip flops the data pattern will repeat every eight clock pulses as shown in the truth table below:

[image:]

[image:]

The main advantage of Johnson counter is that it only needs n number of flip-flops compared to the ring counter to circulate a given data to generate a sequence of 2n states.

Applications of shift Registers –

	The shift registers are used for temporary data storage.

	The shift registers are also used for data transfer and data manipulation.

	The serial-in serial-out and parallel-in parallel-out shift registers are used to produce time delay to digital circuits.

	The serial-in parallel-out shift register is used to convert serial data into parallel data thus they are used in communication lines where demultiplexing of a data line into several parallel line is required.

	A Parallel in Serial out shift register us used to convert parallel data to serial data.

Reference –

Registers – ee.usyd.edu.au

Harshita Pandey

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

Memory and Programmable Logic

						Read-Only Memory (ROM) | Classification and Programming

				
						

				
			Read-Only Memory (ROM) is the primary memory unit of any computer system along with the Random Access Memory (RAM), but unlike RAM, in ROM, the binary information is stored permanently . Now, this information to be stored is provided by the designer and is then stored inside the ROM . Once, it is stored, it remains within the unit, even when power is turned off and on again .

The information is embedded in the ROM, in the form of bits, by a process known as programming the ROM . Here, programming is used to refer to the hardware procedure which specifies the bits that are going to be inserted in the hardware configuration of the device . And this is what makes ROM a Programmable Logic Device (PLD) .

Programmable Logic Device

A Programmable Logic Device (PLD) is an IC (Integrated Circuit) with internal logic gates connected through electronic paths that behave similar to fuses . In the original state, all the fuses are intact, but when we program these devices, we blow away certain fuses along the paths that must be removed to achieve a particular configuration. And this is what happens in ROM, ROM consists of nothing but basic logic gates arranged in such a way that they store the specified bits.

Typically, a PLD can have hundreds to millions of gates interconnected through hundreds to thousands of internal paths . In order to show the internal logic diagram of such a device a special symbology is used, as shown below-

[image:]

The first image shows the conventional way of representing inputs to a logic gate and the second symbol shows the special way of showing inputs to a logic gate, called as Array Logic Symbol, where each vertical line represents the input to the logic gate .

Structure of ROM

The block diagram for the ROM is as given below-

[image:]

Block Structure

	
It consists of k input lines and n output lines .

	 The k input lines is used to take the input address from where we want to access the content of the ROM .

	 Since each of the k input lines can be either 0 or 1, so there are 2[image: ^k] total addresses which can be referred to by these input lines and each of these addresses contain n bit information, which is given out as the output of the ROM.

	 Such a ROM is specified as 2[image: ^k] x n ROM .

Internal Structure

	
It consists of two basic components – Decoder and OR gates .

	A Decoder is a combinational circuit which is used to decode any encoded form (such as binary, BCD) to a more known form (such as decimal form) .

	In ROM, the input to a decoder will be in binary form and the output will represent its decimal equivalent .

	 The Decoder is represented as l x 2[image: ^l], that is, it has l inputs and has 2[image: ^l] outputs, which implies that it will take l-bit binary number and decode it into one of the 2[image: ^l] decimal number .

	 All the OR gates present in the ROM will have outputs of the decoder as their input .

Classification Of ROM

	Mask ROM – In this type of ROM, the specification of the ROM (its contents and their location), is taken by the manufacturer from the customer in tabular form in a specified format and then makes corresponding masks for the paths to produce the desired output . This is costly, as the vendor charges special fee from the customer for making a particular ROM (recommended, only if large quantity of the same ROM is required).

Uses – They are used in network operating systems, server operating systems, storing of fonts for laser printers, sound data in electronic musical instruments .

	PROM – It stands for Programmable Read-Only Memory . It is first prepared as blank memory, and then it is programmed to store the information . The difference between PROM and Mask ROM is that PROM is manufactured as blank memory and programmed after manufacturing, whereas a Mask ROM is programmed during the manufacturing process.

To program the PROM, a PROM programmer or PROM burner is used . The process of programming the PROM is called as burning the PROM . Also, the data stored in it cannot be modified, so it is called as one – time programmable device.

Uses – They have several different applications, including cell phones, video game consoles, RFID tags, medical devices, and other electronics.

	EPROM – It stands for Erasable Programmable Read-Only Memory . It overcomes the disadvantage of PROM that once programmed, the fixed pattern is permanent and cannot be altered . If a bit pattern has been established, the PROM becomes unusable, if the bit pattern has to be changed .
This problem has been overcome by the EPROM, as when the EPROM is placed under a special ultraviolet light for a length of time, the shortwave radiation makes the EPROM return to its initial state, which then can be programmed accordingly . Again for erasing the content, PROM programmer or PROM burner is used.

Uses – Before the advent of EEPROMs, some micro-controllers, like some versions of Intel 8048, the Freescale 68HC11 used EPROM to store their program .

	EEPROM – It stands for Electrically Erasable Programmable Read-Only Memory . It is similar to EPROM, except that in this, the EEPROM is returned to its initial state by application of an electrical signal, in place of ultraviolet light . Thus, it provides the ease of erasing, as this can be done, even if the memory is positioned in the computer. It erases or writes one byte of data at a time .
Uses – It is used for storing the computer system BIOS.

	Flash ROM – It is an enhanced version of EEPROM .The difference between EEPROM and Flash ROM is that in EEPROM, only 1 byte of data can be deleted or written at a particular time, whereas, in flash memory, blocks of data (usually 512 bytes) can be deleted or written at a particular time . So, Flash ROM is much faster than EEPROM .
Uses – Many modern PCs have their BIOS stored on a flash memory chip, called as flash BIOS and they are also used in modems as well.

Programming the Read-Only Memory (ROM)

To understand how to program a ROM, consider a 4 x 4 ROM, which means that it has total of 4 addresses at which information is stored, and each of those addresses has a 4-bit information, which is permanent and must be given as the output, when we access a particular address . The following steps need to be performed to program the ROM –

	Construct a truth table, which would decide the content of each address of the ROM and based upon which a particular ROM will be programmed.

So, the truth table for the specification of the 4 x 4 ROM is described as below :

[image:]

This truth table shows that at location 00, content to be stored is 0011, at location 01, the content should be 1100, and so on, such that whenever a particular address is given as input, the content at that particular address is fetched . Since, with 2 input bits, 4 input combinations are possible and each of these combinations hold a 4-bit information, so this ROM is a 4 X 4 ROM .

	Now, based upon the total no. of addresses in the ROM and the length of their content, decide the decoder as well as the no. of OR gates to be used .

Generally, for a 2[image: ^k] x n ROM, a k x 2[image: ^k] decoder is used, and the total no. of OR gates is equal to the total no. of bits stored at each location in the ROM .

So, in this case, for a 4 x 4 ROM, the decoder to be used is a 2 x 4 decoder.

The following is a 2 x 4 decoder –

[image:]

The truth table for a 2 x 4 decoder is as follows –

[image:]

When both the inputs are 0, then only D[image: _0] is 1 and rest are 0, when input is 01, then, only D[image: _1] is high and so on. (Just remember that if the input combination of the decoder resolves to a particular decimal number d, then at the output side the terminal which is at position d + 1 from the top will be 1 and rest will be 0).

Now, since we want each address to store 4 – bits in the 4 x 4 ROM, so, there will be 4 OR gates, with each of the 4 outputs of the decoder being input to each one of the 4 OR gates, whose output will be the output of the ROM, as follows –

[image:]

A cross sign in this figure shows connection between the two lines is intact . Now, since there are 4 OR gates and 4 output lines from the decoder, so there are total of 16 intersections, called as crosspoint .

	Now, program the intersection between the two lines, as per the truth table, so that the output of the ROM (OR gates) is in accordance with the truth table .

For programming the crosspoints, initially all the crosspoints are left intact, which means that it is logically equivalent to a closed switch, but these intact connections can be blown by the application of a high – voltage pulse into these fuse, which will disconnect the two interconnected lines, and in this way the output of a ROM can be manipulated .

So, to program a ROM, just look at the truth table specifying the ROM and blow away (if required) a connection . The connections for the 4 x 4 ROM as per the truth table is as shown below –

[image:]

Remember, a cross sign is used to denote that the connection is left intact and if there is no cross this means that there is no connection .

In this figure, since, as can be seen from the truth table specifying the ROM, when the input is 00, then, the output is 0011, so as we know from the truth table of a decoder, that input 00 gives output such that only D[image: _0] is 1 and rest are 0, so to get output 0011 from the OR gates, the connections of D[image: _0] with the first two OR gates has been blown away, to get the outputs as 0, while the last two OR gates give the output as 1, which is what is required .

Similarly, when the input is 01, then the output should be 1100, and with input 01, in decoder only D[image: _1] is 1 and rest are 0, so to get the desired output the first two OR gates have their connection intact with D[image: _1], while last two OR gates have their connection blown away . And for the rest also the same procedure is followed .

So, this is how a ROM is programmed and since, the output of these gates will remain constant everytime, so that is how the information is stored permanently in the ROM, and does not get altered even on switching on and off .

Reference-

	 Fundamental of Digital Circuits by A. Anand Kumar

This article is contributed by Mrigendra Singh. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Programmable Logic Array

				
						

				
			Programmable Logic Array(PLA) is a fixed architecture logic device with programmable AND gates followed by programmable OR gates.

PLA is basically a type of programmable logic device used to build reconfigurable digital circuit. PLDs have undefined function at the time of manufacturing but they are programmed before made into use. PLA is a combination of memory and logic.

Comparison with other Programmable Logic Devices:

	 PLA has programmable AND gate array and programmable OR gate array.

	 PAL has programmable AND gate array but fixed OR gate array.

	 ROM has fixed AND gate array but programmable OR gate array.

PLA is similar to a ROM in concept; however it does not provide full decoding of variables and does not generate all minterms as in the ROM. Though its name consist of word “programmable”, it does not require any type of programming like in C and C++.

Basic block diagram for PLA:

[image:]

Following Truth table will be helpful in understanding function on no of inputs-

[image:]

F1 = AB’C’ + AB’C + ABC’ + ABC

on simplifying we get : F1 = AB’ + AC

F2 = A’BC + AB’C + ABC

on simplifying we get: F2 = BC + AC

For realization of above function following circuit diagram will be used.

[image:]

PLA is used for implementation of various combinational circuits using buffer, AND gate and OR gate. In PLA, all the minterms are not realized but only required minterms are implemented. As PLA has programmable AND gate array and programmable OR gate arra, it provides more flexibility but disadvantage is, it is not easy to use.

Applications:

	 PLA is used to provide control over datapath.

	 PLA is used as a counter.

	 PLA is used as a decoders.

	 PLA is used as a BUS interface in programmed I/O.

SanghpriyaGautam

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Programming Array Logic

				
						

				
			Programmable Array Logic (PAL) is a commonly used programmable logic device (PLD). It has programmable AND array and fixed OR array. Because only the AND array is programmable, it is easier to use but not flexible as compared to Programmable Logic Array (PLA). PAL’s only limitation is number of AND gates.

PAL consist of small programmable read only memory (PROM) and additional output logic used to implement a particular desired logic function with limited components.

Comparison with other Programmable Logic Devices:

Main difference between PLA, PAL and ROM is their basic structure. In PLA, programmable AND gate is followed by programmable OR gate. In PAL, programmable AND gate is followed by fixed OR gate. In ROM, fixed AND gate array is followed by programmable OR gate array.

Describing the PAL structure (programmable AND gate followed by fixed OR gate).

Example: Realize the given function by using PAL:

Any form from sum of product (SOP) form or product of sum (POS) can be used for realization of a boolean function.

There are three inputs A, B, C and three functions X, Y, Z. Using sum of product (SOP) terms to express the given function as follows:-

[image: X(A, B, C)=\sum(2, 3, 5, 7)]

[image: Y(A, B, C)=\sum(0, 1, 5)]

[image: Z(A, B, C)=\sum(0, 2, 3, 5)]

Following Truth table will be helpful in understanding function on number of inputs:

	A
	B
	C
	X
	Y
	Z

	0
	0
	0
	0
	1
	1

	0
	0
	1
	0
	1
	0

	0
	1
	0
	1
	0
	1

	0
	1
	1
	1
	0
	1

	1
	0
	0
	0
	0
	0

	1
	0
	1
	1
	1
	1

	1
	1
	0
	0
	0
	0

	1
	1
	1
	1
	0
	0

Finding X, Y, Z:

Look for high min terms (function value is equal to 1 in case of SOP) in each function output:

X = A’B + AC

Y = A’B + B’C

Z = A’B + A’C + AB’C

[image:]

AND array has been programmed but have to work with fixed OR array as per requirement. Desired lines will be connected in PLDs.

Advantages of PAL:

	 Highly efficient

	 Low production cost as compared to PLA

	 Highly secure

	 High Reliability

	 Low power required for working.

	 More flexible to design.

SanghpriyaGautam

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Operational Amplifier (op-amp)

				
						

				
			Amplifier is a device that increases the strength of input signal. It can be Voltage amplifiers, whose input is some voltage and output is also voltage but amplified. Current amplifier, whose input is some current and output is also current but amplified.

	 Transconductance amplifier, whose input is some voltage and output is current.

	 Transimpedance amplifier, whose input is some current and output is voltage.

Operational amplifier (or, op-amp) is a voltage amplification, three terminal electronic device, having two input terminals namely Inverting terminal (marked by ‘-‘ sign in diagrams) and Non-inverting terminal(marked by ‘+’ sign in diagrams) and third terminal is the output terminal. Gain (“A”) of the op-amp = output signal/input signal

Different configurations of op-amp:

Open Loop Configuration –

In this configuration op-amp do not have any feedback.Ideally it has an infinite open loop gain(practically hundreds of thousands of times larger than the potential difference between its input terminals).

#Inverting Mode:

[image:]

#Non-inverting Mode:

[image:]

Closed Loop Configuration –

In this configuration of op-amp, negative feedback is used i.e., a portion of the output voltage is applied back to the inverting input.This feedback greatly reduces the gain of the op-amp as compared to open loop gain.Thus, it is a kind of controlled way of amplification.

#Inverting Mode:

[image:]

#Non-inverting Mode:

[image:]

Characteristic of ideal op-amp –

	Open Loop gain: Ideally op-amp should have infinite open loop gain (practically it is hundreds of thousands of times larger than the potential difference between its input terminals).

	Input impedance or resistance: Ideally op-amp should have infinite input resistance (practically it should be very high).

	Output impedance or resistance: Ideally op-amp should have zero output resistance (practically it should be very low).

	Bandwidth: Ideally op-amp should have infinite bandwidth (practically it is limited).

Basic terminology –

	Output Offset Voltage: Output of the op-amp should be ideally zero when the voltage difference between the inputs is zero but, practically the output is non-zero, there is a voltage of very small magnitude.This unwanted voltage at output side when no input is given is called Output Offset Voltage.

	Input Offset Current: Magnitude of difference of current entering inverting and non-inverting terminals, when no input voltage is given to op-amp.
 Io = |Ib1-Ib2|;
Io-Input Offset Current, Ib1 &
Ib2-current at input terminals

	Input Bias Current:
 I(bias) = (Ib1+Ib2)/2

	Input Offset Voltage: It is the voltage applied deliberately either at inverting or non-inverting terminal of op-amp to nullify the effect of Output Offset Voltage.
 V(Input Offset Voltage) = 0 (ideally)
V(Input Offset Voltage) = -V(Output Offset Voltage) (practically)

	Common Mode Rejection Ratio: It is the ratio between the differential mode gain (when different signal is applied to both inputs terminals) to the common mode gain(when the signal is applied to just one of the input terminal).
e(Common Mode Rejection Ratio) = |(differential mode gain) / (common mode gain)|

Application – It can be used as:

	Inverting and Non-inverting adder,

	Subtractor,

	Integrator,

	Differentiator,

	Logarithmic amplifier etc.

sanjal_katiyar

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

Data Communication

						Block Coding

				
						

				
			Conversion of Digital Data to Digital Signal involves three techniques:

	Line Coding

	Block Coding

	Scrambling

Out of which Line coding is always needed, block coding and scrambling may or may not be needed.

Block coding helps in error detection and re-transmission of the signal. It is normally referred to as mB/nB coding as it replaces each m-bit data group with an n-bit data group (where n>m). Thus, its adds extra bits (redundancy bits) which helps in synchronization at receiver’s and sender’s end and also providing some kind of error detecting capability.

It normally involves three steps: division, substitution, and combination. In the division step,a sequence of bits is divided into groups of m-bits. In the substitution step, we substitute an m-bit group for an n-bit group. Finally, the n-bit groups are combined together to form a stream which has more bits than the original bits.

Examples of mB/nB coding:

4B/5B (four binary/five binary) –

This coding scheme is used in combination with NRZ-I. The problem with NRZ-I was that it has a synchronization problem for long sequences of zeros. So, to overcome it we substitute the bit stream from 4-bit to 5-bit data group before encoding it with NRZ-I. So that it does not have a long stream of zeros. The block-coded stream does not have more than three consecutive zeros (see encoding table).

[image: mB/nB]

At the receiver, the NRZ-I encoded digital signal is first decoded into a stream of bits and then decoded again to remove the redundancy bits.

Drawback – Though 4B/5B encoding solves the problem of synchronization,it increases the signal rate of NRZ-L.Moreover,it does not solve the DC component problem of NRZ-L.

8B/10B (eight binary/ten binary) –

This encoding is similar to 4B/5B encoding except that a group of 8 bits of data is now substituted by a 10-bit code and it provides greater error detection capability than 4B/5B.

It is actually a combination of 5B/6B and 3B/4B encoding.The most five significant bits of a 10-bit block is fed into the 5B/6B encoder; the least 3 significant bits is fed into a 3B/4B encoder. The split is done to simplify the mapping table.

[image: mB/nB]

A group of 8 bits can have 2^8 different combinations while a group of 10 bits can have 2^10 different combinations. This means that there are 2^10-2^8=768 redundant groups that are not used for 8B/10B encoding and can be used for error detection and disparity check.

Thus, this technique is better than 4B/5B because of better error-checking capability and better synchronization.

Reference-

Data Communications and Networking By Behrouz A.Forouzan(Book)

sanjal_katiyar

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Difference between Unipolar, Polar and Bipolar Line Coding Schemes

				
						

				
			Data as well as signals that represents data can either be digital or analog. Line coding is the process of converting digital data to digital signals. By this technique we converts a sequence of bits to a digital signal. At the sender side digital data are encoded into a digital signal and at the receiver side the digital data are recreated by decoding the digital signal.

We can roughly divide line coding schemes into five categories:

	Unipolar (eg. NRZ scheme).

	Polar (eg. NRZ-L, NRZ-I, RZ, and Biphase – Manchester and differential Manchester).

	Bipolar (eg. AMI and Pseudoternary).

	Multilevel

	Multitransition

But, before learning difference between first three schemes we should first know the characteristic of these line coding techniques:

	There should be self-synchronizing i.e., both receiver and sender clock should be synchronized.

	There should have some error-detecting capability.

	There should be immunity to noise and interference.

	There should be less complexity.

	There should be no low frequency component (DC-component) as long distance transfer is not feasible for low frequency component signal.

	There should be less base line wandering.

Unipolar scheme –

In this scheme, all the signal levels are either above or below the axis.

	Non return to zero (NRZ) – It is unipolar line coding scheme in which positive voltage defines bit 1 and the zero voltage defines bit 0. Signal does not return to zero at the middle of the bit thus it is called NRZ. For example: Data = 10110.

But this scheme uses more power as compared to polar scheme to send one bit per unit line resistance. Moreover for continuous set of zeros or ones there will be self-synchronization and base line wandering problem.

Polar schemes –

In polar schemes, the voltages are on the both sides of the axis.

	NRZ-L and NRZ-I – These are somewhat similar to unipolar NRZ scheme but here we use two levels of amplitude (voltages). For NRZ-L(NRZ-Level), the level of the voltage determines the value of the bit, typically binary 1 maps to logic-level high, and binary 0 maps to logic-level low, and for NRZ-I(NRZ-Invert), two-level signal has a transition at a boundary if the next bit that we are going to transmit is a logical 1, and does not have a transition if the next bit that we are going to transmit is a logical 0.
Note – For NRZ-I we are assuming in the example that previous signal before starting of data set “01001110” was positive. Therefore, there is no transition at the beginning and first bit “0” in current data set “01001110” is starting from +V. Example: Data = 01001110.

Comparison between NRZ-L and NRZ-I: Baseline wandering is a problem for both of them, but for NRZ-L it is twice as bad as compared to NRZ-I. This is because of transition at the boundary for NRZ-I (if the next bit that we are going to transmit is a logical 1). Similarly self-synchronization problem is similar in both for long sequence of 0’s, but for long sequence of 1’s it is more severe in NRZ-L.

	Return to zero (RZ) – One solution to NRZ problem is the RZ scheme, which uses three values positive,negative,and zero. In this scheme signal goes to 0 in the middle of each bit.

Note – The logic we are using here to represent data is that for bit 1 half of the signal is represented by +V and half by zero voltage and for bit 0 half of the signal is represented by -V and half by zero voltage. Example: Data = 01001.

Main disadvantage of RZ encoding is that it requires greater bandwidth. Another problem is the complexity as it uses three levels of voltage. As a result of all these deficiencies, this scheme is not used today. Instead, it has been replaced by the better-performing Manchester and differential Manchester schemes.

	Biphase (Manchester and Differential Manchester) – Manchester encoding is somewhat combination of the RZ (transition at the middle of the bit) and NRZ-L schemes. The duration of the bit is divided into two halves. The voltage remains at one level during the first half and moves to the other level in the second half. The transition at the middle of the bit provides synchronization.
Differential Manchester is somewhat combination of the RZ and NRZ-I schemes. There is always a transition at the middle of the bit but the bit values are determined at the beginning of the bit. If the next bit is 0, there is a transition, if the next bit is 1, there is no transition.

Note –

1. The logic we are using here to represent data using Manchester is that for bit 1 there is transition form -V to +V volts in the middle of the bit and for bit 0 there is transition from +V to -V volts in the middle of the bit.

2. For differential Manchester we are assuming in the example that previous signal before starting of data set “010011” was positive. Therefore there is transition at the beginning and first bit “0” in current data set “010011” is starting from -V. Example: Data = 010011.

The Manchester scheme overcomes several problems associated with NRZ-L, and differential Manchester overcomes several problems associated with NRZ-I as there is no baseline wandering and no DC component because each bit has a positive and negative voltage contribution.

Only limitation is that the minimum bandwidth of Manchester and differential Manchester is twice that of NRZ.

Bipolar schemes –

In this scheme there are three voltage levels positive, negative, and zero. The voltage level for one data element is at zero, while the voltage level for the other element alternates between positive and negative.

	Alternate Mark Inversion (AMI) – A neutral zero voltage represents binary 0. Binary 1’s are represented by alternating positive and negative voltages.

	Pseudoternary – Bit 1 is encoded as a zero voltage and the bit 0 is encoded as alternating positive and negative voltages i.e., opposite of AMI scheme. Example: Data = 010010.

The bipolar scheme is an alternative to NRZ.This scheme has the same signal rate as NRZ,but there is no DC component as one bit is represented by voltage zero and other alternates every time.

Reference –

Data Communications and Networking By Behrouz A.Forouzan (Book)

sanjal_katiyar

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Difference Between
Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Difference between Broadband and Baseband Transmission

				
						

				
			Broadband system use modulation techniques to reduce the effect of noise in the environment. Broadband transmission employs multiple channel unidirectional transmission using combination of phase and amplitude modulation.

Baseband is a digital signal is transmitted on the medium using one of the signal codes like NRZ, RZ Manchester biphase-M code etc. is called baseband transmission.

These are following differences between Broadband and Baseband transmission.

Baseband transmission –

	Digital signalling.

	Frequency division multiplexing is not pssible.

	Baseband is bi-directional transmission.

	Short distance signal travelling.

	Entire bandwidth is for single signal transmission.

	Example: Ethernet is using Basebands for LAN.

Broadband transmission –

	Analog signalling.

	Transmission of data is unidirectional.

	Signal travelling distance is long.

	Frequency division multiplexing possible.

	Simultaneous transmission of multiple signals over different frequencies.

	Example : Used to transmit cable TV to premises.

Namrata Bisht

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Difference Between
Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Data Communication | Transmission Impairment

				
						

				
			In communication system, analog signals travel through transmission media, which tends to deteriorate the quality of analog signal. This imperfection causes signal impairment. This means that received signal is not same as the signal that was send.

Causes of impairment –

[image:]

	Attenuation – It means loss of energy. The strength of signal decreases with increasing distance which causes loss of energy in overcoming resistance of medium. This is also known as attenuated signal. Amplifiers are used to amplify the attenuated signal which gives the original signal back.

Image Source – aviationchief

Attenuation is measured in decibels(dB). It measures the relative strengths of two signals or one signal at two different point.

Attenuation(dB) = 10log10(P2/P1)

P1 is power at sending end and P2 is power at receiving end.

	Distortion – It means change in the shape of signal. This is generally seen in composite signals with different frequencies. Each frequency component has its own propagation speed travelling through a medium. Every component arrive at different time which leads to delay distortion. Therefore, they have different phases at receiver end from what they had at senders end.

	Noise – The random or unwanted signal that mixes up with the original signal is called noise. There are several types of noise such as induced noise, crosstalk noise, thermal noise and impulse noise which may corrupt the signal.
Induced noise comes from sources such as motors and appliances. These devices act as sending antenna and transmission medium act as receiving antenna. Thermal noise is movement of electrons in wire which creates an extra signal. Crosstalk noise is when one wire affects the other wire. Impulse noise is a signal with high energy that comes from lightning or power lines

 SNR = AVG SIGNAL POWER / AVG NOISE POWER

References –

Data Communication and Networking Fourth edition by Forouzan

Data Communication – Slideshare

Nishu_Aggarwal

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
Misc
Technical Scripter

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						What is Scrambling?

				
						

				
			Prerequisite – Block Coding, Line Coding

A computer network is designed to send information from one point to another. Data that we send can either be digital or analog. Also signals that represent data can also be digital or analog.

 Thus to send data by using signals, we must able to convert data into signals this conversion can be Analog to Analog, Analog to Digital, Digital to Analog or Digital to Digital.

Digital to Digital conversion involves three techniques – Line Coding, Block Coding, and Scrambling. Line Coding is always needed, whereas Block Coding and Scrambling may or may not be needed depending upon need.

Scrambling is a technique that does not increase the number of bits and does provide synchronization. Problem with technique like Bipolar AMI(Alternate Mark Inversion) is that continuous sequence of zero’s create synchronization problems one solution to this is Scrambling.

There are two common scrambling techniques:

	B8ZS(Bipolar with 8-zero substitution)

	HDB3(High-density bipolar3-zero)

B8ZS(Bipolar with 8-zero substitution) –

This technique is similar to Bipolar AMI except when eight consecutive zero-level voltages are encountered they are replaced by the sequence,”000VB0VB”.

Note –

	V(Violation), is a non-zero voltage which means signal have same polarity as the previous non-zero voltage. Thus it is violation of general AMI technique.

	B(Bipolar), also non-zero voltage level which is in accordance with the AMI rule (i.e.,opposite polarity from the previous non-zero voltage).

Example: Data = 100000000

[image: B8ZS]

Note – Both figures (left and right one) are correct, depending upon last non-zero voltage signal of previous data sequence (i.e., sequence before current data sequence “100000000”).

HDB3(High-density bipolar3-zero) –

In this technique four consecutive zero-level voltages are replaced with a sequence “000V” or “B00V”.

Rules for using these sequences:

	If the number of nonzero pulses after the last substitution is odd, the substitution pattern will be “000V”, this helps maintaining total number of nonzero pulses even.

	If the number of nonzero pulses after the last substitution is even, the substitution pattern will be “B00V”. Hence even number of nonzero pulses is maintained again.

Example: Data = 1100001000000000

[image: HDB3]

Explanation – After representing first two 1’s of data we encounter four consecutive zeros.Since our last substitutions were two 1’s(thus number of non-zero pulses is even).So,we substitute four zeros with “B00V”.

Note – Zero non-zero pulses are also even.

Reference-

Data Communications and Networking By Behrouz A.Forouzan (Book)

sanjal_katiyar

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Analog to Analog Conversion (Modulation)

				
						

				
			Analog Signal: An analog signal is any continuous signal for which the time varying feature of the signal is a representation of some other time varying quantity i.e., analogous to another time varying Signal.

Analog to Analog Conversion –

Analog-to-analog conversion, or modulation, is the representation of analog information by an analog signal. It is a process by virtue of which a characteristic of carrier wave is varied according to the instantaneous amplitude of the modulating signal. This modulation is generally needed when a bandpass channel is required. Bandpass is a range of frequencies which are transmitted through a bandpass filter which is a filter allowing specific frequencies to pass preventing signals at unwanted frequencies.

Analog to Analog conversion can be done in three ways:

	Amplitude Modulation

	Frequency Modulation

	Phase Modulation

1. AMPLITUDE MODULATION:

The modulation in which the amplitude of the carrier wave is varied according to the instantaneous amplitude of the modulating signal keeping phase and frequency as constant. The figure below shows the concept of amplitude modulation:

[image:]

AM is normally implemented by using a simple multiplier because the amplitude of the carrier signal needs to be changed according to the amplitude of the modulating signal.

AM bandwidth:

The modulation creates a bandwidth that is twice the bandwidth of the modulating signal and covers a range centered on the carrier frequency.

Bandwidth= 2fm

2. FREQUENCY MODULATION –

The modulation in which the frequency of the carrier wave is varied according to the instantaneous amplitude of the modulating signal keeping phase and amplitude as constant. The figure below shows the concept of frequency modulation:

[image:]

FM is normally implemented by using a voltage-controlled oscillator as with FSK. The frequency of the oscillator changes according to the input voltage which is the amplitude of the modulating signal.

FM bandwidth:

	The bandwidth of a frequency modulated signal varies with both deviation and modulating frequency.

If modulating frequency (Mf) 0.5, wide band Fm signal.

	For a narrow band Fm signal, bandwidth required is twice the maximum frequency of the modulation, however for a wide band Fm signal the required bandwidth can be very much larger, with detectable sidebands spreading out over large amounts of the frequency spectrum.

3. PHASE MODULATION:

The modulation in which the phase of the carrier wave is varied according to the instantaneous amplitude of the modulating signal keeping amplitude and frequency as constant. The figure below shows the concept of frequency modulation:

[image:]

Phase modulation is practically similar to Frequency Modulation, but in Phase modulation frequency of the carrier signal is not increased. It is normally implemented by using a voltage-controlled oscillator along with a derivative. The frequency of the oscillator changes according to the derivative of the input voltage which is the amplitude of the modulating signal.

PM bandwidth:

	For small amplitude signals, PM is similar to amplitude modulation (AM) and exhibits its unfortunate doubling of baseband bandwidth and poor efficiency.

	For a single large sinusoidal signal, PM is similar to FM, and its bandwidth is approximately, 2 (h+1) Fm where h= modulation index.

Thus, Modulation allows us to send a signal over a bandpass frequency range. If every signal gets its own frequency range, then we can transmit multiple signals simultaneously over a single channel, all using different frequency ranges.

Harshita Pandey

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Analog to digital conversion

				
						

				
			Digital Signal: A digital signal is a signal that represents data as a sequence of discrete values; at any given time it can only take on one of a finite number of values.

Analog Signal: An analog signal is any continuous signal for which the time varying feature of the signal is a representation of some other time varying quantity i.e., analogous to another time varying signal.

The following techniques can be used for Analog to Digital Conversion:

a. PULSE CODE MODULATION:

 The most common technique to change an analog signal to digital data is called pulse code modulation (PCM). A PCM encoder has the following three processes:

	Sampling

	Quantization

	Encoding

Low pass filter :

The low pass filter eliminates the high frequency components present in the input analog signal to ensure that the input signal to sampler is free from the unwanted frequency components.This is done to avoid aliasing of the message signal.

	Sampling – The first step in PCM is sampling. Sampling is a process of measuring the amplitude of a continuous-time signal at discrete instants, converting the continuous signal into a discrete signal. There are three sampling methods:
(i) Ideal Sampling: In ideal Sampling also known as Instantaneous sampling pulses from the analog signal are sampled. This is an ideal sampling method and cannot be easily implemented.

[image:]

(ii) Natural Sampling: Natural Sampling is a practical method of sampling in which pulse have finite width equal to T.The result is a sequence of samples that retain the shape of the analog signal.

[image:]

(iii) Flat top sampling: In comparison to natural sampling flat top sampling can be easily obtained. In this sampling technique, the top of the samples remains constant by using a circuit. This is the most common sampling method used.

[image:]

Nyquist Theorem:

One important consideration is the sampling rate or frequency. According to the Nyquist theorem, the sampling rate must be at least 2 times the highest frequency contained in the signal. It is also know as the minimum sampling rate and given by:

 Fs =2*fh

	Quantization –

The result of sampling is a series of pulses with amplitude values between the maximum and minimum amplitudes of the signal. The set of amplitudes can be infinite with non integral values between two limits.

The following are the steps in Quantization:

	We assume that the signal has amplitudes between Vmax and Vmin

	We divide it into L zones each of height d where,

 d= (Vmax- Vmin)/ L

[image:]

	The value at the top of each sample in the graph shows the actual amplitude.

	The normalized pulse amplitude modulation(PAM) value is calculated using the formula amplitude/d.

	After this we calculate the quantized value which the process selects from the middle of each zone.

	The Quantized error is given by the difference between quantised value and normalised PAM value.

	The Quantization code for each sample based on quantization levels at the left of the graph.

	Encoding –

The digitization of analog signal is done by the encoder. After each sample is quantized and the number of bits per sample is decided, each sample can be changed to an n bit code.Encoding also minimizes the bandwidth used.

b. DELTA MODULATION :

Since PCM is a very complex technique, other techniques have been developed to reduce the complexity of PCM. The simplest is delta Modulation. Delta Modulation finds the change from the previous value.

Modulator – The modulator is used at the sender site to create a stream of bits from an analog signal. The process records a small positive change called delta. If the delta is positive, the process records a 1 else the process records a 0. The modulator builds a second signal that resembles a staircase. The input signal is then compared with this gradually made staircase signal.

[image:]

We have the following rules for output:

	If the input analog signal is higher than the last value of the staircase signal, increase delta by 1, and the bit in the digital data is 1.

	If the input analog signal is lower than the last value of the staircase signal, decrease delta by 1, and the bit in the digital data is 0.

[image:]

c. ADAPTIVE DELTA MODULATION:

The performance of a delta modulator can be improved significantly by making the step size of the modulator assume a time-varying form.A larger step-size is needed where the message has a steep slope of modulating signal and a smaller step-size is needed where the message has a small slope.The size is adapted according to the level of the input signal. This method is known as adaptive delta modulation (ADM).

[image:]

Harshita Pandey

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design
Misc

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Digital to Analog Conversion

				
						

				
			Digital Signal – A digital signal is a signal that represents data as a sequence of discrete values; at any given time it can only take on one of a finite number of values.

Analog Signal – An analog signal is any continuous signal for which the time varying feature of the signal is a representation of some other time varying quantity i.e., analogous to another time varying signal.

The following techniques can be used for Digital to Analog Conversion:

1. Amplitude Shift keying – Amplitude Shift Keying is a technique in which carrier signal is analog and data to be modulated is digital. The amplitude of analog carrier signal is modified to reflect binary data.

 The binary signal when modulated gives a zero value when the binary data represents 0 while gives the carrier output when data is 1. The frequency and phase of the carrier signal remain constant.

[image: wave_ask2]

Advantages of amplitude shift Keying –

	It can be used to transmit digital data over optical fiber.

	The receiver and transmitter have a simple design which also makes it comparatively inexpensive.

	It uses lesser bandwidth as compared to FSK thus it offers high bandwidth efficiency.

Disadvantages of amplitude shift Keying –

	It is susceptible to noise interference and entire transmissions could be lost due to this.

	It has lower power efficiency.

2. Frequency Shift keying – In this modulation the frequency of analog carrier signal is modified to reflect binary data.

The output of a frequency shift keying modulated wave is high in frequency for a binary high input and is low in frequency for a binary low input. The amplitude and phase of the carrier signal remain constant.

[image: wave_fsk2]

Advantages of frequency shift Keying –

	Frequency shift keying modulated signal can help avoid the noise problems beset by ASK.

	It has lower chances of an error.

	It provides high signal to noise ratio.

	The transmitter and receiver implementations are simple for low data rate application.

Disadvantages of frequency shift Keying –

	It uses larger bandwidth as compared to ASK thus it offers less bandwidth efficiency.

	It has lower power efficiency.

3. Phase Shift keying – In this modulation the phase of the analog carrier signal is modified to reflect binary data.The amplitude and frequency of the carrier signal remains constant.

[image: wave_psk2]

It is further categorized as follows:

	Binary Phase Shift Keying (BPSK):

 BPSK also known as phase reversal keying or 2PSK is the simplest form of phase shift keying. The Phase of the carrier wave is changed according to the two binary inputs. In Binary Phase shift keying, difference of 180 phase shift is used between binary 1 and binary 0.

 This is regarded as the most robust digital modulation technique and is used for long distance wireless communication.

	Quadrature phase shift keying:

 This technique is used to increase the bit rate i.e we can code two bits onto one single element. It uses four phases to encode two bits per symbol. QPSK uses phase shifts of multiples of 90 degrees.

 It has double data rate carrying capacity compare to BPSK as two bits are mapped on each constellation points.

Advantages of phase shift Keying –

	It is a more power efficient modulation technique as compared to ASK and FSK.

	It has lower chances of an error.

	It allows data to be carried along a communication signal much more efficiently as compared to FSK.

Disadvantages of phase shift Keying –

	It offers low bandwidth efficiency.

	The detection and recovery algorithms of binary data is very complex.

	It is a non coherent reference signal.

Reference –

Digital-to-analog converter – Wikipedia

Harshita Pandey

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

Quick Links

						LMN – Digital Electronics

				
						

				
			See Last Minute Notes on all subjects here.

We will discuss the important key points useful for GATE exams in summarized form. For details you may refer this.

[image: logic gates]

[image: combi ckt]

[image: mux-decoder]

[image: code converter]

[image: flipflops]

[image: flipflops2]

This article has been contributed by Sonal Tuteja.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		Digital Electronics & Logic Design

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

OEBPS/Images/fa2720ef7e8657d6c5460a0ce10a6d90.jpg
Clock Q1 Q2 Q3 Q4
Pulse

0 0 0 0 1

1 0 0 0 0
2 T 0 0 0
3 1 s 0 0
4 T 1 1 0
5 1 1 1 ER
6 0 1 1 1
% 0 0 1 1

OEBPS/Images/4acef27dbe7e7178f88557c2059b7ad7.jpg
Y1 v2

Y3 Y4 Y5 Y6 Y7

A2

Al

A0

OEBPS/Images/88da74c84ab78d175eb2fba4baa05e96.jpg

OEBPS/Images/cdd2ceec17f98fd897459667518dacbf.jpg
Difference
HS

Borrow

Half Subtractor

OEBPS/Images/e7a267fb5036df85165ed4ca68143f71.jpg

OEBPS/Images/208ebc3e90625cfab3dcec0f8b8347f8.jpg

OEBPS/Images/1ecb3d04440beaa07f348dab7efa3a8e.jpg

OEBPS/Images/866aa6a8863bd7a0b91baf6abc9aa575.jpg

OEBPS/Images/88904820f2b523d66a8d4e1599b8cc1f.jpg

OEBPS/Images/3008f9c10f688f9aec4143e8420066b6.jpg
4 COMPARATOR

Analog

Signal DELAY UNIT _k—{S/ATCASE
MAKER

OEBPS/Images/df5e902adf0fe69a127cf01eb9440c3e.jpg

OEBPS/Images/2c0fdcc58b35808b7d0c28592907fe1a.jpg

OEBPS/Images/43055f1277a7c88a371556de5730c0ad.jpg
P; = A; @ B;
G — AB:

OEBPS/Images/a5d6688e91484a0e70b640b90c3ca75c.jpg
OUTPUTS

Y3 Y2 Y1 Yo Al A0
0 0 0 1 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 0 8 8 8 8

OEBPS/Images/95d39ba46204b6497d4545da78bddf32.jpg
01

10

1

OEBPS/Images/839162a85be4e63c6972db071b2b2385.jpg
Y1

Y(

4:2 Encoder

Al
AO

OEBPS/Images/c98a4fb994cd2d5e2abf12e9cf3ecd1c.jpg
(A<B)+(A>B) B+Al

Taking complement both sides
((A<B) + (A>B)) = (AB + AB)'

((A<B) + (A>B))' = (A'B)' (AB)'

((A<B) + (A>B))' = (A + B) (A' +B)

((A<B) + (A>B))' =(AA' + AB + A'B' +BB)
" " = (AB + AB')

Thus,

((A<B) + (A > B)) = (A = B)

OEBPS/Images/8c7a2efe00812beaf2f807c7437516ba.jpg
k4 k'

OEBPS/Images/392d298f71f9c3ee15329d34d5238af3.jpg
No. of Implicants = 7
PI=(1,2345,6)
EPI=(1,4)
SPI1=(2,3,5,6)

OEBPS/Images/244aa6ce272b8b2eb052fce27ead37c4.jpg

OEBPS/Images/b9f848f04c8a77d80a8d35516cb612bb.jpg
S5i =P & C;
C:+1=G;+ PC;

OEBPS/Images/eadc78725908cdf1f842ccfd88ee5ba4.jpg
C

S

y

OEBPS/Images/be62c4fc7798b04a3e0a8847c220ab42.jpg
Difference

Carry

OEBPS/Images/9c103a2228fa3e65e2f5a4126397a203.jpg
Output Qo+

a2+

Output Q2+

OEBPS/Images/b199705a64ce0c664535c56036d14e5b.jpg
Q

Flip Flop 4

3

OEBPS/Images/99b4ef200715e00098249ddf1cb89cbd.jpg
yz

W 00 01 11 10
00| X [IX[] 0] X
01l]o 1 0 1
11]o X|| X | X
10]0 1 (O

OEBPS/Images/1ce6ab9fa276be594fecfba4b40dae88.jpg
FULL

SUBTRACTOR

Bout

OEBPS/Images/8355078cbf57aa1d71352e98c16cb510.jpg

OEBPS/Images/efb6a1b1a557c40981c2051875935d01.jpg

OEBPS/Images/268e668213c71e270da0c5fc9e8fb5e5.jpg
go. g1, g2 . and g3

OEBPS/Images/7ad5fbb6090ddc4991be006e9381ab9d.jpg
Cout

Bn An Bn1 An1 B3 A3 B2 A2 B1 Al

FAn Fan-1|_C4 Fas |3 Fa2 |LC2| Fa1
n-1

R e IR Rl I R (R

Sn-1

c1

OEBPS/Images/5301e60631bd25bd13f4b72dfa64d190.jpg
Amplitude

OEBPS/Images/a5826df60214d8048c8caa0fb231e952.jpg

OEBPS/Images/ff805067b34615bf560d13fbb2e10c59.jpg
Binary number - 1010

ninjin
o]+ [] +

'

10 (Decimal Equivalent)

OEBPS/Images/9864d71f098df403f24ed92bac305cbb.jpg
Inverter - 7B
X Qo=
. Qi =AB Decoded Output
Binary Inputs AND Gates
Q:=AB
B
Q;=AB

Data Lines

OEBPS/Images/55c112002f6e3078d88c486474c8a3b0.jpg
F: fof
'y 2+ 2'yz + 2y

OEBPS/Images/77078d6282e8246f35c2906c6c7e7d27.jpg
(mo)' = +y = M

OEBPS/Images/55eac6ab561e121936820f5f7c687f53.jpg
Figure - (a) Conventional Symbol Figure - (b) Array logic symbol

OEBPS/Images/9a7cae52dbbca4fa14ed6747be9e2d65.jpg

OEBPS/Images/5552374c4b1ecfb263bcdf3103564ec8.jpg
D1DO
D3 D:

00

01

OEBPS/Images/84bfee1611d0d468775fb21710333378.jpg
CoIN——>|

> sum

——>c-ou

OEBPS/Images/8259912cbdbf4eedeabbdb0439ef864a.jpg
RESSTOR

oo

OEBPS/Images/f866ec37a966ff8c3528f8475405c490.jpg
o u u 1w
ol o 1|1
110 |0 0

Bout=A'Bin + A'B + BBin

OEBPS/Images/5ecf20efc4acdef67cd03c2128bad10c.jpg
w=A+ BC+BD
= B'C +B'D + BC'D'
ych‘FC/D/

OEBPS/Images/bfd03be88bf95b51b8145f4395cca36b.jpg

OEBPS/Images/1f4d272cdebcd2bcb3707b2498bf63dd.jpg
Q

Qus

OEBPS/Images/17ec8f664f8a709017f691421c3eb7c1.jpg

OEBPS/Images/4ebd312271200f48708827e706f0ffc0.jpg

OEBPS/Images/3126d5959644e75203d4b4bc3ac7ebf3.jpg
No. of NAND or NOT GATE required to implement other GATE

GATE to be implemented NOR GATE required NAND GATE required
NOT 1 1
AND 3 2
OR 2 3
EX-OR 5 4
EX-NOR 4 5

Combinational Circuits: In combinational circuits, output depends on present input only; it
does not require feedback and memory.

Circuit Type Expression NAND/NOR gates required
Half Adder Sum=A®B 5
Carry=AB
Full Adder Sum=A®@B@C 9
Carry=AB+BC+CA
Half Subtractor Diff= AeB 5
Borrow= AB
Full Subtractor Diff= AeBeC 9

Borrow= AB+AC+BC

OEBPS/Images/887ec3d4b7150f88b2a6d903ef6bfd48.jpg
(mo + mq1 + mg +my)’

OEBPS/Images/7e973873bbae764f6949940296204545.jpg
{V, e, T},

OEBPS/Images/1b92784018f388af3940784c48ebf8a0.jpg
PR o 110
b3,b2

0|00 o0o]o0

0foflo|o|o0

J

10

OEBPS/Images/f4a0555bb0c68eb3008267e0fd6b1a37.jpg
Ty

OEBPS/Images/edd8c59a97dfc998a4b38cfa8bc19c57.jpg
Modulating Signal

AP e
VUV VYV

S \ [l\ M (\ Frequency Modulation

OEBPS/Images/c5c8200204318c1feebf3827614cd16d.jpg
)

@

No. of Essential Prime Implicants = 2

OEBPS/Images/e28f8f0e406aca6470ff314cfa3e755e.jpg
{A, e, T}

OEBPS/Images/3e7bbdf812b93c83c69d291d841dcc03.jpg
bo = 95959190 + 93929190 + 93929190 + 93929190 + 93959190 + 93929190
+ 93929190 + 93929190
= 9595(9190 + 9190) + 9592(9190 + 9190) + 9395(9190 + 9190)
+ 9392(9190 + 9195)
= ghh(g0 D 91) + g492(90 © g1) + g36h(g0 © 91) + g392(g0 © g1)
= (90 @ 91)(92 © g3) + (90 © g1)(92 ® g3)
=033 92991 g0
b1 = 939591 + G929} + 939201 + 939591
= g5(9591 + 9201) + 93(9291 + 9591)
= g3(92 B 91) + 93(92 @ g1)
=033 9290
by = 9392 + 9395
=093$ 92
bs = g3

OEBPS/Images/54a2a70f5ead0a1cc327fc74b8d5495e.jpg

OEBPS/Images/ec3014175ce01f97d60f7ff268aca46b.jpg
INPUTS OUTPUTS
Y7 Y6 Y5 Y4 Y3 Y2 Y1 Yo A2 Al A0
] 0 0 0 0 0 0 1 0 0]
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 i i
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1

0 3 0 0 0 0 0 0 1 8 0

¥ 0 0 0 0 0 0 0 1 1 ¥

OEBPS/Images/653e42f268ce03e0b6789688620dd110.jpg
I

7 is don't care (can considered or not)

1 (in case 7 is considered) or A

Y 1 0 P PSP Y

wlelo|o|n|rlo|o

wlolr|o|r|o|m|ofE
=

Inputs

output
@

OEBPS/Images/2f45195eb3b74f566ae0878285bf7d83.jpg
aeve000 01 11 10

11
1[0
X|| X
XJ| X

F(ABCD)= -B + -C-D
+ (D

OEBPS/Images/d4e89718ab09318e213362d4b44c8c4a.jpg
A Difference = AGB

OEBPS/Images/0fbeec1190905dca08261b2b7f765122.jpg
Decimal number : 17

NN NN
B E
© oo m

Binary number: 10001

OEBPS/Images/39cae835552a27d2fe5eab1059772ab4.jpg
F=az4+xy

OEBPS/Images/0643d7e017e3e418851f568f086f824b.jpg
B1B0O A>B
00 01 1 10
A1A0
00 0 0 0 o
01 1 0 0 o
1 1 1 0 1
00 1 1 0 o

OEBPS/Images/b13e2c3fba81ad6ff3e42447ea2d6a5d.jpg
Decimal Number: 33

remainder

33
8|4 a4
0

Octal Number: 41

OEBPS/Images/cc7711d5e94814e007fe4bedcb7ced1e.jpg
Vee

Clk

OEBPS/Images/3a3b9d821564a085c81fb488b000bf2e.jpg

OEBPS/Images/0eb76b5464b726063f2c25bba097d683.jpg
BCD Sum
< s ostso

Binary Sum

5

2 st_so

2

11
1

13
14
15

16
17
18

)

OEBPS/Images/e29cb1d1886d591b16cb88638df4c1cf.jpg

OEBPS/Images/855b48a07b5071479fc247b4ac8bc332.jpg
Y3

Y2

Y1

Al

A0

OEBPS/Images/061a65e31a21578c1c330b7cd780c887.jpg
Borrow = A'B

OEBPS/Images/804dedfaf97eb5a90a49b4188f904801.jpg
by —— s

by — e

9

v

by

OEBPS/Images/6b786ef599609a7f325a4d34b1b28345.jpg
Parallel Input

D Q fD Q D Q D Q

Flipflop 1 Flip flop __ Flipflop4

shift [

Serial Output

Flipflop 2

Clock

OEBPS/Images/416e80f0393b37a6068f72117afb8c1e.jpg

OEBPS/Images/249f5bc388c99410522c1692aef48eed.jpg

OEBPS/Images/08afc037f5ede21a60dcf2beb6aff20b.jpg

OEBPS/Images/35ac43f6961dae172f3513c285842082.jpg

OEBPS/Images/6867b5d0c11cd2f9c80e3f106f536e19.jpg

OEBPS/Images/ea5909d7b0a42b32e115d9b4b16e571c.jpg

OEBPS/Images/571ec775ef4c30060edd79b645c6cbf4.jpg
ABJs,1]0
ABJs,00[0,011,10/1 o1l ABJs,0110,10[0,11]1

& &

ABs,00]1

OEBPS/Images/6c3ff6f861332606f09621990ed0cdc3.jpg
TRUTH TABLE

s R Q Qu
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 -
1 1 1 -

OEBPS/Images/099e7d3f8b18c36433242865d2657b14.jpg
(mgo + ma + m3 + ms + mg)'

OEBPS/Images/f07bd5eaf1b8d3a8f767be2c59c1b769.jpg
(/3

OEBPS/Images/915eee7fe10225449a76ac5966cec7f0.jpg

OEBPS/Images/8e61d28d0a9b7d40c29c660c23dbe1ca.jpg
Al

A0

Bl

BO

WAV,

A>B

OEBPS/Images/f9abb6a29ea8a29d7c5e0f9bd7432f24.jpg
L
%DE—EN

OEBPS/Images/6b8435e1a148dcd999681babb7f418a1.jpg
Bn—An

|

l

Bn-1--An-1

|

|

B3 A3

l

l

B2

l

A2

l

B1 A1

l

l

FAn

Cout

FAn-1

FA3

Cc3

FA2

C2

FA1 |,

.

l

Sn-1

i

H

c1

OEBPS/Images/c5c4471c30d5b27e2ec1c92de5d61f07.jpg
AB

00 o1 il 10
0] D D
1 1 i 0 I D i

OEBPS/Images/bc1d01a8d71fe1338bbcf512d89d8467.jpg

OEBPS/Images/812ca375605d0fa5812d6f45c1bdd1fa.jpg
JJ \

OEBPS/Images/d5cbde4b6232eceaa9f23cb43fa53242.jpg
Octal Number: 123

1x(8/2)| + |2 x (871)[+ |3 x (870)

l l I

|—64 + 16 + 3-|

l

83

Decimal Number: 83

OEBPS/Images/d4e8757a8ebf07d6420de20f8c2c73a3.jpg
Yo

jf:

No. of Selective Prime Implicants = 2

OEBPS/Images/0530f61ef82a6b31df8a7d68684eb5a7.jpg

OEBPS/Images/c694bb934f85e25dff55bc5b4c7b558e.jpg

OEBPS/Images/8ec8d9ae7904c4aed325dbf564fecb6f.jpg
go = bobj +b1by = bo & by
g1 = bab] + b1by = b1 & by
g2 = bzbg +b3b’2 = by D by
g3 = b3

OEBPS/Images/05d90f74bccb57d730f8f9287fde7efc.jpg
T3 00 01 11 10
Q:\QQ1
0 0 0 1 X
1 0 0 1 X

OEBPS/Images/8dd48739bda39d1acd9de233b24f00c6.jpg
{N, >, &=},

OEBPS/Images/7959963130d2db5656a8027a95b8989c.jpg
C1 =Go+ PoCin

Cy = G1+ PiC1 = G1 + PiGo + PiPoCin

C3 = G2 + P2Cy = G2 + P2G1 + PaPiGo + PaPLPyCin

Cy=G3+ P3C3 = G353+ P3Gy + PaPyG1+ PsPyPiGo + P3PoPPyC,,

OEBPS/Images/4bf58c30470f92164b71a158e9fd8b22.jpg

OEBPS/Images/a86f5ee63c74dbd25c338d906c25a1fd.jpg
D D
x=B'C+B'D+BC’D’ w=A+BC+BD

OEBPS/Images/af3e62e660aa4354970723ec2ad64df5.jpg

OEBPS/Images/4d29569f691855d4f3f7405116ea852e.jpg

OEBPS/Images/dcd7200cd26a857b859ee0807785f18b.jpg
Excess-3

X|X|X|X
X|X|X|X
X[X | X|X
X|X|X|X
X|X|X|X
X[X | X|X

BCD(8421)

A|B

0

0

0

C

OEBPS/Images/ce03da6c9baf972a9a0d71acbbae9021.jpg
as\e000 01 11 10

00
01
11
10

F(ABCD)=

1

0
111
XX

1

111
01
XX
XX

+ A

-BC
+ B-D

+ B-C

OEBPS/Images/26bc94728de86c2faae55a8c67a36dc8.jpg

OEBPS/Images/ec53c17b307bc24231f792e1807f1775.jpg

OEBPS/Images/cc10d3b72431cdd6ba563d3cc2a57d7f.jpg

OEBPS/Images/9a5a8569af65c5a327c3ea397090ba9a.jpg
8B10B.

encoder
T SEEE)
encoding
8.8it —
Broak <1 Disparity
controller
encodin

10-Bit
Block

OEBPS/Images/68f88b2d4b58a96bf909200ea1985ce5.jpg

OEBPS/Images/63cf01fdb1f9d883b03f27fc52c83243.jpg
Yo ¥i vz

X3 YA ¥s ¥6 Y7 va, ¥

L]

A3

A2

Al

A0

OEBPS/Images/9e5e66df2cbca6b4307680474038b912.jpg

OEBPS/Images/57d7d5ca6b44afc7ad3251ee3d77daa5.jpg

OEBPS/Images/4f2106c3a80e595e72c19820c18d0409.jpg
mo =2y, my =z2'y, mo =2y, m3z = xy

OEBPS/Images/cf5333c78dbf1b1b3363e0b9f115903e.jpg
Y Y Y

OEBPS/Images/7158ed3e9ea30a6a944e6fb12635c165.jpg
Condition

No Carry
Generate

171 0 1 Carry
111 1 | Generate

OEBPS/Images/c469aebed7dedf8197c1f71abc1568ce.jpg
F={aB) BC' +AC
=

Redundancy term

Complemented Variable

OEBPS/Images/7b1cb88d1d25157086ca302e1482486f.jpg

OEBPS/Images/84e74fbf56e00f8c9ca25721fc85f1bc.jpg
NOT gate

output
@

Inputs

OEBPS/Images/e451f912b5426268b2308c2b0e4b188c.jpg
w, r, Yy, and z

OEBPS/Images/1a55597a040d18dc4261a83a26f736f2.jpg
O(logn)

OEBPS/Images/2d7cc673b88810779e6db292765a8410.jpg
r = Moy.Mo. M3

OEBPS/Images/bcaa0e3617eb49f178d89775a1e04000.jpg
{V,¢, L},

OEBPS/Images/4b76aff899dc3ebc0a4a753f4cec7b59.jpg

OEBPS/Images/16f119ff6bae21ede35ec827955ce1e9.jpg
4 Amplitude

» Time

OEBPS/Images/49c8f9e4fe43643a6c714696eee8951d.jpg
() (x +y).(y + 2

OEBPS/Images/8695c6630946c7f6a614c90067cb2302.jpg
1,80

0 o1 11 10
83,82
oo (@ o |@
o (@ o @ o
o @ o |@

0 /@ o |@ o

OEBPS/Images/2523c92bdbe63b4886b4a49efb696139.jpg
Y7
Y6

Y5
Y4
Y3
Y2

Y1

YO

8:3 Encoder

A2

Al

AO

OEBPS/Images/c400544da4ea1397676a6d7952e8f992.jpg
F=a'yz+aoy2 +zyz+xyz’ + xyz
F=my+myg+ms+mg+m7

OEBPS/Images/cb3c4b6e025c21efaf51a4e08ad3d030.jpg
logr(n + 1)

OEBPS/Images/efacadc8237a688738a6df6459b367ca.jpg

OEBPS/Images/62d2b10a95225aa96b171d6261b7bb78.jpg
oo

RessToR

REsSTOR

OEBPS/Images/3cadfd8e3bb0781f0e395da2c4be5e1d.jpg
I

7 is don't care (can consider or not)

1 (in case 7 is considered) or &'

[P P I S P R

wlelo|o|r|mlo|olE

wlolr|o|n|olm|o

output
@

B—>

1ors

OEBPS/Images/6cdbfd5d082a029068f8e2cb9c056be2.jpg

OEBPS/Images/a03ac8b0d3969b1b9c6a8af85fe61651.jpg
0 0
1 !
¥ 2

Al=Y3 +Y2

OEBPS/Images/685197e4067a3a4fc5bb01ae20944dc0.jpg

OEBPS/Images/80aaa451681a7271a8c4a755293cc906.jpg
The counter is coonected as follows:

4-bit counter

Clear| Clock | Load | Count| Function
1 X X X clearto 0
0 X 0 0 No change
0 A 1 X | Load Input
0 A 0 1 Count next
As Az A Ay

Count =1
Load=0
Clock

OEBPS/Images/d5edd9750c92d1918bf6e463a4c392bd.jpg
an

B w2 19
EPS
6 1.0
28
5 N 75
. o
3 a
55 50
2 84
28
1 113
3a
o
“n
‘Normalised PAM value 150 224 394 220 110 226 188 1.20
Quantized Value 150 350 380 250 -150 250 -150-150
Normalized Error 0 026 044 030 040 024 038 030
Quantization Code. s 7 1 6 2 1 2 2
Encoded Words WMo 10 00 00 010 o010

OEBPS/Images/b87736ad73ab2c1c8e1d1bd3a90df804.jpg
Decimal to

BCD
Encoder

A3

A2

Al

AO

OEBPS/Images/1eb8ce34bb13a5b3d3d98d59aa1354c0.jpg

OEBPS/Images/5e758bf1728915da4a2cd731b172a4eb.jpg

OEBPS/Images/6928873a07b9406a3cd361f88241481f.jpg

OEBPS/Images/b1a335c6aa0bc329027b582f0bfa15c3.jpg
Qi

[Counter state | _Q,

OEBPS/Images/4f464442d75c17004115bf37bbcd8a4b.jpg
Inputs

D3

D1

OEBPS/Images/63536d00a3aae417a5f86e9ce8c54c4c.jpg
Truth Table

Inputs » Output
@

OEBPS/Images/ea6605c0e23f930c4c229822acda37a5.jpg

OEBPS/Images/3a0aca94ea3b1081997ca2d5a408e28a.jpg

OEBPS/Images/7b5b7f16cfa333bc95454dc4a0183af2.jpg
{4, =}, {, <},

OEBPS/Images/1df595d712eda71adefd9572326de609.jpg
yz
w00 01

00 | X/ X
01| 1 0
1] 1| X

10] 1 0

OEBPS/Images/5a1da5cd9960ecb67cb6bddfdeae58ad.jpg
filz,y,2) =2'yz +2y'2 + xyz

OEBPS/Images/fcca158488635c7fa90519ee55efaa75.jpg
B Carry

Half Adder

OEBPS/Images/df7706a5a0be31a6ec32bb8f187e313a.jpg

OEBPS/Images/8746c7d7eddeb4fb1f63684849083c0f.jpg
fa(x,y, 2) = my.my.my.my

OEBPS/Images/d216beee5cb2bef8cdedf77851397ed1.jpg
Q(e+1)

D

OEBPS/Images/0489f45283b0bbaba9e5e156644987bf.jpg
Clock
Pulses

Count

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 1 2 383 4 5 6 7 8 9 10 11 12 13 14 15 0

OEBPS/Images/06fc8d06fff88baf5ff922805e13d420.jpg
INPUTBINARY SEQUENCE

PSK MODULATED SIGNAL

OEBPS/Images/0e6b95eaf198c43067a66d697e21a5a8.jpg
D Flip Flop:

Clock D Qi1
0 x Qn

1 0 0

1 1 1
Characteristic Equation: Qu1=D

T Flip Flop:

Clock D Qi1
0 x Qu

1 0 Qn
1 1 Q,
Characteristic Equation: Q=T Q, + T Q.

OEBPS/Images/aa1dc2667ed0fe2ada8603410e205df6.jpg
No. of Implicants = 6
PI=(1,2345,6)
SPI1=(1,2,34,56)

OEBPS/Images/377ef52a7ec8fd0521ad739870eb60f0.jpg
F=ABC'(D'+ D)+ AB'C'D + ACD(B+ B')

+ACD'(B+ B')

=ABC' + AB'C'D + ACD + ACD'

— ABC' + AB'C'D + AC(D + D')

=ABC' + AB'C'D + AC

=A(BC' +C)+ AB'C'D

=A(B+C)+ AB'C'D

=AB+ AC + AB'C'D

=AB + AC + AC'D

=AB+ AC + AD

Using Property-1

Using Property-1

Using Property-2

Using Property-2
Using Property-2

OEBPS/Images/26d9f395d65f7ef10ae66c864a4cb92b.jpg
NOT gate

output
@

Inputs

OEBPS/Images/cb99d38216c7cc72a3a653b73e9d6553.jpg

OEBPS/Images/cf230efaeebdda9d2d196fb446823130.jpg
NOT gate

output
@

Inputs

OEBPS/Images/3d5d9ea8a2a78014555f96d2b6d0a792.jpg

OEBPS/Images/a64cb7e7503e1080b7e16029e4248aad.jpg

OEBPS/Images/d8fae3d08ab4f4a34aa2c517ff50966a.jpg
Inputs. Outpu

S0 $1

Selectors |
Control lines

OEBPS/Images/ac5e2cf9016927a6da9061e691c216f2.jpg
I

7 is don't care (can consider or not)

Y 1 0 P PSP Y

wlelo|o|n|rlo|o

1 (in case 7 is considered or C')

wlolr|o|r|o|m|ofE
a

Inputs

c

1 Output
@

c—>

torc

OEBPS/Images/a02240183de07621e914c1ee4e6b6ebb.jpg

OEBPS/Images/757455ba88b42f252ffccb858a61d822.jpg
Q

Qui

OEBPS/Images/74c9b591bdd8a7cc9687ed9426efaa41.jpg
()

OEBPS/Images/5835769e881c543cc32c560af3bd2321.jpg
No. of Redundant Prime Implicants = 1

OEBPS/Images/a981933c6f82ea4b1d34fbe54f08e8d2.jpg
SOP expression: AC’

OEBPS/Images/bbe879e16d4d8b19af7989df6cfe706b.jpg
{—, L} {+, L},

OEBPS/Images/f4d327e5fb620ab4998a79b3c5be2a06.jpg

OEBPS/Images/c3d9f572b81995feafe47a4cf25b6a3a.jpg

OEBPS/Images/a1c4101597e364d04d93d0e83695a8f2.jpg
N
2 input Lines N output lines

~

ENCODER P

OEBPS/Images/fe3bbe3413950b210767be9fdf64169f.jpg

OEBPS/Images/26c281598e119378da6abf4aa7b80ede.jpg
Bout

outeut

ineur

OEBPS/Images/fdf79a90b2dbabbbfc328c785ad07685.jpg

OEBPS/Images/1d4396207cf7c85bc44c0c7f4c3c0b18.jpg

OEBPS/Images/faf25222e70dc2e362346bc2e2e30b3c.jpg
Amplitude
N

Time

OEBPS/Images/4b448515abcc6b597ca63cf32b4f17ed.jpg
Present

state | 00 01 1 10
y
0 0,0 01 1.0 0,1
1 01 1,0 1,1 1,0

OEBPS/Images/d30a39bf4bebb29b773e66ea63a6899e.jpg
Present X1,X2 (Next
state E_xtemal state, 10
y 00 inputs Output)
01 1
A A0 A1 8.0 e
B A1 B, B 5o

OEBPS/Images/1e85d413c6780babcef3fa04772c68f6.jpg
folz,y, 2) = m3 4+ ms + me + my

OEBPS/Images/2c7a9efbc51e81b440345b9ed290c846.jpg
a3
B3
a2
B2
AL

81
A0

B0

a3
B2’
A2

B i ——————|

A>B

BO" —J
:{% A=B
—) >~
5 ATV) A<B
R 4)

B0

OEBPS/Images/c2299046a3d508fb10e3905e9b6341fd.jpg

OEBPS/Images/021c6c78930bf384b905096fb19cf6e8.jpg
Sum

Carry

OEBPS/Images/1e7aa5498e5ddc59a71642a9a3c73e1d.jpg

OEBPS/Images/6351773a017a9a2fb9f976e77f1be008.jpg
Truth Table

Inputs Output)

[} T

OEBPS/Images/f0c6d380b09d47deea5fb54b6bae2342.jpg
Aaeve000 01 11 10

F(ABCD)= -B-D G
+ BD +A

OEBPS/Images/fa6033d1987ad10d81785e5dbb35950b.jpg

OEBPS/Images/1aa377ac77186c9fe1fd17150ac4cfaa.jpg
no need of this group as
we've already covered those 1's

Groups of two elements
in one group

OEBPS/Images/3185ab11a80efa708f05f98e0b426df2.jpg

OEBPS/Images/45d73fe55c334bf014ce27d8048610ce.jpg

OEBPS/Images/e39775be631a3972e3edfc6836aece2a.jpg
c-IN Sum

Half - Adder

Half - Adder

OEBPS/Images/76e987261d5d1bb3614be836ce978780.jpg
log(n)

OEBPS/Images/53340b4a3f00caef098579ead0952b18.jpg

OEBPS/Images/ea820b18fa95bbc2490775ff00e6b588.jpg
A0=Y3 +Y2’'Y1

OEBPS/Images/24ed28e7fe0349b3451689fabd8dd080.jpg
S=>(1,2,4,7)

OEBPS/Images/f67c64a7527ebd99a7710e4a9e45bac6.jpg
Outputs

OEBPS/Images/aca7e7fe5b329dd19bdc41c8c6c91aa0.jpg
Output

OEBPS/Images/2dac17a2e7e39d72f1ba441b871b1254.jpg
Parallel Output

Serial Input

D Q D Q Q
Flip Flop 1 ' Flip F Flip Flop 3 Flip Flop 4

Clear

OEBPS/Images/1c83384cfe3533859df781c020a5f341.jpg
Flip Flops: Flip Flops are sequential circuits where O/P depends on present input as well as
previous output.
e S-RFlip Flop

Clock S R Qu1
0 x x Qu
1 0 0 Q
1 0 1 0
1 1 0 1
1 1 1 Invalid
Characteristic Equation: Qu1=S+ R Qu
e J-K Flip Flop:
Clock J K Qu1
0 X X Qn
1 0 0 Qu
1 0 1 0
1 1 0 1
1 1 1 Q,

Characteristic Equation: Qun=J Q, + R Qu

OEBPS/Images/17b147281c9e034e9a5aa2be53d11de5.jpg
folx,y, 2) = mo+ mq +ma +my

OEBPS/Images/ed3fb2907a16239c10d9dd9d4d3d397d.jpg
—p "

=

—
—»
(@) F2 = Xy'z+xXyz+xy’
Ty

Z

— P R

(b) F2 = xy'+X'z

OEBPS/Images/bee96685835dae4c563c001f4168aa79.jpg
Truth Table

s1 Y
0 0 0
0 1 [0
1 0 B
1 1 3

S0, final equation,
Y=S5051°.10+ SO0 SLI1 + SO.S1"12 + SO.SL13

OEBPS/Images/a113cb69e37b2eb2896407b19401bf73.jpg
CP

OEBPS/Images/e25aa3c9a6f501a853bd778a95487dd4.jpg
Extemal

External Combinational Outputs
Inputs Circuit
Curtent Next
State State
Internal Internal
Output inputs

Figure: Sequential Circuit

OEBPS/Images/14e9fbbe737968658fbbc6f0052d704d.jpg

OEBPS/Images/709f06c0531b468c77d643a031dcdea4.jpg
Right/left!

ey T I

T v
e (L E
D all D aQ D Q b) Q
Serial Output
¢ (left shift)
: Flipflop 1 Flipfiop 2 Flipflop 3 Flipflop 4

Serial

Output

(right shift)

Clock

OEBPS/Images/c533e08e11a2ce290aec8a949e3dea6a.jpg
I K Q Q.
0 0 0 0
0 0 1 1
0 1 0 0
0 [[0
1 0 0 1
1 0 1 1
1 1 0 T
1 [1 0

OEBPS/Images/69b13a9fb725ba2e62aef8543802613c.jpg
filz,y, 2) = mo+ ma +ms + ms + mg

OEBPS/Images/c4ebd00d2d1677c55d0a2cd73e5deb77.jpg
D3

Dy

Dy

0

E|A|B | Do
0 X|X

OEBPS/Images/3e57dc29d72703364de66380b02547f1.jpg
A m e e | Aw A me
I N I I S NN
Lo ° r o ' t I ‘. 1 ° r 9o .}
o 1 o 1 o+ 1 o 1 1 1 o I o |
A [S I S S S
o 1+ 1 o 1 o I o 1 o | 1 |
AN [N I EEUN S N
I [N A N NS R
o 1+ 1 + 1 + [*+ 1 o 1 0 |
Lo 1 o 1 o 1 o 1 o I 1 |
IS I N SR S O S
1 1 o 1+ 1 o 1 o 1 1 1 o |
IEN I SN IR SN N R
IES S I S S N R
L L ot o ° ! |
IS N N ECH SN N S
2y = 3 = 1 § 0] =) O |

OEBPS/Images/9b609d87ba291796bdb79b3f277534e0.jpg

OEBPS/Images/cb98b8c78f7cc837d4fc2416bdc5861b.jpg

OEBPS/Images/3b3a14a11ea274d4fb9a0239a207c779.jpg
Y(A,B,C)=) (0

L1, 8

OEBPS/Images/d5fddcafa98eff8bf866ff6d110cd8e9.jpg
Impairment Causes

Attenuation Distortion Noise

OEBPS/Images/94d7657de2b04903d5a88799fd644549.jpg
Set

Master-slave JK Flip-Flop

OEBPS/Images/b6a4bb0e32d1a331b9dbfe5dffef50c9.jpg

OEBPS/Images/853e2d7760937e2ad8f97b6090c41353.jpg
Logic Diagram

OEBPS/Images/3d16e491a219b037078f52386890cb5b.jpg
b1,b0
00 01 11 10

b3,b2
00|00
01 0|0
11 0|0
10(010

OEBPS/Images/5a2b7c938d32aa7dcb7953ae4f8e55f3.jpg
1 - bit 1 - bit 1 - bit
Full Adder Full Adder Full Adder

1 - bit
Full Adder

OEBPS/Images/323757aa6bf343dcc21b467e6be3567f.jpg

OEBPS/Images/70938ea239fb2ecf30d930194746f074.jpg
N - bit

Comparator

A>B

A=B
A<B

OEBPS/Images/24121591ffd056dc7f00b996a3d8ee21.jpg
Algebraic

Name function

Inverter

F

=
=

Fuxy+xy
=@y’

Exclusive-NOR
or
equivalence

moo~

OEBPS/Images/40fd5bc8496b2ecc1b8134dd4fd610bf.jpg
Present

state | 00 01 11 10
y
0 0 1 0
1 0 1 1

OEBPS/Images/69e93c1d8897a2c393016f516c0bae12.jpg
Z(A,B,C)=)>0,2,3,5)

OEBPS/Images/bb538110926c601723eb43434cdbccda.jpg
Q

Flip Flop 1

D Q Q
Flip Flop 2 Flip Flop 3 Flip Flop 4

Clock I

Parallel Output

OEBPS/Images/364792ee2e3d46fcd847e7915a7e50b5.jpg

OEBPS/Images/18365dcc463b8bb4ebc94c44000f6c7a.jpg

OEBPS/Images/99111618a7c8e5d6d3465d0479c5421f.jpg
M;

OEBPS/Images/6328507e86f8064d14d4e8f3b9d042fb.jpg

OEBPS/Images/7956a5841c9cf05371b1ac1fec4723b4.jpg
Amplitude

Time

OEBPS/Images/79386a473660e1b783f4299e2ae86c44.jpg
Ae\cp00 01 11 10
00({1]0 1
01(0]0
111X | X
101110

(]

X[X|o

1
X
X

F(ABCD)= -B-D + C-D

OEBPS/Images/2b98e5e42df0135b0820115530f4f9c3.jpg
©

OEBPS/Images/b309e556ecb0a3fee7deb625f0a87e5d.jpg
Multiplexer: It selects the input from one of many input lines and sends it to single output line.
The input line chosen for output is based upon set of selection lines. For 2" input lines, there will
be n select lines and 1 output lines.

Note: No. of mux required to implement nx1 mux using mx1 mux is Ceil (n;ll)AeB.
m—

No. of mux required to implement 16x1 mux using 4x1 mux is ceil(15/3)=5.

Demultiplexer: It selects the input from one input line and sends it to one out of many output
lines. The output line chosen is based upon set of selection lines. For linput lines, there will be n
select lines and 2" output lines.

n—1

Note: No. of demux required to implement 1xn demux using 1xm demux is Ceil(I
m—

).

No. of demux required to implement 1x16 demux using 1x4 demux is ceil(15/3)=5.

Encoder: For 2" input lines, it has n outputs. It can be used to convert octal or hexadecimal to
binary data.

Decoder: For n input lines, it has either 2" outputs or less than that. It can be used to convert
binary data to other codes like octal or hexadecimal.

OEBPS/Images/30e9863588aaa9508919e582b258c7ec.jpg
[SR-N-N

OO

A B | Sum|Cari

- -

OO v

OEBPS/Images/e224b70cf4c6877a17ea4fe7aa73f0eb.jpg
> *

P

???'??"' >

|

{' AB+BC
A_A—.[._A'B*A'C +ABC

OEBPS/Images/f5b22dd7247316978d22501039ce5e3f.jpg
INPUT OUTPUTS
Yo [v8 [v7 Y6 [¥5 [va [v3 [v2 [v1 [Yo [A3 [A2 [AL [A0
o [o o Jo [o o Jo [o [o [1 [o [o o |o
o [o o Jo [o o Jo [o [t o [o [o o |1
o [o o Jo [o o Jo |1 [o Jo [o [o |1 [o
o [o o Jo [o o 1 [o [o o [o [o |1 |1
o [o o Jo [o [z Jo [o [o o [o [1 o |o
o [o o Jo |1 o Jo [o [o o [o [1 o |1
o [o o 1 Jo o Jo [o [o o [o [1 |1 |o
o [o [1 Jo [o o Jo [o [o o [o [1 |1 |1
o [1 o Jo [o o Jo [o [o o [1 [o o |o
1 Jo o [o Jo [o [o Jo o [o |1 o Jo |1

OEBPS/Images/51fe69f7feb71d8eae6ba2ecc0bcc474.jpg
Amplitude:

OEBPS/Images/82c30314b28b1fcd79d365c37027af6e.jpg
1 No. of Implicants = 8
| (®) PI=(12345)
rrrrrrrrr 1 o) EPI=(1,2,34)
1 RPI = (5)

OEBPS/Images/2f0d51e1c9ccaf947f9d2c92bdbc3547.jpg
A+ A

OEBPS/Images/1a81a19f7372bf4967bb0354914104d1.jpg
{A\, >, L},

OEBPS/Images/e1588d3b735a647061d173bc912cb99b.jpg

OEBPS/Images/98f141078da0f1079a7077713ed81517.jpg
Q

Flip Flip F Flip Flop 3 Flip Flop 4
o

Clock

OEBPS/Images/da581097fe0a46c527c30434db842a16.jpg

OEBPS/Images/d4dca7af23f68d19121d8ac0b78efeb6.jpg
{-», THA{e, T},

OEBPS/Images/580f80227f737ed1d7b080ea351ea615.jpg
Amplitude:
Iy

OEBPS/Images/5228ee1eb6daf805e51b78fbcef9c4ad.jpg
Outputs

NERRPP

w0
]
=
(=%
=

OEBPS/Images/3c00bb5ea8c211b5d01f1c99a4bdb2e6.jpg
1,60
g%O 01 11 10

g3.22
0w|o]o

OEBPS/Images/ef9e6d3159fe457bd5076e16364c45d5.jpg
m; = (M;)'

OEBPS/Images/82396f840d487de45a1a1e43517acccd.jpg

OEBPS/Images/84d4f071ee3cf587c00e1def95891948.jpg

OEBPS/Images/411c45f9f1862c51e6cce87798b2cc97.jpg
AB+ AC + AD

OEBPS/Images/821cceda2cf51afc90b82c29ce9ef458.jpg
High =y
)

CLOCK-

ek

OEBPS/Images/a599dcfc8e7b5e6654eb966472e9d641.jpg
Code Converter: Code converters are used to convert one type of code to others.

BCD to Excess-3: It will add 0011 (value 3) to binary code.
Function:
4 bit Input (ABCD) with A as MSB and 4 bit output (WXYZ) with W as MSB, O/P is:
b v
Y=CD+CD
X=BD+BC+BCD
W= A+BC+BD
Binary to Gray Converter:
Function:
4 bit Input (Bs B, B: Bo) with Bs as MSB and 4 bit output (Gs G2 G1 Go) with Gs as
MSB,0/P is:

G5=B; G,=B;®B; G,=B,®B; Go=B:®B,
Gray to Binary Converter:
Function:

4 bit Input (Gs G, G; Go) with G; as MSB and 4 bit output (B; B, B; B,) with B; as MSB,
O/Pis:

Bs=G3; B=B;®G; B,=B,®G, By=B:®G,

OEBPS/Images/2b2fdfe5bd48ee6bae993dd0928ef9b2.jpg

OEBPS/Images/b27d57e3f417abb002a05eaa8a1ff42e.jpg

OEBPS/Images/e79e9e3c317ca60cf1b52a272904ce8d.jpg

OEBPS/Images/849a2ee0f60d883fee9600e92e19933d.jpg
F=(A+B).(A"+ C,Redund:ncy term
T =~

Complemented variable

OEBPS/Images/0bb1a25bdaf1181b0d152f0626f68694.jpg
F2

F1

OEBPS/Images/0dbbdbef777b0b0520a8723d97de8163.jpg
Y3

Y2

Y1

Yo

o0

Al

A0

OEBPS/Images/f3e0b88952e6f1ec79109691efc38c50.jpg
& 00 o1 il 10

SOP expression: AC

OEBPS/Images/1fba8846962efef8ccf0cfd34dd2546b.jpg
{—=, =}, {4, 1},

OEBPS/Images/b7be7c9920a0b44e86106b38b87564d4.jpg

OEBPS/Images/22f5f374a4fa16b74483b66340f36b42.jpg

OEBPS/Images/a5210a11eba553e40403431cedb59304.jpg
{—=, =} {—, <},

OEBPS/Images/b08347fdc6aa5de03e9e91c2b499abba.jpg
b1,b0
00

D32 01 11 10
00| 0 0
or|o 0
1|0 0
100 0

OEBPS/Images/2fcea10a7642f4b02083e03a8c617aa9.jpg

OEBPS/Images/80871be2ef1642bc0e43efad08b50d38.jpg
= Moy.Mo.Ms.Ms.Mg

OEBPS/Images/c069ca7cc90a3057823d0548bddcf36f.jpg
Do, D1, bo , and b3

OEBPS/Images/dab2b075fa77a77d425b60ae4f9a9b9d.jpg
h:AGBB

:.' =

OEBPS/Images/fcddcae4d7b8252becc4ca24ad9af8ce.jpg
c-out
)

Outputs

Inputs
B
)

OEBPS/Images/0fe5283009e39377b2675e79a90f6196.jpg

OEBPS/Images/656c49de1a54932ea0d7609bf5258489.jpg
Cary=AB

sum=AGB

OEBPS/Images/80877e1c7ffb4ec61a53e7e6ffabfdff.jpg
Present

cate | 00 01 1 10
o o) (7]
1 (1) 0 (1) 0

OEBPS/Images/b4e03e037292bdc888592d08ffc149ea.jpg
Input ‘Sequential Output Puises
Levels Circuit o Levels

Figure: Asynchronous Sequential Circuit

OEBPS/Images/2775ccf1e295c62a4040a1924459d7cc.jpg
yz

W 00 01 11 10
00 | IX|| X 0] KX
01l]o 0|1 0
11]o X [[X]| X
10 |1 1 [

OEBPS/Images/d7997ca14ddcefa6091e32e7af3a5597.jpg
o

o

w

by

OEBPS/Images/82fc8c0b6cba11d244514b0c005369b1.jpg
B3, DBy, B, and By

OEBPS/Images/56017846fdfa3a708687a14ef0a1afc4.jpg
Q

Qu

OEBPS/Images/ee24029f58c5c7bc83e49cef4ff77456.jpg
A B, C,andD

OEBPS/Images/0f47a596912f7c6898269330644dd8c7.jpg

OEBPS/Images/6da4babd7e7d0ca78e65229fdfd12fff.jpg

OEBPS/Images/e12f5ee524da8aceba7f564e743a3952.jpg
{V, ¢, =},

OEBPS/Images/595cc5281ebd15262e00cd3a1a09b0fb.jpg
AND

OEBPS/Images/22218310bfb62ffcd784cd60cc68f61c.jpg
(C+Dy

OEBPS/Images/64d775fc3a4a31587b7f0158eefa4ff3.jpg
H

OEBPS/Images/b13f4c273a850256466f9e3d9a08ac58.jpg

OEBPS/Images/b3e8f339e58566deeca40647b5441d1f.jpg
F=z(y+y)+y=z

F=zy+ay +y=
F=ay(z+2)+ay(z+2)+ (z+2)y=
F=uxyz+ayz' +avz+xy2 + 22+ 2'y2

OEBPS/Images/5363b838d41f0f7f87464486bcf9a70e.jpg

OEBPS/Images/2b4bb658c824ea9ae95b7e3e8ea3477f.jpg
Clock Q1 Q2 Q3 Q4
Pulse
0 1 0 0 1
1 i 1 0 0
2 0 1 1 0
3 0 0 1 1

OEBPS/Images/57c514fa605aa9bf8485fa838e6a15b3.jpg
T
o NOk

No. of Prime Implicants = 3

OEBPS/Images/c7f2749a3affb7366332687ccf7bef07.jpg
mo

xry

OEBPS/Images/d6e991699817dba2a955814054961daa.jpg
Truth Table

Inputs. Output
@

OEBPS/Images/cd353f2ef24436e6a1f31465b451d4cb.jpg
[X 0
N

R:

D

OEBPS/Images/623e9e7135169e382842f8908ffd1089.jpg
2elements in one group

OEBPS/Images/7e062a84cae3f1fd21c0673485b319f6.jpg

OEBPS/Images/c4307dd210fe2f8ec6a2e457fc0bdb07.jpg
w >

i

out

OEBPS/Images/5c3dd5e547c0436d2c682705537ea960.jpg
Data Sequence

Encoded Sequence

Data Sequence

Encoded Sequence

0000 11110 1000 10010
0001 01001 1001 10011
0010 10100 1010 10110
0011 10101 1011 10111
0100 01010 1100 11010
0101 01011 1101 11011
0110 01110 1110 11100
0111 01111 1111 11101

OEBPS/Images/91c5605f0b2df1007ac0e149d01b70fa.jpg
4 xy 4+ vy

OEBPS/Images/6c911e0bfe0306f22bb8f58088081710.jpg

OEBPS/Images/86f88681f02f1c1bc49d22de84ed5eaa.jpg
Kinputs noutputs
(address) (data)

OEBPS/Images/af53ab8e371b50c836bb9c52d6b7dabd.jpg
Inputs

n—s
12—

4

s1 50

15—

18—

$1 50

18—

10—
"

o

$1 50

112
13—

14—
15

1

$1 50

!

s3 82

output
@

OEBPS/Images/2ab8d1aac356aad8a1f0a0b7584f407f.jpg
nxkiuses

Kxm fuses

ninputs nxkiuses

mfuses

m output

OEBPS/Images/c09c3633cd5956516e8734ef364274c8.jpg
Clock

Qm
Qs

OEBPS/Images/b10241408c09b07926fad83a711e0d86.jpg
bo

by

Binary

by

bs

G

20

g1

ray Code

g2

g3

OEBPS/Images/9ee2e4eb8bdc06c94dfe0d39b089ff9d.jpg

OEBPS/Images/ca4d26db0862cbceafb4dfbaa56ca45f.jpg

OEBPS/Images/fa9ce8c361e3e3e599e8aad22dcf00a9.jpg

OEBPS/Images/43b51d5923ceb47883f19d77a376224e.jpg

OEBPS/Images/acbcd960d82a323608dd430e572a4df6.jpg
o Q=

OEBPS/Images/e6d6ac92d93e7e030199fcc3eeeb05e3.jpg
A3

A1

LT

A0

A=B

A<B

A>B

[

A3

A1

A0 A=B
B3
B2
B1
Bo

A<B

A>B

A=B
A<B
A>B

OEBPS/Images/1350bb3b474e835f73e80871a3e2c31c.jpg
oo @] @
1@1e @0

D=A'B'Bin + AB'Bin’ + A'BBin’ + ABBin

OEBPS/Images/0df9bffd9725d958f568643867c0ee21.jpg
CD

AB 00 01 11 10
00|00 |0]O0
0oLfofo|o0fo
11
10

OEBPS/Images/5b7287e1133437aeb1017d1f49eb5bea.jpg
= Moy.M.Mo. My

OEBPS/Images/2fa2c468eedd80834a58cfa8c11f715f.jpg
T2
Q:\QQ1

0

1

00

01

11

10

OEBPS/Images/846527a49fa3f53186956028d08e3a5d.jpg

OEBPS/Images/2e44a80d6862d1b6d1c3528b33ef130a.jpg
INPUTS OUTPUTS
Y3 Y2 Y1 YO Al A0
0 0 0 0 X X
0 0 0 1 0 0
0 0 1 x 0 1
0 1 X X 1 0
1 X X X 1 1

OEBPS/Images/dacebe5816a671095f30795714c024a7.jpg

OEBPS/Images/b774a3ca745abeb0d4216baff8094e6e.jpg
Amplitude

O Nolnversior
@ Inversion

OEBPS/Images/a54589e5a7527e98f522603158fb4ecd.jpg
Logic Gates:

Gate Behavior Expression
NOT Inverse the input A
AND O/p is 1 if both inputs are 1 AB
else 0
OR O/p is 0 if both inputs are 0 A+B
else 1
NAND Inverse the output of AND AB orATB
gate
NOR Inverse the output of OR gate A+B orA4B
EX-OR Outputs 1 if two inputs are AB+AB| orAeB
different else 0
EX-NOR Outputs 0 if two inputs are AB+AB or A®B

different else 1

Note: NAND and NOR gates are called UNIVERSAL GATE because all other gates can be

constructed from any of them.

OEBPS/Images/9b041456105dc3bafbb22c68dcfa2029.jpg
{-», ¢} {«+, o}

OEBPS/Images/0f8d0c1f279f7c2b921e8a986af2c32f.jpg
Amplitude:

H

Pseudoternary

OEBPS/Images/3b9c188358f2cd48adc898bac6f57661.jpg
THIRD
SUBSTITUTION

SECOND
SUBSTITUTION

FIRST
SUBSTITUTION

OEBPS/Images/5a70cef8e62dac2f016e6497bd1c3370.jpg
Binary equivalent Hexadecimal

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

m[m|o|olm|>|0|o|<|a|uls]w|p|s]o

OEBPS/Images/723436f869285f6d48256c9fa09dd5eb.jpg
Integer part

2|10 |o
2|5 |1
2|2 |o
1
(1010 = (10102
Fractional part
0.25%2 = 050 l (0.25)10 = (0.01)2
05062 = 1.00

OEBPS/Images/f4b180606dd96d481bae935530c7a9d0.jpg

OEBPS/Images/4612a89df904cc7d12f6c06403835ecd.jpg

OEBPS/Images/42771a2e6a03a41f34c5cad7dcbfc60b.jpg

OEBPS/Images/ea13351c2d3d7bcb1f2e0755014c843b.jpg
High

(a) Asynchronous counter

Clock

Qo

« 1 1
S —

(b) Timing Diagram

OEBPS/Images/f32ce667dc875eeb9e33afc37df30917.jpg
gl,%()
0 01 11 10
g3.82

owjofo0o]o]o0

0oLjo0ofo0oj]o0]|o0

11

10

OEBPS/Images/439d2a194fa04c0f30379bcf2e5d49ec.jpg
Base Representation
2 Binary
B Octal
10 Decimal
16 Hexadecimal

OEBPS/Images/88dfbb4b45e1c4d54b5a02beb9d7d15b.jpg
as k-map is assumed to be
connected so we can make
‘group this way

as we have to take maxm. elements
in a group so we've made 1 group
of 4 1's not 2 groups of 2 1's

OEBPS/Images/a77baf82dfd0f734074b46abadbf49e4.jpg
F'=ABC'D'+ ABC'D + AB'C"D + ABCD + AB'CD + ABCD'
+ AB'CD'

OEBPS/Images/437fe43432150a8482425de8cd8131fb.jpg
REsSTOR

RessToR

Jeur

OEBPS/Images/57c875906984d561964956a3fcb5ac5f.jpg
(mD), = (I,y’)’

OEBPS/Images/60a9c7c1e73e388e0cbc1aa0f93dec9c.jpg
BCD

A|B

C

X|X|X|X
X|X|X|X
X|X|X|X

X|X|X|X
X|X|X|X
X|X|X|X

Excess-3

Z

1
0

1

0
1

y

1

0
1
1

0

0/0]0]0
010]0

OEBPS/Images/a085bba0001a9919c7eb6a0b00ffdbe8.jpg
B1B0 A<B
00 01 1 10
A1A0
0 | o 1 T T
01 o 0 1 1
1|0 0 0 0
00 o o 1 0

OEBPS/Images/a8086f430e6c3badc0e602b2eb60397d.jpg

OEBPS/Images/9ed418c67b92b43c0420a030a10de690.jpg
SOP expression: C

OEBPS/Images/67265d767b6ff972b36a52036b37fa5f.jpg

OEBPS/Images/91894ef67af2b3445fff18d713ee23ff.jpg

OEBPS/Images/893ae5116201a2d82ed946847da75402.jpg
G

20

g1

ray Code

g2

g3

bo

by

Binary

by

bs

OEBPS/Images/485845f84eb9ab7dce708c897e91d16e.jpg
Inputs

50 (LSB)

12

[

S0/ (LSB)

1(MSB)

output
@

Truth Table

OEBPS/Images/090f9581f8b37c9936138ad3998ad32b.jpg

OEBPS/Images/412254ec06233c394f9edebd8084a519.jpg

OEBPS/Images/1d816294cc69d0b6d1d57e1517870f6a.jpg
aeve000 01 11 10

001|0

01

0
11X
1

1
X
10 1

1
1
X
X

X[X[|[[—

F(ABCD)= -B-D
+ B-CD + C-D

+ -BC
+ A

OEBPS/Images/61a7b7b9af3f56d915dbb1ed2887aac6.jpg
E3

E2

E1

B1

OEBPS/Images/b7ee52ff27d33ea309562359a4b19e97.jpg
filz,y,z) = m1+ myg+ my

OEBPS/Images/85bcf8c55446e470d017c7ae493cd20e.jpg
aeve000 01 11 10

00| 1|1|1(0

01][1

T{1]1
TTX XX X
1001 |1 [X)X

F(ABCD)= -C + D
+ B

OEBPS/Images/55b60c4197507219190af0c50f040761.jpg

OEBPS/Images/57ba4871256cc94002d256184eb8c5af.jpg
Serial Input

Flip Flop 1

D Q
Flip Flop 4

Clock

OEBPS/Images/2ecca95709f7ddf5a3fefc3f19cd66c9.jpg
Mo=z+y Mi=xz+vy', Mo=a2"4+y, Mg=2"+7

OEBPS/Images/a77dbf211bb5c5455a3bd4d9f8a85640.jpg
odulating Signal

T AWANE .

WVTVYVTY

OEBPS/Images/788f2b26500d27d1cba309d156ef452b.jpg

OEBPS/Images/2502bc4461575447a59651ef7df31c8d.jpg
Hexadecimal Number: 1AB

1|A|B

10

|1x(16’\2) + 10x(16’\1)| |11x(16’\0)|

B 61 - 0

427

Decimal Number: 427

OEBPS/Images/e04bd60dac65a150a767d3d8f9ecdac6.jpg
Clock Input

OEBPS/Images/0812da8783d01700075519fb8777edd8.jpg
Modulating Signal

AAAAAAN N A

VVVVVVVVV

Amplitude Modulation

OEBPS/Images/f0d198f4bd19515c761fe38840fbf8f1.jpg
FSK MODULATED SIGNAL

OEBPS/Images/f7013f924f91e6283294a2584fd299f6.jpg
0 0 0 Xyz mo x+yte My
0 0 1 Xyz m, xry+7 ™,
) 1) XyZ m, xryrz ™,
0 1 1 Xy m, x+y+7 ™,
1)) X7 Xryrz ™,
1 0 1 X'z m, Xry+rz M
1 1) xy? Xty +z [
1 1 1 vz X y+z ™,

OEBPS/Images/647fbb69775d1552af91d88e51baa4ff.jpg
Fs, B9, E1., and Eg

OEBPS/Images/5ae03a57030516b932d67249c25b62e0.jpg
INPUT BINARY SEQUENCE

OEBPS/Images/81348d25cb7948487e10a8ecf1579b7a.jpg
Ka.

s=1Q¢

OEBPS/Images/974cf7f9387328cf177b37ddac6f1c2c.jpg
Original
Attenuated

Transmission
‘medium

Amplified

Ponitt Ponit2

Ampliier

OEBPS/Images/f16dd7d0165de2adb4cc78b0f97160ba.jpg

OEBPS/Images/452a7e07d5a786a9ee5405e3a76fec58.jpg
X =D4 + D5+ D6 + D7

Y =D2+D3 +D6 + D7

—»
=S 4

—} Z=D1+D3+D5+D7

OEBPS/Images/0cd932330d812145c9fe4a6f4fd2f48c.jpg
oLk,

OEBPS/Images/2984b1a4872061f7535c972c41652575.jpg
CLK—

ol

OEBPS/Images/72af4dce4309fa3ebd9b7ecea0bc2fd0.jpg
bl’Bg 01 11 10
b3,b2

0w|o0]0]|0]|0

01

1|y 0j0|0]|0

o |

OEBPS/Images/6ba1df89bb5eb37ccb1b816cb8d1574a.jpg
Minterms

Maxterms

X|\Y| Z Product Terms Sum Terms

ololo mﬂ:i?i:mm(i?,i) M,=X+Y+Z=max(X.Y.Z)
olo|1||m=X7 z=-mn(X7.2) M, =X+Y+Z=max(X,Y.Z)
0[1|0||m=XY-Z=min(XY.Z) | | M,=X+Y+Z=max(X.Y.2)
ol1|1||m=XY-Z=min(X.¥,Z) | | M;=X+Y+Z =max(X.Y.Z)
1100 |m=XYZ=-min(XYZ) | | M,=X+Y+Z=-max(X.Y.Z)
1101 m;=X-Y-Z=min(X.Y.2) M, =X+Y+Z=max(X.Y.Z)
1|/1]0||m=XYZ=-min(XYZ)| | M=X+Y+Z=-max(X.Y.2)
1111 m, =X-Y-Z=min(X,Y,Z) M, =X+Y +Z =max(X.Y.Z)

OEBPS/Images/cf1705553f02180aced6629b4972cd52.jpg
NOT gate

output
@

Inputs

OEBPS/Images/1323350a51e5809e7acfdf755e682387.jpg
RessToR

OEBPS/Images/a393c50e5e473af70ab2866bcdecafec.jpg
aeve000 01 11 10

F(ABCD)= -C-D + B-C
+ B-D + A

OEBPS/Images/42ce0a847b20a2f8a781c8a50bdab975.jpg

OEBPS/Images/c14e4f0b2b04d1f0b1ae58d7e7921c15.jpg
Inputs Combinational
&5 Circuit

Figure: Combinational Circuits

OEBPS/Images/6168bc9fbf4c097a4e52d57580b13339.jpg
Input ‘Sequential Output Puises
Levels Circuit o Levels

Clock
Puises

Figure: Synchronous Sequential Circuit

OEBPS/Images/98fd84e8c4dd3a14cdd5815a029f2159.jpg
c

OEBPS/Images/289a211426ea310f3a7cd0c90adc21b8.jpg
P

D1 Q1

D2 Q2

D3 Q3

Ql

Q2]

D4 Q4

fox!

OEBPS/Images/ddc81f07273cfdef2a4b074637d0f566.jpg

OEBPS/Images/e3fdd997ef9806cdca1842dd577fcd8a.jpg
B1B0 A=B
00 01 11 10
A1A0
o [@O o 0 0
o1 | o @ 0 0
1| o 0 @ 0
00 |0 0 0 @

OEBPS/Images/8ce1c2399e57a6759008dbee3600b204.jpg

OEBPS/Images/9099bb9e3321b113ec00f39bfe4321a1.jpg
BCD to 7 Segment 7- Segment
Decoder LED Display

