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Introduction



						Introduction of Compiler design

				
						

				
			Compiler is a software which converts a program written in high level language (Source Language) to low level language (Object/Target/Machine Language).
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	Cross Compiler that runs on a machine ‘A’ and produces a code for another machine ‘B’.  It is capable of creating code for a platform other than the one on which the compiler is running.

	Source-to-source Compiler or  transcompiler or transpiler is a compiler that translates source code written in one programming language into source code of another programming language.



Language processing systems (using Compiler) –

We know a computer is a logical assembly of Software and Hardware. The hardware knows a language, that is hard for us to grasp, consequently we tend to write programs in high-level language, that is much less complicated for us to comprehend and maintain in thoughts. Now these programs go through a series of transformation so that they can readily be used machines. This is where language procedure systems come handy.




	High Level Language – If a program contains #define or #include directives such as #include or #define it is called HLL. They are closer to humans but far from machines. These (#) tags are called pre-processor directives. They direct the pre-processor about what to do.

	Pre-Processor –  The pre-processor removes all the #include directives by including the files called file inclusion and all the #define directives using macro expansion. It performs file inclusion, augmentation, macro-processing etc.

	Assembly Language – Its neither in binary form nor high level. It is an intermediate state that is combination of machine instructions and some other useful data needed for execution.

	Assembler – For every platform (Hardware + OS) we will have a assembler. They are not universal since for each platform we have one. The output of assembler is called object file. Its translates assembly language to machine code. 

	Interpreter – An interpreter converts high level language into low level machine language, just like a compiler. But they are different in the way the read the input. The Compiler in on go reads the inputs, does the processing and executes the source code whereas the assembler does the same line by line. Interpreted programs are usually slower with respect to compiled ones.

	Relocatable Machine Code – It can be loaded at any point and can be run. The address within the program will be in such a way that it will cooperate for the program movement.

	Loader/Linker – It converts the relocatable code into absolute code and tries to run the program resulting in a running program or an error message (or sometimes both can happen). Linker loads variety of object files into a single file to make it executable. Then loader loads it in memory and executes it.



Phases of a Compiler –

There are two major phases of compilation, which in turn have many parts. Each of them are take input from the output of the previous level and work in a coordinated way.
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Analysis Phase – An intermediate representation is created from the give source code :



        
          
          
          
        

            

	Lexical Analyzer

	Syntax Analyzer

	Semantic Analyzer



Lexical analyzer divides the program into “tokens”, Syntax analyzer recognizes “sentences” in the program using syntax of language and Semantic analyzer checks static semantics of each construct.

Synthesis Phase – Equivalent target program is created from the intermediate representation. It has three parts :


	Intermediate Code Generator

	Code Optimizer

	Code Generator



Intermediate Code Generator generates “abstract” code, Code Optimizer optimizes the abstract code, and final Code Generator translates abstract intermediate code into specific machine instructions.

GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.


	GATE CS 2011, Question 1

	GATE CS 2011, Question 19

	GATE CS 2009, Question 17

	GATE CS 1998, Question 27

	GATE CS 2008, Question 85

	GATE CS 1997, Question 8

	GATE CS 2014 (Set 3), Question 65

	GATE CS 2015 (Set 2), Question 29
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						Phases of a Compiler

				
						

				
			 Prerequisite – Introduction of Compiler design

We basically have two phases of compilers, namely Analysis phase and Synthesis phase. Analysis phase creates an intermediate representation from the given source code. Synthesis phase creates an equivalent target program from the intermediate representation.
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Symbol Table – It is a data structure being used and maintained by the compiler, consists all the identifier’s name along with their types. It helps the compiler to function smoothly by finding the identifiers quickly. 

The compiler has two modules namely front end and back end. Front-end constitutes of the Lexical analyzer, semantic analyzer, syntax analyzer and intermediate code generator. And the rest are assembled to form the back end.


	Lexical Analyzer – It reads the program and converts it into tokens. It converts a stream of lexemes into a stream of tokens. Tokens are defined by regular expressions which are understood by the lexical analyzer. It also removes white-spaces and comments.

	Syntax Analyzer – It is sometimes called as parser. It constructs the parse tree. It takes all the tokens one by one and uses Context Free Grammar to construct the parse tree.
Why Grammar ?

The rules of programming can be entirely represented in some few productions. Using these productions we can represent what the program actually is. The input has to be checked whether it is in the desired format or not.

Syntax error can be detected at this level if the input is not in accordance with the grammar.





	Semantic Analyzer – It verifies the parse tree, whether it’s meaningful or not. It furthermore produces a verified parse tree.

	Intermediate Code Generator – It generates intermediate code, that is a form which can be readily executed by machine  We have many popular intermediate codes. Example – Three address code etc. Intermediate code is converted to machine language using the last two phases which are platform dependent.
Till intermediate code, it is same for every compiler out there, but after that, it depends on the platform. To build a new compiler we don’t need to build it from scratch. We can take the intermediate code from the already existing compiler and build the last two parts. 


	Code Optimizer – It transforms the code so that it consumes fewer resources and produces more speed. The meaning of the code being transformed is not altered. Optimisation can be categorized into two types: machine dependent and machine independent. 

	Target Code Generator – The main purpose of Target Code generator is to write a code that the machine can understand. The output is dependent on the type of assembler. This is the final stage of compilation.
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						Symbol Table in Compiler

				
						

				
			Prerequisite – Phases of a Compiler

Symbol Table is an important data structure created and maintained by the compiler in order to keep track of semantics of variable i.e. it stores information about scope and binding information about names, information about instances of various entities such as variable and function names, classes, objects, etc.


	It is built in  lexical and syntax analysis phases.

	The information is collected by the analysis phases of compiler and is used by synthesis phases of compiler to generate code.

	It is used by compiler to achieve compile time efficiency.

	It is used by various phases of compiler as follows :-

	Lexical Analysis: Creates new table entries in the table, example like entries about token.

	Syntax Analysis: Adds information regarding attribute type, scope, dimension, line of reference, use, etc in the table.

	Semantic Analysis: Uses available information in the table to check for semantics i.e. to verify that expressions and assignments are semantically correct(type checking) and update it accordingly.

	Intermediate Code generation: Refers symbol table for knowing how much and what type of run-time is allocated and table helps in adding temporary variable information.

	Code Optimization: Uses information present in symbol table for machine dependent optimization.

	Target Code generation: Generates code by using address information of identifier present in the table.







Symbol Table entries – Each entry in symbol table is associated  with attributes that support compiler in different phases.

Items stored in Symbol table:


	Variable names and constants

	Procedure and function names

	Literal constants and strings

	Compiler generated temporaries

	Labels in source languages



Information used by compiler from Symbol table:


	Data type and name

	Declaring procedures

	Offset in storage

	If structure or record then, pointer to structure table.

	For parameters, whether parameter passing by value or by reference

	Number and type of arguments passed to function 

	Base Address



Operations of Symbol table – The basic operations defined on a symbol table include:
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Implementation of Symbol table –

Following are commonly used data structure for implementing symbol table :-


	List –

	In this method, an array is used to store names and associated information.

	A pointer “available” is maintained at end of all stored records and new names are added in the order as they arrive 

	To search for a name we start from beginning of list till available pointer and if not found we get an error “use of undeclared name”

	While inserting a new name we must ensure that it is not already present otherwise error occurs i.e. “Multiple defined name”

	Insertion is fast O(1), but lookup is slow for large tables – O(n) on average

	Advantage is that it takes minimum amount of space.







	Linked List –

	This implementation is using linked list. A link field is added to each record.

	Searching of names is done in order pointed by link of link field.

	A pointer “First” is maintained to point to first record of symbol table.

	Insertion is fast O(1), but lookup is slow for large tables – O(n) on average







	Hash Table –

	In hashing scheme two tables are maintained – a hash table and symbol table and is the most commonly used method to implement symbol tables..

	A hash table is an array with index range: 0 to tablesize – 1.These entries are pointer pointing to names of symbol table.

	To search for a name we use hash function that will result in any integer between 0 to tablesize – 1.

	Insertion and lookup can be made very fast – O(1).

	Advantage is wuick search is possible and disadvantage is that hashing is complicated to implement.







	Binary Search Tree –

	Another approach to oimplement symbol table is to use binary search tree i.e. we add two link fields i.e. left and right child.

	 All names are created as child of root node that always follow the property of binary search tree.

	Insertion and lookup are O(log2 n) on average.
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						Error detection and Recovery in Compiler

				
						

				
			In this phase of compilation, all possible errors made by the user are detected and reported to the user in form of error messages. This process of locating errors and reporting it to user is called Error Handling process.

Functions of Error handler


	Detection

	Reporting

	Recovery



Classification of Errors

[image: ]

Compile time errors are of three types:-









						Error Handling in Compiler Design

				
						

				
			The tasks of the Error Handling process are to detect each error, report it to the user, and then make some recover strategy and implement them to handle error. During this whole process processing time of program should not be slow. An Error is the blank entries in the symbol table.

Types or Sources of Error – There are two types of error: run-time and compile-time error:


	A run-time error is an error which takes place during the execution of a program, and usually happens because of adverse system parameters or invalid input data. The lack of sufficient memory to run an application or a memory conflict with another program and logical error are example of this. Logic errors, occur when executed code does not produce the expected result. Logic errors are best handled by meticulous program debugging.

	
 Compile-time errors rises at compile time, before execution of the program. Syntax error or missing file reference that prevents the program from successfully compiling is the example of this.



 Classification of Compile-time error –


	Lexical : This includes misspellings of identifiers, keywords or operators

	Syntactical : missing semicolon or unbalanced parenthesis

	Semantical : incompatible value assignment or type mismatches between operator and operand

	Logical : code not reachable, infinite loop.



Finding error or reporting an error – Viable-prefix is the property of a parser which allows early detection of syntax errors.


	Goal: detection of an error as soon as possible without further consuming unnecessary input


	How: detect an error as soon as the prefix of the input does not match a prefix of any string in the

language.


	Example: for(;), this will report an error as for have two semicolons inside braces.




Error Recovery –

The basic requirement for the compiler is to simply stop and issue a message, and cease compilation. There are some common recovery methods that are follows.


	Panic mode recovery: This is the easiest way of error-recovery and also, it prevents the parser from developing infinite loops while recovering error. The parser discards the input symbol one at a time until one of the designated (like end, semicolon) set of synchronizing tokens (are typically the statement or expression terminators) is found. This is adequate when the presence of multiple errors in same statement is rare. Example: Consider the erroneous expression- (1 + + 2) + 3. Panic-mode recovery: Skip ahead to next integer and then continue. Bison: use the special terminal error to describe how much input to skip.
E->int|E+E|(E)|error int|(error) 



	Phase level recovery: Perform local correction on the input to repair the error. But error correction is difficult in this strategy.


	Error productions: Some common errors are known to the compiler designers that may occur in the code. Augmented grammars can also be used, as productions that generate erroneous constructs when these errors are encountered. Example: write 5x instead of 5*x


	Global correction: Its aim is to make as few changes as possible while converting an incorrect input string to a valid string. This strategy is costly to implement.




Next related article – Error detection and Recovery in Compiler
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Lexical Analysis










						Lexical Analysis

				
						

				
			Lexical Analysis is the first phase of compiler also known as scanner. It converts the input program into a sequence of Tokens.

Lexical Analysis can be implemented with the Deterministic finite Automata.

What is a token?

A lexical token is a sequence of characters that can be treated as a unit in the grammar of the programming languages.

Example of tokens:


	Type token (id, number, real, . . . )

	Punctuation tokens (IF, void, return, . . . )

	Alphabetic tokens (keywords)



Keywords; Examples-for, while, if etc.
Identifier; Examples-Variable name, function name etc.
Operators; Examples '+', '++', '-' etc.
Separators; Examples ',' ';' etc

Example of Non-Tokens:



        
          
          
          
        

            

	Comments, preprocessor directive, macros, blanks, tabs, newline  etc



How Lexical Analyzer functions



1. Tokenization .i.e Dividing the program into valid tokens.

2. Remove white space characters.

3. Remove comments.

4. It also provides help in generating error message by providing row number and column number.

[image: la]

The lexical analyzer identifies the error with the help of automation machine and the grammar of  the given language on which it is based like C , C++.

Suppose we pass a statement through lexical analyzer –

a = b + c ;                It will generate token sequence like this:

id=id+id;                 Where each id reference to it’s variable in the symbol table referencing all details

For example, consider the program

int main()
{
  // 2 variables
  int a, b;
  a = 10;
 return 0;
}

All the valid tokens are:

'int'  'main'  '('  ')'  '{'  '}'  'int'  'a' ','  'b'  ';'
 'a'  '='  '10'  ';' 'return'  '0'  ';'  '}'

Above are the valid tokens.

You can observe that we have omitted comments.

As another example, consider below printf statement.

[image: token]

There are 5 valid token in this printf statement.

Exercise 1:

Count number of tokens :

int main()
{
  int a = 10, b = 20;
  printf("sum is :%d",a+b);
  return 0;
}
Answer: Total number of token: 27.

Exercise 2:

Count number of tokens :

int max(int i);


	Lexical analyzer first read int and finds it to be valid and accepts as token

	max is read by it and found to be valid function name after reading (

	int  is also a token , then again i as another token and finally ;



 Answer:  Total number of tokens 7:     int, max, ( ,int, i, ), ;

Below are previous year GATE question on Lexical analysis.

http://quiz.geeksforgeeks.org/lexical-analysis/

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
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						C program to detect tokens in a C program

				
						

				
			As it is known that Lexical Analysis is the first phase of compiler also known as scanner. It converts the input program into a sequence of Tokens.

A C program consists of various tokens and a token is either a keyword, an identifier, a constant, a string literal, or a symbol.

For Example:

1) Keywords: 
Examples- for, while, if etc.

2) Identifier
Examples- Variable name, function name etc.

3) Operators:
Examples- '+', '++', '-' etc.

4) Separators:
Examples- ', ' ';' etc


Below is a C program to print all the keywords, literals, valid identifiers, invalid identifiers, integer number, real number in a given C program:

#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

// Returns 'true' if the character is a DELIMITER.
bool isDelimiter(char ch)
{
    if (ch == ' ' || ch == '+' || ch == '-' || ch == '*' || 
        ch == '/' || ch == ',' || ch == ';' || ch == '>' || 
        ch == '<' || ch == '=' || ch == '(' || ch == ')' || 
        ch == '[' || ch == ']' || ch == '{' || ch == '}')
        return (true);
    return (false);
}

// Returns 'true' if the character is an OPERATOR.
bool isOperator(char ch)
{
    if (ch == '+' || ch == '-' || ch == '*' || 
        ch == '/' || ch == '>' || ch == '<' || 
        ch == '=')
        return (true);
    return (false);
}

// Returns 'true' if the string is a VALID IDENTIFIER.
bool validIdentifier(char* str)
{
    if (str[0] == '0' || str[0] == '1' || str[0] == '2' ||
        str[0] == '3' || str[0] == '4' || str[0] == '5' || 
        str[0] == '6' || str[0] == '7' || str[0] == '8' || 
        str[0] == '9' || isDelimiter(str[0]) == true)
        return (false);
    return (true);
}

// Returns 'true' if the string is a KEYWORD.
bool isKeyword(char* str)
{
    if (!strcmp(str, "if") || !strcmp(str, "else") ||
        !strcmp(str, "while") || !strcmp(str, "do") || 
        !strcmp(str, "break") || 
         !strcmp(str, "continue") || !strcmp(str, "int")
        || !strcmp(str, "double") || !strcmp(str, "float")
        || !strcmp(str, "return") || !strcmp(str, "char")
        || !strcmp(str, "case") || !strcmp(str, "char")
        || !strcmp(str, "sizeof") || !strcmp(str, "long")
        || !strcmp(str, "short") || !strcmp(str, "typedef")
        || !strcmp(str, "switch") || !strcmp(str, "unsigned")
        || !strcmp(str, "void") || !strcmp(str, "static")
        || !strcmp(str, "struct") || !strcmp(str, "goto"))
        return (true);
    return (false);
}

// Returns 'true' if the string is an INTEGER.
bool isInteger(char* str)
{
    int i, len = strlen(str);

    if (len == 0)
        return (false);
    for (i = 0; i < len; i++) {
        if (str[i] != '0' && str[i] != '1' && str[i] != '2'
            && str[i] != '3' && str[i] != '4' && str[i] != '5'
            && str[i] != '6' && str[i] != '7' && str[i] != '8'
            && str[i] != '9' || (str[i] == '-' && i > 0))
            return (false);
    }
    return (true);
}

// Returns 'true' if the string is a REAL NUMBER.
bool isRealNumber(char* str)
{
    int i, len = strlen(str);
    bool hasDecimal = false;

    if (len == 0)
        return (false);
    for (i = 0; i < len; i++) {
        if (str[i] != '0' && str[i] != '1' && str[i] != '2'
            && str[i] != '3' && str[i] != '4' && str[i] != '5'
            && str[i] != '6' && str[i] != '7' && str[i] != '8'
            && str[i] != '9' && str[i] != '.' || 
            (str[i] == '-' && i > 0))
            return (false);
        if (str[i] == '.')
            hasDecimal = true;
    }
    return (hasDecimal);
}

// Extracts the SUBSTRING.
char* subString(char* str, int left, int right)
{
    int i;
    char* subStr = (char*)malloc(
                  sizeof(char) * (right - left + 2));

    for (i = left; i <= right; i++)
        subStr[i - left] = str[i];
    subStr[right - left + 1] = '\0';
    return (subStr);
}

// Parsing the input STRING.
void parse(char* str)
{
    int left = 0, right = 0;
    int len = strlen(str);

    while (right <= len && left <= right) {
        if (isDelimiter(str[right]) == false)
            right++;

        if (isDelimiter(str[right]) == true && left == right) {
            if (isOperator(str[right]) == true)
                printf("'%c' IS AN OPERATOR\n", str[right]);

            right++;
            left = right;
        } else if (isDelimiter(str[right]) == true && left != right
                   || (right == len && left != right)) {
            char* subStr = subString(str, left, right - 1);

            if (isKeyword(subStr) == true)
                printf("'%s' IS A KEYWORD\n", subStr);

            else if (isInteger(subStr) == true)
                printf("'%s' IS AN INTEGER\n", subStr);

            else if (isRealNumber(subStr) == true)
                printf("'%s' IS A REAL NUMBER\n", subStr);

            else if (validIdentifier(subStr) == true
                     && isDelimiter(str[right - 1]) == false)
                printf("'%s' IS A VALID IDENTIFIER\n", subStr);

            else if (validIdentifier(subStr) == false
                     && isDelimiter(str[right - 1]) == false)
                printf("'%s' IS NOT A VALID IDENTIFIER\n", subStr);
            left = right;
        }
    }
    return;
}

// DRIVER FUNCTION
int main()
{
     // maximum legth of string is 100 here 
    char str[100] = "int a = b + 1c; ";

    parse(str); // calling the parse function

    return (0);
}


Output:

'int' IS A KEYWORD
'a' IS A VALID IDENTIFIER
'=' IS AN OPERATOR
'b' IS A VALID IDENTIFIER
'+' IS AN OPERATOR
'1c' IS NOT A VALID IDENTIFIER


This article is contributed by MAZHAR IMAM KHAN. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
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						Flex (Fast Lexical Analyzer Generator )

				
						

				
			FLEX (fast lexical analyzer generator) is a tool/computer program for generating lexical analyzers (scanners or lexers) written by Vern Paxson in C around 1987. It is used together with Berkeley Yacc parser generator or GNU Bison parser generator. Flex and Bison both are more flexible than Lex and Yacc and produces faster code.

Bison produces parser from the input file provided by the user. The function yylex() is automatically generated by the flex when it is provided with a .l file and this yylex() function is expected by parser to call to retrieve tokens from current/this token stream. 

Note: The function yylex() is the main flex function which runs the Rule Section and extension (.l) is the extension used to save the programs.

Installing Flex on Ubuntu:

sudo apt-get update
sudo apt-get install flex


Note: If Update command is not run on the machine fom a while, it’s better to run it first so that a newer version is installed as an older version might not work with the other packages installed or may not be present now.

Given image describes how the Flex is used:

[image: ]

Step 1: An input file describes the lexical analyzer to be generated named lex.l is written in lex language. The lex compiler transforms lex.l to C program, in a file that is always named lex.yy.c.

Step 2: The C complier compile lex.yy.c file into an executable file called a.out.

Step 3: The output file a.out take a stream of input characters and produce a stream of tokens. 

Program Structure:

In the input file, there are 3 sections:

1. Definition Section: The definition section contains the declaration of variables, regular definitions, manifest constants. In the definition section, text is enclosed in “%{  %}” brackets. Anything written in this brackets is copied directly to the file lex.yy.c

Syntax:  

%{
   // Definitions
%}


2. Rules Section: The rules section contains a series of rules in the form: pattern action and pattern must be unintended and action begin on the same line in {} brackets. The rule section is enclosed in “%% %%”.

Syntax:

%%
pattern  action
%%


Examples: Table below shows some of the pattern matches.




	Pattern
	It can match with





	[0-9]
	all the digits between 0 and 9



	[0+9]
	either 0, + or 9



	[0, 9]
	either 0, ‘, ‘ or 9



	[0 9]
	either 0, ‘ ‘ or 9



	[-09]
	either -, 0 or 9



	[-0-9]
	either – or all digit between 0 and 9



	[0-9]+
	one or more digit between 0 and 9



	[^a]
	all the other characters except a



	[^A-Z]
	all the other characters except the upper case letters



	a{2, 4}
	either aa, aaa or aaaa



	a{2, }
	two or more occurrences of a



	a{4}
	exactly 4 a’s i.e, aaaa



	.
	any character except newline



	a*
	0 or more occurrences of a



	a+
	1 or more occurrences of a



	[a-z]
	all lower case letters



	[a-zA-Z]
	any alphabetic letter



	w(x | y)z
	wxz or wyz





3. User Code Section: This section contain C statements and additional functions. We can also compile these functions separately and load with the lexical analyzer.

Basic Program Structure:

%{
// Definitions
%}

%%
Rules
%%

User code section





How to run the program:

To run the program, it should be first saved with the extension .l or .lex. Run the below commands on terminal in order to run the program file.

Step 1: lex filename.l or lex filename.lex depending on the extension file is saved with

Step 2: gcc lex.yy.c

Step 3: ./a.out

Step 4: Provide the input to program in case it is required

Note: Press Ctrl+D or use some rule to stop taking inputs from the user. Please see the output images of below programs to clear if in doubt to run the programs.




Recommended: Please try your approach on {IDE} first, before moving on to the solution.





        
          
          
          
        

            
Example 1: Count the number of characters in a string


/*** Definition Section has one variable
which can be accessed inside yylex() 
and main() ***/
%{
int count = 0;
%}

/*** Rule Section has three rules, first rule 
matches with capital letters, second rule
matches with any character except newline and 
third rule does not take input after the enter***/
%%
[A-Z] {printf("%s capital letter\n", yytext);
       count++;}
.     {printf("%s not a capital letter\n", yytext);}
\n    {return 0;}
%%

/*** Code Section prints the number of
capital letter present in the given input***/
int yywrap(){}
int main(){

// Explanation:
// yywrap() - wraps the above rule section
/* yyin - takes the file pointer 
          which contains the input*/
/* yylex() - this is the main flex function
          which runs the Rule Section*/
// yytext is the text in the buffer

// Uncomment the lines below 
// to take input from file
// FILE *fp;
// char filename[50];
// printf("Enter the filename: \n");
// scanf("%s",filename);
// fp = fopen(filename,"r");
// yyin = fp;

yylex();
printf("\nNumber of Captial letters " 
      "in the given input - %d\n", count);

return 0;
}




Output:

[image: ]




Example 2: Count the number of characters and number of lines in the input


/* Decalring two counters one for number 
of lines other for number of characters */
%{
int no_of_lines = 0;
int no_of_chars = 0;
%}

/***rule 1 counts the number of lines, 
rule 2 counts the number of characters 
and rule 3 specifies when to stop 
taking input***/
%%
\n      ++no_of_lines;
.       ++no_of_chars;
end     return 0;
%%

/*** User code section***/
int yywrap(){}
int main(int argc, char **argv)
{

yylex();
printf("number of lines = %d, number of chars = %d\n",
       no_of_lines, no_of_chars );

return 0;
}




Output:

[image: ]
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Syntax Analysis










						Introduction to Syntax Analysis

				
						

				
			When an input string (source code or a program in some language) is given to a compiler, the compiler processes it in several phases, starting from lexical analysis (scans the input and divides it into tokens) to target code generation.

Syntax Analysis or Parsing is the second phase, i.e. after lexical analysis. It checks the syntactical structure of the given input, i.e. whether the given input is in the correct syntax (of the language in which the input has been written) or not. It does so by building a data structure, called a Parse tree or Syntax tree. The parse tree is constructed by using the pre-defined Grammar of the language and the input string. If the given input string can be produced with the help of the syntax tree (in the derivation process), the input string is found to be in the correct syntax.

The Grammar for a Language consists of Production rules.

Example:

Suppose Production rules for the Grammar of a language are:

  S -> cAd
  A -> bc|a
  And the input string is “cad”.

Now the parser attempts to construct syntax tree from this grammar for the given input string. It uses the given production rules and applies those as needed to generate the string. To generate string “cad” it uses the rules as shown in the given diagram:

[image: syntaxAnalysis]



        
          
          
          
        

            
In the step iii above, the production rule A->bc was not a suitable one to apply (because the string produced is “cbcd” not “cad”), here the parser needs to backtrack, and apply the next production rule available with A which is shown in the step iv, and the string “cad” is produced.

Thus, the given input can be produced by the given grammar, therefore the input is correct in syntax.

But back-track was needed to get the correct syntax tree, which is really a complex process to implement.

There can be an easier way to solve this, which we shall see in the next article “Concepts of FIRST and FOLLOW sets in Compiler Design”.

Quiz on Syntax Analysis

This article is compiled by Vaibhav Bajpai. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
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						Why FIRST and FOLLOW?

				
						

				
			Why FIRST?

We saw the need of backtrack in the previous article of on Introduction to Syntax Analysis, which is really a complex process to implement. There can be easier way to sort out this problem:

If the compiler would have come to know in advance, that what is the “first character of the string produced when a production rule is applied”, and comparing it to the current character or token in the input string it sees, it can wisely take decision on which production rule to apply. 

Let’s take the same grammar from the previous article:


S -> cAd
A -> bc|a 
And the input string is “cad”. 



Thus, in the example above, if it knew that after reading character ‘c’ in the input string and applying     S->cAd, next character in the input string is ‘a’, then it would have ignored the production rule A->bc (because ‘b’ is the first character of the string produced by this production rule, not ‘a’ ), and directly use the production rule A->a (because ‘a’ is the first character of the string produced by this production rule, and is same as the current character of the input string which is also ‘a’).

Hence it is validated that if the compiler/parser knows about first character of the string that can be obtained by applying a production rule, then it can wisely apply the correct production rule to get the correct syntax tree for the given input string.

Why FOLLOW?

The parser faces one more problem. Let us consider below grammar to understand this problem.


 A -> aBb
 B -> c | ε
 And suppose the input string is “ab” to parse. 



As the first character in the input is a, the parser applies the rule A->aBb.


          A
        / |  \
      a   B   b



Now the parser checks for the second character of the input string which is b, and the Non-Terminal to derive is B, but the parser can’t get any string derivable from B that contains b as first character.

But the Grammar does contain a production rule B -> ε, if that is applied then B will vanish, and the parser gets the input “ab” , as shown below. But the parser can apply it only when it knows that the character that follows B is same as the current character in the input.  

In RHS of A -> aBb, b follows Non-Terminal B, i.e. FOLLOW(B) = {b}, and the current input character read is also b. Hence the parser applies this rule. And it is able to get the string “ab” from the given grammar.



        
          
          
          
        

            
           A                    A
        /  |  \              /    \                                                
      a    B    b    =>     a      b       
           |
           ε 

So FOLLOW can make a Non-terminal to vanish out if needed to generate the string from the parse tree. 

 

The conclusions is, we need to find FIRST and FOLLOW sets for a given grammar, so that the parser can properly apply the needed rule at the correct position.

In the next article, we will discus formal definitions of FIRST and FOLLOW, and some easy rules to compute these sets.

Quiz on Syntax Analysis

This article is compiled by Vaibhav Bajpai. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
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						FIRST Set in Syntax Analysis

				
						

				
			FIRST(X) for a grammar symbol X is the set of terminals that begin the strings derivable from X. 

Rules to compute FIRST set:


	 If x is a terminal, then FIRST(x) = { ‘x’ } 

	  If x-> Є, is a production rule, then add Є to FIRST(x). 

	  If X->Y1 Y2 Y3….Yn is a production,

	  FIRST(X) = FIRST(Y1)

	 If FIRST(Y1) contains Є then FIRST(X) = { FIRST(Y1) – Є } U { FIRST(Y2) }

	 If FIRST (Yi) contains Є for all i = 1 to n, then add Є to FIRST(X).







Example 1:


Production Rules of Grammar
E  -> TE’
E’ -> +T E’|Є
T  -> F T’
T’ -> *F T’ | Є
F  -> (E) | id

FIRST sets
FIRST(E) = FIRST(T) = { ( , id }
FIRST(E’) = { +, Є }
FIRST(T) = FIRST(F) = { ( , id }
FIRST(T’) = { *, Є }
FIRST(F) = { ( , id }



Example 2:


Production Rules of Grammar
S -> ACB | Cbb | Ba
A -> da | BC
B -> g | Є
C -> h | Є

FIRST sets
FIRST(S) = FIRST(A) U FIRST(B) U FIRST(C)
         = { d, g, h, Є, b, a}
FIRST(A) = { d } U FIRST(B) = { d, g , h, Є }
FIRST(B) = { g , Є }
FIRST(C) = { h , Є }



Notes: 



	The grammar used above is Context-Free Grammar (CFG). Syntax of most of the programming language can be specified using CFG.

	 CFG is of the form A -> B , where A is a single Non-Terminal, and B can be a set of grammar symbols ( i.e. Terminals as well as Non-Terminals)





In the next article “FOLLOW sets in Compiler Design” we will see how to compute Follow sets.
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						FOLLOW Set in Syntax Analysis

				
						

				
			We have discussed following topics on Syntax Analysis.

Introduction to Syntax Analysis

Why FIRST and FOLLOW?

FIRST Set in Syntax Analysis

In this post, FOLLOW Set is discussed.

Follow(X) to be the set of terminals that can appear immediately to the right of Non-Terminal X in some sentential form.

Example:


S ->Aa | Ac
A ->b  

      S                  S  
     /  \              /   \
    A    a            A     C  
    |                 |
    b                 b   

Here, FOLLOW (A) = {a, c}






Rules to compute FOLLOW set:


1) FOLLOW(S) = { $ }   // where S is the starting Non-Terminal

2) If A -> pBq is a production, where p, B and q are any grammar symbols,
   then everything in FIRST(q)  except Є is in FOLLOW(B.

3) If A->pB is a production, then everything in FOLLOW(A) is in FOLLOW(B).

4) If A->pBq is a production and FIRST(q) contains Є, 
   then FOLLOW(B) contains { FIRST(q) – Є } U FOLLOW(A) 



Example 1:

Production Rules:
E -> TE’
E’ -> +T E’|Є
T -> F T’
T’ -> *F T’ | Є
F -> (E) | id

FIRST set
FIRST(E) = FIRST(T) = { ( , id }
FIRST(E’) = { +, Є }
FIRST(T) = FIRST(F) = { ( , id }
FIRST(T’) = { *, Є }
FIRST(F) = { ( , id }

FOLLOW Set
FOLLOW(E)  = { $ , ) }  // Note  ')' is there because of 5th rule
FOLLOW(E’) = FOLLOW(E) = {  $, ) }  // See 1st production rule
FOLLOW(T)  = { FIRST(E’) – Є } U FOLLOW(E’) = { + , $ , ) }
FOLLOW(T’) = FOLLOW(T) =      { + , $ , ) }
FOLLOW(F)  = { FIRST(T’) –  Є } U FOLLOW(T’) = { *, +, $) }




Example 2:

Production Rules:
S -> ACB|Cbb|Ba
A -> da|BC
B-> g|Є
C-> h| Є

FIRST set
FIRST(S) = FIRST(A) U FIRST(B) U FIRST(C) = { d, g, h, Є, b, a}
FIRST(A) = { d } U FIRST(B) = { d, g, h, Є }
FIRST(B) = { g, Є }
FIRST(C) = { h, Є }

FOLLOW Set
FOLLOW(S) = { $ }
FOLLOW(A)  = { h, g, $ }
FOLLOW(B) = { a, $, h, g }
FOLLOW(C) = { b, g, $, h }




Note :



	Є as a FOLLOW doesn’t mean anything (Є is an empty string).

	$ is called end-marker, which represents the end of the input string, hence used while parsing to indicate that the input string has been completely processed.

	The grammar used above is Context-Free Grammar (CFG). The syntax of a programming language can be specified using CFG.

	CFG is of the form A -> B , where A is a single Non-Terminal, and B can be a set of grammar symbols ( i.e. Terminals as well as Non-Terminals)

Quiz on Syntax Analysis
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						Program to calculate First and Follow sets of given grammar

				
						

				
			Before proceeding, it is highly recommended to be familiar with the basics in Syntax Analysis, LL(1) parsing and the rules of calculating First and Follow sets of a grammar.


	Introduction to Syntax Analysis

	Why First and Follow?

	FIRST Set in Syntax Analysis

	FOLLOW Set in Syntax Analysis



Assuming the reader is familiar with the basics discussed above, let’s start discussing how to implement the C program to calculate the first and follow of given grammar.

Example :

Input :
E  -> TR
R  -> +T R| #
T  -> F Y
Y  -> *F Y | #
F  -> (E) | i


Output :
 First(E)= { (, i, }
 First(R)= { +, #, }
 First(T)= { (, i, }
 First(Y)= { *, #, }
 First(F)= { (, i, }

-----------------------------------------------

 Follow(E) = { $, ),  }
 Follow(R) = { $, ),  }
 Follow(T) = { +, $, ),  }
 Follow(Y) = { +, $, ),  }
 Follow(F) = { *, +, $, ),  }


The functions follow and followfirst are both involved in the calculation of the Follow Set of a given Non-Terminal. The follow set of the start symbol will always contain “$”. Now the calculation of Follow falls under three broad cases :


	If a Non-Terminal on the R.H.S. of any production is followed immediately by a Terminal then it can immediately be included in the Follow set of that Non-Terminal.

	If a Non-Terminal on the R.H.S. of any production is followed immediately by a Non-Terminal, then the First Set of that new Non-Terminal gets included on the follow set of our original Non-Terminal. In case encountered an epsilon i.e. ” # ” then, move on to the next symbol in the production.

Note : “#” is never included in the Follow set of any Non-Terminal.

	If reached the end of a production while calculating follow, then the Follow set of that non-teminal will include the Follow set of the Non-Terminal on the L.H.S. of that production. This can easily be implemented by recursion.



Assumptions :


	Epsilon is represented by ‘#’.

	Productions are of the form A=B, where ‘A’ is a single Non-Terminal and ‘B’ can be any combination of Terminals and Non- Terminals.

	L.H.S. of the first production rule is the start symbol.

	Grammer is not left recursive.

	Each production of a non terminal is entered on a different line.

	Only Upper Case letters are Non-Terminals and everything else is a terminal.

	Do not use ‘!’ or ‘$’ as they are reserved for special purposes.



Explanation :

Store the grammar on a 2D character array production. findfirst function is for calculating the first of any non terminal. Calculation of first falls under two broad cases :



	If the first symbol in the R.H.S of the production is a Terminal then it can directly be included in the first set.

	If the first symbol in the R.H.S of the production is a Non-Terminal then call the findfirst function again on that Non-Terminal. To handle these cases like Recursion is the best possible solution. Here again, if the First of the new Non-Terminal contains an epsilon then we have to move to the next symbol of the original production which can again be a Terminal or a Non-Terminal.





Note : For the second case it is very easy to fall prey to an INFINITE LOOP even if the code looks perfect. So it is important to keep track of all the function calls at all times and never call the same function again.




Recommended: Please try your approach on {IDE} first, before moving on to the solution.





        
          
          
          
        

            
Below is the implementation :

// C program to calculate the First and
// Follow sets of a given grammar
#include<stdio.h>
#include<ctype.h>
#include<string.h>

// Functions to calculate Follow
void followfirst(char, int, int);
void follow(char c);

// Function to calculate First
void findfirst(char, int, int);

int count, n = 0;

// Stores the final result 
// of the First Sets
char calc_first[10][100];

// Stores the final result
// of the Follow Sets
char calc_follow[10][100];
int m = 0;

// Stores the production rules
char production[10][10];
char f[10], first[10];
int k;
char ck;
int e;

int main(int argc, char **argv)
{
    int jm = 0;
    int km = 0;
    int i, choice;
    char c, ch;
    count = 8;
    
    // The Input grammar
    strcpy(production[0], "E=TR");
    strcpy(production[1], "R=+TR");
    strcpy(production[2], "R=#");
    strcpy(production[3], "T=FY");
    strcpy(production[4], "Y=*FY");
    strcpy(production[5], "Y=#");
    strcpy(production[6], "F=(E)");
    strcpy(production[7], "F=i");
    
    int kay;
    char done[count];
    int ptr = -1;
    
    // Initializing the calc_first array
    for(k = 0; k < count; k++) {
        for(kay = 0; kay < 100; kay++) {
            calc_first[k][kay] = '!';
        }
    }
    int point1 = 0, point2, xxx;
    
    for(k = 0; k < count; k++)
    {
        c = production[k][0];
        point2 = 0;
        xxx = 0;
        
        // Checking if First of c has
        // already been calculated
        for(kay = 0; kay <= ptr; kay++)
            if(c == done[kay])
                xxx = 1;
                
        if (xxx == 1)
            continue;
        
        // Function call    
        findfirst(c, 0, 0);
        ptr += 1;
        
        // Adding c to the calculated list
        done[ptr] = c;
        printf("\n First(%c) = { ", c);
        calc_first[point1][point2++] = c;
        
        // Printing the First Sets of the grammar
        for(i = 0 + jm; i < n; i++) {
            int lark = 0, chk = 0;
            
            for(lark = 0; lark < point2; lark++) {
                
                if (first[i] == calc_first[point1][lark])
                {
                    chk = 1;
                    break;
                }
            }
            if(chk == 0)
            {
                printf("%c, ", first[i]);
                calc_first[point1][point2++] = first[i];
            }
        }
        printf("}\n");
        jm = n;
        point1++;
    }
    printf("\n");
    printf("-----------------------------------------------\n\n");
    char donee[count];
    ptr = -1;
    
    // Initializing the calc_follow array
    for(k = 0; k < count; k++) {
        for(kay = 0; kay < 100; kay++) {
            calc_follow[k][kay] = '!';
        }
    }
    point1 = 0;
    int land = 0;
    for(e = 0; e < count; e++)
    {
        ck = production[e][0];
        point2 = 0;
        xxx = 0;
        
        // Checking if Follow of ck
        // has alredy been calculated
        for(kay = 0; kay <= ptr; kay++)
            if(ck == donee[kay])
                xxx = 1;
                
        if (xxx == 1)
            continue;
        land += 1;
        
        // Function call
        follow(ck);
        ptr += 1;
        
        // Adding ck to the calculated list
        donee[ptr] = ck;
        printf(" Follow(%c) = { ", ck);
        calc_follow[point1][point2++] = ck;
        
        // Printing the Follow Sets of the grammar
        for(i = 0 + km; i < m; i++) {
            int lark = 0, chk = 0;
            for(lark = 0; lark < point2; lark++) 
            {
                if (f[i] == calc_follow[point1][lark])
                {
                    chk = 1;
                    break;
                }
            }
            if(chk == 0)
            {
                printf("%c, ", f[i]);
                calc_follow[point1][point2++] = f[i];
            }
        }
        printf(" }\n\n");
        km = m;
        point1++; 
    }
}

void follow(char c)
{
    int i, j;
    
    // Adding "$" to the follow
    // set of the start symbol
    if(production[0][0] == c) {
        f[m++] = '$';
    }
    for(i = 0; i < 10; i++)
    {
        for(j = 2;j < 10; j++)
        {
            if(production[i][j] == c)
            {
                if(production[i][j+1] != '\0')
                {
                    // Calculate the first of the next
                    // Non-Terminal in the production
                    followfirst(production[i][j+1], i, (j+2));
                }
                
                if(production[i][j+1]=='\0' && c!=production[i][0])
                {
                    // Calculate the follow of the Non-Terminal
                    // in the L.H.S. of the production
                    follow(production[i][0]);
                }
            } 
        }
    }
}

void findfirst(char c, int q1, int q2)
{
    int j;
    
    // The case where we 
    // encounter a Terminal
    if(!(isupper(c))) {
        first[n++] = c;
    }
    for(j = 0; j < count; j++)
    {
        if(production[j][0] == c)
        {
            if(production[j][2] == '#')
            {
                if(production[q1][q2] == '\0')
                    first[n++] = '#';
                else if(production[q1][q2] != '\0' 
                          && (q1 != 0 || q2 != 0))
                {
                    // Recursion to calculate First of New
                    // Non-Terminal we encounter after epsilon
                    findfirst(production[q1][q2], q1, (q2+1));
                }
                else
                    first[n++] = '#';
            }
            else if(!isupper(production[j][2]))
            {
                first[n++] = production[j][2];
            }
            else 
            {
                // Recursion to calculate First of
                // New Non-Terminal we encounter 
                // at the beginning
                findfirst(production[j][2], j, 3);
            }
        }
    } 
}

void followfirst(char c, int c1, int c2)
{
    int k;
    
    // The case where we encounter
    // a Terminal
    if(!(isupper(c)))
        f[m++] = c;
    else
    {
        int i = 0, j = 1;
        for(i = 0; i < count; i++)
        {
            if(calc_first[i][0] == c)
                break;
        }
        
        //Including the First set of the
        // Non-Terminal in the Follow of
        // the original query
        while(calc_first[i][j] != '!')
        {
            if(calc_first[i][j] != '#') 
            {
                f[m++] = calc_first[i][j];
            }
            else
            {
                if(production[c1][c2] == '\0')
                {
                    // Case where we reach the
                    // end of a production
                    follow(production[c1][0]);
                }
                else
                {
                    // Recursion to the next symbol
                    // in case we encounter a "#"
                    followfirst(production[c1][c2], c1, c2+1);
                }
            }
            j++;
        }
    }
}



Output :

 First(E)= { (, i, }
 First(R)= { +, #, }
 First(T)= { (, i, }
 First(Y)= { *, #, }
 First(F)= { (, i, }

-----------------------------------------------

 Follow(E) = { $, ),  }
 Follow(R) = { $, ),  }
 Follow(T) = { +, $, ),  }
 Follow(Y) = { +, $, ),  }
 Follow(F) = { *, +, $, ),  }
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						Classification of Context Free Grammars

				
						

				
			Context Free Grammars (CFG) can be classified on the basis of following two properties:

1) Based on number of strings it generates.


	If CFG is generating finite number of strings, then CFG is Non-Recursive (or the grammar is said to be recursive grammar)

	If CFG can generate infinite number of strings then the grammar is said to be Recursive grammar



During Compilation, the parser uses the grammar of the language to make a parse tree(or derivation tree) out of the source code. The grammar used must be unambiguous. An ambiguous grammar must not be used for parsing.

 

2) Based on number of derivation trees.


	If there is only 1 derivation tree then the CFG is unambiguous.

	If there are more than 1 derivation tree, then the CFG is ambiguous.



Examples of Recursive and Non-Recursive Grammars

Recursive Grammars



        
          
          
          
        

            
1) S->SaS    
   S->b

The language(set of strings) generated by the above grammar is :{b, bab, babab,…}, which is infinite.

2) S-> Aa
   A->Ab|c

The language generated by the above grammar is :{ca, cba, cbba …}, which is infinite.

Non-Recursive Grammars

   S->Aa
   A->b|c

The language generated by the above grammar is :{ba, ca}, which is finite.

 

Types of Recursive Grammars

Based on the nature of the recursion in a recursive grammar, a recursive CFG can be again divided into the following:


	Left Recursive Grammar (having left Recursion)

	Right Recursive Grammar (having right Recursion)

	General Recursive Grammar(having general Recursion)



 

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above



          
          
          
            


					
		
		Compiler Design
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	










						Ambiguous Grammar

				
						

				
			 

You can also read our previously discussed article on Classification of Context Free Grammars.

 

Context Free Grammars(CFGs) are classified based on:


	Number of Derivation trees

	Number of strings



 

Depending on Number of Derivation trees, CFGs are sub-divided into 2 types:


	Ambiguous grammars

	Unambiguous grammars



 

Ambiguous grammar:

 

A CFG is said to ambiguous if there exists more than one derivation tree for the given input string i.e., more than one LeftMost Derivation Tree (LMDT) or RightMost Derivation Tree (RMDT).

 

Definition: G = (V,T,P,S) is a CFG is said to be ambiguous if and only if there exist a string in T* that has more than on parse tree.

where V is a finite set of variables.

T is a finite set of terminals.

P is a finite set of productions of the form, A -> α, where A is a variable and α ∈ (V ∪ T)* S is a designated variable called the start symbol.  

 

For Example:

 

1. Let us consider this grammar : E -> E+E|id 

We can create 2 parse tree from this grammar to obtain a string id+id+id   :



        
          
          
          
        

            
The following are the 2 parse trees generated by left most derivation:

[image: parse trees (3)]

Both the above parse trees are derived from same grammar rules but both parse trees are different. Hence the grammar is ambiguous.  

 

2. Let us now consider the following grammar:

 

Set of alphabets ∑ = {0,…,9, +, *, (, )}

E -> I        
E -> E + E
E -> E * E
E -> (E)
I -> ε | 0 | 1 | … | 9
 


From the above grammar String 3*2+5 can be derived in 2 ways:

 

I) First leftmost derivation                   II) Second leftmost derivation
        E=>E*E                          E=>E+E
         =>I*E                           =>E*E+E
         =>3*E+E                                       =>I*E+E
         =>3*I+E                           =>3*E+E
         =>3*2+E                           =>3*I+E
         =>3*2+I                           =>3*2+I
         =>3*2+5                           =>3*2+5



 

Following are some examples of ambiguous grammars:

 


	S-> aS |Sa| Є

	E-> E +E | E*E| id

	A -> AA | (A) | a

	S -> SS|AB , A -> Aa|a , B -> Bb|b



Whereas following grammars are unambiguous:

 


	S -> (L) | a, L -> LS | S

	S -> AA , A -> aA , A -> b



Inherently ambiguous Language:  

 

Let L be a Context Free Language (CFL). If every Context Free Grammar G with Language L = L(G) is ambiguous, then L is said to be inherently ambiguous Language. Ambiguity is a property of grammar not languages. Ambiguous grammar is unlikely to be useful for a programming language, because two parse trees structures(or more) for the same string(program) implies two different meanings (executable programs) for the program.  

 

Note : Ambiguity of a grammar is undecidable, i.e. there is no particular algorithm for removing the ambiguity of a grammar, but we can remove ambiguity by:  

 

Disambiguate the grammar i.e., rewriting the grammar such that there is only one derivation or parse tree possible for a string of the language which the grammar represents.  

 

This article is compiled by Saikiran Goud Burra.

 

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
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						Parsing | Set 1 (Introduction, Ambiguity and Parsers)

				
						

				
			In this article we will study about various types of parses. It is one of the most important topic in Compiler from GATE point of view. The working of various parsers will be explained from GATE question solving point of view.

Prerequisite – basic knowledge of grammars, parse trees, ambiguity.

Role of the parser :

In the syntax analysis phase, a compiler verifies whether or not the tokens generated by the lexical analyzer are grouped according to the syntactic rules of the language. This is done by a parser. The parser obtains a string of tokens from the lexical analyzer and verifies that the string can be the grammar for the source language. It detects and reports any syntax errors and produces a parse tree from which intermediate code can be generated.

[image: position of parser]

Before going to types of parsers we will discuss on some ideas about the some important things required for understanding parsing.

Context Free Grammers:

The syntax of a programming language is described by a context free grammar (CFG). CFG consists of set of terminals, set of non terminals, a start symbol and set of productions.

Notation –   α → β where α is a single variable [V]

β ∈ (V+T)*

Ambiguity

A grammar that produces more than one parse tree for some sentence is said to be ambiguous.

Eg- consider a grammar

S -> aS | Sa | a

Now for string aaa we will have 4 parse trees, hence ambiguous

[image: parse tree]

For more information refer quiz.geeksforgeeks.org/ambiguous-grammar/

Removing Left Recursion :

A grammar is left recursive if it has a non terminal (variable) S such that their is a derivation

S -> Sα | β

where α ∈ (V+T)* and β ∈ (V+T)* (sequence of terminals and non terminals that do not start with S)

Due to the presence of left recursion some top down parsers enter into infinite loop so we have to eliminate left recursion.

Let the productions is of the form A -> Aα1 | Aα2 | Aα3 | ….. | Aαm | β1 | β2 | …. | βn

Where no βi begins with an A . then we replace the A-productions by

A -> β1 A’ | β2 A’ | ….. | βn A’

A’ -> α1A’ | α2A’ | α3A’| ….. | αmA’ | ε

The nonterminal A generates the same strings as before but is no longer left recursive.

Let’s look at some example to understand better



        
          
          
          
        

            
[image:    \\ Example 1: \\ \\S\rightarrow S\overset{\alpha _{1}}{ab} \hspace{2 mm}/\hspace{2 mm} S\overset{\alpha _{2}}{cd} \hspace{2 mm}/ \hspace{2 mm}S\overset{\alpha _{3}}{ef}\hspace{2 mm} /\hspace{2 mm} \overset{\beta_{1}}{g}\hspace{2 mm}/\hspace{2 mm}\overset{\beta_{2}}{h}\\ \\ S\rightarrow gS'/hS'\\ \\ S'\rightarrow \epsilon /abS'/cdS'/efS' \\ \\ Example 2:\\ \\ S\rightarrow (L)/a \hspace{2 cm} No\hspace{2 mm} left\hspace{2 mm} Recursion\\  \\  L\rightarrow  L,S/S \hspace{2 cm} left\hspace{2 mm} Recursion\\  \\ L\rightarrow Sl' \\ \\ L'\rightarrow \epsilon/ SL' \\         ]

Removing Left Factoring :

A grammar is said to be left factored when it is of the form –

A -> αβ1 | αβ2 | αβ3 | …… | αβn | γ  i.e the productions start with the same terminal (or set of terminals). On seeing the input α we cannot immediately tell which production to choose to expand A.

Left factoring is a grammar transformation that is useful for producing a grammar suitable for predictive or top down parsing. When the choice between two alternative A-productions is not clear, we may be able to rewrite the productions to defer the decision until enough of the input has been seen to make the right choice.

For the grammar A -> αβ1 | αβ2 | αβ3 | …… | αβn | γ

The equivalent left factored grammar will be –

A -> αA’ | γ

A’ -> β1 | β2 | β3 | …… | βn




[image:    \\ \\ Example 1: \\ \\ S\rightarrow iEtS\hspace{2 mm} / \hspace{2 mm} iEtS eS/a/b \\ \\  S\rightarrow iEtSS'/a/b\\ \\  S'\rightarrow eS/ \epsilon  \\ \\  Example 2:\\ \\ S\rightarrow a/ab/abc/abcd/e/f\\ \\ S\rightarrow aS'/e/f \\ \\ S'\rightarrow bS"/\epsilon \hspace{2 cm} -for\hspace{2 mm} single\hspace{2 mm} a \\ \\ S"\rightarrow cS'''/\epsilon  \hspace{2 cm} -for\hspace{2 mm} ab \\ \\ S'''\rightarrow  d/\epsilon  \hspace{2.4 cm} -for\hspace{2 mm} abc \\ ]

The process of deriving the string from the given grammar is known as derivation (parsing).

Depending upon how derivation is done we have two kinds of parsers :-


	Top Down Parser

	Bottom Up Parser



We will be studying the parsers from GATE point of view.

Top Down Parser

Top down parsing attempts to build the parse tree from root to leave. Top down parser will start from start symbol and proceeds to string. It follows leftmost derivation. In leftmost derivation, the leftmost non-terminal in each sentential is always chosen.

Recursive Decent Parsing

S()
{     Choose any S production, S ->X1X2…..Xk;
      for (i = 1 to k)
      {
          If ( Xi is a non-terminal)
          Call procedure Xi();
          else if ( Xi equals the current input, increment input)
          Else /* error has occurred, backtrack and try another possibility */
      }
}


Lets understand it better with an example

[image:    \\ \\  S\rightarrow ABC/DEF/GHI \hspace{4.5 cm} G\rightarrow d\\ \\  A\rightarrow ab/gh/m\hspace{6 cm} F\rightarrow d \\ \\  B\rightarrow cd/ij/n  \hspace{6.2 cm} H\rightarrow e  \\ \\  C\rightarrow ef/kl/o  \hspace{6.1 cm} I\rightarrow f\\ \\  S\rightarrow aS'/e/f\\ \\  D\rightarrow a \\ \\  E\rightarrow b\hspace{6.1 cm} Input:abijef\\ \\ \\  ]

[image: Recursive Decent Parsing]




A recursive descent parsing program consist of a set of procedures, one for each nonterminal. Execution begins with the procedure for the start symbol which halts if its procedure body scans the entire input string.

Non Recursive Predictive Parsing :

This type if parsing does not require backtracking. Predictive parsers can be constructed for LL(1) grammar, the first ‘L’ stands for scanning the input from left to right, the second ‘L’ stands for leftmost derivation and ‘1’ for using one input symbol lookahead at each step to make parsing action decisions.

Before moving on to LL(1) parsers please go through FIRST and FOLLOW

http://quiz.geeksforgeeks.org/compiler-design-first-in-syntax-analysis/

http://quiz.geeksforgeeks.org/compiler-design-follow-set-in-syntax-analysis/

Construction of LL(1)predictive parsing table

For each production A -> α repeat following steps –

Add A -> α under M[A, b] for all b in FIRST(α)

If FIRST(α) contains ε then add A -> α under M[A,c] for all c in FOLLOW(A).

Size of parsing table = (No. of terminals + 1) * #variables

Eg – consider the grammar

S -> (L) | a

L -> SL’

L’ -> ε | SL’

[image: LL 1 grammer]

[image: https://contribute.geeksforgeeks.org/wp-content/uploads/multipleentriesllgrammar.jpg]

For any grammar if M have multiple entries than it is not LL(1) grammar

Eg –

[image: not LL 1 grammer]

[image: grammer]

Important Notes

      1. If a grammar contain left factoring then it can not be LL(1)
        Eg - S -> aS | a      ---- both productions go in a
      2. If a grammar contain left recursion it can not be LL(1)
        Eg - S -> Sa | b 
                S -> Sa goes to FIRST(S) = b
                S -> b goes to b, thus b has 2 entries hence not LL(1)
      3. If a grammar is ambiguous then it can not be LL(1)
      4. Every regular grammar need not be LL(1) because 
         regular grammar may contain left factoring, left recursion or ambiguity. 


[image: parser_9]

We will discuss Bottom Up parser in next article (Set 2).

This article is contributed by Parul sharma
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						Classification of top down parsers

				
						

				
			Parsing is classified into two categories, i.e. Top Down Parsing and Bottom-Up Parsing. Top-Down Parsing is based on Left Most Derivation whereas Bottom Up Parsing is dependent on Reverse Right Most Derivation.

The process of constructing the parse tree which starts from the root and goes down to the leaf is Top-Down Parsing.


	Top-Down Parsers constructs from the Grammar which is free from ambiguity and left recursion.

	Top Down Parsers uses leftmost derivation to construct a parse tree.

	It allows a grammar which is free from Left Factoring.



Classification of Top-Down Parsing –


	With Backtracking: Brute Force Technique or Recursive Descent Parsing

	Without Backtracking: Predictive Parsing or Non-Recursive Parsing or LL(1) Parsing or Table Driver Parsing



Brute Force Technique or Recursive Descent Parsing –


	Whenever a Non-terminal spend first time then go with the first alternative and compare with the given I/P String

	If matching doesn’t occur then go with the second alternative and compare with the given I/P String.

	If matching again not found then go with the alternative and so on.

	Moreover, If matching occurs for at least one alternative, then the I/P string is parsed successfully.



LL(1) or Table Driver or Predictive Parser –


	In LL1, 1 stands for Look Ahead Symbol, 1st L stands for Left Most Derivation whereas Second L stands for Left to right scan of strings.

	LL(1) parsing is constructed from the grammar which is free from left recursion, common prefix, and ambiguity.

	LL(1) parser depends on 1 look ahead symbol to predict the production to expand the parse tree.

	This parser is Non-Recursive.
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						Parsing | Set 2 (Bottom Up or  Shift Reduce Parsers)

				
						

				
			In this article we are discussing the Bottom Up parser.

Bottom Up Parsers / Shift Reduce Parsers

Build the parse tree from leaves to root. Bottom up parsing can be defined as an attempt to reduce the input string w to the start symbol of a grammar by tracing out the rightmost derivations of w in reverse.

Eg.

[image: ]

Classification of bottom up parsers

[image: ]

A general shift reduce parsing is LR parsing. The L stands for scanning the input from left to right    and R stands for constructing a rightmost derivation in reverse.

Here we will look at the construction of GOTO graph of a grammar by using all the four LR parsing techniques. For solving questions in GATE we have to construct the GOTO directly for the given grammar to save time.




LR(0) Parser

We need two functions –

Closure()

Goto()

Augmented Grammar

If G is a grammar with start symbol S then G’, the augmented grammar for G, is the grammar with new start symbol S’ and a production S’ -> S. The purpose of this new starting production is to indicate to the parser when it should stop parsing and announce acceptance of input.

Let a grammar be S -> AA

              A -> aA | b

The augmented grammar for the above grammar will be

            S’ -> S

            S -> AA

            A -> aA | b

LR(0) Items

An LR(0) is the item of a grammar G is a production of G with a dot at some position in the right side.

S -> ABC yields four items

S -> .ABC

S -> A.BC

S -> AB.C

S -> ABC.

The production A -> ε generates only one item A -> .ε


Closure Operation:

If I is a set of items for a grammar G, then closure(I) is the set of items constructed from I by the two rules:


	Initially every item in I is added to closure(I).

	If A -> α.Bβ is in closure(I) and B -> γ is a production then add the item B -> .γ to I, If it is not already there. We apply this rule until no more items can be added to closure(I).




Eg:

[image: ]




Goto Operation :

Goto(I, X)  =  1. Add I by moving dot after X.

                                2. Apply closure to first step.

[image: ]




Construction of GOTO graph-



        
          
          
          
        

            

	State I0 – closure of augmented LR(0) item

	Using I0 find all collection of sets of LR(0) items with the help of DFA

	Convert DFA to LR(0) parsing table




Construction of LR(0) parsing table:


	The action function takes as arguments a state i and a terminal a (or $ , the input end marker). The value of ACTION[i, a] can have one of four forms:

	 Shift j, where j is a state.

	 Reduce A -> β.

	 Accept

	Error





	 We extend the GOTO function, defined on sets of items, to states: if GOTO[Ii , A] = Ij then GOTO also maps a state i and a nonterminal A to state j.




Eg:

Consider the grammar S ->AA

            A -> aA | b

Augmented grammar S’ -> S

            S -> AA

            A -> aA | b

The LR(0) parsing table for above GOTO graph will be –

[image: ]

Action part of the table contains all the terminals of the grammar whereas the goto part contains all the nonterminals. For every state of goto graph we write all the goto operations in the table. If goto is applied to a terminal than it is written in the action part if goto is applied on a nonterminal it is written in goto part. If on applying goto a production is reduced ( i.e if the dot reaches at the end of production and no further closure can be applied) then it is denoted as Ri and if the production is not reduced (shifted) it is denoted as Si.

If a production is reduced it is written under all the terminals in LR(0) parser.

If in a state the start symbol of grammar is reduced it is written under $ symbol as accepted.


NOTE: If in any state both reduced and shifted productions are present or two reduced productions are present it is called a conflict situation and the grammar is not LR grammar.

[image: ]

NOTE:

1. Two reduced productions in one state – RR conflict.

2. One reduced and one shifted production in one state – SR conflict.



If no SR or RR conflict present in the parsing table then the grammar is LR(0) grammar.

In above grammar no conflict so it is LR(0) grammar.



NOTE —In solving GATE question we don’t need to make the parsing table, by looking at the GOTO graph only we can determine if the grammar is LR(0) grammar or not. We just have to look for conflicts in the goto graph i.e if a state contains two reduced or one reduced and one shift entry for a TERMINAL variable then there is a conflict and it is not LR(0) grammar. (In case of one shift with a VARIABLE and one reduced there will be no conflict because then the shift entries will go to GOTO part of table and reduced entries will go in ACTION part and thus no multiple entries).
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						Shift Reduce Parser in Compiler

				
						

				
			Prerequisite – Parsing | Set 2 (Bottom Up or Shift Reduce Parsers)

Shift Reduce parser attempts for the construction of parse in a similar manner as done in bottom up parsing i.e. the parse tree is constructed from leaves(bottom) to the root(up). A more general form of shift reduce parser is LR parser.

This parser requires some data structures i.e.


	A input buffer for storing the input string.

	A stack for storing and accessing the production rules.



Basic Operations –


	Shift:  This involves moving of symbols from input buffer onto the stack.

	Reduce:  If the handle appears on top of the stack then, its reduction by using appropriate production rule is done i.e. RHS of production rule is popped out of stack and LHS of production rule is pushed onto the stack.

	Accept: If only start symbol is present in the stack and the input buffer is empty then, the parsing action is called accept. When accept action is obtained, it is means successful parsing is done.

	Error: This is the situation in which the parser can neither perform shift action nor reduce action and not even accept action.



Example 1 – Consider the grammar

                 S –> S + S

                 S –> S * S

                 S –> id

 Perform Shift Reduce parsing for input string “id + id + id”.

 

[image: ]



        
          
          
          
        

            
 

Example 2 – Consider the grammar

                 E –> 2E2

                 E –> 3E3

                 E –> 4

 Perform Shift Reduce parsing for input string “32423”.

 

[image: ]



          
          
          
            



Ankit87

Check out this Author's contributed articles.







If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



					
		
		Compiler Design
GATE CS
Technical Scripter
 
           	

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.

					
	










						Parsing | Set 3 (SLR, CLR and LALR Parsers)

				
						

				
			In this article we are discussing the SLR parser, CLR parser and LALR parser which are the parts of Bottom Up parser.



SLR Parser

The SLR parser is similar to LR(0) parser except that the reduced entry. The reduced productions are written only in the FOLLOW of the variable whose production is reduced.



Construction of SLR parsing table –


	Construct C = { I0, I1, ……. In}, the collection of sets of LR(0) items for G’.

	State i is constructed from Ii. The parsing actions for state i are determined as follow :

	If [ A -> ?.a? ] is in Ii and GOTO(Ii , a) = Ij , then set ACTION[i, a] to “shift j”. Here a must be terminal.

	 If [A -> ?.] is in Ii, then set ACTION[i, a] to “reduce A -> ?” for all a in FOLLOW(A); here A may not be S’.

	 Is [S -> S.] is in Ii, then set action[i, $] to “accept”. If any conflicting actions are generated by the above rules we say that the grammar is not SLR. 





	The goto transitions for state i are constructed for all nonterminals A using the rule:

 if GOTO( Ii , A ) = Ij then GOTO [i, A] = j.

	All entries not defined by rules 2 and 3 are made error. 



Eg:

If in the parsing table we have multiple entries then it is said to be a conflict.

Consider the grammar E -> T+E | T
                     T ->id
    Augmented grammar - E’ -> E
                E -> T+E | T
                T -> id



[image: parser_16]

Note 1 – for GATE we don’t have to draw the table, in the GOTO graph just look for the reduce and shifts occurring together in one state.. In case of two reductions,if the follow of both the reduced productions have something common then it will result in multiple entries in table hence not SLR. In case of one shift and one reduction,if their is a GOTO operation from that state on a terminal which is the follow of the reduced production than it will result in multiple entries hence not SLR.

Note 2 – Every SLR grammar is unambiguous but their are many unambiguous grammars that are not SLR.



CLR PARSER

In the SLR method we were working with LR(0)) items. In CLR parsing we will be using LR(1) items. LR(k) item is defined to be an item using lookaheads of length k. So , the LR(1) item is comprised of two parts : the LR(0) item and the lookahead associated with the item.

LR(1) parsers are more powerful parser.

For LR(1) items we modify the Closure and GOTO function.



Closure Operation 



        
          
          
          
        

            
Closure(I)
repeat 
    for (each item [ A -> ?.B?, a ] in I )
        for (each production B -> ? in G’)
          for (each terminal b in FIRST(?a))
            add [ B -> .? , b ] to set I;
until no more items are added to I;
return I;



Lets understand it with an example –

[image: parser_17]


Goto Operation

Goto(I, X)
Initialise J to be the empty set;
for ( each item A -> ?.X?, a ] in I )
    Add item A -> ?X.?, a ] to se J;   /* move the dot one step */
return Closure(J);    /* apply closure to the set */


Eg-

[image: parser_18]



LR(1) items

Void items(G’)
Initialise C to { closure ({[S’ -> .S, $]})};
Repeat
    For (each set of items I in C)
        For (each grammar symbol X)
            if( GOTO(I, X) is not empty and not in C)
                Add GOTO(I, X) to C;
Until no new set of items are added to C;




Construction of GOTO graph


	State I0 – closure of augmented LR(1) item. 

	Using I0 find all collection of sets of LR(1) items with the help of DFA

	Convert DFA to LR(1) parsing table




Construction of CLR parsing table-

Input – augmented grammar G’


	Construct C = { I0, I1, ……. In} , the collection of sets of LR(0) items for G’.

	State i is constructed from Ii. The parsing actions for state i are determined as follow :

i) If [ A -> ?.a?, b ] is in Ii and GOTO(Ii , a) = Ij, then set ACTION[i, a] to “shift j”. Here a must be terminal.

ii) If [A -> ?. , a] is in Ii , A ≠ S, then set ACTION[i, a] to “reduce A -> ?”.

iii) Is [S -> S. , $ ] is in Ii, then set action[i, $] to “accept”.

If any conflicting actions are generated by the above rules we say that the grammar is

not CLR.



	The goto transitions for state i are constructed for all nonterminals A using the rule: if GOTO( Ii, A ) = Ij then GOTO [i, A] = j. 

	All entries not defined by rules 2 and 3 are made error. 



Eg:

Consider the following grammar 
    S -> AaAb | BbBa
    A -> ?
    B -> ?
    Augmented grammar - S’ -> S
                  S -> AaAb | BbBa
                  A -> ?
                  B -> ?
    GOTO graph for this grammar will be - 



[image: parser_19]

Note – if a state has two reductions and both have same lookahead then it will in multiple entries in parsing table thus a conflict. If a state has one reduction and their is a shift from that state on a terminal same as the lookahead of the reduction then it will lead to multiple entries in parsing table thus a conflict.



LALR PARSER

LALR parser are same as CLR parser with one difference. In CLR parser if two states differ only in lookahead then we combine those states in LALR parser. After minimisation if the parsing table has no conflict that the grammar is LALR also.

Eg:

consider the grammar S ->AA
                     A -> aA | b
    Augmented grammar - S’ -> S
                        S ->AA
                        A -> aA | b



[image: parser_20]


Important Notes

1. Even though CLR parser does not have RR conflict but LALR may contain RR conflict.

2. If number of states LR(0) = n1,

    number of states SLR = n2,

    number of states LALR = n3,

    number of states CLR = n4 then,

    n1 = n2 = n3 <= n4



[image: parser_21]
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Syntax Directed Translation










						Syntax Directed Translation

				
						

				
			Background : Parser uses a CFG(Context-free-Grammer) to validate the input string and produce output for next phase of the compiler. Output could be either a parse tree or abstract syntax tree. Now to interleave semantic analysis with syntax analysis phase of the compiler, we use Syntax Directed Translation. 

Definition

Syntax Directed Translation are augmented rules to the grammar that facilitate semantic analysis. SDT involves passing information bottom-up and/or top-down the parse tree in form of attributes attached to the nodes. Syntax directed translation rules use 1) lexical values of nodes, 2) constants & 3) attributes associated to the non-terminals in their definitions. 

Example 

E -> E+T | T
T -> T*F | F
F -> INTLIT


This is a grammar to syntactically validate an expression having additions and multiplications in it. Now, to carry out semantic analysis we will augment SDT rules to this grammar, in order to pass some information up the parse tree and check for semantic errors, if any. In this example we will focus on evaluation of the given expression, as we don’t have any semantic assertions to check in this very basic example.

E -> E+T     { E.val = E.val + T.val }   PR#1
E -> T       { E.val = T.val }           PR#2
T -> T*F     { T.val = T.val * F.val }   PR#3
T -> F       { T.val = F.val }           PR#4
F -> INTLIT  { F.val = INTLIT.lexval }   PR#5


For understanding translation rules further, we take the first SDT augmented to [ E -> E+T ] production rule. The translation rule in consideration has val as attribute for both the non-terminals – E & T. Right hand side of the translation rule corresponds to attribute values of right side nodes of the production rule and vice-versa. Generalizing, SDT are augmented rules to a CFG that associate 1) set of attributes to every node of the grammar and 2) set of translation rules to every production rule using attributes, constants and lexical values.



        
          
          
          
        

            
Let’s take a string to see how semantic analysis happens – S = 2+3*4. Parse tree corresponding to S would be

[image: vineet_article]

To evaluate translation rules, we can employ one depth first search traversal on the parse tree. This is possible only because SDT rules don’t impose any specific order on evaluation until children attributes are computed before parents for a grammar having all synthesized attributes. Otherwise, we would have to figure out the best suited plan to traverse through the parse tree and evaluate all the attributes in one or more traversals. For better understanding, we will move bottom up in left to right fashion for computing translation rules of our example. 



Above diagram shows how semantic analysis could happen. The flow of information happens bottom-up and all the children attributes are computed before parents, as discussed above. Right hand side nodes are sometimes annotated with subscript 1 to distinguish between children and parent.

Additional Information

Synthesized Attributes are such attributes that depend only on the attribute values of children nodes.

Thus [ E -> E+T { E.val = E.val + T.val } ] has a synthesized attribute val corresponding to node E. If all the semantic attributes in an augmented grammar are synthesized, one depth first search traversal in any order is sufficient for semantic analysis phase.

Inherited Attributes are such attributes that depend on parent and/or siblings attributes.

Thus [ Ep -> E+T { Ep.val = E.val + T.val, T.val = Ep.val } ], where E & Ep are same production symbols annotated to differentiate between parent and child, has an inherited attribute val corresponding to node T.

Reference:

http://www.personal.kent.edu/~rmuhamma/Compilers/MyCompiler/syntaxDirectTrans.htm

http://pages.cs.wisc.edu/~fischer/cs536.s06/course.hold/html/NOTES/4.SYNTAX-DIRECTED-TRANSLATION.html
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Code Generation and Optimization










						Code Optimization

				
						

				
			The code optimization in the synthesis phase is a program transformation technique, which tries to improve the intermediate code by making it consume fewer resources (i.e. CPU, Memory) so that faster-running machine code will result. Compiler optimizing process should meet the following objectives :


	The optimization must be correct, it must not, in any way, change the meaning of the program.

	Optimization should increase the speed and performance of the program.

	The compilation time must be kept reasonable.

	The optimization process should not delay the overall compiling process.



When to Optimize?

Optimization of the code is often performed at the end of the development stage since it reduces readability and adds code that is used to increase the performance.

Types of Code Optimization –The optimization process can be broadly classified into two types :


	Machine Independent Optimization – This code optimization phase attempts to improve the intermediate code to get a better target code as the output. The part of the intermediate code which is transformed here does not involve any CPU registers or absolute memory locations.

	Machine Dependent Optimization – Machine-dependent optimization is done after the target code has been generated and when the code is transformed according to the target machine architecture. It involves CPU registers and may have absolute memory references rather than relative references. Machine-dependent optimizers put efforts to take maximum advantage of the memory hierarchy. 



Code Optimization is done in the following different ways : 


	Compile Time Evaluation :

(i)  A = 2*(22.0/7.0)*r 
     Perform 2*(22.0/7.0)*r at compile time.
(ii)  x = 12.4
      y = x/2.3 
      Evaluate x/2.3 as 12.4/2.3 at compile time.






	Variable Propagation :

     //Before Optimization 
     c = a * b                                               
     x = a                                                  
     till                                                           
     d = x * b + 4 

    
     //After Optimization 
     c = a * b  
     x = a
     till
     d = a * b + 4




     Hence, after variable propagation, a*b and x*b will be identified as common sub-expression.


	Dead code elimination : Variable propagation often leads to making assignment statement into dead code

      c = a * b                                                
      x = a                                                
      till                                                          
      d = a * b + 4   

      //After elimination :
      c = a * b
      till
      d = a * b + 4







	 Code Motion :

•    Reduce the evaluation frequency of expression.

•    Bring loop invariant statements out of the loop.


        
          
          
          
        

            

      a = 200;
       while(a>0)
       {
           b = x + y;
           if (a % b == 0}
           printf(“%d”, a);
         }


      //This code can be further optimized as
      a = 200;
      b = x + y;
      while(a>0)
       {
           if (a % b == 0}
           printf(“%d”, a);
         }







	 Induction Variable and Strength Reduction :

•    An induction variable is used in loop for the following kind of assignment i = i  + constant.

•    Strength reduction means replacing the high strength operator by the low strength.


i = 1;                                                                      
while (i<10)                                                          
{                                                                             
    y = i * 4; 
}


//After Reduction
i = 1
t = 4
{ 
   while( t<40) 
   y = t; 
   t = t + 4;
}








Reference – https://en.wikipedia.org/wiki/Optimizing_compiler                                                                   
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						Intermediate Code Generation

				
						

				
			In the analysis-synthesis model of a compiler, the front end of a compiler translates a source program into an independent intermediate code, then the back end of the compiler uses this intermediate code to generate the target code (which can be understood by the machine).

The benefits of using machine independent intermediate code are:


	Because of the machine independent intermediate code, portability will be enhanced.For ex, suppose, if a compiler translates the source language to its target machine language without having the option for generating intermediate code, then for each new machine, a full native compiler is required. Because, obviously, there were some modifications in the compiler itself according to the machine specifications. 

	Retargeting is facilitated

	It is easier to apply source code modification to improve the performance of source code by optimising the intermediate code.



[image: 1]

If we generate machine code directly from source code then for n target machine we will have n optimisers and n code generators but if we will have a machine independent intermediate code,

we will have only one optimiser. Intermediate code can be either language specific (e.g., Bytecode for Java) or language. independent (three-address code).

The following are commonly used intermediate code representation:



        
          
          
          
        

            

	Postfix Notation –
The ordinary (infix) way of writing the sum of a and b is with operator in the middle : a + b

The postfix notation for the same expression places the operator at the right end as ab +. In general, if e1 and e2 are any postfix expressions, and + is any binary operator, the result of applying + to the values denoted by e1 and e2 is postfix notation by e1e2 +. No parentheses  are needed in postfix notation because the position and arity (number of arguments) of the operators permit only one way to decode a postfix expression. In postfix notation the operator follows the operand.

Example – The postfix representation of the expression (a – b) * (c + d) + (a – b) is :     ab – cd + ab -+*.

Read more: Infix to Postfix



	Three-Address Code –

A statement involving no more than three references(two for operands and one for result) is known as three address statement. A sequence of three address statements is known as three address code. Three address statement is of the form x = y op z , here x, y, z will have address (memory location). Sometimes a statement might contain less than three references but it is still called three address statement.

Example – The three address code for the expression a + b * c + d :

T 1 = b * c

T 2 = a + T 1

T 3 = T 2 + d

T 1 , T 2 , T 3 are temporary variables.



	Syntax Tree –

Syntax tree is nothing more than condensed form of a parse tree. The operator and keyword nodes of the parse tree are moved to their parents and a chain of single productions is replaced by single link in syntax tree the internal nodes are operators and child nodes are operands. To form syntax tree put parentheses in the expression, this way it's easy to recognize which operand should come first.

Example –

 x = (a + b * c) / (a – b * c)

[image: 2]
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						Three address code in Compiler

				
						

				
			Prerequisite – Intermediate Code Generation

Three address code  is a type of intermediate code which is easy to generate and can be easily converted to machine code.It makes use of at most three addresses and one operator to represent an expression and the value computed at each instruction is stored in temporary variable generated by compiler. The compiler decides the order of operation given by three address code.   

General representation –

 x = y op z 

Where a, b or c represents operands like names, constants or compiler generated temporaries  and op represents the operator

Example-1:  Convert the expression a * – (b + c) into three address code.

[image: ] 



        
          
          
          
        

            
Example-2: Write three address code for following code 

for(i = 1; i<=10; i++)
 {
  a[i] = x * 5;                                       
 } 

[image: ]

Implementation of Three Address Code –

There are 3 representations of three address code namely


	Quadruple

	Triples

	Indirect Triples



1. Quadruple –

It is structure with consist of 4 fields namely op, arg1, arg2 and result. op denotes the operator and arg1 and arg2 denotes the two operands and result is used to store the result of the expression.

Advantage –


	Easy to rearrange code for global optimization.

	One can quickly access value of temporary variables using symbol table.



Disadvantage –


	Contain lot of temporaries.

	Temporary variable creation increases time and space complexity.



Example – Consider expression a = b * – c + b * – c.

The three address code is:

t1 = uminus c
t2 = t1 * b
t3 = uminus c
t4 = t3 * b 
t5 = t2 + t4
a = t5  

[image: ]

2. Triples –

This representation doesn’t make use of extra temporary variable to represent a single operation instead when a reference to another triple’s value is needed, a pointer to that triple is used. So, it consist of only three fields namely op, arg1 and arg2.

Disadvantage –


	Temporaries are implicit and difficult to rearrange code.

	It is difficult to optimize because optimization involves moving intermediate code. When a triple is moved, any other triple referring to it must be updated also. With help of pointer one can directly access symbol table entry.



Example – Consider expression a = b * – c + b * – c

[image: ]

3. Indirect Triples –

This representation makes use of pointer to the listing of all references to computations which is made separately and stored. Its similar in utility as compared to quadruple representation but requires less space than it. Temporaries are implicit and easier to rearrange code.

Example – Consider expression a = b * – c + b * – c

[image: ]

Question – Write quadruple, triples and indirect triples for following expression : (x + y) * (y + z) + (x + y + z)

Explanation – The three address code is:

t1 = x + y
t2 = y + z
t3 = t1 * t2
t4 = t1 + z
t5 = t3 + t4  

[image: ]
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						Introduction of Object Code

				
						

				
			Let assume that, you have a c program, then you give the C program to compiler and compiler will produce the output in assembly code.Now, that assembly language code will give to the assembler and assembler is going to produce you some code. That is known as Object Code.

[image: compilation]

But, when you compile a program, then you are not going to use both compiler and assembler.You just take the program and give it to the compiler and compiler will give you the directly executable code. The compiler is actually combined inside the assembler along with loader and linker.So all the module kept together in the compiler software itself. So when you calling gcc, you are actually not just calling the compiler, you are calling the compiler, then assembler, then linker and loader.

Once you call the compiler, then your object code is going to present in Hard-disk. This object code contains various part –

[image: compilation2]



        
          
          
          
        

            

	Header –

The header will say what are the various parts present in this object code and then point that parts.So header will say where the text segment is going to start and a pointer to it and where the data segment going to start and it say where the relocation information and symbol information there.

It is nothing but like an index, like you have a textbook, there an index page will contains at what page number each topic present. Similarly, the header will tell you, what are the palaces at which each information is present.So that later for other software it will be useful to directly go into those segment.


	Text segment –

It is nothing but the set of instruction.

	Data segment –

Data segment will contain whatever data you have used.For example, you might have used something constraint, then that going to be present in the data segment.

	Relocation Information –

Whenever you try to write a program, we generally use symbol to specify anything.Let us assume you have instruction 1, instruction 2, instruction 3, instruction 4,….

[image: compilation3]

Now if you say somewhere Goto L4 (Even if you don’t write Goto statement in the high-level language, the output of the compiler will write it), then that code will be converted into object code and L4 will be replaced by Goto 4. Now Goto 4 for the level L4 is going to work fine, as long as the program is going to be loaded starting at address no 0. But most of the cases, the initial part of the RAM is going to be dedicated to the operating system. Even if it is not dedicated to the operating system, then might be some other process which will already be running at address no 0. So, when you are going to load the program into memory, means if the program has to be load in the main memory, it might be loaded anywhere.Let us say 1000 is the new starting address, then all the addresses has to be changed, that is known as Reallocation.

[image: compilation4]

The original address is known as Relocatable address and the final address which we get after loading the program into main memory is known as the Absolute address.

Symbol table –

It contains every symbol that you have in your program.for example, int a, b, c then, a, b, c are the symbol.it will show what are the variables that your program contains.

Debugging information –

It will help to find how a variable is keeping on changing.

GATE CS Corner Questions

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.

1. GATE-CS-2001 | Question 17
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						Data flow analysis in Compiler

				
						

				
			It is the analysis of flow of data in control flow graph, i.e., the analysis that determines the information regarding the definition and use of data in program. With the help of this analysis optimization can be done. In general, its process in which values are computed using data flow analysis.The data flow property represents information which can be used for optimization. 

Basic Terminologies –


	Definition Point: a point in a program containing some definition.

	Reference Point: a point in a program containing a reference to a data item.

	Evaluation Point: a point in a program containing evaluation of expression.



[image: ]

Data Flow Properties –


	Available Expression – A expression is said to be available at a program point x iff along paths its reaching to x. A Expression is available at its evaluation point.

A expression a+b is said to be available if none of the operands gets modified before their use.


        
          
          
          
        

            
Example –

[image: ]

Advantage –

It is used to eliminate common sub expressions.



 

	Reaching Definition – A definition D is reaches a point x if there is path from D to x in which D is not killed, i.e., not redefined.
Example –

[image: ]

Advantage –

It is used in constant and variable propagation.



 

	Live variable – A variable is said to be live at some point p if from p to end the variable is used before it is redefined else it becomes dead.
Example –

[image: ]

Advantage –


	It is useful for register allocation.

	It is used in dead code elimination.





 

	Busy Expression – An expression is busy along a path iff its evaluation exists along that path and none of its operand definition exists before its evaluation along the path.
Advantage –

It is used for performing code movement optimization.
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Runtime Environments










						Static and Dynamic Scoping

				
						

				
			The scope of a variable x is the region of the program in which uses of x refers to its declaration. One of the basic reasons of scoping is to keep variables in different parts of program distinct from one another. Since there are only a small number is short variable names, and programmers share habits about naming of variables (e.g., i for an array index), in any program of moderate size the same variable name will be used in multiple different scopes.

Scoping is generally divided into two classes:

1.Static Scoping

2.Dynamic Scoping

Static Scoping:

Static scoping is also called lexical scoping. In this scoping a variable always refers to its top level environment. This is a property of the program text and unrelated to the run time call stack. Static scoping also makes it much easier to make a modular code as programmer can figure out the scope just by looking at the code. In contrast, dynamic scope requires the programmer to anticipate all possible dynamic contexts.

In most of the programming languages including C, C++ and Java, variables are always statically (or lexically) scoped i.e., binding of a variable can be determined by  program text and is independent of the run-time function call stack. 

For example, output for the below program is 10, i.e., the value returned by f() is not dependent on who is calling it (Like g() calls it and has a x with value 20).  f() always returns the value of global variable x.



        
          
          
          
        

            
// A C program to demonstrate static scoping.
#include<stdio.h>
int x = 10;

// Called by g()
int f()
{
   return x;
}

// g() has its own variable
// named as x and calls f()
int g()
{
   int x = 20;
   return f();
}

int main()
{
  printf("%d", g());
  printf("\n");
  return 0;
}


Output :


10



To sum up in static scoping the compiler first searches in the current block, then in the surrounding blocks successively and finally in the global variables. 

Dynamic Scoping:

With dynamic scope, a global identifier refers to the identifier associated with the most recent environment, and is uncommon in modern languages. In technical terms, this means that each identifier has a global stack of bindings and the occurrence of a identifier is searched in the most recent binding. 

In simpler terms, in dynamic scoping the compiler first searches the current block and then successively all the calling functions.


// Since dynamic scoping is very uncommon in 
// the familiar languages, we consider the 
// following pseudo code as our example. It
// prints 20 in a language that uses dynamic
// scoping.   

int x = 10;

// Called by g()
int f()
{
   return x;
}

// g() has its own variable
// named as x and calls f()
int g()
{
   int x = 20;
   return f();
}

main()
{
  printf(g());
}



Output in a a language that uses Dynamic Scoping : 

20

Static Vs Dynamic Scoping

In most of the programming languages static scoping is dominant. This is simply because in static scoping it’s easy to reason about and understand just by looking at code. We can see what variables are in the scope just by looking at the text in the editor.

Dynamic scoping does not care how the code is written, but instead how it executes. Each time a new function is executed, a new scope is pushed onto the stack.

Perl supports both dynamic ans static scoping. Perl’s keyword “my” defines a statically scoped local variable, while the keyword “local” defines dynamically scoped local variable. 


# A perl code to demonstrate dynamic scoping
$x = 10;
sub f 
{ 
   return $x; 
}
sub g 
{ 
   # Since local is used, x uses
   # dynamic scoping. 
   local $x = 20; 

   return f(); 
}
print g()."\n";




Output :


20
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						Runtime Environments

				
						

				
			A translation needs to relate the static source text of a program to the dynamic actions that must occur at runtime to implement the program. The program consists of names for procedures, identifiers etc., that require mapping with the actual memory location at runtime.

Runtime environment is a state of the target machine, which may include software libraries, environment variables, etc., to provide services to the processes running in the system.

SOURCE LANGUAGE ISSUES

Activation Tree

A program consist of procedures, a procedure definition is a declaration that, in its simplest form, associates an identifier (procedure name) with a statement (body of the procedure).  Each execution of procedure is referred to as an activation of the procedure. Lifetime of an activation is the sequence of steps present in the execution of the procedure. If ‘a’ and ‘b’ be two procedures then their activations will be non-overlapping (when one is called after other) or nested (nested procedures). A procedure is recursive if a new activation begins before an earlier activation of the same procedure has ended. An activation tree shows the way control enters and leaves activations.

Properties of activation trees are :-



        
          
          
          
        

            

	Each node represents an activation of a procedure.

	The root shows the activation of the main function.

	The node for procedure ‘x’ is the parent of node for procedure ‘y’ if and only if the control flows from procedure x to procedure y.



Example – Consider the following program of Quicksort

main() {

      Int n;
      readarray();
      quicksort(1,n);
}

quicksort(int m, int n) {

     Int i= partition(m,n);
     quicksort(m,i-1);
     quicksort(i+1,n);
}

The activation tree for this program will be:

[image: 1]

First main function as root then main calls readarray and quicksort. Quicksort in turn calls partition and quicksort again. The flow of control in a program corresponds to the depth first traversal of activation tree which starts at the root.

CONTROL STACK AND ACTIVATION RECORDS

Control stack or runtime stack is used to keep track of the live procedure activations i.e the procedures whose execution have not been completed. A procedure name is pushed on to the stack when it is called (activation begins) and it is popped when it returns (activation ends). Information needed by a single execution of a procedure is managed using an activation record or frame. When a procedure is called, an activation record is pushed into the stack and as soon as the control returns to the caller function the activation record is popped.

[image: 2]

A general activation record consist of the following things:


	Local variables: hold the data that is local to the execution of the procedure.

	Temporary values: stores the values that arise in the evaluation of an expression.

	Machine status: holds the information about status of machine just before the function call.

	Access link (optional): refers to non-local data held in other activation records.

	Control link (optional): points to activation record of caller.

	Return value: used by the called procedure to return a value to calling procedure

	Actual parameters



Control stack for the above quicksort example:

[image: 3]

[image: 4]

SUBDIVISION OF RUNTIME MEMORY

Runtime storage can be subdivide to hold :


	Target code- the program code , it is static as its size can be determined at compile time

	Static data objects

	Dynamic data objects- heap

	Automatic data objects- stack



[image: 5]

STORAGE ALLOCATION TECHNIQUES

I. Static Storage Allocation



	For any program if we create memory at compile time, memory will be created in the static area.

	For any program if we create memory at compile time only, memory is created only once.

	It don’t support dynamic data structure i.e memory is created at compile time and deallocated after program completion.

	The drawback with static storage allocation is recursion is not supported.

	Another drawback is size of data should be known at compile time





Eg- FORTRAN was designed to permit static storage allocation.

II. Stack Storage Allocation


	Storage is organised as a stack and activation records are pushed and popped as activation begin and end respectively. Locals are contained in activation records so they are bound to fresh storage in each activation.

	Recursion is supported in stack allocation



III. Heap Storage Allocation


	Memory allocation and deallocation can be done at any time and at any place depending on the requirement of the user.

	Heap allocation is used to dynamically allocate memory to the variables and claim it back when the variables are no more required.

	Recursion is supported.



[image: activation_5]

PARAMETER PASSING

The communication medium among procedures is known as parameter passing. The values of the variables from a calling procedure are transferred to the called procedure by some mechanism.

Basic terminology :


	R- value: The value of an expression is called its r-value. The value contained in a single variable also becomes an r-value if its appear on the right side of the assignment operator. R-value can always be assigned to some other variable.

	L-value: The location of the memory(address) where the expression is stored is known as the l-value of that expression. It always appears on the left side if the assignment operator.

[image: activation_6]

i.Formal Parameter: Variables that take the information passed by the caller procedure are called formal parameters. These variables are declared in the definition of the called function.

ii.Actual Parameter: Variables whose values and functions are passed to the called function are called actual parameters. These variables are specified in the function call as arguments.




Different ways of passing the parameters to the procedure


	Call by Value

In call by value the calling procedure pass the r-value of the actual parameters and the compiler puts that into called procedure’s activation record. Formal parameters hold the values passed by the calling procedure, thus any changes made in the formal parameters does not affect the actual parameters.[image: activation_7]

	Call by ReferenceIn call by reference the formal and actual parameters refers to same memory location. The l-value of actual parameters is copied to the activation record of the called function. Thus the called function has the address of the actual parameters. If the actual parameters does not have a l-value (eg- i+3) then it is evaluated in a new temporary location and the address of the location is passed. Any changes made in the formal parameter is reflected in the actual parameters (because changes are made at the address).
[image: activation_8]


	Call by Copy Restore

In call by copy restore compiler copies the value in formal parameters when the procedure is called and copy them back in actual parameters when control returns to the called function. The r-values are passed and on return r-value of formals are copied into l-value of actuals.

[image: activation_9]

	Call by Name

In call by name the actual parameters are substituted for formals in all the places formals occur in the procedure. It is also referred as lazy evaluation because evaluation is done on parameters only when needed.[image: activation_10]
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GATE | Previous Years Questions










						Compiler Theory | Set 1

				
						

				
			Following questions have been asked in GATE CS exam.

1. Which of the following derivations does a top-down parser use while parsing an input string? The input is assumed to be scanned in left to right order (GATE CS 2000).

(a) Leftmost derivation

(b) Leftmost derivation traced out in reverse

(c) Rightmost derivation

(d) Rightmost derivation traced out in reverse

Answer (a)

Top-down parsing (LL)

In top down parsing, we just start with the start symbol and compare the right side of the different productions against the first piece of input to see which of the productions should be used. 

A top down parser is called LL parser because it parses the input from Left to right, and constructs a Leftmost derivation of the sentence.



        
          
          
          
        

            
Algorithm (Top Down Parsing) 


  a) In the current string, choose leftmost nonterminal.
  b) Choose a production for the chosen nonterminal. 
  c) In the string, replace the nonterminal by the right-hand-side 
     of the rule.
  d) Repeat until no more nonterminals. 




LL grammars are often classified by numbers, such as LL(1), LL(0) and so on. The number in the parenthesis tells the maximum number of terminals we may have to look at at a time to choose the right production at any point in the grammar. 

The most common (and useful) kind of LL grammar is LL(1) where you can always choose the right production by looking at only the first terminal on the input at any given time. With LL(2) you have to look at two symbols, and so on. There exist grammars that are not LL(k) grammars for any fixed value of k at all, and they are sadly quite common.

Let us see an example of top down parsing for following grammar.  Let input string be ax. 

    S -> Ax
    A -> a
    A -> b


An LL(1) parser starts with S and asks “which production should I attempt?” Naturally, it predicts the only alternative of S. From there it tries to match A by calling method A (in a recursive-descent parser). Lookahead a predicts production

   A -> a


The parser matches a, returns to S and matches x. Done. The derivation tree is:

     S
    / \
   A   x
   |
   a


References:

http://www.garshol.priv.no/download/text/bnf.html

http://en.wikipedia.org/wiki/Top-down_parsing

http://www.cs.wm.edu/~noonan/animations/lderive.html

http://en.wikipedia.org/wiki/LL_parser







2. The process of assigning load addresses to the various parts of the program and adjusting the code and data in the program to reflect the assigned addresses is called (GATE CS 2001)

a) Assembly

b) Parsing

c) Relocation

d) Symbol resolution 

Answer: (c)

Relocation is the process of replacing symbolic references or names of libraries with actual usable addresses in memory before running a program. It is typically done by the linker during compilation (at compile time), although it can be done at runtime by a relocating loader. Compilers or assemblers typically generate the executable with zero as the lower-most starting address. Before the execution of object code, these addresses should be adjusted so that they denote the correct runtime addresses.

Relocation is typically done in two steps:

   1. Each object code has various sections like code, data, .bss etc. To combine all the objects to a single executable, the linker merges all sections of similar type into a single section of that type. The linker then assigns runtime addresses to each section and each symbol. At this point, the code (functions) and data (global variables) will have unique runtime addresses.

   2. Each section refers to one or more symbols which should be modified so that they point to the correct runtime addresses.

References:

http://en.wikipedia.org/wiki/Relocation_(computer_science)





3. Which of the following statements is false? (GATE CS 2001)

a) An unambiguous grammar has same leftmost and rightmost derivation

b) An LL(1) parser is a top-down parser

c) LALR is more powerful than SLR

d) An ambiguous grammar can never be LR(k) for any k 

Answer: (a)  

If a grammar has more than one leftmost (or rightmost) derivation for a single sentential form, the grammar is ambiguous. The leftmost and rightmost derivations for a sentential form may differ, even in an unambiguous grammar



4. Which of the following grammar rules violate the requirements of an operator grammar? P, Q, R are nonterminals, and r,s,t are terminals (GATE CS 2004).

(i)	P -> QR

(ii)	P -> QsR

(iii)	P  -> ε

(iV)	P  -> QtRr

a) (i) only

b) (i) and (iii) only

c) (ii) and (iii) only

d) (iii) and (iv) only

Answer: (b)

Explanation:

An operator precedence parser is a bottom-up parser that interprets an operator-precedence grammar. For example, most calculators use operator precedence parsers to convert from the human-readable infix notation with order of operations format into an internally optimized computer-readable format like Reverse Polish notation (RPN).

An operator precedence grammar is a kind of context-free grammar that can be parsed with an operator-precedence parser. It has the property that no production has either an empty (ε) right-hand side or two adjacent nonterminals in its right-hand side. These properties allow the terminals of the grammar to be described by a precedence relation, and the a parser that exploits that relation is considerably simpler than more general-purpose parsers such as LALR parsers.



References:

http://en.wikipedia.org/wiki/Operator-precedence_grammar

http://en.wikipedia.org/wiki/Operator-precedence_parser



5. Consider the grammar with the following translation rules and E as the start symbol.

E ->   E1 #T    {E.value =  E1.value * T.value}

        | T          {E.value = T.value}

T ->  T1 & F    {T.value =  T1.value + F.value}

        |F           {T.value= F.value}

F -> num       {F.value = num.value}

Compute E.value for the root of the parse tree for the expression:2 # 3 & 5 # 6 &4. (GATE CS 2004)

a)	200

b)	180

c)	160

d)	40

Answer: (c)

Explanation:

We can calculate the value by constructing the parse tree for the expression 2 # 3 & 5 # 6 &4. 

Alternatively, we can calculate by considering following precedence and associativity rules.

Precedence in a grammar is enforced by making sure that a production rule with higher precedence operator will never produce an expression with operator with lower precedence.

In the given grammar ‘&’ has higher precedence than ‘#’. 

Left associativity for operator * in a grammar is enforced by making sure that  for a production rule like S -> S1 * S2 in grammar, S2 should never produce an expression with *. On the other hand, to ensure right associativity, S1 should never produce an expression with *.

In the given grammar, both ‘#’ and & are left-associative.

So expression 2 # 3 & 5 # 6 &4 will become

((2 # (3 & 5)) # (6 & 4))

Let us apply translation rules, we get

((2 * (3 + 5)) * (6 + 4)) = 160.
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						Compiler Theory | Set 2

				
						

				
			Following questions have been asked in GATE CS exam. 

1. Given the following expression grammar:

E -> E * F | F+E | F

F -> F-F | id

which of the following is true? (GATE CS 2000)

(a) * has higher precedence than +

(b) – has higher precedence than *

(c) + and — have same precedence

(d) + has higher precedence than *

Answer(b)

Precedence in a grammar is enforced by making sure that a production rule with higher precedence operator will never produce an expression with operator with lower precedence.

In the given grammar ‘-’ has higher precedence than ‘*’



2. Consider a program P that consists of two source modules M1 and M2 contained in two different files. If M1 contains a reference to a function defined in M2 the reference will be resolved at (GATE CS 2004)

a)	Edit time

b)	Compile time

c)	Link time

d)	Load time



        
          
          
          
        

            
Answer (c)

Compiler transforms source code into the target language. The target language is generally in binary form known as object code.  Typically, an object file can contain three kinds of symbols:

    * defined symbols, which allow it to be called by other modules,

    * undefined symbols, which call the other modules where these symbols are defined, and

    * local symbols, used internally within the object file to facilitate relocation.

When a program comprises multiple object files, the linker combines these files into a unified executable program, resolving the symbols as it goes along.

http://en.wikipedia.org/wiki/Compiler

http://en.wikipedia.org/wiki/Linker_%28computing%29



3. Which of the following suffices to convert an arbitrary CFG to an LL(1) grammar?  (GATE CS 2003)

(a) Removing left recursion alone

(b) Factoring the grammar alone

(c) Removing left recursion and factoring the grammar

(d) None of the above 

Answer(d)

Removing left recursion and factoring the grammar do not suffice to convert an arbitrary CFG to LL(1) grammar.

http://pages.cpsc.ucalgary.ca/~robin/class/411/LL1.3.html

4. Assume that the SLR parser for a grammar G has n1 states and the LALR parser for G has n2 states. The relationship between nl and n2 is (GATE CS 2003) 

(a) n1 is necessarily less than n2

(b) n1 is necessarily equal to n2

(c) n1 is necessarily greater than n2

(d) none of the above 

Answer (b)  

http://parasol.tamu.edu/people/rwerger/Courses/434/lec10.pdf

http://dragonbook.stanford.edu/lecture-notes/Stanford-CS143/11-LALR-Parsing.pdf

Please see GATE Corner for all previous year paper/solutions/explanations, syllabus, important dates, notes, etc.

Please write comments if you find any of the answers/explanations incorrect, or you want to share more information about the topics discussed above.
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