
GeeksForGeeks Database Management System Lecture Notes

From: https://www.geeksforgeeks.org/dbms/

Introduction

						Database Management System – Introduction | Set 1

				
						

				
			Important Terminology

Database: Database is a collection of inter-related data which helps in efficient retrieval, insertion and deletion of data from database and organizes the data in the form of tables, views, schemas, reports etc. For Example, university database organizes the data about students, faculty, and admin staff etc. which helps in efficient retrieval, insertion and deletion of data from it.

Database Management System: The software which is used to manage database is called Database Management System (DBMS). For Example, MySQL, Oracle etc. are popular commercial DBMS used in different applications. DBMS allows users the following tasks:

Data Definition: It helps in creation, modification and removal of definitions that define the organization of data in database.

Data Updation: It helps in insertion, modification and deletion of the actual data in the database.

Data Retrieval: It helps in retrieval of data from the database which can be used by applications for various purposes.

User Administration: It helps in registering and monitoring users, enforcing data security, monitoring performance, maintaining data integrity, dealing with concurrency control and recovering information corrupted by unexpected failure.

Paradigm Shift from File System to DBMS

 File System manages data using files in hard disk. Users are allowed to create, delete, and update the files according to their requirement. Let us consider the example of file based University Management System. Data of students is available to their respective Departments, Academics Section, Result Section, Accounts Section, Hostel Office etc. Some of the data is common for all sections like Roll No, Name, Father Name, Address and Phone number of students but some data is available to a particular section only like Hostel allotment number which is a part of hostel office. Let us discuss the issues with this system:

	Redundancy of data: Data is said to be redundant if same data is copied at many places. If a student wants to change Phone number, he has to get it updated at various sections. Similarly, old records must be deleted from all sections representing that student.

	Inconsistency of Data: Data is said to be inconsistent if multiple copies of same data does not match with each other. If Phone number is different in Accounts Section and Academics Section, it will be inconsistent. Inconsistency may be because of typing errors or not updating all copies of same data.

	Difficult Data Access: A user should know the exact location of file to access data, so the process is very cumbersome and tedious. If user wants to search student hostel allotment number of a student from 10000 unsorted students’ records, how difficult it can be.

	Unauthorized Access: File System may lead to unauthorized access to data. If a student gets access to file having his marks, he can change it in unauthorized way.

	No Concurrent Access: The access of same data by multiple users at same time is known as concurrency. File system does not allow concurrency as data can be accessed by only one user at a time.

	No Backup and Recovery: File system does not incorporate any backup and recovery of data if a file is lost or corrupted.

These are the main reasons which made a shift from file system to DBMS.

Also see

	Database Management System – Introduction | Set 2

	All DBMS Articles

	DBMS Quizzes

This article is contributed by Sonal Tuteja. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS Basics

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Database Management System Introduction | Set 2 (3-Tier Architecture)

				
						

				
			Database Management System – Introduction | Set 1

DBMS 3-tier Architecture

DBMS 3-tier architecture divides the complete system into three inter-related but independent modules as shown in Figure 1.

[image: dbms-3-tier-architecture]

 Figure 1

Physical Level: At physical level, the information about location of database objects in data store is kept. Various users are DBMS are unaware about the locations of these objects.

Conceptual Level: At conceptual level, data is represented in the form of various database tables. For Example, STUDENT database may contain STUDENT and COURSE tables which will be visible to users but users are unaware about their storage.

External Level: An external level specifies a view of the data in terms of conceptual level tables. Each external level view is used to cater the needs of a particular category of users. For Example, FACULTY of a university is interested in looking course details of students, STUDENTS are interested in looking all details related to academics, accounts, courses and hostel details as well. So, different views can be generated for different users.

Data Independence

Data independence means change of data at one level should not affect another level. Two types of data independence are required in this architecture:

Physical Data Independence: Any change in physical location of tables and indexes should not affect conceptual level or external view of data. This data independence is easy to achieve and implemented by most of the DBMS.

Conceptual Data Independence: The data at conceptual level schema and external level schema must be independent. This means, change in conceptual schema should not affect external schema. e.g.; Adding or deleting attributes of a table should not affect the user’s view of table. But this type of independence is difficult to achieve as compared to physical data independence because the changes in conceptual schema are reflected in user’s view.

 Phases of database design

 Database designing for a real world application starts from capturing the requirements to physical implementation using DBMS software which consists of following steps shown in Figure 2.

 Conceptual Design: The requirements of database are captured using high level conceptual data model. For Example, ER model is used for conceptual design of database.

Logical Design: Logical Design represents data in the form of relational model. ER diagram produced in conceptual design phase is used to convert the data into Relational Model.

Physical Design: In physical design, data in relational model is implemented using commercial DBMS like Oracle, DB2.[image: phases-of-db]

Figure 2

Advantages of DBMS

 DBMS helps in efficient organization of data in database which has following advantages over typical file system.

	Minimized redundancy and data consistency: Data is normalized in DBMS to minimize the redundancy which helps in keeping data consistent. For Example, student information can be kept at one place in DBMS and accessed by different users.

	Simplified Data Access: A user need only name of the relation not exact location to access data, so the process is very simple.

	Multiple data views: Different views of same data can be created to cater the needs of different users. For Example, faculty salary information can be hidden from student view of data but shown in admin view.

	Data Security: Only authorized users are allowed to access the data in DBMS. Also, data can be encrypted by DBMS which makes it secure.

	Concurrent access to data: Data can be accessed concurrently by different users at same time in DBMS.

	Backup and Recovery mechanism: DBMS backup and recovery mechanism helps to avoid data loss and data inconsistency in case of catastrophic failures.

Also see

	All DBMS Articles

	DBMS Quizzes

This article is contributed by Sonal Tuteja. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS Basics

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						DBMS Architecture 2-Level, 3-Level

				
						

				
			Two tier architecture:

Two tier architecture is similar to a basic client-server model. The application at the client end directly communicates with the database at the server side. API’s like ODBC,JDBC are used for this interaction. The server side is responsible for providing query processing and transaction management functionalities. On the client side, the user interfaces and application programs are run. The application on the client side establishes a connection with the server side in order to communicate with the DBMS.

An advantage of this type is that maintenance and understanding is easier, compatible with existing systems. However this model gives poor performance when there are a large number of users.

[image:]

Three Tier architecture:

In this type, there is another layer between the client and the server. The client does not directly communicate with the server. Instead, it interacts with an application server which further communicates with the database system and then the query processing and transaction management takes place. This intermediate layer acts as a medium for exchange of partially processed data between server and client. This type of architecture is used in case of large web applications.

Advantages:

	Enhanced scalability due to distributed deployment of application servers. Now,individual connections need not be made between client and server.

	Data Integrity is maintained. Since there is a middle layer between client and server, data corruption can be avoided/removed.

	Security is improved. This type of model prevents direct interaction of the client with the server thereby reducing access to unauthorized data.

Disadvantages:

Increased complexity of implementation and communication. It becomes difficult for this sort of interaction to take place due to presence of middle layers.

Three-TierArchtecture

[image:]

This article is contributed by Avneet Kaur. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS
 DBMS Basics

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Need for DBMS

				
						

				
			A Data Base Management System is a system software for easy, efficient and reliable data processing and management. It can be used for:

	Creation of a database.

	Retrieval of information from the database.

	Updating the database.

	Managing a database.

It provides us with the many functionalities and is more advantageous than the traditional file system in many ways listed below:

1) Processing Queries and Object Management:

In traditional file systems, we cannot store data in the form of objects. In practical-world applications, data is stored in objects and not files. So in a file system, some application software maps the data stored in files to objects so that can be used further.

We can directly store data in the form of objects in a database management system. Application level code needs to be written to handle, store and scan through the data in a file system whereas a DBMS gives us the ability to query the database.

2) Controlling redundancy and inconsistency:

Redundancy refers to repeated instances of the same data. A database system provides redundancy control whereas in a file system, same data may be stored multiple times. For example, if a student is studying two different educational programs in the same college, say ,Engineering and History, then his information such as the phone number and address may be stored multiple times, once in Engineering dept and the other in History dept. Therefore, it increases time taken to access and store data. This may also lead to inconsistent data states in both places. A DBMS uses data normalization to avoid redundancy and duplicates.

3) Efficient memory management and indexing:

DBMS makes complex memory management easy to handle. In file systems, files are indexed in place of objects so query operations require entire file scans whereas in a DBMS , object indexing takes place efficiently through database schema based on any attribute of the data or a data-property. This helps in fast retrieval of data based on the indexed attribute.

4) Concurrency control and transaction management:

Several applications allow user to simultaneously access data. This may lead to inconsistency in data in case files are used. Consider two withdrawal transactions X and Y in which an amount of 100 and 200 is withdrawn from an account A initially containing 1000. Now since these transactions are taking place simultaneously, different transactions may update the account differently. X reads 1000, debits 100, updates the account A to 900, whereas X also reads 1000, debits 200, updates A to 800. In both cases account A has wrong information. This results in data inconsistency. A DBMS provides mechanisms to deal with this kind of data inconsistency while allowing users to access data concurrently. A DBMS implements ACID(atomicity, durability, isolation,consistency) properties to ensure efficient transaction management without data corruption.

5) Access Control and ease in accessing data:

A DBMS can grant access to various users and determine which part and how much of the data can they access from the database thus removing redundancy. Otherwise in file system, separate files have to be created for each user containing the amount of data that they can access. Moreover, if a user has to extract specific data, then he needs a code/application to process that task in case of file system, e.g. Suppose a manager needs a list of all employees having salary greater than X. Then we need to write business logic for the same in case data is stored in files. In case of DBMS, it provides easy access of data through queries, (e.g., SELECT queries) and whole logic need not be rewritten. Users can specify exactly what they want to extract out of the data.

6) Integrity constraints: Data stored in databases must satisfy integrity constraints. For example, Consider a database schema consisting of the various educational programs offered by a university such as(B.Tech/M.Tech/B.Sc/M.Sc/BCA/MCA) etc. Then we have a schema of students enrolled in these programs. A DBMS ensures that it is only out of one of the programs offered schema , that the student is enrolled in, i.e. Not anything out of the blue. Hence, database integrity is preserved.

Apart from the above mentioned features a database management also provides the following:

	Multiple User Interface

	Data scalability, expandability and flexibility: We can change schema of the database, all schema will be updated according to it.

	Overall the time for developing an application is reduced.

	Security: Simplifies data storage as it is possible to assign security permissions allowing restricted access to data.

This article is contributed by Avneet Kaur. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
 DBMS Basics

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Data Abstraction and Data Independence

				
						

				
			Database systems comprise of complex data-structures. In order to make the system efficient in terms of retrieval of data, and reduce complexity in terms of usability of users, developers use abstraction i.e. hide irrelevant details from the users. This approach simplifies database design.

There are mainly 3 levels of data abstraction:

Physical: This is the lowest level of data abstraction. It tells us how the data is actually stored in memory. The access methods like sequential or random access and file organisation methods like B+ trees, hashing used for the same. Usability, size of memory, and the number of times the records are factors which we need to know while designing the database.

Suppose we need to store the details of an employee. Blocks of storage and the amount of memory used for these purposes is kept hidden from the user.

Logical: This level comprises of the information that is actually stored in the database in the form of tables. It also stores the relationship among the data entities in relatively simple structures. At this level, the information available to the user at the view level is unknown.

We can store the various attributes of an employee and relationships, e.g. with the manager can also be stored.

View: This is the highest level of abstraction. Only a part of the actual database is viewed by the users. This level exists to ease the accessibility of the database by an individual user. Users view data in the form of rows and columns. Tables and relations are used to store data. Multiple views of the same database may exist. Users can just view the data and interact with the database, storage and implementation details are hidden from them.

[image:]

The main purpose of data abstraction is achieving data independence in order to save time and cost required when the database is modified or altered.

We have namely two levels of data independence arising from these levels of abstraction :

Physical level data independence : It refers to the characteristic of being able to modify the physical schema without any alterations to the conceptual or logical schema, done for optimisation purposes, e.g., Conceptual structure of the database would not be affected by any change in storage size of the database system server. Changing from sequential to random access files is one such example.These alterations or modifications to the physical structure may include:

	Utilising new storage devices.

	Modifying data structures used for storage.

	Altering indexes or using alternative file organisation techniques etc.

Logical level data independence: It refers characteristic of being able to modify the logical schema without affecting the external schema or application program. The user view of the data would not be affected by any changes to the conceptual view of the data. These changes may include insertion or deletion of attributes, altering table structures entities or relationships to the logical schema etc.

This article is contributed by Avneet Kaur. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS
 DBMS Basics

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Database Objects

				
						

				
			A database object is any defined object in a database that is used to store or reference data.Anything which we make from create command is known as Database Object.It can be used to hold and manipulate the data.Some of the examples of database objects are : view, sequence, indexes, etc.

	Table – Basic unit of storage; composed rows and columns

	View – Logically represents subsets of data from one or more tables

	Sequence – Generates primary key values

	Index – Improves the performance of some queries

	Synonym – Alternative name for an object

Different database Objects :

	Table – This database object is used to create a table in database.
Syntax :

CREATE TABLE [schema.]table
 (column datatype [DEFAULT expr][, ...]);

Example :

CREATE TABLE dept
 (deptno NUMBER(2),
 dname VARCHAR2(14),
 loc VARCHAR2(13));

Output :

DESCRIBE dept;

[image: table output]

	View – This database object is used to create a view in database.A view is a logical table based on a table or another view. A view contains no data of its own but is like a window through which data from tables can be viewed or changed. The tables on which a view is based are called base tables. The view is stored as a SELECT statement in the data dictionary.
Syntax :

CREATE [OR REPLACE] [FORCE|NOFORCE] VIEW view
 [(alias[, alias]...)]
 AS subquery
 [WITH CHECK OPTION [CONSTRAINT constraint]]
 [WITH READ ONLY [CONSTRAINT constraint]];

Example :

CREATE VIEW salvu50
 AS SELECT employee_id ID_NUMBER, last_name NAME,
 salary*12 ANN_SALARY
 FROM employees
 WHERE department_id = 50;

Output :

SELECT *
FROM salvu50;

[image: view output]

	Sequence – This database object is used to create a sequence in database.A sequence is a user created database object that can be shared by multiple users to generate unique integers. A typical usage for sequences is to create a primary key value, which must be unique for each row.The sequence is generated and incremented (or decremented) by an internal Oracle routine.
Syntax :

CREATE SEQUENCE sequence
 [INCREMENT BY n]
 [START WITH n]
 [{MAXVALUE n | NOMAXVALUE}]
 [{MINVALUE n | NOMINVALUE}]
 [{CYCLE | NOCYCLE}]
 [{CACHE n | NOCACHE}];

Example :

CREATE SEQUENCE dept_deptid_seq
 INCREMENT BY 10
 START WITH 120
 MAXVALUE 9999
 NOCACHE
 NOCYCLE;

Check if sequence is created by :

SELECT sequence_name, min_value, max_value,
 increment_by, last_number
 FROM user_sequences;

	Index – This database object is used to create a indexes in database.An Oracle server index is a schema object that can speed up the retrieval of rows by using a pointer.Indexes can be created explicitly or automatically. If you do not have an index on the column, then a full table scan occurs.
An index provides direct and fast access to rows in a table. Its purpose is to reduce the necessity of disk I/O by using an indexed path to locate data quickly. The index is used and maintained automatically by the Oracle server. Once an index is created, no direct activity is required by the user.Indexes are logically and physically independent of the table they index. This means that they can be created or dropped at any time and have no effect on the base tables or other indexes.

Syntax :

CREATE INDEX index
 ON table (column[, column]...);

Example :

CREATE INDEX emp_last_name_idx
 ON employees(last_name);

	Synonym – This database object is used to create a indexes in database.It simplify access to objects by creating a synonym(another name for an object). With synonyms, you can Ease referring to a table owned by another user and shorten lengthy object names.To refer to a table owned by another user, you need to prefix the table name with the name of the user who created it followed by a period. Creating a synonym eliminates the need to qualify the object name with the schema and provides you with an alternative name for a table, view, sequence,procedure, or other objects. This method can be especially useful with lengthy object names, such as views.
In the syntax:

PUBLIC : creates a synonym accessible to all users

synonym : is the name of the synonym to be created

object : identifies the object for which the synonym is created

Syntax :

CREATE [PUBLIC] SYNONYM synonym FOR object;

Example :

CREATE SYNONYM d_sum FOR dept_sum_vu;

References :

Database objects – ibm

Introduction to Oracle 9i: SQL Student Guide Volume 2

anuragrawat1

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Multimedia Database

				
						

				
			Multimedia database is the collection of interrelated multimedia data that includes text, graphics (sketches, drawings), images, animations, video, audio etc and have vast amounts of multisource multimedia data. The framework that manages different types of multimedia data which can be stored, delivered and utilized in different ways is known as multimedia database management system. There are three classes of the multimedia database which includes static media, dynamic media and dimensional media.

Content of Multimedia Database management system :

	Media data – The actual data representing an object.

	Media format data – Information such as sampling rate, resolution, encoding scheme etc. about the format of the media data after it goes through the acquisition, processing and encoding phase.

	Media keyword data – Keywords description relating to the generation of data. It is also known as content descriptive data. Example: date, time and place of recording.

	Media feature data – Content dependent data such as the distribution of colors, kinds of texture and different shapes present in data.

Types of multimedia applications based on data management characteristic are :

	Repository applications – A Large amount of multimedia data as well as meta-data(Media format date, Media keyword data, Media feature data) that is stored for retrieval purpose, e.g., Repository of satellite images, engineering drawings, radiology scanned pictures.

	Presentation applications – They involve delivery of multimedia data subject to temporal constraint. Optimal viewing or listening requires DBMS to deliver data at certain rate offering the quality of service above a certain threshold. Here data is processed as it is delivered. Example: Annotating of video and audio data, real-time editing analysis.

	Collaborative work using multimedia information – It involves executing a complex task by merging drawings, changing notifications. Example: Intelligent healthcare network.

There are still many challenges to multimedia databases, some of which are :

	Modelling – Working in this area can improve database versus information retrieval techniques thus, documents constitute a specialized area and deserve special consideration.

	Design – The conceptual, logical and physical design of multimedia databases has not yet been addressed fully as performance and tuning issues at each level are far more complex as they consist of a variety of formats like JPEG, GIF, PNG, MPEG which is not easy to convert from one form to another.

	Storage – Storage of multimedia database on any standard disk presents the problem of representation, compression, mapping to device hierarchies, archiving and buffering during input-output operation. In DBMS, a ”BLOB”(Binary Large Object) facility allows untyped bitmaps to be stored and retrieved.

	Performance – For an application involving video playback or audio-video synchronization, physical limitations dominate. The use of parallel processing may alleviate some problems but such techniques are not yet fully developed. Apart from this multimedia database consume a lot of processing time as well as bandwidth.

	Queries and retrieval –For multimedia data like images, video, audio accessing data through query opens up many issues like efficient query formulation, query execution and optimization which need to be worked upon.

Areas where multimedia database is applied are :

	Documents and record management : Industries and businesses that keep detailed records and variety of documents. Example: Insurance claim record.

	Knowledge dissemination : Multimedia database id a very effective tool for knowledge dissemination in terms of providing several resources. Example: Electronic books.

	Education and training : Computer-aided learning materials can be designed using multimedia sources which are nowadays very popular sources of learning. Example: Digital libraries.

	Marketing, advertising, retailing, entertainment and travel. Example: a virtual tour of cities.

	Real-time control and monitoring : Coupled with active database technology, multimedia presentation of information can be very effective means for monitoring and controlling complex tasks Example: Manufacturing operation control.

Reference –

Multimedia database – Wikipedia

Fundamentals of Database Systems

This article is contributed by Himanshi_Singh. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Commonly asked DBMS interview questions | Set 1

				
						

				
			What are advantages of DBMS over traditional file based systems?

Ans: Database management systems were developed to handle the following difﬁculties of typical ﬁle-processing systems supported by conventional operating systems.

1. Data redundancy and inconsistency

2. Difﬁculty in accessing data

3. Data isolation – multiple ﬁles and formats

4. Integrity problems

5. Atomicity of updates

6. Concurrent access by multiple users

7. Security problems

Source: http://cs.nyu.edu/courses/spring01/G22.2433-001/mod1.2.pdf

What are super, primary, candidate and foreign keys?

Ans: A superkey is a set of attributes of a relation schema upon which all attributes of the schema are functionally dependent. No two rows can have the same value of super key attributes.

A Candidate key is minimal superkey, i.e., no proper subset of Candidate key attributes can be a superkey.

A Primary Key is one of the candidate keys. One of the candidate keys is selected as most important and becomes the primary key. There cannot be more that one primary keys in a table.

Foreign key is a field (or collection of fields) in one table that uniquely identifies a row of another table. See this for an example.

What is the difference between primary key and unique constraints?

Ans: Primary key cannot have NULL value, the unique constraints can have NULL values. There is only one primary key in a table, but there can be multiple unique constrains.

What is database normalization?

Ans: It is a process of analyzing the given relation schemas based on their functional dependencies and primary keys to achieve the following desirable properties:

1) Minimizing Redundancy

2) Minimizing the Insertion, Deletion, And Update Anomalies

Relation schemas that do not meet the properties are decomposed into smaller relation schemas that could meet desirable properties.

Source: http://cs.tsu.edu/ghemri/CS346/ClassNotes/Normalization.pdf

What is SQL?

SQL is Structured Query Language designed for inserting and modifying in a relational database system.

What are the differences between DDL, DML and DCL in SQL?

Ans: Following are some details of three.

DDL stands for Data Definition Language. SQL queries like CREATE, ALTER, DROP and RENAME come under this.

DML stands for Data Manipulation Language. SQL queries like SELECT, INSERT and UPDATE come under this.

DCL stands for Data Control Language. SQL queries like GRANT and REVOKE come under this.

What is the difference between having and where clause?

Ans: HAVING is used to specify a condition for a group or an aggregate function used in select statement. The WHERE clause selects before grouping. The HAVING clause selects rows after grouping. Unlike HAVING clause, the WHERE clause cannot contain aggregate functions. (See this for examples).

See Having vs Where Clause? for more details

How to print duplicate rows in a table?

Ans: See http://quiz.geeksforgeeks.org/how-to-print-duplicate-rows-in-a-table/

What is Join?

 Ans: An SQL Join is used to combine data from two or more tables, based on a common field between them. For example, consider the following two tables.

Student Table

	EnrollNo
	StudentName
	Address

	1000
	geek1
	geeksquiz1

	1001
	geek2
	geeksquiz2

	1002
	geek3
	geeksquiz3

StudentCourse Table

	CourseID
	EnrollNo

	1
	1000

	2
	1000

	3
	1000

	1
	1002

	2
	1003

Following is join query that shows names of students enrolled in different courseIDs.

SELECT StudentCourse.CourseID, Student.StudentName
 FROM StudentCourse
 INNER JOIN Customers
 ON StudentCourse.EnrollNo = Student.EnrollNo
 ORDER BY StudentCourse.CourseID;

The above query would produce following result.

	CourseID
	StudentName

	1
	geek1

	1
	geek2

	2
	geek1

	2
	geek3

	3
	geek1

What is Identity?

Ans: Identity (or AutoNumber) is a column that automatically generates numeric values. A start and increment value can be set, but most DBA leave these at 1. A GUID column also generates numbers; the value of this cannot be controlled. Identity/GUID columns do not need to be indexed.

What is a view in SQL? How to create one

Ans: A view is a virtual table based on the result-set of an SQL statement. We can create using create view syntax.

CREATE VIEW view_name AS
SELECT column_name(s)
FROM table_name
WHERE condition

What are the uses of view?

1. Views can represent a subset of the data contained in a table; consequently, a view can limit the degree of exposure of the underlying tables to the outer world: a given user may have permission to query the view, while denied access to the rest of the base table.

2. Views can join and simplify multiple tables into a single virtual table

3. Views can act as aggregated tables, where the database engine aggregates data (sum, average etc.) and presents the calculated results as part of the data

4. Views can hide the complexity of data; for example a view could appear as Sales2000 or Sales2001, transparently partitioning the actual underlying table

5. Views take very little space to store; the database contains only the definition of a view, not a copy of all the data which it presentsv.

6. Depending on the SQL engine used, views can provide extra security

Source: Wiki Page

What is a Trigger?

Ans: A Trigger is a code that associated with insert, update or delete operations. The code is executed automatically whenever the associated query is executed on a table. Triggers can be useful to maintain integrity in database.

What is a stored procedure?

Ans: A stored procedure is like a function that contains a set of operations compiled together. It contains a set of operations that are commonly used in an application to do some common database tasks.

What is the difference between Trigger and Stored Procedure?

Ans: Unlike Stored Procedures, Triggers cannot be called directly. They can only be associated with queries.

What is a transaction? What are ACID properties?

Ans: A Database Transaction is a set of database operations that must be treated as whole, means either all operations are executed or none of them.

An example can be bank transaction from one account to another account. Either both debit and credit operations must be executed or none of them.

ACID (Atomicity, Consistency, Isolation, Durability) is a set of properties that guarantee that database transactions are processed reliably.

What are indexes?

Ans: A database index is a data structure that improves the speed of data retrieval operations on a database table at the cost of additional writes and the use of more storage space to maintain the extra copy of data.

Data can be stored only in one order on disk. To support faster access according to different values, faster search like binary search for different values is desired, For this purpose, indexes are created on tables. These indexes need extra space on disk, but they allow faster search according to different frequently searched values.

What are clustered and non-clustered Indexes?

Ans: Clustered indexes is the index according to which data is physically stored on disk. Therefore, only one clustered index can be created on a given database table.

Non-clustered indexes don’t define physical ordering of data, but logical ordering. Typically, a tree is created whose leaf point to disk records. B-Tree or B+ tree are used for this purpos

	Commonly asked DBMS interview questions | Set 2

	Practice Quizzes on DBMS

	Last Minute Notes – DBMS

	DBMS Articles

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Commonly asked DBMS interview questions | Set 2

				
						

				
			This article is extension of Commonly asked DBMS interview questions | Set 1.

Q. There is a table where only one row is fully repeated. Write a Query to find the Repeated row

	Name
	Section

	abc
	CS1

	bcd
	CS2

	abc
	CS1

In the above table, we can find duplicate row using below query.

SELECT name, section FROM tbl
GROUP BY name, section
HAVING COUNT(*) > 1

Q. Query to find 2nd highest salary of an employee?

SELECT max(salary) FROM EMPLOYEES WHERE salary IN
(SELECT salary FROM EMPLOYEEs MINUS SELECT max(salary)
FROM EMPLOYEES);

OR

SELECT max(salary) FROM EMPLOYEES WHERE
salary <> (SELECT max(salary) FROM EMPLOYEES);

Q.Consider the following Employee table. How many rows are there in the result of following query?

ID salary DeptName

1 10000 EC

2 40000 EC

3 30000 CS

4 40000 ME

5 50000 ME

6 60000 ME

7 70000 CS

How many rows are there in the result of following query?

SELECT E.ID
FROM Employee E
WHERE EXISTS (SELECT E2.salary
FROM Employee E2
WHERE E2.DeptName = 'CS'
AND E.salary > E2.salary)

Following 5 rows will be result of query as 3000 is the minimum salary of CS Employees and all these rows are greater than 30000.

2

4

5

6

7

Q. Write a trigger to update Emp table such that, If an updation is done in Dep table then salary of all employees of that department should be incremented by some amount (updation)

Assuming Table name are Dept and Emp, trigger can be written as –

CREATE OR REPLACE TRIGGER update_trig
AFTER UPDATE ON Dept
FOR EACH ROW
DECLARE
CURSOR emp_cur IS SELECT * FROM Emp;
BEGIN
FOR i IN emp_cur LOOP
IF i.dept_no = :NEW.dept_no THEN
DBMS_OUTPUT.PUT_LINE(i.emp_no); -- for printing those
UPDATE Emp -- emp number which are
SET sal = i.sal + 100 -- updated
WHERE emp_no = i.emp_no;
END IF;
END LOOP;
END;

Q. There is a table which contains two column Student and Marks, you need to find all the students, whose marks are greater than average marks i.e. list of above average students.

SELECT student, marks
FROM table
WHERE marks > SELECT AVG(marks) from table;

Q.Name the student who has secured third highest marks using sub queries.

SELECT Emp1.Name
FROM Employee Emp1
WHERE 2 = (SELECT COUNT(DISTINCT(Emp2.Salary))
 FROM Employee Emp2
 WHERE Emp2.Salary > Emp1.Salary
)

*LOGIC- Number of people with salary higher than this person will be 2.

Q. Why we cannot use WHERE clause with aggregate functions like HAVING ?

The difference between the having and where clause in SQL is that the where clause canNOT be used with aggregates, but the having clause can. Please note : It is not a predefined rule but by and large you’ll see that in a good number of the SQL queries, we use WHERE prior to GROUP BY and HAVING after GROUP BY.

The Where clause acts as a pre filter where as Having as a post filter.

The where clause works on row’s data, not on aggregated data.

Let us consider below table ‘Marks’.

Student Course Score

a c1 40

a c2 50

b c3 60

d c1 70

e c2 80

Consider the query

SELECT Student, sum(Score) AS total
FROM Marks

This would select data row by row basis. The having clause works on aggregated data.

For example, output of below query

SELECT Student, sum(score) AS total FROM Marks

Student Total

a 90

b 60

d 70

e 80

When we apply having in above query, we get

SELECT Student, sum(score) AS total
FROM Marks having total > 70

Student Total

a 90

e 80

Q. Difference between primary key and unique key and why one should use unique key if it allows only one null ?

Primary key:

	Only one in a row(tuple).

	Never allows null value(only key field).

	Unique key identifier and can not be null and must be unique.

Unique Key:

	Can be more than one unique key in one row.

	Unique key can have null values(only single null is allowed).

	It can be a candidate key.

	Unique key can be null and may not be unique.

Q. What’s the difference between materialized and dynamic view?

Materialized views

	Disk based and are updated periodically based upon the query definition.

	A materialized table is created or updated infrequently and it must be synchronized with its associated base tables.

Dynamic views

	Virtual only and run the query definition each time they are accessed.

	A dynamic view may be created every time that a specific view is requested by the user.

Q. What is embedded and dynamic SQL?

Static or Embedded SQL

	SQL statements in an application that do not change at runtime and, therefore, can be hard-coded into the application.

Dynamic SQL

	SQL statements that are constructed at runtime; for example, the application may allow users to enter their own queries.

	Dynamic SQL is a programming technique that enables you to buildSQL statements dynamically at runtime. You can create more general purpose, flexible applications by using dynamic SQL because the full text of a SQL statement may be unknown at compilation.

	S.No.
	Static (embedded) SQL
	Dynamic (interactive) SQL

	1.
	In static SQL how database will be accessed is predetermined in the embedded SQL statement.
	In dynamic SQL, how database will be accessed is determined at run time.

	2.
	It is more swift and efficient.
	It is less swift and efficient.

	3.
	SQL statements are compiled at compile time.
	SQL statements are compiled at run time.

	4.
	Parsing, validation, optimization, and generation of application plan are done at compile time.
	Parsing, validation, optimization, and generation of application plan are done at run time.

	5.
	It is generally used for situations where data is distributed uniformly.
	It is generally used for situations where data is distributed non-uniformly.

	6.
	EXECUTE IMMEDIATE, EXECUTE and PREPARE statements are not used.
	EXECUTE IMMEDIATE, EXECUTE and PREPARE statements are used.

	7.
	It is less flexible.
	It is more flexible.

http://docs.oracle.com/cd/A87860_01/doc/appdev.817/a76939/adg09dyn.htm

Q. What is the difference between CHAR and VARCHAR?

	CHAR and VARCHAR are differ in storage and retrieval.

	CHAR column length is fixed while VARCHAR length is variable.

	The maximum no. of character CHAR data type can hold is 255 character while VARCHAR can hold up to 4000 character.

	CHAR is 50% faster than VARCHAR.

	CHAR uses static memory allocation while VARCHAR uses dynamic memory allocation.

You may also like:

	Practice Quizzes on DBMS

	Last Minute Notes – DBMS

	DBMS Articles

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

Entity Relationship Model

						ER Model

				
						

				
			ER Model is used to model the logical view of the system from data perspective which consists of these components:

Entity, Entity Type, Entity Set –

An Entity may be an object with a physical existence – a particular person, car, house, or employee – or it may be an object with a conceptual existence – a company, a job, or a university course.

An Entity is an object of Entity Type and set of all entities is called as entity set. e.g.; E1 is an entity having Entity Type Student and set of all students is called Entity Set. In ER diagram, Entity Type is represented as:

Attribute(s):

Attributes are the properties which define the entity type. For example, Roll_No, Name, DOB, Age, Address, Mobile_No are the attributes which defines entity type Student. In ER diagram, attribute is represented by an oval.

[image: er2]

	Key Attribute –

The attribute which uniquely identifies each entity in the entity set is called key attribute.For example, Roll_No will be unique for each student. In ER diagram, key attribute is represented by an oval with underlying lines. [image: rno]

	Composite Attribute –

An attribute composed of many other attribute is called as composite attribute. For example, Address attribute of student Entity type consists of Street, City, State, and Country. In ER diagram, composite attribute is represented by an oval comprising of ovals.

[image: er22]

	Multivalued Attribute –

An attribute consisting more than one value for a given entity. For example, Phone_No (can be more than one for a given student). In ER diagram, multivalued attribute is represented by double oval.

[image: pno]

	Derived Attribute –

An attribute which can be derived from other attributes of the entity type is known as derived attribute. e.g.; Age (can be derived from DOB). In ER diagram, derived attribute is represented by dashed oval.

[image: er6]The complete entity type Student with its attributes can be represented as:

[image: Capture]

Relationship Type and Relationship Set:

A relationship type represents the association between entity types. For example,‘Enrolled in’ is a relationship type that exists between entity type Student and Course. In ER diagram, relationship type is represented by a diamond and connecting the entities with lines.

[image: er8]

A set of relationships of same type is known as relationship set. The following relationship set depicts S1 is enrolled in C2, S2 is enrolled in C1 and S3 is enrolled in C3.

[image: er9]

Degree of a relationship set:

The number of different entity sets participating in a relationship set is called as degree of a relationship set.

	Unary Relationship –

When there is only ONE entity set participating in a relation, the relationship is called as unary relationship. For example, one person is married to only one person.

[image: er10]

	Binary Relationship –

When there are TWO entities set participating in a relation, the relationship is called as binary relationship.For example, Student is enrolled in Course.

[image: er11]

	n-ary Relationship –

When there are n entities set participating in a relation, the relationship is called as n-ary relationship.

Cardinality:

The number of times an entity of an entity set participates in a relationship set is known as cardinality. Cardinality can be of different types:

	One to one – When each entity in each entity set can take part only once in the relationship, the cardinality is one to one. Let us assume that a male can marry to one female and a female can marry to one male. So the relationship will be one to one.
[image: er20]

Using Sets, it can be represented as:

[image: er12]

	Many to one – When entities in one entity set can take part only once in the relationship set and entities in other entity set can take part more than once in the relationship set, cardinality is many to one. Let us assume that a student can take only one course but one course can be taken by many students. So the cardinality will be n to 1. It means that for one course there can be n students but for one student, there will be only one course.
[image: ernew]Using Sets, it can be represented as:

[image: er14]

In this case, each student is taking only 1 course but 1 course has been taken by many students.

	Many to many – When entities in all entity sets can take part more than once in the relationship cardinality is many to many. Let us assume that a student can take more than one course and one course can be taken by many students. So the relationship will be many to many.
[image: n2]

Using sets, it can be represented as:

[image: er16]

In this example, student S1 is enrolled in C1 and C3 and Course C3 is enrolled by S1, S3 and S4. So it is many to many relationships.

Participation Constraint:

Participation Constraint is applied on the entity participating in the relationship set.

	Total Participation – Each entity in the entity set must participate in the relationship. If each student must enroll in a course, the participation of student will be total. Total participation is shown by double line in ER diagram.

	Partial Participation – The entity in the entity set may or may NOT participate in the relationship. If some courses are not enrolled by any of the student, the participation of course will be partial.
The diagram depicts the ‘Enrolled in’ relationship set with Student Entity set having total participation and Course Entity set having partial participation.

[image: Capture]

Using set, it can be represented as,

[image: 33333]

Every student in Student Entity set is participating in relationship but there exists a course C4 which is not taking part in the relationship.

Weak Entity Type and Identifying Relationship:

As discussed before, an entity type has a key attribute which uniquely identifies each entity in the entity set. But there exists some entity type for which key attribute can’t be defined. These are called Weak Entity type.

For example, A company may store the information of dependants (Parents, Children, Spouse) of an Employee. But the dependents don’t have existence without the employee. So Dependent will be weak entity type and Employee will be Identifying Entity type for Dependant.

A weak entity type is represented by a double rectangle. The participation of weak entity type is always total. The relationship between weak entity type and its identifying strong entity type is called identifying relationship and it is represented by double diamond.

[image: n3]

Quiz on ER-MODEL

Article Contributed by Sonal Tuteja. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
GATE CS
 DBMS-ER model

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Enhanced ER Model

				
						

				
			Prerequisite – Introduction of ER Model

Enhanced entity-relationship diagrams are advanced database diagrams very similar to regular ER diagrams which represents requirements and complexities of complex databases.

It is a diagrammatic technique for displaying the Sub Class and Super Class; Specialization and Generalization; Union or Category; Aggregation etc.

Generalization and Specialization –

These are very common relationship found in real entities. However this kind of relationships was added later as enhanced extension to classical ER model. Specialized class are often called as subclass while generalized class are called superclass, probably inspired by object oriented programming. A sub-class is best understood by “IS-A analysis”. Following statements hopefully makes some sense to your mind “Technician IS-A Employee”, “Laptop IS-A Computer”.

An entity is specialized type/class of other entity. For example, Technician is special Employee in a university system Faculty is special class of Employee. We call this phenomenon as generalization/specialization. In the example here Employee is generalized entity class while Technician and Faculty are specialized class of Employee.

Example – This example instance of “sub-class” relationships. Here we have four sets employee: Secretary, Technician, and Engineer. Employee is super-class of rest three set of individual sub-class is subset of Employee set.

[image: Enhanced-ER-Model-Diagram]

	An entity belonging to a sub-class is related with some super-class entity. For instance emp no 1001 is a secretary, and his typing speed is 68. Emp no 1009 is engineer (sub-class) and her trade is “Electrical”, so forth.

	Sub-class entity “inherits” all attributes of super-class; for example employee 1001 will have attributes eno, name, salary, and typing speed.

Enhanced ER model of above example –

 [image: Enhanced-ER-Model-Diagram]

Constraints – There are two types of constraints on “Sub-class” relationship.

	Total or Partial – A sub-classing relationship is total if every super-class entity is to be associated with some sub-class entity, otherwise partial. Sub-class “job type based employee category” is partial sub-classing – not necessary every employee is one of (secretary, engineer, and technician), i.e. union of these three types is proper subset of all employees. Whereas other sub-classing “Salaried Employee AND Hourly Employee” is total; union of entities from sub-classes is equal to total employee set, i.e. every employee necessarily has to be one of them.

	Overlapped or Disjoint – If an entity from super-set can be related (can occur) in multiple sub-class sets, then it is overlapped sub-classing, otherwise disjoint. Both the examples: job-type based and salaries/hourly employee sub-classing are disjoint.

Note – These constraints are independent of each other: can be “overlapped and total or partial” or “disjoint and total or partial”. Also sub-classing has transitive property.

Multiple Inheritance (sub-class of multiple super classes) –

An entity can be sub-class of multiple entity types; such entities are sub-class of multiple entities and have multiple super-classes; Teaching Assistant can subclass of Employee and Student both. A faculty in a university system can be sub-class of Employee and Alumnus both. In multiple inheritance, attributes of sub-class is union of attributes of all super-classes.

Union –

	Set of Libray Members is UNION of Faculty, Student, and Staff. A union relationship indicates either of type; for example: a library member is either Faculty or Staff or Student.

	 Below are two examples shows how UNION can be depicted in ERD – Vehicle Owner is UNION of PERSON and Company, and RTO Registered Vehicle is UNION of Car and Truck.

[image: Enhanced-ER-Model-Diagram]

You might see some confusion in Sub-class and UNION; consider example in above figure Vehicle is super-class of CAR and Truck; this is very much the correct example of subclass as well but here use it different we are saying RTO Registered vehicle is UNION of Car and Vehicle, they do not inherit any attribute of Vehicle, attributes of car and truck are altogether independent set, where is in sub-classing situation car and truck would be inheriting the attribute of vehicle class. Below is Vehicle as modeled as class of Car and Truck.

References –

comet.lehman.cuny.edu

cs.toronto.edu

This article is contributed by Kadam Patel. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Minimization of ER Diagram

				
						

				
			Entity Relationship (ER) Diagram is diagrammatic representation of data in databases, it shows how data is related.

Note: This article for those who already know what is ER diagram and how to draw ER diagram.

1) When there is One to Many cardinality in ER diagram.

For example, a student can be enrolled only in one course, but a course can be enrolled by many students

[image: many2one]

For Student(SID, Name), SID is the primary key. For Course (CID, C_name), CID is the primary key

 Student Course
 (SID Name) (CID C_name)
 -------------- -----------------
 1 A c1 Z
 2 B c2 Y
 3 C c3 X
 4 D

 Enroll
 (SID CID)

 1 C1
 2 C1
 3 c3
 4 C2

Now the question is, what should be the primary key for Enroll SID or CID or combined. We can’t have CID as primary key as you can see in enroll for the same CID we have multiples SID. (SID , CID) can distinguish table uniquely, but it is not minimum. So SID is the primary key for the relation enroll.

For above ER diagram, we considered three tables in database

Student
Enroll
Course

But we can combine Student and Enroll table renamed as Student_enroll.

 Student_Enroll
 (SID Name CID)

 1 A c1
 2 B c1
 3 C c3
 4 D c2

Student and enroll tables are merged now .

So require minimum two DBMS tables for Student_enroll and Course.

Note: In One to Many relationship we can have minimum two tables.

2. When there is Many to Many cardinality in ER Diagram.

Let us consider above example with the change that now student can also enroll more than 1 course.

[image: many2many]

 Student Course
(SID Name) (CID C_name)
-------------- -----------------
 1 A c1 Z
 2 B c2 Y
 3 C c3 X
 4 D

 Enroll
 (SID CID)

 1 C1
 1 C2
 2 C1
 2 C2
 3 c3
 4 C2

Now, same question what is the primary key of Enroll relation, if we carefully analyse the Enroll primary key for Enroll

table is (SID , CID).

But in this case we can’t merge Enroll table with any one of Student and Course. If we try to merge Enroll with any one of the Student and Course it will create redundant data.

Note: Minimum three tables are required in Many to Many relationship.

3. One to One Relationship

There are two possibilities

A) If we have One to One relationship and we have total participation at at-least one end.

For example, consider the below ER diagram.

[image: one2oneT]

A1 and B1 are primary keys of E1 and E2 respectively.

In the above Diagram we have total participation at E1 end.

Only the primary key of E1, which is in total participation should be allowed as the primary key of the reduced table, since if the primary key of E2 is used, it might have null values for many of its entries, since its participation is only partial and may not have corresponding entries for all its values.

Note – Only one table required.

B) One to One relationship with no total participation.

[image: one2one]

A1 and B1 are primary keys of E1 and E2 respectively.

Primary key of R can be A1 or B1, but we can’t still combine all the three table into one. if we do, so some entries in combined table may have NULL entries. So idea of merging all three table into one is not good.

But we can merge R into E1 or E2. So minimum 2 tables are required.

Below are the Gate Previous Year question.

http://quiz.geeksforgeeks.org/gate-gate-cs-2008-question-82/

http://quiz.geeksforgeeks.org/gate-gate-cs-2008-question-83/

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS-ER model

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						ER Model: Generalization, Specialization and Aggregation

				
						

				
			Prerequisite – Introduction of ER Model

Generalization, Specialization and Aggregation in ER model are used for data abstraction in which abstraction mechanism is used to hide details of a set of objects.

Generalization –

Generalization is the process of extracting common properties from a set of entities and create a generalized entity from it. It is a bottom-up approach in which two or more entities can be generalized to a higher level entity if they have some attributes in common. For Example, STUDENT and FACULTY can be generalized to a higher level entity called PERSON as shown in Figure 1. In this case, common attributes like P_NAME, P_ADD become part of higher entity (PERSON) and specialized attributes like S_FEE become part of specialized entity (STUDENT).

[image: img1]

Specialization –

In specialization, an entity is divided into sub-entities based on their characteristics. It is a top-down approach where higher level entity is specialized into two or more lower level entities. For Example, EMPLOYEE entity in an Employee management system can be specialized into DEVELOPER, TESTER etc. as shown in Figure 2. In this case, common attributes like E_NAME, E_SAL etc. become part of higher entity (EMPLOYEE) and specialized attributes like TES_TYPE become part of specialized entity (TESTER).

[image: img2]

Aggregation –

An ER diagram is not capable of representing relationship between an entity and a relationship which may be required in some scenarios. In those cases, a relationship with its corresponding entities is aggregated into a higher level entity. For Example, Employee working for a project may require some machinery. So, REQUIRE relationship is needed between relationship WORKS_FOR and entity MACHINERY. Using aggregation, WORKS_FOR relationship with its entities EMPLOYEE and PROJECT is aggregated into single entity and relationship REQUIRE is created between aggregated entity and MACHINERY.

[image: img3]

This article is contributed by Sonal Tuteja. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Recursive Relationships

				
						

				
			Prerequisite – ER Model

A relationship between two entities of similar entity type is called a recursive relationship. Here the same entity type participates more than once in a relationship type with a different role for each instance. In other words, a relationship has always been between occurrences in two different entities. However, it is possible for the same entity to participate in the relationship. This is termed a recursive relationship.

Example –

Let us suppose that we have an employee table. A manager supervises a subordinate. Every employee can have a supervisor except the CEO and there can be at most one boss for each employee. One employee may be the boss of more than one employee. Let’s suppose that REPORTS_TO is a recursive relationship on the Employee entity type where each Employee plays two roles

	 Supervisor

	 Subordinate

Supervisor and Subordinate are called “Role Names”. Here the degree of the REPORTS_TO relationship is 2 i.e. a binary relationship.

	The minimum cardinality of Supervisor entity is ZERO since the lowest level employee may not be a manager for anyone.

	The maximum cardinality of Supervisor entity is N since an employee can manage many employees.

	Similarly the Subordinate entity has a minimum cardinality of ZERO to account for the case where CEO can never be a subordinate.

	It maximum cardinality is ONE since a subordinate employee can have at most one supervisor.

Note – Here none of the participants have a total participation since both minimum cardinalities are Zero. Hence, the relationships are connected by a single line instead of a double line in the ER diagram.

To implement recursive relationship, a foreign key of the employee’s manager number would be held in each employee record. A Sample table would look something like this:-

Emp_entity(Emp_no,Emp_Fname, Emp_Lname, Emp_DOB, Emp_NI_Number, Manager_no);

Manager no - (this is the employee no of the employee's manager)

This article is contributed by Siddhant Bajaj 2. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

Relational Model

						Relational Model Introduction and Codd Rules

				
						

				
			

 Terminology

Relational Model: Relational model represents data in the form of relations or tables.

Relational Schema: Schema represents structure of a relation. e.g.; Relational Schema of STUDENT relation can be represented as:

STUDENT (STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE, STUD_COUNTRY, STUD_AGE)

Relational Instance: The set of values present in a relation at a particular instance of time is known as relational instance as shown in Table 1 and Table 2.

Attribute: Each relation is defined in terms of some properties, each of which is known as attribute. For Example, STUD_NO, STUD_NAME etc. are attributes of relation STUDENT.

Domain of an attribute: The possible values an attribute can take in a relation is called its domain. For Example, domain of STUD_AGE can be from 18 to 40.

Tuple: Each row of a relation is known as tuple. e.g.; STUDENT relation given above has 4 tuples.

NULL values: Values of some attribute for some tuples may be unknown, missing or undefined which are represented by NULL. Two NULL values in a relation are considered different from each other.

Table 1 and Table 2 represent relational model having two relations STUDENT and STUDENT_COURSE.

[image: image]

Codd Rules

Codd rules were proposed by E.F. Codd which should be satisfied by relational model.

	Information Rule: Data stored in Relational model must be a value of some cell of a table.

	Guaranteed Access Rule: Every data element must be accessible by table name, its primary key and name of attribute whose value is to be determined.

	Systematic Treatment of NULL values: NULL value in database must only correspond to missing, unknown or not applicable values.

	Active Online Catalog: Structure of database must be stored in an online catalog which can be queried by authorized users.

	Comprehensive Data Sub-language Rule: A database should be accessible by a language supported for definition, manipulation and transaction management operation.

	View Updating Rule: Different views created for various purposes should be automatically updatable by the system.

	High level insert, update and delete rule: Relational Model should support insert, delete, update etc. operations at each level of relations. Also, set operations like Union, Intersection and minus should be supported.

	Physical data independence: Any modification in the physical location of a table should not enforce modification at application level.

	Logical data independence: Any modification in logical or conceptual schema of a table should not enforce modification at application level. For example, merging of two tables into one should not affect application accessing it which is difficult to achieve.

	Integrity Independence: Integrity constraints modified at database level should not enforce modification at application level.

	Distribution Independence: Distribution of data over various locations should not be visible to end-users.

	Non-Subversion Rule: Low level access to data should not be able to bypass integrity rule to change data.

GATE Question

Given the basic ER and relational models, which of the following is INCORRECT? [GATE CS 2012]

A. An attribute of an entity can have more than one value

B. An attribute of an entity can be composite

C. In a row of a relational table, an attribute can have more than one value

D. In a row of a relational table, an attribute can have exactly one value or a NULL value

Answer: In relation model, an attribute can’t have more than one value. So, option C is the answer.

This article is contributed by Sonal Tuteja. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
 DBMS-Relational Model

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Relational Model

				
						

				
			Relational Model was proposed by E.F. Codd to model data in the form of relations or tables. After designing the conceptual model of Database using ER diagram, we need to convert the conceptual model in the relational model which can be implemented using any RDMBS languages like Oracle SQL, MySQL etc. So we will see what Relational Model is.

What is Relational Model?

Relational Model represents how data is stored in Relational Databases. A relational database stores data in the form of relations (tables). Consider a relation STUDENT with attributes ROLL_NO, NAME, ADDRESS, PHONE and AGE shown in Table 1.

STUDENT

	ROLL_NO
	NAME
	ADDRESS
	PHONE
	AGE

	1
	RAM
	DELHI
	9455123451
	18

	2
	RAMESH
	GURGAON
	9652431543
	18

	3
	SUJIT
	ROHTAK
	9156253131
	20

	4
	SURESH
	DELHI
	
	18

 IMPORTANT TERMINOLOGIES

	Attribute: Attributes are the properties that define a relation. e.g.; ROLL_NO, NAME

	Relation Schema: A relation schema represents name of the relation with its attributes. e.g.; STUDENT (ROLL_NO, NAME, ADDRESS, PHONE and AGE) is relation schema for STUDENT. If a schema has more than 1 relation, it is called Relational Schema.

	Tuple: Each row in the relation is known as tuple. The above relation contains 4 tuples, one of which is shown as:

	1
	RAM
	DELHI
	9455123451
	18

	Relation Instance: The set of tuples of a relation at a particular instance of time is called as relation instance. Table 1 shows the relation instance of STUDENT at a particular time. It can change whenever there is insertion, deletion or updation in the database.

	Degree: The number of attributes in the relation is known as degree of the relation. The STUDENT relation defined above has degree 5.

	Cardinality: The number of tuples in a relation is known as cardinality. The STUDENT relation defined above has cardinality 4.

	Column: Column represents the set of values for a particular attribute. The column ROLL_NO is extracted from relation STUDENT.

	ROLL_NO

	1

	2

	3

	4

	NULL Values: The value which is not known or unavailable is called NULL value. It is represented by blank space. e.g.; PHONE of STUDENT having ROLL_NO 4 is NULL.

Constraints in Relational Model

While designing Relational Model, we define some conditions which must hold for data present in database are called Constraints. These constraints are checked before performing any operation (insertion, deletion and updation) in database. If there is a violation in any of constrains, operation will fail.

Domain Constraints: These are attribute level constraints. An attribute can only take values which lie inside the domain range. e.g,; If a constrains AGE>0 is applied on STUDENT relation, inserting negative value of AGE will result in failure.

Key Integrity: Every relation in the database should have atleast one set of attributes which defines a tuple uniquely. Those set of attributes is called key. e.g.; ROLL_NO in STUDENT is a key. No two students can have same roll number. So a key has two properties:

	It should be unique for all tuples.

	It can’t have NULL values.

Referential Integrity: When one attribute of a relation can only take values from other attribute of same relation or any other relation, it is called referential integrity. Let us suppose we have 2 relations

STUDENT

	ROLL_NO
	NAME
	ADDRESS
	PHONE
	AGE
	BRANCH_CODE

	1
	RAM
	DELHI
	9455123451
	18
	CS

	2
	RAMESH
	GURGAON
	9652431543
	18
	CS

	3
	SUJIT
	ROHTAK
	9156253131
	20
	ECE

	4
	SURESH
	DELHI
	
	18
	IT

 BRANCH

	BRANCH_CODE
	BRANCH_NAME

	CS
	COMPUTER SCIENCE

	IT
	INFORMATION TECHNOLOGY

	ECE
	ELECTRONICS AND COMMUNICATION ENGINEERING

	CV
	CIVIL ENGINEERING

BRANCH_CODE of STUDENT can only take the values which are present in BRANCH_CODE of BRANCH which is called referential integrity constraint. The relation which is referencing to other relation is called REFERENCING RELATION (STUDENT in this case) and the relation to which other relations refer is called REFERENCED RELATION (BRANCH in this case).

ANOMALIES

An anomaly is an irregularity, or something which deviates from the expected or normal state. When designing databases, we identify three types of anomalies: Insert, Update and Delete.

Insertion Anomaly in Referencing Relation:

We can’t insert a row in REFERENCING RELATION if referencing attribute’s value is not present in referenced attribute value. e.g.; Insertion of a student with BRANCH_CODE ‘ME’ in STUDENT relation will result in error because ‘ME’ is not present in BRANCH_CODE of BRANCH.

Deletion/ Updation Anomaly in Referenced Relation:

We can’t delete or update a row from REFERENCED RELATION if value of REFRENCED ATTRIBUTE is used in value of REFERENCING ATTRIBUTE. e.g; if we try to delete tuple from BRANCH having BRANCH_CODE ‘CS’, it will result in error because ‘CS’ is referenced by BRANCH_CODE of STUDENT, but if we try to delete the row from BRANCH with BRANCH_CODE CV, it will be deleted as the value is not been used by referencing relation. It can be handled by following method:

ON DELETE CASCADE: It will delete the tuples from REFERENCING RELATION if value used by REFERENCING ATTRIBUTE is deleted from REFERENCED RELATION. e.g;, if we delete a row from BRANCH with BRANCH_CODE ‘CS’, the rows in STUDENT relation with BRANCH_CODE CS (ROLL_NO 1 and 2 in this case) will be deleted.

ON UPDATE CASCADE: It will update the REFERENCING ATTRIBUTE in REFERENCING RELATION if attribute value used by REFERENCING ATTRIBUTE is updated in REFERENCED RELATION. e.g;, if we update a row from BRANCH with BRANCH_CODE ‘CS’ to ‘CSE’, the rows in STUDENT relation with BRANCH_CODE CS (ROLL_NO 1 and 2 in this case) will be updated with BRANCH_CODE ‘CSE’.

Basic Operators in Relational Algebra

Article Contributed by Sonal Tuteja. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS
DBMS-Relational Model

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Keys in Relational Model (Candidate, Super, Primary, Alternate and Foreign)

				
						

				
			We strongly recommend to refer below post as a prerequisite of this.

Relational Model Introduction and Codd Rules

Different Types of Keys in Relational Model

[image: image]

Candidate Key: The minimal set of attribute which can uniquely identify a tuple is known as candidate key. For Example, STUD_NO in STUDENT relation.

	The value of Candidate Key is unique and non-null for every tuple.

	There can be more than one candidate key in a relation. For Example, STUD_NO as well as STUD_PHONE both are candidate keys for relation STUDENT.

	The candidate key can be simple (having only one attribute) or composite as well. For Example, {STUD_NO, COURSE_NO} is a composite candidate key for relation STUDENT_COURSE.

Note – In Sql Server a unique constraint that has a nullable column, allows the value ‘null‘ in that column only once. That’s why STUD_PHONE attribute as candidate here, but can not be ‘null’ values in primary key attribute.

Super Key: The set of attributes which can uniquely identify a tuple is known as Super Key. For Example, STUD_NO, (STUD_NO, STUD_NAME) etc.

	Adding zero or more attributes to candidate key generates super key.

	A candidate key is a super key but vice versa is not true.

Primary Key: There can be more than one candidate key in a relation out of which one can be chosen as primary key. For Example, STUD_NO as well as STUD_PHONE both are candidate keys for relation STUDENT but STUD_NO can be chosen as primary key (only one out of many candidate keys).

Alternate Key: The candidate key other than primary key is called as alternate key. For Example, STUD_NO as well as STUD_PHONE both are candidate keys for relation STUDENT but STUD_PHONE will be alternate key (only one out of many candidate keys).

Foreign Key: If an attribute can only take the values which are present as values of some other attribute, it will be foreign key to the attribute to which it refers. The relation which is being referenced is called referenced relation and corresponding attribute is called referenced attribute and the relation which refers to referenced relation is called referencing relation and corresponding attribute is called referencing attribute. Referenced attribute of referencing attribute should be primary key. For Example, STUD_NO in STUDENT_COURSE is a foreign key to STUD_NO in STUDENT relation.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
GATE CS
 DBMS-Relational Model

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Number of possible Superkeys

				
						

				
			Prerequisite – Relational Model Introduction and Codd Rules

Any subset of attributes of a table that can uniquely identify all the tuples of that table is known as a Super key. Its different from the primary and candidate keys in the sense that only the minimal super keys are the candidate/primary keys.

This means that from a super key when we remove all the attributes that are unnecessary for its uniqueness, only then it becomes a primary/candidate key. So, in essence all primary/candidate keys are super keys but not all super keys are primary/candidate keys. By the formal definition of a Relation(Table) we know that the tuples of a relation are all unique. So the set of all attributes itself is a super key.

Counting the possible number of super keys for a table is a common question for GATE. The examples below will demonstrate all possible types of questions on this topic.

	Example-1 : Let a Relation R have attributes {a1,a2,a3} & a1 is the candidate key. Then how many super keys are possible?
Here, any superset of a1 is the super key.

Super keys are = {a1, a1 a2, a1 a3, a1 a2 a3}

Thus we see that 4 Super keys are possible in this case.

In general, if we have ‘N’ attributes with one candidate key then the number of possible super keys are 2^(N-1).

	Example-2 : Let a Relation R have attributes {a1, a2, a3,…,an}. Find Super key of R.

Maximum Super keys = 2^{n} – 1.

If each attribute of relation is candidate key.

	Example-3 : Let a Relation R have attributes {a1, a2, a3,…,an} and the candidate key is “a1 a2 a3” then the possible number of super keys?
Following the previous formula we have 3 attributes instead of one. So, here the number of possible super keys are 2^(N-3).

	Example-4 : Let a Relation R have attributes {a1, a2, a3,…,an} and the candidate keys are “a1”, “a2” then the possible number of super keys?
This problem now is slightly different since we now have two different candidate keys instead of only one. Tackling problems like these is shown in the diagram below:

[image:]

→ |A1 ∪ A2| = |A1| + |A2| – |A1 ∩ A2|

= (superkeys possible with candidate key A1) + (superkeys possible with candidate key A2)

 – (common superkeys from both A1 and A2)

= 2^{n-1} + 2^{n-1} – 2^{n-2}

	Example-5 : Let a Relation R have attributes {a1, a2, a3,…,an} and the candidate keys are “a1”, “a2 a3” then the possible number of super keys?
Super keys of(a1) + Super keys of(a2 a3) – Super keys of(a1 a2 a3)

=> 2^(n – 1) + 2^(n – 2) – 2^(n – 3)

	Example-6 : Let a Relation R have attributes {a1, a2, a3,…,an} and the candidate keys are “a1 a2”, “a3 a4” then the possible number of super keys?
Super keys of(a1 a2) + Super keys of(a3 a4) – Super keys of(a1 a2 a3 a4)

=> 2^(n – 2) + 2^(n – 2) – 2^(n – 4)

	Example-7 : Let a Relation R have attributes {a1, a2, a3,…,an} and the candidate keys are “a1 a2”, “a1 a3” then the possible number of super keys?
Super keys of(a1 a2) + Super keys of(a1 a3) – Super keys of(a1 a2 a3)

=> 2^(n – 2) + 2^(n – 2) – 2^(n – 3)

	Example-8 : Let a Relation R have attributes {a1, a2, a3,…,an} and the candidate keys are “a1”, “a2”, “a3” then the possible number of super keys?
In this question we have 3 different candidate keys. Tackling problems like these is shown in the diagram below.

[image:]

→ |A1 ∪ A2 ∪ A3| = |A1| + |A2| + |A1| – |A1 ∩ A2| – |A1 ∩ A3| – |A2 ∩ A3| + |A1 ∩ A2 ∩ A3|

= (superkeys possible with candidate key A1) + (superkeys possible with candidate key A2) + (superkeys possible with candidate key A3) – (common superkeys from both A1 and A2) – (common superkeys from both A1 and A3) – (common superkeys from both A2 and A3) + (common superkeys from both A1, A2 and A3)

= 2^{n-1} + 2^{n-1} + 2^{n-1} – 2^{n-2} – 2^{n-2} – 2^{n-2} + 2^{n-3}

	
Example-9 : A relation R(A, B, C, D, E, F, G, H)and set of functional dependencies are

CH->G,

A->BC,

B->CFH,

E->A,

F->EG

Then how many possible super keys are present ?

Step 1:-First of all we have to find what the candidate keys are :-

as we can see in given functional dependency D is missing but in relation D is given so D must be a prime attribute of Candidate key.

[image: (A)^+]=[image: (E)^+]=[image: (B)^+]=[image: (F)^+] = all attributes of a relation except D

so Ck’s are = AD,BD,ED,FD

Step 2:-Find superkeys due to single candidate key

there is a two possibility of attribute either we select or not hence there will be 2 chances so,

A_ _D_ _ _ _ = _ B_ D_ _ _ _ = _ _ _ DE _ _ _ =_ _ _ D_F_ _=[image: (2)^6]

Step 3:-Find superkeys due to combination of two CK’s

so,

n(AD ∩ BD)=n(AD ∩ ED)=n(AD ∩ FD)=n(BD ∩ ED)=n(BD ∩ FD)=n(ED ∩ FD) = [image: (2)^5]

Step 4:-Find supekeys due to combination of three CK’s

so,

n(AD ∩ BD ∩ ED)=n(AD ∩ ED ∩ FD)=n(ED ∩ BD ∩ FD)=n(BD ∩ FD ∩ AD)=[image: (2)^4]

Step 5:-Find superkeys due to all so,

n(AD ∩ BD ∩ ED ∩ FD)=AB_DEF_ _ =[image: (2)^3]

so according to inclusion- exclusion principle :-

|W∪X∪Y∪Z|=|W|+|X|+|Y|+|Z|-|W∩X|-|W∩Y|-|W∩Z|-|X∩Y|-|X∩Z|-|Y∩Z|+|W∩X∩Y|+|W∩X∩Z|+|W∩Y∩Z|+|X∩Y∩Z|-|W∩X∩Y∩Z|

#Supekeys = 4*([image: (2)^6])-(6*[image: (2)^5])+4*([image: (2)^4])-[image: (2)^3] = 120

So number of superkeys are 120. This explanation is contributed by YaduvanshiRishi.

Siddhant-Bajaj

Interested in everything CS/IT Aspire with my Acer Aspire R11 to crack GATE2019 Avid Follower of Ravindrababu Ravula Trying my best to keep right up my alley with competitive coding Open Source and Web Development Projects I am somewhat good at Chess and spend loads of time on geeksforgeeks

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
Engineering Mathematics
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Anomalies in Relational Model

				
						

				
			We strongly recommend to refer below posts as a prerequisite of this.

Relational Model Introduction and Codd Rules

Keys in Relational Model (Candidate, Super, Primary, Alternate and Foreign)

Anomalies

There are different types of anomalies which can occur in referencing and referenced relation which can be discussed as:

[image: image]

Insertion anomaly: If a tuple is inserted in referencing relation and referencing attribute value is not present in referenced attribute, it will not allow inserting in referencing relation. For Example, If we try to insert a record in STUDENT_COURSE with STUD_NO =7, it will not allow.

Deletion and Updation anomaly: If a tuple is deleted or updated from referenced relation and referenced attribute value is used by referencing attribute in referencing relation, it will not allow deleting the tuple from referenced relation. For Example, If we try to delete a record from STUDENT with STUD_NO =1, it will not allow. To avoid this, following can be used in query:

	ON DELETE/UPDATE SET NULL: If a tuple is deleted or updated from referenced relation and referenced attribute value is used by referencing attribute in referencing relation, it will delete/update the tuple from referenced relation and set the value of referenced attribute to NULL.

	ON DELETE/UPDATE CASCADE: If a tuple is deleted or updated from referenced relation and referenced attribute value is used by referencing attribute in referencing relation, it will delete/update the tuple from referenced relation and referencing relation as well.

This article is contributed by Sonal Tuteja. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
 DBMS-Relational Model

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Mapping from ER Model to Relational Model

				
						

				
			To understand this, you should have an idea about:

ER model

Relation model

After designing the ER diagram of system, we need to convert it to Relational models which can directly be implemented by any RDBMS like Oracle, MySQL etc. In this article we will discuss how to convert ER diagram to Relational Model for different scenarios.

Case 1: Binary Relationship with 1:1 cardinality with total participation of an entity

[image: erm1]A person has 0 or 1 passport number and Passport is always owned by 1 person. So it is 1:1 cardinality with full participation constraint from Passport.

First Convert each entity and relationship to tables. Person table corresponds to Person Entity with key as Per-Id. Similarly Passport table corresponds to Passport Entity with key as Pass-No. Has Table represents relationship between Person and Passport (Which person has which passport). So it will take attribute Per-Id from Person and Pass-No from Passport.

	Person
	
	Has
	
	Passport

	Per-Id
	Other Person Attribute
	Per-Id
	Pass-No
	Pass-No
	Other PassportAttribute

	PR1
	–
	PR1
	PS1
	PS1
	–

	PR2
	–
	PR2
	PS2
	PS2
	–

	PR3
	–
	
	
	
	
	
	

 Table 1

As we can see from Table 1, each Per-Id and Pass-No has only one entry in Has table. So we can merge all three tables into 1 with attributes shown in Table 2. Each Per-Id will be unique and not null. So it will be the key. Pass-No can’t be key because for some person, it can be NULL.

	Per-Id
	Other Person Attribute
	Pass-No
	Other PassportAttribute

Table 2

Case 2: Binary Relationship with 1:1 cardinality and partial participation of both entities

[image: erm2]

A male marries 0 or 1 female and vice versa as well. So it is 1:1 cardinality with partial participation constraint from both. First Convert each entity and relationship to tables. Male table corresponds to Male Entity with key as M-Id. Similarly Female table corresponds to Female Entity with key as F-Id. Marry Table represents relationship between Male and Female (Which Male marries which female). So it will take attribute M-Id from Male and F-Id from Female.

	Male
	
	Marry
	
	Female

	M-Id
	Other Male Attribute
	M-Id
	F-Id
	F-Id
	Other FemaleAttribute

	M1
	–
	M1
	F2
	F1
	–

	M2
	–
	M2
	F1
	F2
	–

	M3
	–
	
	
	
	
	F3
	–

Table 3

As we can see from Table 3, some males and some females do not marry. If we merge 3 tables into 1, for some M-Id, F-Id will be NULL and for some F-Id, M-Id will be NULL. So there is no attribute which is always not NULL. So we can’t merge all three tables into 1. We can convert into 2 tables. In table 4, M-Id who are married will have F-Id associated. For others, it will be NULL. Table 5 will have information of all females. Primary Keys have been underlined.

	M-Id
	Other Male Attribute
	F-Id

 Table 4

	F-Id
	Other FemaleAttribute

 Table 5

Note: Binary relationship with 1:1 cardinality will have 2 table if partial participation of both entities in the relationship. If atleast 1 entity has total participation, number of tables required will be 1.

Case 3: Binary Relationship with n: 1 cardinality

[image: erm3]In this scenario, every student can enroll only in one elective course but for an elective course there can be more than one student. First Convert each entity and relationship to tables. Student table corresponds to Student Entity with key as S-Id. Similarly Elective_Course table corresponds to Elective_Course Entity with key as E-Id. Enrolls Table represents relationship between Student and Elective_Course (Which student enrolls in which course). So it will take attribute S-Id from and Student E-Id from Elective_Course.

	Student
	
	Enrolls
	
	Elective_Course

	S-Id
	Other Student Attribute
	S-Id
	E-Id
	E-Id
	Other Elective CourseAttribute

	S1
	–
	S1
	E1
	E1
	–

	S2
	–
	S2
	E2
	E2
	–

	S3
	–
	
	S3
	E1
	
	E3
	–

	S4
	–
	
	S4
	E1
	
	
	

Table 6

As we can see from Table 6, S-Id is not repeating in Enrolls Table. So it can be considered as a key of Enrolls table. Both Student and Enrolls Table’s key is same; we can merge it as a single table. The resultant tables are shown in Table 7 and Table 8. Primary Keys have been underlined.

	S-Id
	Other Student Attribute
	E-Id

Table 7

	E-Id
	Other Elective CourseAttribute

Table 8

Case 4: Binary Relationship with m: n cardinality[image: erm4]

In this scenario, every student can enroll in more than 1 compulsory course and for a compulsory course there can be more than 1 student. First Convert each entity and relationship to tables. Student table corresponds to Student Entity with key as S-Id. Similarly Compulsory_Courses table corresponds to Compulsory Courses Entity with key as C-Id. Enrolls Table represents relationship between Student and Compulsory_Courses (Which student enrolls in which course). So it will take attribute S-Id from Person and C-Id from Compulsory_Courses.

	Student
	
	Enrolls
	
	Compulsory_Courses

	S-Id
	Other Student Attribute
	S-Id
	C-Id
	C-Id
	Other Compulsory CourseAttribute

	S1
	–
	S1
	C1
	C1
	–

	S2
	–
	S1
	C2
	C2
	–

	S3
	–
	
	S3
	C1
	
	C3
	–

	S4
	–
	
	S4
	C3
	
	C4
	–

	
	
	
	S4
	C2
	
	
	

	
	
	
	S3
	C3
	
	
	

Table 9

As we can see from Table 9, S-Id and C-Id both are repeating in Enrolls Table. But its combination is unique; so it can be considered as a key of Enrolls table. All tables’ keys are different, these can’t be merged. Primary Keys of all tables have been underlined.

Case 5: Binary Relationship with weak entity[image: erm5]

In this scenario, an employee can have many dependants and one dependant can depend on one employee. A dependant does not have any existence without an employee (e.g; you as a child can be dependant of your father in his company). So it will be a weak entity and its participation will always be total. Weak Entity does not have key of its own. So its key will be combination of key of its identifying entity (E-Id of Employee in this case) and its partial key (D-Name).

First Convert each entity and relationship to tables. Employee table corresponds to Employee Entity with key as E-Id. Similarly Dependants table corresponds to Dependant Entity with key as D-Name and E-Id. Has Table represents relationship between Employee and Dependants (Which employee has which dependants). So it will take attribute E-Id from Employee and D-Name from Dependants.

	Employee
	
	Has
	
	Dependants

	E-Id
	Other Employee Attribute
	E-Id
	D-Name
	D-Name
	E-Id
	Other DependantsAttribute

	E1
	–
	E1
	RAM
	RAM
	E1
	–

	E2
	–
	E1
	SRINI
	SRINI
	E1
	–

	E3
	–
	E2
	RAM
	RAM
	E2
	–

	
	
	E3
	ASHISH
	ASHISH
	E3
	–

 Table 10

 As we can see from Table 10, E-Id, D-Name is key for Has as well as Dependants Table. So we can merge these two into 1. So the resultant tables are shown in Tables 11 and 12. Primary Keys of all tables have been underlined.

	E-Id
	Other Employee Attribute

Table 11

	D-Name
	E-Id
	Other DependantsAttribute

Table 12

Article contributed by Sonal Tuteja. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS-ER model
DBMS-Relational Model

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

Relational Algebra

						Relational Algebra

				
						

				
			Relational Algebra is procedural query language, which takes Relation as input and generate relation as output. Relational algebra mainly provides theoretical foundation for relational databases and SQL.

Operators in Relational Algebra

Projection (π)

Projection is used to project required column data from a relation.

Example :

 R
 (A B C)

 1 2 4
 2 2 3
 3 2 3
 4 3 4

π (BC)
B C

2 4
2 3
3 4

Note: By Default projection removes duplicate data.

Selection (σ)

Selection is used to select required tuples of the relations.

for the above relation

σ (c>3)R

will select the tuples which have c more than 3.

Note: selection operator only selects the required tuples but does not display them. For displaying, data projection operator is used.

For the above selected tuples, to display we need to use projection also.

 π (σ (c>3)R) will show following tuples.

A B C

1 2 4
4 3 4

Union (U)

Union operation in relational algebra is same as union operation in set theory, only constraint is for union of two relation both relation must have same set of Attributes.

Set Difference (-)

Set Difference in relational algebra is same set difference operation as in set theory with the constraint that both relation should have same set of attributes.

Rename (ρ)

Rename is a unary operation used for renaming attributes of a relation.

ρ (a/b)R will rename the attribute ‘b’ of relation by ‘a’.

Cross Product (X)

Cross product between two relations let say A and B, so cross product between A X B will results all the attributes of A followed by each attribute of B. Each record of A will pairs with every record of B.

below is the example

 A B
 (Name Age Sex) (Id Course)
 ------------------ -------------
 Ram 14 M 1 DS
 Sona 15 F 2 DBMS
 kim 20 M

 A X B
 Name Age Sex Id Course

 Ram 14 M 1 DS
 Ram 14 M 2 DBMS
 Sona 15 F 1 DS
 Sona 15 F 2 DBMS
 Kim 20 M 1 DS
 Kim 20 M 2 DBMS

Note: if A has ‘n’ tuples and B has ‘m’ tuples then A X B will have ‘n*m’ tuples.

Natural Join (⋈)

Natural join is a binary operator. Natural join between two or more relations will result set of all combination of tuples where they have equal common attribute.

Let us see below example

 Emp Dep
 (Name Id Dept_name) (Dept_name Manager)
 ------------------------ ---------------------
 A 120 IT Sale Y
 B 125 HR Prod Z
 C 110 Sale IT A
 D 111 IT

Emp ⋈ Dep

Name Id Dept_name Manager

A 120 IT A
C 110 Sale Y
D 111 IT A

Conditional Join

Conditional join works similar to natural join. In natural join, by default condition is equal between common attribute while in conditional join we can specify the any condition such as greater than, less than, not equal

Let us see below example

 R S
 (ID Sex Marks) (ID Sex Marks)
 ------------------ --------------------
 1 F 45 10 M 20
 2 F 55 11 M 22
 3 F 60 12 M 59

Join between R And S with condition R.marks >= S.marks

R.ID R.Sex R.Marks S.ID S.Sex S.Marks

1 F 45 10 M 20
1 F 45 11 M 22
2 F 55 10 M 20
2 F 55 11 M 22
3 F 60 10 M 20
3 F 60 11 M 22
3 F 60 12 M 59

In depth articles:

Basic-operators-in-relational-algebra Extended Relational Algebra Operators

Following are Previous Year Gate Question

http://quiz.geeksforgeeks.org/gate-gate-cs-2012-question-50/

http://quiz.geeksforgeeks.org/gate-gate-cs-2012-question-43/

References:

https://en.wikipedia.org/wiki/Relational_algebra

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS-Relational Algebra

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Basic Operators in Relational Algebra

				
						

				
			Basics of Relational model: Relational Model

Relational Algebra is a procedural query language which takes relations as an input and returns relation as an output. There are some basic operators which can be applied on relations to produce required results which we will discuss one by one. We will use STUDENT_SPORTS, EMPLOYEE and STUDENT relations as given in Table 1, Table 2 and Table 3 respectively to understand the various operators.

 Table 1 : STUDENT_SPORTS

	ROLL_NO
	SPORTS

	1
	Badminton

	2
	Cricket

	2
	Badminton

	4
	Badminton

 Table 2 : EMPLOYEE

	EMP_NO
	NAME
	ADDRESS
	PHONE
	AGE

	1
	RAM
	DELHI
	9455123451
	18

	5
	NARESH
	HISAR
	9782918192
	22

	6
	SWETA
	RANCHI
	9852617621
	21

	4
	SURESH
	DELHI
	9156768971
	18

 Table 3 : STUDENT

	ROLL_NO
	NAME
	ADDRESS
	PHONE
	AGE

	1
	RAM
	DELHI
	9455123451
	18

	2
	RAMESH
	GURGAON
	9652431543
	18

	3
	SUJIT
	ROHTAK
	9156253131
	20

	4
	SURESH
	DELHI
	9156768971
	18

Selection operator (σ): Selection operator is used to select tuples from a relation based on some condition. Syntax:

σ (Cond)(Relation Name)

Extract students whose age is greater than 18 from STUDENT relation given in Table 1

σ (AGE>18)(STUDENT)

RESULT:

	ROLL_NO
	NAME
	ADDRESS
	PHONE
	AGE

	3
	SUJIT
	ROHTAK
	9156253131
	20

Projection Operator (∏): Projection operator is used to project particular columns from a relation. Syntax:

∏(Column 1,Column 2….Column n)(Relation Name)

Extract ROLL_NO and NAME from STUDENT relation given in Table 1

∏(ROLL_NO,NAME)(STUDENT)

RESULT:

	ROLL_NO
	NAME

	1
	RAM

	2
	RAMESH

	3
	SUJIT

	4
	SURESH

Note: If resultant relation after projection has duplicate rows, it will be removed. For Example: ∏(ADDRESS)(STUDENT) will remove one duplicate row with value DELHI and return three rows.

Cross Product(X): Cross product is used to join two relations. For every row of Relation1, each row of Relation2 is concatenated. If Relation1 has m tuples and and Relation2 has n tuples, cross product of Relation1 and Relation2 will have m X n tuples. Syntax:

Relation1 X Relation2

To apply Cross Product on STUDENT relation given in Table 1 and STUDENT_SPORTS relation given in Table 2,

STUDENT X STUDENT_SPORTS

RESULT:

	ROLL_NO
	NAME
	ADDRESS
	PHONE
	AGE
	ROLL_NO
	SPORTS

	1
	RAM
	DELHI
	9455123451
	18
	1
	Badminton

	1
	RAM
	DELHI
	9455123451
	18
	2
	Cricket

	1
	RAM
	DELHI
	9455123451
	18
	2
	Badminton

	1
	RAM
	DELHI
	9455123451
	18
	4
	Badminton

	2
	RAMESH
	GURGAON
	9652431543
	18
	1
	Badminton

	2
	RAMESH
	GURGAON
	9652431543
	18
	2
	Cricket

	2
	RAMESH
	GURGAON
	9652431543
	18
	2
	Badminton

	2
	RAMESH
	GURGAON
	9652431543
	18
	4
	Badminton

	3
	SUJIT
	ROHTAK
	9156253131
	20
	1
	Badminton

	3
	SUJIT
	ROHTAK
	9156253131
	20
	2
	Cricket

	3
	SUJIT
	ROHTAK
	9156253131
	20
	2
	Badminton

	3
	SUJIT
	ROHTAK
	9156253131
	20
	4
	Badminton

	4
	SURESH
	DELHI
	9156768971
	18
	1
	Badminton

	4
	SURESH
	DELHI
	9156768971
	18
	2
	Cricket

	4
	SURESH
	DELHI
	9156768971
	18
	2
	Badminton

	4
	SURESH
	DELHI
	9156768971
	18
	4
	Badminton

Union (U): Union on two relations R1 and R2 can only be computed if R1 and R2 are union compatible (These two relation should have same number of attributes and corresponding attributes in two relations have same domain) . Union operator when applied on two relations R1 and R2 will give a relation with tuples which are either in R1 or in R2. The tuples which are in both R1 and R2 will appear only once in result relation. Syntax:

 Relation1 U Relation2

Find person who are either student or employee, we can use Union operator like:

STUDENT U EMPLOYEE

RESULT:

	ROLL_NO
	NAME
	ADDRESS
	PHONE
	AGE

	1
	RAM
	DELHI
	9455123451
	18

	2
	RAMESH
	GURGAON
	9652431543
	18

	3
	SUJIT
	ROHTAK
	9156253131
	20

	4
	SURESH
	DELHI
	9156768971
	18

	5
	NARESH
	HISAR
	9782918192
	22

	6
	SWETA
	RANCHI
	9852617621
	21

Minus (-): Minus on two relations R1 and R2 can only be computed if R1 and R2 are union compatible. Minus operator when applied on two relations as R1-R2 will give a relation with tuples which are in R1 but not in R2. Syntax:

 Relation1 - Relation2

Find person who are student but not employee, we can use minus operator like:

STUDENT - EMPLOYEE

RESULT:

	ROLL_NO
	NAME
	ADDRESS
	PHONE
	AGE

	2
	RAMESH
	GURGAON
	9652431543
	18

	3
	SUJIT
	ROHTAK
	9156253131
	20

Rename(ρ): Rename operator is used to give another name to a relation. Syntax:

ρ(Relation2, Relation1)

To rename STUDENT relation to STUDENT1, we can use rename operator like:

ρ(STUDENT1, STUDENT)

 If you want to create a relation STUDENT_NAMES with ROLL_NO and NAME from STUDENT, it can be done using rename operator as:

ρ(STUDENT_NAMES, ∏(ROLL_NO, NAME)(STUDENT))

Extended Relational Algebra Operators Overview of Relational Algebra Operators

Previous Year Gate Questions

http://quiz.geeksforgeeks.org/gate-gate-cs-2012-question-50/

http://quiz.geeksforgeeks.org/gate-gate-cs-2012-question-43/

Article contributed by Sonal Tuteja. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS-Relational Algebra

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Extended Operators in Relational Algebra

				
						

				
			Basic idea about relational model and basic operators in Relational Algebra:

Relational Model

Basic Operators in Relational Algebra

Extended operators are those operators which can be derived from basic operators.There are mainly three types of extended operators in Relational Algebra:

	Join

	Intersection

	Divide

The relations used to understand extended operators are STUDENT, STUDENT_SPORTS, ALL_SPORTS and EMPLOYEE which are shown in Table 1, Table 2, Table 3 and Table 4 respectively.

STUDENT

	ROLL_NO
	NAME
	ADDRESS
	PHONE
	AGE

	1
	RAM
	DELHI
	9455123451
	18

	2
	RAMESH
	GURGAON
	9652431543
	18

	3
	SUJIT
	ROHTAK
	9156253131
	20

	4
	SURESH
	DELHI
	9156768971
	18

Table 1

 STUDENT_SPORTS

	ROLL_NO
	SPORTS

	1
	Badminton

	2
	Cricket

	2
	Badminton

	4
	Badminton

Table 2

 ALL_SPORTS

	SPORTS

	Badminton

	Cricket

Table 3

EMPLOYEE

	EMP_NO
	NAME
	ADDRESS
	PHONE
	AGE

	1
	RAM
	DELHI
	9455123451
	18

	5
	NARESH
	HISAR
	9782918192
	22

	6
	SWETA
	RANCHI
	9852617621
	21

	4
	SURESH
	DELHI
	9156768971
	18

 Table 4

Intersection (∩): Intersection on two relations R1 and R2 can only be computed if R1 and R2 are union compatible (These two relation should have same number of attributes and corresponding attributes in two relations have same domain). Intersection operator when applied on two relations as R1∩R2 will give a relation with tuples which are in R1 as well as R2. Syntax:

 Relation1 ∩ Relation2

Example: Find a person who is student as well as employee- STUDENT ∩ EMPLOYEE

In terms of basic operators (union and minus) :

STUDENT ∩ EMPLOYEE = STUDENT + EMPLOYEE - (STUDENT U EMPLOYEE)

RESULT:

	ROLL_NO
	NAME
	ADDRESS
	PHONE
	AGE

	1
	RAM
	DELHI
	9455123451
	18

	4
	SURESH
	DELHI
	9156768971
	18

Conditional Join(⋈c): Conditional Join is used when you want to join two or more relation based on some conditions. Example: Select students whose ROLL_NO is greater than EMP_NO of employees

STUDENT⋈c STUDENT.ROLL_NO>EMPLOYEE.EMP_NOEMPLOYEE

In terms of basic operators (cross product and selection) :

σ (STUDENT.ROLL_NO>EMPLOYEE.EMP_NO)(STUDENT×EMPLOYEE)

RESULT:

	ROLL_NO
	NAME
	ADDRESS
	PHONE
	AGE
	EMP_NO
	NAME
	ADDRESS
	PHONE
	AGE

	2
	RAMESH
	GURGAON
	9652431543
	18
	1
	RAM
	DELHI
	9455123451
	18

	3
	SUJIT
	ROHTAK
	9156253131
	20
	1
	RAM
	DELHI
	9455123451
	18

	4
	SURESH
	DELHI
	9156768971
	18
	1
	RAM
	DELHI
	9455123451
	18

Equijoin(⋈): Equijoin is a special case of conditional join where only equality condition holds between a pair of attributes. As values of two attributes will be equal in result of equijoin, only one attribute will be appeared in result.

Example:Select students whose ROLL_NO is equal to EMP_NO of employees

STUDENT⋈STUDENT.ROLL_NO=EMPLOYEE.EMP_NOEMPLOYEE

In terms of basic operators (cross product, selection and projection) :

∏(STUDENT.ROLL_NO, STUDENT.NAME, STUDENT.ADDRESS, STUDENT.PHONE, STUDENT.AGE EMPLOYEE.NAME, EMPLOYEE.ADDRESS, EMPLOYEE.PHONE, EMPLOYEE>AGE)(σ (STUDENT.ROLL_NO=EMPLOYEE.EMP_NO) (STUDENT×EMPLOYEE))

RESULT:

	ROLL_NO
	NAME
	ADDRESS
	PHONE
	AGE
	NAME
	ADDRESS
	PHONE
	AGE

	1
	RAM
	DELHI
	9455123451
	18
	RAM
	DELHI
	9455123451
	18

	4
	SURESH
	DELHI
	9156768971
	18
	SURESH
	DELHI
	9156768971
	18

Natural Join(⋈): It is a special case of equijoin in which equality condition hold on all attributes which have same name in relations R and S (relations on which join operation is applied). While applying natural join on two relations, there is no need to write equality condition explicitly. Natural Join will also return the similar attributes only once as their value will be same in resulting relation.

Example: Select students whose ROLL_NO is equal to ROLL_NO of STUDENT_SPORTS as:

STUDENT⋈STUDENT_SPORTS

In terms of basic operators (cross product, selection and projection) :

∏(STUDENT.ROLL_NO, STUDENT.NAME, STUDENT.ADDRESS, STUDENT.PHONE, STUDENT.AGE STUDENT_SPORTS.SPORTS)(σ (STUDENT.ROLL_NO=STUDENT_SPORTS.ROLL_NO) (STUDENT×STUDENT_SPORTS))

RESULT:

	ROLL_NO
	NAME
	ADDRESS
	PHONE
	AGE
	SPORTS

	1
	RAM
	DELHI
	9455123451
	18
	Badminton

	2
	RAMESH
	GURGAON
	9652431543
	18
	Cricket

	2
	RAMESH
	GURGAON
	9652431543
	18
	Badminton

	4
	SURESH
	DELHI
	9156768971
	18
	Badminton

Natural Join is by default inner join because the tuples which does not satisfy the conditions of join does not appear in result set. e.g.; The tuple having ROLL_NO 3 in STUDENT does not match with any tuple in STUDENT_SPORTS, so it has not been a part of result set.

Left Outer Join(⟕): When applying join on two relations R and S, some tuples of R or S does not appear in result set which does not satisfy the join conditions. But Left Outer Joins gives all tuples of R in the result set. The tuples of R which do not satisfy join condition will have values as NULL for attributes of S.

Example:Select students whose ROLL_NO is greater than EMP_NO of employees and details of other students as well

STUDENT⟕STUDENT.ROLL_NO>EMPLOYEE.EMP_NOEMPLOYEE

RESULT

	ROLL_NO
	NAME
	ADDRESS
	PHONE
	AGE
	EMP_NO
	NAME
	ADDRESS
	PHONE
	AGE

	2
	RAMESH
	GURGAON
	9652431543
	18
	1
	RAM
	DELHI
	9455123451
	18

	3
	SUJIT
	ROHTAK
	9156253131
	20
	1
	RAM
	DELHI
	9455123451
	18

	4
	SURESH
	DELHI
	9156768971
	18
	1
	RAM
	DELHI
	9455123451
	18

	1
	RAM
	DELHI
	9455123451
	18
	NULL
	NULL
	NULL
	NULL
	NULL

Right Outer Join(⟖): When applying join on two relations R and S, some tuples of R or S does not appear in result set which does not satisfy the join conditions. But Right Outer Joins gives all tuples of S in the result set. The tuples of S which do not satisfy join condition will have values as NULL for attributes of R.

Example: Select students whose ROLL_NO is greater than EMP_NO of employees and details of other Employees as well

STUDENT⟖STUDENT.ROLL_NO>EMPLOYEE.EMP_NOEMPLOYEE

RESULT:

	ROLL_NO
	NAME
	ADDRESS
	PHONE
	AGE
	EMP_NO
	NAME
	ADDRESS
	PHONE
	AGE

	2
	RAMESH
	GURGAON
	9652431543
	18
	1
	RAM
	DELHI
	9455123451
	18

	3
	SUJIT
	ROHTAK
	9156253131
	20
	1
	RAM
	DELHI
	9455123451
	18

	4
	SURESH
	DELHI
	9156768971
	18
	1
	RAM
	DELHI
	9455123451
	18

	NULL
	NULL
	NULL
	NULL
	NULL
	5
	NARESH
	HISAR
	9782918192
	22

	NULL
	NULL
	NULL
	NULL
	NULL
	6
	SWETA
	RANCHI
	9852617621
	21

	NULL
	NULL
	NULL
	NULL
	NULL
	4
	SURESH
	DELHI
	9156768971
	18

Full Outer Join(⟗): When applying join on two relations R and S, some tuples of R or S does not appear in result set which does not satisfy the join conditions. But Full Outer Joins gives all tuples of S and all tuples of R in the result set. The tuples of S which do not satisfy join condition will have values as NULL for attributes of R and vice versa.

Example:Select students whose ROLL_NO is greater than EMP_NO of employees and details of other Employees as well and other Students as well

STUDENT⟗STUDENT.ROLL_NO>EMPLOYEE.EMP_NOEMPLOYEE

RESULT:

	ROLL_NO
	NAME
	ADDRESS
	PHONE
	AGE
	EMP_NO
	NAME
	ADDRESS
	PHONE
	AGE

	2
	RAMESH
	GURGAON
	9652431543
	18
	1
	RAM
	DELHI
	9455123451
	18

	3
	SUJIT
	ROHTAK
	9156253131
	20
	1
	RAM
	DELHI
	9455123451
	18

	4
	SURESH
	DELHI
	9156768971
	18
	1
	RAM
	DELHI
	9455123451
	18

	NULL
	NULL
	NULL
	NULL
	NULL
	5
	NARESH
	HISAR
	9782918192
	22

	NULL
	NULL
	NULL
	NULL
	NULL
	6
	SWETA
	RANCHI
	9852617621
	21

	NULL
	NULL
	NULL
	NULL
	NULL
	4
	SURESH
	DELHI
	9156768971
	18

	1
	RAM
	DELHI
	9455123451
	18
	NULL
	NULL
	NULL
	NULL
	NULL

Division Operator (÷): Division operator A÷B can be applied if and only if:

	Attributes of B is proper subset of Attributes of A.

	The relation returned by division operator will have attributes = (All attributes of A – All Attributes of B)

	The relation returned by division operator will return those tuples from relation A which are associated to every B’s tuple.

Consider the relation STUDENT_SPORTS and ALL_SPORTS given in Table 2 and Table 3 above.

To apply division operator as

 STUDENT_SPORTS÷ ALL_SPORTS

	The operation is valid as attributes in ALL_SPORTS is a proper subset of attributes in STUDENT_SPORTS.

	The attributes in resulting relation will have attributes {ROLL_NO,SPORTS}-{SPORTS}=ROLL_NO

	The tuples in resulting relation will have those ROLL_NO which are associated with all B’s tuple {Badminton, Cricket}. ROLL_NO 1 and 4 are associated to Badminton only. ROLL_NO 2 is associated to all tuples of B. So the resulting relation will be:

	ROLL_NO

	2

Overview of Relational Algebra Operators

Previous Year Gate Questions

http://quiz.geeksforgeeks.org/gate-gate-cs-2012-question-50/

http://quiz.geeksforgeeks.org/gate-gate-cs-2012-question-43/

Article contributed by Sonal Tuteja.Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS-Relational Algebra

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Relational Algebra

				
						

				
			Relational Algebra is procedural query language, which takes Relation as input and generate relation as output. Relational algebra mainly provides theoretical foundation for relational databases and SQL.

Operators in Relational Algebra

Projection (π)

Projection is used to project required column data from a relation.

Example :

 R
 (A B C)

 1 2 4
 2 2 3
 3 2 3
 4 3 4

π (BC)
B C

2 4
2 3
3 4

Note: By Default projection removes duplicate data.

Selection (σ)

Selection is used to select required tuples of the relations.

for the above relation

σ (c>3)R

will select the tuples which have c more than 3.

Note: selection operator only selects the required tuples but does not display them. For displaying, data projection operator is used.

For the above selected tuples, to display we need to use projection also.

 π (σ (c>3)R) will show following tuples.

A B C

1 2 4
4 3 4

Union (U)

Union operation in relational algebra is same as union operation in set theory, only constraint is for union of two relation both relation must have same set of Attributes.

Set Difference (-)

Set Difference in relational algebra is same set difference operation as in set theory with the constraint that both relation should have same set of attributes.

Rename (ρ)

Rename is a unary operation used for renaming attributes of a relation.

ρ (a/b)R will rename the attribute ‘b’ of relation by ‘a’.

Cross Product (X)

Cross product between two relations let say A and B, so cross product between A X B will results all the attributes of A followed by each attribute of B. Each record of A will pairs with every record of B.

below is the example

 A B
 (Name Age Sex) (Id Course)
 ------------------ -------------
 Ram 14 M 1 DS
 Sona 15 F 2 DBMS
 kim 20 M

 A X B
 Name Age Sex Id Course

 Ram 14 M 1 DS
 Ram 14 M 2 DBMS
 Sona 15 F 1 DS
 Sona 15 F 2 DBMS
 Kim 20 M 1 DS
 Kim 20 M 2 DBMS

Note: if A has ‘n’ tuples and B has ‘m’ tuples then A X B will have ‘n*m’ tuples.

Natural Join (⋈)

Natural join is a binary operator. Natural join between two or more relations will result set of all combination of tuples where they have equal common attribute.

Let us see below example

 Emp Dep
 (Name Id Dept_name) (Dept_name Manager)
 ------------------------ ---------------------
 A 120 IT Sale Y
 B 125 HR Prod Z
 C 110 Sale IT A
 D 111 IT

Emp ⋈ Dep

Name Id Dept_name Manager

A 120 IT A
C 110 Sale Y
D 111 IT A

Conditional Join

Conditional join works similar to natural join. In natural join, by default condition is equal between common attribute while in conditional join we can specify the any condition such as greater than, less than, not equal

Let us see below example

 R S
 (ID Sex Marks) (ID Sex Marks)
 ------------------ --------------------
 1 F 45 10 M 20
 2 F 55 11 M 22
 3 F 60 12 M 59

Join between R And S with condition R.marks >= S.marks

R.ID R.Sex R.Marks S.ID S.Sex S.Marks

1 F 45 10 M 20
1 F 45 11 M 22
2 F 55 10 M 20
2 F 55 11 M 22
3 F 60 10 M 20
3 F 60 11 M 22
3 F 60 12 M 59

In depth articles:

Basic-operators-in-relational-algebra Extended Relational Algebra Operators

Following are Previous Year Gate Question

http://quiz.geeksforgeeks.org/gate-gate-cs-2012-question-50/

http://quiz.geeksforgeeks.org/gate-gate-cs-2012-question-43/

References:

https://en.wikipedia.org/wiki/Relational_algebra

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS-Relational Algebra

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						How to solve Relational Algebra problems for GATE

				
						

				
			In this article, I will discuss common types of questions in relational algebra which are asked in GATE. Before reading this article, you should have idea about basic and extended operators in relational algebra.

Basic operators in Relational Algebra

Extended operators in relational algebra

Type 1: Given a relational algebra expression, find the result. Suppose you have a relation

Order (Prod_Id, Agent_Id, Order_Month) and you have to find out what will the following algebra expression return.

[image: \prod Order1.Prod_\hspace{0.cm}Id(\rho (Order1,Order)\times Order1.Prod_Id = Order2.Prod_Id \hspace{0.2cm}and \hspace{0.2cm} Order1.Agent_Id \neq Order2.Agent_Id \hspace{0.2cm} and \hspace{0.2cm} Order1.Order_Month = Order2.Order_Month \hspace{0.2cm} \rho (Order2, Order)))]

To solve these types of questions, process the expression starting from innermost brackets. In this example, we have renamed order to Order1 and Order2 (Both represent the same relation order). Then we have applied the conditional join between Order1 and Order2. It will return those rows where Product_Id and Order_Month of Order1 and Order2 are same but Agent_Id of Order1 and Order2 is different. It implies the rows where same product is ordered by two different agents in the same month. Then we are projecting the Prod_Id. So the final output will return the Prod_Id of products which are ordered by different agents in the same month. We can do this by taking a sample data. Let Order relation consists of following data.

[image: dbms2]

When we apply the following expression, the rows which are highlighted in blue will be selected.

[image: (\rho (Order1, Order)\Join Order1.Prod_Id = Order2.Prod_\hspace{0.02cm}Id \hspace{0.2cm}and\hspace{0.2cm}Order1.Agent\Id \neq Order2.Agent_\hspace{0.02cm}Id \hspace{0.3cm} and \hspace{0.3cm}Order1.Order_\hspace{0.02cm}Month=Order2.Order_\hspace{0.02cm}Month \hspace{0.2cm}\rho (Order2, Order))]

[image: dbms2]

After projecting Order1.Prod_Id, the output will be P002 which is Prod_Id of products which are ordered by at least two different agents in same month.

Note: If we want to find Prod_Id which are ordered by at least three different agents in same month, it can be done as:

[image: \prod Order1.Prod_\hspace{0.cm}Id(\sigma Order1.Prod_Id=Order2.Prod_Id \hspace{0.2cm} and \hspace{0.2cm} Order1.Prod_Id = Order3.Prod_Id \hspace{0.2cm}and \hspace{0.2cm} Order1.Agent_Id \neq Order2.Agent_Id \hspace{0.2cm} and \hspace{0.2cm} Order1.Agent_Id \neq Order3.Agent_Id \hspace{0.2cm} and \hspace{0.2cm} Order2.Agent_Id \neq Order3.Agent_Id \hspace{0.2cm} and \hspace{0.2cm} Order1.Order_Month = Order2.Order_Month \hspace{0.2cm} and \hspace{0.2cm} Order1.Order_Month = Order3.Order_Month(\rho (Order1, Order)\times \rho(Order2, Order)\times \rho(Order3, Order)))]

Type 2: Given two relations, what will be the maximum and minimum number of tuples after natural join? Consider the following relation R(A,B,C) and S(B,D,E) with underlined primary key. The relation R contains 200 tuples and the relation S contains 100 tuples. What is the maximum number of tuples possible in the natural Join R and S?

To solve this type of question, first we will see that on which attribute natural join will take place. Natural join selects those rows which have equal values for common attribute. In this case, expression would be like:

[image: \sigma _{R.B = S.B}(R\times S)]

In relation R, attribute B is primary key. So Relation R will have 200 distinct values of B. On the other hand, Relation S has BD as primary key. So attribute B can have 100 distinct values or 1 value for all rows.

[image: dbms7]

In this case, no value of B in S will match to a value of B in R. So natural join will have 0 tuple. So the maximum number of tuples will be 100 and min will be 0.

Note: If it is explicitly mentioned that S.B is foreign key to R.B, then Case 3 and Case 4 discussed above are not possible because value of S.B will be from the values of R.B. So, minimum and maximum number of tuples in natural join will be 100.

This article is contributed by Sonal Tuteja. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS-Relational Algebra

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						How to solve Relational Algebra problems for GATE

				
						

				
			In this article, I will discuss common types of questions in relational algebra which are asked in GATE. Before reading this article, you should have idea about basic and extended operators in relational algebra.

Type 1: Given a relational algebra expression, find the result. Suppose you have a relation

Order (Prod_Id, Agent_Id, Order_Month) and you have to find out what will the following algebra expression return.

 ∏Order1.Prod_Id (ρ(Order1,Order) Order1.Prod_Id=Order2.Prod_Id and Order1.Agent_Id≠Order2.Agent_Id
and Order1.Order_Month=Order2.Order_Month ρ(Order2,Order))

	Process the expression starting from innermost brackets.

	In this example, we have renamed order to Order1 and Order2 (Both represent the same relation order). Then we have applied the conditional join between Order1 and Order2.

	It will return those rows where Product_Id and Order_Month of Order1 and Order2 are same but Agent_Id of Order1 and Order2 is different.

	It implies the rows where same product is ordered by two different agents in the same month.

	Then we are projecting the Prod_Id.

	So the final output will return the Prod_Id of products which are ordered by different agents in the same month. We can do this by taking a sample data. Let Order relation consists of following data.

ORDER

	Prod_Id
	Agent_Id
	Order_Month

	P001
	A001
	JAN

	P002
	A002
	FEB

	P002
	A001
	FEB

	P001
	A002
	FEB

When we apply the following expression, the rows which are highlighted in blue will be selected.

(ρ(Order1,Order) Order1.Prod_Id=Order2.Prod_Id and Order1.Agent_Id≠Order2.Agent_Id and Order1.Order_Month=Order2.Order_Month ρ(Order2,Order))

	Order1.Prod_Id
	Order1.Agent_Id
	Order1.Order_Month
	Order2.Prod_Id
	Order2.Agent_Id
	Order2.Order_Month

	P001
	A001
	JAN
	P001
	A001
	JAN

	P002
	A002
	FEB
	P001
	A001
	JAN

	P002
	A001
	FEB
	P001
	A001
	JAN

	P001
	A002
	FEB
	P001
	A001
	JAN

	P001
	A001
	JAN
	P002
	A002
	FEB

	P002
	A002
	FEB
	P002
	A002
	FEB

	P002
	A001
	FEB
	P002
	A002
	FEB

	P001
	A002
	FEB
	P002
	A002
	FEB

	P001
	A001
	JAN
	P002
	A001
	FEB

	P002
	A002
	FEB
	P002
	A001
	FEB

	P002
	A001
	FEB
	P002
	A001
	FEB

	P001
	A002
	FEB
	P002
	A001
	FEB

	P001
	A001
	JAN
	P001
	A002
	FEB

	P002
	A002
	FEB
	P001
	A002
	FEB

	P002
	A001
	FEB
	P001
	A002
	FEB

	P001
	A002
	FEB
	P001
	A002
	FEB

After projecting Order1.Prod_Id, the output will be P002 which is Prod_Id of products which are ordered by at least two different agents in same month.

Note: If we want to find Prod_Id which are ordered by at least three different agents in same month, it can be done as:

∏Order1.Prod_Id (σOrder1.Prod_Id=Order2.Prod_Id and Order1.Prod_Id=Order3.Prod_Id and Order1.Agent_Id≠Order2.Agent_Id and Order1.Agent_Id≠Order3.Agent_Id and Order2.Agent_Id≠Order3.Agent_Id and Order1.Order_Month=Order2.Order_Month and Order1.Order_Month=Order3.Order_Month (ρ(Order1,Order)X ρ(Order2,Order)X ρ(Order3,Order)))

Type 2: Given two relations, what will be the maximum and minimum number of tuples after natural join? Consider the following relation R(A,B,C) and S(B,D,E) with underlined primary key. The relation R contains 200 tuples and the relation S contains 100 tuples. What is the maximum number of tuples possible in the natural Join R and S?

	To solve this type of question, first we will see that on which attribute natural join will take place.

	Natural join selects those rows which have equal values for common attribute. In this case, expression would be like:

σR.B=S.B (RX S)

	In relation R, attribute B is primary key. So Relation R will have 200 distinct values of B.

	On the other hand, Relation S has BD as primary key. So attribute B can have 100 distinct values or 1 value for all rows.

Case 1: S.B has 100 distinct values and each of these values match to R.B

	R
	S

	B
	Other Attributes
	B
	Other Attributes

	1
	
	1
	

	2
	
	2
	

	.
	
	.
	

	.
	
	.
	

	.
	
	.
	

	200
	
	100
	

In this case, every value of B in S will match to a value of B in R. So natural join will have 100 tuples.

Case 2: S.B has 1 values and this values match to R.B

	R
	S

	B
	Other Attributes
	B
	Other Attributes

	1
	
	1
	

	2
	
	1
	

	.
	
	.
	

	.
	
	.
	

	.
	
	.
	

	200
	
	1
	

In this case, every value of B in S will match to a value of B in R. So natural join will have 100 tuples.

Case 3: S.B has 100 distinct values and none of these values matches to R.B

	R
	S

	B
	Other Attributes
	B
	Other Attributes

	1
	
	201
	

	2
	
	202
	

	.
	
	.
	

	.
	
	.
	

	.
	
	.
	

	200
	
	300
	

In this case, no value of B in S will match to a value of B in R. So natural join will have 0 tuple.

Case 4: S.B has 1 value and it does not match with R.B

	R
	S

	A
	Other Attributes
	B
	Other Attributes

	1
	
	300
	

	2
	
	300
	

	.
	
	.
	

	.
	
	.
	

	.
	
	.
	

	200
	
	300
	

In this case, no value of B in S will match to a value of B in R. So natural join will have 0 tuple.

So the maximum number of tuples will be 100 and min will be 0.

Note: If it is explicitly mentioned that S.B is foreign key to R.B, then Case 3 and Case 4 discussed above are not possible because value of S.B will be from the values of R.B. So, minimum and maximum number of tuples in natural join will be 100.

Article contributed by Sonal Tuteja. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS-ER model
DBMS-Relational Algebra

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

Functional Dependencies

						Functional Dependency and Attribute Closure

				
						

				
			

Functional Dependency

A functional dependency A->B in a relation holds if two tuples having same value of attribute A also have same value for attribute B. For Example, in relation STUDENT shown in table 1, Functional Dependencies

STUD_NO->STUD_NAME, STUD_NO->STUD_ADDR hold

but

STUD_NAME->STUD_ADDR do not hold

[image: image2]

How to find functional dependencies for a relation?

Functional Dependencies in a relation are dependent on the domain of the relation. Consider the STUDENT relation given in Table 1.

	We know that STUD_NO is unique for each student. So STUD_NO->STUD_NAME, STUD_NO->STUD_PHONE, STUD_NO->STUD_STATE, STUD_NO->STUD_COUNTRY and STUD_NO -> STUD_AGE all will be true.

	Similarly, STUD_STATE->STUD_COUNTRY will be true as if two records have same STUD_STATE, they will have same STUD_COUNTRY as well.

	For relation STUDENT_COURSE, COURSE_NO->COURSE_NAME will be true as two records with same COURSE_NO will have same COURSE_NAME.

Functional Dependency Set: Functional Dependency set or FD set of a relation is the set of all FDs present in the relation. For Example, FD set for relation STUDENT shown in table 1 is:

 { STUD_NO->STUD_NAME, STUD_NO->STUD_PHONE, STUD_NO->STUD_STATE, STUD_NO->STUD_COUNTRY,
 STUD_NO -> STUD_AGE, STUD_STATE->STUD_COUNTRY }

Attribute Closure: Attribute closure of an attribute set can be defined as set of attributes which can be functionally determined from it.

How to find attribute closure of an attribute set?

To find attribute closure of an attribute set:

	Add elements of attribute set to the result set.

	Recursively add elements to the result set which can be functionally determined from the elements of the result set.

Using FD set of table 1, attribute closure can be determined as:

(STUD_NO)+ = {STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE, STUD_COUNTRY, STUD_AGE}
(STUD_STATE)+ = {STUD_STATE, STUD_COUNTRY}

How to finding Candidate Keys and Super Keys using Attribute Closure?

	If attribute closure of an attribute set contains all attributes of relation, the attribute set will be super key of the relation.

	If no subset of this attribute set can functionally determine all attributes of the relation, the set will be candidate key as well. For Example, using FD set of table 1,

(STUD_NO, STUD_NAME)+ = {STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE, STUD_COUNTRY, STUD_AGE}

(STUD_NO)+ = {STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE, STUD_COUNTRY, STUD_AGE}

(STUD_NO, STUD_NAME) will be super key but not candidate key because its subset (STUD_NO)+ is equal to all attributes of the relation. So, STUD_NO will be a candidate key.

GATE Question: Consider the relation scheme R = {E, F, G, H, I, J, K, L, M, M} and the set of functional dependencies {{E, F} -> {G}, {F} -> {I, J}, {E, H} -> {K, L}, K -> {M}, L -> {N} on R. What is the key for R? (GATE-CS-2014)

A. {E, F}

B. {E, F, H}

C. {E, F, H, K, L}

D. {E}

Answer: Finding attribute closure of all given options, we get:

{E,F}+ = {EFGIJ}

{E,F,H}+ = {EFHGIJKLMN}

{E,F,H,K,L}+ = {{EFHGIJKLMN}

{E}+ = {E}

{EFH}+ and {EFHKL}+ results in set of all attributes, but EFH is minimal. So it will be candidate key. So correct option is (B).

 How to check whether an FD can be derived from a given FD set?

To check whether an FD A->B can be derived from an FD set F,

	Find (A)+ using FD set F.

	If B is subset of (A)+, then A->B is true else not true.

GATE Question: In a schema with attributes A, B, C, D and E following set of functional dependencies are given

 {A -> B, A -> C, CD -> E, B -> D, E -> A}

 Which of the following functional dependencies is NOT implied by the above set? (GATE IT 2005)

A. CD -> AC

B. BD -> CD

C. BC -> CD

D. AC -> BC

Answer: Using FD set given in question,

(CD)+ = {CDEAB} which means CD -> AC also holds true.

(BD)+ = {BD} which means BD -> CD can’t hold true. So this FD is no implied in FD set. So (B) is the required option.

Others can be checked in the same way.

Prime and non-prime attributes

Attributes which are parts of any candidate key of relation are called as prime attribute, others are non-prime attributes. For Example, STUD_NO in STUDENT relation is prime attribute, others are non-prime attribute.

GATE Question: Consider a relation scheme R = (A, B, C, D, E, H) on which the following functional dependencies hold: {A–>B, BC–> D, E–>C, D–>A}. What are the candidate keys of R? [GATE 2005]

(a) AE, BE

(b) AE, BE, DE

(c) AEH, BEH, BCH

(d) AEH, BEH, DEH

Answer: (AE)+ = {ABECD} which is not set of all attributes. So AE is not a candidate key. Hence option A and B are wrong.

(AEH)+ = {ABCDEH}

(BEH)+ = {BEHCDA}

(BCH)+ = {BCHDA} which is not set of all attributes. So BCH is not a candidate key. Hence option C is wrong.

So correct answer is D.

This article is contributed by Sonal Tuteja. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Articles
DBMS
 DBMS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Finding Attribute Closure and Candidate Keys using Functional Dependencies

				
						

				
			What is Functional Dependency?

A functional dependency X->Y in a relation holds if two tuples having same value for X also have same value for Y i.e X uniquely determines Y.

In EMPLOYEE relation given in Table 1,

	FD E-ID->E-NAME holds because for each E-ID, there is a unique value of E-NAME.

	FD E-ID->E-CITY and E-CITY->E-STATE also holds.

	FD E-NAME->E-ID does not hold because E-NAME ‘John’ is not uniquely determining E-ID. There are 2 E-IDs corresponding to John (E001 and E003).

EMPLOYEE

	E-ID
	E-NAME
	E-CITY
	E-STATE

	E001
	John
	Delhi
	Delhi

	E002
	Mary
	Delhi
	Delhi

	E003
	John
	Noida
	U.P.

Table 1

The FD set for EMPLOYEE relation given in Table 1 are:

{E-ID->E-NAME, E-ID->E-CITY, E-ID->E-STATE, E-CITY->E-STATE}

Trivial versus Non-Trivial Functional Dependency: A trivial functional dependency is the one which will always hold in a relation.

X->Y will always hold if X ⊇ Y

In the example given above, E-ID, E-NAME->E-ID is a trivial functional dependency and will always hold because {E-ID,E-NAME} ⊃ {E-ID}. You can also see from the table that for each value of {E-ID, E-NAME}, value of E-ID is unique, so {E-ID, E-NAME} functionally determines E-ID.

If a functional dependency is not trivial, it is called Non-Trivial Functional Dependency. Non-Trivial functional dependency may or may not hold in a relation. e.g; E-ID->E-NAME is a non-trivial functional dependency which holds in the above relation.

Properties of Functional Dependencies

Let X, Y, and Z are sets of attributes in a relation R. There are several properties of functional dependencies which always hold in R also known as Armstrong Axioms.

	Reflexivity: If Y is a subset of X, then X → Y. e.g.; Let X represents {E-ID, E-NAME} and Y represents {E-ID}. {E-ID, E-NAME}->E-ID is true for the relation.

	Augmentation: If X → Y, then XZ → YZ. e.g.; Let X represents {E-ID}, Y represents {E-NAME} and Z represents {E-CITY}. As {E-ID}->E-NAME is true for the relation, so { E-ID,E-CITY}->{E-NAME,E-CITY} will also be true.

	Transitivity: If X → Y and Y → Z, then X → Z. e.g.; Let X represents {E-ID}, Y represents {E-CITY} and Z represents {E-STATE}. As {E-ID} ->{E-CITY} and {E-CITY}->{E-STATE} is true for the relation, so { E-ID }->{E-STATE} will also be true.

	Attribute Closure: The set of attributes that are functionally dependent on the attribute A is called Attribute Closure of A and it can be represented as A+.

Steps to Find the Attribute Closure of A

Q. Given FD set of a Relation R, The attribute closure set S be the set of A

	Add A to S.

	Recursively add attributes which can be functionally determined from attributes of the set S until done.

From Table 1, FDs are

Given R(E-ID, E-NAME, E-CITY, E-STATE)

FDs = { E-ID->E-NAME, E-ID->E-CITY, E-ID->E-STATE, E-CITY->E-STATE }

The attribute closure of E-ID can be calculated as:

	Add E-ID to the set {E-ID}

	Add Attributes which can be derived from any attribute of set. In this case, E-NAME and E-CITY, E-STATE can be derived from E-ID. So these are also a part of closure.

	As there is one other attribute remaining in relation to be derived from E-ID. So result is:

(E-ID)+ = {E-ID, E-NAME, E-CITY, E-STATE }

Similarly,

(E-NAME)+ = {E-NAME}
(E-CITY)+ = {E-CITY, E_STATE}

Q. Find the attribute closures of given FDs R(ABCDE) = {AB->C, B->D, C->E, D->A} To find (B)+ ,we will add attribute in set using various FD which has been shown in table below.

	Attributes Added in Closure
	FD used

	{B}
	Triviality

	{B,D}
	B->D

	{B,D,A}
	D->A

	{B,D,A,C}
	AB->C

	{B,D,A,C,E}
	C->E

	We can find (C, D)+ by adding C and D into the set (triviality) and then E using(C->E) and then A using (D->A) and set becomes.
 (C,D)+ = {C,D,E,A}

	Similarly we can find (B,C)+ by adding B and C into the set (triviality) and then D using (B->D) and then E using (C->E) and then A using (D->A) and set becomes
 (B,C)+ ={B,C,D,E,A}

Candidate Key

Candidate Key is minimal set of attributes of a relation which can be used to identify a tuple uniquely. For Example, each tuple of EMPLOYEE relation given in Table 1 can be uniquely identified by E-ID and it is minimal as well. So it will be Candidate key of the relation.

A candidate key may or may not be a primary key.

Super Key

Super Key is set of attributes of a relation which can be used to identify a tuple uniquely.For Example, each tuple of EMPLOYEE relation given in Table 1 can be uniquely identified by E-ID or (E-ID, E-NAME) or (E-ID, E-CITY) or (E-ID, E-STATE) or (E_ID, E-NAME, E-STATE) etc. So all of these are super keys of EMPLOYEE relation.

Note: A candidate key is always a super key but vice versa is not true.

Q. Finding Candidate Keys and Super Keys of a Relation using FD set The set of attributes whose attribute closure is set of all attributes of relation is called super key of relation. For Example, the EMPLOYEE relation shown in Table 1 has following FD set. {E-ID->E-NAME, E-ID->E-CITY, E-ID->E-STATE, E-CITY->E-STATE} Let us calculate attribute closure of different set of attributes:

(E-ID)+ = {E-ID, E-NAME,E-CITY,E-STATE}
(E-ID,E-NAME)+ = {E-ID, E-NAME,E-CITY,E-STATE}
(E-ID,E-CITY)+ = {E-ID, E-NAME,E-CITY,E-STATE}
(E-ID,E-STATE)+ = {E-ID, E-NAME,E-CITY,E-STATE}
(E-ID,E-CITY,E-STATE)+ = {E-ID, E-NAME,E-CITY,E-STATE}
(E-NAME)+ = {E-NAME}
(E-CITY)+ = {E-CITY,E-STATE}

As (E-ID)+, (E-ID, E-NAME)+, (E-ID, E-CITY)+, (E-ID, E-STATE)+, (E-ID, E-CITY, E-STATE)+ give set of all attributes of relation EMPLOYEE. So all of these are super keys of relation.

The minimal set of attributes whose attribute closure is set of all attributes of relation is called candidate key of relation. As shown above, (E-ID)+ is set of all attributes of relation and it is minimal. So E-ID will be candidate key. On the other hand (E-ID, E-NAME)+ also is set of all attributes but it is not minimal because its subset (E-ID)+ is equal to set of all attributes. So (E-ID, E-NAME) is not a candidate key.

Article contributed by Sonal Tuteja. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Armstrong’s Axioms in Functional Dependency

				
						

				
			Prerequisite – Functional Dependencies

The term Armstrong axioms refers to the sound and complete set of inference rules or axioms, introduced by William W. Armstrong, that is used to test logical implication of functional dependencies. If F is a set of functional dependencies then the closure of F, denoted as [image: F^+], is the set of all functional dependencies logically implied by F. Armstrong’s Axioms are a set of rules, that when applied repeatedly, generates a closure of functional dependencies.

Axioms –

	Axiom of reflexivity – If [image: {\displaystyle A}] is a set of attributes and [image: {\displaystyle B}] is subset of [image: {\displaystyle C}], then [image: {\displaystyle C}] holds [image: {\displaystyle B}]. If [image: {\displaystyle B\subseteq A}] then [image: {\displaystyle A\to B}] This property is trivial property.

	Axiom of augmentation – If [image: {\displaystyle A\to B}] holds and [image: {\displaystyle Y}] is attribute set, then [image: {\displaystyle AY\to BY}] also holds. That is adding attributes in dependencies, does not change the basic dependencies. If [image: {\displaystyle A\to B}], then [image: {\displaystyle AC\to BC}] for any [image: {\displaystyle C}].

	Axiom of transitivity – Same as the transitive rule in algebra, if [image: {\displaystyle A\to B}] holds and [image: {\displaystyle B\to C}] holds, then [image: {\displaystyle A\to C}] also holds. [image: {\displaystyle A\to B}] is called as [image: {\displaystyle A}] functionally that determines [image: {\displaystyle B}]. If [image: {\displaystyle X\to Y}] and [image: {\displaystyle Y\to Z}], then [image: {\displaystyle X\to Z}]

Secondary Rules –

 These rules can be derived from the above axioms.

	Union – If [image: {\displaystyle A\to B}] holds and [image: {\displaystyle A\to C}] holds, then [image: {\displaystyle A\to BC}] holds. If [image: {\displaystyle X\to Y}] and [image: {\displaystyle X\to Z}] then [image: {\displaystyle X\to YZ}]

	Composition – If [image: {\displaystyle A\to B}] and [image: {\displaystyle X\to Y}] holds, then [image: {\displaystyle AX\to BY}] holds.

	Decomposition – If [image: {\displaystyle A\to BC}] holds then [image: {\displaystyle A\to B}] and [image: {\displaystyle A\to C}] hold. If [image: {\displaystyle X\to YZ}] then [image: {\displaystyle X\to Y}] and [image: {\displaystyle X\to Z}]

	Pseudo Transitivity – If [image: {\displaystyle A\to B}] holds and [image: {\displaystyle BC\to D}] holds, then [image: {\displaystyle AC\to D}] holds. If [image: {\displaystyle X\to Y}] and [image: {\displaystyle YZ\to W}] then [image: {\displaystyle XZ\to W}].

Why armstrong axioms refers to the Sound and Complete?

By sound, we mean that given a set of functional dependencies F specified on a relation schema R, any dependency that we can infer from F by using the primry rules of amrmstrong axioms holds in every relation state r of R that satisfies the dependencies in F.

By complete, we mean that using primary rules of amrstrong axioms repeatedly to infer dependencies until no more dependencies can be inferred results in the complete set of all possible dependencies that can be inferred from F.

References –

Armstrong’s axioms – Wikipedia

http://tinman.cs.gsu.edu

This article is contributed by Samit Mandal. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Equivalence of Functional Dependencies

				
						

				
			For understanding equivalence of Functional Dependencies Sets (FD sets), basic idea about Attribute Closuresis given in this article

Given a Relation with different FD sets for that relation, we have to find out whether one FD set is subset of other or both are equal.

How to find relationship between two FD sets?

Let FD1 and FD2 are two FD sets for a relation R.

	If all FDs of FD1 can be derived from FDs present in FD2, we can say that FD2 ⊃ FD1.

	If all FDs of FD2 can be derived from FDs present in FD1, we can say that FD1 ⊃ FD2.

	If 1 and 2 both are true, FD1=FD2.

All these three cases can be shown using Venn diagram as:[image: fd1]

Q. Let us take an example to show the relationship between two FD sets. A relation R(A,B,C,D) having two FD sets FD1 = {A->B, B->C, AB->D} and FD2 = {A->B, B->C, A->C, A->D}

Step 1. Checking whether all FDs of FD1 are present in FD2

	A->B in set FD1 is present in set FD2.

	B->C in set FD1 is also present in set FD2.

	AB->D in present in set FD1 but not directly in FD2 but we will check whether we can derive it or not. For set FD2, (AB)+ = {A,B,C,D}. It means that AB can functionally determine A, B, C and D. So AB->D will also hold in set FD2.

As all FDs in set FD1 also hold in set FD2, FD2 ⊃ FD1 is true.

Step 2. Checking whether all FDs of FD2 are present in FD1

	A->B in set FD2 is present in set FD1.

	B->C in set FD2 is also present in set FD1.

	A->C is present in FD2 but not directly in FD1 but we will check whether we can derive it or not. For set FD1, (A)+ = {A,B,C,D}. It means that A can functionally determine A, B, C and D. SO A->C will also hold in set FD1.

	A->D is present in FD2 but not directly in FD1 but we will check whether we can derive it or not. For set FD1, (A)+ = {A,B,C,D}. It means that A can functionally determine A, B, C and D. SO A->D will also hold in set FD1.

As all FDs in set FD2 also hold in set FD1, FD1 ⊃ FD2 is true.

Step 3. As FD2 ⊃ FD1 and FD1 ⊃ FD2 both are true FD2 =FD1 is true. These two FD sets are semantically equivalent.

Q. Let us take another example to show the relationship between two FD sets. A relation R2(A,B,C,D) having two FD sets FD1 = {A->B, B->C,A->C} and FD2 = {A->B, B->C, A->D}

Step 1. Checking whether all FDs of FD1 are present in FD2

	A->B in set FD1 is present in set FD2.

	B->C in set FD1 is also present in set FD2.

	A->C is present in FD1 but not directly in FD2 but we will check whether we can derive it or not. For set FD2, (A)+ = {A,B,C,D}. It means that A can functionally determine A, B, C and D. SO A->C will also hold in set FD2.

As all FDs in set FD1 also hold in set FD2, FD2 ⊃ FD1 is true.

Step 2. Checking whether all FDs of FD2 are present in FD1

	A->B in set FD2 is present in set FD1.

	B->C in set FD2 is also present in set FD1.

	A->D is present in FD2 but not directly in FD1 but we will check whether we can derive it or not. For set FD1, (A)+ = {A,B,C}. It means that A can’t functionally determine D. SO A->D will not hold in FD1.

As all FDs in set FD2 do not hold in set FD1, FD2 ⊄ FD1.

Step 3. In this case, FD2 ⊃ FD1 and FD2 ⊄ FD1, these two FD sets are not semantically equivalent.

This article is contributed by Sonal Tuteja. Please write comments if you find anything incorrect or you want to share more information about the topic discussed above.

					
		
		DBMS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Canonical Cover

				
						

				
			

Whenever a user updates the database, the system must check whether any of the functional dependencies are getting violated in this process. If there is a violation of dependencies in the new database state, the system must roll back. Working with a huge set of functional dependencies can cause unnecessary added computational time. This is where the canonical cover comes into play.

A canonical cover of a set of functional dependencies F is a simplified set of functional dependencies that has the same closure as the original set F.

Important definitions:

Extraneous attributes: An attribute of a functional dependency is said to be extraneous if we can remove it without changing the closure of the set of functional dependencies.

Canonical cover: A canonical cover [image: F_{c}] of a set of functional dependencies F such that ALL the following properties are satisfied:

	F logically implies all dependencies in [image: F_{c}].

	[image: F_{c}] logically implies all dependencies in F.

	No functional dependency in [image: F_{c}] contains an extraneous attribute.

	Each left side of a functional dependency in [image: F_{c}] is unique. That is, there are no two dependencies [image: \alpha_{1} \rightarrow \beta_{1}] and [image: \alpha_{2} \rightarrow \beta_{2}] in such that [image: \alpha_{1} \rightarrow \alpha_{2}].

Finding Canonical Cover

Algorithm to compute canonical cover of set F:

repeat
 1. Use the union rule to replace any dependencies in
 [image: \alpha_{1} \rightarrow \beta_{1}] and [image: \alpha_{1} \rightarrow \beta_{2}] with [image: \alpha_{1} \rightarrow \beta_{1}\beta_{2}].
 2. Find a functional dependency [image: \alpha \rightarrow \beta] with an
 extraneous attribute either in [image: \alpha] or in [image: \beta].
 3. If an extraneous attribute is found, delete it from [image: \alpha \rightarrow \beta].
 until F does not change

Example1:

Consider the following set F of functional dependencies:

F= {

A [image: \rightarrow] BC

B [image: \rightarrow] C

A [image: \rightarrow] B

AB [image: \rightarrow] C

}

Steps to find canonical cover:

	There are two functional dependencies with the same set of attributes on the left:

A [image: \rightarrow] BC

A [image: \rightarrow] B

These two can be combined to get

A [image: \rightarrow] BC.

Now, the revised set F becomes:

F= {

A [image: \rightarrow] BC

B [image: \rightarrow] C

AB [image: \rightarrow] C

}

	There is an extraneous attribute in AB [image: \rightarrow] C because even after removing AB [image: \rightarrow] C from the set F, we get the same closures. This is because B [image: \rightarrow] C is already a part of F.
Now, the revised set F becomes:

F= {

A [image: \rightarrow] BC

B [image: \rightarrow] C

}

	C is an extraneous attribute in A [image: \rightarrow] BC, also A [image: \rightarrow] B is logically implied by A [image: \rightarrow] B and B [image: \rightarrow] C (by transitivity).
F= {

A [image: \rightarrow] B

B [image: \rightarrow] C

}

	After this step, F does not change anymore. So,

Hence the required canonical cover is,

[image: F_{c}]= {

A [image: \rightarrow] B

B [image: \rightarrow] C

}

Example2:

Consider another set F of functional dependencies:

F={

A [image: \rightarrow] BC

CD [image: \rightarrow] E

B [image: \rightarrow] D

E [image: \rightarrow] A

}

	The left side of each functional dependency in F is unique.

	None of the attributes in the left or right side of any functional dependency is extraneous (Checked by applying definition of extraneous attributes on every functional dependency).

	Hence, the canonical cover [image: F_{c}] is equal to F.

Note: There can be more than one canonical cover [image: F_{c}] of a set F of functional dependencies.

How to check whether a set of f.d.’s F canonically cover another set of f.d.’s G?

Consider the following two sets of functional dependencies:

F = {

 A [image: \rightarrow] B

 AB [image: \rightarrow] C

 D [image: \rightarrow] AC

 D [image: \rightarrow] E

 }

G = {

 D [image: \rightarrow] BC

 D [image: \rightarrow] AB

 }

Now, we are required to find out whether one of these f.d.’s canonically covers the other set of f.d.’s. This means, we need to find out whether F canonically covers G, G canonically covers F, or none of the two canonically cover the other.

To find out, we follow the following steps:

	Create a singleton right hand side. This means, the attributes to the right side of the f.d. arrow should all be singleton.

The functional dependency D [image: \rightarrow] AC gets broken down into two functional dependencies, D [image: \rightarrow] A and D [image: \rightarrow] C.

F = {

 A [image: \rightarrow] B

 AB [image: \rightarrow] C

 D [image: \rightarrow] A

 D [image: \rightarrow] C

 D [image: \rightarrow] E

 }

	Remove all extraneous attributes.
Consider any functional dependency XY [image: \rightarrow] Z. If X in itself can determine Z, then the attribute Y is extraneous and can be removed. As we can see, the occurrence of extraneous attributes is possible only in those functional dependencies where there are more than one attributes in the LHS.

So, consider the functional dependency AB [image: \rightarrow] C.

Now, we must find the closures of A and B to find whether any of these is extraneous.

[image: [A]^{+}]=AB

[image: [B]^{+}]=B

As we can see, B can be determined from A. This means we can remove B from the functional dependency AB [image: \rightarrow] C.

F = {

 A [image: \rightarrow] B

 A [image: \rightarrow] C

 D [image: \rightarrow] A

 D [image: \rightarrow] C

 D [image: \rightarrow] E

 }

	Remove all redundant functional dependencies.
Check all f.d.’s one by one, and see if by removing a f.d. X [image: \rightarrow] Y, we can still find out Y from X by some other f.d. A more formal way to state this is find [image: [X]^{+}] without making use of the f.d. we are testing and check whether Y is a part of the closure. If yes, then the f.d. is redundant.

Here, when checking for the f.d. D [image: \rightarrow] C, we observe that even after hiding it, the closure of D contains C. This is because we can obtain C from D by the combination of two other f.d.’s D [image: \rightarrow] A and A [image: \rightarrow] C. So, [image: \rightarrow] C is redundant.

F = {

 A [image: \rightarrow] B

 A [image: \rightarrow] C

 D [image: \rightarrow] A

 D [image: \rightarrow] E

 }

Now, do the same for G.

	Create a singleton right hand side. This means, the attributes to the right side of the f.d. arrow should all be singleton.
G = {

 A [image: \rightarrow] B

 A [image: \rightarrow] C

 D [image: \rightarrow] A

 D [image: \rightarrow] B

 }

	Remove all extraneous attributes.

Since the RHS of all f.d.’s contains only 1 attribute, there is no extraneous attribute possible.

	Remove all redundant functional dependencies.
By looping over all f.d.’s and checking the closure of the LHS in all cases, we observe that the f.d. D [image: \rightarrow] B is redundant as it can be obtained through a combination of 2 other f.d.’s, D [image: \rightarrow] A and A [image: \rightarrow] B.

G = {

 A [image: \rightarrow] B

 A [image: \rightarrow] C

 D [image: \rightarrow] A

 }

Now, since all f.d.’s of G are already covered in F, we conclude that F covers G.

This article is contributed by Anannya Uberoi. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

Normalization

						Database Normalization | Introduction

				
						

				
			Database normalization is the process of organizing the attributes of database to reduce or eliminate data redundancy (having same data but at different places) .

Problems because of data redundancy

Data redundancy unnecessarily increases size of database as same data is repeated on many places. Inconsistency problems also arise during insert, delete and update operations.

Functional Dependency

Functional Dependency is a constraint between two sets of attributes in a relation from a database. Functional dependency is denoted by arrow (→). If an attributed A functionally determines B, then it is written as A → B.

For example employee_id → name means employee_id functionally determines name of employee. As another example in a time table database, {student_id, time} → {lecture_room}, student ID and time determine the lecture room where student should be.

What does functionally dependent mean?

A function dependency A → B mean for all instances of a particular value of A, there is same value of B.

For example in the below table A → B is true, but B → A is not true as there are different values of A for B = 3.

A B

1 3
2 3
4 0
1 3
4 0

Trivial Functional Dependency

X –> Y is trivial only when Y is subset of X.

Examples

ABC --> AB
ABC --> A
ABC --> ABC

Non Trivial Functional Dependencies

X –> Y is a non trivial functional dependencies when Y is not a subset of X.

X –> Y is called completely non-trivial when X intersect Y is NULL.

Examples:

Id --> Name,
Name --> DOB

	Normal Forms

	Quiz on Normalization

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS-Normalization

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Database Normalization | Normal Forms

				
						

				
			Prerequisite – Database normalization and functional dependency concept.

Normalization is the process of minimizing redundancy from a relation or set of relations. Redundancy in relation may cause insertion, deletion and updation anomalies. So, it helps to minimize the redundancy in relations. Normal forms are used to eliminate or reduce redundancy in database tables.

1. First Normal Form –

If a relation contain composite or multi-valued attribute, it violates first normal form or a relation is in first normal form if it does not contain any composite or multi-valued attribute. A relation is in first normal form if every attribute in that relation is singled valued attribute.

	Example 1 – Relation STUDENT in table 1 is not in 1NF because of multi-valued attribute STUD_PHONE. Its decomposition into 1NF has been shown in table 2.

[image: image3]

	Example 2 –

ID Name Courses

1 A c1, c2
2 E c3
3 M C2, c3

In the above table Course is a multi valued attribute so it is not in 1NF.

Below Table is in 1NF as there is no multi valued attribute

ID Name Course

1 A c1
1 A c2
2 E c3
3 M c1
3 M c2

2. Second Normal Form –

To be in second normal form, a relation must be in first normal form and relation must not contain any partial dependency. A relation is in 2NF iff it has No Partial Dependency, i.e., no non-prime attribute (attributes which are not part of any candidate key) is dependent on any proper subset of any candidate key of the table.

[image: image4]

Partial Dependency – If proper subset of candidate key determines non-prime attribute, it is called partial dependency.

	Example 1 – In relation STUDENT_COURSE given in Table 3,
FD set: {COURSE_NO->COURSE_NAME}
Candidate Key: {STUD_NO, COURSE_NO}

In FD COURSE_NO->COURSE_NAME, COURSE_NO (proper subset of candidate key) is determining COURSE_NAME (non-prime attribute). Hence, it is partial dependency and relation is not in second normal form.

To convert it to second normal form, we will decompose the relation STUDENT_COURSE (STUD_NO, COURSE_NO, COURSE_NAME) as :

STUDENT_COURSE (STUD_NO, COURSE_NO)
COURSE (COURSE_NO, COURSE_NAME)

Note – This decomposition will be lossless join decomposition as well as dependency preserving.

	Example 2 – Consider following functional dependencies in relation R (A, B , C, D)
AB -> C [A and B together determine C]
BC -> D [B and C together determine D]

In the above relation, AB is the only candidate key and there is no partial dependency, i.e., any proper subset of AB doesn’t determine any non-prime attribute.

3. Third Normal Form –

A relation is in third normal form, if there is no transitive dependency for non-prime attributes is it is in second normal form.

A relation is in 3NF iff at least one of the following condition holds in every non-trivial function dependency X –> Y

	X is a super key.

	Y is a prime attribute (each element of Y is part of some candidate key).

[image: image5]

 Transitive dependency – If A->B and B->C are two FDs then A->C is called transitive dependency.

	Example 1 – In relation STUDENT given in Table 4,
FD set: {STUD_NO -> STUD_NAME, STUD_NO -> STUD_STATE, STUD_NO -> STUD_COUNTRY, STUD_NO -> STUD_AGE, STUD_STATE -> STUD_COUNTRY}

Candidate Key: {STUD_NO}

For this relation in table 4, STUD_NO -> STUD_STATE and STUD_STATE -> STUD_COUNTRY are true. So STUD_COUNTRY is transitively dependent on STUD_NO. It violates third normal form. To convert it in third normal form, we will decompose the relation STUDENT (STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE, STUD_COUNTRY_STUD_AGE) as:

STUDENT (STUD_NO, STUD_NAME, STUD_PHONE, STUD_STATE, STUD_AGE)

STATE_COUNTRY (STATE, COUNTRY)

	Example 2 – Consider relation R(A, B, C, D, E)

 A -> BC,

 CD -> E,

 B -> D,

 E -> A

All possible candidate keys in above relation are {A, E, CD, BC} All attribute are on right sides of all functional dependencies are prime.

4. Boyce-Codd Normal Form (BCNF) –

A relation R is in BCNF if R is in Third Normal Form and for every FD, LHS is super key. A relation is in BCNF iff in every non-trivial functional dependency X –> Y, X is a super key.

	Example 1 – Find the highest normal form of a relation R(A,B,C,D,E) with FD set as {BC->D, AC->BE, B->E}

Step 1. As we can see, (AC)+ ={A,C,B,E,D} but none of its subset can determine all attribute of relation, So AC will be candidate key. A or C can’t be derived from any other attribute of the relation, so there will be only 1 candidate key {AC}.

Step 2. Prime attribute are those attribute which are part of candidate key {A,C} in this example and others will be non-prime {B,D,E} in this example.

Step 3. The relation R is in 1st normal form as a relational DBMS does not allow multi-valued or composite attribute.

The relation is in 2nd normal form because BC->D is in 2nd normal form (BC is not proper subset of candidate key AC) and AC->BE is in 2nd normal form (AC is candidate key) and B->E is in 2nd normal form (B is not a proper subset of candidate key AC).

The relation is not in 3rd normal form because in BC->D (neither BC is a super key nor D is a prime attribute) and in B->E (neither B is a super key nor E is a prime attribute) but to satisfy 3rd normal for, either LHS of an FD should be super key or RHS should be prime attribute.

So the highest normal form of relation will be 2nd Normal form.

	Example 2 –For example consider relation R(A, B, C)

 A -> BC,

 B ->

A and B both are super keys so above relation is in BCNF.

Key Points –

	 BCNF is free from redundancy.

	 If a relation is in BCNF, then 3NF is also also satisfied.

	 If all attributes of relation are prime attribute, then the relation is always in 3NF.

	 A relation in a Relational Database is always and at least in 1NF form.

	Every Binary Relation (a Relation with only 2 attributes) is always in BCNF.

	If a Relation has only singleton candidate keys(i.e. every candidate key consists of only 1 attribute), then the Relation is always in 2NF(because no Partial functional dependency possible).

	 Sometimes going for BCNF form may not preserve functional dependency. In that case go for BCNF only if the lost FD(s) is not required, else normalize till 3NF only.

	There are many more Normal forms that exist after BCNF, like 4NF and more. But in real world database systems it’s generally not required to go beyond BCNF.

Exercise 1: Find the highest normal form in R (A, B, C, D, E) under following functional dependencies.

 ABC --> D
 CD --> AE

Important Points for solving above type of question.

1) It is always a good idea to start checking from BCNF, then 3 NF and so on.

2) If any functional dependency satisfied a normal form then there is no need to check for lower normal form. For example, ABC –> D is in BCNF (Note that ABC is a super key), so no need to check this dependency for lower normal forms.

Candidate keys in given relation are {ABC, BCD}

BCNF: ABC -> D is in BCNF. Let us check CD -> AE, CD is not a super key so this dependency is not in BCNF. So, R is not in BCNF.

3NF: ABC -> D we don’t need to check for this dependency as it already satisfied BCNF. Let us consider CD -> AE. Since E is not a prime attribute, so relation is not in 3NF.

2NF: In 2NF, we need to check for partial dependency. CD which is a proper subset of a candidate key and it determine E, which is non prime attribute. So, given relation is also not in 2 NF. So, the highest normal form is 1 NF.

GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.

	GATE CS 2012, Question 2

	GATE CS 2013, Question 54

	GATE CS 2013, Question 55

	GATE CS 2005, Question 29

	GATE CS 2002, Question 23

	GATE CS 2002, Question 50

	GATE CS 2001, Question 48

	GATE CS 1999, Question 32

	GATE IT 2005, Question 22

	GATE IT 2008, Question 60

	GATE CS 2016 (Set 1), Question 31

See Quiz on Database Normal Forms for all previous year questions.

This article is contributed by Sonal Tuteja. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS
 DBMS-Normalization

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Dependency Preserving Decomposition

				
						

				
			Dependency Preservation

A Decomposition D = { R1, R2, R3….Rn } of R is dependency preserving wrt a set F of Functional dependency if

(F1 ∪ F2 ∪ … ∪ Fm)+ = F+.
Consider a relation R
R ---> F{...with some functional dependency(FD)....}

R is decomposed or divided into R1 with FD { f1 } and R2 with { f2 }, then
there can be three cases:

f1 U f2 = F -----> Decomposition is dependency preserving.
f1 U f2 is a subset of F -----> Not Dependency preserving.
f1 U f2 is a super set of F -----> This case is not possible.

Problem: Let a relation R (A, B, C, D) and functional dependency {AB –> C, C –> D, D –> A}. Relation R is decomposed into R1(A, B, C) and R2(C, D). Check whether decomposition is dependency preserving or not.

Solution:

R1(A, B, C) and R2(C, D)

Let us find closure of F1 and F2
To find closure of F1, consider all combination of
ABC. i.e., find closure of A, B, C, AB, BC and AC
Note ABC is not considered as it is always ABC

closure(A) = { A } // Trivial
closure(B) = { B } // Trivial
closure(C) = {C, A, D} but D can't be in closure as D is not present R1.
 = {C, A}
C--> A // Removing C from right side as it is trivial attribute

closure(AB) = {A, B, C, D}
 = {A, B, C}
AB --> C // Removing AB from right side as these are trivial attributes

closure(BC) = {B, C, D, A}
 = {A, B, C}
BC --> A // Removing BC from right side as these are trivial attributes

closure(AC) = {A, C, D}
AC --> D // Removing AC from right side as these are trivial attributes

F1 {C--> A, AB --> C, BC --> A}.
Similarly F2 { C--> D }

In the original Relation Dependency { AB --> C , C --> D , D --> A}.
AB --> C is present in F1.
C --> D is present in F2.
D --> A is not preserved.

F1 U F2 is a subset of F. So given decomposition is not dependency preservingg.

Question 1:

Let R (A, B, C, D) be a relational schema with the following functional dependencies:

A → B, B → C,
C → D and D → B.

The decomposition of R into
(A, B), (B, C), (B, D)

(A) gives a lossless join, and is dependency preserving

(B) gives a lossless join, but is not dependency preserving

(C) does not give a lossless join, but is dependency preserving

(D) does not give a lossless join and is not dependency preserving

Refer this for solution.

Question 2

R(A,B,C,D) is a relation. Which of the following does not have a lossless join, dependency preserving BCNF decomposition?

(A) A->B, B->CD

(B) A->B, B->C, C->D

(C) AB->C, C->AD

(D) A ->BCD

Refer this for solution.

Below is the Quiz of previous year GATE Questions.

http://quiz.geeksforgeeks.org/dbms/database-design-normal-forms/

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS-Normalization

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Lossless Decomposition

				
						

				
			Decomposition of a relation R into R1 and R2 is a lossless-join decomposition if at least one of the following functional dependencies are in F+ (Closure of functional dependencies)

R1 ∩ R2 → R1
 OR
R1 ∩ R2 → R2

Question 1:

Let R (A, B, C, D) be a relational schema with the following functional dependencies:

A → B, B → C,
C → D and D → B.

The decomposition of R into
(A, B), (B, C), (B, D)

(A) gives a lossless join, and is dependency preserving

(B) gives a lossless join, but is not dependency preserving

(C) does not give a lossless join, but is dependency preserving

(D) does not give a lossless join and is not dependency preserving

Refer this for solution.

Question 2

R(A,B,C,D) is a relation. Which of the following does not have a lossless join, dependency preserving BCNF decomposition?

(A) A->B, B->CD

(B) A->B, B->C, C->D

(C) AB->C, C->AD

(D) A ->BCD

Refer this for solution.

Below is the Quiz of previous year GATE Questions

http://quiz.geeksforgeeks.org/dbms/database-design-normal-forms/

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS-Normalization

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Lossless Join and Dependency Preserving Decomposition

				
						

				
			Decomposition of a relation is done when a relation in relational model is not in appropriate normal form. Relation R is decomposed into two or more relations if decomposition is lossless join as well as dependency preserving.

Lossless Join Decomposition

If we decompose a relation R into relations R1 and R2,

	Decomposition is lossy if R1 ⋈ R2 ⊃ R

	Decomposition is lossless if R1 ⋈ R2 = R

 To check for lossless join decomposition using FD set, following conditions must hold:

	Union of Attributes of R1 and R2 must be equal to attribute of R. Each attribute of R must be either in R1 or in R2.
 Att(R1) U Att(R2) = Att(R)

	Intersection of Attributes of R1 and R2 must not be NULL.
 Att(R1) ∩ Att(R2) ≠ Φ

	Common attribute must be a key for at least one relation (R1 or R2)
 Att(R1) ∩ Att(R2) -> Att(R1) or Att(R1) ∩ Att(R2) -> Att(R2)

For Example, A relation R (A, B, C, D) with FD set{A->BC} is decomposed into R1(ABC) and R2(AD) which is a lossless join decomposition as:

	First condition holds true as Att(R1) U Att(R2) = (ABC) U (AD) = (ABCD) = Att(R).

	Second condition holds true as Att(R1) ∩ Att(R2) = (ABC) ∩ (AD) ≠ Φ

	Third condition holds true as Att(R1) ∩ Att(R2) = A is a key of R1(ABC) because A->BC is given.

Dependency Preserving Decomposition

If we decompose a relation R into relations R1 and R2, All dependencies of R either must be a part of R1 or R2 or must be derivable from combination of FD’s of R1 and R2.

For Example, A relation R (A, B, C, D) with FD set{A->BC} is decomposed into R1(ABC) and R2(AD) which is dependency preserving because FD A->BC is a part of R1(ABC).

GATE Question: Consider a schema R(A,B,C,D) and functional dependencies A->B and C->D. Then the decomposition of R into R1(AB) and R2(CD) is [GATE-CS-2001]

A. dependency preserving and lossless join

B. lossless join but not dependency preserving

C. dependency preserving but not lossless join

D. not dependency preserving and not lossless join

Answer: For lossless join decomposition, these three conditions must hold true:

	Att(R1) U Att(R2) = ABCD = Att(R)

	Att(R1) ∩ Att(R2) = Φ, which violates the condition of lossless join decomposition. Hence the decomposition is not lossless.

For dependency preserving decomposition,

A->B can be ensured in R1(AB) and C->D can be ensured in R2(CD). Hence it is dependency preserving decomposition.

So, the correct option is C.

This article is contributed by Sonal Tuteja. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
 DBMS-Normalization

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						How to find the highest normal form of a relation

				
						

				
			To understand this topic, you should have basic idea about

Functional Dependency & Candidate keys

Normal forms

Steps to find the highest normal form of a relation:

	Find all possible candidate keys of the relation.

	Divide all attributes into two categories: prime attributes and non-prime attributes.

	Check for 1st normal form then 2nd and so on. If it fails to satisfy nth normal form condition, highest normal form will be n-1.

Example 1. Find the highest normal form of a relation R(A,B,C,D,E) with FD set {A->D, B->A, BC->D, AC->BE}

Step 1. As we can see, (AC)+ ={A,C,B,E,D} but none of its subset can determine all attribute of relation, So AC will be candidate key. A can be derived from B, so we can replace A in AC by B. So BC will also be a candidate key. So there will be two candidate keys {AC, BC}.

Step 2. Prime attribute are those attribute which are part of candidate key {A,B,C} in this example and others will be non-prime {D,E} in this example.

Step 3. The relation R is in 1st normal form as a relational DBMS does not allow multi-valued or composite attribute.

The relation is not in 2nd Normal form because A->D is partial dependency (A which is subset of candidate key AC is determining non-prime attribute D) and 2nd normal form does not allow partial dependency.

So the highest normal form will be 1st Normal Form.

Example 2. Find the highest normal form of a relation R(A,B,C,D,E) with FD set as {BC->D, AC->BE, B->E}

Step 1. As we can see, (AC)+ ={A,C,B,E,D} but none of its subset can determine all attribute of relation, So AC will be candidate key. A or C can’t be derived from any other attribute of the relation, so there will be only 1 candidate key {AC}.

Step 2. Prime attribute are those attribute which are part of candidate key {A,C} in this example and others will be non-prime {B,D,E} in this example.

Step 3. The relation R is in 1st normal form as a relational DBMS does not allow multi-valued or composite attribute.

The relation is in 2nd normal form because BC->D is in 2nd normal form (BC is not proper subset of candidate key AC) and AC->BE is in 2nd normal form (AC is candidate key) and B->E is in 2nd normal form (B is not a proper subset of candidate key AC).

The relation is not in 3rd normal form because in BC->D (neither BC is a super key nor D is a prime attribute) and in B->E (neither B is a super key nor E is a prime attribute) but to satisfy 3rd normal for, either LHS of an FD should be super key or RHS should be prime attribute.

So the highest normal form of relation will be 2nd Normal form.

Example 3. Find the highest normal form of a relation R(A,B,C,D,E) with FD set {B->A, A->C, BC->D, AC->BE}

Step 1. As we can see, (B)+ ={B,A,C,D,E}, so B will be candidate key. B can be derived from AC using AC->B (Decomposing AC->BE to AC->B and AC->E). So AC will be super key but (C)+ ={C} and (A)+ ={A,C,B,E,D}. So A (subset of AC) will be candidate key. So there will be two candidate keys {A,B}.

Step 2. Prime attribute are those attribute which are part of candidate key {A,B} in this example and others will be non-prime {C,D,E} in this example.

Step 3. The relation R is in 1st normal form as a relational DBMS does not allow multi-valued or composite attribute.

The relation is in 2nd normal form because B->A is in 2nd normal form (B is a super key) and A->C is in 2nd normal form (A is super key) and BC->D is in 2nd normal form (BC is a super key) and AC->BE is in 2nd normal form (AC is a super key).

The relation is in 3rd normal form because LHS of all FD’s are super keys. The relation is in BCNF as all LHS of all FD’s are super keys. So the highest normal form is BCNF.

Article contributed by Sonal Tuteja. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
 DBMS-Normalization

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Denormalization in Databases

				
						

				
			Denormalization is a database optimization technique in which we add redundant data to one or more tables. This can help us avoid costly joins in a relational database. Note that denormalization does not mean not doing normalization. It is an optimization technique that is applied after doing normalization.

In a traditional normalized database, we store data in separate logical tables ad attempt to minimize redundant data. We may strive to have only one copy of each piece of data in database.

For example, in a normalized database, we might have a Courses table and a Teachers table.Each entry in Courses would store the teacherID for a Course but not the teacherName. When we need to retrieve a list of all Courses with the Teacher name, we would do a join between these two tables.

In some ways, this is great; if a teacher changes is or her name, we only have to update the name in one place.

The drawback is that if tables are large, we may spend an unnecessarily long time doing joins on tables.

Denormalization, then, strikes a different compromise. Under denormalization, we decide that we’re okay with some redundancy and some extra effort to update the database in order to get the efficiency advantages of fewer joins.

Pros of Denormalization:-

	Retrieving data is faster since we do fewer joins

	Queries to retrieve can be simpler(and therefore less likely to have bugs),

since we need to look at fewer tables.

Cons of Denormalization:-

	Updates and inserts are more expensive.

	Denormalization can make update and insert code harder to write.

	Data may be inconsistent . Which is the “correct” value for a piece of data?

	Data redundancy necessities more storage.

In a system that demands scalability, like that of any major tech companies, we almost always use elements of both normalized and denormalized databases.

Swarnakamal Dhyawala

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
 DBMS-Normalization

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Data Replication

				
						

				
			Data Replication is the process of storing data in more than one site or node. It is useful in improving the availability of data. It is simply copying data from a database from one server to another server so that all the users can share the same data without any inconsistency. The result is a distributed database in which users can access data relevant to their tasks without interfering with the work of others.

Data replication encompasses duplication of transactions on an ongoing basis, so that the replicate is in a consistently updated state and synchronized with the source.However in data replication data is available at different locations, but a particular relation has to reside at only one location.

There can be full replication, in which the whole database is stored at every site. There can also be partial replication, in which some frequently used fragment of the database are replicated and others are not replicated.

Types of Data Replication –

	Transactional Replication – In Transactional replication users receive full initial copies of the database and then receive updates as data changes. Data is copied in real time from the publisher to the receiving database(subscriber) in the same order as they occur with the publisher therefore in this type of replication, transactional consistency is guaranteed. Transactional replication is typically used in server-to-server environments. It does not simply copy the data changes, but rather consistently and accurately replicates each change.

	Snapshot Replication – Snapshot replication distributes data exactly as it appears at a specific moment in time does not monitor for updates to the data. The entire snapshot is generated and sent to Users. Snapshot replication is generally used when data changes are infrequent. It is bit slower than transactional because on each attempt it moves multiple records from one end to the other end. Snapshot replication is a good way to perform initial synchronization between the publisher and the subscriber.

	Merge Replication – Data from two or more databases is combined into a single database. Merge replication is the most complex type of replication because it allows both publisher and subscriber to independently make changes to the database. Merge replication is typically used in server-to-client environments. It allows changes to be sent from one publisher to multiple subscribers.

Replication Schemes –

1. Full Replication – The most extreme case is replication of the whole database at every site in the distributed system. This will improve the availability of the system because the system can continue to operate as long as atleast one site is up.

[image:]

Advantages of full replication –

	High Availability of Data.

	Improves the performance for retrieval of global queries as the result can be obtained locally from any of the local site.

	Faster execution of Queries.

Disadvantages of full replication –

	Concurrency is difficult to achieve in full replication.

	Slow update process as a single update must be performed at different databases to keep the copies consistent.

2. No Replication – The other case of replication involves having No replication – that is, each fragment is stored at only one site.

[image:]

Advantages of No replication –

	The data can be easily recovered.

	Concurrency can be achieved in no replication.

Disadvantages of No replication –

	Since multiple users are accessing the same server, it may slow down the execution of queries.

	The data is not easily available as there is no replication.

3. Partial Replication – In this type of replication some fragments of the database may be replicated whereas others may not. The number of copies of the fragment may range from one to the total number of sites in the distributed system. The description of replication of fragments is sometimes called the replication schema.

[image:]

Advantages of Partial replication –

	The number of copies of the fragment depends upon the importance of data.

ADVANTAGES OF DATA REPLICATION – Data Replication is generally performed to:

	To provide a consistent copy of data across all the database nodes.

	To increase the availability of data.

	The reliability of data is increased through data replication.

	Data Replication supports multiple users and gives high performance.

	To remove any data redundancy,the databases are merged and slave databases are updated with outdated or incomplete data.

	Since replicas are created there are chances that the data is found itself where the transaction is executing which reduces the data movement.

	To perform faster execution of queries.

DISADVANTAGES OF DATA REPLICATION –

	More storage space is needed as storing the replicas of same data at different sites consumes more space.

	Data Replication becomes expensive when the replicas at all different sites need to be updated.

	Maintaining Data consistency at all different sites involves complex measures.

Harshita Pandey

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

Transactions and Concurrency Control

						Concurrency Control -Introduction

				
						

				
			Concurrency Control deals with interleaved execution of more than one transaction. In the next article, we will see what is serializability and how to find whether a schedule is serializable or not.

What is Transaction?

A set of logically related operations is known as transaction. The main operations of a transaction are:

Read(A): Read operations Read(A) or R(A) reads the value of A from the database and stores it in a buffer in main memory.

Write (A): Write operation Write(A) or W(A) writes the value back to the database from buffer.

Let us take a debit transaction from an account which consists of following operations:

	R(A);

	A=A-1000;

	W(A);

Assume A’s value before starting of transaction is 5000.

	The first operation reads the value of A from database and stores it in a buffer.

	Second operation will decrease its value by 1000. So buffer will contain 4000.

	Third operation will write the value from buffer to database. So A’s final value will be 4000.

But it may also be possible that transaction may fail after executing some of its operations. The failure can be because of hardware, software or power etc. For example, if debit transaction discussed above fails after executing operation 2, the value of A will remain 5000 in the database which is not acceptable by the bank. To avoid this, Database has two important operations:

Commit: After all instructions of a transaction are successfully executed, the changes made by transaction are made permanent in the database.

Rollback: If a transaction is not able to execute all operations successfully, all the changes made by transaction are undone.

Properties of a transaction

Atomicity: As a transaction is set of logically related operations, either all of them should be executed or none. A debit transaction discussed above should either execute all three operations or none.If debit transaction fails after executing operation 1 and 2 then its new value 4000 will not be updated in the database which leads to inconsistency.

Consistency: If operations of debit and credit transactions on same account are executed concurrently, it may leave database in an inconsistent state.

	For Example, T1 (debit of Rs. 1000 from A) and T2 (credit of 500 to A) executing concurrently, the database reaches inconsistent state.

	Let us assume Account balance of A is Rs. 5000. T1 reads A(5000) and stores the value in its local buffer space. Then T2 reads A(5000) and also stores the value in its local buffer space.

	T1 performs A=A-1000 (5000-1000=4000) and 4000 is stored in T1 buffer space. Then T2 performs A=A+500 (5000+500=5500) and 5500 is stored in T2 buffer space. T1 writes the value from its buffer back to database.

	A’s value is updated to 4000 in database and then T2 writes the value from its buffer back to database. A’s value is updated to 5500 which shows that the effect of debit transaction is lost and database has become inconsistent.

	To maintain consistency of database, we need concurrency control protocols which will be discussed in next article. The operations of T1 and T2 with their buffers and database have been shown in Table 1.

	T1
	T1’s buffer space
	T2
	T2’s Buffer Space
	Database

	
	
	
	
	A=5000

	R(A);
	A=5000
	
	
	A=5000

	
	A=5000
	R(A);
	A=5000
	A=5000

	A=A-1000;
	A=4000
	
	A=5000
	A=5000

	
	A=4000
	A=A+500;
	A=5500
	

	W(A);
	
	
	A=5500
	A=4000

	
	
	W(A);
	
	A=5500

Table 1

Isolation: Result of a transaction should not be visible to others before transaction is committed. For example, Let us assume that A’s balance is Rs. 5000 and T1 debits Rs. 1000 from A. A’s new balance will be 4000. If T2 credits Rs. 500 to A’s new balance, A will become 4500 and after this T1 fails. Then we have to rollback T2 as well because it is using value produced by T1. So a transaction results are not made visible to other transactions before it commits.

Durable: Once database has committed a transaction, the changes made by the transaction should be permanent. e.g.; If a person has credited $500000 to his account, bank can’t say that the update has been lost. To avoid this problem, multiple copies of database are stored at different locations.

What is a Schedule?

A schedule is series of operations from one or more transactions. A schedule can be of two types:

	Serial Schedule: When one transaction completely executes before starting another transaction, the schedule is called serial schedule. A serial schedule is always consistent. e.g.; If a schedule S has debit transaction T1 and credit transaction T2, possible serial schedules are T1 followed by T2 (T1->T2) or T2 followed by T1 ((T1->T2). A serial schedule has low throughput and less resource utilization.

	Concurrent Schedule: When operations of a transaction are interleaved with operations of other transactions of a schedule, the schedule is called Concurrent schedule. e.g.; Schedule of debit and credit transaction shown in Table 1 is concurrent in nature. But concurrency can lead to inconsistency in database. The above example of concurrent schedule is also inconsistent.

Question: Consider the following transaction involving two bank accounts x and y:

	read(x);

	x := x – 50;

	write(x);

	read(y);

	y := y + 50;

	write(y);

The constraint that the sum of the accounts x and y should remain constant is that of?

	Atomicity

	Consistency

	Isolation

	Durability

[GATE 2015]

Solution: As discussed in properties of transactions, consistency properties says that sum of accounts x and y should remain constant before starting and after completion of transaction. So, the correct answer is B.

Next article- Serializabilty of Schedules

Article contributed by Sonal Tuteja. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
 DBMS
DBMS-Transactions and Concurrency Control

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						ACID Properties in DBMS

				
						

				
			A transaction is a single logical unit of work which accesses and possibly modifies the contents of a database. Transactions access data using read and write operations.

In order to maintain consistency in a database, before and after transaction, certain properties are followed. These are called ACID properties.

Atomicity

By this, we mean that either the entire transaction takes place at once or doesn’t happen at all. There is no midway i.e. transactions do not occur partially. Each transaction is considered as one unit and either runs to completion or is not executed at all. It involves following two operations.

 —Abort: If a transaction aborts, changes made to database are not visible.

 —Commit: If a transaction commits, changes made are visible.

Atomicity is also known as the ‘All or nothing rule’.

Consider the following transaction T consisting of T1 and T2: Transfer of 100 from account X to account Y.

[image:]

If the transaction fails after completion of T1 but before completion of T2.(say, after write(X) but before write(Y)), then amount has been deducted from X but not added to Y. This results in an inconsistent database state. Therefore, the transaction must be executed in entirety in order to ensure correctness of database state.

Consistency

This means that integrity constraints must be maintained so that the database is consistent before and after the transaction. It refers to correctness of a database. Referring to the example above,

The total amount before and after the transaction must be maintained.

Total before T occurs = 500 + 200 = 700.

Total after T occurs = 400 + 300 = 700.

Therefore, database is consistent. Inconsistency occurs in case T1 completes but T2 fails. As a result T is incomplete.

Isolation

This property ensures that multiple transactions can occur concurrently without leading to inconsistency of database state. Transactions occur independently without interference. Changes occurring in a particular transaction will not be visible to any other transaction until that particular change in that transaction is written to memory or has been committed. This property ensures that the execution of transactions concurrently will result in a state that is equivalent to a state achieved these were executed serially in some order.

Let X= 500, Y = 500.

Consider two transactions T and T”.

[image:]

Suppose T has been executed till Read (Y) and then T’’ starts. As a result , interleaving of operations takes place due to which T’’ reads correct value of X but incorrect value of Y and sum computed by

T’’: (X+Y = 50, 000+500=50, 500)

is thus not consistent with the sum at end of transaction:

T: (X+Y = 50, 000 + 450 = 50, 450).

This results in database inconsistency, due to a loss of 50 units. Hence, transactions must take place in isolation and changes should be visible only after a they have been made to the main memory.

Durability:

This property ensures that once the transaction has completed execution, the updates and modifications to the database are stored in and written to disk and they persist even is system failure occurs. These updates now become permanent and are stored in a non-volatile memory. The effects of the transaction, thus, are never lost.

The ACID properties, in totality, provide a mechanism to ensure correctness and consistency of a database in a way such that each transaction is a group of operations that acts a single unit, produces consistent results, acts in isolation from other operations and updates that it makes are durably stored.

This article is contributed by Avneet Kaur. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS
 DBMS-Transactions and Concurrency Control

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Concurrency Control -Introduction

				
						

				
			Concurrency Control deals with interleaved execution of more than one transaction. In the next article, we will see what is serializability and how to find whether a schedule is serializable or not.

What is Transaction?

A set of logically related operations is known as transaction. The main operations of a transaction are:

Read(A): Read operations Read(A) or R(A) reads the value of A from the database and stores it in a buffer in main memory.

Write (A): Write operation Write(A) or W(A) writes the value back to the database from buffer.

Let us take a debit transaction from an account which consists of following operations:

	R(A);

	A=A-1000;

	W(A);

Assume A’s value before starting of transaction is 5000.

	The first operation reads the value of A from database and stores it in a buffer.

	Second operation will decrease its value by 1000. So buffer will contain 4000.

	Third operation will write the value from buffer to database. So A’s final value will be 4000.

But it may also be possible that transaction may fail after executing some of its operations. The failure can be because of hardware, software or power etc. For example, if debit transaction discussed above fails after executing operation 2, the value of A will remain 5000 in the database which is not acceptable by the bank. To avoid this, Database has two important operations:

Commit: After all instructions of a transaction are successfully executed, the changes made by transaction are made permanent in the database.

Rollback: If a transaction is not able to execute all operations successfully, all the changes made by transaction are undone.

Properties of a transaction

Atomicity: As a transaction is set of logically related operations, either all of them should be executed or none. A debit transaction discussed above should either execute all three operations or none.If debit transaction fails after executing operation 1 and 2 then its new value 4000 will not be updated in the database which leads to inconsistency.

Consistency: If operations of debit and credit transactions on same account are executed concurrently, it may leave database in an inconsistent state.

	For Example, T1 (debit of Rs. 1000 from A) and T2 (credit of 500 to A) executing concurrently, the database reaches inconsistent state.

	Let us assume Account balance of A is Rs. 5000. T1 reads A(5000) and stores the value in its local buffer space. Then T2 reads A(5000) and also stores the value in its local buffer space.

	T1 performs A=A-1000 (5000-1000=4000) and 4000 is stored in T1 buffer space. Then T2 performs A=A+500 (5000+500=5500) and 5500 is stored in T2 buffer space. T1 writes the value from its buffer back to database.

	A’s value is updated to 4000 in database and then T2 writes the value from its buffer back to database. A’s value is updated to 5500 which shows that the effect of debit transaction is lost and database has become inconsistent.

	To maintain consistency of database, we need concurrency control protocols which will be discussed in next article. The operations of T1 and T2 with their buffers and database have been shown in Table 1.

	T1
	T1’s buffer space
	T2
	T2’s Buffer Space
	Database

	
	
	
	
	A=5000

	R(A);
	A=5000
	
	
	A=5000

	
	A=5000
	R(A);
	A=5000
	A=5000

	A=A-1000;
	A=4000
	
	A=5000
	A=5000

	
	A=4000
	A=A+500;
	A=5500
	

	W(A);
	
	
	A=5500
	A=4000

	
	
	W(A);
	
	A=5500

Table 1

Isolation: Result of a transaction should not be visible to others before transaction is committed. For example, Let us assume that A’s balance is Rs. 5000 and T1 debits Rs. 1000 from A. A’s new balance will be 4000. If T2 credits Rs. 500 to A’s new balance, A will become 4500 and after this T1 fails. Then we have to rollback T2 as well because it is using value produced by T1. So a transaction results are not made visible to other transactions before it commits.

Durable: Once database has committed a transaction, the changes made by the transaction should be permanent. e.g.; If a person has credited $500000 to his account, bank can’t say that the update has been lost. To avoid this problem, multiple copies of database are stored at different locations.

What is a Schedule?

A schedule is series of operations from one or more transactions. A schedule can be of two types:

	Serial Schedule: When one transaction completely executes before starting another transaction, the schedule is called serial schedule. A serial schedule is always consistent. e.g.; If a schedule S has debit transaction T1 and credit transaction T2, possible serial schedules are T1 followed by T2 (T1->T2) or T2 followed by T1 ((T1->T2). A serial schedule has low throughput and less resource utilization.

	Concurrent Schedule: When operations of a transaction are interleaved with operations of other transactions of a schedule, the schedule is called Concurrent schedule. e.g.; Schedule of debit and credit transaction shown in Table 1 is concurrent in nature. But concurrency can lead to inconsistency in database. The above example of concurrent schedule is also inconsistent.

Question: Consider the following transaction involving two bank accounts x and y:

	read(x);

	x := x – 50;

	write(x);

	read(y);

	y := y + 50;

	write(y);

The constraint that the sum of the accounts x and y should remain constant is that of?

	Atomicity

	Consistency

	Isolation

	Durability

[GATE 2015]

Solution: As discussed in properties of transactions, consistency properties says that sum of accounts x and y should remain constant before starting and after completion of transaction. So, the correct answer is B.

Next article- Serializabilty of Schedules

Article contributed by Sonal Tuteja. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
 DBMS
DBMS-Transactions and Concurrency Control

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Concurrency Control Protocols – Lock Based Protocol

				
						

				
			First things first, I hope you are familiar to some of the concepts relating to Transactions.

	What is a Recoverable Schedule?

	What are Cascading Rollbacks and Cascadeless schedules?

	Determining if a schedule is Conflict Serializable.

Now, we all know the four properties a transaction must follow. Yes, you got that right, I mean the ACID properties. Concurrency control techniques are used to ensure that the Isolation (or non-interference) property of concurrently executing transactions is maintained.

A trivial question I would like to pose in front of you, (I know you must know this but still) why do you think that we should have interleaving execution of transactions if it may lead to problems such as Irrecoverable Schedule, Inconsistency and many more threats.

Why not just let it be Serial schedules and we may live peacefully, no complications at all.

Yes, the performance effects the efficiency too much which is not acceptable.

Hence a Database may provide a mechanism that ensures that the schedules are either conflict or view serializable and recoverable (also preferably cascadeless). Testing for a schedule for Serializability after it has executed is obviously too late!

So we need Concurrency Control Protocols that ensures Serializability .

Concurrency-control protocols : allow concurrent schedules, but ensure that the schedules are conflict/view serializable, and are recoverable and maybe even cascadeless.

These protocols do not examine the precedence graph as it is being created, instead a protocol imposes a discipline that avoids non-seralizable schedules.

Different concurrency control protocols provide different advantages between the amount of concurrency they allow and the amount of overhead that they impose.

We’ll be learning some protocols which are important for GATE CS. Questions from this topic is frequently asked and it’s recommended to learn this concept. (At the end of this series of articles I’ll try to list all theoretical aspects of this concept for students to revise quickly and they may find the material in one place.) Now, let’s get going:

Different categories of protocols:

	Lock Based Protocol

	Basic 2-PL

	Conservative 2-PL

	Strict 2-PL

	Rigorous 2-PL

	Graph Based Protocol

	Time-Stamp Ordering Protocol

	Multiple Granularity Protocol

	Multi-version Protocol

For GATE we’ll be focusing on the First three protocols.

Lock Based Protocols –

A lock is a variable associated with a data item that describes a status of data item with respect to possible operation that can be applied to it. They synchronize the access by concurrent transactions to the database items. It is required in this protocol that all the data items must be accessed in a mutually exclusive manner. Let me introduce you to two common locks which are used and some terminology followed in this protocol.

	Shared Lock (S): also known as Read-only lock. As the name suggests it can be shared between transactions because while holding this lock the transaction does not have the permission to update data on the data item. S-lock is requested using lock-S instruction.

	Exclusive Lock (X): Data item can be both read as well as written.This is Exclusive and cannot be held simultaneously on the same data item. X-lock is requested using lock-X instruction.

Lock Compatibility Matrix –

[image: 1]

	A transaction may be granted a lock on an item if the requested lock is compatible with locks already held on the item by other

transactions.

	 Any number of transactions can hold shared locks on an item, but if any transaction holds an exclusive(X) on the item no other transaction may hold any lock on the item.

	If a lock cannot be granted, the requesting transaction is made to wait till all incompatible locks held by other transactions have been released. Then the lock is granted.

Upgrade / Downgrade locks : A transaction that holds a lock on an item A is allowed under certain condition to change the lock state from one state to another.

Upgrade: A S(A) can be upgraded to X(A) if Ti is the only transaction holding the S-lock on element A.

Downgrade: We may downgrade X(A) to S(A) when we feel that we no longer want to write on data-item A. As we were holding X-lock on A, we need not check any conditions.

So, by now we are introduced with the types of locks and how to apply them. But wait, just by applying locks if our problems could’ve been avoided then life would’ve been so simple! If you have done Process Synchronization under OS you must be familiar with one consistent problem, starvation and Deadlock! We’ll be discussing them shortly, but just so you know we have to apply Locks but they must follow a set of protocols to avoid such undesirable problems. Shortly we’ll use 2-Phase Locking (2-PL) which will use the concept of Locks to avoid deadlock. So, applying simple locking, we may not always produce Serializable results, it may lead to Deadlock Inconsistency.

Problem With Simple Locking…

Consider the Partial Schedule:

	
	T1
	T2

	1
	lock-X(B)
	

	2
	read(B)
	

	3
	B:=B-50
	

	4
	write(B)
	

	5
	
	lock-S(A)

	6
	
	read(A)

	7
	
	lock-S(B)

	8
	lock-X(A)
	

	9
	……
	……

Deadlock – consider the above execution phase. Now, T1 holds an Exclusive lock over B, and T2 holds a Shared lock over A. Consider Statement 7, T1 requests for lock on B, while in Statement 8 T2 requests lock on A. This as you may notice imposes a Deadlock as none can proceed with their execution.

Starvation – is also possible if concurrency control manager is badly designed. For example: A transaction may be waiting for an X-lock on an item, while a sequence of other transactions request and are granted an S-lock on the same item. This may be avoided if the concurrency control manager is properly designed.

Phew… I hope you are now familiar with why we should study Concurrency Control Protocols. Moreover, you should be familiar with basics of Lock Based Protocols and problems with Simple Locking.

Next we’ll discuss 2-PL and its categories, implementation along with the advantages and pitfalls of using them. Questions on Lock based protocols are common in GATE, also we’ll further discuss about Graph based, Timestamp and some fun questions on Thomas Write Rule. Till then, happy learning.

zerocool

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Concurrency Control Protocol | Graph Based Protocol

				
						

				
			Graph Based Protocols are yet another way of implementing Lock Based Protocols.

As we know the prime problems with Lock Based Protocol has been avoiding Deadlocks and ensuring a Strict Schedule. We’ve seen that Strict Schedules are possible with following Strict or Rigorous 2-PL. We’ve even seen that Deadlocks can be avoided if we follow Conservative 2-PL but the problem with this protocol is it cannot be used practically. Graph Based Protocols are used as an alternative to 2-PL. Tree Based Protocols is a simple implementation of Graph Based Protocol.

A prerequisite of this protocol is that we know the order to access a Database Item. For this we implement a Partial Ordering on a set of the Database Items (D) {d1, d2, d3, ….., dn} . The protocol following the implementation of Partial Ordering is stated as-

	If di –> dj then any transaction accessing both di and dj must access di before accessing dj.

	Implies that the set D may now be viewed as a directed acyclic graph (DAG), called a database graph.

Tree Based Protocol –

	 Partial Order on Database items determines a tree like structure.

	Only Exclusive Locks are allowed.

	The first lock by Ti may be on any data item. Subsequently, a data Q can be locked by Ti only if the parent of Q is currently locked by Ti.

	Data items can be unlocked at any time.

Following the Tree based Protocol ensures Conflict Serializablity and Deadlock Free schedule. We need not wait for unlocking a Data item as we did in 2-PL protocol, thus increasing the concurrency.

Now, let us see an Example, following is a Database Graph which will be used as a reference for locking the items subsequently.

[image: 222]

Image – Database Graph

Let’s look at an example based on the above Database Graph. We have three Transactions in this schedule and this is a skeleton example, i.e, we will only see how Locking and Unlocking works, let’s keep this simple and not make this complex by adding operations on data.

	
	T1
	T2
	T3

	1
	Lock-X(A)
	
	

	2
	
	Lock-X(D)
	

	3
	
	Lock-X(H)
	

	4
	
	Unlock-X(D)
	

	5
	Lock-X(E)
	
	

	6
	Lock-X(D)
	
	

	7
	Unlock-X(B)
	
	

	8
	Unlock-X(E)
	
	

	9
	
	
	Lock-X(B)

	10
	
	
	Lock-X(E)

	11
	
	Unlock-X(H)
	

	12
	Lock-X(B)
	
	

	13
	Lock-X(G)
	
	

	14
	Unlock-X(D)
	
	

	15
	
	
	Unlock-X(E)

	16
	
	
	Unlock-X(B)

	17
	Unlock-X(G)
	
	

From the above example, first see that the schedule is Conflict Serializable. Serializablity for Locks can be written as T2 –> T1 –> T3.

Data items Locked and Unlocked are following the same rule as given above and follows the Database Graph.

Thus, let’s revise once more what are the key points of Graph Based Protocols.

Advantage –

	Ensures Conflict Serializable Schedule.

	Ensures Deadlock Free Schedule

	Unlocking can be done anytime

With some advantages comes some Disadvantages also.

Disadvantage –

	Unnecessary locking overheads may happen sometimes, like if we want both D and E, then at least we have to lock B to follow the protocol.

	Cascading Rollbacks is still a problem. We don’t follow a rule of when Unlock operation may occur so this problem persists for this protocol.

Overall this protocol is mostly known and used for its unique way of implementing Deadlock Freedom.

References: Database System Concepts, Fifth Edition [Silberschatz, Korth, Sudarshan], Chapter-16.

zerocool

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Concurrency Control Protocol | Two Phase Locking (2-PL)-I

				
						

				
			I think you are now familiar with Concurrency Control Protocols. We have discussed briefly about the first type of Concurrency Control Protocol, i.e., Lock based Protocol.

Now, recalling where we last left off, there are two types of Locks available Shared S(a) and Exclusive X(a). Implementing this lock system without any restrictions gives us the Simple Lock based protocol (or Binary Locking), but it has its own disadvantages, they does not guarantee Serializability. Schedules may follow the preceding rules but a non-serializable schedule may result.

To guarantee serializablity, we must follow some additional protocol concerning the positioning of locking and unlocking operations in every transaction. This is where the concept of Two Phase Locking(2-PL) comes in the picture, 2-PL ensures serializablity. Now, let’s dig deep!

Two Phase Locking –

A transaction is said to follow Two Phase Locking protocol if Locking and Unlocking can be done in two phases.

	Growing Phase: New locks on data items may be acquired but none can be released.

	Shrinking Phase: Existing locks may be released but no new locks can be acquired.

Note – If lock conversion is allowed, then upgrading of lock(from S(a) to X(a)) is allowed in Growing Phase and downgrading of lock (from X(a) to S(a)) must be done in shrinking phase.

Let’s see a transaction implementing 2-PL.

	
	T1
	T2

	1
	lock-S(A)
	

	2
	
	lock-S(A)

	3
	lock-X(B)
	

	4
	…….
	……

	5
	Unlock(A)
	

	6
	
	Lock-X(C)

	7
	Unlock(B)
	

	8
	
	Unlock(A)

	9
	
	Unlock(C)

	10
	…….
	……

This is just a skeleton transaction which shows how unlocking and locking works with 2-PL. Note for:

Transaction T1:

	 Growing Phase is from steps 1-3.

	Shrinking Phase is from steps 5-7.

	Lock Point at 3

Transaction T2:

	 Growing Phase is from steps 2-6.

	Shrinking Phase is from steps 8-9.

	Lock Point at 6

Hey, wait!

What is LOCK POINT ?The Point at which the growing phase ends, i.e., when transaction takes the final lock it needs to carry on its work. Now look at the schedule, you’ll surely understand.

I have said that 2-PL ensures serializablity, but there are still some drawbacks of 2-PL. Let’s glance at the drawbacks:

	Cascading Rollback is possible under 2-PL.

	Deadlocks and Starvation is possible.

Cascading Rollbacks in 2-PL –

Let’s see the following Schedule:

[image: 12122]

Take a moment to analyze the schedule. Yes, you’re correct, because of Dirty Read in T2 and T3 in lines 8 and 12 respectively, when T1 failed we have to rollback others also. Hence Cascading Rollbacks are possible in 2-PL. I have taken skeleton schedules as examples because it’s easy to understand when it’s kept simple. When explained with real time transaction problems with many variables, it becomes very complex.

Deadlock in 2-PL –

Consider this simple example, it will be easy to understand.Say we have two transactions T1 and T2.

Schedule: Lock-X1(A) Lock-X2(B) Lock-X1(B) Lock-X2(A)

Drawing the precedence graph, you may detect the loop. So Deadlock is also possible in 2-PL.

Two phase locking may also limit the amount of concurrency that occur in a schedule because a Transaction may not be able to release an item after it has used it. This may be because of the protocols and other restrictions we may put on the schedule to ensure serializablity, deadlock freedom and other factors. This is the price we have to pay to ensure serializablity and other factors, hence it can be considered as a bargain between concurrency and maintaining the ACID properties.

The above mentioned type of 2-PL is called Basic 2PL. To sum it up it ensures Conflict Serializability but does not prevent Cascading Rollback and Deadlock. Further we will study three other types of 2PL, Strict 2PL, Conservative 2PL and Rigorous 2PL.

GATE related questions:

	GATE CS 2016-2 | Question 61

	GATE CS 1999 | Question 31

zerocool

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Concurrency Control Protocol | Two Phase Locking (2-PL)-II

				
						

				
			Now that we are familiar with what is Two Phase Locking (2-PL) and the basic rules which should be followed which ensures serializablity. Moreover we came across the problems with 2-PL, Cascading Aborts and Deadlocks. Now, we turn towards the enhancements made on 2-PL which tries to make the protocol nearly error free. Briefly we allow some modifications to 2-PL to improve it. There are three categories:

	Strict 2-PL

	Rigorous 2-PL

	Conservative 2-PL

Now recall the rules followed in Basic 2-PL, over that we make some extra modifications. Let’s now see what are the modifications and what drawbacks they solve.

Strict 2-PL –

This requires that in addition to the lock being 2-Phase all Exclusive(X) Locks held by the transaction be released until after the Transaction Commits.

Following Strict 2-PL ensures that our schedule is:

	Recoverable

	Cascadeless

Hence it gives us freedom from Cascading Abort which was still there in Basic 2-PL and moreover guarantee Strict Schedules but still Deadlocks are possible!

Rigorous 2-PL –

This requires that in addition to the lock being 2-Phase all Exclusive(X) and Shared(S) Locks held by the transaction be released until after the Transaction Commits.

Following Rigorous 2-PL ensures that our schedule is:

	Recoverable

	Cascadeless

Hence it gives us freedom from Cascading Abort which was still there in Basic 2-PL and moreover guarantee Strict Schedules but still Deadlocks are possible!

Note the difference between Strict 2-PL and Rigorous 2-PL is that Rigorous is more restrictive, it requires both Exclusive and Shared locks to be held until after the Transaction commits and this is what makes the implementation of Rigorous 2-PL more easy.

Conservative 2-PL –

A.K.A Static 2-PL, this protocol requires the transaction to lock all the items it access before the Transaction begins execution by predeclaring its read-set and write-set. If any of the predeclared items needed cannot be locked, the transaction does not lock any of the items, instead it waits until all the items are available for locking.

Conservative 2-PL is Deadlock free and yes it ensures Cascadeless schedules and moreover it guarantee Strict Schedules. However, it is difficult to use in practice because of need to predeclare the read-set and the write-set which is not possible in many situations. In practice, the most popular variation of 2-PL is Strict 2-PL.

The Venn Diagram below shows the classification of schedules which are rigorous and strict. The universe represents the schedules which can be serialized as 2-PL. Now as the diagram suggests, and it can also be logically concluded, if a schedule is Rigorous then it is Strict. We can also think in another way, say we put a restriction on a schedule which makes it strict, adding another to the list of restrictions make it Rigorous. Take a moment to again analyze the diagram and you’ll definitely get it.

[image: 33]

Image – Venn Diagram showing categories of languages under 2-PL

Now, let’s see the schedule below, tell me if this schedule can be locked using 2-PL and if yes, show how and what class of 2-PL does your answer belongs?

	
	T1
	T2

	1
	Read(A)
	

	2
	
	Read(A)

	3
	Read(B)
	

	4
	Write(B)
	

	5
	Commit
	

	6
	
	Read(B)

	7
	
	Write(B)

	6
	
	Commit

I recommend you to try before looking at the solution.

Yes, the schedule is conflict serializable so we can try implementing 2-PL. So, let’s try….

Solution:

	
	T1
	T2

	1
	Lock-S(A)
	

	2
	Read(A)
	

	3
	
	Lock-S(A)

	4
	
	Read(A)

	5
	Lock-X(B)
	

	6
	Read(B)
	

	7
	Write(B)
	

	8
	Commit
	

	9
	Unlock(A)
	

	10
	Unlock(B)
	

	11
	
	Lock-X(B)

	12
	
	Read(B)

	13
	
	Write(B)

	14
	
	Commit

	15
	
	Unlock(A)

	16
	
	Unlock(B)

Now, this is one way I choose to implement the locks on A and B. You may try a different sequence but remember to follow the 2-PL protocol. With that said, observe that our locks are released after Commit operation so this satisfies Rigorous 2-PL protocol.

By now, I guess you must’ve got the idea how to differentiate between types of 2-PL. Remember the theory as problems come in the examination sometimes just based on theoretical knowledge. Next we’ll look at some examples on Conservative 2-PL and how does it differs from the above two types of 2-PL. What makes it Deadlock free and also so difficult to implement. Then we’ll conclude the topic of 2-PL. Shortly we’ll move on to another type of Lock based Protocols- Graph Based Protocols. They are also very interesting and provides unique method to deal with the problem of Deadlocks! So we’ll learn a new type of locking protocol, that will conclude the topic of Lock based Protocol for GATE, till then Happy Learning.

GATE related question:

GATE CS | IT 2004 | Question 77

zerocool

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Concurrency Control Protocol | Two Phase Locking (2-PL)-III

				
						

				
			Prerequisite – Basics of Two Phase Locking protocol(2-PL), Types of 2-PL.

Now, we know both Strict 2-PL and Rigorous 2-PL avoids Cascading Rollbacks and ensures a Strict schedule but still cannot guarantee that our schedule is Deadlock free. We have seen both Strict and Rigorous 2-PL are similar in application and a general misconception is common that Conservative 2-PL also follows same sets of protocols as the above two. For clarity let’s go through Conservative 2-PL in details.

Conservative 2-PL –

A.K.A Static 2-PL, this protocol requires the transaction to lock all the items it access before the Transaction begins execution by predeclaring its read-set and write-set. If any of the predeclared items needed cannot be locked, the transaction does not lock any of the items, instead it waits until all the items are available for locking. So the operation on data cannot start until we lock all the items required.

Now let’s see an interesting example on Conservative 2-PL. Tell me if the following schedule follows Conservative 2-PL?

Schedule: Lock-S(A) Lock-X(B) Read(A) Read(B) Write(A) Unlock(A) Commit Unlock(B)

Do you think the above Schedule does not follow Conservative 2-PL? Don’t confuse the protocol as just a modified version of Rigorous 2-PL, We can release the locks whenever we want, but we need to lock all the data items before carrying out any operation. This is what makes it Deadlock-free. The above schedule follows Conservative 2-PL.

Some interesting traits about Conservative 2-PL:

	Schedule following this will not have a Growing Phase as we’ve seen in Basic, Strict and Rigorous 2-PL. As locking the data before using it is mandatory so this protocol has no Growing phase. Moreover, this rule makes it Deadlock free as if an item is not available for locking the transaction releases all the locks and tries again later, i.e, no Hold and Wait. This makes one of the four necessary conditions for deadlock void.

	We only have to lock all the items beforehand, so releasing or unlocking them has no restrictions like we had in Strict or Rigorous 2-PL.

	As no operations are done before acquiring all the locks, we have no Growing phase in this protocol unlike Basic, Strict, Rigorous 2-PL.

	Although we get a Deadlock free schedule but in this protocol we may still face drawbacks like Cascading Rollbacks. So this protocol doen not ensure Strict Schedules. This is a disadvantage in comparison to Strict and Rigorous 2-PL.

Let’s discuss an example now. See how the schedule below follows Conservative 2-PL but does not follow Strict and Rigorous 2-PL.

	
	T1
	T2

	1

	Lock-X(A)
	

	2
	Lock-X(B)
	

	3
	Read(A)
	

	4
	*operation on A
	

	5
	Write(A)
	

	6
	Unlock(A)
	

	7
	
	Lock-X(A)

	8
	
	Read(A)

	9
	
	*operation on A

	10
	
	Write(A)

	11
	
	Unlock(A)

	12
	Read(B)
	

	13
	*operation on B
	

	14
	Write(B)
	

	15
	Unlock(B)
	

	16
	Commit
	

	17
	
	Commit

Look at the schedule, it completely follows Conservative 2-PL, but fails to meet the requirements of Strict and Conservative 2-PL, that is because we unlock A and B before the transaction commits.

How can cascading abort happen in Conservative 2-PL?

This can happen because a Transaction may carry out a Dirty Read from another Transaction. We don’t have such restrictions in our protocol so this situation is possible.

Look at the Example given above, we have a Dirty Read operation from T1 to T2 at Step 10. If T1 aborts, then T2 would be rolled back.

GATE related question:

GATE-CS-2016 (Set 1) | Question 61

zerocool

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Concurrency Control Protocol | Multiple Granularity Locking

				
						

				
			Prerequisite – Timestamp Ordering Protocols

In the various Concurrency Control schemes have used different methods and every individual Data item as the unit on which synchronization is performed. A certain drawback of this technique is if a transaction Ti needs to access the entire database, and a locking protocol is used, then Ti must lock each item in the database. It is less efficient, it would be more simpler if Ti could use a single lock to lock the entire database. But, if it consider the second proposal, this should not in fact overlook the certain flaw in the proposed method. Suppose another transaction just needs to access a few data items from a database, so locking the entire database seems to be unnecessary moreover it may cost us loss of Concurrency, which was our primary goal in the first place. To bargain between Efficiency and Concurrency. Use Granularity.

Let’s start by understanding what is meant by Granularity.

Granularity – It is the size of data item allowed to lock. Now Multiple Granularity means hierarchically breaking up the database into blocks which can be locked and can be track what need to lock and in what fashion. Such a hierarchy can be represented graphically as a tree.

For example, consider the tree, which consists of four levels of nodes. The highest level represents the entire database. Below it are nodes of type area; the database consists of exactly these areas. Area has children nodes which are called files. Every area has those files that are its child nodes. No file can span more than one area.

Finally, each file has child nodes called records. As before, the file consists of exactly those records that are its child nodes, and no record can be present in more than one file. Hence, the levels starting from the top level are:

	database

	area

	file

	record

[image:]

Figure – Multi Granularity tree Hierarchy

Consider the above diagram for the example given, each node in the tree can be locked individually. As in the 2-phase locking protocol, it shall use shared and exclusive lock modes. When a transaction locks a node, in either shared or exclusive mode, the transaction also implicitly locks all the descendants of that node in the same lock mode. For example, if transaction Ti gets an explicit lock on file Fc in exclusive mode, then it has an implicit lock in exclusive mode on all the records belonging to that file. It does not need to lock the individual records of Fc explicitly. this is the main difference between Tree Based Locking and Hierarchical locking for multiple granularity.

Now, with locks on files and records made simple, how does the system determine if the root node can be locked? One possibility is for it to search the entire tree but the solution nullifies the whole purpose of the multiple-granularity locking scheme. A more efficient way to gain this knowledge is to introduce a new lock mode, called Intention lock mode.

Intention Mode Lock –

In addition to S and X lock modes, there are three additional lock modes with multiple granularity:

	Intention-Shared (IS): explicit locking at a lower level of the tree but only with shared locks.

	Intention-Exclusive (IX): explicit locking at a lower level with exclusive or shared locks.

	Shared & Intention-Exclusive (SIX): the sub-tree rooted by that node is locked explicitly in shared mode and explicit locking is being done at a lower level with exclusive mode locks.

The compatibility matrix for these lock modes are described below:

[image:]

Figure – Multi Granularity tree Hierarchy

The multiple-granularity locking protocol uses the intention lock modes to ensure serializability. It requires that a transaction Ti that attempts to lock a node must follow these protocols:

	 Transaction Ti must follow the lock-compatibility matrix.

	 Transaction Ti must lock the root of the tree first, and it can lock it in any mode.

	 Transaction Ti can lock a node in S or IS mode only if Ti currently has the parent of the node locked in either IX or IS mode.

	 Transaction Ti can lock a node in X, SIX, or IX mode only if Ti currently has the parent of the node locked in either IX or SIX mode.

	 Transaction Ti can lock a node only if Ti has not previously unlocked any node (i.e., Ti is two phase).

	 Transaction Ti can unlock a node only if Ti currently has none of the children of the node locked.

Observe that the multiple-granularity protocol requires that locks be acquired in top-down (root-to-leaf) order, whereas locks must be released in bottom-up (leaf to-root) order.

As an illustration of the protocol, consider the tree given above and the transactions:

	Say transaction T1 reads record Ra2 in file Fa. Then, T2 needs to lock the database, area A1, and Fa in IS mode (and in that order), and finally to lock Ra2 in S mode.

	Say transaction T2 modifies record Ra9 in file Fa . Then, T2 needs to lock the database, area A1, and file Fa (and in that order) in IX mode, and at last to lock Ra9 in X mode.

	Say transaction T3 reads all the records in file Fa. Then, T3 needs to lock the database and area A1 (and in that order) in IS mode, and at last to lock Fa in S mode.

	Say transaction T4 reads the entire database. It can do so after locking the database in S mode.

Note that transactions T1, T3 and T4 can access the database concurrently. Transaction T2 can execute concurrently with T1, but not with either T3 or T4.

This protocol enhances concurrency and reduces lock overhead.Deadlock are still possible in the multiple-granularity protocol, as it is in the two-phase locking protocol. These can be eliminated by using certain deadlock elimination techniques.

zerocool

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS
 DBMS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Concurrency Control Protocol | Thomas Write Rule

				
						

				
			Timestamp Ordering Protocol states that if Ri(X) and Wj(X) are conflicting operations then Ri (X) is processed before Wj(X) if and only if TS(Ti) < TS(Tj). Whenever a schedule does not follow serializablity order according to the Timestamp, user generally reject it and rollback the Transaction. Some operations on the other hand are harmless and can be allowed.

Thomas Write Rule allows such operations and is a modification on the Basic Timestamp Ordering protocol. In Thomas Write Rule user ignore outdated writes. Moreover, of all the Concurrency Protocols have been discussed, Concurrency is imposed on Schedules which are Conflict Serializable, in Thomas Write Rule, the most important improvement is user can achieve Concurrency with View Serializable schedules.

First let’s state what is Thomas Write Rule and then what are the modifications and improvements it succeeds over the Basic TO protocol.

Thomas Write Rule –

Thomas Write Rule does not enforce Conflict Serializablity but rejects fewer Write Operations by modifying the check Operations for W_item(X)

	 If R_TS(X) > TS(T), then abort and rollback T and reject the operation.

	If W_TS(X) > TS(T), then don’t execute the Write Operation and continue processing. This is a case of Outdated or Obsolete Writes. Remember, outdated writes are ignored in Thomas Write Rule but a Transaction following Basic TO protocol will abort such a Transaction.

	 If neither the condition in 1 or 2 occurs, then and only then execute the W_item(X) operation of T and set W_TS(X) to TS(T)

Outdated Write Example –

The main update in Thomas Write Rule is ignoring the Obsolete Write Operations. This is done because some transaction with timestamp greater than TS(T) (i.e., a transaction after T in TS ordering) has already written the value of X. Hence, logically user can ignore the Write(X) operation of T which becomes obsolete. Let us see this through an example:

Suppose user has a schedule in which two transactions T1 and T2. Now, TS(T1) < TS(T2). This means T1 arrived after T2 and hence has a larger TS value than T1. This implies that serializablity of schedule allowed is T2 –> T1 . Consider the partial schedule given below:

[image: 3333]

Image – Example of Outdated Write

Obsolete Writes are hence ignored in this rule which is in accordance to the 2nd protocol. It seems to be more logical as user skip an unnecessary procedure of restarting the entire transaction. This protocol is just a modification to Basic TO protocol.

Basic TO Protocol v/s Thomas Write Rule –

Suppose user has a schedule in which two transactions T1 and T2. Now, TS(T1) < TS(T2). This implies that serializablity of schedule allowed is T2 –> T1 . Consider the two protocols, let us see what types of Operation will be allowed and not allowed under them. Ri(A) implies Read and Wi(A) implies Write operation. Now, let us look at the types of partial schedules allowed in both Basic TO and Thomas Write Rule, you’ll understand the difference in operations of both the protocol. User distinguish in operations Allowed and Not Allowed in both of the Protocols.

	
	

	
Basic TO Protocol

	 Not Allowed

	 R1(X) W2(X)

	 W1(X) R2(X)

	 W1(X) W2(X)

	Allowed

	 All operations where T2 occurs before T1.

	R1(X) R2(X)

	
Thomas Write Rule

	 Not Allowed

	 R1(X) W2(X)

	 W1(X) R2(X)

	Allowed

	 All operations where T2 occurs before T1.

	Outdated Writes: W1(X) W2(X)

	R1(X) R2(X)

Thus, from the above gist, this modification used in Thomas Write Rule in comparison to Basic TO protocol.

Reference: Database System Concepts, Fifth Edition [Silberschatz, Korth, Sudarshan], Chapter-16

zerocool

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Log based recovery

				
						

				
			Atomicity property of DBMS states that either all the operations of transactions must be performed or none. The modifications done by an aborted transaction should not be visible to database and the modifications done by committed transaction should be visible.

To achieve our goal of atomicity, user must first output to stable storage information describing the modifications, without modifying the database itself. This information can help us ensure that all modifications performed by committed transactions are reflected in the database. This information can also help us ensure that no modifications made by an aborted transaction persist in the database.

Log and log records –

The log is a sequence of log records, recording all the update activities in the database. In a stable storage, logs for each transaction are maintained. Any operation which is performed on the database is recorded is on the log. Prior to performing any modification to database, an update log record is created to reflect that modification.

An update log record represented as: <Ti, Xj, V1, V2> has these fields:

	Transaction identifier: Unique Identifier of the transaction that performed the write operation.

	Data item: Unique identifier of the data item written.

	Old value: Value of data item prior to write.

	New value: Value of data item after write operation.

Other type of log records are:

	<Ti start>: It contains information about when a transaction Ti starts.

	<Ti commit>: It contains information about when a transaction Ti commits.

	<Ti abort>: It contains information about when a transaction Ti aborts.

Undo and Redo Operations –

Because all database modifications must be preceded by creation of log record, the system has available both the old value prior to modification of data item and new value that is to be written for data item. This allows system to perform redo and undo operations as appropriate:

	Undo: using a log record sets the data item specified in log record to old value.

	Redo: using a log record sets the data item specified in log record to new value.

The database can be modified using two approaches –

	Deferred Modification Technique: If the transaction does not modify the database until it has committed, it is said to use deferred modification technique.

	Immediate Modification Technique: If database modification occur while transaction is still active, it is said to use immediate modification technique.

Recovery using Log records –

After a system crash has occurred, the system consults the log to determine which transactions need to be redone and which need to be undone.

	Transaction Ti needs to be undone if the log contains the record <Ti start> but does not contain either the record <Ti commit> or the record <Ti abort>.

	Transaction Ti needs to be redone if log contains record <Ti start> and either the record <Ti commit> or the record <Ti abort>.

Use of Checkpoints –

When a system crash occurs, user must consult the log. In principle, that need to search the entire log to determine this information. There are two major difficulties with this approach:

	The search process is time-consuming.

	Most of the transactions that, according to our algorithm, need to be redone have already written their updates into the database. Although redoing them will cause no harm, it will cause recovery to take longer.

To reduce these types of overhead, user introduce checkpoints. A log record of the form <checkpoint L> is used to represent a checkpoint in log where L is a list of transactions active at the time of the checkpoint. When a checkpoint log record is added to log all the transactions that have committed before this checkpoint have <Ti commit> log record before the checkpoint record. Any database modifications made by Ti is written to the database either prior to the checkpoint or as part of the checkpoint itself. Thus, at recovery time, there is no need to perform a redo operation on Ti.

After a system crash has occurred, the system examines the log to find the last <checkpoint L> record. The redo or undo operations need to be applied only to transactions in L, and to all transactions that started execution after the record was written to the log. Let us denote this set of transactions as T. Same rules of undo and redo are applicable on T as mentioned in Recovery using Log records part.

Note that user need to only examine the part of the log starting with the last checkpoint log record to find the set of transactions T, and to find out whether a commit or abort record occurs in the log for each transaction in T. For example, consider the set of transactions {T0, T1, . . ., T100}. Suppose that the most recent checkpoint took place during the execution of transaction T67 and T69, while T68 and all transactions with subscripts lower than 67 completed before the checkpoint. Thus, only transactions T67, T69, . . ., T100 need to be considered during the recovery scheme. Each of them needs to be redone if it has completed (that is, either committed or aborted); otherwise, it was incomplete, and needs to be undone.

nik1996

A Programmer and A Machine learning Enthusiast

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS
Technical Scripter

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Concurrency Control Protocols | Timestamp Ordering Protocols

				
						

				
			Concurrency Control can be implemented in different ways. One way to implement it is by using Locks. Now, lets discuss about Time Stamp Ordering Protocol.

As earlier introduced, Timestamp is a unique identifier created by the DBMS to identify a transaction. They are usually assigned in the order in which they are submitted to the system. Refer to the timestamp of a transaction T as TS(T). For basics of Timestamp you may refer here.

Timestamp Ordering Protocol –

The main idea for this protocol is to order the transactions based on their Timestamps. A schedule in which the transactions participate is then serializable and the only equivalent serial schedule permitted has the transactions in the order of their Timestamp Values. Stating simply, the schedule is equivalent to the particular Serial Order corresponding to the order of the Transaction timestamps. Algorithm must ensure that, for each items accessed by Conflicting Operations in the schedule, the order in which the item is accessed does not violate the ordering. To ensure this, use two Timestamp Values relating to each database item X.

	W­_TS(X) is the largest timestamp of any transaction that executed write(X) successfully.

	R_TS(X) is the largest timestamp of any transaction that executed read(X) successfully.

Basic Timestamp Ordering –

Every transaction is issued a timestamp based on when it enters the system. Suppose, if an old transaction Ti has timestamp TS(Ti), a new transaction Tj is assigned timestamp TS(Tj) such that TS(Ti) < TS(Tj).The protocol manages concurrent execution such that the timestamps determine the serializability order. The timestamp ordering protocol ensures that any conflicting read and write operations are executed in timestamp order. Whenever some Transaction T tries to issue a R_item(X) or a W_item(X), the Basic TO algorithm compares the timestamp of T with R_TS(X) & W_TS(X) to ensure that the Timestamp order is not violated. This describe the Basic TO protocol in following two cases.

	Whenever a Transaction T issues a W_item(X) operation, check the following conditions:

	If R_TS(X) > TS(T) or if W_TS(X) > TS(T), then abort and rollback T and reject the operation. else,

	 Execute W_item(X) operation of T and set W_TS(X) to TS(T).

	Whenever a Transaction T issues a R_item(X) operation, check the following conditions:

	If W_TS(X) > TS(T), then abort and reject T and reject the operation, else

	If W_TS(X) <= TS(T), then execute the R_item(X) operation of T and set R_TS(X) to the larger of TS(T) and current R_TS(X).

Whenever the Basic TO algorithm detects twp conflicting operation that occur in incorrect order, it rejects the later of the two operation by aborting the Transaction that issued it. Schedules produced by Basic TO are guaranteed to be conflict serializable. Already discussed that using Timestamp, can ensure that our schedule will be deadlock free.

One drawback of Basic TO protocol is that it Cascading Rollback is still possible. Suppose we have a Transaction T1 and T2 has used a value written by T1. If T1 is aborted and resubmitted to the system then, T must also be aborted and rolled back. So the problem of Cascading aborts still prevails.

Let’s gist the Advantages and Disadvantages of Basic TO protocol:

	 Timestamp Ordering protocol ensures serializablity since the precedence graph will be of the form:
[image: 22]

Image – Precedence Graph for TS ordering

	Timestamp protocol ensures freedom from deadlock as no transaction ever waits.

	But the schedule may not be cascade free, and may not even be recoverable.

Strict Timestamp Ordering –

A variation of Basic TO is called Strict TO ensures that the schedules are both Strict and Conflict Serializable. In this variation, a Transaction T that issues a R_item(X) or W_item(X) such that TS(T) > W_TS(X) has its read or write operation delayed until the Transaction T‘ that wrote the values of X has committed or aborted.

Related GATE Questions –

	GATE | GATE CS 2010 | Question 20

	GATE | GATE-CS-2017 (Set 1) | Question 46

	GATE | GATE-IT-2004 | Question 21

Reference: Database System Concepts, Fifth Edition [Silberschatz, Korth, Sudarshan], Chapter-16

zerocool

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Introduction to TimeStamp and Deadlock Prevention Schemes

				
						

				
			Deadlock occurs when each transaction T in a schedule of two or more transaction waiting for some item locked by some other transaction T‘ in the set. Thus, both end up in a deadlock situation, waiting for the other to release the lock on the item. Deadlocks are a common problem and we have introduced the problem while solving the Concurrency Control by the introduction of Locks. Deadlock avoidance is a major issue and some protocols were suggested to avoid them, like Conservative 2-PL and Graph Based protocols but some drawbacks are still there.

Here, we will discuss a new concept of Transaction Timestamp TS(Ti). A timestamp is a unique identifier created by the DBMS to identify a transaction. They are usually assigned in the order in which they are submitted to the system, so a transaction may be thought of as the transaction start time.

There may be differnt ways of generating timestamps such as

	A simple counter that increments each time its value is assigned to a transaction. They may be numbered 1, 2, 3…. Though we’ll have to reset the counter from time to time to avoid overflow.

	Using the current date/time from the system clock. Just ensuring that no two transaction are given same value in the same clock tick, we will always get a unique timestamp. This method is widely used.

Deadlock Prevention Schemes based on Timestamp…

As discussed, Timestamps are unique identifiers assigned to each transaction. They are based on the order in which Transactions are started. Say if T1 starts before T2 then TS(T1) will be less then(<) TS(T2).

There are two schemes to prevent deadlock called wound-wait and wait-die. Say there are two transactions Ti and Tj, now say Ti tries to lock an item X but item X is already locked by some Tj, now in such a conflicting situation the two schemes which prevents deadlock. We’ll use this context shortly.

	Wait_Die :
 An older transaction is allowed to wait for a younger transaction, whereas a younger transaction requesting an item held by an older transaction is aborted and restarted.

From the context above, if TS(Ti) < TS(Tj), then (Ti older than Tj) Ti is allowed to wait; otherwise abort Ti (Ti younger than Tj) and restart it later with the same timestamp.

	Wound_Wait :

 It is just the opposite of the Wait_Die technique. Here, a younger transaction is allowed to wait for an older one, whereas if an older transaction requests an item held by the younger transaction, we preempt the younger transaction by aborting it.

From the context above, if TS(Ti) < TS(Tj), then (Ti older than Tj) Tj is aborted (i.e., Ti wounds Tj) and restarts it later with the same Timestamp; otherwise abort Ti (Ti younger than Tj).

Thus, both the schemes end up in aborting the younger of the two transaction that may be involved in a deadlock. It is done on the basis of the assumption that aborting the younger transaction will waste less processing which is logical. In such a case there cannot be a cycle since we are waiting linearly in both the cases.

For GATE the theory for these two methods is enough, for more on this you may refer here.

Another group of protocols which prevents deadlock but does not require Timestamps. They are discussed below:

	No-waiting Alogorithm :
 This follows a simple approach, if a Transaction is unable to obtain a lock, it is immediately aborted and then restarted after a certain time delay without checking if a deadlock will occur or not. Here, no Transaction ever waits so there is no possibility for deadlock.

This method is somewhat not practical. It may cause transaction to abort and restart unnecessarily.

	Cautious Waiting :

 If Ti tries to lock an item X but is not able to do because X is locked by some Tj. In such a conflict, if Tj is not waiting for some other locked item, then Ti is allowed to wait, otherwise abort Ti.

Another approach, to deal with deadlock is deadlock detection, we can use Wait-for-Graph. This uses a similar approach when we used to check for cycles while checking for serializablity.

Starvation: One problem that may occur when we use locking is starvation which occurs when a transaction cannot proceed for an indefinite period of time while other transactions in the system continue normally. This may occur if the waiting scheme for locked items is unfair, giving priority to some transactions over others. We may have some solutions for Starvation. One is using a first come first serve queue; transactions are enabled to lock an item in the order in which they originally requested the lock. This is a widely used mechanism to reduce starvation. Our Concurrency Control Manager is responsible to schedule the transactions, so it employs different methods to overcome them. You may refer this for detailed explanation.

Try this question : GATE | GATE-CS-2017 (Set 1) | Question 46

Next we’ll discuss the famous Timestamp Ordering Protocol and Thomas Write rule. Till then Happy Learning!

Reference: Database System Concepts, Fifth Edition [Silberschatz, Korth, Sudarshan], Chapter-16.

zerocool

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS
 Deadlocks

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Conflict Serializability

				
						

				
			As discussed in Concurrency control , serial schedules have less resource utilization and low throughput. To improve it, two are more transactions are run concurrently. But concurrency of transactions may lead to inconsistency in database. To avoid this, we need to check whether these concurrent schedules are serializable or not.

Conflict Serializable: A schedule is called conflict serializable if it can be transformed into a serial schedule by swapping non-conflicting operations.

Conflicting operations: Two operations are said to be conflicting if all conditions satisfy:

	They belong to different transaction

	They operation on same data item

	At Least one of them is a write operation

Example: –

	Conflicting operations pair (R1(A), W2(A)) because they belong to two different transactions on same data item A and one of them is write operation.

	Similarly, (W1(A), W2(A)) and (W1(A), R2(A)) pairs are also conflicting.

	On the other hand, (R1(A), W2(B)) pair is non-conflicting because they operate on different data item.

	Similarly, ((W1(A), W2(B)) pair is non-conflicting.

Consider the following schedule:

S1: R1(A), W1(A), R2(A), W2(A), R1(B), W1(B), R2(B), W2(B)

If Oi and Oj are two operations in a transaction and Oi< Oj (Oi is executed before Oj), same order will follow in schedule as well. Using this property, we can get two transactions of schedule S1 as:

T1: R1(A), W1(A), R1(B), W1(B)
T2: R2(A), W2(A), R2(B), W2(B)

Possible Serial Schedules are: T1->T2 or T2->T1

-> Swapping non-conflicting operations R2(A) and R1(B) in S1, the schedule becomes,

S11: R1(A), W1(A), R1(B), W2(A), R2(A), W1(B), R2(B), W2(B)

-> Similarly, swapping non-conflicting operations W2(A) and W1(B) in S11, the schedule becomes,

S12: R1(A), W1(A), R1(B), W1(B), R2(A), W2(A), R2(B), W2(B)

S12 is a serial schedule in which all operations of T1 are performed before starting any operation of T2. Since S has been transformed into a serial schedule S12 by swapping non-conflicting operations of S1, S1 is conflict serializable.

Let us take another Schedule:

S2: R2(A), W2(A), R1(A), W1(A), R1(B), W1(B), R2(B), W2(B)

Two transactions will be:

T1: R1(A), W1(A), R1(B), W1(B)
T2: R2(A), W2(A), R2(B), W2(B)

Possible Serial Schedules are: T1->T2 or T2->T1

Original Schedule is:

S2: R2(A), W2(A), R1(A), W1(A), R1(B), W1(B), R2(B), W2(B)

Swapping non-conflicting operations R1(A) and R2(B) in S2, the schedule becomes,

S21: R2(A), W2(A), R2(B), W1(A), R1(B), W1(B), R1(A), W2(B)

Similarly, swapping non-conflicting operations W1(A) and W2(B) in S21, the schedule becomes,

S22: R2(A), W2(A), R2(B), W2(B), R1(B), W1(B), R1(A), W1(A)

In schedule S22, all operations of T2 are performed first, but operations of T1 are not in order (order should be R1(A), W1(A), R1(B), W1(B)). So S2 is not conflict serializable.

Conflict Equivalent: Two schedules are said to be conflict equivalent when one can be transformed to another by swapping non-conflicting operations. In the example discussed above, S11 is conflict equivalent to S1 (S1 can be converted to S11 by swapping non-conflicting operations). Similarly, S11 is conflict equivalent to S12 and so on.

Note 1: Although S2 is not conflict serializable, but still it is conflict equivalent to S21 and S21 because S2 can be converted to S21 and S22 by swapping non-conflicting operations.

Note 2: The schedule which is conflict serializable is always conflict equivalent to one of the serial schedule. S1 schedule discussed above (which is conflict serializable) is equivalent to serial schedule (T1->T2).

Question: Consider the following schedules involving two transactions. Which one of the following statement is true?

S1: R1(X) R1(Y) R2(X) R2(Y) W2(Y) W1(X)

S2: R1(X) R2(X) R2(Y) W2(Y) R1(Y) W1(X)

	Both S1 and S2 are conflict serializable

	Only S1 is conflict serializable

	Only S2 is conflict serializable

	None

[GATE 2007]

Solution: Two transactions of given schedules are:

 T1: R1(X) R1(Y) W1(X)
 T2: R2(X) R2(Y) W2(Y)

Let us first check serializability of S1:

S1: R1(X) R1(Y) R2(X) R2(Y) W2(Y) W1(X)

To convert it to a serial schedule, we have to swap non-conflicting operations so that S1 becomes equivalent to serial schedule T1->T2 or T2->T1. In this case, to convert it to a serial schedule, we must have to swap R2(X) and W1(X) but they are conflicting. So S1 can’t be converted to a serial schedule.

Now, let us check serializability of S2:

S2: R1(X) R2(X) R2(Y) W2(Y) R1(Y) W1(X)

Swapping non conflicting operations R1(X) and R2(X) of S2, we get

S2’: R2(X) R1(X) R2(Y) W2(Y) R1(Y) W1(X)

Again, swapping non conflicting operations R1(X) and R2(Y) of S2’, we get

S2’’: R2(X) R2(Y) R1(X) W2(Y) R1(Y) W1(X)

Again, swapping non conflicting operations R1(X) and W2(Y) of S2’’, we get

S2’’’: R2(X) R2(Y) W2(Y) R1(X) R1(Y) W1(X)

which is equivalent to a serial schedule T2->T1.

So, correct option is C. Only S2 is conflict serializable.

Related Article:

View Serializability

Precedence Graph For Testing Conflict Serializability

Article contributed by Sonal Tuteja. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS
DBMS-Transactions and Concurrency Control

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						How to test if two schedules are View Equal or not ?

				
						

				
			Two schedules S1 and S2 are said to be view equal iff following below conditions are satisfied :

1) Initial Read

 If a transaction T1 reading data item A from initial database in S1 then in S2 also T1 should read A from initial database.

 T1 T2 T3

 R(A)
 W(A)
 R(A)
 R(B)

Transaction T2 is reading A form initial database.

2)Updated Read

 If Ti is reading A which is updated by Tj in S1 then in S2 also Ti should read A which is updated by Tj.

 T1 T2 T3 T1 T2 T3
------------------- ----------------
 W(A) W(A)
 W(A) R(A)
 R(A) W(A)

Above two schedule are not view equal as in S1 :T3 is reading A updated by T2, in S2 T3 is reading A updated by T1.

3)Final Write operation

 If a transaction T1 updated A at last in S1, then in S2 also T1 should perform final write operations.

 T1 T2 T1 T2
------------ ---------------
 R(A) R(A)
 W(A) W(A)
 W(A) W(A)

Above two schedule are not view as Final write operation in S1 is done by T1 while in S2 done by T2.

View Serializability: A Schedule is called view serializable if it is view equal to a serial schedule (no overlapping transactions).

Below are the previous Year Gate Question asked on this topic

http://quiz.geeksforgeeks.org/dbms/transactions-and-concurrency-control/

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS-Transactions and Concurrency Control

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						How to test if two schedules are View Equal or not ?

				
						

				
			Two schedules S1 and S2 are said to be view equal iff following below conditions are satisfied :

1) Initial Read

 If a transaction T1 reading data item A from initial database in S1 then in S2 also T1 should read A from initial database.

 T1 T2 T3

 R(A)
 W(A)
 R(A)
 R(B)

Transaction T2 is reading A form initial database.

2)Updated Read

 If Ti is reading A which is updated by Tj in S1 then in S2 also Ti should read A which is updated by Tj.

 T1 T2 T3 T1 T2 T3
------------------- ----------------
 W(A) W(A)
 W(A) R(A)
 R(A) W(A)

Above two schedule are not view equal as in S1 :T3 is reading A updated by T2, in S2 T3 is reading A updated by T1.

3)Final Write operation

 If a transaction T1 updated A at last in S1, then in S2 also T1 should perform final write operations.

 T1 T2 T1 T2
------------ ---------------
 R(A) R(A)
 W(A) W(A)
 W(A) W(A)

Above two schedule are not view as Final write operation in S1 is done by T1 while in S2 done by T2.

View Serializability: A Schedule is called view serializable if it is view equal to a serial schedule (no overlapping transactions).

Below are the previous Year Gate Question asked on this topic

http://quiz.geeksforgeeks.org/dbms/transactions-and-concurrency-control/

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS-Transactions and Concurrency Control

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Recoverability of Schedules

				
						

				
			We have discussed the basics of Transactions and Schedules in Concurrency Control (Introduction) article. As discussed, a transaction may not execute completely due to hardware failure, system crash or software issues. In that case, we have to rollback the failed transaction. But some other transaction may also have used values produced by failed transaction. So we have to rollback those transactions as well.

[image: Recoverabilityofschedules]

Above table shows a schedule with two transactions, T1 reads and writes A and that value is read and written by T2. T2 commits. But later on, T1 fails. So we have to rollback T1. Since T2 has read the value written by T1, it should also be rollbacked. But we have already committed that. So this schedule is irrecoverable schedule.

Irrecoverable Schedule: When Tj is reading the value updated by Ti and Tj is committed before commit of Ti, the schedule will be irrecoverable.

[image: Recoverabilityofschedules2]

Table 2 shows a schedule with two transactions, T1 reads and writes A and that value is read and written by T2. But later on, T1 fails. So we have to rollback T1. Since T2 has read the value written by T1, it should also be rollbacked. As it has not committed, we can rollback T2 as well. So it is recoverable with cascading rollback.

Recoverable with cascading rollback: If Tj is reading value updated by Ti and commit of Tj is delayed till commit of Ti , the schedule is called recoverable with cascading rollback.

[image: Recoverability3]

Table 3 shows a schedule with two transactions, T1 reads and writes A and commits and that value is read by T2. But if T1 fails before commit, no other transaction has read its value, so there is no need to rollback other transaction. So this is a cascadeless recoverable schedule.

Cascadeless Recoverable: If Tj reads value updated by Ti only after Ti is commited, the schedule will be cascadeless recoverable.

Question: Which of the following scenarios may lead to an irrecoverable error in a database system?

(A) A transaction writes a data item after it is read by an uncommitted transaction.

(B) A transaction reads a data item after it is read by an uncommitted transaction.

(C) A transaction reads a data item after it is written by a committed transaction.

(D) A transaction reads a data item after it is written by an uncommitted transaction.

Answer: See the example discussed in Table 1, a transaction is reading a data item after it is written by an uncommitted transaction, the schedule will be irrecoverable.

Related Post:

Conflict Serializability

This article is contributed by Sonal Tuteja. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS-Transactions and Concurrency Control

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Precedence Graph For Testing Conflict Serializability

				
						

				
			Prerequisite : Conflict Serializability

Precedence Graph or Serialization Graph is used commonly to test Conflict Serializability of a schedule.

It is a directed Graph (V, E) consisting of a set of nodes V = {T1, T2, T3……….Tn} and a set of directed edges E = {e1, e2, e3………………em}.

The graph contains one node for each Transaction Ti. An edge ei is of the form Tj –> Tk where Tj is the starting node of ei and Tk is the ending node of ei. An edge ei is constructed between nodes Tj to Tk if one of the operations in Tj appears in the schedule before some conflicting operation in Tk .

The Algorithm can be written as:

	 Create a node T in the graph for each participating transaction in the schedule.

	 For the conflicting operation read_item(X) and write_item(X) – If a Transaction Tj executes a read_item (X) after Ti executes a write_item (X), draw an edge from Ti to Tj in the graph.

	 For the conflicting operation write_item(X) and read_item(X) – If a Transaction Tj executes a write_item (X) after Ti executes a read_item (X), draw an edge from Ti to Tj in the graph.

	 For the conflicting operation write_item(X) and write_item(X) – If a Transaction Tj executes a write_item (X) after Ti executes a write_item (X), draw an edge from Ti to Tj in the graph.

	 The Schedule S is serializable if there is no cycle in the precedence graph.

If there is no cycle in the precedence graph, it means we can construct a serial schedule S’ which is conflict equivalent to the schedule S.

The serial schedule S’ can be found by Topological Sorting of the acyclic precedence graph. Such schedules can be more than 1.

For example,

Consider the schedule S :

 S : r1(x) r1(y) w2(x) w1(x) r2(y)

Creating Precedence graph:

	 Make two nodes corresponding to Transaction T1 and T2.

[image: 2]

	 For the conflicting pair r1(x) w2(x), where r1(x) happens before w2(x), draw an edge from T1 to T2.

[image: 3]

	 For the conflicting pair w2(x) w1(x), where w2(x) happens before w1(x), draw an edge from T2 to T1.
[image: 4]

Since the graph is cyclic, we can conclude that it is not conflict serializable to any schedule serial schedule.

Let us try to infer a serial schedule from this graph using topological ordering.

The edge T1–>T2 tells that T1 should come before T2 in the linear ordering.

The edge T2 –> T1 tells that T2 should come before T1 in the linear ordering.

So, we can not predict any particular order (when the graph is cyclic). Therefore, no serial schedule can be obtained from this graph.

Consider the another schedule S1 :

 S1: r1(x) r3(y) w1(x) w2(y) r3(x) w2(x)

The graph for this schedule is :

[image: 22]

Since the graph is acyclic, the schedule is conflict serializable. Performing Topological Sort on this graph would give us a possible serial schedule which is conflict equivalent to schedule S1.

In Topological Sort, we first select the node with indegree 0, which is T1. This would be followed by T3 and T2.

So, S1 is conflict serializable since it is conflict equivalent to the serial schedule T1 T3 T2.

Source: Operating Systems book, Silberschatz, Galvin and Gagne

This article is contributed by Saloni Baweja. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

					
		
		DBMS
GATE CS
 DBMS-Transactions and Concurrency Control

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Transaction Isolation Levels in DBMS

				
						

				
			Prerequisite – Concurrency control in DBMS, ACID Properties in DBMS

As we know that, in order to maintain consistency in a database, it follows ACID properties. Among these four properties (Atomicity, Consistency, Isolation and Durability) Isolation determines how transaction integrity is visible to other users and systems. It means that a transaction should take place in a system in such a way that it is the only transaction that is accessing the resources in a database system.

 Isolation levels defines the degree to which a transaction must be isolated from the data modifications made by any other transaction in the database system. A transaction isolation level are defined by the following phenomena –

	Dirty Read – A Dirty read is the situation when a transaction reads a data that has not yet been commited.For example, Let’s say transaction 1 updates a row and leaves it uncommited, meanwhile Transaction 2 reads the updated row. If transaction 1 rolls back the change, transaction 2 will have read data that is considered never to have existed.

	Non Repeatable read – Non Repeatable read occurs when a transaction reads same row twice, and get a different value each time. For example, suppose transaction T1 reads a data. Due to concurrency, another transaction T2 updates the same data and commit, Now if transaction T1 rereads the same data, it will retrieve a different value.

	Phantom Read – Phantom Read occurs when two same queries are executed, but the rows retrieved by the two, are different. For example, suppose transaction T1 retrieves a set of rows that satisfy some search criteria. Now, Transaction T2 generates some new rows that matches the search criteria for transaction T1. If transaction T1 reexecutes the statement that reads the rows, it gets a different set of rows this time.

Based on these phenomena, The SQL standard defines four isolation levels :

	Read Uncommitted – Read Uncommitted is the lowest isolation level. In this level, one transaction may read not yet commited changes made by other transaction, thereby allowing dirty reads. In this level, transactions are not isolated from each other.

	Read Committed – This isolation level guarantees that any data read is committed at the moment it is read. Thus it does not allows dirty read. The transaction hold a read or write lock on the current row, and thus prevent other rows from reading, updating or deleting it.

	Repeatable Read – This is the most restrictive isolation level. The transaction holds read locks on all rows it references and write locks on all rows it inserts, updates, or deletes. Since other transaction cannot read, update or delete these rows, consequently it avoids non repeatable read.

	Serializable – This is the Highest isolation level. A serializable execution is guaranteed to be serializable. Serializable execution is defined to be an execution of operations in which concurrently ececuting transactions appears to be serially executing.

The Table given below clearly depicts the relationship between isolation levels, read phenomena and locks :

[image:]

Anomaly Serializable is not the same as Serializable. That is, it is necessary, but not sufficient that a Serializable schedule should be free of all three phenomena types.

References –

Isolation – Wikipedia

Transaction Isolation Levels – docs.microsoft

Smitha Dinesh Semwal

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Database Recovery Techniques

				
						

				
			Database systems, like any other computer system, are subject to failures but the data stored in it must be available as and when required. When a database fails it must possess the facilities for fast recovery. It must also have atomicity i.e. either transactions are completed successfully and committed (the effect is recorded permanently in the database) or the transaction should have no effect on the database.

There are both automatic and non-automatic ways for both, backing up of data and recovery from any failure situations. The techniques used to recover the lost data due to system crash, transaction errors, viruses, catastrophic failure, incorrect commands execution etc. are database recovery techniques. So to prevent data loss recovery techniques based on deferred update and immediate update or backing up data can be used.

Recovery techniques are heavily dependent upon the existence of a special file known as a system log. It contains information about the start and end of each transaction and any updates which occur in the transaction. The log keeps track of all transaction operations that affect the values of database items. This information is needed to recover from transaction failure.

	The log is kept on disk start_transaction(T): This log entry records that transaction T starts the execution.

	read_item(T, X): This log entry records that transaction T reads the value of database item X.

	write_item(T, X, old_value, new_value): This log entry records that transaction T changes the value of the database item X from old_value to new_value. The old value is sometimes known as a before an image of X, and the new value is known as an afterimage of X.

	commit(T): This log entry records that transaction T has completed all accesses to the database successfully and its effect can be committed (recorded permanently) to the database.

	abort(T): This records that transaction T has been aborted.

	checkpoint: Checkpoint is a mechanism where all the previous logs are removed from the system and stored permanently in a storage disk. Checkpoint declares a point before which the DBMS was in consistent state, and all the transactions were committed.

A transaction T reaches its commit point when all its operations that access the database have been executed successfully i.e. the transaction has reached the point at which it will not abort (terminate without completing). Once committed, the transaction is permanently recorded in the database. Commitment always involves writing a commit entry to the log and writing the log to disk. At the time of a system crash, item is searched back in the log for all transactions T that have written a start_transaction(T) entry into the log but have not written a commit(T) entry yet; these transactions may have to be rolled back to undo their effect on the database during the recovery process

	Undoing – If a transaction crashes, then the recovery manager may undo transactions i.e. reverse the operations of a transaction. This involves examining a transaction for the log entry write_item(T, x, old_value, new_value) and setting the value of item x in the database to old-value.There are two major techniques for recovery from non-catastrophic transaction failures: deferred updates and immediate updates.

	Deferred update – This technique does not physically update the database on disk until a transaction has reached its commit point. Before reaching commit, all transaction updates are recorded in the local transaction workspace. If a transaction fails before reaching its commit point, it will not have changed the database in any way so UNDO is not needed. It may be necessary to REDO the effect of the operations that are recorded in the local transaction workspace, because their effect may not yet have been written in the database. Hence, a deferred update is also known as the No-undo/redo algorithm

	Immediate update – In the immediate update, the database may be updated by some operations of a transaction before the transaction reaches its commit point. However, these operations are recorded in a log on disk before they are applied to the database, making recovery still possible. If a transaction reaches its commit point, the effect of its operation must be undone i.e. the transaction must be rolled back hence we require both undo and redo. This technique is known as undo/redo algorithm.

	Caching/Buffering – In this one or more disk pages that include data items to be updated are cached into main memory buffers and then updated in memory before being written back to disk. A collection of in-memory buffers called the DBMS cache is kept under control of DBMS for holding these buffers. A directory is used to keep track of which database items are in the buffer. A dirty bit is associated with each buffer, which is 0 if the buffer is not modified else 1 if modified.

	Shadow paging – It provides atomicity and durability. A directory with n entries is constructed, where the ith entry points to the ith database page on the link. When a transaction began executing the current directory is copied into a shadow directory. When a page is to be modified, a shadow page is allocated in which changes are made and when it is ready to become durable, all pages that refer to original are updated to refer new replacement page.

Some of the backup techniques are as follows :

	Full database backup – In this full database including data and database, Meta information needed to restore the whole database, including full-text catalogs are backed up in a predefined time series.

	Differential backup – It stores only the data changes that have occurred since last full database backup. When same data has changed many times since last full database backup, a differential backup stores the most recent version of changed data. For this first, we need to restore a full database backup.

	Transaction log backup – In this, all events that have occurred in the database, like a record of every single statement executed is backed up. It is the backup of transaction log entries and contains all transaction that had happened to the database. Through this, the database can be recovered to a specific point in time. It is even possible to perform a backup from a transaction log if the data files are destroyed and not even a single committed transaction is lost.

Reference –

Backup and Recovery – cs.uct.ac.za/mit_notes

This article is contributed by Himanshi. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Starvation in DBMS

				
						

				
			Starvation or Livelock is the situation when a transaction has to wait for a indefinate period of time to acquire a lock.

Reasons of Starvation –

	If waiting scheme for locked items is unfair. (priority queue)

	Victim selection. (same transaction is selected as a victim repeatedly)

	Resource leak.

	Via denial-of-service attack.

Starvation can be best explained with the help of an example – Suppose there are 3 transactions namely T1, T2, and T3 in a database that are trying to acquire a lock on data item ‘ I ‘ . Now, suppose the scheduler grants the lock to T1(may be due to some priority), and the other two transactions are waiting for the lock. As soon as the execution of T1 is over, another transaction T4 also come over and request unlock on data item I. Now, this time the scheduler grants lock to T4, and T2, T3 has to wait again . In this way if new transactions keep on requesting the lock, T2 and T3 may have to wait for an indefinate period of time, that leads to Starvation.

What are the solutions to starvation –

	Increasing Priority –

Starvation occurs when a transaction has to wait for an indefinate time, In this situation we can increase the priority of that particular transaction/s. But the drawback with this solution is that it may happen that the other transaction may have to wait longer untill the highest priority transaction comes and proceeds.

	Modification in Victim Seletion algorithm –

If a transaction has been a victim of repeated selections, then the algorithm can be modified by lowering its priority over other transactions.

	First Come First Serve approach –

A fair scheduling approach i.e FCFS can be adopted, In which the transaction can acquire a lock on an Item in the order, in which the requested the lock.

	Wait die and wound wait scheme –

These are the schemes that uses timestamp ordering mechanism of transaction .

For detailed study refer : Wait die and Wound wait scheme

Smitha Dinesh Semwal

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Deadlock in DBMS

				
						

				
			In a database, a deadlock is an unwanted situation in which two or more transactions are waiting indefinitely for one another to give up locks. Deadlock is said to be one of the most feared complications in DBMS as it brings the whole system to a Halt.

Example – let us understand the concept of Deadlock with an example :

Suppose, Transaction T1 holds a lock on some rows in the Students table and needs to update some rows in the Grades table. Simultaneously, Transaction T2 holds locks on those very rows (Which T1 needs to update) in the Grades table but needs to update the rows in the Student table held by Transaction T1.

 Now, the main problem arises. Transaction T1 will wait for transaction T2 to give up lock, and similarly transaction T2 will wait for transaction T1 to give up lock. As a consequence, All activity comes to a halt and remains at a standstill forever unless the DBMS detects the deadlock and aborts one of the transactions.

Figure – Deadlock in DBMS

Deadlock Avoidance –

When a database is stuck in a deadlock, It is always better to avoid the deadlock rather than restarting or aborting the database. Deadlock avoidance method is suitable for smaller database whereas deadlock prevention method is suitable for larger database.

One method of avoiding deadlock is using application consistent logic. In the above given example, Transactions that access Students and Grades should always access the tables in the same order. In this way, in the scenario described above, Transaction T1 simply waits for transaction T2 to release the lock on Grades before it begins. When transaction T2 releases the lock, Transaction T1 can proceed freely.

Another method for avoiding deadlock is to apply both row level locking mechanism and READ COMMITTED isolation level. However, It does not guarantee to remove deadlocks completely.

Deadlock Detection –

When a transaction waits indefinately to obtain a lock, The database managememt system should detect whether the transaction is involved in a deadlock or not.

 Wait-for-graph is one of the methods for detecting the deadlock situation. This method is suitable for smaller database. In this method a graph is drawn based on the transaction and their lock on the resource. If the graph created has a closed loop or a cycle, then there is a deadlock.

For the above mentioned scenario the Wait-For graph is drawn below

[image:]

Deadlock prevention –

For large database, deadlock prevention method is suitable. A deadlock can be prevented if the resources are allocated in such a way that deadlock never occur. The DBMS analyzes the operations whether they can create deadlock situation or not, If they do, that transaction is never allowed to be executed.

Deadlock prevention mechanism proposes two schemes :

	Wait-Die Scheme –

In this scheme, If a transaction request for a resource that is locked by other transaction, then the DBMS simply checks the timestamp of both transactions and allows the older transaction to wait until the resource is available for execution.

Suppose, there are two transactions T1 and T2 and Let timestamp of any transaction T be TS (T). Now, If there is a lock on T2 by some other transaction and T1 is requesting for resources held by T2, then DBMS performs following actions:

Checks if TS (T1) < TS (T2) – if T1 is the older transaction and T2 has held some resource, then it allows T1 to wait until resource is available for execution. That means if a younger transaction has locked some resource and older transaction is waiting for it, then older transaction is allowed wait for it till it is available. If T1 is older transaction and has held some resource with it and if T2 is waiting for it, then T2 is killed and restarted latter with random delay but with the same timestamp. i.e. if the older transaction has held some resource and younger transaction waits for the resource, then younger transaction is killed and restarted with very minute delay with same timestamp.

This scheme allows the older transaction to wait but kills the younger one.

	Wound Wait Scheme –

In this scheme, if an older transaction requests for a resource held by younger transaction, then older transaction forces younger transaction to kill the transaction and release the resource. The younger transaction is restarted with minute delay but with same timestamp. If the younger transaction is requesting a resource which is held by older one, then younger transaction is asked to wait till older releases it.

References –

docs.oracle

difference between wait-die and wound-wait

Smitha Dinesh Semwal

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

Indexing, B and B+ trees

						Indexing in Databases | Set 1

				
						

				
			Indexing is a way to optimize performance of a database by minimizing the number of disk accesses required when a query is processed.

An index or database index is a data structure which is used to quickly locate and access the data in a database table.

Indexes are created using some database columns.

	The first column is the Search key that contains a copy of the primary key or candidate key of the table. These values are stored in sorted order so that the corresponding data can be accessed quickly (Note that the data may or may not be stored in sorted order).

	The second column is the Data Reference which contains a set of pointers holding the address of the disk block where that particular key value can be found.

[image: indexing2]

There are two kinds of indices:

	Ordered indices: Indices are based on a sorted ordering of the values.

	Hash indices: Indices are based on the values being distributed uniformly across a range of buckets. The buckets to which a value is assigned is determined by function called a hash function.

There is no comparison between both the techniques, it depends on the database application on which it is being applied.

	Access Types: e.g. value based search, range access, etc.

	Access Time: Time to find particular data element or set of elements.

	Insertion Time: Time taken to find the appropriate space and insert a new data time.

	Deletion Time: Time taken to find an item and delete it as well as update the index structure.

	Space Overhead: Additional space required by the index.

Indexing Methods

Ordered Indices

The indices are usually sorted so that the searching is faster. The indices which are sorted are known as ordered indices.

	If the search key of any index specifies same order as the sequential order of the file, it is known as primary index or clustering index.

Note: The search key of a primary index is usually the primary key, but it is not necessarily so.

	 If the search key of any index specifies an order different from the sequential order of the file, it is called the secondary index or non-clustering index.

 Clustered Indexing

Clustering index is defined on an ordered data file. The data file is ordered on a non-key field. In some cases, the index is created on non-primary key columns which may not be unique for each record. In such cases, in order to identify the records faster, we will group two or more columns together to get the unique values and create index out of them. This method is known as clustering index. Basically, records with similar characteristics are grouped together and indexes are created for these groups.

 For example, students studying in each semester are grouped together. i.e. 1st Semester students, 2nd semester students, 3rd semester students etc are grouped.

[image: cluster_index]

​Clustered index sorted according to first name (Search key)

Primary Index​ ​

In this case, the data is sorted according to the search key. It induces sequential file organisation.

In this case, the primary key of the database table is used to create the index. As primary keys are unique and are stored in sorted manner, the performance of searching operation is quite efficient. The primary index is classified into two types : Dense Index and Sparse Index.

(I) Dense Index : ​

	For every search key value in the data file, there is an index record.

	 This record contains the search key and also a reference to the first data record with that search key value.

[image: indexing5]

(II) Sparse Index :

 ​

	 The index record appears only for a few items in the data file. Each item points to a block as shown.

	 To locate a record, we find the index record with the largest search key value less than or equal to the search key value we are looking for.

	We start at that record pointed to by the index record, and proceed along the pointers in the file (that is, sequentially) until we find the desired record.

[image: indexing6]

Non­-Clustered Indexing

 ​A non clustered index just tells us where the data lies, i.e. it gives us a list of virtual pointers or references to the location where the data is actually stored. Data is not physically stored in the order of the index. Instead , data is present in leaf nodes. For eg. the contents page of a book. Each entry gives us the page number or location of the information stored. The actual data here(information on each page of book) is not organised but we have an ordered reference(contents page) to where the data points actually lie.

[image: indexing3]

It requires more time as compared to clustered index because some amount of extra work is done in order to extract the data by further following the pointer. In case of clustered index, data is directly present in front of the index.

 Secondary Index​

It is used to optimize query processing and access records in a database with some information other than the usual search key (primary key). In this two levels of indexing are used in order to reduce the mapping size of the first level and in general. Initially, for the first level, a large range of numbers is selected so that the mapping size is small. Further, each range is divided into further sub ranges.

In order for quick memory access, first level is stored in the primary memory. Actual physical location of the data is determined by the second mapping level.

[image: indexing4]

This article is contributed by Avneet Kaur. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS
 DBMS Indexing

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						B-Tree | Set 1 (Introduction)

				
						

				
			B-Tree is a self-balancing search tree. In most of the other self-balancing search trees (like AVL and Red Black Trees), it is assumed that everything is in main memory. To understand use of B-Trees, we must think of huge amount of data that cannot fit in main memory. When the number of keys is high, the data is read from disk in the form of blocks. Disk access time is very high compared to main memory access time. The main idea of using B-Trees is to reduce the number of disk accesses. Most of the tree operations (search, insert, delete, max, min, ..etc) require O(h) disk accesses where h is height of the tree. B-tree is a fat tree. Height of B-Trees is kept low by putting maximum possible keys in a B-Tree node. Generally, a B-Tree node size is kept equal to the disk block size. Since h is low for B-Tree, total disk accesses for most of the operations are reduced significantly compared to balanced Binary Search Trees like AVL Tree, Red Black Tree, ..etc.

Properties of B-Tree

1) All leaves are at same level.

2) A B-Tree is defined by the term minimum degree ‘t’. The value of t depends upon disk block size.

3) Every node except root must contain at least t-1 keys. Root may contain minimum 1 key.

4) All nodes (including root) may contain at most 2t – 1 keys.

5) Number of children of a node is equal to the number of keys in it plus 1.

6) All keys of a node are sorted in increasing order. The child between two keys k1 and k2 contains all keys in range from k1 and k2.

7) B-Tree grows and shrinks from root which is unlike Binary Search Tree. Binary Search Trees grow downward and also shrink from downward.

8) Like other balanced Binary Search Trees, time complexity to search, insert and delete is O(Logn).

Following is an example B-Tree of minimum degree 3. Note that in practical B-Trees, the value of minimum degree is much more than 3.

[image: BTreeIntro]

Search

Search is similar to search in Binary Search Tree. Let the key to be searched be k. We start from root and recursively traverse down. For every visited non-leaf node, if the node has key, we simply return the node. Otherwise we recur down to the appropriate child (The child which is just before the first greater key) of the node. If we reach a leaf node and don’t find k in the leaf node, we return NULL.

Traverse

Traversal is also similar to Inorder traversal of Binary Tree. We start from the leftmost child, recursively print the leftmost child, then repeat the same process for remaining children and keys. In the end, recursively print the rightmost child.

// C++ implemntation of search() and traverse() methods
#include<iostream>
using namespace std;

// A BTree node
class BTreeNode
{
 int *keys; // An array of keys
 int t; // Minimum degree (defines the range for number of keys)
 BTreeNode **C; // An array of child pointers
 int n; // Current number of keys
 bool leaf; // Is true when node is leaf. Otherwise false
public:
 BTreeNode(int _t, bool _leaf); // Constructor

 // A function to traverse all nodes in a subtree rooted with this node
 void traverse();

 // A function to search a key in subtree rooted with this node.
 BTreeNode *search(int k); // returns NULL if k is not present.

// Make BTree friend of this so that we can access private members of this
// class in BTree functions
friend class BTree;
};

// A BTree
class BTree
{
 BTreeNode *root; // Pointer to root node
 int t; // Minimum degree
public:
 // Constructor (Initializes tree as empty)
 BTree(int _t)
 { root = NULL; t = _t; }

 // function to traverse the tree
 void traverse()
 { if (root != NULL) root->traverse(); }

 // function to search a key in this tree
 BTreeNode* search(int k)
 { return (root == NULL)? NULL : root->search(k); }
};

// Constructor for BTreeNode class
BTreeNode::BTreeNode(int _t, bool _leaf)
{
 // Copy the given minimum degree and leaf property
 t = _t;
 leaf = _leaf;

 // Allocate memory for maximum number of possible keys
 // and child pointers
 keys = new int[2*t-1];
 C = new BTreeNode *[2*t];

 // Initialize the number of keys as 0
 n = 0;
}

// Function to traverse all nodes in a subtree rooted with this node
void BTreeNode::traverse()
{
 // There are n keys and n+1 children, travers through n keys
 // and first n children
 int i;
 for (i = 0; i < n; i++)
 {
 // If this is not leaf, then before printing key[i],
 // traverse the subtree rooted with child C[i].
 if (leaf == false)
 C[i]->traverse();
 cout << " " << keys[i];
 }

 // Print the subtree rooted with last child
 if (leaf == false)
 C[i]->traverse();
}

// Function to search key k in subtree rooted with this node
BTreeNode *BTreeNode::search(int k)
{
 // Find the first key greater than or equal to k
 int i = 0;
 while (i < n && k > keys[i])
 i++;

 // If the found key is equal to k, return this node
 if (keys[i] == k)
 return this;

 // If key is not found here and this is a leaf node
 if (leaf == true)
 return NULL;

 // Go to the appropriate child
 return C[i]->search(k);
}

The above code doesn’t contain driver program. We will be covering the complete program in our next post on B-Tree Insertion.

There are two conventions to define a B-Tree, one is to define by minimum degree (followed in Cormen book), second is define by order. We have followed the minimum degree convention and will be following same in coming posts on B-Tree. The variable names used in the above program are also kept same as Cormen book for better readability.

Insertion and Deletion

B-Tree Insertion

B-Tree Deletion

References:

Introduction to Algorithms 3rd Edition by Clifford Stein, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Advanced Data Structure
DBMS
 DBMS Indexing
Self-Balancing-BST

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						B-Tree | Set 2 (Insert)

				
						

				
			In the previous post, we introduced B-Tree. We also discussed search() and traverse() functions.

In this post, insert() operation is discussed. A new key is always inserted at leaf node. Let the key to be inserted be k. Like BST, we start from root and traverse down till we reach a leaf node. Once we reach a leaf node, we insert the key in that leaf node. Unlike BSTs, we have a predefined range on number of keys that a node can contain. So before inserting a key to node, we make sure that the node has extra space.

How to make sure that a node has space available for key before the key is inserted? We use an operation called splitChild() that is used to split a child of a node. See the following diagram to understand split. In the following diagram, child y of x is being split into two nodes y and z. Note that the splitChild operation moves a key up and this is the reason B-Trees grow up unlike BSTs which grow down.

[image: BTreeSplit]

As discussed above, to insert a new key, we go down from root to leaf. Before traversing down to a node, we first check if the node is full. If the node is full, we split it to create space. Following is complete algorithm.

Insertion

1) Initialize x as root.

2) While x is not leaf, do following

..a) Find the child of x that is going to to be traversed next. Let the child be y.

..b) If y is not full, change x to point to y.

..c) If y is full, split it and change x to point to one of the two parts of y. If k is smaller than mid key in y, then set x as first part of y. Else second part of y. When we split y, we move a key from y to its parent x.

3) The loop in step 2 stops when x is leaf. x must have space for 1 extra key as we have been splitting all nodes in advance. So simply insert k to x.

Note that the algorithm follows the Cormen book. It is actually a proactive insertion algorithm where before going down to a node, we split it if it is full. The advantage of splitting before is, we never traverse a node twice. If we don’t split a node before going down to it and split it only if new key is inserted (reactive), we may end up traversing all nodes again from leaf to root. This happens in cases when all nodes on the path from root to leaf are full. So when we come to the leaf node, we split it and move a key up. Moving a key up will cause a split in parent node (because parent was already full). This cascading effect never happens in this proactive insertion algorithm. There is a disadvantage of this proactive insertion though, we may do unnecessary splits.

Let us understand the algorithm with an example tree of minimum degree ‘t’ as 3 and a sequence of integers 10, 20, 30, 40, 50, 60, 70, 80 and 90 in an initially empty B-Tree.

Initially root is NULL. Let us first insert 10.

[image: Btree1]

Let us now insert 20, 30, 40 and 50. They all will be inserted in root because maximum number of keys a node can accommodate is 2*t – 1 which is 5.

[image: BTree2Ins]

Let us now insert 60. Since root node is full, it will first split into two, then 60 will be inserted into the appropriate child.

[image: BTreeIns3]

Let us now insert 70 and 80. These new keys will be inserted into the appropriate leaf without any split.

[image: BTreeIns4]

Let us now insert 90. This insertion will cause a split. The middle key will go up to the parent.

[image: BTreeIns6]

See this for more examples.

Following is C++ implementation of the above proactive algorithm.

// C++ program for B-Tree insertion
#include<iostream>
using namespace std;

// A BTree node
class BTreeNode
{
 int *keys; // An array of keys
 int t; // Minimum degree (defines the range for number of keys)
 BTreeNode **C; // An array of child pointers
 int n; // Current number of keys
 bool leaf; // Is true when node is leaf. Otherwise false
public:
 BTreeNode(int _t, bool _leaf); // Constructor

 // A utility function to insert a new key in the subtree rooted with
 // this node. The assumption is, the node must be non-full when this
 // function is called
 void insertNonFull(int k);

 // A utility function to split the child y of this node. i is index of y in
 // child array C[]. The Child y must be full when this function is called
 void splitChild(int i, BTreeNode *y);

 // A function to traverse all nodes in a subtree rooted with this node
 void traverse();

 // A function to search a key in subtree rooted with this node.
 BTreeNode *search(int k); // returns NULL if k is not present.

// Make BTree friend of this so that we can access private members of this
// class in BTree functions
friend class BTree;
};

// A BTree
class BTree
{
 BTreeNode *root; // Pointer to root node
 int t; // Minimum degree
public:
 // Constructor (Initializes tree as empty)
 BTree(int _t)
 { root = NULL; t = _t; }

 // function to traverse the tree
 void traverse()
 { if (root != NULL) root->traverse(); }

 // function to search a key in this tree
 BTreeNode* search(int k)
 { return (root == NULL)? NULL : root->search(k); }

 // The main function that inserts a new key in this B-Tree
 void insert(int k);
};

// Constructor for BTreeNode class
BTreeNode::BTreeNode(int t1, bool leaf1)
{
 // Copy the given minimum degree and leaf property
 t = t1;
 leaf = leaf1;

 // Allocate memory for maximum number of possible keys
 // and child pointers
 keys = new int[2*t-1];
 C = new BTreeNode *[2*t];

 // Initialize the number of keys as 0
 n = 0;
}

// Function to traverse all nodes in a subtree rooted with this node
void BTreeNode::traverse()
{
 // There are n keys and n+1 children, travers through n keys
 // and first n children
 int i;
 for (i = 0; i < n; i++)
 {
 // If this is not leaf, then before printing key[i],
 // traverse the subtree rooted with child C[i].
 if (leaf == false)
 C[i]->traverse();
 cout << " " << keys[i];
 }

 // Print the subtree rooted with last child
 if (leaf == false)
 C[i]->traverse();
}

// Function to search key k in subtree rooted with this node
BTreeNode *BTreeNode::search(int k)
{
 // Find the first key greater than or equal to k
 int i = 0;
 while (i < n && k > keys[i])
 i++;

 // If the found key is equal to k, return this node
 if (keys[i] == k)
 return this;

 // If key is not found here and this is a leaf node
 if (leaf == true)
 return NULL;

 // Go to the appropriate child
 return C[i]->search(k);
}

// The main function that inserts a new key in this B-Tree
void BTree::insert(int k)
{
 // If tree is empty
 if (root == NULL)
 {
 // Allocate memory for root
 root = new BTreeNode(t, true);
 root->keys[0] = k; // Insert key
 root->n = 1; // Update number of keys in root
 }
 else // If tree is not empty
 {
 // If root is full, then tree grows in height
 if (root->n == 2*t-1)
 {
 // Allocate memory for new root
 BTreeNode *s = new BTreeNode(t, false);

 // Make old root as child of new root
 s->C[0] = root;

 // Split the old root and move 1 key to the new root
 s->splitChild(0, root);

 // New root has two children now. Decide which of the
 // two children is going to have new key
 int i = 0;
 if (s->keys[0] < k)
 i++;
 s->C[i]->insertNonFull(k);

 // Change root
 root = s;
 }
 else // If root is not full, call insertNonFull for root
 root->insertNonFull(k);
 }
}

// A utility function to insert a new key in this node
// The assumption is, the node must be non-full when this
// function is called
void BTreeNode::insertNonFull(int k)
{
 // Initialize index as index of rightmost element
 int i = n-1;

 // If this is a leaf node
 if (leaf == true)
 {
 // The following loop does two things
 // a) Finds the location of new key to be inserted
 // b) Moves all greater keys to one place ahead
 while (i >= 0 && keys[i] > k)
 {
 keys[i+1] = keys[i];
 i--;
 }

 // Insert the new key at found location
 keys[i+1] = k;
 n = n+1;
 }
 else // If this node is not leaf
 {
 // Find the child which is going to have the new key
 while (i >= 0 && keys[i] > k)
 i--;

 // See if the found child is full
 if (C[i+1]->n == 2*t-1)
 {
 // If the child is full, then split it
 splitChild(i+1, C[i+1]);

 // After split, the middle key of C[i] goes up and
 // C[i] is splitted into two. See which of the two
 // is going to have the new key
 if (keys[i+1] < k)
 i++;
 }
 C[i+1]->insertNonFull(k);
 }
}

// A utility function to split the child y of this node
// Note that y must be full when this function is called
void BTreeNode::splitChild(int i, BTreeNode *y)
{
 // Create a new node which is going to store (t-1) keys
 // of y
 BTreeNode *z = new BTreeNode(y->t, y->leaf);
 z->n = t - 1;

 // Copy the last (t-1) keys of y to z
 for (int j = 0; j < t-1; j++)
 z->keys[j] = y->keys[j+t];

 // Copy the last t children of y to z
 if (y->leaf == false)
 {
 for (int j = 0; j < t; j++)
 z->C[j] = y->C[j+t];
 }

 // Reduce the number of keys in y
 y->n = t - 1;

 // Since this node is going to have a new child,
 // create space of new child
 for (int j = n; j >= i+1; j--)
 C[j+1] = C[j];

 // Link the new child to this node
 C[i+1] = z;

 // A key of y will move to this node. Find location of
 // new key and move all greater keys one space ahead
 for (int j = n-1; j >= i; j--)
 keys[j+1] = keys[j];

 // Copy the middle key of y to this node
 keys[i] = y->keys[t-1];

 // Increment count of keys in this node
 n = n + 1;
}

// Driver program to test above functions
int main()
{
 BTree t(3); // A B-Tree with minium degree 3
 t.insert(10);
 t.insert(20);
 t.insert(5);
 t.insert(6);
 t.insert(12);
 t.insert(30);
 t.insert(7);
 t.insert(17);

 cout << "Traversal of the constucted tree is ";
 t.traverse();

 int k = 6;
 (t.search(k) != NULL)? cout << "\nPresent" : cout << "\nNot Present";

 k = 15;
 (t.search(k) != NULL)? cout << "\nPresent" : cout << "\nNot Present";

 return 0;
}

Output:

Traversal of the constucted tree is 5 6 7 10 12 17 20 30
Present
Not Present

References:

Introduction to Algorithms 3rd Edition by Clifford Stein, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest

http://www.cs.utexas.edu/users/djimenez/utsa/cs3343/lecture17.html

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Advanced Data Structure
DBMS
 DBMS Indexing

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						B-Tree | Set 3 (Delete)

				
						

				
			It is recommended to refer following posts as prerequisite of this post.

B-Tree | Set 1 (Introduction)

B-Tree | Set 2 (Insert)

B-Tree is a type of a multi-way search tree. So, if you are not familiar with multi-way search trees in general, it is better to take a look at this video lecture from IIT-Delhi, before proceeding further. Once you get the basics of a multi-way search tree clear, B-Tree operations will be easier to understand.

Source of the following explanation and algorithm is Introduction to Algorithms 3rd Edition by Clifford Stein, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest

Deletion process:

Deletion from a B-tree is more complicated than insertion, because we can delete a key from any node-not just a leaf—and when we delete a key from an internal node, we will have to rearrange the node’s children.

 As in insertion, we must make sure the deletion doesn’t violate the B-tree properties. Just as we had to ensure that a node didn’t get too big due to insertion, we must ensure that a node doesn’t get too small during deletion (except that the root is allowed to have fewer than the minimum number t-1 of keys). Just as a simple insertion algorithm might have to back up if a node on the path to where the key was to be inserted was full, a simple approach to deletion might have to back up if a node (other than the root) along the path to where the key is to be deleted has the minimum number of keys.

 The deletion procedure deletes the key k from the subtree rooted at x. This procedure guarantees that whenever it calls itself recursively on a node x, the number of keys in x is at least the minimum degree t . Note that this condition requires one more key than the minimum required by the usual B-tree conditions, so that sometimes a key may have to be moved into a child node before recursion descends to that child. This strengthened condition allows us to delete a key from the tree in one downward pass without having to “back up” (with one exception, which we’ll explain). You should interpret the following specification for deletion from a B-tree with the understanding that if the root node x ever becomes an internal node having no keys (this situation can occur in cases 2c and 3b then we delete x, and x’s only child x.c1 becomes the new root of the tree, decreasing the height of the tree by one and preserving the property that the root of the tree contains at least one key (unless the tree is empty).

We sketch how deletion works with various cases of deleting keys from a B-tree.

1. If the key k is in node x and x is a leaf, delete the key k from x.

2. If the key k is in node x and x is an internal node, do the following.

 a) If the child y that precedes k in node x has at least t keys, then find the predecessor k0 of k in the sub-tree rooted at y. Recursively delete k0, and replace k by k0 in x. (We can find k0 and delete it in a single downward pass.)

 b) If y has fewer than t keys, then, symmetrically, examine the child z that follows k in node x. If z has at least t keys, then find the successor k0 of k in the subtree rooted at z. Recursively delete k0, and replace k by k0 in x. (We can find k0 and delete it in a single downward pass.)

 c) Otherwise, if both y and z have only t-1 keys, merge k and all of z into y, so that x loses both k and the pointer to z, and y now contains 2t-1 keys. Then free z and recursively delete k from y.

3. If the key k is not present in internal node x, determine the root x.c(i) of the appropriate subtree that must contain k, if k is in the tree at all. If x.c(i) has only t-1 keys, execute step 3a or 3b as necessary to guarantee that we descend to a node containing at least t keys. Then finish by recursing on the appropriate child of x.

 a) If x.c(i) has only t-1 keys but has an immediate sibling with at least t keys, give x.c(i) an extra key by moving a key from x down into x.c(i), moving a key from x.c(i) ’s immediate left or right sibling up into x, and moving the appropriate child pointer from the sibling into x.c(i).

 b) If x.c(i) and both of x.c(i)’s immediate siblings have t-1 keys, merge x.c(i) with one sibling, which involves moving a key from x down into the new merged node to become the median key for that node.

Since most of the keys in a B-tree are in the leaves, deletion operations are most often used to delete keys from leaves. The recursive delete procedure then acts in one downward pass through the tree, without having to back up. When deleting a key in an internal node, however, the procedure makes a downward pass through the tree but may have to return to the node from which the key was deleted to replace the key with its predecessor or successor (cases 2a and 2b).

The following figures explain the deletion process.

[image: BTreeDelet1]

[image: BTreeDelet2]

Implementation:

Following is C++ implementation of deletion process.

/* The following program performs deletion on a B-Tree. It contains functions
 specific for deletion along with all the other functions provided in the
 previous articles on B-Trees. See https://www.geeksforgeeks.org/b-tree-set-1-introduction-2/
 for previous article.

 The deletion function has been compartmentalized into 8 functions for ease
 of understanding and clarity

 The following functions are exclusive for deletion
 In class BTreeNode:
 1) remove
 2) removeFromLeaf
 3) removeFromNonLeaf
 4) getPred
 5) getSucc
 6) borrowFromPrev
 7) borrowFromNext
 8) merge
 9) findKey

 In class BTree:
 1) remove

 The removal of a key from a B-Tree is a fairly complicated process. The program handles
 all the 6 different cases that might arise while removing a key.

 Testing: The code has been tested using the B-Tree provided in the CLRS book(included
 in the main function) along with other cases.

 Reference: CLRS3 - Chapter 18 - (499-502)
 It is advised to read the material in CLRS before taking a look at the code. */

#include<iostream>
using namespace std;

// A BTree node
class BTreeNode
{
 int *keys; // An array of keys
 int t; // Minimum degree (defines the range for number of keys)
 BTreeNode **C; // An array of child pointers
 int n; // Current number of keys
 bool leaf; // Is true when node is leaf. Otherwise false

public:

 BTreeNode(int _t, bool _leaf); // Constructor

 // A function to traverse all nodes in a subtree rooted with this node
 void traverse();

 // A function to search a key in subtree rooted with this node.
 BTreeNode *search(int k); // returns NULL if k is not present.

 // A function that returns the index of the first key that is greater
 // or equal to k
 int findKey(int k);

 // A utility function to insert a new key in the subtree rooted with
 // this node. The assumption is, the node must be non-full when this
 // function is called
 void insertNonFull(int k);

 // A utility function to split the child y of this node. i is index
 // of y in child array C[]. The Child y must be full when this
 // function is called
 void splitChild(int i, BTreeNode *y);

 // A wrapper function to remove the key k in subtree rooted with
 // this node.
 void remove(int k);

 // A function to remove the key present in idx-th position in
 // this node which is a leaf
 void removeFromLeaf(int idx);

 // A function to remove the key present in idx-th position in
 // this node which is a non-leaf node
 void removeFromNonLeaf(int idx);

 // A function to get the predecessor of the key- where the key
 // is present in the idx-th position in the node
 int getPred(int idx);

 // A function to get the successor of the key- where the key
 // is present in the idx-th position in the node
 int getSucc(int idx);

 // A function to fill up the child node present in the idx-th
 // position in the C[] array if that child has less than t-1 keys
 void fill(int idx);

 // A function to borrow a key from the C[idx-1]-th node and place
 // it in C[idx]th node
 void borrowFromPrev(int idx);

 // A function to borrow a key from the C[idx+1]-th node and place it
 // in C[idx]th node
 void borrowFromNext(int idx);

 // A function to merge idx-th child of the node with (idx+1)th child of
 // the node
 void merge(int idx);

 // Make BTree friend of this so that we can access private members of
 // this class in BTree functions
 friend class BTree;
};

class BTree
{
 BTreeNode *root; // Pointer to root node
 int t; // Minimum degree
public:

 // Constructor (Initializes tree as empty)
 BTree(int _t)
 {
 root = NULL;
 t = _t;
 }

 void traverse()
 {
 if (root != NULL) root->traverse();
 }

 // function to search a key in this tree
 BTreeNode* search(int k)
 {
 return (root == NULL)? NULL : root->search(k);
 }

 // The main function that inserts a new key in this B-Tree
 void insert(int k);

 // The main function that removes a new key in thie B-Tree
 void remove(int k);

};

BTreeNode::BTreeNode(int t1, bool leaf1)
{
 // Copy the given minimum degree and leaf property
 t = t1;
 leaf = leaf1;

 // Allocate memory for maximum number of possible keys
 // and child pointers
 keys = new int[2*t-1];
 C = new BTreeNode *[2*t];

 // Initialize the number of keys as 0
 n = 0;
}

// A utility function that returns the index of the first key that is
// greater than or equal to k
int BTreeNode::findKey(int k)
{
 int idx=0;
 while (idx<n && keys[idx] < k)
 ++idx;
 return idx;
}

// A function to remove the key k from the sub-tree rooted with this node
void BTreeNode::remove(int k)
{
 int idx = findKey(k);

 // The key to be removed is present in this node
 if (idx < n && keys[idx] == k)
 {

 // If the node is a leaf node - removeFromLeaf is called
 // Otherwise, removeFromNonLeaf function is called
 if (leaf)
 removeFromLeaf(idx);
 else
 removeFromNonLeaf(idx);
 }
 else
 {

 // If this node is a leaf node, then the key is not present in tree
 if (leaf)
 {
 cout << "The key "<< k <<" is does not exist in the tree\n";
 return;
 }

 // The key to be removed is present in the sub-tree rooted with this node
 // The flag indicates whether the key is present in the sub-tree rooted
 // with the last child of this node
 bool flag = ((idx==n)? true : false);

 // If the child where the key is supposed to exist has less that t keys,
 // we fill that child
 if (C[idx]->n < t)
 fill(idx);

 // If the last child has been merged, it must have merged with the previous
 // child and so we recurse on the (idx-1)th child. Else, we recurse on the
 // (idx)th child which now has atleast t keys
 if (flag && idx > n)
 C[idx-1]->remove(k);
 else
 C[idx]->remove(k);
 }
 return;
}

// A function to remove the idx-th key from this node - which is a leaf node
void BTreeNode::removeFromLeaf (int idx)
{

 // Move all the keys after the idx-th pos one place backward
 for (int i=idx+1; i<n; ++i)
 keys[i-1] = keys[i];

 // Reduce the count of keys
 n--;

 return;
}

// A function to remove the idx-th key from this node - which is a non-leaf node
void BTreeNode::removeFromNonLeaf(int idx)
{

 int k = keys[idx];

 // If the child that precedes k (C[idx]) has atleast t keys,
 // find the predecessor 'pred' of k in the subtree rooted at
 // C[idx]. Replace k by pred. Recursively delete pred
 // in C[idx]
 if (C[idx]->n >= t)
 {
 int pred = getPred(idx);
 keys[idx] = pred;
 C[idx]->remove(pred);
 }

 // If the child C[idx] has less that t keys, examine C[idx+1].
 // If C[idx+1] has atleast t keys, find the successor 'succ' of k in
 // the subtree rooted at C[idx+1]
 // Replace k by succ
 // Recursively delete succ in C[idx+1]
 else if (C[idx+1]->n >= t)
 {
 int succ = getSucc(idx);
 keys[idx] = succ;
 C[idx+1]->remove(succ);
 }

 // If both C[idx] and C[idx+1] has less that t keys,merge k and all of C[idx+1]
 // into C[idx]
 // Now C[idx] contains 2t-1 keys
 // Free C[idx+1] and recursively delete k from C[idx]
 else
 {
 merge(idx);
 C[idx]->remove(k);
 }
 return;
}

// A function to get predecessor of keys[idx]
int BTreeNode::getPred(int idx)
{
 // Keep moving to the right most node until we reach a leaf
 BTreeNode *cur=C[idx];
 while (!cur->leaf)
 cur = cur->C[cur->n];

 // Return the last key of the leaf
 return cur->keys[cur->n-1];
}

int BTreeNode::getSucc(int idx)
{

 // Keep moving the left most node starting from C[idx+1] until we reach a leaf
 BTreeNode *cur = C[idx+1];
 while (!cur->leaf)
 cur = cur->C[0];

 // Return the first key of the leaf
 return cur->keys[0];
}

// A function to fill child C[idx] which has less than t-1 keys
void BTreeNode::fill(int idx)
{

 // If the previous child(C[idx-1]) has more than t-1 keys, borrow a key
 // from that child
 if (idx!=0 && C[idx-1]->n>=t)
 borrowFromPrev(idx);

 // If the next child(C[idx+1]) has more than t-1 keys, borrow a key
 // from that child
 else if (idx!=n && C[idx+1]->n>=t)
 borrowFromNext(idx);

 // Merge C[idx] with its sibling
 // If C[idx] is the last child, merge it with with its previous sibling
 // Otherwise merge it with its next sibling
 else
 {
 if (idx != n)
 merge(idx);
 else
 merge(idx-1);
 }
 return;
}

// A function to borrow a key from C[idx-1] and insert it
// into C[idx]
void BTreeNode::borrowFromPrev(int idx)
{

 BTreeNode *child=C[idx];
 BTreeNode *sibling=C[idx-1];

 // The last key from C[idx-1] goes up to the parent and key[idx-1]
 // from parent is inserted as the first key in C[idx]. Thus, the loses
 // sibling one key and child gains one key

 // Moving all key in C[idx] one step ahead
 for (int i=child->n-1; i>=0; --i)
 child->keys[i+1] = child->keys[i];

 // If C[idx] is not a leaf, move all its child pointers one step ahead
 if (!child->leaf)
 {
 for(int i=child->n; i>=0; --i)
 child->C[i+1] = child->C[i];
 }

 // Setting child's first key equal to keys[idx-1] from the current node
 child->keys[0] = keys[idx-1];

 // Moving sibling's last child as C[idx]'s first child
 if (!leaf)
 child->C[0] = sibling->C[sibling->n];

 // Moving the key from the sibling to the parent
 // This reduces the number of keys in the sibling
 keys[idx-1] = sibling->keys[sibling->n-1];

 child->n += 1;
 sibling->n -= 1;

 return;
}

// A function to borrow a key from the C[idx+1] and place
// it in C[idx]
void BTreeNode::borrowFromNext(int idx)
{

 BTreeNode *child=C[idx];
 BTreeNode *sibling=C[idx+1];

 // keys[idx] is inserted as the last key in C[idx]
 child->keys[(child->n)] = keys[idx];

 // Sibling's first child is inserted as the last child
 // into C[idx]
 if (!(child->leaf))
 child->C[(child->n)+1] = sibling->C[0];

 //The first key from sibling is inserted into keys[idx]
 keys[idx] = sibling->keys[0];

 // Moving all keys in sibling one step behind
 for (int i=1; i<sibling->n; ++i)
 sibling->keys[i-1] = sibling->keys[i];

 // Moving the child pointers one step behind
 if (!sibling->leaf)
 {
 for(int i=1; i<=sibling->n; ++i)
 sibling->C[i-1] = sibling->C[i];
 }

 // Increasing and decreasing the key count of C[idx] and C[idx+1]
 // respectively
 child->n += 1;
 sibling->n -= 1;

 return;
}

// A function to merge C[idx] with C[idx+1]
// C[idx+1] is freed after merging
void BTreeNode::merge(int idx)
{
 BTreeNode *child = C[idx];
 BTreeNode *sibling = C[idx+1];

 // Pulling a key from the current node and inserting it into (t-1)th
 // position of C[idx]
 child->keys[t-1] = keys[idx];

 // Copying the keys from C[idx+1] to C[idx] at the end
 for (int i=0; i<sibling->n; ++i)
 child->keys[i+t] = sibling->keys[i];

 // Copying the child pointers from C[idx+1] to C[idx]
 if (!child->leaf)
 {
 for(int i=0; i<=sibling->n; ++i)
 child->C[i+t] = sibling->C[i];
 }

 // Moving all keys after idx in the current node one step before -
 // to fill the gap created by moving keys[idx] to C[idx]
 for (int i=idx+1; i<n; ++i)
 keys[i-1] = keys[i];

 // Moving the child pointers after (idx+1) in the current node one
 // step before
 for (int i=idx+2; i<=n; ++i)
 C[i-1] = C[i];

 // Updating the key count of child and the current node
 child->n += sibling->n+1;
 n--;

 // Freeing the memory occupied by sibling
 delete(sibling);
 return;
}

// The main function that inserts a new key in this B-Tree
void BTree::insert(int k)
{
 // If tree is empty
 if (root == NULL)
 {
 // Allocate memory for root
 root = new BTreeNode(t, true);
 root->keys[0] = k; // Insert key
 root->n = 1; // Update number of keys in root
 }
 else // If tree is not empty
 {
 // If root is full, then tree grows in height
 if (root->n == 2*t-1)
 {
 // Allocate memory for new root
 BTreeNode *s = new BTreeNode(t, false);

 // Make old root as child of new root
 s->C[0] = root;

 // Split the old root and move 1 key to the new root
 s->splitChild(0, root);

 // New root has two children now. Decide which of the
 // two children is going to have new key
 int i = 0;
 if (s->keys[0] < k)
 i++;
 s->C[i]->insertNonFull(k);

 // Change root
 root = s;
 }
 else // If root is not full, call insertNonFull for root
 root->insertNonFull(k);
 }
}

// A utility function to insert a new key in this node
// The assumption is, the node must be non-full when this
// function is called
void BTreeNode::insertNonFull(int k)
{
 // Initialize index as index of rightmost element
 int i = n-1;

 // If this is a leaf node
 if (leaf == true)
 {
 // The following loop does two things
 // a) Finds the location of new key to be inserted
 // b) Moves all greater keys to one place ahead
 while (i >= 0 && keys[i] > k)
 {
 keys[i+1] = keys[i];
 i--;
 }

 // Insert the new key at found location
 keys[i+1] = k;
 n = n+1;
 }
 else // If this node is not leaf
 {
 // Find the child which is going to have the new key
 while (i >= 0 && keys[i] > k)
 i--;

 // See if the found child is full
 if (C[i+1]->n == 2*t-1)
 {
 // If the child is full, then split it
 splitChild(i+1, C[i+1]);

 // After split, the middle key of C[i] goes up and
 // C[i] is splitted into two. See which of the two
 // is going to have the new key
 if (keys[i+1] < k)
 i++;
 }
 C[i+1]->insertNonFull(k);
 }
}

// A utility function to split the child y of this node
// Note that y must be full when this function is called
void BTreeNode::splitChild(int i, BTreeNode *y)
{
 // Create a new node which is going to store (t-1) keys
 // of y
 BTreeNode *z = new BTreeNode(y->t, y->leaf);
 z->n = t - 1;

 // Copy the last (t-1) keys of y to z
 for (int j = 0; j < t-1; j++)
 z->keys[j] = y->keys[j+t];

 // Copy the last t children of y to z
 if (y->leaf == false)
 {
 for (int j = 0; j < t; j++)
 z->C[j] = y->C[j+t];
 }

 // Reduce the number of keys in y
 y->n = t - 1;

 // Since this node is going to have a new child,
 // create space of new child
 for (int j = n; j >= i+1; j--)
 C[j+1] = C[j];

 // Link the new child to this node
 C[i+1] = z;

 // A key of y will move to this node. Find location of
 // new key and move all greater keys one space ahead
 for (int j = n-1; j >= i; j--)
 keys[j+1] = keys[j];

 // Copy the middle key of y to this node
 keys[i] = y->keys[t-1];

 // Increment count of keys in this node
 n = n + 1;
}

// Function to traverse all nodes in a subtree rooted with this node
void BTreeNode::traverse()
{
 // There are n keys and n+1 children, travers through n keys
 // and first n children
 int i;
 for (i = 0; i < n; i++)
 {
 // If this is not leaf, then before printing key[i],
 // traverse the subtree rooted with child C[i].
 if (leaf == false)
 C[i]->traverse();
 cout << " " << keys[i];
 }

 // Print the subtree rooted with last child
 if (leaf == false)
 C[i]->traverse();
}

// Function to search key k in subtree rooted with this node
BTreeNode *BTreeNode::search(int k)
{
 // Find the first key greater than or equal to k
 int i = 0;
 while (i < n && k > keys[i])
 i++;

 // If the found key is equal to k, return this node
 if (keys[i] == k)
 return this;

 // If key is not found here and this is a leaf node
 if (leaf == true)
 return NULL;

 // Go to the appropriate child
 return C[i]->search(k);
}

void BTree::remove(int k)
{
 if (!root)
 {
 cout << "The tree is empty\n";
 return;
 }

 // Call the remove function for root
 root->remove(k);

 // If the root node has 0 keys, make its first child as the new root
 // if it has a child, otherwise set root as NULL
 if (root->n==0)
 {
 BTreeNode *tmp = root;
 if (root->leaf)
 root = NULL;
 else
 root = root->C[0];

 // Free the old root
 delete tmp;
 }
 return;
}

// Driver program to test above functions
int main()
{
 BTree t(3); // A B-Tree with minium degree 3

 t.insert(1);
 t.insert(3);
 t.insert(7);
 t.insert(10);
 t.insert(11);
 t.insert(13);
 t.insert(14);
 t.insert(15);
 t.insert(18);
 t.insert(16);
 t.insert(19);
 t.insert(24);
 t.insert(25);
 t.insert(26);
 t.insert(21);
 t.insert(4);
 t.insert(5);
 t.insert(20);
 t.insert(22);
 t.insert(2);
 t.insert(17);
 t.insert(12);
 t.insert(6);

 cout << "Traversal of tree constructed is\n";
 t.traverse();
 cout << endl;

 t.remove(6);
 cout << "Traversal of tree after removing 6\n";
 t.traverse();
 cout << endl;

 t.remove(13);
 cout << "Traversal of tree after removing 13\n";
 t.traverse();
 cout << endl;

 t.remove(7);
 cout << "Traversal of tree after removing 7\n";
 t.traverse();
 cout << endl;

 t.remove(4);
 cout << "Traversal of tree after removing 4\n";
 t.traverse();
 cout << endl;

 t.remove(2);
 cout << "Traversal of tree after removing 2\n";
 t.traverse();
 cout << endl;

 t.remove(16);
 cout << "Traversal of tree after removing 16\n";
 t.traverse();
 cout << endl;

 return 0;
}

Output:

Traversal of tree constructed is
 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26
Traversal of tree after removing 6
 1 2 3 4 5 7 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26
Traversal of tree after removing 13
 1 2 3 4 5 7 10 11 12 14 15 16 17 18 19 20 21 22 24 25 26
Traversal of tree after removing 7
 1 2 3 4 5 10 11 12 14 15 16 17 18 19 20 21 22 24 25 26
Traversal of tree after removing 4
 1 2 3 5 10 11 12 14 15 16 17 18 19 20 21 22 24 25 26
Traversal of tree after removing 2
 1 3 5 10 11 12 14 15 16 17 18 19 20 21 22 24 25 26
Traversal of tree after removing 16
 1 3 5 10 11 12 14 15 17 18 19 20 21 22 24 25 26

This article is contributed by Balasubramanian.N . Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Advanced Data Structure
DBMS
 DBMS Indexing

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Database File Indexing – B+ Tree (Introduction)

				
						

				
			In order, to implement dynamic multilevel indexing, B-tree and B+ tree are generally employed. The drawback of B-tree used for indexing, however is that it stores the data pointer (a pointer to the disk file block containing the key value), corresponding to a particular key value, along with that key value in the node of a B-tree. This technique, greatly reduces the number of entries that can be packed into a node of a B-tree, thereby contributing to the increase in the number of levels in the B-tree, hence increasing the search time of a record.

B+ tree eliminates the above drawback by storing data pointers only at the leaf nodes of the tree. Thus, the structure of leaf nodes of a B+ tree is quite different from the structure of internal nodes of the B+ tree. It may be noted here that, since data pointers are present only at the leaf nodes, the leaf nodes must necessarily store all the key values along with their corresponding data pointers to the disk file block, in order to access them. Moreover, the leaf nodes are linked to provide ordered access to the records. The leaf nodes, therefore form the first level of index, with the internal nodes forming the other levels of a multilevel index. Some of the key values of the leaf nodes also appear in the internal nodes, to simply act as a medium to control the searching of a record.

From the above discussion it is apparent that a B+ tree, unlike a B-tree has two orders, ‘a’ and ‘b’, one for the internal nodes and the other for the external (or leaf) nodes.

The structure of the internal nodes of a B+ tree of order ‘a’ is as follows:

	Each internal node is of the form :

<P1, K1, P2, K2, ….., Pc-1, Kc-1, Pc>

 where c <= a and each Pi is a tree pointer (i.e points to another node of the tree) and, each Ki is a key value (see diagram-I for reference).

	Every internal node has : K1 < K2 < …. < Kc-1

	For each search field values ‘X’ in the sub-tree pointed at by Pi, the following condition holds :

 Ki-1 < X <= Ki, for 1 < i < c and,

 Ki-1 < X, for i = c

(See diagram I for reference)

	Each internal nodes has at most ‘a’ tree pointers.

	The root node has, at least two tree pointers, while the other internal nodes have at least \ceil(a/2) tree pointers each.

	If any internal node has ‘c’ pointers, c <= a, then it has 'c – 1' key values.

[image:]

Diagram-I

The structure of the leaf nodes of a B+ tree of order ‘b’ is as follows:

	Each leaf node is of the form :

<<K1, D1>, <K2, D2>, ….., <Kc-1, Dc-1>, Pnext>

 where c <= b and each Di is a data pointer (i.e points to actual record in the disk whose key value is Ki or to a disk file block containing that record) and, each Ki is a key value and, Pnext points to next leaf node in the B+ tree (see diagram II for reference).

	Every leaf node has : K1 < K2 < …. < Kc-1, c <= b

	Each leaf node has at least \ceil(b/2) values.

	All leaf nodes are at same level.

[image:]

Diagram-II

Using the Pnext pointer it is viable to traverse all the leaf nodes, just like a linked list, thereby achieving ordered access to the records stored in the disk.

A Diagram of B+ Tree –

[image:]

Advantage –

A B+ tree with ‘l’ levels can store more entries in its internal nodes compared to a B-tree having the same ‘l’ levels. This accentuates the significant improvement made to the search time for any given key. Having lesser levels and presence of Pnext pointers imply that B+ tree are very quick and efficient in accessing records from disks.

SaagnikAdhikary

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Bitmap Indexing

				
						

				
			Bitmap Indexing is a special type of database indexing that uses bitmaps. This technique is used for huge databases, when column is of low cardinality and these columns are most frequently used in the query.

Need of Bitmap Indexing –

The need of Bitmap Indexing will be clear through the below given example :

For example, Let us say that a company holds an employee table with entries like EmpNo, EmpName, Job, New_Emp and salary. Let us assume that the employees are hired once in the year, therefore the table will be updated very less and will remain static most of the time. But the columns will be frequently used in queries to retrieve data like : No. of female employees in the company etc. In this case we need a file organization method whch should be fast enough to give quick results. But any of the traditional file organization method is not that fast, therefore we switch to a better method of storing and retrieving data known as Bitmap Indexing.

How Bitmap Indexing is done –

In the above example of table employee, we can see that the column New_Emp has only two values Yes and No based upon the fact that the employee is new to the company or not. Simlarily let us assume that the Job of the Employees is divided into 4 categories only i.e Manager, Analyst, Clerk and Salesman. Such columns are called columns with low cardinality. Even though these columns have less unique values, they can be queried very often.

Bit: Bit is a basic unit of information used in computing that can have only one of two values either 0 or 1 . The two values of a binary digit can also be interpreted as logical values true/false or yes/no.

In Bitmap Indexing these bits are used to represent the unique values in those low cardinality columns. This technique of storing the low cardinality rows in form of bits are called bitmap indices.

Continuing the Employee example, Given below is the Employee table :

[image:]

If New_Emp is the data to be indexed, the content of the bitmap index is shown as four(As we have four rows in the above table) columns under the heading Bitmap Indices. Here Bitmap Index “Yes” has value 1001 because row 1 and row four has value “Yes” in column New_Emp.

[image:]

In this case there are two such bitmaps, one for “New_Emp” Yes and one for “New_Emp” NO. It is easy to see that each bit in bitmap indices shows that whether a particular row refer to a person who is New to the company or not.

The above scenario is the simplest form of Bitmap Indexing. Most columns will have more distinct values. For example the column Job here will have only 4 unique values (As mentioned earlier). Variations on the bitmap index can effectively index this data as well. For Job column the bitmap Indexing is shown below:

[image:]

Now Suppose, If we want to find out the details for the Employee who is not new in the company and is a sales person then we will run the query:

 SELECT *
 FROM STUDENT
 WHERE New_Emp = "No" and Job = "Salesperson";

For this query the DBMS will search the bitmap index of both the columns and perform logical AND operation on those bits and find out the actual result:

[image:]

Here the result 0100 represents that the second column has to be retrieved as a result.

Bitmap Indexing in SQL – The syntax for creating bitmap index in sql is given below:

CREATE BITMAP INDEX Index_Name
 ON Table_Name (Column_Name);

For the above example of employee table, the bitmap index on column New_Emp will be created as follows:

CREATE BITMAP INDEX index_New_Emp
 ON Employee (New_Emp);

Advantages –

	Efficiency in terms of insertion deletion and updation

	Faster retrieval of records

Disadvantages –

	Only suitable for large tables

	Bitmap Indexing is time consuming

Smitha Dinesh Semwal

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Practice questions on B and B+ Trees

				
						

				
			In this article, we will discuss different types of problems based on B and B+ trees. Before understanding this article, you should understand basics of B and B+ trees (see: Introduction, Insert, Delete).

These are the types of questions asked in GATE based on B and B+ trees.

Type 1. Based on order and number of keys in B and B+ tree –

These are the few key points related to order and number of keys:

	A B/B+ tree with order p has maximum p pointers and hence maximum p children.

	A B/B+ tree with order p has minimum ceil(p/2) pointers and hence minimum ceil(p/2) children.

	A B/B+ tree with order p has maximum (p – 1) and minimum ceil(p/2) – 1 keys.

Que – 1. Consider a B+-tree in which the maximum number of keys in a node is 5. What is the minimum number of keys in any non-root node? (GATE CS 2010)

(A) 1

(B) 2

(C) 3

(D) 4

Solution: Assuming order of B+ tree as p, maximum number of keys will be (p – 1). As it is given that,

p – 1 = 5 => p = 6

Therefore, minimum number of keys:

ceil(p/2) – 1 = 2

Type 2. Based on inserting a key in B/B+ tree –

Given the order of B/B+ tree and keys to be inserted, it can be asked to find resultant B/B+ tree or height of B/B+ tree.

Que – 2. Consider the following 2-3-4 tree (i.e., B-tree with a minimum degree of two) in which each data item is a letter. The usual alphabetical ordering of letters is used in constructing the tree.

[image: 1]

What is the result of inserting G in the above tree?

(A)

[image: 2]

(B)

[image: 3]

(C)

[image: 4]

(D) None

Solution: Since the given B tree has minimum degree as 2, the maximum degree or order will be 2*2 = 4. Therefore, it will have at most 4 pointers or 3 keys.

We will traverse from root till leaf node where G is to be inserted. As G is less than L, it will be inserted in leaf node with elements BHI. After insertion of G, the leaf node in sorted order will be BGHI which leads to overflow. It will be split into two parts BG and I and middle element H will be sent to its parent node as:

 [image: 5]

Now root node with keys H, L, P, U is overflowed which leads to splitting of root node into two parts HL and U and middle element P will be root node which matches option B.

Note:

	There occur 2 splits for insertion of G.

	The height of B tree is 1 (path from root node to leaf node) before insertion of G. After insertion of G, the height of B tree reaches 2.

Type 3. Based on searching a key in B/B+ tree –

These are the key points related to searching in B/B+ trees:

	For searching a key in B tree, we start from root node and traverse until the key is found or leaf node is reached.

	For searching a key in B+ tree, we start from root node and traverse until leaf node is reached as every key is present in leaf nodes. Also, leaf nodes are connected to each other which help in faster access of data for range queries.

Que – 3. With reference to the B+ tree index of order 1 shown below, the minimum number of nodes (including the root node) that must be fetched in order to satisfy the following query: “Get all records with a search key greater than or equal to 7 and less than 15” is ____. (GATE-CS-2015)

 [image: 6]

(A) 4

(B) 5

(C) 6

(D) 7

Solution: First we will search for key equal to 7. For finding 7, we will start from root node and move to node with key 5 and then move to leaf node with keys 5 and 7. So for searching 7, we need to access 3 nodes.

Once 7 is searched, we can go to next leaf node containing keys 9 and 11. From this, we can go to leaf node with keys 13 and 15. As we want keys less than 15, we can stop here. Therefore total nodes accessed = 3(for searching 7) + 2(for finding keys less than 12) = 5.

 [image: 7]

Note: If we use B tree, then we need to search 7, 8, 9, 10, 11 individually due of which node access will be higher. Therefore, B+ tee is preferred for range queries.

Type 4. Count of node splitting in B/B+ tree –

Que – 4. A B-tree of order 4 is built from scratch by 10 successive insertions. What is the maximum number of node splitting operations that may take place? (GATE CS 2008)

(A) 3

(B) 4

(C) 5

(D) 6

Solution: A B tree having order 4 can have maximum 3 keys.

[image: 8]

[image: 9]

First 3 insertions will not have any split as shown in Figure (a).

On inserting 4th element, there will be 1 split as shown in Figure (b).

On inserting 5th element, there will be no split but we will insert in that leaf node having maximum element to produce more splits in further insertions as shown in Figure (c).

On inserting 6th element, there will be 1 split as shown in Figure (d).

On inserting 7th element, there will be no split but we will insert in that leaf node having maximum element to produce more splits in further insertions as shown in Figure (e).

On inserting 8th element, there will be 1 split as shown in Figure (f).

On inserting 9th element, there will be no split but we will insert in that leaf node having maximum element to produce more splits in further insertions as shown in Figure (g).

On inserting 10th element, there will be 2 split as shown in Figure (h).

Total number of splits = 5.

This article is contributed by Sonal Tuteja. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS
MCQ

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

File Organization

						File Organization – Set 1

				
						

				
			A database consist of a huge amount of data. The data is grouped within a table in RDBMS, and each table have related records. A user can see that the data is stored in form of tables, but in acutal this huge amount of data is stored in physical memory in form of files.

File – A file is named collection of related information that is recorded on secondary storage such as magnetic disks, magnetic tables and optical disks.

What is File Organization?

File Organization refers to the logical relationships among various records that constitute the file, particularly with respect to the means of identification and access to any specific record. In simple terms, Storing the files in certain order is called file Organization. File Structure refers to the format of the label and data blocks and of any logical control record.

Types of File Organizations –

Various methods have been introduced to Organize files. These particular methods have advantages and disadvantages on the basis of access or selection . Thus it is all upon the programmer to decide the best suited file Organization method according to his requirements.

Some types of File Organizations are :

	
Sequential File Organization

	
Heap File Organization

	
Hash File Organization

	
B+ Tree File Organization

	
Clustered File Organization

We will be discussing each of the file Organizations in further sets of this article along with differences and advantages/ disadvantages of each file Organization methods.

Sequential File Organization –

The easiest method for file Organization is Sequential method. In this method the the file are stored one after another in a sequential manner. There are two ways to implement this method:

	Pile File Method – This method is quite simple, in which we store the records in a sequence i.e one after other in the order in which they are inserted into the tables.

[image:]

Insertion of new record –

Let the R1, R3 and so on upto R5 and R4 be four records in the sequence. Here, records are nothing but a row in any table. Suppose a new record R2 has to be inserted in the sequence, then it is simply placed at the end of the file.

[image:]

	Sorted File Method –In this method, As the name itself suggest whenever a new record has to be inserted, it is always inserted in a sorted (ascending or descending) manner. Sorting of records may be based on any primary key or any other key.

[image:]

Insertion of new record –

Let us assume that there is a preexisting sorted sequence of four records R1, R3, and so on upto R7 and R8. Suppose a new record R2 has to be inserted in the sequence, then it will be inserted at the end of the file and then it will sort the sequence .

[image:]

Pros and Cons of Sequential File Organization –

Pros –

	Fast and efficient method for huge amount of data.

	Simple design.

	Files can be easily stored in magnetic tapes i.e cheaper storage mechanism.

Cons –

	Time wastage as we cannot jump on a particular record that is required, but we have to move in a sequential manner which takes our time.

	Sorted file method is inefficient as it takes time and space for sorting records.

Heap File Organization –

Heap File Organization works with data blocks. In this method records are inserted at the end of the file, into the data blocks. No Sorting or Ordering is required in this method. If a data block is full, the new record is stored in some other block, Here the other data block need not be the very next data block, but it can be any block in the memory. It is the responsibility of DBMS to store and manage the new records.

[image:]

Insertion of new record –

Suppose we have four records in the heap R1, R5, R6, R4 and R3 and suppose a new record R2 has to be inserted in the heap then, since the last data block i.e data block 3 is full it will be inserted in any of the database selected by the DBMS, lets say data block 1.

[image:]

If we want to search, delete or update data in heap file Organization the we will traverse the data from the beginning of the file till we get the requested record. Thus if the database is very huge, searching, deleting or updating the record will take a lot of time.

Pros and Cons of Heap File Organization –

Pros –

	Fetching and retrieving records is faster than sequential record but only in case of small databases.

	When there is a huge number of data needs to be loaded into the database at a time, then this method of file Organization is best suited.

Cons –

	Problem of unused memory blocks.

	Inefficient for larger databases.

Read next set : (DBMS File Organization-Set 2) | Hashing in DBMS

Smitha Dinesh Semwal

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						File Organization – Set 2 (Hashing in DBMS)

				
						

				
			Prerequisite – Hashing Data Structure, File Organization – Set 1

In database management system, When we want to retrieve a particular data, It becomes very inefficient to search all the index values and reach the desired data. In this situation, Hashing technique comes into picture.

Hashing is an efficient technique to directly search the location of desired data on the disk without using index structure. Data is stored at the data blocks whose address is generated by using hash function. The memory location where these records are stored is called as data block or data bucket.

Hash File Organisation :

	Data bucket – Data buckets are the memory locations where the records are stored. These buckets are also considered as Unit Of Storage.

	Hash Function – Hash function is a mapping function that maps all the set of search keys to actual record address. Generally, hash function uses primary key to generate the hash index – address of the data block. Hash function can be simple mathematical function to any complex mathematical function.

	Hash Index-The prefix of an entire hash value is taken as a hash index. Every hash index has a depth value to signify how many bits are used for computing a hash function. These bits can address 2n buckets. When all these bits are consumed ? then the depth value is increased linearly and twice the buckets are allocated.

Below given diagram clearly depicts how hash function work:

Hashing is further divided into two sub categories :

Static Hashing –

In static hashing, when a search-key value is provided, the hash function always computes the same address. For example, if we want to generate address for STUDENT_ID = 76 using mod (5) hash function, it always result in the same bucket address 4. There will not be any changes to the bucket address here. Hence number of data buckets in the memory for this static hashing remains constant throughout.

Operations –

	Insertion – When a new record is inserted into the table, The hash function h generate a bucket address for the new record based on its hash key K.

 Bucket address = h(K)

	Searching – When a record needs to be searched, The same hash function is used to retrieve the bucket address for the record. For Example, if we want to retrieve whole record for ID 76, and if the hash function is mod (5) on that ID, the bucket address generated would be 4. Then we will directly got to address 4 and retrieve the whole record for ID 104. Here ID acts as a hash key.

	Deletion – If we want to delete a record, Using the hash function we will first fetch the record which is supposed to be deleted. Then we will remove the records for that address in memory.

	Updation – The data record that needs to be updated is first searched using hash function, and then the data record is updated.

Now, If we want to insert some new records into the file But the data bucket address generated by the hash function is not empty or the data already exists in that address. This becomes a critical situation to handle. This situation in the static hashing is called bucket overflow.

How will we insert data in this case?

There are several methods provided to overcome this situation. Some commonly used methods are discussed below:

	Open Hashing –

In Open hashing method, next available data block is used to enter the new record, instead of overwriting older one. This method is also called linear probing.

For example, D3 is a new record which needs to be inserted , the hash function generates address as 105. But it is already full. So the system searches next available data bucket, 123 and assigns D3 to it.

	Closed hashing –

In Closed hashing method, a new data bucket is allocated with same address and is linked it after the full data bucket. This method is also known as overflow chaining.

For example, we have to insert a new record D3 into the tables. The static hash function generates the data bucket address as 105. But this bucket is full to store the new data. In this case is a new data bucket is added at the end of 105 data bucket and is linked to it. Then new record D3 is inserted into the new bucket.

	Quadratic probing :

Quadratic probing is very much similar to open hashing or linear probing. Here, The only difference between old and new bucket is linear. Quadratic function is used to determine the new bucket address.

	Double Hashing :

Double Hashing is another method similar to linear probing. Here the difference is fixed as in linear probing, but this fixed difference is calculated by using another hash function. That’s why the name is double hashing.

Dynamic Hashing –

The drawback of static hashing is that that it does not expand or shrink dynamically as the size of the database grows or shrinks. In Dynamic hashing, data buckets grows or shrinks (added or removed dynamically) as the records increases or decreases. Dynamic hashing is also known as extended hashing.

In dynamic hashing, the hash function is made to produce a large number of values. For Example, there are three data records D1, D2 and D3 . The hash function generates three addresses 1001, 0101 and 1010 respectively. This method of storing considers only part of this address – especially only first one bit to store the data. So it tries to load three of them at address 0 and 1.

But the problem is that No bucket address is remaining for D3. The bucket has to grow dynamically to accommodate D3. So it changes the address have 2 bits rather than 1 bit, and then it updates the existing data to have 2 bit address. Then it tries to accommodate D3.

Reference –

cse.iitb.ac.in

Smitha Dinesh Semwal

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS
Hash

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						File Organization – Set 3

				
						

				
			Prerequisite – File Organization – Set 1, File Organization-Set 2

B+ Tree File Organization –

B+ Tree, as the name suggests, It uses a tree like structure to store records in File. It uses the concept of Key indexing where the primary key is used to sort the records. For each primary key, an index value is generated and mapped with the record. An index of a record is the address of record in the file.

B+ Tree is very much similar to binary search tree, with the only difference that instead of just two children, it can have more than two. All the information is stored in leaf node and the intermediate nodes acts as pointer to the leaf nodes. The information in leaf nodes always remain a sorted sequential linked list.

[image:]

In the above diagram 56 is the root node which is also called the main node of the tree.

The intermediate nodes here, just consist the address of leaf nodes. They do not contain any actual record. Leaf nodes consist of the actual record. All leaf nodes are balanced.

Pros and Cons of B+ Tree File Organization –

Pros –

	Tree traversal is easier and faster.

	Searching becomes easy as all records are stored only in leaf nodes and are sorted sequential linked list.

	There is no restriction on B+ tree size. It may grows/shrink as the size of data increases/decreases.

Cons –

	Inefficient for static tables.

Cluster File Organization –

In cluster file organization, two or more related tables/records are stored withing same file known as clusters. These files will have two or more tables in the same data block and the key attributes which are used to map these table together are stored only once.

Thus it lowers the cost of searching and retrieving various records in different files as they are now combined and kept in a single cluster.

For example we have two tables or relation Employee and Department. These table are related to each other.

[image:]

Therefore these table are allowed to combine using a join operation and can be seen in a cluster file.

If we have to insert, update or delete any record we can directly do so. Data is sorted based on the primary key or the key with which searching is done. Cluster key is the key with which joining of the table is performed.

Types of Cluster File Organization – There are two ways to implement this method:

	Indexed Clusters – In Indexed clustering the records are group based on the cluster key and stored together. The above mentioned example of Emplotee and Department relationship is an example of Indexed Cluster where the records are based on the Department ID.

	Hash Clusters – This is very much similar to indexed cluster with only difference that instead of storing the records based on cluster key, we generate hash key value and store the records with same hash key value.

Smitha Dinesh Semwal

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS
GATE CS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

Advanced Topics

						RAID

				
						

				
			RAID, or “Redundant Arrays of Inexpensive Disks” is a technique which makes use of a combination of multiple disks instead of using a single disk for increased performance, data redundancy or both. The term was coined by David Patterson, Garth A. Gibson, and Randy Katz at the University of California, Berkeley in 1987.

Why data redundancy?

Data redundancy, although taking up extra space, adds to disk reliability. This means, in case of disk failure, if the same data is also backed up onto another disk, we can retrieve the data and go on with the operation. On the other hand, if the data is spread across just multiple disks without the RAID technique, the loss of a single disk can affect the entire data.

Key evaluation points for a RAID System

	Reliability: How many disk faults can the system tolerate?

	Availability: What fraction of the total session time is a system in uptime mode, i.e. how available is the system for actual use?

	Performance: How good is the response time? How high is the throughput (rate of processing work)? Note that performance contains a lot of parameters and not just the two.

	Capacity: Given a set of N disks each with B blocks, how much useful capacity is available to the user?

RAID is very transparent to the underlying system. This means, to the host system, it appears as a single big disk presenting itself as a linear array of blocks. This allows older technologies to be replaced by RAID without making too many changes in the existing code.

Different RAID levels

RAID-0 (Striping)

	Blocks are “striped” across disks.
[image: raid0]

In the figure, blocks “0,1,2,3” form a stripe.

	Instead of placing just one block into a disk at a time, we can work with two (or more) blocks placed into a disk before moving on to the next one.
[image: raid0_chunk]

Evaluation:

	Reliability: 0

There is no duplication of data. Hence, a block once lost cannot be recovered.

	Capacity: N*B

The entire space is being used to store data. Since there is no duplication, N disks each having B blocks are fully utilized.

RAID-1 (Mirroring)

	More than one copy of each block is stored in a separate disk. Thus, every block has two (or more) copies, lying on different disks.

[image: raid1]

The above figure shows a RAID-1 system with mirroring level 2.

	RAID 0 was unable to tolerate any disk failure. But RAID 1 is capable of reliability.

Evaluation:

Assume a RAID system with mirroring level 2.

	Reliability: 1 to N/2

1 disk failure can be handled for certain, because blocks of that disk would have duplicates on some other disk. If we are lucky enough and disks 0 and 2 fail, then again this can be handled as the blocks of these disks have duplicates on disks 1 and 3. So, in the best case, N/2 disk failures can be handled.

	Capacity: N*B/2

Only half the space is being used to store data. The other half is just a mirror to the already stored data.

RAID-4 (Block-Level Striping with Dedicated Parity)

	Instead of duplicating data, this adopts a parity-based approach.
[image: raid4]

In the figure, we can observe one column (disk) dedicated to parity.

	Parity is calculated using a simple XOR function. If the data bits are 0,0,0,1 the parity bit is XOR(0,0,0,1) = 1. If the data bits are 0,1,1,0 the parity bit is XOR(0,1,1,0) = 0. A simple approach is that even number of ones results in parity 0, and an odd number of ones results in parity 1.
[image: parityy]

Assume that in the above figure, C3 is lost due to some disk failure. Then, we can recompute the data bit stored in C3 by looking at the values of all the other columns and the parity bit. This allows us to recover lost data.

Evaluation:

	Reliability: 1

RAID-4 allows recovery of at most 1 disk failure (because of the way parity works). If more than one disk fails, there is no way to recover the data.

	Capacity: (N-1)*B

One disk in the system is reserved for storing the parity. Hence, (N-1) disks are made available for data storage, each disk having B blocks.

RAID-5 (Block-Level Striping with Distributed Parity)

	This is a slight modification of the RAID-4 system where the only difference is that the parity rotates among the drives.
[image: raid5]

In the figure, we can notice how the parity bit “rotates”.

	This was introduced to make the random write performance better.

Evaluation:

	Reliability: 1

RAID-5 allows recovery of at most 1 disk failure (because of the way parity works). If more than one disk fails, there is no way to recover the data. This is identical to RAID-4.

	Capacity: (N-1)*B

Overall, space equivalent to one disk is utilized in storing the parity. Hence, (N-1) disks are made available for data storage, each disk having B blocks.

What about the other RAID levels?

RAID-2 consists of bit-level striping using a Hamming Code parity. RAID-3 consists of byte-level striping with a dedicated parity. These two are less commonly used.

RAID-6 is a recent advancement which contains a distributed double parity, which involves block-level striping with 2 parity bits instead of just 1 distributed across all the disks. There are also hybrid RAIDs, which make use of more than one RAID levels nested one after the other, to fulfill specific requirements.

References:

	https://en.wikipedia.org/wiki/RAID

	Operating Systems in Three Easy Pieces by Remzi H. Arpaci-Dusseau.

This article is contributed by Anannya Uberoi. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Query Optimization

				
						

				
			

Query: A query is a request for information from a database.

Query Plans: A query plan (or query execution plan) is an ordered set of steps used to access data in a SQL relational database management system.

Query Optimization: A single query can be executed through different algorithms or re-written in different forms and structures. Hence, the question of query optimization comes into the picture – Which of these forms or pathways is the most optimal? The query optimizer attempts to determine the most efficient way to execute a given query by considering the possible query plans.

Importance: The goal of query optimization is to reduce the system resources required to fulfill a query, and ultimately provide the user with the correct result set faster.

	First, it provides the user with faster results, which makes the application seem faster to the user.

	Secondly, it allows the system to service more queries in the same amount of time, because each request takes less time than unoptimized queries.

	Thirdly, query optimization ultimately reduces the amount of wear on the hardware (e.g. disk drives), and allows the server to run more efficiently (e.g. lower power consumption, less memory usage).

There are broadly two ways a query can be optimized:

	Analyze and transform equivalent relational expressions: Try to minimize the tuple and column counts of the intermediate and final query processes (discussed here).

	Using different algorithms for each operation: These underlying algorithms determine how tuples are accessed from the data structures they are stored in, indexing, hashing, data retrieval and hence influence the number of disk and block accesses (discussed in query processing).

Analyze and transform equivalent relational expressions

Here, we shall talk about generating minimal equivalent expressions. To analyze equivalent expression, listed are a set of equivalence rules. These generate equivalent expressions for a query written in relational algebra. To optimize a query, we must convert the query into its equivalent form as long as an equivalence rule is satisfied.

	Conjunctive selection operations can be written as a sequence of individual selections. This is called a sigma-cascade.
[image: \sigma_{\theta_{1}\Lambda\theta_{2} }(E)=\sigma_{\theta_{1}}(\sigma_{\theta_{2}}(E))]

Explanation: Applying condition [image: \theta_{1}] intersection [image: \theta_{2}] is expensive. Instead, filter out tuples satisfying condition [image: \theta_{2}] (inner selection) and then apply condition [image: \theta_{1}] (outer selection) to the then resulting fewer tuples. This leaves us with less tuples to process the second time. This can be extended for two or more intersecting selections. Since we are breaking a single condition into a series of selections or cascades, it is called a “cascade”.

	Selection is commutative.

[image: \sigma_{\theta_{1}}(\sigma_{\theta_{2}}(E))=\sigma_{\theta_{2}}(\sigma_{\theta_{1}}(E))]

Explanation: [image: \sigma] condition is commutative in nature. This means, it does not matter whether we apply [image: \sigma_{1}] first or [image: \sigma_{2}] first. In practice, it is better and more optimal to apply that selection first which yields a fewer number of tuples. This saves time on our outer selection.

	All following projections can be omitted, only the first projection is required. This is called a pi-cascade.

[image: \pi_{L_{1}}(\pi_{L_{2}}(...(\pi_{L_{n}}(E))...)) = \pi_{L_{1}}(E)]

Explanation: A cascade or a series of projections is meaningless. This is because in the end, we are only selecting those columns which are specified in the last, or the outermost projection. Hence, it is better to collapse all the projections into just one i.e. the outermost projection.

	Selections on Cartesian Products can be re-written as Theta Joins.

	Equivalence 1

[image: \sigma_{\theta}(E_{1} \times E_{2}) = E_{1} \bowtie_{\theta} E_{2}]

Explanation: The cross product operation is known to be very expensive. This is because it matches each tuple of E1 (total m tuples) with each tuple of E2 (total n tuples). This yields m*n entries. If we apply a selection operation after that, we would have to scan through m*n entries to find the suitable tuples which satisfy the condition [image: \theta]. Instead of doing all of this, it is more optimal to use the Theta Join, a join specifically designed to select only those entries in the cross product which satisfy the Theta condition, without evaluating the entire cross product first.

	Equivalence 2

[image: \sigma_{\theta_{1}}(E_{1} \bowtie_{\theta_{2}} E_{2}) = E_{1} \bowtie_{\theta_{1} \Lambda \theta_{2}} E_{2}]

Explanation: Theta Join radically decreases the number of resulting tuples, so if we apply an intersection of both the join conditions i.e. [image: \theta_{1}] and [image: \theta_{2}] into the Theta Join itself, we get fewer scans to do. On the other hand, a [image: \sigma_{1}] condition outside unnecessarily increases the tuples to scan.

	Theta Joins are commutative.

[image: E_{1} \bowtie_{\theta} E_{2} = E_{2} \bowtie_{\theta} E_{1}]

Explanation: Theta Joins are commutative, and the query processing time depends to some extent which table is used as the outer loop and which one is used as the inner loop during the join process (based on the indexing structures and blocks).

	Join operations are associative.

	Natural Join

[image: (E_{1} \bowtie E_{2}) \bowtie E_{3} = E_{1} \bowtie (E_{2} \bowtie E_{3})]

Explanation: Joins are all commutative as well as associative, so one must join those two tables first which yield less number of entries, and then apply the other join.

	Theta Join

[image: (E_{1} \bowtie_{\theta_{1}} E_{2}) \bowtie_{\theta_{2} \Lambda \theta_{3}} E_{3} = E_{1} \bowtie_{\theta_{1} \Lambda \theta_{3}} (E_{2} \bowtie_{\theta_{2}} E_{3})]

Explanation: Theta Joins are associative in the above manner, where [image: \theta_{2}] involves attributes from only E2 and E3.

	Selection operation can be distributed.

	Equivalence 1

[image: \sigma_{\theta_{1}\Lambda\theta_{2}}(E_{1}\bowtie_{\theta}E_{2})=(\sigma_{\theta_{1}}(E_{1}))\bowtie_{\theta}(\sigma_{\theta_{2}}(E_{2}))]

Explanation: Applying a selection after doing the Theta Join causes all the tuples returned by the Theta Join to be monitored after the join. If this selection contains attributes from only E1, it is better to apply this selection to E1 (hence resulting in a fewer number of tuples) and then join it with E2.

	Equivalence 2

[image: \sigma_{\theta_{0}}(E_{1}\bowtie_{\theta}E_{2})=(\sigma_{\theta_{0}}(E_{1}))\bowtie_{\theta}E_{2}]

Explanation: This can be extended to two selection conditions, [image: \theta_{1}] and [image: \theta_{2}], where Theta1 contains the attributes of only E1 and [image: \theta_{2}] contains attributes of only E2. Hence, we can individually apply the selection criteria before joining, to drastically reduce the number of tuples joined.

	Projection distributes over the Theta Join.

	Equivalence 1

[image: \pi_{L_{1}\cup L_{2}}(E_{1}\bowtie_{\theta}E_{2})=(\pi_{L_{1}}(E_{1}))\bowtie_{\theta}(\pi_{L_{2}}(E_{2}))]

Explanation: The idea discussed for selection can be used for projection as well. Here, if L1 is a projection that involves columns of only E1, and L2 another projection that involves the columns of only E2, then it is better to individually apply the projections on both the tables before joining. This leaves us with a fewer number of columns on either side, hence contributing to an easier join.

	Equivalence 2

[image: \pi_{L_{1}\cup L_{2}}(E_{1}\bowtie_{\theta}E_{2})=\pi_{L_{1}\cup L_{2}}((\pi_{L_{1}\cup L_{3}}))\bowtie_{\theta}(\pi_{L_{2}\cup L_{4}}(E_{2})))]

Explanation: Here, when applying projections L1 and L2 on the join, where L1 contains columns of only E1 and L2 contains columns of only E2, we can introduce another column E3 (which is common between both the tables). Then, we can apply projections L1 and L2 on E1 and E2 respectively, along with the added column L3. L3 enables us to do the join.

	Union and Intersection are commutative.

[image: E_{1}\ \cup E_{2}\ =\ E_{2}\ \cup\ E_{1}]

[image: E_{1}\ \cap E_{2}\ =\ E_{2}\ \cap\ E_{1}]

Explanation: Union and intersection are both distributive; we can enclose any tables in parantheses according to requirement and ease of access.

	Union and Intersection are associative.

[image: (E_{1}\ \cup E_{2})\ \cup\ E_{3}=E_{1}\ \cup\ (E_{2}\ \cup\ E_{3})]

[image: (E_{1}\ \cap E_{2})\ \cap\ E_{3}=E_{1}\ \cap\ (E_{2}\ \cap\ E_{3})]

Explanation: Union and intersection are both distributive; we can enclose any tables in parantheses according to requirement and ease of access.

	Selection operation distributes over the union, intersection, and difference operations.

[image: \sigma_{P}(E_{1}\ -\ E_{2})=\sigma_{P}(E_{1})\ -\ \sigma_{P}(E_{2})]

Explanation: In set difference, we know that only those tuples are shown which belong to table E1 and do not belong to table E2. So, applying a selection condition on the entire set difference is equivalent to applying the selection condition on the individual tables and then applying set difference. This will reduce the number of comparisons in the set difference step.

	Projection operation distributes over the union operation.

[image: \pi_{L}(E_{1}\ \cup\ E_{2})=(\pi_{L}(E_{1}))\ \cup\ (\pi_{L}(E_{2}))]

Explanation: Applying individual projections before computing the union of E1 and E2 is more optimal than the left expression, i.e. applying projection after the union step.

Minimality

A set of equivalence rules is said to be minimal if no rule can be derived from any combination of the others. A query is said to be optimal when it is minimal.

Examples

Assume the following tables:

instructor(ID, name, dept_name, salary)
teaches(ID, course_id, sec_id, semester, year)
course(course_id, title, dept_name, credits)

Query 1: Find the names of all instructors in the Music department, along with the titles of the courses that they teach

[image: $\pi_{name, title}(\sigma_{dept_name=``Music"}(instructor \bowtie (teaches \bowtie \pi_{course_id, title}(course))))$]

Here, dept_name is a field of only the instructor table. Hence, we can select out the Music instructors before joining the tables, hence reducing query time.

Optimized Query:

Using rule 7a, and Performing the selection as early as possible reduces the size of the relation to be joined.

[image: $\pi_{name, title}((\sigma_{dept_name=``Music"(instructor)}\bowtie(teaches\bowtie\pi_{course_id, title}(course)))$]

Query 2: Find the names of all instructors in the Music department who have taught a course in 2009, along with the titles of the courses that they taught

[image: $\sigma_{dept_name=``CSE"}(\sigma_{year=2009}(instructor\bowtie teaches))$]

Optimized Query:

We can perform an “early selection”, hence the optimized query becomes:

[image: $\sigma_{dept_name=``CSE"}(instructor)\bowtie \sigma_{year=2009}(teaches)$]

This article is contributed by Anannya Uberoi. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		DBMS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						How to store a password in database?

				
						

				
			Most of the web applications require their users to authenticate themselves by asking them username and password. They compare the user supplied credentials with the data stored in their database and if the credentials match, the user is granted access. Sounds good! But what will happen if the database in which the website is storing your passwords gets compromised?

This article covers various techniques of storing passwords in the database.

According to naked security, 55% of the net users use the same password for most of the websites! It implies that if the website storing your password in plain text gets compromised, hacker is not only able to gain access of your account on that website but all your social media, email, forums etc accounts in which you are using the same password!

Well, many must be wondering that if the database is exposed to the hacker then what can be done? The hacker has access to all the information. WRONG!! There are many ways through which the process of retrieving password from the database can be made cumbersome for the hacker. Even then the developers tend to ignore the basic guidelines and store the passwords in plain text.There are over 30% websites which store your passwords in plain text (including some reputed sites also). If the website is storing your password in plain text then no matter how strong password you choose, you are not safe!

Storing plain text passwords in the database is a sin.

One might also think that if not plain text then we must encrypt the password and then store. It is also a terrible idea. Encryption functions provide one-one mapping between input and output and they are always reversible. If the hacker gets the key, he will be able to decrypt the passwords. The better way would be to use a one way cryptographic hash function. Hash function provides a many-one mapping between input and output and it is practically impossible to reverse a output. A good cryptographic hash function has lesser number of Collisions (i.e for different input values to the function it is difficult to get the same output). Collisions cannot be completely avoided because of pigeonhole principle. For hashing passwords we can assume that the hash function will generate unique output i.e for no two different passwords we will get a same hash value.

Some of the popular cryptographic hash functions are MD5 and SHA1. Instead of storing plain text password in the database one way is to store the hash of the password. You might be thinking that if we cannot get the actual password back from the hash then how are we going to verify the credentials that the user entered? It’s simple, apply the same hash function on the password which user entered and then compare it with the hash stored in the database. If both hashes match then the user is authenticated (since hash of same input will give same output). Now if the attacker is able to get database access, he will be only able to view the hashed output and not the actual password.

Using cryptographic hash function is better than storing plain text password.

Hackers are smart guys and once they came to know that developers are storing hashed passwords, they pre-computed hash of large number of words (from a popular word list or dictionary words). They created a table of words and their corresponding hashes. This table is known as Rainbow Table and it is readily available online. They can use this table to reverse lookup the actual password by comparing the hashes obtained from the database. Hence it is very important to have a strong password since the possibility of your password appearing in the word list becomes less.

[image: password-rainbow-table]

Simply storing the hash of a password is not going to help anymore. Processing power has increased drastically with the introduction of GPUs and CUDA, OpenCL libraries. A fast GPU can generate millions of MD5/SHA1 hashes in one second. Hence a hacker can easily generate large number of hashes by brute-forcing various possible combinations and can compare it with the hashes stored in the database to extract the actual password.

Even hashed passwords are not secure! Surprised?

Don’t loose hope! There is still something that developers can do to keep your passwords away from prying eyes of the hackers. Make the passwords delicious by adding some salt to them! Yeah, right..! Add a salt. A salt is random data that is concatenated with your password before sending it as the input of the hashing function.

For example :

If your password is abc and the salt is !ZaP0#8, the result of hashFunction(‘abc!ZaP0#8’) will be stored in the database instead of hashFunction(‘abc’).

Hence the rainbow table attacks won’t be effective now as the probability that rainbow table contains hash of ‘abc!ZaP0#8’ is meager (because generally rainbow tables are constructed from common words, dictionary words etc). Salt is not stored in the database and only present in the application configuration file which is not accessible to outer world. Gaining access to the source files is difficult than gaining access to the database.

The above salting method is static. We have one fixed salt for all the passwords. To authenticate the user, first concatenate the fixed salt to the user supplied input (password) and then pass the value to the hashing function and compare it with the value stored in the database. However this approach is still vulnerable to brute-force and if the attacker is able to get the static salt he can use the old attack methodology by concatenating the salt in every word.

A better approach would be to use a dynamic salt. For each user a new salt is generated by cryptographically strong random string generator. The password entered by user is concatenated with a random generated salt as well as a static salt. The concatenated string is passed as the input of hashing function. The result obtained is stored in database. Dynamic salt is required to be stored in the database since it is different for different users. When the user is to be authenticated, first the value of dynamic salt for that user is fetched from the database, it is concatenated with user supplied input and the static salt. The result is compared with the hash stored in the database.

If the database is compromised the hacker will not only get your password hashes but also the dynamic salt used. You might be wondering then what is the advantage of dynamic salt over static salt if attacker has dynamic salt? Even if the attacker has dynamic salt he needs to create a new hash-table (or rainbow table) for each and every user present in the database (as per dynamic salt). This is a lot more expensive operation than creating just one table for all the users.

The above approach is quite good to slow down a hacker. However it is recommended to use algorithms like bcrypt and scrypt instead of MD5/SHA1. Bcrypt is a hashing algorithm based on Blowfish. It requires you to specify a cost/work factor. The work factor makes the overall process slower and hence time taken to generate hash-table would increase multiple times.

References :

https://nakedsecurity.sophos.com/2013/11/20/serious-security-how-to-store-your-users-passwords-safely/

This article is contributed by Saket Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Advanced Computer Subject
DBMS
Hash
Technical Scripter
TechTips
 secure-coding

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Data Warehousing

				
						

				
			

Background

A Database Management System (DBMS) stores data in the form of tables, uses ER model and the goal is ACID properties. For example a DBMS of college has tables for students, faculty, etc.

A Data Warehouse is separate from DBMS, it stores huge amount of data, which is typically collected from multiple heterogeneous source like files, DBMS, etc. The goal is to produce statistical results that may help in decision makings. For example, a college might want to see quick different results, like how is the placement of CS students has improved over last 10 years, in terms of salaries, counts, etc.

Need of Data Warehouse

An ordinary Database can store MBs to GBs of data and that too for a specific purpose. For storing data of TB size, the storage shifted to Data Warehouse. Besides this, a transactional database doesn’t offer itself to analytics. To effectively perform analytics, an organization keeps a central Data Warehouse to closely study its business by organizing, understanding and using its historic data for taking strategic decisions and analyzing trends.

Data Warehouse vs DBMS

[image: dbvsdw]

Example Applications of Data Warehousing

Data Warehousing can be applicable anywhere where we have huge amount of data and we want to see statistical results that help in decision making.

	Social Media Websites: The social networking websites like Facebook, Twitter, Linkedin etc. are based on analyzing large data sets. These sites gather data related to members, groups, locations etc. and store it in a single central repository. Being large amount of data, Data Warehouse is needed for implementing the same.

	Banking : Most of the banks these days use warehouses to see spending patterns of account/card holders. They use this to provide them special offers, deals, etc.

	Government : Government uses data warehouse to store and analyze tax payment whch is used to detect tax thefts.

There can be many more applications in different sectors like E-Commerce, Telecommunication, Transportation Services, Marketing and Distribution, Healthcare and Retail.

Reference :

http://www3.cs.stonybrook.edu/~cse634/presentations/DataWarehousing-part-1.pdf

This article is contributed by Sheena Kohli. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Advanced Computer Subject
DBMS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Data Mining

				
						

				
			In general terms, “Mining” is the process of extraction of some valuable material from the earth e.g. coal mining, diamond mining etc. In the context of computer science, “Data Mining” refers to the extraction of useful information from a bulk of data or data warehouses. One can see that the term itself is a little bit confusing. In case of coal or diamond mining, the result of extraction process is coal or diamond. But in case of Data Mining, the result of extraction process is not data!! Instead, the result of data mining is the patterns and knowledge that we gain at the end of the extraction process. In that sense, Data Mining is also known as Knowledge Discovery or Knowledge Extraction.

Gregory Piatetsky-Shapiro coined the term “Knowledge Discovery in Databases” in 1989. However, the term ‘data mining’ became more popular in the business and press communities. Currently, Data Mining and Knowledge Discovery are used interchangeably.

Now a days, data mining is used in almost all the places where a large amount of data is stored and processed. For example, banks typically use ‘data mining’ to find out their prospective customers who could be interested in credit cards, personal loans or insurances as well. Since banks have the transaction details and detailed profiles of their customers, they analyze all this data and try to find out patterns which help them predict that certain customers could be interested in personal loans etc.

Main Purpose of Data Mining

Basically, the information gathered from Data Mining helps to predict hidden patterns, future trends and behaviors and allowing businesses to take decisions.

Technically, data mining is the computational process of analyzing data from different perspective, dimensions, angles and categorizing/summarizing it into meaningful information.

 Data Mining can be applied to any type of data e.g. Data Warehouses, Transactional Databases, Relational Databases, Multimedia Databases, Spatial Databases, Time-series Databases, World Wide Web.

Data Mining as a whole process

The whole process of Data Mining comprises of three main phases:

1. Data Pre-processing – Data cleaning, integration, selection and transformation takes place

2. Data Extraction – Occurrence of exact data mining

3. Data Evaluation and Presentation – Analyzing and presenting results

[image: datamining]

In future articles, we will cover the details of each of these phase.

Applications of Data Mining

1. Financial Analysis

2. Biological Analysis

3. Scientific Analysis

4. Intrusion Detection

5. Fraud Detection

6. Research Analysis

Real life example of Data Mining – Market Basket Analysis

Market Basket Analysis is a technique which gives the careful study of purchases done by a customer in a super market. The concept is basically applied to identify the items that are bought together by a customer. Say, if a person buys bread, what are the chances that he/she will also purchase butter. This analysis helps in promoting offers and deals by the companies. The same is done with the help of data mining.

This article is contributed by Sheena Kohli. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

					
		
		Advanced Computer Subject
DBMS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

DBMS practices questions

						Database Management Systems | Set 1

				
						

				
			Following questions have been asked in GATE CS exam.

1. Given the relations

employee (name, salary, deptno) and

department (deptno, deptname, address)

Which of the following queries cannot be expressed using the basic relational algebra

operations (U, -, x, π, σ, p)? (GATE CS 2000)

(a) Department address of every employee

(b) Employees whose name is the same as their department name

(c) The sum of all employees’ salaries

(d) All employees of a given department

Answer: (c)

Explanation:

The six basic operators of relational algebra are the selection(σ), the projection(π), the Cartesian product (x) (also called the cross product or cross join), the set union (U), the set difference (-), and the rename (p). These six operators are fundamental in the sense that none of them can be omitted without losing expressive power. Many other operators have been defined in terms of these six. Among the most important are set intersection, division, and the natural join, but aggregation is not possible with these basic relational algebra operations. So, we cannot run sum of all employees’ salaries with the six operations.

References:

http://en.wikipedia.org/wiki/Relational_algebra

http://faculty.ksu.edu.sa/zitouni/203%20Haseb%20%20Lecture%20Notes/Relional%20Algebra.pdf

2. Given the following relation instance.

x y z
1 4 2
1 5 3
1 6 3
3 2 2

Which of the following functional dependencies are satisfied by the instance? (GATE CS 2000)

(a) XY -> Z and Z -> Y

(b) YZ -> X and Y -> Z

(c) YZ -> X and X -> Z

(d) XZ -> Y and Y -> X

Answer: (b)

Explanation:

A functional dependency (FD) is a constraint between two sets of attributes in a relation from a database. A FD X->Y require that the value of X uniquely determines the value of Y where X and Y are set of attributes. FD is a generalization of the notion of a key.

Given that X, Y, and Z are sets of attributes in a relation R, one can derive several properties of functional dependencies. Among the most important are Armstrong’s axioms, which are used in database normalization:

* Subset Property (Axiom of Reflexivity): If Y is a subset of X, then X ? Y
* Augmentation (Axiom of Augmentation): If X -> Y, then XZ -> YZ
* Transitivity (Axiom of Transitivity): If X -> Y and Y -> Z, then X -> Z

From these rules, we can derive these secondary rules:

* Union: If X -> Y and X -> Z, then X -> YZ
* Decomposition: If X -> YZ, then X -> Y and X -> Z
* Pseudotransitivity: If X -> Y and YZ -> W, then XZ -> W

In the above question, Y uniquely determines X and Z, for a given value of Y you can easily find out values of X and Z.

So, Y -> X and Y -> Z hold for above schema.

From rule of augmentation we can say YZ->X. If we understand the notion of FD, we don’t need to apply axioms to find out which option is true, just by looking at the schema and options we can say that (b) is true.

References:

http://www.cse.iitb.ac.in/~sudarsha/db-book/slide-dir/ch7.pdf

http://en.wikipedia.org/wiki/Functional_dependency

3. Given relations r(w, x) and s(y, z), the result of

select distinct w, x

from r, s

is guaranteed to be same as r, provided (GATE CS 2000)

(a) r has no duplicates and s is non-empty

(b) r and s have no duplicates

(c) s has no duplicates and r is non-empty

(d) r and s have the same number of tuples

Answer: (a)

Explanation:

The query selects all attributes of r. Since we have distinct in query, result can be equal to r only if r doesn’t have duplicates.

If we do not give any attribute on which we want to join two tables, then the queries like above become equivalent to Cartesian product. Cartisian product of two sets will be empty if any of the two sets is empty. So, s should have atleast one record to get all rows of r.

4. In SQL, relations can contain null values, and comparisons with null values are treated as unknown. Suppose all comparisons with a null value are treated as false. Which of the

following pairs is not equivalent? (GATE CS 2000)

(a) x = 5, not (not (x = 5)

(b) x = 5, x > 4 and x < 6, where x is an integer

(c) x < 5, not(x = 5)

(d) None of the above

Answer (c)

Explanation:

It doesn’t need much explanation. For all values smaller than 5, x < 5 will always be true but x = 5 will be false.

5. Consider a schema R(A, B, C, D) and functional dependencies A -> B and C -> D. Then the decomposition of R into R1 (A, B) and R2(C, D) is (GATE CS 2001)

a)	dependency preserving and loss less join

b)	loss less join but not dependency preserving

c)	dependency preserving but not loss less join

d)	not dependency preserving and not loss less join

Answer: (c)

Explanation:

Dependency Preserving Decomposition:

Decomposition of R into R1 and R2 is a dependency preserving decomposition if closure of functional dependencies after decomposition is same as closure of of FDs before decomposition.

A simple way is to just check whether we can derive all the original FDs from the FDs present after decomposition.

In the above question R(A, B, C, D) is decomposed into R1 (A, B) and R2(C, D) and there are only two FDs A -> B and C -> D. So, the decomposition is dependency preserving

Lossless-Join Decomposition:

Decomposition of R into R1 and R2 is a lossless-join decomposition if at least one of the following functional dependencies are in F+ (Closure of functional dependencies)

 R1 ∩ R2 → R1
 OR
 R1 ∩ R2 → R2

In the above question R(A, B, C, D) is decomposed into R1 (A, B) and R2(C, D), and R1 ∩ R2 is empty. So, the decomposition is not lossless.

References:

http://www.cs.sfu.ca/CC/354/han/materia/notes/354notes-chapter6/node1.html

					
		
		DBMS
GATE CS
MCQ

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Database Management Systems | Set 2

				
						

				
			Following Questions have been asked in GATE 2012 exam.

1) Which of the following statements are TRUE about an SQL query?

P: An SQL query can contain a HAVING clause even if it does not a GROUP BY clause

Q: An SQL query can contain a HAVING clause only if it has a GROUP BY clause

R: All attributes used in the GROUP BY clause must appear in the SELECT clause

S: Not all attributes used in the GROUP BY clause need to apper in the SELECT clause

(A) P and R

(B) P and S

(C) Q and R

(D) Q and S

Answer (C)

According to standard SQL answer should be option (C) which is answer key given by GATE authority.

If we talk about different SQL implementations like MySQL, then option (B) is also right. But in question they seem to be talking about standard SQL not about implementation. For example below is a

P is correct in most of the implementations. HAVING clause can also be used with aggregate function. If we use a HAVING clause without a GROUP BY clause, the HAVING condition applies to all rows that satisfy the search condition. In other words, all rows that satisfy the search condition make up a single group. See this for more details.

S is correct . To verify S, try following queries in SQL.

CREATE TABLE temp
 (
 id INT,
 name VARCHAR(100)
);

INSERT INTO temp VALUES (1, "abc");
INSERT INTO temp VALUES (2, "abc");
INSERT INTO temp VALUES (3, "bcd");
INSERT INTO temp VALUES (4, "cde");

SELECT Count(*)
FROM temp
GROUP BY name;

Output:

count(*)

2
1
1

Alternative way –

Statement (P) “An SQL query can contain a HAVING clause even if it does not have a GROUP BY clause” is correct because Having caluse is applied after the aggregation phase and must be used if you want to filter aggregate results and Having doesn’t require Group By clause. A HAVING clause without a GROUP BY clause is valid and (arguably) useful syntax in Standard SQL. Consider this example, which is valid Standard SQL:

 SELECT 'T' AS result
 FROM Book
 HAVING MIN(NumberOfPages) < MAX(NumberOfPages);

Statement (S) "Not all attributes used in the GROUP BY clause need to appear in the SELECT clause" is correct but if we use Group By clause must, there are limitations on what we can put into the Select clause.

2) Given the basic ER and relational models, which of the following is INCORRECT?

(A) An attributes of an entity can have more that one value

(B) An attribute of an entity can be composite

(C) In a row of a relational table, an attribute can have more than one value

(D) In a row of a relational table, an attribute can have exactly one value or a NULL value

Answer (C)

The term 'entity' belongs to ER model and the term 'relational table' belongs to relational model.

A and B both are true. ER model supports both multivalued and composite attributes See this for more details.

(C) is false and (D) is true. In Relation model, an entry in relational table can can have exactly one value or a NULL.

3) Suppose (A, B) and (C,D) are two relation schemas. Let r1 and r2 be the corresponding relation instances. B is a foreign key that refers to C in r2. If data in r1 and r2 satisfy referential integrity constraints, which of the following is ALWAYS TRUE?

[image:]

Answer (A)

B is a foreign key in r1 that refers to C in r2. r1 and r2 satisfy referential integrity constraints. So every value that exists in column B of r1 must also exist in column C of r2.

4) Which of the following is TRUE?

(A) Every relation in 2NF is also in BCNF

(B) A relation R is in 3NF if every non-prime attribute of R is fully functionally dependent on every key of R

(C) Every relation in BCNF is also in 3NF

(D) No relation can be in both BCNF and 3NF

Answer (C)

BCNF is a stronger version 3NF. So every relation in BCNF will also be in 3NF.

Please see GATE Corner for all previous year paper/solutions/explanations, syllabus, important dates, notes, etc.

Please write comments if you find any of the answers/explanations incorrect, or you want to share more information about the topics discussed above

					
		
		DBMS
GATE CS
MCQ
 GATE-CS-2012

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Database Management Systems | Set 3

				
						

				
			Following Questions have been asked in GATE 2012 exam.

1) Consider the following transactions with data items P and Q initialized to zero:

T1: read (P) ;
 read (Q) ;
 if P = 0 then Q : = Q + 1 ;
 write (Q) ;
T2: read (Q) ;
 read (P) ;
 if Q = 0 then P : = P + 1 ;
 write (P) ;

Any non-serial interleaving of T1 and T2 for concurrent execution leads to

(A) A serializable schedule

(B) A schedule that is not conflict serializable

(C) A conflict serializable schedule

(D) A schedule for which a precedence graph cannot be drawn

Answer (B)

Two or more actions are said to be in conflict if:

1) The actions belong to different transactions.

2) At least one of the actions is a write operation.

3) The actions access the same object (read or write).

The schedules S1 and S2 are said to be conflict-equivalent if the following conditions are satisfied:

1) Both schedules S1 and S2 involve the same set of transactions (including ordering of actions within each transaction).

2) The order of each pair of conflicting actions in S1 and S2 are the same.

A schedule is said to be conflict-serializable when the schedule is conflict-equivalent to one or more serial schedules.

Source: Wiki Page for Schedule

In the given scenario, there are two possible serial schedules:

1) T1 followed by T2

2) T2 followed by T1.

In both of the serial schedules, one of the transactions reads the value written by other transaction as a first step. Therefore, any non-serial interleaving of T1 and T2 will not be conflict serializable.

2) Consider the following relations A, B, C. How many tuples does the result of the following relational algebra expression contain? Assume that the schema of A U B is the same as that of A.

[image:]

Table A
Id Name Age

12 Arun 60
15 Shreya 24
99 Rohit 11

Table B
Id Name Age

15 Shreya 24
25 Hari 40
98 Rohit 20
99 Rohit 11

Table C
Id Phone Area

10 2200 02
99 2100 01

(A) 7

(B) 4

(C) 5

(D) 9

Answer (A)

Result of AUB will be following table

Id Name Age

12 Arun 60
15 Shreya 24
99 Rohit 11
25 Hari 40
98 Rohit 20

The result of given relational algebra expression will be

Id Name Age Id Phone Area

12 Arun 60 10 2200 02
15 Shreya 24 10 2200 02
99 Rohit 11 10 2200 02
25 Hari 40 10 2200 02
98 Rohit 20 10 2200 02
99 Rohit 11 99 2100 01
98 Rohit 20 99 2100 01

3) Consider the above tables A, B and C. How many tuples does the result of the following SQL query contains?

SELECT A.id
FROM A
WHERE A.age > ALL (SELECT B.age
 FROM B
 WHERE B. name = "arun")

(A) 4

(B) 3

(C) 0

(D) 1

Answer (B)

The meaning of “ALL” is the A.Age should be greater than all the values returned by the subquery. There is no entry with name “arun” in table B. So the subquery will return NULL. If a subquery returns NULL, then the condition becomes true for all rows of A (See this for details). So all rows of table A are selected.

Please see GATE Corner for all previous year paper/solutions/explanations, syllabus, important dates, notes, etc.

Please write comments if you find any of the answers/explanations incorrect, or you want to share more information about the topics discussed above.

					
		
		DBMS
GATE CS
MCQ
 GATE-CS-2012

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Database Management Systems | Set 4

				
						

				
			Following Questions have been asked in GATE 2011 exam.

1. Consider a relational table with a single record for each registered student with the following attributes.

 1. Registration_Number:< Unique registration number for each registered student
 2. UID: Unique Identity number, unique at the national level for each citizen
 3. BankAccount_Number: Unique account number at the bank. A student can have multiple accounts or joint accounts. This attributes stores the primary account number
 4. Name: Name of the Student
 5. Hostel_Room: Room number of the hostel

Which of the following options is INCORRECT?

 (A) BankAccount_Number is a candidate key

 (B) Registration_Number can be a primary key

 (C) UID is a candidate key if all students are from the same country

 (D) If S is a superkey such that S ∩ UID is NULL then S ∪ UID is also a superkey

Answer (A)

A Candidate Key value must uniquely identify the corresponding row in table. BankAccount_Number is not a candidate key. As per the question “A student can have multiple accounts or joint accounts. This attributes stores the primary account number”. If two students have a joint account and if the joint account is their primary account, then BankAccount_Number value cannot uniquely identify a row.

2) Consider a relational table r with sufficient number of records, having attributes A1, A2,…, An and let 1 <= p="" <="n." two="" queries="" q1="" and="" q2="" are="" given="" below.<="" strong="">

[image:]

The database can be configured to do ordered indexing on Ap or hashing on Ap. Which of the following statements is TRUE?

(A) Ordered indexing will always outperform hashing for both queries

(B) Hashing will always outperform ordered indexing for both queries

(C) Hashing will outperform ordered indexing on Q1, but not on Q2

(D) Hashing will outperform ordered indexing on Q2, but not on Q1.

Answer (C)

If record are accessed for a particular value from table, hashing will do better. If records are accessed in a range of values, ordered indexing will perform better. See this for more details.

3) Database table by name Loan_Records is given below.

Borrower Bank_Manager Loan_Amount
 Ramesh Sunderajan 10000.00
 Suresh Ramgopal 5000.00
 Mahesh Sunderajan 7000.00

What is the output of the following SQL query?

SELECT Count(*)
FROM ((SELECT Borrower, Bank_Manager
 FROM Loan_Records) AS S
 NATURAL JOIN (SELECT Bank_Manager,
 Loan_Amount
 FROM Loan_Records) AS T);

(A) 3

(B) 9

(C) 5

(D) 6

Answer (C)

Following will be contents of temporary table S

Borrower Bank_Manager

 Ramesh Sunderajan
 Suresh Ramgqpal
 Mahesh Sunderjan

Following will be contents of temporary table T

Bank_Manager Loan_Amount

Sunderajan 10000.00
Ramgopal 5000.00
Sunderjan 7000.00

Following will be the result of natural join of above two tables. The key thing to note is that the natural join happens on column name with same name which is Bank_Manager in the above example. “Sunderjan” appears two times in Bank_Manager column, so their will be four entries with Bank_Manager as “Sunderjan”.

Borrower Bank_Manager Load_Amount

Ramesh Sunderajan 10000.00
Ramesh Sunderajan 7000.00
Suresh Ramgopal 5000.00
Mahesh Sunderajan 10000.00
Mahesh Sunderajan 7000.00

4) Consider a database table T containing two columns X and Y each of type integer. After the creation of the table, one record (X=1, Y=1) is inserted in the table.

 Let MX and My denote the respective maximum values of X and Y among all records in the table at any point in time. Using MX and MY, new records are inserted in the table 128 times with X and Y values being MX+1, 2*MY+1 respectively. It may be noted that each time after the insertion, values of MX and MY change. What will be the output of the following SQL query after the steps mentioned above are carried out?

SELECT Y FROM T WHERE X=7;

(A) 127

(B) 255

(C) 129

(D) 257

Answer (A)

 X Y

 1 1
 2 3
 3 7
 4 15
 5 31
 6 63
 7 127

Please see GATE Corner for all previous year paper/solutions/explanations, syllabus, important dates, notes, etc.

Please write comments if you find any of the answers/explanations incorrect, or you want to share more information about the topics discussed above.

					
		
		DBMS
GATE CS
MCQ
 GATE-CS-2011

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Database Management Systems | Set 5

				
						

				
			Following Questions have been asked in GATE CS 2010 exam.

1) A relational schema for a train reservation database is given below.

Passenger (pid, pname, age)

Reservation (pid, class, tid)

Table: Passenger
pid pname age

 0 Sachin 65
 1 Rahul 66
 2 Sourav 67
 3 Anil 69

Table : Reservation
pid class tid

 0 AC 8200
 1 AC 8201
 2 SC 8201
 5 AC 8203
 1 SC 8204
 3 AC 8202

What pids are returned by the following SQL query for the above instance of the tables?

SLECT pid
FROM Reservation ,
WHERE class ‘AC’ AND
 EXISTS (SELECT *
 FROM Passenger
 WHERE age > 65 AND
 Passenger. pid = Reservation.pid)

(A) 1, 0

(B) 1, 2

(C) 1, 3

(S) 1, 5

Answer (C)

When a subquery uses values from outer query, the subquery is called correlated subquery. The correlated subquery is evaluated once for each row processed by the outer query.

The outer query selects 4 entries (with pids as 0, 1, 5, 3) from Reservation table. Out of these selected entries, the subquery returns Non-Null values only for 1 and 3.

2) Which of the following concurrency control protocols ensure both conflict serialzability and freedom from deadlock?

I. 2-phase locking

II. Time-stamp ordering

(A) I only

(B) II only

(C) Both I and II

(D) Neither I nor II

Answer (B)

2 Phase Locking (2PL) is a concurrency control method that guarantees serializability. The protocol utilizes locks, applied by a transaction to data, which may block (interpreted as signals to stop) other transactions from accessing the same data during the transaction’s life. 2PL may be lead to deadlocks that result from the mutual blocking of two or more transactions. See the following situation, neither T3 nor T4 can make progress.

[image:]

Timestamp-based concurrency control algorithm is a non-lock concurrency control method. In Timestamp based method, deadlock cannot occur as no transaction ever waits.

3) Consider the following schedule for transactions T1, T2 and T3:

[image:]

Which one of the schedules below is the correct serialization of the above?

(A)T1 →T3 →T2

(B)T2 →T1 →T3

(C)T2 →T3 → T1

(D)T3 →T1 →T2

Answer (A)

T1 can complete before T2 and T3 as there is no conflict between Write(X) of T1 and the operations in T2 and T3 which occur before Write(X) of T1 in the above diagram.

T3 should can complete before T2 as the Read(Y) of T3 doesn’t conflict with Read(Y) of T2. Similarly, Write(X) of T3 doesn’t conflict with Read(Y) and Write(Y) operations of T2.

Another way to solve this question is to create a dependency graph and topologically sort the dependency graph. After topologically sorting, we can see the sequence T1, T3, T2.

4) Which of the following functional dependencies hold for relations R(A, B, C) and S(B, D, E):

B → A,

A → C

The relation R contains 200 tuples and the rel ation S contains 100 tuples. What is the

maximum number of tuples possible in the natural join R◊◊S (R natural join S)

(A) 100

(B) 200

(D) 300

(D) 2000

Answer (A)

From the given set of functional dependencies, it can be observed that B is a candidate key of R. So all 200 values of B must be unique in R. There is no functional dependency given for S. To get the maximum number of tuples in output, there can be two possibilities for S.

1) All 100 values of B in S are same and there is an entry in R that matches with this value. In this case, we get 100 tuples in output.

2) All 100 values of B in S are different and these values are present in R also. In this case also, we get 100 tuples.

Please see GATE Corner for all previous year paper/solutions/explanations, syllabus, important dates, notes, etc.

Please write comments if you find any of the answers/explanations incorrect, or you want to share more information about the topics discussed above.

					
		
		DBMS
GATE CS
MCQ
 GATE-CS-2010

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Database Management Systems | Set 6

				
						

				
			Following questions have been asked in GATE 2009 CS exam.

1) Consider two transactions T1 and T2, and four schedules S1, S2, S3, S4 of T1 and T2 as given below:

T1 = R1[X] W1[X] W1[Y]

T2 = R2[X] R2[Y] W2[Y]

S1 = R1[X] R2[X] R2[Y] W1[X] W1[Y] W2[Y]

S2 = R1[X] R2[X] R2[Y] W1[X] W2[Y] W1[Y]

S3 = R1[X] W1[X] R2[X] W1[Y] R2[Y] W2[Y]

S1 = R1[X] R2[Y]R2[X]W1[X] W1[Y] W2[Y]

Which of the above schedules are conflict-serializable?

(A) S1 and S2

(B) S2 and S3

(C) S3 only

(D) S4 only

Answer (B)

There can be two possible serial schedules T1 T2 and T2 T1. The serial schedule T1 T2 has the following sequence of operations

R1[X] W1[X] W1[Y] R2[X] R2[Y] W2[Y]

And the schedule T2 T1 has the following sequence of operations.

R2[X] R2[Y] W2[Y] R1[X] W1[X] W1[Y]

The Schedule S2 is conflict-equivalent to T2 T1 and S3 is conflict-equivalent to T1 T2.

2) Let R and S be relational schemes such that R={a,b,c} and S={c}. Now consider

the following queries on the database:

[image:]

IV) SELECT R.a, R.b
 FROM R,S
 WHERE R.c=S.c

Which of the above queries are equivalent?

(A) I and II

(B) I and III

(C) II and IV

(D) III and IV

Answer (A)

I and II describe the division operator in Relational Algebra and Tuple Relational Calculus respectively. See Page 3 of this and slide numbers 9,10 of this for more details.

3) Consider the following relational schema:

Suppliers(sid:integer, sname:string, city:string, street:string)
Parts(pid:integer, pname:string, color:string)
Catalog(sid:integer, pid:integer, cost:real)

Consider the following relational query on the above database:

SELECT S.sname
 FROM Suppliers S
 WHERE S.sid NOT IN (SELECT C.sid
 FROM Catalog C
 WHERE C.pid NOT IN (SELECT P.pid
 FROM Parts P
 WHERE P.color<> 'blue'))

Assume that relations corresponding to the above schema are not empty. Which one of the following is the correct interpretation of the above query?

(A) Find the names of all suppliers who have supplied a non-blue part.

(B) Find the names of all suppliers who have not supplied a non-blue part.

(C) Find the names of all suppliers who have supplied only blue parts.

(D) Find the names of all suppliers who have not supplied only blue parts.

Answer (A)

The subquery “SELECT P.pid FROM Parts P WHERE P.color<> ‘blue’” gives pids of parts which are not blue. The bigger subquery “SELECT C.sid FROM Catalog C WHERE C.pid NOT IN (SELECT P.pid FROM Parts P WHERE P.color<> ‘blue’)” gives sids of all those suppliers who have supplied blue parts. The complete query gives the names of all suppliers who have supplied a non-blue part

4) Assume that, in the suppliers relation above, each supplier and each street within a city has a unique name, and (sname, city) forms a candidate key. No other functional dependencies are implied other than those implied by primary and candidate keys. Which one of the following is TRUE about the above schema?

(A) The schema is in BCNF

(B) The schema is in 3NF but not in BCNF

(C) The schema is in 2NF but not in 3NF

(D) The schema is not in 2NF

Answer (A)

A relation is in BCNF if for every one of its dependencies X ? Y, at least one of the following conditions hold:

 X ? Y is a trivial functional dependency (Y ? X)
 X is a superkey for schema R

Since (sname, city) forms a candidate key, there is no non-tirvial dependency X ? Y where X is not a superkey

Please see GATE Corner for all previous year paper/solutions/explanations, syllabus, important dates, notes, etc.

Please write comments if you find any of the answers/explanations incorrect, or you want to share more information about the topics discussed above.

					
		
		DBMS
GATE CS
MCQ
 GATE-CS-2009

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Database Management Systems | Set 7

				
						

				
			Following questions have been asked in GATE 2008 CS exam.

1) Let R and S be two relations with the following schema

R (P,Q,R1,R2,R3)

S (P,Q,S1,S2)

Where {P, Q} is the key for both schemas. Which of the following queries are equivalent?

[image:]

(A) Only I and II

(B) Only I and III

(C) Only I, II and III

(D) Only I, III and IV

Answer (D)

In I, Ps from natural join of R and S are selected.

In III, all Ps from intersection of (P, Q) pairs present in R and S.

IV is also equivalent to III because (R – (R – S)) = R ∩ S.

II is not equivalent as it may also include Ps where Qs are not same in R and S.

2) Consider the following ER diagram.

[image:]

The minimum number of tables needed to represent M, N, P, R1, R2 is

(A) 2

(B) 3

(C) 4

(D) 5

Answer (B)

See http://geeksquiz.com/gate-gate-cs-2008-question-82/ for explanation.

3) Which of the following is a correct attribute set for one of the tables for the correct answer to the above question?

(A) {M1, M2, M3, P1}

(B) {M1, P1, N1, N2}

(C) {M1, P1, N1}

(D) {M1, P1}

Answer (A)

4) Consider the following relational schemes for a library database:

Book (Title, Author, Catalog_no, Publisher, Year, Price)

Collection (Title, Author, Catalog_no)

with in the following functional dependencies:

I. Title Author --> Catalog_no
II. Catalog_no --> Title Author Publisher Year
III. Publisher Title Year --> Price

Assume {Author, Title} is the key for both schemes. Which of the following statements is true?

(A) Both Book and Collection are in BCNF

(B) Both Book and Collection are in 3NF only

(C) Book is in 2NF and Collection is in 3NF

(D) Both Book and Collection are in 2NF only

Answer (C)

Table Collection is in BCNF as there is only one functional dependency “Title Author –> Catalog_no” and {Author, Title} is key for collection. Book is not in BCNF because Catalog_no is not a key and there is a functional dependency “Catalog_no –> Title Author Publisher Year”. Book is not in 3NF because non-prime attributes (Publisher Year) are transitively dependent on key [Title, Author]. Book is in 2NF because every non-prime attribute of the table is either dependent on the key [Title, Author], or on another non prime attribute.

Please see GATE Corner for all previous year paper/solutions/explanations, syllabus, important dates, notes, etc.

Please write comments if you find any of the answers/explanations incorrect, or you want to share more information about the topics discussed above.

					
		
		DBMS
GATE CS
MCQ
 GATE-CS-2008

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Database Management Systems | Set 8

				
						

				
			Following questions have been asked in GATE 2005 CS exam.

1) Which one of the following statements about normal forms is FALSE?

(a) BCNF is stricter than 3NF

(b) Lossless, dependency-preserving decomposition into 3NF is always possible

(c) Lossless, dependency-preserving decomposition into BCNF is always possible

(d) Any relation with two attributes is in BCNF

Answer (c)

It is not always possible to decompose a table in BCNF and preserve dependencies. For example, a set of functional dependencies {AB –> C, C –> B} cannot be decomposed in BCNF. See this for more details.

2) The following table has two attributes A and C where A is the primary key and C is the foreign key referencing A with on-delete cascade.

A C

2 4
3 4
4 3
5 2
7 2
9 5
6 4

The set of all tuples that must be additionally deleted to preserve referential integrity when the tuple (2,4) is deleted is:

(a) (3,4) and (6,4)

(b) (5,2) and (7,2)

(c) (5,2), (7,2) and (9,5)

(d) (3,4), (4,3) and (6,4)

Answer (C)

When (2,4) is deleted. Since C is a foreign key referring A with delete on cascade, all entries with value 2 in C must be deleted. So (5, 2) and (7, 2) are deleted. As a result of this 5 and 7 are deleted from A which causes (9, 5) to be deleted.

3) The relation book (title, price) contains the titles and prices of different books. Assuming that no two books have the same price, what does the following SQL query list?

 select title
 from book as B
 where (select count(*)
 from book as T
 where T.price > B.price) < 5

(a) Titles of the four most expensive books

(b) Title of the fifth most inexpensive book

(c) Title of the fifth most expensive book

(d) Titles of the five most expensive books

Answer (d)

When a subquery uses values from outer query, the subquery is called correlated subquery. The correlated subquery is evaluated once for each row processed by the outer query.

The outer query selects all titles from book table. For every selected book, the subquery returns count of those books which are more expensive than the selected book. The where clause of outer query will be true for 5 most expensive book. For example count (*) will be 0 for the most expensive book and count(*) will be 1 for second most expensive book.

Please see GATE Corner for all previous year paper/solutions/explanations, syllabus, important dates, notes, etc.

Please write comments if you find any of the answers/explanations incorrect, or you want to share more information about the topics discussed above.

					
		
		DBMS
GATE CS
MCQ
 GATE-CS-2005

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Database Management Systems | Set 9

				
						

				
			Following questions have been asked in GATE 2006 CS exam.

1) Consider the following log sequence of two transactions on a bank account, with initial balance 12000, that transfer 2000 to a mortgage payment and then apply a 5% interest.

 1. T1 start
 2. T1 B old=12000 new=10000
 3. T1 M old=0 new=2000
 4. T1 commit
 5. T2 start
 6. T2 B old=10000 new=10500
 7. T2 commit

Suppose the database system crashes just before log record 7 is written. When the system is restarted, which one statement is true of the recovery procedure?

(A) We must redo log record 6 to set B to 10500

(B) We must undo log record 6 to set B to 10000 and then redo log records 2 and 3

(C) We need not redo log records 2 and 3 because transaction T1 has committed

(D) We can apply redo and undo operations in arbitrary order because they are idempotent.

Answer (B)

2) Consider the relation enrolled (student, course) in which (student, course) is the primary key, and the relation paid (student, amount) where student is the primary key. Assume no null values and no foreign keys or integrity constraints. Given the following four queries:

Query1: select student from enrolled where student in (select student from paid)
Query2: select student from paid where student in (select student from enrolled)
Query3: select E.student from enrolled E, paid P where E.student = P.student
Query4: select student from paid where exists
 (select * from enrolled where enrolled.student = paid.student)

Which one of the following statements is correct?

(A) All queries return identical row sets for any database

(B) Query2 and Query4 return identical row sets for all databases but there exist databases for which Query1 and Query2 return different row sets.

(C) There exist databases for which Query3 returns strictly fewer rows than Query2.

(D) There exist databases for which Query4 will encounter an integrity violation at runtime.

Answer (B)

Take an example:

Table enrolled
student course

 abc c1
 xyz c1
 abc c2
 pqr c1

Table paid
student amount

 abc 20000
 xyz 10000
 rst 10000

Output of Query 1
 abc
 abc
 xyz

Output of Query 2
 abc
 xyz

Output of Query 3
 abc
 xyz

Output of Query 4
 abc
 xyz

Query 1 and Query 3 may return repetitive student values as “student” is not a key in relation enrolled, however query 2 and query 4 always return same row sets.

So, option (B) is correct.

3) Consider the relation enrolled(student, course) in which (student, course) is the primary key, and the relation paid(student, amount), where student is the primary key. Assume no null values and no foreign keys or integrity constraints. Assume that amounts 6000, 7000, 8000, 9000 and 10000 were each paid by 20% of the students. Consider these query plans (Plan 1 on left, Plan 2 on right) to “list all courses taken by students who have paid more than x”.

[image:]

A disk seek takes 4ms, disk data transfer bandwidth is 300 MB/s and checking a tuple to see if amount is greater than x takes 10 micro-seconds. Which of the following statements is correct?

(A) Plan 1 and Plan 2 will not output identical row sets for all databases.

(B) A course may be listed more than once in the output of Plan 1 for some databases

(C) For x = 5000, Plan 1 executes faster than Plan 2 for all databases.

(D) For x = 9000, Plan I executes slower than Plan 2 for all databases.

Answer (C)

Assuming that large enough memory is available for all data needed. Both plans need to load both tables courses and enrolled. So disk access time is same for both plans.

Plan 2 does lesser number of comparisons compared to plan 1.

1) Join operation will require more comparisons as the second table will have more rows in plan 2 compared to plan 1.

2) The joined table of two tables will will have more rows, so more comparisons are needed to find amounts greater than x.

4) The following functional dependencies are given:

AB → CD, AF → D, DE → F, C → G , F → E, G → A

Which one of the following options is false?

(A)CF+ = {ACDEFG}

(B)BG+ = {ABCDG}

(C)AF+ = {ACDEFG}

(D)AB+ = {ABCDFG}

Answer (C)

Closure of AF or AF+ = {ADEF}, closure of AF doesn’t contain C and G.

Option (D) also looks correct. AB+ = {ABCDG}, closure of AB doesn’t contain F.

Please see GATE Corner for all previous year paper/solutions/explanations, syllabus, important dates, notes, etc.

Please write comments if you find any of the answers/explanations incorrect, or you want to share more information about the topics discussed above.

					
		
		DBMS
GATE CS
MCQ
 GATE-CS-2006

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Database Management Systems | Set 10

				
						

				
			Following questions have been asked in GATE CS 2005 exam.

1) Let r be a relation instance with schema R = (A, B, C, D). We define r1 = ‘select A,B,C from r’ and r2 = ‘select A, D from r’. Let s = r1 * r2 where * denotes natural join. Given that the decomposition of r into r1 and r2 is lossy, which one of the following is TRUE?

(a) s is subset of r

(b) r U s = r

(c) r is a subset of s

(d) r * s = s

Answer (c)

Consider the following example with lossy decomposition of r into r1 and r2. We can see that r is a subset of s.

Table r
 A B C D

 1 10 100 1000
 1 20 200 1000
 1 20 200 1001

Table r1
 A B C

 1 10 100
 1 20 200

Table r2
 A D

 1 1000
 1 1001

Table s (natural join of r1 and r2)
 A B C D

 1 10 100 1000
 1 20 200 1000
 1 10 100 1001
 1 20 200 1001

2) Let E1 and E2 be two entities in an E/R diagram with simple single-valued attributes. R1 and R2 are two relationships between E1 and E2, where R1 is one-to-many and R2 is many-to-many. R1 and R2 do not have any attributes of their own. What is the minimum number of tables required to represent this situation in the relational model?

(a) 2

(b) 3

(c) 4

(d) 5

Answer (b)

See http://geeksquiz.com/gate-gate-cs-2005-question-75/ for explanation.

3) Consider a relation scheme R = (A, B, C, D, E, H) on which the following functional dependencies hold: {A–>�B, BC–>� D, E–>C, D–>A}. What are the candidate keys of R?

(a) AE, BE

(b) AE, BE, DE

(c) AEH, BEH, BCH

(d) AEH, BEH, DEH

Answer (d)

A set of attributes S is candidate key of relation R if the closure of S is all attributes of R and there is no subset of S whose closure is all attributes of R.

Closure of AEH, i.e. AEH+ = {ABCDEH}

Closure of BEH, i.e. BEH+ = {ABCDEH}

Closure of DEH, i.e. DEH+ = {ABCDEH}

Please see GATE Corner for all previous year paper/solutions/explanations, syllabus, important dates, notes, etc.

Please write comments if you find any of the answers/explanations incorrect, or you want to share more information about the topics discussed above.

					
		
		DBMS
GATE CS
MCQ
 GATE-CS-2005

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

						Database Management Systems | Set 11

				
						

				
			Following questions have been asked in GATE CS 2007 exam.

1) Information about a collection of students is given by the relation studinfo(studId, name, sex). The relation enroll(studId, courseId) gives which student has enrolled for (or taken) that course(s). Assume that every course is taken by at least one male and at least one female student. What does the following relational algebra expression represent?

[image:]

(A) Courses in which all the female students are enrolled.

(B) Courses in which a proper subset of female students are enrolled.

(C) Courses in which only male students are enrolled.

(D) None of the above

Answer (B)

The expression given in question does following steps in sequence.

a) Select studids of all female students and selects all courseids of all courses.

b) Then the query does a Cartesian Product of the above select two columns from different tables.

c) Finally it subtracts enroll table from the result of above step (b). This will remove all the (studid, courseid) pairs which are present in enroll table. If all female students have registered in a courses, then this course will not be there in the subtracted result.

So the complete expression returns courses in which a proper subset of female students are enrolled.

studinfo table
studid name sex

 1 a Male
 2 c Female
 3 d Female

enroll table
studid courseid

 1 1
 2 1
 3 1
 2 2
 3 3
 3 2

Result of step b
studid courseid

 2 1
 2 2
 2 3
 3 1
 3 2
 3 3

Result of step c
studid courseid

 2 3

2) Consider the relation employee(name, sex, supervisorName) with name as the key. supervisorName gives the name of the supervisor of the employee under consideration. What does the following Tuple Relational Calculus query produce?

[image:]

(A) Names of employees with a male supervisor.

(B) Names of employees with no immediate male subordinates.

(C) Names of employees with no immediate female subordinates.

(D) Names of employees with a female supervisor.

Answer (C)

The query selects all those employees whose immediate subordinate is “male”. In other words, it selects names of employees with no immediate female subordinates

3) Consider the table employee(empId, name, department, salary) and the two queries Q1 ,Q2 below. Assuming that department 5 has more than one employee, and we want to find the employees who get higher salary than anyone in the department 5, which one of the statements is TRUE for any arbitrary employee table?

Q1 : Select e.empId
 From employee e
 Where not exists
 (Select * From employee s where s.department = “5” and
 s.salary >=e.salary)
Q2 : Select e.empId
 From employee e
 Where e.salary > Any
 (Select distinct salary From employee s Where s.department = “5”)

(A) Q1 is the correct query

(B) Q2 is the correct query

(C) Both Q1 and Q2 produce the same answer.

(D) Neither Q1 nor Q2 is the correct query

Answer (B)

Let the employee(empId, name, department, salary) have the following instance.

empId name department salary

——————————————–

e1 ——- A——– 1———10000

e2 ——-B ——- 5 ———5000

e3 ——-C ——- 5———-7000

e4 ——-D ——- 2———-2000

e5 ——-E ——- 3———-6000

Now the actual result should contain empId : e1 , e3 and e5 (because they have salary greater than anyone employee in the department ‘5’)

——————————————————–

Now Q1 :

Note : EXISTS(empty set) gives FALSE, and NOT EXISTS(empty set) gives TRUE.

Select e.empId

From employee e

Where not exists

(Select * From employee s where s.department = “5” and

s.salary >=e.salary)

Q1 will result only empId e1.

———————————————————

whereas Q2 :

Select e.empId

From employee e

Where e.salary > Any

(Select distinct salary From employee s Where s.department = “5”)

Q2 will result empId e1, e3 and e5.

——————————————————–

Hence Q2 is the correct query.

4) Which one of the following statements if FALSE?

(A) Any relation with two attributes is in BCNF

(B) A relation in which every key has only one attribute is in 2NF

(C) A prime attribute can be transitively dependent on a key in a 3 NF relation.

(D) A prime attribute can be transitively dependent on a key in a BCNF relation.

Answer (D)

5) Consider the following schedules involving two transactions. Which one of the following statements is TRUE?

[image:]

(A) Both S1 and S2 are conflict serializable.

(B) S1 is conflict serializable and S2 is not conflict serializable.

(C) S1 is not conflict serializable and S2 is conflict serializable.

(D) Both S1 and S2 are not conflict serializable.

Answer (C)

S1 is not conflict serializable, but S2 is conflict serializable

Schedule S1
 T1 T2

 r1(X)
 r1(Y)
 r2(X)
 r2(Y)
 w2(Y)
 w1(X)
The schedule is neither conflict equivalent to T1T2, nor T2T1.

Schedule S2
 T1 T2

 r1(X)
 r2(X)
 r2(Y)
 w2(Y)
 r1(Y)
 w1(X)
The schedule is conflict equivalent to T2T1.

Please write comments if you find any of the answers/explanations incorrect, or you want to share more information about the topics discussed above

					
		
		DBMS
GATE CS
MCQ
 GATE-CS-2007

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

Quick Links

						Last Minute Notes – DBMS

				
						

				
			See Last Minute Notes on all subjects here.

We will discuss the important key points useful for GATE exams in summarized form. For details you may refer this.

E-R Diagram: The most common asked questions in ER diagram is minimum number of tables required for a given ER diagram. Generally, following criteria are used:

	Cardinality
	Minimum No. of tables

	1:1 cardinality with partial participation of both entities
	2

	1:1 cardinality with total participation of atleast 1 entity
	1

	1:n cardinality
	2

	m:n cardinality
	3

Note: This is a general observation. Special cases need to be taken care. We may need extra table if attribute of a relationship can’t be moved to any entity side.

Keys of a relation: There are various types of keys in a relation which are:

	Candidate Key: The minimal set of attributes which can determine a tuple uniquely. There can be more than 1 candidate key of a relation and its proper subset can’t determine tuple uniquely and it can’t be NULL.

	Super Key: The set of attributes which can determine a tuple uniquely. A candidate key is always a super key but vice versa is not true.

	Primary Key and Alternate Key: Among various candidate keys, one key is taken primary key and others are alternate keys.

Normal Forms

	First Normal Form: A relation is in first normal form if it does not contain any multi-valued or composite attribute.

	Second Normal Form: A relation is in second normal form if it does not contain any partial dependency. A dependency is called partial dependency if any proper subset of candidate key determines non-prime (which are not part of candidate key) attribute.

	Third Normal Form: A relation is in third normal form if it does not contain any transitive dependency. For a relation to be in Third Normal Form, either LHS of FD should be super key or RHS should be prime attribute.

	Boyce-Codd Normal Form: A relation is in Boyce-Codd Normal Form if LHS of every FD is super key. The relationship between Normal Forms can be represented as: 1NF⊃2NF⊃3NF⊃BCNF

Relational Algebra: Procedural language with basic and extended operators.

	Basic Operator
	Semantic

	σ (Selection)
	Select rows based on given condition

	∏ (Projection)
	Project some columns

	X (Cross Product)
	Cross product of relations, returns m*n rows where m and n are number of rows in R1 and R2 respectively.

	U (Union)
	Return those tuples which are either in R1 or in R2. Max no. of rows returned = m+n andMin no. of rows returned = max(m,n)

	– (Minus)
	R1-R2 returns those tuples which are in R1 but not in R2. Max no. of rows returned = m and Min no. of rows returned = m-n

	ρ (Rename)
	Renaming a relation to other relation.

	Extended Operator
	Semantic

	∩ (Intersection)
	Returns those tuples which are in both R1 and R2. Max no. of rows returned = min(m,n) and Min no. of rows returned = 0

	
⋈c (Conditional Join)

	Selection from two or more tables based on some condition (Cross product followed by selection)

	
⋈c(Equi Join)

	It is a special case of conditional join when only equality condition is applied between attributes.

	
⋈(Natural Join)

	In natural join, equality condition on common attributes hold and duplicate attributes are removed by default. Note: Natural Join is equivalent to cross product if two relations have no attribute in common and natural join of a relation R with itself will return R only.

	
/(Division Operator)

	Division operator A/B will return those tuples in A which is associated with every tuple of B.Note:Attributes of B should be proper subset of attributes of A. The attributes in A/B will be Attributes of A- Attribute of B.

SQL: As opposed to Relational Algebra, SQL is a non-procedural language.

	Operator
	Meaning

	Select
	Selects columns from a relation or set of relations.Note: As opposed to Relational Algebra, it may give duplicate tuples for repeated value of an attribute.

	From
	From is used to give input as relation or set of relations from which data needs to be selected.

	where
	Where is used to give condition to be used to filter tuples

	Group By
	Group By is used to group the tuples based on some attribute or set of attributes like counting the no. of students group by department.

	Aggregate functions
	Find the aggregated value of an attribute. Used mostly with group by. e.g.; count, sum, min max. select count(*) from student group by dept_idNote: we can select only those columns which are part of group by.

	Nested Queried
	When one query is a part of other query. Solving nested queries questions can be learnt in http://quiz.geeksforgeeks.org/nested-queries-sql/

Conflict serializable and Conflict Equivalent: A schedule is conflict serializable if it is conflict equivalent to a serial schedule.

Checking for Conflict Serializability

To check whether a schedule is conflict serializable or not, find all conflicting operations pairs of a schedule and draw precedence graph (For all conflicting operation pair, an edge from Ti to Tj if one operation of conflicting pair is from Ti and other from Tj and operation of Ti occurs before Tj in schedule). If graph does not contain cycle, the schedule is conflict serializable else it is not conflict serializable.

Schedules are said to be conflict equivalent if 1 schedule can be converted into another by swapping non conflicting operations.

Note: Two phase locking protocol produce conflict serializable schedule but may suffer from deadlock. On the other hand, Time-Stamp based protocols are free from deadlock yet produce conflict serializable schedule.

View Serializable and View Equivalence: Two schedules S1 and S2 are said to be view-equivalent if all conditions are satisfied for all objects:

	
If the transaction Ti in S1 reads an initial value for object X, in S2 also, Ti must read the initial value of X.

	
If the transaction Ti in S1 reads the value written by transaction Tj in S1 for object X, same should be done in S2.

	
If the transaction Ti in S1 is the final transaction to write the value for an object X, in S2 also, Ti must write the final value of X.

A schedule is view serializable if it is view equivalent to any serial schedule.

Irrecoverable Schedules: For a transaction pair < Ti, Tj >, if Tj is reading the value updated by Ti and Tj is committed before commit of Ti, the schedule will be irrecoverable.

Recoverable Schedules: For a transaction pair < Ti, Tj >, if Tj is reading the value updated by Ti and Tj is committed after commit of Ti, the schedule will be recoverable.

Cascadeless Recoverable Schedules: For a transaction pair < Ti, Tj >, if value updated by Ti is read by Tj only after commit of Ti, the schedule will be cascadeless recoverable.

Strict Recoverable: For a transaction pair < Ti, Tj >, if value updated by Ti is read or written by Tj only after commit of Ti, the schedule will be strict recoverable. The relationship between them can be represented as:

Strict ⊂ Cascadeless Recoverable ⊂ recoverable ⊂ all schedules

File structures :

Primary Index : A primary index is an ordered file, records of fixed length with two fields. First field is same as primary key as data file and second field is a pointer to data block, where the key is available.

The average number of block accesses using index = log2 Bi + 1, where Bi = number of index blocks.

 Clustering Index : Clustering index is created on data file whose records are physically ordered on a non-key field (called Clustering field).

 Secondary Index : Secondary index provides secondary means of accessing a file for which primary access already exists.

 Number of index entries = Number of records

 B Trees :

At every level , we have Key and Data Pointer and data pointer points to either block or record.

Properties of B-Trees :

Root of B-tree can have children between 2 and P, where P is Order of tree.

Order of tree – Maximum number of children a node can have.

Internal node can have children between ⌈ P/2 ⌉ and P

Internal node can have keys between ⌈ P/2 ⌉ – 1 and P-1

 B+ Trees :

In B+ trees structure of leaf and non-leaf are different, so their order is. Order of non-leaf will be higher as compared to leaf nodes.

Searching time will be less in B+ tress, since it doesn’t have record pointers in non-leaf because of which depth will decrease.

This article has been contributed by Sonal Tuteja.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

					
		
		DBMS

 	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	

OEBPS/Images/2e339bdf104ea78830c4b43ceaa8ec50.jpg
ORIGINAL
DATABASE

NO
SERVER REPLICATION

OEBPS/Images/6ff4c8fc3f37faeb3a91575cbe92380f.jpg
S~
c e
D
D E
E F

-

Sparse Index

OEBPS/Images/976c15e5c2d8a91a1bdcf0f2ffa2c068.jpg
(El NEQ)NEg :El D(](EQ DQEg)

OEBPS/Images/475c26efa02e7b84241a0eb790453028.jpg

OEBPS/Images/dfe50ec04188204754d1351a36a5eff2.jpg
Student Elective Course

OEBPS/Images/7bfa7da4ea57c5c240de460073839cd6.jpg
(El UEQ) U E3:E1 U (EQ U Eg)

OEBPS/Images/1ec9d22e791d11720a409e151b4aab8f.jpg

OEBPS/Images/351c86da512e9b698016f83e8422e431.jpg
L s (1) - Trs (Trs(r) X S -Mrss (1)
IL {tftemrs (1) Vue (Ives (u=v[s]rt=v[R-S])}
I {ttemrs ()2 Vver(Juesu=v[s]rt=v[R-S])}

OEBPS/Images/2d7869caa5ba7825d0341439b8a9d41d.jpg

OEBPS/Images/73a168c76eba5e647d18b46a19b9bfda.jpg

OEBPS/Images/2bd4e59bfdabc280611590d849ff2c14.jpg
I X Eo9 = L9 Xg £

OEBPS/Images/2aa520e976d0f676057f2ea83907ccb4.jpg
a9 — (39

OEBPS/Images/dfc33a25bf6ab27c203c799079886715.jpg
R1 | R2|R3| =------ R7 | R8
Starting of The End of The
File File

OEBPS/Images/6a162bf676318b593e9cea613456249a.jpg
RL 189

= 199

R6

Ra T67
77

143
5]

OEBPS/Images/6a0ac9475a6d83e54e306deb99e9dbee.jpg
Dense Index

OEBPS/Images/3e20fa1c675245f5a997fea84fe8e925.jpg

OEBPS/Images/046721e900a6e43d849f38aaf1deb77c.jpg
O dept_name=“C SE” (instructor) b oyeqr=2009 (teaches)

OEBPS/Images/04d4fc4d0451fb5a74e6a3b0d6802d3f.jpg
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

OEBPS/Images/594aed6a39d7aa90f2bfa3cea096e8be.jpg

OEBPS/Images/34eac968f58a75f2c859b03fe87b7d80.jpg

OEBPS/Images/6afbb9aa895b16c45d8c925691322b38.jpg

OEBPS/Images/7258679b924d6b7b1c1588e860dd89f3.jpg

OEBPS/Images/d211d9f390cadf38f6169d2284c35c7d.jpg

OEBPS/Images/29d0d5938f66912764bf13d47c0f93ec.jpg
T1 T2
Read (X)
Read(Y)
Read(Y)
Write (Y)
Write (X)
Write(X)
Read (X)

Write (X)

OEBPS/Images/6b0d75a89994505c4c1a7fb4b1f7463d.jpg
Transformation

Data Pre-processing Data Mining Data Evaluation &
Presentation

OEBPS/Images/187aa334b4ccefe2a17c2aa2c6ee9817.jpg

OEBPS/Images/80e3cf13e90c291ffe7b749b024d4a73.jpg

OEBPS/Images/1ef7aa959f02bb0683d3660c1f17a3fe.jpg
ransaction T1 Transaction T2

request request

OEBPS/Images/14a27ab88c3bf41fc2d0dfefd7295947.jpg
——{pn]

OEBPS/Images/58c1564724e55f6b7fdcd7e332ab76c9.jpg
U= Sotof 2. Schedules

sTRICT 201

1GOROUS 2.PL

OEBPS/Images/c810bc63800601463a91dcf422619888.jpg

OEBPS/Images/a5311d4a49b7f6c916fb7d89f70282db.jpg

OEBPS/Images/92dddc3e4346b148681850b607127070.jpg
Student

OEBPS/Images/f2ae935806526af7f85ff9486e992173.jpg
%)

OEBPS/Images/0157db2acaf569af0626f240050f37f6.jpg

OEBPS/Images/d623d53a833bc336d8bdd8cbf1657ae3.jpg
E1 UE2 = EQUEl

OEBPS/Images/91839c43b50375ab8e00a14285344927.jpg
Insert 10

10

OEBPS/Images/f8aaa07432f4c744156f2b003bfcd538.jpg

OEBPS/Images/1755bb96194c8af6890bd2cc7cd83993.jpg
3 4 6
3 5 7
10 12 14
11 13 15

OEBPS/Images/bba5a17be8b412f6c9eaed67f5287cbc.jpg
(A) Mg (1) =T (ry)

(B) Mc (ry) = Mg (ry)

=Tc(r)
(D) Mg (r)-T¢ () 2@

(C) Mg (ry)

OEBPS/Images/1defd3f345025030b461e08a23f292ff.jpg
STUDENT

STUD_NAME | STUD_PHONE | STUD_STATE | STUD_COUNT | STUD_AG
RY E

RAM 9716271721 | Haryana ndia 20

RAM 9898291281 | Punjab Tndia 15

SUIT 7898251981 | Rajsthan Tndia 18

SURESH Punjab Tndia 21

Table 1

OEBPS/Images/5a2c0cc164292e7fcaa59b09a7e089eb.jpg
a1 — 3139

OEBPS/Images/7672e5ec4f49c2f4824b1d42c854445f.jpg
R1 , [LEY) [— R5| R4
Starting of The End of the
File

File

R2

New record

OEBPS/Images/d1c37ec0adbb21333151f99ebed8bedb.jpg
Student

OEBPS/Images/edad47aa55a7037da396fe27cebf5cfb.jpg
h(D1)->1001
h(D2)->0101
h(D3)->1010

D1

D2

00

D3

01

10

1"

OEBPS/Images/da2f298cb7c1dd3024c0cfda151c6997.jpg

OEBPS/Images/bd26a3539cd223048fd3195d64447ce7.jpg

OEBPS/Images/061bfc3e31a327e63b70f741950b4597.jpg
Conceptual Design

Logical Design
Physical Design

OEBPS/Images/34f347d3e1a3ea493bfc292c87be76c2.jpg
/ARCHAR(14)
ARCHAR2(13)

OEBPS/Images/b71b15bbb1dc78a9872608f4914a3ab5.jpg
(£ D9, E2) bgongs B3 = Eq D<gag, (B2 g, E3)

OEBPS/Images/71fadf7234b362b0bea8705f7b8f81a8.jpg
(AUB) b<u1g,40 v creets €

OEBPS/Images/4f318193064b2dc688fd0d5dd0f8157d.jpg

OEBPS/Images/50d707c8596463667c5269f61371af48.jpg

OEBPS/Images/9fdd77f722d0111c92253f8bd50495a8.jpg

OEBPS/Images/bad15116ffe1653eda21f8f317f9c516.jpg
Tname,title((Tdept name=“Music” (instructor)
Teourse.id title (course)))

(teaches

D

OEBPS/Images/c006d36b781265ba78f7765a1452ddd7.jpg

OEBPS/Images/3db5684c812e22af3dc1a7024e2438bc.jpg
Tname,title(Tdept name=“Music” (1nstructor > (teaches
Teourse id title (course))))

OEBPS/Images/04dc8b19700b4a831ddd638c3502ff89.jpg
| [Orderl.Prod_Id(p(Orderl, Order) X Order1.Prod_Id =
Order2.Prod_Id and Orderl.Agent_Id # Order2.Agent_Id and Orderl.Order_Month =
Order2.Order_Month p(Order2, Order)))

OEBPS/Images/f446ec1bf88dadfa9a00eba9275eb745.jpg
Case 1: S.B has 100 distinct values and each of these
values maich to R.B

1. 1.

200 100|

In this case, every value of B in S will match to a
value of B in R. So natural join will have 100 tuples

Case 2: S.B has 1 values and this values maich to R.B

200 v |
In this case, every value of B in S will malch toa
value of B in R. So natural join will have 100 tuples.

Case 3: S.B has 100 distinct values and none of this.
values maich to R.B

1 201

202

200 300

In this case, no value of B in S will match to a value
of B in R. So natural join will have 0 tuples.

Case 4: S.B has 1 value and it does not match to

1

300

200 300

OEBPS/Images/25e9d3c0abe23ffbf57ac432a99d94a7.jpg
09, (L1 D<g, Eo) = E1 g pap, E9

OEBPS/Images/3967a5dadf7adbe35514f38c0027400c.jpg
(F)™

OEBPS/Images/97affeea34a18ef430c64c0cb541be07.jpg
Bitmap Index for "NO" — 0111

AND
BitmapIndexfor __, g100
Salesperson

Result — 0100

OEBPS/Images/9406d2ccdc0c9ab0d52965a08f4ebabb.jpg

OEBPS/Images/4c9a4f120ca25188c8bb3ae0af739a82.jpg
10, 20, 30

Figure - (1) Figure - (g)

Figure - (h)

OEBPS/Images/a5ada734fef4738a130b5377337566bd.jpg

OEBPS/Images/8655989a0a7822d3e1c419407cec9fb9.jpg
Before: X : 500 | ¥:200
Transaction T
1 ™
Read (X) Read (Y)
X:=Xx-100 Y:=Y+100
Write (X) Write (v)
‘After: X : 400 V300

OEBPS/Images/e23da9ec1c85e826932ce360eaf58de9.jpg
FD2

FD2]

FD1

FD1

FD1_]

FD2

FD1—FD2

OEBPS/Images/bc23c4a6e30d4a70bdb7958623967ddc.jpg
a1 — 3

OEBPS/Images/f3e2d152417c1562e199d0e11c548625.jpg

OEBPS/Images/8e0850d2219889117b947ff122070b9b.jpg
1S : Intention Shared X : Exclusive
IX : Intention Exclusive SIX : Shared & Intention Exclusive
S :Shared

OEBPS/Images/72e1318d0dbbb8e32306909881ff10e0.jpg
X Functionaility of splitChild()
1, 50,100 200

X
50 ,80 300 200

y
55 70 80 85 90

T T2 T3 T4 15 T6

T1 T2 13 T4 T5 T6

OEBPS/Images/86b6504d005b4566dc372340d9751059.jpg

OEBPS/Images/a2fb0e5d7ee288799edb7a523d9a38ec.jpg

OEBPS/Images/61797fc2b4b4e54959565634f8930672.jpg
101

102

103

104

105

g/

O[NNI (O |~ |WN[—=

OEBPS/Images/56b5887a42a4c875c577f07f52db5d5c.jpg
STUDENT

STUD_NO | STUD_NAME | STUD_PHONE | STUD_STATE | STUD_COUNT | STUD_AG.
RY E
1 RAM 5716271721 | Haryana ndia 20
2 RAM 5898291281 | Punjab Tndia 9
3 SUTT 7898291981 | Rajsthan Tndia 18
) SURESH Punjab Tndia 21
Table 1
STUDENT_COURSE

STUD_NO COURSE_NO COURSE_NAME

1 ct DBMS

2 [&) Computer Networks

1 [&) Computer Networks

Table 2

OEBPS/Images/d08016583b89dcb6ad7ab98f7cd50073.jpg

OEBPS/Images/1a872bd76353a1d83ad55780f974cf4b.jpg
R(A); A=5000
A=A-100; | A=4000
WA); A=4000
R(A);
[A=A+500; A=4000
WA); A=4500
[Failure Point|
Commit;
Commit;

OEBPS/Images/bbc102430c169605d4622450e08f6cbd.jpg
Data

Search Key Reference

Structure of an index

OEBPS/Images/2a723188b3d6c70d707def818c0a83dc.jpg
=2 =

R) l><1 1, (S)

00

(nw pQ(R)

22 (9))

OEBPS/Images/6232a6891a338ddb1e5d93ae58a82f6e.jpg
> .

Figure - (2) Figure - (b) Figure - ()

.04

Figure - (d) Figure - (&)

OEBPS/Images/e225310b536ac3b80885c208e1c4e6e1.jpg
Empo Empame| Job |New_Emp| Salary
1 | Aice | Anaist | Yes | 15000
2 | Joe |salesperson| No | 10000

Katy | clek | No | 12000

4 | Annie | Manager | Yes | 25000

OEBPS/Images/92d020664d58d4dc8b88fcf2d5045d6e.jpg
AL 189
RS
3
Re To7
3 7

143
5]

OEBPS/Images/e69be0d2a14d946a0559442f699d70de.jpg
CLUSTER KEY

DEP_NAME EMP ID EMP_NAME | EMP_ADD

CAPE TOWN
CROY CITY
NOVI
FRANSISCO
FRANSISCO
TOKYO
W.LAND
TOKYO

D_106 CIVIL o8 LUNA

DEPARTMENT + EMPLOYEE

OEBPS/Images/11a7868d6f1f642403197333a02d3ed4.jpg
70 80 82 84 86

OEBPS/Images/85d93f1c552c954b4214d369a198e578.jpg
| Orderl.Prod_Id(cOrderl.Prod_Id = Order2.Prod_Id and Orderl.Prod_Id =
Order3.Prod_Id and Orderl.Agent_Id # Order2.Agent_Id and Orderl.Agent_Id #
Order3.Agent_Id and Order2.Agent_Id #*
Order3.Agent_Id and Orderl.Order _Month =
Order2.0Order_Month and Orderl.Order_Month =
Order3.Order_Month(p(Orderl, Order) x p(Order2, Order) x

p(Order3, Order)))

OEBPS/Images/c069aaece503df2e332128d01c496874.jpg
enrolled paid enrolled paid
Probe index Sequential Probe index Sequential scan
on stude scan, select on student

amount > x

Indexed nested loop join

Indexed nested loop join

T

1]

Project on course

Select on amount > x

I

]

Project on course

T

OEBPS/Images/3f9831c2e1b75c38ff09e54d84acf38e.jpg
E1

E2

| >

E3

OEBPS/Images/744b97d60b57a632f51b976403efcfff.jpg
=K K_1<X
X <=K4 K< X <=K; c

OEBPS/Images/645b60d0320e700bd5a281d8de1c4506.jpg
Tree 4

3 &
Prext Pointer
5 3 next S 4 S CR | — > 10
Data
Pointer | i
v v &
Disk File 4 5 19

OEBPS/Images/06743d87984fdcf7e30d92b9a98be751.jpg

OEBPS/Images/ce0dc5f305e5f0592db2a76ab08270bd.jpg
Isolation Level
Read Uncommitted
Read Committed
Repeatable Read
Serializable

Dirty reads Non-repeatable reads Phantoms
May occur May occur May occur
Don’t occur May occur May occur
Don’toccur Don’toccur May occur
Don’t occur Don’t occur Don’t occur

OEBPS/Images/b02bb1b4d8fef011473a54d67dc6f25c.jpg
S1in(X);
S, (X);

G (V)in (X)ir (Y)iw, (Y)iwy
R (X)in (Y)iwa (Y)in (Y)iw (X

=

OEBPS/Images/be368bd68d67c89e551904d2677a41fb.jpg

OEBPS/Images/b6be2fc5ebeb1cecb22c1c85d045d937.jpg
WORKS_
PROJECT ol EMPLOYEE

REQUIRE

MACHINERY

Aggregation

OEBPS/Images/4933de67959aea5123c2e77919a6f746.jpg
Pointer to next
leaf node in the
tree

Data Data Data Data
Pointer Pointer Pointer Pointer

OEBPS/Images/47751cbe7f434354b278daeba17faee5.jpg
NIEEEEN
(521 J(Teo [) (CTaos[T]

OEBPS/Images/c107826a3a5ba4848a742f33933ad31e.jpg

OEBPS/Images/10c37730ca03b85bc6a302e5ebd5e0c4.jpg
(p(Orderl, Order) X Orderl.Prod_Id =
Order2.Prod_Id and Orderl.Agent # Order2.Agent_Id and Orderl. ()rder Month =
Order2.Order_Month p(Order2, Order))

OEBPS/Images/19efdf8ffc4377fb5167826a80ccfd03.jpg
09,70, (E1 D Eo) = (09, (£1)) D9 (06,(E2))

OEBPS/Images/997b8d2ace9734bbc451e85988ec51cf.jpg

OEBPS/Images/c49234bc70f5b4effa75e369bf14525d.jpg
DATA RECORD

D3

NEW
RECORD

()

105

DATA BUCKETS

102
104

105

123

151

159
162

105

OEBPS/Images/c9d91f91163f96c92b58fe19684ca772.jpg
TLiULy (E1 g Eo) = (7, (£1)) g (7L, (E2))

OEBPS/Images/606bc8ec3018695f5a248df1c1ea0e66.jpg

OEBPS/Images/9b45179bd25bdcef86bd7b1d7a83b0ea.jpg
Key(Name) ‘ Pointer

10

210 ’

e ‘ \

Primary level index

Intermediate

Secondary level Indexing

14

210

214

311
312

313

Disk Blocks

OEBPS/Images/85fbb9aca549d60203a7c6661f33a71a.jpg

OEBPS/Images/a4c0c328727b3611e5831aa9b4e02ab7.jpg

OEBPS/Images/e063d4543171cef9495dd084fc63fcb2.jpg
2%n-2)

“ 2+n-1)

24n-3)

2n-2)

28(n-1)

OEBPS/Images/ba9176fd83785cbb28eb8fe8f2889c4d.jpg

OEBPS/Images/9a641f71e0d210460e2b79c94fa0bc4d.jpg

OEBPS/Images/091c5d7fa3e47f0d5bb1b47ff098f005.jpg
Application Client Application Server

OEBPS/Images/04f7e1f1e7d8612276f829aa6df998ee.jpg
o — 3

OEBPS/Images/a64233650a379fbf5cd0f69d88676ffc.jpg
mr(E1 U Eg) = (mn(E1)) U (mr(E2))

OEBPS/Images/fdf0649e04c9c3123be31735fe6c5fd6.jpg
Entity Type

Entity Set

OEBPS/Images/e72151b1906e76a629db860c473f341d.jpg
EMPLOYEE

DEPARTMENT

EMP ID| EMP_NAME | EMP_ADD | DEP_ID DEP_ID |DEP_NAME

o1 JOE CAPETOWN | p_101 D_101 ECO

02 ANNIE FRANSISCO | D_103 D_102 cs

03 PETER |CROYCITY | D_101 D_103 JAVA

04 JOHN FRANSISCO | D_102 D_104 MATHS

05 LUNA TOKYO D_106 D_105 BIO

06 SONI W.LAND D_105 D 106 CIVIL

07 | SAKACHI | TOKYO D_104 =

08 MARY NOVI D_101

OEBPS/Images/f93a7db41295fe7077bef73498c1958e.jpg
09170, (E) = 09, (09, (E))

OEBPS/Images/21e86f87ed2bfe94dc33e97ac52d3e6e.jpg
Insert 70 and 80

30

=

~

10 20

40 50 60 70 80

OEBPS/Images/345fc3866fbb7fb71894f5df624cc25d.jpg

OEBPS/Images/0a07948661426b3b0137047e5d6c4d3b.jpg
EMPLOYEE

E_SALARY

DEVELOPER

Specialization

OEBPS/Images/5a47c79344ecb82823a74b87e4a14bb8.jpg

OEBPS/Images/45bac523a8e99633973b772e0f160d05.jpg

OEBPS/Images/0f1fdb48b81e13b6a552dd841a96717a.jpg
G0,

Student

Course

OEBPS/Images/b147450b9aed78963303b3bc00b00356.jpg

OEBPS/Images/d469d364200a875232761113ae9d1b48.jpg
F1 MEy = E9 M B

OEBPS/Images/5418362273d096820333e10d12f9f1c7.jpg

OEBPS/Images/994c2800cc727a784c291fbea69f2ef8.jpg
o9, (E1 ™9 E2) = (0g,(E1)) g Eo

OEBPS/Images/6dd61599430bfcb50aec8c68c8635765.jpg
A=5000

R(A); | A=5000 A=5000
[A=A-100; A=4000 A=5000
W@A); | A=4000 A=4000
Commit;
R(A); | A=4000 | A=4000
[A=A+500; A=4500 | A=4000
WA); | A=4500 | A=4500

Commit;

OEBPS/Images/2257135debedc34812573d1e5f062304.jpg

OEBPS/Images/866f7a5df5863c0f3c4e10174eb80636.jpg

OEBPS/Images/bd92f113b1b188b9d343f3437d3946f8.jpg
STUD_NO COURSE_NO COURSE_NAME
1 C1 DBMS

2 C2 Computers Network
1 C2 Computers Network

Table 3

OEBPS/Images/f4bac0a9ffcfd17f112a8e395d1bffda.jpg

OEBPS/Images/24c2908003a8a170ddb0d09fce643e3b.jpg

OEBPS/Images/b8a507b33f9edbc484be17926eb074cf.jpg
(e) D deleted: case 3b

(f) B deleted: case 3a

OEBPS/Images/aeaba0713016a566bb47214f088dd115.jpg

OEBPS/Images/1985c72f76d9fbee6e77307d8c007c29.jpg
—(r)) where cis a const
(r)) where ¢, and c, are constants
<c, 2

OEBPS/Images/dd33975c28835c3b3299d0a13c378d53.jpg
09,(00,(E)) = 09,(00, (L))

OEBPS/Images/f150d32cd185c97c41d08ffc5d485859.jpg
c

)

OEBPS/Images/8906e250b6fe347b2310d0892f8475b2.jpg
o 1 2 3 PO
3 5 7 P1 4
10 1 P2 8 o
15 P3 12 13 "
P4 16 17 18 19

OEBPS/Images/35e2e275590b203abd9c839fb3b69068.jpg

OEBPS/Images/582fdbb8906cee305791f14bb9c4c3da.jpg

OEBPS/Images/fe9ea945414a84c33ec1a47f75e7ffd5.jpg
BELONGS_T{

4

HOURLY_EMP

SECRETARY J TECHNICIANf} ENGINEER MANAGER

\
—

® =

OEBPS/Images/98c24e6ea4d10dee10341c83454b6d25.jpg
R3
—>u—> 50 S OS> umm > €U > TR

R2 H R3
— > >

OEBPS/Images/4f174e559c81d870ed07f8d56b879208.jpg

OEBPS/Images/30ef042760fb8fc847a7e49a9eb97256.jpg
y o bt iy
1 Lock-X(A)
2 Read(A)
3 Write(A)
4 Lock-S(B) -—->LP Rolil
Read(B) Rollback

Unlock(A),Unlock(B)

Lock-X(A) —>LP

Read(A)

Write(A)

Unlock(A)

Lock-S(A) —>LP

Read(A)

LP - Lock Point

FAIL Rollback

Read(A) in T, and T, denotes Dirty Read because of Write(A) in T, .

OEBPS/Images/cbc52a48a62c68a6e4bdcb7c26be4428.jpg
R(A);
A=A-100;
WA); A=4000
R(A); | A=4000 | A=4000
[A=A+500; A=4500 | A=4000
WA); | A=4500 | A=4500
Commit;
[Failure Point|
Commit;

OEBPS/Images/27c8e782b604250720b0fdd48f6135e5.jpg

OEBPS/Images/931fc4f32929ff6a25d946e6b5001841.jpg
Key
Alice 1202
Ben 1203
Search | Pointer
Key Bethany | 1204
Alice 1102 1102
Bob 1103 Search | Pointer
Key
Christie | 1104
Billie 1500
Root Node
Bob 1501
Charlie | 1502
1103
Intermediate
Nodes

Search | Pointer

Non clustered index

\

Search | Attr
1202 Key

Alice

Adrian

1203 Search Attr

Key

Ben

Benjamin
Search | Attr
Key

Bethany

1204 Betty

Leaf Nodes

OEBPS/Images/b8f0d49b9640d946a47e411d4a7db6c7.jpg

OEBPS/Images/6f5be573bd994acedb6b939c89774285.jpg
T3

Lock X(B)

read (B)

B=B-60

write B = 60
Lock S(A)
Read (A)
Lock S(B)

Lock X(A)

OEBPS/Images/b92fbec7a6272b659e7bd7fe4c1db604.jpg
REGISTERED_VEHICL

LicensePlateNo DriverLicenseNo

PERSON

OEBPS/Images/670b31639c81ad6381e1b05dce02d542.jpg
Wait for Lock (R1)

Wait for Lock (R2)
Deadlock Situation

OEBPS/Images/42d8298ccd060766b79642976cc36187.jpg

OEBPS/Images/bf02d6dcae76645855161e9e2c908518.jpg
01

OEBPS/Images/4752bd361f042ee238ffeb12e04c65c7.jpg
Employee
REPORTS_TO

OEBPS/Images/e818c15d96512dc0c45fda2fcb5a6060.jpg
P0OO1 A001 JAN P0OO1 A001

P002 A002 FEB P0OO1 A001

P002 A001 FEB P0OO1 A001

P0OO1 A002 FEB P0OO1 A001

P0OO1 A001 JAN P002 A002 FEB
P002 A002 FEB P002 A002 FEB
P002 A001 FEB P002 A002 FEB
P0OO1 A002 FEB P002 A002 FEB
P0OO1 A001 JAN P002 A001 FEB
P002 A002 FEB P002 A001 FEB
P002 A001 FEB P002 A001 FEB
P0OO1 A002 FEB P002 A001 FEB
P0OO1 A001 JAN P0OO1 A002 FEB
P002 A002 FEB P0OO1 A002 FEB
P002 A001 FEB P0OO1 A002 FEB
P0OO1 A002 FEB P0OO1 A002 FEB

OEBPS/Images/04254c32539d625d94ac18d66ff6b8fd.jpg

OEBPS/Images/81c3db99adca9c9302b1a45ba5d6d256.jpg
DATA BUCKETS

102
104
DATA RECORD B 105
105 —
123
159
RECORD

OEBPS/Images/f5bd00f9699052550c46f5c284228bda.jpg
(a) Initial Tree

(b) F deleted: case 1

(c) M deleted: case 2a

(d) G deleted: case 2¢

OEBPS/Images/6b9c8870136e4352da45c1d2fdd073ab.jpg

OEBPS/Images/2f1104b01fc4fe4bc83f1278cb789f10.jpg
Job

Values Bitmap Indices
Analyst 1000
Salesperson 0100

Clerk 0010
Manager 0001

OEBPS/Images/5b17b8220cc72a5b81f1702611d1b7be.jpg

OEBPS/Images/4b8548729a7ee2e59bd009717dd4eae7.jpg

OEBPS/Images/9e0ab873b9350ba45a17d4ae26c03330.jpg
Employee Dependants

OEBPS/Images/bb7986e5dcc697d59e1073834e70c68d.jpg

OEBPS/Images/82f27e84f466d72639cf3a0b184830fe.jpg

OEBPS/Images/ef2cc7afa779859d1bf2b7d8ca471083.jpg
R1 , [[— R7| R8
Starting of The End of the
File

File

R2

New record

OEBPS/Images/b8e6b2c8b5a0c2d2cb9b066821a0d486.jpg
L (7L (- (7L, (£))...)) = 7 (£)

OEBPS/Images/33b52a7cf45a20f4b2baa650e5d5769d.jpg

OEBPS/Images/4397790bc5dbe9d4d122480dda406f64.jpg
Hashing

Dynamic

Hashing

OEBPS/Images/62de694860d7859c5cabae8bceb8b17b.jpg

OEBPS/Images/ae940028fa09fceb994862c932750262.jpg
TLiULy (E1 ™o E2) = mrun,((TLyuLs)) Do (TLourn, (E2)))

OEBPS/Images/ba582802f844ab4505b50765b880d1ad.jpg
STUD_NO STUD_NAME STUD_STATE STUD_COUNTRY STUD_AGE
1 RAM HARYANA INDIA 20
2 RAM PUNJAB INDIA 19
3 SURESH PUNJAB INDIA 21

Table 4

OEBPS/Images/a7b49403083a4bf330d34c272bd169fd.jpg
O dept_name="“C SE" (Tyear=2009 (tnstructor > teaches))

OEBPS/Images/02852aa5bf03ac9091826f996df17407.jpg
Read (X) Read (x)
X:=X*100 Read (v)

write (X) Z=x+y
Read (v) Wwrite (2)
Y:=Y-50

OEBPS/Images/a406a30775ba27bdc158baea1147ac16.jpg
c

)

P

oNETO ONE

OEBPS/Images/70b312a71097ac803b0b7d1de3a28fee.jpg
0 1 2 3 PO
4 5 6 7 Pl
8 9 10 11 P2
12 13 14 15 P3

OEBPS/Images/08203a8ddf85100e13d422a1947d0276.jpg
SECRETARY(TYPING_SPEED)

EMPLOYEE(ENO, NAME, SALARY)

fECHNICIAN(TRADE

1005 ELECTRICIAN
1007 ELECTRONIC
1008 | AUTOMOBILE

1009 ELECTRICAL

OEBPS/Images/0e571185e30b48e1d50ec66920fca71c.jpg
(Y1 — (X9

OEBPS/Images/44287ece4bf76e28513a15b3c67f030b.jpg
(1 NEy) N E3=FE1 N (Ey N E3)

OEBPS/Images/6b167221aca952bf524a0e97fd54993d.jpg
(2)*

OEBPS/Images/ce731a2f709d3e106fd2329d076a94c2.jpg

OEBPS/Images/be2c824fd9111f3cb2345f9ef2dbf0ab.jpg
vy — 39

OEBPS/Images/d77bffd52fd33d0947c86cbea7f157af.jpg

OEBPS/Images/b6a63fce4ec7c00357e3eec735b4d996.jpg

OEBPS/Images/449620fd8dabb417a1ec535420ac8824.jpg
PERSON

FACULTY STUDENT

OEBPS/Images/e406f9b66bfcd3e67ee29c113049e03b.jpg

OEBPS/Images/0c9fa61fa16f048bcc47058c84a5cde8.jpg

OEBPS/Images/7126ba87dcc08bf37c8252083da023b0.jpg
Employee

OEBPS/Images/8670bf441e000d043f34581789a3636a.jpg

OEBPS/Images/d0b17a6abc1fa71842e715e25b711001.jpg
m

n

OEBPS/Images/d5f9f7047ad7c9c57a62423d25db77cc.jpg
G0,

Student

Course

OEBPS/Images/5d444b19cdaa08c86b66ab37c07ecf81.jpg
SMNo. Database Data Warehouse:

it

A common Database is based on
operational o transaconal
processing. Exch operstion s an
Indivisibietrznsacton.

‘A Data Warehouse is based on analytical
processing

Generaly, Daabase stores current
nd up-to-date data which is used for
dail operations

A Daa Warshouse maintains historical
data over time. Hitorical data isthe data
kept over years and can be used for trend
arnalysis make furure predictions and
decsion support

A dasbme & generaly sppicaton
pecific
Example - A database stores reited
data, such as the student detais n 2
hool

A Data Warehouse & integrated ganeraly,
at the organization kvel, by combining
data rom dferent databases
Example- A data war ehouse integratesthe
data from one or more datsbases, = that
arialysiscan be done to get results, such as
thebes performing school in acity.

Constructing = Dasbame & not o
expensie

Constructng = Data Warehouse can be
expensie

OEBPS/Images/8a17a03482dab091e7ea13428e21ef5d.jpg

OEBPS/Images/17d13560867cc2ead0e78715d8b36610.jpg

OEBPS/Images/f53e7fc0a23dc39152feb957d30ac908.jpg

OEBPS/Images/5c5621ff0ba876191e3b28fe6d2a2f49.jpg

OEBPS/Images/2644c949af50ac64219c9fbf0d1110ad.jpg
External Level

Logical Data Independence

Conceptual Level

Physical Data Independence

OEBPS/Images/97590cbde731c7d6590f2bc167a41826.jpg
STUD_NO STUD_NAME STUD_PHONE STUD_STATE STUD_COUNTRY
1 RAM 9716271721, HARYANA INDIA
9871717178
2 RAM 9898297281 PUNJAB INDIA
3 SURESH PUNJAB INDIA
Table 1
Conversion to first normal form

STUD_NO STUD_NAME STUD_PHONE STUD_STATE STUD_COUNTRY
1 RAM 9716271721 HARYANA

1 RAM 9871717178 HARYANA INDIA

2 RAM 9898297281 PUNJAB INDIA

3 SURESH PUNJAB INDIA

Table 2

OEBPS/Images/282a55bfbe9bc785020d42b146ff9b3d.jpg
R1 , e B R5| R4
Starting of The End of th
File

File

OEBPS/Images/a11cc34b564f754cf5d2f784c9d6d316.jpg
Student Compulsory Courses

OEBPS/Images/1ba8129d205e40cbeb79a1da59b00ae4.jpg
{e.name‘employee(e) A

(vx)[ﬁemployee(x)vx.supervisorName;t e.name v Xx.sex = ”male”] }

OEBPS/Images/dc47caec8354eee1e9e1699e51a7759f.jpg

OEBPS/Images/52bddd27ea8b9ef526131c62293146bd.jpg
op(Eh — Eo) =o0p(E1) — op(ks

OEBPS/Images/2d967357f656b3f87534d3f6cc17285c.jpg

OEBPS/Images/a27baee25dfa9b2fb82816176de4db75.jpg
Insert 60

30

10 20

40 50

30

N

10 20

40 50 60

OEBPS/Images/037f0f2331e5e0d928e6d17ce1a2a537.jpg

OEBPS/Images/4874049ed14775b142c2fec8bdb04072.jpg
ORIGINAL
DATABASE

SERVER f—

REPLICATION

OEBPS/Images/d1be1c552a9b3b139ffe55b11ada3863.jpg

OEBPS/Images/d34dc4d977702f45c4cb95b42bca3e6a.jpg
h(D1)->1001
h(D2)->0101
h(D3)->1010

D1

D2

D3

OEBPS/Images/53c939db42283834965c2d41937ab9fd.jpg
Insert 20, 30, 40 and 50

10 20 30 40 50

OEBPS/Images/c3d9f572b81995feafe47a4cf25b6a3a.jpg

OEBPS/Images/bbe4c85ccbbeac5d84cb656b50866daa.jpg
Meourserd ((nslud[d (O cexrremate (StudInfo)) x Megrserq (enroll)) - 5”"0”)

OEBPS/Images/a1e0aa2a85a5d484453c68a224686937.jpg

OEBPS/Images/ad8336f7bed0be7fc20cfc4950ece062.jpg

OEBPS/Images/d2c65d525469aa5e7c68c07c29b3506a.jpg
0R.B=S.B(l X 5)

OEBPS/Images/8e454d4d88b20cce2153b6441f0dc97d.jpg

OEBPS/Images/67dd79872b0c87c0347e047a9d4b79f4.jpg

OEBPS/Images/5ca0d2298ea2cb00dfbc2a2846031dac.jpg
P001 A001 Jan
P002 A002 FEB
P002 A001 FEB
P001 A002 FEB

OEBPS/Images/85a2970c019b4699b9fa3a9719222f85.jpg
Maybe managed
by

May
manage

OEBPS/Images/0a1ea06aee26105483820d1e211840f4.jpg
og(E1 X Eo) = E1 <9 Eo

OEBPS/Images/03842afe528a5c0f55dcaa627c2580af.jpg
(A)™

OEBPS/Images/c2b82da91138a9c93adc83db48b4be36.jpg
New_Emp

s Bitmap Indices
Yes 1001
No 0110

OEBPS/Images/054c876938ae074153281ab61db06342.jpg
Insert 90

. 30 60

10 20

40 50

70 80

OEBPS/Images/7a5e5a6d599e2497ba101c94b402e784.jpg

OEBPS/Images/62fc6db95f9df207bb4c004e91beafb1.jpg
T,— T, which is not allowed.
Ignore this Outdated Write
operation according to Thomas
Write Rule.

Allowed TS ordering T, — T,

OEBPS/Images/a333d1dfb5c8d5c683ef1850a183c10b.jpg
ORIGINAL
DATABASE

SERVER -

REPLICATION

