
downloaded by wizard.z@foxmail.com

downloaded by wizard.z@foxmail.com

Computer and network organization
An introduction

Maarten van Steen
Vrije Universiteit, Amsterdam

Henk Sips
Delft University of Technology
University of Amsterdam

downloaded by wizard.z@foxmail.com

4004, 8008, 8086, 8088, 80286, 80386, 80586, Pentium are trademarks of Intel Corporation
68000 is a trademark of Motorola Corporation
Ada is a trademark of the US Department of Defense Ada Joint Program Office
IBM, 360 are trademarks of International Business Machines Corporation
MS-DOS is a trademark of Microsoft Corporation
PDP-11 is a trademark of Digital Equipment Corporation
UNIX is a trademark of UNIX Systems Laboratories

downloaded by wizard.z@foxmail.com

v

To Mariëlle and Annet

downloaded by wizard.z@foxmail.com

downloaded by wizard.z@foxmail.com

Contents

Foreword xiii

Preface xv

1 Introduction 1
1.1 To start with 1

1.1.1 The what versus the how 1
1.1.2 Architecture versus organization 2

1.2 Computers 3
1.2.1 The essence of computing devices 3
1.2.2 The concept of a multi-level machine 8

1.3 Computer networks 14
1.3.1 The demand for computer networks 14
1.3.2 Some fundamental problems 16
1.3.3 Expanding networks 19
1.3.4 Towards communication systems 23

1.4 Further reading 25

2 On data, operations, and storage 27
2.1 Introduction: information processing 27
2.2 Data representation 28

2.2.1 Numbers 29
2.2.2 Representing text 36

2.3 Operations 38
2.3.1 Boolean functions 39
2.3.2 Boolean algebra 41
2.3.3 Some examples 43
2.3.4 Towards the next step 48

vii

downloaded by wizard.z@foxmail.com

viii

2.4 Digital circuits 48
2.4.1 Gates 49
2.4.2 Implementing arbitrary Boolean functions 52
2.4.3 Integrated circuits 55

2.5 Storing data 60
2.5.1 1-bit memories 60
2.5.2 Storing bit strings 65
2.5.3 Large storage circuits 68

2.6 Summary and further reading 72

3 Computers 77
3.1 Microcomputing 77

3.1.1 Stepwise execution 77
3.1.2 Automated stepwise execution 82
3.1.3 Executing multiple microinstructions 86
3.1.4 A general architecture 91

3.2 General processing 93
3.2.1 Instructions 93
3.2.2 Processors 97
3.2.3 On instruction sets 101

3.3 Interfacing processors and memories 106
3.3.1 General bus architectures 106
3.3.2 Bus arbitration 109
3.3.3 Interprocessor communication 111

3.4 Peripheral devices 113
3.4.1 Interfacing devices and processors 114
3.4.2 Examples of peripheral devices 117

3.5 Discussion and further reading 124
3.5.1 Processor development 124
3.5.2 Processing power 127

4 From hardware to software 133
4.1 Introduction 133

4.1.1 Towards software solutions 133
4.1.2 Expressing programs 134
4.1.3 Executing programs 136

4.2 A primitive machine language 137
4.2.1 A basic PRIMAL instruction set 138
4.2.2 Subroutines in PRIMAL 145
4.2.3 Discussion 150

4.3 A structured programming language 150
4.3.1 Data types and variables 151
4.3.2 Statements 156
4.3.3 Procedures 160

downloaded by wizard.z@foxmail.com

ix

4.3.4 Packages 166
4.4 A BASAL virtual processor 172

4.4.1 The principle of a virtual processor 172
4.4.2 On automated translation 175

4.5 Towards an extensible BASAL computer 182
4.5.1 Controlling the translation process 182
4.5.2 Virtual devices 188
4.5.3 Linking and loading 189

4.6 Discussion and further reading 192
4.6.1 Machine languages 192
4.6.2 High-level languages 194
4.6.3 Compiler technology 197

5 Operating systems 201
5.1 Support for multiple programs 201

5.1.1 An example: disk I/O 201
5.1.2 The problems 205

5.2 Memory management 207
5.2.1 Program relocation 207
5.2.2 Procedure protection 208
5.2.3 Memory allocation 209
5.2.4 Advanced memory management: paging 212
5.2.5 Advanced memory management: virtual memory 217

5.3 Process management 219
5.3.1 Context switching 220
5.3.2 From processor contexts to processes 223

5.4 Process interference 228
5.4.1 Synchronization: semaphores 229
5.4.2 Interrupt handling 234
5.4.3 Forcing the use of service programs 236

5.5 On operating systems 239
5.5.1 The evolution of operating systems 240
5.5.2 Architectural aspects of operating system kernels 243
5.5.3 A global architecture 247

5.6 An example extension: file systems 249
5.6.1 The concept of a file 250
5.6.2 File implementation 252
5.6.3 File organization: directories 257

5.7 Discussion 259
5.7.1 Summary and further reading 259
5.7.2 Operating systems today 261

downloaded by wizard.z@foxmail.com

x

6 Basic communication models 265
6.1 Describing communication models 265

6.1.1 Introduction 265
6.1.2 Processes in BASAL 266

6.2 Making use of shared data 268
6.2.1 Handing over notes 268
6.2.2 Shared streams for continuous communication 271

6.3 Basic message-passing 280
6.3.1 The basic model 281
6.3.2 Passing notes revisited 283
6.3.3 Semantics of message-based communication 287

6.4 Advanced message-based communication 293
6.4.1 Channels 294
6.4.2 The rendez-vous and remote procedure call 303
6.4.3 Group communication 307

6.5 Discussion and further reading 310
6.5.1 Communication models 310
6.5.2 Advanced communication models 313

7 Connecting computers 317
7.1 Introduction 317
7.2 On wiring 318

7.2.1 Transmitting signals 318
7.2.2 Receiving signals 323
7.2.3 In the event of errors 325
7.2.4 Making networks 331

7.3 Frame transmission 336
7.3.1 Flow control 337
7.3.2 Error control 342

7.4 Multiplexing 348
7.5 Towards a layered approach 351

7.5.1 Review of basic communication properties 351
7.5.2 The ISO/OSI reference model 353

7.6 Further reading 355

8 Local area networks 357
8.1 Introduction 357
8.2 Getting access to a broadcast channel 358

8.2.1 General problems with broadcast channels 359
8.2.2 Contention systems 361
8.2.3 Collision-free systems 364
8.2.4 On the performance of broadcast channels 372

8.3 Interconnecting LANs 375
8.3.1 Constructing large, high-speed networks 375

downloaded by wizard.z@foxmail.com

xi

8.3.2 Routing between LANs 382
8.4 Basic network interfacing 388

8.4.1 Networks as peripheral devices 388
8.4.2 Frame information 396

8.5 Computer networks in software 398
8.5.1 Layering the network software 399
8.5.2 Supporting multiple protocols 405

8.6 Discussion 410
8.6.1 Summary and further reading 410
8.6.2 Improving local area networks 411

9 Wide area networks 415
9.1 Expanding communication systems 415

9.1.1 Introduction 415
9.1.2 Architectural features of WANs: routers 416
9.1.3 Building a worldwide network 418
9.1.4 Communication models revisited 422

9.2 Routing in wide area networks 425
9.2.1 Network congestion 426
9.2.2 Selecting routes 431
9.2.3 Routing organization 438

9.3 Internetworking 441
9.3.1 What makes internetworks different 441
9.3.2 Internet packet fragmentation 444
9.3.3 Modes of operation 448
9.3.4 An example: the Internet 451

9.4 Integrated services digital networks 460
9.4.1 Introduction 460
9.4.2 ISDN architecture 461
9.4.3 ISDN communication support 464
9.4.4 Broadband ISDN 466

9.5 Making networks work 469
9.5.1 The transport layer 469
9.5.2 Error control 472
9.5.3 Flow control 473
9.5.4 Connection management 474

9.6 Summary and further reading 477
9.6.1 Wide area networks 478
9.6.2 Wide area digital networks 479

10 Towards communication architectures 483
10.1 From local to global systems 483

10.1.1 The concept of distributed applications 483
10.1.2 Implicit assumptions made so far 486

downloaded by wizard.z@foxmail.com

xii

10.2 On open systems 487
10.2.1 The OSI model completed 487
10.2.2 A simplified model for open systems 493

10.3 Communication services 495
10.3.1 Terminal handling services 495
10.3.2 File handling services 500
10.3.3 Message handling services 504
10.3.4 Name handling services 509

10.4 The World Wide Web 514
10.4.1 The Web’s basic functionality 515
10.4.2 The underlying technology 515

10.5 Discussion and further reading 517
10.5.1 On distributed applications 518
10.5.2 The communication layer 518
10.5.3 Wide area distributed applications 520

References 523

Index 532

downloaded by wizard.z@foxmail.com

Foreword

This book solves the Three Bears Problem. As you may recall, when Goldilocks visited
the three bears, some things were too big, and some things were too small, but she wanted
something that was “just right.”

Many scientists, engineers, and technical managers face the same problem. It is im-
portant for them to have a good grasp of modern computer technologies, including com-
puter architecture, operating systems, and networks. All of these are complex and rapidly
changing subjects.

Until now, these people have had two choices. On the one hand, there are many de-
tailed computer science textbooks available for each subject separately. These books of-
fer a comprehensive view of the subject, but require the reader to plow through 500–800
pages of material. Mastering computer architecture, operating systems, and networking
might require absorbing 2000 pages of highly technical material.

On the other hand, bookstores are full of gee-whiz books telling how wonderful com-
puters are and what they can do for you. Many are about specific systems, and are full of
advice of the sort “To make X happen, click on icon Y.” These books are written for read-
ers with a casual interest in science and technology, but do not explain how computers
and systems actually work inside.

For technically-oriented people in physics, chemistry, engineering, and management,
neither of these choices is appropriate. What they need is a single volume that discusses
the fundamentals of computer systems (architecture, operating systems, and networks) in
considerable technical detail, but in a single well-integrated book. This is their book. In
a little over 500 pages, it covers hardware, architecture, operating systems, communica-
tion, LANs, and WANs in a surprising amount of detail, with numerous algorithms given
as actual programs in an Ada-like language.

At universities, this book can be used for a second computer course for non-computer
science majors. It is also self contained, and makes fine reading for practicing profes-
sionals who want to keep up-to-date on three different subareas of computer science, but
without having to read three different books. I recommend this book most highly for
these audiences.

Andrew S. Tanenbaum

xiii

downloaded by wizard.z@foxmail.com

downloaded by wizard.z@foxmail.com

Preface

Why we have written this book

This book was written out of necessity. A few years ago, both of us were engaged in
giving a course on the technical principles of computer systems for an audience with only
a modest background in computer science. The goals set out for that course where quite
challenging. First, undergraduate students were to be provided with a general insight into
the actual working of computer systems, which covered the three main themes: computer
organization, operating systems, and computer networks. Second, there was only room
for 15 two-hour lectures, to be given in a single semester. Indeed, not an easy task to
accomplish, especially when it turned out that hardly any single textbook existed that
covered these three themes at an adequate introductory level.

The result was that an initial course text was written, comprising about 200 pages,
which roughly explained the working of computer systems. The material was more or
less equally divided between computer organization, operating systems, and computer
networks. This course text, combined with the actual lectures given, proved at least one
thing: explaining the technicalities of computer systems in a single semester was not only
feasible, the students actually enjoyed it. Doing a complete rewrite and ending with a
550-page book is just one of those things that can happen when the two of us start hav-
ing “good” ideas.

The main questions that are addressed

As mentioned, in this book we have made an attempt to explain the working of com-
puter systems, but in such a way that it should be possible to go through almost the entire
material in just a single one-semester course. The book roughly addresses, in order, the
following questions:

� What does a computer look like from the inside? In particular, we explain the
essence of chips, processors, memory, peripheral devices such as hard disks and

xv

downloaded by wizard.z@foxmail.com

xvi Preface

keyboards, and how these various components are connected to each other so that
they can operate together.

� What is actually meant by a computer program? This question (which to some
may seem so simple that they will have a hard time giving a right answer) is ad-
dressed in two ways. First, we explain how we can use a computer’s so-called in-
struction set to develop programs. Second, we shall demonstrate that computer
programs can be more easily written in a high-level programming language for
which no real processor exists, but which can nevertheless be executed.

� What is an operating system, and how does it work? This is an important ques-
tion as it addresses the way that modern computers appear to users. We will explain
that an operating system is a special program that allows you to work conveniently
and efficiently with a computer. Above all, we will emphasize the role of operat-
ing systems as a mechanism to abstract matters that are specific to hardware, and in
particular that they provide an important means for communication by computers.

� How can computers be linked together? This is the first topic of computer net-
works. Our attention will initially focus on various hardware aspects, i.e. the phys-
ical appearance of computer networks. Also, we shall present the basics of how
computer programs are to be constructed by which information between two or
several computers can be exchanged. In a sense, the answer to this question is
treated very much at the same level as the first question posed above.

� How does communication across a computer network take place? This is an
important question that will also be addressed. We shall explain how messages can
be transferred from one user to another, possibly crossing a network that spans the
world, or alternatively, one that is used in conjunction with, for example, print-
ers. Central to answering this question is the concept of communication protocols:
what are they, and how are they realized?

These questions are not addressed in isolation. Instead, we follow an approach by which
the working of computer systems is gradually exposed. This approach not only allows
the reader to understand the essentials, but above all, will provide an overall view on the
technical principles of computer systems.

A book such as this probably cannot do otherwise than present the essentials. And
indeed, this is as far as we go. But in doing so, we have sought to provide an under-
standing of the subjects in such a way that the reader will see the big picture, but at the
same time will have a feeling for the details that are involved. For example, we have
found it important to explain how the interaction between hardware and software takes
place, in particular when discussing operating systems. Strangely enough, this topic is
often hardly discussed explicitly in books on either computer organization or operating
systems. Likewise, we provide simplified examples of programs that illustrate how lay-
ering of software can be achieved. Layering is an important concept when explaining
computer networks. We have been surprised by the fact that again only relatively few
books explain how the concept can be made concrete. And although our approach only

downloaded by wizard.z@foxmail.com

Preface xvii

permits us to give a glimpse of how layering works in practice, we feel that not doing
this would have been a serious omission.

Intended readership

With these things in mind, we have written our text for people that are somewhat familiar
with computers. This means that we expect that the reader already has a basic feeling of
what computers are, and what you can do with them. Having followed an introductory
course in computer science will give an understanding of the material presented here.
Most of all, it will make it much easier to comprehend concepts such as processors and
programs, which are of vital importance to understanding computer systems. Having a
reading knowledge of computer programs, for example written in Pascal, will help.

The material is, by its nature, technical. As such, undergraduate students in engineer-
ing disciplines and natural sciences will perhaps find the book easier to understand than
others. However, we emphasize that the material has also been classroom tested for stu-
dents in business information sciences. As we have said above, a basic interest in com-
puter science as experienced during a first introductory course should be sufficient for a
successful understanding of this book.

The book can also serve as an alternative for courses in computer organization, with
less emphasis on architecture and more on modern subjects as concurrency and commu-
nication. To our opinion this change in material coverage will inevitably take place, since
computers and communication will be increasingly integrated.

But apart from a being a textbook to be used as part of a course, the material is also in-
tended for those who would wish to know more about the various general technical prin-
ciples, but find existing textbooks simply too overwhelming to start with. In that case,
this book may well form a good starting point, and may even be sufficient. If the latter is
not the case, then enough knowledge and terminology will have been introduced to make
the transition to more specialized textbooks.

We have made an attempt to organize the material in such a way that different types
of readers will feel equally comfortable. First, we have included so-called elaboration
sections, which are distinguished from the main text as follows:

� This is an example of an elaboration section, and can be skipped at first reading.

Elaboration sections often contain additional material that may be either too technical or
too detailed to be discussed initially. In all cases, these sections may be skipped if so
required: they do not interfere with the main text but are pure extensions of it.

Each chapter concludes with a summary or discussion, as well as references for further
reading. Where explicitly noted, the reader is particularly encouraged to consult the ref-
erenced material as it will generally provide further insight into the material as we have
presented it. Finally, each chapter, except the first one, has been augmented with a num-
ber of exercises. Starred exercises generally require reading the elaboration sections.

downloaded by wizard.z@foxmail.com

xviii Preface

More information

We find it important to keep the reader informed about additional material related to this
book. Therefore, we have constructed a Web page at http://www.cs.vu.nl/˜steen/cno.html.
At present, the page contains links to problem solutions and Postscript versions of (nearly)
all figures. Additional material will be made available through this Web page. You can
also find out how and where we can be reached if you wish to contact us. Suggestions on
how the book can be improved are most welcome, as well as any reports on errors and
omissions.

Acknowledgments

Writing a book is definitely something you cannot do without having the support from
many others. In order to get this project started, it was necessary to install a UNIX-based
support environment on a rather unwilling personal computer. Paul Kranenburg, Eelco
van Asperen, and Reino de Boer helped to get the software where it was needed. Reino
deserves special credit for additionally helping with many of the intricacies related to
LATEX and TEX.

Others helped us get the manuscript right by reading portions of the material, and point-
ing out the sections that needed improvement. In this respect, we owe much to Theun
Bruins, Leendert van Doorn, Jaap Gordijn, Tom Hoeksma, Philip Homburg, Mark Pol-
man, Kees van Reeuwijk, Ron Roozendaal, Andy Tanenbaum, Louis Tinzelboer, Joachim
Trescher, and Hans de Vreught. Special thanks go particularly to Marcel Beemster and
Wim Stut who both managed to read the entire manuscript at a level of detail that often
not only surprised us but above all proved to be invaluable.

But perhaps in the end, much of the support comes from those that will presumably
never read the book, but who have nonetheless undergone the entire project from the very
beginning. Mariëlle and Annet get all the credit for their support.

Maarten van Steen
Henk Sips

downloaded by wizard.z@foxmail.com

Chapter 1

Introduction

The field of computer and network organization is large, but an exciting one. The number
of problems that have been tackled and are still being studied is so large that it is often
difficult to obtain an overview of the subject without being swamped by all kinds of de-
tails. In order to avoid losing the way while studying the material in the chapters yet to
follow, we start with giving some rough guidelines on what computer and network orga-
nization is mainly about. This introductory chapter is centered around Section 1.2 which
outlines the essence of computers, and Section 1.3 in which we concentrate on computer
networks.

1.1 To start with

In order to understand the material presented in this book it is necessary to look at prob-
lems of computer and network organization from the right perspective. Let’s start by
explaining how we plan to tackle the problems by telling what our perspective is.

1.1.1 The what versus the how

It is hard to imagine what our daily lives would be without having computers. We have
become so familiar with their existence that they hardly surprise us any more. For ex-
ample, we expect that much of the administration that we are confronted with is handled
one way or the other by means of a computer. That the inventory of supermarkets is kept
up to date by simply coupling the cash registers to the computer is something we tend to
consider as normal. Using credit cards that are electronically processed is also something
we are accustomed to. We have grown used to producing documents through advanced
word processing systems rather than using typewriters. These are only a few examples.
Computers have indeed simply become a fact of life.

But this is just one side of computers. To date, many people have a fairly good idea of
what can be done with computers. But knowing how computer engineers attained their

1

downloaded by wizard.z@foxmail.com

2 Introduction

remarkable achievements is a completely different story. As we have all become so ac-
quainted with using computers, it also seems that we are willing to accept that it is nec-
essary to be an expert to understand what’s going on under the hood. And that is really
unfortunate, for it is our belief that if someone knows more about how computers work,
it becomes a lot easier to understand what they can do, and above all, what they cannot
do.

In this book we will make a serious attempt to guide you through the principles that
underlie computer systems. The term “computer systems” is to be taken in its broad-
est sense. It covers the field of relatively small personal computers, as well as that of
worldwide networks consisting of millions of computers connected together to allow in-
formation to be easily communicated around the world.

1.1.2 Architecture versus organization

The approach that we have adopted is that of focusing on the organization of comput-
ers and networks. What does that mean? To make an easy comparison, suppose we had
decided to write a book on the principles underlying cars. We could then roughly follow
two approaches.

In the first approach, we could start by explaining that a car has an engine, and also ex-
plain what an engine consists of. We would be saying something about fan belts, cylin-
ders, spark plugs, etc. And likewise, other necessary components that make up a car
would be presented, together with an explanation of what they stand for. Putting it dif-
ferently, we would follow an approach in which a car is successively decomposed into a
number of functional components. In the end, you would be able to name all the neces-
sary components and explain exactly what they stand for, and why they are needed. In
that case, you would have a pretty good idea about the architecture of a car.

An alternative approach is the following. Rather than merely explaining that an engine
is needed, we could choose to explain how that engine actually works. In that case, we
would explain that an engine may have four cylinders, possibly arranged in a row, and
that each cylinder is connected to a crankshaft. By pushing cylinders alternately down-
wards using compressed gas, we would show how an engine rotates the crankshaft that
can then be subsequently used to rotate the wheels. Rather than just looking at what kind
of components a car is made of, we would explain the principal working of each compo-
nent, and the way that they are connected to each other. We would then be focusing on
the organization of a car.

Admittedly, the distinction between architecture and organization is not a clear cut one.
What should be clear, however, is that we are not going to focus on merely describing
computer systems. Instead, our attention is focused on showing how the various com-
ponents work, and how they are connected to each other. The main drawback of this
approach is that we cannot tell what every computer looks like on the inside, and indeed,
very many different organizations exist. In terms of our example above, we explain how
a 4-cylinder engine works, and leave that of a 16-cylinder version to your own imagina-
tion.

At this point, let’s start by gently introducing the various concepts that we will come

downloaded by wizard.z@foxmail.com

Computers 3

meet in succeeding chapters. In the next two sections we first concentrate on the concept
of computers, followed by an introduction to computer networks.

1.2 Computers

The first part of this book, which consists roughly of Chapters 2 through 6, deals with
explaining what computers actually are. An outline of our approach is explained in Sec-
tion 1.2.1. Then, a structured approach to organizing computers is given in Section 1.2.2.

1.2.1 The essence of computing devices

The nomenclature applied to computers is illustrative of the way that they are conceived
today. For example, it is not uncommon to blame the computer for not doing its job right,
nor do we find it strange when someone says that the computer had a hard time getting
calculations done. In the case of factory automation, as another example, computers are
said to take over jobs that people previously did by hand. To take it one step further, com-
puters are even said to be capable of learning. Many more examples can be thought of in
which computers are not merely treated as appliances, but are perceived as autonomous
entities having some kind of intelligence. The gap between our perception of what com-
puters appear to be and what they really are is sometimes astonishing. Although it does
make sense, for the sake of simplicity, to talk about computers as autonomous entities,
it does not make sense to treat them as intelligent beings with a will of their own. Com-
puters are not intelligent, and they cannot do anything that has not been put into them.
They are just sometimes complex, that’s all. In particular, they can be so complex that
it is hard for one person to comprehend fully what computers really do. In this book we
are going to explain some of the essentials of computers that will allow a person to get a
grasp of how they work. We are convinced that this will help you put computers in the
right perspective, namely that of useful appliances.

On simulation and interpretation

Let’s start with saying something that might be surprising: computers have no concept
of 0’s and 1’s. When giving the matter some thought, it is indeed hard to imagine that an
electronic device can have any concepts. The essence of the matter is that computers are
devices that simulate the way that we handle things. And they are doing such a good job
at that, it is indeed sometimes hard to differentiate between simulation and what is really
happening. Let’s look at an example to illustrate this.

Suppose we had a box with five light bulbs and two switches as shown in Figure 1.1.
The box hides an implementation of a simple calculator, capable of adding any combi-
nation of 0, 1, and 2. For example, if we set the first switch S1 to “0” and the second
switch S2 to “2”, then the third bulb marked “2” would light up. This would also be the
case when S1 is set to “1” and S2 to “1” or, when S1 is set to “2” and S2” is set to “0”.

downloaded by wizard.z@foxmail.com

4 Introduction

0
1

2 0
1

2

0 1 2 3 4

S1 S2

Figure 1.1 A simple calculating device.

0
1

2 0
1

2

0 1 2 3 4

S1 S2

Figure 1.2 The effect of changing the labels: rubbish.

Now, the question that we want to raise here is whether or not our device can actually
calculate.

Giving a straight answer to this question is really not easy. For one thing, it appears as
if our device does have some calculation capabilities: no matter what combination of S1
and S2 we choose, it always gives the right answer. So, from that perspective, we would
indeed say that we have a true calculator at our disposal.

But suppose we changed the labels at both switches. Labels “0” are replaced by “2”,
and labels “2” are replaced by “0” respectively, as shown in Figure 1.2. In that case, the
fact that a bulb starts to light really does not make any sense. Putting it differently, there
is no sensible interpretation of what comes out of the box when we turn the switches.
For one thing, our device is difficult to recognize as some kind of calculator. The crux of
the matter lies, of course, in the way that we interpret the setting of the switches in combi-
nation with which bulb starts to glow. As a last experiment, you will see that everything
works properly again if we also replace the label at each bulb as shown in Figure 1.3.

So what does our device actually do? First, it is important to realize that our calculator
can only be perceived as such if we can interpret the setting of the switches in combina-

downloaded by wizard.z@foxmail.com

Computers 5

0
1

2 0
1

2

01234

S1 S2

Figure 1.3 A working calculator again.

battery

switch S1

switch S2

L0

L1

L2

L3

L4

Figure 1.4 An implementation of our simple calculator.

tion with the light bulbs in a manner that makes sense to us. But there is more. It should
be clear that the device itself has no “knowledge” built-in concerning arithmetic opera-
tions. Instead, what it does is merely simulate operations that have meaning to us. The
combination of having the device properly simulate a part of our own world, and our
own interpretation of its outcomes, puts us in a position to state that we indeed have a
calculator at hand.

� Some of you might ask what our calculator looks like on the inside. An implementation is
shown in Figure 1.4. Switch S1 is rather simple. It is just a switch that allows a person to
choose to connect the input with precisely one of the three outputs. In the figure, the input
is connected to the first output, in our case, meaning that switch S1 has been set to “0”.

Switch S2 consists of three sub-switches, each sub-switch enabling the input to be con-
nected to one of the three outputs. However, we assume that these three sub-switches are
mechanically constructed in such a way that turning the knob always implies turning the
three switches at the same time. Consequently, if the first sub-switch connects its input to

downloaded by wizard.z@foxmail.com

6 Introduction

READ(X)
READ(Y)
ADD(X,Y,Z)
WRITE(Z)

2, 1 3

input stream output stream

program

programmable
device

Figure 1.5 The principle of a programmable device.

its second output pin as shown in the figure, the other two sub-switches will do precisely the
same in their case. What we have shown, therefore, is the state of affairs when switch S2
has been set to “1”. And indeed, the light bulb marked L1 will now be fully connected to
the battery, through which it then lights up.

Computers are in essence not very different from our simple calculator. They are con-
structed of electrical components that act as switches, such that if we feed them with the
right electrical values (i.e. values to which we attach some useful interpretation) they will
produce a set of output values in such a way that if we also interpret those values in some
sensible manner it will appear as if our computer has really computed something worth
while. The big difference with our calculator lies in the fact that real computers can be
programmed.

Programmable devices

What do we mean exactly by a program? Following Webster’s Dictionary, a program is
“a plan or sequence of things to be done”. For programmable devices, this can be refor-
mulated as

A program is a sequence of instructions that are to be executed.

The keywords here are instructions and execution. For example, using our simple calcu-
lator for adding 1 and 2 could be done by executing the following two instructions:

set switch S1 to “1”
set switch S2 to “2”

In this case, the user of the calculator would be responsible for the execution of these
instructions; in computers, the execution mechanism is part of them. In that case, we
need only construct a program and feed it into the device.

The principle is shown in Figure 1.5. What we see there is an input stream of num-
bers, and a program consisting of a series of instructions that the computer is to perform.
The output stream consists of the results produced by executing the instructions on the
given input. In our highly simplified example, we basically distinguish three types of
instructions:

downloaded by wizard.z@foxmail.com

Computers 7

� The instruction READ(X) by which the next input value is read from the input stream
and internally stored as the variable X.

� The instruction WRITE(X) of which the execution yields that the value of the inter-
nally stored variable X is written to the output stream.

� A collection of simple arithmetic operations that generally require three internally
stored variables. For example, the instruction ADD(X,Y,Z) assigns the value of the
operation X + Y to Z.

Using these three types of instructions, we can then, for example, construct the follow-
ing general program that does the same as our calculator for an arbitrary input stream
consisting of just two numbers:

READ(X)
READ(Y)
ADD(X,Y,Z)
WRITE(Z)

Programs are referred to as software to distinguish them from the hardware components
of which computers are made.

Already we can see an important difference from our simple calculator. Where we first
merely needed to turn the knobs of the two switches S1 and S2 in order to get the result
instantaneously, we now have the situation that the input values are first stored internally
in the form of the variables X and Y, respectively. Also, instead of immediately getting
a result, we explicitly instruct the computer to do an addition, and again separately store
this result as the variable Z. The result is made available to us by writing it to the out-
put stream. We have thus assumed two extra components: an internal store, and some
processing unit that operates on values kept in that store.

Figure 1.5 is a very simple way of representing computers, and is in fact the way that
the first computers worked. The point to realize, however, is that in this architecture, each
instruction is separately fed into the computer and subsequently executed. In particular,
it requires a separate mechanism to read the program instruction by instruction in order
to have it executed. An important improvement was made when it was recognized that
programs need essentially not be treated differently from the input data that they worked
on. The idea is revolutionary and simple at the same time. What we do is treat the in-
structions that make up a program as ordinary values that can be stored internally. In
that case, our computer design can be made a lot simpler. What it means is that we need
a powerful, central processing unit that is connected to a large main store. This central
processing unit, or processor as it is called, essentially has just two operations built into
it:

� An operation FETCH that reads the next instruction from the main store and stores
it locally in a special variable INSTRUCTION.

� An operation EXECUTE that does precisely what its name suggests. It executes the
instruction currently stored as the variable INSTRUCTION, and in turn internally
stores the result in a special variable RESULT.

downloaded by wizard.z@foxmail.com

8 Introduction

(We shall see in Chapter 3 that the variable RESULT is actually not needed. It is intro-
duced here for the sake of illustration.) As we have said, the processor itself is a com-
puter in its own right. It has some storage capacity and is capable of performing just two
operations. That designing computers now becomes a lot simpler is not difficult to see.
Essentially, we need to implement a device that continuously executes the alternating se-
quence of only the two operations FETCH and EXECUTE. Expressing this as a program
yields something like:

forever loop
FETCH
EXECUTE

end loop

There are two important things that need to be kept in mind when organizing comput-
ers in this way. First, we need to make a distinction between two distinctive levels. At
the lowest level we have the two operations FETCH and EXECUTE; one level higher we
have instructions such as READ, WRITE, and ADD that are fetched from the main store and
subsequently fed into the central processing unit, which in turn is responsible for their ac-
tual execution. In principle, you never see the two low-level operations: they have been
directly implemented in the form of a processor.

Second, we will have to assume that the EXECUTE operation is capable of handling
only a restricted number of instructions. In other words, we may not expect that every
possible high-level instruction that we can think of can be executed by the EXECUTE op-
eration. Putting it differently, we say that EXECUTE implements a fixed set of instruc-
tions, also known as the processor’s instruction set. Programming a computer then con-
sists of telling it what to do by constructing valid sequences of instructions taken from
this instruction set.

Using this approach, we can now show how computers are generally organized. In
Figure 1.6 we have a distinction between two types of stores. One type is for storing val-
ues that come from the input stream as well as those for the output stream, and one type is
for storing programs. We shall see later that these two stores can be taken together. Fig-
ure 1.6(a) shows what happens when the instruction ADD(X,Y,Z) is fetched; Figure 1.6(b)
what happens when this instruction is executed by the processor.

1.2.2 The concept of a multi-level machine

Making a distinction between the two levels as discussed above simplified computer de-
sign considerably. The important issue was that designers need now concentrate mostly
on just the implementation of the two operations FETCH and EXECUTE. The result would
be a processor that could subsequently execute any instruction that EXECUTE could han-
dle. But as you may imagine, implementing EXECUTE in itself is not an easy task to
accomplish. In particular, in order to keep the complexity of the processor manageable,
the set of instructions that can be handled generally consists of instructions that are still
rather primitive. And in that respect, nothing much has changed over the years.

Having to use only primitive instructions is awkward when constructing large pro-

downloaded by wizard.z@foxmail.com

Computers 9

(a) fetch next instruction

(b) execute instruction

X:
Y:
Z:

1
2
??

READ(X)
READ(Y)
ADD(X,Y,Z)
WRITE(Z)

INSTRUCTION: ADD(X,Y,Z)

RESULT:

TEMP_A:

TEMP_B:
arithmetic

unit

X:
Y:
Z:

1
2
3

READ(X)
READ(Y)
ADD(X,Y,Z)
WRITE(Z)

INSTRUCTION: ADD(X,Y,Z)

RESULT:

TEMP_A:

TEMP_B:
arithmetic

unit

central processing unit

central processing unit

1

2

3

Figure 1.6 The organization of a computer in which an instruction is fetched (a) and subse-
quently executed (b).

grams. What effectively happens is that although the complexity of computer design can
be greatly reduced if only primitive instructions are supported, the complexity of pro-
grams (that can only make use of these instructions) increases. This is comparable to
some domestic appliances, most notably perhaps video recorders. What we see there is
that the cheaper ones provide you with just simple buttons to operate the recorder. Pro-
gramming the recorder can then indeed be a rather frustrating undertaking especially if a
mistake is made somewhere. In that case, it will generally be necessary to start all over
again. Modern recorders avoid this by sometimes providing just a single instruction that

downloaded by wizard.z@foxmail.com

10 Introduction

you have to execute, namely scanning the bar code as it appears in TV guides. And al-
though it does make things simpler, the additional price paid for this facility reflects that
the underlying technology can indeed be relatively difficult to realize.

Programming computers is not much different in this respect. Constructing programs
that are built from primitive instruction sets is generally a cumbersome and error prone
process. Two complementary solutions have been sought to alleviate these problems:
high-level programming languages and operating systems.

High-level programming languages

There are various high-level programming languages. In this book our primary focus
is on the use of a “conventional” high-level language which will be presented in Chap-
ter 4. Conventional high-level programming languages allow us to arrange programs as a
collection of statements, embedded in relatively small program units, of which the pro-
cedure is probably the best known. Consider the following example.

Suppose we want to write a program by which we can multiply two (positive integer)
numbers M and N, and store the result in a variable P. This would be a simple task as
all popular high-level programming languages support a multiplication operation. For
example, we can simply use the language’s assignment statement such as

P := M * N;

of which the execution will show that the result of the multiplication M * N is assigned to
the variable P.

Now, as it may seem that there is a multiplication operation available, this becomes less
obvious if you know exactly how multiplication is to be performed. For example, some
computer designers have deliberately omitted a multiplication instruction to keep their
computers as simple as possible. This means that we have to write our own multiplication
program if necessary. To illustrate how this could be achieved by means of a high-level
language, let’s also assume that there is no multiplication facility at that level as well. In
that case, we can calculate M * N through repeated addition, i.e.

P := M� � � ��M
� �z �

N times

which can easily be expressed in a high-level programming language as follows:

(1) R := 0;
(2) P := 0;
(3) while R � N loop
(4) P := P + M;
(5) R := R + 1;
(6) end loop

In the first line, we are initializing an additional variable R that is going to act as a counter.
It counts how many times we have already added M to P. The latter is initialized in the
second line. Lines (3)–(6) are an example of a so-called while statement that is supported

downloaded by wizard.z@foxmail.com

Computers 11

high-level programming
language

fetch/execute implementation

instruction set

program expressed in a
high-level language

program execution
in hardware

program expressed as
a series of instructions

translation

direct implementation

Figure 1.7 Viewing a computer as consisting of three distinct levels of instructions.

by almost every high-level language. In our case, we have simply stated that as long as we
have not added M a sufficient number of times to P, we have to do another addition. The
latter is done through the assignment statement in (4), whereas in line (5) we increment
our counter by one.

It is not difficult to see that our small program is correct, and indeed fairly easy to
understand. We will have much more to say about programs such as the one above, and
we shall also illustrate that using high-level programming languages is much simpler to
do than using rather primitive instruction sets. There is, however, a problem. There is no
processor that can execute any program written in a high-level language. The only thing
that a processor can do is handle programs that use instructions from its instruction set.
The solution to this problem is found in language translation. What we can do is translate
programs written in a high-level programming language into equivalent programs, but
now expressed as a series of instructions that a processor can handle. Taking into account
that instruction sets are in turn implemented through a fetch/execute mechanism, we can
then show a computer as a multi-level machine as shown in Figure 1.7.

There are some intricacies related to translating programs expressed in a high-level
language to a lower-level instruction set, but we shall postpone further discussion on this
subject until Chapter 4. The important point to note now is that we are gradually making a
computing device more easy to use by allowing more powerful programming constructs,
even if we do not immediately have an implementation of these constructs at hand. In-
stead, we provide a translation mechanism from one language to another where needed.
The advantage is that from a user’s perspective the only thing that matters is what the
programming language looks like, as this is the only interface to a computer that allows
one to set it to work. And taking it from that perspective, a high-level programming lan-
guage makes a computer look like a powerful and easy device to use. We return to this
issue below after having introduced yet another concept that eases the use of computers.

downloaded by wizard.z@foxmail.com

12 Introduction

Operating systems

Using high-level languages is not the only way to ease the construction of computer pro-
grams. In particular, it is not hard to imagine that having just a bare computer requires
that parts of any program will have to be devoted to handling all kinds of input and out-
put operations for transferring data between a peripheral device and the computer. For
example, when using a disk, you would need a way to retrieve data from that disk, and
also be able to store data on it. This would involve controlling the device by setting its
read/write heads, doing the actual data transfer, etc. The whole point is that these parts of
a program in essence have little to do with the main purpose of using the computer. But
no matter what program is being developed, we will probably have to control input and
output of data in any case. In that sense, it would be a lot easier if we could make use
of a service program that handles disk manipulations. Such a service program would
have to be constructed only once and could be subsequently used as part of the various
other programs that are constructed. And things would be even better if someone else
had constructed such a service program for us, preferably an expert in the field of writ-
ing programs that allowed us easily to make use of the hardware facilities of a computer.

From a certain perspective, this is exactly what so-called operating systems are made
of: a large collection of general-purpose service programs for controlling the computer
and its peripheral devices. Operating systems roughly establish two things. First, they
make the life of programmers a lot easier by means of their service programs. Effectively,
a service program establishes that you need no longer be concerned about how some of
the computer’s facilities such as disks are actually to be used, as this is completely taken
care of. In other words, a service program provides an easy way of programming a com-
puter. Second, service programs can be highly optimized once and for all so that these
facilities are also used efficiently. Operating systems can thus be viewed as resource man-
agers.

An important side-effect of operating systems is that from a programming perspective,
you never see how this control of resources takes place. Putting it differently, service
programs shield all kinds of intricacies that are related to controlling the hardware. As
a consequence, the computer appears to the programmer only by means of the service
programs that are part of the operating system. The service programs form a layer over
the hardware. This principle is illustrated in Figure 1.8.

But if service programs hide all kinds of hardware details, and by doing so ease pro-
gram construction, have we not then constructed an abstract view of what a computer
actually is? Indeed, this is the case and you might say that an operating system com-
bined with the underlying hardware is a realization of a virtual machine: a device that
appears to be something different from its hardware components. This is, in principle,
not much different from using a high-level programming language as discussed above.
A high-level programming language provides a view of a computer’s programming ca-
pabilities which are more extensive than actually provided. Operating systems establish
similar goals, but in a different way. In both cases, the computer appears to be a more
powerful device than is reflected by the hardware.

A question that comes to mind, is how operating systems and high-level languages are

downloaded by wizard.z@foxmail.com

Computers 13

processor

main store

disks
keyboard

disk
handler

storage
manager

keyboard
handler

processor
scheduler

floppy
disk driverhardware

service programs

Figure 1.8 An operating system viewed as a collection of service programs shielding the hard-
ware.

operating system interface

programming language

instruction set

service programs

language translator

hardware

Figure 1.9 The construction of a virtual, multi-layered computing machine.

related to each other. There are different ways of viewing this relationship, but the one we
shall take in this book is the following. The essence of the matter lies in how we construct
service programs. In this book we shall demonstrate that this can be done by means of
a high-level programming language. Consequently, we will be constructing service pro-
grams that are aimed at controlling a computer’s resources, but will use the programming
facilities as provided by some high-level programming language. This leads to further
enhancement of our concept of a multi-level machine, as is shown in Figure 1.9.

And this is about as far as we shall go. It is not hard to imagine, however, that we can
easily continue our line of reasoning by constructing yet another layer on top of an oper-
ating system. Typically, such a layer will further extend our view of what a computer can
actually do, but at the same time will probably narrow our view as well in the sense that
the presented capabilities will be more focused towards a particular application domain.

downloaded by wizard.z@foxmail.com

14 Introduction

To illustrate, consider a modern word processing system such as those that are used for
personal computers. The main purpose of such a system is to provide its users with all
kinds of facilities for making documents. The instructions that are entered either through
commands (such as combinations of keystrokes) or by means of a mouse (if a more ad-
vanced graphical interface is supported) allow you to move the cursor, display a specific
portion of a document on the screen, generate a table of contents, etc. At the same time,
word processing systems do a lot more. For example, they allow us to manage the storage
of documents into files and directories. Also, they provide all kinds of ways for handling
printing devices, help organize the screen, or even allow us to completely redefine the
meaning of the keys on a keyboard. The last facilities are traditionally provided by oper-
ating systems. And if making documents is the only thing that is done with a computer,
there may be no reason why someone should ever use another program. Indeed, in such
cases the computer appears to its user as nothing but an advanced word processing de-
vice, again yet another virtual multi-level machine.

1.3 Computer networks

However, explaining how word processing systems and the like are constructed is not
what we are interested in here. Instead, rather than building layers of software on top
of each other, we will primarily be concerned with extending layers in such a way that
communication between computers and their users becomes possible. We will thus enter
the realm of computer networks which forms the topic of the second part of this book.
Let’s first consider why computer networks are so convenient to have.

1.3.1 The demand for computer networks

Linking computers to each other is attractive for a number of reasons, of which three
important ones immediately come to mind:

� Resource sharing. This is a phenomenon with which most of us who have ever
worked with computers connected in a network are already familiar. The most
notable shared resources are perhaps printers. To date, good high-quality print-
ers are still costly, especially if the combination of speed and quality is a major
concern. But although a printer is typically something that is generally needed,
it is not something that is needed all the time. This makes them ideal for sharing
among several users, which in turn requires that those users can all have easy ac-
cess. Hooking a printer into a network is a solution to that problem. But there
are many other shared resources as well, although not always as visible to users
as printers. An important type of shared resource is software. For example, it is a
lot cheaper for an organization to buy just a single copy of some advanced word
processing system, and keep that copy at one location. If someone wants to do
word processing, they must collect the software from that single location and have
it executed on his or her own computer. Getting the word processing system onto
a computer is a lot easier if this can be done via a network.

downloaded by wizard.z@foxmail.com

Computer networks 15

� Shared information. This is an extremely important reason for linking computers
together. Sharing information by having a database system as part of a computer
network allows remote users located at different sites, all to have access to the same
data. Typical examples of computer networks set up for sharing information are
(electronic) banking systems, airline reservation systems, stock inventory systems
used in e.g. supermarkets, and online library catalogs. Many more will come to
mind. Sharing information through a computer network is practical for a number
of reasons. First, it is a relatively easy way to allow users located at completely
different sites to have easy access to a single source of information. Another im-
portant reason is that this construction allows the information to remain consistent
(although this is not always an easy task to accomplish). If one user performs an
update, then this change will be visible to all other users as well.

� Information exchange. This is going to be a main focus for us when discussing
computer networks – communication between users and programmers. We shall
see that computer networks offer important opportunities for users to exchange in-
formation, often much better than is currently possible via hand-delivered mail,
telephones, faxes, etc. Computerized forms of standard communication facilities
are becoming increasingly popular. For example, electronic mailing facilities have
shown to be extremely useful: not only is it easy to get in touch with someone, it is
also very efficient (it often just takes a few seconds, or at worst, a few minutes to
get electronic mail to the other side of the world). As another example, exchanging
documents over a computer network allows users to collaborate without having to
be located at the same site. In the same way, it can be anticipated that participating
in a so-called video conference with participants from all over a country or even
the world will enhance ease of communication.

Just as we have become used to computers, we now also find it natural that computers
are linked together into a network. The most dominant growth of computer networks
has no doubt taken place in offices, factories, and of course, in universities and research
institutes. Especially in the last two cases great efforts are seen in expanding networks
to cover larger areas, and to improve the quality of the connections. These efforts are
now gradually finding their spin-offs in the construction of networks that are commer-
cially attractive to larger groups. For example, many banks today offer various services
that allow people to perform parts of their financial administration through a personal
computer. The French Minitel project that connects millions of homes to centralized in-
formation servers is another example of bringing computer network technology into our
homes. The exponential growth of the worldwide Internet (which is discussed in Chap-
ter 9) is sometimes beyond imagination, and as of today, services available on the Internet
are readily available to many. Finally, as a last example, we may expect that in the near
future the telephone companies will provide us with integrated services for communicat-
ing voice, data, and pictures through ISDN or related full digital networks.

downloaded by wizard.z@foxmail.com

16 Introduction

1.3.2 Some fundamental problems

Having grasped the essentials of what a computer is all about, it becomes a lot easier to
conceive how we can subsequently link computers together. Again, starting from first
principles helps in understanding what the problems and their solutions are, and this is
the approach that we have adopted in the second part of this book. In particular, as we
gradually expose the workings of computers, we shall also present computer networks by
discussing problems as they surface with the growth of a network in terms of its number
of computers and geographical coverage.

The first type of computer network that we shall consider is a simple one. It consists
of two computers that are linked together through some kind of transmission medium.
There are various transmission media. Roughly, a distinction is made between guided
and unguided media. Guided media are, for example, wires through which an electrical
or optical signal is sent that represents the data we want to transmit. Unguided media are,
for example, radio transmission and satellite connections. In that case, data is sent in the
form of radio signals.

In order to transmit data from one computer to another, we encode it as some kind of
signal that is subsequently sent across the transmission medium. In general, such a signal
represents a so-called bit string, which in turn represents the data we want to transmit.
A bit string is a series of ones and zeroes. Again, we emphasize that it is not the bit string
that is being sent, but rather a signal representing that bit string. Nevertheless, when talk-
ing about data communication, it is a lot easier to think of it in terms of bit strings rather
than signals, and we shall adopt this convention here.

Transmission errors

Now, sending bit strings from one computer to another seems a straightforward thing
to do. However, this statement is not entirely true. The first problem that we are con-
fronted with when we link two computers together is that our transmission medium will
have some bounded quality with respect to its transmission capabilities. In particular,
in many cases there is a low but non-negligible probability that transmission errors may
occur. The effect of a transmission error is that a bit string b which is sent at one end
of the transmission medium may arrive as a different bit string b̂ at the other end. This
problem is caused by many factors, but above all, it becomes more apparent as the length
of the transmission medium increases. For this reason alone, transmission errors occur
less frequently in a single computer as the connections between the various components
in that case are relatively short.

One way or the other, we have to account for the fact that a bit string that arrives at
a receiver may contain errors in the sense that it is different from the bit string that was
originally sent. Devising schemes by which we can detect that a received bit string can
never correspond to what was originally sent is an important subject when developing
computer networks. There are all kinds of ways that errors can be detected, and some
of the important ones will be discussed in Chapter 7. To give you a flavor of how error
detection schemes work, consider the following.

downloaded by wizard.z@foxmail.com

Computer networks 17

exit bandwidth too limited

enough bandwidth for
entrance lane

roadblock leads to
limited bandwidth ⇒ traffic jam

Figure 1.10 The phenomenon of limited bandwidth illustrated by road traffic.

To simplify matters, suppose we wish to transmit the series of decimal numbers d �
h2�3�4�5i. In that case, we can choose to extend this series with an additional number by
summing its values, leading to the series e� h2�3�4�5�14i. It is this series e that we then
transmit. Now, suppose that the receiver eventually picks up the series ê� h2�4�4�5�14i.
In that case it can conclude that something went wrong for the simple reason that 2�4�
4� 5 �� 14, which it would have expected in the first place. That this scheme does not
always work is easily seen when considering that the receiver cannot detect that the series
h1�4�4�5�14i also contains errors.

Limited bandwidth

Perhaps more serious when communicating between two computers is the fact that there
is an upper bound to the amount of data that can be sent per time unit. This is generally
expressed by the number of transmitted bits per second (bps). The two limiting factors
here are the type of transmission medium and the computers themselves. There is an easy
comparison to this phenomenon by considering road traffic. A highway is comparable
to the transmission medium. The amount of traffic that can pass per hour depends on
the number of lanes that are available. Likewise, the entrance and exit lanes determine
how many cars can actually get on and off the highway, and as such are comparable to
the transmission capabilities of the sending and receiving computer, respectively. This
is illustrated in Figure 1.10.

What we see here are three potential bottlenecks that may cause congestion. First, an
entrance lane may not be capable of handling all the traffic, despite the fact that the road
itself at that point has enough capacity. In our example, we have shown an entrance lane
that will presumably not lead to these kind of congestion problems. A second potential
bottleneck is shown at the point where the three lanes are merged into one. In that case,
it is the road that causes a traffic jam. Finally, our example also shows that an exit may
also lead to traffic jams if not properly designed.

downloaded by wizard.z@foxmail.com

18 Introduction

Figure 1.11 The effect of not properly balancing the work on a conveyor belt.

At present, computers as well as the transmission media that connect them may impose
serious problems with respect to communication. With the introduction of new transmis-
sion technology, such as optical fiber, the problem is gradually shifting towards comput-
ers. What it means is that we have to find a way such that (1) computers can work at a
pace that meets our needs for transmitting large amounts of data, and (2) that comput-
ers can adjust to each other’s pace with respect to communication. We will return to the
first issue on several occasions in later chapters. The second issue is the problem of flow
control which we illustrate next.

The producer–consumer problem

Assume that two computers are connected through an ideal transmission medium (that
such a medium does not exist is something we are not concerned about here). In that case,
there is at least one issue that we will have to deal with, namely the difference in trans-
mission speeds between the sender and the receiver, respectively. What do we mean by
this? The problem is easily illustrated by comparing what happens if we put two workers
on one end of a conveyor belt and only one person on the other end, as illustrated in Fig-
ure 1.11. For the sake of argument, assume that each box contains priceless chinaware.

The problem is that the two workers that put boxes onto the belt jointly operate at such
a speed that it is almost impossible for the person on the other end to catch all the boxes
and stack them. Consequently, a large number of the boxes will simply drop off the belt
and their contents will be lost.

The same problem happens with computers. If a receiver is not capable of processing
incoming data at the same speed at which a sender is transmitting it, data will simply be
lost. To a certain extent, the problem can be solved through the use of buffers, as shown
in Figure 1.12. What is seen there is that if a box is not immediately removed from the
belt it will be stored automatically in a special area. But as soon as that area is full, boxes
will start dropping off the belt again.

The whole idea of using buffers is to smooth the discrepancies in transmission speed
between a sender and a receiver. If the sender stops sending for a while, the receiver can at
least make up time by processing the data that has been stored temporarily in its buffers.
Obviously, this scheme will only work if the sender does eventually stop transmission
before the receiver’s buffers are all full, or at least temporarily reduces the speed at which

downloaded by wizard.z@foxmail.com

Computer networks 19

Figure 1.12 Using a buffering area to assist removal of boxes.

it transmits data. But as soon as buffers are full, we fall back into the situation described
above: incoming data simply has to be discarded by the receiver.

The ultimate solution to this problem is that a sender and receiver agree on the rate at
which data is transmitted. In that case, problems such as those described above can be
avoided. But finding the right transmission rate is not always easy, and in the case of large
networks sometimes almost impossible. The consequence of this is that despite the use
of buffers, we will have to face the situation that data can still sometimes be lost. More
precisely, incoming data will sometimes simply be discarded by a receiver because it has
no capacity to store it temporarily. From a user’s point of view, the situation that we then
have created is that of an unreliable network: there can be no guarantee that transmitted
data will actually reach the receiver. In practice, what happens is that a sender and re-
ceiver agree to acknowledge the successful receipt of data. In that way, a sender will at
least know when data needs to be retransmitted. Alternatively, a receiver can explicitly
request retransmission of data when it finds out that something has gone wrong. We will
return to these problems in Chapter 9.

1.3.3 Expanding networks

The fundamental problems we have discussed so far have been illustrated by means of
a simple network consisting of just two computers. But computer networks in practice
are, of course, much larger. In general, there are two ways of constructing computer net-
works, which we discuss next.

Sharing a single transmission medium

Just as highways are used by many people at the same time, we would also like to use
one transmission medium for the transfer of data between several computers. There are
many reasons for wanting this, but, above all, sharing a transmission medium is simply
cost-effective, and in many cases, it also makes the construction of computer networks
much simpler. One particular scheme for sharing a transmission medium, and which is
generally employed in relatively small networks, is the following.

The basic idea is simply to connect several computers to the same medium. The con-
sequence of this is that if one computer starts sending some data, all other computers con-
nected to the medium will be able to receive that data. This is comparable to connecting

downloaded by wizard.z@foxmail.com

20 Introduction

=?
send listen

Figure 1.13 The principle of detecting message collisions.

several telephones to the same wall socket. As soon as someone phones, all telephones
will start ringing. Likewise, we can also connect several radios or TV sets to one outlet.
The incoming signal will just be propagated to all the devices at the same time. Depend-
ing on whether or not you tune into a station determines the actual receipt. In the case of
the type of computer networks we are considering here, the same principle applies. By
specifying exactly for which computers the transmitted data is intended, each computer
can determine if it should receive the data, or otherwise ignore it.

The main problem with this scheme is that we have to prevent two or more computers
from transmitting data at the same time. What it means is that if two bit strings are simul-
taneously transmitted over a shared medium, the result may be a bit string that makes no
sense at all. In that case, we say that a message collision has occurred. Basically, there
are two ways of avoiding collisions.

Collision detection. A straightforward scheme is simply to let collisions happen. Be-
cause every computer connected to a shared medium is capable of receiving what is be-
ing transmitted, we have the situation that the sending computers can detect whether their
transmitted data is being garbled by some other computer that is also transmitting data.
This principle is illustrated in Figure 1.13.

There are various strategies that can be followed when a collision is detected, but the
one most widely applied is to have the sending computer immediately stop transmission,
and wait until the line is free again. Of course, there are some subtleties involved, such
as when to decide to start transmitting again. These details will be explained in Chapter 8
when we describe so-called Ethernet networks.

Token-based solutions. An alternative solution is to use a special data item, known
as a token, and have it continuously circulate from computer to computer. In this case,
the computers that share the medium are either physically or logically organized into a
ring, as illustrated in Figure 1.14. The figure shows a network in which the computers are
logically organized as a ring, but that are physically connected to the same transmission
medium.

downloaded by wizard.z@foxmail.com

Computer networks 21

token

logical ring

Figure 1.14 Using a token to avoid message collisions.

Figure 1.15 A computer network based on point-to-point links.

In this case, a computer is only allowed to transmit data just after it has received the
token. And after the computer has finished its data transmission, the token is again sent
across the transmission medium, but is allowed to be picked up only by the logically next
computer. So, if computer #5 had transmitted the token, then it may be picked up only
by computer #6. If a computer has no data to transmit, it immediately forwards the token
to the next computer. Token-based computer networks will also be further discussed in
Chapter 8.

Sharing the transmission medium is a technique that characterizes most local area net-
works, which, as their name suggests, cover a relatively small geographical area such as
a department floor or a building. The number of computers is restricted from some tens
to a few thousand computers, where in the latter case the overall network has been con-
structed by connecting several local networks. We return to local area networks in detail
in Chapter 8.

Networks based on routing

A second type of scheme that is employed for the construction of computer networks is
simply providing point-to-point links between a set of computers, resulting in a graph as
shown in Figure 1.15. The main advantage of this scheme is that very large areas can be
covered, and it is in this way that so-called wide area networks are constructed.

The point about this type of computer networks is that sending and receiving data re-

downloaded by wizard.z@foxmail.com

22 Introduction

quires that data be routed through the network. In other words, in order to get data across
the network, we have to select a specific route that it has to travel. Route-based computer
networks are thus seen to have an immediate analogy with, for example, road and rail-
way networks. Note also that having to select a route is something that did not occur in
the case of local area networks as discussed above. In other words, we have to provide
an additional functionality.

Routing data through networks is a major and relatively difficult subject. The reason
for this lies not so much in finding the appropriate route, but rather in the fact that the
routing decisions have to made locally at the intermediate nodes through which the data
passes. Let’s take a look at what we mean by this.

Suppose you wish to make a fairly long trip by rail and that there are alternative routes
to choose in order to get to your destination. Normally, what you would do is consult a
railway map and decide how to travel. Or, perhaps more conveniently, the railway orga-
nization will suggest a route. The main issue here is that the railway network is known
in advance and we can trust that this network will not undergo major changes during a
trip. With computer networks, however, the situation is somewhat different.

As a sender of data, we generally do not have a very good idea of what the network
actually looks like. Moreover, there is a considerable chance that while transmitting data
through the network, this data may need to be rerouted once or several times, simply be-
cause computers can crash, or because some links have to cope with more traffic than
they can handle adequately. In other words, in the case of computer networks we are
faced with the problem that the network may change with respect to its physical struc-
ture, or otherwise with respect to its traffic load such that determining a complete route
in advance is not always a good strategy to follow.

It becomes necessary to adopt an adaptive routing strategy. This means that each
time data arrives at an intermediate node, it makes sense to re-evaluate where exactly that
data should be forwarded. And it is the intermediate node that is responsible for making
that decision. Indeed, an intermediate node becomes a true routing device. But if traffic
in networks and networks themselves change so much, this means that an intermediate
node will have to be informed of the overall status of the network. And this is precisely
what makes routing so difficult. Where should this information come from? Surely, if we
are dealing with a network that spans the world, it makes little sense to appoint a central
routing information center that keeps track of this information. If this center malfunc-
tioned the complete network would go down. Instead, what happens is that each inter-
mediate node has to pass on its local information, i.e. information on the status of the
links attached to it, to every other computer in the network. This is not an easy job to
do when you think about it. How each intermediate node can keep informed about the
overall status of the network and subsequently make routing decisions is a major topic
of Chapter 9.

Connecting networks

So far, we have made a distinction between networks based on sharing a transmission
medium, as in the case of local area networks, and those based on point-to-point connec-

downloaded by wizard.z@foxmail.com

Computer networks 23

tions as applied in wide area networks. There is also an important third type of network
which is formed by connecting numerous local and smaller wide area networks into a
single, very large internetwork. This is in fact the way that most large-scale computer
networks are constructed. This type of wide area network is receiving a lot of attention as
it allows worldwide communication between computers. Worldwide computer networks
are still very much in their infancy. The major problem that has to be solved is providing
the right technology in order to allow for large amounts of data to be transferred across
such networks. In particular, a mixture of routing strategies has to be applied in order to
distinguish local traffic from global traffic.

Also, we have to face the problem that an internetwork is built from different con-
stituent networks in which each constituent network has its demands with respect to what
message traffic should look like. To illustrate, just as zip codes vary from country to
country, you can also expect networks to differ in the way that senders and receivers are
identified. Another problem is that networks may vary with respect to the maximum size
of a message. This means that if a message has a size of N bits, and is to be transferred
across a network that can support messages only up to M � N bits the communication
will fail if no special measures are taken.

Constructing internetworks is a difficult task to accomplish, but at present it is the only
way to achieve a worldwide computer network. In this context, the information super-
highway that some people are so enthusiastically talking about today is still non-existent.
A more appropriate term in that sense would perhaps be the information dirt road. Inter-
networks are discussed in Chapter 9, where we pay special attention to the world’s largest
computer network, the Internet.

1.3.4 Towards communication systems

At this point it can already be seen that the construction of computer networks is indeed
something quite different from explaining how computers actually work. For one thing,
the approach that can be followed in the case of computers is the one by which we grad-
ually lift the level of abstraction, and each time we do that, we merely need to explain
how such a higher level can be implemented on top of what we already have. With com-
puter networks, expansion of a network only introduces new problems that need to be
solved. The number of problems may even seem to grow faster than the number of so-
lutions we can provide. And from a certain perspective, there is actually some truth in
this statement. Fortunately, there is a large body of experience in constructing computer
networks and although network technology is by no means a mature area of technology,
there is a consensus on how networks can be built in a structured way. Again, the solution
is found in adopting a layered approach.

Tackling computer network problems

So far, we have made a distinction between several types of computer networks:

� The simplest form we have addressed is the one in which only two computers are
linked together. This is hardly to be considered as a network, but already here we

downloaded by wizard.z@foxmail.com

24 Introduction

see that our attention is drawn to the problem of choosing an appropriate transmis-
sion medium, and getting a bit string from one computer to another.

� Local area networks form a next step in the construction of computer networks. In
this case, we use a single transmission medium to link several computers together
and our focus of attention is directed towards the means for sharing that medium.

� Wide area networks form a next step. In this case, we construct a network by link-
ing pairs of computers together having the advantage that geographically large ar-
eas can be covered. It does impose another problem: that of routing data from
sender to receiver.

� Internetworks, constructed by connecting several local and wide area networks to-
gether forms a next step. The additional problem is how data is to be handled so
that it can travel through different networks with varying demands on what mes-
sages should look like.

We have ordered these network types in such a way that with the increasing size and
complexity of the network type, new problems are introduced for which functionality
has to be added on top of what we already have. In other words, we are forcing a layered
organization of network types. This approach has been widely adopted in the world of
computer networks and has been formalized in the form of several so-called reference
models. An important model that we shall roughly follow in this book is the one devel-
oped by the International Standards Organization (ISO) who produced the Open Systems
Interconnection reference model, abbreviated to the OSI model. This model consists of
seven layers, shown in Figure 1.16.

Without going into too many details, the four lower layers roughly cover the following
functionalities:

� The physical layer specifies the functions that implement most of the aspects of
getting data in the form of a bit string from a sender to a receiver.

� The data link layer covers the functions for accessing a transmission medium. As
we shall see, the data link layer is a major concern when considering local area
networks.

� The network layer covers the functions that deal with routing data through a net-
work. As such, it is an important layer in wide area networks and internetworks.

� The transport layer deals mainly with the functions that are required for building
a reliable computer network, regardless of the underlying technology.

Understanding what these layers mean in practice can be difficult. In fact, knowing what
layering actually stands for and how it affects implementations can be difficult enough.
Throughout this book we explicitly provide examples to illustrate the concept and once
the end of Chapter 9 has been reached, you should have a good idea of these matters.
The point to keep in mind for now is that organizing systems as layers provides you with
the right means for gradually enhancing the functionality of a system, without having to
affect the things that have been constructed so far.

downloaded by wizard.z@foxmail.com

Further reading 25

network layer

physical layer

data link layer

transport layer

session layer

presentation layer

application layer

network-
oriented layers

application-
oriented layers

Figure 1.16 Outline of the OSI reference model.

Away from technology: communication systems

This book deals with technology, and in particular, we concentrate on how computers
and networks are organized by describing how they work. In particular, with respect to
networks this means that we concentrate primarily on the four lower layers of the OSI

model. The systems we shall describe will only allow us to send a message from one
side of the world to another. Not very spectacular, it may seem. But with some exag-
geration, we can state that there is not much more needed to build worldwide communi-
cation systems. Nevertheless, to put things into better context, we shall also pay some
attention to the way that actual communication systems are constructed. In particular, in
the final chapter we shall outline the architecture of communications systems that pro-
vide services directly oriented towards the construction of applications that allow users
to communicate. This is, in fact, a brief story about the upper layers of the OSI model. By
the time you have reached Chapter 10, understanding communication systems will be a
lot easier for the simple reason that you will then have developed a better understanding
of the underlying technology.

1.4 Further reading

Introductory textbooks that explain computers and networks at a basic level are hard to
find. Traditionally, the material covered in this book is more or less subdivided into three
fields:

downloaded by wizard.z@foxmail.com

26 Introduction

� Computer architecture and organization,

� Operating systems,

� Computer networks.

This subdivision often makes it difficult to understand what these fields have in common.
In particular, the role of operating systems in computer networks is generally not easy to
comprehend by the novice. The lack of a general textbook covering the material above in
an integrated way, was a prime motivation to write this book. On the other hand, this does
mean that many details have been omitted. It is hard for us to imagine that the answers
found in this book will be more than the questions that will come to mind after having
studied the material. And if this is indeed the case, the reader is encouraged to delve
into the various subjects further. To that end, each chapter contains references for further
reading.

Nevertheless, there are a number of general introductory textbooks worth mentioning
at this point. Tanenbaum (1990a) focuses primarily on computer organization, but also
pays attention to the role of operating systems. Likewise, Stallings (1990) will show to
be a good introduction to these subjects, although with a stronger emphasis on computer
organization.

In Tanenbaum (1992) the author explains the principles of traditional operating sys-
tems and of those that are distributed across a computer network. Distributed operating
systems are more extensively discussed in Tanenbaum (1995). A somewhat different ap-
proach is followed by Silberschatz and Galvin (1994) but in which many aspects of distri-
bution and computer networks can be found. An excellent treatise on distributed systems
in general can be found in Coulouris et al. (1994).

A brief introduction to the hardware aspects of computer organization and computer
networks can be found in Goupille (1993). However, we feel that the omission of dis-
cussing the important role of software prohibits a good general understanding of com-
munication using computers.

There are numerous introductory books on computer networks. A thorough and in-
depth presentation is given in Tanenbaum (1988) of which a revised and updated edi-
tion is to appear (Tanenbaum, 1996). An excellent treatise can also be found in Stallings
(1994). A bottom-up approach starting with the basic principles of computer networks at
the hardware level, and ending with discussing the software components of networks can
be found in Shay (1995). As the author follows the same approach that we have taken, the
book may show to be good additional reading to the material presented in Chapters 7–10.

downloaded by wizard.z@foxmail.com

Chapter 2

On data, operations, and storage

In this chapter we start with taking a look at the basic elements of computer systems: the
representation of data and operations, and the means to store data values. To that end,
we first pay attention to how we can represent data and operations in terms of so-called
finite bit strings, and subsequently show how these representations can be implemented
using digital circuits. The basic elements introduced up to that point will then be used to
show how we can build devices which can store data values.

2.1 Introduction: information processing

Throughout this book we are concerned with finding an answer to the following question:

How does a computer system (1) process information, and (2) how can it
communicate that information to other computers?

In this chapter we start with taking a look at the basics of processing information. To be
able to process information, we essentially need two things: data and a set of operations
allowed on that data. When working with paper and pencil, information processing is
mostly trivial for us. For example, suppose you were asked to write down a shopping
list with an estimate of the total costs. In that case, you would use the symbols “0” � � �
“9” to represent the digits in our decimal system, and apply the mathematical operations
for adding, and possibly also multiplying numbers in order to arrive at a total sum. But
the most important part of this information processing is the person composing the list:
he or she performs the actual processing.

This example at least illustrates one important issue. In order to process information
we need to make use of symbols that represent the data we have in our heads. When
processing information by means of a machine we have to find a means to represent data
as well. In other words, we have to come to an agreement on a suitable set of symbols.
But there is more. Our simple example also illustrates that we apply operations on data
in order to arrive at a final result. These operations manifest themselves through symbol

27

downloaded by wizard.z@foxmail.com

28 On data, operations, and storage

manipulation: we arrange our numbers in such a way that in the end our shopping list
also includes an estimate of the total costs. This manipulation of numbers is a reflection
of applying mathematical rules. Clearly, automated information processing will require
that we can represent these rules and their application to symbols as well.

The first important choice we have to make, therefore, is which symbols to choose for
representing data. To make things as simple as possible, let’s concentrate only on infor-
mation that we can express in terms of ordinary text and numbers. In other words, we
exclude illustrations and sound. It would then seem to make sense to simply choose our
alphabet augmented with the ten decimal digits, punctuation marks, quotes, etc. This
adds up to a mere one hundred symbols or so, not that much, it would seem. Unfortu-
nately, it is rather much. The problem that we need to take into account is that each sym-
bol needs to have a unique physical counterpart in the machine that we are going to use
for our information processing. And although having to represent many symbols can be
done, it turns out that building machines becomes a lot easier and cheaper if the number
of symbols that it needs to represent is as low as possible. Taking this into account, an
obvious choice is then to take the absolute minimum: two symbols. And in computer
systems, the choice was made for the two symbols “0” and “1”.

Having just “0” and “1” at our disposal then brings us to another problem: how can we
represent real-world data which we normally express through our one hundred symbols
or so in terms of just these two symbols? In the following section we first discuss how
we can merely represent data in terms “0” and “1”. In Section 2.3, we continue by con-
centrating on the representation of operations on data. This will put us in a position to
concentrate on an extremely important issue: how can we implement the notions intro-
duced so far in terms of devices? This is the main subject of Section 2.4. Our last topic is
formed by taking our approach one step further. In Section 2.5, we take the devices used
for implementing our representations, and construct a storage device that will allow us
to store data temporarily.

2.2 Data representation

In this section we concentrate on representing just two kinds of data: numbers and plain
text. The reason for restricting ourselves to these kinds of data is twofold. The first rea-
son is that of simplicity. As we shall see, representing either numbers or text in computer
systems is relatively straightforward, although there are a few snags that need to be con-
sidered. As such, numbers and text are excellent candidates to illustrate representational
issues. Second, they stand for two slightly different kinds of information processing. One
kind is primarily focused towards doing calculations: weather forecasting, analysis of
economic models, building constructions, etc. The other kind of information processing
is primarily concentrated around manipulating text-based data, encompassing areas such
as office automation, business management, and administrative information processing.

We first concentrate on representing numbers, followed by a brief discussion on the
representation of text. But before doing so, we need to introduce some terminology. In
order to speak sensibly about manipulating symbols, it is common practice to use the no-

downloaded by wizard.z@foxmail.com

Data representation 29

tion of variables. In our case, two kinds of variables are relevant. First, we shall make use
of so-called binary digits which are variables that can take on only two values, namely
the symbols “0” and “1”. A binary digit is commonly referred to as a bit.

The second kind of variable we shall come across is that of a bit string, which is noth-
ing but a series of consecutive bits. A bit string of length 8 is usually called a byte.
Throughout this book we denote bit strings by enclosing them between the brackets “h”
and “i” as in, for example, h10010111i.

2.2.1 Numbers

Let’s start by taking a look at how we can represent numbers in the form of bit strings. In
this subsection we concentrate mainly on so-called integer numbers, i.e. numbers such as
�1��2, etc. Although other kinds of numbers can also be represented as bit strings, their
representation is often more intricate, and also less important for the material presented
in this book. We therefore discuss them only briefly.

From decimal to binary numbers

Human beings generally use decimal arithmetic to represent numbers. For example, when
we mention the number 1625, we actually mean a number that is calculated as

1625 � 1 �1000�6 �100�2 �10�5 �1

or, more systematically

1625 � 1 �103�6 �102�2 �101 �5 �100

In the case of decimal arithmetic, 10 is called the base number or radix. But, of course,
it is also possible to use another radix. For example, if we use 8 as our radix, the number
16258 is equal to:1

16258 � 1 �83�6 �82 �2 �81�1 �80 � 91710 (2.1)

Likewise, we can express 91710 in radix 2:

91710 � 1 �29�1 �28�1 �27 �0 �26�0 �25 �

1 �24�0 �23�1 �22 �0 �21�1 �20

� 11100101012

That humans tend to think in terms of decimal arithmetic is even illustrated by our con-
version (2.1). All the symbols after the first equation sign are expressed in decimals.

Coming to this point it we need to make a clear distinction between numbers and sym-
bols. For example, where a number such as 917 makes perfect sense to us, a computer

1We use the subscript 8 to indicate the base number of the arithmetic currently being used.

downloaded by wizard.z@foxmail.com

30 On data, operations, and storage

can deal with only two symbols: “0” and “1”. Rather than having to place these two sym-
bols between quotes each time, we adopt the convention that a number is always written
in conjunction with its radix, i.e. we write 91710 rather than just 917. The latter, in turn,
represents a sequence of three symbols: 9, 1, and 7. We omit the radix in those cases that
this will not lead to confusion.

Now, how do we represent numbers if our computer can only deal with the symbols 0
and 1? As we have illustrated above, it is not hard to represent a decimal number such as
91710 by an equivalent binary representation, i.e. one that uses radix 2. In other words,
if we interpret the symbols 0 and 1 as the numbers 02 and 12, respectively, it would seem
that we would already be in a pretty good shape. As a clarification, what we are proposing
is to take a bit string, say h10011i, and consider it as a direct representation of a binary
number, in this case the number 100112. The thing you have to realize here is that a bit
string such as h10011i is nothing but a consecutive series of our basic symbols 0 and 1,
whereas 100112 is a specific binary number. In order to represent a number from our
decimal system, we thus first convert it to a binary number, and simply represent that
number as a bit string where 0 or 1 stands for 02 or 12, respectively.

� Arithmetic operations on binary numbers such as addition, subtraction, multiplication, and
division, work exactly the same as those on decimal numbers. The only thing you have to
realize is that the set of digits now consists of 0 and 1, instead of 0 to 9.

Example 2.1. As an example, review how we actually add 4210 and 1910:

�add �add
carry: 1
first number: 4 2 � 4 2
second number: 1 9 1 9 �
result: 1 6 1

Note how we first add 2 and 9 and carry a 1 to the next two digits 4 and 1. In binary arith-
metic this is done exactly the same. If we add 1 and 1 the result will be 0 and a 1 is carried to
the next two digits to add. So, adding 1010102 � 4210 and 0100112 � 1910 will then result
in

carry: 000100
first number: 101010

second number: 010011 �
result: 111101

�

It is thus seen that our usual way of adding two numbers can be exactly the same as in binary
arithmetic. And as you may suspect, binary subtraction is indeed quite similar as well as is
illustrated in the following example.

Example 2.2. In order to subtract 910 from 3010 we normally proceed as follows:

downloaded by wizard.z@foxmail.com

Data representation 31

�sub �sub
effect of borrow: 2
first number: 3 0 � 3� 0
second number: 9 9 �
result: 1 2 1

In this case, we have to borrow a 1 from the next digit if necessary. We do the same in the
case of binary subtraction:

effect of borrow: - - -0-
first number: 1111�0

second number: 1001 �
result: 10101

�

We leave it as an exercise for the reader to verify that binary multiplication and division can
be performed likewise.

The problem of finite bit strings

Binary systems so far work fine and just as well as the decimal system we are used to. Un-
fortunately, there is a small problem which severely affects the representation of (binary)
numbers as bit strings. In practice, there is an upper limit to the number of consecutive
bits that can be used to represent numbers in a computer. In other words, when consider-
ing implementations of binary systems, one is faced with the fact that operations are only
defined for bit strings up to a certain length. For instance, most modern personal com-
puters only support binary operations for strings up to 16 or 32 bits. The consequence of
this limitation is that we have to decide how a number is actually going to be represented
as a bit string of a finite and fixed length.

There are two situations where this may lead to problems. In the first case, assume that
our computer can only accept bit strings of length 8. This means that the largest positive
number we could represent as a bit string would be 111111112 � 25510. Indeed, not a very
large number. The only solution to this problem is that we will have to represent large
numbers as a series of bit strings. For example, the number 91710 could be represented
by two consecutive bit strings of length 8 as follows:

91710 � 11100101012 � h00000011ih10010101i

The drawback of this is that because (in this case) our computer supports only operations
on bit strings of length 8, we will have to explicitly instruct the computer how it is to
operate on series of bit strings. In practice, this is not something we want, but which
simply cannot be avoided. Fortunately, most modern computers allow operations on bit
strings of length 32, or sometimes even 64, which is adequate for most calculations.

The second problem that arises from having to deal with bit strings having a maxi-
mum length is a representation for negative numbers. An obvious representation of such

downloaded by wizard.z@foxmail.com

32 On data, operations, and storage

numbers is using the first bit to indicate if the remainder of the string represents either
a negative or a positive number. This representation is generally referred to as the sign-
magnitude notation. So, for example, we would have2

h011011ism � +110112 � +2710
h111011ism � �110112 � �2710

Unfortunately, this does mean that we have a “special” bit which turns out to be rather
awkward from an implementation point of view. Therefore, two other notations are more
commonly used.

In the one’s complement notation, positive binary numbers are represented in the usual
way. So, for example, assuming the maximum bit string length is 8, 2710 is represented
as the bit string h00011011i1c̄. Negative binary numbers are represented by taking their
positive counterpart, and subsequently inverting all bits. To illustrate,�2710 is obtained
by considering the one’s complement notation for 2710 and then changing each 0 to a 1
and vice versa. Consequently, using bit strings of length 8, we have that

�2710 � invert�h00011011i1c̄� � h11100100i1c̄

The approach followed by the one’s complement notation for representing negative num-
bers does have one peculiar aspect. The number 0 can be represented by either the bit
string h0 � � �0i1c̄ or by the bit string h1 � � �1i1c̄.

� To see how the one’s complement notation works in practice, consider the subtraction a�
b of two positive numbers represented as bit strings of length N. In a one’s complement
system, this is done by taking the one’s complement notationb̄ of�b and adding this to a. If
a carry emerges from the most significant bit (i.e. the leftmost one), implying that a�̄b� 2N,
the correct result is simply obtained by adding a one to the result found so far as is illustrated
in the next example. We leave it as an exercise for the reader to verify that this correction
actually works.

Example 2.3. Assume we need to calculate 4210 � 1910. In a one’s complement system
using bit strings of length 8 this is done as follows:

decimal binary 1’s compl.
4210 001010102 � 001010101c̄

�1910 �000100112 � 111011001c̄ �

carry �� 1 000101102

� 1 �
2310 000101111c̄

�

2Analogous to using the radix as a suffix to indicate the current arithmetic, we use the suffix sm to
indicate that a bit string is represented in the sign-magnitude notation. Similarly, we use the suffices 1c̄ and
2c̄ for respectively the one’s complement and two’s complement notations, which are yet to be discussed.

downloaded by wizard.z@foxmail.com

Data representation 33

The example illustrates what happens when jaj � jbj. Obviously, when jaj � jbj we have
that a�b � 0. Let’s see how such a calculation is performed.

Example 2.4. Assume we want to calculate 1910 � 4210. In a one’s complement system
using bit strings of length 8 this is done as follows:

decimal binary 1’s compl.
1910 000100112 � 000100111c̄

�4210 001010102 � 110101011c̄ �
�2310 no carry �� 111010001c̄

What we see here is that no carry is generated and, indeed, the bit string h11101000i in one’s
complement notation represents the correct decimal number �2310.

�

The disadvantage of the one’s complement notation is illustrated by Example 2.3. We need
to perform an additional operation in the case of subtracting a number b from a with a�b �
0. This can be avoided when using a slightly different representation, as is discussed next.

An alternative to the one’s complement notation is the so-called two’s complement
notation. In this notation positive binary numbers are represented as normal, and negative
numbers are represented by taking the one’s complement representation, and adding 1 to
it. So, for example, �2710 is represented as

�2710 � �invert�h00011011i1c̄�2 �000000012 � h11100101i2c̄

Because no extra addition of 000000012 is needed, the two’s complement notation is eas-
ier to use when representing the subtraction of two binary numbers.

Yet another representation is the so-called excess n or biased n notation. In this case,
a number p with �n� p� n�1 is represented by the binary number p̂ � p�n, which
of course lies in the set f0�1� � � � �2n� 1g. In other words, we simply add a value of n.
The main advantage of this notation is that we need not be concerned about signs as each
number is non-negative.

Table 2.1 shows these four widely used interpretations for the case of having to deal
with bit strings of length 4. Note how the first bit in each representation is used to in-
dicate whether the string represents a positive or negative number. These notations can
easily be extended for larger bit strings. For example, each bit string starting with a 0 is
simply interpreted as a positive binary number, except for the excess n notation where it
is interpreted as a negative number. We leave it to the reader to verify that the bit string
h10110101i corresponds to the numbers shown in Table 2.2.

� Real numbers

Most scientific calculations are based on real numbers, and their representation in computers
has always been an important topic. Before going into details, it is not difficult to imagine

downloaded by wizard.z@foxmail.com

34 On data, operations, and storage

Table 2.1 Interpretation of bit strings as decimal numbers

Vector Two’s One’s Sign Excess
complement complement magnitude 8

h0000i 0 0 0 �8
h0001i 1 1 1 �7
h0010i 2 2 2 �6
h0011i 3 3 3 �5
h0100i 4 4 4 �4
h0101i 5 5 5 �3
h0110i 6 6 6 �2
h0111i 7 7 7 �1
h1000i �8 �7 0 0
h1001i �7 �6 �1 1
h1010i �6 �5 �2 2
h1011i �5 �4 �3 3
h1100i �4 �3 �4 4
h1101i �3 �2 �5 5
h1110i �2 �1 �6 6
h1111i �1 0 �7 7

Table 2.2 The interpretation of the bit string h10110101i

Bit string Two’s One’s Sign Excess
complement complement magnitude 27

h10110101i �7510 �7410 �5310 5310

how we can actually represent binary fractions. It is done in the same way as decimal frac-
tions. For example, the binary fraction 110.112 is equal to 6.7510:

110.112 � 1 �22 �1 �21 �0 �20 �1 �2�1 �1 �2�2 � 6.7510 (2.2)

The problems start when representations have to be devised that fit into a fixed number of
bits. Note that in the case of natural numbers we can always perform calculations exactly
(within a range defined by the number of digits we are using, and with exception of division).
Natural numbers (being expressed in decimal or binary notation) always have a finite num-
ber of digits. The same holds for fractions that can be expressed as in equation (2.2). But
difficulties are encountered when realizing that not every decimal fraction can be expressed
by a binary fraction with a finite number of digits. Consider, for example, the decimal frac-
tion 0.210. It is not difficult to see that its binary counterpart is equal to:

downloaded by wizard.z@foxmail.com

Data representation 35

0.210 � 0.00110011001100110011001100 � � �2

thus having an infinite number of digits. But apart from this, there are real numbers such
as π,

p
2, e3, etc. which simply can never be written as fractions with a finite number of

digits, regardless of the base number of the arithmetic used (which is always a positive nat-
ural number). Consequently, if only bit strings of finite length can be used, we are forced to
resort to approximations. An alternative solution would then seem to use fractions for this
purpose. So, for example, we might choose to represent 5

p
2 as:

5
p

2� 7.07153320310 � 111.0001001001012 (2.3)

Unfortunately, this is not going to work. This is caused by the two conflicting demands that
are put on the notation for real numbers:

1. The notation should allow for very large (positive and negative) numbers to be repre-
sented, and

2. The notation should allow for a precise approximation of real numbers.

When only a finite number of bits can be used it is not hard to imagine that these two re-
quirements are indeed conflicting. To this aim, many solutions have been proposed, but a
representation that has been generally accepted as a reasonable compromise is the floating-
point notation.

Floating-point notations have a base β and a precision p such that each floating-point num-
ber can be represented as

�d0.d1 � � �dp�1�βexp

where d0.d1 � � �dp�1 is called the mantissa or significand, and exp the exponent. Of course,
for each digit di we have that 0	 di � β.

Example 2.5. To illustrate, if we take β� 2 and p� 10, the representation for 5
p

2 as given
by equation (2.3) would then become the floating-point number:

5
p

2� 1.1100010012 �β2 (2.4)

In this case, the exponent is equal to 2. Note how we have derived equation (2.4) from (2.3)
by first dividing the latter by the exponent 2 (which means shifting all the bits 2 positions
to the right), and subsequently discarding all the bits after the 10th position.

�

downloaded by wizard.z@foxmail.com

36 On data, operations, and storage

Two parameters associated with a floating-point notation are important: emin and emax rep-
resenting the smallest and largest allowable exponent, respectively. It is important to note
that the number of floating-point numbers for a given base, precision, and exponent range
is fixed. There are βp possible significands, and emax� emin �1 exponents.

In general, floating-point numbers are normalized, meaning that the leading digit is non-zero
(d0
� 0). Demanding that floating-point numbers are normalized leads to a unique represen-
tation, but note that it does become impossible to represent 0! The latter problem is generally
overcome by representing 0 as 1.0�βemin�1. In other words, we use a representation that
lies outside the set of valid floating-point numbers. By making use of the parameters emin

and emax we are also capable of representing other non-valid but useful numbers, generally
referred to as NaNs (“Not a Number”). For example, two useful NaNs are �∞ which are
available in most floating-point notations.

2.2.2 Representing text

Now that we have shown how numbers can be represented by finite bit strings, let’s con-
centrate on the representation of text.

Character coding

As you might suspect, we need to devise a scheme by which text can also be represented
in the form of bit strings. The approach that is taken in this case is straightforward. As
text is ultimately nothing but a consecutive series of characters, our problem reduces
to the question of how we can represent individual characters. To that aim, there are
two widely used codes: ASCII (“American Standard Code for Information Interchange”)
and EBCDIC (“Extended Binary Code Decimal Interchange Code”). EBCDIC is used
on large IBM mainframes; almost any other computer represents characters using ASCII

code. Table 2.3 shows the standard ASCII codes, represented in decimals.
Two things are important here. First, note that the first 32 characters are “special”.

They represent characters for line feeds, carriage returns, etc., characters which no one
enters other than by means of special keystrokes (such as e.g. the RETURN or BACKSPACE

key). Second, there are exactly 128 codes. This means that when using ASCII we can rep-
resent each character by 7 bits. In practice, however, most computers represent the ASCII

character set by means of 8-bit bit strings as this is more in line with the fact that com-
puters generally store data in units of 8 bits. We shall return to this aspect in Section 2.5.

A word on text processing

It would seem that just having the ASCII coding is not enough to represent every kind of
text that we come across. For example, the coding makes no distinction between differ-
ent types of fonts (boldface, italic), nor does it account for aspects like subscripts. Fur-
thermore, it also seems impossible to add new characters, or perhaps to use characters
that are specific to a particular language (e.g. “Æ” or “ǒ”). These additional features are
typically embedded into so-called text processors.

What a calculator is to numbers, so is a text processor with documents: a device that
assists in producing results in an automated fashion. An important aspect of each text

downloaded by wizard.z@foxmail.com

Data representation 37

Table 2.3 The ASCII codes

Dec. Char. Interpretation Dec. Char. Dec. Char. Dec. Char.

0 NUL null 32 space 64 @ 96 ‘
1 SOH start of header 33 ! 65 A 97 a
2 STX start of text 34 " 66 B 98 b
3 ETX end of text 35 # 67 C 99 c
4 EOT end of transm. 36 $ 68 D 100 d
5 ENQ enquiry 37 % 69 E 101 e
6 ACK acknowledge 38 & 70 F 102 f
7 BEL bell 39 ’ 71 G 103 g
8 BS backspace 40 (72 H 104 h
9 HT horizontal tabs 41) 73 I 105 i
10 LF linefeed 42 * 74 J 106 j
11 VT vertical tabs 43 + 75 K 107 k
12 FF formfeed 44 , 76 L 108 l
13 CR carriage return 45 - 77 M 109 m
14 SO shift out 46 . 78 N 110 n
15 SI shift in 47 / 79 O 111 o
16 DLE data link escape 48 0 80 P 112 p
17 DC1 device ctrl. 1 49 1 81 Q 113 q
18 DC2 device ctrl. 2 50 2 82 R 114 r
19 DC3 device ctrl. 3 51 3 83 S 115 s
20 DC4 device ctrl. 4 52 4 84 T 116 t
21 NAK neg. acknowledge 53 5 85 U 117 u
22 SYN synchronous idle 54 6 86 V 118 v
23 ETB end of trans. block 55 7 87 W 119 w
24 CAN cancel 56 8 88 X 120 x
25 EM end of medium 57 9 89 Y 121 y
26 SUB substitute 58 : 90 Z 122 z
27 ESC escape 59 ; 91 [123 f
28 FS file separator 60 � 92 \ 124 |
29 GS group separator 61 = 93] 125 g
30 RS record separator 62 � 94 ˆ 126 ˜
31 US unit separator 63 ? 95 _ 127 DEL

processor is its support for a specific markup language, i.e. a set of commands that is
used to mark parts of your document for special processing. For example, this book has
been written using the LATEX markup language. Using only the ASCII character set, it is
possible to still produce documents having a wealth of variations concerning the presen-
tation of text. To illustrate, consider the following LATEX command and its result:

downloaded by wizard.z@foxmail.com

38 On data, operations, and storage

LATEX fragment result

Using \textbf{boldface} Using boldface is really simple.
is really simple.

If you are used to working with a personal computer, you will probably be using a text
processor that hides most of these commands for you. Instead, you can select fragments
of text and instruct the processor to process that fragment, for example, in boldface. In-
ternally, the processor adds a command like the one used in LATEX.

The problem with representing text using markup commands is that standardization in
this area is still rather poor. This means that if you want to have your document processed
by another text processor, you may have to take great pains to do the proper conversion.3

Another problem is that most popular markup languages, especially used on personal
computers, do not strictly adhere to the printable ASCII coding, but instead use many non-
printable characters as well. Consequently, the text, including its markup commands as
produced with such text processors, cannot be displayed directly on a screen. Moreover,
as many high-level services in communication systems expect communicated data to use
only printable ASCII characters, communication may become a problem as well.

2.3 Operations

So far, we have discussed only how our daily representations for numbers and other text
can be transformed into finite bit strings. We have said nothing about operations: how
can we describe operations that have meaning in our daily lives in such a way that when
performed on bit strings still yield something meaningful? In this section, we introduce
Boolean algebra which is a mathematical system in which operations on bit strings are
described in terms of functions and expressions.

There are several reasons for introducing such a notation. The first point to realize is
that we are now entering a world in which all things that we imagine in our daily lives
are expressed in terms of bit strings. But to do things right, this also means that data
manipulations that make sense to us in reality have to be converted to operations that act
on bit strings. For example, adding two numbers is something we are accustomed to. But
if numbers are to be represented as bit strings, then we also have to describe operations
on bit strings that will allow us to manipulate our bit string representations in such a way
that the result can be sensibly interpreted as an addition of numbers. This principle is
shown in Figure 2.1.

Devising a scheme by which we can express operations on bit strings is thus something
that we need. But such a scheme must prove to be beneficial in a number of ways. First, it
should be as straightforward as possible. In other words, it should preferably correspond
to something that we are more or less already used to. In the second place, as we are

3And if you really believe that popular text processors for personal computers are capable of converting
a document to the format of their competitor, beware. In practice, they might produce something that seems
converted, but which is now internally mismatched with a very large number of commands that can drive
you crazy if you have to continue working with the converted document.

downloaded by wizard.z@foxmail.com

Operations 39

data represented
in normal symbols

results represented
in normal symbols

results represented
as bitstrings

data represented
as bitstrings

normal operation bitstring operation

real-world
results

by hand by machine

real-world
data

Figure 2.1 The relation between normal operations and the world of bit string operations.

dealing with computers, our scheme should also be easy to implement. That is, we have
to invent a scheme that can easily be simulated through electrical or mechanical devices.
Boolean algebra is such a scheme. In this section, we shall concentrate on the notational
issues. Implementation aspects are discussed in Section 2.4.

2.3.1 Boolean functions

Boolean algebra is, as we have said, a mathematical notation. The basis of this notation is
formed by treating bits as variables that can have only two possible values: the symbols 0
and 1. This property has an important consequence. Assume we have a Boolean function
f with n input bits, for which we can use the normal notation:

y � f �x1�x2� � � � �xn�

Note that each bit y�x1� � � � �xn is considered as a Boolean variable so that it can be either
0 or 1. The important issue here is that there are precisely 2n combinations of input val-
ues for f . This means that we can simply resort to constructing a table with 2n rows and
n�1 columns, where each row describes a unique combination of the values for the bits
x1� � � � �xn, together with the value for f �x1� � � � �xn�. Such a table is denoted a function ta-
ble. For example, look at the three function tables shown in Table 2.4. What is seen there
is that each function not, and, and or is completely specified by listing all the possible
combinations of values for their input bits.

downloaded by wizard.z@foxmail.com

40 On data, operations, and storage

Table 2.4 The three basic function tables

x not�x�

0 1
1 0

x y and�x�y�

0 0 0
0 1 0
1 0 0
1 1 1

x y or�x�y�

0 0 0
0 1 1
1 0 1
1 1 1

But there is more. If we consider a 0 as the representation of the logical value FALSE,
and 1 as the representation of the value TRUE, it is seen that we can also speak about
truth tables. For example, the function and is now a representation of the logical AND

operation. Using natural language

and�x�y� :: “TRUE if and only if both x and y are
TRUE.”

Likewise, or represents the logical OR operation and not the logical NOT operation:

or�x�y� :: “TRUE if and only if either x or y is
TRUE.”

not�x� :: “TRUE if and only if x is not TRUE, i.e.
FALSE.”

Let’s take a look at another example. Consider the Boolean function xor with two in-
put bits that takes on the value 1 (TRUE) if and only if the two input values are different.
This function, also known as the exclusive-or (XOR) function, can be specified as shown
in Table 2.5. The question that comes to mind is if we can write down xor in terms of
the three basic functions from Table 2.4. And indeed, this is the case. To that aim, re-
call again from high-school algebra the concept of function composition. For example,
suppose we had the following two functions:

f �x� � x2

g�x� � 1� x

Table 2.5 The specification of the exclusive-or (XOR) function

x y xor�x�y�

0 0 0
0 1 1
1 0 1
1 1 0

downloaded by wizard.z@foxmail.com

Operations 41

In this case, the composed functions f �g�x�� and g� f �x�� take the following form:

f �g�x�� � �g�x��2 � �1� x�2 � 1�2x� x2

g� f �x�� � 1� f �x� � 1� x2

We can do the same in the case of xor, for it can be readily verified that4

xor�x�y� � or�and�not�x��y��and�x�not�y���

The important thing to note here is that it can be shown that any Boolean function can be
expressed as a combination of just the three functions not, and, and or. (In fact, it even
turns out that using only a combination of the not function and either of the and or or
functions is sufficient.) In turn, this implies that if we can devise implementations for
just those three basic functions, we will be able to implement any Boolean function. A
powerful result indeed.

2.3.2 Boolean algebra

But admittedly, writing functions such as xor in terms of function composition is rather
awkward and it is not hard to imagine that this notation can easily lead to descriptions
which are barely comprehensible by human beings. To solve this problem, we adopt a
symbolic notation to deal with expressions that take a value of either 0 or 1. This notation
was introduced by George Boole in 1854 and has come to be known as Boolean alge-
bra.5 Later, it was adopted for computer science and has since then also been known as
switching algebra.

Notational issues

Boolean algebra is in fact a formal language that allows us to express function composi-
tions in a convenient way. Being a language means that there will be certain syntactical
rules, just as there are rules in its grammar. Its basis is formed by the three functions
not, and, and or from Table 2.4 which are more conveniently written using the following
notation:

not�x� � x

and�x�y� � x� y

or�x�y� � x� y

4Below we shall explain how we can derive function compositions in a systematic way.
5More precisely, Boole showed that logic could be expressed in terms of an algebraic system.

downloaded by wizard.z@foxmail.com

42 On data, operations, and storage

In other words, each of these functions is now specified in the form of an operation on
either a single bit (the NOT operation) or as an operation between two bits (the AND and
the OR operation). Note that we are only introducing some convenient syntax here: the
notations above are just a way of writing down the basic functions in a more readable
form. There is nothing special about it in any sense.

Using this notation makes it much easier to express function compositions. For exam-
ple, the function xor given above can be now be written as:

xor�x�y� � �x� y���x� y�

which is indeed easier to read.
But just as there are syntactical conventions, so there are also some grammatical rules

that we should adhere to. And it is here where the mathematical nature of Boolean algebra
is found. Before we elaborate on this issue, note that grammatical rules are something we
are already used to. In effect, many of them are simply rewriting expressions. Consider
the following examples:

expression can be rewritten as � � �

8�1 � 8
8�0 � 8
10�3 � 3�10
45� �3�26� � �45�3���45�26�
12��34�9� � �12�34��9

In Boolean algebra, there are really not that many differences from the things we are al-
ready used to. For example, the following rules apply equally well in our case (where
x�y, and z are bits):

expression can be rewritten as � � �

x�1 � x
x�0 � x
x� y � y� x
x� y � y� x
x� �y� z� � �x� y�� z
x��y� z� � �x� y�� z
x� �y� z� � �x� y���x� z�

We have more or less deliberately used the symbols “�” and “�” to indicate that many of
the properties of ordinary addition and multiplication that we are used to apply equally
well in the case of Boolean algebra. There is, however, only one exception that does not
immediately have its counterpart in ordinary arithmetic. It can be shown that

for all x :: x� x � x

downloaded by wizard.z@foxmail.com

Operations 43

We shall not go into any further details here on Boolean algebra, as most properties, ex-
cept for the ones we have mentioned, are really not important for the remainder of this
chapter. References to textbooks on Boolean algebra can be found at the end of this chap-
ter.

Constructing Boolean expressions

At this point, the only thing we have done is to have introduced a notation that seems to
be more readable than making use of function compositions. As we shall see later, our
notation is in fact so convenient that it becomes relatively easy to derive implementations
for Boolean expressions. But that leaves us with one more issue to solve, namely how
to derive a Boolean expression for a function. This is best explained by means of an
example. Let’s reconsider our original specification of the exclusive-or function which
was given by means of the following function table:

x y xor�x�y�

0 0 0
0 1 1
1 0 1
1 1 0

In order to derive a Boolean expression for xor, we consider only those rows from the
table for which xor�x�y� � 1. This is true for the following two cases:

xor�x�y� � 1� �1� x � 0 and y � 1
�2� x � 1 and y � 0

For each row for which the function yields 1, we construct a separate Boolean expression
as follows. If x � 0, we represent this fact in our expression by writing the term “x”. On
the other hand, if x � 1, we write down “x”. The same goes for the input y. All these
terms are then subsequently brought together by using the AND operator:

�1� x � 0 and y � 1 � x� y
�2� x � 1 and y � 0 � x� y

The final expression is obtained by combining these expressions into a single expression
by using the OR operator:

xor�x�y� � �x� y���x� y��

2.3.3 Some examples

Let’s take a look at a few examples of how we can describe operations on bit strings us-
ing the notations above. The operations we consider here will be used in the following
section as building blocks of a simple calculating device.

downloaded by wizard.z@foxmail.com

44 On data, operations, and storage

Table 2.6 The specification of the majority operation on bit strings of length 3

inputs output
x y z major3

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

The majority operation

Consider the following operation. Suppose we have a bit string hxyzi of length 3, and we
wish to determine if the majority of the number of bits is 1. In other words, we wish to
determine whether the bit string contains at least two bits that are 1. The operation, which
we denote as major3, is specified in Table 2.6. In order to determine the corresponding
Boolean expression, we proceed as follows. First, we consider only those rows for which
the operation yields 1:

major3 � 1� �1� x � 0 and y � 1 and z � 1
�2� x � 1 and y � 0 and z � 1
�3� x � 1 and y � 1 and z � 0
�2� x � 1 and y � 1 and z � 1

which results in four expressions, one per row:

�1� x � 0 and y � 1 and z � 1 � x� y� z
�2� x � 1 and y � 0 and z � 1 � x� y� z
�3� x � 1 and y � 1 and z � 0 � x� y� z
�4� x � 1 and y � 1 and z � 1 � x� y� z

so that we obtain

major3 � �x� y� z���x� y� z���x� y� z���x� y� z�

What we have achieved is a simple way of describing an operation on a bit string of length
3. As we shall see later, subsequently deriving an implementation from the expression
for major3 is straightforward.

downloaded by wizard.z@foxmail.com

Operations 45

Table 2.7 The specification of the oddbits operation on bit strings of length 3

inputs output
x y z odd3

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

The oddbits operation

Our next example concerns an operation by which we can determine if a bit string hxyzi
of length 3 contains an odd number of bits being 1. In other words, the operation should
yield 1, if and only if the number of bits that are 1 is either 1 or 3. The operation, which
we denote as odd3, is given in Table 2.7.

Following the same procedure as in the case of the majority operation, we first consider
only those rows for which the operation yields 1 as its result:

odd3 � 1� �1� x � 0 and y � 0 and z � 1
�2� x � 0 and y � 1 and z � 0
�3� x � 1 and y � 0 and z � 0
�2� x � 1 and y � 1 and z � 1

which results in four expressions, one per row:

�1� x � 0 and y � 0 and z � 1 � x� y� z
�2� x � 0 and y � 1 and z � 0 � x� y� z
�3� x � 1 and y � 0 and z � 0 � x� y� z
�4� x � 1 and y � 1 and z � 1 � x� y� z

so that we obtain

odd3 � �x� y� z���x� y� z���x� y� z���x� y� z�

A half adder

For the first time, let’s make a link between the world of bit strings and that of binary
arithmetic. Consider the operation halfadd shown in Table 2.8. We assume this operation
takes two bits x and y as input, and likewise, has two bits z and cout as output.

downloaded by wizard.z@foxmail.com

46 On data, operations, and storage

Table 2.8 The specification of the operation halfadd

inputs outputs
x y z cout

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

When dealing with multiple outputs, as in this case, it is convenient to write a Boolean
expression per output variable. Following the same procedure as described in the two
previous examples, it is not hard to see that

z � �x� y���x� y�

cout � x� y

The special thing about our operation halfadd is that it behaves the same as mathematical
addition in the case of binary numbers. To see this, first note that in binary arithmetic the
following rules apply:

02 �02 � 02

02 �12 � 12

12 �02 � 12

12 �12 � 02, with an overflow of 12

These rules are completely analogous to decimal arithmetic. For example, recall that if
we perform the addition 4310 � 910, we first write down a 210, and note that we had an
overflow of 110 which we carry to the next digit. This leads to our final result 5210. In
the case of binary arithmetic, we do exactly the same. By adding 12�12, the final result
will be 02, but with an additional overflow of 12. Now, if you look at z in Table 2.8 you
will find that if we neglect possible overflows we have that z � x � y, where z�x, and
y are now considered as binary numbers, and “�” denotes the usual add operation. A
possible overflow is recorded in cout, which, of course, only happens when x � y � 1.
The operation halfadd is called a half adder for reasons we explain below.

This example illustrates an important point. What we have done is construct a Boolean
function that behaves as an ordinary adder for binary numbers. In other words, we can
apparently represent operations such as adding two numbers in terms of operations that
make sense only in the world of bit strings. We shall return to this important observation
below.

downloaded by wizard.z@foxmail.com

Operations 47

Table 2.9 Specification of the operation fulladd

inputs outputs
cin x y z cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

A full adder

You might suspect that the existence of a half adder implies that there will also be some-
thing as a full adder. And indeed, this is the case. This full adder operation, which we
refer to here as fulladd, is closely related to the majority and oddbits operation given pre-
viously. The operation takes three bits cin�x, and y as input, and produces two bits z and
cout as output according to Table 2.9. As we shall explain below, the special point about
this operation is that it does a full addition on its input. But before we go into any details,
let’s first see how we can express this operation using our Boolean notations.

Again, using the procedure as described above, it should not be too hard to verify that
we have:

z � �cin � x� y���cin � x� y���cin � x� y���cin � x� y�

cout � �cin � x� y���cin � x� y���cin � x� y���cin � x� y�

What is seen here is that our fulladd operation is nothing but a combination of the major-
ity and oddbits operation discussed above. In fact, it can be immediately observed that

z � odd3 and cout � major3

The distinction with the half adder operation is that we now take a possible overflow from
a previous application of the operation fulladd into account as well. It is for this reason
that the adder described here is called a full adder. A previous overflow is recorded in
the additional bit cin.

An overflow will again occur when at least two of the three bits x�y, and cin, interpreted
as binary numbers, have the value 1. Again, this is completely analogous to decimal
arithmetic. For example, when adding 5610 � 4910, we first add 610 � 910 which leads
to the digit 410, and second, record an overflow of 110 which is carried to the next digit.

downloaded by wizard.z@foxmail.com

48 On data, operations, and storage

After that, we add 110�510�410 which leads to the digit 010 and, again, an overflow of
110. The final result is the number 10410.

In the case of our full adder, the overflow as the result of the addition is again recorded
in cout. Full adders are important. As we shall see in the next section, it is possible to
combine N full adders into an adder that can operate on bit strings of length N. In this
sense, we are indeed using Boolean algebra to represent operations on binary numbers.

2.3.4 Towards the next step

Let’s take a look at what we have accomplished so far:

1. We started out by making an attempt to represent our world of decimals, letters, etc.
by a world consisting only of finite bit strings. Although we have skipped many
details, we have demonstrated that merely representing data through bit strings is
feasible.

2. Our next step consisted in the construction of Boolean functions: functions that can
accept only variables that take on the values 0 and 1, values to which the function
itself is also restricted. We have shown how we can describe these functions in
terms of Boolean expressions. We are now capable of describing operations on
finite bit strings.

3. Our example above is a crucial link. First, by using a suitable representation for our
decimal numbers in terms of finite bit strings, and second by specifying a Boolean
function that produces bit strings that can be sensibly interpreted as numbers, we
have constructed an operation in terms of Boolean algebra and finite bit strings that
makes sense to us in the world of binary and decimal numbers.

So where does this bring us? Up to this point we have merely concentrated on theoretical
issues. It is time that we put things into practice. Suppose that we could simulate the
world of finite bit strings and Boolean functions. In other words, suppose we could build
a device that is capable of:

� Representing the symbols 0 and 1 in a unique way, and

� Simulating behavior of Boolean functions exactly according to the rules of Boolean
algebra.

In that case, we would have a machine at our disposal that we could readily use as a com-
puting device. How such a device is built is the subject of the succeeding sections.

2.4 Digital circuits

We now have the mechanisms to mold our world of decimals and letters into the world
of finite bit strings. Also, we have shown by example how Boolean functions can be

downloaded by wizard.z@foxmail.com

Digital circuits 49

(a) (b)

select line output line

input line

low

I1

I2

S O

input line

select line output line

input line

high

I1

I2

S O

input line

Figure 2.2 A binary switch viewed from the outside.

used to construct operations that are useful to us, such as, for example, addition of bi-
nary numbers. We now take a closer look at the actual implementation of these functions
into hardware. Our main concern in this section is to show how we can construct devices
out of electrical components that are capable of simulating the behavior of Boolean func-
tions. These devices can then be used for doing computations in an automated way. We
first present in Section 2.4.1 the basic building blocks for the construction of computers:
gates. Then, we show in Section 2.4.2 how gates can be used to implement operations
on bit strings, using Boolean expressions as our starting point. Finally, we consider the
integration of several implementations into a single so-called chip in Section 2.4.3.

2.4.1 Gates

The question we want to answer here is if we can produce an electrical or mechanical de-
vice that is capable of simulating operations on bit strings. As we have mentioned above,
all Boolean operations can be constructed from the three basic operations: NOT, AND,
and OR. So, clearly, what we are seeking is a simple device that can simulate precisely
these three operations. Such a device, which is denoted here as a binary switch, is shown
in Figure 2.2. (We emphasize that our binary switch is just an example. In reality other
kinds of binary switches are used.)

A binary switch operates on the basis of just two possible values of signals: a low
value, and a high value. For most computers a high value corresponds to something be-
tween 2 and 5 volts, whereas a low value typically lies somewhere between 0 and 1 volt.
On the outside, our switch has four pins. Two pins are used as input lines, one pin as an
output line, and one as a select line, respectively. The whole idea is that based on the
value of the signal put on the select line, either one of the two input lines is selected. In
particular, we have:

value at select line is low � select input line I1
value at select line is high � select input line I2

The value of the signal at the selected input line is subsequently propagated to the output

downloaded by wizard.z@foxmail.com

50 On data, operations, and storage

Table 2.10 The relationship between the values of the input, output and select signals in a binary
switch

input lines select output
I1 I2 line S line O

1: low low low low
2: low low high low
3: low high low low
4: low high high high
5: high low low high
6: high low high low
7: high high low high
8: high high high high

line.6 This gives rise to a number of possible output values, depending on the values of
the signals at respectively the select line, and the two input lines. Table 2.10 shows this
dependency.

Binary switches become interesting when we manipulate the signals at the input lines.
Let’s look at three particular schemes.

Making an inverter. First, assume we permanently put a high-valued signal on I1 and
a low-valued signal on I2. This corresponds to considering only rows #5 and #6 in Ta-
ble 2.10. In that case, we get the following relationship between the select signal and the
output signal:

value at S is low � value at O is high
value at S is high � value at O is low

In other words, we have made the switch act as an inverter for its select signal. What
does this mean? If we consider the select signal as our actual input and interpret a low
signal value as 0 and a high signal value as 1, it should be clear that our binary switch
simulates the behavior of the Boolean NOT operation.

Making an AND switch. In a similar way, we can construct a switch that simulates the
Boolean AND operation. To that end, we directly connect input line I1 to the input line,
and consider what happens to the value of the output line. This corresponds to consider-
ing rows #1, #3, #6, and #8 in Table 2.10. In that case, we obtain the following:

6How this is done in practice is beyond the scope of this book. This is typically something what con-
cerns only electrical engineers.

downloaded by wizard.z@foxmail.com

Digital circuits 51

(a) (b)

switchNOT

high

low

I1

I2

S O
switchAND

I1

I2

S O
switchOR

I1

I2

S O

(c)

Figure 2.3 Wiring switches for construction of gates.

inputs output
S I2 0

low low low
low high low
high low low
high high high

Again, by interpreting a low signal value as 0 and a high signal value as 1 it is seen that
our switch simulates the Boolean AND operation.

Making an OR switch. Finally, we can wire the switch in such a way that it simulates
the Boolean OR operation. To that aim, we merely connect input line I2 to the select line.
This corresponds to considering only rows #1, #4, #5, and #8 in Table 2.10, leading to:

inputs output
S I1 0

low low low
low high high
high low high
high high high

These three different schemes are summarized in Figure 2.3. The relation to Boolean
algebra is now evident. By interpreting a high signal value as a 1, and a low signal
value as a 0, we have actually made implementations of the three basic operations into
switches. In other words, by using binary switches we can simulate the behavior of our
three basic Boolean functions not, and, and or. And because these three operations are
all that is needed for constructing an arbitrary Boolean expression, the development of a
machine that can actually do computations can now commence. As we shall see below,
the only thing we have to do is to correctly wire a number of these switches together in
order to simulate the behavior of a Boolean expression. The three switches are generally
known as gates and their conventional graphical representation is shown in Figure 2.4.

downloaded by wizard.z@foxmail.com

52 On data, operations, and storage

NOT AND ORgate gate gate

x
x

y
x • y x + yx

x

y

Figure 2.4 The graphical representation of the three basic gates.

2.4.2 Implementing arbitrary Boolean functions

Having shown how we can simulate the three basic operations NOT, AND, and OR through
binary switches, it should now also be possible to simulate arbitrary Boolean functions
by connecting gates to each other. In this section, we shall pay attention to how we can
derive an implementation of a Boolean function in a systematic way. Let’s first start with
a few simple examples.

A multiple AND operation

As a first example of a more complicated Boolean function, consider the function and5
specified as

and5�a�b�c�d�e� � a�b� c�d � e

In order to derive an implementation for this function, our first concern is to specify add5
in terms of the basic functions not, and, and or. The point to note is that these functions
take, at most, two variables as their input. Because Boolean algebra is similar to ordinary
algebra, we can also place a few brackets here and there. In particular, we may choose
to write add5 as the following expression:

and5�a�b�c�d�e� � ��a�b�� �c�d��� e

We can now easily implement the function and5 using the basic AND gates, as shown
in Figure 2.5(a). For each term “y � z” we use a single AND gate and associate with its
input lines “y” and “z,” respectively, and with its output line the result “y� z”. To further
illustrate, Figure 2.5(b) shows an implementation of and5 after having rewritten it as the
expression

and5�a�b�c�d�e� � �a�b�� �c� �d� e��

It should be clear how we can derive implementations of the AND or OR operations that
can take any given number of bits as input. We leave this as an exercise for the reader.

The exclusive-or operation

As an another example, consider the XOR operation which was specified by the Boolean
expression

downloaded by wizard.z@foxmail.com

Digital circuits 53

(a) (b)

a • b (a • b) • (c • d)

c • d
((a • b) • (c • d)) • e

a
b

c
d
e

a
b

c
d
e

a • b

d • e
c • (d • e)

(a • b) • (c • (d • e))

Figure 2.5 The construction of an AND gate with five input lines.

(a) (b)

x

y

x • y

x • y

(x • y) + (x • y)
x

y

z

cout

x • y

x • y

(x • y) + (x • y)

x • y

z

Figure 2.6 An implementation for the exclusive-or function (a) and a half adder (b).

xor�x�y� � �x� y���x� y�

In this case, we start with deriving an implementation for the subexpression �x�y� which
requires a NOT gate, combined with an AND gate. Likewise, the subexpression �x � y�
also requires a NOT gate and an AND gate. The implementation of the full expression is
finally achieved by using an additional OR gate. The result is shown in Figure 2.6(a).

But, in fact, we can do even better than this. Recall that our half adder operation spec-
ified in Table 2.8 took two bits x and y as input, and had two output bits z and cout, which
could be specified as:

z � �x� y���x� y�

cout � x� y

Clearly, z corresponds to the XOR operation. By adding just one single gate to Figure 2.6(a),
we obtain a combined implementation for the exclusive-or function and our half adder,

downloaded by wizard.z@foxmail.com

54 On data, operations, and storage

(a) (b)

x•y•z

x•y•z

x•y•z

x•y•z

x

y

z

x•y•z

x•y•z

x•y•z

x•y•z

x

y

z

Figure 2.7 An implementation for the majority function major3 (a), and the oddbits function
odd3 (b).

as shown in Figure 2.6(b). Combining several implementations into one is something we
shall meet often.

The majority and oddbits operation

Using the conventions introduced in the previous two examples, it is now not too diffi-
cult to derive implementations for the majority and oddbits operations discussed in the
previous section. These two operations could be specified as the following Boolean ex-
pressions:

major3 � �x� y� z���x� y� z���x� y� z���x� y� z�

odd3 � �x� y� z���x� y� z���x� y� z���x� y� z�

We have already shown how to construct an implementation for the AND operation hav-
ing five instead of two input bits. Here, we assume that there is also an implementation
available for the three-bit case, as well as an implementation for the OR operation with
four bits as input. Assuming this, deriving the implementations for major3 and odd3 is
not too difficult; they are shown in Figure 2.7

A full adder

As a last example, let’s consider an implementation of the full adder as specified in the
previous section (Table 2.9). As we have mentioned, our full adder actually consists of
two components: the majority and oddbits function. It would therefore seem reasonable
that we can derive an implementation by simply merging the implementation of these
two functions together, similar to the way that we combined the implementation of the
exclusive-or operation and our half adder. And indeed, this can be done. Moreover, we

downloaded by wizard.z@foxmail.com

Digital circuits 55

z c
out

c
inyx

x•y•cinx•y•cin x•y•cin

x•y•cin

x•y•cinx•y•cin x•y•cin

Figure 2.8 An implementation for the full adder operation.

can in fact have one gate less. Recall that the full adder was specified as an operation
taking three input bits x�y, and cin, and which had as output two bits z and cout:

z � �cin � x� y���cin � x� y���cin � x� y���cin � x� y�

cout � �cin � x� y���cin � x� y���cin � x� y���cin � x� y�

What is seen here is that the subexpression �cin �x�y� appears for both output bits. This
means that we can have just one AND gate for this expression in our implementation.
This leads to the circuit shown in Figure 2.8.

Discussion

The functions discussed so far are rather simple and one may justifiably argue that their
complexity is certainly not representative of most functions performed by computers.
Nevertheless, even complex Boolean functions can be implemented by electrical circuits
that combine only NOT, AND, and OR gates. But clearly, if complex functions are to be
implemented we need to raise the level of abstraction, i.e. group functionality into more
complex components that in turn can be combined to implement more complex func-
tions. In the next subsection, we shall discuss how several gates can be integrated into
so-called integrated circuits.

2.4.3 Integrated circuits

Gates form the basic building block in constructing computers. But manufacturing com-
puters by starting to connect gates into the kind of circuits discussed so far is not very

downloaded by wizard.z@foxmail.com

56 On data, operations, and storage

efficient. Instead, it seems more practical to make use of existing circuits, and preferably
circuits that can be tailored to specific needs. In addition, and more important, the level
of abstraction when considering only gates is simply not adequate if we are to construct
such complex machines as computers. In this section, we take a closer look at the con-
cept of an integrated circuit (IC), commonly referred to as a chip. An integrated circuit
is a collection of gates and their interconnections grouped together into a single package
with a number of pins that are connected to the input and output lines of some gates.7

Integrated circuits will be seen to be useful in a number of ways. In the first place, they
allow us to introduce a more convenient level of abstraction: rather than talking about
circuits in terms of gates, we are able to consider circuits constructed by wiring chips
together. In the second place, and the starting point for our discussion in this section,
integrated circuits often combine several functions into a single chip which can each be
selected through a separate mechanism.

Integrating and selecting implementations

An important feature of many chips is that they integrate functionality: several Boolean
operations are implemented on the same chip. Doing so has several benefits. For exam-
ple, by integrating several operations it becomes possible to optimize the overall imple-
mentation by minimizing the number of gates that are needed. We have briefly come meet
this issue in the previous section when discussing our implementation of a full adder. Our
solution was based on combining the implementation for the majority and oddbits oper-
ation, which each consisted of four AND gates. We observed that rather than having to
use a total of eight AND gates, it would suffice to use only seven.

Another benefit of integration is that of convenience. Rather than having to buy a sep-
arate chip for each required operation, it suffices to purchase just a single chip, and select
the operation needed. In turn, this reduces the overall complexity of constructing com-
puters, of which the net effect is that costs can be kept relatively low. How operations
can be integrated and subsequently selected is our main concern in this section.

Let’s start by illustrating integrated implementations through a simple example. Sup-
pose we wish to construct a circuit that accepts two input bits x and y and that offers
implementations for calculating two different results: �x � y� and �x � y�. Now, rather
than having two different output pins, we require that there be only a single output pin
and additionally some selection mechanism to choose one of the two possible operations.
An outline of such a chip is shown in Figure 2.9.

What we need at this point is to devise an implementation for our selection mechanism.
To that end, first note that we can specify our result z more generally as:

z � �x� y�� sel��x� y�� sel

7We note that in order to simplify our discussion we do not make an explicit distinction between inte-
grated circuits and functional units, the latter being part of a chip. Instead, we focus only on the issues of
abstraction and combining circuits. How things are actually packaged into chips is less important for our
discussion.

downloaded by wizard.z@foxmail.com

Digital circuits 57

x y

x + y

x
y

z

selection mechanism

Figure 2.9 Outline of an implementation integrating two different operations.

x y

x + y

x
y

z

sel

Figure 2.10 A complete integrated implementation and selection mechanism.

where sel is a so-called selection bit that either enables or disables an operation. If sel �
1, only the result of the operation �x�y� is propagated to z, so that the operation �x�y� is
effectively disabled. The converse holds for the case that sel� 0. The general expression
for z also suggests how we can implement our selection mechanism by using two AND

gates, a single OR gate, and an inverter. Our final implementation is shown in Figure 2.10.
We have shown so far that by using only one bit it is possible to select between two

possible alternatives. This mechanism can easily be generalized as follows. Assume that
we want to design an implementation of a selection mechanism using K selection bits.
Because each selection bit can be either 0 or 1, it is not hard to see that this will allow
us to select between 2K input bits. For example, suppose that we have two selection bits
sel1 and sel2. In that case, we can design an implementation that will allow us to select
between four input bits x1� � � � �x4 according to the following expression:

y � x1 � �sel1 � sel2�� x2 � �sel1 � sel2�� x3 � �sel1 � sel2�� x4 � �sel1 � sel2�

An implementation of this selection mechanism is shown in Figure 2.11(a). An appli-
cation of the selector is found in Figure 2.11(b), which shows an implementation of an
integrated circuit providing four operations:

z �

����
���

x� y if sel1 � 0�sel2 � 0
x� y if sel1 � 0�sel2 � 1
x� y if sel1 � 1�sel2 � 0
x� y if sel1 � 1�sel2 � 1

downloaded by wizard.z@foxmail.com

58 On data, operations, and storage

x

y

z

x1

x2

x3

sel 1 2sel

x y

x + y

x y

x + y
x4

sel 1 2sel

(a) (b)

y

Figure 2.11 An implementation of a selection mechanism for four inputs (a), and its application
in an integrated circuit (b).

In a similar way, we can derive implementations that allow us to use three selection bits
to select between eight alternative input bits, etc. These implementations are also called
multiplexers. We return to selection mechanisms when discussing memory chips in the
next section. But before doing so, we first take a look at a useful and in fact indispensable
integrated circuit.

Integrating arithmetic and logic

An important type of integrated circuit is a so-called arithmetic and logic unit, gener-
ally abbreviated to ALU. As its name suggests, an ALU integrates arithmetic and logical
operations into a single circuit. In particular, one can expect that an ALU having two input
bits x and y provides the following operations:

� The Boolean NOT operation for at least one input, say x: x

� The Boolean AND operation: x� y

� The Boolean OR operation: x� y

� The operation for doing binary addition on x and y.

With the implementations introduced so far, we are capable of constructing an integrated
circuit that provides these operations. The simplest part is formed by the collection of
three Boolean operations; for the binary arithmetic operation, we can use our full adder
implementation from the previous section. This leads to a so-called 1-bit ALU shown in
Figure 2.12.

downloaded by wizard.z@foxmail.com

Digital circuits 59

x

y
z

sel 1 2sel

x y

x + y

full adder

c
in

outc

c
in

outc

x + y (addition)

x

x
z

y

Figure 2.12 An implementation of a 1-bit ALU by integration of several circuits.

sel 1

2sel

outc
outc inc

x y

z

sel 1

2sel

outc
inc

x y

z

sel 1

2sel

outc
inc

x y

z

sel 1

2sel

outc
inc

x y

z

sel 1

2sel

0

x y

z

Figure 2.13 An implementation of a 4-bit ALU.

Our 1-bit ALU is a simple device, and certainly a lot simpler than it appears in prac-
tice. However, it can be used to build a more useful integrated circuit by concatenat-
ing several units as shown in Figure 2.13. What we have constructed there is an inte-
grated implementation of four operations that each take two bit strings x � hx4x3x2x1i
and y � hy4y3y2y1i as input, and produce a bit string z � hz4z3z2z1i as output. The fol-
lowing four operations are implemented, and selected through the two selection bits sel1
and sel2:

downloaded by wizard.z@foxmail.com

60 On data, operations, and storage

selection operation
sel1 sel2
0 0 invert all the bits of x
0 1 perform a bitwise AND on x and y
1 0 perform a bitwise OR on x and y
1 1 perform a binary addition on x and

y, where both input strings are inter-
preted as binary 4-bit numbers

To illustrate, if x � h1011i, and y � h0110i, we obtain the following results:

sel1 sel2 operation result

0 1 h1011i h0100i

0 1 h1011i � h0110i h0010i

1 0 h1011i � h0110i h1111i

1 1 10112 � 01102 00102 overflow: 1

It is important to note that for the first time, we have constructed an implementation of
an operation that can add binary numbers consisting of more than one bit. Moreover, we
have embedded this implementation into a more generally applicable circuit. As we have
said, in practice more sophisticated ALUs exist than we have demonstrated here. How-
ever, the principle of how such circuits can be constructed from simpler ones remains the
same.

2.5 Storing data

In the previous sections we have concentrated on the implementation of Boolean oper-
ations. These operations have one thing in common: a result is only dependent on the
specified operation and the input values. When building machines, this property is some-
times too restrictive. What we often want to do is temporarily store a value. Unfortu-
nately, it is impossible to describe the process of storage in terms of Boolean operations.
In this last section, we focus on how we can build storage devices. Quite surprisingly,
we need not introduce any additional components other than the ones used so far. We
demonstrate in Section 2.5.1 that it suffices to use only basic components such as NOT,
AND, and OR gates. Then we construct in Section 2.5.2 a simple integrated circuit that
acts as a so-called counter, a device which we shall meet a number of times in the next
chapter. Our last concern is the development of storage devices that will allow us to store
millions of bits in a so-called memory chip. These are treated in Section 2.5.3.

2.5.1 1-bit memories

We start by taking a look at a device that permits us to store precisely one bit. First, we
consider only the underlying principle of how to store a single value. Then, we concen-
trate on how we can control when a value is either to be stored or retrieved.

downloaded by wizard.z@foxmail.com

Storing data 61

G1

G2

G3

G4

R

S

Q
l1

l2

Figure 2.14 An SR latch.

The basic principle

Consider the circuit shown in Figure 2.14, which is also known as a SET/RESET latch or
simply an SR latch. Unlike the circuits we have seen so far, the values of the output line
are not determined by the input alone. For example, assume we put a low signal value
on both input lines S and R. The output of gate G1 can only be low if the value of the
signal on line l1 is low as well. Let’s assume this is the case. Then clearly, the value of
the signal on line l2 will be high due to the NOT gate G3. Effectively, this means that
the output of gate G2 is high, so that the value of the signal on line l1 should be low. In
other words, if we assume that line l1 carries a low signal value (implying that Q is low
as well), everything seems to be in order.

What happens if we assume l1 carries a high signal value? Then, clearly, gate G1 will
produce a high signal value as well, which is inverted by gate G3, so that l2 will carry a
low value. This in turn, implies that gate G2 produces a low signal value which is inverted
by gate G4 to a high one on line l1. In other words, if we assume l1 carries a high signal
value, then everything seems to be in order as well.

This is a rather peculiar situation. If we assume l1 is either high or low, then the circuit
seems to be consistent. We conclude that if we assume nothing, we cannot say anything
sensible about the values on lines l1 and l2, and consequently, also nothing about the value
on output line Q. Note, as a matter of fact, that if we assume line l1 to carry a high signal
value, then l2 must carry a low signal value, and vice versa.

Let’s continue our line of thought and assume that l1 carries a low signal value (im-
plying that Q is low as well). If we change the value of the signal on line S from low to
high, gate G1 will then produce a high signal value, which is inverted by gate G3 into a
low value. Gate G2 will now still produce a low signal value which is inverted by gate
G4 so that the value of the signal on line l1 and consequently also Q changes to high. It
is not difficult to see that having a high signal value on S, a low value on R, and a high
value on l1 is perfectly acceptable. The circuit is said to be stable.

It can be verified that changing the value on line S back to a low will not affect the
value on l1. In other words:

If the value of the signal on line Q is low, and we temporarily change the
value of the signal on S from low to high, the value at Q becomes high, and
remains high.

downloaded by wizard.z@foxmail.com

62 On data, operations, and storage

G1

G2

G3

G4

R

S

Q
l1

l2

D

C

Figure 2.15 A clocked D-latch as a 1-bit memory.

This is an important observation. Apparently, by merely changing the value of the signal
on S from low to high for a short period we can permanently change the value at Q from
low to high. But this means that we can store a high signal value on line Q. A similar
reasoning shows that if we temporarily change the value of the signal on line R from low
to high while Q is high, this causes Q to switch permanently from high to low.

We conclude that the circuit shown in Figure 2.14 can be used for storing a single value,
to be set to high by temporarily switching the value of the signal on S from low to high,
and that can be reset to low by temporarily switching the value of the signal on R from
low to high. However, we are not there yet. What we need is a controlled storage of a
single value, i.e. the value is only to be stored when a control signal indicates so. This
can be realized by a slightly extended circuit using the SR latch as described above. This
so-called 1-bit memory can be built as shown in Figure 2.15. The control line C is used
to control the sampling on input line D (which is discussed below). Note that due to the
two AND gates, only if the value at C is high is it possible to propagate the value of the
signal on D to (the now internal) S and R lines.

Clocks and storage

Figure 2.15 shows the logical design of a so-called clocked D-latch. A characteristic
feature of this circuit is that an external control signal is used to determine when a pos-
sible change of the contents of the memory can be made. To be more specific, note that if
there is a low value at C, then the values at both S and R will be low as well. On the other
hand, if C carries a high signal value, then the value at S will be the same as the value at
D, while the value of the signal at R will be the opposite of that on D. Consequently, if
during the time that C carries a high signal value the value of the signal at D will be high
as well, then a high value will be stored in the 1-bit memory. On the other hand, if the
value of the signal on D is low, a low value will be stored. In other words, we have that:

During the time that C carries a high signal value, and only during this time,
the value of the signal at D will be stored in the 1-bit memory.

The control signal at C itself is generated by a so-called clock (which is only another
electrical device), and which is therefore referred to as a clock signal. A clock signal

downloaded by wizard.z@foxmail.com

Storing data 63

time �

��
period T

��
pulse width

high

low
τ1 τ2

Figure 2.16 A characteristic clock signal.

IR/W

C

Q

C D

O

Figure 2.17 A 1-bit memory word.

is generated on a periodic basis as shown in Figure 2.16. Each T time unit the signal is
repeated, consisting of a high value during the first τ1 time units (called the pulse width),
and followed by a low value during the remaining T � τ1 time units.

By now, we have introduced a powerful concept that enables us to deal with changes
that occur in the course of time. Let’s see how we can exploit the notion of a clock to
describe the behavior of this circuit. To this end, we first construct the 1-bit memory
shown in Figure 2.17 which we refer to as a 1-bit (memory) word. Our 1-bit word is
constructed from a clocked D-latch with some additional gates. Storing or retrieving a
value from this circuit is controlled by the control line designated as “R�W”. If a high
signal value is put on this line it will be inverted by the NOT gate to a low value, which
is then propagated through the AND gate, thus effectively disabling the C control line of
the D-latch. In other words, if a high signal value is put on the R�W line, no changes can
be made to the value of the signal currently stored in the D-latch. On the other hand, it
is seen that this stored value will be propagated to the output line O whenever the value
of the signal at R�W is high. Following a similar reasoning, it can be seen that putting a
low signal value on the R�W line will allow the value of the signal on the input line I to
be stored in the D-latch, during the time that the value of the signal on the C line of the
word is high.

downloaded by wizard.z@foxmail.com

64 On data, operations, and storage

What we have effectively accomplished by means of a 1-bit word is a digital circuit
from which we can read the currently stored value (by setting a high signal value on
R�W), but to which we can also write a new value (by setting a low signal value on R�W).

� We have shown that a circuit capable of storing information, such as that shown in Fig-
ure 2.17, can be implemented using the same basic components, namely gates, that we have
used for implementing Boolean operations. However, Boolean algebra cannot be used to
describe the function of a memory element. The reason for this is that a Boolean function
only maps its input values to its output values according to a function prescription. Only the
current input values determine the output. However, in a memory component the output is
also dependent on input values of the past. In other words, the output value of a memory
component is history-sensitive.

Closely related to this is the concept of state. We say that the state of a memory component
is made up of the values of all history-sensitive signals in that component. Hence, the state
of our 1-bit word W from Figure 2.17 can be defined as:

stateW�t� � q if and only if t � τ2

where q denotes the value of the signal at line Q, i.e. the value currently stored in W . Note
that if t � τ1 there is no state: during that time the value at the C line at the word will be high
so that the component behaves as an ordinary Boolean function in the sense that the value
at O is completely determined by the values of the signals at R�W and I.

Since a bit can have only two possible values, the state of a word can also have only two
values: 0 and 1. This implies that there can only be four possible changes in the state of a
1-bit word:

0� 0� 0� 1� 1� 0� 1� 1

A change of state, even if it means storing the same value as before, is called a state tran-
sition. State transitions occur at each clock cycle. To that end, denote by stateW �k� the state
of the 1-bit word W after k clock pulses have been generated, and let stateW �0� denote the
initial value stored in word W . Denoting by I�k� the value of the signal on the input line I
during the kth clock pulse, and using a similar notation for the control line R�W , it can be
seen that we have

stateW �k� �

�
stateW �k�1� if R�W �k� � 1
I�k� if R�W �k� � 0

Note that, by definition, a state transition occurs at each clock pulse.

However, a comment is in order at this point. Recall that our memory circuit has no state if
t � τ1. If we provided the same clock to every memory element in the system, then during
the period τ1 all these memory elements would simultaneously lose their state information.
Clearly, this cannot be our intention. There are several solutions to this problem. One that
is adopted in most circuits is to design memory circuits which only respond to changes in
the clock pulse, i.e. the state is changed at the rising or falling edge of the clock pulse, in
a finite, but very small time period. This period is so small that no memory information is
lost. What it implies is that the state is always defined. Without going into further details,
this will be an important assumption in the remainder of this chapter and in those that follow.

downloaded by wizard.z@foxmail.com

Storing data 65

C D

Q4

I4

C D

Q3

I3

C D

Q2

I2

C D

Q1

I1

O4O3O2O1

R/W

C

Figure 2.18 The layout of a 4-bit word integrated on a single chip.

2.5.2 Storing bit strings

Now that we have explained how a single value can be stored in a 1-bit memory, we
describe how we can store entire bit strings. Also, we consider an example of a circuit
in which two bit string memories are connected in such a way that they jointly act as a
counting device. Such counters, as they are called, will be used in the next chapter where
we explain automated selection of program instructions.

N-bit words

A 1-bit word is capable of storing just a single value, and it is not hard to imagine how
we can group a collection of 1-bit memories such as D-latches onto a single chip in order
to store groups of words. Consider the design of a 4-bit word as shown in Figure 2.18.
In this case, the R�W control line has the same function as the R�W control line of the
1-bit word shown in Figure 2.17. Similarly, the C line is assumed to be connected to an
external clock as previously.

The main difference with our 1-bit word is that input and output signals are now only
considered in units of four. In other words, if we want to write to a 4-bit word, we can only
do this by simultaneously providing four values at the respective input lines I1� � � � � I4.
These four values are simply denoted as a bit string. Similarly, reading signals can only
be done by simultaneously reading the four values at the output lines O1� � � � �O4. To il-
lustrate, assume a 4-bit word contains the bit string h0011i and that we wish to change
the second bit from 0 (low) to 1 (high). In that case, we have to set a low signal value on
R�W , and provide the bit string h0111i as input. Merely setting a high signal value on
the second input line I2 is thus not sufficient.

� In order to describe the behavior of this circuit we have to adapt our idea of a state. This is
quite simple. Instead of considering only the output line of a single D-latch, we take all four
output lines into account at the same time. If W is the 4-bit word shown in Figure 2.18, then
the state of W at time t is defined as

downloaded by wizard.z@foxmail.com

66 On data, operations, and storage

stateW�t� � hq1�q2�q3�q4i

where hq1�q2�q3�q4i denotes the bit string that is currently stored in W . Alternatively, we
use the notation stateW �k� to denote the state of W after k clock pulses have been generated,
where again, stateW �0� denotes the initial state. State transitions can be defined analogously.
To that end, denote by I�k� the bit string hI1�k�� I2�k�� I3�k�� I4�k�i where Ij�k� denotes the value
of the signal on input line Ij during the kth clock pulse. We then have

stateW �k� �

�
stateW �k�1� if R�W �k� � 1
I�k� if R�W �k� � 0

In the case of a 4-bit word it is not difficult to see that there are 24�24 � 256 possible state
transitions.

A counter

Before we continue with explaining how large storage circuits are constructed, we first
look at a useful application of the technology introduced so far. In the following chap-
ter we shall meet a special kind of storage circuit called a counter. A counter has the
property that whenever its stored value is read, this value is automatically incremented
by one. This means that the next read operation will yield an incremented value, and
so forth. A counter can be initialized by explicitly storing some initial value in it. We
stress at this point that the implementation of a counting mechanism as introduced here
is slightly different from way counters appear in practice. However, our implementation
does provide insight into their principles, and more important, the implementation makes
it easier to understand the mechanisms we introduce in the next chapter. We shall return
to this issue below.

In order to construct a counter, we first introduce a mechanism that we shall also meet
a number of times in the following chapter. A (binary) timer is a device that produces
a signal that alternates between high and low as shown in Figure 2.19. In other words,
it produces the infinite bit string h0101010101 � � �i. This signal will be used to control
various components and the way that values that are stored in memory circuits are prop-
agated to and manipulated by other circuits. Anticipating our further discussion, let’s see
how we can use a timer to construct our counter.

Assume we wish to implement a 4-bit counter which, of course, can store only 16 dif-
ferent values ranging from 02 and 11112 � 1510. To that end, we need at least three com-
ponents:

� A 4-bit memory word, which we denote as VAL, that is used to store the current
value of the counter. Reading the counter means that the bit string stored in VAL is
propagated to the counter’s output pins.

downloaded by wizard.z@foxmail.com

Storing data 67

time �

high

low

Figure 2.19 The signal produced by a timer.

SEL

INCR

0001

R/W

R/W

R/W

sel

VAL

TEMP

a b

c

counter

timer

Figure 2.20 An implementation of a 4-bit counter.

� A 4-bit full adder, denoted as INCR, which is used to increment the current value
stored in VAL whenever the counter is read. This full adder can be implemented by
concatenating four 1-bit full adders in a similar way as the construction of a 4-bit
ALU from four 1-bit ALUs.

� An additional 4-bit word TEMP which is used to store temporarily the incremented
value from VAL whenever the counter is being read. After reading the counter, the
value stored in TEMP is to be propagated back to VAL.

Using an additional selection mechanism to either reinitialize the counter or to increment
its current value leads to an organization as shown in Figure 2.20. We assume that when-
ever the sel pin carries a high-valued signal, the component SEL propagates the values
at the input lines marked a to the selector’s output lines (marked c); otherwise, when
sel � 0, the values at b are propagated to c.

Whenever we put a high-valued signal on the R�W pin of the counter the value stored
in VAL is propagated not only to the output pins of the counter but also to the adder INCR

where it is incremented by 12, and subsequently stored in the 4-bit word TEMP. Note that
because we have inserted an inverter, whenever the value at the R�W pin of the counter
is high, the value at the R�W pin of TEMP will be low. In other words, while reading the

downloaded by wizard.z@foxmail.com

68 On data, operations, and storage

value from VAL we simultaneously store the incremented value in TEMP. But as soon as
the value at the R�W pin of the counter becomes low, the opposite happens. VAL will
store either the value at the input pins of the counter (when sel � 1) or the incremented
value as found in TEMP (when sel � 0).

It should now be clear that if we connect our timer to the R�W pin of the counter and set
sel to 0, each time we read a next value from the counter’s output pins it will have been
incremented by one compared to the previously read value. We leave it as an exercise
for the reader to verify that after the counter has stored the bit string h1111i its next bit
string will be h0000i which corresponds to the binary number 02.

� But as we have said, counters in practice are constructed in a slightly different way. Rather
than using a timer device, counters are incremented at each clock pulse. As we have men-
tioned earlier, this clock pulse in turn actually corresponds to the falling or rising edge of the
clock signal. This fact permits counters to be constructed in such a way that the additional
1-bit word TEMP that we have used in our implementation above can be removed. Instead,
at each clock pulse, the value at the input lines of VAL are immediately stored. Then, before
these signals are propagated to the output lines and even get a chance to make it back to
the input lines, the clock pulse will already be “over”. Consequently, it is seen that at each
clock pulse the values at the input lines are stored in VAL, and kept there, until the next clock
pulse.

The reason we have deviated from this implementation is that by using a separate timer we
have an easier way of controlling exactly when a counter is incremented. In effect, it is the
timer signal that accomplishes this. It is only each time that it produces a high-valued signal
that the counter can be incremented. The timer device itself we have discussed here can, in
turn, be constructed with this adaptation of counters. This is left as an exercise for the reader.

2.5.3 Large storage circuits

In practice, computers make use of large amounts of storage which are grouped together
into a single integrated circuit called a memory chip. Memory chips are generally or-
ganized into units of 8-bit, 16-bit, or 32-bit words, similar to our extension of a 1-bit to
a 4-bit word illustrated above. Technology to date allows for the development of a sin-
gle chip containing more than 250 000 16-bit words, adding up to over 4 million 1-bit
memories.

But additional measures need to be taken to avoid running into problems. The main is-
sue is that of selecting a specific word from the memory chip. This can best be illustrated
by means of an example. To that end, consider a simple circuit with three 4-bit words as
shown in Figure 2.21. We first explain the additional circuitry for each word consisting
of a NOT, an OR, and an AND gate, as also shown in Figure 2.22.

To start with, note that the R�W input line of this component is connected to the R�W
pin of the memory chip shown in Figure 2.21, and that the output line R�Wi is connected
to the R�W line of the component’s associated word (shown as R�Wi in Figure 2.22).
In other words, the R�W input line is used to indicate that the contents of the associated
word should either be read (when R�W � 1) or changed (when R�W � 0). The point
to note, however, is that reading or writing should only occur if the associated word has

downloaded by wizard.z@foxmail.com

Storing data 69

C

R/W

S1

S2

S3

I

O

RD2

RD3

RD1

Figure 2.21 A naive construction of a three 4-bit word memory chip.

been selected by means of the input line Si. Now, suppose we put a high signal value on
the line Si. In that case, we see that R�Wi � R�W . In other words, the value of the signal
at R�W is propagated to the R�Wi control line of the associated word. This seems to be
in order. And indeed, if R�W � 1 and Si � 1, i.e. we have selected to read the bit string
currently stored in the word, this bit string is propagated to the output lines of the memory

downloaded by wizard.z@foxmail.com

70 On data, operations, and storage

R/W

OUT
Si

R/Wi

R�W Si R�Wi OUT

0 0 1 0

0 1 0 0

1 0 1 0

1 1 1 1

Figure 2.22 The basic digital circuit for selecting a word and its associated function table.

chip. Likewise, if R�W � 0 and Si � 1, it is seen that the bit string at the input lines of
the memory chip is propagated to the input lines of the selected word and subsequently
stored, while at the same time the output lines of the word are set to 0.

Now, suppose that Si � 0. In that case, the bit string in the word will never be propa-
gated to the output lines of the memory chip because the value at line OUT will always
be 0 as well. Consequently, we have disabled reading the word’s current contents. Fur-
thermore, it can easily be seen that the value of the signal at R�Wi will always be 1 (high)
when Si � 0. In other words, it is not possible to store any new bit string in the word as
long as Si � 0. It can thus be concluded that if Si � 0, the contents of the associated word
can be neither read nor changed. And this is precisely what we wanted to achieve.

So what we see here is that by introducing an additional control line per word we are
capable of selecting where we want to store a bit string in a memory chip, or which bit
string we want to read. There is, however, a problem with this organization. If we sim-
ply grouped the 4-bit words together without too much thinking as we have done in Fig-
ure 2.21, we would need two groups of 4 pins for respectively the input lines and output
lines, 1 pin for the clock signal, 1 pin to indicate if storage or retrieval should take place,
and finally 3 pins (shown as S1�S2, and S3) to select the proper word. This adds up to a
total of 13 pins. In general, if we were to construct a chip with N M-bit words, we would
need a total of 2M�N�2 pins. With M � 16 and N � 65 536 this means that, one way
or the other, we would have to find space for 65 570 pins! Indeed, this is not possible.

Clearly, it is the number of words that determine the number of pins we need. Fortu-
nately, there is way to reduce this number. Observing that at any time precisely one word
will be selected, implying that precisely one of the input lines S1� � � � �SN will carry a high
signal value, while all the others carry a low value, we can devise an efficient decoding
function that can easily be implemented as a Boolean function. To that end, assume that
our memory chip contains a total of N words, identified as W0�W1� � � � �WN�1. With each
word Wi we associate a unique memory address addr�Wi� defined as:

downloaded by wizard.z@foxmail.com

Storing data 71

x1 x2

x1 x2 x3 x1 x2 x3 x1 x2 x3

x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3

x1 x2 x3

x3

Figure 2.23 A 3-to-8 decoder circuit.

addr�Wi� � i

The next step is to write each memory address as a binary number, and use the cor-
responding bit string as the means to select a word. To illustrate, suppose that we have
a memory chip with 256 words. In that case, each memory address can be written as a
binary number using no more than 8 bits, and each address could then be encoded as a
bit string of length 8. For example, in order to select word W27, we encode its address as

addr�W27� � 2710 � 110112 	
 h00011011i

The only thing we have to do now is decode the bit string of length 8 into a bit string of
length 256, where the 28th bit is 1, and all the others are 0. In other words, we have to
implement a Boolean function decode�i� specified as:

decode�i� � h00 � � �0� �z �
i

100 � � �0� �z �
N�i�1

i

where N is again the number of words contained in the memory chip.
This scheme should look familiar. What we are stating here is that we can use K bits

to select among N � 2K alternatives. We came across this mechanism when discussing a
general means for selecting one out of several inputs. It will therefore come as no surprise
that an implementation of our decoder is similar to that of the selector implementations
discussed in Section 2.4.3. As an example, Figure 2.23 shows an implementation of a
so-called 3-to-8 decoder. In this case, N is assumed to be 8, so that we can encode each

downloaded by wizard.z@foxmail.com

72 On data, operations, and storage

memory address by using, at most, 3 bits. In general, if we assume that a memory chip
contains a total of N � 2K M-bit words, we construct a K-to-N decoder as part of the
chip, and effectively reduce the number of pins to 2M�K � 2. So, with M � 16, and
N � 65 536 � 216 we would then need only 50 pins instead of the 65 570 required by our
initial naive implementation.

2.6 Summary and further reading

In this chapter we have concentrated on binary computing systems, our main aim being
to show that our world of computations can (to a certain extent) be simulated by electrical
devices. In particular, attention has focused on four subjects:

1. The representation of data in a world consisting of finite bit strings

2. The representation of operations on such data in the form of Boolean expressions

3. The implementation of these operations by means of digital circuits

4. The storage of data also using digital circuits.

Representing data. To some it may seem strange at first to start with a section on data
representation. However, from the point of view that computing devices are only capable
of manipulating electrical signals, it is obvious that we need a clearly defined mapping of
our commonly used data objects to ones in the world of computers. The important aspect
of data representation is that we always have to realize that only by properly interpreting
electrical signals are we capable of constructing computers that can do something that
seems sensible to us. In this sense, Section 2.2 has been a description of what such a
mapping could look like.

Most of the material discussed in Section 2.2 can be found in introductory texts on
computer architecture and design. A practical introduction to computer arithmetic with
many exercises can be found in Goupille (1993). As we have mentioned, we have hardly
paid any attention to the representation of real numbers. An excellent survey on these
matters can be found in Goldberg (1991). For computer arithmetic in general, Knuth’s
(1981) book is generally considered a standard reference on the subject.

Representing operations. Section 2.3 presented a mathematical basis that allows us to
describe operations as Boolean functions. The point to note here is that by specifying a
Boolean function in the form of a function table we can systematically derive equivalent
expressions which are relatively easy to comprehend – and as we have illustrated – can
be implemented straightforwardly as digital circuits. It should be clear that Boolean al-
gebra lies at the basis of computer design, and, indeed, is far more extensive than we have
presented here. There is much more to say concerning Boolean algebra and its relation-
ship to computer design. The mathematical implications are severe and often difficult to
comprehend by the novice. For those readers with a mathematical background, we refer

downloaded by wizard.z@foxmail.com

Summary and further reading 73

to Birkhoff and Bartee (1970) for a thorough and in-depth discussion on applied algebra.
A general introduction to switching algebra is given in Givone (1970).

An important topic that we have skipped almost entirely is the minimization of com-
plex Boolean expressions: a systematic approach towards simplifying such expressions.
If we use Boolean expressions to derive implementations in the form of gates, it should
be clear that if we can reduce the complexity of an expression, i.e. reduce the number
of operations occurring in an expression, our implementation will also be simpler. On
the other hand, an expression with a minimal number of operations is not always desired
because it may not be the fastest one that can be implemented. The speed of a circuit
is generally determined by the maximum number of gates to be passed from any input
to any output of a circuit. When implementing arithmetic operations, intricate designs
have been developed which cannot simply be derived by applying some mathematical
minimization procedure (Hwang, 1979).

Digital circuits. In Section 2.4 we discussed how electrical switches could be used to
construct the fundamental building block of computers: gates. Combining switches to
gates, and successively combining gates, we showed how Boolean functions can be im-
plemented by electrical devices. The impact of being able to implement functions in ac-
tual devices should not be underestimated. What we have illustrated is that mathemat-
ical concepts which exist only in our minds can be simulated by machines in our daily
lives. The basis for constructing machines that can do things has now been laid down,
and, indeed, this basis is considered by us as being fundamental to all the topics yet to be
discussed.

Some comments concerning Section 2.4 are in order. First, the electrical switches pre-
sented in Figure 2.2 exist only on paper. In the early days of computing these switches
were made out of tubes, called triodes. Later, they were replaced by what can be consid-
ered as a revolution in technology: the transistor. How triodes and transistors actually
work is outside the scope of this book and is a topic for electrical engineers and physi-
cists. And just as we have simplified our presentation of electrical switches, this is also
the case concerning integrated circuits.

Much of the material presented in Section 2.4 can also be found in Tanenbaum’s text-
book (1990a) on computer organization. Also, the material as presented in Shiva (1985)
will show to be of value to the interested reader. A more thorough introduction to digital
design is presented in Mano (1984) and Garrod and Borns (1991) where the latter is more
suited for readers with a background in electrical engineering.

Storing data. Our last subject was that of storing data. The remarkable thing we have
demonstrated in Section 2.5 is that by using the basic components we used for imple-
menting Boolean functions, we could also construct circuits that were capable of storing
a value. This is a functionality that cannot be described in terms of Boolean functions.
Together with the introduction of memory words for storing values, we have introduced
other components of importance: a clock, and what we have called a timer. A clock is
used to control exactly when values can be retrieved from and stored into memory units.

downloaded by wizard.z@foxmail.com

74 On data, operations, and storage

A timer as we shall use it in this book is used to control several storage units in such a way
that values are propagated from one storage unit to another in a controlled way. We will
have more to say about timers in the next chapter. Most of the material of Section 2.5 can
also be found in Tanenbaum (1990a) and Shiva (1985), to which we refer the interested
reader.

Exercises

1. Find the binary representations for the following numbers: 2310, 5610, 1010, 10010,
and 32 76510.

2. Find the decimal representations for 1001112, 101102, 1100112, 11112, and 011002.

3. *Show how binary multiplication is done for 2310�5610.

4. *If we have two bitstrings of length n, denoting positive binary numbers, what is
then the maximum length of the result in case of addition and multiplication, re-
spectively.

5. Given the bit string h1001011i, calculate its base 10 interpretation in one’s com-
plement, two’s complement, and sign magnitude representation, respectively.

6. Determine the largest positive value that can be represented by a bit string of length
8, using two’s complement, one’s complement, and sign magnitude, respectively.

7. Explain how characters like ‘ö’, ‘ň’, ‘Æ’, etc. can be represented.

8. Show that x� x� x� x � x in Boolean algebra.

9. Show, by using function tables, that x��y� z� � �x� y�� �x� z�.

10. Show, by using function tables, that x� y � x�y. Likewise, show that for any two
bits x and y, x� y � x� y.

11. Show that by only using the function nor�x�y� � x� y, we can readily construct
the functions not�and, and or. Hint: use the results from the previous exercise.

12. Construct a Boolean expression for the following function f :

x y f �x�y�

0 0 0
0 1 1
1 0 0
1 1 1

13. Construct a Boolean expression for the following function f :

downloaded by wizard.z@foxmail.com

Exercises 75

x y z f �x�y�z�

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

14. Show how the function z�y�x� z� y�x can be implemented using the three gates
OR, NOT, and AND.

15. Derive an implementation for the selection mechanism of a 4-bit counter as used
in Figure 2.20.

16. Explain the difference between a clock and a timer as introduced in this chapter.

17. *Consider the following digital circuit with input x and output y:

x y

Assuming it takes δ time units for a signal to propagate from the input of the in-
verter to its output, what can be said about the value at y in terms of the value of
the signal at x?

18. Suppose we have devised a memory chip containing 200 16-bit words. How many
pins do we need for selecting a single word?

downloaded by wizard.z@foxmail.com

downloaded by wizard.z@foxmail.com

Chapter 3

Computers

In this chapter we explore how the basic components described in Chapter 2 can be used
to build computing devices in which computations are performed as the execution of a se-
quence of instructions. To that end, we continue where we left off, by combining compu-
tational units and memories into a so-called microcalculator. We shall see that by adding
a timer mechanism, and storing information on execution sequences, a microcalculator is
capable of automatically executing a series of instructions. A next and important step is
formed by copying the architecture of a calculator to a higher level of abstraction, leading
to a processor. We conclude by briefly discussing peripheral devices.

3.1 Microcomputing

In this section we start by taking a look at how we can do simple calculations as a se-
quence of basic computational steps, where each step produces an intermediate result.
Such a result is then to be temporarily stored so that it can be used in a following step. We
shall demonstrate that executing such a sequence of steps can be fully automated using
the components introduced in the previous chapter. At that point, we will have outlined
the basic architecture of a simple, programmable calculator, which is a device that we can
explicitly instruct to do specific calculations expressed as a series of basic computations.

3.1.1 Stepwise execution

Before starting our discussion on how we can build programmable computing devices,
let’s first illustrate how we can construct a device that is capable of performing a task as
a sequence of smaller subtasks. To that end, consider the following example.1 Suppose
we have three bit strings x�y and z, each bit string having a length 8, and that we are to
calculate a bit string r (also of length 8), such that

1In this section, a bit string a of length n is assumed to be written as a� ha1a2 � � �ani.

77

downloaded by wizard.z@foxmail.com

78 Computers

r � �x�y�� z� (3.1)

where all operations are to be taken element-wise, i.e.

ri � �xi� yi�� zi for i � 1 � � �8�

Normally, in order to calculate r we would proceed by means of the following three steps:

� Step 1 (S1): Calculate the intermediate result t1 � x�y.

� Step 2 (S2): Calculate the second intermediate result t2 � t1� z.

� Step 3 (S3): Calculate the final result r � t2.

Considering the simplicity of this computation, it would seem that implementing compu-
tation (3.1) by means of digital circuits should not be that difficult. To that end, assume
we have a single integrated circuit LOGUNIT8 at our disposal as shown in Figure 3.1.
This circuit accepts two bit strings a and b (each of length 8) as input, and produces a re-
sult c as output (also of length 8), dependent on the control lines F0 and F1. In particular,
LOGUNIT8 implements the following Boolean functions:

F0 F1 c
0 0 a�b
0 1 a�b
1 0 a�b
1 1 a�b

where, again, all operations are performed element-wise. So, for example, if we set F0 �
0�F1 � 1, LOGUNIT8 implements the Boolean function

L1

F
0

F
1

a b

c

LOGUNIT8
O

I

W0

W1

W2

W3

MEM

L0

A
0

A
1

R/W R/W

R/W

Figure 3.1 The available components: the IC LOGUNIT8, a four 8-bit word memory MEM, and
two 8-bit words L0 and L1.

downloaded by wizard.z@foxmail.com

Microcomputing 79

LOGUNIT8

LOGUNIT8
high

x y z

r

Figure 3.2 Cascading two circuits LOGUNIT8 in order to directly implement computation (3.1).

f �a�b� � a�b

Clearly, we can use LOGUNIT8 for implementing computation (3.1). In fact, we can re-
duce our original three steps to just two in the following way. First, consider Step 1 (S1)
which is rewritten as

t � x�y

yielding the intermediate result t. This calculation can be immediately implemented by
means of LOGUNIT8 by setting the control lines F0 � 0�F1 � 1 and using x and y for its
input. The second and third steps (S2 and S3), which yields the final result

r � t� z

can be implemented as a single step by also making use of LOGUNIT8. To that end, we
simply set the control lines to F0 � 1�F1 � 0 and use the intermediate result t and the bit
string z as its input.

It should be clear how our computation can be implemented if we had two circuits
LOGUNIT8 at our disposal. In that case, we would merely have to cascade the two as
shown in Figure 3.2. However, the situation becomes rather more complicated if we as-
sume that there is only one LOGUNIT8 available. In that case, it would still seem possible
that we can implement our calculation, although some special measures will have to be
taken. First, after performing the first step (S1), the intermediate result t will need to
be temporarily stored, so that it can be used for the second step. Second, we will have
to change the signals at the control lines F0 and F1 in order to continue with the second
step.

Let’s first concentrate on storing the intermediate result. In fact, what we can do is as-
sume the existence of a memory containing four 8-bit words in which we can store all the

downloaded by wizard.z@foxmail.com

80 Computers

Table 3.1 Specification of the memory chip MEM

A0 A1 R�W effect

0 0 0 W0 � I
0 0 1 O � W0

0 1 0 W1 � I
0 1 1 O � W1

1 0 0 W2 � I
1 0 1 O � W2

1 1 0 W3 � I
1 1 1 O � W3

relevant bit strings: three to contain the bit strings x�y, and z, and one to store the inter-
mediate result t. As we shall see, this is also enough to arrive at a final implementation of
computation (3.1). To this end, we take a memory chip MEM also shown in Figure 3.1 of
which the functionality is specified in Table 3.1. Note that because the chip contains four
words, it will make use of a 2-to-4 memory address decoder as explained in Section 2.5.3.
This explains the two address pins A0 and A1.

Using MEM is fine, but we have to realize that we can only read or write a single value
from or to the chip at a time. Because LOGUNIT8 requires two input values, we can
choose to first extract these two input bit strings from MEM, temporarily store them into
separate 8-bit words, and then let LOGUNIT8 do its work. Therefore, we make use of two
additional 8-bit storage units, which we refer to as L0 and L1 respectively, also shown in
Figure 3.1. The result produced by LOGUNIT8 (which is t after the first step, and r after
the second) can immediately be stored back into MEM as we shall see. We are now in a
position to connect our four components together as shown in Figure 3.3.

Now let’s see how we can actually do our original calculation by means of this imple-
mentation. We assume that initially word W0 of the memory chip already contains the bit
string x. Likewise, W1 is assumed to contain y and W2 the bit string z. The only thing that
remains is reading these bit strings from MEM in the right order, storing them in the 8-bit
words L0 and L1, doing a calculation by setting the control lines F0 and F1, and storing
the result back into MEM. More precisely, if we perform the following six consecutive
steps, we will have implemented our original calculation (3.1):

1. Read the value stored in W0 (i.e. x) and store this in L0.

2. Read the value stored in W1 (i.e. y) and store it in L1.

3. Input both bit strings stored in respectively L0 and L1 into LOGUNIT8, and save
the result in word W3. After this step, our device has calculated t� x�y, which is
stored in W3.

downloaded by wizard.z@foxmail.com

Microcomputing 81

W0

W1

W2

W3

MEM

LOGUNIT8

L0

L1

A

F

R/W

R/W

R/W

I

O

Figure 3.3 A simple, dedicated calculator.

Table 3.2 The setting of the control lines to realize the third step

component control comment

MEM : A0 � 1 select word W3

A1 � 1

R�W � 0 ensure that MEM can be written to

L0 : R�W � 1 read the first variable into LOGUNIT8

L1 : R�W � 1 read the second variable into LOGUNIT8

LOGUNIT8 : F0 � 0 select the right computation

F1 � 1 for LOGUNIT8

4. Continue with reading the bit string z from word W2 and store it in L0.

5. Read the intermediate result t from word W3 and store it in L1.

6. Finally, input the bit strings stored in L0 and L1 respectively, into LOGUNIT8, and
write the result to either word W0 or W1.

Assuming that the result of Step 6 is stored in word W0, it is seen that after performing
these six steps the final result of computation (3.1) is now stored in W0 of MEM.

In order to perform each of these steps, it is not difficult to see that we only need to

downloaded by wizard.z@foxmail.com

82 Computers

Table 3.3 The setting of control lines for the dedicated calculator

MEM L0 L1 LOGUNIT8
step A0 A1 R�Wmem R�WL0 R�WL1 F0 F1

1 : 0 0 1 0 1 x x
2 : 0 1 1 1 0 x x
3 : 1 1 0 1 1 0 1
4 : 1 0 1 0 1 x x
5 : 1 1 1 1 0 x x
6 : 0 0 0 1 1 1 0

properly set the various control lines of each of the four components LOGUNIT8, L0, L1,
and MEM, respectively. For example, Step 3 is realized by setting the values according to
Table 3.2. In particular, for each step it can be verified that the proper setting is as shown
in Table 3.3. Because the memory chip will not accept any new values (i.e. we cannot
store a value) when performing steps 1, 2, 4, or 5, the setting of the control lines F0 and
F1 for LOGUNIT8 is immaterial in these cases. We have expressed this by writing an “x”
in the corresponding entries of Table 3.3. The six steps are shown in Figure 3.4.

3.1.2 Automated stepwise execution

So far, everything seems to be in order. We have constructed a device that, in principle,
can be used to implement the calculation

r � �x�y�� z

provided we properly set the various control lines in six consecutive steps. But obviously,
our device does not work in an automated way. We are still forced to set the control lines
manually. The question that immediately comes to mind is how we can avoid this. And it
is here that we arrive at a simple, yet extremely powerful and important conceptualization
that is fundamental to programming computers. We store the consecutive values of the
various control lines.

The whole idea is that if we want to automate the execution of our six steps, we will
have to make the settings of the control lines per step available in some way. The point
to note is that each of these settings is just a group of a total of 7 high and low signal
values. In other words, each step requires a bit string of length 7. And as we have seen
in Section 2.5.3, storing bit strings can be done by means of memory words. For example,
we could choose to store the settings for the first step as the string

µI1 � h00101xxi

where, again, x indicates that it does not matter if we store a 1 or a 0. The other control
settings are stored in a similar way, leading to a total of 6 bit strings, one for each step,
and in which each string has the general form

downloaded by wizard.z@foxmail.com

Microcomputing 83

step 1:00101xx

step 3:1101101

step 5:11110xx

step 4:10101xx

step 6:0001110

step 2:01110xx

x y

z

t

t

r

Figure 3.4 Six sequentially executed steps for calculating �x�y�� z.

C� hc1�c2�c3�c4�c5�c6�c7i � hA0�A1�R�Wmem�R�WL0�R�WL1�F0�F1i

To store the complete set of these control settings, we need an additional memory chip
consisting of six 7-bit words. Two comments about this chip are in order here. First,
as this chip needs to contain six words, we will need to decode at least six memory ad-
dresses as explained in Section 2.5.3. This, in turn requires that each address should be
represented by a bit string having at least length 3. Consequently, our memory chip will
have at least 3 additional address pins (shown as A� in Figure 3.5).

Second, we have no intention of modifying any values stored in this memory chip; we
use it only to read its contents. In other words, we can take a so-called read-only mem-
ory, or ROM for our purposes, which is characterized by the omission of input pins (and

downloaded by wizard.z@foxmail.com

84 Computers

W0

W1

W2

W3

MEM

LOGUNIT8

L0

L1

CTRLMEM

0 0 1 0 1 x x

0 1 1 1 0 x x

1 1 0 1 1 0 1

1 0 1 0 1 x x

1 1 1 1 0 x x

0 0 0 1 1 1 0

A

A*

F

R/W

R/W

R/W

I

O

C

Figure 3.5 Adding a memory chip for storing settings of control lines.

also the R�W pin). This special memory chip, which we refer to here as CTRLMEM, can
now be added to the other components as shown in Figure 3.5. Note how we have con-
nected the output pins of this memory chip to the control pins of the other four com-
ponents. The first two are used to select a word from MEM, the third is used to either
read from, or write to MEM, the fourth and fifth are used to control L0 and L1, and the
last two control the actual calculation performed by LOGUNIT8. Each bit string stored
in CTRLMEM is generally referred to as a microinstruction.2 The memory chip itself is
called a microstore. Each time a specific microinstruction is used to set the control lines
of the other components, we say that the instruction is executed.

Notice that we have stored the six microinstructions in the order in which they are to
be executed. By doing so, we now need only to start with selecting the microinstruction
stored at the first address and subsequently select the microinstruction stored at the next
address at each execution step. If we can automate this selection of successive micro-
instructions, then we may justifiably state that we have constructed a computing machine.

So how do we produce such a mechanism? To answer this question, we first observe
that selecting a microinstruction from CTRLMEM requires that we provide a 3-bit address.
Therefore, we start by adding a digital circuit that can store bit strings of length 3, and

2The use of the adjective “micro” will become clear when we discuss instructions in Section 3.2.

downloaded by wizard.z@foxmail.com

Microcomputing 85

actual control
signals

CTRLMEM

MIR

MPC
TIMERCTRL

M
O

P

TIMER

sel

Figure 3.6 The outline of a mechanism for controlling the automated execution of micro-
instructions.

which will always contain this address. This special digital circuit is generally referred
to as a microprogram counter, or MPC for short. As its name suggests, it is indeed a
counter in the sense as explained in Section 2.5.2: its stored value is automatically in-
cremented by one each time it is read. In other words, when the contents of the counter
is read, the next time it is read its contents will have been incremented. As we have ex-
plained in Section 2.5.2, it is also possible to initialize a counter by explicitly setting its
contents by means of an additional selection pin. Like other storage units, we can thus
explicitly store a bit string into a counter.

In the general case that a microstore contains more than eight microinstructions, it is
obvious that we have to increase the size of this counter. A next observation is that dur-
ing the time the address of the required microinstruction is stored in the MPC, nothing
should change with respect to the setting of the control lines for the other components.
In other words, the previous microinstruction should still be in execution. To do this,
we use an additional 7-bit word in which a microinstruction is stored while it is being
executed. What it means is that this so-called microinstruction register (MIR) is read
during execution of the instruction it contains. The additional components MPC and MIR

are now attached to CTRLMEM as shown in Figure 3.6. The component TIMERCTRL is
discussed below. The component TIMER is a so-called timer, as was also discussed in
Section 2.5.2. It continuously produces the alternating bit string h01010101 � � �i and is
used to provide the basic control in the course of time for the other components.

Now the whole idea is that MPC and MIR are read from, and written to, at the right
time. For example, while MPC is updated with the address of the next microinstruction
to be executed, MIR should contain the microinstruction that is presently executed. After
that, the address stored in MPC is to be used to update the contents of MIR with the next
microinstruction. This behavior is repeated many times, and is therefore referred to as
the micro fetch-execute cycle. The component TIMERCTRL is responsible for producing
this cycle. It controls the setting of the R�W control lines of MPC and MIR, respectively,
by means of the two control lines marked as P and M. TIMERCTRL is also responsible

downloaded by wizard.z@foxmail.com

86 Computers

for storing the appropriate address in MPC and it is connected to MPC via the output lines
marked as O. More specifically, we have that TIMERCTRL implements the following
algorithm:

Algorithm 3.1. The micro fetch-execute cycle: Consider the components as shown in
Figure 3.6. The following two steps are repeatedly executed:

1. Fetch microinstruction: The next microinstruction is stored in MIR by taking the
address found in MPC, and selecting the associated instruction from CTRLMEM. To
this end, P � 1 and M � 0.

2. Execute microinstruction: The address of the next microinstruction is stored in
MPC. At the same time, the microinstruction stored in MIR is executed. Therefore,
we have P � 0 and M � 1.

�

In order to repeat these two steps, we connect TIMERCTRL to the component TIMER.
What effectively happens is that each time the timer produces a high signal value, TIMER-
CTRL sets its control lines such that the first step is executed. As soon as the value changes
to low, the second step is executed. This scheme can be realized by the circuit for TIMER-
CTRL shown in Figure 3.6.

3.1.3 Executing multiple microinstructions

Let’s summarize what we have done so far. First, we showed that by using a single inte-
grated circuit LOGUNIT8, a memory chip MEM, and two additional 8-bit words we could
implement the calculation

r � �x�y�� z

by specifying a sequence of six steps. Each step was then represented by a bit string of
length 7, called a microinstruction, in which each bit was used for a specific control
line for one of the four components. These six microinstructions were then stored in a
separate memory chip, called a microstore. By arranging the microinstructions in their
consecutive order in the microstore, we then demonstrated that by making use of a timer
and some additional circuitry, the six steps could be executed automatically.

Now let’s first reconsider our set of six microinstructions, which were given as:

instruction value

µI1 : 00101xx
µI2 : 01110xx
µI3 : 1101101
µI4 : 10101xx
µI5 : 11110xx
µI6 : 0001110

downloaded by wizard.z@foxmail.com

Microcomputing 87

Clearly, this set falls naturally into two parts. The first three (µI1�µI2�µI3) establish the
partial computation

t � x�y

yielding an intermediate result t. Similarly, the last three (µI4�µI5�µI6) also belong to-
gether. They jointly perform the second part of our computation:

r � t� z

Let’s refer to each of these two sets of microinstructions as a microroutine. The im-
portant thing to note is that execution of each of the two microroutines changes one or
more values stored in the memory chip MEM. Moreover, these changes are predictable.
If we know what the contents are of MEM before execution of a microroutine, we can
unambiguously determine what the contents will be after its execution.

For now, let’s denote the microroutine consisting of the sequence of microinstructions
µI1�µI2 and µI3 as OR01TO3 as it ORs the contents of words W0 and W1, and places the
result in word W3. The microroutine made up from the microinstructions µI4�µI5 and
µI6 will be referred to as NAND23TO0 as it places the complement of the contents of word
W2 and W3, after having ANDing them, into word W0.

The idea of grouping a number of microinstructions into a single microroutine can eas-
ily be generalized. For example, one could imagine that we use a larger microstore that
would also contain an additional microroutine consisting of the following sequence of
microinstructions:

µI7 : 0 1 1 0 1 x x
µI8 : 1 0 1 1 0 x x
µI9 : 1 1 0 1 1 0 1

If we were to execute this sequence, it can be readily verified that this would yield that
the value

t � y� z

would be stored in word W3 of MEM (assuming that y and z are stored in the second and
third words of MEM, respectively). We refer to this microroutine as OR12TO3 for obvious
reasons. Likewise, the microroutine AND03TO1 given by the set of microinstructions

µI10 : 0 0 1 0 1 x x
µI11 : 1 1 1 1 0 x x
µI12 : 0 1 0 1 1 0 0

can also be contained in the microstore, yielding that the result of the calculation

r � x� t

is stored in word W1, where we now additionally assume that t is stored in word W3.

downloaded by wizard.z@foxmail.com

88 Computers

Now assume that we have stored several such microroutines in a microstore, and that
we had a mechanism for selecting which microroutine we wanted to be executed. In that
case, we would have an extremely powerful device. We would merely indicate the micro-
routine it should execute, and by combining several of these microroutines we could ac-
tually program the device to perform a calculation as a number of consecutive micro-
routines.

For example, assuming that x�y, and z are already stored in respectively words W0, W1,
and W2 of MEM, our calculation

r � �x�y�� z

could be implemented by a program consisting of just two microroutines:

begin
or01to3
nand23to0

end

Similarly, the calculation

r � x� �y� z�

could be implemented by the program

begin
or12to3
and03to1

end

A question that needs to be addressed is how we can store several microinstructions as
microroutines in a single microstore, such that it is possible to select individual micro-
routines. In fact, it turns out that this is not too difficult. Two points need to be consid-
ered: (1) how we identify a microroutine, and (2) how we know when to stop, i.e. how
we can identify the last microinstruction to be executed.

(1) Identifying a microroutine in a microstore is actually quite straightforward. We
simply take the address of the microinstruction that is the first one to be executed
of that microroutine. So, for example, if a microroutine µR consists of the sequence
of microinstructions µI1� � � � �µIN, we simply take addr�µI1� as the identifier for µR.
This is also denoted as the address of the microroutine.

(2) Identifying the last microinstruction to execute can be implemented rather straight-
forwardly as well. For example, we can choose to add a single bit to each micro-
instruction which is set to 1 for each but the last microinstruction of each micro-
routine. Then, if we find that the last bit of a microinstruction is 0, it is known that
this is the last microinstruction of the current microroutine.

downloaded by wizard.z@foxmail.com

Microcomputing 89

CTRLMEM

1

1

0

1

0

MIR

actual control signals

O

IREG

SE MI

TIMERCTRL

TIMER

MPC
P

sel

Figure 3.7 The actual control mechanism for the execution of microroutines.

Our micro fetch-execute cycle can now be refined so that an arbitrary microroutine
can be executed. First, we assume that the identification of the microroutine that is to be
executed, i.e. the address of its first microinstruction, is stored in a separate memory word
IREG as shown in Figure 3.7, and which is controlled by the line marked E. In addition,
we adapt the organization of our microstore by adding a bit to each microinstruction as
discussed above. We shall denote this bit as MIR[0] and use it as input to TIMERCTRL.
Using the notation CTRLMEM[k] to indicate the microinstruction at address k, we then
come to the following specification of the behavior of TIMERCTRL:

Algorithm 3.2. Modified micro fetch-execute cycle:

1. Fetch microinstruction: Store the microinstruction identified by MPC in MIR, i.e.
MIR � CTRLMEM[MPC], by setting P� 1 and M � 0.

2. Execute microinstruction: Execute the microinstruction by setting M � 1, and
update MPC by setting P� 0, sel� MIR[0], and E � 1.

The correctness of setting sel � MIR[0] in the second step is not difficult to verify. If
MIR[0] is equal to 0, then a new microroutine should be started implying that MPC should
be re-initialized. This is done by setting sel� 1 and E� 1. Otherwise, if MIR[0] is equal
to 1, MPC should be updated with the address of the next microinstruction of the current
microroutine, i.e. MPC � MPC + 1, which is done by setting sel� 0. Meanwhile we can
safely set E � 0.

�

An implementation of TIMERCTRL is shown in Figure 3.7. Note that the second step
of our fetch-execute cycle is executed when the value of the timer’s signal is low. In that

downloaded by wizard.z@foxmail.com

90 Computers

case, depending on whether or not MIR[0] is equal to 0, either MPC will store the valued
contained in IREG or simply increment its present value.

� Storing microinstructions in a separate microstore and devising a component by which micro-
instructions are fetched and executed at the right time is certainly not a bad choice. How-
ever, the question that may come to mind is if this solution is the only feasible one. The
fact is, it is not. The solution presented here is one that tends to become increasingly out of
date. The point is that fetching a microinstruction simply takes too much time to justify the
use of a microstore. The alternative solution is to directly implement the sequence of micro-
instructions into digital logic. This is generally referred to as hardwired control. Let’s look
at how this could be accomplished.

Suppose we want to execute the sequence of microinstructions corresponding to the OR01TO3
microroutine. This sequence was specified as follows:

step OR01TO3

1 : h00101xxi
2 : h01110xxi
3 : h1101101i

Now the idea is that we can specify this microroutine in the form of a function table, which
in turn corresponds to an ordinary Boolean function. In our case, we refer to this function
as or01to3. The input for or01to3 is a bit string of length 2, specifying the current step. The
output is a bit string of length 9, consisting of 7 bits that specify the settings of the various
control lines, and 2 bits specifying the next step that is to be taken. For simplicity, we assume
that OR01TO3 is to be executed repeatedly, so that after the third step has been executed we
simply continue with the first one. This then leads to the following function table:

input output
(step) (control) (next step)

01 0010100 10
10 0111000 11
11 1101101 01

(Note that we have chosen to set a low signal value for those control settings during steps 1
and 2 for which the setting actually did not matter.) Implementing or01to3 as a digital circuit
is straightforward. The interesting part is how we can use the last two bits that specify the
next step in order to change the control settings. But this is not too difficult either. Consider
the circuit shown in Figure 3.8.

The implementation of or01to3 is shown as the integrated circuit OR01TO3. The crux of
our implementation is formed by the two 2-bit words CR0 and CR1, of which the respective
R�W control lines are connected to a timer. In particular, notice that whenever the R�W
control line of CR0 is high (low) that at the same time, the R�W control line of CR1 will
carry a low (high) signal value due to the inverter. Consequently, whenever the contents of
CR0 is read, then CR1 is set to to be written to, and vice versa.

Now assume that CR0 initially contains the bit string h01i, which corresponds to step 1.
Then, when the signal generated by the timer is high, CR0 is read so that this bit string will

downloaded by wizard.z@foxmail.com

Microcomputing 91

CR0

CR1

TIMER

control signals

next step

input

OR01TO3

0

Figure 3.8 A hardwired control of three execution steps.

be passed to OR01TO3 leading to the setting of the control signals associated with step 1. At
the same time, the last two bits produced by OR01TO3 are stored in CR1. In other words, the
identification of the next step (which is the bit string h10i) is written to CR1. Then, when
the timer signal becomes low again, the contents of CR1 is passed on to CR0 where it is
now stored. It should be clear by now that the next time the timer sets the signal high, the
bit string h10i is passed to OR01TO3, leading to the control setting corresponding to step 2,
while at the same time h11i is stored in CR1. This behavior is repeated many times.

Although our implementation is rather simple, the point to note is that we have actually real-
ized the execution of a sequence of microinstructions without the need for explicitly storing
them in a separate microstore. Therefore, when the total number of microroutines is not too
large, and their sequencing not too complex, replacing a microstore by hardwired control
will generally lead to a much faster implementation. The price to be paid is a much more
complex, and less flexible implementation. The complexity is caused by the fact that im-
plementing all microroutines by means of digital circuits is not that simple. The decrease
in flexibility should be obvious. Once a series of microinstructions have been implemented
by means of digital circuits, there is no way we can change them. We shall return briefly to
this subject in our discussion at the end of this chapter.

3.1.4 A general architecture

We have demonstrated in the previous sections how we could automate the execution of
computational steps by storing a sequence of microinstructions (called a microroutine)
in a microstore, and adding a timer mechanism that ensures that such a microroutine is
selected and executed. Furthermore, we have illustrated that we could even store several
microroutines in a single microstore, and by providing a selection mechanism we could
choose the microroutine to be executed.

The approach we have followed to implement these mechanisms can easily be gener-
alized. Figure 3.9 shows the architecture of what we shall call a microcalculator and
which is a great simplification of the ones that are found in many personal computers

downloaded by wizard.z@foxmail.com

92 Computers

CTRLMEM

1

1

0

1

0

REGMEM

ALU

TIMERCTRL

MIR

MPC

IREGDREG

TIMER

in/out

R/W

Figure 3.9 The architecture of a simplified microcalculator.

and workstations. For clarity, we have represented the connections between the various
components as thick, gray lines. Also, control lines are not always drawn separately, but,
instead, we have occasionally grouped several lines into one. A few comments about this
architecture are in order.

First, we have added a special storage unit DREG which serves a similar purpose as
IREG: it acts as an interface between the calculator and the outside world. In this case,
DREG is intended to be used to hold both operands and results of the computations to be
performed by the microcalculator. This means that it can be used to store incoming as
well as outgoing data for the microcalculator. Second, note that we have used the same
representation for MPC, MIR, DREG, and IREG in the sense that each storage unit can

downloaded by wizard.z@foxmail.com

General processing 93

contain a bit string of length 8. However, in practice, the size of these units can vary
between architectures. Obviously, depending on the size of the microstore, the micro-
program counter MPC may vary in width as well. Finally, we have replaced our LOG-
UNIT8 component by a more general ALU. ALUs have been discussed in Section 2.4.3.

A special comment should be made regarding the memory REGMEM. In practice, this
memory is implemented through advanced technology in order to ensure that manipu-
lation of its contents is fast. Each word of this memory is referred to as a register, and
normally a number of these registers are dedicated to special purposes as we shall see
below.

3.2 General processing

The previous section has put many components in place to make a simple microcalculator.
By starting from a simple computation in Section 3.1.1 we have gradually shown how we
could construct and use digital circuits to produce a microcalculator. We have now come
to a point that if the register IREG contains the identification of a microroutine and the reg-
isters in REGMEM contain the necessary input bit strings, our microcalculator can work.
What we have not addressed is how we can tell the calculator what to do, i.e. how we
can load input bit strings into registers and indicate which operation it should perform.
In this section, we shall take a closer look at these issues. In particular, we generalize our
architecture of a microcalculator to that of a computer consisting of a so-called processor
which is attached to a main memory module.

3.2.1 Instructions

Let’s start with reconsidering our original computational example from Section 3.1.1, in
which we needed to calculate

r � �x�y�� z (3.2)

where r�x�y, and z were bit strings of length 8. We showed that if we had four registers
and an ALU that could perform an OR-operation and a NAND-operation, then we could
implement computation (3.2), provided we had stored the bit strings in the appropriate
registers.

So where do x�y and z come from? And how can we tell which operation is to be
performed? When you think of the microcalculator as part of a pocket calculator, the
answer is quite simple. We provide the information manually. And indeed, this is how
most pocket calculators work. We would be able to enter operands one by one, indicate
the operation that we want to be performed (by pressing one of the special-purpose keys,
e.g. “+” or “LOG”), and see the result on a small display. Generally, these simple pocket
calculators also offer the possibility of storing a single intermediate result.

downloaded by wizard.z@foxmail.com

94 Computers

But this approach is hardly useful for complex operations that consist of many com-
putational steps. In that case, we would want to provide just the initial operands and ad-
ditionally provide a series of instructions that the microcalculator should then execute
automatically. This approach is particularly useful if some of the computational steps
were to be repeated many times. What we would need then is a means of storing the ini-
tial operands, as well as the series of instructions that make up the calculation. To that
end, we simply connect a large memory module to our microcalculator. This memory
module will contain data that is to be operated on, and, for now, series of start addresses
of microroutines as stored in the microstore that the calculator should perform.

But simply connecting a memory module to our microcalculator is not enough. When
giving the matter some thought, at least three questions come to mind:

1. How can we get information into and out of this memory module?

2. How can we exchange information (i.e. data and instructions) between the memory
and microcalculator?

3. How we can automate the execution of a series of instructions?

An answer to the first question is postponed until Section 3.4 where we discuss periph-
eral devices. The third question will be addressed below, where we discuss the exten-
sion of our micro fetch-execute cycle. For now, we concentrate on answering the second
question. We first need to reconsider our notion of microroutines as these simply do not
support the kind of flexibility we need for telling a microcalculator what to do.

From microroutines to instructions

Until now, the only way that we can let a microcalculator do something is by giving it
the address (of the first microinstruction) of a microroutine. Each microroutine is nothing
but a series of microinstructions that successively set the various control lines within the
calculator. Now suppose we have a microcalculator with four registers REG0 � � � REG3
and that implements the following microroutines:

microroutine meaning

ADD01TO3 REG3 � REG0�REG1
ADD02TO3 REG3 � REG0�REG2
ADD12TO3 REG3 � REG1�REG2

What we have here is a collection of similar microroutines that add the contents of two
registers and always store the result in register REG3. These three microroutines thus
represent the same operation but each acts on different (input) registers. Unfortunately,
there is no relationship between these microroutines when we consider what each actually
represents, namely the address of the first microinstruction that is to be executed. In other
words, there is no or hardly any logical coherence between similar microroutines. This
is a situation that needs to be corrected if we are to provide a convenient way to program
a microprocessor (we shall discuss other and more important reasons for reconsidering

downloaded by wizard.z@foxmail.com

General processing 95

Table 3.4 Seven possible operations with associated 3-bit opcodes

operation opcode meaning

MIN h000i subtract two binary numbers
ADD h001i add two binary numbers
OR h010i the bitwise operation x�y

AND h011i the bitwise operation x�y
XOR h100i the bitwise operation �x�y���x�y�
NOR h101i the bitwise operation x�y

NAND h110i the bitwise operation x�y

microroutines in their present form below). This problem can be alleviated by properly
grouping several microroutines into a so-called instruction. This is best illustrated by
means of a simple example.

Imagine that our microcalculator supports a total of seven different types of operations,
each taking two operands and producing a single result. These seven different kinds of
operations can be represented by a 3-bit operation code, or opcode for short. For exam-
ple, we may assume that we have the seven kinds of operations and associated encoding
as shown in Table 3.4.

Likewise, the four registers can be represented by bit strings of length two as follows:

code register

h00i �� REG0
h01i �� REG1
h10i �� REG2
h11i �� REG3

Using these coding schemes, it becomes much easier (for humans) to tell the calculator
exactly what to do. We need merely supply (1) an opcode, (2) two operands specifying
the registers that should be read, and (3) the register in which the result should be stored.
This information can be grouped into a bit string of length 9 as follows:

op
co

de

1s
t o

pe
ra

nd
2n

d
op

er
an

d
re

su
lt

Consequently, in order to have the microroutine ADD01TO3 executed, we need to pro-
vide the bit string h001 00 01 11i. This bit string then needs to be interpreted by the
microcalculator as an ADD microroutine, operating on the contents of registers REG0 and
REG1, and of which the result is to be stored in REG3. In other words, this instruction

downloaded by wizard.z@foxmail.com

96 Computers

would have to be decoded into the microroutine ADD01TO3. As we shall see, decoding
instructions will turn out to be an additional function that needs to be carried out by the
control unit TIMERCTRL of a microcalculator.

� An issue that we have not addressed is that although our encoding scheme may be perfectly
in order, it may also be possible to construct instructions that have no meaning. For example,
suppose we provide the instruction h111 00 01 10i, assuming that only the operations shown
in Table 3.4 are available. Clearly, because the opcode h111i has no associated operation,
this instruction makes no sense at all. It is therefore referred to as an illegal instruction.
In that case, one thing the microcalculator can do is stop altogether, or, alternatively, ignore
the instruction.

Load and store instructions

So far, we have only discussed instructions that manipulate the internal registers of the
microcalculator. However, in order to communicate with the outside world, two other
types of instructions are needed: one by which we can transfer data from an external
memory module to an internal register, and one by which we can do the reverse. Let’s
briefly take a look at these so-called load and store operations.

In order to transfer data from external memory to a register, a microcalculator will gen-
erally have a LOAD instruction. This is an instruction that tells the calculator to fill or
load one of its registers with data that can be found in the memory module connected to
the microprocessor. For example, we might have the instruction

LOAD addr, reg0

that tells the calculator to copy the data stored at location addr in the memory module into
register REG0. But apart from transferring data from memory to registers, it may also be
possible to directly copy a bit string into a register by means of another type of LOAD

instruction, such as

LOAD #00001001, reg0

by which the bit string h00001001i is written to register REG0. It is important to note
that our notation for instructions given so far is just symbolic. In the end, all instructions
are merely bit strings.

The counterpart of a LOAD instruction is a STORE instruction. This type of instruction
specifies that data is to be copied from a register to a place in the memory connected to
the calculator. For example, the instruction

STOREreg0, addr

is a symbolic representation of a STORE instruction that tells the microcalculator to copy
the contents of register REG0 into memory at address addr. The important thing to note
is that LOAD and STORE instructions do more than just manipulate internal registers. In
particular, a LOAD instruction leads to control signals to read a specified word of memory.
Similarly, a STORE instruction leads to control signals to write data to a specified location
in memory. What this implies is that our example microcalculator will need additional

downloaded by wizard.z@foxmail.com

General processing 97

control pins to control the interaction with an external memory module. We shall return
to this issue in Section 3.3 in more detail.

So where has this brought us? At this point, we have merely introduced the concept of
an instruction. An instruction is a bit string containing information on the type of opera-
tion that is to be performed, and where the data that is associated with that operation can
be found. An instruction that is to be executed is usually stored separately in a so-called
instruction register, which is the analog of the microinstruction register MIR.

But just as we could store series of microinstructions in a microstore, we can also store
series of instructions in a memory module. We now come to an important point. Sup-
pose we have stored data and a series of associated instructions into a memory module.
Moreover, let’s assume that the instructions are stored in a series of consecutive memory
locations that corresponds to the order in which the instructions are to be executed. The
whole idea then is that the microcalculator should automatically execute these instruc-
tions, one by one, by fetching an instruction from, say, location addr, execute it, and then
fetch and execute the instruction at location addr + 1, etc. How this is done is discussed
next.

3.2.2 Processors

Let’s see what we need in order to execute instructions in an automated way.

Organizing the basic components

First, we have to store instructions and the data they operate on. Completely analogous
to our microprocessor architecture, we can use two separate memory modules for this
purpose. One module, referred to as the data memory, will contain all the data that needs
to be manipulated. The data memory is analogous to the set of registers REGMEM of Fig-
ure 3.9. The second memory module, called the instruction memory, is used to store the
instructions that are to be executed. As in the ordering of microinstructions in a micro-
store, we shall organize the instructions in their order of required execution, as this will
allow us to keep track of the next instruction to be executed. To that end, we use a special-
purpose register, called the program counter, that will always contain the address in the
instruction memory of the next instruction to execute. Finally, as indicated above, we
shall make use of an instruction register to temporarily store the instruction to be exe-
cuted. Now look at Figure 3.10, which shows an architecture of a small computer based
on a single microcalculator.3

When comparing this architecture to that of the microcalculator shown in Figure 3.9, it
is seen that the two more or less coincide. In fact, one might say that we have more or less
copied the architecture of a microcalculator to a higher level of abstraction. And indeed,
as we shall see, the behavior of our example computer is similar to that of a single micro-
calculator. We start with taking a closer look at each of the components of Figure 3.10.

3It should be noted that our architecture is not complete. For clarity, we shall not strive for completeness
here, but instead focus on the basic principles.

downloaded by wizard.z@foxmail.com

98 Computers

MICROCALC

DATAMEM

address lines

data lines

address
microroutine

INSTRMEM

SC1

A

A

instruction

R/W

OI

OI

R/W

IR

CTRL

PC

CTRLUNIT

SC2

Figure 3.10 The architecture of a simple computer.

The data and instruction memories mentioned above return as the components DATA-
MEM and INSTRMEM, respectively. Now, because instructions are never modified, INSTR-
MEM could at first thought have been replaced by a read-only memory unit. But this
would have been too restrictive as it would not allow us to replace a series of instruc-
tions by another. Anticipating our discussion on loading and executing programs, we
have therefore used a normal memory module to store instructions. For our purposes
here, however, we shall simply assume that the current set of instructions contained in
INSTRMEM is not modified.

At the heart of our example architecture we have a microcalculator MICROCALC which

downloaded by wizard.z@foxmail.com

General processing 99

has a similar role to that of an ALU. Comparing the interface of this microcalculator to
that of Figure 3.9, it is seen that we have added a number of pins. There are pins con-
nected to a collection of so-called address lines that connect the calculator to the memory
module DATAMEM. What we have assumed here is that, in order to load and store data
between its internal registers and the data memory, the microcalculator will separately
address which data is to be transferred. These address lines are thus analogous to the
address control lines of Figure 3.9 that connect the microinstruction register MIR to the
address pins of the set of registers REGMEM. In order to facilitate this additional feature,
we assume MICROCALC has a separate address register, analogous to its data register
DREG.

Also, in order to indicate if data should either be read from data memory (when a LOAD

instruction is executed) or that data is to be written to it (in the case of a STORE instruc-
tion), a separate control line between the microcalculator and the data memory is used.
The microcalculator thus controls if data is either read from or written to DATAMEM.
The pins connecting the microcalculator to the collection of data lines are used to trans-
fer data between DATAMEM and the internal registers of MICROCALC. These pins thus
correspond to the ones attached to the register DREG of Figure 3.9. Finally, the micro-
routine that is actually to be executed is passed on to the microcalculator through the
microroutine lines. These lines are connected to the internal register IREG of Figure 3.9.
The additional control lines between MICROCALC and CTRLUNIT are explained below.

The last component we need to discuss is the control unit CTRLUNIT, which, as its
name suggests, is responsible for controlling the execution of instructions. How does this
unit work? We see that it contains a program counter and instruction register shown as
the registers PC and IR, respectively. The register IR always contains the instruction that
is currently being executed, whereas PC contains the address in the instruction memory
of the next instruction to be executed. Both PC and IR are connected to CTRL, which has a
similar functionality to the TIMERCTRL unit of our example microcalculator architecture.
In particular, it updates the program counter each time an instruction has been executed
by incrementing its contents by one. Additionally, it decodes the instruction contained in
IR into the address of the appropriate microroutine, as mentioned in the previous section.

The fetch-decode-execute cycle

The interesting part of the control unit is its ability to enable execution of instructions
automatically by attaching a timer to the CTRL circuit. And this is where the analogy with
our example microcalculator architecture is almost complete. The control unit, namely,
is responsible for execution of the so-called fetch-decode-execute cycle of the computer.
In particular, the following algorithm is executed.

Algorithm 3.3. The fetch-decode-execute cycle. Assume that the register PC contains
the address in the instruction memory of the next instruction to execute.

1. Fetch instruction. The address stored in PC is propagated to INSTRMEM, result-
ing in the selection of the next instruction to be executed. This instruction is then

downloaded by wizard.z@foxmail.com

100 Computers

loaded into the register IR. In other words, the control lines of PC and INSTRMEM

are set to read signals, whereas the control line of IR is set to a write signal.

2. Decode instruction. The next time the timer generates a high value, the instruction
stored in IR is propagated to CTRL and decoded into the address of the microroutine
that is to be executed by the microcalculator. At the same time, the address stored
in PC is incremented by one. Consequently, the control lines of IR and PC are set
to respectively a read and a write signal.

At this point, the address of the microroutine should be propagated to the micro-
calculator. In order to inform the latter that it should take the proper measures (in
particular, by setting the register IREG open for writing), we assume the control
unit sets a high signal on the SC1 line. This control line is thus used to synchronize
the control unit and the microprocessor.

3. Execute instruction. In this step, control is passed to the microcalculator which
then executes the associated microroutine. In effect, this means that steps 1 and 2
of the micro execution cycle (Algorithm 3.1 on page 86) are repeatedly executed
until the last microinstruction has completed. At that point, we assume the micro-
calculator synchronizes with the control unit by setting a high value on the SC2
line. The control unit then continues with step 1.

�

The third step, executing an instruction, is the most intricate. Depending on the type of
instruction, this step may involve getting data from memory and loading it into the reg-
isters. Conversely, it may also involve copying data stored in the registers to specific lo-
cations in the data memory. The important point to note, however, is that during this step
we effectively execute steps 1 and 2 of the micro execution cycle until the microroutine
has been completed.

The von Neumann computer

So what have we accomplished at this point? We have discussed how a microcalculator
can be connected to memory modules in such a way that it can automatically fetch and
execute instructions. We have assumed that these instructions either manipulate the in-
ternal registers of the calculator or transfer data between the memory and these internal
registers. The combination of these instructions and the extension of our control mecha-
nism provide us with the right means for what we now refer to as processing. Whereas at
the level of a microcalculator we had devised a means for organizing a series of micro-
instructions into a microroutine that could subsequently be executed automatically, we
have now accomplished the same thing for a series of microroutines. In practice, a series
of instructions, combined with the data that is to be manipulated, is generally referred to
as a program. It should be clear that because we have shown how we can automatically
execute a complete program, we have indeed more or less copied the architecture of a
microcalculator to a higher level of conception.

downloaded by wizard.z@foxmail.com

General processing 101

address lines

data lines

A

R/W

OI alu

registers

main memory

central processing unit

control

Figure 3.11 General architecture of a von Neumann-based computer.

But a few comments on computer design in practice are in order. Although we have
placed the control unit as a separate component of our example computer, it is normally
integrated as another part of the microcalculator. In particular, the control mechanism
of our microcalculator and the one attached to the control unit are normally integrated
into a single circuit called a processor. Moreover, most computer systems use only a
single processor, also denoted as the central processing unit, or CPU for short. Another
issue is that there is generally no physical distinction between a data memory and an in-
struction memory. Instead, both memories are amalgamated into a single main memory
unit. Although this may seem a simple step, its implications cannot be underestimated.
By taking the two memory types together, we are actually unifying data and instructions.
In particular, instructions can be treated as modifiable data items. We shall return to this
subject in the next chapter. Taking a single microprocessor and a main memory leads
to an organization shown in Figure 3.11. This organization is generally referred to as
a von Neumann computer, named after the mathematician John von Neumann who laid
down the fundamental principles of digital computation.

3.2.3 On instruction sets

We are now in a much better position to take a closer look at instructions. In particular,
we first consider why designing a set of instructions is such an important task. After that,
we briefly discuss so-called addressing modes, which specify precisely to which memory
locations an instruction is referring.

downloaded by wizard.z@foxmail.com

102 Computers

Designing instructions

Using instructions instead of microroutines not only makes a processor easier to program.
More important is the fact that an instruction hides details concerning the way an opera-
tion is actually implemented. To illustrate, recall our instruction for adding the contents
of two registers REG0 and REG1, and storing the result in REG3, which was encoded as
the bit string

001 00 01 11
� � � �

ADD REG0 REG1 REG3

This instruction was decoded into the microroutine ADD01TO3 which in turn is merely a
reference to a specific location in the microstore, namely that of the first microinstruction
that needs to be executed. Now the whole point is that in order to have the instruction
above executed, we simply need not know that it is decoded into ADD01TO3. The fact
that it is, is just an implementation issue that should be of no concern to us.

To see why this hiding of an implementation is so important, imagine that a manufac-
turer decides to upgrade a processor by adding a number of microroutines. For efficiency
reasons, it may turn out that the original microstore may need to be reorganized. In partic-
ular, we assume that the start addresses of the original microroutines need to be changed
as well. From a programming point of view, this really does not matter at all as long as
the original set of instructions is still maintained. As long as the manufacturer takes care
of that, we can still have our programs executed as before, but by a possibly better pro-
cessor. This idea of upgrading a processor has been put into practice for many years. In
fact, what generally happens is that an existing set of instructions is extended with some
new ones, along with an improvement of the implementation of all instructions. In this
way families of processors came to exist.

A well-known example of such a family of processors is the Intel 80x86 series. Orig-
inally starting in the late 1970s with the 8086 processor which formed the heart of most
personal computers, it was soon followed by the 80186, and later by the 80286 processor.
An important issue was that all programs that had been developed for the 8086 processor
could still be executed by a 80286 processor. From a commercial point of view, this up-
ward compatibility is extremely important. The 80286 was succeeded by the 80386 and
80486, the latter currently being used for most personal computers. The 80586, better
known as the Pentium processor, is at present the most powerful processor of this Intel
family.4

� But designing an instruction set is not as simple as it may seem at first. And certainly, it
will not come as an afterthought in the way we have introduced instructions in this chapter.
When constructing a processor, determining what the computer should be able to do, i.e.
which instructions are to be implemented, is one of the first activities to be undertaken. Let’s
take a brief look at some of the more important issues involved.

4For completeness, it should be mentioned that the 8086 was based on the 8008, which in turn was
preceded by Intel’s 4004 processor. The 8088 was a popular, slower version of the 8086.

downloaded by wizard.z@foxmail.com

General processing 103

Number of instructions. If we really wanted to accommodate a programmer with a pro-
cessor that is easy to program it would seem desirable to provide a rich set of instructions,
i.e. a set containing many different types of instructions. As computer engineers gradually
obtained an increasing hold on the complexity of how to construct (micro)processors, it also
became a lot easier to add functionality to instructions. This trend has resulted in processors
that at first were extremely powerful in the sense that they were relatively easy to program.
To date, these processors are referred to as complex instruction set computers, or simply
CISC machines. Almost without exception, the instruction set of these processors is (pri-
marily) implemented by means of microstore technology.

However, there is a price to be paid. As the complexity of an implementation increases, the
speed by which a single (powerful) instruction can be executed is much harder to maintain at
a satisfactory level. But practice has shown that, despite the availability of extremely pow-
erful instructions, programmers tend to use only those instructions which they know can be
executed quickly.5 In effect, this meant that only a relatively small number of instructions
were being used. A tradeoff was thus being made in favor of speed instead of programming
flexibility. Therefore, the trend nowadays is to keep an instruction set as small as possi-
ble. Only instructions which it is known in advance can be implemented efficiently are sup-
ported. This has led to a new generation of processors referred to as reduced instruction set
computers (RISC machines). It will come as no surprise that the implementation technique
underlying these processors is that of hardwired control.

Instruction length. Another important design criterion is the length, i.e. the number of
bits, of an instruction. What it means is that the shorter the instruction, the faster the ma-
chine. How can this be? To see this, reconsider the fetch-decode-execute cycle. This cycle
can be effectively broken down into two major steps: (1) fetching an instruction from main
memory and loading it into the instruction register, and (2) decoding and executing the in-
struction. Each step takes time. In particular, the execution of the first step is determined by
the time it takes to transfer bits from main memory to the instruction register. As instructions
are longer, the more time this step will consume (at least if we assume that an instruction
is several words in length). As we have mentioned, the second step generally dominates
the total execution time. But this statement will not hold if the instruction mostly involves
manipulating registers. By carefully programming the processor, for example by first ensur-
ing that all the necessary data is contained in registers, we see that fetching an instruction
becomes the predominant factor when determining the overall execution time. In practice,
therefore, the trend is to keep instruction lengths as small as possible.

Word size and address length. As discussed in Section 2.5.3, each word in memory has
a unique address associated with it. Also, if we wish to read from or write to main memory
then this can only be done in units determined by the size of a single word. Consequently,
if we decide to group 16 bits into a single word, we can transfer data between memory and
registers only in units of 16 bits. Now suppose at the same time that we had decided to
choose a (fixed) instruction length of 32 bits. In that case, each instruction would not only
require 2 words of memory, but more important is that fetching an instruction would require

5More precisely, it is not only programmers that take this approach, but also compiler developers. Com-
pilers are discussed in Chapter 4.

downloaded by wizard.z@foxmail.com

104 Computers

two separate data transfers from main memory to the instruction register. From this point of
view, it would have been better to have chosen a word size of 32 bits.

But equally important is deciding on the maximum amount of words that can be contained in
memory. To date, it is not uncommon to assume that as much as 230 words can be supported.
Assuming that each word consists of 4 bytes (i.e. 32 bits), the maximum memory capacity
would then be 230�4� 4 gigabyte. In effect, this means that in order to address a word, 30
bits need to be reserved within an instruction. In practice, this is not possible as we also need
to reserve bits to identify the kind of operation that is to be performed, as well as possible
additional operands. Therefore, special measures need to be taken of which some will be
discussed below.

Addressing modes

Instructions are only useful if they allow us to manipulate data. But in order to do so, it
is important to know exactly where data can be found. Although identifying the location
where data resides may seem straightforward at first it is in fact not so. This is caused by
a number of problems. Some of them are directly related to implementation restrictions,
such as the length of instructions; others stem from the way we would like to refer to data
in general. Here, we shall leave the reasons for having different ways of referencing data
for what they are. Instead, we will just briefly discuss some of the more conventional
ways of identifying memory locations, or addressing modes as they are called. In the
following we shall adopt an informal notation for instructions when making a distinction
between the different type of addressing modes. This notation will be further explained
in the next chapter.

Immediate addressing. Probably the simplest way of referring to data is by means of
immediate addressing. In this case, the data that is to be operated on is immediately con-
tained in the instruction itself. To illustrate, the instruction

LOAD #12, reg0

is an example showing how the decimal number 12 is directly written to register REG0.
The prefix “#” is used explicitly to distinguish the fact that this LOAD instruction employs
immediate addressing.

� Executing an instruction that uses immediate addressing is very efficient. The point to note
is that the instruction itself does not refer to the memory module at all as the data is already
contained in the instruction. Consequently, the execution step of the fetch-decode-execute
cycle can be resolved entirely by transferring data within the processor. No data need thus
be transferred across the data lines as shown in Figure 3.11.

Register addressing. Another form of addressing occurs when no reference to mem-
ory is involved, but rather only to another register. This mode, called register addressing,
takes the form

LOAD reg1, reg0

downloaded by wizard.z@foxmail.com

General processing 105

and, in this case, has the effect that the contents of register REG1 is copied to register
REG0.

� Again, when we look at the execution of this instruction with respect to the fetch-decode-
execute cycle, it is seen that no data transfer between the memory module and the processor
needs to take place, other than loading the instruction into the instruction register. In effect,
it can be expected that the efficiency of the execution of this instruction is of the same order
as when employing immediate addressing.

Direct addressing. In the case of direct addressing, the instruction contains a reference
to where the required data can be found in main memory. In practice this means that a
memory address needs to be provided as in

LOAD 1000, reg0

In this case, the data that is stored at memory location with address 1000 is copied, and
written to register REG0.

� When employing direct addressing the execution of the instruction becomes more compli-
cated. After having fetched and decoded the instruction, the processor will then need to read
the contents at memory location 1000. Consequently, the complete fetch-decode-execute
cycle requires two data transfers between main memory and the processor. One in order to
fetch the instruction and store it in the instruction register, and one to get the data to which
the instruction refers. In effect, it is seen that this instruction is less efficient than when either
immediate or register addressing is employed.

Indirect addressing. A more complex form of addressing is that by which the refer-
ence to data is indirect. In that case, the reference contained in an instruction specifies not
where the data can be found, but merely where the reference to that data is. To illustrate,
consider the instruction

LOAD (reg1), reg0

In this case, the notation “(reg1)” is used to denote that the actual data can be found at the
memory location of which the address is stored in register REG1. So, if we had stored
1000 in REG1, and memory location 1000 contains value 4520, then execution of the
instruction above will show that 4520 is loaded into register REG0.

� When considering efficiency, it is not hard to imagine that this addressing mode will cost ap-
proximately as much as direct addressing. In particular, it is not difficult to see that two data
transfers across the data lines of Figure 3.11 need to take place: (1) the instruction needs to
be fetched from main memory and stored in the instruction register; and (2) the data con-
tained at an indicated memory location (location 1000 in our example) needs to be trans-
ferred to the processor.

downloaded by wizard.z@foxmail.com

106 Computers

Indexed addressing. Our last example at present is that of indexed addressing. In this
case, the addressing scheme consists of a combination of a base address and an offset.
To illustrate, consider the instruction

LOAD 12(reg1), reg0

If we assume that REG1 contains the value 1000, then in this case, the data that is to be
LOADed into register REG0 can be found at memory location 1000� 12 � 1012. Ad-
dress 1000 is called the base address; 12 is denoted as the offset relative to the base ad-
dress. Indexed addressing is primarily used to access a series of data elements that are
consecutively stored in main memory. For example, suppose we have stored the values
x0�x1� � � � �xN�1 in main memory, starting at address 1000. In other words, the value x0 is
stored at location 1000, x1 at 1001, etc. The LOAD instruction above would then have the
effect that the value x12 is copied to register REG0. Again, we shall see more examples
of indexed addressing in the next chapter.

� Using a similar approach to that presented above, it should now be clear that indexed ad-
dressing requires two data transfers between main memory and the processor. The first, as
usual, constitutes the transfer of the instruction into the instruction register. Decoding the
instruction will ensure that the actual address (i.e. base address � offset) is calculated, after
which the actual data transfer takes place.

In practice, some additional addressing modes are used as well, most notably those in-
volving a so-called stack. Discussion of these additional addressing modes is deferred
until we present an example instruction set in the next chapter.

3.3 Interfacing processors and memories

So far, we have discussed the design of only a simple computer consisting of a single
processor-memory pair. But there should be more than just this. For example, almost
every computer allows you to add components such as a graphics processor or a floating-
point processor. Obviously, there should be a way of attaching peripheral devices (disks,
keyboards, etc.) to the computer in such a way that they can interact with the other com-
ponents. In this section, we shall consider the more general problem of connecting a col-
lection of processors, memories, and other devices, allowing them to exchange data or,
in other words, to communicate.

3.3.1 General bus architectures

An interconnection system between processors, memories, and other devices is generally
referred to as a bus. In its simplest form, a bus is a set of wires with some additional
control circuitry that directly connect processors and memories. A distinction is often
made between three types of wires: control lines, data lines, and address lines.

downloaded by wizard.z@foxmail.com

Interfacing processors and memories 107

address lines data lines control lines

R/W RD
MAINMEM SPECMEM

MICROPROC

Figure 3.12 The implementation of a bus by direct wiring.

� Control lines are used to synchronize two communicating components. For exam-
ple, if a processor wants to send data to a memory it must ascertain that the memory
is capable of receiving that data. In other words, it must ensure that a high signal
value is set on the memory’s R�W control pin. This is done by means of one of the
control lines of the bus. In addition to synchronization signals, control lines are
also used to pass signals from I/O devices, clocks, etc.

� Data lines carry the data that is exchanged between two communicating compo-
nents. For example, the result of a computation performed by a processor will be
sent across the data lines of a bus connecting the processor to a memory.

� Address lines, finally, are used to select a word from memory by passing its ad-
dress to the main memory module.

To illustrate, suppose we were to design an architecture consisting of a single proces-
sor, a large main memory module, and a special memory module containing a number of
non-modifiable programs.6 What we would need to do then is make sure that the proces-
sor can access both memory modules. Two approaches can be followed. First, we may
choose for a processor that can be directly connected to the two modules as illustrated in
Figure 3.12. This is a form of implementation that we refer to as direct wiring. It should
be clear that this approach can only be followed if the processor is suited for it, i.e. it has
separate pins to connect all data, address, and control lines.

Directly connecting processors and memories is fine, but does have a serious drawback
which becomes apparent when considering how computer systems are actually built. In
many cases, a manufacturer assembles a computer by taking various off-the-shelf com-
ponents. For example, a personal computer may be based on memory chips, a processor,
and various processors for peripheral devices, all from different manufacturers. It is not
realistic to expect that these components can be directly wired together, i.e. that we can
literally solder wires to the pins of the various chips and simply switch the system on.

6For example, such a module may contain a collection of basic I/O programs, as is the case with the
so-called BIOS component of many IBM-compatible personal computers running the MS-DOS operating
system.

downloaded by wizard.z@foxmail.com

108 Computers

address lines

data lines

control lines

MAINMEM SPECMEMR/W RD

BUSLOGIC

MICROPROC

BUSLOGIC BUSLOGIC

backplane bus

Figure 3.13 Connecting components by means of a backplane bus.

I/O PROCESSOR

BUSLOGIC

I/O PROCESSOR

BUSLOGIC

MEMORY

BUSLOGIC

MEMORY

BUSLOGIC

I/O PROCESSOR

BUSLOGIC

CENTRAL
PROCESSING

UNIT

BUSLOGIC

Figure 3.14 A general interconnection scheme by means of a single backplane bus.

What we need in this case is a common agreement on how the processors and memories
are to communicate.

To this end, a so-called backplane bus can be used. A backplane bus consists of a
number of integrated circuits that are simply wired together and which provide a means
of interconnecting various memories and processors. For each component that is to be
connected to the bus there will generally be a separate integrated circuit that implements
an appropriate interface. Such an interface ensures that communication across the bus
is the same for each connected component. Figure 3.13 illustrates the use of a backplane
bus, using the same components of our previous configuration.

It is not hard to imagine that we can take our approach even further by attaching sev-
eral processors and memory modules to the same bus. One particular scheme, and which

downloaded by wizard.z@foxmail.com

Interfacing processors and memories 109

we shall assume for the remainder of this chapter, employs a single central processing
unit (CPU), one main memory constructed out of one or several memory modules, and
a number of special I/O processors, as shown in Figure 3.14. The figure shows how the
various digital components have been located on separate boards, which are to be plugged
into slots. The bus, again, is formed by the wired slots and the circuits BUSLOGIC. The
memories and processors are thus attached to a single backplane bus. I/O processors,
which are discussed in Section 3.4, are special processors for handling communication
with peripheral devices. The CPU acts as the main processor and is responsible for exe-
cuting programs stored in main memory. The I/O processors handle all the communica-
tion with the outside world, to which end they will need to communicate with the CPU,
and also access data stored in main memory.

However, when giving the matter some thought there are going to be problems with
this scheme. First, what happens if two processors want to transfer data over the bus at
the same time? For example, the CPU may want to execute a program while one of the
I/O processors wants to transfer data to a peripheral device such as a printer. In general,
this cannot be allowed and special measures have to be taken in order to serialize bus
access. Second, it may be easy to transfer data between a processor and memory, but
what about communication between processors? These two issues are addressed next.

3.3.2 Bus arbitration

In order to manage communication over a bus, a distinction is made between those pro-
cessors that want to initiate a bus transfer, called masters, and those processors or memo-
ries that are waiting for requests, called slaves. For example, assume a processor wants to
store a computed value in memory. The processor instructs the bus to set its control lines
so that the value stored in one of the processor’s internal registers will be transported to
a specific word in the memory module (possibly via internal registers of one of the bus
interfaces). In this case, the processor acts as a master, whereas the memory acts as a
slave. The first activity involved in managing bus transfers is the selection of a master.
If there is only one possible master, then selection is not a problem. When there is more
than one candidate, we have to resort to bus arbitration. There exist several arbitration
schemes that can roughly be divided into two classes: centralized and decentralized ar-
bitration. Here, we shall discuss only centralized arbitration. Decentralized arbitration
techniques will be discussed in a later chapter, when we consider networks.

In the case of centralized bus arbitration a separate component, called the bus ar-
biter, handles all bus requests. One particular form of centralized bus arbitration is il-
lustrated in Figure 3.15. The principle is extremely simple: all processors are ordered
one after the other in a so-called daisy chain. Now, if a processor wants to use the bus
it first issues a request at the bus arbiter. The bus arbiter, in turn, responds by passing a
grant to the first processor in the chain. The grant is forwarded from processor to proces-
sor, where each processor checks to see if it had requested the bus. If so, it picks up the
grant signal; otherwise, the signal is passed on to its neighbor. As soon as the processor
is finished using the bus, it signals the arbiter by means of the bus release line.

downloaded by wizard.z@foxmail.com

110 Computers

systembus

bus
arbiter

processor processor processor processor

bus request line
bus grant line

bus release line

memory memory

Figure 3.15 Requesting bus transfers by several masters through centralized daisy chain arbi-
tration.

� As logical as this daisy chain scheme may seem, there are a few things that can easily be
overlooked. Let’s first see what we need in order to let a processor claim, and subsequently
use the bus. Denote by reqi the value of the request signal that is set by the ith processor. In
particular, if processor Pi wants to use the bus, we will have that reqi � 1. Similarly, let reli
denote that processor Pi has released the bus. Obviously, the bus is not being used by any
processor if all of them have released it. In other words

the bus is free � �rel1 � � � � � relN� � 1

Let granti denote the value of the grant signal as observed by the ith processor. The gen-
eral behavior of a processor that wants to use the bus can then initially be expressed by the
following steps:

1. Request: set reqi � 1.

2. Acquire: if granti � 1, then set reli � 0 and reqi � 0. The processor can now use
the bus.

3. Release: set reli � 1.

For the arbiter, it is important to know when to pass a grant signal to the first processor in
the chain, and when to lower this signal again. It is not difficult to see that whenever there is
a request from a processor, and the bus has also been released by every processor, it is time
to pass the grant signal. As soon as the arbiter notices that the bus is in use, the grant signal
should be lowered again. In other words, if we denote by grant the value of the grant signal
as produced by the arbiter, we have:

grant � �req1� � � �� reqN�� �rel1 � � � � � relN�

Unfortunately, this simple scheme is not going to work, for suppose that processor Pi had
just passed the grant signal to a processor Pj further down the chain. This can only happen

downloaded by wizard.z@foxmail.com

Interfacing processors and memories 111

if Pi had not requested the use of the bus, i.e. reqi � 0. Now imagine what happens when
Pi decides to issue a request just after it passed the grant signal to Pj, and before the arbiter
had a chance to lower the grant signal again (i.e. before Pj could claim the use of the bus by
setting relj � 0). In that case, because we will still have granti � 1, Pi will inadvertently
assume that it can claim the bus as well. Consequently, we will then have two processors
starting to send signals across the bus simultaneously, leading to confusion.

The problem can be solved by letting Pi keep track of the fact that it had passed the grant
signal to another processor down the chain. If this is the case, Pi will first have to wait until
the grant signal is lowered again (indicating that the bus is now being used by Pj). At that
moment, it can pass its request to the arbiter by setting reqi � 1. As soon as it receives the
grant signal again, it can then claim the bus for its own use.

The main disadvantage of daisy chaining is that the processors at the end of the chain
may have a hard time attaining the bus. Their predecessors have a much better chance of
claiming the grant signal for the simple reason that it arrives there earlier. An alternative
approach that is fair to each processor is to let the arbiter select which processor is actually
going to get the bus. To that end, each processor communicates separately with the bus
arbiter through separate grant and request lines.

3.3.3 Interprocessor communication

Another issue that we mentioned was interprocessor communication. Typically, com-
munication between processor and memory involves transferring instructions and data
between the internal registers of the processor and the memory module. But interpro-
cessor communication may actually involve transferring instructions and data from one
processor to another as well. In particular, there should be a mechanism to let the CPU

instruct an I/O processor to start transferring data from main memory to a peripheral de-
vice, and likewise, to let an I/O processor inform the CPU about the status of the data
transfer. So how does one processor actually supply another processor with data or an
instruction? In order to answer this question, the first point to realize is that (practically)
all communication takes place by propagating bit strings stored in some internal register
of the sending processor to some internal register of the receiving processor. So, if we
can uniquely identify registers in processors, we have a way of communicating data and
instructions between processors. Here, the notion of address spaces is needed.

Conceptually, an address space is merely a collection of storage locations, linearly or-
dered from address 0 and upwards. An address is space is implemented by taking one or
several memory units, and assigning to each storage location a unique number, starting
at 0. In this sense, it is very much comparable to the address decoding scheme discussed
in Section 2.5.3. Two different methods for identifying registers (and thus the processors
they belong to) are generally employed in computer design. These methods are illustrated
in Figure 3.16.

In the first scheme, all storage units, except for the internal registers of the CPU, are
assigned a unique address from a single address space. For example, assume we have
a computer with a single CPU and two I/O processors IOPROC1 and IOPROC2, each I/O

downloaded by wizard.z@foxmail.com

112 Computers

(b)

MEM1 MEM2 CPU

IOPROC2IOPROC1

(a)

single
address

space
MEM1

MEM2

IOPROC1

IOPROC2

CPU

3

4

5

6

7

0

1

2

0

1

2

multiple
address
spaces

CPU

MEM1

MEM2

IOPROC1

IOPROC2

0

1

2

0

1

2

0

1

0

1

2

Figure 3.16 Mapping memory and registers into a single address space (a), or into different
address spaces (b).

processor having three registers. Furthermore, assume there are two memory modules
MEM1 and MEM2. Then, we might organize the address space as shown in Figure 3.16(a),
in which the first six addresses are assigned to the registers belonging to the two I/O pro-
cessors, whereas the remaining addresses are assigned to words from MEM1 and MEM2.
The registers of the CPU are always assigned to a different address space. Consequently,

downloaded by wizard.z@foxmail.com

Peripheral devices 113

communication between the CPU and an I/O processor is now accomplished by simply
transferring data between two different memory locations. This mapping scheme is called
memory-mapped I/O for obvious reasons.

� Memory-mapped I/O is in fact, an extremely simple and elegant way of controlling I/O pro-
cessors. Anticipating our discussion on peripheral devices in the next section, suppose that
we have an I/O processor that is responsible for data transfers between a floppy disk and the
CPU. In order to transfer data, a floppy disk unit needs to be explicitly activated, i.e. it is
the CPU’s responsibility to either start or stop the rotating of the disk. To that end, assume
we have a single address space as shown in Figure 3.16(a), and that the floppy disk unit is
controlled by IOPROC2 having a special 8-bit register CTRLDISK mapped to address 5. If
the last bit of this register contains a 1, then the I/O processor of the floppy disk unit will
start the motor in order to rotate the disk. Otherwise, when it is 0, the motor is to be stopped.
We can then let the CPU instruct the floppy disk’s I/O processor to start the motor by means
of the two instructions

LOAD #00000001, reg0
STORE reg0, 5

The LOAD instruction uses immediate addressing, and puts the bit string into the CPU’s in-
ternal register REG0. The STORE instruction which employs direct addressing then writes
this value to memory location 5, which is equivalent to storing h00000001i into register
CTRLDISK of the floppy disk unit. At that point, the I/O processor (which is assumed to
continuously read register CTRLDISK), will start the disk’s motor.

In the second scheme, a distinction is made between distinct address spaces for the
registers of the I/O processors and main memory, as shown in Figure 3.16(b). In partic-
ular, words from the memory module are mapped into one address space, whereas the
registers of the CPU and each I/O processor are mapped into a different address space.
The problem with this scheme is that we now have to devise a special means to let the
CPU communicate to an I/O processor that there is work to be done. The only solution to
this problem is to design a number of special I/O instructions that the CPU can execute.
Such an instruction is then sent to a selected I/O processor, which in turn will do as it
is instructed. For example, in the simplest form, the CPU may have a DOIO instruction
which enables a selected I/O processor first to copy some data from main memory to its
internal registers, after which it proceeds to send this copied data to the peripheral device
to which it is connected.

As many modern processors do not employ this I/O scheme (a notable exception is
the Intel 80x86 family), and because we will be using the conceptually much simpler
memory-mapped I/O scheme throughout the remainder of this book, we shall discuss
these matters no further.

3.4 Peripheral devices

Let’s now take a closer look at peripheral devices. In particular, we shall pay attention
to two subjects. First, we need to discuss how peripheral devices interact with proces-

downloaded by wizard.z@foxmail.com

114 Computers

sors and memories. Second, we will take a closer look at the kind of devices that are
commonly used at present.

3.4.1 Interfacing devices and processors

As we have already mentioned briefly in the previous section, interaction with peripheral
devices is generally taken care of by means of dedicated processors, called I/O proces-
sors. These are also frequently referred to as I/O controllers. I/O processors enable the
transfer of data between a computer’s main memory and a peripheral device: disks, ter-
minals, printers, modems, etc. In general, each type of peripheral device requires a spe-
cific combination of a processing unit and additional circuitry which makes I/O proces-
sors special (where it should be noted that devices such as, for example, simple printers
and keyboards are so similar with respect to their communication protocol that they can
be controlled by the same I/O processor).

I/O processors are very similar to the general processor discussed in Section 3.1.4. The
main difference is that they are capable of communicating directly with peripheral de-
vices. They need to transform data as stored in their internal registers into a format that
is acceptable for the device they control. For example, printers require special sequences
of signals before they can be activated. A printer I/O processor allows an ordinary pro-
cessor (i.e. the CPU) to write to its internal registers the data it wants to print, after which
the I/O processor sends the correct signals to the printing components so that the data is
actually hard-copied onto paper.

Now let’s take a closer look at the interaction between a general processor and an I/O
processor. In particular, we need to consider two aspects: (1) initiating data transfer, and
(2) detecting that data transfer is completed.

Initiating I/O

We first consider how a general processor can actually initiate I/O. Assume we have a
central processing unit (CPU) that wants to transfer N data items from a memory chip
MEM to a peripheral storage device DEV. This device DEV has an associated I/O proces-
sor IOPROC. Transferring this data proceeds in two steps:

1. The data is transferred from MEM to some memory that is local to the I/O processor.
This memory (which is often called a buffer) is denoted here as BUF.

2. From there on, the data is moved from BUF to the actual device for permanent stor-
age, display on a screen, printing, etc.

There are several ways by which the first step can be executed, as illustrated in Fig-
ure 3.17. A simple scheme is to let the CPU start by issuing a bus request for reading a
single data item from MEM into one of its internal registers. After that, it issues another
bus request to write the contents of this register into a suitable location of BUF. This
scheme is repeated until all data items have been stored in BUF. At that point, the buffer
associated with the storage device DEV has been filled, so that its contents can now be

downloaded by wizard.z@foxmail.com

Peripheral devices 115

(b)

MEM CPU

MEM CPU

MEM CPU

(a)

IOPROC BUF

DEV

IOPROC BUF

DEV

IOPROC BUF

DEV

Figure 3.17 Transferring data for output via the CPU (a), or by means of direct memory ac-
cess (b).

transferred to the device itself. This data transfer is the responsibility of the I/O processor
associated with DEV. In order to accomplish this data transfer, the CPU will have to in-
struct the I/O processor to do so by sending a control signal to one of the I/O processor’s
internal registers.

� To illustrate, assume that we have a computer that uses memory-mapped I/O, and that the
buffer BUF consists of a total of 100 words, mapped consecutively from memory location
11 and upwards. Also, we assume that DEV has an 8-bit register CTRLDEV mapped to ad-
dress 10, used to indicate what kind of data transfer needs to take place. If the first two bits
are set to h01i, then this means that the data contained in BUF are to be stored on device
DEV. Now, suppose that we need to transfer the data stored in the first 100 words of main
memory, starting at address 1000. Omitting a number of details, the following sequence of

downloaded by wizard.z@foxmail.com

116 Computers

instructions will accomplish just that:7

LOAD 1000, reg0 Load the 1st data item into register REG0
STORE reg0, 11 and store it as the 1st item in the buffer.
LOAD 1001, reg0 Load the 2nd data item into register REG0
STORE reg0, 12 and store it as the 2nd item in the buffer.
...
LOAD 1099, reg0 Load the 100th data item into register REG0
STORE reg0, 110 and store it as the 100th item in the buffer.

LOAD #01000000, reg0 Set the appropriate values to transfer the data from
the buffer to the device

STORE reg0, 10 and instruct IOPROC to do the actual transfer.

The sequence of LOAD and STORE instructions first copy the data into memory locations
where they can be accessed by the I/O processor. Note that these transfers all take place
over the bus. Each data item is thus physically moved from main memory to the memory
associated with the device DEV. The last two instructions are used to instruct the I/O pro-
cessor to store the data on DEV.

A more advanced scheme is to let IOPROC do all the work. In this case, the CPU starts
by passing information to IOPROC on which data stored in MEM is to be permanently
stored on DEV. It then lets IOPROC take care of the data transfer from MEM to BUF. The
important distinction with the previous scheme is that the CPU no longer moves the data
items from MEM to BUF. This is done entirely by IOPROC. Because IOPROC apparently
has direct access to MEM, this second scheme is also referred to as direct memory access
(DMA). Direct memory access is especially important in cases where large chunks of data
are to be transported at high speed between main memory and a peripheral device. Ob-
viously, it permits the processor that initiated the data transport to do other things during
the time that the I/O processor is moving data.

� What the effect is of direct memory access can be illustrated by rewriting our program given
above. Assuming that data transfers always take place in a fixed amount of bytes, the only
thing we have to do now is tell the I/O processor where it can find the data. Assume IOPROC

has another register, called STARTADDR, which should contain the address in main memory
of the first datum that is to be stored on DEV. Assume STARTADDR has been mapped to
address 9. Using a binary numbering convention (meaning that address 1000, where the first
datum is located, is represented as the bit string h1111101000i), we then need only execute
the instructions

LOAD #1111101000, reg0 First get the start address (1000) into a register...
STORE reg0, 9 and store that address in register STARTADDR.

LOAD #01000000, reg0 And start the data transfer by setting the correct value
STORE reg0, 10 into the control register of the device.

(Suppose, by the way, that our control register is now used to instruct the I/O processor to
do a DMA transfer, rather than transferring data between itself and the peripheral device.)

7We note that this solution is a rather foolish way of doing I/O. Better solutions will be presented in the
next chapter.

downloaded by wizard.z@foxmail.com

Peripheral devices 117

From there on, IOPROC will independently fetch the data from main memory and transfer it
to the buffer. As soon as this is finished, it will then store the data on DEV. Meanwhile, the
CPU can be used for executing other instructions.

Detecting completion of I/O

But what about detecting that I/O has completed? In principle, we need to make a dis-
tinction between two cases: (1) the I/O controller has completed transfer of data between
a peripheral device and itself, and (2) data transfer through DMA has completed. The two
cases have in common that they both require the CPU to notice that another processor has
finished a task.

When giving this matter some thought there is one scheme that immediately comes
to mind, namely the one by which the CPU simply checks from time to time at the I/O
processor if it has completed its work. This can easily be done, for example, by letting the
CPU check the contents of a special control register at the I/O processor. This scheme is
referred to as polling. The main drawback of polling is that it is not very efficient. If the
CPU wants to initiate a second data transfer as soon as possible, it will have to frequently
request the status of the first data transfer, prohibiting it to do other work in the meantime.
On the other hand, if I/O completion is only tested after considerable time has elapsed,
the overall rate at which I/O takes place may be too slow. The I/O processor would then
simply not be working at its maximum speed.

But there is another simple solution to this problem. We let the I/O processor inform
the CPU when it has completed its work by generating an interrupt. Generating an in-
terrupt by an I/O processor causes the CPU to stop its current execution of instructions
and devote itself to initiate a next I/O request, or otherwise indicate that no more I/O is
currently needed. As we shall see in Chapter 5, this so-called interrupt handling is done
completely by executing a series of special instructions. When this execution is finished,
the CPU automatically resumes its interrupted work. But for now, let’s take a closer look
at what happens at the hardware level.

Whenever the I/O processor generates an interrupt, it sends a signal to a special digital
circuit, called an interrupt controller. Normally, several I/O processors are attached in
this way to a single interrupt controller. The interrupt controller in turn, sends the signal
to the CPU. As soon as the latter sends a signal back to the interrupt controller that it is ca-
pable of handling the interrupt, the interrupt controller issues a bus request, and, after the
request has been granted, propagates the identification of the device that initially caused
the interrupt to the CPU’s internal registers. From that moment on, the CPU “knows” that
the device is ready to accept new data to transfer, and starts executing the instructions to
initiate another data transfer or otherwise indicate that no further I/O is currently needed.

3.4.2 Examples of peripheral devices

Now that we have discussed the interaction between a CPU, memories, and I/O proces-
sors, let’s look at some peripheral devices that are generally attached to computers. We
briefly discuss storage devices, terminals, and printers.

downloaded by wizard.z@foxmail.com

118 Computers

Storage devices

Computers as we have discussed so far are magnificent devices indeed. Yet, when storing
information they have one major drawback. As soon as the power supply is switched
off, all the data that is contained in registers and main memory is lost. Consequently,
this makes them unsuitable for permanently storing data. On the other hand, computers
would be a lot less useful if we did not have the means to save our data as long as we wish
regardless of the availability of power supplies. The means to these ends are so-called
storage devices. Because the amount of data that we wish to keep intact is so large, we
also find ourselves in the position that storage devices should not only preferably have
a very large capacity, they should also be relatively cheap. In this subsection, we shall
look at some popular storage devices.

Magnetic storage devices. Traditionally, storage media have always appeared in the
form of magnetic devices, particularly tapes, hard disks, and floppy disks. The principal
working of these devices is always the same. There is a medium (plastic in the case of
tapes and floppy disks, and metal or glass in the case of hard disks) that is coated with
magnetic material. This means that uncountable microscopic parts (each forming a small
magnet) are spread all over the medium. The quality of the coating in combination with
the underlying medium determines how long this magnetic surface will remain intact. In
practice, this will be for many years. The essence of having a magnetic surface is that its
parts can be pointed in any direction under the influence of an external magnetic field. In
other words, we can force the magnetic surface into a specific pattern. Moreover, once
we have established a pattern, it will remain unaltered as long as it is not exposed to some
external magnetic field again.8 This also implies that if we expose the magnetic parts to
an external magnetic field in a controlled manner we can actually store information.

Enforcing a specific magnetic pattern is done by means of a read/write head. The
head is capable of inducing a magnetic field based on electrical signals. Consequently,
the electrical signals that are passed to the head can said to be transformed into a unique
magnetic pattern. More commonly, we say that we write data onto the device. The ad-
vantage about read/write heads, however, is that they also work the other way around. In
other words, if we do not pass electrical signals to the head, but instead move the head
across a magnetic surface, it will induce electrical signals in accordance with the pattern
that is being scanned. In that case, we say that we are reading data.

As we have said, the principles underlying magnetic storage devices are all the same.
The difference between the devices is to be sought in the way that they are physically
organized. Let’s look at three types of magnetic storage devices: tapes, hard disks, and
floppy disks.

Magnetic tape. Magnetic tapes are not the most attractive storage medium when it
comes to flexibility. However, due to the fact that they can contain very large amounts of

8It is for this reason that you are often warned not to put your floppy disks on top of loudspeakers, which
almost invariably produce a strong, permanent magnetic field.

downloaded by wizard.z@foxmail.com

Peripheral devices 119

tracks
(8)

frames (8*16)

record-1 record-2

Figure 3.18 The organization of magnetic patterns on a tape.

data at an extremely low cost, they are still frequently used for archiving purposes. Typ-
ically, the storage capacity of tapes as used in many personal computer and workstation
configurations is in the order of tens to hundreds of megabytes. In terms of money, this
storage capacity is not going to cost much: it is comparable to the price of a video tape.
Using advanced recording techniques, we can now store 5 gigabyte of data on a single
video tape.

The magnetic pattern of a tape is organized into a number of tracks which in turn
are divided into frames as shown in Figure 3.18. A number of frames together form a
record. Data transfer to or from tape takes place in units of so-called blocks. A block
typically contains a few thousand bytes. The problem with tapes is that they need to be
wound or rewound in order to position the head above the block in which we are inter-
ested. This takes a lot of time as you can also experience with your own cassette or video
recorder, making them unsuitable in cases where data needs to be stored permanently but
still be easily, i.e. quickly, accessible.

Hard disks. In order to increase access speed, hard disks were introduced. A hard
disk consists of one or more metal (or glass) platters with a magnetizable coating, and
for each disk surface, a movable read/write head, as shown in Figure 3.19. Each surface
is divided into a number of tracks, which in turn are divided into sectors, as shown in
Figure 3.20. Tracks that are at the same distance from the center jointly form what is
called a cylinder. Data can be transferred to or from a hard disk in units that equal the
size of a sector. The total storage capacity of a hard disk can vary considerably. Smaller
personal computers, such as notebooks, are often equipped with a 120 or 340 megabyte
hard disk. Larger hard disks may have a storage capacity of several gigabyte.

In order to transfer data to or from a hard disk, we have to specify exactly in which
sector we are interested. In practice, this means that we have to specify (1) a cylinder, (2)
a head, and (3) a sector number. The heads are then jointly positioned above the correct
cylinder, and the disk itself is rotated so as to read or write the correct sector. Note that
if information is to be transferred from or to the same cylinder, hardly any mechanical
movement is involved, because the heads can remain positioned above the same cylinder.
Because heads can be positioned above any cylinder, hard disks are so-called random

downloaded by wizard.z@foxmail.com

120 Computers

surface
read/write head

arm
motion

Figure 3.19 A typical organization of a hard disk.

tracks (8)sector (12 per track)

1 2

4
5

6

7

8

3

Figure 3.20 Layout of a surface of a hard disk.

access devices, as opposed to sequential access devices such as tape devices. Obviously,
the average access time for hard disks is much shorter than that for tape drives.

One disadvantage of hard disks is that they are generally vulnerable to transportation.
Although so-called removable disks are now commonly available, hard disks are not the
most convenient means of physically transporting information from one computer to an-
other.

Floppy disks. With the advent of personal computers, floppy disks were introduced.
They are conceptually the same as hard disks, although each floppy disk drive can handle
only a single diskette rather than a stack of disks. Also, as their name suggests, a floppy
disk is physically a lot more flexible with plastic being used as the underlying medium
for the magnetic surface. The storage capacity of floppy disks is typically just over 1
megabyte. Another major difference is that the read/write head of a floppy disk drives

downloaded by wizard.z@foxmail.com

Peripheral devices 121

actually touches the surface of the diskette, in contrast to hard disks (where the head floats
just above the surface). Consequently, floppy disks are subject to more wear and tear. To
overcome this problem, the heads are generally removed from the surface, and the motor
of the disk drive is stopped when there is no need for data transportation. Floppy disk
drives tend to have a much larger access and data transport time than hard disks, because
time for rotation and head movement is much slower.

Optical storage devices. An attractive alternative to magnetic tapes for storing data
are optical stores, such as, for example, CD-ROM. The main advantage of an optical disk
compared to a magnetic tape is the fact that it is far less vulnerable to external influences
like heat, humidity, and, of course, electromagnetic fields. Consequently, optical disks
are much better for storing information for a long period of time. The storage capacity
of optical disks lies somewhere between that of high-capacity tapes and hard disks. In
general, you can store in the order of 500–1000 megabytes of data on a single disk.

At the heart of an optical disk is a reflective layer which is used to store information. In
most cases, this is done by burning holes at the surface, called pits, which are separated
by unburned parts called lands. Due to their difference in reflectivity, it is possible to
distinguish the two by making use of light (which is why these disks are referred to as
optical disks). The difference in light can, as in the case of magnetic read/write heads, be
transformed into electrical signals. The reflective layer itself is protected on both sides
by an additional plastic or glass layer.

The problem with optical disks is that the data they contain are hard to modify. In
practice, most disks to date can only be used for data retrieval: there is no way that the
optical pattern burned into the disk can be changed. Special so-called write-once read-
many disks allow data on a disk to be changed only once. It is expected that full erasable
optical disks will become widely available in the near future.

In general, the data on an optical disk is organized in a single spiral, similar to the lay-
out of vinyl records. This is perfectly in order for storing continuous data such as voice
and video, but is less suitable when storing discrete data as found in most computers. The
problem with the spiral organization is that the data, as in the case of magnetic tapes, is
only sequentially accessible. This means that if no special measures are taken, the head
will always have to be positioned at the start of the spiral, after which the scanning of the
disk can start. In practice, this is circumvented by dividing the data into records, analo-
gous to the organization of magnetic tapes. An alternative solution is to follow the layout
of magnetic disks by organizing the data into tracks and sectors. This approach is still at
the research stage, but would have the advantage that the data is then randomly acces-
sible. Combining this with full erasure possibility of disks, optical storage devices may
then form a strong alternative to hard disks.

Terminals

Terminals are the primary means for interactively communicating with a computer. They
consist of a keyboard, sometimes a mouse, and a monitor.

downloaded by wizard.z@foxmail.com

122 Computers

Keyboards. Keyboards are in principle nothing but a large collection of switches. With
the introduction of personal computers by IBM, a so-called geographic coding system
was used. Each key has an associated 7-bit binary code which is related not to what the
key logically stands for but instead only its position on the keyboard. For example, on a
PC compatible keyboard, the key “W” has the geographic code 46. The interesting aspect
of this coding system is that a distinction is made between depressing a key and releasing
it again. Whenever a key, say with geographic code keycode, is depressed, the keyboard
sends its code to the keyboard controller. As soon as the key is depressed, the number
keycode� 128 is sent. By associating two events with any keystroke, it is possible to
distinguish complex key combinations.

To illustrate, many developers of word processors have found it useful to force their
users to learn combinations of keys such as “CTRL-CEB” which means that the CTRL-
key should be depressed while typing in the sequence “ceb”. Using the notation “KEY�”
to denote that the key KEY is depressed, and likewise “KEY�” denoting its release, our
example key combination generates the following series of events:

event number: 1 2 3 4 5 6 7 8
event: CTRL � C � C � E � E � B � B � CTRL �

which is a total of eight events that are passed as keycodes to the keyboard controller.
Each event generates an interrupt that is to be handled by the keyboard controller in com-
bination with the CPU. Because the events can be separately distinguished, it is also pos-
sible to recognize which key combination has been typed in. In this way, appropriate
action can be taken.

Mice. A mouse is a small device that is capable of recording movements in two di-
rections relative to an initial position. In it simplest form, whenever a mouse is moved it
updates two internal counters: one for the X direction and one for the Y direction. For ex-
ample, moving to the right increments the X-counter, whereas moving downwards decre-
ments the Y-counter. The counters are updated by means of an electromechanical inter-
face, where the mechanical part is formed by a simple tracking ball. Movement of the
ball is then translated into electrical signals. The values in the counters are sent to the
mouse controller every 100 milliseconds or so, where they are further processed by the
CPU. In addition, each mouse generally has two or three buttons in order to generate ad-
ditional events to the mouse controller, similar to the organization of keyboards as dis-
cussed above.

Monitors. Monitors are comparable to normal TV screens. By using electrical signals
as input they direct an electron beam to a phosphorescent screen that subsequently pro-
duces a light spot. The screen itself is divided into a number of pixels per square inch,
also referred to as the screen resolution. The more pixels into which a screen is divided,
the better the definition. In practice, ordinary screens have resolutions in the order of 640
pixels horizontally and 480 pixels vertically. High-definition screens may have a resolu-
tion of 1280�1024 pixels, or even 2048�2048.

downloaded by wizard.z@foxmail.com

Peripheral devices 123

� � �
� �
� �
� �
� � � � �
� �
� �

Figure 3.21 The representation of the character “A” by means of a 7-dot matrix printer.

In order to form a complete image on the screen, the electron beam scans each hori-
zontal line separately, updating each pixel as the beam passes it. The information on a
pixel (its color, luminosity, etc.) is generally encoded in one or several bytes, and which
is stored in so-called video memory. This memory is generally mapped to the same ad-
dress space as main memory, so that updating an image becomes relatively simple as far
as interfacing is concerned. The information on a pixel is read each time the electron
beam passes a pixel when scanning a line. Now, in order to generate an acceptable im-
age, a screen has to be completely updated at least 25 times per second. This means that
with a screen resolution of 640� 480, at least 7,5 million updates have to be made per
second. In practice, monitors often have an update rate that is two or three times as large.
In order to realize these rates, a separate video processor is required.

Printers

There are various types of printers. Probably the three most common are matrix printers,
ink-jet printers, and laser printers.

Matrix printers. Matrix printers have a print head that consists of a number of needles
that can be electrically activated and withdrawn. For example, a print head may contain
seven vertically positioned needles. The letter “A” can then be put onto paper as a 5 �
7 matrix, as shown in Figure 3.21. Each character is then constructed in five subsequent
steps of seven vertically placed dots.

There are roughly three techniques for matrix printing. The simplest one uses a ribbon
as on a typewriter. The head moves along the ribbon ejecting needles when necessary.
Another form which is used for many facsimile machines uses special thermosensitive
paper. In that case, a head with pins is heated causing a local coloring when brought into
contact with the paper. The third technique, which is also based on thermal principles,
uses a special ribbon from which microscopic ink particles are removed when brought
into contact with a heated needle. The ink particles are then transferred onto paper. In
general, this form has a much higher quality than the other two types of matrix printing.

downloaded by wizard.z@foxmail.com

124 Computers

Ink-jet printers. Ink-jet printers also encode characters and symbols in the form of
matrices, but do not make use of a special head with needles to process the paper. In-
stead, a continuous, very fine stream of ink droplets is produced. Each drop can either be
transferred to paper (producing a black spot), or diverted into a separate reservoir (leav-
ing a blank on the paper). Drops that have been diverted into the reservoir can later be
used again. An alternative technique is to only produce droplets on demand, making the
need for a separate reservoir obsolete. Due to their excellent price/quality ratio, ink-jet
printers have become popular for personal use.

Laser printers. Laser printers are similar to photocopiers. The heart of a laser printer
is formed by a rotating drum that is charged up to about a 1000 volts and coated with a
photosensitive material. Using laser technology, the coated drum is hit with a light beam
on those areas where the original input is “white”. These spots then lose their electrical
charge. As soon as a line of the input has been put on the drum in the form of electrically
charged areas, the drum rotates and picks up black powder exactly on those parts that are
still charged. The effect is that the drum contains a mirrored image of the input, that can
now be transferred to a blank sheet of paper.

Laser printers are more expensive than ink-jet printers, but have a higher quality and
speed. Compared to ink-jet printers, laser printers are capable of attaining a resolution
that can be 10–20 times higher. And where ink-jets sometimes take tens of seconds to
print on a sheet of paper, laser printers are often capable of processing tens of sheets per
minute.

3.5 Discussion and further reading

It is worth taking a closer look at where we are now, before we move our discussion fur-
ther away from hardware. In the following two sections we shall reconsider our approach
towards the development of a processor by taking a look at microinstructions and in-
struction sets from the perspective of a design engineer. As we shall see, much of the
difficulties involving processor design relate to performance demands that are to be met.
Performance is put into context in Section 3.5.2.

3.5.1 Processor development

Microinstructions

We started our discussion with the introduction of microinstructions. We have shown
how we we can control the transfer and manipulation of bit strings by storing the signals
by which this control is done. A microinstruction was, in fact, a group of such control
signals. Moreover, by adding a timer mechanism we are also capable of executing a se-
ries of microinstructions. A series of microinstructions is referred to as a microroutine.
By storing several microroutines in a microstore, we subsequently showed that we can
construct a processor having several useful instructions.

downloaded by wizard.z@foxmail.com

Discussion and further reading 125

It should be clear that, to a certain extent, we can change this set of instructions by
storing other microroutines. In other words, if we change the contents of the microstore
we would effectively have a different processor. This perspective makes a processor less
hardware than one would initially think. On the one hand, there are “hard” components
such as registers, an ALU, etc. On the other, there is also a “soft” component in the form
of the replaceable microprogram. Moreover, a microprogram is not something you can
touch. It is merely an ordered collection of bit strings. However, microprograms are not
very flexible – on the contrary. Because their primary goal is to control specific hard-
ware, we will probably be forced to adapt a microprogram when making changes to the
hardware. Moreover, microprograms hardly abstract from the hardware, they are truly
meant as a convenient means to design and implement hardware control signals. This
strong dependency on hardware makes microprograms a typical example of firmware.

Computers had been around for some time before microinstructions were invented.
Until the 1950s when Maurice Wilkes introduced the concept of microprogramming, all
instructions were hardwired, i.e. implemented directly into hardware. Microinstructions
have had a serious impact on processor design, but their influence is gradually now de-
clining in the face of performance demands (we shall return to this).

The advantage of microinstructions is that, to a certain extent, you can make your own
instruction set without having to adapt the hardware. You only have to change the micro-
program stored in the microstore. But this advantage does not always outweigh the dis-
advantage that constructing microprograms is an extremely hard and error-prone process.
If you want to know more about firmware, the tutorial provided by Rauscher and Adams
(1980) is a good point to start. A thorough treatment of the subject is given in Andrews
(1980); for a more recent treatise, consult Mange (1992). The original work on firmware
is presented in Wilkes (1956). Viewing microprogramming from the perspective of high-
level languages makes it much easier to deal with than speaking in it in terms of bits.
Patterson’s (1976) paper was the first one to address this approach. It is instructive, as it
provides a clear way of looking at microprogramming issues.

On complex and reduced instruction sets

The main goal of processor development, however, is, of course, not the development
of advanced microprograms, but rather that of instruction sets. The instruction set de-
termines the power and flexibility of a computer system from the programmer’s point
of view. The computer architect designs the instruction set as a compromise between
what is thought of being useful to programmers and compiler writers and what is tech-
nologically possible. The advances in technology have been used to enhance instruc-
tion sets with more powerful and elaborate instructions and more complicated addressing
schemes. For a long time there had been no validation whether or not the instructions are
actually useful, in the sense that they are frequently executed by average programs.

When people started measuring and gathering statistics about instruction usage fre-
quencies, they found out that some instructions were actually never used and others were
used frequently. It even turned out that some instruction sequences appeared very often,
while there was no appropriate instruction available to perform that operation in a single

downloaded by wizard.z@foxmail.com

126 Computers

step. This happened, for instance, in the case of so-called subroutine calls. We will see in
the next chapter that executing a subroutine involves saving a lot of context information
(register contents, program counter, etc.). When the calling program is to resume exe-
cution, this context information has to be restored. Current programming practice tends
to use subroutines much more frequently then three decades ago, among other things be-
cause of the popularity of the so-called modular programming paradigm. Another impor-
tant aspect is that the translation of high-level programming languages into series of ma-
chine instructions only required rather simple and, above all, straightforward instructions
to be available. Complex instructions, often only implementable by microprogramming
techniques, were thus simply not needed.

Another consequence of more complex instruction sets is that the decoding of the in-
struction takes more time and leads to more complex decoding circuitry. This also slows
down instruction execution, but this was thought to be compensated by more processing
work done per instruction.

To overcome the above-mentioned problems, a number of computer architects started
to design so-called Reduced Instruction Set Computers (RISC) as opposed to the Com-
plex Instruction Set Computer (CISC). Their recipe is to reduce the number of instruc-
tions by deleting all instructions that are not frequently used, simplify the remaining in-
structions as much as possible to ease the instruction decoding process, and enlarge the
number of registers to accommodate subroutine calls and high-level language transla-
tion optimizations. A faster computer system will then result. The first RISC processors
had some 40–50 instructions as opposed to 200–300 instructions in earlier CISC designs.
This approach has been adopted by some computer manufacturers, who now offer sys-
tems which are claimed to have been developed according to this concept. However,
more recent RISC processors such as the PowerPC (May et al., 1994) again have more
than 200 instructions, deviating markedly from the original goal of reducing the number
of instructions. Instead emphasis is put on fast decoding of instructions, leading to less
well-structured instruction sets. It is nevertheless expected that both CISC and RISC de-
signs will continue to co-exist, possibly merging both techniques into hybrid designs. A
nice comparison of both approaches can be found in Smith and Weiss (1994).

The approach we have outlined in this chapter is clearly based on the development
followed for CISC processors, and can also be found in general textbooks. For the design
of RISC processors, Patterson and Hennessy (1994) is an excellent and thorough treatise
starting from scratch.

Computer architecture and organization

The instruction set of a computer is one of the most important architectural features of a
computer system. It is the link between hardware and software. Computer manufacturers
have their proprietary instruction sets for their range of machines. In architectural fea-
tures they can find a way to be different from the competition and to protect investments.
In reality, however, instruction sets are not really that different, since many machines
share equal or almost equal instruction types. Until recently, there was no trend or pres-
sure to obtain uniformity. However, with the introduction of personal computers we can

downloaded by wizard.z@foxmail.com

Discussion and further reading 127

observe a change. Since only a few manufacturers of personal computers can afford to
design and build their own processor, most of them adopt a processor from an indepen-
dent manufacturer. Also, investment in designing and manufacturing a new processor is
becoming so high, that only a few manufacturers will survive.

It is useful to make a distinction between computer architecture and computer organi-
zation, similar to the distinction given in Chapter 1. The architecture of a computer sys-
tem comprises those attributes of the system that can be reached and used by a program
(either application or system program). The organization of a computer system refers to
the actual configuration of the system, e.g. the sort of ALUs, how many are built in, and
their interconnection.

The main architectural specifications of a computer system are the instruction set, the
built-in data type representations (integers and floating-point representation), the mem-
ory organization, and the I/O system organization. For example, a multiplication instruc-
tion in the instruction set is an architectural feature. However, how the multiplication is
performed is an organizational issue. We can do multiplication by means of implement-
ing an ALU capable of performing multiplication or by repetitive use of an ALU perform-
ing addition, for example.

The distinction between architecture and organization becomes important in view of
introducing new processors. If we left the architecture of a processor unaltered, but in-
stead, improved its organization, we would have obtained a situation in which all pro-
grams that could be in execution on one processor could also be executed by its successor
without any adaptations. This concept of processor families was first introduced in the
IBM 360-series of computers (Blaauw and Brooks, 1964) and caused a true revolution
in the computer industry. The family concept protects the user investment in programs
and provides a growth path for future needs. Most current manufacturers of large sys-
tems offer one or more families of computer systems. Typical examples of this upward
compatibility feature in the case of processors are the Intel 80x86 and Motorola 680x0
processors.

There are many excellent textbooks on computer architecture and organization. Be-
sides Tanenbaum’s book (1990a), you might also find Shiva (1985) worthwhile as it pro-
vides a more gentle introduction to the material, although it is becoming rather out of
date. A more in-depth presentation is given in van der Goor (1989) which also covers
related subjects such a data representation. For advanced architectures, as in the case of
so-called parallel computers that consist of several CPUs, an excellent treatise can be
found in Hwang (1993).

3.5.2 Processing power

Clocks and speed

We have shown that the clock, or rather a timer as we have called it, plays an essential
role in dictating the pace of operations in a digital computer system. However, we have
not described clock rates in a quantitative sense. Nevertheless, it must be clear that a
clock signal must be made as fast as possible, since the speed of the basic fetch execute

downloaded by wizard.z@foxmail.com

128 Computers

cycle is directly dependent on the clock rate.
Now, how fast can a clock be? To obtain some insight into this issue, remember that

the basic operation of a computer is retrieving a bit string from memory, providing an op-
eration on it and storing it back into memory. An operation means in practice that a series
of gates have to be passed. Physically, each gate causes a small time delay in propagating
the signal from the input to the output lines. Therefore, the maximum number of gates
to be passed from any position in the input bit string to any other position in the output
bit string determines the maximum time delay for carrying out an operation. Hence the
next clock pulse can only come after that maximum delay.

There are only two ways to influence the delay time of operations. The first is to min-
imize the number of gates to be passed from input to output. This is a design issue, often
leading to intricate designs. The second way is changing the technology of manufactur-
ing gates. This only concerns the physics of making transistors on silicon or another suit-
able substrate and can be done without changing the design of a computer system. Much
of the speed improvement comes from the ongoing reduction in the size of transistors on
a chip. Generally, smaller devices lead to increased switching speeds.

Pipelining

A technique frequently used to increase processor speed and minimize the number of
gates to be passed per clock cycle is called pipelining. The idea behind pipelining is quite
simple; one breaks down a complex operation into more simple suboperations, such that
each suboperation executes in an equal amount of time. If we separate the suboperations
by storage elements (pipeline-registers), a number of equal and mutually independent
calculations can be executed in an overlapped manner.

Therefore, in principle, with a so-called n-stage pipeline, a total of n suboperations
can be executed at the same time, yielding a potential n-fold increase in overall exe-
cution speed. In practice, the yield is a little less, among other things due to the time
overhead caused by the pipeline registers. Several operations in computer systems can
be pipelined. Examples are arithmetic operations, such as floating-point addition (with
possible suboperations as exponent comparison and mantissa addition) and instructions
(with possible suboperations as fetch, decode, and execute). As an example, reconsider
the fetch and execute cycle of Figure 3.7. Here the cycle is done in a strict sequential
order. Only after execution, can the next instruction fetch proceed. By putting an ex-
tra register between the microstore and the microinstruction register, both phases can be
overlapped. During execution the next instruction is being fetched. By pipelining the
fetch and execute cycle we effectively double the speed of operation.

Performance measures

Although clock speed and instruction execution have a close relation, they are not the
same. Only when the internal design of the processors is the same, can clock speeds be
directly used to assess performance differences. For instance, a 60 MHz version of pro-
cessor of type X is twice as fast as a version of X with a clock speed of 30 MHz.

downloaded by wizard.z@foxmail.com

Discussion and further reading 129

In general, when new and improved processors are being brought to the market, we
would like to have an indication of their performance. What we want to know is how
much faster a program can run on this new machine. In general, this question is difficult
to answer for various reasons. Gathering statistics from production programs is almost
impossible, since it requires the new computer to be completely installed in that produc-
tion environment. Second, many computer systems run a mixture of programs, making
judgment even more complicated.

However, measures of performance are still much wanted by users and vendors to have
some means of comparing systems. The simplest performance indicators are the average
instruction execution rate, denoted in million instructions per second (MIPS), and the
average operation execution rate, denoted in million floating-point operations per sec-
ond (MFLOPS). As a measure, the MIPS is not a very accurate one, since instruction sets
can differ quite profoundly. Some computers can perform a certain operation with a sin-
gle instruction, while others need several instructions to perform the same job. In order
to compare average instruction execution times, we also have to give weight to the use of
those instructions in typical programs. Still, the MIPS is a frequently (mis)used measure
in comparisons between computer systems.

Within computer families comparisons between different models are a little easier,
since they all share the same architecture. In this case, comparisons can be made rel-
ative to some model in the series. For estimating the CPU power this can be done quite
well. However, different models may have a different computer organization. This can
have serious effects on, for example, the I/O performance of the system. If a program is
I/O bound, that is, if the transfer of data between the CPU and the disk dominates the total
processing time of a program, putting more MIPS into the CPU has minor effects on the
system’s performance, while improving the I/O bandwidth would help a lot. A difficulty
in this case is, that the I/O performance is dependent on many factors in the computer
organization. Therefore, defining measures which can be used for comparison between
the I/O performance of systems is not a simple task, not even within a family.

To obtain more accurate estimates of the real performance of a computer system, sev-
eral measures have been developed, based on so-called synthetic benchmark tests. A
benchmark suite is a relatively small collection of programs, of which the behavior ap-
proximates the behavior of a class of applications. The most well-known benchmark
suites are the Whetstone and the Dhrystone (Serlin, 1986) benchmarks. The Whetstone
is the older and is biased towards numerical types of programs, while the Dhrystone puts
more emphasis on operations occurring in system programs. Currently, the so-called
SPEC benchmarks are often used to indicate performance. These benchmarks consists of
two programs: one for integer calculations and one for floating-point calculations. But
even benchmark suites have serious flaws as indicators of performance. Because bench-
mark suites are programs written in a high-level programming language, the way that
they are translated into machine instructions can have a large influence on the final re-
sult. Consequently, great care has to be taken in interpreting data obtained from executing
benchmark suites.

Designing processors primarily from the perspective of performance is an approach
that until recently has only been implicitly followed. With their textbook Hennessy and

downloaded by wizard.z@foxmail.com

130 Computers

Patterson (1990) introduced a new way of looking at matters. However, the reader should
be warned: understanding performance issues is generally not easy, as it often requires a
relatively strong background in mathematics. A general treatise on performance issues
can be found in the classic textbook by Kobayashi (1979). A more recent presentation
with a strong emphasis on designing performance analysis experiments, is discussed in
Jain (1991).

Exercises

1. Derive a circuit implementation of the LOGUNIT8 function f �a�b� � a�b of Sec-
tion 3.1.1.

2. Design a microprogram based on the components introduced in Section 3.1.1, for
doing the calculation ��x� y�� z�, where x is in W1, y in W2, z in W3, and the result
r is to be placed in W4. What are the microroutines in this case?

3. Show how the simple dedicated calculator of Figure 3.3 can also be made to work
by removing L1 and connecting it to the output lines of LOGUNIT8.

4. Using the wiring scheme of the previous exercise, what would be the sequence of
microinstructions for calculating r � �x�y�� z?

5. *Can processors be constructed solely using memories? If so, why is this not done?

6. Explain the main reason for grouping microinstructions into a consecutive series
of microroutines.

7. *Explain the principle of implementing microinstructions in the form of hardwired
control and discuss the primary advantages and disadvantages of applying this tech-
nique.

8. By introducing instructions, we have obtained a separation between (1) telling a
processor what it should do, and (2) letting designers of processors work out how
things are to be done. Explain what is meant by this statement, and why such a
separation is useful.

9. Provide arguments for combining data and instructions into a single memory.

10. Explain what the function of a program counter is, and why it is best to use a counter
to implement that function.

11. Explain the basic components of the von Neumann computer, and what their func-
tion is.

12. What is meant by a family of processors?

13. If we would like to implement N instructions, what would be the size of the field
for the operation code?

14. When data and instructions reside in the same main memory, how can a computer
distinguish between data and instruction?

downloaded by wizard.z@foxmail.com

Exercises 131

15. What type of addressing modes can be recognized when addressing operands? What
are the advantages and disadvantages of each mode?

16. *Considering the transfers over the address and data lines in order to execute var-
ious instructions, explain what is meant by the “von Neumann bottleneck”.

17. Explain the function of a bus and how we can logically subdivide its components.
Also explain the role of a bus arbiter.

18. Explain the working of the daisy chain in the case of bus arbitration.

19. *At present, the time it needs to access main memory is lagging behind the im-
provements made with respect to the performance of processors. How would you
imagine that this problem can be alleviated?

20. Explain the concept of an address space, and how this relates to memory-mapped
I/O and non-memory-mapped I/O. What do you see as the main benefits of using
memory-mapped I/O?

21. What is the distinction between a double-density and high-density floppy disk? Why
isn’t it such a good idea to try to use a double-density disk as a high-density one?

22. If you have an MS-DOS computer, typing in the command chkdsk returns informa-
tion on the size of a so-called allocation unit, as well as the amount of allocation
units available. Explain what is meant here.

23. *Many personal computers allow you to install a so-called RAM drive. This is a
peripheral device similar to an ordinary disk drive, but which makes use only of
main memory. Explain the principal working of this mechanism, as well as its main
advantages and disadvantages.

downloaded by wizard.z@foxmail.com

downloaded by wizard.z@foxmail.com

Chapter 4

From hardware to software

In this chapter we will concentrate on the concept of programs. The objective is to show
how you can actually program hardware, given an instruction set implemented by a pro-
cessor. However, instruction sets are generally very low-level and make programming a
rather tedious and error-prone process. This problem can be alleviated by making use of a
high-level programming language. As we shall illustrate, such a programming language
can be automatically translated to a low-level instruction set. What we have achieved
then is something we refer to as a virtual processor. This concept will be further exploited
in the succeeding chapters when discussing realization aspects of operating systems and
communication systems.

4.1 Introduction

The material presented in the previous chapter has brought us a long way towards pro-
cessing. At this point, we have the appropriate means for constructing programs in the
form of a series of instructions that can be executed in an automated way.

4.1.1 Towards software solutions

In our discussion on microinstructions we argued that we are gradually diverting from
hardware to things that can no longer be considered as being constructed solely of digi-
tal circuits. Microprograms, or firmware as we have referred to them, are constructed as
series of bit strings that are (more or less permanently) stored, and that control the way
that data (in the form of other bit strings) are manipulated in order to arrive at something
that we feel is useful to us. On reflection, it should be clear that the approach of firmware
construction offers us flexibility. Without having to change any digital circuits, or even
change the wiring between these circuits, we are capable of implementing a different set
of instructions by merely changing the processor’s microprogram. From a somewhat dif-
ferent perspective, one might say that we can change the functionality of a processor by

133

downloaded by wizard.z@foxmail.com

134 From hardware to software

replacing its microprogram. An important observation is that this change is not accom-
plished through hardware, but instead by changing the way that we control the hardware
through bit strings.

But this approach can be taken several steps further. As we have said, a microprogram
implements an instruction set that characterizes the behavior of a processor. It is through
instructions that we again have the right means to control exactly what a computer does.
This leads to the concept of a program: a series of instructions that can be executed in
an automated way by a processor. Programs are also referred to as software as opposed
to firmware and hardware.

But whereas microprograms are used to control the hardware that make up a single
processor, we shall use programs to control the hardware that constitute a complete com-
puter: processors, memories, and peripheral devices. In fact, we shall even use programs
to control the way that computers communicate. Therefore, we need to say more about
how computers can actually be programmed. In particular, we need to concentrate on
two issues:

� How we express programs that can be executed by a processor.

� How we can have a processor that executes a program.

These two issues form the main theme of this chapter. Before we go into details, let’s
first briefly outline the approach that will be followed.

4.1.2 Expressing programs

Our first concern is to provide the right means to express programs. What we are thus
seeking is a convenient programming language. A programming language is in many
senses similar to ordinary languages, but with one important difference: programs ex-
pressed in a programming language describe something that can be executed by a pro-
cessor. In particular, a program expresses precisely what a processor should do.

Machine languages

The most primitive programming languages are so-called machine languages. A ma-
chine language consists of the instructions that make up the instruction set as implemented
by a processor. Moreover, each instruction is expressed as a bit string. Although it is
primitive, we can indeed sensibly speak about a language in the sense that instructions
adhere to a specific syntax and grammar. But expressing programs in a machine language
is not something that many people favor, and for obvious reasons. Instead, rather than
using bit strings, it is much more convenient to use a symbolic notation for each instruc-
tion. We have already encountered this form of expressing instructions in the previous
chapter. Using a textual, symbolic representation for instructions instead of bit strings
leads to the concept of a so-called assembly language. It should be clear that an assem-
bly language and a machine language are tightly coupled. The former can be considered

downloaded by wizard.z@foxmail.com

Introduction 135

as an immediate representation of the instructions implemented by a processor. For this
reason, we shall often hardly make a distinction between the two.

An example of an assembly language is discussed in Section 4.2. The purpose of pre-
senting such a language is twofold. First, a concrete assembly language provides insight
into what an instruction set looks like in practice, and thus about the basic functionality
of a single processor. Our example language is derived from an existing one: we have
merely left out specific details that are not important for the purposes of this book. Sec-
ond, by using such a language to express some simple programs, it becomes apparent to
what level of detail we need to go before we can get a processor to do something use-
ful. And as we shall see, the level of detail is hopelessly inadequate to express solutions
to complex problems. In fact, programs written in an assembly language are generally
difficult to construct, and, except for the relatively simple ones that we shall discuss, are
often even more difficult to comprehend.

High-level programming languages

Rather than expressing programs in an assembly language, we need something different.
In particular, we need a so-called high-level programming language that allows us to
concentrate on expressing solutions at an adequate level of abstraction. Such a program-
ming language is presented in Section 4.3. Again, we have taken an example from real
life by considering a subset of the programming language Ada which we have named
BASAL. Our example programming language will be used throughout the remainder of
this book to express software solutions to constructing computer systems and networks.

But what do we mean by an adequate level of abstraction? When we compare a high-
level language such as BASAL to assembly languages, there are at least two striking dif-
ferences. First, BASAL will allow us to express representations of common data in a way
that is much more convenient than by using only bit strings. This is achieved through
so-called data abstraction. To illustrate, suppose we want to represent an N�M ma-
trix containing integer values. Assembly languages will provide us with little support to
represent such a matrix easily. Using BASAL, however, we can write

type MATRIX is array (1..N,1..M) of INTEGER;

What we have done is express the matrix precisely as we imagine it: a data structure
consisting of N rows and M columns where each element is an integer. We will see many
more examples.

Second, high-level languages provide the facilities to structure our programs prop-
erly. In particular, where assembly languages only allow us to express a program as a
single series of instructions, high-level languages provide the right means to hierarchi-
cally organize a program into logically coherent blocks of program statements, where
a program statement is to be seen as an abstraction over a machine language instruction.
Properly structuring programs is extremely important when expressing complex solu-
tions. The clearer we are able to express a solution in the form of a program, the easier
it becomes to comprehend that solution. And this is precisely what we wish to achieve

downloaded by wizard.z@foxmail.com

136 From hardware to software

when explaining the organization of computer systems and networks.

4.1.3 Executing programs

Having a convenient means to express programs is one thing; we also need to have a
means to execute programs. Recall that the reason for using programs in the first place is
that we wish to obtain solutions that can be constructed more easily than by using hard-
ware alone. By subsequently executing programs, we control the way that the underlying
computer operates. Expressing programs in a machine language is not going to lead to
any fundamental problems of execution, because a machine language is always imple-
mented by means of a processor. Using a symbolic notation as in the case of an assembly
language requires that we at least transform our symbolic notation into instructions ex-
pressed as bit strings. Due to the tight coupling between an assembly language and a
machine language, we need not expect many problems in such a transformation.

But problems will arise if we are going to express programs in a high-level program-
ming language, for in that case, we may not assume that there is a processor available that
can immediately do the execution. The point is, that a processor is capable only of exe-
cuting a much more primitive machine language. It is here where we are faced with the
problem of program translation. What we need to do in the end, is convert a program
written in some high-level language into an equivalent program expressed in a machine
language. If we were to do this manually, then not very much would have been gained by
using a high-level language in the first place. Instead, the translation process itself should
be automated. Programs that do this translation are called compilers and are briefly dis-
cussed in Section 4.4. This finally leads to the organization in Figure 4.1 in which three
different layers with their interfaces are shown.

The lower and middle layers have been discussed in the previous two chapters. The
lowest layer is that of digital circuits, which, as we said above, is pure hardware. As we
have already indicated in Section 2.4.3, by adding (selection and) control pins to these
circuits, and subsequently wiring them in different ways, we can select the functionality
of the circuit. In this sense, these pins form an important part of the programming inter-
face of digital circuits. The second layer consists of the microprogram that implements
a machine language by controlling the setting of signals at the control pins of the digital
circuits. The hardware and firmware form the real processor.

The third layer is the one that allows development of software solutions that are ex-
pressed at a convenient level of abstraction. In fact, as we shall see, our solutions are
expressed at such a level that many details of the underlying hardware need not even be
considered as part of the solution. Explaining a convenient high-level language and its
relationship to hardware that can execute programs in that language is the main subject
of this chapter. In order to execute programs written in a high-level language, these pro-
grams need to be translated into a machine language. If the translation process itself is
automated, then, from a programmer’s point of view, the machine language into which
programs are translated is of little or no interest. In other words, the combination of an
automated translator and a real processor provides a programmer with a virtual proces-
sor for the high-level language.

downloaded by wizard.z@foxmail.com

A primitive machine language 137

translator

programming language

digital circuits

control pins

microprogram

machine language

real
processor

virtual
processor

hardwarefirmwaresoftware

Figure 4.1 The relation between real and virtual processors.

In this chapter we are going to explore the concept of virtual processors. In order to
do so, we need to discuss at least three subjects:

1. A machine language that we can use as interface to a real processor.

2. A high-level programming language that allows us to abstract from this machine
language.

3. The translation of a high-level programming language into a machine language.

In the following three sections we shall discuss these subjects.

4.2 A primitive machine language

The first step we shall take towards software solutions is the introduction of a processor
that implements a small set of instructions, which we refer to as PRIMAL: a primitive
machine language.1 PRIMAL is not an invention of our own. It is in fact (almost) a sub-
set of a popular machine language implemented by the Motorola 680x0 family of proces-
sors. The 68000 machine language is generally considered a well-designed instruction
set, inspired by another popular but now out-of-date machine language implemented by
Digital’s PDP-11 processors (Digital, 1975).

We have deliberately chosen to focus on a subset of the 68000 instruction set for rea-
sons of illustration. By choosing an existing machine language as the basis for PRIMAL,

1It would have been more appropriate to say that PRIMAL is a primitive assembly language. As we
have said, assembly languages are always directly based on a machine language, but represent instructions
in a symbolic way. This makes it easier to construct programs. However, throughout this chapter we shall
hardly make a distinction between the two.

downloaded by wizard.z@foxmail.com

138 From hardware to software

you will nevertheless have the opportunity to experiment with writing your own pro-
grams if so desired. However, the 68000 instruction set does have some characteristics
that we do not want to discuss here. Therefore, our PRIMAL language shall deviate some-
what from the original 68000 machine language. The examples we give in the succeeding
sections can nevertheless be easily converted to executable programs (and in fact, they
have first been constructed as such before writing them down in PRIMAL).

4.2.1 A basic PRIMAL instruction set

Let’s first concentrate on a basic collection of instructions that will allow us to write sim-
ple PRIMAL programs. In order to do so, we need to say something about the registers
of the PRIMAL processor.

Introduction

We assume that the PRIMAL language itself is implemented by a processor similar to the
one discussed in the previous chapter. This so-called PRIMAL processor consists of the
following registers.

� Data registers. There are eight so-called data registers available, denoted D0, � � �,
D7. These registers are truly general-purpose ones in the sense that they can be
used to store all kinds of data, and that it does not matter which register you use
for what purpose. These eight data registers are all 32 bits wide.

� Address registers. Apart from eight data registers, there are also eight address
registers, denoted A0, � � �, A7. As their name suggests, address registers can only be
used to contain references to memory locations. In contrast to the data registers, not
all address registers can be used for any purpose. In particular, register A7 is used
as a so-called stack pointer. Its use will be explained in Section 4.2.2. Address
registers are also 32 bits wide.

� Program counter. This register, denoted PC, is used to keep track of where we
are during program execution. In particular, it always contains the address in main
memory of the next instruction to be executed. As we have explained in Section 3.2,
the program counter is always updated automatically. It will come as no surprise
that the program counter is also 32 bits wide.

� Status register. A special register, also referred to as the conditional code regis-
ter, and denoted CCR, contains additional information after an operation has been
performed. For our purposes, we merely need to assume that CCR indicates whether
the result of the last computational operation was zero or not. This register is used
in combination with control flow instructions to be discussed below. The status
register is assumed to contain only bit strings of length 8.

This is all you need to know about the registers of the PRIMAL processor when construct-
ing programs.

downloaded by wizard.z@foxmail.com

A primitive machine language 139

Our next step consists of looking at some of the more important instructions. In the
following discussion each instruction is only symbolically represented. We omit any de-
tails concerning its actual representation in the form of a bit string (these can be found
in Motorola, 1986). The PRIMAL instruction set can be grouped into four different types
of instructions: those for transferring data, for changing the order of execution, for do-
ing computations, and finally, for handling subroutines. Here, we shall first concentrate
only on the first three groups; subroutines are discussed in a separate section. In order
to explain what exactly an instruction stands for, we will sometimes use the following
notation that allows us to conveniently make a distinction between a register or memory
location and its contents:

� If ADDR denotes a location in main memory, we use the notation M(ADDR) to denote
the actual value stored at that location.

� If REG is one of PRIMAL’s registers, then [REG] denotes its present contents. So, for
example, to denote that register D4 contains the integer value 78, we write [D4] �
78. Combining this notation with the one above, M([REG]) denotes the value stored
at the location of which the address is stored in REG.

� Replacing the contents of a register or memory location is denoted by means of a
left-arrow “�”. For example, the notation “[D4] � 78” denotes that the contents
of D4 is replaced by the integer value 78.

An instruction operates on one or more operands. In our notation, an instruction is writ-
ten as a description of the operation, followed by the listing of the operand(s). The method
used to specify the operands is the addressing mode, which we already encountered in
Section 3.2.3. Now let’s take a look at some of the basic instructions in PRIMAL.

Data transfer

Basically, there is just a single data transfer instruction, referred to as the MOVE instruc-
tion. Keeping the symbolic name used in the base language of PRIMAL, the 68000 as-
sembly language, the MOVE instruction essentially comes in just one form:

MOVE src, dst

which effectively copies the bit string stored as a 32-bit word at the location identified
as the source src, to the destination identified as dst. Let’s see how the source and des-
tination can be identified. First, for our purposes, we require that when using the MOVE
instruction at least one of the two operands should refer to one of the eight data registers,
or otherwise to one of the eight address registers. Using this restriction, we can now take
a closer look at LOAD and STORE instructions as mentioned in Chapter 3.

LOAD instructions. LOAD instructions basically have five different forms. The fol-
lowing are supported, with their meaning explained after the vertical bar “j”:

downloaded by wizard.z@foxmail.com

140 From hardware to software

(L1) MOVE #number, Rx [Rx] � number
(L2) MOVE Rx, Ry [Ry] � [Rx]
(L3) MOVE address, Rx [Rx] � M(address)
(L4) MOVE (Ay), Rx [Rx] � M([Ay])
(L5) MOVE offset(Ay), Rx [Rx] � M([Ay] + offset)

In these cases, Rx refers to either a data or an address register. Likewise, Ay always refers
to one of the eight address registers. The meaning of each instruction is as follows.

� (L1): This is an example of an instruction employing immediate addressing. The
effect is that an integer number as given in the instruction is copied into register Rx.
Numbers can be represented in several ways. A number such as “#12” is consid-
ered as a decimal number, whereas “#%0110” is interpreted as the binary number
01102 � 610. The term “immediate” refers to the fact that the operand is immedi-
ately available: it need not be transferred from another register or main memory.

� (L2): Execution of this instruction yields that the data contained in register Rx is
copied to register Ry. The instruction is said to use (register) direct addressing.
Anticipating our further discussion, we note that an instruction of this type can
equally be qualified as a STORE instruction.

� (L3): Instruction (L3) is quite similar to (L2), except that the data that is to be
copied to register Rx is now taken from the memory location address. It employs
so-called (memory) direct addressing.

� (L4): This is an example of (register) indirect addressing. The address stored in
register Ay identifies the location containing the actual data.

� (L5): This instruction calculates an address from where to copy data for register
Rx. In this example, we have that Rx will be loaded with the data that is found at
the location [Ay] + offset. The addressing mode exemplified by this instruction is
referred to as (register) indexed addressing. Note, by the way, that we can use an
address register only to denote the source.

STORE instructions. The STORE instructions are used to copy data from registers to
main memory and have three forms:

(S1) MOVE Rx, address M(address)� [Rx]
(S2) MOVE Rx, (Ay) M([Ay]) � [Rx]
(S2) MOVE Rx, offset(Ay) M([Ay] + offset) � [Rx]

Instruction (S1) is comparable to (L3). Using direct addressing, it stores the data or ad-
dress contained in register Rx at memory location address. Indirect addressing is used in
(S2). The address or data contained in Rx is copied to the memory location found in reg-
ister Ay. Finally, indexed addressing is employed in (S3), similar to the load instruction
(L5).

There is one strange thing about PRIMAL when it comes to addressing and word length
that deviates from the way we have been talking about instructions so far. Because all our

downloaded by wizard.z@foxmail.com

A primitive machine language 141

b b

a a a aaa a a a a a aaa a a a a a aaa a a a a a a a a a a

[A0]
a a a a
a a a a
a a a a

a
a
a

a a a
a a a
a a a
a a a a a a a a

b b b b b b b b
b b b b b b b b
b b b b b b b b
b b b b b b b b

[1(A0)]

a a a a
a a a a
a a a a

a
a
a

a a a
a a a
a a a
a a a a a a a a
b b b b b b b b
b b b b b b b b
b b b b b b b b
b b b b b b b b

[A0]

[1(A0)]

[D0]

[D1]

(a) (b)

Figure 4.2 The effect of indexed addressing in PRIMAL.

registers have length 32, it would seem that main memory is organized into words having
a size of 4 bytes. Well, this is not true: the PRIMAL processor assumes that memory can
be addressed per byte. The only thing is that each instruction for transferring data copies
4 consecutive bytes into or from a register. This becomes particularly important to note
when using indexed addressing. To illustrate, assume that we have the following code
fragment

MOVE D0, (A0)
MOVE D1, 1(A0)

The idea is that we first copy the data contained in register D0 to the memory location
identified by register A0, and store the contents of D1 in the next location, as illustrated
in Figure 4.2(a). However, what actually happens is shown in Figure 4.2(b). The data
stored in D1 is written partially over the data just stored. The correct code should have
been

MOVE D0, (A0)
MOVE D1, 4(A0)

Control flow instructions.

This group of instructions is used to change the order of execution. First, we have a so-
called JUMP instruction which takes the form

JMP address JuMP unconditionally to address

After executing this instruction, the processor will continue with executing the instruc-
tion that is stored at the memory location address. However, this instruction is not used
often in practice. Instead, so-called relative jump instructions, or BRANCH instructions as

downloaded by wizard.z@foxmail.com

142 From hardware to software

they are called, are actually used. One such BRANCH instruction that we shall encounter
is

BRA offset BRAnch to the address at ‘offset’ units

The effect of executing this instruction is that the selected next instruction is chosen offset

memory locations away from the current instruction. In other words, the effect is that

BRA offset � [PC] � [PC] + offset

Related to this instruction are the following two instructions:

BEQ offset Branch if EQual to zero
BNE offset Branch if Not Equal to zero

which are so-called conditional BRANCH instructions. In this case, the instruction lo-
cated at memory location [PC] + offset will be selected as the next one to execute only
if the register CCR indicates that the result of the last computation operation was zero
or non-zero, respectively. Otherwise, the instruction following this BRANCH instruction
will be selected as the next one to execute. There are many other conditional BRANCH

instructions available in 68000 assembly languages, but as far as our PRIMAL subset is
concerned, the above two will suffice for illustration purposes.

Computation instructions

These instructions actually set the ALU to work. Most of the instructions take two operands
and are available in two forms:

(C1) �oper�#number, Dx
(C2) �oper�Dx, Dy

where “�oper�” stands for a binary operation such as addition, subtraction, etc. The first
form (C1) operates directly on a given number, whereas the second (C2) operates on the
value of a register. In both cases, the value in the second register is updated by the first
operand. So, for example,

ADD Dx, Dy

adds the contents of register Dx to the contents of Dy, i.e. [Dy] � [Dx] + [Dy]. Similarly,

SUB #12, Dx

updates the value of register Dx by subtracting 12 from it. The computation instructions
that require two operands are: ADD (addition), SUB (subtraction), DIVS (division), MULS

(multiplication), AND (bitwise AND) and OR (bitwise OR).

� A comment on the relationship between PRIMAL and the 68000 instruction set, is in order.
The computational operations we discuss here generally are in various forms. In particular,
the 68000 instruction set makes a distinction between operands that have length 8, 16, or
32. And, as you may imagine, making this distinction indeed does make sense. Recall our

downloaded by wizard.z@foxmail.com

A primitive machine language 143

discussion in Chapter 2 on the representation of negative numbers when having to deal with
finite bit strings. In our case, we will assume that the operations work as they should, and
we will be ignoring the length of their operands. For the programming examples we are
about to see our notation is generally correct, and the programs will work well. In practice,
subtle adaptations will generally be necessary. The interested reader is referred to Clements
(1994) for further details.

Some simple examples

Before we continue, let’s consider some example programs to illustrate what a PRIMAL

program might look like.

Example 4.1. Suppose we have a number X stored at memory location 1000. Increment-
ing X with 12 can then be done by means of the following program (text that follows the
vertical bar “j” is merely comment).

MOVE 1000,D0 Load value of X into D0: [D0] � M(1000)
ADD #12,D0 [D0] � [D0] + 12
MOVE D0,1000 Store result back into X: M(1000) � [D0]

The first MOVE instruction uses direct addressing. The data stored at location 1000 is
copied into register D0. We then subsequently add 12 to the value contained in this reg-
ister, and the result is then copied back again to location 1000.

�

In this example, we simply state that we have a variable X at memory location 1000.
What we are stating is that X denotes a memory location (namely, 1000), or, in other
words, is a placeholder, that we consider to be variable with respect to its contents. In
what follows, we shall abstract from exact locations when we speak about variables. In
particular, if X�Y , and Z denote distinct variables we simply assume that “X”, “Y”, and
“Z” are just synonyms or aliases for distinct memory locations. In fact, this is completely
consistent with the way that variables are dealt with in programming languages.

Example 4.2. Assume we need to perform the calculation Y � X3. This can be done as
follows by using D1 for storing the intermediate and final result:

MOVE X,D0 Load X into D0: [D0] � M(X)
MOVE D0,D1 Store X1 into D1: [D1] � [D0]
MULS D0,D1 Store X2 into D1: [D1] � [D0]*[D1]
MULS D0,D1 Store X3 into D1: [D1] � [D0]*[D1]
MOVE D1,Y Store the result into Y : M(Y) � [D1]

This looks much like our previous example, except that we are using the symbolic name
“X” to denote the place that we have associated with variable X . Note that register D1
is updated by first multiplying it with the contents of D0, and storing the result back into
D1. In PRIMAL, these two steps are implemented by means of a single instruction.

�

downloaded by wizard.z@foxmail.com

144 From hardware to software

MOVE X,D0 Load X into D0
MOVE N,D1 Load N into D1
MOVE D0,D2 Store X1 into D2
SUB #1,D1 Calculate N� N�1: [D1] � [D1] - 1
BEQ END If N � 0, we are finished, so continue with the instruc-

tion labeled at ‘END’

CALC: MULS D0,D2 Calculate XK�1 � X �XK

SUB #1,D1 Calculate N� N�1
BNE CALC Continue if N �� 0

END: MOVE D2,Y Store the result into Y

Listing 4.1 A PRIMAL program for calculating XN.

If we followed the approach shown in the example above, it would become quite tedious
to calculate, for example, X � X100. In that case we would have to repeat the instruction

MULS D0,D1

numerous times. Repeating instructions can be elegantly solved by using BRANCH in-
structions. Consider the following example.

Example 4.3. We want to calculate Z �XN where N � 0. The idea, of course, is that we
repeatedly calculate an intermediate result XK�1 �X �XK, where XK has been calculated
in the previous step. Now look at the program shown in Listing 4.1.

This piece of PRIMAL code makes use of so-called labels. A label is a simple means
of attaching a symbolic name to a location containing an instruction. In most assembly
languages, a label is followed by a colon. For example, the label CALC identifies the
location of the instruction

MULS D0,D2

We use labels in combination with control flow instructions. In particular, rather than
specify the address of the next instruction to execute, we identify the instruction by means
of a label. So, for example, the execution of the instruction

BEQ END

yields that the status register CCR is first checked to see if the last performed operation
had a zero result. If this is the case, then the first instruction of the next series of instruc-
tions that will be executed is identified by the label END, which, in our example, coincides
with the instruction

MOVE D2,Y

Now, what is seen in this example is that we simply decrement the value of N each time
we do an iteration. As soon as N becomes 0, we know that the work is completed.

�

downloaded by wizard.z@foxmail.com

A primitive machine language 145

program P

program Q

BSR <Q>

RTS

Figure 4.3 The principle of calling and executing a subroutine in PRIMAL.

It should be clear by now what simple PRIMAL programs look like. In the next section
we shall see how more complex programs can be constructed by introducing the concept
of subroutines.

4.2.2 Subroutines in PRIMAL

An important concept for any programming language is that of a subroutine, also re-
ferred to as a procedure or function. A subroutine is just another program, but whose
instructions can be executed on behalf of some other program. The principle is shown in
Figure 4.3. By executing the so-called BRANCH-TO-SUBROUTINE instruction:

BSR label Branch to SubRoutine starting at “label”

execution continues with the series of instructions starting at the indicated label. The
label itself is calculated as an address relative to the current value of the program counter,
i.e. label = [PC] + offset. As soon as the RETURN-FROM-SUBROUTINE instruction

RTS ReTurn from Subroutine

is encountered, execution continues where it had previously left off.
Subroutines are extremely important when constructing large programs, no matter what

language you are using. And although the concept may seem simple at first, it does take a
special mechanism in order to realize it. In practice, many low-level machine languages
incorporate a so-called stack to this end, and which is discussed next.

The concept of a stack

A stack is a collection of ordered elements, such that removing elements from a stack can
only be done in the reversed order in which they were added to that stack. A stack can
thus be seen as an abstract means for storing data. It has only two associated operations:
push by which an item is said to be put on top of the stack, and the operation pop by

downloaded by wizard.z@foxmail.com

146 From hardware to software

SP

0

1000
1004
1008
1012

1000

SP

0

1000
1004
1008
1012

1004

D0

POP D0

SP

0

1000
1004
1008
1012

996

996

D0

PUSH D0

(a)

(b1) (b2)

Figure 4.4 The organization of stacks in PRIMAL. (a) The initial situation; the effect of pushing
an item onto the stack is shown in (b1); that of popping an item in (b2).

which the item on the top of the stack can be removed again. Before we explain how the
concept of a stack plays an important role in subroutines, let’s first see how stacks can be
produced in PRIMAL.

Any stack in PRIMAL is associated with a series of consecutive memory locations. In
order to identify a stack, we need a so-called stack pointer. A stack pointer is a reference
to the top of a stack. It refers to the memory location of the element that can be popped
from the stack, or on top of which a new element can be placed. To this end, PRIMAL

uses one of the eight address registers, namely A7, as its general stack pointer. Due to its
special role, A7 is also symbolically denoted as SP. Another issue that needs to be agreed
is how stacks shrink and grow. In other words, if we pop an item from the stack, what
happens to the contents of the stack pointer? If we decide to increment its value, then
this means that a stack shrinks towards the higher locations in address space. This is the
same as saying that a stack grows towards the lower memory locations. In PRIMAL, we
assume that stacks are indeed organized according to this shrink and growth scenario.
This is illustrated in Figure 4.4.

Now, in order to push an item onto the stack we need merely use the special PUSH

instruction. To illustrate, the instruction

downloaded by wizard.z@foxmail.com

A primitive machine language 147

PUSH D0

first adjusts the value of the stack pointer, and then copies the data stored in register D0
to the (new) top of the stack, as shown in Figure 4.4(b1). More formally, we have that

PUSH Rx � [SP] � [SP] – 4; M([SP]) � [Rx]

where Rx can be any data or address register. The semicolon in this case denotes that we
first adjust the stack pointer, and then store the value on the stack. Likewise, in order to
pop an item from the stack, we use the POP instruction:

POP Rx

which copies the data on top of the stack to register Rx, and adjusts the stack pointer
accordingly. Again, we can express this more formally as

POP Rx � [Rx] � M([SP]); [SP] � [SP] + 4

In this case, note that the semicolon indicates that we first copy the data from the top of
the stack to the appropriate register, and then adjust the stack pointer. This is precisely
the opposite order to the PUSH instruction.

� A comment is in order here. The 68000 machine language, and thus also PRIMAL, has, in
fact, no special stack operations. In order to manipulate the stack, you should use a special
form of indexed addressing instead. Without going into too many details, the correct way
for pushing an item onto the stack would be to use the instruction

MOVE Rx, –(SP)

What effectively happens is that before the actual data transfer takes place, the stack pointer
is decremented by 4 so that it refers to the right memory location to store the 4 bytes con-
tained in Rx.

Similarly, popping an item from the stack can be done by the following instruction:

MOVE (SP)+, Rx

In this case, the data stored at the top of the stack is first copied into the specified register,
after which the value of the stack pointer is incremented (implying that the top of the stack
is lowered).

Stacks and subroutines

We can now explain how branching to a subroutine works in PRIMAL. The first point
you have to realize is that with each program we associate precisely one stack. When
executing the instruction

BSR label

downloaded by wizard.z@foxmail.com

148 From hardware to software

POWER: POP A6 Save the return address in A6
POP D1 Save the value of P in D1
POP D0 And save that of U in D0

MOVE D0,D2 Store U1 into D2
SUB #1,D1 Calculate P� P�1
BEQ ENDPOW If P� 0, we are finished

CALC: MULS D0,D2 Calculate UK�1

SUB #1,D1 Calculate P� P�1
BNE CALC Continue if P �� 0

ENDPOW:PUSH D2 Push the result onto the stack
PUSH A6 As well as the return address
RTS And return

Listing 4.2 An alternative implementation for XN.

where label indicates an address that can be found at, say, offset locations from the current
location, the current value of the program counter is pushed onto the program’s stack, af-
ter which the value of the program counter is incremented by the value offset. In other
words, branching to a subroutine has (almost) the same effect as executing the two in-
structions

PUSH PC
BRA offset

with the difference that the execution of BSR performs the two instructions above as a
single instruction.

As soon as the RETURN instruction RTS is executed, the value of the program counter
is restored by popping the stack. This immediately leads to the selection of the instruc-
tion that initially followed the branch instruction. Thus, execution of RTS is similar to
executing

POP PC

Subroutine examples

To illustrate the semantics of combining the stack and subroutines, consider the following
example.

Example 4.4. Our first consideration is to adapt the program of Example 4.3 so that it
implements the function power�U�P� � UP by means of a subroutine. To that end, we
assume that it is necessary to push the value of U onto the stack, followed by the value of
P just before calling the subroutine. The result of the subroutine, i.e. UP, will be pushed
onto the stack just before a return is made to the calling program. Now look at the PRI-
MAL code shown in Listing 4.2.

downloaded by wizard.z@foxmail.com

A primitive machine language 149

MAIN: PUSH X Push value of X onto the stack
PUSH N Push value of N onto the stack
BSR POWER Branch to POWER
POP D0 Pop the result
MOVE D0,X Store the result back into X

PUSH Y Push value of Y onto the stack
PUSH M Push value of M onto the stack
BSR POWER Branch to POWER
POP D0 Pop the result
MOVE D0,Y Store the result back into Y

MOVE X,D0 Store new value of X into D0
MOVE Y,D1 Store new value of Y into D1
ADD D0,D1 Store X�Y into D1
MOVE D1,Z Store the result into Z

Listing 4.3 Calling the subroutine POWER twice in a row.

In order to understand what this program does, keep in mind that as soon as a BRANCH

instruction

BSR POWER

has been executed, we assume that the stack has on its top the address of the next in-
struction to be executed when returning from the subroutine, followed by the value of
the parameter P, and the value of U . By first popping these three values in the right or-
der, we bring the stack into its original state. The major part of POWER looks the same
as that of Example 4.3. The final series of instructions starting at label ENDPOW take
care of the stack. First, we push the result of our calculation onto the stack, as well as the
previously saved return address. Executing RTS will return us to our original position by
popping the return address. The top of the stack now contains the calculated result.

�

Using the subroutine POWER we can now easily implement more intricate functions.

Example 4.5. We want to calculate Z � XN�YM by using the program in Example 4.4.
The idea is quite simple. We first calculate X � XN, and later Y �YM. This leads to the
PRIMAL program shown in Listing 4.3.

In the first section, we calculate X � XN. To that end, we can simply push the values
for X and N onto the stack and execute subroutine POWER, and will find that the result
is now on the top of the stack. Simply popping the stack, and copying the result back to
X , accomplishes what we wanted in the first place. The rest of the program should now
be clear.

�

downloaded by wizard.z@foxmail.com

150 From hardware to software

4.2.3 Discussion

The examples discussed so far illustrate how programs can be constructed in PRIMAL.
And although it is seen that even simple calculations require many instructions to be ex-
ecuted, it should be clear that our small PRIMAL instruction set is powerful enough to
handle more intricate calculations. However, it seems that we are running into a num-
ber of problems. First, expressing calculations in PRIMAL is not very comprehensible.
In other words, it is difficult to determine what a program does simply by looking at it.
In this sense, PRIMAL, and any other machine language, is considered a low-level pro-
gramming language. From a programming perspective this is a problem that should not
be underestimated. The main issue is that constructing a program that does what it is ex-
pected to do has now become a serious engineering problem. Also, as these programs
are difficult to comprehend at first, changing them is no longer a trivial task.

Another problem is that our programs will work only on PRIMAL processors. This is
really a problem, because our solutions seem to be general enough for any reasonable
processor. In other words, we have found general solutions, but have implemented them
for only a single processor. Consequently, we will have to do our programming work
all over again if we have a different processor at our disposal. As we have mentioned
in Section 4.1 this implies that generally useful programs such as word processors will
have to be rewritten entirely when adapting them for various real processors. This is not
acceptable.

It is clear that the source of the problems we are encountering is the lack of abstraction
that can be provided by our PRIMAL machine language. In other words, the expressive
power of PRIMAL, or any machine language, is simply not enough to describe software
solutions in a comprehensive and sufficiently abstract manner. There are too many details
that we are forced to take into account that, in fact, have nothing to do with the solution
we wish to describe. As we have argued in Section 4.1, the solution to this problem is
to be found in high-level programming languages. Such languages (1) provide us with
the right level of abstraction, and (2) can be translated in an automated way into machine
languages, thus still allowing us to execute programs. In the next section we introduce
such a high-level language.

4.3 A structured programming language

Our intention at this point is to introduce a high-level programming language which we
have called BASAL. There are two main reasons for introducing BASAL. The first, and to
us the most important reason is that we need a vehicle to express implementation issues
of computer and communication systems at a more convenient level of abstraction than is
possible with the material discussed so far. This implies that it is important that you attain
a reading knowledge of our language. In other words, you need to know what BASAL

programs do; it is not necessary to be able to write them yourselves.
Second, constructing advanced computer and communication systems is not just a ques-

tion of building the right hardware. As we have said, most of the effort is spent in getting

downloaded by wizard.z@foxmail.com

A structured programming language 151

the software to work. Software is seldom written in machine languages like PRIMAL. In-
stead, high-level languages are used for this purpose. By introducing a simple high-level
language, we want to illustrate two things: (1) how we can construct machines merely
by using software, and (2) how these abstract machines can be implemented by low-level
machine languages such as PRIMAL. The first issue is, in fact, the topic of all the material
yet to follow. The second issue will be further discussed in Section 4.4.

We have no intention of teaching you how to construct software. Instead, our focus in
this section will be on providing you with a reading knowledge of a programming lan-
guage that will serve our purposes. Here, we informally introduce BASAL, which stands
for a basic subset of the ada language. BASAL is derived from Ada (ANSI, 1983), an ad-
vanced programming language, and certainly not the most simple one to be learned by a
novice. However, Ada is well established and, as we shall see below, suitable to be used
as a vehicle for our purposes relating to system and communication software. Rather
than use all its features, we shall restrict ourselves to a rather small but specific subset.
Most of BASAL’s language constructs will be explained in this section. In later chapters
we shall extend our descriptions as appropriate. We shall have more to say about Ada in
our discussion at the end of this chapter.

When discussing developing programs it should be clear by now that a distinction
can be made between two different concepts: data and instructions that manipulate data.
What we are seeking at this point is a convenient means of describing (1) what the data
we wish to manipulate looks like, and (2) how this data is manipulated. We first concen-
trate on a notation for representing data. How data can be manipulated is discussed in
Section 4.3.2. Then, we will describe complete programs in Sections 4.3.3 and 4.3.4.

4.3.1 Data types and variables

As we have said, in order to describe programs, we need a way to describe the data that
is manipulated. An important concept fundamental to most high-level programming lan-
guages is that of a data type. We have already encountered a few data types such as in-
tegers, characters, etc. A data type is to be seen as a definition of a collection of abstract
values, together with the operations by which these values can be manipulated. To illus-
trate, consider the character data type. This data type defines exactly what we mean by
a character (namely the symbols, or values, “a”, “b”, “c”, etc.), as well as the operations
that can be used. An example of such an operation (and indeed, which only makes sense
in the case of characters) is the operation ascii, defined as:

ascii�x� � the ASCII code of character x

So, for example, using Table 2.3 on page 37, we have that ascii�“a”� � 97, and likewise,
ascii�“8”� � 56.

In machine languages however, there is essentially only one data type: the bit string.
In this sense, you might say that the only thing we have been discussing so far is how we
can represent our common data types in the form of finite bit strings. This is a situation
we want to change. In the following two subsections we are going to take a closer look at

downloaded by wizard.z@foxmail.com

152 From hardware to software

how we can define and represent, on the one hand, simple data types, and, on the other,
composed data types.

Predefined, simple data types

An important simple data type that is available in most programming languages, is the
integer. BASAL is no exception. In order to express that we are dealing with an integer
variable k, we use the notation

k : INTEGER;

Variables are also referred to as data objects, and we say that k has been declared as an
INTEGER variable. The integer data type in BASAL is said to be predefined: it simply
comes with the language. As we shall see, there are only a few predefined data types
– most types will have to be explicitly defined. With integers, the arithmetic operators
“+” (addition), “–” (subtraction), “*” (multiplication), and “/” (division) can be used in
combination with integer variables. The result of using these operations is, again, always
an integer value.

Example 4.6. Valid expressions in BASAL are, for example:

2 + 3, k – 6, (i / 2) * 2,

where we assume that k and i are INTEGER variables. Note that if i has the value 7 “i/2”
yields the integer result 3. Integer division always rounds off to the nearest integer smaller
than or equal to the exact result.

�

Another predefined data type in BASAL is the character. Expressing that some variable c

can only take characters as its values is carried out by means of the notation

c : CHARACTER;

Analogous to integers, we say that we have declared c to be of type CHARACTER. Char-
acter values (or literals, as they are more commonly called) are expressed by using sin-
gle quotes. For example, the character “a” is expressed in BASAL as ’a’. Characters are
assumed to be encoded according the ASCII code. Only a few operations are defined for
characters. In order to get the ASCII value of, for example, the character “a” we can write

CHARACTER’POS(’a’);

which yields the result 97. In other words, the expression above is the way we represent
the function ascii�x� discussed before. Likewise, by writing

CHARACTER’VAL(65);

downloaded by wizard.z@foxmail.com

A structured programming language 153

we obtain the character “A” which has ASCII code 65. We will find these two character
operations in some of the examples to follow.

The last predefined data type that we will discuss here, is the Boolean. Using our
BASAL notation, a Boolean variable b can take on only two values TRUE and FALSE, and
should be declared in the usual way:

b : BOOLEAN;

The Boolean operators ‘not’, ‘and’, ‘or’, and ‘xor’ apply to Boolean values and yield
Boolean results. Boolean values also result when using the relational operators ‘�’, ‘�’,
‘��’, ‘�’, ‘�’, ‘=’ in conjunction with two integers.2 These relations adhere to the con-
ventional mathematical semantics.

Defining your own simple data types

Besides using predefined types, BASAL also provides notations for defining your own
data types. Defining a data type D essentially means specifying the elements of D. There
are various ways of doing this, but probably the most straightforward is simply naming
all the elements (note that this may not be the most convenient way of defining a data
type – and, in fact, it may not always be possible). Where a data type consists of a finite
number of elements we can use a so-called enumeration type declaration for defining
the data type. For example, a data type containing symbols for the days of the week can
be defined in BASAL as follows:

type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);

Using this notation, we have expressed that the data type DAY consists precisely of the
seven elements MON � � � SUN. It is now easy to talk about variables of this data type, and
which can be declared in the usual way.

But what if we want to specify a data type that consists of too many values to name
explicitly? In that case, one possibility is to base your definition on an already specified
data type. In terms of BASAL, you can declare a subtype. To illustrate, in order to define
a restricted set of positive integers, we can declare a subtype CARDINAL as follows:

subtype CARDINAL is INTEGER range 0..65535;

What we have expressed here is that any cardinal variable is just the same as an integer
variable, except that it cannot take on negative values, nor values that are greater than
65535. We shall encounter more examples of enumeration types and subtypes in later
sections.

2We note that our notation here deviates somewhat from that of Ada.

downloaded by wizard.z@foxmail.com

154 From hardware to software

Composed data types

Besides simple data types such as integers, Booleans, and characters, BASAL also pro-
vides notations for defining so-called composed data types. A composed data type is (at
first instance) constructed from simple data types, and is in two basic forms.

Array data types. First, BASAL provides a notation to define indexed sets by means of
an array declaration. To illustrate, suppose the data we wish to manipulate is in fact a
finite bit string of length 8. Now all bit strings of length 8 can be considered as an indexed
set of bits, each bit being a variable that can take on the value 0 or 1. This brings us to
the two data types BIT and BITSTRING8 that can be declared in BASAL as follows:

subtype BIT is INTEGER range 0..1;
type BITSTRING8 is array (0..7) of BIT;

Now suppose we are using a variable bitstring, which we have declared as

bitstring : BITSTRING8;

In this case, bitstring itself consists of eight simple variables, denoted as bitstring(0), bit-
string(1), � � �, bitstring(7), respectively. Each of these variables is of type BIT. The index
set of type BITSTRING8 has been defined as 0 � � �7.

As another example, suppose we wish to define a data type for representing the usual
number of working hours per day of the week. In that case, it would be convenient if we
could use our previous definition of the data type DAY as an index. In fact, this is possible,
for we can write

type WORKING HOURS is array (DAY) of CARDINAL;

If we had a variable work of data type WORKING HOURS we could then use the notation
work(MON) to refer to the number of working hours on an ordinary Monday.

Record data types. Similarly, we can also declare so-called record data types. Record
data types are – in principle – composed of different data types. This is best explained
by an example.

Example 4.7. Suppose we wish to have a representation of characters as displayed on
an ordinary screen. In particular, we assume that characters can be displayed either in
reverse video or not, but can also be displayed in a normal, bold, underlined, or italic
typeface. We can then represent each position on the screen by means of the following
record data type:

downloaded by wizard.z@foxmail.com

A structured programming language 155

type CHARACTER MODE is (NORMAL, BOLD, UNDERLINE, ITALIC);
type CHARACTER DISPLAY is

record
char : CHARACTER;
reverseVideo : BOOLEAN;
format : CHARACTER MODE;

end record ;

yielding a data type CHARACTER DISPLAY which is composed from a character, a Boolean,
and an enumerated type CHARACTER MODE.

�

The different components of a record are denoted as fields, and can be referred to by using
a dot notation. For example, if we had the variable declaration

charDisplay : CHARACTER DISPLAY;

then charDisplay.char denotes the actual character variable associated with charDisplay.
Similarly, if charDisplay.reverseVideo has the value TRUE, then this would mean that charDis-
play.char would be shown in reverse video on the screen.

Combining arrays and records. Of course, it is also possible to denote complex data
types by combining the notations introduced so far.

Example 4.8. Assume that our screen consists of 72 rows and 120 columns, where the
rows are counted down-wise, and the columns from left to right. This means, for exam-
ple, that the upper-left corner of the screen can be represented by the coordinates �1�1�
and the lower-right corner by the coordinates �72�120�. Representing an entire screen is
then easily expressed in BASAL by the following declarations:

type DISPLAY ROW is array (1..120) of CHARACTER DISPLAY;
type DISPLAY is array (1..72) of DISPLAY ROW;

Suppose, then, that we had the following variable declaration:

screen : DISPLAY;

In this case, screen(1)(120).char would denote the character that is displayed in the upper-
right corner.

�

Using array declarations for defining the fields of record is, of course, also possible. To
illustrate, consider a completely different representation of a screen by considering com-
plete rows, instead of only a single position.

Example 4.9. We assume that a screen is now represented by entire rows, each row con-
sisting of 120 characters. We first introduce a separate data type for representing rows as
follows:

downloaded by wizard.z@foxmail.com

156 From hardware to software

type CHARACTER MODE is (NORMAL, BOLD, UNDERLINE, ITALIC);
type DISPLAY ROW is array (1..120) of CHARACTER;
type ROW OF CHARACTER is

record
column : DISPLAY ROW;
reverseVideo : BOOLEAN;
format : CHARACTER MODE;

end record ;

It should be clear that we have lost some flexibility here. In this case, a row can only
be displayed, for example, in reverse video or not; it is not possible to just select one or
several characters in that row to be displayed otherwise.

Representing an entire screen can now be done by means of the following data type
declaration, and accompanying variable:

type DISPLAY BY ROW is array (1..72) of ROW OF CHARACTER;
screen : DISPLAY BY ROW;

In this case, the character in the upper-right corner of the screen is represented by the
variable screen(1).column(120).

�

We shall encounter several examples of (combinations of) record and array data types in
subsequent sections.

4.3.2 Statements

So far, we have introduced only a notation for defining data types and variables. Nothing
has been said about the way we can describe operations on variables. In this section we
shall start by discussing the most elementary ones, referred to as statements. Statements
are comparable to instructions in the sense that they are assumed to be executed. How-
ever, where program counters are used to indicate precisely which instruction is to be
executed next, there is nothing comparable in high-level programming languages. The
reason for this is that although statements are executed one by one, statements in high-
level programming languages may be contained in other statements. This situation does
not occur in machine languages. Rather than going into these matters here, we shall make
this point clear in the following sections.

Again, we start with the simple notations for operations in BASAL: the statements for
assignment and control flow.

Assignment statement

An assignment statement is used to express the assignment of a value to a variable. This
is denoted in BASAL by means of a special symbol “:=” as in:

k := 2;

downloaded by wizard.z@foxmail.com

A structured programming language 157

Assuming that k is an integer variable, this assignment expresses that the present value
of the variable k is replaced by a new one, namely 2. The semicolon at the end of the
assignment is important. It indicates the termination of the execution of the assignment.
This is relevant when we have to specify a series of assignments, as in:

k := 2; b := TRUE; c := ’a’;

In this case, the assignments are executed in sequence. First, k is assigned the value 2,
then b becomes TRUE, and finally c is assigned the literal ‘a’. Again, note how we are
implicitly assuming some kind of execution mechanism by which these assignments take
place, and in the order just mentioned.

Related to the assignment statement is the initialization of variables. In BASAL it is
possible to assign an initial value to a variable which is specified as part of its declaration.
For example, after declaring

k : INTEGER := 0;

we have not only declared a new integer variable k but have also provided it with the
initial value 0.

Initialization is not only a convenient means for providing an initial value for a vari-
able. The same mechanism must be used for declaring so-called constants. A constant
is considered a variable that is initialized once, but whose value can never be replaced.
For example, if we wanted to express the value “0” by means of a constant ZERO, the
way to do this in BASAL would be:

ZERO : constant INTEGER := 0;

Let’s illustrate this by means of another example.

Example 4.10. Suppose we wish to initialize our variable screen as declared in Exam-
ple 4.8. In particular, we assume that the screen is initially to be entirely blank, for which
we can use the character representation of a single space. Our aim is to use a constant
BLANK for this purpose, which then leads to the following declarations in BASAL (see
also Table 2.3 on page 37):

BLANK : constant CHARACTER := CHARACTER’VAL(32);

type CHARACTER MODE is (NORMAL, BOLD, UNDERLINE, ITALIC);
type CHARACTER DISPLAY is

record
char : CHARACTER := BLANK;
reverseVideo : BOOLEAN := FALSE;
format : CHARACTER MODE := NORMAL;

end record ;

type DISPLAY ROW is array (1..120) OF CHARACTER DISPLAY;
type DISPLAY is array (1..72) of DISPLAY ROW;

downloaded by wizard.z@foxmail.com

158 From hardware to software

Recall that CHARACTER’VAL(x) stands for the character associated with ASCII value x. In
our case, BLANK will be correctly initialized as the character representing a space. Now
in this case, a declaration such as

screen : DISPLAY;

will automatically initialize the variable screen in such a way that it represents a com-
pletely blank screen.

�

We shall encounter initializations and constant declarations a number of times in the ex-
ample programs yet to follow.

Control flow statements

Our notation for describing operations assumes, as in the case of processors, that state-
ments are executed in the order in which they appear in a description. In order to alter the
order of execution we shall make use of a number of control flow statements. Control
flow statements are basically in two forms, conditional statements and repetitive state-
ments.

The conditional statement. The conditional statement, also referred to as the if state-
ment, is used to guard the execution of a series of statements, in the sense that execution
will only take place if some condition is met. To illustrate, consider the following ex-
ample, which is a rather strange way of calculating the difference between two integer
variables m and n:

if m � n then d := n – m;
elsif m � n then d := m – n;
else d := 0;
end if ;

The semantics of a conditional statement are quite obvious. Starting with the evaluation
of the first Boolean expression (in our case “m � n”), the statements associated with the
Boolean expression that evaluates to TRUE the first time are executed. If neither of the
first two conditions holds, the statements of the ELSE-part are executed. So, if m had
the value 5 and n had the value 3 when the statement above was executed, then only the
statement “d := m – n” would be executed.

Repetitive statement. As its name suggests, a repetitive statement is used to express
the repeated execution of a series of statements. In the case of BASAL there are two forms.
The so-called while statement is the most general one and is used to execute a series
of statements until some general condition is met. For example, consider the following
program fragment:

downloaded by wizard.z@foxmail.com

A structured programming language 159

row := 1;
while row � 72 loop
�� initialize a complete row first:
col := 1;
while col � 120 loop

screen(row)(col).char := BLANK;
screen(row)(col).reverseVideo := FALSE;
screen(row)(col).format := NORMAL;
col := col + 1;

end loop ;
row := row + 1;

end loop ;

Listing 4.4 An implementation for initializing a screen with blanks.

i := 1; x := 1;
while i � 12 loop

x := 2 * x; i := i + 1;
end loop ;

In this case, the two assignment statements that are part of the while statement are repeat-
edly executed as long as the value of the integer variable i is less than 12. It is not hard
to see that the statements above specify how 212 can be calculated.

Example 4.11. It should now be clear that we can also use a while statement to explicitly
initialize our variable screen from Example 4.8, rather than the initialization method as
discussed in Example 4.10. Consider the piece of BASAL code in Listing 4.4 (where row
and col are integer variables).

What happens is that we initialize the screen, row by row, by setting the right values
for each column element. In other words, the screen is initialized by first considering the
upper-left corner, then moving to the next position to the right until a complete row has
been initialized. After that, we continue with the second row, and so forth. We leave it
as an exercise for the reader to adapt the code so that a screen is initialized column by
column.

�

Alternatively, we can also sometimes use a so-called for statement. In this case, an index
variable is used to repeat the execution of a series of statements. To illustrate, we could
also have expressed the simple while statement above in the following way:

for i in 1..12 loop
x := 2 * x;

end loop ;

In this case, the index variable i is automatically initialized to 1, and incremented by 1
after each time the assignment “x := 2 * x” is executed. As soon as i reaches the value 13,
i.e. its value would lie outside the specified range 1 � � �12, execution continues with the

downloaded by wizard.z@foxmail.com

160 From hardware to software

for row in 1..72 loop
�� initialize a complete row first:
for col in 1..120 loop

screen(row)(col).char := BLANK;
screen(row)(col).reverseVideo := FALSE;
screen(row)(col).format := NORMAL;

end loop ;
end loop ;

Listing 4.5 An alternative implementation for initializing a screen with blanks.

statement following the for statement. Incidentally, index variables are assumed to be im-
plicitly declared as integer variables. In other words, they need not be declared explicitly
in a program. Also, they may only be used within the for statement in which they occur.

Example 4.12. Our explicit initialization of a screen variable in Example 4.11 can now
be written more conveniently by making use of a for statement as shown in Listing 4.5.
Again, note that neither the index variable row or col, respectively, needs to be declared
as previously.

�

4.3.3 Procedures

We have presented the most important notations for expressing data and operations on
data in our BASAL programming language. It should now also be clear why we can talk
about programming in BASAL. We are implicitly assuming that there is some kind of
execution mechanism underlying BASAL; a mechanism that is quite similar to the fetch-
decode-execute cycle discussed in Chapter 3. This will now enable us to consider pro-
gram units: logical units that constitute a complete program, consisting of declarations
for data types, variables, and statements. We first start by providing a notation for rather
simple programs. Later, we shall see how we can combine several programs into a single
so-called package.

Procedures declarations

The simplest form of a program description is by means of a so-called procedure. A
procedure is a collection of declarations for data types and variables, combined with a
collection of statements. As an example of a procedure declaration, consider the follow-
ing description of a program that calculates 212:

downloaded by wizard.z@foxmail.com

A structured programming language 161

procedure POWER is
x : INTEGER := 1;

begin
for i in 1..12 loop

x := x * 2;
end loop ;

end POWER;

Note that we need not declare the index variable i as explained above. The data types and
variables declared within a procedure are said to be local to that procedure. This means
that their declaration is valid only within the procedure and nowhere else. When we say
that a procedure is executed, we mean that the statements specified after the word begin
are executed in the order of their appearance.

Now, just as we have illustrated how convenient it can be to have subroutines during
our discussion of PRIMAL, the same holds when dealing with high-level descriptions. But
in that case, it is convenient also to be able to parameterize a procedure, i.e. we need a
way to specify exactly what the input and output are of a procedure. Therefore, we need
to make a distinction between three types of parameters:

� First, we will wish to make use of parameter values that serve merely as input. In
that case, the value that is passed on to the procedure should only be read; under
no circumstances must it be changed.

� Opposed to input parameters, there are also output parameters. An output pa-
rameter is a value that is computed by the procedure, and which is to be returned
as a result.

� Finally, there is also something in the middle, namely values that are to be changed
by a procedure. These so-called in/out parameters have the property that they act
as input as well as output parameters.

This distinction between parameters is also made in BASAL. In general, parameters are
declared as ordinary variables, as illustrated by the following parameterized version of
our procedure POWER given above:

procedure POWER(p : in INTEGER; u : in INTEGER; v : out INTEGER) is
x : INTEGER := 1;

begin
for i in 1..p loop

x := x * u;
end loop ;
v := x;

end POWER;

What does this notation mean? It is easily seen that this version of POWER is essentially
the same as our previous one, except that we have added three parameter declarations:

� The input parameter p replaces the value 12 that we previously had. In particular,
this parameter is used to calculate how often a multiplication should take place, i.e.
it represents the exponent of our calculation.

downloaded by wizard.z@foxmail.com

162 From hardware to software

� The input parameter u is used as the base of the calculation and replaces the value
2 of our previous version. Like p, it is required only to know the value of u; there
is no need to change it.

� Finally, the output parameter v represents the result of POWER. In fact, it is not
difficult to see now that we have described a procedure that calculates the value of
v as up.

Let’s first see how we can make use of (parameterized) procedures. The first point to
make is that procedures are much like the subroutines in PRIMAL. In particular, as PRI-
MAL’s BRANCH instruction, procedures in BASAL can be called. To illustrate, suppose
we had the following declarations:

exponent : constant INTEGER := 12;
base : constant INTEGER := 2;
result : INTEGER;

In that case, we can assign the value 212 to result by means of the procedure call state-
ment

POWER(exponent, base, result);

Because the first two parameters are used as mere input to the procedure POWER, we
could have also assigned the value 212 to result by immediately providing the values 2
and 12 as in

POWER(12, 2, result);

Examples of using procedures

Let’s illustrate the use of procedures by considering a number of examples.

Example 4.13. We first return to our explicit initialization of a variable screen from Ex-
ample 4.11. In particular, we wish to provide a procedure that will allow us to initialize
an arbitrary variable of type DISPLAY with a given initial character. Consider the BASAL

code shown in Listing 4.6.
Now suppose again we had declared a variable screen of type DISPLAY. In order to ini-

tialize this variable with spaces, we would then need to call the procedure INIT DISPLAY

as in:

INIT DISPLAY(screen, BLANK);

The point to note is that because the parameter someScreen of INIT DISPLAY is specified
as out, the variable screen will be completely changed when calling INIT DISPLAY. In par-
ticular, none of the values it had previously can even be inspected. This is exactly what
we needed, as the whole idea of initialization is to provide a value for each variable of
which screen is composed. On the other hand, there is no reason to change the value of

downloaded by wizard.z@foxmail.com

A structured programming language 163

procedure INIT DISPLAY(someScreen : out DISPLAY; char : in CHARACTER) is
begin

for row in 1..72 loop
�� initialize a complete row first:
for col in 1..120 loop

someScreen(row)(col).char := char;
someScreen(row)(col).reverseVideo := FALSE;
someScreen(row)(col).format := NORMAL;

end loop ;
end loop ;

end INIT DISPLAY;

Listing 4.6 The procedure INIT DISPLAY for initializing any screen with a user-specified char-
acter.

the parameter char; instead, we need merely to know its value. For this reason, it has been
declared by using in.

�

Many programming languages have a number of standard procedures which simply
come with the language. Often, such procedures are used for I/O purposes. For example,
the language Modula-2 (Wirth, 1983) has two standard procedures for handling terminal
I/O. Using our BASAL notation, these procedures can be specified as follows:

procedure READ(c : out CHARACTER);
procedure WRITE(c : in CHARACTER);

The procedure READ is used for reading a character that has been typed in at the keyboard,
whereas WRITE is used to display a character at the current position of a screen. Each
time WRITE is called, a character will be displayed next to the previous one, possibly
continuing on the next line.

Example 4.14. Suppose we wish to construct a procedure that will automatically display
on our screen the character that has just been typed in. This can then be described in
BASAL as shown in Listing 4.7. Note that our procedure requires no parameters at all.
Once called, the only thing it will do is echo the characters that have been typed in.

�

We can produce something more sophisticated by using the two procedures READ and
WRITE. In particular, we can make a simple calculator. First, we assume that someone
can type in a sequence consisting of a maximum of 10 digits, starting with a digit between
“1” and “9” and terminating the sequence by a period (“.”). For simplicity, we assume
that only correct sequences are typed in.

Example 4.15. Our first concern is to convert a sequence of digits into an integer value.
This is really not that difficult (at least if we assume that the person at the keyboard fol-
lows the rules of the game). To this end, note that if someone types in the character “8”

downloaded by wizard.z@foxmail.com

164 From hardware to software

procedure ECHO is
key : CHARACTER;

begin
while TRUE loop

READ(key); �� Read the next character that is typed in,
WRITE(key); �� and show it on the display.

end loop ;
end ECHO;

Listing 4.7 A procedure for echoing typed-in characters on a screen.

procedure READ NUMBER(number : out INTEGER) is
key : CHARACTER;
digit : INTEGER;
result : INTEGER := 0;
more : BOOLEAN := TRUE;

begin
while more loop

READ(key); �� read a character from the keyboard
WRITE(key); �� and display it on the screen
if key �� ’.’ then
�� the sequence is not over yet: a digit has been typed in
digit := CHARACTER’POS(key) – CHARACTER’POS(’0’);
result := result * 10 + digit;

else
�� a period had just been typed in, so that we need to stop
more := FALSE;

end if ;
end loop ;
number := result;

end READ NUMBER;

Listing 4.8 Reading an integer number from the keyboard.

we can easily convert this to an integer value and storing it in a variable, say digit as fol-
lows:

digit := CHARACTER’POS(’8’) – CHARACTER’POS(’0’);

This can easily be verified by considering Table 2.3: CHARACTER’POS(’8’) is equal to
56, and CHARACTER’POS(’0’) is equal to 48, yielding that the value of digit is equal to
56�48� 8. Now look at the procedure shown in Listing 4.8. What is seen here is that we
gradually construct the final result by systematically multiplying the number constructed
so far by 10. It is not difficult to verify that number will now correspond to the integer
typed in at the keyboard.

�

Our next assumption is that, after having typed in the first sequence, either a “�” or a
“�” can be typed in, to indicate what the actual result should be.

downloaded by wizard.z@foxmail.com

A structured programming language 165

procedure CALCULATE(result : out INTEGER) is
key : CHARACTER;
firstNumber : INTEGER;
secondNumber : INTEGER;

begin
READ NUMBER(firstNumber);
READ(key);
WRITE(key);
READ NUMBER(secondNumber);
if key = ’+’ then

result := firstNumber + secondNumber;
else

result := firstNumber – secondNumber;
end if ;

end CALCULATE;

Listing 4.9 The actual calculator.

Example 4.16. Based on this assumption, we can now almost complete our trivial cal-
culator. What we need to do is (1) read the first number, (2) check what operation is re-
quired, (3) read the second number, and (4) do the calculation. This can be described by
the procedure CALCULATE (Listing 4.9). Note how this procedure makes use of the pro-
cedure READ NUMBER but for different variables that are passed on as parameters (first-
Number and secondNumber, respectively). The final result is returned as a parameter of
the procedure CALCULATE.

�

Finally, we now only need to write the result back onto the display. It will come as no
surprise that this is precisely the reversed form of the procedure READ NUMBER. Let’s
see what this looks like.

Example 4.17. The basic conversion from an integer number to a sequence of digits is
rather straightforward. In principle, if we have an integer digit having a value in the range
0� � � � �9, we can simply convert this to a character char as follows:

char := CHARACTER’VAL(digit + CHARACTER’POS(’0’));

But suppose we had an arbitrary integer number? In that case, the last digit can easily be
converted as:

char := CHARACTER’VAL(number – (number / 10) * 10);

where it should be noted that, because we are dealing solely with integers, for example,

278 � �278�10� �10 � 278�27 �10� 8
� �

number (number / 10) * 10

downloaded by wizard.z@foxmail.com

166 From hardware to software

procedure WRITE NUMBER(number : in INTEGER) is
sequence : array (1..20) of CHARACTER;
strippedNumber, newNumber, digit : INTEGER;

begin
newNumber := number;
for k in 1..20 loop

strippedNumber := (newNumber / 10) * 10;
digit := newNumber – strippedNumber;
sequence(k) := CHARACTER’VAL(digit + CHARACTER’POS(’0’));
newNumber := strippedNumber / 10;

end loop
WRITE(’=’);
for k in 1..20 loop

WRITE(sequence(20 – k + 1));
end loop ;

end WRITE NUMBER;

Listing 4.10 The procedure for writing calculations onto the screen.

The basic scheme for converting an integer can then be done by making use of a character
array in the following way (note that the multiplication of two 10-digit numbers results
in a number with a maximum of 20 digits):

sequence : array (1..20) of CHARACTER;
strippedNumber, digit : INTEGER;
...
for k in 1..20 loop

strippedNumber := (number / 10) * 10;
digit := number – strippedNumber;
sequence(k) := CHARACTER’VAL(digit + CHARACTER’POS(’0’));
number := strippedNumber / 10;

end loop

The only thing we need to be aware of is that converting an integer in this way, starts at the
least significant digit, i.e. the right-most one. In our example this means that sequence(1)
denotes the right-most digit, and that sequence(20) the left-most one. We can now com-
plete our example by adding the procedure shown in Listing 4.10. The only thing that
remains to be done is to combine the procedure CALCULATE and WRITE NUMBER in a
procedure CALCULATOR. We leave this as an exercise for the reader.

�

4.3.4 Packages

Procedures and variables can be grouped into so-called packages. Packages are a conve-
nient and practical means to denote that certain variables and procedures form a logical
unit. In other words, they allow us to split a program description into different modules.
In addition, they also provide a means for indicating which specifications of procedures,
data types, and variables can be used within other packages and procedures. Therefore,

downloaded by wizard.z@foxmail.com

A structured programming language 167

a distinction is made between a package specification and a package body. A pack-
age specification specifies exactly those things that can be used within other packages; a
package body describes how things are implemented.

Package specifications

A package specification in BASAL merely describes what is available to other packages
and procedures. In this sense, it describes what can be used, rather than how things are
actually implemented. A package specification is generally expressed in BASAL as:

package PACKAGE NAME is
...

end PACKAGE NAME;

where the ellipsis indicate the place where data types, variables, etc. are declared. To
illustrate, the two procedures READ and WRITE we encountered in the previous section
could well have been encapsulated into a package specification such as:

package TERMINAL is
procedure READ(c : out CHARACTER);
procedure WRITE(c : in CHARACTER);

end TERMINAL;

In this case, the package specification TERMINAL merely provides descriptions for read-
ing and writing characters for a combination of a keyboard and monitor. In order to use
these two procedures we have to reference them explicitly by making use of a dot nota-
tion, which we already encountered in the case of records. For example, a correct imple-
mentation of the procedure ECHO from Example 4.14 would have been:

procedure ECHO is
key : CHARACTER;

begin
while TRUE loop

TERMINAL.READ(key); �� Read the next character that is typed in,
TERMINAL.WRITE(key); �� and show it on the display.

end loop ;
end ECHO;

To illustrate the way that package specifications are given in BASAL let’s look at a more
sophisticated example. Suppose we wish to specify a collection of procedures and the
like that jointly describe what an integer stack is, including its associated operations.
Informally, an integer stack is just like any other stack, but is restricted to merely storing
integer values. Assume that our integer stack should be capable of storing a maximum
of 1000 integer values. The description of such a package can be elegantly expressed in
BASAL as illustrated in the following example.

Example 4.18. The whole idea when using BASAL to specify user-defined data types by
means of packages is to start with a specification part. In the case of our example, we use
the following specification outline (details will be filled in later):

downloaded by wizard.z@foxmail.com

168 From hardware to software

package STACK PACKAGE is
MAXSTACKSIZE : constant INTEGER := 1000;

subtype ELEMENT is INTEGER;
type STACK is ...

procedure INIT(s : out STACK; ...);
procedure PUSH(s : in out STACK; value : in ELEMENT);
procedure POP(s : in out STACK; value : out ELEMENT);

end STACK PACKAGE;

Let’s take a closer look at what we have outlined here. First, in order to emphasize that
this is just another stack except for the fact that it can store only elements of the INTEGER
data type we have deliberately declared a separate ELEMENT data type which, in our case
is defined as a subtype of INTEGER. Second, we have declared a constant MAXSTACKSIZE
which reflects the maximum amount of (integer) values that any stack can have. The
package specification also contains a description of a data type STACK (which is further
detailed below), and the operations that can be applied to variables of this type: INIT for
initializing the stack, and PUSH and POP for manipulating it.

Consider the procedure specification PUSH first. By declaring the parameter s by us-
ing in out, we specify that this procedure will change the stack s. Indeed, this is what
we would expect it to do. In particular, we would expect it to store the value given by
the input parameter value. That this parameter should not be changed is also obvious. It
should merely be pushed onto the stack. A similar reasoning explains why the procedure
POP has an in out parameter s, and an output parameter value. In this case, calling POP

would change the stack s, and the value stored at the top would be returned in the form
of value.

The procedure INIT, finally, is to be used for initializing a stack. We leave it to the
reader to verify that specifying s as an output parameter for the INIT is precisely what we
would need for initialization.

�

Let’s fill in some more details. In particular, we assume that when a stack is initialized
it can be explicitly stated what the actual maximum size should be, provided that this is
smaller than 1000. We can complete our specification as follows.

Example 4.19. We now need to provide a complete specification of a stack. First, we
need to have a means of storing integer values. This can be solved by a simple array.
Also, we have to stipulate exactly what the present top of the stack is, as well as the max-
imum size as specified at initialization. This then leads to the complete package specifi-
cation shown in Listing 4.11.

When a stack is initialized, the actual maximum size will have to be provided, which
is subsequently recorded in the field max of the data type STACK. Likewise, we use the
field top to indicate the present top of the stack. Not surprisingly, top in all cases will be
initialized to 0 as will be shown below.

�

downloaded by wizard.z@foxmail.com

A structured programming language 169

package STACK PACKAGE is
MAXSTACKSIZE : constant INTEGER := 1000;

subtype ELEMENT is INTEGER;
type ELEMENT SET is array (1..MAXSTACKSIZE) of ELEMENT;
type STACK is

record
max : INTEGER range 0..MAXSTACKSIZE;
top : INTEGER range 0..MAXSTACKSIZE;
content : ELEMENT SET;

end record ;

procedure INIT(s : out STACK; maxSize : in INTEGER);
procedure PUSH(s : in out STACK; value : in ELEMENT);
procedure POP(s : in out STACK; value : out ELEMENT);

end STACK PACKAGE;

Listing 4.11 The specification of the package STACK PACKAGE.

Package bodies

However, as we have said, this is only the specification part: it tells us precisely what
a stack is, together with the procedures that can be applied to it. It says nothing about
how the stack is manipulated. Therefore, we use a separate notation, namely that of a
package body. A package body generally has the form

package body PACKAGE NAME is
...

end PACKAGE NAME;

where, at the ellipses, the implementation for the procedures in the package specification
are given. Additional declarations for types, variables, etc. may also be included here.
Let’s see how this works for our stack example so far.

Example 4.20. We can continue by further describing how (integer) stacks work. Con-
sider the package body shown in Listing 4.12. It can now be easily seen that, for example,
our implementation of the procedure PUSH accomplishes precisely what we expect from
it.

�

The example so far shows how we can construct a logically coherent group of data
type declarations and operations by means of a package. The package specification de-
scribes what is public. These are the things that can be used within other packages as
well. What’s described by a package body, however, is considered to be private. No
declarations given in a package body can be used in other packages. We shall explain
other details of packages as we come across them.

We note that our package body as given in Example 4.20 is not complete. For exam-
ple, we have not provided any adequate means to deal with the situation when a value is

downloaded by wizard.z@foxmail.com

170 From hardware to software

package body STACK PACKAGE is

procedure INIT(s : out STACK; maxSize : in INTEGER) is
begin

if maxSize � MAXSTACKSIZE then
s.max := maxSize;

else
s.max := MAXSTACKSIZE;

end if ;
s.top := 0;

end INIT;

procedure PUSH (s : in out STACK; value : in ELEMENT) is
begin

if s.top � s.max then
�� We adopt the same convention as used in PRIMAL, by first
�� incrementing the value for top, and then storing a new value there.
s.top := s.top + 1;
s.content(s.top) := value;

end if ;
end PUSH;

procedure POP (s : in out STACK; value : out ELEMENT) is
begin

if s.top � 1 then
�� Here, we should do exactly the opposite to PUSHing a value: we
�� first remove the value stored at the top, and then lower the stack.
value := s.content(s.top);
s.top := s.top – 1;

end if ;
end POP;

end STACK PACKAGE;

Listing 4.12 An implementation for (integer) stacks.

pushed onto a full stack or when an attempt is made to pop a value from an empty stack.
We leave it as an exercise for the reader to correct this situation.

Parameterized packages

Before we divert our discussion from how programs can be expressed in BASAL, there
is one aspect that we want to bring to your attention. Despite the fact that our package
STACK PACKAGE will only work for the INTEGER data type, it should be clear that the
same solution can also be used for constructing stacks for other data types. For example,
if we wanted to construct a package for CHARACTER stacks then only minor changes to
our package would be needed. In particular, we need change only the declaration of the
type ELEMENT to:

subtype ELEMENT is CHARACTER;

downloaded by wizard.z@foxmail.com

A structured programming language 171

This is the only adaptation required. The rest of our package specification and imple-
mentation remains as shown above. Of course, if we want to have a separate package
for integer stacks as well a package for character stacks, we would still need to copy our
initial package and make the above-mentioned adaptation of the type ELEMENT. This,
however, can be avoided by means of so-called parameterized packages. The original
concept of a parameterized package comes from Ada, where it is referred to as a generic
package and which is more sophisticated than is required for the purposes of this book.
In BASAL we support parameterized packages in the following way.

In order to a construct a package for a specific kind of data we first construct a general
stack package using the following notation:

package STACK PACKAGE(type ELEMENT) is
...as before, but omitting the declaration of ELEMENT.

end STACK PACKAGE;

Then, if we wish to construct a package INTEGER STACK for integer stacks, we do this
by writing:

package INTEGER STACK is new STACK PACKAGE(ELEMENT � INTEGER);

Likewise, defining a package for handling character stacks is accomplished through the
following declaration:

package CHARACTER STACK is new STACK PACKAGE(ELEMENT � CHARACTER);

Here, we can conceive the data type ELEMENT as being a parameter of STACK PACKAGE.
The difference with parameters as used in procedures, lies in the fact that we are now
using data types instead of actual data as parameters.

Example 4.21. As another example of a general package, and one that we shall encounter
a few times in this book, consider the parameterized package specification for queuing
elements shown in Listing 4.13. We have omitted the specific details with respect to the
actual definition of the type QUEUE, but as you might expect, these will not differ rad-
ically from that of our STACK data type. In fact, if you realize that a queue is precisely
the opposite of a stack, i.e. elements are added to the end of a queue and removed from
the front, it is seen that the implementation of the procedures APPEND and REMOVE will
also be quite similar to those of PUSH and POP, respectively. We leave it as an exercise
for the reader to outline these implementations.

Using our general queue package, we can now easily construct other queuing pack-
ages for queuing specific elements. For example, a package for integer queues may be
declared as:

package INTEGERQ is new GENERAL QUEUE(ELEMENT � INTEGER);

�

downloaded by wizard.z@foxmail.com

172 From hardware to software

package GENERAL QUEUE (type ELEMENT) is
type DEFINITION is ... definition is omitted for the sake of brevity

procedure APPEND(q : in out DEFINITION; elem : in ELEMENT);
�� Append the given element [elem] to the queue [q].

procedure REMOVE(q : in out DEFINITION; elem : out ELEMENT);
�� Remove the element at the head of the queue, and return it as [elem].

procedure CHECK EMPTY(q : in DEFINITION; status : out BOOLEAN);
procedure CHECK FULL(q : in DEFINITION; status : out BOOLEAN);
�� Check if the indicated queue is empty or full, respectively.

end GENERAL QUEUE;

Listing 4.13 The specification of general package for queuing elements.

4.4 A BASAL virtual processor

So what have we actually accomplished? Not very much, to be honest. We have de-
scribed only two programming languages. The PRIMAL language may be assumed to
be implemented by a processor, but is not really the kind of programming language that
one would enjoy for constructing programs. On the other hand, BASAL at least allows
us to perhaps enjoy program construction, but there’s no such thing as a BASAL proces-
sor. So, we have a problem. One way or the other, BASAL can only be of use to us if we
can provide a language implementation. What does this mean? When considering ma-
chine languages, their implementation is always provided by means of a real processor.
In BASAL, we have no choice other than to find something analogous. But constructing a
real processor that implements BASAL is simply impossible. The language is too intricate
to seriously consider such an approach. Instead, we should try to construct a virtual pro-
cessor which forms an implementation of BASAL. This virtual processor will be partly
implemented in software.

In this section we shall concentrate on a number of issues. First, we shall explain the
principal working of a virtual processor by taking a global view on the execution of a
BASAL program in terms of a PRIMAL program. Then, in Section 4.4.2 we shall discuss
how the execution of BASAL programs can be automated by making use of a compiler or
interpreter.

4.4.1 The principle of a virtual processor

Our first concern at this point is to explain the principal working of a virtual processor.
We start by taking a global view of what programs are actually all about. Starting in
Chapter 2, we have consistently made a distinction between data and operations that ma-
nipulate data. This is particularly emphasized by our initial architecture of a processor,
shown in Figure 3.10, in which we separated a memory module for instructions from a
memory module containing only data. And again, in our presentation of PRIMAL the dis-

downloaded by wizard.z@foxmail.com

A BASAL virtual processor 173

data

statements

select

fetch execute

data

statements

before after

BASAL
processor

Figure 4.5 The effect of fetching and executing a BASAL statement.

tinction between the two was made explicit. Instructions were there to manipulate vari-
ables. In this sense, BASAL is no exception. Variables need to be declared explicitly, and
by combining assignment statements with control flow statements, we discussed how we
could describe the manipulation of variables. The major difference between the sophis-
ticated notation provided by BASAL and the rather low-level notations available in PRI-
MAL is to be sought in the structural organization of operations and mechanisms for data
abstraction. The principal distinction between data and operations, however, remains.

Using this distinction, we can now be more explicit about our concept of a virtual pro-
cessor. First, consider Figure 4.5, which illustrates the principle of the execution of a
BASAL program. What happens is the following. As we have mentioned, we assume the
existence of some abstract execution mechanism underlying BASAL. This mechanism
works just like the fetch-execute cycle of a processor. First, a statement is fetched from
the set of statements that comprise a BASAL program. In addition, any values of variables
that are needed to execute the statement are fetched from the data part of the program.
During the execution of the statement two things are accomplished: (1) the next state-
ment to be executed is determined, and (2) the value of variables are replaced by new
ones when executing an assignment statement. Thereafter, the selected next statement is
fetched and executed again.

Of course, we do not yet have a processor that repeats the fetch-execute cycle for BASAL

programs. Nevertheless, we can simulate its effect by means of the PRIMAL processor.
The principle is shown in Figure 4.6. What we need to do is construct a PRIMAL pro-
gram that has the same effect as the execution of a BASAL program. To this end, we use
a translator. Such a program does two things:

� First, it associates with each BASAL variable one or more memory locations, in
which it subsequently stores bit strings that uniquely correspond to the value of
that variable.

downloaded by wizard.z@foxmail.com

174 From hardware to software

select

fetch execute

data

statements

before

data

statements

after

data

statements

before

data

statements

after

translate
BASAL

to
PRIMAL

interpret
PRIMAL

bitstrings to
BASAL
values

PRIMAL
processor

Figure 4.6 Simulating the BASAL fetch-execute cycle by the PRIMAL processor.

� Second, each BASAL statement is converted into one or several PRIMAL instruc-
tions, with appropriate references to the memory locations that correspond to the
variables occurring in the BASAL statement.

The result of this translation is a PRIMAL program consisting of a data part representing
all the BASAL variables and their initial values and a series of PRIMAL instructions cor-
responding to the converted BASAL statements. When this PRIMAL program is executed
its data part will change in the sense that the bit strings representing the initial values of
the BASAL variables will generally be replaced by other bit strings. These bit strings, in
turn, are representations of the final values of the BASAL variables. Now suppose that
we could execute our BASAL program directly, i.e. without having it translated first into
a PRIMAL program. In that case, all the initial values of the BASAL program will also
have been replaced by final values. If the final values resulting from this direct execu-
tion correspond to those resulting from the execution of the PRIMAL program, we say
that the two executions have the same effect. We can now be more specific about virtual
processors. Such a processor first translates a BASAL program into a PRIMAL program of
which the execution has the same effect as the direct execution of the BASAL program.
It then executes the PRIMAL program by means of the real PRIMAL processor.

downloaded by wizard.z@foxmail.com

A BASAL virtual processor 175

target program

compiler processor PRIMAL processor

source program
BASAL

PRIMAL
compiler

BASAL language

Figure 4.7 The general architecture of a virtual processor.

4.4.2 On automated translation

Suppose we have written a BASAL program. In order to execute this program, we will
have to translate it into a PRIMAL program whose execution will have the same effect.
Now, it would be rather frustrating if we had to do the translation manually, for in that
case, we might as well have programmed directly in PRIMAL. The whole idea, of course,
is that we should automate the translation process. And what would be a better means
than to use a real processor for that purpose? In particular, if we can construct a program
that takes a BASAL program as input, and produces a PRIMAL program as output that
establishes the same as our original program, then we would no longer have to consider
the PRIMAL instruction set, but instead could resort to constructing programs in BASAL.
What we are talking about here is the construction of a so-called compiler.

More formally, a compiler is a program that establishes a translation from a source
language to a target language. In our case, we are considering BASAL as our source
language and PRIMAL as our target language. Because it is a program, a compiler is also
to be written in a programming language. For now, assume it is written in a language im-
plemented by a processor which we refer to as the compiler processor. The compiler,
the compiler processor, and the target processor together form an implementation of what
we have called a virtual processor. This approach is illustrated in Figure 4.7. Summa-
rizing, the compiler is executed on the compiler processor and its execution results in the
translation of a BASAL program into an equivalent PRIMAL program. The latter, in turn,
is executed by the PRIMAL processor.

These abstractions may be fine, but you may justifiably ask yourself what this all means
in practice. Let’s get down to earth again and see what compilation is actually about. We
note that the following subsections may be skipped on first reading.

� The compiler

So how do we start? The first point to make is that in order to compile a program we should
at least make it available for translation by the compiler. This means that we have to get it

downloaded by wizard.z@foxmail.com

176 From hardware to software

into main memory, or perhaps store it somewhere on disk or tape, so that the program is at
least accessible. Now the best we can do at this point is type it in. This means that by making
use of a terminal we enter our BASAL program character by character. In the end, what we
will have is a textual representation of our BASAL program, stored in the main memory of
our host computer. From there on, we can leave it in main memory, but perhaps also store it
safely on some storage device. The important point is that our program has now been made
accessible for translation. We can then execute the compiler.

Now, compilers are not the simplest programs you can imagine. In fact, languages such
as Ada are so intricate that it generally takes a few years before an acceptable compiler is
developed. Acceptable in this sense means two things: (1) the compiler can translate every
language construct correctly, and (2) the efficiency of the generated code is comparable to
that of compilers for competitive languages. To illustrate, although the definition of the Ada
language was established in 1983, it took approximately another four to five years before
the first commercial compilers became available. To manage the complexity of translation,
compilers are generally organized into a number of modules (or packages if we use BASAL

terminology), each covering a specific phase of the translation process. Three phases can
be distinguished: lexical analysis, parsing, and code generation.

Lexical analysis. During lexical analysis the textual representation is read, character by
character, and transformed into a series of so-called tokens. The concept of a token is rather
simple, and we shall illustrate it by means of a brief example. Suppose we have the follow-
ing initialization statement:

val : constant INTEGER := 3;

This may seem acceptable to us, but you have to realize that, initially, this statement appears
only as a series of characters, namely the sequence

v a l � : � c o n s t a n t � I N T E G E R � : = � 3 ;

(where ‘�’ is used to denote a space). However, from a logical point of view, the statement
consists of the following elements:

val : constant INTEGER := 3 ;

Each of these elements is called a token. In this example, we can distinguish four different
types of tokens:

� There is a keyword token denoting the keyword “constant”

� There are two identifier tokens: one denoting the variable val and one denoting the
type INTEGER

� There are two delimiter tokens: one for the colon separating val from the rest of the
declaration, and one for the semicolon which refers to the end of the statement

� An operator token representing the assignment symbol “:=”.

downloaded by wizard.z@foxmail.com

A BASAL virtual processor 177

During lexical analysis, the character sequences are transformed into token sequences, im-
plying that the compiler has to recognize that the first three characters of our example form a
representation of a variable called “val”. The space is then to be recognized as not being rel-
evant. The colon and subsequent space implies that we are dealing with a declaration here,
which is to be further recognized as being a constant declaration as soon as the character
sequence that make up the word “constant” has been read. Continuing in this way, the com-
piler should recognize that “INTEGER” stands for the fact that we are dealing here with an
integer declaration. And when reading the characters “:” and “=” the compiler must record
that these two stand for an assignment token, implying in this case the analyzed statement
is an initialization statement. Continuing in this way, the character “3” is to be recognized
as a constant, and “;” as a so-called delimiter. This information (and more) is stored by the
compiler for further analysis.

Parsing. After the program has been scanned its actual organization is known. The next
step consists of checking if the program obeys the syntactical rules of the programming lan-
guage, and is known as the parsing phase. For example, suppose we had inadvertently typed
in the following:

procdure proc (i : in INTEGER) is ...

The lexical analyzer, while scanning the sequence

p, r, o, c, d, u, r, e

can do no better than to record that it had just read a variable named “procdure” instead of
what we actually intended, namely the keyword “procedure” for designating a procedure. It
is the task of the parser to notify that something is wrong here. In particular, while reading
the series of tokens produced by the lexical analyzer it is the job of the parser to recognize
that a variable-token followed by a sequence of tokens that correspond to a procedure dec-
laration does not make sense. The correct sequence, of course, should have started by a
keyword-token for “procedure”.

If no errors are found, the parser will construct an internal representation of the program
which is more convenient for further processing. This internal representation is called a
parse tree. To illustrate, consider the assignment statement

int := 3 + (2 * 5);

The interesting part about assignment statements in general is that they consist of two sides.
A left-hand side corresponding to some variable, and a right-hand side that evaluates to
some value. Essentially, what the parser does is organize the tokens of the above statement
into a single group T , and records that this group stands for an assignment. It then divides T
into two subgroups: Tleft which is recorded as the left-hand side of the statement, and Tright

which is recorded as its right-hand side. It is not difficult to see that Tright can be further
divided into an addition and a multiplication. We can graphically represent the statement
above as shown in Figure 4.8. The structure we see there is generally referred to as a tree.

downloaded by wizard.z@foxmail.com

178 From hardware to software

int

:=

+

3 *

52token

Figure 4.8 The representation of an assignment in the form of a parse tree.

In effect, we see that the complete program is broken down into elementary parts, which in
turn are organized in a hierarchical way. This organization turns out to be particularly useful
for the last phase: code generation.

Code generation. The code generation part of a compiler is actually the hard part. In this
case, the parse tree of the program as constructed by the parser and is traversed until a group
is encountered (which may be organized into subgroups) for which a translation rule can
be applied. For example, reconsider the assignment statement given above. The tokens for
an assignment statement are first always grouped together by the parser, and subsequently
partitioned into two subgroups. One group represents the left-hand side and the other repre-
sents the right-hand side. As far as the code generator is initially concerned, each assignment
statement should in general be translated into the following two PRIMAL instructions:

MOVE �RHS�, D0 Move the value of the RHS into D0
MOVE D0, �LHS� and assign this value to the variable in the LHS

The next step is to evaluate both sides of the assignment in order to complete the code gen-
eration. To this end, both subgroups Tright and Tleft can be evaluated separately and indepen-
dently of each other. By evaluating the tokens in Tleft, the code generator will merely need
to generate a reference to the variable int. In other words, it concludes that

�LHS� � int

The right-hand side is rather more complicated. Assuming a rather naive approach towards
code generation, the generator first generates the following code based on its evaluation of
the addition:

MOVE #3, D0 [D0] := 3
MOVE �2 * 5�, D1 [D1] := 2 * 5
ADD D1, D0 [D0] := [D0] + [D1]

The multiplication needs to be evaluated as well, which leads to:

MOVE #2, D0 [D0] := 2
MOVE #5, D1 [D1] := 5
MULS D1, D0 [D0] := [D0] * [D1]

Its final task is to combine these pieces of code, leading to the following PRIMAL code:

downloaded by wizard.z@foxmail.com

A BASAL virtual processor 179

MOVE #2, D0 [D0] := 2
MOVE #5, D1 [D1] := 5
MULS D1, D0 [D0] := [D0] * [D1]
PUSH D0 Store intermediate result on the stack

MOVE #3, D0 [D0] := 3
POP D1 Pop intermediate result from stack
ADD D1, D0 [D0] := [D0] + [D1]
PUSH D0 Store intermediate result on the stack

POP D1 Pop intermediate result from stack
MOVE D1, int And finally do the assignment

The important point to note is the systematic approach that is being followed here. Admit-
tedly, code generation is greatly simplified in the example above. For example, we have said
nothing about the translation of data. However, the principles remain the same, although
their realization is more intricate than we are prepared to demonstrate here.

Before we continue with our discussion on virtual processors, recall that in Section 3.2 we
mentioned that an instruction memory and a data memory are always joined into a single
main memory. By doing so, we argued that we were unifying data and instructions. Now
you can see why this is such an important step. By unifying the two, we can treat instruc-
tions as data, and can thus sensibly speak about automated translation. To the compiler, the
PRIMAL instructions it generates are just bit strings, i.e. data. To the PRIMAL processor,
however, these bit strings are perfectly sensible instructions.

Choosing a language for the compiler

So far, we have been deliberately vague about the language in which the compiler is imple-
mented and have implicitly suggested that this is a different language from either the source
language (BASAL) or the target language (PRIMAL). In practice, this is not the case. Let’s
first pursue the thought that the compiler language is the same as the target language. In
other words, in our case we construct a compiler written entirely in PRIMAL.

When giving the matter some thought, this would indeed be an attractive choice. What we
would have then is a computer, based on a PRIMAL processor, that we could immediately
use to enter, translate, and execute BASAL programs. In other words, when writing pro-
grams for that computer we can simply pretend it is a true BASAL computer. There is only
one problem with this approach. We will have to write the compiler in PRIMAL, a language
which we showed to be rather cumbersome for program development. An excellent can-
didate to alleviate this problem is, of course, BASAL itself. In other words, we could more
conveniently write our compiler in BASAL rather than in PRIMAL. But, of course, this is
not going to work because in order to let the compiler be able to do its work we need to
execute it on a processor. But to do so requires that we first have to translate the compiler,
which brings us back to our original problem, namely the translation of BASAL. Strangely
enough, most compilers are written in a high-level language. In fact, many compilers are
written in the same language that they are meant to translate.

How can this be? The answer is quite simple. We start with constructing a compiler comp1
for a small subset of BASAL. We denote this subset by BASALSMALL. This compiler will

downloaded by wizard.z@foxmail.com

180 From hardware to software

source program

target program

PRIMAL processor PRIMAL processor PRIMAL processor

VIRTPROC1VIRTPROC2

PRIMAL

BASAL

BASAL language

compiler
BASAL

compiler
PRIMAL

target program
PRIMAL

BASAL language

Figure 4.9 The adapted architecture of the BASAL virtual processor, using a BASAL virtual pro-
cessor (VIRTPROC2).

have to be written in PRIMAL. We then write a second compiler comp2, but now in BASAL-
SMALL that implements the full language. In order to be usable, comp2 is then compiled
by comp1. Because the compiler written in BASALSMALL cannot make full use of all the
BASAL features we may then decide to write a third and even better compiler comp3, but
now using the full capabilities of BASAL. Of course, comp3 is to be compiled using comp2.
In other words, our third compiler would be one written entirely in BASAL, and would form
part of the implementation of BASAL. The above-mentioned compiler language and source
language are now the same. (We note that in practice this situation hardly ever occurs: due
to the fact that so many compilers for high-level languages are available, we can simply
choose a suitable language for implementing the compiler and use one of its compilers.)

These observations lead to the architecture shown in Figure 4.9. Note that there are two im-
plementations of a BASAL virtual processor. The first, denoted as VIRTPROC1, is to be con-
sidered as a general implementation which uses the PRIMAL processor as its real processor.
The second, denoted as VIRTPROC2, is the one that executes the compiler of VIRTPROC1,
and which also uses the PRIMAL processor. To complete the story, the two implementations
may be exactly the same; they are merely used for different purposes.

Compilation versus execution

Now let’s see how we can execute a BASAL program. Assume we have already entered the
program into the computer, i.e. its textual representation is stored somewhere in main mem-
ory or on a storage device. This textual representation is then read by the compiler, analyzed,
and translated. After this has been completed, we can execute the translated program. We
can write these steps as the following algorithm:

downloaded by wizard.z@foxmail.com

A BASAL virtual processor 181

Algorithm 4.1. The compilation algorithm:

1: Read program PBASAL from storage or main memory.

2: Analyze program PBASAL and translate it into an equivalent program PPRIMAL.

3: Execute PPRIMAL on the PRIMAL processor.

�

This should look familiar. It is another version of the fetch-execute cycles we have discussed
in Chapter 3. The only difference is that the first two steps are executed once, whereas the
last may be executed several times. In this sense, Algorithm 4.1 reflects the usual process
of compilation and execution which is used in the case of many high-level programming
languages. The algorithm can, however, often be refined. The approach outlined above is
rather coarse-grained in the sense that a complete program is first read, then analyzed and
translated, and subsequently executed. An alternative approach is repeatedly to read only the
minimal amount of program text that can be sensibly analyzed, translated, and executed, and
then continue with the next piece of minimal program text. Expressing this in an algorithm,
we have the following:

Algorithm 4.2. The interpretation algorithm:

1: Read the next minimal piece of program text PBASAL from storage or main memory
that can be processed.

2: Analyze and translate PBASAL into an equivalent piece of PRIMAL instructions PPRIMAL.

3: Execute PPRIMAL on the PRIMAL processor. Then continue with Step 1.

�

This algorithm reflects the usual behavior of so-called interpreters (although, in practice,
there are a few subtleties that we have ignored here). Typically, so-called command lan-
guages that form the (textual) interface between a human being and a computer are executed
by interpretation. There are also interpreted implementations for some high-level languages
such as Pascal, and even Ada, although with some restrictions.

Algorithm 4.2 resembles our fetch-decode-execute cycles more than Algorithm 4.1 does.
But as you can imagine, using compilers instead of interpreters will generally lead to more
efficient target programs, as the complete source program can be analyzed, rather than just
small parts of it. Nevertheless, it is important to realize that the effect of both algorithms is
the same, namely that a program written in a high-level language is eventually executed in
the form of a translated version at a lower level of abstraction.

downloaded by wizard.z@foxmail.com

182 From hardware to software

4.5 Towards an extensible BASAL computer

We have come a long way. At this point we have demonstrated that we can sensibly speak
about a virtual processor that implements the BASAL programming language. For one
thing, this allows us to construct programs at a satisfactory level of abstraction. Unfor-
tunately, BASAL as presented so far is not useful enough. It has no facilities for I/O –
features that simply cannot be missed when talking about computers. In terms of vir-
tual hardware, our BASAL processor lacks any means of controlling virtual peripheral
devices. There are essentially two solutions to this problem.

First, we can add a number of language constructs to BASAL that will permit us to de-
scribe how I/O takes place. It would then be up to the developers of the virtual processor
to ensure that such I/O constructs are properly implemented. What it means is that the
BASAL compiler generates the right instructions by which disks, terminals, etc. are ma-
nipulated. The disadvantage of this approach is that the language determines to a certain
extent what kind of peripheral devices are useful or not. This is not always such a good
idea.

The second solution is to employ memory-mapped I/O facilities. What do we mean
by this? Assuming that the real processor which is part of the virtual processor uses
memory-mapped I/O, it would be convenient if we could manipulate the registers associ-
ated with peripheral devices, as if they formed part of our BASAL language. In particular,
suppose we could explicitly associate variables with memory locations of the real pro-
cessor, which in turn correspond to I/O registers. In that case, replacing a value of such
a variable would mean that we would be changing that register. The only problem with
this approach is that if we use a different real processor as part of our language imple-
mentation we might need to change the association of variables with memory locations.

In this section we shall see how, by employing memory-mapped I/O in BASAL, we
can gradually build a true virtual computer, consisting of a virtual processor as well as
several virtual peripheral devices.

4.5.1 Controlling the translation process

As we have mentioned above, each variable in BASAL is associated with one or more
memory locations when the compiler starts doing its work. By associating variables to
memory locations, we are capable of later executing a BASAL program by means of its
PRIMAL counterpart. Exactly which memory locations are associated to a variable is
not known in advance, and in fact, should be of no concern in general. However, if we
are to make peripheral devices that are attached to our real processor also available to
BASAL programs the association between variables and memory locations does become
important.3

3We note at this point, however, that associating variables to specific memory locations is not something
that should be left to a normal BASAL user. As we shall discuss further below and in the next chapter, it is
the task of operating system developers to make various hardware-related facilities available through so-
called service programs. An ordinary user can then subsequently make use of these programs. Hardware-
related details should thus be hidden from normal users.

downloaded by wizard.z@foxmail.com

Towards an extensible BASAL computer 183

Being a subset of Ada, BASAL has inherited Ada’s advanced features to express the
relationship between, on the one hand, data types and variables, and on the other, the
organization of memory. We start with looking at a simple example.

Organizing memory

The BASAL language has no predefined data type for representing bit strings. Suppose we
wish to make such a data type available. In that case, we might begin with the following
two type declarations:

subtype BIT is INTEGER range 0..1;
type BITSTRING32 is array (0..31) of BIT;

Now suppose we declare a variable bitstring as

bitstring : BITSTRING32;

When compiling our program, the compiler will probably reserve one or several memory
locations so that a complete series of 32 integer variables (that, admittedly, can only take
the value 0 or 1) can be stored. Which memory locations the compiler reserves, or how
it represents the values that can be assigned to bitstring is, in principle, not important, as
long as it is done in a unique way. Nevertheless, we can change this in two ways if so
desired: (1) we can explicitly instruct the compiler to organize bit string variables in a
way that we like, and (2) we can instruct the compiler to associate variables to specific
memory locations.

With respect to the organization of memory, we can specify in BASAL how many bits
each variable of the type BITSTRING32 should occupy by writing

for BIT’SIZE use 1;
for BITSTRING32’SIZE use 32;

What we have specified here is that each variable of the type BITSTRING32 should occupy
precisely 32 consecutive bits in main memory. We say that its size is 32 bits. This means
that each time we declare a variable of the type BITSTRING32 it will be associated with
exactly 32 consecutive bits of main memory. Which bits can be specified by stating with
which memory location a variable is to be associated. For example, by writing

for bitstring use at 40;

the variable bitstring will be associated with memory location 40: it is the compiler’s job
to ensure that this happens. Now, in all cases, variables in BASAL are also assumed to oc-
cupy a consecutive series of words, the first word referred to as #0. This means, for exam-
ple, that if each word in main memory consists of 16 bits, that bitstring(0) � � � bitstring(15)
correspond to the word at memory location 40, whereas bitstring(16) � � � bitstring(31) will
correspond to memory location 41. Figure 4.10 shows this placement of bitstring into
main memory. Of course, if the size of a word is 32, then bitstring will fit nicely into

downloaded by wizard.z@foxmail.com

184 From hardware to software

40
41

bit #0

bit #31

Figure 4.10 The placement of the variable bitstring in main memory by additional specifica-
tions.

one memory location.
Let’s look at another example of defining the memory organization which, in fact, we

shall come across a few times in succeeding chapters. Consider the following type dec-
larations

subtype CARDINAL is INTEGER range 0..65535;
type SOME RECORD is

record
field1 : CARDINAL;
field2 : CARDINAL;

end record ;

At this point we want to associate each variable of the type SOME RECORD with precisely
two consecutive memory locations, of which the first is reserved for element field1, and
the second for field2. It is not difficult to see that each variable of the type CARDINAL

requires only 16 bits of storage in order to represent all 65,536� 216 different values. In
order to ensure that indeed precisely 16 bits are used for this purpose, we write

for CARDINAL’SIZE use 16;

Now first assume that main memory is organized into 16-bit words, i.e. each memory
location occupies 16 bits. In order to ensure that each variable of type SOME RECORD
occupies precisely two locations, we use the following representation clause:

for SOME RECORD use
record

field1 at 0 range 0..15;
field2 at 1 range 0..15;

end record ;

What we have specified here is that element field1 of each variable of type SOME RECORD
is to be associated with the (first) 16 bits of word #0 of the memory locations that the
variable uses. The second field is to be associated with word #1. To ensure that precisely
two words are used to store variables of this type, we need to specify the required size.
This can be done by means of the following representation clause:

for SOME RECORD’SIZE use 2*16;

downloaded by wizard.z@foxmail.com

Towards an extensible BASAL computer 185

Now how can we actually associate a variable someObject with, say, memory locations
156 and 157? This is actually quite easy. We first declare the variable someObject:

someObject : SOME RECORD;

and proceed by specifying precisely where it is to be stored by specifying the location of
the first word in memory:

for someObject use at 156;

The effect of this is that someObject.field1 will be associated with memory location 156,
occupying precisely 16 bits, and that someObject.field2 is associated with location 157.

� But suppose now that each word in main memory consists of 32 bits instead of 16. In that
case, we need to change our representation clauses. First assume that we still want to asso-
ciate each field of SOME RECORD with a different memory location. The problem then is
that we need to specify exactly which 16 bits of each memory location the respective fields
are to occupy. Suppose we decide that this should always be the last 16 bits. In that case,
we need to change the representation clauses for SOME RECORD as follows:

for SOME RECORD use
record

field1 at 0 range 16..31;
field2 at 1 range 16..31;

end record ;
for SOME RECORD’SIZE use 2*32;

It should also be clear that each variable of SOME RECORD will also nicely fit into one word.
An alternative representation clause to achieve just that would be the following:

for SOME RECORD use
record

field1 at 0 range 0..15;
field2 at 0 range 16..31;

end record ;
for SOME RECORD’SIZE use 1*32;

In this case, the first field would always be mapped to the first 16 bits, whereas the second
field would occupy the second series of 16 consecutive bits.

Exploiting memory-mapped I/O

By controlling the way that a compiler organizes main memory when translating vari-
ables, we can now easily make various peripheral devices available to BASAL programs,
assuming that the real processor employs memory-mapped I/O. This is best illustrated
by means of a simple example.

Assume that the I/O processor handling all communication to a (character-oriented)
screen uses the registers shown in Table 4.1, which have been mapped to the indicated

downloaded by wizard.z@foxmail.com

186 From hardware to software

Table 4.1 The memory-mapped registers of a display I/O controller

register address purpose

MONXPOS 20 requires an integer value for the x-
position of the cursor

MONYPOS 21 requires an integer value for the y-
position of the cursor

CHARREG 22 a register containing the ASCII rep-
resentation of the character to be
represented

SCRCTRL 23 a register for controlling what should
happen with the screen as a whole

addresses. All registers are assumed to have length 8. An important register is SCRCTRL

which is further specified as follows. The I/O processor continuously reads this register,
and as soon as the last bit is “1” (i.e. SCRCTRL contains the bit string hxxxxxxx1i), it sub-
sequently reads the values in the other registers and sends these to the display. Hereafter,
we assume the I/O processor resets the last bit to “0”.

For simplicity, also assume that each word in memory occupies precisely 8 bits. What
we need at this point is a means to display a character on the screen by providing its po-
sition, as well as the character itself. This can be described in BASAL by means of the
following package specification:

package DISPLAY is
subtype SMALLCARD is INTEGER range 0..255;
for SMALLCARD’SIZE use 8;
procedure WRITE(char : in CHARACTER; xpos, ypos : in SMALLCARD);

end DISPLAY;

Note how we have deliberately forced each position to be specified by means of a positive
integer smaller than 255, and that each x or y position will occupy precisely 8 bits of
storage. In other words, it will fit nicely into one of the registers of our display controller.
Now look at the package body of Listing 4.14 in which further implementation details are
given.

A few remarks about package DISPLAY are in order. First, we have declared a type
BITSTRING8 in order for us to manipulate the registers as ordinary bit strings. Again, a
bit string is organized as a consecutive series of bits. In the declaration of the data type
SCREEN REGISTERS, each field corresponds to exactly one of the registers of the display
controller. Its representation clause ensures that variables of type SCREEN REGISTERS
will be associated with precisely four consecutive memory locations. Consequently, the
fragment

screenRegSet : SCREEN REGISTERS;
for screenRegSet use at 20;

downloaded by wizard.z@foxmail.com

Towards an extensible BASAL computer 187

package body DISPLAY is
subtype BIT is INTEGER range 0..1;
type BITSTRING8 is array (0..7) of BIT;
for BITSTRING8’SIZE use 8;

type SCREEN REGISTERS is
record

xScreenPos : SMALLCARD;
yScreenPos : SMALLCARD;
asciiChar : SMALLCARD;
screenCtrl : BITSTRING8;

end record ;

for SCREEN REGISTERS use
record

xScreenPos at 0 range 0..7;
yScreenPos at 1 range 0..7;
asciiChar at 2 range 0..7;
screenCtrl at 3 range 0..7;

end record ;
for SCREEN REGISTERS’SIZE use 4 * 8;

screenRegSet : SCREEN REGISTERS;
for screenRegSet use at 20;

procedure WRITE(char : in CHARACTER;xpos, ypos : in SMALLCARD) is
begin

screenRegSet.xScreenPos := xpos;
screenRegSet.yScreenPos := ypos;
screenRegSet.asciiChar := CHARACTER’POS(char);
screenRegSet.screenCtrl(7) := 1;

end WRITE;

end DISPLAY;

Listing 4.14 An implementation of the package DISPLAY.

ensures that the variable screenRegSet is not only associated with the memory locations
of the display registers; its fields are appropriately organized with each register in the
way we intended. The procedure WRITE should now be easy to understand. We first set
the correct values in each register, after which the control bit is set to 1 in order to display
the character on the screen.4

4It should be noted that our implementation is rather simple, and missing a number of details, for some
characters may become lost because we are not synchronizing with the display. We leave these matters at
the moment, but shall return to synchronization in the next chapter.

downloaded by wizard.z@foxmail.com

188 From hardware to software

4.5.2 Virtual devices

Displays revisited

If we assume that package DISPLAY is always available (i.e. it is always placed in main
memory when the PRIMAL computer is switched on), it is clear that we now at least have
one albeit rather simple I/O function available. By simply writing, for example,

DISPLAY.WRITE(’A’,10,30);

we are now able at least to display a character (in this case ‘A’) on the screen at the spec-
ified position. Of course, our package DISPLAY is too simple to be of any practical use.
For example, there is no easy way of clearing a screen, or perhaps scrolling it up or down.
In fact, we have not even assumed that the display controller supports such operations.
Nevertheless, such functions can be added with relative ease. To illustrate, suppose we
wish to make a procedure available that would clear the entire screen. In that case, our
package specification would become something like:

package DISPLAY is
subtype SMALLCARD is INTEGER range 0..255;
for SMALLCARD’SIZE use 8;
procedure WRITE(char : in CHARACTER; xpos, ypos : in SMALLCARD);
procedure CLEAR SCREEN;

end DISPLAY;

All we need to do next is add an implementation of the procedure CLEAR SCREEN to our
package body. This is really not too difficult. Assume that our display is constructed from
72 lines, each line having a width of 120 characters. We could then extend the package
body of DISPLAY with the following procedure CLEAR SCREEN:

procedure CLEAR SCREEN is
BLANK : constant CHARACTER’VAL(32);

begin
for yPos in 1..72 loop

for xPos in 1..120 loop
WRITE(BLANK, xPos, yPos);

end loop ;
end loop ;

end CLEAR SCREEN;

Now the important point to note here is that we have added something to the working of
a display that was not provided previously. In other words, we have extended the func-
tionality of that what was provided by the hardware. The display now appears to support
additional functions. We have thus created a virtual display, one that is partly imple-
mented in hardware, and partly in software. Staying in this line of reasoning, we can say
that we have extended our BASAL virtual processor with a component that may justifi-
ably be referred to as a virtual (peripheral) device. The actual implementation of this
device is shielded from other packages. Only what we can do has been made available
by means of the procedures described in the package specification.

downloaded by wizard.z@foxmail.com

Towards an extensible BASAL computer 189

Service programs

Why are we making such a big fuss about this? Well, there is a good reason. Suppose
that the BASAL virtual processor is to be implemented by means of a compiler that gen-
erates instructions for a PRIMAL processor. Also, assume that this real processor can be
attached to various peripheral devices. Following the approach we have outlined above,
it should be clear that these devices can be made available to BASAL programs by means
of a number of packages. Each package corresponds to a partial implementation of a vir-
tual device, and consists of two parts: (1) a specification part describing the functionality
of the device by describing what you can do with it; and (2) a body describing how this
functionality is actually realized. The point is that you never need to know what a pack-
age body looks like, and that’s just fine because you will never be able to make use of
this knowledge in any case.

But what does this mean when compiling a BASAL program? First, assume that all
packages used to access peripheral devices have already been compiled, and that their
PRIMAL counterparts have been placed somewhere in main memory. In that case, the
BASAL compiler for our own program need merely to know exactly where these pack-
ages are placed, and subsequently generate code just for our BASAL program, adding
references to the appropriate procedures and variables implemented by the packages. In
this sense, the packages cannot only be seen as a convenient means for accessing the
hardware, they can also be viewed as an extension of the BASAL programming language.
Putting it differently, we say that we have made a collection of services available to BASAL

programs.
Developing services, and implementing them in the form of what we refer to as service

programs, is a major issue when developing general-purpose computers and communi-
cation systems. What it means, is that if we can standardize the services in the sense that
we can come to a common agreement on

� Which services should be provided and

� How they should be made available

we can then develop programs for a wide range of different hardware. Because there is
no need to know anything about how service programs are actually realized, it is clear
that if we choose to use a different real processor, then this should have no effect on our
BASAL programs: we should still be able to compile them in the usual way. Developing
and implementing the type of services we have been discussing so far is the problem of
developing operating systems. Operating systems form the topic of the next chapter.

4.5.3 Linking and loading

We need to discuss one more important issue: how do we make service programs (or
any program for that matter) available? The point to note is that our BASAL programs,
as well as all the service programs that we wish to make use of, are compiled separately.
In the end, we will find ourselves with a collection of PRIMAL programs that need to

downloaded by wizard.z@foxmail.com

190 From hardware to software

be connected to each other in such a way that their instructions can be executed as if
belonging to a single program. Making service programs available, and subsequently
getting the final result to work as intended, is the job of a linker and a loader.

Linking programs

Linking programs together is really not difficult, at least if the compiler takes special
measures. Let’s start by considering a general problem. Suppose we were to compile a
BASAL program. As we have mentioned, the compiler will associate variables to mem-
ory locations, although in most cases it is completely irrelevant which locations these are.
The exception to this rule is, of course, formed by variables that need to be explicitly as-
sociated with memory-mapped I/O registers. Now suppose that the compiler, when trans-
lating a program prog1, associates some variable var1 to memory location LOC1. Like-
wise, assume that when it subsequently compiles a second program prog2, it associates a
variable var2 belonging to prog2 with location LOC2. This may all seem acceptable, but
we are going to be in trouble if we want prog1 and prog2 to be placed in memory at the
same time, and it turns out that LOC1 = LOC2.

The problem is easily solved if all addresses in a program are interpreted as being rela-
tive to the program’s start address. So, for example, if prog1 is placed in memory starting
at address 1200, then LOC1 actually denotes memory address 1200 + LOC1. Now sup-
pose that we wish to link several programs prog1� � � � �progN together, to which end we
start by first concatenating the programs into one large program totalProg. Clearly, all
addresses occurring in prog1 can be left unaltered. Addresses in prog2, however, will
have to be converted to addresses that are now relative to the start address of totalProg.
If size�progi� denotes the size of program progi, then the addresses occurring in prog2 are
to be incremented by size�prog1�. Likewise, the addresses occurring in prog3 are to be
incremented by size�prog1�� size�prog2�, etc. Concatenating a collection of programs
and converting the addresses in this way is precisely what a linker does.

Loading programs

The last step that needs to be done is placing, i.e. loading the linked program into main
memory. This step is so easy that it is often directly done by the linker. What it implies
is that the linked program generally needs to be transferred from disk into main memory.
As soon as it has been placed, the loader must take care of the fact that the CPU starts
executing the first instruction. This is really simple. The points to note are that:

1. The loader knows exactly where the first instruction has been placed, and

2. When loading the program into main memory, the current program that is being
executed is the loader.

Consequently, the loader need essentially consist of the following instruction as its last
one to be executed:

JMP instr1

downloaded by wizard.z@foxmail.com

Towards an extensible BASAL computer 191

PRIMAL processor

linker/loader

final target program

service
program

PRIMAL

compiler
BASAL

service
program

BASAL

service
program

PRIMAL

compiler
BASAL

service
program

BASAL

service
program

PRIMAL

compiler
BASAL

service
program

BASAL

target
program

PRIMAL

compiler
BASAL

source
program

BASAL

BASAL

PRIMAL

service programs

Figure 4.11 Extending the BASAL language with a number of service programs.

where instr1 is the address of the first instruction of the loaded program that needs to be
executed.

The overall view

We can now summarize our approach to the development of a virtual computer as fol-
lows. First, in order to access the hardware in a convenient way we write so-called ser-
vice programs in BASAL, and compile these programs into PRIMAL. The objective is that
these service programs will be made available to ordinary BASAL programs. Therefore,
we need merely write a BASAL program, compile it, and link it with the service programs
we wish to use. After linking all the compiled programs together into one big program
we simply load the latter into main memory, and start its execution. This is outlined in
Figure 4.11.

And this is where we end for now: with a virtual computer that is now easy to pro-
gram because it has a high-level programming language as its interface, combined with

downloaded by wizard.z@foxmail.com

192 From hardware to software

a number of services that hide hardware details of the underlying real processor. Indeed,
we have gained this level of abstraction not by extending the hardware but by making use
entirely of software solutions. The only topic we have not said much about is the type of
service programs that we want to make available. This is the subject of the next chapter.

4.6 Discussion and further reading

The material presented in this chapter is essential for an understanding of computer and
communication systems. It forms the bridge between systems that are implemented solely
in hardware and those that are additionally implemented through software. In essence,
we have discussed only two issues: (1) the principle of constructing executable programs
in terms of machine instructions, and (2) the same principle, but now applied to programs
written in a high-level programming language. The crux of the matter lies in the auto-
mated execution of the latter. A quick review of what we have been doing seems to be
in order here.

4.6.1 Machine languages

By the end of the previous chapter, we had reached a point where it should be clear that we
could program a computer by providing it with a series of instructions that it would sub-
sequently execute. In this chapter we have introduced a simple yet effective instruction
set, also referred to as a machine language. Our PRIMAL instruction set has been derived
from an existing language, namely that of the Motorola 680x0 family of processors. The
instructions it comprises have been represented in the form of symbols, i.e. rather than
giving instructions in their pure form as bit strings, we have used a textual representation.
Such a representation is called an assembly language. The development of instruction
sets has already been discussed in the previous chapter, and we shall therefore leave that
issue here. But in order to complete the picture, we do need to be more specific about
the distinction between machine and assembly languages, and put the latter into context
when using high-level languages such as BASAL.

Assemblers. Using a textual representation for machine languages is the common way
of developing programs at that level. But this does bring us to the same problem that we
encountered with high-level languages such as BASAL, namely that we need to convert
our symbols into the actual bit string representations of instructions in order to have our
assembly language programs executed. To that end, a so-called assembler is used. An
assembler is much like a compiler. It is a program that takes a textual representation of a
program as input and produces an equivalent representation in the form of a series of bit
strings representing the actual instructions. The point to realize when using assemblers
(or machine languages for that purpose) is that programs are highly dependent on the
hardware. In principle, an assembly program can only be executed by the processor that
implements the underlying machine language.

downloaded by wizard.z@foxmail.com

Discussion and further reading 193

Assembly languages in practice. As we have stated, this hardware-dependent feature
of assembly languages is not attractive when writing programs that are inherently inde-
pendent of the processor that executes them. But there are more serious drawbacks in
using assembly languages. Above all, assembly programming is difficult. The reason
for this is that the languages are completely tailored to getting a processor to execute
instructions – they are in no way supportive when expressing solutions to general, i.e.
hardware-independent problems. In other words, they lack sufficient means for abstrac-
tion.

This feature is already demonstrated by the simple examples of PRIMAL programs:
they are difficult to comprehend if you do not know in advance what they should be do-
ing. And indeed, developing assembly programs is generally an extremely error-prone
process. Many mistakes are introduced and more time is often spent in removing these
mistakes (or “bugs” as they are called) than developing the initial program in the first
place. Nevertheless, assembly programs are still being developed to date, and mostly
just for two reasons: (1) when high-level languages lack sufficient support for capturing
machine dependencies, or (2) when performance starts playing a crucial role. We return
to the first issue below when putting BASAL into context.

Performance criteria are often used to justify the need for assembly programming in-
stead of using some high-level language. These justifications were completely in order
during the period when compilers for the first high-level languages became available.
Then, it was simply a fact that the machine language programs generated by compilers
were not as efficiently executable as their hand-coded counterparts. This is no longer
true. In fact, when comparing some hand-coded solutions to those generated by a com-
piler when using a high-level language, the opposite can even be observed (Patterson and
Hennessy, 1994). This should come as no surprise. The great amount of expertise which
has been gathered by engineers in the last three decades has found its way into compil-
ers. This expertise is such that it cannot be expected to be comprehended in its total by
a single person hand-coding assembly solutions. Compilers are simply better in many
cases.

Despite these discouraging words on the use of assembly languages, it is our opinion
that they still form an excellent vehicle to comprehend what is going on at the level of
processors. In this sense, an assembly language is the primary representative of many
design decisions taken during the development of processors. If you want to experiment
with writing PRIMAL programs or, more precisely, programs for the 680x0 processors,
you will find Clements (1994) an excellent starting point. Not only does the author pro-
vide a comprehensive and well-structured approach to 680x0 program development, the
book also contains a software package that will allow you to develop programs on Intel
80x86-based machines. In addition, a good introduction is also given by Bacon (1986).
Full details on the 680x0 instruction set can be found in Motorola (1986). If you have
difficulties understanding the various addressing modes of the 680x0, it is instructive to
take a look at the PDP-11 instruction set, which inspired the developers of the Motorola
processor. In that case, consult Meyer (1982) who not only explains the PDP-11, but also

downloaded by wizard.z@foxmail.com

194 From hardware to software

puts the machine into context by describing computer architecture and organization.

4.6.2 High-level languages

However, as we have said, machine (or assembly languages) are not the way to go in the
case of program development. For that purpose we need to abstract from the hardware
and be able to write solutions in the form of programs that are relatively easy to compre-
hend. For this reason, we have introduced the high-level programming language BASAL.
This language is (almost) a subset of the language Ada, developed in the early 1980s. It
is instructive to see why and how Ada has been developed, and to see what its present
status is. After that, we shall briefly look at some other popular languages, motivating
our choice to use Ada as our basis for the rest of this book.

The Ada programming language

The development of the Ada programming language is an initiative of the United States
Department of Defense (DoD). The problem that the DoD was confronted with, was the
very large amount of money spent on software development. Most administrative soft-
ware was written in a language called COBOL, most scientific and engineering programs
were written in FORTRAN, but the diversity of programming languages for so-called em-
bedded systems was very large. Embedded systems consist of a mixture of components,
of which a computer is just one (Cooling, 1991). For example, an aircraft control system
typically consists of many components that measure all kinds of characteristics and that
subsequently pass these data to a computer for analysis. The computer, in turn, passes
control signals back to other components in order to keep the aircraft properly in flight.
A problem with embedded systems is the intricate interaction between components and
a computer. The construction of software for such systems is often a tremendous engi-
neering task. The idea arose that if a single programming language were used in this area,
that software development costs would drop considerably. The development of Ada in
the late 1970s and early 1980s was the result.

Ada is typically the result of a committee. With some exaggeration one might say that
it has every compromise that you can think of. Indeed, the language is a difficult one to
learn, but if you take into account the goals that had to be fulfilled, then this will come
as no surprise. The most important among these are:

� Ada should support the development of large programs. This implied that pro-
grams should be able to be developed by teams of engineers, each team working on
its own and providing other teams with finalized parts of the complete software sys-
tem. The concept of a package (of which we have discussed only the most salient
features) was developed towards this aim.

� Software parts should be amenable to re-use i.e. teams should be able to develop
solutions that could easily be adopted for other problems. The so-called generic
units was one of the results. Generic units are not an easy concept to implement.

downloaded by wizard.z@foxmail.com

Discussion and further reading 195

� It should be possible to define separately executable units within a single Ada soft-
ware system. These units, called tasks, will be introduced in Chapter 6. In prac-
tice, they not only have intricate semantics but are even more difficult to implement
efficiently.

� For our purposes perhaps the most important requirement was that of advanced
means for data abstraction. In particular, this meant that the language should in-
corporate facilities that would allow developers to completely separate the logical
organization of data from its actual representation at the level of processors. We
have discussed many of these features in Section 4.5.1.

It is primarily for the third and fourth issues that we have chosen Ada as our base lan-
guage. To date, no other popular language has integrated these two features into a single
language the way that Ada has done. The facilities for data abstraction puts Ada in a
remarkable position compared to other languages. From a practical point of view, how-
ever, Ada is not always the best high-level language to use when building computer and
communication systems, as we shall discuss next. The main reason for this is that the
language is so intricate that developing compilers that generate (1) correct code and (2)
efficiently executable code is still a difficult task to accomplish. It is mostly for the latter
reason that other, simpler programming languages are used. However, the expressive-
ness of the language makes it an excellent vehicle to demonstrate low-level programming
at a sufficient level of abstraction.

If you want to learn more about Ada, Barnes (1980) provides an overview of the lan-
guage and a complete description can be found in Barnes (1994). Using Ada for the de-
velopment of software is described in Booch and Bryan (1994). But if you really want
to know what the language is all about, you will have to consult the reference manual
(ANSI, 1983). A recent update of the language is described in ISO/IEC (1995).

Alternative programming languages

It is completely beyond the scope of this book to go into any detail on programming lan-
guages. But we feel it would also be a serious omission if we did not say a few words
on high-level languages in general. In particular, we shall pay some attention to three
popular languages that in flavor are similar to BASAL, but for one or other reason were
not used as a basis in this book. In the following we shall briefly discuss Pascal, Modula-
2/3, and C/C++. A general overview on programming language concepts is presented in
Ghezzi and Jazayeri (1987); a more recent presentation can be found in Bal and Grune
(1994).

Pascal. A popular language that is generally used as a first programming language, is
Pascal (Wirth, 1971). Pascal is a descendant of so-called structured programming lan-
guages developed in the 1960s, but was one of the first that could easily be implemented
on small computer systems. This was due to its simplicity. As such, it has become not
only widely used for educational purposes but also for programming personal comput-
ers. Approximately 25 years after its invention, Pascal has grown into a language with

downloaded by wizard.z@foxmail.com

196 From hardware to software

many variants, and often ill-engineered constructs in order to support access of all pos-
sible hardware features. Also, constructs have been added in order to support the con-
struction of large programs. Nevertheless, the core language is still an excellent vehicle
for learning programming in the first place. In that sense, Wirth (1973, 1976a) will show
you how to do it the right way.

Modula-2/3. Wirth recognized that Pascal was not suited for systems programming, i.e.
developing programs at a sufficient level of abstraction, but still being able to access all
hardware features. To this end, and also to provide the right means for developing large
programs, he developed Modula (Wirth, 1976b). Modula was later followed by Modula-
2 (Wirth, 1983) which to date is often used as an alternative to Pascal. The language is
similar to BASAL in many ways, in that it allows programmers to modularize their soft-
ware into so-called modules (comparable to packages), and to map variables onto specific
memory address, thus allowing a convenient means of memory-mapped I/O program-
ming. The language has been kept small, and is practically suitable for the development
of what we have called service programs. Comparing it to Ada, however, Modula lacks
the concept of a task. Instead, there is only a primitive way of specifying so-called co-
routines. If you want to know more about Modula-2, especially for low-level program-
ming, Christian (1986) will be of help.

Recently, Modula-2 has been upgraded to its third version, known as Modula-3. The
main distinction with its predecessor is that more advanced data structuring techniques
have been added, and that co-routines have been replaced with the more advanced con-
cept of so-called threads. The language still needs to find its way to widespread use. A
good introduction to Modula-3 is given by Harbison (1992), whereas Nelson (1991) pro-
vides more specific information on its advanced features.

C and C++. The C programming language is perhaps one of the most disliked, and at
the same time most used language for developing systems programs. The language was
developed by Kernighan and Ritchie in the 1970s when they wanted to have the right
means for developing an operating system. Their ideas had two remarkable results: the
C language and UNIX (we will talk about UNIX later). The language proved that it was
possible to develop almost entirely portable system software, in particular so-called op-
erating systems, something that until then was considered hardly realistic. The crux of C
lies in its simplicity. Comparing it to assembly languages, a programmer has just enough
facilities to make the latter readable. Indeed, this meant that developing C programs is
not always that simple. Data abstraction was hardly provided, and certainly, there were
no advanced features such as tasks. Worse still, the data typing facilities that were incor-
porated into the language could easily be misused to do all the things that characterize
ill-engineered software. Nevertheless, when in good hands, the language is extremely
powerful and compilation of programs that can be efficiently executed on a wide range
of platforms is yet to be seen supported by other languages. At present, the language has
been standardized, and the interested reader is referred to Kernighan and Ritchie (1988)
for a complete description of the language, augmented with many illustrative examples.

downloaded by wizard.z@foxmail.com

Discussion and further reading 197

An extension that allows for better program construction is C++ developed by Strous-
troup (1987). However, although C++ does provide for enhanced data structuring (in the
form of so-called object-oriented constructs), it does not allow low-level programming
in the way that Ada or Modula-2/3 supports. Also, you will find no concept of a task in
C++. A good source on learning C++ is Lippman (1991).

4.6.3 Compiler technology

An important topic that we have hardly touched upon is the automated translation of
BASAL into PRIMAL through a compiler. But if we are to use high-level programming
languages, then compilers that can translate programs written in such languages into effi-
ciently executable code are essential. And, of course, compilation should be correct, i.e.
the (machine) program which is the result of compilation should do exactly the same as
if the original program were immediately executed. Constructing correct compilers that
generate efficiently executable code is difficult.

The correctness of the compiler is often affected in an unexpected way: the language
that is to be translated is simply not well defined. This may seem strange but you have
to realize that developing a language is no easy task. The consequence may be that some
language semantics may simply not have been provided, or may not be precise enough
to allow a compiler developer to achieve a correct set of translation rules. To this end, a
large area of (theoretical and practical) research has been explored for developing means
to express the semantics of programming languages in a complete and unambiguous way.
We have skipped this subject entirely. A good starting point for the fundamentals of spec-
ifying what a programming language stands for is Watt (1991).

But assuming that in some way or other we have a good idea of the syntax and se-
mantics of a programming language, we are still confronted with the considerable task
of actually developing the compiler. Fortunately, a lot of work can be avoided by making
use of so-called compiler-compilers. A compiler-compiler is a program that generates
a compiler, or at least an important part of it. What it means in practice is that the less
critical parts of a compiler, namely the lexical analyzer and the parser, can be generated
almost entirely if a precise definition of the syntax of a language is given. Without go-
ing into any further details here, the reader is encouraged to experiment with the Lex and
Yacc toolkit (Mason and Brown, 1990) which is standard available for UNIX systems,
and for MS-DOS systems. In that respect, it is also worth taking a look at Kernighan and
Pike (1984) in which the implementation of a simple desk calculator is given.

The really difficult part of compiler construction starts with the actual translation rules,
i.e. taking a parse tree as input and generating code. The problem is that if we were to
apply simple code generation rules such as the ones illustrated in Section 4.4.2 the result
would be an unacceptable inefficiently executable program. Instead, we have to con-
sider all kinds of code optimizations. In practice, this often means that the code genera-
tor should take into account that (1) hardware resources (such as memory and registers)
are optimally used, and (2) code should not be generated on a per-statement basis, but
rather for complete portions of a program. The second requirement simply states that a
code generator can perform better if it first analyzes what a series of statements actually

downloaded by wizard.z@foxmail.com

198 From hardware to software

accomplishes, instead of just generating code for each statement separately. Intuitively,
this is clear. How it can be realized in a compiler is something totally different. A brief
but highly instructive and readable account on code generation is given in Aho and Sethi
(1977).

A classic and excellent textbook on compilers is Aho et al. (1986). A practical, il-
lustrative approach on how to construct compilers is presented in Fischer and LeBlanc
(1991). Loaders and linkers are discussed in Graham(1975) and Presser and White (1972).
But, as is the case with much intricate software, it is probably most illustrative to look at
the actual implementations of compilers. Unfortunately, few references actually provide
the source code of compilers. Nevertheless, the code presented in Welsh and McKeag
(1980) describing a compiler for a subset of Pascal will be a good, and well-documented
starting point. Many details can also be found in Barron (1981). One of the few books
that provide many details of source code is Holub (1990), in which a complete compiler
(written in C) is described for a subset of C.

Exercises

1. Writing down PRIMAL instructions is fine, but how do we get the computer to “un-
derstand” these instructions?

2. Explain the difference between a JUMP and BRANCH instruction. Take into ac-
count the role of the status register.

3. Why is it not should a good idea to also map the registers of the PRIMAL processor
into the same address space as main memory? It would seem that we could do with
far fewer instructions in that case.

4. Can you think of a good reason why PRIMAL does not have any instructions for
dealing with floating-point numbers?

5. Explain in detail what happens when using subroutines in a PRIMAL program. Take
into account the working of the stack and the role of the program counter.

6. Why is the instruction

BSR offset

not exactly the same as executing the two instructions

PUSH PC
BRA offset

7. Consider the following BASAL statements:

for i in 1..12 loop
x := x + 2;

end loop ;

downloaded by wizard.z@foxmail.com

Exercises 199

How would you express this in PRIMAL?

8. Consider the following declarations in BASAL:

type SOME RECORD is
record

field1 : INTEGER;
field2 : INTEGER;

end record ;

someRecord : SOME RECORD;

How would you represent the variable someRecord in PRIMAL?

9. Adapt the program shown in Listing 4.4 so that initialization is done column by
column.

10. What kind of PRIMAL addressing mode would you use when representing BASAL

array variables in PRIMAL?

11. Explain the difference between the three types of parameters supported by BASAL

procedures.

12. Modify the package STACK PACKAGE so that, for example, the situation that a value
is pushed onto a full stack is properly handled. (Hint: provide additional parame-
ters that indicate whether an operation succeeded or not.)

13. Outline the implementation of the package body for the parameterized package
GENERAL QUEUE as given on page 172.

14. Provide an outline for representing BASAL procedures in PRIMAL. Assume that a
procedure has no parameters.

15. *How would you expect that an input parameter as used in BASAL is represented
in PRIMAL? And what about an output parameter?

16. Explain in your own words what the underlying principles are of a virtual proces-
sor.

17. *What is the difference between compilation and interpretation?

18. Explain what is actually specified by a representation clause, and why you would
want to have such clauses in the first place.

19. Do representation clauses make any sense if the underlying real processor does not
support memory-mapped I/O?

20. Justify the term “virtual device” as introduced in Section 4.5.2.

21. Explain what is meant by a service program, and how such programs can be seen
as an extension to a language such as BASAL.

downloaded by wizard.z@foxmail.com

downloaded by wizard.z@foxmail.com

Chapter 5

Operating systems

In this chapter we consider the problem of extending a computer with service programs
that will allow us to execute several programs simultaneously. In essence, we shall dis-
cuss the core functionality of so-called operating systems. Therefore, we start with iden-
tifying a simple problem which can only be solved by a computer that supports multiple,
independent programs. From there, various derived problems need to be solved. In par-
ticular, we consider memory management, scheduling issues, and program interference.
We finish our discussion by taking a closer look at some architectural features of operat-
ing system kernels.

5.1 Support for multiple programs

In the previous chapter we demonstrated how we could implement a virtual processor,
and how we could subsequently extend its programming language by constructing ser-
vice programs. Most of these programs are directly or indirectly related to managing
peripheral devices. In this section, we start with taking a closer look at one such service
program, namely one that is used to transfer data between a disk and main memory. What
we will see is that if no special measures are taken during the data transfer the CPU will
simply have to wait until the transfer is completed. This is really something we do not
want. Instead, it would make more sense to put the CPU to work by letting it execute the
instructions of some other program. And just as simple as this strategy may seem, we
will demonstrate that it raises many problems that need to be solved. These problems,
and their solutions will be discussed in this chapter. But let’s start by taking a look at the
source of all the troubles we are yet to encounter.

5.1.1 An example: disk I/O

Imagine that our processor lies at the heart of a computer to which a number of peripheral
devices is attached. In particular, assume we have a simple hard disk which is interfaced

201

downloaded by wizard.z@foxmail.com

202 Operating systems

Table 5.1 The registers, their mapping, and their meaning of the example disk controller

register address semantics

DISKSECTOR 10 specifies the sector number.
DISKTRACK 12 specifies the track number.

DISKSURFACE 14 specifies the required surface.
DISKMEMADDR 16 specifies the start address in main

memory where the data is located that
is to be either read from or written to
the hard disk.

DISKCTRL 20 used to initiate the actual data transfer.

to the computer by an I/O controller which we refer to as the disk controller. We are as-
suming that the controller uses direct memory access (DMA) for data transfer. As we have
explained in Chapter 3, this means that the controller can directly access main memory,
from which it can either copy data into its internal buffer or, similarly, copy data from
its buffer to main memory. In order to do so, it must know (1) exactly where data is (to
be) located on the disks of the actual hard disk, (2) where it is (to be) located in main
memory, and (3) how much data it needs to transfer. This means that on the one hand,
the surface, the track, and the sector are to be specified, as well as on the other the start
address of the data in main memory. With respect to the third point, we shall simplify
matters and assume that our disk controller always transfers data in blocks of 512 bytes.
Communication with the disk controller takes place through a number of 16-bit regis-
ters which are accessible via memory-mapped I/O. The registers and their addresses are
specified in Table 5.1.

It is important to recall that our PRIMAL processor assumes that memory can be ad-
dressed per byte. This means that each (16-bit) register DISKSECTOR, DISKTRACK, and
DISKSURFACE occupies 2 bytes. Register DISKMEMADDR is used to contain the start
address in main memory of the data that is to be transferred. In the case of PRIMAL, we
need 32 bits, i.e. 4 bytes, to store such an address. Register DISKCTRL is assumed to be
8 bits wide. The disk controller will only start transferring data if the first, i.e. left-most,
bit is “1”. As soon as data transfer has completed, we assume it then resets this bit to “0”.
The second bit is used to indicate if data should either be written to disk (in which case
it should be set to “0”) or read from disk (to which end it is set to “1”).

Now first consider a software specification for our hard disk. This can be done by
means of the BASAL package specification DISK, given as Listing 5.1. We assume the ex-
istence of a package MEMORY that provides a data type MEMORY.ADDRESS, which can be
used for representing memory addresses. Our own data type DISK.ADDRESS is used for
specifying the exact location of data on a disk. Note that the representation clauses ensure
that a variable of type DISK.ADDRESS can be mapped to registers DISKSECTOR, DISK-
TRACK, and DISKSURFACE respectively. The procedures READ and WRITE are used for
transferring data. In both cases they take a disk address and a memory address as input,

downloaded by wizard.z@foxmail.com

Support for multiple programs 203

package DISK is
��We assume that there is a package MEMORY available that will provide
�� us with, at least, a data type ADDRESS representing locations in main
�� memory. Recall that this data type is to be referenced using a dot
�� notation, i.e. MEMORY.ADDRESS.

subtype CARDINAL is INTEGER range 0..65535;
for CARDINAL’SIZE use 16;

�� Analogous to MEMORY.ADDRESS, we define a separate data type ADDRESS
�� for representing where data blocks are located on a disk. Because we are
�� using memory-mapped I/O, we also have to provide the representation
�� of this data type in main memory.

type ADDRESS is
record

sector, track, surface : CARDINAL;
end record ;

for ADDRESS use
record

sector at 0 range 0..15;
track at 2 range 0..15;
surface at 4 range 0..15;

end record ;
for ADDRESS’SIZE use 3*16;

procedure READ(source : in ADDRESS; destination : in MEMORY.ADDRESS);
procedure WRITE(source : in MEMORY.ADDRESS; destination : in ADDRESS);

end DISK;

Listing 5.1 The specification of the package DISK.

after which the disk controller handles the transfer. An implementation of our package
DISK is given in Listing 5.2.

First, we have used three variables headPosition, memoryAddress, and diskControl which
are mapped onto the respective registers of the disk controller. The implementations of
the procedures READ and WRITE are rather straightforward. For example, in order to read
a block of data, we first copy the right disk address and memory address into the appro-
priate registers, set the second bit of register DISKCTRL, and start the data transfer by
setting the leftmost bit to “1” by the assignment

diskControl(0) := 1;

Then, we simply wait until the hardware resets this bit to “0” again, indicating that data
transfer has completed. This is done by repeatedly checking the value of the leftmost bit
through the while statement (execution of a null statement has no effect whatsoever)

downloaded by wizard.z@foxmail.com

204 Operating systems

package body DISK is

subtype BIT is INTEGER range 0..1;
type BITSTRING8 is array (0..7) of BIT;
for BITSTRING8’SIZE use 8;

headPosition : ADDRESS;
memoryAddress : MEMORY.ADDRESS;
diskControl : BITSTRING8;

for headPosition use at 10;
for memoryAddress use at 16;
for diskControl use at 20;

procedure READ(source : in ADDRESS; destination : in MEMORY.ADDRESS) is
begin

headPosition := source;
memoryAddress := destination;
diskControl(1) := 1; �� set to read data from disk to memory
diskControl(0) := 1; �� start data transfer
while diskControl(0) = 1 loop

null ;
end loop ;

end READ;

procedure WRITE(source : in MEMORY.ADDRESS; destination : in ADDRESS) is
begin

headPosition := destination;
memoryAddress := source;
diskControl(1) := 0; �� set to write data from memory to disk
diskControl(0) := 1; �� start data transfer
while diskControl(0) = 1 loop

null ;
end loop ;

end WRITE;

end DISK;

Listing 5.2 An implementation of the package DISK.

while diskControl(0) = 1 loop
null ;

end loop ;

This type of waiting is a form of polling. Within a program P, a procedure is called in
which a check takes place on a regular basis to see whether some external event has taken
place. In our example, the external event is the setting of the leftmost bit to “0” by the
disk controller. Because this is the only event that is checked, and moreover because it
is checked continuously, this form of polling is referred to as busy waiting.

Now the point is that data transfer may take some time, at least in the order of several
to tens of milliseconds. This may not seem much, but if you realize that processors to

downloaded by wizard.z@foxmail.com

Support for multiple programs 205

MAIN_PROCEDURE

READWRITE

Figure 5.1 An example of related procedures, together forming a program.

date can execute in the order of (tens of) millions of instructions per second, it should be
clear that we are indeed wasting valuable CPU time. There is one obvious solution to this
problem: let the CPU devote its time to executing instructions of some other program P�.
And here’s where the problems start.

5.1.2 The problems

We first have to identify the programs that are candidates for having their instructions
executed. Now how did we execute the instructions of, for example, READ in the first
place? In general, this procedure will have been called from within some other procedure
P1 also forming part of our program P. In turn, we may expect that P1 has been called
by yet another procedure, say P2, and so on. In the end, there will be a main procedure
whose instructions were executed by the processor and which eventually resulted in call-
ing the procedure READ. This is illustrated by the graph shown in Figure 5.1 in which a
node represents a procedure, and an arc from node p to q the fact that procedure p will
sometime during its execution call procedure q. A program is thus considered as consist-
ing of a main procedure and all those procedures that are eventually executed due to the
fact that they are directly or indirectly called from the main procedure.

Returning to our initial problem of not wanting to waste CPU time during data trans-
fer on behalf of a program P, we wish to identify another program P� whose instructions
can be executed in the meantime. Denote by P the collection of procedures belonging to
program P. Assume that data is to be transferred between main memory and a peripheral
device on behalf of a procedure p � P. Now first suppose we select another procedure
q � P whose instructions are to be executed in the meantime.1 It is easily seen that se-
lecting q is not only senseless, it is wrong. The whole idea of executing instructions of
P is that this occurs in a purely sequential order. If we were to simply start executing
some other instructions of P (now contained in our selected procedure q), we would vio-
late this sequential execution order – something which is simply not permitted. The only
solution, therefore, is to select procedures from some other program P� which do not be-

1It should be noted that the assumption that we could even select such a procedure is not realistic. How-
ever, the assumption is made here for the sake of argument only.

downloaded by wizard.z@foxmail.com

206 Operating systems

long to P. In that case we would really let the CPU execute instructions from a completely
different set of procedures. For now, assume that we have such a program P� available.
Introducing multiple programs then quickly leads to the following issues:

Problem 1: Placing several programs in main memory. The first problem we will
have to deal with is the placement of more than one program into main memory. This
is not really a major problem until you realize that programs may have varying memory
requirements in terms of size, and that these requirements may even change during the
execution of a program (think of stacks, for example). Also, we have to ensure that the
execution of instructions belonging to one program does not corrupt the data that belongs
to another program.

Problem 2: Getting a suitable program. Stating that we can simply let the CPU exe-
cute instructions from some other program is fine, but does impose two problems. First,
we have to find a suitable program. Clearly, a program that is also waiting for the com-
pletion of I/O is not a candidate for the CPU. We are thus confronted with a scheduling
problem. And even if we have found a suitable program, our problems are not over. In
particular, we have to address the question how we can let the CPU continue with execut-
ing instructions for program P�, but later continue where it had left off in program P. This
is the problem of context switching and which we shall briefly discuss in Section 5.3.1.

Problem 3: Avoiding program interference. This is a serious problem. Suppose that
we have duplicated the package DISK so that program P� can also issue data transfers for
the hard disk. Duplicating the package, i.e. placing another copy of it into main mem-
ory, will not lead to duplication of the hard disk. In particular, all communication with
the disk controller still proceeds through its single set of registers. And as long as the
disk controller is doing its work on behalf of program P, P� should be prohibited from
manipulating these registers. This is the problem of program synchronization, a topic to
which we will also need to pay attention.

Problem 4: Reacting to hardware signals. Our problems started with the fact that we
wanted the CPU to execute the instructions of another program. This is fine, but one way
or another we will have to complete the execution of the program that we left off when
the I/O is finished. This is a problem of interrupt handling. It is not a major problem, but
it does require that the software for handling peripheral devices be properly organized.
In general, we shall see that this problem can be generalized to that of properly handling
hardware signals.

In the following four sections, each of these problems will be further explained and so-
lutions presented. At the end, we will have discussed the basic functionality of an oper-
ating system. We conclude this chapter by taking a look at operating systems in general,
and will show how we have been working towards the implementation of a rather sophis-
ticated virtual computer.

downloaded by wizard.z@foxmail.com

Memory management 207

5.2 Memory management

The first problem that we are going to tackle is that of placing several programs into main
memory.

5.2.1 Program relocation

Suppose we have written a BASAL program, i.e. a collection of packages consisting of
procedures, and that these packages are subsequently compiled to PRIMAL code. As we
have discussed, the compiler will need to allocate memory locations to variables, and
also keep track of the memory locations that contain the generated PRIMAL instructions.
If we knew for certain that we would always have the main memory all to ourselves, we
could instruct the compiler to allocate memory locations to data and instructions starting
at, say, address 0. However, if several other programs are also to reside in main memory,
we have to be careful about allocating memory locations for they might already have been
taken for use in another program. When giving the matter some thought, this approach is
seen to be unworkable. For one thing, it is unacceptable to let the process of compilation
depend on the previous allocation of memory to programs that have nothing to do with
the program that is currently being compiled.

But why not pretend that we have main memory all to ourselves? The only thing we
need to do is adapt the hardware so that it can make a distinction between relative and
absolute addresses. A relative address in this case is always considered to be relative
with respect to the first address of memory that is occupied by a program, where it is
assumed that a program always uses a contiguous piece of main memory. If we simply
register this first address, we can easily convert relative addresses to absolute addresses
which denote actual physical memory locations. What it means is that we implement (in
hardware), a function ABS that converts a relative address arel to an absolute address aabs

according to

aabs � ABS�arel�

ABS�arel� � arel�abase (5.1)

where abase denotes the so-called base address, the absolute start address of a program.
This principle is shown in Figure 5.2.

The figure illustrates a program of which the translated procedures have been placed
in a contiguous piece of memory starting at address 1400. This start address has been
loaded into the so-called base register. Relative addresses are given to the left of the
program, starting at relative address 0. At relative address 100, the value 2304 has been
stored. Now assume the PRIMAL instruction

MOVE 100, D0

is executed. In this case, addresses are taken relative with respect to the value stored in
the base register. In other words, in order to obtain the right data, we first add the value

downloaded by wizard.z@foxmail.com

208 Operating systems

1400

1400+

0

8965

2304100
1500

base register

MOVE 100,D0

Figure 5.2 Using relative addressing and its conversion to absolute addresses.

contained in the base register to each address occurring in an instruction, in this case
resulting in the absolute address 1500. In our example, the value 2304 is then loaded
into register D0. The only exception to this rule is when variables have been allocated to
specific memory locations, as is the case with memory-mapped I/O. Consequently, the
PRIMAL instruction set will have to provide the means to indicate if addressing is relative
or not. It should be clear, however, that calculating the absolute addresses can be entirely
done in hardware.

5.2.2 Procedure protection

There is still another fundamental problem when several programs may reside in main
memory: how we prevent a program from corrupting the data of another program. As an
example, consider the following piece of PRIMAL code, a subroutine which is assumed
to be a part of a program:

NASTY:
MOVE #END, A0 Move the address of the last instruction into register A0

LOOP: MOVE #0,(A0) And store 0 at the location identified by A0
ADD #4, A0 Increment the address stored in A0 by 4
BRA LOOP And repeat this forever

END: RTS This instruction will never be executed

The point is that as soon as NASTY is called, we first save the address of the last instruc-
tion of the subroutine. From that point on, we simply store the value 0 in this memory
location, as well as in each location beyond NASTY. Although we may expect that the
hardware will refuse to execute any more instructions at the point when memory is ex-
hausted, clearly, if no special measures are taken we will presumably have corrupted a
lot of data. In particular, all the data that is stored in those memory locations that are lo-
cated at addresses higher than the last instruction of NASTY will have been changed. Now

downloaded by wizard.z@foxmail.com

Memory management 209

1400

1400

+

0

8965

2304100

> >

12000

base register limit register

ok ok

out-of-limit signal

not ok

MOVE 100,D0

12000

Figure 5.3 Using hardware to check if addresses are referenced within the proper limits.

if some of this data belonged to another program that was also placed in main memory,
our subroutine is a problematic one indeed. A rather unacceptably problematic one to be
sure.

To solve this problem, computers may have in addition to a base register, a limit reg-
ister in which the absolute end address of a program is saved. Each time an instruction
addresses some data or the address of a procedure or subroutine, this relative address is
first converted to an absolute address, and then checked against the end address. If it is
out of range, the execution of the instruction will simply not take place, but instead, an
out-of-limit signal will be generated (we will return to this later). In terms of our above-
mentioned function ABS that converts relative addresses, we have

aabs � ABS�arel� �

�
arel�abase if 0� arel � alimit�abase

out-of-limit otherwise
(5.2)

The use of a limit register is shown in Figure 5.3. Note that for each program there will
be a separate value for the (base register, limit register) pair.

5.2.3 Memory allocation

Now that we have seen that we can load a program anywhere in memory without having
to affect its addressing, it is time to consider how we can manage the placement of several
programs. Suppose we have five programs as shown in Table 5.2, where the completion
time denotes the time to complete the program from the moment it is placed in memory.
The size of each program is given in units of kilobytes (KB).2

21 KB = 1024 bytes.

downloaded by wizard.z@foxmail.com

210 Operating systems

Table 5.2 Five programs to be placed into memory

program P1 P2 P3 P4 P5

size 1024 595 320 560 482
completion time 2 3 4 4 2

0

560

1024

1506
1619

1939
2048

P3

P2

P1

step 1 step 2 step 3

P3

P2

P4

P3

P5

P4

P3

P2

P1

P5

P4

step 1

step 2

step 3

time

Figure 5.4 Placing programs into memory.

Now assume we have a total main memory of 2048 KB at our disposal. We then at-
tempt to load as much programs in main memory as possible, starting with P1. Initially,
programs P1, P2, and P3 can be loaded, as shown in step 1 of Figure 5.4. After 2 time
units have elapsed, program P1 is finished and can be replaced by P4, so that we obtain
the situation as shown in step 2. Finally, program P2 will finish after another time unit
has elapsed, so that P5 can be loaded into memory.

Although everything seems to be in order, it is, in fact, not. Imagine what would hap-
pen if we had a very large number of programs. In the course of time, memory would
be partitioned into contiguous chunks each allocated to a program, and a number of free
chunks that can still be used. The problem is that the free chunks tend to scatter all over
memory, and moreover, also tend to grow increasingly smaller. And as free chunks tend
to become smaller, it should be clear that the maximum size a program can have in order
to be loaded into memory decreases as well. The result is that we have what is called
a completely fragmented memory. The solution to this problem is quite simple. If an
allocated chunk of memory is no longer needed (so that it becomes free), we simply try
to amalgamate it with a neighboring free chunk. This principle is shown in Figure 5.5.

The question that needs to be addressed is how we can keep track of allocated and
free chunks of memory. The answer is quite simple. We do this by means of software.
First, it is not hard to imagine how we can represent a contiguous chunk of memory. We
merely need to record its start address and its size. This can be represented by means of

downloaded by wizard.z@foxmail.com

Memory management 211

allocated
memory

free memory
chunks

allocated memory
being returned

time

Figure 5.5 The process of returning a previously allocated chunk of memory.

the following BASAL data type:

type MEMCHUNK is
record

startAddress : MEMORY.ADDRESS;
sizeOfChunk : INTEGER;

end record ;

where, again, we assume that the data type ADDRESS is provided by a package MEMORY,
used for representing memory addresses. In addition, we simply need to keep track of the
free memory chunks, to which end we can use an array freeChunks declared as:

freeChunks : array (1..NCHNK) of MEMCHUNK;

In this case, we assume that a maximum of NCHNK free chunks can be administrated.
Now, in order to load a program into main memory (which, as we have seen in Sec-
tion 4.5.3, is done by means of a loader), the loader will have to request a contiguous piece
of available memory. Later, when the program has finished, this memory chunk will have
to be returned. Therefore, if we implement our memory administration by means of a
package MEMORY (the same one that provides us with a definition of what a memory
address is), we can expect that its specification will be quite similar to the following:

downloaded by wizard.z@foxmail.com

212 Operating systems

package MEMORY is
type ADDRESS is ...;

procedure REQUEST(
size : in INTEGER; start : out ADDRESS; done : out BOOLEAN);

�� Request a contiguous piece of free memory of [size] units. If allocation
�� succeeded, [start] will indicate the start address of the allocated chunk and
�� [done] is set to TRUE. If allocation was not possible, [done] is set to FALSE.

procedure RELEASE(start : in ADDRESS; size : in INTEGER);
�� Return a contiguous chunk of memory starting at address [start] and having a
�� size of [size] units.
...

end MEMORY;

The actual BASAL implementations of these two procedures is not very interesting. It
merely involves manipulating the array freeChunks, although, admittedly, the amount of
code is more than you might expect at first. However, there is nothing really sophisticated
about the implementation. The important point to note is that we have constructed a piece
of software in the form of a service program MEMORY that allows us to keep track of
available memory. Combined with the hardware solutions for program relocation and
protection, we are now at least capable of placing multiple programs in a single main
memory.

It is worth taking a closer look at two more advanced methods of memory manage-
ment. (We note that the following two subsections can be skipped on first reading.)

� 5.2.4 Advanced memory management: paging

The main disadvantage with memory management as described above is that whenever a
large program is to be placed into memory it may take a long time before there is a contigu-
ous block of free memory available in which the program fits. This problem can be allevi-
ated by making use of a paging mechanism. Paging is the subject of this section.

Principles of paged systems

In paged computer systems memory is partitioned into equally sized pages. Typically, the
page size (which is generally fixed per computer system) ranges between 128 and 4096
memory locations. An address is broken into a page number and a page offset, as illustrated
in the following example.

Example 5.1. Suppose that main memory consists of 220 � 1 048 576 locations, and that
it is partitioned into pages each having a size of 28 � 256 memory locations, so that there
is a total of 220 div 28 � 212 � 4096 pages. If an instruction in a program refers to address
26251, then this is converted into a page number p and page offset o, according to

p � 26251 div 28 � 102
o � 26251 mod 28 � 139

downloaded by wizard.z@foxmail.com

Memory management 213

where “div” denotes integer division and “mod” is the modulo operator, i.e.

26251 mod 28 � 26251� �26251 div 28��28 � 139

Calculating the page number and page offset may seem a lot of work, but due to the fact that
addresses are just bit strings, and page sizes are always chosen a multiple of 2, we can easily
find the page number and offset by stripping off bits in the representation of the address.
To illustrate, because our example computer has a total of 220 memory locations, we can
represent addresses as bit strings of length 20. In that case, address 26251 corresponds to
the following bit string of length 20:

26251 �� 000001100110� �z �
12

10001011� �z �
8

As can be readily verified, the last 8 bits correspond to the binary number 100010112 �
13910, whereas the first 12 bits correspond to 11001102 � �26251 div 28� � 10210.

�

Now suppose we have a program that cannot be loaded into memory because there is not a
contiguous block of free memory available that is large enough for it. What we can do then
is partition the program into logical pages and subsequently try to assign physical pages that
are available in memory. Let’s see how this works. Again, assume that we have a page size
of 256 memory locations, and that our program requires a total of 9 logical pages, numbered
L0� � � � �L8. Now suppose that the first free page in memory is physical page P6. What we
then do is use this page for logical page L0. In other words, we apply the mapping

L0 �� P6

We then continue our search. If the next free page is page P29, we then assign L1 to P29. This
process continues until we have assigned all logical pages to free physical pages. While
doing so, we keep track of these mappings in a so-called page table. In the end, we may
find that for our example program we have constructed the following table:

logical page: L0 L1 L2 L3 L4 L5 L6 L7 L8

physical page: P6 P29 P67 P289 P723 P1879 P2643 P2644 P3802

What happens is that whenever an instruction is executed that refers to the relative address
arel, this relative address is converted to an absolute address aabs using the page table. In
terms of our address-conversion function ABS, we can specify this as follows. Denote by
PAGEPT�L� the physical page corresponding to the logical page L for a given a page table PT.
Let K denote the page size. In that case, it should be clear that for any relative address arel

we can find its logical page LOG�arel�, and thus its corresponding physical page PHYS�arel�
as

downloaded by wizard.z@foxmail.com

214 Operating systems

LOG�arel� � arel div K

PHYS�arel� � PAGEPT�LOG�arel��

We then have for the absolute address aabs:

aabs � ABS�arel� � �PHYS�arel��K���arel mod K� (5.3)

For example, suppose our program contains the instruction

MOVE 1000, D0

Address 1000 is then converted to the logical page number L1000�256 � L3, and the offset in
that page 1000 mod 256 � 232. Because L3 was mapped to physical page P289 which was
recorded in the page table, we see that the instruction is effectively converted to

MOVE 74216, D0

where 74216 � 289� 256� 232. Note that, in the context of our discussion on program
relocation, the address 1000 is indeed a relative address, whereas 74216 is an absolute ad-
dress. However, the base register in paged computer system has been completely replaced
by the concept of a page table.

A note on the page table

An interesting aspect of paged systems is the interaction between hardware and software.
Obviously, if we want these systems to work efficiently, conversion of logical to physical
page numbers should be done by the hardware. But in order to do so, we need a page table.
What we can do is put this page table in main memory, and adapt the hardware such that it
has an additional page table register that contains the address of the first entry of the page
table. Each time a memory location is referenced, the hardware interprets the logical page
number as an index in the page table. To that end, it adds this number to the value stored in
the page table register in order to locate the physical page number.

Example 5.2. Returning to our example computer which had 220 memory locations avail-
able, we can use the first 12 bits as an index into a page table that can contain 212 � 4096
entries. The relative address 1000 corresponds to the following bit string:

1000 �� 000000000011� �z �
12

11101000� �z �
8

We then take the value of the entry #3 in the page table to find the physical page to which
logical page L3 has been mapped. This principle is illustrated in Figure 5.6.

�

downloaded by wizard.z@foxmail.com

Memory management 215

1634

page table
register

12 bits 8 bits
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 1 0 0 0 0 1
0 0 1 0 1 1 0 1 0 0 1 1
0 1 1 1 0 1 0 1 0 1 1 1
1 0 1 0 0 1 0 1 0 0 1 1
1 0 1 0 0 1 0 1 0 1 0 0
1 1 1 0 1 1 0 1 1 0 1 0

0
1
2
3
4
5
6
7
8

(6)
(29)
(67)
(289)
(723)
(1879)
(2643)
(2644)
(3802)

0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 0

8 bits12 bits

Figure 5.6 Address conversion in paged computer systems.

The important point to note here is that a memory manager which is entirely constructed
in software fills a page table with appropriate physical page numbers. The hardware sub-
sequently uses this table to do the actual conversion from logical to physical page number.
To illustrate, suppose a loader wants to place a program into main memory. In that case, it
will first request the memory manager for a page table, instead of just a contiguous chunk
of memory as previously. A page table can be represented in BASAL by the following data
type:

type PAGETABLE is array (0..MAXPAGES-1) of INTEGER range 0..MAXPAGES-1;

where MAXPAGES indicates the maximum amount of pages that can be allocated to a pro-
gram. Now, for each program there will be a separate variable table of type PAGETABLE that
contains the mapping of logical pages to physical pages. This page table will be filled by
means of the service program implemented as the package MEMORY. As soon as this has
been done, the loader need merely load the address of the variable table into the page table
register in order for the program to be executed.

Sharing pages

An important advantage of paging is that certain pages can be shared by several programs.
For example, the instructions of a program can be considered as non-modifiable data.3 If

3Writing so-called self-modifying code was once considered to be a well-engineered solution to prob-
lems. A program could modify itself by treating its own instructions as data, and subsequently modify the
bit strings that made up certain instructions. Today, you should not say to anyone that you like this.

downloaded by wizard.z@foxmail.com

216 Operating systems

data B1

data B2

code S1

code S2

data A1

data A2

data A3

P0

P1

P2

P3

P4

P5

P6

P8

P9

P10

P11

P12

P7

page table
Program 1

P1

P5

P11

P4

P8

data A1

data A2

data A3

code S1

code S2

code S1

code S2

page table
Program 2

data B1

data B2

P4

P6

P8

P10

code
region

Program 2

code
region

Program 1

data
region

Program 2

data
region

Program 1

Figure 5.7 Sharing of pages in a paged computer system.

we were to duplicate instructions because several programs execute the same procedures,
then it would seem that we are wasting memory. Instead, it would be more efficient if the
instructions were placed in memory once, and used by several programs. Paging offers us
a convenient means to implement this scheme.

When compiling a program, the compiler can separate the program into at least two dif-
ferent, non-overlapping regions. One, which we refer to as the data region, contains all
the variables associated with the program. The data region is unique to each program. The
second region, called the code region, contains only instructions. The code region may be
shared with other programs. (Note that making a distinction between data and code regions
is indeed feasible. What it means is that the program counter is always loaded with an ad-
dress that refers to an instruction located in a code region, whereas almost every other ad-
dress refers to data located in the data region.) In order to load a program into memory, we
start with requesting a page table for the data region. Then, if the code region is already
located in memory (on behalf of another program), we merely need to fill in the remain-
ing entries of the page table so that they refer to the associated pages containing instruc-
tions. Otherwise, the page table will have to be handled by the memory manager because
we would need additional memory to place the code region as well. This principle is shown
in Figure 5.7.

An excellent candidate program for sharing its code region is a service program. Recall
that in our description of the problem of avoiding program interference we assumed that we

downloaded by wizard.z@foxmail.com

Memory management 217

had duplicated the package DISK on behalf of a program P�. We needed to duplicate the
package in order to let this program also make use of the hard disk. Using shared pages, it
is then necessary to assign only additional pages for the variables that occur in the package.
All translated instructions need not be duplicated but can instead be located in a number of
shared pages. Each time a new program is to be executed, pages are allocated for its own
data and code regions, plus additional pages for containing the data related to the service
programs.

There is, however, an important exception to this rule and which is the source of many prob-
lems related to program interference. Without going into too much detail at this point, recon-
sider our package MEMORY on page 211. Now clearly, the variable freeChunks which records
the available chunks of memory should not be copied for each program, but instead, should
be shared between all programs. This is caused by the fact that it is global information on
the availability of main memory that should be maintained independently of the program
currently being executed. What this means is that each reference to this data should not be
considered as a relative reference, but rather as an absolute reference to a specific part in
memory where this variable has been stored. How can we achieve this? Giving the matter
some thought, it is not hard to see that we can actually store this, and similar global vari-
ables, in a separate physical page that is to be shared by all programs. Indeed, this solution
is perfectly in order, except for the fact that we need to prevent two programs from modify-
ing that page at the same time. How such program interference can be avoided is discussed
below.

5.2.5 Advanced memory management: virtual memory

In the previous section we discussed how relative addresses can be converted to physical ad-
dresses by using a page table. So far, we have assumed that the length of a relative address is
the same as that of a physical address. This means that the logical address space is exactly
the same as the physical address space. Perhaps somewhat surprisingly, we can do better
than that. In particular, we can make the logical address space considerably larger than the
physical address space. In other words, to programs it will seem as if the size of main mem-
ory is much larger than it actually is. This technique, which we shall briefly describe here,
is therefore known as virtual memory.4

In order to extend the logical address space beyond the size of main memory, a part of sec-
ondary storage (i.e. disks) is used to store logical pages that currently cannot be placed in
main memory. This part of the secondary storage is also known as the swap space. What
happens is the following. First, as in paged systems, a memory manager maintains a page
table indicating the relation between the logical pages of a program and the actual physical
pages with which they are associated. However, whereas in pure page systems each logical
page was always associated with a physical page, this need hold no longer for virtual mem-
ory systems. Instead, a logical page may temporarily not be associated with a physical page
implying that it has not been placed in main memory. This is illustrated in Figure 5.8. An
additional bit is used to indicate the presence of a page in main memory. In the example,

4We note that this technique has until recently been used only in fairly large computers. However, now
you can buy laptop computers that also support virtual memory.

downloaded by wizard.z@foxmail.com

218 Operating systems

in memory

16 bits 8 bits

 8 bits12 bits

Figure 5.8 Address conversion in virtual memory systems.

we have expanded the width of an address from 20 to 24 bits, effectively leading to a virtual
memory that is 24 � 16 times larger than physical memory.

In terms of our address-conversion function ABS, we can then express the calculation of an
absolute address as follows. We use the notation PAGEPT�L� �� to indicate that the logical
page L is presently not associated with a physical page, i.e. L is not placed in main memory.
Using our previous notations LOG and PHYS with

LOG�arel� � arel div K

PHYS�arel� � PAGEPT�LOG�arel��

We then have for the absolute address aabs:

aabs � ABS�arel� �

�
�PHYS�arel��K���arel mod K� if PHYS�arel� ���
out-of-memory otherwise

(5.4)

This definition of ABS strongly resembles (5.3) except for the fact that calculation of an ab-
solute address may fail because there is no associated page. Also, you should realize that in
the case of pure paged systems we have

maxfarelg� maxfaabsg

whereas in virtual memory systems,

maxfarelg �maxfaabsg

downloaded by wizard.z@foxmail.com

Process management 219

Now suppose an instruction refers to an address in a logical page that is currently not placed
in main memory. This means that the data or instructions contained in that page are still to be
found in the swap space and that, one way or the other, this page will have to be transferred
from swap space to main memory in order for the CPU to continue execution of the program.
Of course, this can be done by yet another service program. The moment it is detected that
a logical page should be transferred to main memory, this service program is automatically
invoked (how this is actually done is described further below). The service program initiates
a data transfer from swap space to main memory, thereby merely copying the logical page
from swap space. As soon as the requested page is in main memory, the memory manager
updates the page table to which the logical page belonged, and the execution of the program
can proceed where it had left off.

Of course, there is a problem when we are running low on available physical pages. In that
case, room will have to be made by removing one or several other logical pages from main
memory. An important design decision is choosing the right replacement strategy that pre-
scribes which logical page is to be removed. To illustrate, suppose we were to remove a log-
ical page that will soon be needed again. In that case, another data transfer will soon have to
be initiated again, a situation which we would preferably want to avoid. Page replacement
strategies are targeted towards finding the best page to replace. But how do we know what
the best page is? When giving the matter some thought, you will come to the conclusion
that finding such a page requires knowledge of which pages will be referenced in the future.
That’s asking rather too much.

Therefore, to alleviate such problems, most strategies attempt to select the least recently
used logical page, i.e. a logical page to which no reference has been made for a long time.
The hypothesis is that such a logical page can be expected to remain unreferenced for some
time in the future. In addition, logical pages that have not been modified while placed in
main memory are preferred to modified ones. Because the memory manager always copies
a logical page when placing it in memory, non-modified pages can simply be removed with-
out having to update their counterpart as stored in the swap space. Modified pages thus re-
quire an additional data transfer from main memory to the swap space. As it turns out, main-
taining an administration in order to find the least recently used page is so time-consuming
that compromises have to be made. What happens in practice is that the hardware gener-
ally provides an additional two administration bits per physical page. The reference bit is
automatically set whenever a reference to that page is made. The modify bit is set by the
hardware whenever data contained in the page is changed. Furthermore, the reference bit is
periodically reset to 0 so that referenced pages that have not been referenced for some time
will appear as non-referenced ones. So, for example, a page with its reference bit equal to
0, and its modified bit equal to 1, indicates that this page has been modified, although some
time ago. We shall not go into further detail here, but instead refer the interested reader to
Silberschatz and Galvin (1994) or Tanenbaum (1992).

5.3 Process management

At this point it should be clear that we can indeed place several programs in main mem-
ory. This brings us to our next problem, namely finding a suitable program with which
to continue when I/O is being done on behalf of another program. But before doing so,

downloaded by wizard.z@foxmail.com

220 Operating systems

we first take a closer look at the more fundamental problem of switching over from one
program to another.

5.3.1 Context switching

Suppose the CPU has been executing instructions of a program P and has come to a point
where data transfer between main memory and a peripheral device is to take place. Rather
than letting the CPU wait until data transfer is completed, we assume that it should con-
tinue with executing the instructions of another program, say P�. In this section we shall
only be concerned with the problem of how we can switch from executing instructions
that belong to P to executing instructions that belong to P� in such a way, that we can
later switch back to P to the point where we had previously left off.

When giving the matter some thought, the solution is – in principle – quite simple. At
the moment we initiate a data transfer on behalf of P we also know the next instruction
of P that is to be executed: its address has been stored (by the hardware) in the program
counter. So what we can do is simply save this address somewhere, and load the pro-
gram counter with the address of the next instruction of P� that we want to execute. Of
course, we assume that we had previously saved this address as well. The moment we
load the program counter with this new address, the CPU continues with the execution
of instructions that belong to P�.

But surely, this is not enough. For one thing, the stack that has been constructed on be-
half of P has nothing to do with the one which was built on behalf of P�. Consequently,
we have to save the value of the stack pointer (i.e. register SP) which it had when ex-
ecuting P, and reload it with the value it previously had when executing P�. And this
method can be repeated for any other register of the CPU. What it means is that we have
to save the complete processor context of P, and restore the processor context of P�.
The processor context of a program P at a time t is thus the collection of values stored in
the registers of the CPU (and which are affected by P). An important observation is that
the processor context changes during the execution of instructions. Now the whole idea
is that the processor context also uniquely determines the execution status of a program.
In other words, if we restore a previously saved processor context of a program P, we ex-
pect that execution continues at the point where we had last saved the processor context
of P. The effect of saving and restoring a processor context is shown in Figure 5.9.

How can we realize such a mechanism? As may be expected, a solution can be found in
software and in particular by means of another service program. We start with developing
a data type for representing a processor context for the PRIMAL processor. To that end, we
make a distinction between data and address registers, as well as the program counter and
the status register (see also Section 4.2.1). These data types will form part of a package
called CONTEXT, outlined in Listing 5.3.

downloaded by wizard.z@foxmail.com

Process management 221

save registers

restore registers

select next program

save registers

restore registers

select next program

idle

executing

P P*service
program

Figure 5.9 Context switching: relinquishing the CPU in favor of another program. Adapted
from Silberschatz and Galvin (1994).

package CONTEXT is
...
type DATA REGISTER is (D0,D1,D2,D3,D4,D5,D6,D7);
type DATA REGISTER SET is array (DATA REGISTER) of BITSTRING32;

type ADDRESS REGISTER is (A0,A1,A2,A3,A4,A5,A6,A7);
type ADDRESS REGISTER SET is array (ADDRESS REGISTER) of BITSTRING32;

type DEFINITION is
record

dataRegister : DATA REGISTER SET;
addressRegister : ADDRESS REGISTER SET;
programCounter : BITSTRING32;
statusRegister : BITSTRING8;

end record ;
...

end CONTEXT;

Listing 5.3 The data types for defining a processor context.

downloaded by wizard.z@foxmail.com

222 Operating systems

package CONTEXT is
type DATA REGISTER is (D0,D1,D2,D3,D4,D5,D6,D7);
type DATA REGISTER SET is array (DATA REGISTER) of BITSTRING32;

type ADDRESS REGISTER is (A0,A1,A2,A3,A4,A5,A6,A7);
type ADDRESS REGISTER SET is array (ADDRESS REGISTER) of BITSTRING32;

type DEFINITION is
record

dataRegister : DATA REGISTER SET;
addressRegister : ADDRESS REGISTER SET;
programCounter : BITSTRING32;
statusRegister : BITSTRING8;

end record ;

MAXPROG : constant INTEGER := ...;
subtype PROGRAM ID is INTEGER range 1..MAXPROG;
type PROCESSOR CONTEXTS is array (PROGRAM ID) of DEFINITION;
currentProgram : PROGRAM ID;
processorContext : PROCESSOR CONTEXTS;

procedure SWITCH(nextProgram : in PROGRAM ID);
�� Switch processor context from the calling program, registered as [currentProgram],
�� to [nextProgram], so that execution proceeds with instructions belonging to the
�� next program.

end CONTEXT;

Listing 5.4 The complete specification for describing processor contexts.

For each program, we have to be able to save and restore its processor context. Also,
we have to keep track of the program that is currently executing. This can be achieved
by means of the following declarations (exact declarations are given below):

currentProgram : INTEGER range 1..MAXPROG;
processorContext : array (1..MAXPROG) of CONTEXT.DEFINITION;

where MAXPROG is the maximum number of programs that can be supported. At this
point we have all the necessary declarations for saving and restoring processor contexts.
By putting these into a separate service program in the form of the package CONTEXT,
we need merely supply a procedure for actually switching from one processor context to
another. This leads to a more accurate specification for the package CONTEXT as shown
in Listing 5.4.

Ignoring for now where and how the procedure SWITCH is actually called, saving and
restoring the processor context roughly consists of executing the following three consec-
utive steps:

1. Save the value of each register into the appropriate field of processorContext.

2. Administrate that there is another program that is now current by assigning the
value of nextProgram to currentProgram.

downloaded by wizard.z@foxmail.com

Process management 223

3. Restore the value of each register by assigning it the value as stored in the appro-
priate field of processorContext(nextProgram).

These steps coincide with what is shown in Figure 5.9.

� However, there is a subtle issue that we are ignoring here if these three steps were indeed to
be executed as indicated: we are saving the wrong value for the program counter. To explain,
note that the value of the program counter is saved during the first step above. In particular,
assume it is the last thing we do as part of the first step. This means that the program counter
refers to an instruction that forms part of the second step. What this implies is that when we
restore the program counter during the third step we will immediately continue where we
had previously left off. We thus continue with executing the first instruction of the second
step. This eventually leads us to restoring the program counter again (in the third step),
which thus brings us into an infinite loop of executing the second and third step.

What we should have done is the following. First, we should have saved the location of
the first instruction that follows the call to the procedure SWITCH. As soon as we restore the
value of the program counter, execution then immediately continues with this instruction.
Second, this implies that restoring the program counter should also be the last thing we do as
part of the third step, for any instruction of Step 3 that follows the restoring of the program
counter will never be executed. How these matters are dealt with in practice is beyond the
scope of this book, as they involve discussing some detailed and specific parts of PRIMAL

code. We therefore refer the interested reader to Clements(1994) which includes a detailed
discussion on context switching.

5.3.2 From processor contexts to processes

Before we discuss our original problem of selecting a suitable program, let’s take a step
back and see what we are doing at this point. With the concepts introduced so far, we are
capable of placing several programs into main memory, and also of switching the CPU

between those programs. The approach so far has been strictly bottom-up. We identified
what a program was and how we could use the CPU more efficiently by switching between
programs at appropriate moments. But from the perspective of a program, nothing really
spectacular is happening. When we observe how its instructions are executed, it seems
as if there is one CPU that is devoted entirely to executing the program. One way or the
other, we have created yet another image of a virtual processor.

Let’s see what this virtual processor looks like. First, it consists of a processor context:
a true image of the registers that belong to the real processor executing the instructions of
a program. But there is more. Whenever a program P is not being executed, it is as if its
virtual processor is waiting for some event to happen. For example, when we choose to
let the CPU start executing the instructions of a next program because it had just initiated
I/O on behalf a previous program, it is as if the virtual processor that was executing P
is indeed waiting for I/O to complete. Similarly, when a program has not been placed in
main memory, its virtual processor is completely idle: it really has nothing to do. The
idea of having a virtual processor exclusively dedicated to executing the instructions of
a single program brings us to the concept of a process.

downloaded by wizard.z@foxmail.com

224 Operating systems

Let P denote a program described in the programming language LANG�P�.
A process PROC�P� of P is a description of a series of actions or operations
towards the completion of P, as if the program were executed by the (virtual)
processor implementing LANG�P�.

Note that a process is a description of the behavior of a program. Consequently, if we
pretend that the procedures that make up a program are actually executed, we can indeed
view a program in execution as a process.

� Our definition deviates slightly from what is given in many textbooks on operating systems.
Most textbooks indeed define a process as a program in execution. However, this definition
is not a very accurate one. To see this, let’s consider a program Pfp�qg, where P is a program
consisting of the procedures p and q. So PROC�Pfp�qg� denotes the process associated
with P.

Now nothing prevents us from bringing the program P in execution by two different pro-
cesses PROC1�P� and PROC2�P�. These processes execute the same program, but may in
the end do different things depending on the input data of a process. Examples are service
programs for identical devices (disks, terminals). On the other hand, we might have another
program P�fp�rg which has the procedure p in common with Pfp�qg. P and P� have dif-
ferent associated processes, because they are different programs. By association this also
holds for their contained procedure p, which is the same in both programs.

Now, what we need is a description that will allow us to talk about processes as con-
sumers of resources and services. For example, a process requires the CPU in order to
have its associated program executed; similarly, it requires memory and peripheral de-
vices, etc. This implies that in order to implement processes for our purposes we have
to administrate the use of hardware resources. In particular, this means that we have to
provide variables for administrating the processor context (which has already been dis-
cussed above), as well as variables for keeping track of the page table, data and code
regions (discussed in Section 5.2.4), CPU execution time, etc. Last, but not least, we will
also have to provide the right means for describing when the program of a process is
ready to be executed by a CPU. Therefore, we introduce the concept of a process state.
In particular, we make a distinction between the following situations, which are shown
in Figure 5.10. Let P denote the program associated with the process PROC�P�.

1. New. The process has just been created.

2. Ready. The instructions of P can be executed.

3. Running. The program is currently being executed by the CPU.

4. In waiting. The instructions of P that are to be executed next are placed in main
memory, but execution must wait for the availability of one or other resource.

5. Out waiting. The instructions of P that are to be executed next are no longer placed
in main memory. In addition, execution must wait for the availability of one or
other resource.

downloaded by wizard.z@foxmail.com

Process management 225

new ready running

in
waiting

halted

out
waiting

out
ready

1

2

3

4

5

6

78

9

10

transition reason

1 the process has been created.
2 the process has been selected for

execution.
3 a time slice has expired.
4 the process has terminated.
5 the process requires a resource that is

currently not available.
6,8 the required resource has become

available.
7,9 the process has to make room for an-

other process.
10 the process is placed back into main

memory.

Figure 5.10 The general state-transition diagram of a process.

6. Out ready. The instructions of P can be executed, but are currently not placed in
main memory.

7. Halted. The process has terminated.

Of course, it is not possible to make a transition from one state to an arbitrarily chosen
next state; Figure 5.10 also shows the transitions that are possible.

Clearly, processes that are suitable for execution by the CPU are those that are residing
in state ready. And these are precisely those processes that are not waiting for a resource
to become available, and of which the associated program has been placed in main mem-
ory. Selecting one of these so-called ready processes can proceed according to different

downloaded by wizard.z@foxmail.com

226 Operating systems

package CPU SCHEDULER is
subtype PROCESS ID is CONTEXT.PROGRAM ID;

type BASIC STATE is (NON EXISTENT, EXISTS, HALTED);
type EXISTS STATE is (READY, RUNNING, WAITING);
type MEMORY STATE is (IN MEMORY, OUT MEMORY);

type PROCESS STATE is
record

basic : BASIC STATE;
exists : EXISTS STATE;
memory : MEMORY STATE;

end record ;

procedure SET BASIC STATE(
proc : in PROCESS ID; state : in BASIC STATE);

procedure SET EXISTS STATE(
proc : in PROCESS ID; state : in EXISTS STATE);

procedure SET MEMORY STATE(
proc : in PROCESS ID; state : in MEMORY STATE);

procedure GET PROCESS STATE(
proc : in PROCESS ID; state : out PROCESS STATE);

procedure SCHEDULE NEXT(nextState : in EXISTS STATE);
�� To be called when the current process wants to relinquish the CPU, thereby setting
�� itself in [nextState]. The process returns from this procedure call only after
�� it has been scheduled again by some other process.

currentProcess : PROCESS ID; �� A globally accessible variable.
end CPU SCHEDULER;

Listing 5.5 Initial data types for describing CPU scheduling.

strategies. For example, each process may have an associated priority, or the least re-
cently selected ready process may be chosen. So, finding a suitable program is no longer
a real problem. But who is going to do this? Again, the answer is to be found in software
by means of a so-called CPU scheduler. Let’s start by describing some data types that
will allow us to administrate processes adequately. First, the state of a process can be
represented by means of the data types and operations in Listing 5.5. For completeness,
we have also added procedures for setting and retrieving the state of a process, as well
as a procedure SCHEDULE NEXT, and a global variable currentProcess which are used for
scheduling purposes. Scheduling is discussed below.

But, of course, we need to keep track of more things. Using the declarations from the
previous sections, we can represent a complete process by means of a so-called process
control block, which can be represented in BASAL as shown in Listing 5.6.

Now suppose a process needs to give up the CPU for some reason. In that case, it need
merely call the CPU scheduler in order to find a next program that can be executed. There-
fore, we provide a procedure SCHEDULE NEXT as part of a package CPU SCHEDULER
which also contains the declarations given so far, and some additional administration

downloaded by wizard.z@foxmail.com

Process management 227

type PROCESS CONTROL BLOCK is
record

state : PROCESS STATE;
dataTable : MEMORY.PAGETABLE; �� See Section 5.2.4
codeTable : MEMORY.PAGETABLE;
...

end record ;

Listing 5.6 Definition of a process control block.

package body CPU SCHEDULER is
...
processTable : array (PROCESS ID) of PROCESS CONTROL BLOCK;

procedure SCHEDULE NEXT(nextState : in EXISTS STATE) is
nextProcess : PROCESS ID;
nextIsFound : BOOLEAN;

begin
�� The process that is calling this procedure will be‘currentProcess’.
�� A good candidate to start searching for next is its successor as
�� administrated in the process table. But before doing so, set the
�� current process in its desired [nextState].
processTable(currentProcess).state.exists := nextState;
nextProcess := currentProcess mod CONTEXT.MAXPROG + 1;
nextIsFound := FALSE;
while not nextIsFound loop

if processTable(nextProcess).state.basic = EXISTS and
processTable(nextProcess).state.exists = READY and
processTable(nextProcess).state.memory = IN MEMORY

then
�� You found an appropriate candidate for executing next.
nextIsFound := TRUE;

else
�� The presently inspected process is not eligible to be executed.
�� Continue searching by inspecting its successor.
nextProcess := (nextProcess mod CONTEXT.MAXPROG) + 1;

end if ;
end loop ;
currentProcess := nextProcess;
CONTEXT.SWITCH(nextProcess);

end SCHEDULE NEXT;
end CPU SCHEDULER;

Listing 5.7 Outline of an implementation for a CPU scheduler.

variables. This procedure (shown in Listing 5.7) takes as parameter the EXISTS STATE
to which the calling process should be set. We will see how this feature is used when we
reconsider our implementation of the package DISK.

The point is that a process which is going to give up the CPU keeps searching (now pre-
tending to be the CPU scheduler) for the next existing process that is ready and in memory.

downloaded by wizard.z@foxmail.com

228 Operating systems

Other selection criteria can be taken into account as well but have not been included in
our outline. The first process that meets all criteria is then selected as the current process,
and a context switch is made. (It should be noted that the code shown is rather simplified.
In practice, much more checking needs to be done to find the most suitable program.)

At this point we are now able to adjust our DISK package as presented in Section 5.1.
Instead of using the repetitive statement

while diskControl(0) = 1 loop
null ;

end loop ;

we can now let the CPU continue with executing the most suitable program by means of
the statement:

CPU SCHEDULER.SCHEDULE NEXT(CPU SCHEDULER.WAITING);

where we indicate that the calling process should be put into the state WAITING. How
we can eventually continue with the disk driver is discussed further below. For now, it
should be clear that we have achieved the means to let a number of processes share a
single CPU. But if we look again at what we have done from the perspective of a pro-
cess, we have actually accomplished something quite spectacular. For example, suppose
a process PROC1 wants to read some data from disk. To that end, it calls the procedure
READ from package DISK. This procedure call will eventually lead to the required data
transfer, but will also suspend the process by letting the CPU continue with the execution
of instructions that belong to an entirely different process, say PROC2. That some other
process will be executed, however, is completely hidden from PROC1. To PROC1 it still
seems as if the CPU is executing instructions on its behalf. What we have thus accom-
plished is an image of a computer that consists of several processors or, in other words,
we have a virtual multiple processor computer at our disposal. The spectacular thing
about it is that we have realized this image entirely in software, and it turned out that it
was not that difficult either. But we also introduce new problems as will be discussed in
the next section.

5.4 Process interference

Probably one of the most intricate issues to deal with in cases where multiple processes
co-exist, is unwanted interference. Generally, this can happen when the CPU is executing
instructions on behalf of a process PROC1 and which alter data that is stored on behalf of
another process PROC2. There are several solutions for avoiding interference, depending
on the type of interference that can occur:

1. First, it may be necessary to let processes explicitly synchronize, meaning that a
process PROC1 is forced to wait until a process PROC2 has reached a certain sit-
uation. Synchronization can generally be realized through software, although it is
convenient to have some rudimentary hardware support.

downloaded by wizard.z@foxmail.com

Process interference 229

2. Besides synchronization, we also have to deal with the fact that during execution,
the hardware may interrupt the CPU. In that case, any execution of instructions by
the CPU should not interfere with those it was executing just before the interrupt
occurred.

3. Finally, providing service programs may seem in order, but they become useless if
we cannot impose their use. What we need is a mechanism to force processes to
make use of service programs so that we can control the avoidance of unwanted
process interference.

Each of these subjects is discussed in the following three subsections.

5.4.1 Synchronization: semaphores

Imagine that a process PROC1 has just issued a data transfer by calling the procedure
READ as part of the service program DISK. This call will eventually result in a context
switch to another process PROC2 as explained in the previous section. Now assume that
while data transfer is taking place on behalf of PROC1, process PROC2 calls the proce-
dure WRITE from DISK, which, of course, should be perfectly in order. There is only one
problem. The disk driver can handle only a single request at a time. This means that pro-
cess PROC2 will have to wait until the data transfer on behalf of PROC1 is finished. It
can then issue a new request by setting the disk driver’s registers, and subsequently wait
again until its own request has been processed. We first identify exactly where process
PROC2 should be suspended. Reconsidering our implementation of WRITE, it is not too
difficult that this point can be identified as follows:

procedure WRITE(source : in ADDRESS; destination : in ADDRESS) is
begin
— WAIT HERE UNTIL A PREVIOUS REQUEST IS FINISHED —

headPosition := destination;
memoryAddress := source;
diskControl(1) := 0;
diskControl(0) := 1;

CPU SCHEDULER.SCHEDULE NEXT(CPU SCHEDULER.WAITING);
end WRITE;

It would seem that a solution to this problem should not be that difficult to find, but, it
did take a few years before a generally accepted mechanism was introduced. In 1965 the
Dutch mathematician Edsger Dijkstra devised the concept of a semaphore. A binary
semaphore is a Boolean variable which, apart from its initialization, can be accessed by
only two standard operations: wait and signal. The definition of these operations is given
as follows:

wait(s) :: when s do s� false

signal(s) :: s� true

downloaded by wizard.z@foxmail.com

230 Operating systems

where

when s do s� false

adheres to the semantics that the execution of a process is postponed until s is TRUE.
Then the process will continue, but will also immediately set s back to FALSE again.

An important aspect of the wait and signal operations is that they are both atomic.
An atomic operation is characterized by the fact that if N processes PROC1� � � � �PROCN
simultaneously execute such an operation, then the result is the same as if the operation
was executed N times in some arbitrary sequence, once by each process PROCi. This is
best explained by means of a simple example.

Example 5.3. Suppose that several people have access to the same bank account. There
are only two operations that can be performed: withdraw�x� by which an x amount of
money is removed, and deposit�x� which increases the savings at the account. Now, as
you might imagine, drawing money from the account or depositing some money each
requires a series of actions. For example, in order to draw money, we first have to check if
enough money is available, and if so, decrease the savings by the amount that is required.
Expressing this informally in BASAL could be done as follows:

procedure WITHDRAW(amount : in INTEGER; result : out INTEGER) is
currentAmount : INTEGER;

begin
currentAmount := the present savings;
if currentAmount � amount then
�� It is safe to withdraw some money. Adjust the savings.
present savings := present savings – amount;
result := amount;

else
�� Only give the amount that has been saved.
result := present savings;
present savings := 0;

end if ;
end WITHDRAW;

Apart from the fact that this is not a very realistic way of getting money, it does illustrate
that we need to perform several activities to achieve the final result. Moreover, in order to
keep the savings account consistent, it is essential that no two persons draw money at the
same time. Instead, one will have to wait for the other to finish. The order in which they
draw money is irrelevant; what is relevant is that our administration is still correct. In
that sense, WITHDRAW (and likewise its counterpart DEPOSIT) will have to be an atomic
operation.

�

Let’s take a closer look at the operations wait and signal. First, assume we have an imple-
mentation available as a BASAL package with the following specification part (we return
to its implementation later):

downloaded by wizard.z@foxmail.com

Process interference 231

package SEMAPHORE is
subtype DEFINITION is BOOLEAN;

procedure WAIT(sema : in out DEFINITION);
procedure SIGNAL(sema : in out DEFINITION);

end SEMAPHORE;

Assume that the program of a process has included the procedure call

SEMAPHORE.WAIT(sema);

somewhere in one of its programs. Then, when sema is FALSE, the execution of the pro-
gram is postponed until sema becomes TRUE. Moreover, if the program call succeeds
(which can happen only if sema is TRUE), execution proceeds but the semaphore is also
immediately set to FALSE again. Consequently, any other process that called the proce-
dure WAIT will be postponed when it is executed. Postponement is maintained until the
statement

SEMAPHORE.SIGNAL(sema);

is executed. It is thus seen that semaphores can be used to serialize the behavior of a
collection of processes. In a sense, a semaphore acts as a lock through which only one
process can pass at a time. Entering that lock can only take place by execution of WAIT;
leaving the lock is accompanied by a call to SIGNAL.

It should be clear that our problem of the disk driver can indeed be solved by using
semaphores. The point is that the code section of the procedure WRITE (and that of READ
as well) should only be executed on behalf of, at most, one process at a time. In terms of
the lock we mentioned above, the code section forms a lock for all processes that want
to make use of the disk driver. We can then adapt our implementation as shown in List-
ing 5.8.

The important point to note here is that semaphores provide us with a means to let
communication take place according to a simple protocol, namely that a process must
wait until a semaphore has the right value. This is quite similar to the way processors
synchronize by means of a bus. They first try to claim exclusively the bus for themselves
by setting a high signal on the bus request line, and wait until the grant signal is passed
on. This action corresponds to the execution of a WAIT(sema) operation for a semaphore
sema. When the grant signal is set on the line, exactly one processor can pick it up and
prevent any other processor from taking over the bus. As soon as the processor has fin-
ished its bus transfer, it puts a high signal on a bus release line, so that the grant signal
can be propagated to the other processors (of which, again, only one will succeed in get-
ting access to the bus). From a certain perspective, we see that we have made a software
equivalent to something that was already available in the hardware.

downloaded by wizard.z@foxmail.com

232 Operating systems

package body DISK is
lock : SEMAPHORE.DEFINITION := TRUE;
...
procedure WRITE(source : in MEMORY.ADDRESS; destination : in ADDRESS) is
begin

SEMAPHORE.WAIT(lock);

headPosition := destination;
memoryAddress := source;
diskControl(1) := 0;
diskControl(0) := 1;

CPU SCHEDULER.SCHEDULE NEXT(CPU SCHEDULER.WAITING);

SEMAPHORE.SIGNAL(lock);
end WRITE;
...

end DISK;

Listing 5.8 An adaptation of the procedure WRITE for our example disk driver.

� Implementing semaphores

There is, however, a practical problem with semaphores: their implementation. For exam-
ple, if we strictly followed the definition of the wait operation, the following implementation
would seem to be in order:

procedure WAIT(sema : in DEFINITION) is
begin

while not sema loop
null ;

end loop ;
sema := FALSE;

end WAIT;

There are two problems with this solution. First, we see that valuable CPU time can still
be wasted due to the while statement. As avoiding busy waiting was the main reason we
started our discussions, the solution above does not seem to be a very good one. The second
problem is perhaps more serious. As we have stated, the wait and signal operations need to
be atomic. In other words, they should be executed without any interference. The solution
above does not meet this demand. Let’s take a closer look at these two issues.

Avoiding busy waiting. A solution to the problem of busy waiting is to apply the same
technique as we did previously. If a process notices that the wait-operation cannot immedi-
ately be successfully completed, it records itself as waiting for the semaphore in question,
and schedules another process. Likewise, upon executing the signal-operation by a process
PROC1, this process activates exactly one other process PROC2 that was waiting (by set-
ting processTable(PROC2).state.exists to READY) if the latter was waiting for the semaphore
to become TRUE again.

downloaded by wizard.z@foxmail.com

Process interference 233

type DEFINITION is �� Definition of a semaphore type.
record

value : BOOLEAN;
queue : QUEUE.DEFINITION;

end record ;

procedure WAIT(sema : in out DEFINITION) is
begin

if not sema.value then
QUEUE.APPEND(sema.queue, CPU SCHEDULER.currentProcess);
CPU SCHEDULER.SCHEDULE NEXT(CPU SCHEDULER.WAITING);

else
sema.value := FALSE;

end if ;
end WAIT;

Listing 5.9 An initial implementation of the wait operation.

This scheme can be realized as follows. First, let’s assume we have a package QUEUE at
our disposal that will allow us to handle queues of processes. This package can be derived
from our parameterized package GENERAL QUEUE described in Listing 4.13 (page 172) as
follows:

package QUEUE is new GENERAL QUEUE(ELEMENT� CONTEXT.PROGRAM ID);

Using this package allows us to implement the procedure WAIT as shown in Listing 5.9. To
that end, we have adapted the definition of semaphores in such a way that each semaphore
has not only an associated value but also an associated queue for administrating processes
that are waiting for the value to become TRUE.

If a process finds that the semaphore is currently FALSE, it appends itself to the semaphore’s
queue, and schedules another process. Otherwise, it simply sets the value of the semaphore
to FALSE and immediately continues. By setting the value to FALSE, no other process can
pass beyond the procedure until it becomes TRUE again. We leave it as an exercise for the
reader to outline a solution for the procedure SIGNAL.

Implementing atomicity. The problem of atomicity is perhaps a more serious one. In
order to understand, you have to realize that a process can be interrupted in its execution
by a peripheral device. As we shall explain below, the effect of such an interrupt is that
some other process may temporarily continue its execution. On this account we may assume
that, conceptually, there may be two processes PROC1 and PROC2 simultaneously execut-
ing WAIT(sema). Assume that the value of the semaphore sema is initially TRUE. What can
happen is that first, process PROC1 starts with testing this value, and finds it to be TRUE.
At that moment, and before it comes to setting the value to FALSE, an interrupt may occur,
eventually leading to process PROC2 executing the if statement as well, and also finding
sema.value to be TRUE. However, this may never be allowed to happen. At any moment, at
most one process may conclude that sema.value is TRUE, and thus that it may proceed.

The problem is that the statements of the procedures WAIT and SIGNAL, respectively, should
again be protected as if they were locks, just as the statements of WRITE above. Obviously,

downloaded by wizard.z@foxmail.com

234 Operating systems

we cannot immediately use semaphores to establish what we want (this is also left as an
exercise for the reader). What it means in practice, is that we have to resort to hardware
solutions. For example, the 680x0 family of processors supports a special test-and-set in-
struction that takes the form

TAS address

To simplify matters, what this instruction does is first test if the value stored at memory loca-
tion address is zero (i.e. TRUE), and then immediately sets it to a non-zero value (i.e. FALSE).
This allows us to implement rather primitive binary semaphores by means of the following
two subroutines (where sema is a symbolic name for a memory location):

PWAIT: TAS sema Test if the value at address sema is zero, and
set it to a non-zero value

BNE PWAIT If the value was not zero, try testing it again
RTS Otherwise, return from this subroutine

PSIG: MOVE #0, sema Simply set the value at address sema to zero
RTS And return from this subroutine

But, you might say, this solution is also not satisfactory because we are still making use of
busy waiting. However, there is an important difference from our previous implementations.
The solution above is to be applied only in those cases where we may expect that a wait oper-
ation will shortly be followed by a signal operation. In other words, if any process that calls
PWAIT finds the semaphore’s value to be FALSE, it can expect that it need only wait briefly
before this value becomes TRUE again. Only in these cases is busy waiting justified. It is
beyond the scope of this book to show in detail how procedures like WAIT and SIGNAL can
be made atomic. The matters are simply too technical, and the interested reader is referred
to references at the end of this chapter. It is important, however, to note that semaphores are
nearly always supported by the collection of service programs that are provided as part of
the software that goes with the computer you buy. In the end, their implementation is always
supported by hardware.

5.4.2 Interrupt handling

It is time to look at another problem that we mentioned in Section 5.1: reacting to hard-
ware signals. The point is that after data transfer has completed the hardware will sig-
nal this completion by interrupting the CPU. How this is done at the hardware level has
been discussed in Section 3.4.1. But we have to ensure that the CPU eventually continues
with executing the instructions of the program that it had left off. The problem is easily
generalized to the following question: How can we ensure that certain instructions are
executed on account of a hardware signal, and in such a way that this does not interfere
with the current execution of instructions?

When giving the matter some thought, it is seen that we have to deal with a rather
strange problem. We have to devise a software response to a hardware signal. The prob-
lem is less intricate than it seems. As explained in Section 3.4.1, any signal that interrupts

downloaded by wizard.z@foxmail.com

Process interference 235

interrupt
register

0 1 1 0
1 1 0 1
0 0 1 1
0 0 0 1
0 0 1 1

0 0 1 1
0 1 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 1 0 1 1 0 1

1 0 1 0 0 1 0 1
1 0 1 0 0 1 0 1
1 1 1 0 1 1 0 1 1 0 1 0

0
1
2
3
4
5
6
7
8

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 1 0 1 1 0 1

0 1 1 10 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1
1 0 1 0 0 1 0 1
1 0 1 0 0 1 0 1
1 1 1 0 1 1 0 1

0 1 1 10 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1
program counter

0 0 0 0 0 1 0 1

Figure 5.11 The principle of an interrupt table.

the CPU is always accompanied by an identification of that signal, for example, by stor-
ing a unique number in some special-purpose register. This number can then be used to
identify the first address of a series of instructions that the CPU should execute when it
is interrupted. To that end, we can use an interrupt table, which works in the same way
as the page table discussed in Section 5.2. The principle is illustrated in Figure 5.11.

Each time the hardware wants to interrupt the CPU, the identification of the interrupt
signal is first loaded into a special register, which we refer to as the interrupt register.
Then, as soon as the CPU can handle the interrupt, it starts with automatically pushing the
current value of the program counter (and presumably also of other registers) onto the
stack. In order to find exactly how it should handle the interrupt, it takes the value found
in the interrupt register as an index to the interrupt table, which contains the address of the
first instruction to execute. It continues to execute the series of instructions starting at the
indicated address until it encounters a so-called return from interrupt instruction. At
that point, the interrupt has been completely handled, and execution returns to the point
where it had left off before the interrupt occurred. The instructions that are executed as a
consequence of an interrupt form a special type of program, called an interrupt handler.

To illustrate, we construct a simple interrupt handler in BASAL. We add the following
procedure INTERRUPT HANDLER to our package specification of DISK:

package DISK is
...
procedure INTERRUPT HANDLER;
for INTERRUPT HANDLER’CALL use at 5;

end DISK;

What we have specified here is that the procedure INTERRUPT HANDLER can only be
CALLed via interrupt #5. (We note that we have purposefully deviated from the syntax
and semantics of Ada for the sake of simplicity. Precise details on how interrupt handlers

downloaded by wizard.z@foxmail.com

236 Operating systems

can be specified in Ada can be found in ANSI (1983).) Using this information, the com-
piler will then insert the start address of the first instruction of INTERRUPT HANDLER into
entry #5 of the interrupt table. The implementation of the interrupt handler can now be
outlined as follows:

package body DISK is
...
procedure INTERRUPT HANDLER is

waitingProcess : CPU SCHEDULER.PROCESS ID;
begin

waitingProcess := process that originally initiated the data transfer ;
CPU SCHEDULER.SET EXISTS STATE(

waitingProcess, CPU SCHEDULER.READY);
end INTERRUPT HANDLER;
...

end DISK;

In this case, we assume that we can identify the process that had originally initiated the
data transfer via the variable waitingProcess. The package CPU SCHEDULER includes a
procedure SET EXISTS STATE for altering the present state of a process. Furthermore,
also assuming that the disk controller uses interrupt #5 to identify itself, the CPU will
execute the procedure INTERRUPT HANDLER by simply setting the state of the process
waiting for completion of the data transfer to READY. In principle, this is enough to sched-
ule the process later (i.e. restore its processor context) so that it can continue where it had
left off. The complete implementation of our simple disk driver is summarized in List-
ings 5.10 and 5.11.

� It should now also be clear how we can handle other hardware signals. For example, in
the case of virtual memory we have to initiate a data transfer when a logical page is not in
memory. What happens is that the hardware inspects the first bit of an entry in the page
table as shown in Figure 5.8. If the bit indicates that the logical page is not in memory, the
identifier of a page fault is first stored in the interrupt register, after which the actual signal
is generated that will interrupt the CPU. From there on, the story continues analogously to
our disk driver interrupt handler. In this case, a procedure is executed that initiates the data
transfer and which then schedules another process to be executed.

5.4.3 Forcing the use of service programs

We are gradually approaching our final topic on service programs. What we have been
doing so far is introducing problems that are related to supporting multiple programs in
a computer. We have shown that by introducing service programs most of the problems
could be handled by software, occasionally with some additional help by the hardware.
So far, so good. There is only one thing we have to ensure, namely that processes indeed
make use of these service programs. Otherwise, we will still find ourselves in a lot of
trouble. For example, suppose that someone writes a private version of the package DISK,
including a procedure that sets the registers of the disk driver. Obviously, something like
this should not happen, but can we prevent it with the solutions introduced so far? The
answer is negative.

downloaded by wizard.z@foxmail.com

Process interference 237

package DISK is
subtype CARDINAL is INTEGER range 0..65535;
for CARDINAL’SIZE use 16;

type ADDRESS is
record

sector, track, surface : CARDINAL;
end record ;

for ADDRESS use
record

sector at 0 range 0..15;
track at 2 range 0..15;
surface at 4 range 0..15;

end record ;
for ADDRESS’SIZE use 3*16;

procedure READ(source : in ADDRESS; destination : in MEMORY.ADDRESS);
procedure WRITE(source : in MEMORY.ADDRESS; destination : in ADDRESS);

procedure INTERRUPT HANDLER;
for INTERRUPT HANDLER’CALL use at 5;

end DISK;

Listing 5.10 The specification part of the revised version of DISK.

What we need is an additional mechanism that prevents non-service programs making
use of certain parts of memory. In particular, those memory locations that are used for the
registers of I/O controllers, as well as those for page tables, interrupt tables, etc. should
not be directly accessible by non-service programs. In order to establish this, we need
support from the hardware. In general, the problem is solved by making a distinction
between two operation modes for the CPU. When operating in kernel mode all special
memory locations may be accessed. In user mode only the remaining memory locations
can – in principle – be referenced. Of course, an individual program may be further re-
stricted by means of a limit register. The use of the user and kernel mode varies from sys-
tem to system, and generally differs between processors. Indeed, it is a highly hardware-
dependent feature.

The next step is to organize the service programs into a separate part of memory, as
shown in Figure 5.12. Now because we need to separate service programs from ordi-
nary programs, we shall also have to find a safe way of passing parameters to service
programs. This can be accomplished by means of a system call which is generally im-
plemented by using a special hardware TRAP instruction. The mechanism is illustrated
in Figure 5.12. What happens is that in order for a program to call a service program it
first identifies the service program, and then copies the parameters to a commonly acces-
sible location. Typically, the registers of the CPU can be used for this purpose. Then the
TRAP instruction is executed by which the CPU switches to kernel mode.

At that point, the CPU continues with executing a so-called trap handler that identifies
the required service. This corresponds to step 1 in Figure 5.12. The trap handler, which

downloaded by wizard.z@foxmail.com

238 Operating systems

package body DISK is
subtype BIT is INTEGER range 0..1;
type BITSTRING8 is array (0..7) of BIT;
for BITSTRING8’SIZE use 8;

headPosition : ADDRESS;
memoryAddress : MEMORY.ADDRESS;
diskControl : BITSTRING8;
lock : SEMAPHORE.DEFINITION := TRUE;

for headPosition use at 10;
for memoryAddress use at 16;
for diskControl use at 20;

procedure READ(source : in ADDRESS; destination : in MEMORY.ADDRESS) is
begin

SEMAPHORE.WAIT(lock);

headPosition := source;
memoryAddress := destination;
diskControl(1) := 1;
diskControl(0) := 1;
CPU SCHEDULER.SCHEDULE NEXT(CPU SCHEDULER.WAITING);

SEMAPHORE.SIGNAL(lock);
end READ;

procedure WRITE(source : in MEMORY.ADDRESS; destination : in ADDRESS) is
begin

SEMAPHORE.WAIT(lock);

headPosition := destination;
memoryAddress := source;
diskControl(1) := 0;
diskControl(0) := 1;
CPU SCHEDULER.SCHEDULE NEXT(CPU SCHEDULER.WAITING);

SEMAPHORE.SIGNAL(lock);
end WRITE;

procedure INTERRUPT HANDLER is
waitingProcess : CPU SCHEDULER.PROCESS ID;

begin
waitingProcess := process that originally initiated the data transfer ;
CPU SCHEDULER.SET EXISTS STATE(

waitingProcess, CPU SCHEDULER.READY);
end INTERRUPT HANDLER;

end DISK;

Listing 5.11 The implementation part of the revised version of DISK.

is similar to an ordinary interrupt handler, is followed by a jump to the requested service
program (step 2). Again, the start address of the service program will have been stored in

downloaded by wizard.z@foxmail.com

On operating systems 239

part in memory
where the service
programs reside

instructions and data for
service program S1

instructions and data for
service program Si

instructions and data of
trap handler

instructions and data
of a program

indicate requested service;
copy parameters;
execute TRAP;

copy results;

part in memory where
other programs reside

1

2

3

Figure 5.12 The interaction between service programs and a program requesting a service Si to
be performed.

a service table, which is comparable to the page table and interrupt table mentioned pre-
viously. After the service has finished, execution continues where it had left off (step 3),
thereby switching the CPU back to user mode and leaving it to the program to copy the
results into its own variables.

5.5 On operating systems

So where do we stand? So far we have illustrated how a number of service programs
can be constructed that allow multiple programs to be placed in memory and which can
jointly make efficient use of the available hardware. Moreover, when we consider these
service programs, it is seen that they make the hardware much easier to use. For example,
a program that wants to initiate a data transfer need not be concerned with other programs,
because any interference is handled entirely by the service programs. What we have been
doing is explaining the core functionality of a so-called operating system. An operating
system can be defined as a collection of service programs that allow the hardware of a

downloaded by wizard.z@foxmail.com

240 Operating systems

computer system to be used easily, and to be used efficiently. In this section we shall take
a closer look at operating systems, in particular how they are organized and what type of
functionality they generally offer.

5.5.1 The evolution of operating systems

If you read most textbooks on operating systems, you will find that many subjects are
presented that will not be discussed in this chapter. In order to put things into perspective,
and to understand why we are diverging from the more usual approach, let’s take a brief
look at the history of operating systems.

Conventional operating systems

Conventional operating systems originated from the same problem we described in Sec-
tion 5.1: waste of valuable CPU time. In the 1950s computers were only capable of exe-
cuting a single job (comparable to our concept of a program) that had to run to completion
until the next job could be executed. Hardly any support for programming a computer
was provided. For example, the first systems required that programmers explicitly pro-
grammed the hardware in machine language, including all routines to handle I/O. Later,
service programs and high-level languages and their compilers were made available so
that at least some convenient level of abstraction was supported. But although the prob-
lem of programming these systems was somewhat alleviated, it still required the inter-
vention of a human operator to run a series of jobs. Also, while a job was doing I/O
(mostly printing its results) the computer would remain idle. And each time a job was
finished, the computer would then need to be activated again in order to process the next
one.

The first solution to tackle the problem of wasted CPU time was found in batch pro-
cessing systems. The idea was to first collect a number of jobs onto a single tape, or as a
consecutive series of sets of punched cards, then execute these jobs in a row, and finally
collect the output on a separate tape. While the next batch was being executed, the out-
put tape was processed separately by printing the results off line. This approach at least
had the advantage that computational work and printing was done simultaneously. And
with a bit of luck, you could have your nice program calculating z� xn�ym for various
values of x and y completely processed within several hours.

This approach had two severe problems. First, users had to wait too long for their jobs
to be completely processed, and second, the manufacturer had to provide two separate
computers. The solution was found in the 1960s by means of timesharing systems. Us-
ing a single computer, users could be connected to the system by means of terminals that
would allow them interactively to edit, compile, and execute their programs. The only
thing that was needed was support for having multiple programs in a single system. With
the price of hardware still very high, it was felt that only large general-purpose comput-
ing systems would provide a sufficiently low price/utilization factor. Apart from whether
this was true, it did bring a major problem, namely that the operating systems that had

downloaded by wizard.z@foxmail.com

On operating systems 241

to accompany these large computing systems were extremely difficult to develop, and
many projects have failed for precisely this reason.

Now while manufacturers were developing large mainframe computers to satisfy ev-
eryone’s needs, there was also an approach to the development of so-called minicomput-
ers. These much smaller systems could often deal with only a few different programs
at a time, but were far cheaper than their mainframe counterparts, because the operat-
ing system was much easier to develop. Consequently, these systems became afford-
able for small groups who would then no longer need to rely on the large, centralized,
and often bureaucratic computing centers where the mainframes were sited. The trend
towards smaller systems continued rapidly, although buying a computer system still in-
volved putting a lot of money on the table. Software, i.e. the operating system, had be-
come more sophisticated in order to get the most out of the hardware. In fact, it was
becoming a major task of manufacturers to provide not only the right hardware but also
the right software to support program development and user interaction adequately.

Towards smaller systems

But things started to change. In the mid-1970s AT&T Bell Laboratories developed an
operating system called UNIX.5 UNIX was unique in two ways. First, more than 90%
of the system’s core functionality was written in a high-level language (C). The func-
tionality included all the aspects we have discussed in the previous sections, plus one
extra, namely that of a file system (we will return to this later). But above all, this func-
tionality could be realized in no more than approximately 10 000 lines of code. Up to
then, this approach was unheard of. In order to make the system really useful, numer-
ous general-purpose utility programs were added for the user’s convenience. However,
where such programs were normally included as part of a complete operating system, in
the case of UNIX they were just add-ons to the kernel (which comprised only 5–10% of
a complete system). The developers of UNIX demonstrated that operating systems could
be kept small, flexible, and hardware-independent.6

But the real impact came with the introduction of microprocessors in the early 1980s.
Microprocessors made personal computing affordable and created a large demand for
software that is flexible and user-friendly. Two operating systems have dominated the
world of personal computing: MS-DOS for Intel-based microprocessors, and UNIX for
the more powerful workstations (often based on RISC processors). Now at first, personal
computers were stand-alone systems meaning that a single computer was supplied with a
keyboard, monitor, mouse, and printer. The only way to exchange data with another com-
puter was by carrying floppy disks from one system to another. During the mid-1980s it
became custom to connect personal computers by means of a network, which put an ad-
ditional burden on operating systems. They now also had to provide the right means for
communication with other computers.

5This is the only statement we shall make concerning the story of UNIX – and it is far too little to appre-
ciate what actually happened. The interested reader is referred to Salus (1994) for a historical overview.

6You should read Garfinkel et al. (1994) if you want to know why some people think UNIX is not so
good.

downloaded by wizard.z@foxmail.com

242 Operating systems

file
subsystem

device
subsystem

network
subsystem

file
subsystem

device
subsystem

network
subsystem

Figure 5.13 The global interaction between two different operating systems connected in a
computer network.

Current technology: microkernels

This communication involved the exchange of data. Now one of the core functionalities
of operating systems is providing a flexible means of storing data and programs through
files. A file is a software abstraction of actual storage devices such as disks and tapes.
This means that you can write data to a file, as well as read data from it. In addition, files
that contain programs can be compiled and executed. By incorporating it as a core func-
tionality it is easier to keep operating systems efficient. And this is what most (older)
operating systems usually do in the sense that the complete organization of a file system
is constructed as part of the kernel of the operating system. This has an important im-
plication: if you want to change that part, you will (1) have to have the source code of
the operating system at your disposal, and (2) know exactly what you are doing, for you
may expect that any change in the kernel will affect other parts as well. In other words,
any changes to the kernel of an operating system will generally have to be done by the
manufacturer.

When hooking different computers into the same network, this is an unfortunate sit-
uation, for each kernel will presumably have to be adapted in order to accept data from
another system. In order to transfer data from one file to another, where both files each
resort under the regime of a different operating system, each kernel must be adapted in
order to allow for the communication and conversion of files to take place. This approach
is illustrated in Figure 5.13, where we see that the kernel itself needs to be adapted. So
much for flexibility.

The solution to this problem is evident. Rather than incorporating the notion of a file
into the core of an operating system, devise a file system as an additional utility service.
And this is precisely the current trend in operating systems. The idea is to develop so-
called microkernels that only have a bare functionality. Then, in the case of coupling
several computers in a network, the microkernels need only provide for basic communi-
cation means which is generally restricted to transferring small packets consisting of a
series of bytes. Figure 5.14 illustrates this approach. In this case, the file subsystem can

downloaded by wizard.z@foxmail.com

On operating systems 243

file
subsystem

device
subsystem

network
subsystem

file
subsystem

device
subsystem

network
subsystem

Figure 5.14 The global interaction between two microkernels.

be completely replaced by the user of the microkernel, as it has been placed outside that
kernel. And although it can still be expected that only an expert can do this, it should
be clear that no adaptations to the kernel are necessary. In fact, replacement of the file
subsystem can actually be done during normal operation of the microkernels.

What we have been doing in this chapter is discussing what these microkernels look
like and how they are realized. The only functionality we have not considered is that
of communication. This subject will be treated extensively in succeeding chapters. File
systems will be treated in the next section as an example of how the functionality of a
microkernel can be extended. For now, in the following subsections we shall resort to
paying attention to the organization of microkernels.

5.5.2 Architectural aspects of operating system kernels

Despite the fact that microkernels may be relatively small, they are still to be considered
intricate pieces of software. Organizing a microkernel into a structured set of modules is
essential in order to keep the system manageable and flexible. In general, microkernels
are organized into four groups of modules, each providing a separate service:

1. Process management

2. Memory management

3. Device management

4. Interprocess communication.

Interprocess communication is discussed extensively in the following chapters. Here, we
shall consider briefly the organization of each of the other services, and how they interact
with each other. The overall architecture is shown in Figure 5.15.

Process management

Process management can be logically organized into three components: a dispatcher, a
CPU scheduler, and some general process administration, as shown in Figure 5.16.

downloaded by wizard.z@foxmail.com

244 Operating systems

process
management

process

process
management

memory
management

device
management

hardware

communication
management

Figure 5.15 The overall architecture of a microkernel with four modules.

process

dispatcher CPU
scheduler

suspend/
schedule

query/
update

resume/
schedule

MMU interrupt
Peripheral devices

tablesinterrupt
handler

schedule

Figure 5.16 The logical organization of process management.

A dispatcher is a small procedure which establishes context switches between pro-
cesses. In this sense, it is the program CONTEXT.SWITCH explained in Section 5.3.1.
From a logical point of view, a dispatcher always interacts with the CPU scheduler. It
either dispatches the CPU to the scheduler so that the latter can find a suitable process to
which to assign the CPU, or is activated by the scheduler again when such a process has
been found. There are two situations when the dispatcher is activated. First, a process
that needs to synchronize with another process (including synchronization on account of
I/O) will eventually have to relinquish the CPU. Second, whenever an interrupt has been
handled, it is generally the case that the interrupted process will no longer be the most
suitable one to which to assign the CPU. In that case too, the scheduler must be set to
work by activating the dispatcher.

downloaded by wizard.z@foxmail.com

On operating systems 245

process

memory
admin.

mem. adm.
per process

verify
request

request/
return

query/
update

query/
update

page fault
handler

query/
update query/

updatepage
handler

MMU interrupt
Memory Management Unit

to process
management

from process
management

Figure 5.17 The logical organization of memory management.

As we have already discussed, in order to find the most suitable process for the CPU,
we will need to have a scheduler that takes care of that. Conceptually, a CPU scheduler
is just another process that inspects and updates the process administration in order to
schedule the next process. For efficiency reasons, however, the scheduler is generally
implemented as an ordinary procedure similar to our procedure SCHEDULE NEXT shown
in Listing 5.7. In that case, a process or interrupt handler directly calls the scheduler
procedure in which a suitable next process is found, and in which the dispatcher is then
activated.

Memory management

Memory management is generally organized into a few components as shown in Fig-
ure 5.17. A key role is played by the actual memory administration unit which keeps
track of the occupied and available chunks of memory. Generally, it need not be much
more sophisticated than our example administration discussed in Section 5.2.

Processes may request more memory, or otherwise return previously allocated mem-
ory chunks. In systems that do not support advanced memory management such as pag-
ing or virtual memory this is about all there is to it.

� However, when paged or virtual memory is supported, some additional checking will need
to be done to see if requests are valid. To this end, there will be a separate memory adminis-
tration per process in which all information concerning the page tables and current memory
usage per process is stored. Some interaction with process management will be required,
which primarily concentrates on properly activating the so-called page handler. Like the

downloaded by wizard.z@foxmail.com

246 Operating systems

CPU scheduler, a page handler can be conceptually considered as a separate process which
is activated whenever a page needs to be transferred between main memory and the swap
space. There are two occasions when this can happen:

1. In the case of virtual memory systems, as soon as a virtual address refers to data that
is not located in main memory the hardware (by means of a so-called memory man-
agement unit, or MMU) will generate an interrupt which in turn causes a page fault
handler to be invoked, as explained in Section 5.4.2. This interrupt handler, in turn,
will require the process manager to schedule the page handler so that the required data
can be brought into main memory.

2. When no virtual memory is supported, the page handler will occasionally be scheduled
in order to allow a complete program to be placed in main memory. The page handler
in that case may have to remove another program in order to make room. Obviously,
the page fault handler shown in Figure 5.17 which is only responsible for passing in-
terrupts to the dispatcher will then not be needed.

Again, in many systems the page handler is a procedure that is directly called rather than ex-
plicitly scheduled. However, it is important to note that this is only done in order to achieve
efficiency. Conceptually, we can consider the page handler as a separate process.

Device management

Device management is generally organized in the form of so-called device drivers. There
are all types of device drivers. Some can be almost as small as our example package
DISK, others are so complex that it takes an expert to understand them. Nevertheless, de-
vice drivers are always more or less similarly structured. In general they consist of three
parts:

� A request handler that deals with communication between the driver and processes
requesting I/O

� A device handler that passes information from the request handler to the I/O con-
troller

� An interrupt handler that deals with information that is passed by the I/O controller
to the driver.

This general organization is shown in Figure 5.18. When the driver is rather simple (which
is often so when dealing with simple keyboards, monitors, and storage devices), the re-
quest handler and device handler are rarely explicitly distinguished. The main difference
between the two is that the request handler is device independent in the sense that it has
no knowledge of the actual means of communication with the I/O controller. Details con-
cerning the location and setting of registers are completely hidden in the device handler.
However, in the case of extremely difficult drivers, like those used for laser printers, the
device driver itself is organized as a layer of handlers, with only the lowest layer being
programmed for a specific I/O controller. Also, the interrupt handler is sometimes not
required, e.g. in the case of a monitor.

downloaded by wizard.z@foxmail.com

On operating systems 247

process

device
admin.

request
pool

read/
write

read/
write

interrupt
handler

query/
update query/

update

request
handler

I/O controller

device
handler

from process
management

to process
management

Figure 5.18 The general architecture of a device driver.

Whenever a process issues an I/O request, it passes this to the request handler, which
again can be considered as a separate process. The request handler generally queues the
request in such a way that several I/O requests can be handled simultaneously, and in the
most efficient way. For example, in most disk drivers the request handlers organizes the
requests such that arm movement is minimized. In the end, it passes the best request to
the device handler which sets the registers of the I/O controller.

As soon as I/O has completed, the I/O controller will generate an interrupt which is
subsequently handled by the interrupt handler. This interrupt handler, in turn, will re-
quest process management to schedule the request handler as soon as possible so that the
next I/O request can be processed. This explains the two arrows in Figure 5.18 between
the device driver and process management. Again, in most systems this scheduling of
the request handler is done directly without interference of the CPU scheduler. In other
words, the request handler returns as an ordinary program that is immediately called as
soon as an interrupt occurs.

5.5.3 A global architecture

Operating systems tend to be large programs, and, not surprisingly, they can be extremely
complex. It is therefore mandatory to have a general organization of the operating sys-
tem that makes it a manageable piece of software. In the preceding section, we discussed
the organization of individual components. Here, we shall look at one possible global
organization, namely that of a client-server architecture. Although many other archi-
tectures exist, this one is particularly interesting in light of the discussion on commu-

downloaded by wizard.z@foxmail.com

248 Operating systems

application

Operating System Kernel

application

application

application

memory server

disk server

terminal server

process server

hard
ware

Figure 5.19 A client-server architecture applied to an operating system.

nication systems to be presented in the next chapters. The organization of an operating
system following the client-server model not only provides a manageable organization
for computers having a single processor, but is particularly attractive when extending an
operating system in order to support multiple computers.

In a client-server architecture, the collection of programs is divided into two groups:
those of clients that can issue service requests to, so-called servers. In practice, clients
as well as servers are implemented as processes. In operating systems, a striking aspect
is that in general only a small part of all its programs refer to I/O registers and shared
variables. In other words, a major part of the programs constituting an operating sys-
tem could be executed by the CPU while it is in user mode. This is what happens when
adopting the client-server architecture for operating systems.

In particular, the system is split into two parts. The first part, which we have referred
to as the (micro)kernel, consists of a minimal set of programs that make use of special
memory locations and shared, global variables such as page and interrupt tables. In addi-
tion, the kernel is augmented by a small set of service programs that allow for interpro-
cess communication. In other words, programs that allow processes to synchronize and
exchange data. The rest of the operating system’s programs are simply implemented as
if they were normal processes. In particular, this means that they communicate with the
kernel in the same way as other processes: by means of service programs that are called
via system calls.

But, of course, there should be some kind of distinction between user processes (clients)

downloaded by wizard.z@foxmail.com

An example extension: file systems 249

µkernel µkernel µkernel µkernel µkernel

server process client application

Figure 5.20 A distributed version of a client-server based operating system.

and operating system processes (servers). The general situation is shown in Figure 5.19.
User processes communicate as clients with the kernel as described in Section 5.4.3. The
kernel (being executed in kernel mode) checks the service request, and if it is found to
be in order, passes it on to the appropriate server. The server, in turn, handles the request
and, if necessary, passes a hardware-oriented request to the kernel. For example, a file
server may request that a complete block of data is to be written to a specific hard disk.
The actual data transfer is handled by the kernel, and the server is notified when the re-
quest has been processed. The latter then proceeds by finishing the request and notifying
the client, again via communication through the kernel.

The advantage of this scheme should be clear. Because servers are executed in user
mode, it is almost impossible to include hardware-dependent programs. Servers are only
dependent on the operating system’s kernel. Second, it is easy to modify a server. Be-
cause it is just another process running in user mode, we can replace it without affecting
the other parts of the operating system, just as we can remove any user process and re-
place it with another. Anticipating our discussion on networks in later chapters, it is not
hard to imagine that if the kernel is connected to a network, a client and a server need
not be executed by the same CPU. In that case, we are distributing the operating system
over several computers as shown in Figure 5.20.

5.6 An example extension: file systems

It is about time we said something about an important and probably the most visible part
of many operating systems: file systems.7 A file is an abstraction of a storage device.
It is possible to store data in a file and retrieve data from it. Files are mapped (by the
operating system) onto actual storage devices such as tapes, disks, etc. In our discussion
here we shall not only focus on what file systems are, but also use them as an example of

7This is a rather crude remark. The most visible part is without doubt the so-called command shell. A
command shell is a program that lets you interactively make use of important service programs. Command
shells are not discussed in this book.

downloaded by wizard.z@foxmail.com

250 Operating systems

a component of an operating system which is, in fact, hardware-independent. As we shall
see, in order to construct a file system we need only assume the existence of a microkernel
which in its own right is a virtual computer. In other words, file systems can be seen as a
pure software extension of the virtual machine we have been discussing so far. Therefore,
we will first briefly see what files look like from the outside, after which we discuss their
implementation on top of a microkernel. Files are organized into directories, which, in
turn, basically need only the concept of a file in order to be implemented. In this sense,
directory services form yet another extension of a virtual computer, but this time one
which incorporates files.

5.6.1 The concept of a file

There are various types of files, but here we shall consider only a simple kind of file. Log-
ically, we consider a file as an abstract storage device which is organized as a consecutive
series of bytes. When talking about files in this way, it means that we can specify exactly
which byte we wish to read from or write to a file. This can be easily expressed in BASAL

by means of the following outlined package specification for a FILESYSTEM:

package FILESYSTEM is
subtype FILESIZE is INTEGER range 0..MAXFILEPOS;
subtype FILEPOS is INTEGER range 1..MAXFILEPOS;
type FILE is ...;

procedure READ(f : in FILE; pos : in FILEPOS; b : out MEMORY.BYTE);
procedure WRITE(f : in FILE; pos : in FILEPOS; b : in MEMORY.BYTE);

end FILESYSTEM;

where we assume that the package MEMORY provides an appropriate definition of the
data type BYTE. The actual definition of the data type FILE is left for now. Further details
will be provided later. We further assume that the size of a file is limited to MAXFILEPOS

bytes, which is also not further specified. We shall illustrate our package further below.
But before doing so, we need to say more about files in general. The distinction between
a file’s size and a position in a file (represented by FILEPOS) is discussed now.

First consider the procedure READ which is to be called when a byte b is to be read
from a file f and stored at position pos in that file. Now, typically, not all files will have
the same amount of data stored. In other words, each file will have a size. The data stored
as bytes in a file will then reside at positions 1 � � �size, and in order to read data, the value
of pos will have to lie somewhere in this range. Of course, reading data from an empty
file, i.e. a file have size 0, makes no sense.

When writing data, two situations can occur. Assume the size of a file f is presently
size� f �. Writing a byte to position P with 1 � P � size� f � then implies that we are up-
dating the contents of a file: the data that was stored at position P is replaced by some
other data. On the other hand, we can also expand a file by writing data to position
P � size� f ��1. In that case, the size of the file increases by exactly one byte.

An important aspect of a file is that it acts as a virtual storage device. This means
that as soon as we have written a byte to a file, we may assume that if the computer is

downloaded by wizard.z@foxmail.com

An example extension: file systems 251

package FILESYSTEM is
MAXFILEPOS : constant INTEGER := ...;

subtype FILESIZE is INTEGER range 0..MAXFILEPOS;
subtype FILEPOS is INTEGER range 1..MAXFILEPOS;
subtype FILE ID is INTEGER;

procedure GETSIZE(id : in FILE ID; size : out FILESIZE);

procedure CREATE(id : out FILE ID);
procedure DELETE(id : in FILE ID);
procedure OPEN(id : in FILE ID);
procedure CLOSE(id : in FILE ID);

procedure READ(id : in FILE ID; pos : in FILEPOS; b : out MEMORY.BYTE);
procedure WRITE(id : in FILE ID; pos : in FILEPOS; b : in MEMORY.BYTE);

end FILESYSTEM;

Listing 5.12 A package specification for a file system.

switched off, that byte will have been permanently stored somewhere. It is the task of
the operating system to ensure this. In contrast to real storage devices, files can easily
be added and removed. This means that an operating system allows you, in principle,
to create as many files as you like, and if so required, is also prepared to remove them
permanently. In practice, a file can only expand by writing a byte to its end. Removing
a byte is generally not possible. In that case you will have to copy all the bytes you want
into a new file, and subsequently delete the old file.

Using this information, we can refine our package specification at a number of points.
First, whenever a file is created, operating systems generally provide a unique file identi-
fier that is to be used to further identify the file when applying other operations. In most
systems, before a file can be read from or written to it is mandatory to open it. Strictly,
opening files before using them is not really necessary. However, it does allow the oper-
ating system to simplify its own administration as we shall see further below. Likewise,
closing a file is done to inform the operating system that you (for now) will no longer be
needing the file.

This then leads to the refined package specification shown in Listing 5.12. Note that
we have omitted the data type FILE, whose specification need in fact be of no concern to
users of files. Instead, we need merely to identify files, which is now done by means of
a FILE ID data type. The procedure GETSIZE has been added so that we can find out how
large a file actually is. When a file is created by calling the procedure CREATE, a unique
file identifier is returned to the calling process. The created file is assumed to be initially
empty, i.e. its size will be 0.

Example 5.4. To illustrate how files can be used in practice, consider the situation where
we want to store an array of characters in a file. For simplicity, we assume that a character
corresponds precisely to a single byte (which it usually does), but above all that we can

downloaded by wizard.z@foxmail.com

252 Operating systems

package body MY PROGRAM is
type CHAR ARRAY is array (1..NCHAR) of CHARACTER;

procedure DO SOMETHING is
myData : CHAR ARRAY;

begin
myData := fill the array with characters that make sense to you;
FILESYSTEM.CREATE(newFile);
FILESYSTEM.OPEN(newFile);
for k in 1..NCHAR loop

FILESYSTEM.WRITE(newFile, k, myData(k));
end loop ;
FILESYSTEM.CLOSE(newFile);

end DO SOMETHING;
end MY PROGRAM;

Listing 5.13 An example of storing data in a newly created file.

use the procedures READ and WRITE directly, without having to convert a character to a
byte or vice versa. Look at the program shown in Listing 5.13.

What we see here is that we (1) create a new file, then (2) open it, (3) subsequently
append data to the file, and (4) finally close it again. By the end of the execution of
DO SOMETHING, the file newFile will have a size of NCHAR bytes.

�

Example 5.5. A useful procedure that is almost always available to users, is one by which
you can copy one file to another. In particular, copying a file implies that we create a sec-
ond version of the first. The BASAL procedure COPY shown in Listing 5.14 will do just
that.

�

Although our treatment of files at this point may seem simplistic, you should realize
that, in essence, there is not much more that needs to be said. Most real file systems will
indeed provide a somewhat more elegant way of manipulating files, but from a user’s
perspective, they would not be much more advanced than those we have presented here.
The real difference between file systems lies in the way that they are implemented and
organized into directory structures. These two issues are discussed next.

5.6.2 File implementation

Our next concern is to see how our concept of a file can be realized. As we have said, we
shall assume that we have a microkernel at our disposal that at least allows us to manipu-
late a hard disk. In fact, assume that we have access to our example disk driver discussed
in the previous sections. That means we can read and write blocks of data from and to
a hard disk, respectively, and which is controlled by the microkernel.8 In that case, im-

8For simplicity, we assume that there is only a single hard disk available. Normally, a microkernel
would allow access to at least several disks.

downloaded by wizard.z@foxmail.com

An example extension: file systems 253

procedure COPY(
oldFile : in FILESYSTEM.FILE ID;
newFile : in out FILESYSTEM.FILE ID) is

size : FILESYSTEM.FILESIZE;
data : MEMORY.BYTE;

begin
FILESYSTEM.CREATE(newFile);
FILESYSTEM.OPEN(oldFile);
FILESYSTEM.OPEN(newFile);
size := FILESYSTEM.GETSIZE(oldFile);
for k in 1..size loop

FILESYSTEM.READ(oldFile, k, data);
FILESYSTEM.WRITE(newFile, k, data);

end loop ;
FILESYSTEM.CLOSE(newFile);
FILESYSTEM.CLOSE(oldFile);

end COPY;

Listing 5.14 An implementation of a procedure that copies one file to a new one.

plementing our file system now reduces to providing the right mapping of files onto the
disk. And yes, there are some problems that need to be solved. First, we have to account
for the fact that our files can handle individual bytes, whereas our disk driver can transfer
only blocks of bytes. Second, we also have to consider how we are going to administrate
where bytes are eventually stored on a disk. These two questions are dealt with next.

Bytes versus blocks

An important distinction between our notion of a file and that of a hard disk is that the
former is capable of storing individual bytes. In other words, it is possible to transfer only
a single byte between a file and main memory. Disks, on the other hand, support only the
transfer of blocks of bytes. In particular, assume that a disk block always consists of 512
bytes. We have to devise a mechanism that allows us to manipulate individual bytes, but
in such a way that we can still transfer data from and to disk in blocks of 512 bytes. The
solution to this problem is really not that difficult: we can organize files internally in units
of 512 bytes as well, which we refer to as file blocks. (We note that choosing a file block
having a size other than 512 bytes is also possible. But in that case, the relation between
a file block and a disk block becomes somewhat more difficult than we are willing to
discuss here.) A file block can easily be represented in BASAL as follows:

type FILE BLOCK is array (1..512) of MEMORY.BYTE;

Following this line of thought, we then consider a file as a consecutive series of file blocks,
starting at block #1. The position pos of a byte in a file is then to be transformed into a
pair consisting of a file block number num and a file block offset offset, with

pos � �num�1��512�offset with 1� offset� 512

downloaded by wizard.z@foxmail.com

254 Operating systems

To illustrate, if a process wants to read the byte at position 3412 we need to first fetch
file block number 7 from disk and subsequently pass byte number 340 to the requesting
process.

Notice how we have silently modified our way of considering file blocks: they now are
associated with a file, and are also numbered. This change can be reflected by adapting
our previous definition of the FILE BLOCK data type:

type BLOCK CONTENTS is array (1..512) of MEMORY.BYTE;
type FILE BLOCK is

record
fileId : FILE ID;
blockNumber : INTEGER;
data : BLOCK CONTENTS;

end record ;

At this point, we first need to say something about how file blocks can be associated with
disk blocks before we continue our discussion on file implementation.

Keeping track of disk blocks

In order to implement files, we need to associate each file block uniquely with a disk
block. Conceptually, this is simple: as disk blocks are identified by a sector, track and
surface, we need merely administrate for each file block precisely where it is located on
disk. To this end, we can introduce, per file, a so-called file index block, which can be
represented in BASAL as follows:

type INDEX BLOCK is array (1..MAXINDEX) of DISK.ADDRESS;

where MAXINDEX now indicates the maximum number of blocks per file. So, for exam-
ple, if indexBlock is the index block for file f , then indexBlock(k) will contain the exact
location on disk of the kth file block of f . This approach also suggests a first representa-
tion of a file in BASAL:

type FILE is
record

fileId : FILE ID;
numOfBlocks : INTEGER range 0..MAXINDEX;
indexBlock : INDEX BLOCK;
...

end record ;

where the field numOfBlocks indicates the actual size of the file, now expressed in the
number of file blocks contained in the file. Note that our FILE data type contains infor-
mation about a file, in particular, it tells us where we can find the actual data that is stored
in the file.

It should be noted at this point that, in practice, index blocks are more sophisticated
than we are presenting here. In particular, file systems may support index blocks that can
vary in size in order to support small as well as large files without having the need to also
use large index blocks for small files. However, it is beyond the scope of this book to go

downloaded by wizard.z@foxmail.com

An example extension: file systems 255

into these matters in detail, and we refer the interested reader to the references given at
the end of this chapter. References to other methods of associating file blocks to disk
blocks can be found there as well. The remainder of this subsection can be skipped on
first reading.

� Disk space management

But associating file blocks to disk blocks is not the entire story. Before we can make such
an association we have to find a disk block that is available, i.e. which is not already being
used for storing data. What we need is a disk storage manager. This is a service program
that keeps track of disk blocks that are in use and those that are available. In this sense, it is
much comparable to our memory manager discussed in Section 5.2. There is only one point
about keeping track of available disk blocks that needs some attention. To explain, we need
to know something about the way a disk storage manager does its administration.

In many systems, a disk is administered as a consecutive series of disk blocks, with each
disk block having a unique disk address. For each disk block, the storage manager simply
records if the disk block has been allocated to a file, or not, by means of a block allocation
table. In terms of BASAL, we can represent this as the following data type:

type BLOCK ALLOCATION TABLE is array (1..MAXDISKBLOCK) of BOOLEAN;

Then, if bat denotes a block allocation table, bat(k) = TRUE indicates that block number #k is
free, whereas bat(k) = FALSE indicates that it has already been allocated to a file. Now the
point to note is that for each disk its allocation table will need to be changed whenever files
are created, deleted, or expanded. This can only be done when the allocation table is in main
memory. Remember that the disk storage manager is just another service program and that
all its administration must be in main memory in order to be manipulated. But when the
computer is switched off, the allocation table may not be lost. Therefore, in contrast to our
service program for managing main memory, the storage manager will have to ensure that
the allocation table is stored on disk as well. Therefore, it will reserve enough disk blocks
in advance to store its own administration.

Putting it together

We are now in a position to be more explicit on how a file system can be implemented on top
of a microkernel. In particular, we want to outline some of the characteristic implementation
aspects of our package FILESYSTEM given above. As we have said, in order to transfer data
to and from a file we need first to copy the appropriate file block from disk and temporarily
store it in main memory. Moreover, before we can transfer any file data, the file in question
will have to be opened first. In practice, file system implementations allow only a maximum
number of files to be open at any time. For each opened file, space in main memory will be
reserved so that one or several of its file blocks can be temporarily stored for reading or
writing purposes. We can represent this in BASAL by means of two variables: openFiles is
an array for keeping track of opened files, and fileBlocks is an array for temporarily storing
requested file blocks. Expressed in BASAL, this leads to the following declarations:

downloaded by wizard.z@foxmail.com

256 Operating systems

type OPEN FILES is array (1..MAXOPENFILE) of FILE;
type OPEN FILE BLOCKS is array (1..MAXOPENBLOCKS) of FILE BLOCK;

openFiles : OPEN FILES;
fileBlocks : OPEN FILE BLOCKS;

Now let’s see what happens when we open a file. Without going into too many implementa-
tion details, assume that openFiles(k) is presently not referring to an opened file. In that case,
we can use that entry to store all relevant information on a file we wish to open. It is not
hard to imagine where this information comes from: it is stored somewhere on disk (how
it came there in the first place is discussed below). This so-called file header is then read
from disk and stored in main memory as a FILE variable in openFiles(k). At that moment, all
information on a specific file is now available to the file system.

Reading information from an opened file is then straightforward. First, the appropriate file
block number is calculated as discussed above. By means of the index block stored as part
of the file header, the associated disk block can be identified, and the disk driver will be
instructed to read that block into main memory. The block itself will be stored as, say, file-

Blocks(m).data; the file system will set the two fields fileBlocks(m).fileId and fileBlocks(m).block-

Number as appropriate. As soon as the file block has been fetched from disk, the requested
byte can be handed over to the process that originally initiated the data transfer. Now sup-
pose the process wanted to read the next byte as well. Of course, unless the byte that was
first requested was the last one of the file block, there will be no need to initiate another
data transfer from disk, because the file block containing the next byte is already in main
memory. Any file system will therefore always check if a referenced file block is already in
memory or not.

Writing data to files proceeds in an analogous way. The interesting situation is when a pro-
cess wants to append data to a file, such that it is necessary to allocate a free disk block. In
that case, the file system will require the disk storage manager for an available disk block,
assign one of its entries in fileBlocks for that block, and from there on allow the process to
write data to the file. At a certain point in time, the file block which is still located in main
memory will be transferred to disk as soon as the file system has instructed the disk driver
to do so.

In order to create a file, we need to accomplish two things: make sure (1) that we have a
file header, and (2) that we know where to find that header on disk. Now, for simplicity,
assume that a file header will fit into a single disk block, i.e. in order to create a file we need
only request the disk storage manager for an available disk block. Assuming such a block
is available, the storage manager will pass back the disk address of that block to the file
system. We have to be able to store that disk address permanently (why?). Therefore, many
file system implementations, in particular those based on UNIX, maintain a so-called index
list. This fixed-sized list can be represented in BASAL as:

type INDEX LIST is array (1..MAXFILE) of DISK.ADDRESS;

The index list itself is stored on disk at a number of pre-determined disk blocks. In other
words, these locations are always the same. It should now be clear what needs to be done
in order to create a file. The file system has to (1) search in the index list for an entry that

downloaded by wizard.z@foxmail.com

An example extension: file systems 257

is not yet used for a file, and then (2) request the disk storage manager for an available disk
block in order to store the header of the new file. The entry used for the file can actually be
its unique identifier.

Storing file blocks in main memory

Above, we assumed that a file block could simply be read into main memory, and stored as
an entry of fileBlocks. However, as soon as MAXOPENBLOCKS have been transferred from
disk, there is no more reserved space available. In that case, the file system will have to
make a decision to remove one or several file blocks from main memory. If it decides to
remove a file block that has been changed, that block will have to be written back to disk;
blocks that have not been changed (e.g. those from which a process only reads information)
can simply be replaced by new file blocks. In this sense, the replacement strategy for file
blocks in memory is quite analogous to that for replacing logical pages in the case of virtual
memory.

Another interesting aspect about keeping file blocks in memory as illustrated here is that
we can increase efficiency if carefully designed. To illustrate, suppose a process wants to
modify a file block. The block is brought into memory after which it can be manipulated
by the process. Now suppose we keep this block in memory for a reasonably long time. In
that case, if the process wants to later modify the block again, we will have avoided a data
transfer from disk if that block is still stored in main memory. In other words, it may be
worth keeping file blocks relatively long in main memory before writing them back to disk.
In practice, this is indeed an effective way to increase the performance of a file system. This
organization of keeping file blocks in main memory before writing them to disk is referred to
as software caching. The main problem, however, is that if a file block is not written to disk
immediately after it has been modified we may find ourselves in an unfortunate situation if
the computer crashes, for in that case the file as stored on disk will be inconsistent with the
last modification. The problem is somewhat alleviated by periodically writing all modified
blocks to disk. For example, in many UNIX systems this is done approximately every 30
seconds.

5.6.3 File organization: directories

File systems are seen to form an extension of physical storage devices. An important fea-
ture is that they need only rely on the availability of a (micro)kernel providing access to
storage devices by means of, for example, one or several disk drivers. Once the concept
of a file is readily available in the form of an implementation, we are able to organize
them into so-called directories. Conceptually, a directory is a collection of files. More
precisely, a directory contains information on files. The kind of information is discussed
below. Important for now is that this information is so relevant that it is worth storing
it somewhere permanently. And what would be a better place to do so than � � � in a file?
In other words, we can hierarchically organize files by means of directories, which con-
sist of information on “ordinary” files, as well as information on other directories. This
organization is illustrated in Figure 5.21.

downloaded by wizard.z@foxmail.com

258 Operating systems

file

directory entry

Figure 5.21 The logical organization of files by means of directories.

device
subsystem

file
subsystem

other
subsystems

directory
subsystem

application

namefile id

file id + operation

Figure 5.22 The organization of a file system and directory package on top of a microkernel.

Now what kind of information would we want to keep track of when organizing files?
In fact, not much. The only disadvantage about files as discussed so far is that they can
only be identified by means of the file identifier. Humans tend not to be good at remem-
bering numbers. Instead, it is a lot more convenient for us to use names. And this is
often the only information that is stored in directories. In particular, a directory can be
considered as a structured file, consisting of records that pair a human-readable name to
a file identifier. This also implies that a directory service program need have nothing to
do with a (micro)kernel. Its only exchange of information takes place with the file sys-
tem. In particular, many operations provided by a directory service program will be the
same as those provided by a file system, but instead of using a file identifier the oper-
ations require a name given as a string of characters. The overall architecture of a file
system combined with a directory service program is shown in Figure 5.22.

downloaded by wizard.z@foxmail.com

Discussion 259

5.7 Discussion

5.7.1 Summary and further reading

Let’s see what we have accomplished so far. In the previous chapter we had introduced a
virtual processor, which implemented a high-level programming language, much in the
same way that a real processor is an implementation of an instruction set. In Chapter 4
we showed how we could extend our virtual processor with virtual peripheral devices.
Analogous to virtual processors, these devices were implemented as a combination of
hardware and software, the latter in the form of so-called device drivers. In any case, vir-
tual devices formed a convenient abstraction over peripheral devices such as hard disks.
It is by means of device drivers that we can more easily control access to the peripherals
that form part of real-world computer systems.

But having these abstractions of virtual processors and devices is not enough when
using the available resources efficiently. In particular, we began by showing that during
the transfer of data between main memory and a storage device on behalf of a program P
it would make more sense to let the CPU continue with the execution of the instructions of
some other program P�. Being able to support the execution of several programs required
a further consideration of three important problems:

� Memory management. In order to continue with another program that program
will have to be in main memory as well. To be able to place programs in arbitrary
contiguous pieces of memory the use of a base register and limit register was found
to be convenient. The management of free memory chunks can be completely dealt
with by means of software. Requiring a contiguous piece of memory before plac-
ing a program can be avoided by introducing a paging mechanism, and mapping
a consecutive series of logical pages onto arbitrary available physical pages. To
this end, we introduced the concept of a page table, which is filled by software but
read through hardware. Paging was later extended to virtual memory by which the
number of logical pages can exceed the number of physical pages.

� Process management. In order to switch from one program to another we need to
apply a selection mechanism. In Section 5.3 we gradually introduced the concept
of a process, informally referred to as a program in execution. We showed that
by keeping track of a program’s processor context, it was possible to switch from
one program to another, and later continue where we had left off. Processes are an
extremely important concept when discussing communication systems.

� Process interference. This is a subject that we shall return to extensively in the
following chapters. Here, we discussed that if two processes PROC1 and PROC2
co-exist, and the CPU is switched between the two, we may find ourselves in the
situation that while a peripheral device is acting on behalf of PROC1, the same
device should also start work on behalf of PROC2. In other words, the processes
need to share a single resource. Because devices can do only one thing at a time,
we needed a mechanism to synchronize processes. Our solution was based on the
use of semaphores, for many operating systems supporting multiple processes an

downloaded by wizard.z@foxmail.com

260 Operating systems

essential mechanism. A semaphore is used to postpone the execution of a pro-
cess by letting it wait until some condition has been met. The implementation of
semaphores is not trivial. In the end, some hardware support is even required.

The interesting part of our solutions was that they were all presented as software exten-
sions to the virtual processor introduced in the previous chapter. However, a close col-
laboration with hardware is sometimes still required, for example in the case of interrupt
handling and forcing processes to use service programs.

Our discussion continued by showing how the essentials of an operating system, re-
ferred to as a microkernel, could be organized into a number of modules. In particular,
we showed how the important modules for memory management, process management,
and device management could more or less be isolated, together enabling further exten-
sions. Structured organization of operating systems is essential to keep it manageable.
One particular global organization was presented here, namely that of a client-server ap-
plication in which client processes communicate with server processes, the latter captur-
ing different functionalities of an operating system. The kernel in such an architecture
plays a small but important role. It acts as an interface between clients, servers, and the
hardware.

Our final subject was that of file systems: an extension to the material presented so
far that allowed the use of abstract storage devices in the form of so-called files. We
showed how the concept of a file could be readily implemented on top of a microkernel,
and that their organization could even be completely dealt with without making use of
that kernel. This approach is illustrative of the way that operating systems are often built
today. A small kernel is extended by means of separate, more or less isolated components
that completely encapsulate specific functionality. We shall return to this approach in
succeeding chapters.

Operating systems are to be considered as intricate pieces of software, and much more
can be said about them than what we have discussed in this chapter. Fortunately, the con-
struction of operating systems is to date well understood, and a number of excellent text-
books exist that will help you find your way further. For those wishing to get some more
overview material, Lister and Eager (1988) provide a good starting point. Another, more
thorough treatment at a conceptual level can be found in Silberschatz and Galvin (1994)
and Part I of Tanenbaum (1992). These two also provide many more references to spe-
cific subjects. If you still find the interaction between hardware and software a difficult
subject to comprehend, Patterson and Hennessy (1994) provide a more thorough discus-
sion than can be found in this book. File systems are discussed in Grosshans (1986), and
many design and implementation details are also presented in Wiederhold (1983).

But general textbooks are not always the best way to become acquainted with the intri-
cacies of operating systems. It is necessary to look at existing systems at a more detailed
level. Tanenbaum (1987) discusses and presents the source code of the MINIX system,
which has been designed (and is available) for IBM-compatible PCs. A relatively sim-
ple operating system, called XINU is presented in Comer (1984). Both MINIX and XINU

are simplified versions of UNIX. An excellent treatment of UNIX itself can be found in
Bach (1986). Without going into too many implementation details, the author manages

downloaded by wizard.z@foxmail.com

Discussion 261

to provide a clear understanding of the data structures and internal behavior of this well-
known operating system. A similar approach is followed by Leffler et al. (1989) who
deal with the Berkeley version of UNIX, and Goodheart and Cox (1994) who discuss an-
other important version of UNIX. Finally, Joseph et al. (1984) discuss a major part of
the source code of an operating system that can support multiple CPUs. In contrast to the
other systems mentioned, which have been implemented in C, this multiprocessor system
has been developed using a Pascal-like language.

5.7.2 Operating systems today

The material presented in this chapter belongs to the classical parts of research into op-
erating systems. Once considered as being an extremely difficult subject, the basics of
operating systems are well understood to date. In new developments, much research is
motivated for adapting or inventing solutions so that performance demands can be met.
In addition, modern operating systems are gradually adapting structures that seemed in-
conceivable in the past.

Performance issues: the I/O bottleneck

As we have mentioned, one of the main objectives of operating system design is to al-
low efficient use of the available hardware resources. When operating systems were first
introduced, attention was drawn primarily towards efficient use of (1) the CPU, (2) main
memory, and (3) peripheral storage media. If you realize that processing power is in-
creasing much faster than I/O-related measures, and that memory chips are now so cheap
that it is hardly realistic to consider memory as a scarce resource, it will be no surprise
to learn that performance demands on operating systems are largely restricted by the I/O
subsystem they support. Faster processors and larger memories allow us to construct so-
phisticated operating systems, but relatively slow peripheral devices force developers to
think carefully about the design of software components for I/O.

The I/O problem is being attacked from different angles. One approach is the devel-
opment of alternative storage devices, particularly so-called disk arrays. These devices
appear logically as one very large disk, but are physically organized as a collection of
hard disks that operate in parallel. Roughly speaking, an array of N disks increases the
data transfer rate by a factor N. At the same time, the storage capacity is increased N-fold.
Unfortunately, there is a problem. Having a number of disks work in parallel increases
the probability that something will go wrong. And this is simply too much (instead of
having a disk crash once every two years, imagine it occurring once a week). However,
by applying special redundancy techniques and improving the quality of the disks, high-
performance I/O subsystems have been realized and are already commercially available.
If you want to know more about this technology, Chen et al. (1994) will provide you
with enough details to make a good start.

While peripheral devices are being improved, so are the logical storage devices, i.e. file
systems. One way of improving file systems is not to make any use of storage devices,
at least for some time. This has led to main memory file and database systems, of which

downloaded by wizard.z@foxmail.com

262 Operating systems

an overview is given in Garcia-Molina and Salem (1992). In practice, however, a com-
promise is made by applying advanced software caching techniques by which complete
blocks of data are kept in main memory. The problems related to I/O caches in operat-
ing systems are similar to that of paged memory systems. An alternative approach is to
concentrate on minimizing the frequency of (expensive) disk operations. For example,
pure sequential disk access (which prevents the heads being moved all the time) is much
better than random access patterns. Sequentializing disk access is done in so-called log-
structured file systems which are discussed in Rosenblum and Oosterhout (1991). Disk
access can also be greatly improved if only so-called immutable files are allowed, i.e. files
that cannot be modified after being created. The advantage is that file sizes are known
in advance so that (1) it is easier to optimize disk access, and (2) files can be placed in
contiguous memory blocks. Their main benefit, however, is to be found in distributed
systems (which we shall discuss in the next chapter). More details on immutable files
can be found in Gifford et al. (1988) and Tanenbaum et al. (1990b).

Architecture and organization

Due to their size and mixture of functionality, it is important that operating systems are
organized in an orderly way. The first systems tended to be completely unorganized in the
sense that everything was more or less put into a single program. We briefly mentioned
properly organizing operating systems. Here, we concentrate on some of the more recent
trends.

Modern operating systems are almost invariably organized in the form of a microker-
nel, augmented with several server programs executing in user mode. In other words, the
client-server architecture that we have discussed in Section 5.5.3 is generally adopted.
This, however, does not imply that modern operating systems all look the same. The dif-
ferences already appear when we consider the sizes of several kernels. For example, the
microkernel of the Mach operating system has approximately four times as many service
programs as one of the earlier versions of the UNIX system. The latter were definitely not
considered to be microkernels. But apart from a discussion on when to call the core of an
operating system a microkernel or not, the aim is to minimize the number of programs
that should be executed only in kernel mode. This also means that many operating system
services will be executed in user mode.

In order to organize these services, a trend that is increasingly finding its way into sys-
tems is the object-based approach. In systems that follow this approach, any resource
in the system is treated as a single entity, called an object, that can be manipulated by
(conceptually) sending it a message telling the resource what it is supposed to do. In this
sense, the object-based approach bears a strong resemblance to the client-server model.
In both cases, a process (client) issues an explicit request to an object (server) to pro-
vide a service. A good introduction to object-orientation is given in Meyer (1988). The
object-based approach is presently successfully used in the area of distributed systems
which we shall consider in later chapters.

Another structuring aspect besides that of using objects is the use of so-called threads.
Conceptually, a thread is much the same as what we have termed a process. The main

downloaded by wizard.z@foxmail.com

Exercises 263

distinction with processes in practice is that threads have a simple implementation. What
this means is that much protection, security, and authentication administration which is
normally maintained in the case of processes is omitted for threads. This allows threads to
be efficiently implementable. Having said this, structuring operating systems can then be
done in a radically different way: we build them as a collection of threads that exchange
information which each other. This approach was advocated some 20 years ago, but has
found widespread support in practical system development only recently. Discussions
on thread support by operating systems can be found in Silberschatz and Galvin (1994)
and Tanenbaum (1992).

Exercises

1. Explain what polling is and why it is something you should generally avoid. An
alternative to polling is reacting to hardware interrupts. How does this mechanism
work?

2. Having support for multiple programs does lead to a number of fundamental prob-
lems. What are the main problems?

3. What is the purpose of having base and limit registers? Describe the memory map-
ping function and explain what happens if an out-of-limit signal is given. Would
you classify such a signal as a hardware interrupt?

4. In placing programs into free memory areas we can adopt several strategies. For
instance, we could select the largest or the smallest free block available in which
the program still fits. Elaborate on the advantages and disadvantages of either ap-
proach.

5. *The Intel 8086 processor uses 20-bit addresses, meaning that addressable memory
is restricted to 220 words. Many 8086-based computers, however, have much more
physical memory available. Would it be fair to say that such computers have a
larger physical memory than virtual memory?

6. *Explain why page sizes on computer systems are invariably chosen equal to some
power of 2.

7. *Explain in detail the function of a page table, and its role with respect to virtual
memory. Also explain how the interaction between hardware and software pro-
ceeds when an out-of-memory signal is given.

8. Explain what context switching is, and why it is needed in order to support multiple
programs.

9. Suppose that we have an operating system that provides support for multiple pro-
cesses. What will happen when there is no more process available with the state
READY?

10. *In this chapter we have implemented the CPU scheduler by means of a procedure.
Explain how we could also achieve an implementation in which this scheduler is

downloaded by wizard.z@foxmail.com

264 Operating systems

just another process.

11. Is it possible that the CPU scheduler as implemented by SCHEDULE NEXT shown
on page 227, selects as the next process the one which invoked that procedure?

12. Suppose we have two processes PROC1 and PROC2 acting on a semaphore sema.
Assume that at a certain time we have that sema is TRUE. Also assume that both
processes will issue in turn a WAIT(sema) operation. Explain what will happen.

13. *Outline a solution for the implementation of the procedure SIGNAL based on that
of WAIT as given in Listing 5.9.

14. *Explain why we need a different implementation from that used for semaphores
to realize atomicity of the WAIT and SIGNAL operations.

15. *Can we implement the functionality of WAIT and SIGNAL by a normal BASAL pro-
gram if we had a single instruction to switch interrupts generated by the hardware
on or off?

16. When a computer is switched on the hardware automatically loads a set of instruc-
tions from, e.g. a hard disk into main memory. These instructions in turn will load
the operating system into main memory. As soon as this is finished, would you
expect that the computer is executing in kernel mode or in user mode?

17. In BASAL we can directly address memory locations. Assuming that our computer
is running in user mode, how can we prevent users of BASAL addressing, for ex-
ample, registers that belong to a hard disk? In other words, how can we prevent
users from switching the computer to kernel mode?

18. Explain how an operating system can be organized as a collection of server pro-
cesses that are executed in user mode. Say why such an organization may be prefer-
able to one in which all service programs are executed in kernel mode.

19. Explain why we can view files as virtual storage devices, i.e. as an abstraction over
actual storage devices such as hard disks.

20. *An administration on files (e.g., a directory) will have to stored somewhere. To
that end, we generally use another file. However, there comes a moment when file
administration has to be stored in another way than by means of files. Explain why,
and outline a solution to this problem.

21. Directory servers need hardly ever be implemented as a basic service that needs to
be executed in kernel mode. Explain what is meant by this statement, and why it
is true.

downloaded by wizard.z@foxmail.com

Chapter 6

Basic communication models

Up to this point we have hardly described how communication between processes takes
place. In this chapter we shall take a closer look at these matters by considering two ba-
sic models. The first, in which processes communicate through so-called shared data, is
described in Section 6.2. The model can only be used in a restricted number of cases,
but nevertheless illustrates fundamental problems that underlie communication in gen-
eral. The main part of this chapter deals with so-called message-based communication
models. In these models, communication takes place by having processes send messages
to each other. As we shall show, message-based communication is much better suited for
implementation in terms of computer networks, meaning that much larger systems con-
sisting of multiple connected computers can be built than in the case of communication
of shared data.

6.1 Describing communication models

6.1.1 Introduction

In the previous chapter we saw that a computer system supporting multiple programs was
a good thing to have in view of utilizing the CPU. Therefore, we introduced the concept of
a process by which we could describe a series of actions towards the completion of a pro-
gram. Having multiple processes allowed us to let the CPU be shared: while one process
was being postponed on account of I/O, the CPU could be used to execute the instructions
of another process. This sharing of a hardware resource (i.e. the CPU) is effectively ac-
complished for almost every other resource as well. For example, main memory can said
to be shared by multiple processes if we allow several to reside there at the same time.
Similarly, a single disk can be shared by storing data from different processes. Having
multiple processes thus allows us to devise allocation schemes that effectively increase
resource utilization. This is useful from a hardware management point of view.

But although important, effective resource management is something we are not really
interested in here. Instead, throughout this book we wish to explain the technical prin-

265

downloaded by wizard.z@foxmail.com

266 Basic communication models

ciples of communication systems. In this chapter, we will make a first attempt to show
how we can achieve a better understanding of our own concept of communication with
respect to computers. Processes will form the means to that end in the sense that all com-
munication that we wish to describe will be in the form of communication that takes place
between processes.

6.1.2 Processes in BASAL

But if we are going to follow this approach, we must have a means by which we can
describe processes. Therefore, we extend our concept of BASAL with a so-called process
type. (We note here that process types are not a part of the programming language Ada,
from which BASAL has been derived. We will return to this below.) The general method
of declaring a process type in BASAL is by writing

process PROCESS NAME is
...declarations of data types used in this process

begin
...description of the general behavior of this process

end PROCESS NAME;

For example, in order to describe a process that continuously displays characters on a
screen as they are typed in at the keyboard we could declare the following process type
ECHO PROCESS:

process ECHO PROCESS is
key : CHARACTER;

begin
while TRUE loop

TERMINAL.READ(key);
TERMINAL.WRITE(key);

end loop ;
end ECHO PROCESS;

where we are using the procedures READ and WRITE as declared in the package TER-
MINAL described in Section 4.3.4. But this is only a description of what a process type
ECHO PROCESS looks like. In order to have such a process available we also need to
create a process that behaves according to this description. This is done in the same way
that variables are declared:

echoProcess : ECHO PROCESS;

This leaves us with one subtle point: when do processes such as echoProcess become
active, i.e. when do they start doing their work? This simple question cannot be answered
without going into a number of rather intricate details on the relation between BASAL and
its compiled counterpart in PRIMAL. But to give you an idea, suppose we had declared
the following procedure ACTIVATE:

downloaded by wizard.z@foxmail.com

Describing communication models 267

procedure ACTIVATE is
echoProcess : ECHO PROCESS;

begin
null ;

end ACTIVATE;

This procedure contains only a single null statement. Now when the procedure ACTIVATE
is called, the following happens. Because we have declared echoProcess as part of ACTI-

VATE, a procedure call will first result in creating a process of the type ECHO PROCESS.
When the null statement is executed, echoProcess will become active, and the procedure
call will terminate as soon as echoProcess is finished. In our example, this means that we
will never return from calling ACTIVATE.

Throughout the remainder of this book, when processes are activated will hardly be
an issue. Instead, we shall use process types in a descriptive manner, i.e. as a means to
express processes in general, and assume that processes are already active. For com-
pleteness, however, a more precise description of the subject now follows but it can be
skipped on first reading.

� Process activation

The problem with our explanation of activating processes in BASAL is that we ignored how
the procedure ACTIVATE is called. In other words, although we have described when pro-
cesses are activated, we have done so by assuming that there is already some other process
that calls ACTIVATE. When and how this calling process is activated has not been described.
In order to do this, we need to take a closer look at the relation between BASAL programs
and their compilation and execution on a computer.

As we have explained in Chapter 4, BASAL is a means of expressing programs at a con-
venient level of abstraction. In order for a BASAL program to be useful, we will have to
compile it (for example, to an equivalent PRIMAL program), and execute it on a computer.
We have also explained that a compiled program is first loaded into main memory by means
of a special program called the loader. After the loader has loaded a program into main
memory, we have explained that it continues with executing the first instruction of that pro-
gram. In practice, what happens is that a new process is started, let’s call it PROC�main�,
that executes the program that has just been loaded into main memory.

When PROC�main� executes the (compiled version of the) procedure ACTIVATE, i.e. it calls
the procedure, it creates another process PROC�echo�. This latter process is then responsi-
ble for executing the instructions as described by the BASAL process echoProcess. In other
words, the description of echoProcess is treated as just another program that is to be executed
by a process, in this case PROC�echo�. Then, just before PROC�main� continues with exe-
cuting the single null statement of the procedure ACTIVATE, PROC�echo� is set into the state
READY as explained in Section 5.3.2. It can thus be scheduled for execution by the CPU. The
semantics of process creation and activation in BASAL further dictate that PROC�main� can
only terminate, i.e. enter the state HALTED, if PROC�echo� has terminated.

downloaded by wizard.z@foxmail.com

268 Basic communication models

The concept of a process in Ada

Processes as they are used in BASAL deviate from the way that the programming language
Ada supports them. This has been done for simplicity and clarity. However, the concept of
processes in BASAL do have a direct counterpart in Ada, where they are denoted as so-called
tasks. Each process declaration in BASAL

process PROCESS NAME is
...declarations of data types used in this process

begin
...description of the general behavior of this process

end PROCESS NAME;

corresponds to the following task declaration in Ada, which consists of two parts:

task type TASK NAME;

task body TASK NAME is
...declarations of data types used in this process

begin
...description of the general behavior of this process

end TASK NAME;

The first part consists of a task specification, which, when we restrict ourselves to the way
that its process counterpart in BASAL is used, merely consists of declaring a name of the task.
The second part shows the implementation of the specified task, and is almost the same as
the way that BASAL processes are described. In contrast to BASAL, Ada not only allows
tasks to be declared in numerous other ways but also more or less dictates how communica-
tion between tasks should be described. In particular, communication between Ada tasks is
generally described by means of the so-called rendez-vous model, which we shall discuss in
Section 6.4.2. Processes in BASAL are assumed to communicate only through special com-
munication packages, the subject of this chapter. It is for these reasons that we deliberately
deviated from Ada, and have adopted a simpler model for describing communication.

6.2 Making use of shared data

Our first concern is to take a look at some simple models that can be fairly easily imple-
mented by making use of so-called shared data. In these cases, data that can be directly
accessed by a number of processes. In the following two subsections we first give some
examples that illustrate what it means to make use of shared data. Then we shall gradu-
ally come to a discussion of a communication model that is no longer based on the use
of shared data, but for which we can, at this point, only describe an implementation in
terms of shared data.

6.2.1 Handing over notes

We start with considering some simple communication schemes in which a single source
process PROC�source� hands over notes to some other process PROC�target�, desig-

downloaded by wizard.z@foxmail.com

Making use of shared data 269

nated as the target process. The actual content of each note is not important, and is as-
sumed to take the form of a series of NCHAR characters. Therefore, we introduce the
following data type:

type CONTENT is array (1..NCHAR) of CHARACTER;

The issue that we are initially interested in is how we can describe the communication
between PROC�source� and PROC�target� in such a way that the target process will al-
ways read a note after the source process has written it.

Passing a single note

The simplest situation occurs when we are dealing with only one note. In that case, we
merely need to ensure that if PROC�target� wants to read the content of the note it will
somehow be delayed until PROC�source� has finished writing it. It is not hard to see how
we can accomplish this by making use of semaphores – a means that we have used pre-
viously in order to delay a process while some data was being used by another process.
In our case, using just a single semaphore (as defined in the package SEMAPHORE on
page 231) will do the trick. Consider the following description of the type SHARED NOTE:

type SHARED NOTE is
record

data : CONTENT;
isWritten : SEMAPHORE.DEFINITION := FALSE;

end record ;

A SHARED NOTE has a field data that contains the actual information that is to be passed
on. In addition, the semaphore isWritten is used to indicate whether the note has already
been written. A process that wants to read a SHARED NOTE will first have to wait for this
event to take place. In particular, we can describe reading and writing a note by means
of the following two procedures:1

procedure READ(note : in out SHARED NOTE; data : out CONTENT) is
begin

SEMAPHORE.WAIT(note.isWritten);
data := note.data;

end READ;

procedure WRITE(note : in out SHARED NOTE; data : in CONTENT) is
begin

note.data := data;
SEMAPHORE.SIGNAL(note.isWritten);

end WRITE;

1Our implementation is based on the assumption that changes to the values of in out parameters are
immediately visible outside the procedure. In Ada, this is not so. In most cases changes become visible
after the procedure call is completed. This is also referred to as copy-in/copy-out semantics.

downloaded by wizard.z@foxmail.com

270 Basic communication models

note : SHARED NOTE;

process SOURCE PROCESS is
data : CONTENT := ...;

begin
WRITE(note, data);

end SOURCE PROCESS;

sourceProcess : SOURCE PROCESS;

process TARGET PROCESS is
data : CONTENT;

begin
READ(note, data);

end TARGET PROCESS;

targetProcess : TARGET PROCESS;

Listing 6.1 A simple example of one process handing a note over to another process.

WAIT

SIGNAL

WRITE

READ

target
process

source
process

shared data

Figure 6.1 Outline of two processes communicating via a single, shared note.

We can then describe the communication between the two processes PROC�source� and
PROC�target� as shown in Listing 6.1. In this case, the processes sourceProcess and
targetProcess communicate by using just a single note, described by the variable note.
The data field of this variable is modified by the source process, and subsequently read
by the target process. That modification takes place before the note can be read has been
accomplished through the use of a single semaphore.

Now, what’s so special about this communication scheme? Not very much, except for
the fact that you have to realize that both the source and target process have access to
one and the same variable note. In other words, the two processes share the variable
note. This variable is passed to the procedures WRITE and READ, respectively, where in
both cases it is modified. The procedure WRITE modifies not only the data field but also
the semaphore isWritten, whereas READ modifies only the note’s semaphore. It is the fact
that the processes share a single variable that makes this communication scheme spe-
cial. As we shall see below, sharing variables is generally not possible in more elaborate
communication schemes. This outline of communication between the two processes is
illustrated in Figure 6.1.

Continuous communication by a single note

Let’s take a look at a slightly more advanced communication scheme. We now wish to de-
scribe the situation where the source and target process may use the same note repeatedly

downloaded by wizard.z@foxmail.com

Making use of shared data 271

in order to exchange information. In other words, the note itself should be rewritable. Of
course, the note cannot be re-used for writing until after the target process has read its
contents. What is seen now is that the source process may sometimes have to wait for
the target process before it can continue writing the note. Therefore, we add a semaphore
isRead which is initialized to TRUE to indicate that the source process may start with writ-
ing the note for the first time:

type SHARED NOTE is
record

data : CONTENT;
isRead : SEMAPHORE.DEFINITION := TRUE;
isWritten : SEMAPHORE.DEFINITION := FALSE;

end record ;

The procedures READ and WRITE are adapted accordingly:

procedure READ(note : in out SHARED NOTE; data : out CONTENT) is
begin

SEMAPHORE.WAIT(note.isWritten); �� wait until the note has been written to
data := note.data;
SEMAPHORE.SIGNAL(note.isRead); �� and indicate that it can be re-used

end READ;

procedure WRITE(note : in out SHARED NOTE; data : in CONTENT) is
begin

SEMAPHORE.WAIT(note.isRead); �� wait until the previous note has been read
note.data := data;
SEMAPHORE.SIGNAL(note.isWritten); �� signal that new note can now be read

end WRITE;

A useful aspect of our solution is that we need not restrict communication to just a single
source and target process. It can be readily verified that several source and target pro-
cesses may communicate by using just the single note. Whenever a source process wants
to pass information to one of the target processes it merely needs to call the procedure
WRITE. However, which target process will actually read the note cannot be specified. In-
stead, the note will be read by an arbitrary target process that calls the procedure READ.

But if there are many source and target processes, it may be worth having more than
just one shared note available. How this situation can be handled is described next.

6.2.2 Shared streams for continuous communication

The examples we have been discussing show how processes can communicate by means
of some shared data. Shared in this sense means that all processes can directly access a
common variable. Communication takes place by modifying and reading the value of that
variable. In effect, all we really need to be concerned about is the proper synchronization
between the communicating processes. In other words, we have to devise schemes by
which each source or target process accesses the shared data at the right time. This is
done entirely by means of semaphores.

downloaded by wizard.z@foxmail.com

272 Basic communication models

target
process

source
process

shared data

WAIT

SIGNAL

WRITE READ

read & written

only written

empty

Figure 6.2 The principle of communicating by means of a shared stream.

However, all the communication described so far is based on the existence of only a
single shared note. This means that no more than one piece of information can be ex-
changed at a time. In practice, this is much too restrictive. How we can correct this sit-
uation is discussed next. While doing so, we shall also gradually introduce terminology
that is commonly used for a completely different type of communication model that we
come to discuss in Section 6.3: message-passing. The concepts that we shall be using
there can be illustrated by describing how we deal with shared data.

The concept of a stream

In the previous section we discussed how a source process can pass a series of notes to
a target process. One way of describing how the source and target communicate is by
stating that the two processes are connected by means of a stream. A source process
writes data to a stream that subsequently flows to a target process where it is removed. So
far, our stream was capable of handling only one note a time. Communication involving
a stream that carries several notes can easily be described if we make use of a queuing
mechanism. Writing a note at a stream then coincides with appending an element to a
queue, whereas removing a note is the same as removing an element from the head of
the queue. This communication scheme can be illustrated as shown in Figure 6.2.

Streams using non-blocking communication

What we are initially interested in here is describing communication between several pro-
cesses that make use of one and the same stream. Therefore, assume we have a package
QUEUE which we derive from the parameterized package GENERAL QUEUE described
on page 172 as follows:

package QUEUE is new GENERAL QUEUE(ELEMENT� NOTE);

where the NOTE data type is left unspecified. This declaration provides us with the right
means to create and manipulate a queue which allows notes to be either appended to its

downloaded by wizard.z@foxmail.com

Making use of shared data 273

end or removed from its front. Using such a queue, it is now simple to describe stream
communication between source and target processes. Our first approach is to devise two
simple procedures: READ and WRITE, that take into account that something may go wrong
with the communication, i.e. there may be no notes in the stream to remove, or the stream
may be too full for any more notes. If something went wrong, both procedures merely
report that communication failed. This leads to the descriptions shown in Listing 6.2,
where we have provided a complete (parameterized) package specification and imple-
mentation. (We point out that by providing the data type NOTE as a parameter of our
package specification we can indeed omit any further details at present.)

Implementation of the procedures READ and WRITE is quite straightforward. In both
cases we first ensure that the calling process gains exclusive access to the stream, after
which it checks if the stream is either empty or full, respectively. As soon as a note has
been read or written, exclusive access is given up, and the operation is completed after
having set the appropriate value for the parameter done.

What we have accomplished now is a means of communication between several source
processes and several target processes such that:

� Any source process can pass a note to one of the target processes, although it will
not know exactly which target process has picked up its note

� Any target process can pick up a note from the stream, although likewise, it will
not know which source process originally forwarded it

� There is no restriction with respect to the number of times the stream can be ac-
cessed, although it is possible that communication could not take place.

We still have to realize, that all communication takes place through shared data, in this
case the queue of notes, which in turn is protected against simultaneous access by means
of a semaphore.

But there is also something special about our implementation: we never delay a pro-
cess if communication cannot proceed because the stream was either too full to write
another note or because there was simply no note to read. In other words, we have intro-
duced a form of non-blocking communication. An alternative implementation is that of
blocking communication, which is discussed next.

Streams with blocking communication

Of course, when communication is not possible, we can also choose to delay a source or
target process until notes can be written or read again, respectively. This is completely
analogous to the situation where we re-used a single note to provide continuous com-
munication between a source and target process. There, we delayed the source process
until the note had been read by the target process, and likewise, the target process was de-
layed until the note had been written again by the source process. Using two semaphores
to delay the source and target process was sufficient in that case. Unfortunately, a sim-
ple adaptation of that solution will not work where several notes may be exchanged at
the same time. What we need now is a mechanism that delays a source process after a

downloaded by wizard.z@foxmail.com

274 Basic communication models

package STREAM(type NOTE) is

package QUEUE is new GENERAL QUEUE(ELEMENT� NOTE);

type DEFINITION is
record

noteQueue : QUEUE.DEFINITION;
exclusiveAccess : SEMAPHORE.DEFINITION := TRUE;

end record ;

procedure READ(
stream : in out DEFINITION; data : out NOTE; done : out BOOLEAN);

procedure WRITE(
stream : in out DEFINITION; data : in NOTE; done : out BOOLEAN);

end STREAM;

package body STREAM is

procedure READ(
stream : in out DEFINITION; data : out NOTE; done : out BOOLEAN) is
empty : BOOLEAN;

begin
SEMAPHORE.WAIT(stream.exclusiveAccess);
QUEUE.CHECK EMPTY(stream.noteQueue, empty);
if not empty then

QUEUE.REMOVE(stream.noteQueue, data);
end if ;
SEMAPHORE.SIGNAL(stream.exclusiveAccess);
done := not empty;

end READ;

procedure WRITE(
stream : in out DEFINITION; data : in NOTE; done : out BOOLEAN) is
full : BOOLEAN;

begin
SEMAPHORE.WAIT(stream.exclusiveAccess);
QUEUE.CHECK FULL(stream.noteQueue, full);
if not full then

QUEUE.APPEND(stream.noteQueue, data);
end if ;
SEMAPHORE.SIGNAL(stream.exclusiveAccess);
done := not full;

end WRITE;

end STREAM;

Listing 6.2 A complete description of simple stream communication.

certain maximum number of notes have been written but not yet read. Similarly, a target
process is to be delayed only if there are no more written notes in the stream, and not just
one unwritten note. What we are thus seeking is a means of constructing streams based
on blocking communication.

The solution is found by adapting our concept of a semaphore. As we have mentioned

downloaded by wizard.z@foxmail.com

Making use of shared data 275

in Section 5.4.1, a binary semaphore is a Boolean variable with two associated opera-
tions wait and signal formally defined as:

wait(s) :: when s do s� false

signal(s) :: s� true

So far, we have been making use only of binary semaphores. An extension to binary
semaphores is given by so-called counting semaphores. A counting semaphore is an
integer variable rather than a Boolean variable, with the operations wait and signal re-
placed by the two operations down and up:

down(s) :: when s� 0 do s� s�1
up(s) :: s� s�1

where

when s� 0 do s� s�1

means that a process will decrement the value of s by one if s� 0, and that otherwise its
execution will be delayed. A delayed process will continue as soon as s becomes larger
than 0, after which it will then immediately decrement the value of s by one.

Returning to our initial problem, assume we have the following extended package avail-
able for semaphores:

package SEMAPHORE is
subtype BINARY is BOOLEAN;
subtype COUNTING is INTEGER;

procedure WAIT(sema : in out BINARY);
procedure SIGNAL(sema : in out BINARY);

procedure DOWN(sema : in out COUNTING);
procedure UP(sema : in out COUNTING);

end SEMAPHORE;

Devising a solution by which source and target processes are blocked until notes can be
written and read again, respectively, is now fairly straightforward. First assume that the
maximum number of notes that can be carried by the stream is NNOTE. In that case, we
first need to adapt our definition of a stream as shown in the package specification in
Listing 6.3.

Writing and reading notes can now be expressed by the procedures shown in List-
ing 6.4. A few points need to be kept in mind in order to understand the correctness of
our implementation. First, note that the value of stream.isRead always corresponds to the
number of notes that can be appended to the stream before it becomes full. Likewise, the
value of stream.isWritten corresponds to the present number of notes that have been writ-
ten. Second, we have to take into account that the queue associated with the stream is
still shared by several processes. Moreover, it can happen that several processes want to

downloaded by wizard.z@foxmail.com

276 Basic communication models

package STREAM(type NOTE) is
package QUEUE is new GENERAL QUEUE(ELEMENT� NOTE);

NNOTE : constant INTEGER := ...;
type DEFINITION is

record
noteQueue : QUEUE.DEFINITION;
exclusiveAccess : SEMAPHORE.BINARY := TRUE;
isWritten : SEMAPHORE.COUNTING := 0; �� no notes have yet been written
isRead : SEMAPHORE.COUNTING := NNOTE; �� equals the stream capacity

end record ;

procedure READ(stream : in out DEFINITION; data : out NOTE);
procedure WRITE(stream : in out DEFINITION; data : in NOTE);

end STREAM;

Listing 6.3 The package specification for a stream with blocking communication.

append or remove notes at the same time. Therefore, we still have to protect the stream
against simultaneous access, to which end we use the semaphore stream.exclusiveAccess
as before.

It is seen that by using counting semaphores we can devise solutions for blocking stream
communication by which as many as NNOTE notes may be carried by the stream at the
same time. Moreover, it is also seen that we need no longer check if the queue associated
with the stream is either full or empty, as was the case with non-blocking communica-
tion. But suppose that we did not want to set a maximum on the number of notes in the
stream, for example because we did not know in advance how many notes the stream can
carry simultaneously. In that case, we would have to check if the associated queue was
presently full or empty, and in addition, would possibly have to delay a source or target
process. Here, binary semaphores can provide a solution to this problem. How exactly
is left as an exercise for the reader.

� On the implementation of counting semaphores

A question that may come to mind is whether or not we actually need counting semaphores.
The answer is no: counting semaphores can easily be implemented by assuming that we
have only binary semaphores at our disposal. The point is that a process that wants to ex-
ecute the down operation on a counting semaphore first checks whether the semaphore’s
value is 0 or not. If so, it registers itself as a process waiting for that value to become larger
than 0, and delays itself by means of an additional binary semaphore upIsCalled. A process
executing the up operation always checks whether there are any waiting processes, and if
so, invokes one of these by SIGNALing the binary semaphore upIsCalled. This principle is
shown in Listing 6.5.

When a process calls the procedure DOWN, it starts with checking the current value of the
counting semaphore, given by the field value. If it is 0, it needs to delay itself until that value
becomes positive. To that end, it first increments the value of the field waiters which indi-

downloaded by wizard.z@foxmail.com

Making use of shared data 277

package body STREAM is

procedure WRITE(stream : in out DEFINITION; data : in NOTE) is
begin
�� Check if there is room in the stream to append a note. The current value of
�� stream.isRead denotes exactly the number of notes that can still be appended.
�� If it is 0, the calling process is delayed by definition of the operation DOWN.
SEMAPHORE.DOWN(stream.isRead);

�� The calling process must now get exclusive access to the stream, for there may
�� be other processes that are also writing or reading notes at the same time.
SEMAPHORE.WAIT(stream.exclusiveAccess);

�� Simply append the note to the stream, give up exclusive access, and indicate to
�� the target processes that there is a next note that can be read.
QUEUE.APPEND(stream.noteQueue, data);
SEMAPHORE.SIGNAL(stream.exclusiveAccess);
SEMAPHORE.UP(stream.isWritten);

end WRITE;

procedure READ(stream : in out DEFINITION; data : out NOTE) is
begin
�� Check if there is a note that can be read, i.e. removed from the stream. The
�� current value of stream.isWritten denotes exactly the number of notes presently
�� in the stream. If it is 0, the calling process will be delayed by definition of DOWN.
SEMAPHORE.DOWN(stream.isWritten);

�� The calling process must now get exclusive access to the stream, for there may
�� be other processes that are also reading or writing notes at the same time.
SEMAPHORE.WAIT(stream.exclusiveAccess);

�� Remove a note from the stream: it is certain that there is one. Then,
�� exclusive access to the stream is to be given up, and the source processes are
�� notified that there is room for the next note in the stream.
QUEUE.REMOVE(stream.noteQueue, data);
SEMAPHORE.SIGNAL(stream.exclusiveAccess);
SEMAPHORE.UP(stream.isRead);

end READ;

end STREAM;

Listing 6.4 The two procedures for passing notes via a stream with blocking communication.

cates the total number of waiting processes. The actual delay is achieved by WAITing on the
binary semaphore upIsCalled. A process calling UP does exactly the converse: after incre-
menting the semaphore’s value by 1, it checks whether there are any waiting processes. If so,
it invokes one by decrementing that value of waiters by 1, and SIGNALs the binary semaphore
upIsCalled. This will allow exactly one waiting process to continue where it had previously
left off, after which the latter finally decrements value by 1 again in the procedure DOWN.
Because the counting semaphore itself is shared among several processes, we need to protect
it against simultaneous access through an additional binary semaphore exclusiveAccess.

downloaded by wizard.z@foxmail.com

278 Basic communication models

type COUNTING is
record

value : INTEGER; �� value associated with the counting semaphore
exclusiveAccess : SEMAPHORE.BINARY := TRUE; �� to guarantee exclusive access
waiters : INTEGER := 0; �� number of processes waiting for value to become positive
upIsCalled : SEMAPHORE.BINARY := FALSE; �� for delaying waiting processes

end record ;

procedure DOWN(countSema : in out COUNTING) is
begin

SEMAPHORE.WAIT(countSema.exclusiveAccess);
if countSema.value = 0 then
�� register the calling process as one that is waiting for value to become positive
countSema.waiters := countSema.waiters + 1;
SEMAPHORE.SIGNAL(countSema.exclusiveAccess);
�� delay the calling process until further notice
SEMAPHORE.WAIT(countSema.upIsCalled);

end if ;
countSema.value := countSema.value – 1;
SEMAPHORE.SIGNAL(countSema.exclusiveAccess);

end DOWN;

procedure UP(countSema : in out COUNTING) is
begin

SEMAPHORE.WAIT(countSema.exclusiveAccess);
countSema.value := countSema.value + 1;
if countSema.waiters � 0 then
�� there are delayed processes waiting for this counting semaphore, so one of them
�� can now be invoked
countSema.waiters := countSema.waiters – 1;
SEMAPHORE.SIGNAL(countSema.upIsCalled);

else
SEMAPHORE.SIGNAL(countSema.exclusiveAccess);

end if ;
end UP;

Listing 6.5 An implementation of counting semaphores based on binary semaphores.

Stream communication and process synchronization

Having given a blocking and non-blocking form of stream communication, it is not hard
to imagine that we can also combine the two. In particular, we can make a distinction be-
tween, on the one hand, blocking versus non-blocking communication, and on the other,
whether this applies to writing or reading notes. So, for example, it is possible to have
a blocking WRITE operation as used by a source process combined with a non-blocking
READ operation at the target’s end.

Whenever a process manages to write a note to a stream it is certain that eventually
the note will be read by one of the target processes (assuming that the target processes
regularly inspect the stream for incoming notes). In the case of blocking communica-
tion, we are certain that as soon as a WRITE operation completes, the note is on its way
to one of the target processes. However, we cannot know exactly when that note will
be read. In other words, the particular source process and the target process do not syn-
chronize; the interaction between the two is therefore said to adhere to asynchronous

downloaded by wizard.z@foxmail.com

Making use of shared data 279

communication. A characteristic feature of asynchronous communication is that any
data that is being communicated between a source and target process may be “in transit”
without either of the two processes waiting until that transmission is completed. In the
stream models we have discussed, a note is “in transit” as long as it remains in the queue
associated with the stream.

Describing synchronous communication, i.e. communication in which a source pro-
cess and a target process both continue only after the target process has read the note
written by the source process, requires some additional exchange of information. In par-
ticular, in order for the source process to continue, it must be informed exactly when its
note has been read. In a synchronous communication model, the source process will be
delayed until that moment.

� Let’s see how we can solve this problem of synchronous communication by assuming that
source and target processes communicate only through streams. The basic idea is that when-
ever a target process has read a note from a stream it writes back an acknowledgment to the
source process that wrote the note. To this end, we assume that there is an additional stream
that flows in the opposite direction, namely from the target processes back to the source
processes, and which carries such acknowledgments. We denote this stream as the acknowl-
edgment stream, whereas the stream carrying the notes as written by the source processes
is denoted as the main stream. We assume that a source process always attaches a unique
identifier to a note when writing it to the main stream. The behavior of the source and target
processes can now be roughly outlined as follows:

� A source process PROC�source� composes a note note consisting of the data that is to
be communicated, as well as a unique identifier id�source� for itself. This note is then
written to the main stream, and process PROC�source� is delayed until further notice.

� As soon as note has been read by some target process PROC�target�, the latter com-
poses an acknowledgment ack, which is just another note, but now containing the
unique identifier id�source� that came with note. The acknowledgment is written to
the acknowledgment stream, and PROC�target� continues.

� After the acknowledgment ack has been removed from the acknowledgment stream,
process PROC�source� is informed that it can continue. At this point we know that
note note has been read.

Describing the third step in a BASAL program is rather tedious, and does not contribute much
to the clarification of process synchronization in the case of stream communication. For this
reason, we have resorted to providing only an outline of the solution.

Discussion

Before we continue, let’s see what we have been doing so far. We started by discussing
a simple communication model in which one process passes a note to another. We ex-
pressed this model in BASAL by making use of a variable that is shared between two
processes. Having a shared variable means that the variable can be directly accessed by
both processes. It is therefore also referred to as a common variable. Shared data, as

downloaded by wizard.z@foxmail.com

280 Basic communication models

we have already seen in Chapter 5, requires protection against simultaneous access by
several processes. To that end, we can use semaphores.

Our next step consisted of extending the communication model so that several pro-
cesses could exchange information by using only a single note that could be re-used re-
peatedly. The extension that followed was that of communication through a stream which
allowed several processes to communicate with each other, but in such a way that several
notes could be in transit at the same time. Streams are fairly flexible. A process can write
a note to a stream, and another can read notes from a stream. From an abstract point of
view, it would almost seem as if communication is no longer based on the use of shared
data, except, of course, that the stream itself is shared between processes. But this is an
implementation detail, although it is too important to ignore. What we are saying here
is that although the stream model of communication is well suited to describe all kinds
of communication, even the kind that takes place across computer networks, the imple-
mentation of the model as we have described so far is completely inadequate.

The problem is that we have described a solution in which shared data is stored at one
particular place: main memory. This requires that all processes that make use of shared
data should have direct access to the memory locations that contain that data. This direct
access can only be realized if the processor that is executing a process is directly con-
nected to the memory module in which the shared data is contained.2 And it is for this
reason that our approach will fail in the general case. When dealing with geographically
distributed processes (and thus processors), we cannot simply assume that hardware is
available that will allow these processes to access shared data directly. Instead, we will
have to provide other solutions.

Returning to our concept of streams, the problem that we are now confronted with is
that, on the one hand, it seems that we have a fairly good communication model, even
for describing communication across a network, but on the other, that we will have to
devise an implementation of that model which is supported by those networks as well.
How we can implement this model, and similar ones, is the topic of Chapter 7 and be-
yond. It is indeed rather more intricate than you might imagine at first. In the next section
we shall concentrate on so-called message-passing models, which are suited for network
communication; as we will discuss, communication through streams is just one of the
many models based on message-passing.

6.3 Basic message-passing

As we have said, communication through shared data requires that the communicating
parties have direct access to the place where that shared data is stored. This is practically
impossible when dealing with systems in which processes are geographically distributed.
In that case, communication proceeds in an entirely different way. Instead of modifying
commonly accessible data, processes communicate by passing messages to each other.
In order to do so requires that there must be some underlying communication network

2This is not entirely true, see Section 6.5 for further information.

downloaded by wizard.z@foxmail.com

Basic message-passing 281

through which messages can be sent. Such communication networks form the topic of the
following chapters. In the remainder of this chapter, we concentrate on message-passing
as a model of communication. In other words, we will discuss what message-based com-
munication looks like from the perspective of the communicating processes. To that end,
we start in this section with presenting only relatively simple message-based communi-
cation models. In the following section more advanced models will be discussed.

6.3.1 The basic model

Fundamental to message-based communication is the distinction between two kinds of
roles in which processes can be involved: that of a sender, and that of a receiver. In
particular, a process may send a message to another process that is willing to receive that
message. Moreover, as soon as a message has been sent, it can no longer be accessed by
the sending process, i.e. it becomes impossible for the sender to read or modify that mes-
sage. Likewise, a receiver cannot do anything with messages that are not yet received.
From the moment that a message has been sent until the moment it is received the mes-
sage is said to be in transmission.

This is indeed a simple communication model and also one with which we are fairly fa-
miliar. For example, it is completely analogous to the way that we communicate through
regular mail. Unfortunately, the applicability of the message-passing model is rather re-
stricted and certainly much more difficult to handle than communication through shared
data. First, there is the problem of having to identify explicitly the sender and receiver.
Let’s start by taking a look at this particular issue.

Point-to-point communication

In order for a process to send a message it is necessary to identify uniquely to whom that
message is to be delivered. In particular, many message-based communication schemes
require that both the sender and the receiver can be explicitly identified through a unique
address. An important assumption that we are making here is that each address has pre-
cisely one associated process. In other words, when we send a message to some specific
address we assume that there is precisely one process that can receive that message at
that address. In this way, providing an address is the same as stating exactly who is the
other communicating party. The fact that both the sender and the receiver have to be ex-
plicitly identified is something with which we are generally familiar: when sending mail
to someone we usually provide our own address on the envelope.

Of course, it may be possible that a process itself can be contacted at more than one
address. Again, this is something we are also familiar with. It is common to make a dis-
tinction between someone’s home address and the address of the company or institution
where that person works. An alternative solution, and one that is normally adopted in
communication across computer networks, is that each process has precisely one address
where it can be contacted. If we adopt this scheme as well, we can then assume that a
sending or receiving process provides its own address implicitly, which is expressed by

downloaded by wizard.z@foxmail.com

282 Basic communication models

package MESSAGE PASSING(type MESSAGE) is
type ADDRESS is ...;

procedure SEND(receiver : in ADDRESS; mess : in MESSAGE);
�� Send a message [mess] from the calling process to the process identified at the
�� address [receiver]. The address of the sender is automatically sent along with
�� the message.

procedure RECEIVE(sender : in ADDRESS; mess : out MESSAGE);
�� Receive a message [mess] by the calling process which was sent by a process
�� identified by the address [sender].

procedure RECEIVE ANY(sender : out ADDRESS; mess : out MESSAGE);
�� Receive any incoming message [mess] by the calling process. The original sender
�� of the message is identified by the address [sender].

end MESSAGE PASSING;

Listing 6.6 The specification of a basic message-passing package where processes have exactly
one associated address.

the package specification shown in Listing 6.6. The procedure RECEIVE ANY is discussed
below.

What we are discussing here is generally known as point-to-point message commu-
nication. The only way that communication can take place is to have a sender explicitly
identify the receiver. Whether or not, for example, these two processes synchronize is
not important, and indeed, we have omitted any further details with respect to such as-
pects, but will return to them below. However, for the sake of our further discussion, we
assume at this point that receiving messages always adheres to blocking communication.

Point-to-point communication: an example

Let’s take a closer look at our basic model by first considering how we can express the sit-
uation that a source process passes notes to another target process. First, we assume that
we have created a package MPNOTE using our parameterized message-passing package:

type NOTE is array (1..NCHAR) of CHARACTER;
package MPNOTE is new MESSAGE PASSING(MESSAGE � NOTE);

In order for a process to write a note note to a process at, say, address TARGET ADDRESS,
it simply needs to call the procedure SEND as in:

MPNOTE.SEND(TARGET ADDRESS, note);

Likewise, in order for a process to read a note, it needs to specify the address of the source
process and call the procedure RECEIVE:

MPNOTE.RECEIVE(SOURCE ADDRESS, note);

downloaded by wizard.z@foxmail.com

Basic message-passing 283

The main distinction with our model based on shared data is that in order for two pro-
cesses to communicate both have to provide explicitly the address where the other can
be reached. In this sense, point-to-point communication is quite different from the com-
munication models we have discussed so far.

Any-to-one communication

But, in fact, having to identify explicitly both communicating parties directly is found to
be impractical, and sometimes even makes it impossible to express certain communica-
tion schemes. For example, although it is easy to describe the situation that precisely one
source process passes notes to precisely one target process, it is impossible to describe the
situation where a group of source processes passing notes to a group of target processes
using only point-to-point message-passing. A more elaborate model of communication
is needed.

The least we may expect is that a process should also be able to receive a message from
any sender. In fact, this model coincides better with a regular mail model: many different
senders may choose the same receiver, and the latter will still be able to pick up the in-
coming messages. We therefore extend our model by adding a procedure RECEIVE ANY

as shown in Listing 6.6, that allows a process to receive an arbitrary incoming message.
The subtle difference between the procedures RECEIVE and RECEIVE ANY lies in the fact
that the first identifies the sender from which a message is to be received, while the sec-
ond returns the sender of the message that has been received.

6.3.2 Passing notes revisited

Our extended model provides much more flexibility than when having just point-to-point
communication available. To illustrate this, let’s reconsider the situation of passing notes
between processes.

Having a single target process

We first consider the situation where there is just one target process reachable at, say,
address TARGET ADDRESS. Describing communication in this case is quite simple. The
only thing we need to do is adapt the way we read notes, which should now become:

MPNOTE.RECEIVE ANY(source, note);

where source is an output parameter returning the address of the process from which the
note was received. As far as the source processes are concerned, nothing changes for
they can still send notes as before:

MPNOTE.SEND(TARGET ADDRESS, note);

This situation is illustrated in Figure 6.3.

downloaded by wizard.z@foxmail.com

284 Basic communication models

source
process

source
process

source
process

target
process

TARGET_ADDRESS

SEND(TARGET_ADDRESS, note);

RECEIVE_ANY(source,note);

Figure 6.3 The situation of passing notes from several source processes to one target process.

Having only one source process

Now consider the opposite situation: a single source process wants to pass notes to any
target process that is willing to read them. This situation is slightly more complicated be-
cause we do not have the means to send a message to any receiver. Indeed, having such
a facility would not immediately make sense in the general case. Nevertheless, this sit-
uation can easily be captured if target processes first announce their willingness to read
a note, and then wait until a note is passed on to them. This implies that we have at least
two kind of messages: requests for notes, and notes. We can express our basic commu-
nication system as follows:

type CONTENT is array (1..NCHAR) of CHARACTER;
type INFO KIND is (NOTE, REQUEST);
type INFORMATION is

record
infoKind : INFO KIND;
data : CONTENT;

end record ;

package MPNOTE is new MESSAGE PASSING(MESSAGE � INFORMATION);

The field infoKind in any message sent identifies whether we are either dealing with a RE-
QUEST or with an actual NOTE. Assuming the source process can be reached at address
SOURCE ADDRESS, the behavior of a target process can then be expressed as follows:

downloaded by wizard.z@foxmail.com

Basic message-passing 285

procedure READ(data : out CONTENT) is
message : INFORMATION;

begin
message.infoKind := REQUEST;
MPNOTE.SEND(SOURCE ADDRESS, message);
MPNOTE.RECEIVE(SOURCE ADDRESS, message);
data := message.data;

end READ;

First, a target process sends a request to the source process announcing its willingness to
read a note. Then it simply waits until a note comes in, and copies its content. Again, we
are assuming that receipt of messages adheres to blocking communication.

It is now quite straightforward to express the behavior of the source process. It first
waits for any incoming request, and then passes its note to the target process that has just
announced its willingness to communicate. This leads to the following description of
WRITE:

procedure WRITE(data : in CONTENT) is
request, message : INFORMATION;
targetAddress : MPNOTE.ADDRESS;

begin
MPNOTE.RECEIVE ANY(targetAddress, request);
message.infoKind := NOTE;
message.data := data;
MPNOTE.SEND(targetAddress, message);

end WRITE;

The overall behavior of this communication is illustrated in Figure 6.4.

source
process

target
process

target
process

target
process

request

note

RECEIVE_ANY(targetAddress,request);
prepare note
SEND(targetAddress,note);

SOURCE_ADDRESS

prepare request
SEND(SOURCE_ADDRESS,request);
RECEIVE(SOURCE_ADDRESS,note);

Figure 6.4 Passing notes from one source process to one of many target processes.

downloaded by wizard.z@foxmail.com

286 Basic communication models

note handler

source
process

notes
requests

source
process

source
process

target
process

target
process

Figure 6.5 The global organization of the note-handling system.

Multiple source and target processes

As our last example, let’s now consider the situation where multiple source and target
processes want to exchange notes. In particular, we want to express the situation where
any source process can write a note that will subsequently be received by one of many
target processes. Simply combining the two solutions described above will not work be-
cause a target process would have to announce its willingness to read a note to all source
processes, which may then each decide to write a note. Instead, what we do is introduce
a separate process NOTE HANDLER that handles all communication between the group of
source processes and the group of target processes. The behavior of the note handler can
be described as follows:

� The communication between a source process and the note handler proceeds as
follows. A source process simply sends a note to the handler, which must then
locate a target process to which it can forward the note. To that end, we adopt a
solution in which the handler temporarily stores the incoming note by appending
it to a queue. It then continues to search for a suitable target process.

� In order to know which target process is willing to read a note, a target process
must first pass a request to the handler. The handler, in turn, will also temporarily
store this request (again by appending it to a queue), after which it checks to see if
there was also a pending note.

� If (1) a note is indeed pending, and (2) there is a target process that has issued a
request for reading the note, the handler then removes the note at the head of the
note queue, and removes the request at the head of the request queue, and sends
that note to the requesting target process.

Again, there are two kinds of messages that can be communicated with the note handler:
notes and requests, as shown in Figure 6.5. We can therefore use the MPNOTE package
from our model with one source process and many target processes. Assuming that the
note handler itself can be contacted at address HANDLER ADDRESS, writing and reading
notes can then be easily expressed by slightly modifying the procedures WRITE and READ

downloaded by wizard.z@foxmail.com

Basic message-passing 287

from our previous example. In fact, the only two things we have to take into account is
the address of the note handler and the fact that writing a note implies that a message can
be sent from the source process to the handler without having to delay the source until a
target has announced itself. We therefore leave these adaptations as an exercise for the
reader.

� The behavior of the note handler can be expressed by further extending our package with
the two procedures shown in Listing 6.7. In order to queue incoming requests and notes, we
have also added two additional packages. For simplicity, we ignore the fact that queues have
a maximum length, and leave an adaptation of our package that takes such maximum lengths
into account as an exercise for the reader. The behavior of the note handler is described by
the process HANDLER, also shown in Listing 6.7.

6.3.3 Semantics of message-based communication

So far, we have said hardly anything about the precise semantics of sending and receiv-
ing messages. Considering the vast number of variations in message-passing, it is im-
portant to know exactly what it means to send or receive a message. And this, in turn,
generally implies that we have to know how message transmission is realized by an un-
derlying communication system. Fortunately, describing the underlying communication
system can be done by focusing on just a few issues: its capabilities for message buffer-
ing, blocking communication, and process synchronization.

Buffered communication

One aspect of message-based communication that is easily overlooked is whether com-
munication is buffered. The principle of using buffers is shown in Figure 6.6. Each
sending process has an associated output queue (also called an output buffer) to which
messages are first appended before being transmitted to the receiver. After transmission,
a message is appended to the receiving process’ input queue (i.e. input buffer), from
which it will later be removed. When a message is removed from the receiver’s queue,
the message is said to be delivered to the receiving process.

Let’s look at some of the implications of buffered communication. First, it should be
clear that whenever the sender’s output queue has room left to append messages, a send-
ing process need only append a message to its queue without having to be further delayed.
A problem arises if the sender queue is already full. In that case we can either block the
sender until a message has been removed from the head of the queue for transmission or
simply report that there was no more room. This corresponds exactly to the blocking and
non-blocking semantics we presented in our discussion on streams.

At the receiver’s end we have a similar situation. In order to have a message delivered,
a receiving process inspects its input queue and if it finds the queue is not empty, it simply
removes the first message. If there are no messages pending, we have the choice either to
block the receiver until a message comes in or have it continue immediately by reporting
back that nothing has been sent.

downloaded by wizard.z@foxmail.com

288 Basic communication models

package REQUESTQ is new GENERAL QUEUE(ELEMENT� MPNOTE.ADDRESS);
package NOTEQ is new GENERAL QUEUE(ELEMENT� CONTENT);
...
targets : REQUESTQ.DEFINITION;
notes : NOTEQ.DEFINITION;

procedure GET INFORMATION is
senderAddress : MPNOTE.ADDRESS;
message : INFORMATION;

begin
�� Simply let the note handler wait for any incoming message. If it is a request
�� from a target process, then queue that request. Otherwise, the incoming message
�� is a note that is also to be queued.
MPNOTE.RECEIVE ANY(senderAddress, message);
if message.infoKind = REQUEST

then REQUESTQ.APPEND(targets, senderAddress);
else NOTEQ.APPEND(notes, message.data);

end if ;
end GET INFORMATION;

procedure PASS NOTE is
noTargets : BOOLEAN;
noNotes : BOOLEAN;
targetAddress : MPNOTE.ADDRESS;
nextNote : INFORMATION;

begin
�� In order to forward a note, there should at least be a pending request, as well
�� as a pending note. If this is the case, remove both from their respective queues
�� and pass the note to the selected target process.
REQUESTQ.CHECK EMPTY(targets, noTargets);
NOTEQ.CHECK EMPTY(notes, noNotes);
if not (noTargets or noNotes) then

REQUESTQ.REMOVE(targets, targetAddress);
NOTEQ.REMOVE(notes, nextNote.data);
nextNote.infoKind := NOTE;
MPNOTE.SEND(targetAddress, nextNote);

end if ;
end PASS NOTE;

process HANDLER is
begin

while TRUE loop
GET INFORMATION;
PASS NOTE;

end loop ;
end HANDLER;

noteHandler : HANDLER;

Listing 6.7 The main behavior of the note handler expressed by two procedures, and combined
in the process HANDLER.

� But from the viewpoint of the sender and receiver, what really counts is whether they need
to block when they communicate. The situation is shown in Figure 6.7.

The simplest situation is that of buffered, non-blocking communication as shown in Fig-
ure 6.7(a). When the sender finds its output queue full (indicated at “send(1)”) the sender
continues immediately without any communication taking place. When a message can still

downloaded by wizard.z@foxmail.com

Basic message-passing 289

sending
process

receiving
process

output
queue

input
queue

Figure 6.6 The organization of buffered message-passing.

sender receiver

send(1)

message

sender receiver

receive (1)

send(2) message

receive (2)

(a) (b)

receive (1)

send(2) message

receive (2)time time

send(1)

Figure 6.7 The basic message-passing protocols for buffered communication using (a) non-
blocking and (b) blocking communication.

be appended to the output queue, communication will take place but the sender will not be
delayed, as shown by the point marked “send(2)”. From the receiver’s point of view, we
have a similar situation. At the point marked “receive(1)” the receiver finds its input queue
empty so it will continue immediately without communication taking place. However, it
may also find that a message has arrived (at “receive(2)”), which it subsequently removes
from the input queue.

Buffered, blocking communication is illustrated in Figure 6.7(b). In that case, we see that
a sender, when finding its output queue full at the point marked “send(1)”, is delayed until
there is room to append another message. At the point marked “send(2)” no delay takes place
as a message could be immediately appended to the output queue. Likewise, the receiver is
either delayed (“receive(1)”) or can continue almost immediately (“receive(2)”) depending on
whether its input queue was empty.

But the real problems start when the receiver’s input queue is full so that no transmitted
message can be appended to it. The problem is that in most communication systems that
use buffering mechanisms, whenever a message is transmitted it is first removed from
the appropriate output queue and then transmitted. This implies that if the input queue at
the receiver turns out to be full, there is nowhere the message can be temporarily stored.
Consequently, all that can be done is discard the message: it is lost for ever. And this is

downloaded by wizard.z@foxmail.com

290 Basic communication models

(a) (b)

sender receiver

receive (1)
messagesend

receive (2)

time

sender receiver

send

time

Figure 6.8 Buffered communication using message-discarding (a) without and (b) with infor-
mation on success of transmission.

what often happens in practice. The result is that our communication is no longer reli-
able. One way or the other, a sending process has to take into account that there may be
occasions when the message it sent never arrives at the destination.

� There are several solutions to this problem. The first is to do absolutely nothing, i.e. the
sender is not even informed that transmission failed. This is a rather difficult situation which
requires that the sender and receiver cooperate explicitly, because the underlying communi-
cation system provides no support whatsoever. How the two can come to an agreement on
which messages have arrived, and which ones did not is discussed in the following chap-
ters. A second solution is at least to inform the sender that transmission failed. The dif-
ference with providing no information is that the receiver is not bothered with transmission
failures. All it sees are the messages as appended to its input queue. The sender, on the other
hand, is put into a position in which it may decide to make another attempt to send the lost
message to the receiver.

These two situations are shown in Figure 6.8. In Figure 6.8(a) it is seen that the sender will
never know whether its message reached the other end. Figure 6.8(b) illustrates what hap-
pens when the sender is informed about the success of message transmission. An important
observation here is that the sender will be delayed until it receives information on the sta-
tus of the transmission. This implies that there is no need to maintain an output queue at
the sender’s end. The sender will never have more than one outstanding message, and this
message will then be in transit.

Synchronized communication

When discussing streams in Section 6.2.2 we made a distinction between, on the one
hand, blocking and non-blocking communication, and on the other, synchronous and asyn-
chronous communication. We observed that if a source process used blocking commu-
nication, it was always certain that the note which it wrote to a stream would eventually
be read by a target process. However, using blocking communication did not provide as-
surance as to when a note was read. To that end, the source and target processes needed
to synchronize explicitly.

downloaded by wizard.z@foxmail.com

Basic message-passing 291

sender
process

target
process

synchronization
points

A

B

Figure 6.9 The two points of possible synchronization in message-based communication.

In the case of message-passing, the situation is certainly not better than our idealized
implementation of streams. First, when communication uses buffering mechanisms, we
have argued above that even blocking communication at the sender’s end is not enough
to ensure that a message will indeed be successfully transmitted to a receiver. All that
a blocking send ensures is that the message to be transmitted is eventually appended to
the sender’s output queue. If we are going to use process synchronization in order to be
able to say something sensible about message transmission and delivery, we will have to
devise a rather specific mechanism.

First, we need to make a distinction between two kinds of synchronization which are
also shown in Figure 6.9. If we are only concerned about successful transmission of a
message, then it is sufficient to have a sending process block until the message passes
what we have indicated as synchronization point “A”. On the other hand, if we have to
be certain that a message is actually delivered, i.e. read by the receiving process, then the
sending process will have to be delayed until the message passes synchronization point
“B” in Figure 6.9. Note that because we are delaying the sending process as soon as it
submits a message for transmission, there is no need to maintain an output queue. The
sender will never be in a position to have several pending messages waiting to be trans-
mitted in any case.

In practice, communication systems at best support process synchronization for the
case that messages pass synchronization point “A”. In other words, they may provide the
means for delaying a sending process until the message that is to be transmitted has been
appended to the receiver’s input queue. If a sender and receiver need to synchronize on
the fact that a message passes synchronization point “B”, only few systems will provide
support. In general, it is left to the receiver to reply explicitly by sending an acknowl-
edgment back to the sender. But independent of which synchronization point is actually
chosen, both forms of communication are referred to as synchronous message-passing.
The fact that this terminology refers to different situations is unfortunate, as it tends to
lead to confusion. When a sender and a receiver do not synchronize, we speak of asyn-
chronous message-passing.

Of course, there is one situation in which the distinction between the two vanishes
completely: when there is also no input queue, i.e. when communication is completely

downloaded by wizard.z@foxmail.com

292 Basic communication models

sender receiversender receiver

message

(a) (b)

send

receive

send

receive

message

timetime

Figure 6.10 Synchronizing two processes at the point of message receipt (a), and message de-
livery (b).

unbuffered. In that case, synchronous communication implies that message transmis-
sion can only take place at the moment that both the sender and receiver are prepared
to communicate. Also, it is not hard to imagine that if communication is unbuffered the
only alternative for message transmission to take place is when sender and receiver syn-
chronize. In other words, talking about unbuffered, asynchronous communication makes
little or no sense.

� Let’s take a closer look at process synchronization from the viewpoint of the communicating
parties. We assume that messages can always be appended to a receiver’s input queue. In
that case, we need to take into account that the sender should be delayed until the message
has arrived at the other end. This situation is illustrated in Figure 6.10 where we have made a
distinction between the point where the message is appended to the receiver’s input queue in
Figure 6.10(a) and synchronization at the point of delivery in Figure 6.10(b). In both cases
we are assuming that the receiver is not yet prepared to read an incoming message at the
instant the sender’s message arrives. Delivery takes place at the point marked “receive”.

But the situation becomes much more difficult if we assume that input queues may become
full. Synchronous communication more or less implies that messages should always arrive
at the receiver. In any case, the sender is prepared to wait until that event takes place. Con-
sequently, we have to devise a mechanism that allows us to cope with full input queues. The
first point to note is that as long as a sender is waiting until its message has been successfully
transmitted, it will, by definition, not send another message. This is an important difference
with asynchronous communication where a sender has an output queue, for in that case, a
sender can immediately issue another message transmission as soon as the previous message
has been appended to its queue.

This observation suggests two solutions. First, suppose that we know in advance that for any
receiver there will be a maximum maxSend of senders trying to pass a message to it. In that
case, it is sufficient to ensure that the receiver’s input queue can contain a total of maxSend
messages. It can easily be verified that message transmission will always succeed. The weak
point here, of course, is that we have assumed that we know what maxSend is. In practice,
this is not possible (try to imagine why). Therefore, a second approach is not to maintain an
input queue at the receiver’s end at all. Instead, a message that is to be transmitted is kept

downloaded by wizard.z@foxmail.com

Advanced message-based communication 293

sender receiversender receiver

receive (1)

(a) (b)

send

receive (2)

sender-id

message

request

send
receive (1)

sender-id

message

request

send

receive (2)

sender-id

message

request

time time

Figure 6.11 The refinement of synchronous communication with finite input queues using (a)
non-blocking receive, and (b) blocking receive.

at the sender’s end until the receiver indicates that it can accept it. Consequently, we only
have to maintain, for each sender, an output queue having capacity 1.

But this second solution does create another problem: how will the receiver know that there
is a message pending for it? A practical solution in this case is to let the communication
system merely pass the identification of a sender to the receiver. This identification will
have to be stored in an identification buffer. In contrast to message buffers, realizing an
identification buffer need not lead to serious problems. The point to note is that messages,
in general, can be quite large. An identification, however, need not take more than just a
few bytes. In other words, the storage we need to reserve when implementing an identifica-
tion buffer is much smaller than that required for the implementation of a message buffer.
This implies that it is fairly easy to guarantee successful delivery of identifications.3 Now,
when a receiver detects that an identification has been stored in its buffer it sends a request
to the identified sender that it can accept the sender’s message. The sender, in turn, will then
transmit the message via the communication system to the receiver. Assuming that message
transmission will always succeed, the sender may continue the instant the message starts its
way towards the receiver. This refinement of synchronous communication is shown in Fig-
ure 6.11.

6.4 Advanced message-based communication

There are many types of message-based communication models. So far, we have paid
attention only to the most primitive forms of message communication. In practice, the
simple send and receive operations discussed so far are not entirely adequate when build-
ing communication systems. In many cases, this concerns identifying where a message
has to be sent, and possibly also knowing who has sent it. In this section,we shall take

3Assuming, at least, that message transmission itself is free of errors. In the next chapter we will see
that this is not always an entirely realistic assumption.

downloaded by wizard.z@foxmail.com

294 Basic communication models

sending
process

sending
process

sending
process

receiving
process

receiving
process

Figure 6.12 The principle of a channel in message-based communication.

a closer look at communication models that make message-passing easier. In all cases,
you should realize that these more advanced communication models are generally im-
plemented by means of the basic models discussed in the previous section.

6.4.1 Channels

So far, we have assumed that whenever a process sends a message it knows exactly where
it should send that message in the sense that it explicitly identifies the receiver. But, of
course, this need not always be the case. For example, if you write a letter to an orga-
nization you will generally address the letter to a specific department and probably also
use a post box. You are not interested in who actually handles your letter, nor in where
the organization is sited. The same holds for a receiver. In many cases you may be in-
terested in receiving any message, or, on the other hand, messages in which you have a
particular interest. This type of anonymity is not only common in our daily lives; it is
also something which is useful when dealing with communication systems.

Avoiding a sender and receiver having to identify each other explicitly is supported
in communication systems through the concept of so-called channels. A channel is to
be considered as a general communication medium between a set of senders and a set of
receivers. The principle is shown in Figure 6.12. Channels are capable of transporting
messages from one end to another.

Instead of sending a message to an explicitly identified receiver, a sending process sim-
ply puts a message on a channel. Likewise, receiving a message is now expressed by
providing the channel from which a message should arrive. This can be expressed quite
easily in BASAL by assuming the existence of a service program implemented as the fol-
lowing package CHANNEL:

package CHANNEL(type MESSAGE) is
type ADDRESS is ...;

procedure SEND(chan : in ADDRESS; mess : in MESSAGE);
procedure RECEIVE(chan : in ADDRESS; mess : out MESSAGE);

end CHANNEL;

downloaded by wizard.z@foxmail.com

Advanced message-based communication 295

By using the data type ADDRESS, we reflect the fact that channels can be uniquely iden-
tified. And this is indeed what happens in practice. If you want to send data across a
specific channel you need to provide an explicit reference to that channel. Such a ref-
erence is denoted by the more general term “address” in most communication systems.
The important point about channels is that they allow a sender and receiver to be anony-
mous which provides us with at least more flexibility than using the addressing schemes
discussed so far.

Channels as message queues

There are various types of channels. An important channel is the one that behaves as a
message queue. Channels that appear to the communicating parties as message queues
correspond to what we have previously referred to as a stream. The difference lies in the
fact that channels have a (theoretically) infinite capacity. Upon sending a message to a
channel, the message is immediately transmitted without further delaying the sender. If
several messages have already been sent but not yet accepted by receivers, the newly sent
message is simply buffered as the last one, and kept in the channel until it is removed.
In other words, a channel delivers messages in the same order as they are delivered. In
particular, if a sender executes the following two statements:

CHANNEL.SEND(chan, message 1);
CHANNEL.SEND(chan, message 2);

then the semantics of a channel as message queue ensures that message 1 will always be
delivered before message 2. This preservation of message ordering is often extremely
important in communication. To illustrate, suppose we were to send a complete docu-
ment, page by page. If the order of receipt could not be guaranteed, we would have to
(1) let the sender explicitly provide a number on each page that is sent, and (2) require
that the receiver subsequently sorts the pages as they arrive.

Now assuming that message ordering is preserved may seem a perfectly reasonable
thing to do, but the problem is that realizing such an ordering in practice often turns out
to be not that easy. What it means is that the route a message follows from sender to
receiver need not be unique in all cases. For example, if we had a channel between Am-
sterdam and San Francisco, message 1 may possibly be routed via New York, whereas
message 2 may be sent to Tokyo first, giving it a chance to arrive before message 1. How
this problem can be solved is discussed when we discuss implementation issues in the fol-
lowing chapters. Not being able to preserve message ordering is something that not only
occurs with channel communication. It is inherent for most forms of message-passing,
including the point-to-point and any-to-one communication schemes that were discussed
in the previous section. Of course, message ordering is automatically preserved in the
case of synchronous communication. Why this is so is left as an exercise for the reader.

At the receiver’s end, a process will generally wait until a message arrives. In other
words, message receipt adheres to blocking communication. But suppose that several
receivers are waiting at the same time to receive a message from the same channel? In

downloaded by wizard.z@foxmail.com

296 Basic communication models

package PORT is
type ADDRESS is ...;
type MESSAGE is ...;

SERVER PORT : constant ADDRESS := ...;

procedure SEND(port : in ADDRESS; mess : in MESSAGE);
procedure RECEIVE(port : in ADDRESS; mess : out message);
�� Send and receive messages to and from a given port. Sending adheres to
�� non-blocking communication, receipt adheres to blocking communication.

procedure BIND(port : in ADDRESS; done : out BOOLEAN);
procedure UNBIND(port : in ADDRESS);
�� The calling process first requests the operating system to assign the indicated port
�� so that it can act as a server for messages sent to that port. UNBINDing yields
�� that the calling process will no longer handle incoming messages via that port.

procedure ACQUIRE PORT(port : out ADDRESS; done : out BOOLEAN);
procedure RELEASE PORT(port : in ADDRESS);
�� The calling process requests (returns) a port that can be used to receive
�� messages that are explicitly sent to that port.

end PORT;

Listing 6.8 The specification of a package for handling ports.

that case, nothing sensible can be said about message delivery. In other words, we cannot
predict precisely which receiver will receive which message. In addition, there are also
implementations that allow non-blocking receipt of messages via a channel. Channels
that behave as message queues and that allow multiple senders and receivers are also
referred to as mailboxes.

Ports

Channels in many communication systems have only one receiver, in which case they
are also referred to as ports. As this concept of ports is heavily used in practice, let’s
pay some attention to it. The importance of ports becomes apparent when you realize
that they can be used to identify processes. In particular, they can be used to identify
processes that provide some kind of service. The use of ports is best illustrated by means
of a simple example.

Suppose we have an operating system that provides us with the package specification
shown in Listing 6.8. We assume that the procedure SEND adheres to non-blocking com-
munication, but that RECEIVE employs blocking communication. Of special interest are
the other procedures. First, we have provided a special port SERVER PORT as part of our
package specification. The intention is that this port represents a specific set of services
that other processes may use. By declaring it in our package specification, this port be-
comes known to the outside world. Now suppose a process server calls the procedure
BIND as in:

downloaded by wizard.z@foxmail.com

Advanced message-based communication 297

PORT.BIND(PORT.SERVER PORT, okay);

In this case, the process server is requesting to use the port SERVER PORT as the only
process that is allowed to receive incoming messages via that port. If this permission is
granted, then okay will be set to TRUE, otherwise, it will be set to FALSE. In general, there
is only one reason why a process should not be allowed to use a known port: there is a
process already using it.4 The fact that a port is known simply means that other processes
can send specific messages to that port. For example, in order to read and write files that
are located on another computer, many UNIX operating systems have reserved port num-
bered 21 to let processes communicate with a special file server that can handle these file
requests. All messages sent to port 21 must then adhere to a predefined format, i.e. the
kind of information they contain is subject to strict, predefined rules. Now, if a process
requires to be bound to port 21, it is effectively requesting to act as this special file server.
Calling the procedure UNBIND establishes that the calling process can no longer act as the
server for the indicated port.

The procedure ACQUIRE PORT is used to request the operating system for a port that
is not already being used. So, for example, if a process client calls

PORT.ACQUIRE PORT(clientPort, okay);

then clientPort will contain the address of an unused port. In this case, that port is now
bound to process client, and this process can receive messages via that port. If there are
no more ports available (i.e. all ports have been used), the parameter okay will be set
to FALSE. An important assumption that we are making here is that the collection of
ports that can be managed by an operating system is finite. In practice, this is indeed
the case, although hundreds or thousands of ports will generally be available. Ports are
returned to the operating system as soon as a process finishes by calling the procedure
RELEASE PORT.

We are now in a position to let our processes communicate. To that end, we assume
that the process client always provides a port by which server can send messages back,
i.e. we assume that the data type MESSAGE looks something like:

type MESSAGE is
record

replyPort : PORT.ADDRESS;
data : SOME DATA;

end record ;

In that case, our client process can easily communicate with the server process through
the known port SERVER PORT. The global behavior of the process server can be outlined
as shown in Listing 6.9(a); that of a client process is given in Listing 6.9(b).

Observing what we are actually doing here should at least make one thing apparent:
the communicating processes have barely any knowledge of each other. The only real

4In practice, there’s another reason: the process is simply not privileged to use the port. This is typically
something that is due to security reasons which we shall not take into account here.

downloaded by wizard.z@foxmail.com

298 Basic communication models

process SERVER PROCESS is
okay : BOOLEAN;
request, reply : PORT.MESSAGE;
clientPort : PORT.ADDRESS;

begin
PORT.BIND(PORT.SERVER PORT, okay);
if okay then

while TRUE loop
PORT.RECEIVE(PORT.SERVER PORT, request);
clientPort := request.replyPort;
do something with the incoming message, and then reply
reply.data := ...;
PORT.SEND(clientPort, reply);

end loop ;
end if ;

end SERVER PROCESS;

(a) The server process

process CLIENT PROCESS is
okay : BOOLEAN;
request, reply : PORT.MESSAGE;
clientPort : PORT.ADDRESS;

begin
PORT.ACQUIRE PORT(clientPort, okay);
if okay then

request.replyPort := clientPort;
request.data := ...
PORT.SEND(PORT.SERVER PORT, request);
PORT.RECEIVE(clientPort, reply);
PORT.RELEASE PORT(clientPort);
do something with the reply.

end if ;
end CLIENT PROCESS;

(b) The client process

Listing 6.9 General outline of a server and a client process communicating through ports.

fact that has been determined in advance is how communication should proceed when
referring to the known port SERVER PORT. Reference to that port can be done in two
ways. A server process can request to be the one that will implement the service related
to this port, whereas a client process can request that service to be provided. There is
no need for a client process to know exactly which process is handling its service re-
quests. And by providing a port when requesting that service, the server need also not
know to whom it is actually providing the service. As you can imagine, this admits for a
large degree of flexibility: if we were to decide to implement the service related to port
SERVER PORT in a completely different way, then this is simply established by replacing

downloaded by wizard.z@foxmail.com

Advanced message-based communication 299

the server process. No client processes are affected in any way.

Links and connections

A special type of channel is one with only a single sender and a single receiver, often
referred to as a link. In practice, links mainly occur at two levels of abstraction. First,
they are referred to as such when two geographically remote computers are directly con-
nected to each other (i.e. through wires) that can only be used by those two. At a much
higher level of abstraction, they appear in some programming languages, most notably
those providing only unbuffered synchronous communication.

But there is also something between these two levels of abstraction, which, rather con-
fusingly, is referred to as a connection. A connection is a (bidirectional) link between a
pair of processes which preserves the order of message transmission. What this means
is that if one of the processes sends a series of messages to the other, then these mes-
sages arrive in the same order they were sent. Bidirectional means that both processes
can send and receive messages to and from the other, respectively. Although at first this
may seem as a rather strange communication mechanism, connections as discussed here
appear frequently in our daily lives, the most prominent form being perhaps the way we
communicate by telephone.

The main distinction with all communication models we have been discussing so far
is that connections need to be set up. Using communication by telephone as an exam-
ple, this corresponds to having to dial a number first before it is possible to talk to the
other party. Likewise, when communication is finished, a connection should be closed
again. We can express this model of communication in BASAL by the package specifi-
cation shown in Listing 6.10. Apart from the usual procedures for sending and receiving
messages, as well as procedures for setting up and closing a connection, there is also a
procedure LISTEN which blocks a calling process until another process has established
a connection to it. LISTENing for a connection is similar to waiting at the telephone for
someone to call you.

Rather than using the term connection, we shall generally speak of connection-oriented
communication in order to avoid as much confusion with the more general term connec-
tion. Connection-oriented communication has some important properties:

� First, and as we have already mentioned, once a connection has been established,
message ordering between two processes is maintained during the period of com-
munication. This means that messages are received in the same order they were
sent.

� Second, connection-oriented communication is generally also reliable, meaning
that messages are guaranteed to be delivered at the other end. However, it may
occur that the connection itself is abruptly broken caused by some external event.

These two properties form an important distinction from connectionless communica-
tion, which generally refers to the basic message-passing models discussed in Section 6.3.
In practice, connectionless communication neither preserves message-ordering, nor does

downloaded by wizard.z@foxmail.com

300 Basic communication models

package CONNECTION(type MESSAGE) is
type ADDRESS is ...;
type DEFINITION is ...;

procedure OPEN(addr : in ADDRESS; conn : out DEFINITION; done : out BOOLEAN);
�� Set up or open a connection to a process that can be reached at address
�� [addr]. If a connection is established, [done] is set to TRUE, and [conn] is
�� returned as an identifier of that connection. Otherwise, [done] is set to FALSE.

procedure CLOSE(conn : in DEFINITION);
�� Close the indicated connection [conn], thereby finishing the communication.

procedure SEND(conn : in DEFINITION; mess : in MESSAGE);
�� Send a message [mess] to the process at the other end of the connection.
�� Communication is assumed to adhere to non-blocking semantics.

procedure RECEIVE(conn : in DEFINITION; mess : out MESSAGE);
�� Receive a message [mess] from the process at the other end of the connection.
�� Communication is assumed to adhere to blocking semantics.

procedure LISTEN(conn : out DEFINITION);
�� Listen to discover whether someone is trying to establish a connection. When
�� this procedure is called, the caller is blocked until a connection [conn] is established.

end CONNECTION;

Listing 6.10 A specification of a package for connection-based communication.

it guarantee message delivery, although this depends much on the capabilities of the un-
derlying communication system. The distinction between connectionless and connection-
oriented communication is an important one that we shall come across several times in
succeeding chapters.

An example: connection-oriented communication. To illustrate the difference be-
tween connectionless and connection-oriented communication, consider a situation where
several source processes want to write notes to a single target process. In particular, we
now assume that each note consists of several pages that are to be sent one after the other
before a next note can be written. Each note can be represented by the following data
type NOTE:

type PAGE is array (1..NCHAR) of CHARACTER;
type NOTE is array (1..NPAGE) of PAGE;

where NPAGE denotes the number of pages contained in each note. In order to set up com-
munication based on connections for passing notes on a per-page basis, we first declare
an appropriate package as follows:

package NOTE CONNECTION is new CONNECTION(MESSAGE� PAGE);

downloaded by wizard.z@foxmail.com

Advanced message-based communication 301

Using this package, we can then express the behavior of a source process by means of
the following procedure WRITE:

procedure WRITE(someNote : in NOTE; done : out BOOLEAN) is
conn : NOTE CONNECTION.DEFINITION;
opened : BOOLEAN;

begin
NOTE CONNECTION.OPEN(TARGET ADDRESS, conn, opened);
if opened then

for page in 1..NPAGE loop
NOTE CONNECTION.SEND(conn, someNote(page));

end loop ;
NOTE CONNECTION.CLOSE(conn);

end if ;
done := opened;

end WRITE;

The basic idea is quite simple. The source process calling the procedure WRITE first es-
tablishes a connection to the target process, which is assumed to be reachable at address
TARGET ADDRESS. If a connection is established, the source process continues by send-
ing each page separately to the target process through the established connection, after
which it is closed again. The important point to note is that all pages arrive in the order
they have been sent. Also, no other process can send notes across the same connection in
the meantime because the source and target process are exclusively communicating with
each other. The target process can now be described by means of the following procedure
READ:

procedure READ(someNote : out NOTE) is
conn : NOTE CONNECTION.DEFINITION;

begin
NOTE CONNECTION.LISTEN(conn);
for page in 1..NPAGE loop

NOTE CONNECTION.RECEIVE(conn, someNote(page));
end loop ;

end READ;

What we see here is that the target process waits until any connection is established as
initiated by one of the source processes. Then it simply reads all the incoming pages, and
knowing that message-ordering is maintained, immediately puts them in the right place
of someNote.

An example: connectionless communication. But suppose now that we want to pass
notes using our original package for message passing as described in Listing 6.6. The first
point to realize is that we now have no guarantee that messages will arrive in the same or-
der as they were sent. In other words, if we first send someNote(1), and then someNote(2),
it may happen that the second page arrives before the first. What we need to do, therefore,
is provide explicitly the number of the page that is being sent, leading to the following
adaptation of our NOTE data type:

downloaded by wizard.z@foxmail.com

302 Basic communication models

type CONTENT is ARRAY(1..NCHAR) of CHARACTER;
type PAGE is

record
pageNumber : INTEGER range 1..NPAGE;
data : CONTENT;

end record ;

type NOTE is array (1..NPAGE) of PAGE;

In order to use basic message-passing for our connectionless communication, we declare
the following package:

package NOTE CONNECTIONLESS is new MESSAGE PASSING(MESSAGE� PAGE);

The fact that messages may not arrive in the same order they were sent is of particular
concern to the receiving process. Therefore, we concentrate on the adaptation of the pro-
cedure READ and leave that of the procedure WRITE as an exercise for the reader. In order
for a target process to receive an entire note, it can first receive a page from any source
process. Then, the remaining pages should come only from that particular source pro-
cess. In addition, the target process will also have to insert the incoming pages into the
right position. This can be expressed by the following adaptation of the procedure READ:

procedure READ(someNote : out NOTE) is
source : NOTE CONNECTIONLESS.ADDRESS;
somePage : PAGE;
numOfReceivedPages : INTEGER := 0; �� the total number of pages received so far.

begin
�� First wait for any incoming page. This will also identify the source process.
NOTE CONNECTIONLESS.RECEIVE ANY(source, somePage);
�� Insert the received page into the right position of the note that is being assembled.
�� This is done by looking at the page number and doing the appropriate assignment.
someNote(somePage.pageNumber) := somePage;
numOfReceivedPages := 1;
�� Now get the rest of the pages from the same source process.
while numOfReceivedPages � NPAGE loop

NOTE CONNECTIONLESS.RECEIVE(source, somePage);
someNote(somePage.pageNumber) := somePage;
numOfReceivedPages := numOfReceivedPages + 1;

end loop ;
end READ;

What is seen here is that the target process is now completely responsible for assembling
the note by ordering the pages explicitly when they arrive.

Our solution is still relatively simple because we assume that a process can explicitly
specify from which sending process it is prepared to accept incoming data. In practice,
this is not always possible. Instead, many basic message-passing systems support only
the RECEIVE ANY procedure. In other words, a receiving process also has to account for
the fact that messages from other processes may arrive, which have to be handled as well.
We shall return to this situation in later chapters, but it should be clear that in such cases
having connection-oriented communication available may indeed be convenient.

downloaded by wizard.z@foxmail.com

Advanced message-based communication 303

client process server process

SEND
RECEIVE

ACCEPT

REPLY

in data

out data

Figure 6.13 Synchronization between client and server in a rendez-vous.

� 6.4.2 The rendez-vous and remote procedure call

Using channels allows us to express message-based communication much more easily than
using direct addressing schemes (i.e. schemes in which the sender and receiver have to ex-
plicitly know each other). But things can be made even more simpler if we take into account
the communication scenario as well. One particular scenario that occurs frequently in prac-
tice, and which we also saw above, is the one in which a client process first sends a request to
a server process, and then immediately delays itself until it receives a reply. In other words,
the communication pattern expressed as the send-receive pair

SEND(server, request);
RECEIVE(server, answer);

is one that you will often see in practice. There are two points immediately worth noting
about this scheme. First, the client process fully synchronizes with the server process, i.e.
from the moment the client issues a service request,the process will have to wait until an
answer has been sent back. Meanwhile, it cannot do anything else. During this waiting, the
server handles the request. Second, when issuing a request, the client will generally have to
provide some input data; similarly, the returned answer will generally contain output data
that can be used by the client. This is illustrated in Figure 6.13.

When we compare this figure with Figure 4.3 (page 145), which describes the principle of
a subroutine call in PRIMAL, these two aspects bear an immediate resemblance to ordinary
procedure calls. The only real difference is that the instructions of the implementation of
the service are executed by a separate process (the server), rather than the calling process,
as is the case with procedure calls. And because we are dealing with two processes, we say
that the client and server are engaged in a rendez-vous.

An example

To illustrate the use of this mechanism, assume our operating system provides a service pro-
gram in the form of the package RENDEZVOUS shown in Listing 6.11. Furthermore, suppose
that our system consists of a number of computers which are connected together, and of
which exactly one operates as a so-called file server. The task of this file server is to main-
tain a file system like that discussed in Section 5.6. All operations on files are handled by the
file server. In other words, if a process client wants to manipulate a file, this can only be done

downloaded by wizard.z@foxmail.com

304 Basic communication models

package RENDEZVOUS is
type ADDRESS is ...
type IN DATA is ...
type OUT DATA is ...

procedure CALL(server : in ADDRESS; input : in IN DATA; output : out OUT DATA);
�� Issue a request for a service at the indicated [server], passing on input data in
�� in the form of [input]. The answer will be returned as [output]. The
�� requesting process is postponed until an answer has been returned.

procedure ACCEPT(caller : out ADDRESS; input : out IN DATA);
�� To be called by a server process, so that it can handle the service request
�� issued by process [caller], with input data [input].

procedure REPLY(caller : in ADDRESS; output : in OUT DATA);
�� To be called by a server process in order to answer a reply to process
�� [caller] in the form of the output data [output].

end RENDEZVOUS;

Listing 6.11 The specification of a package for rendez-vous communication.

by requesting the file server to do so on behalf of the process client. The latter will therefore
have to request the file server to perform a specific operation, and wait for the server’s reply.

Let’s start by considering what kind of messages a client process and the file server can ex-
change. We assume the file server provides the services as given by the package specifica-
tion shown in Listing 5.12 on page 251. These services can be summarized by the following
data type:

type SERVICE is (GETSIZE, CREATE, DELETE, OPEN, CLOSE, READ, WRITE);

In order to request a service, a client process will have to indicate exactly which service it
wants to have the file server perform, as well as the necessary input data for that service.
Input always consists of a FILE ID except when a file is to be created. In addition, when
reading or writing a file, the client will have to indicate the position in that file where the
data is to be either read from or written to, and in the latter case, it will also have to provide
the data. Therefore, we can represent the input data by a single data type IN DATA:

type IN DATA is
record

request : SERVICE;
fileId : FILESYSTEM.FILE ID; �� used always, except for the creating a file
pos : FILESYSTEM.FILEPOS;�� needed to read or write data from and to a file
data : MEMORY.BYTE; �� used when data is to be written to a file

end record ;

Likewise, it can be verified that reply messages can be jointly represented by the following
data type OUT DATA:

downloaded by wizard.z@foxmail.com

Advanced message-based communication 305

type OUT DATA is
record

fileId : FILESYSTEM.FILE ID; �� returned after creating a file
size : FILESYSTEM.FILESIZE;�� returned after asking for the size of a file
data : MEMORY.BYTE; �� returned as the result of reading data from a file

end record ;

The communication between a client process and the file server can now be represented by
the following package specification, which is a specific version of the package RENDEZ-

VOUS given in Listing 6.11.

package FILE RENDEZVOUS is
type ADDRESS is ...;
type SERVICE is ... as given above
type IN DATA is ... as given above
type OUT DATA is ... as given above

procedure CALL(server : in ADDRESS; input : in IN DATA; output : out OUT DATA);
procedure ACCEPT(caller : out ADDRESS; input : out IN DATA);
procedure REPLY(caller : in ADDRESS; output : in OUT DATA);

end FILE RENDEZVOUS;

To illustrate, assuming that the file server can be reached at address SERVER ADDRESS, the
behavior of a client process that wants to know the size of a file can be expressed as the
following procedure GETFILESIZE:

procedure GETFILESIZE(fileId : in FILESYSTEM.FILE ID; size : out FILESYSTEM.FILESIZE) is
input : FILE RENDEZVOUS.IN DATA;
output : FILE RENDEZVOUS.OUT DATA;

begin
input.request := FILE RENDEZVOUS.GETSIZE;
input.fileId := fileId;
FILE RENDEZVOUS.CALL(SERVER ADDRESS, input, output);
size := output.size;

end GETFILESIZE;

The file server, on the other hand, will need to get the requested file size. But not only that, it
should also be capable of handling any other kind of service request. We can easily express
the behavior of the server as shown in Listing 6.12.

Remote procedure calls

When taking a look at the way that we organize the communication between a client pro-
cess and the file server, it is seen that our implementation is rather clumsy. In the approach
so far, each procedure available in the package specification of FILESYSTEM needs to be
separately implemented by a similar procedure for the client process. For example, the pro-
cedure GETFILESIZE as given above does exactly the same things as the procedure GETSIZE

of FILESYSTEM. However, the latter is not available to the client process, but can only be
called by the file server.

But this is a situation that can easily be corrected, and which will result in an elegant way
of hiding communication altogether. What we can do is provide two package bodies for

downloaded by wizard.z@foxmail.com

306 Basic communication models

process FILESERVER is
input : FILE RENDEZVOUS.IN DATA;
output : FILE RENDEZVOUS.OUT DATA;
caller : FILE RENDEZVOUS.ADDRESS;

begin
while TRUE loop

FILE RENDEZVOUS.ACCEPT(caller, input);

if input.request = GETSIZE then FILESYSTEM.GETSIZE(input.fileId, output.size);
elsif input.request = CREATE then FILESYSTEM.CREATE(output.fileId);
elsif input.request = DELETE then FILESYSTEM.DELETE(input.fileId);
elsif input.request = OPEN then FILESYSTEM.OPEN(input.fileId);
elsif input.request = CLOSE then FILESYSTEM.CLOSE(input.fileId);
elsif input.request = READ then FILESYSTEM.READ(input.fileId, input.pos, output.data);
elsif input.request = WRITE then FILESYSTEM.WRITE(input.fileId, input.pos, input.data);
end if ;

FILE RENDEZVOUS.REPLY(caller, output);
end loop ;

end FILESERVER;

Listing 6.12 The behavior of a simple file server.

the package specification FILESYSTEM. One package body implements all the procedures
as necessary to handle a file system in the normal case, i.e. as we have discussed in Sec-
tion 5.6. The other package body is to be made available to client processes, and implements
the communication between the client and the file server. To illustrate, the procedure GET-

SIZE would be part of a special package body (also named FILESYSTEM) which is available
only to client processes, as follows:

package body FILESYSTEM is
...
procedure GETSIZE(fileId : in FILE ID; size : out FILESIZE) is

input : FILE RENDEZVOUS.IN DATA;
output : FILE RENDEZVOUS.OUT DATA;

begin
input.request := FILE RENDEZVOUS.GETSIZE;
input.fileId := fileId;
FILE RENDEZVOUS.CALL(SERVER ADDRESS, input, output);
size := output.size;

end GETSIZE;
...

end FILESYSTEM;

Now the special point about this is that a client process can call the procedure GETSIZE in
the usual way, i.e.

FILESYSTEM.GETSIZE(fileId, size);

What it does not see, however, is that calling this procedure establishes a rendez-vous com-
munication with the file server, which also calls the procedure GETSIZE, but now the one that
acts directly on the indicated file. In other words, what we have established is that the call to
the procedure GETSIZE as done by the client process leads to a remote execution of the orig-

downloaded by wizard.z@foxmail.com

Advanced message-based communication 307

client
process

server
process

ACCEPT(client,input);
if input.request = GETSIZE then
 GETSIZE(input.fileId,output.size);
elsif ...
...
REPLY(client,output);

input.service := GETSIZE;
input.fileId := fileId;
CALL(SERVER,input,output);
size := output.size;

GETSIZE(fileId,size)

Figure 6.14 The principle of a remote procedure call mechanism.

inal implementation of GETSIZE by the file server. All communication aspects, however,
have been made transparent to the client process. This mechanism is referred to as remote
procedure calling and is illustrated in Figure 6.14.

The remote procedure call mechanism, often abbreviated simply to RPC, is a popular means
of establishing communication and, in particular, hiding it. The main benefit is that to client
processes the complete communication is hidden in the implementation of services as of-
fered through some package. Consequently, the dependence of client processes on where
or how services are implemented has more or less vanished. A desirable property indeed.
To make it even more convenient, most implementations as used for client processes, like
our alternative package body for FILESYSTEM, can be generated automatically. We shall
leave this topic at this point, and refer the interested reader to the references provided at the
end of this chapter.

� 6.4.3 Group communication

So far, we have discussed mostly communication between two parties. This may be rather
restrictive in certain situations. For example, suppose we want to set up a communication
system that supports (electronic) conferencing. In that case, several people have to commu-
nicate within a complete group. Group communication is an important topic when con-
sidering communication systems, and special measures have to be taken in order to support
it the way involving parties would expect.

Group communication is characterized by the fact that a single sender wants to transfer a
message to a group of receivers. This is also known as multicasting as opposed to unicas-
ting, which merely involves communication from a sender to a single receiver. A related
form of communication is broadcasting which involves sending a message to anyone ca-
pable of receiving it. That broadcasting is less efficient is illustrated in our daily lives by
the fact that direct mailing has become so popular. Direct mailing (which is a form of mul-
ticasting) involves sending advertisements only to those people who are expected to be in-

downloaded by wizard.z@foxmail.com

308 Basic communication models

terested in the advertised product. Until recently, the alternative was to send the ads to all
people (within a neighborhood or city) regardless whether they were expected to be inter-
ested. This last form is typical of broadcasting.

In the following, we shall briefly discuss some of the issues concerning group communi-
cation. A full description of the subject is simply not possible here. Therefore, we will
mention only some of the problems without providing any solutions. In this sense, group
communication reflects the current status of many communication systems: there are many
problems for which no single solution has yet been found, or which can be classified as the
best solution. References for further reading are provided at the end of this chapter.

Basic group communication

Like any other communication mechanism we have described so far, group communication
should allow for sending and receiving messages to and from a group, respectively. As the
basis for our discussion, suppose that we have the following package available:

package GROUP(type MESSAGE) is
type ADDRESS is ...

procedure SEND(group : in ADDRESS; mess : in MESSAGE);
�� The calling process sends a message [mess] to all members in the indicated group.

procedure RECEIVE(group : in ADDRESS; mess : out message);
�� The calling process is blocked until it receives a message that is sent by one of
�� members in the group.

end GROUP;

The first point to note is that these two procedures are less symmetric than you might initially
think. Sending a message implies that every group member receives a copy. Receiving a
message, however, implies that a receiver can accept a message from any member; it does
not imply that it receives messages from all members simultaneously. Let’s start by taking
a look at sending messages.

When a message is sent to a group, it is clearly the intention that the message should be re-
ceived by all members of that group. If one receipt fails (for whatever reason), we can con-
clude that our message has not been transferred properly. In other words, sending a message
to a group can only be considered correct if and only if it is received by every member. This
means that if only one member does not receive the message, the message transfer as a whole
should be discarded in the end. This all-or-nothing property is called atomic multicast.

Suppose that in order to implement this scheme, we can make use of a communication sys-
tem that supports reliable point-to-point communication. In other words, whenever a pro-
cess sends a message to another process it is guaranteed that the message will find its way
to the receiver’s input queue. In that case, realizing atomic multicast is not so difficult. One
particular simple (but not always efficient) implementation is sending the message sepa-
rately to each group member. Because the underlying communication system guarantees
message delivery, it is always certain that each group member eventually receives the mes-
sage.

The problems start when reliable communication is not available. In that case, the sending
process has to face the fact that if one message does not reach a group member, all copies

downloaded by wizard.z@foxmail.com

Advanced message-based communication 309

of that message that were sent to the other members become invalid. For simplicity, assume
that although point-to-point communication may fail, the sender will at least be notified that
something went wrong. In that case, the sender may try to resend the message a couple of
times, but if that does not lead to any result, it will have to inform the other group members
that the previously sent message is invalid. And in that case, we will just have to hope that
none of them have made important decisions based on the message, for all such decisions
will have to be withdrawn. Considering the complexity of handling atomic multicasts in the
presence of lost messages, it seems preferable first to build a scheme by which reliable point-
to-point communication is supported, and then construct an atomic multicasting mechanism
on top of that.

Message ordering

But even if atomic multicasting is realized, problems with group communication are not
over. Probably one of the most prominent aspects that also needs to be taken into account is
that of message ordering. As we have said, basic message-passing schemes generally do not
preserve message ordering in the sense that all messages are delivered in the same order they
were sent. In practice, many problems dealing with preserving message ordering between
two processes can be handled in rather straightforward ways. For example, one particular
simple solution is to number each message that is sent and delay the delivery of a message
until all preceding ones have arrived.5 This is, in fact, the basic implementation mechanism
that underlies the way connection-oriented communication works.

In group communication, however, the problem is more serious. First, consider a process
that sends two messages in a row as in

GROUP.SEND(someGroup, message 1);
GROUP.SEND(someGroup, message 2);

In this case, if we want to preserve message ordering, each group member belonging to
someGroup must first have message message 1 delivered, before the delivery of message 2

can take place. Realizing this is not really that difficult if we number each message. If a
group member receives message 2 first, its delivery to that member is simply delayed until
message 1 arrives.

But now consider the following scheme:

GROUP.SEND(someGroup, message 1);
GROUP.RECEIVE(someGroup, message 2);
GROUP.SEND(someGroup, message 3);

In this case, message ordering should at least be preserved between message 3 and mes-

sage 1, of which the latter should be delivered to all group members first. But when we
consider the relationship between message 2 and message 3, we have that because (1) mes-

sage 2 is delivered to all group members as well, and (2) message 3 is sent after the delivery

5Recall the distinction between the arrival and delivery of a message. When a message arrives at a
process, it can be held for some time in the process’s associated input queue before it is removed. Removing
a message from the input queue corresponds to delivering it.

downloaded by wizard.z@foxmail.com

310 Basic communication models

of message 2, message 2 should be delivered to all group members before message 3. The
reason for this ordering is quite simple. Message 3 may contain information that is based
on information contained in message 2. Achieving this so-called causal ordering is much
more difficult, although solutions do exist. However, it is beyond the scope of this book to
go into such details here, and we therefore resort to providing some references at the end of
this chapter.

But in addition to causal ordering, it may be necessary to impose a more strict ordering.
Again, consider a scheme in which two processes send a message to a group as in:

GROUP.SEND(someGroup, message 1); GROUP.SEND(someGroup, message 2);

process #1 process #2

The problem is that we cannot say in which order these two messages will be delivered. In
fact, some group members may receive message 1 before message 2, while for others the
converse may hold. This is a situation that cannot always be accepted. For example, if the
group members act on a common database, it is essential that they all have the same view
on the state of that database. What we are thus demanding is that all group members either
receive message 1 before message 2, or that all of them receive message 2 before message 1.
With respect to implementation aspects, this so-called total ordering is generally even more
difficult to realize. Again, we shall not go into any further details at this point but refer the
interested reader to the references at the end of this chapter.

6.5 Discussion and further reading

In this chapter we have focused primarily on basic communication models for distributed
systems. Basic, in this sense, means that we have taken a look at models by which two
communicating parties can exchange information by either using shared data or passing
messages. In distributed systems message-based communication is prevalent. In the fol-
lowing sections we shall summarize what we have been talking about in this chapter in
order to allow you to understand the big picture. In doing so, we shall also make clear
that we have indeed only touched upon the subject.

6.5.1 Communication models

Overview of basic models in this chapter

We started our presentation of communication models by assuming the existence of a
number of processes that need access to some common data. This model can be viewed as
a primitive way of exchanging information, and many examples exist in the real world by
which this form of communication takes place. Most notably, perhaps, is where a num-
ber of people are using a blackboard such as in a classroom for presenting information, or
in a meeting to write down ideas and solutions to a problem. The major disadvantage of
this approach is that it is commonly required that processes have immediate access to the

downloaded by wizard.z@foxmail.com

Discussion and further reading 311

shared data. In terms of hardware, this often means that processors need to be connected
to a single main memory module. If we are to implement geographically distributed sys-
tems, another approach will then have to be followed (we shall weaken this point further
below when discussing a novel approach for supporting shared data in geographically
distributed systems).

An alternative solution that has been widely accepted, and which has also its coun-
terparts in real life, is that of sending and receiving messages. In this case, an impor-
tant distinction that should be made is between the ways that the communicating parties
synchronize. In particular, a distinction should be made between synchronous and asyn-
chronous communication. Full asynchronous communication, i.e. by which both sender
and receiver will never wait until the communication has taken place, is immediately
comparable to the way that we handle regular mail. In fact, when taking a look at com-
munication between people, you will find that in many cases it is based on asynchronous
behavior. Synchronous communication occurs when a sender and receiver are both will-
ing to wait idly from the moment communication is initiated until it has completed. An
example of synchronous communication in real life is that of passing a box from one
person to another.

Shared data: further reading

These two basic communication models – shared data versus message-passing – have
received a large amount of attention. Initially, discussions focused on the use of shared
variables by several processes. This is not too surprising if you realize that the whole
idea of processes comes from the area of operating systems. As we have seen in the pre-
vious chapter, the main point that we had to take care of is prevention of unwanted pro-
cess interference, which almost invariably meant avoiding simultaneous manipulation of
shared variables and registers. A brief account on how this can be dealt with without us-
ing semaphores can be found in Silberschatz and Galvin (1994).

But since the introduction of semaphores by Dijkstra (1968), the problem of commu-
nicating by shared variables has been dealt with in a more elegant way. Initially, atten-
tion focused on the development of solutions to problems that were specific to operating
systems, many of which are discussed in Ben-Ari (1982). An important impact on de-
vising solutions in this area came with the introduction of so-called monitors by Hoare
(1974). In terms of BASAL, monitors can be seen as packages consisting of procedures
that can only be called by at most one process at a time. How monitors can be used to
develop operating systems is discussed in Brinch Hansen (1976, 1977). Another treatise
can be found in Welsh and McKeag (1980). A multiprocessor operating system based on
monitors is discussed in Natarajan and Sinha (1979) and Joseph et al. (1984). A general
overview of synchronization and communication operations in operating systems based
on shared variables appears in Bacon (1993) and Maekawa et al. (1987).

The shared-variable model remains an important model for program development. Es-
pecially since the introduction of affordable multiprocessor systems in which several pro-
cessors are connected to a single main memory module, interest in so-called parallel pro-
gramming has substantially increased. Parallel programming primarily deals with ex-

downloaded by wizard.z@foxmail.com

312 Basic communication models

ploiting parallelism in a solution in order to increase efficiency. The subject is discussed
extensively in Quinn (1994) and Foster (1995) which both contain many references for
further reading. Finally, a more thorough and systematic approach towards program de-
velopment using shared variables in general can be found in an excellent textbook by
Andrews (1991a).

The shared data model is so popular that researchers have sought solutions to also sup-
port the model for geographically distributed systems. This has resulted in so-called dis-
tributed shared memory systems. Different types of systems exist, although most of
them are still in a research or experimental phase. What it means is that data can appear
to be directly accessible by all processors. To explain, it is necessary to make a distinction
between referencing shared data and accessing it. Only when shared data is accessed can
it be read and updated. Referencing shared data merely means that you can identify the
data you are interested in. What happens in distributed shared memory systems is that
shared data can be referenced by all processors in the same way as would be the case
with ordinary references to data. When shared data is referenced it may be necessary to
explicitly fetch it from somewhere else in order to allow for inspection or modification.
Automatically getting referenced data to processors in order for them to access it is pre-
cisely what happens in distributed shared memory systems. It is far beyond the scope of
this book to go into any details here. A good starting point for further reading is Stumm
and Zhou (1990) and Nitzberg and Lo (1991). Overviews can be found in Coulouris et al.
(1994) and Tanenbaum (1995). The original work that started much of the research on
distributed shared memory is found in Li and Hudak (1989).

Message-passing: further reading

But, as we have said, using shared variables is not the way to go when having to deal
with remote communication. Analogous to shared variables, message-passing paradigms
were originally conceived in the field of operating systems, although not because remote
communication needed to take place. In Brinch Hansen (1970) the kernel of an operating
system is discussed in which processes communicate merely by means of messages. The
concept was later adopted by many other operating systems, as it allows a uniform way of
dealing with interprocess communication. This is achieved by letting the kernel handle
all message exchanges, so that, consequently, processes need no longer find out exactly
where shared data is stored in main memory. This approach is also discussed in Bacon
(1993).

Although message-passing may initially seem a useful way of communication, in prac-
tice it turns out to be relatively difficult to develop a program as a collection of processes
that merely exchange messages. This is primarily caused by the fact that processes are
much more dependent on each other: messages have to be sent and received at the right
moment, and between the right processes. Nevertheless, message-passing is important
for the simple reason that remote communication would otherwise not be possible. A
friendly introduction to distributed programming can be found in Ben-Ari (1980). A
good survey on interprocess communication based on basic message-passing (as well as
shared variables) is Andrews and Schneider (1983). A clear overview of different ways

downloaded by wizard.z@foxmail.com

Discussion and further reading 313

of message-based communication is Andrews (1991b) and a more extensive treatise can,
again, be found in Andrews (1991a).

6.5.2 Advanced communication models

Although the basic communication models discussed in this chapter will suffice our pur-
poses for describing the principles of communication across large distances, we feel it
would have been unwise not to mention the models that are currently used in many exist-
ing systems. These advanced models have been primarily developed from an engineering
point of view. As message-passing is (1) almost inevitable, but (2) hard to use in prac-
tice, much research has been devoted to developing advanced models that would ease the
development of communication-based systems, but which at the same time could be effi-
ciently implemented on top of primitive message-passing operations. Without question,
new models have primarily found their way into programming languages for distributed
systems, of which an extensive overview is given in Bal et al. (1989).

But besides programming languages, advanced models of communication are gener-
ally also supported by operating systems in the form of service programs. For those of
you who wish to become acquainted with programming details, Stevens has written two
excellent books for UNIX based systems, although both of them do require programming
experience. Stevens (1992) concentrates, among other things, on interprocess commu-
nication for single-processor versions of UNIX. Implementation of processes communi-
cating across a network is discussed in depth in Stevens (1990). A popular communi-
cation library that employs message-passing as the basis for application development is
the Parallel Virtual Machine, described in Sunderam (1990). Its successor, the so-called
Message-Passing Interface, is described in MPI Forum (1993) and which will certainly
become popular in the field of parallel and distributed programming.

Rendez-vous and remote procedure calls

The term “rendez-vous” originated in the programming language Ada (ANSI, 1983), the
basis for our programming notation in this book. The principle underlying the rendez-
vous mechanism, however, had already been investigated before the language was de-
fined. We have not discussed how Ada supports distributed programming. For that pur-
pose, the reader is referred to Barnes (1994) and Booch and Bryan (1994).

As we have illustrated, the principle of rendez-vous and remote procedure call (RPC)
are conceptually the same. The essence of both mechanisms is that they allow communi-
cation to be dealt with in much the same way as ordinary procedure calls. In particular,
processes that require some service to be provided need merely initiate that service by
means of a procedure call. The effect of that call may result in communication with an-
other computer, namely the one where the service provider resides. This communication,
however, is transparent to the requesting process.

Remote procedure calls are an important subject when discussing so-called distributed
systems. But to be honest, we have hardly addressed the practical implications of this
mechanism. It is far beyond the scope of this book to go into any details on how the RPC

downloaded by wizard.z@foxmail.com

314 Basic communication models

mechanism is implemented, and what the problems are when true transparency is to be
achieved. A brief account of these matters can be found in Tanenbaum (1992). Imple-
mentation issues can be found in Spector (1982), and in the (now considered classical)
article written by Birrell and Nelson (1984). A general discussion on interprocess com-
munication, with emphasis on remote operations, is presented in Mullender (1993). How
RPC is supported in the UNIX environment can be found in Stevens (1990). For detailed
information, the interested reader is referred to Bloomer (1992).

Group communication

As we have said, we have barely touched upon an important issue in distributed systems,
namely that of group communication. In essence, group communication is concerned
with sending messages to an entire group of processes, and likewise, receiving messages
from members that belong to a specific group. A major problem with this model is how
to deal with the ordering of messages.

Our approach towards treating the subject was one by which we stated the require-
ments and subsequently indicated that meeting those requirements could be a hard thing
to do. Admittedly, this may be rather unsatisfying. In order to get a better feeling for what
is going on, Liang et al. (1990) will be a good start, as well as Birman (1993). Also, in
Tanenbaum (1992) you will find sufficient material to help you on your way. A discus-
sion on message ordering and taking failure of message delivery into account appears in
Hadzilacos and Toueg (1993). Finally, Birman and van Renesse (1994) contains a collec-
tion of papers on Isis, a system which is probably the most widely used one when building
applications based on group communication. Many details concerning concepts, design,
and implementation of the system can be found there.

Exercises

1. What is the difference between a BASAL process and the concept of a process as
explained in Chapter 5?

2. Why does a process never return from the procedure ACTIVATE as discussed in Sec-
tion 6.1.2?

3. We sometimes say that processes communicate through shared data, and synchro-
nize through semaphores. Explain what is meant by this statement.

4. Suppose that we have two distinct shared data objects that we want to protect by
also using two semaphores, sema1 and sema2, respectively. Explain what might
happen if the following two BASAL processes are simultaneously executed:

downloaded by wizard.z@foxmail.com

Exercises 315

process PROCESS1 is
begin

WAIT(sema1);
WAIT(sema2);
...

end PROCESS1;

process PROCESS2 is
begin

WAIT(sema2);
WAIT(sema1);
...

end PROCESS2;

5. Explain why semaphores are generally only applicable to situations where com-
munication can take place through shared data.

6. *Outline a solution for blocking stream communication where an unknown maxi-
mum of notes can be carried by the stream, requiring that its associated queue needs
to be inspected to see whether it is empty or full.

7. Explain what is meant by blocking communication, taking into account that mes-
sages may be buffered.

8. Explain the difference between asynchronous and synchronous message-passing,
thereby taking into account the roles of a sender and a receiver.

9. Analogous to Exercise 4, we may find ourselves in trouble if the following two
processes (which are only informally expressed in BASAL) were executed simul-
taneously:

process PROCESS1 is
begin

SEND(PROCESS2, mess1to2);
RECEIVE(PROCESS2, mess2to1);
...

end PROCESS1;

process PROCESS2 is
begin

SEND(PROCESS1, mess2to1);
RECEIVE(PROCESS1, mess1to2);
...

end PROCESS2;

However, we have to be more accurate in this case. Explain whether or not things
might go wrong, thereby making a distinction between synchronous and asynchro-
nous communication in the case of sending messages. Receipt is assumed to be
always blocking.

10. *Many communication-based systems such as electronic mail only support asyn-
chronous message-passing where messages may become lost. Why do you think
this model has been adopted? Would a more sophisticated model be more appro-
priate?

11. *We have stated that full synchronous communication, illustrated in Figure 6.11(b)
on page 293, has the disadvantage that a sender cannot do any useful work as long
as the receiver has not picked up the message. How can this problem be alleviated?
(Hint: think of solutions that were adapted to avoid polling.)

12. Why is message ordering automatically preserved in full synchronous communi-
cation?

downloaded by wizard.z@foxmail.com

316 Basic communication models

13. Explain the difference between channels, ports, and links. In particular, outline a
solution for developing a client-server architecture using ports.

14. There are several advantages when using connection-oriented communication in-
stead of connectionless communication. Name the most important ones. Also men-
tion some of the disadvantages.

15. *Explain in your own words what a remote procedure call is, and outline how it
can be implemented.

16. *Can the remote procedure call mechanism be used for implementing group com-
munication? If not, in what sense would we need to change the semantics of the
mechanism?

17. *Passing messages to a group does impose some problems. Describe a few of
them.

downloaded by wizard.z@foxmail.com

Chapter 7

Connecting computers

In the previous chapter we have discussed some basic communication models, but have
neglected the issue of actually connecting several computers. In this chapter the funda-
mentals of connecting several communicating devices are discussed. The material we
present here is somewhat technical and anticipates some basic understanding of electri-
cal and physical issues. Also, many topics that have to do with physically connecting
computers are often only touched upon, omitting details that appear not to be immedi-
ately relevant for the remaining chapters. For these reasons, a relatively large part of the
material presented here may be skipped entirely, or skimmed on first reading. An excep-
tion, however, is Section 7.5 in which we outline the lower layers of the OSI reference
model, an important topic when discussing computer networks in general.

7.1 Introduction

If we look at what we have accomplished so far, it becomes obvious that our discussion
should start focusing on a subject that we have been more or less neglecting: connecting
computers to each other. First, we have explained how computers are basically assem-
bled and how we could extend the concept of a real processor into a virtual processor.
A virtual processor supports a programming language that can be far more sophisticated
than the primitive set of instructions of real processors. So, at least our programming ef-
forts can be done more easily. In Chapter 5 we went even further by introducing operating
systems that allowed several programs to share the hardware resources of a computer. In
particular, these programs shared the central processing unit, and each program need not
be aware of the existence of other programs. In this sense, it is as if a number of processes
are executed simultaneously on a single computer.

Of course, there are situations in which processes do need to communicate. So here
we are capable of modeling complex systems in terms of communicating processes, and
even modeling systems which are inherently distributed. Meanwhile, we have silently
neglected the fact that we are still talking about computers with a single CPU. So much for
reality. Of course, we have given some hints about how communication can take place.

317

downloaded by wizard.z@foxmail.com

318 Connecting computers

We have mentioned that you should be able to imagine that we can connect a number
of computers together, and let processes residing at different computers communicate
by passing messages. However, although you may understand by now the principles of
message-based communication, the actual connections between computers is still left en-
tirely open to your imagination. It is time we returned to earth and said what we mean
by connecting computers.

Unfortunately, connecting computers is easier said than done. It is quite difficult for
two reasons: (1) hardware (and software) failures, and (2) getting people to agree. The
first issue is something we can handle and which will form the major topic of this chapter.
The second issue is much tougher. What we are referring to is agreement by people on
communication protocols. As long as no agreement is reached, communication is virtu-
ally impossible, although protocol converters do alleviate some of the major problems.
The following chapters deal more extensively with communication protocols.

After reading this chapter you will have a basic understanding of how one computer
can send a large chunk of data to another computer to which it is directly connected. The
most important aspect of this communication is that it apparently is free of transmission
errors: the data is received as it is sent. In the following sections we shall show that
this may not be easy to accomplish. In particular, all kinds of errors may occur which
effectively are all caused by the fact that our means of transmission (i.e. the wires) are
simply never good enough – and can never be made good enough.

7.2 On wiring

It may be rather frustrating at this point, but if we are going to talk about connecting
computers and how the hardware is going to let us down, we might as well start where
the first problems arise: wiring. So far, we have stated that we can build all kinds of
electrical devices by simply wiring them together. And if you open up your personal
computer, you will see a number of boards containing integrated circuits where wires
have been etched into the board.1 You will also see some wires that look the same as
those used for connecting the components of stereo and video sets. In this section we
shall take a closer look at two problems: (1) why the simple wiring scheme in personal
computers cannot be used for connecting computers, and (2) why picking up a signal can
be rather frustrating. Most of the material that follows can be skipped on first reading.

� 7.2.1 Transmitting signals

When connecting two computers we have to consider the type of wires, or better, transmis-
sion medium we are going to use. This is something we also see in our daily lives. For
example, if you want to connect a TV set to an external antenna or perhaps the local cable
net, you will need to use a special coax cable. Otherwise, the chance that you will be able
to really enjoy watching TV will be small as reception will be poor. Moreover, it can be ob-
served that if you relay the wires, reception may become better or worse – a rather strange

1These boards are commonly referred as printed circuit boards, on which the wires have been “printed.”

downloaded by wizard.z@foxmail.com

On wiring 319

-5

0

+5

distance --->

Figure 7.1 A periodic digital signal.

situation if you thought that signals could only be transmitted through the wire between the
TV set and the antenna or cable socket. When connecting computers, we have a similar
situation: signals sent through a wire, or any transmission medium for that matter, may be
completely different at the other end. In order to appreciate why people bother looking into
these matters, let’s take a closer look at the kind of problems that we can have with using
transmission media.

Fundamental problems

In Chapter 2 we explained that every computer works with two types of signal values: a high
and a low one. For example, a high signal value can be used to represent the binary digit 1,
whereas a low signal value can be used to represent a 0. In order to send a bit string over a
wire, we merely need to send a series of high and low signals. This is called digital signal
transmission. As an example, Figure 7.1 shows the transmission of a series of alternating
bits (i.e. the sequence h10101010 � � �i), generated by a source. A positive signal value (5
volts) is interpreted as a 1, whereas a negative signal value (�5 volts) is used to represent
a 0. The x-axis represents the distance from the source, and the signal value that will be
received there.

Now there are several problems. First, we may not expect that our signal will have the same
strength at the other end of the line. In other words, if we send a 5 volt signal across a line,
it may be received as a 4 volt signal.2 This phenomenon is called signal attenuation. So,
in the extreme case, it may be impossible to detect any signal at all at the other end of the
line.

But worse is to follow. The problem is that the form of our input signal is going to be differ-
ent from the one we observe at the other end. In particular, the attenuation that will occur is
dependent on the frequency of our signal. How can this be? To understand what is going
on here, you have to realize that every periodic digital signal can be regarded as an infi-
nite sum of analog signals. An analog signal differs from a digital signal in that its ampli-
tude (strength) continuously varies in the course of time. In particular, digital signals can be
thought of as composed of an infinite summation of sines, which, by themselves, are analog

2Where did the 1 volt go? Imagine (and only that) using a thin double wire to connect your washing
machine to a wall socket and you will find out. You will smell some plastic melting, and probably also see
some smoke before a fuse blows.

downloaded by wizard.z@foxmail.com

320 Connecting computers

�1

0

�1

0 π 2π 3π 4π

y1�x�

y2�x�

Figure 7.2 An example of two sines y1�x� and y2�x� and their summation y1�x�� y2�x�.

�1

0

�1

0 π 2π 3π 4π

Figure 7.3 The summation y1�x�� � � �� y35�x�.

signals. To illustrate, Figure 7.2 shows the two sines y1�x� � sin�x� and y2�x� �
1
3 sin�3x�.

Note the contrast between these two analog functions and the digital signal shown in Fig-
ure 7.1.

Figure 7.2 also shows the resulting function if we add y1�x� and y2�x� for each value of x.
Note that the form of this function starts to resemble a digital signal. This is even more
emphasized if we add, say, 35 such signals, as illustrated in Figure 7.3. In this case, we
have constructed the function Y�x� with

Y�x� � y1�x�� � � �� y35�x� �
35

∑
k�1

1
2k�1

sin��2k�1�x�

downloaded by wizard.z@foxmail.com

On wiring 321

-5

0

+5

distance --->

Figure 7.4 The effect of frequency-dependent attenuation on a digital signal.

Now recall that sines are periodic functions, i.e. their form is repeated after a certain time,
called the period T . For example, the period of sin�x� is 2π. The frequency of a function is
the number of times it can be repeated within a given unit, and is thus equal to 1�T . In terms
of signals, the frequency is generally expressed as the number of repetitions per second, re-
ferred to as Hertz (abbreviated to Hz). So, for an analog signal with a period of 2π sec-
onds, its frequency will be equal to 1��2π� Hz. Returning to our original problem, we have
the unfortunate situation that attenuation is frequency-dependent. In other words, the extent
to which a signal is reduced is dependent on its frequency. Consequently, as digital sig-
nals are composed of analog signals with varying frequency, and attenuation is frequency-
dependent, our digital signal shown in Figure 7.1 may be received at the other side as the
signal shown in Figure 7.4. This problem of frequency-dependent attenuation is caused by
the limited bandwidth of the transmission medium. Depending on the transmission media,
signals with a high frequency will simply not reach the end. (The bandwidth of a medium
is often expressed as a range of frequencies that can still be transmitted without too much
loss of strength. Alternatively, the bandwidth is often also expressed as the number of bits
per second that can be transmitted without too many errors.)

But even if we had a line with a large bandwidth, our problems are not over. There is yet an-
other factor we have to account for, namely delay distortion. Any signal takes some time to
reach the other end of a line. Now realizing that digital signals are constructed as a number
of sines, and that the time to transmit a signal is also frequency-dependent, you can guess
what the problem is. The various sines out of which the digital signal is made up each have
a different transmission speed. Consequently, they simply will not reach the end all at the
same time. Consequently, we will receive a distorted signal. Returning to our original dig-
ital signal, the combined effect of attenuation and delay distortion may result in the signal
illustrated in Figure 7.5.

A final and important source of distorted transmission is due to noise. You should take the
word “noise” literally here. Noise is a group of signals that disturb the communication.
For example, so-called impulse noises are often caused by electro-mechanical switches that
make part of the physical connection (as used in conventional telephone systems), but can
also be caused by environmental sources such as lightning, traffic, etc. And although various
methods can be applied to reduce these noises, establishing a completely noise-free connec-
tion through physical means is simply impossible. Taking all these factors into account, our
original digital signal may finally look like the signal shown in Figure 7.6

So, connecting computers seems simple to do, but, due to all kinds of physical phenomena,

downloaded by wizard.z@foxmail.com

322 Connecting computers

-5

0

+5

distance --->

Figure 7.5 The effect of delay distortion when transmitting a digital signal.

-5

0

+5

distance --->

Figure 7.6 The possible final result of sending a digital signal across a line.

sending a digital signal across a line may end in rubbish at the other end if no special mea-
sures are taken. We will not pursue this any further. By now, you should be able to appreci-
ate why some people bother to think about the actual physical composition of transmission
media. Typically, these problems are handled by experts in the field of telecommunication.

Types of transmission media

So far, we have spoken about wires and lines by which we implicitly meant the ordinary
copper-like wires we see daily. Of course, there’s more to it. In particular, a distinction can
be made between the following transmission media:

� Copper-based media, such as those in which a copper wire is coated with an insu-
lating material (the ones you can find at home), coaxial cables as used for TV sets, or
so-called twisted pair connections. Most local area computer networks use these type
of transmission media.

� Fiber-optic media by which information is transported in the form of light. These me-
dia have the advantage that they allow for high propagation speeds and bandwidths,
but above all, their signals cannot be influenced by electro-magnetic fields, thus mak-
ing them highly reliable.

� Satellite media which use radio waves to transmit data. These type of media are im-
portant in the case of geographically remote sites. Connection is established by means
of sending information to a satellite typically located at some 30 000 kilometers above

downloaded by wizard.z@foxmail.com

On wiring 323

Figure 7.7 Terrestrial microwave connection

the earth’s surface. The satellite then retransmits the information to a ground station
from which it is transported by conventional media to the target.

� Terrestrial microwave media, by which radio waves are sent from one dish to an-
other. The important point here is that dishes are located in each other’s sight, as
shown in Figure 7.7. The signals sent through this medium can come as far as ap-
proximately 40–50 kilometers.

So it is seen that there is more to wiring than one might suspect at first. Nevertheless, we
shall continue to speak of wires and lines throughout this book when we mean the physical
connection between two or more components. Wires in this sense should be taken to be one
of the transmission means mentioned above.

7.2.2 Receiving signals

Assume we have connected two digital devices with an appropriate transmission medium
that suits our purposes. Then all we have to do is let the sending device start putting bit
strings on the line in the form of high and low signals and let the receiving device pick these
up. For simplicity, assume we have an ideal transmission medium. In other words, the sig-
nals we send at one end can be recognized without any distortion at the other. There is only
one problem: how can the receiver pick up a signal? When giving the matter some thought,
it is seen that we really do have a problem.

For example, when no signal is sent, our line will be at rest. The first time a bit is transmitted,
the receiver will have to notice that a signal has indeed been put on the line. This should not
be too difficult. If a 0 is represented by�5 volts, and a 1 by �5 volts, then any change from
0 volts (the line at rest) to either�5 volts or �5 volts indicates that something is being sent.
Unfortunately, this does imply that the line has three possible states: at rest (0 volt), carrying
a low signal value (�5 volt), and carrying a high signal value (5 volt). And although this
approach is followed in practice, schemes that fit better into the binary world which can
handle just two types of signal values are perhaps more commonly used.

First, assume that when a line is at rest it will permanently carry a high signal value. Now,
before we send a bit string, we first send a low signal value indicating to the receiver that
some bits are on the way. In other words, changing the signal value on the line is an indi-
cation that data is going to be sent. Using this first bit as a start bit will allow the receiver

downloaded by wizard.z@foxmail.com

324 Connecting computers

signal

sampling

start bit

0 10 0 01 1 1 1 1 1

stop bits

Figure 7.8 Bit synchronization by using start and stop bits.

to prepare itself for receipt. But what if the first bit to be sent is a 0? Certainly, the receiver
cannot distinguish the start bit from the first bit of the bit string. To solve this problem, the
sender and receiver should have agreement on the transmission rate, which is generally ex-
pressed as the number of bits sent per second (bps). The transmission rate is thus the pace at
which the sender and receiver decide to exchange bits. This pace is primarily determined by
the communicating parties. If one of them is simply a “slow” computer, then the transmis-
sion rate will necessarily be low. Once the transmission rate has been agreed, the receiver
knows how long a single bit is put on the line by the sender, and can thus deduce when the
next bit has been transmitted without having to observe a signal transition. In practice, the
receiver inspects the line at regular intervals (namely each time when it expects that a new
bit has arrived), and stores the bit in a 1-bit memory.

In addition, the sender and receiver also agree on the number of bits that can be transmitted
in a row, as well as one or more stop bits that indicate that the line is at rest again. This
principle is illustrated in Figure 7.8, where it is assumed that two 1’s in a row after having
transmitted eight bits denote the end of the transmission. Note that by sending two 1-valued
stop bits it is possible for the receiver to detect the next start bit.

The scheme we have just described is referred to as bit synchronization. It is generally em-
ployed in so-called asynchronous transmission where the sender sends only characters at
(more or less) irregular intervals. The characteristic feature of asynchronous transmission
is that the receiver entirely determines when it should inspect the line. Once a transmission
rate of, say, k bps has been agreed, it will inspect the line every 1�kth second (we will return
to this below). Each character (consisting of 8 bits) is always preceded by a start bit, and
terminated by one or two stop bits. Alternatively, some schemes allow several characters
in a row to be transmitted, followed by the stop bits. The term asynchronous is used to in-
dicate that the receiver always needs to synchronize explicitly with the sender each time a
character is sent. In addition to bit synchronization, a receiver may also employ character
synchronization in which case streams of characters can be received. Normally, such char-
acter streams start and end with a special character. For example, using ASCII coding, the
start character can be STX to designate the start of a text data stream, which is subsequently
ended with an ETX character (see also Table 2.3). Using this information, the receiver can
store the complete stream into main memory, knowing that it can stop as soon as the ETX

character has been received.

An alternative form of transmission is so-called synchronous transmission. Synchronous
transmission differs from asynchronous transmission in that the receiver stays at the same

downloaded by wizard.z@foxmail.com

On wiring 325

signal

sampling

start bit

0 10 0 01 1 1 1 0 1

stop bits

error

Figure 7.9 The effect of a receiver sampling too quickly for an incoming signal.

rate as the sender for a long time. To understand this, note that in order for a receiver to pick
up a series of bits at a rate of k bps, it should have a clock that allows the receiver to inspect
the line every 1�kth second. But this is ideal. Due to the finite accuracy of any clock, the re-
ceiver will inspect the line at intervals of, say, 1�k� ε seconds (where ε is small, and either
negative or positive). This is acceptable if only a few bits are sent (as in the case of asyn-
chronous transmission); it is going to lead to problems when the series is long. In that case,
the receiver is sooner or later going to miss a bit (when ε � 0), or read the same bit twice
(when ε � 0). The latter is illustrated in Figure 7.9, where we have taken the same signal
as in Figure 7.8, but have increased the sampling frequency. In synchronous transmission,
mere changes in the received signal are additionally used by the receiver to adapt (i.e. syn-
chronize) its own clock. The effect is that the sender’s and receiver’s clock stay more or less
in step, allowing for extremely high transmission rates compared to asynchronous trans-
mission. For example, where asynchronous transmission is generally limited to approxi-
mately 20 000 bps (i.e. 20 Kbps), it is not unusual for synchronous transmission to operate
at 10 000 000 bps (10 Mbps).

We shall leave these matters at this point. A thorough description lies completely beyond
this book, and is something more suited for electrical engineers. The point you have to re-
alize, though, is that conceptually it may be simple to pick up bits from a line; in practice,
however, there are a few problems to be solved.

7.2.3 In the event of errors

In Section 7.2.1 we discussed how a digital signal could be completely distorted by simply
sending it across a transmission medium. And signal distortion is a fact of life that we will
have to live with. In particular, this means that no matter what the quality of our transmis-
sion medium is, or how long the bit strings that we send, there is always the possibility that
the receiver will inadvertently interpret a signal incorrectly. In other words, we need to deal
with the situation that a transmitted bit string b is interpreted by the receiver as a different
bit string b̂. In this section we shall look at how a receiver can detect that something went
wrong, and possibly even derive the correct string without having to request a retransmis-
sion.

downloaded by wizard.z@foxmail.com

326 Connecting computers

original
message

coded
message

received
message

decoded
message

E T D

Figure 7.10 The process of encoding, transmitting, and decoding messages.

Encoding and decoding

Our starting point is the transmission of a so-called frame, which is a series of bits that is
to be sent across a line. The question that we need to address is the following:

Can we devise a method such that any errors resulting from the transmission of
a frame can be detected, or possibly even corrected by the receiver?

The answer is simply no. However, it is possible to devise methods that at least allow a
receiver to detect and correct errors with a relatively high probability. What we need to do
is to encode a bit string a to a bit string b containing additional information on a. Bit string
b is then transmitted, and on arrival may have been received as a possibly different bit string
b̂. The point is then that we decodeb̂ either back to the original bit string a or at least detect
that something went wrong. In the latter case, a receiver can simply request the sender to
retransmit a after having encoded it again.

This scheme of encoding, transmitting, and decoding is shown in Figure 7.10. Formally, we
can describe this scheme by means of three functions:

E : 2m � 2n�T : 2n � 2n�D : 2n � 2m with m� n

where 2k represents the set of all bit strings of length k. E is the encoding function, T the
transmission function, and D the decoding function. The pair �D�E� is called a code. In
order to transmit a bit string a we first need to encode it, then transmit it, and then decode
it again, implying that at the receiver’s side, we get the bit string D�T�E�a���. Now, if we
denote the set of bit strings that we would ever want to transmit as the set A � 2m, then
ideally we would want that

for all a � A :: a � D�T�E�a���

In order to obtain a code that, at least to a certain extent, allows us to detect and possibly
even correct transmission errors, we need to introduce a few important concepts.

One, which is a key concept of coding theory, is the distance between two bit strings. Let
a� ha0 � � �am�1i and b� hb0 � � �bm�1i be two bit strings of length m. The distance between a
and b is defined as the number of indices i with ai �� bi. For example, the distance between
the bit strings h0110i and h1100i is 2. If A � 2m is a set of bit strings of length m, then
the Hamming distance of A is the smallest distance between any two bit strings in A. The
Hamming distance is important when coding. If �D�E� is a given code, then it can be shown
that the following two properties hold:

downloaded by wizard.z@foxmail.com

On wiring 327

1. For the code �D�E� to detect all sets of k or fewer errors, it is necessary and sufficient
that the Hamming distance of E�A� be k�1 or more.

2. For the code �D�E� to correct all sets of k or fewer errors, it is necessary that the Ham-
ming distance of E�A� be 2k�1 or more.

These properties seem fine, especially the first. What it says is that by adding a sufficient
number of bits to each bit string from a set A, it is possible to detect whenever transmission
in the encoded bit string fails for one (or more) bits. Unfortunately, neither of the two state-
ments reveals how we should add bits in order to detect or correct errors. And this turns out
to be the really difficult part. But before we look at solutions that are applied in practice, we
first consider some simple coding schemes to illustrate what coding is about.

Simple coding schemes

Parity-check code. Let’s first look at the simple yet effective parity-check code that
allows a receiver to detect that a transmitted bit string contains exactly one error. For this
code, we take A � 2m. If a � ha0 � � �am�1i � A, then the parity-check code encodes a ac-
cording to the following scheme:

E�ha0 � � �am�1i� � hb0 � � �bm�1bmi

where ai � bi for 0� i� m�1, and bm is defined as

bm �

�
0 if ∑m�1

i�0 ai is even
1 if ∑m�1

i�0 ai is odd

Thus, for example, if m � 2, we then have the following encoding scheme:

h00i �� h000i�h01i �� h011i�h10i �� h101i�h11i �� h110i

It is not difficult to see that if a is encoded into hb0 � � �bm�1bmi that ∑m
i�0 bi is always even,

and consequently, the minimum distance between any two bit strings in E�A� is 2. The de-
coding scheme is simple as well:

D�hb0 � � �bm�1bmi� � hc0 � � �cm�1i

where ci � bi for 0� i�m�1. Now, of course, the receiver only sees encoded bit strings.
If it is found that for such a bit string∑m

i�0 bi is odd, then the decoder knows something went
wrong.

But this, of course, is just a lot of mathematics. In order for a code to work in practice, it
should also be efficient, in other words it should also be possible to implement the scheme
without causing too much overhead. To illustrate that this is indeed possible, consider our
encoding scheme as an ordinary Boolean function. So, for example, if we assume that m� 3,
we can construct the following function table for a function with three input variables (a0,
a1, and a2) and that produces a bit string b � hb0b1b2b3i as output:

downloaded by wizard.z@foxmail.com

328 Connecting computers

a0 a1 a2 b0 b1 b2 b3

0 0 0 0 0 0 0
0 0 1 0 0 1 1
0 1 0 0 1 0 1
0 1 1 0 1 1 0
1 0 0 1 0 0 1
1 0 1 1 0 1 0
1 1 0 1 1 0 0
1 1 1 1 1 1 1

For the first three bits of b we, of course, have that

b0 � a0�b1 � a1�b2 � a2

Deriving an expression for the fourth bit is really not difficult. It can be readily verified that
we have

b3 � �a0	a1�	a2

where “	” denotes the exclusive-or operator discussed in Section 2.3. In other words, the
parity-check code can easily be implemented with elementary combinatorial logic. In gen-
eral, we have that for a bit string a � ha0 � � �am�1i of length m the additional bit bm that is
to be added is equal to

bm � a0	a1	a2	�� �	am�1

Consequently, implementing the parity-check code is not the most serious problem.

Triple-repetition code. The parity-check code is a 1-error detecting code. As an il-
lustration of a 1-error correcting code, we now consider a version of the so-called triple-
repetition code. This is an extremely simple although not very efficient code. The encoding
scheme is as follows. For any bit string a � ha0 � � �am�1i, we transmit the bit string b:

E�ha0 � � �am�1i� � hb0 � � �bm�1bm � � �b3m�1i

where bi � ai�3 with 0� i� 3m�1. In other words, each bit from the bit string a is simply
sent three times in a row. The decoding function is now as follows:

D�hb0 � � �b3m�1i� � hc0 � � �cm�1i

where ci � 1 if and only if b3i�b3i�1�b3i�2
 2. Consequently, if we consider a block of 3
transmitted bits of which one has been incorrectly interpreted by the receiver, then it should
be clear that despite this error the receiver will decode the 3 bits into the correct one. It

downloaded by wizard.z@foxmail.com

On wiring 329

should also be clear that this is indeed not an efficient code as all bit strings need effectively
be sent three times. In other words, the transmission rate over any medium is brought back
to a third of what could be possible if no errors occurred. Incidentally, note that we can
easily implement this code through the majority function discussed in Chapter 2. Details of
such an implementation are left to the reader.

The triple-repetition code is, in fact, not a bad one when considering error-correcting code.
However, devising error-correcting codes generally implies that so many bits have to be
added during encoding that it simply is not worth the trouble because the effective trans-
mission rate decreases too fast. For this reason, dealing with transmission errors in practice
is restricted to merely detecting that something went wrong, and subsequently requesting
the sender to retransmit the bit string.

Error detection: polynomial code

In this section we take a closer look at an error-detection code which is in widespread use.
The code serves two purposes. First, it illustrates some of mathematical intricacies related
to coding in practice. Second, we shall see that despite the complexity that is encountered
at first, the implementation of the code is so simple that it can be implemented in hardware
similar to the parity-check code discussed above.

The scheme we present here is called polynomial code or cyclic redundancy code (CRC)
and is based on interpreting bit strings as the coefficients of a polynomial. Consider a bit
string a � ha0 � � �am�1i. Polynomial code associates a unique polynomial a�x� with a as
follows:

a �� a�x� � a0x0 �a1x1 � � � �am�1xm�1

Note how each coefficient ai is associated with the term xi. So, for example, the bit string
h01101i would be uniquely associated with a polynomial as follows:

h01101i �� 0 � x0 �1 � x�1 � x2�0 � x3 �1 � x4 � x� x2 � x4

Now, the objective in polynomial code is to encode a bit string by extending it with bits from
a generator polynomial. This works as follows. Let g�x� be the polynomial

g�x� � g0 �g1x� � � ��gkxk� with g0 �� 0 and gk �� 0

Each bit string a � ha0 � � �am�1i is encoded into a bit string b � hb0 � � �bn�1i with n � m�k
such that

b�x� � b0 �b1x� � � ��bn�1xn�1 � a�x� �g�x�

where all coefficients are calculated using modulo 2 arithmetic. This is best explained by
an example.

downloaded by wizard.z@foxmail.com

330 Connecting computers

Example 7.1. Suppose we have the bit string a � h01011i and the generator polynomial
g�x� � 1� x2 � x3. The polynomial a�x� associated with a is equal to

a�x� � 0 � x0 �1 � x1 �0 � x2 �1 � x3 �1 � x4 � x� x3 � x4

Consequently, we have that a�x� �g�x� is equal to

a�x� �g�x� � �x� x3 � x4��1� x2 � x3�

� x�2x3 �2x4 � x5 �2x6 � x7

In modulo 2 arithmetic, we are capable of dealing only with 0 and 1. In particular, in addi-
tion, the following rules apply:

0�0 � 0�0�1 � 1�1�1 � 0

This means that when multiplying two polynomials using modulo 2 arithmetic, we simply
ignore those terms that have coefficient 2. This means that our multiplication a�x� � g�x�
becomes:

a�x� �g�x� � x�2x3 �2x4 � x5 �2x6 � x7 � x� x5 � x7

which results in the bit string h01000101i.

�

Now, once we have calculated the result b�x� � a�x� �g�x�, we simply transmit the bit string
b associated with b�x�, and decode the transmitted vectorb̂, which may possibly differ from
the original encoded bit string b. Decoding proceeds by factoring the polynomialb̂�x�, i.e.
we write it as the following multiplication and addition of polynomials:

b̂�x� � â�x� �g�x�� ê�x�

where we have that

â�x� � â0 � â1x� � � �� âm�1xm�1

ê�x� � ê0 � ê1x� � � �� êk�1xk�1

The point is that only if ê�x� � 0, i.e. all coefficients êi � 0, transmission succeeded. In
fact, if we choose an appropriate generator polynomial g�x�, we can devise a polynomial
code in which the number of coefficients of ê�x� with êi �� 0 correspond with the number
of bits that are in error in the bit string b̂. It is beyond the scope of this book to go into any
further details. The interested reader is referred to the end of this chapter where pointers to
the literature are provided.

downloaded by wizard.z@foxmail.com

On wiring 331

But why have we been discussing all this? First, you should note that polynomial codes are
extremely efficient. By systematically adding k bits to a Boolean bit string it is possible to
detect k errors. Not many encoding schemes are known to have this property.

But there is more. Although our coding scheme seems rather intricate, it is not difficult
to see that operations on polynomials such as multiplication and factorization effectively
reduce to simple manipulations with bit strings. For example, multiplication by 2 means
shifting all the bits one position to the left. Such operations can easily be implemented in
hardware. And indeed, polynomial coding is almost invariably implemented by means of a
digital circuit, or otherwise by a straightforward software solution. So what we see here is
that a mathematically rather intricate computation eventually resorts to something that can
be built rather easily into an automated solution.

7.2.4 Making networks

Assume we can wire two computers together by a suitable transmission medium that al-
lows them to exchange data. Having mastered this technology, we should now also be
able to extend our collection of communicators by adding more computers. The question
is, how to proceed? Wiring two computers A and B does not give us much choice, but
what do we do with the next one? Should we connect it to A? Or perhaps to B? Or better
still, perhaps this third computer should be connected to both A and B. Numerous alter-
natives will come to mind when giving the matter some thought, and thinking about it is
not such a bad idea when you realize that our ultimate goal is to allow thousands of com-
puters to exchange information. The problem that we are faced with is that of designing
a topology: a network in which each node consists of a computer. This network must
be designed so that communication is not only possible between pairs of computers, but
also that several pairs of computers can communicate at the same time (just imagine that
the worldwide telephone system could, at any time, support a conversation between only
two people).

Network topologies fall more or less naturally into two categories based on which com-
munication strategy is followed when transferring messages between parties:

� Broadcast: The first strategy is that of broadcasting by which a message is sent to
every other computer in the network. If a message arrives at a computer for which
it was not intended, then it will simply be discarded. This strategy is not so bad as
it may seem. Compare it to the way radio programs are transmitted. In principle,
anyone who has a radio can tune into stations but it is up to the receiver to decide
whether to do so.

� Unicast: In this case, messages are sent specifically to a single receiver, and the
goal is to make transmission as efficient as possible. This means that preferably
only the computer for which the message is intended should receive it.

Broadcasting is generally applied in so-called local area networks (LAN), where the
mechanism has proven to be highly efficient and reliable. Unicasting is typically adopted
in wide area networks (WAN), where geographical distances prohibit the use of efficient

downloaded by wizard.z@foxmail.com

332 Connecting computers

ring bus tree

Figure 7.11 Commonly applied LAN topologies.

transmission media that are needed to exploit broadcast mechanisms effectively.3 Let’s
take a closer look at these two types of networks. We will return to both types at length
in the next chapters; here, we just concentrate on our original problem, namely that of
designing a topology.

Local area network topologies

As we have said, local area networks are based on the principle of message broadcasting.
Two dominant topologies for supporting this principle are the ring and bus networks.
The latter also have a variant in the form of a tree network, as shown in Figure 7.11.
The connections generally consist of copper or fiber-based wires (i.e. you can actually
see how parts are hooked up to each other).

In a ring topology, the computers are connected to each other by means of unidirec-
tional links. This means that messages are forwarded in a single direction from one com-
puter to its neighbor until it reaches its destination. In a bus topology, all computers are
directly connected to the same wire (compare this to connecting several telephones to
the same wall socket). This means that if any computer puts a message on the line, all
other computers will be capable of picking it up almost immediately. In a tree topology,
finally, whenever a message reaches a node with several branches, the message is simply
forwarded onto every branch.

The fact that messages are broadcast across the network has a serious consequence.
Whenever a message is being transmitted it means that all connections that make up the
network will need to be free of other message transmissions. In other words, from a con-
ceptual point of view, the computers in a local area network make use of a shared trans-
mission medium, to which we have to guarantee exclusive access. Indeed, in terms of
channels as introduced in Section 6.4.1, we can say that the computers in a LAN make
use of a single shared broadcast channel. The problem that we have to deal with is
how we can allocate this shared medium to a single computer so that it can transmit its
message. This will be discussed at length in Chapter 8.

3An exception in this case is to be made for long-range communication by satellites. In this book, how-
ever, we consider mostly wide area networks that are constructed through point-to-point links between
computers.

downloaded by wizard.z@foxmail.com

On wiring 333

Figure 7.12 A WAN topology.

A

B

Figure 7.13 Two different routes in a WAN.

Wide area network topologies

Wide area networks are organized completely differently from local area networks, and
for a good reason. Imagine that we wanted to construct a network consisting of thousands
of computers using, for example, a ring topology and employing the principle of a broad-
cast channel. We would indeed have problems. Instead, WANs are typically organized
into a graph in which point-to-point connections are now taken as they are: messages are
forwarded according to some routing scheme. The principle is shown in Figure 7.12.

The main distinction with LANs is that each node in a WAN has to determine to which
single other node it should forward an incoming message. In LANs a message is simply
forwarded to every neighboring node. To illustrate, Figure 7.13 shows two alternative
routes for getting a message from node A to node B in a WAN. Determining the route
is something we shall discuss in Chapter 9. Here, we focus on the elementary aspects,
generally referred to as switching technology, as each node in a WAN acts as a switch se-
lecting alternative outgoing lines for incoming messages. WANs are generally classified
as either circuit-switched or packet-switched networks.

downloaded by wizard.z@foxmail.com

334 Connecting computers

constituent
network

switches/routers

1

2

3

4

1
2

3
4

A

B

N1

N2

Figure 7.14 The principal working of a circuit-switched network.

Circuit-switched networks. Whenever a message is to be sent in a circuit-switched
network it is first necessary to set up a complete physical connection from the sender
to the receiver. In other words, switches are set up all over the WAN in such a way that
the sender and receiver are directly connected. This principle is shown in Figure 7.14.
There, we show a WAN that has been constructed by connecting several smaller networks
(called constituent networks). An essential part of the WAN are the so-called routers,
which act as true switches in the case of circuit-switched networks. One such switch is
shown, having four connectors. In our example, connectors 1 and 2 have been circuit-
switched, effectively establishing a direct connection between constituent networks N1
and N2. A typical example of a circuit-switched network is our telephone system. As
you dial a number, a connection is gradually established by appropriately setting switches
until a complete connection is made. When the conversation is finished, the connection
is broken and each intermediate switch can be used for the next call.

This behavior is characteristic of circuit-switched networks, and always contains the
following three steps:

1. A sender requests a connection to be made with a receiver. This implies that a se-
ries of nodes in the WAN will have to set up a route.

2. The message exchange takes place, possibly for some time as the receiver may
have some information to send back as well. Meanwhile, the nodes in the WAN

maintain the connection.

3. The sender (or receiver) indicates that the connection may be broken. From that

downloaded by wizard.z@foxmail.com

On wiring 335

constituent
network

1
2

3
4

A

B

N1

N2

?
1

2

3

4

1

2

3

4

input output

Figure 7.15 The principal working of a packet-switched network.

moment, each node in the WAN can divert its attention to other requests for con-
nection.

Note the resemblance between circuit-switching and connection-oriented communica-
tion as discussed in the previous chapter. We shall see more examples of this method of
communication in later chapters.

Packet-switched networks. A disadvantage of circuit-switched networks is that as
long as neither the sender nor the receiver has indicated that communication has ended,
the connection should be maintained. This also implies that no other connection can be
made across any link in the route, even if the sender and receiver are not communicat-
ing. As you may imagine, this approach may result in a poor utilization of the network.
Alternatively, packet-switching technology can be employed. In this case, a message is
disassembled into a number of packets which are then subsequently sent across the net-
work. No full connection between sender and receiver is required. Instead, each packet
carries the address of the destination and nodes in the WAN will forward a packet in the
right direction. This principle is shown in Figure 7.15.

In the figure, there are three messages being routed through the network, each consist-
ing of a number of packets (indicated by white, grey, and black boxes, respectively). The

downloaded by wizard.z@foxmail.com

336 Connecting computers

indicated router has four input ports, and likewise, four output ports, one pair of ports for
each link it has with another router. Now as soon as a packet arrives, the router takes a
decision to which link it should forward the packet (indicated by the box marked “?”),
based on the destination address found in the packet. It then queues the packet for the
selected output port, after which it can be forwarded to the next router.

We will return to packet-switched networks in Chapter 9, but already it can be seen
that there are a number of important differences from circuit-switched networks. The
most important is that the route a packet should follow is not reserved in advance. In-
stead, packets are gradually forwarded through the network on a strict node-to-node ba-
sis. Consequently, in order to send a packet, we need to reserve only a single connection
between two nodes, which can be immediately released when the packet has reached its
intermediate destination.

Another important difference is that packets comprising a message need not follow
the same route, as illustrated in Figure 7.15. There, all packets having the same color
(white, grey or black) are assumed to belong to the same message. Changing a route
may be a good thing to do in order to avoid congestion in the network. It does have a
serious consequence, though: packets may not arrive in the order they were sent. This
means, in the end, that the destination node will have to assemble the message by putting
the packets in the right order before passing the message to the receiver. Assembling
messages seems a straightforward operation, but may be difficult in practice as we shall
see later.

7.3 Frame transmission

So far, we have been discussing a few of the issues that are related to simply wiring com-
puters together:

� Transmission of digital signals, and observing that signals can be significantly dis-
torted

� Reception of signals, which requires some form of synchronization between the
sending and receiving device

� The detection by a receiving device that something went wrong during transmis-
sion

� Alternatives for wiring several computers together.

It is time that we concentrated on sending data and left the wiring. So, let’s focus on a
situation where we have two computers A and B that have been wired together and in
which A wants to transmit data to B. Simply putting the data on the line by continuously
sending bits is not going to work. In order to manage all kinds of transmission errors, and
to allow the two computers to keep pace with each other, we will have to resort to sending
relatively small portions of data. These portions of data are referred to as frames. The
total amount of data is thus partitioned into frames, and each frame is subsequently sent

downloaded by wizard.z@foxmail.com

Frame transmission 337

to the receiver. For example, a sender may decide to split a large piece of text into frames
by sending the text character by character. Each frame then consists of a single character
(with some additional information as we shall see). By splitting the data into frames, data
transmission then reduces to sending a series of frames. Splitting data into frames and
sending these frames one by one is perfectly in order if at least one rule is obeyed: the
frames should be pasted together by the receiver in the order they are sent. We will see
later that this rule imposes some serious difficulties.

Now, returning to our two computers A and B, two problems need to be addressed:

1. How do A and B cooperate so that we are certain that B has received all frames, and
it is possible to paste them together into the original data that A wanted to transmit
in the first place?

2. What should B do when it finds that a received frame is not the right one, or that a
frame has been damaged on account of a transmission error?

The first question addresses the issue of flow control; the second that of error control.
Both issues are discussed in the following two subsections.

7.3.1 Flow control

Imagine the following situation. A has split its large amount of data into N frames, and
starts transmitting each frame to B without paying attention as to whether or not B can
handle them. This can easily lead to problems, because, typically, in order to handle in-
coming frames, B will temporarily store each of them in an input buffer before process-
ing its contents. For example, the data contained in each frame will generally have to be
copied into B’s main memory. Consequently, if frames arrive too fast for B to remove
them from its internal buffers in order to make some space again, things will indeed go
wrong. The principle of communicating frames is shown in Figure 7.16. We require that
A and B will have to run at the same speed. Let’s see how this can be accomplished.

Stop-and-wait protocol

The simplest scenario for synchronizing a sender and receiver, is for the sender to trans-
mit a single frame, and subsequently let it wait until the receiver has received and pro-
cessed the frame. To that end, the receiver will always send an acknowledgment back to
the sender as soon as the frame has been processed. This is illustrated in Figure 7.17.

In this case, the line is used for bidirectional traffic: it is said to operate in half duplex
mode because although transmission can occur in either direction, only one direction can
be used at a time.4 This is an extremely simple, so-called stop-and-wait protocol. And
although it appears satisfactory, in many cases, it is in fact very inefficient. To see this,
we need to consider the so-called propagation and frame transmission time.

4Compare this to traffic over a one-lane bridge in which vehicles can go in either direction.

downloaded by wizard.z@foxmail.com

338 Connecting computers

sender receiver

transmission medium

buffer buffer

frames yet to be sent

received frames

Figure 7.16 The principle of frame transmission.

Propagation time. The propagation time is the time it takes for a single signal to reach
the receiver. To illustrate, imagine we are using a satellite as our transmission medium,
circulating in an orbit at, say, 35 000 kilometers above the earth. Transmitting a signal
at the speed of light (3� 108 meters per second) means sending it over a total distance
of 70 000 kilometers, which takes about 230 milliseconds. This is a factor that cannot
be ignored. On the other hand, coax cables are often used to connect computers up to
approximately 10 kilometers. With a propagation speed of approximately 2� 108 mps
(meters per second), it will take only 50 microseconds for a signal to reach the receiver.

Frame transmission time. The frame transmission time is the time it takes for a com-
plete frame to reach the receiver. In this case, we need to also consider the transmission
rate. The transmission rate is the speed by which a sender and receiver can put bits on
a line, and pick them up, respectively. For example, using satellites, computers can gen-
erally transmit and accept approximately 64 000 bits per second (i.e. 64 Kbps). In this
case, it takes a frame of 4000 bits approximately 60 milliseconds to reach the receiver.
In contrast, if we have a transmission rate of 10 Mbps, it will take only 400 microseconds
to transmit the complete frame, at least as far as the sender and receiver are concerned.

Now the propagation time is completely determined by the transmission medium and its
length, whereas the transmission rate is determined by the speed with which the sender
and receiver are capable of putting a signal on the line, and picking it up, respectively.
In cases where the propagation time is much larger than the frame transmission time, we
will have a problem with our stop-and-wait protocol. To see this, consider how much
time it takes to send and acknowledge the receipt of a frame. We assume that the ac-
knowledgment is a bit string having a length that can be ignored compared to the length
of the transmitted frame. Then, sending a frame will take a total of

sending time � Tprop�Tframe

downloaded by wizard.z@foxmail.com

Frame transmission 339

sender receiver

transmit frame #k from sender to receiver

transmit an acknowledgement from receiver to sender

transmit frame # k+1 from sender to receiver

Figure 7.17 Frame transmission following a stop-and wait protocol.

time units, where Tprop is the propagation time and Tframe denotes the transmission time
of the frame. Likewise, returning an acknowledgment will take an additional

acknowledgment time � Tprop

time units. The total transmission time, also called the transmission cycle time Tcycle,
then adds up to

transmission cycle time � 2Tprop�Tframe

downloaded by wizard.z@foxmail.com

340 Connecting computers

Consequently, the efficiency of our transmission is then equal to:

ideal transmission time
transmission cycle time

�
Tframe

2Tprop�Tframe
(7.1)

which is poor when Tprop � Tframe, as is the case when we are using satellites. What it
means is that the propagation time is so long that it dominates the transmission cycle
time. In other words, the transmission medium itself is simply too slow (or too long) for
the sender and receiver.

This can easily be compared with real-life examples. One way of looking at this is the
use of a conveyer belt, where boxes are loaded on one end and removed from the other.
No matter how fast we put boxes on the belt, if the belt itself is slow, or long, it will take a
long time for a box to reach the other end. In any case, the transmission medium (i.e. the
belt) actually determines the speed at which communication can take place. To see the
effect of this protocol, imagine you could measure the traffic intensity of the transmission
medium by counting the number of frames that pass a certain point. What you will see is
that only occasionally a frame will pass in one direction, followed by an acknowledgment
in the other direction. The utilization of the medium will thus be extremely low.

� The ratio expressed in equation (7.1) is an interesting one that we will return to later. In
particular, if we consider its reciprocal:

θ �
2Tprop �Tframe

Tframe

then θ denotes the multitude of frames that could have been sent in ideal circumstances,
i.e. without any propagation delay, and without any errors. We shall refer to θ as the ideal
transmission factor. Another way of viewing θ is that it denotes the number of frames that
can be transmitted in sequence before the first acknowledgment arrives. In the next chapter
we shall replace this factor by one that it is more commonly used for performance analysis.

Sliding-window protocol

Returning to our problem of having a low efficiency, there is an obvious solution to this
problem. Assume that we can use the medium for simultaneously transmitting messages
in both directions, i.e. we use the medium in full duplex mode.5 What we can do then
is send a number of frames in a row without having the sender wait for each frame to be
acknowledged before sending the next one. The receiver will return an acknowledgment
for each frame upon receipt, and continue to wait for the arrival of the next frame which
may already be on its way. This situation is illustrated in Figure 7.18.

Of course, we have to ensure that the sender will not be sending too many frames for
the receiver to handle. Assume that the receiver can store up to a maximum of Nwin frames
(called a window) before having processed each of them. Each time a frame arrives,

5Relating this to half-duplex mode, this situation is comparable to having a two-lane bridge.

downloaded by wizard.z@foxmail.com

Frame transmission 341

sender receiver

transmit frame #k from sender to receiver

transmit frame # k+1 from sender to receiver,
and return an acknowledgment for frame #k

Figure 7.18 Allowing multiple frames to be in transit before acknowledgment.

the receiver temporarily stores it in one of its (free) buffers, and subsequently sends an
acknowledgment. Now suppose the sender wants to send the kth frame, where k � Nwin,
denoted as Fk. If it has not yet received an acknowledgment for frame Fk�Nwin

, the sender
will know that Nwin frames are apparently still in transit. Consequently, it should wait
because this is the maximum number of frames that the receiver can handle in sequence.

The protocol we have just described is referred to as a sliding-window protocol. What
it means is that the sender maintains a list (a window) of frames that have been sent, but
not yet acknowledged. If the maximum number of frames on this list is Nwin, the sender
will have to wait until the first frame on the list is acknowledged before sending a new
one. Acknowledged frames are removed from the list, whereas recently sent ones are
appended to it. Note that if Nwin � 1, this protocol is exactly the stop-and-wait protocol
described above.

� Comparison of the two protocols

Let’s see how the sliding window protocol compares to the stop-and-wait protocol which
exploits only half-duplex transmission. Again, we assume that the transmission time for
an acknowledgment is negligible, so that we only have to take the propagation time into
account. Suppose A sends a first frame F1 which then arrives at B after Tprop �Tframe time
units. B acknowledges the receipt of the frame, which will reach A after an additional Tprop

time units. In other words, each time A sends a frame, the acknowledgment for that frame
will arrive after 2Tprop�Tframe time units. This is referred to as the transmission cycle time

downloaded by wizard.z@foxmail.com

342 Connecting computers

Tcycle:

transmission cycle time Tcycle � 2Tprop �Tframe (7.2)

(Note that the transmission cycle time is measured from the instant that A starts to transmit
a frame, not from the moment the frame has been sent, in which case it would be equal to
2Tprop.) Denote by Nwin the window size, i.e. the number of frames that B can store before
processing them. After sending F1, A can continue to send frames F2�F3� � � � �FNwin , which
will take an additional �Nwin�1� �Tframe time units. We now need to consider two cases:

1. The acknowledgment for frame F1 reaches A before it had the chance to transmit the
remaining Nwin�1 frames. In other words, Tcycle � Nwin �Tframe, which is the same as
stating that Nwin � θ.

2. The acknowledgment for frame F1 reaches A after all remaining Nwin�1 frames have
been sent. In this case, Tcycle � Nwin �Tframe, or, in other words, Nwin � θ.

In the first case, A can continue to transmit frames without any delay: B will always be capa-
ble of receiving and subsequently processing them. In this case, the efficiency of the trans-
mission will be equal to 1 because A will never have to wait for B. In other words, the ideal
transmission time is the same as the transmission cycle time.

In the second case, A will have to wait until it receives the acknowledgment. Now the point
to note is that if we assume that nothing went wrong during the transmission (i.e. if we as-
sume a completely error-free line), A can immediately send another Nwin frames as soon as it
receives the acknowledgment for frame F1. To see this, note that Tcycle �Nwin �Tframe implies
that we necessarily have that all frames will have been received by B by the time A receives
the acknowledgment of the receipt of F1 (assuming a constant acceptance rate). Taking the
first case into account as well, we can now state that the overall efficiency in the case of a
sliding-window protocol is equal to:

ideal transmission time
transmission cycle time

�

�
1 if Nwin
 θ
Nwin�θ if Nwin � θ

(7.3)

Figure 7.19 shows how the efficiency relates to the size of the window (Nwin) as the trans-
mission factor θ increases. For example, it can be concluded that in the case of satellite
transmission (where θ can be very large), a large window will be needed to keep efficiency
high. In practice, a window size of 7 for most transmission media and 127 for satellite media
are sufficient.

7.3.2 Error control

What have we accomplished so far? At this point, we are able to send frames from one
computer to another such that:

� The receiver has the chance to process frames, i.e. remove a frame from its internal
buffers before a next one arrives

downloaded by wizard.z@foxmail.com

Frame transmission 343

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

ef
fi

ci
en

cy

ideal transmission factor

N = 1

N = 7

N = 127

Figure 7.19 The efficiency of a transmission medium when using a sliding-window protocol.

� The transmission medium is used efficiently in the sense that we can transmit as
many frames as the medium can hold, while keeping the sender and receiver in
synchronization.

But, of course, things may still go wrong. Due to the fact that no line can ever guarantee
error-free transmission of data, we may not expect that all frames will reach the receiver
without being damaged. In particular, we need to distinguish two types of errors:

1. A frame that has been picked up by the receiver is found to contain errors. This is a
so-called damaged frame. That a frame has been damaged can be determined with
a certain high probability by using, for example, polynomial coding as described
in Section 7.2.3.

2. A frame never arrives, or better, the receiver fails to detect that a new frame arrives.
This is generally referred to as a lost frame. This type of error may occur when the
frame is so damaged that the receiver simply cannot recognize it.

Error control refers to the techniques that can be applied in the case of damaged and lost
frames. Roughly, there are four general techniques (Stallings, 1993b):

� Error detection, by which it can be determined whether a frame is damaged. As
we have said, a widely applied technique for error detection is polynomial coding.

downloaded by wizard.z@foxmail.com

344 Connecting computers

� Positive acknowledgment, by which the receiver sends an acknowledgment back
to the sender upon the successful receipt of a frame.

� Negative acknowledgment and retransmission, by which the receiver sends a
negative acknowledgment for each damaged or lost frame so that the sender can
retransmit it.

� Retransmission after timeout, implying that if the sender does not receive a pos-
itive acknowledgment after a certain time has elapsed, it simply retransmits the
frame.

These techniques are collectively referred to as automatic repeat request mechanisms,
or simply ARQ. The first technique has already been discussed and is fundamental to any
error control technique as it provides the means to detect that something went wrong. The
second and third technique seem to be in order as well. One way or the other, the sender is
informed about the error status of a frame transmission so that it can handle the problem.
The fourth technique is illustrative of the fundamental problem that we have to deal with:
acknowledgments (being either positive or negative) can themselves be damaged or lost.

To illustrate, suppose the receiver acknowledges each successful receipt of a frame.
If the sender does not receive an acknowledgment for, say, frame Fk there are two pos-
sibilities: (1) the frame was lost or damaged, or (2) its acknowledgment simply did not
reach the sender. In the first case, retransmission is in order; in the second case, it is not,
because transmission was successful. In any case, frame Fk is retransmitted and it is up
to the receiver to conclude if retransmission was necessary (i.e. the frame was originally
damaged or lost) or not (because the frame originally reached the receiver). One way or
the other, we have to set up a protocol and corresponding administration to handle this
form of error control.

Stop-and-wait ARQ

To see what this means in practice, we first consider an error control protocol which is
based on the stop-and-wait protocol in the previous section. This so-called stop-and-
wait ARQ error control scheme works as follows. Suppose a sender has just transmit-
ted a frame Fk. After transmission, the sender will wait until it either receives a posi-
tive acknowledgment (ACK) indicating that transmission was successful, or a negative
acknowledgment (NACK), indicating that the frame arrived but was damaged. If no ac-
knowledgment is received after a certain time has elapsed, the sender concludes that ei-
ther the frame or the acknowledgment was lost. When an ACK arrives, the next frame
Fk�1 is transmitted. When either a NACK is received or a timeout occurs, frame Fk is
retransmitted to the receiver.

As we have explained, it may be that the frame Fk was unnecessarily retransmitted
because its acknowledgment was lost. Consequently, the receiver may pick up the same
frame twice in a row. By explicitly providing the frame number as part of the frame,
retransmission of a successfully received frame can be detected by the receiver.6

6In fact, it is sufficient merely to indicate that a frame is being retransmitted. We shall not go into details

downloaded by wizard.z@foxmail.com

Frame transmission 345

� How efficient is this simple protocol? To simplify matters, assume that ACKs and NACKs
are never lost. Then, denote by p the probability that a frame is transmitted with an error.
Let r be the stochastic variable denoting the number of times a frame has to be transmitted
in sequence. Then the probability P �r � i� that we need to retransmit a frame i times in
sequence is equal to:

P �r � i� � pi�1�1� p�

So the expected number of successive retransmissions is equal to

E�r� �
∞

∑
i�1

i �P �r � i�

�
∞

∑
i�1

ipi�1�1� p� � 1��1� p�

Consequently, the efficiency of the overall transmission will be equal to

ideal transmission time
transmission cycle time

�
Tframe

E�r�Tcycle
�

1� p
θ

which, as we have argued in the previous section, is generally not very good.

Continuous ARQ

An alternative error control technique is the so-called continuous ARQ which is based on
a sliding-window protocol. The basic idea is that a sender can continuously send frames
without waiting for each frame to be acknowledged by the receiver. When a negative ac-
knowledgment arrives, or when the sender notices that an acknowledgment has been lost,
two different procedures can be followed. Assume the sender notices that something has
gone wrong with frame Fk while it had just finished the transmission of frame Fk�N�1 (i.e.
after sending a series of N frames the sender is notified that the first one has not reached
the receiver). In that case, it can either (1) retransmit all frames Fk�Fk�1� � � � �Fk�N�1 or
(2) retransmit only frame Fk. The first procedure is characteristic of the so-called go-
back-N ARQ; the second is referred to as selective repeat ARQ.

At first it would seem wasteful to retransmit all frames succeeding Fk. On the other
hand, you have to realize that this scheme does make reception of frames extremely sim-
ple when comparing it to the selective-repeat mechanism. To see this, we first consider
this last protocol. Assume that one way or the other the receiver detects that frame Fk has
been damaged or lost so that it subsequently returns a NACK(k) to the sender. Now, the
problem we have to deal with is that frames can only be processed in the order in which

here.

downloaded by wizard.z@foxmail.com

346 Connecting computers

they are transmitted. For example, the receiver can only copy a frame Fi from its internal
buffer to main memory if the previous frame Fi�1 has been copied to main memory as
well. This is exactly the rule we mentioned at the beginning of this section. And it is
exactly this rule that is going to lead to serious difficulties when applying the selective-
repeat protocol.

So, while the receiver is now waiting for retransmission of frame Fk, it should be able
temporarily to store all succeeding frames Fk�1� � � � �Fk�N�1. As long as frame Fk has not
been received, the succeeding frames cannot be processed. Consequently, it may turn out
that the number of buffers at the receiver’s side may have to be quite large. And things
can get worse. If it is found that one of the succeeding frames Fk�p �k�1� p�N�1� is
damaged or lost, the receiver will have to account for that as well. In effect, the selective-
repeat protocol puts a fairly heavy burden on the receiver’s capability of administrating
the reception of frames. As we shall discuss later, because the protocols we are discussing
here are generally implemented in hardware, we do have a serious problem. Conse-
quently, for implementation reasons the selective-repeat protocol is not often applied as
an error control mechanism.

The go-back-N protocol does not have these buffering problems. Whenever a dam-
aged or lost frame is detected by the receiver, it simply waits until the frame has been
successfully retransmitted, thereby ignoring all succeeding frames. Consequently, there
is no need for an intricate buffering scheme and administration.

� Now let’s see how good the go-back-N protocol is.7 Our first concern is to work out the num-
ber of expected transmissions. Assume the sender had transmitted N frames Fk� � � � � Fk�N�1

and that it finds out that frame Fk has been damaged or lost. Again, assume that ACKs and
NACKs are never lost, and that the probability of a transmission error for a complete frame
is p. Let rN denote the total number of frame transmissions required to get frame Fk suc-
cessfully to the receiver. Note that rN can only take on values 1�N�1�2N�1�3N�1, etc.
We then have

P �rN � i� �

�
pk�1� p� with i � kN�1�k � 0�1�2� � � �
0 otherwise

With respect to the number of expected frame transmissions, it can be shown that we then
have

E�rN� �
∞

∑
i�1

i �P �rN � i� �
1� p� pN

1� p
(7.4)

The question is, of course, how large N is. Again, we need to consider two situations taking
into account the transmission factor θ and the receiver’s window size Nwin.

1. If Nwin � θ, NACK(k) will reach the sender after all frames that fit into a window have
been transmitted. Consequently, all these frames will need to be retransmitted, so that
N � Nwin.

7The analysis presented here is an approximation of the actual one, and is based on the analysis pre-
sented in Stallings (1993b).

downloaded by wizard.z@foxmail.com

Frame transmission 347

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

ef
fi

ci
en

cy

ideal transmission factor

N = 1

N = 7

N = 127

Figure 7.20 The efficiency of a transmission medium when using a sliding-window ARQ.

2. When Nwin � θ, NACK(k) will reach the sender before a complete window of frames
has been transmitted. In particular, we may expect that approximately θ frames will
have been sent while the NACK was making its way to the sender. In other words,
N � θ.

Using these values for N, we can now derive an approximation for the overall efficiency of
the sliding-window ARQ analogous to formula (7.3):

ideal transmission time
transmission cycle time

�

�
�1� p���1� p�θp� if Nwin
 θ
�1� p�Nwin���1� p�Nwin p�θ� if Nwin � θ

(7.5)

Figure 7.20 illustrates these efficiencies for a error probability of p � 0.002. Again, it is
seen that if the window size is chosen large enough when dealing with a high transmission
factor, overall efficiency remains relatively close to 1.

Summarizing, we see that retransmitting frames may indeed be an adequate way to respond
to transmission errors, but, as in the case of flow control, propagation times should be taken
into account.

downloaded by wizard.z@foxmail.com

348 Connecting computers

senders receivers

multiplexer

demultiplexer

Figure 7.21 The principle of multiplexing a transmission medium

7.4 Multiplexing

In the previous section we have shown how we can effectively raise the utilization of a
transmission medium by using sliding-window protocols. In this case, the sender sim-
ply puts a number of frames on the line without waiting for an acknowledgment by the
receiver. This scheme is perfectly in order, and it does increase efficiency, as long as
there is data to transfer. As soon as the sender and receiver are finished, the transmis-
sion medium is simply no longer used. As transmission media are generally not cheap, it
would seem a good idea to use the same medium to connect two other computers while
the initial sender and receiver have no need to communicate. Of course, removing con-
nectors and physically relaying a wire is impractical. Nevertheless, the idea can be put
into practice by applying a technique referred to as multiplexing. In this section we shall
briefly consider some of the issues related to multiplexing.

The principle of multiplexing a transmission medium is illustrated in Figure 7.21. A
number of senders and a number of receivers can share a single transmission medium
without interfering with each other. Here, we shall present two different methods of do-
ing so (of which the first, called frequency-division multiplexing, is of less importance
for understanding the material that is to follow, so it may be skipped on first reading).

� Frequency-division multiplexing

Frequency-division multiplexing, or simply FDM, is a method of sending multiple signals
simultaneously over a single transmission medium. How can this be done without signals
destroying or interfering with each other? The solution is found by the observation that a
digital signal can be practically represented by a limited number of sine waves of different
frequencies, as was shown in Section 7.2.1. The range between the lowest and highest fre-
quencies is called the baseband frequency range of that signal. This is analogous to saying
that the frequency range of human hearing is usually from 40 to 16 000 Hz.

The bandwidth of a transmission medium (or, equivalently in this case, the allowable fre-
quency range) is often much larger than the frequency range required to represent a signal.
This would mean that a large part of the bandwidth of the transmission medium is effec-
tively not used. If we could temporarily shift a baseband frequency range of 0 to B Hz to

downloaded by wizard.z@foxmail.com

Multiplexing 349

s1 m1

m1

m2

m3

s1

s2

s3

s2

s3

m2

m3

modulator

modulator

modulator

filter

filter

filter

demodulator

demodulator

demodulator

sender-1

sender-2

sender-3

receiver-1

receiver-2

receiver-3

0 B
Hz

0 B
Hz

0 B
Hz

0 B
Hz

0 B
Hz

0 B n1 +Bn1 n2 +Bn2

0 B
Hz

sender-1
sender-2

sender-3

Figure 7.22 The principle of frequency-division multiplexing.

n to n�B Hz, we could elegantly “fill” the available capacity of the transmission medium
by choosing a different value of n for each baseband signal. By de-shifting at the receiving
end, we would be able to retrieve the original signals.

The technique by which this shifting is done is called modulation. The way modulation is
accomplished is beyond the scope of this book. That different forms of modulation exist can
already be seen in the way that radio signals are modulated. There we have AM (Amplitude
Modulation) or FM (Frequency Modulation). De-shifting back to the baseband is done by
an operation called demodulation. The principle is shown in Figure 7.22.

The modulator changes each input signal to a modulated signal with a unique frequency
range. In particular, each of baseband signals are associated with a different frequency range,
which is generally referred to as a channel. These channels are conceptually the same as
those discussed in Section 6.4.1. They allow a sender and a receiver to communicate with-
out explicit reference to each other. Transmission systems which have multiple simultane-
ous channels are generally referred to as broadband transmission systems, as opposed to
baseband transmission systems which allow only a single channel for communication.

As a practical example of FDM, consider hand-held telephones. Whenever a call is to be
made, the telephone searches for an available frequency range that it can use for transmis-
sion. The cheapest hand-held telephones often support only two different frequency ranges,
or channels. If your two neighbors happen to be using those channels, that is unfortunate
for you. On the other hand, the more expensive systems support many more channels, and
it is almost always possible to find a free channel that can be used for transmission.

Time-division multiplexing

Frequency-division multiplexing can only be used when analog signals are to be trans-
mitted. Consequently, this means that when a digital signal is to be transmitted, it will
first have to be encoded into an analog one. An alternative multiplexing scheme that is
also suited for digital signal transmission, is (synchronous) time-division multiplexing,

downloaded by wizard.z@foxmail.com

350 Connecting computers

sender-1

sender-2

sender-3

receiver-1

receiver-2

receiver-3

buffer

buffer

buffer

frame

buffer

buffer

buffer

Figure 7.23 The principle of time-division multiplexing.

sender-1

sender-2

buffer

buffer

frame

Figure 7.24 An example of using TDM for different transmission rates.

or TDM for short. The principle of TDM is illustrated in Figure 7.23 and is really quite
simple.

What happens is the following. Suppose we have three senders as shown in Figure 7.23.
Each sender stores a part of the data it wants to transmit (e.g. a single bit or byte) into a
local buffer, which is periodically scanned. If data is available, it is removed from the
buffer and appended to the data that has been removed from other buffers. After scanning
each buffer once, a frame will have been composed which is then subsequently transmit-
ted to the other side. There, the process is repeated inversely, and the data is stored in the
appropriate buffers.

A few remarks are in order. First, note that each buffer is scanned for a fixed time slot.
This is comparable to our concept of a clock signal that we introduced in Section 2.5. If
no data is available during the time a buffer is scanned, then that part of the frame will
remain empty. Second, note that we can indeed increase the efficiency of the transmission
medium. If, say, one sender is temporarily not willing to transmit any data, the medium
is still used for data transmission by the other two senders. Third, we can use TDM to
use the transmission medium to support several transmission rates. This is illustrated in
Figure 7.24.

What we see here is that the buffer of the second sender is scanned twice during a sin-
gle period, whereas the first sender’s buffer is scanned only once in that time. Conse-
quently, the second buffer can be emptied at twice the rate of the first buffer. This im-
plies that sender-2 and its receiver can communicate twice as much data in the same time

downloaded by wizard.z@foxmail.com

Towards a layered approach 351

that sender-1 and its receiver can. In other words, the transmission rate between sender-
2 and its receiver is twice as much as the rate between sender-1 and its receiver. Being
able to support different transmission rates over the same transmission medium is impor-
tant. For one thing, different services can be offered, for example the same medium can
be effectively used to (digitally) transmit voice (requiring a relatively low transmission
rate) and video data (which requires a high transmission rate).

We shall return to the issue of supporting several transmission rates in our discussion
on wide area networks in Chapter 9.

7.5 Towards a layered approach

We have now come to a point at which you should have an idea about some of the basic
properties concerning communication between computers. In particular, we have pre-
sented issues on physically connecting computers and on transmitting data in the form
of a series of bits, called frames. At first, the order in which we have presented the mate-
rial may seem rather arbitrary. Therefore, we first concentrate explicitly on the structure
of the material presented so far.

7.5.1 Review of basic communication properties

We started with some basic issues in Section 7.2: physically wiring computers to each
other. In particular, we discussed fundamental problems related to actual transmission
media, and also paid attention to different types of media. Furthermore, we focused on
the problem on how a receiver can pick up a series of bits by briefly discussing transmis-
sion modes, and also how possible transmission errors can be detected. An important
observation with respect to error detection was that its implementation could be done by
means of relatively simple integrated circuits. At that point, we had shown that two com-
puters could be physically connected, and that a series of bits could be put on a line on
one end and picked up at the other with detection of possible transmission errors.

We then made a small digression by taking a closer look at physically connecting more
than two computers to each other. New problems were introduced. In particular, we
showed that there is no single means for connecting several computers and that it may
be necessary to distinguish different switching technologies as is the case with wide area
networks. Still, our attention was focused on basic (i.e. physical) connection schemes.

A first diversion from physical connections was introduced in Section 7.3. There, we
discussed how it is possible to send large chunks of data by splitting the data into so-
called frames. In particular, communication protocols were presented that dealt with the
issue of getting a series of frames from one side to the other, taking into account that the
transmission of a single frame may be subject to errors. Applying these flow and error
control protocols establishes a situation in which large amounts of data can be transmit-
ted between two computers in such a way as if no transmission errors had appeared. In
other words, we have realized an error-free transmission means for data between two
computers.

downloaded by wizard.z@foxmail.com

352 Connecting computers

Flow and error control are greatly influenced by efficiency issues concerning the us-
age of a transmission media. The question of establishing efficiency, finally, brought
us to the subject of multiplexing in the previous section. Multiplexing allows multiple
senders and receivers to make simultaneous use of the same transmission medium. How-
ever, where we concentrated on transmitting series of frames in Section 7.3, multiplexing
merely deals with sending a single frame over a transmission medium. In that sense, our
discussion on multiplexing can indeed be considered as taking a step back.

Let’s put these topics into a somewhat different perspective by considering different
levels of abstraction. The following levels (starting at the lowest) can be distinguished:8

L1: Physical connections between two computers, particularly transmission media.

L2: Transmission modes, i.e. how a receiver can pick up the bits that have been put on
a line by a sender.

L3: Multiplexing, which is concerned with sending several signals at the same time
over a single medium in such a way that each signal can be recognized separately
by various receivers.

L4: Switching technology, in which we can make a distinction between absence of
switches (LANs) and circuit and packet-switched networks (WANs).

L5: Frame transmission, particularly the means to send and receive a series of bits, and
the means to detect that something went wrong during transmission.

L6: Data transmission, involving error-free transmission of large amounts of data from
one computer to another by splitting the data into a series of frames.

An important observation is that in order to realize each level, agreement must be reached
between a sender and a receiver concerning how communication is going to take place
at that level. But there is more. For example, in order to realize data transmission, it is
essential that agreement with respect to frame transmission exists. Likewise, frame trans-
mission can only be successfully accomplished if we know which switching technology
is applied, which in turn requires agreement on whether or not multiplexing is used, and
if so, according to which protocol. Again, multiplexing requires knowledge concerning
transmission modes. And finally, of course, there can be no transmission at all if we do
not have a medium at our disposal.

What we see here is the presence of two entirely different types of agreements. First,
intra-level agreements, also referred to as horizontal agreements, deal with agreements
between senders and receivers with respect to a single level. They describe how a sender
can transmit information to a receiver in terms of the available communication means
at just one level lower. For example, data transmission agreements assume that trans-
mission of individual frames is possible. Second, there are inter-level agreements, also
referred to as vertical agreements, that describe how a function at, say, level Lk can be

8We note that the hierarchy of levels presented is, in fact, rather too strict, and in some cases not com-
pletely realistic. In this sense, the levels are to be seen as an illustration of the type of structure that is
commonly applied in communication systems.

downloaded by wizard.z@foxmail.com

Towards a layered approach 353

L6

L5

L4

L3

L2

L1

L6

L5

L4

L3

L2

L1

intra-level agreements

inter-level
interfaces

data transmission

frame transmission

multiplexing

physical connection

transmission modes

switching technology

Figure 7.25 The principle of layered agreements.

realized by means of the functions available at one level lower, i.e. level Lk�1. These
inter-level agreements form the interface between two adjacent levels. This principle of
layered agreements is shown in Figure 7.25.

Communication systems can be extremely complicated and it is hardly possible to pro-
duce them without adapting some kind of structure. In the next section we shall introduce
a widely adopted layered structure to which we will return throughout the remainder of
this book.

7.5.2 The ISO/OSI reference model

As we have said, successfully constructing a communication system can be an extremely
difficult task. In order to assist the development of such systems by different parties, the
International Standards Organization (ISO) developed a seven-layered reference model,
in which each layer is described in terms of which communication support it should pro-
vide. The reference model is generally referred to as the Open Systems Interconnection
(OSI) model . At this point we shall only briefly describe its most commonly applied lay-
ers which deal with computer networks in general, i.e. independent of the actual use of
a network in terms of applications.

The three lower layers of the OSI model are shown in Figure 7.26. A distinction is
made between the physical layer, the data link layer, and the network layer.

The physical layer

The lowest layer, referred to as the physical layer, deals with protocols concerning the
physical connection between computers. All issues mentioned in levels L2�L3 and L4
of the previous subsection are dealt with in this layer, except for the actual transmission
medium (which lies below this layer). In essence, it concerns agreements on the trans-

downloaded by wizard.z@foxmail.com

354 Connecting computers

network layer

physical layer

data link layer

Figure 7.26 The three lower layers of the OSI reference model.

mission of a single signal: how we can transmit a single bit from a sender to a receiver.
For example, agreement has to exist concerning the plugs and sockets that are used to
connect a medium to a computer, which pins are used for which signals, the strength of
signals in terms of volts, etc.

The data link layer

Typically, the issues mentioned on our levels L5 and L6 are dealt with at the data link layer.
Essentially, protocols at the data link layer establish an error-free communication of data
in terms of sending a series of frames. Consequently, agreement has to be reached with
respect to flow and error control of frames. An important topic that we have not yet dis-
cussed is the issue of selecting a single sender to put a frame on a broadcast transmission
medium when several computers are organized into a LAN, as discussed in Section 7.2.4.
How this is accomplished will be a major topic of Chapter 8. Many of the protocols at
the data link layer are implemented in hardware, but the more intricate ones which are to
be found at the “top” of this layer are generally implemented in software.

The network layer

The network layer is will be discussed at length when we describe the presentation of
wide area networks in Chapter 9. The main functionality of network layer communica-
tion protocols is establishing a connection between several networks. In particular, pro-
tocols at this level deal with routing issues, i.e. determining the route of a message from
a sender to its receiver(s) through a wide area network. We touched upon this subject in
Section 7.2.4.

The OSI model also defines four other, higher, layers. The transport layer, which lies
just above the network layer, is probably the most widely and consistently applied gen-
eral layer in the world of communication systems. In effect, this layer provides users and
applications with a consistent view of a true, worldwide expanding network in which it
becomes irrelevant whether a communicating party is sited on the same floor or at the

downloaded by wizard.z@foxmail.com

Further reading 355

other side of the world. The transport layer as well as issues of the other higher layers
will be discussed in later chapters. For now, the above-mentioned three lowest layers are
of primary concern for understanding the more technical principles related to communi-
cation systems. These issues are discussed in the following two chapters.

7.6 Further reading

In this chapter we have briefly discussed some important issues that deal with physically
connecting two or more computers. As a summary of our approach has already been
given in Section 7.5.1, we shall give only some references for further reading.

Most of the material discussed in this chapter is generally contained in standard text-
books on data communication and computer networks, especially those that view it from
the perspective of an electrical engineer. In this sense, both Halsall (1992) and Stallings
(1994) provide adequate background material. Also, Beyda (1989) and Goupille (1993)
may be of use. The material is also discussed in Tanenbaum (1988), which is more suited
for those oriented to computer science and mathematics. Error correction and detection
is discussed at length in Peterson (1968) and Clark and Cain (1981).

Exercises

1. *Explain the difference between digital and analog signals. Is this a fundamental
difference or not?

2. *What can go wrong during the transmission of a digital signal through a medium?

3. *Explain the difference between synchronous and asynchronous transmission.

4. Suppose that we always transmit data in the form of bit strings of length 8, and that
any bit string of length 8 has a sensible interpretation. Can a receiver then ever
detect a transmission error? What does this imply for an error detection scheme?

5. *In devising error detection schemes, developers strive to minimize the number of
additional bits that have to be sent in order to allow for error detection. Why do
they do this?

6. *Outline a way of implementing the triple-repetition code in hardware. (Hint: think
how you can use the implementation of the majority function as presented in Chap-
ter 2 to do the decoding.)

7. What is the fundamental difference between LAN and WAN technology? Also ex-
plain the difference between circuit-switched and packet-switched networks.

8. There is one kind of circuit-switched local area network that we have not men-
tioned in this chapter. Which one do we mean? (Hint: think of how telephones are
used in a building.)

downloaded by wizard.z@foxmail.com

356 Connecting computers

9. The propagation time is determined by the transmission medium that is used; the
frame transmission time is determined by the sender and receiver. Explain pre-
cisely what is meant by this statement.

10. Suppose that a sender transmits at a much lower speed than the receiver is willing
to accept incoming messages. Do we need some kind of flow control scheme in
this case?

11. Why is using a simple stop-and-wait protocol in the case of satellite communica-
tion not such a good idea?

12. Increasing the utilization of a channel implies that we would want to have several
frames simultaneously in transmission. Does this always imply that the buffering
capacity at the receiver should be increased as well?

13. *Show the correctness of equation (7.4) on page 346.

14. Can we still apply the go-back-N protocol if frames can be received out of order?

15. Explain how time-division multiplexing works, and in particular how it can be used
to increase channel utilization.

16. Suppose we were to use some form of time-division multiplexing, but instead of
skipping a slot in the case of detecting an empty buffer, we continued to search
until data from another buffer was found. In that case, what kind of information
must we add to each slot before sending the entire frame?

17. Explain what is meant by “layered communication protocols”.

downloaded by wizard.z@foxmail.com

Chapter 8

Local area networks

Now that we have discussed the basic means of connecting computers, we will take a
detailed look at actual computer networks. In this chapter we start by considering local
and metropolitan area networks. In particular, we shall pay attention to what is generally
referred to as the data link layer, containing the protocols for transmitting a single frame
across a network. In addition, we shall also discuss the principal means of implementing
the basic communication models discussed in Chapter 6.

8.1 Introduction

The first type of computer network that we are going to discuss in detail are so-called
local area networks (LANs). A LAN generally consists of some tens to a few hundred
computers which are geographically sited near to each other. For example, a LAN may
be used in a single department located on one floor or expanded to a building or build-
ing complex. Strongly related to LANs are metropolitan area networks (MANs) which,
as their name suggests, can cover entire cities. MANs are similar to LANs as they are
based on the same communication technology, which means that they essentially em-
ploy a broadcast mechanism. In other words, whenever a computer (or station as we
shall refer to it) sends data across the network, then, in principle, every other station will
be capable of receiving this data.

Another important technological feature of LANs and MANs is that they are capable of
supporting relatively high transmission rates. In particular, rates may vary between sev-
eral million bits per second (bps) and a 100 million bps. These high transmission rates
make them extremely attractive for distributing various services. For example, databases
may be kept at one site but still be accessible by hundreds of workstations without users
noticing any real performance degradation. Likewise, printers, in particular those that
are used for high-quality graphic work and which require very large amounts of data
to be processed, can be shared by many users without the necessity to have them di-
rectly connected to a user’s workstation. As a more extreme example, we further men-
tion that many computers connected to a LAN and which employ virtual memory (see

357

downloaded by wizard.z@foxmail.com

358 Local area networks

Section 5.2.5) can use the same hard disk for swapping pages into and from their local
main memory.

In general, it is the exceptional price/performance ratio compared to centralized solu-
tions which makes LANs and MANs so attractive. Because these types of networks are
generally owned by a single organization, there are also no legal or political issues to pre-
vent an organization from building its own network. Practice shows that organizations
indeed build LANs. An illustration of the popularity of LANs and MANs is the emerging
consumer electronics in the form of cable radio and television which is typically based
on MAN technology. In any case, it does seem worth spending some time on studying
LANs and MANs.

In this chapter, we shall initially concentrate on two important technological issues.
First, we are faced with a fundamental problem that underlies the broadcast mechanism
employed in LANs: we can in principle not allow multiple senders to use the LAN at the
same time. This issue is discussed in Section 8.2. The second problem is that of scalabil-
ity. As the advantages of LANs are gradually exploited by an increasing number of users,
we are faced with the problem of how a network can be adequately expanded. One solu-
tion is simply to interconnect several LANs into a larger network. However, this scheme
is only acceptable if the advantages outweigh the disadvantages. In practice, this means
that no loss of performance can be accepted. How this can be done is discussed in Sec-
tion 8.3. For simplicity, we shall assume throughout this chapter that all frame transmis-
sions are free of errors, and that broadcasting frames over a network is reliable, i.e. all
frames are eventually received.

Now building and connecting LANs should be of no concern to users. In particular, if
access to the services of a LAN is hindered by technology, users will simply not make use
of these services. Therefore, we should be able easily to access the network. This is part
of the functionality you would expect to find in operating systems. How networks can
be accessed by software is discussed in Sections 8.4 and 8.5.

8.2 Getting access to a broadcast channel

In this section we concentrate entirely on one problem: how we can manage access to a
broadcast channel. Channels were introduced in Section 6.4.1 as an abstract communi-
cation means that avoided the need for a sender and receiver to know each other explic-
itly by name. They returned in a more practical form in Chapter 7 when we discussed
frequency-division multiplexing. There, they were associated with a specific frequency
range for transmitting analog signals. In this chapter we consider channels still to be the
basic means for allowing senders and receivers to communicate. In other words, senders
put information on one end of a channel for receivers to pick it up at the other end. The
problem that we are faced with is that a channel is now to be shared between multiple
stations. In particular, we have to devise mechanisms that allow at most one sender at a
time to have access to the channel. Let’s first explore the issues that are related to viewing
such broadcast channels as shared resources.

downloaded by wizard.z@foxmail.com

Getting access to a broadcast channel 359

1
0
0
1
1
0

0
1
0
1
0
0

1

1

1

1

0

A B C

(a) (b)

1

1

1

1

0

1
0
1
1
0
1

A B C

Figure 8.1 The effect of colliding messages, at the start (a) and end (b) of transmission.

8.2.1 General problems with broadcast channels

As we have already mentioned, broadcast channels impose a fundamental problem. As-
suming that we do not use multiplexing techniques, we must prevent two stations simul-
taneously attempting to put information on the channel for garbled data will be the result.
As an introduction to the following sections, we first concentrate on how these problems
can be handled in general.

Message collision and detection

Let’s start by considering what the result of simultaneous transmission over a broadcast
channel might be. Suppose we have three stations A, B, and C, respectively, which share
the same broadcast channel as shown in Figure 8.1. Station A wants to transmit the bit
string h1011001i, whereas B simultaneously wants to transmit h0001010i. For simplic-
ity, we assume that when both a 1 and a 0 are transmitted across the channel by differ-
ent stations, the result signal will be 1 as well. This means that if A and B simultane-
ously transmit their bit strings, the first bit that will be received by station C will be 1,
as shown in Figure 8.1(a). The final result, of course, will be the bit string h1011001i�
h0001010i� h1011011i as shown in Figure 8.1(b). Indeed, this bit string is to be con-
sidered as rubbish as there was no station that sent it. We say that the messages that have
been sent by A and B have collided.

Now clearly, collided messages is something we do not want and they should be dis-
carded completely. But in order to do so, we must have a means of detecting a collision.
Different techniques can be applied for detecting that things went wrong; one particu-
lar scheme is discussed here. The point is that while a station is transmitting a bit string
across a channel, it is also in a position to listen at what is being transmitted on that chan-
nel at the same time. This is illustrated in Figure 8.2(a) where station B notices that al-
though it is transmitting a 0, it is receiving only a 1. Consequently, it has to conclude that
something went wrong. A similar situation occurs for station A, although much later as
illustrated in Figure 8.2(b).

But what about station C? From its perspective it seems to be receiving just another bit
string. One way or the other,C will also have to know that this bit string is indeed rubbish.
The solution is quite simple. When a station transmits a message, it adds information to

downloaded by wizard.z@foxmail.com

360 Local area networks

11

A B C

(a)

1 0

1
0
1
1
0

1
0
1
1
0

1
0
1
1
0

1
0
0
1
1
0

11

=?

0
1
0
1
0
0

01

=?

1

11

(b)

01

=?

11

=?

1

A B C

Figure 8.2 Detecting collisions by station B (a) and A (b).

that message that will allow for error detection by the receiver. This is in principle no
different from the techniques that were discussed in Section 7.2.3. Note that we are here
explicitly permitting errors through message collision, and are relying on error detection
as a means of detecting collisions.

Getting exclusive access

Now that we have seen what can happen when two stations simultaneously transmit a
message, we should start addressing the question of how exclusive access to a channel
can be obtained. Here we are confronted with a fundamental problem. In order to agree
on which station may access the channel, the stations will have to communicate. The
only medium that they have at their disposal to do this is the same channel to which they
need exclusive access. Therefore, special measures will have to be taken. Roughly, three
types of techniques can be distinguished for controlling access to the channel:

� Exercise no control at all, i.e. simply let a station try to use the channel, and take
appropriate measures when it finds that its message has collided with another mes-
sage. This rather anarchic approach, applied to so-called contention systems, will
work well when channels are not used intensively. The converse is the case when
network traffic is heavy.

� Employ a round-robin technique, in which each station in turn is given an oppor-
tunity to use the channel. In practice, networks based on this technique make use
of a so-called token that is circulated between stations. A token is a message act-
ing as a marker. The station that has the token may use the channel. These systems
work well when network traffic is high, but they are not very efficient when only
a few stations wish to transmit.

� Let a station place a reservation for the channel. In practice, this happens by re-
serving so-called slots, which is an amount of time that a station can reserve for
transmission. The problem here, however, is how to make a reservation. As we
shall see, this need not really be difficult.

downloaded by wizard.z@foxmail.com

Getting access to a broadcast channel 361

network layer

physical layer

logical link control layer

medium access layer
data link layer

Figure 8.3 The position of the medium access and the logical link control layer in the OSI

model.

In the remainder of this section we shall take a closer look at the way that broadcast chan-
nels can be shared between a number of stations. The protocols we describe here form an
important part of OSI’s data link layer. In fact, they are so important that they have been
recognized as a separate sublayer, generally referred to as the medium access layer, po-
sitioned in the lower layers of the OSI model as shown in Figure 8.3. The sublayer that
forms the upper part of the data link layer is referred to as the logical link control layer.
We shall concentrate primarily on protocols that have been widely accepted, and have
gone through a process of standardization. In what follows two types of systems each
using a different access strategy are discussed: contention systems, and collision-free
systems, the latter containing round-robin and reservation techniques.

8.2.2 Contention systems

Probably the simplest way of sharing a broadcast channel is allowing its stations to use
it simultaneously. The point of these contention systems is that stations try to transmit
something via the channel, and withdraw if they notice that something is wrong. After
withdrawal, they make a new attempt, mostly after having waited a certain time. In order
to appreciate the standardized version of contention systems, let’s look at some protocols
based on this principle, starting with a rather crude one for the sake of illustration.

� ALOHA protocol

As a first example, consider the so-called pure ALOHA protocol implemented at the Uni-
versity of Hawaii in the 1970s. In pure ALOHA systems stations simply transmit a frame
whenever they need to. If the frame is destroyed, i.e. if it collides with another frame, the
transmitter waits a random amount of time and makes a new attempt to transmit it. There
are two characteristic features of this protocol: (1) a frame is always transmitted in its en-
tirety, and (2) the channel is sensed after transmission has started. The sender will continue

downloaded by wizard.z@foxmail.com

362 Local area networks

to retransmit the frame until no collision has been detected. Indeed, this is a rather crude
method for getting access to a channel. Nevertheless, if we analyze the performance of this
protocol, things are not as bad as they may seem. It can be readily shown that the utiliza-
tion of a channel using the ALOHA protocol can be as high as 18%. This means that if we
measure the frame traffic across the channel during 100 time units, and measure how much
time is used for the successful transmission of frames, then this will be as much as 18 time
units. The rest of the time is just wasted. The channel is either not used at all or is used for
transmitting frames that will have to be retransmitted later.

Of course, much better protocols exist. For example, by letting stations attempt to trans-
mit a frame during predefined time slots it can be shown that maximum utilization can be
doubled. We will leave these matters at this point and continue with presenting protocols
that are now in far more widespread use than those employed in ALOHA systems. We shall
return to performance issues in Section 8.2.4.

� CSMA protocols

The problem with ALOHA protocols is that stations do not make use of the fact that the prop-
agation time in a LAN for a frame is relatively short. Because the distance between any two
stations in a LAN is short, a transmitted signal arrives at all stations almost immediately.
Consequently, it makes sense for a station first to check if any other station is currently trans-
mitting a frame. If this is the case, it is useless to start a frame transmission, and instead,
the station should wait until the channel is free. Protocols that obey this rule are generally
known as carrier sense multiple access (CSMA) protocols. Two types of CSMA protocols
are briefly discussed here: non-persistent and persistent.

Non-persistent CSMA. With a simple CSMA protocol a station starts with sensing the
channel before trying to send a frame. Then, if the channel is free, the frame is sent, other-
wise some random amount of time is allowed to pass before making another attempt. That
this will indeed work is illustrated by considering what you often do when phoning some-
one and find that the line is busy. In that case, you will make a second attempt after having
waited a few minutes. The underlying idea is that you expect that phone calls will generally
take only a few minutes, and that phones are not continuously being used.

But the analogy with making phone calls also illustrates a problem that is inherent in non-
persistent CSMA, for we may have a situation where a station is voluntarily waiting before
making its next retransmission attempt, while in fact, the channel may be free. In other
words, we are wasting transmission capacity. The solution is found in simply allowing a
station to be more selfish.

p-Persistent CSMA. A more greedy approach is followed by the p-persistent CSMA
protocol. In this case, stations are allowed to make an attempt for transmitting a frame only
at specific moments. What happens is the following. If a station finds that the channel is not
being used, it will start transmission with probability p. If it decides not to start transmission
(with probability 1� p), it waits a full time slot before making the next decision whether
to start transmission. A time slot, in this case, is a predetermined fixed amount of time. On

downloaded by wizard.z@foxmail.com

Getting access to a broadcast channel 363

the other hand, if the channel is occupied, the station will simply wait until it becomes free,
and then make the decision to start its transmission or not.

An important question is how large p should be. One extreme is to take p � 1, i.e. a sta-
tion will never be prepared to wait voluntarily another time slot, but instead immediately
starts frame transmission as soon as it detects that the channel is no longer occupied. This
1-persistent CSMA protocol is not very efficient in heavily loaded systems as it can be ex-
pected that collisions may occur frequently because no station is prepared to delay starting
its transmission. In practice, efficiency is improved by allowing stations that have noticed
that a collision occurred to wait a random amount of time before making a another attempt.
Another extreme is to take p � 0. In this case the number of collisions will be zero as well,
as each station is now prepared to wait indefinitely before starting transmission. In other
words, there will be no frame transmissions at all. Indeed, a 0-persistent CSMA protocol
makes no sense.

Finding the right value for p is not simple. For example, if it is expected that network traffic
is low, i.e. that there will be relatively few frame transmissions, it is wise to choose p� 1.
But if network traffic is heavy, having p close to 1 will lead to a catastrophe. Many collisions
will occur and stations are repeatedly forced to make a new attempt to retransmit their frame.
Meanwhile, new senders will appear on the scene making matters even worse. In the end,
we may find ourselves in a situation in which the efficiency rapidly decreases to zero. In
these cases, p should have been chosen close to zero, but, as can be seen, this does mean
that stations will often unnecessarily wait before transmission in the case of light network
traffic. For these reasons, more flexible protocols needed to be devised.

CSMA with collision detection

A widely used family of protocols in local area networks are the so-called CSMA/CD pro-
tocols, which stands for carrier sense multiple access with collision detection. This
family of protocols is so widely applied that it has led to a standardization by the IEEE,
referred to as IEEE 802.3. In contrast to the protocols described above, CSMA/CD pre-
scribes that stations immediately abort transmission of a frame as soon as they detect a
collision. As in the case of CSMA protocols, a distinction is made between persistent and
non-persistent CSMA/CD protocols.

Probably the most famous CSMA/CD protocol is its 1-persistent version, generally re-
ferred to as Ethernet. The Ethernet standard is widely applied to local area networks.
The standard stands for a family of implementations, in which distinctions are made be-
tween the diameter of the cable and whether or not a tree topology is supported. The
standard transmission rate is 10 Mbps. Being 1-persistent CSMA/CD means in this case
that stations will follow three steps in order to access the channel:

1. The station first listens to see whether the channel is free. Transmission is delayed
until the instant the channel is no longer used.

2. During transmission, the station keeps listening in order to detect a possible colli-
sion. If a collision occurs, transmission immediately stops.

downloaded by wizard.z@foxmail.com

364 Local area networks

3. If a collision occurs, the station waits a random amount of time, and proceeds with
the first step again.

Waiting some time after detection of a collision is essential in order to allow the protocol
to work. In practice, the time to wait is chosen at random, with a mean value that doubles
with every unsuccessful transmission attempt. If a collision still occurs after 16 attempts,
the station will simply stop trying and report an error.

� Now let’s take a closer look at the impact of a collision in CSMA/CD networks. The impor-
tant point is the time it takes for a station to detect that something is wrong. We have argued
that due to the fact that the propagation time of signals through a LAN is extremely short,
we may assume that signals have been received immediately. However, this statement does
not hold if we want to say something sensible about collision detection. Therefore, follow-
ing our notation as introduced in Chapter 7, we denote the propagation time for a signal to
travel from a sender to a receiver by Tprop. Again, the frame transmission time is denoted
by Tframe.

Now, considering Figure 8.4, suppose we have two stations, A and B, connected to the same
channel, and that A starts to transmit a frame FA at time t. Of course, B cannot detect that
A is transmitting FA before the head of frame FA has reached B, which will take Tprop time
units. If B starts to transmit a frame FB at time t�Tprop�δ, where 0� δ� Tprop, we have a
problem. First, B is going to detect that its own frame collides with frame FA at time t�Tprop,
and so it will stop transmitting FB. But we are already too late, because frame FA will have
been corrupted by the first signals that were sent by B. Consequently, A will have to stop
transmitting as well. However, the first time that A can detect that a collision occurred is at
time t�2Tprop�δ, because by then the first signals of frame FB will have reached station A.
Consequently, a station can never be sure that the head of its frame has reached its destination
for at least 2Tprop time units after it started transmission.

What does this mean? First, it implies that if we want to use the CSMA/CD protocol, we
have to take into account that whenever two frames are to be transmitted, at least 2Tprop

time units will have to elapse before transmission of the second frame. This period of time
is referred to as the contention period Tcont. It is during the contention period that collisions
can occur. Note that the contention period is in fact “wasted time”: we are not allowed to use
the channel. This is no problem when Tprop is small and frames are relatively long (i.e. the
frame transmission time Tframe � Tprop), but matters deteriorate when either Tprop increases
or frames become shorter and transmission rates higher. (Note that these timing analyses are
completely analogous to those presented in Section 7.3. The difference lies in the fact that
we are now concerned with detecting when two frames collide, rather than synchronizing
the transmission rate between a sender and a receiver.)

8.2.3 Collision-free systems

Contention systems are based on the principle that stations are allowed to start transmit-
ting a message simultaneously. Special measures will have to be taken when a collision
occurs. By detecting collisions and subsequently retransmitting frames, we can ensure

downloaded by wizard.z@foxmail.com

Getting access to a broadcast channel 365

A B

A started sending a frame

B started sending a frame

B detects that its frame collides with another frame

A detects that its frame has collided with another frame

Tprop

2Tprop − δ

Tprop

t

δ 2Tprop − δ

A B

FA

FB

time

distance

time

Figure 8.4 The detection of collisions in CSMA/CD protocols requiring a contention period of
2Tprop.

that frames, in the end, will travel through the channel to their receiver(s). But obvi-
ously, each frame that has collided is a wasted frame, and it would seem worth looking
at protocols in which collision would simply never occur. In this section, we shall briefly
consider three collision-free protocols.

Token ring protocol

One particular example of a collision-free protocol is the so-called token ring protocol.
This protocol (which has been standardized as IEEE 802.5) is used for LANs that are phys-
ically organized as a ring. A small frame, called a token, is continuously circulated from
one station to another. If a station wants to transmit a frame, the first thing it should do

downloaded by wizard.z@foxmail.com

366 Local area networks

(a) (b)

(c) (d)

Figure 8.5 The token ring mechanism: a token circulates (a), which is then claimed by a sta-
tion that subsequently starts transmission (b). The frame arrives at its destination (c), and is later
removed from the ring by its sender (d).

is to claim the token. As soon as the token arrives, the station removes it from the ring
and starts transmitting its frame. Because the frame is broadcast to every other station
in the LAN, it will not only be received at the intended destination but will eventually
also reach the station that sent it. In this way, the station will know when the frame has
been completely transmitted so that it can then put the token back on the ring again. This
principle is illustrated in Figure 8.5.

The principle of a token ring mechanism is quite simple. It is essential that stations
each have an opportunity to transmit their data. Because a token is passed from station
to station in accordance to their circular ordering, no station will be excluded from trans-
mission. This is an important distinction from the CSMA/CD strategy where randomness
is used as the basis for selection among competing stations.

� It is also not difficult to incorporate some priority scheme as well. Let’s see how this prin-
ciple works.

Using priorities. To simplify matters, assume we wish to make a distinction between two
priorities, and that stations operating at a low priority should be excluded from transmitting
their frame as long as there are stations which have a high-priority frame to send. (In reality,

downloaded by wizard.z@foxmail.com

Getting access to a broadcast channel 367

the IEEE 802.5 standard for token ring networks makes a distinction between eight priori-
ties.) In this case, we can devise a simple scheme in which a low priority is indicated by
0, and a high priority by 1. If F is a frame, denote by prior�F� the reserved priority at F.
Likewise, denote by prior�T� the current priority of the token, and by prior�S� the priority
of a station S. Adding a two-level priority is then expressed by the following algorithm.

Algorithm 8.1. Two-level priority scheme for token ring networks. The algorithm expresses
what a station S should do in order to send a frame.

1. Wait until either a frame F or the token T arrives.

2. If a frame F arrives, then set prior�F��maxfprior�F��prior�S�g and forward F (with
its adjusted reserved priority) to the neighboring station. Note that the priority that is
now reserved at F is the highest requested by any station that has received F. Continue
with Step 1.

3. If the token T arrives, and prior�T�� prior�S�, then simply forward the token to the
neighboring station, and continue with Step 1.

4. If the token T arrives, and prior�T� � prior�S�, then simply send your own frame F
through the ring after having set prior�F� to 0. Eventually, F will be returned with a
possibly adjusted value for prior�F�. As soon as F returns, forward the token with its
priority set to prior�F�, i.e. prior�T�� prior�F�. Stop.

�

It is not difficult to see that this scheme will work. The essence lies in the priority reservation
at a frame F that is currently in transmission. Any high-priority station that wants to transmit
a frame instructs the currently transmitting station to insert a high-priority token as soon
as its transmission has been completed. From that moment, only high-priority stations can
transmit frames, and again, in a round-robin way. As soon as there is no more high-priority
data to send (indicated by the fact that prior�F� � 0 for the frame presently in transmission),
a low-priority token is inserted in the ring so that the other stations will have an opportunity
to transmit data.

In practice, token ring systems admit more than just two priorities, and eight priority levels
are generally supported. In that case, the algorithm becomes slightly more complicated, al-
though the principle remains the same. The interested reader is referred to Stallings(1993b)
for further details.

However, when comparing the token ring mechanism to CSMA/CD systems, there are
also some potential flaws that have to be taken into account. First, tokens, like frames,
can become lost due to transmission errors. Another source of error is a malfunctioning
station. For example, assume a station has just transmitted a frame and, after transmis-
sion, crashes. In that case, the frame will continuously circulate through the ring as noth-
ing has the authority to remove it. To solve these problems, token ring networks always
have a special station which is elected as the network monitor.

downloaded by wizard.z@foxmail.com

368 Local area networks

The network monitor. To illustrate, suppose that, for one reason or another, the token
is lost. In order to detect this event, the network monitor uses a simple timeout mecha-
nism. Each time the token or a frame passes, a timer is set to the maximum time that is
needed to circulate it. If this timer expires, the network monitor will simply insert a new
token into the ring. Detecting circulating frames is also easy. As soon as a frame passes
the network monitor, it simply marks that frame. Clearly, if a marked frame passes the
monitor, it should be removed as it has already circulated through the entire ring. In that
case, the original sender of the frame has failed to remove it. The monitor removes the
marked frame and inserts the token into the ring.

An interesting question is what happens when the monitor itself fails to work properly.
First, we must have a means of knowing that there is a monitor present. This is not too
difficult. The monitor simply inserts a control frame from time to time to indicate that it
is still present. This control frame is received by every other station, so there’s nothing
to worry about. But suppose now that the monitor fails. In that case, the other stations
will notice that there is no longer a monitor available, and a new monitor will have to be
elected. Without going into too much detail, stations can start issuing election frames,
stating that they are candidates to act as network monitor. As soon as each election frame
has passed all other stations, enough information is known to select the next monitor.

But the real problems start when the ring breaks down, for example because a station is no
longer capable of forwarding the token or frames. In many cases, such a situation cannot
be resolved by automatic recovery means, implying that a human operator will have to
intervene. This is not a disadvantage as long as the usage of the network is not critical.
For example, in many offices it is acceptable that the network shuts down completely in
order to upgrade the system or undertake repairs. In factories where networks need to be
exceptionally reliable, this procedure is not acceptable and another solution is needed.

Token bus protocol

In contrast to token ring systems, the token bus protocol is used in those situations in
which the LAN is organized in a bus or tree topology. The main difference from the token
ring protocol is that each station in a token bus system has equal rights when keeping the
network active. In particular, management of faults is not performed by a single monitor,
but instead is distributed between the various stations. In a token bus system there is, as in
token ring networks, a token that circulates between the various stations. In particular,
the stations are logically organized as a ring but physically organized in a bus or tree
topology, as shown in Figure 8.6. The token bus protocol has also been standardized by
the IEEE (802.4).

The working of a token bus network is in principle the same as that of a token ring
system. Whenever a station wants to transmit a frame, it waits until it receives the token
from its (logical) neighbor, removes the token from the ring and broadcasts the frame on
the network. When frame transmission is completed, the token is forwarded to its other
neighbor. The main difference between the two systems lies in the management of the
logical ring. We first briefly consider some issues to illustrate the increased complexity
compared to the token ring systems described above.

downloaded by wizard.z@foxmail.com

Getting access to a broadcast channel 369

Figure 8.6 The organization of a token bus network.

(a) (b)

Figure 8.7 Setting a switch for participation (a), or no participation (b) of a station in a token
ring network.

Removing a station from the bus. Let’s start with the simplest issue, namely shutting
down a station. In a token ring system each station is physically connected to the ring by
means of a switch as shown in Figure 8.7. When this switch is open, frames are simply
passed to the station. When this switch is closed, as shown in Figure 8.7, frames will
simply pass by the station to its neighbor. Shutting down in that case can be done simply
by closing the switch. In the case of a token bus network, however, we have to do a lot
more work instead.

If station Si wants to shut down in a token bus network it will first have to wait until it

downloaded by wizard.z@foxmail.com

370 Local area networks

receives the token. It then transmits a frame to its logical predecessor Si�1 stating that it
will no longer participate in the ring, and that the logical successor of Si�1 will now be
Si�1, the former successor of station Si. As soon as Si�1 receives the frame, it will simply
forward a new token to Si�1. In this way, we have reconfigured the logical ring.

Adding a station to the bus. But what if a station wants to enter the token bus network?
With token ring systems we (in principle) simply have to open the switch in Figure 8.7.
For token bus systems, this simple scheme cannot be used. Instead, each time a station
Si is holding the token it will broadcast over the bus a small solicit-successor frame to
all stations, including those that are not yet participating in the logical ring. This frame
contains the identification of Si and its present successor Si�1. It is important to note that
this frame can indeed be received by all stations that are connected to the bus. Three
possible responses can then be transmitted:

� No response can be returned, implying that there is no station that wants to enter
the logical ring. In that case, Si can forward the token as before.

� There is precisely one response, say from station Snew. In this case, there is also no
real problem. Station Si simply forwards the token to Snew, who then knows that it
may now participate in the ring with Si�1 as its successor.

� There are several responses. No problem you might say: if Snew and S�new responded,
simply let Si decide how to reconfigure the ring by sending the appropriate config-
uration information to Snew and S�new. But there is a problem. Because both new
stations are announcing their respective arrivals at the same time, the only infor-
mation that will reach Si is that two messages have collided. In other words, it de-
tects rubbish on the bus, and the only thing it can conclude is that several stations
want to join.

In this case, it transmits a resolve-contention frame and waits for a number of time
slots, say four. These time slots are important. The point is that each station has
a unique (hard-wired) identification, represented as a binary number. Now, during
the first time slot, only those stations with a number starting with “00” are allowed
to respond; during the second slot, stations with their number starting with “01”
may respond, etc. In this way, station Si imposes an ordering on the responses of
the stations that want to join the ring, so that message collision may be avoided,
allowing proper reconfiguration of the ring. Of course, two stations whose identi-
fication number starts with the same two bits will still cause message collision. In
this case they will have to try later (after having waited a random amount of time).

It should be clear that letting a new station join the ring is much more complex than is
the case with token ring networks.

Token problems. Problems with tokens can be particularly difficult. Let’s focus on
the situation where the token is lost. Detecting this is not too difficult. If there is no

downloaded by wizard.z@foxmail.com

Getting access to a broadcast channel 371

activity on the ring for some time (again, we have to detect this by means of a timeout
mechanism), all stations can come to the conclusion that there is no token. So they try to
transmit a new token. Obviously, in the end, only one station should succeed in doing so.
The solution is like adding new stations. First, stations broadcast a claim-token frame.
If message collisions occurs, each station can conclude that there are more claimants on
the ring. Consequently, each station will decide for itself to wait for a specific number
of time slots before sending the next claim-token frame. If, at any moment, message
collision does not occur, then this means that a station has succeeded in transmitting its
claim-token frame. It is that station that may then insert a new token, and the logical
ring is active again. The other stations simply join in exactly the same way as described
above.

We leave these matters at this point. The issue that should be clear by now is that to-
ken bus systems are far more intricate than token ring systems in terms of management.
The intricacies are a result of the distributed nature of token bus management. Because
all stations share equal responsibility for managing the network, they have to follow a
distributed decision-making policy in order to reach a common agreement. The advan-
tage of this scheme is that token bus systems are extremely reliable. For example, if one
station malfunctions, its tasks with respect to network management are taken over com-
pletely by the remaining stations. Only in exceptional cases is it necessary for a human
operator to intervene. For this reason alone, token bus systems have been widely applied
in factory automation and process control.

� Using time slots

Both token-based protocols are typical implementations of access strategies that employ
round-robin control. As a last example, let’s consider a simple reservation system that is
based on the use of time slots in bus-based systems.

Suppose we have a network with N stations. We introduce a contention period Tcont� 2Tprop

consisting of N time slots. Again, no two frames are ever transmitted in sequence by the
same sender before Tcont time units have elapsed. Within these Tcont time units we distinguish
N time slots each lasting Tcont�N time units. Now if station Si wants to transmit a frame,
it starts with transmitting a 1 during the ith slot of the contention period. No other station
is allowed to transmit during this slot. Because each station indicates whether it wants to
transmit a frame, it should be clear that after the contention period has elapsed it is known
to all stations who are the competitors for the channel. This knowledge can then be used
jointly to allocate the channel to one of the stations.

For example, we can agree to allow the station with the highest number to use the channel
for transmitting its frame. A fairer strategy is to allocate the channel in turn. For example,
suppose during the first contention period we detect that stations S1� � � � �Sk want to transmit
a frame. We then let S1 transmit its frame, so we are left with contenders S2� � � � �Sk. Now as-
sume that during the second contention period, S�1� � � � �S

�

n also indicate that they want to use
the channel. It can then be jointly decided that S2 can use the channel, and that S�1 will have

downloaded by wizard.z@foxmail.com

372 Local area networks

to wait until Sk has finished its transmission. What we are effectively doing is maintaining
a queue of competitors at each station, following a first-come first-serve strategy.

The important point to note here is that by globally indicating that a station wants to use the
channel it can be decided locally by each station when it is permitted to use the channel,
using an allocation policy known by each station. In other words, we have found a way to
arrive at a commonly agreed final decision whereas the making of that decision is completely
distributed. This is an important decision-making policy to which we shall return a number
of times throughout this book. Several improvements in using time slots can be made. Most
attempt to avoid the situation where a station can start transmission only after the contention
period has elapsed. We shall not go into any details here, but instead refer the interested
reader to Tanenbaum (1988).

� 8.2.4 On the performance of broadcast channels

At this point, let’s concentrate on seeing which network protocol is the best by focusing on
the issue of performance.

Preliminaries

Basically, the performance of a network protocol is dependent on the number of active sta-
tions on the channel, the length and frequency of the messages, and the supported trans-
mission rate, or bandwidth of the medium. Performance itself can be roughly expressed in
three different ways:

� In terms of throughput, performance is expressed as the number of bits that are sent
per time unit. Overhead bits, i.e. those which are also transmitted merely to make a
protocol work, are not taken into account.

� In the case of channel utilization, we concentrate on the ratio of the number of bits
that we wish to send, and the ones that we have to send in order for a frame transmis-
sion to succeed. We encountered this measure in our discussion of ALOHA protocols.

� Finally, it is also possible to measure various forms of delays. For example, the perfor-
mance can be expressed as the mean transfer time between the moment a sender first
attempts to transmit a frame and the moment it arrives successfully at the receiver.

In the following, we shall describe performance mainly in terms of throughput and utiliza-
tion.

Now let’s see what we can say about performance by merely looking at the two types of
systems we have discussed so far. First, it can be expected that contention protocols work
pretty well in systems where channel traffic is not heavy. The opposite will be the case with
collision-free systems. This distinction is not too surprising when giving the matter some
thought:

downloaded by wizard.z@foxmail.com

Getting access to a broadcast channel 373

1. When taking a closer look at collision-free systems it is seen that a more or less fixed
amount of overhead in the form of a circulating token is introduced to avoid collisions.
This is acceptable when collisions can be expected to occur frequently, but not when
it is known that the channel is seldom used. In the latter case, we will be forcing a
station to do a lot of work to avoid a collision that will probably not happen in any
case.

2. In contention systems there is nothing related to avoiding collisions; instead, colli-
sions are simply corrected when they happen. When only a few corrections can be
expected (i.e. retransmissions in the case of frame collision), it is worth doing this to
avoid administrative overhead. But if many collisions are going to occur and stations
are permitted to transmit frames on an ad hoc basis, we may find the stations in the
network continuously correcting collisions rather than successfully transmitting infor-
mation.

This is analogous to having traffic lights on a road crossing. When there is little traffic, traffic
lights slow down access to the crossing. On the other hand, with heavy traffic and no traffic
lights there is very low throughput; having traffic lights in that case at least guarantees a
certain throughput. This qualitative reasoning reveals that protocols such as Ethernet may
be in a difficult position when network traffic increases. And, in fact, they are.

Of course, more can be said if a more detailed analysis is made. To make matters not too
complicated, we would like to have a single parameter that can be used for the analysis of the
performance of a local network. In practice, the so-called normalized propagation delay
is used. This parameter, denoted as a, is defined as:

a �
Tprop

Tframe
(8.1)

where Tprop denotes the propagation time, and Tframe the frame transmission time. Another
way of looking at the value of a is interpreting it as the maximum number of frames that can
be in transmission at a given time.

For example, suppose that a � 1. In that case, we have Tprop � Tframe. Now, what does this
mean? If the propagation time is the same as the frame transmission time, then by the time
the first bit of a frame reaches the receiver (which is after Tprop time units), the last bit of
that frame will just have been forwarded to the channel (which takes place after Tframe time
units). Clearly, this implies that when a � 1, at most one frame can be in transmission. A
similar reasoning will show that if a � 2, implying that Tprop � 2Tframe, at most two frames
can be in transmission at the same time. It should now be clear that if a� 1, we are dealing
with the situation where many frames can be in transmission. This was the case with satellite
communication in the previous chapter.

But suppose now that a� 1. This can happen on several occasions:

� We have managed to keep the propagation time low, which is generally the case with
LANs in which frames have to travel over at most a few kilometers.

� Our frames are relatively large, say at least a few hundred bytes. This can also be the
case in LANs.

downloaded by wizard.z@foxmail.com

374 Local area networks

� The transmission rate is relatively low, so that, in combination with the frame size, the
frame transmission time is large compared to the propagation time.

And indeed, when observing LANs, it will generally be the case that a� 1. But this situation
will not hold for very long. The need for extremely high transmission rates and smaller
frame sizes is going to put some protocols in a difficult position, as we shall see in the next
two sections.

Contention systems

We first look at contention systems. Based on an analysis found in Metcalfe and Boggs
(1976), Stallings (1993b) derives the following formula for expressing the channel utiliza-
tion S of CSMA/CD networks:

S �
1

1�2 �a � �1�A��A
(8.2)

where A denotes the maximum probability that precisely one station attempts to transmit
and the others do not. Assuming that any station will make an attempt to transmit a frame
during a single contention period with probability 1�N, it can be shown that

A � �1�1�N�N�1

in which N denotes the number of (active) stations in the network. Now what does this for-
mula say? First, note that the number of stations N hardly has an impact on S. For example,
when N � 5 we have A� 0�41 which is almost the minimum value for A (which is approxi-
mately 0�37). Assuming that there are generally more than five active stations, it is therefore
in order to take the minimum value for A for our calculation of S, so that we can roughly state
that for average to large CSMA/CD networks, we have

S � 1
1�3.44 �a (8.3)

Consequently, the predominant factor that determines the utilization is a. If a� 1, as is the
case in many CSMA/CD networks, channel utilization will be good. In practice, a will lie
somewhere between 0.05 and 0.1 for most of these types of networks.

But the real problems start if we want to employ CSMA/CD protocols, but with higher trans-
mission rates than currently practiced. For example, suppose we increase the transmission
rate by a factor 10 (and keeping the same frame length), effectively meaning that a increases
by a factor 10 as well. If our original value for a was 0�05, we will see the utilization drop
from 85% to a mere 37%. For this reason CSMA/CD protocols will probably have to be re-
placed by more efficient ones in the near future.

downloaded by wizard.z@foxmail.com

Interconnecting LANs 375

Token-based systems

In token-based systems, the situation is much better. First, it can be shown that channel
utilization in the case of token ring networks is equal to:

S �

����
���

1
1�a�N

if a� 1

1
a�1�1�N�

if a � 1
(8.4)

Token bus systems are logically equivalent to token ring systems, and if we assume that the
token in a token bus system is always sent to the physically nearest active station, the same
formula for S can be derived (see Stallings, 1993b, for further details).

It can be seen from equation (8.4) that token-based systems will outperform CSMA/CD based
systems, especially in systems for which a remains smaller than 1. In those cases, almost re-
gardless of the number of active stations, channel utilization will be approximately 1, which,
of course, is the best one can hope for. Problems will arise, however, as soon a increases be-
yond 1. In those cases, a practical solution is simply to keep the physical length of the ring
in accordance with the frame size, i.e. make the ring shorter, effectively returning a to 1.

8.3 Interconnecting LANs

Local area networks have proved to be extremely successful, and the result is that their
application increases at a steady pace. This also means that there is an increasing demand
on them with respect to the amount of stations that they can support, as well as the rates
with which they support the transmission of data. In fact, we have gradually reached a sit-
uation in which it is impossible to scale networks simply using the technology described
in the previous section. Instead, large-scale LANs supporting hundreds of stations and
high transmission rates are presently built by connecting a collection of smaller LANs.
In this section we shall explore how such large-scale LANs are actually constructed.

8.3.1 Constructing large, high-speed networks

Simply scaling existing LANs by adding an increasing number of stations is a means to-
wards a dead end. The problems are caused by the fact that we wish to increase the trans-
mission rate (which reduces the frame transmission time), and at the same time also phys-
ically expand the LAN in order to cover a geographically wider area (which increases the
propagation time). In order to attain higher efficiencies, we should allow the network to
be used for the simultaneous transmission of several frames instead of one. This can be
achieved by dividing the network into smaller units each primarily accounting for local
traffic. Alternatively, if we connect existing LANs without adopting the full-blown broad-
cast mechanism, we can achieve the same goal. And this is what is done in practice.

downloaded by wizard.z@foxmail.com

376 Local area networks

network

physical

logical link control

medium access

bridge
segment-1 segment-2

data link
layer

Figure 8.8 Connecting two LANs by means of a bridge.

� As we have argued previously, scaling a LAN in size and time effectively means that the
normalized propagation delay a increases. In other words, the maximum amount of frames
that can be in transmission increases. In order to attain that maximum, we will simply need
to allow several frames to be in transmission at the same time.

The concept of a bridge

In practice, scalability of LANs is realized by connecting several so-called LAN segments
together. A LAN segment is just another LAN, but having only relatively few stations at-
tached to it. For example, a LAN segment may be constructed as an Ethernet network
with, say, 25 stations all sited on the same floor of a department. In general, each LAN

segment also forms a logical group in the sense that stations within the same segment
generally require services from only those stations that are connected to the same seg-
ment. Occasionally, services may be needed from stations connected to other segments.
LAN segments are connected to each other by so-called bridges.

A bridge is a device that picks up a frame from one LAN and subsequently forwards the
frame to another LAN. Logically, bridges span the physical and medium access layer of
the OSI model, as shown in Figure 8.8. Spanning the physical layer means that bridges
are like any other station in the network with respect to their physical layer. They are
connected to other stations in a LAN segment using the same connectors, transmission
media, etc. In particular, they can pick up and transmit frames like any other station, the
only difference being the fact that they are connected to at least two physically distinct
LANs.

But the real difference from ordinary stations lies in the implementation of the medium
access layer. For example, a bridge can be constructed to connect two CSMA/CD seg-
ments which use the same medium access protocol but which operate at different trans-
mission rates. The bridge is then responsible for forwarding frames from one segment to
another taking different transmission rates into account. For example, suppose a bridge
connects segment L1 operating at 10 Mbps with a segment L2 operating at 4 Mbps. If a

downloaded by wizard.z@foxmail.com

Interconnecting LANs 377

frame is sent from L1 to L2, the bridge will first have to receive and store the frame at a
rate of 10 Mbps, and subsequently transmit it on L2 at the much slower rate of 4 Mbps.
You can imagine that although this scheme seems perfectly in order, we may find our-
selves in difficulties if the rate at which frames are sent from L1 to L2 is high. The bridge
will have to store these frames while it is still forwarding previous ones onto L2. Con-
sequently, we may encounter storage problems if the amount of available memory at the
bridge gradually declines.

Bridges are also responsible for adapting frame sizes, a parameter which is defined by
the protocol used in the medium access layer. For example, if frame transmission in seg-
ment L1 is based on frames of length n, each frame F on L1 and which is intended for
segment L2 will have to be converted to a frame F� of length n� that corresponds to the
medium access protocol used in segment L2. If n � n� conversion is no problem: the
bridge simply adds a number of bits. When n � n� we will find ourselves in difficulties.
Splitting F into smaller subframes is out of the question as no medium access protocol
can handle fragmented frames as a frame is always assumed to be the only logically co-
herent unit of transmission data. In these cases, a bridge will have to discard conversion
completely, i.e. the frame F cannot be forwarded to L2.

Other problems with respect to converting frames from one segment to another exist,
but will not be further discussed here as these highly technical problems more or less fall
outside the scope of this book. Instead, we shall focus on two important general issues. In
the remainder of this subsection we shall take a closer look at interconnection topologies,
particularly so-called backbone networks. In the next section, the problem of routing
frames through a network is discussed – an issue which is also important when dealing
with wide area networks.

Interconnection topologies

Probably the most simple scheme for connecting a series of LANs is by cascading the seg-
ments as illustrated in Figure 8.9(a). What we have then is a very large, linear ordered
LAN. Although this is an extremely simple way to scale a LAN it is not a very good one.
The problem is that inter-segment traffic may have to cross segments for which it is not
intended. For example, if station A wants to send a frame to station B as shown in Fig-
ure 8.9(a), the frame will have to be forwarded through all intermediate segments, unnec-
essarily burdening the traffic for each of those segments. For this reason, it is generally
not acceptable to cascade more than two or three segments. An alternative solution is to
use multiport bridges which enable more than two segments to be directly connected as
shown in Figure 8.9(b). In general, multiport bridges allow up to a maximum of five to
ten segments to be connected. A typical use of multiport bridges is to connect a number
of segments in one building.

An interesting interconnection topology is the one based on a so-called backbone. A
backbone is a LAN in its own right, although no user generally ever sees it. The point is
that the bridges themselves are organized into a LAN as shown in Figure 8.10. A back-
bone serves only one purpose: connecting networks together. In principle, it can be built
using exactly the same technology as used for each of the LAN segments that it connects.

downloaded by wizard.z@foxmail.com

378 Local area networks

(a)

(b)

A

B

Figure 8.9 The construction of a LAN by cascading a number of segments (a) or using multiport
bridges (b).

backbone

Figure 8.10 Using a backbone to connect multiple LAN segments.

However, if no special measures are taken, it can be easily seen that a backbone may
become a bottleneck when intersegment traffic steadily increases. First, a backbone is

downloaded by wizard.z@foxmail.com

Interconnecting LANs 379

often used to connect segments which are geographically distributed over a wider area
than each of the LAN segments. Consequently, the physical length of a backbone may
become so large that propagation times may start to be a problem. Second, backbones
need to serve all the stations in each of the LAN segments. Consequently, if interseg-
ment traffic increases (for whatever reason) we must ensure that transmission rates are
extremely high or otherwise we will soon have the same problems encountered when a
single segment is expanded by simply adding more stations.

To account for high transmission rates, two different techniques are generally employed
which we shall briefly discuss here. The first employs an optical fiber-based ring tech-
nology which can support transmission rates of 100 Mbps. The second is a bus-based
technology which supports transmission rates of 35–150 Mbps, and which can employ
either fiber or electric transmission media.

FDDI. The fiber distributed data interface (FDDI) standard is used to connect a se-
ries of bridges into a token ring network. However, there are a number of important dif-
ferences from the IEEE 802.5 standard for token ring networks. First, an FDDI-network
consists of two (logical) rings, the second being available either as a backup facility or as
an additional means of transmission. Furthermore, an FDDI-based backbone operates at a
transmission rate of 100 Mbps. An important difference from the IEEE 802.5 token ring
network described previously is the following. In the latter configuration, a token was
retransmitted over the ring as soon as the transmitted frame reached its sending station
again. In contrast, a station connected to an FDDI network transmits the token immedi-
ately after it has transmitted a frame. In other words, a sending station does not wait until
the frame it has sent has been circulated entirely around the ring.

Another important distinction from the IEEE 802.5 token ring networks is that FDDI

networks support a mixture of asynchronous and synchronous data. Asynchronous data
consists of frames that can be sent at random time intervals. For example, when a large
amount of text is to be transmitted from one station to another in, say, Ntext successive
frames, it is unimportant when exactly each frame arrives at its destination. The only
issue is that all frames are successively transmitted. On the other hand, suppose we wish
to transmit (digital) signals that constitute speech or video. In that case, it is essential
that the data arrives at regular intervals due to the fact that speech or video is inherently
“continuous”. This is a typical example of synchronous data.

The point is to allow a station S to transmit synchronous data during a fixed time slot
Tsync as soon as it has received the token. The time slot is assigned on a per-station ba-
sis. Consequently, some stations may be allowed to transmit synchronous data during
a longer period than other stations. In addition, a common agreement is made between
the stations concerning the time that it should take them to circulate the token around the
ring once. This circulation time will be much longer than the minimum amount of time
needed to circulate the token. If we denote this circulation time as Ttoken, then a station
S that has transmitted the token at time t may expect that the token is received again at
time t�Ttoken. Assume station S receives the token at time t�. Then, two situations need
to be distinguished:

downloaded by wizard.z@foxmail.com

380 Local area networks

1. t� � t�Ttoken�Tsync. In this case, station S first transmits synchronous data during
its time slot of Tsync time units. It then may have time to transmit asynchronous
data, and may do so until time t � Ttoken. If there is no asynchronous data to be
sent, the token is immediately transmitted to the next station.

2. t�� t�Ttoken�Tsync. In this case, station S is allowed to transmit synchronous data
only during its time slot of Tsync time units after which it must immediately forward
the token to the next station. Note that if Tsync � 0 for station S, then in this case S
is not allowed to transmit any data, despite the fact that it has received the token.

An important observation of this scheme is that synchronous data is not only sent during
a fixed time slot (which is essential when transmitting “continuous” data such as speech
and video), it is also given a higher transmission priority than asynchronous data. And
indeed, such an assignment of priorities is perfectly justified.

DQDB. An alternative to FDDI networks are backbones adhering to the distributed-
queue dual-bus (DQDB) protocol. The DQDB standard has been developed to intercon-
nect LANs over a relatively large geographical area. A standard has been adopted by the
IEEE for its definition of metropolitan area networks (MANs).

The principal architecture of a DQDB network is shown in Figure 8.11(a). The network
is organized into two bus-based subnets A and B. In contrast to ordinary bus networks,
however, frames are now transmitted in only one direction. In particular, on bus A frames
are transmitted upstream from station S0 to station SN�1, whereas on bus B they are trans-
mitted downstream from SN�1 to S0. Moreover, both endstations S0 and SN�1 transmit
frames at a regular time interval. Frames on bus A or B can be either empty or full.

The principal operation of a DQDB network is shown in Figure 8.11(b) and can be ex-
plained as follows. Suppose a station Si wants to transmit a frame to another station Sj.
If i� j, it will need to do so by means of bus A, otherwise the frame will have to be trans-
mitted via bus B. Without loss of generality, assume that i � j, i.e. Si wants to transmit
a frame to an upstream neighbor Sj.

Frames in a DQDB network contain two additional bits: a busy bit indicating that the
frame already contains data, and a request bit indicating that a frame has been requested
by a station. In our case, station Si will need to claim an empty frame which is going
upstream towards Sj. Claiming the first empty frame will not do, for the simple reason
that it is not fair to other stations located upstream that want to send a message upstream
as well. Instead, stations will first have to issue a request for an empty frame. This is done
through the frames going downstream, i.e. those transmitted across bus B. The crux of
the matter lies in the fact that the request bit of frames going downstream can be set only
by stations that want to send a message to an upstream station. Also, we are assuming
that each station can have at most one outstanding request for an empty frame.

In our case, station Si will continuously sense bus B for frames, thereby counting the
number NA

req of frames of which the request bit has been set to 1. At the same time, it will
keep track of the frames transmitted upstream (i.e. on bus A) of which the busy bit is set
to 0, indicating that the frame is empty. Each time an empty frame is detected on bus A,

downloaded by wizard.z@foxmail.com

Interconnecting LANs 381

N A
req

B R

if R = 1 then N A
req N A

req + 1:=

if B = 0 then N A
req N A

req - 1:=

BR

A

B

S0 Si SN-1

(a)

(b)

Figure 8.11 The architecture of a DQDB network (a) and its principal operation (b).

NA
req is decremented. Consequently, NA

req denotes the number of outstanding requests for
empty frames on bus A as recorded by station Si.

The moment that Si wants to transmit a frame to Sj it will wait until the first down-
stream frame (i.e. on bus B) arrives of which the request bit is still set to 0. Si subse-
quently sets the request bit of this frame to 1. In addition, it records the current value of
NA

req which denotes the number of outstanding or preceding requests for empty frames on
bus A. As soon as NA

req empty frames on bus A have passed Si, it can use the next empty
frame to transmit its data to station S j.

An important observation of the DQDB protocol is that the channel is used efficiently
regardless of the traffic load. When there are very few frames to transmit by any station,
a station will always record a small number of outstanding requests for empty frames.
Consequently, it will be able to access the network with only a small delay. On the other
hand, when many frames are to be transmitted, a station need only wait until a frame is
transmitted with its request bit set to 0. As can easily be seen, the worst situation that can
happen is when there are N�1 outstanding requests for frames. But after that, the station
will be able to access the network. What this means is that with a minimum of overhead,
stations in a DQDB network maintain a distributed queue of requests for empty frames.

Finally, we note that like FDDI networks, the DQDB protocol supports transmission of
synchronous and asynchronous data. To that end, a number of prioritized request bits are
put into a frame, instead of only one. We shall not go into detail here, but instead refer
the interested reader to Stallings (1993b).

downloaded by wizard.z@foxmail.com

382 Local area networks

L1

B1

L2 L3

L4

L5

B2

B3

B4

S

Figure 8.12 A network containing a cycle.

8.3.2 Routing between LANs

We have now come to a point at which we can construct fairly large local and metropoli-
tan networks by interconnecting LAN segments by means of bridges. In essence, these
larger networks use the same technology as the smaller LAN segments. A frame transmit-
ted by a station S will in principle be broadcast to all other stations on the network. The
role of a bridge is in principle rather modest. If it connects several LANs L1� � � � �LN, then
a frame transmitted on one of these LANs, say Li, will be forwarded to LANs L1� � � � �Li�1,
Li�1� � � � �LN. However, if we rigorously adhered to this simple forwarding scheme, we
might find ourselves in difficulties. To illustrate, suppose we construct the network shown
in Figure 8.12.

Now assume that station S transmits a frame F on L1. Based on the forwarding scheme
just mentioned, bridge B1 will then forward F to L2 and L3. Denote these copies of F as
F12 and F13, respectively, where the subscript reflects the LANs through which the frame
is transmitted. Similarly, bridge B2 will pass the frame on to LAN L4, resulting in a copy
F14. Now observe what happens with respect to bridge B3. First, because it detects that
frame F is on L4 (in the form of its copy F14), it will forward F to L3, leading to a copy
F143. At that point, L3 will have received two copies of F: F13 via bridge B1 and F143 via
B3. This implies that all stations that are part of L3 will receive F twice. Clearly, this was
not our intention. But matters become worse. Because F was also forwarded via B1 onto
L3, bridge B3 will pick up copy F13 as well and pass it on to L4, leading to another copy
F134. In other words, L4 also receives two copies of F: F14 and F134.

Now let’s concentrate on F134. It should be clear by now that this copy will be for-
warded to L1 (leading to frame F1341), which is subsequently forwarded to L2 (F13412)
and L3 (F13413). At that point, we have generated three copies of the original frame F for
LAN L3. The end of the story can easily be imagined: we are completely flooding the net-
work with an endless stream of copies of the frame F. We are not only broadcasting the

downloaded by wizard.z@foxmail.com

Interconnecting LANs 383

Table 8.1 An example of a routing table for the network shown in Figure 8.12.

L1 L2 L3 L4 L5

L1 � B1 B1 B2 B2
L2 B1 � B1 B1 B1
L3 B1 B1 � B3 B4
L4 B2 B2 B3 � B3
L5 B3 B4 B4 B3 �

frame to each station, we are also generating an infinite number of copies to all stations.
Our broadcast is being performed rather too well.

What we need to do is deliberately route the frame through the network in such a way
that each station will receive it exactly once. In fact, an even better policy would be to
route the frame only to that LAN segment where its destination is sited. Decisions con-
cerning a route will at least partially have to be made by bridges. In the following two
subsections we will take a closer look at three commonly applied routing strategies.

Static routing

Probably the simplest way to avoid trouble is to provide a fixed routing table. For ex-
ample, reconsider the network shown in Figure 8.12. Table 8.1 shows a possible rout-
ing table R for this network. Each LAN segment is represented by a row and a column,
whereas each entry R�i� j� indicates the first bridge that should forward a frame that is
to be transmitted from LAN Li to Lj. So, for example, if a station on L4 wants to send a
frame to a station on LAN L2, bridge B2 will forward the frame from L4 to L1, after which
it will reach L2 via bridge B1.

Static routing is extremely simple and is widely applied to relatively small local area
networks. For reasons of maintenance, the routing table is often stored at a central lo-
cation. If the topology of the network changes it will be necessary to adapt the table at
only one place. However, we will encounter problems as the network grows, as each
bridge will have to obtain its routing information from this central location. And as net-
works grow, the rate at which the network changes increases as well. In large networks,
stations and bridges may occasionally fail to work properly, giving rise to the need to
change routes dynamically.

Spanning tree

Our need for routing came from the fact that we could easily flood the network when
transmitting only one frame. In essence, our problems were a result of the fact that there
could be more than one way to get a frame from LAN L to L�. It is not difficult to see
that if there were always precisely one route for a frame to be in transmission, delivering
several copies to the same LAN would not occur. And if the mere existence of alternative

downloaded by wizard.z@foxmail.com

384 Local area networks

L1

B1

B2

L3

L2

B3

L4

L5B4

L1

B1

B2

L3

L2

B3

L4

L5B4

(a) (b)

Figure 8.13 The representation of a network as a graph (a), and a tree spanning all its LANs (b).

routes is the problem, why not eliminate them in the first place? Of course, in view of
possible failing connections, it is not such a bad idea to have some alternatives routes. If
one bridge crashes, its task can be taken over by another. However, from a routing point
of view, we have seen that alternative routes cause problems.

A solution to this problem can be found by first considering the network as a graph
where the nodes are formed by the LAN segments and the bridges. For example, the net-
work from Figure 8.12 can be represented by the graph shown in Figure 8.13(a). In Fig-
ure 8.13(b) we see a possible connection scheme through which all LANs are still con-
nected, but now there is only one route between each two LANs. This connection scheme
is an example of a spanning tree. The point is that when we are dealing with a network
in which two LANs are connected by alternative routes (meaning that its corresponding
graph will contain at least one cycle), we search for a subgraph that connects all LANs
but in which alternative routes are no longer present. Frame transmission is then only al-
lowed across the connection scheme corresponding to this spanning tree. For example,
if we adopt the spanning tree shown in Figure 8.13, then a frame originating at L4 will be
forwarded to L1 via bridge B2, and subsequently forwarded to L2 and L3 via bridge B1,
and finally to L5 via B4. Note that bridge B3 has effectively been disabled.

There are two important issues related to adopting routing by means of a spanning tree
which we shall briefly discuss here. First, bridges can determine a spanning tree for the
complete network without having to make use of centralized information. This means
that each bridge can gradually update its own local administration in such a way that
eventually all bridges in the network will have reached agreement on the same spanning
tree. Second, bridges can also gradually construct an administration that provides them
with information on how LAN segments are organized, i.e. which station is on which seg-
ment. This information will allow a bridge to forward frames selectively. Let’s consider
these two issues in more detail.

� Finding a spanning tree. In order to find a spanning tree in a distributed way, we assume
that each bridge has a unique identification number. If bridge B is connected to LAN segment
L, it will transmit its identification number to each other bridge that is connected to L as
well. Consequently, per LAN segment it can be determined which bridge has the lowest

downloaded by wizard.z@foxmail.com

Interconnecting LANs 385

identification number. Initially, the one with the lowest number is selected as the root bridge.
So, per segment, there will initially be one root bridge. This can be illustrated by the network
shown in Figure 8.13(a). Assume that bridge B1 has identification number 3, whereas B2,
B3 and B4 have numbers 11, 10, and 8, respectively. Then, per LAN we have initially the
following selection of root bridges:

bridge id L1 L2 L3 L4 L5

B1 3
p p p � �

B2 11 � � � � �
B3 10 � � � p �
B4 8 � � � � p

Now the point is that eventually, there should only be one root bridge, and that all other
bridges know how they are connected to this bridge. First, see what happens with bridge B4.
It initially detected that it is the root bridge for segment L5, but not for L3 which had bridge
B1 as its root. Instead, it will record that it is now directly connected through L3 from B1,
which it expects to become the final root bridge.

The fact that B4 is located at distance 1 from the expected root is forwarded by B4 on LAN

L5, where it will be picked up by bridge B3. At that point, bridge B3 can record that it is
located at distance 2 from B1, and transmits the information to LAN segment L4.

Meanwhile, bridge B2 discovered that it could never be the root bridge for either L1 or L4.
However, it will also find that its distance to B1 (again, the expected root bridge for the en-
tire network) is only one LAN segment away, and passes this information via segment L4 to
bridge B3. So what happens at B3? Although it found that it was located at distance 2 from
B1, it now concludes that messages for segment L4 can be forwarded via a shorter route
(namely via B2). Similarly, it also knows that messages for L5 are already forwarded via
bridge B4. It therefore draws the conclusion that it can play no role at all with respect to for-
warding messages, and effectively disables itself by discarding any future messages passed
to it via any LAN to which it is connected. The result is the spanning tree shown in Fig-
ure 8.13(b).

Locating stations. Now, a spanning tree gives information on how frames between the
various LANs are to be routed. Its says nothing about frame transmission between sta-
tions. In this sense, a spanning tree is merely used to facilitate efficient broadcasts of
frames over the entire network. But, of course, broadcasting frames may not be a wise
thing to do. Instead, if frames could be routed directly from source to destination, we
would be using the network more efficiently. And indeed, this can also be achieved once
we have arrived at a point where a spanning tree has been agreed upon by all bridges.
The idea is quite simple. Consider the five LANs shown in Figure 8.14. (Note that we
may now assume that the network topology corresponds to that of a tree.) Now suppose
bridge B3 receives (for the first time) a frame sent by station S. At that point B3 can store
the fact that frames which are to be received by station S should always be sent via LAN

L3. This also means that if bridge B3 notices that a frame destined for station S is being
transmitted on LAN L4, it need not forward this frame to LAN L5, but can resort to just
forwarding the frame onto L3.

downloaded by wizard.z@foxmail.com

386 Local area networks

L1

B1

L2 L3

L4

L5

B3

S

Figure 8.14 An example of five LANs connected by two bridges.

So what have we accomplished? First, we have illustrated that bridges can jointly de-
termine a spanning tree over an interconnected network that will allow them to broadcast
frames efficiently. Second, bridges can also locally determine that it may be senseless
to forward frames to every segment they connect. Putting these two facts together, we
conclude that in an interconnected network it is possible to determine efficient routing
schemes (i.e. schemes that generate a minimum amount of network traffic) between sta-
tions without making use of centralized information, and, moreover, that these schemes
can be determined dynamically. The implication of this observation is significant. Sup-
pose that we repeat the construction of a spanning tree from time to time, and also re-
construct all local information concerning the exact location of stations on a periodic
basis. In that case, it should be clear that we can add and remove stations and LAN seg-
ments without having to update any global information on the network manually. In other
words, changing the network now reduces to simply connecting a station, or updating a
bridge without having to be concerned with other stations or segments. The network will
simply find out “by itself” what it looks like. A powerful property indeed. Bridges that
cooperatively build a spanning tree, and which discover where stations are located, are
called transparent bridges

Source routing

Although the spanning tree approach has the benefit of flexibility, there is also a price to
be paid. The main drawback lies in the fact that bridges such as B3 in our example become
redundant. The primary role is that of a standby bridge in case any of the other bridges
fails to work. Another drawback is that network traffic now only takes place according to
the spanning tree, which may not be a well-balanced strategy if we are concerned about

downloaded by wizard.z@foxmail.com

Interconnecting LANs 387

dividing the work between the various bridges and segments. As an alternative to the
spanning tree approach, routing frames through an interconnected network can also take
place according to the so-called source routing strategy. The basic idea underlying this
strategy is that a sending station explicitly provides the route that a frame is to follow.
Note that this does imply that the frame now contains not only data that is to be transmit-
ted but additional information on the route as well. This is an important distinction with
the spanning tree approach. In that case, stations merely transmitted frames on their LAN

segment; the bridges would ensure that they arrived at their proper destination.
Now, it should be clear that in order to transmit a frame, the topology of the intercon-

nected network should be available to the sending station. How does this information
get there? To explain how a station can find a route, we first need to discuss the vari-
ous types of frames that can be transmitted. In the extension of the IEEE 802.5 standard,
dealing with source routing bridges, the following four types of route directives are dis-
tinguished:

� A null directive indicates that a frame should be delivered to all stations only on
the same segment to which the sending station is connected.

� A non-broadcast directive specifies a unique route that is to be followed. The
route is given as an alternating sequence of LAN and bridge numbers respectively.

� An all-routes broadcast indicates that the frame is to be forwarded over all pos-
sible routes in the network. As we have illustrated, this may imply that several
copies of the frame will arrive at the receiver. It is there that the responsibility lies
to discard any copies. The protocol avoids cyclic transmission of frames.

� A single-route broadcast implies that the frame is to be sent to each station, but
only once. In effect, this means sending the frame according to a spanning tree.

In order to select a route from source to destination, the sending station first transmits a
single-route request frame. This frame will eventually arrive at all stations, but only the
destination will respond by transmitting an all-routes frame. Consequently, the sending
frame will eventually receive multiple copies of this response, where each copy corre-
sponds to a unique route between the source and the destination. After storing this in-
formation, the sending station can subsequently choose which route frames are to follow
when transmitting data to the selected destination station. The criterion for choosing a
route may be based on the length of the route or the expected amount of traffic.

The real problem with source routing is that discovering the collection of alternative
routes between each (source, destination) pair is quite costly. Once this is done, however,
spreading the load over the network can be much better than in the case of the spanning
tree approach. However, the additional amount of work for discovering routes is gener-
ally a reason for not using source routing but for adhering to the spanning tree approach.

downloaded by wizard.z@foxmail.com

388 Local area networks

8.4 Basic network interfacing

At this point it should be clear that we can in principle construct large networks connect-
ing tens to hundreds of stations. The principles of the underlying technology that we have
discussed so far allows one station to send a frame to another station without having to
be bothered about the fact whether the frame will arrive (it will), whether any other sta-
tions are transmitting as well (they are, but who cares?), and how a frame will get to its
destination (the routing is being taken care of). As long as a station has an identification
of the destination(s) of a frame, the network technology discussed so far ensures that the
frame will get there.

This may all seem fine, but it is not really getting us much further in light of the dis-
cussion we had in Chapter 6 on communicating processes. There, we described how we
could build software solutions that reflected the way we would want communication to
take place. So far, we have essentially only described the solutions that provide us with
the means to connect computers and getting a bit string, i.e. a frame, from one computer
to another. It is time that we paid some attention to how these means can be applied to
implement our communication models. And it is perhaps also here where normally the
real intricacies of computer networks surface. The problems lie not so much in the con-
cepts that are applied but much more in the level of abstraction that is pursued to explain
them, reflected by a completely new language and terminology which often hides the un-
derlying principles. This is not the approach that we wish to follow in this book. Instead,
we feel that it is much better to introduce concepts at a relatively low level of abstraction
by almost immediately giving some idea on how they can be implemented. It is our be-
lief that this will allow you to understand more easily the concepts and terminology that
are usually employed.

In the remainder of the book we are going to raise the level of abstraction. But be-
fore doing so we are first going to explain a number of important concepts following
the approach outlined above. In this section we shall concentrate entirely on two issues:
(1) how we can access a network by means of software, and (2) how we can exchange
information in terms of software. The first issue has everything to do with network in-
terfacing; the second with formatting frames such that they can be exchanged between
software components.

This section is going to form a basis for the main topic of Section 8.5: the principle
of devising computer networks in terms of protocol suites. In essence, we wish to con-
struct a complete computer network only in terms of layers of communication protocols.
Moreover, it should be possible to have several of these networks exist simultaneously,
i.e. make use of the same hardware.

8.4.1 Networks as peripheral devices

Let’s start with a relatively simple problem: how does a network manifest itself to a com-
puter? At first, this may seem a rather puzzling question in view of the discussions we
had so far. But, in fact, when you think about it, we have not described in any way how
we can actually construct a frame and ensure that it gets transmitted on a network. In

downloaded by wizard.z@foxmail.com

Basic network interfacing 389

other words, we have not been very specific about the network interface. On the other
hand, finding an answer to the question is really not that difficult from the perspective of
a computer. In that case, a network can be considered as merely a peripheral device to
which data can be transferred and from which data can be received. This also suggests
how a network manifests itself: by means of a special I/O controller, referred to as the
network controller. Transferring data to and from a network is then as usual, namely
through registers associated with the network controller. This is best illustrated by means
of an example of a hypothetical (and somewhat simplified) network interface for our PRI-
MAL processor. In order to understand the essentials of network interfacing, the reader
is encouraged to study the following example, although some parts may be skipped on
first reading; these are indicated in the usual way.

The hardware interface

Imagine that our network controller allows us to transmit and receive frames adhering
to some simple medium access control protocol. In particular, we assume that we have
hardware support for sending and receiving a single frame containing a fixed amount
of 1024 bytes of data. Frames are always buffered by the network controller, to which
end it has two buffers: an input buffer for storing frames that come from the network
and an output buffer for storing frames that are to be transmitted. If the input buffer is
full, receipt of new frames is not possible. The controller’s input buffer is assumed to
be memory-mapped to locations 0�1� � � � �1023 (recall that each memory location of the
PRIMAL processor contains one byte); the output buffer is mapped to locations 1024� � � � �
2047. The single 8-bit register NETCTRL is mapped to address 2048, and operates as fol-
lows. The 8 bits are grouped into three logical units as shown in Table 8.2.

Normally, the controller will either be ready to receive any incoming data, or in the
case that it also has to transmit a frame, will at the same time make an attempt to send
the frame stored in the output buffer. Being able to receive a frame while at the same time
an attempt is being made to send one is very important. Suppose that station S1 tries to
send a frame to station S2, and at the same time S2 is making an attempt to send something
to S1. If we had only one buffer at each station, then clearly communication between the
two would immediately come to a halt (generally referred to as a deadlock). Compare
this to synchronous communication as discussed in Chapter 6 and you will find a strong
similarity.

Clearly, the network controller distinguishes four kinds of actions, determined by the
first two bits of NETCTRL. If the controller was prepared to receive a frame, indicated by
the fact that the second bit is set to 1, this bit will automatically be reset by the hardware to
0 as soon as a frame is received. On that occasion, the controller will generate an interrupt
(say interrupt number 7). Similarly, an interrupt is also generated as soon as a frame has
been transmitted, causing the first bit to switch from 1 to 0. The remaining bits can always
be inspected to see what caused the interrupt. If everything proceeds as planned, the last
4 bits will be set to h0000i, otherwise they will indicate the kind of error that occurred
(of which the specification is not important here).

To illustrate how transmission might work, suppose we wish to send the contents of

downloaded by wizard.z@foxmail.com

390 Local area networks

Table 8.2 The specification of the register NETCTRL for our example network controller

bit string meaning

CONTROL INFORMATION

00 xx xxxx Idle: the controller will not do
anything.

01 xx xxxx Ready to receive: any incoming
frame will be stored in the input
buffer.

10 xx xxxx Sending: the data stored in the output
buffer is to be transmitted across the
network.

11 xx xxxx Ready to receive, and making an at-
tempt to send as well.

INTERRUPT INFORMATION

xx 00 xxxx Nothing has happened so far.
xx 01 xxxx Data has just been received.
xx 10 xxxx Data has just been sent.
xx 11 xxxx Data has been sent and received.

ERROR INFORMATION

xx xx eeee A 4-bit error code, with h0000i indi-
cating that everything is correct.

the output buffer across the network. In that case, we simply need to set the first bit of
NETCTRL to 1, and the controller will do its work. Completion of transmission is indi-
cated by setting the first bit back to 0 and generating an interrupt, which is then there for
us to handle. Two situations may occur when an interrupt is generated. The transmis-
sion of the frame was either completed (indicated by setting the third bit to 1) or a new
frame had arrived in the meantime (indicated by the setting of the fourth bit). How these
interrupts can be handled is discussed further below.

A question that comes to mind is how we are going to identify stations. Without going
into too much detail, you can imagine that each station has a unique address. The hard-
ware has, one way or the other, access to that address. Now, in order to send a frame to a
specific station, we need to incorporate its address into the transmitted data. Because we
are making use of broadcast channels, the data will be sent to each station. Upon arrival
at a station, that station will first check if the address is the same as its own. If so, the
frame is stored in the controller’s buffer (if possible). Otherwise, it is simply discarded.
(What is exactly meant by the latter is left as an exercise for the reader.)

It should now be clear that frame reception may fail for two reasons: (1) there was
simply no station willing to pick up the frame, i.e. the destination address was not recog-
nized by any network controller, or (2) the destination station did not have its receipt bit
enabled. It is important to note that frame transmission itself was successful as far as the

downloaded by wizard.z@foxmail.com

Basic network interfacing 391

type ERROR CODE is (NO ERROR, ...);
for ERROR CODE’SIZE use 4;

type CONTROL REGISTER is
record

sendFrame : BOOLEAN; �� for instructing the controller to send data.
receiveFrame : BOOLEAN; �� for instructing to receive data.
frameSent : BOOLEAN; �� set by the controller when a frame has been sent.
frameReceived : BOOLEAN; �� set by the controller upon arrival of a frame.
error : ERROR CODE; �� indicates a possible error.

end record ;

for CONTROL REGISTER use
record

sendFrame at 0 range 0..0;
receiveFrame at 0 range 1..1;
frameSent at 0 range 2..2;
frameReceived at 0 range 3..3;
error at 0 range 4..7;

end record ;

for CONTROL REGISTER’SIZE use 8;

Listing 8.1 The definition of NETCTRL expressed in BASAL.

medium access control layer is concerned. In other words, the hardware ensures that a
frame is sent over the network correctly. However, if the destination did not exist, or was
simply not willing or able to pick up any frames, it is impossible for the medium access
control layer to correct this situation. The only thing that can be done at that point is to
indicate the status of the transmission through the error code bits of register NETCTRL.

� The software interface: data types

At this point, we can construct a piece of software that will allow us to send and receive
frames. Let’s start by taking a look at how we can describe the register NETCTRL in terms
of BASAL. To that end, we choose to distinguish the first four bits of NETCTRL by means
of Boolean variables and the last four by means of a separate date type ERROR CODE to see
what could have gone wrong when communication failed. This leads to the data types, and
their mapping in terms of bit strings, as shown in Listing 8.1.

The data type CONTROL REGISTER is the description of the register NETCTRL. It is impor-
tant to note that the mapping of this data type onto main memory corresponds precisely to
the organization of the bits in the register, where we assume that a BOOLEAN can indeed
be represented by only one bit. In our case, FALSE will correspond to a 0 and TRUE to 1.
Consequently, the only thing we need to do is declare the following variable:

networkController : CONTROL REGISTER;
for networkController use at 2048;

and the compiler will arrange things in such a way that we can instruct the network controller
what to do.

downloaded by wizard.z@foxmail.com

392 Local area networks

subtype ADDRESS is INTEGER range 0..16777215;
for ADDRESS’SIZE use 3*8;

type USERDATA is array (1..1021) of MEMORY.BYTE;
for USERDATA’SIZE use 1021*8;

type FRAME FORMAT is
record

destination : ADDRESS;
data : USERDATA;

end RECORD;

for FRAME FORMAT use
record

destination at 0 range 0..23;
data at 3 range 0..8167;

end record ;

for FRAME FORMAT’SIZE use 1024*8;

inputBuffer : FRAME FORMAT;
outputBuffer : FRAME FORMAT;
for inputBuffer use at 0;
for outputBuffer use at 1024;

Listing 8.2 The (data) declarations for sending and receiving frames.

Our next step is defining the buffer. Anticipating our discussion on addressing in the next
section, assume that each station can be uniquely identified by means of a 24-bit binary num-
ber (meaning that addresses lie between 0 and 224� 1 � 16 777 215). Also, when sending
a frame, this address should be the first data that is to be transmitted. This leaves a total of
1021 bytes for the rest of the data to be sent. Expressing this in BASAL leads to the decla-
rations shown in Listing 8.2. We assume that the basic data type MEMORY.BYTE is already
available, and that its size is precisely 8 bits.

� The software interface: services

By now, it should not be too difficult to imagine how we can actually send and receive
frames, although there are some things that are rather difficult. First, we assume that any
process can send or receive frames. This implies that we have to protect the network con-
troller’s register and buffers against simultaneous access by several processes. (Anticipating
our further discussion, we shall see that in practice there will be only one process handling
all incoming and outgoing data, making the need for protection against simultaneous access
obsolete.) But there is more. Suppose that a transmitting process has just sent a frame across
the network. While it is waiting for transmission to complete, no other process should be
allowed to submit a frame for transmission. However, it should still be possible to receive
frames. A similar situation holds for receiving processes. Although no other process should
be allowed to wait for the receipt of a frame, sending a frame should still be possible. The
solution to this problem can be found in using two different semaphores:

downloaded by wizard.z@foxmail.com

Basic network interfacing 393

procedure REQUEST(frame : in FRAME FORMAT) is
begin

SEMAPHORE.WAIT(senderLock);
outputBuffer := frame;
confirmation := FALSE;
networkController.sendFrame := TRUE;

end REQUEST;

Listing 8.3 An implementation for sending at the MAC layer.

� senderLock that is used to prevent more than one process to send a frame, i.e. manip-
ulate the output buffer, and

� receiverLock used to prevent several processes manipulating the input buffer at the same
time.

We note that a sender and receiver will never manipulate the same bits of register NETCTRL.
Therefore, we need not use a semaphore for protection against simultaneous access of the
bits of NETCTRL.1

Instead of constructing the “usual” procedures that will allow us to send and receive frames,
we are going to stay close to what is defined by the OSI reference model when it comes to
the MAC layer. OSI defines three basic services that should be provided by the MAC layer:

� A service REQUEST that will allow a process to issue a request for the transmission of
a frame. What this means is that a frame is merely stored in the output buffer, and the
controller is instructed to start sending that frame. The requesting process need not
wait until transmission has taken place.

� The service CONFIRMATION is a signal that is to be returned to the sending process to
indicate that the frame has been successfully transmitted. In our case, we assume this
implies that the frame reached the receiver, although it could possibly not be stored.

� Finally, the service INDICATION can be seen as a signal generated at the receiver’s end
to indicate that a frame has just arrived and is stored in the input buffer.

Sending a frame. Let’s concentrate on sending frames. First, we need a means for re-
questing the transmission of a frame, which, in our case, means filling the output buffer with
the frame to be sent. Second, we should also allow a process to wait until the transmission
can be confirmed. In any case, as long as there is no confirmation, other processes should
be prohibited from submitting a frame for transmission. Filling the output buffer is rather
straightforward, and can be expressed by the procedure REQUEST shown in Listing 8.3. The
Boolean variable confirmation is used as a semaphore, and needs to be initialized to FALSE.
This will be explained below.

1There is a much better reason for us to avoid this additional semaphore: we may safely assume that any
BASAL statement involving register NETCTRL is atomic. In that case, we need only ensure that during the
translation of BASAL to PRIMAL, the compiler will generate code that makes use of this atomicity property.
How this can be achieved is not further discussed here.

downloaded by wizard.z@foxmail.com

394 Local area networks

Note that the only thing that can be done is to fill the output buffer and instruct the controller
to start transmission. By using the semaphore senderLock we prohibit any other process from
submitting a transmission request as well. Of course, when transmission is completed, other
senders should be allowed to enter the scene. Because the controller will generate an inter-
rupt as soon as transmission completes, we can deal with these matters by means of a BASAL

interrupt procedure. In our case, the controller is associated with interrupt number 7, so that
we can specify the following interrupt procedure:

procedure NETWORK INTERRUPT;
for NETWORK INTERRUPT’CALL use at 7;

Let’s first concentrate on what needs to be done when the controller generates an interrupt
because it has just emptied its output buffer. In that case, (1) new senders should be allowed
to submit requests, and (2) a process waiting for this confirmation should be informed. The
first issue simply implies that the semaphore senderLock should be SIGNALed. In order to
let a process wait for confirmation, we introduce a semaphore confirmation, that will now
need to be SIGNALed by the interrupt procedure as well.2 This semaphore has already been
introduced as a Boolean variable. This leads to our first version of NETWORK INTERRUPT:

procedure NETWORK INTERRUPT is
begin

if networkController.frameSent then
networkController.frameSent := FALSE;
SEMAPHORE.SIGNAL(confirmation);�� acknowledge that sending took place
SEMAPHORE.SIGNAL(senderLock);�� allow other senders to proceed

end if ;
end NETWORK INTERRUPT;

Finally, in order to allow for a process to wait for confirmation, we introduce an additional
procedure WAIT FOR CONFIRMATION with the obvious straightforward implementation:

procedure WAIT FOR CONFIRMATION is
begin

SEMAPHORE.WAIT(confirmation);
end WAIT FOR CONFIRMATION;

An interesting aspect of our implementation is that it allows for blocking as well as non-
blocking transmission of frames. This depends entirely on whether the sending process calls
the procedure WAIT FOR CONFIRMATION. However, in order to ensure that a process indeed
blocks whenever it wants to wait for a confirmation, we have to be sure that the value of
the semaphore is initially set to FALSE when requesting the transmission of a frame. This
explains the initialization of confirmation in the procedure REQUEST above.

Receiving a frame. Now consider the receipt of a frame. The additional problem we
are confronted with here is that although no one is waiting for an incoming frame, a frame

2We note at this point that although this mechanism works in principle, realizing it in the case of device
drivers can be difficult. We will not go into details here, as they are not important for the principal working
of device drivers in general.

downloaded by wizard.z@foxmail.com

Basic network interfacing 395

procedure ACCEPT(frame : out FRAME FORMAT; done : out BOOLEAN) is
begin

SEMAPHORE.WAIT(receiverLock);
if networkController.frameReceived then

frame := inputBuffer;
networkController.frameReceived := FALSE; �� the buffer has been emptied
networkController.receiveFrame := TRUE; �� another frame can be received
done := TRUE;

else
indication := FALSE; �� explained below
done := FALSE;

end if ;
SEMAPHORE.SIGNAL(receiverLock);

end ACCEPT;

Listing 8.4 The procedure ACCEPT for receiving an incoming frame.

may still arrive. Consequently, if a process wants to receive a frame, it will first have to
inspect whether a frame has already arrived (by inspecting networkController.frameReceived).
From there on, there are two options. The process should continue immediately, regardless
whether a frame has arrived, or it should be allowed to wait until a frame has arrived.

Checking to see if something had arrived is straightforward and can be expressed by means
of the procedure ACCEPT shown in Listing 8.4. First, the receiving process gains exclusive
access to the input buffer by WAITing for the semaphore receiverLock to become TRUE. It
then inspects whether a frame has already arrived by inspecting the value of frameReceived

which is always set to TRUE by the interrupt controller upon the receipt of a frame in the
input buffer. If a frame has already arrived, it simply copies the contents of the input buffer,
and stops. By setting frameReceived back to FALSE it indicates that the input buffer has been
emptied. Also, it explicitly instructs the controller to receive frames when they arrive (recall
that the controller sets receiveFrame to FALSE when the input buffer is full). The Boolean
variable indication is analogous to the use of confirmation, and is explained below.

If no frame has arrived, a process should be able to wait for one. Analogous to sending
frames, we use a semaphore indication embedded in the following procedure:

procedure WAIT FOR INDICATION is
begin

SEMAPHORE.WAIT(indication);
end WAIT FOR INDICATION;

Again, we must ensure that if a process finds that no frame has arrived, it should block un-
til one does if it wants to wait for an indication. To that end, we initialize the semaphore
indication to FALSE as shown in the procedure ACCEPT.

By now, it should be clear what our interrupt procedure should look like. As soon as the
controller generates an interrupt and finds that it has just filled the input buffer, it simply
SIGNALs the semaphore indication. However, we also have to take into account that the in-
terrupt was generated because a frame had just been transmitted. This leads to the adaptation
of our interrupt procedure shown in Listing 8.5.

downloaded by wizard.z@foxmail.com

396 Local area networks

procedure NETWORK INTERRUPT is
begin

if networkController.frameSent then
networkController.frameSent := FALSE;
SEMAPHORE.SIGNAL(confirmation);�� acknowledge that transmission took place
SEMAPHORE.SIGNAL(senderLock);�� allow other senders to proceed

end if ;
if networkController.frameReceived then

SEMAPHORE.SIGNAL(indication);�� warn the process waiting for an incoming frame
end if ;

end NETWORK INTERRUPT;

Listing 8.5 The adapted interrupt network interrupt handler.

The complete picture

We have now reached an important point: access to the network, as far as its hardware
counterpart is concerned, can be completely hidden. Indeed, we may expect that a mi-
crokernel implementation provides a simple package specification that allows frames to
be communicated across the network by means of at most four procedure calls. Ignoring
the way that data types are to be mapped onto main memory, we assume that the package
MAC LAYER as shown in Listing 8.6 is at our disposal. Most implementation details have
been given above. Note that we are still assuming that errors will never occur. We leave
it as an exercise for the reader to adapt the implementation so that it will include this as
well.

8.4.2 Frame information

We are now in a good position to be more specific on the information that is to be con-
tained in frames. In the next two subsections we concentrate on addressing in the case
of medium access control layers and consider frame layouts.

Addressing

Suppose we want to construct a computer network consisting of a number of personal
workstations. Also assume that none of these workstations contains any hardware that
allows them to be connected to each other. How do we proceed? Taking a rather sim-
plistic point of view, it is not really difficult. The first thing that has to be done is buy a
large amount of hardware. In particular, we have to purchase cables, plugs and sockets,
etc. But perhaps the most important hardware that we have to buy is an implementation
of the physical and medium access control layer. Generally, such an implementation is
purchased in the form of a printed board consisting of memory (the registers and buffers
mentioned in the previous section), a network controller, and some additional circuitry
as explained in Chapter 3. Each personal workstation will have to be equipped with such
a network interface.

downloaded by wizard.z@foxmail.com

Basic network interfacing 397

package MAC LAYER is
subtype ADDRESS is INTEGER range 0..16777215;
type USERDATA is array (1..1021) of MEMORY.BYTE;
type FRAME FORMAT is

record
destination : ADDRESS;
data : USERDATA;

end RECORD;

procedure REQUEST(frame : in FRAME FORMAT);
�� Submit a frame for transmission across the network. The calling process will be
�� allowed to continue as soon as the frame has been stored in the controller’s
�� output buffer.

procedure WAIT FOR CONFIRMATION;
�� To be called by a process that had just submitted a frame transmission. The process
�� will be delayed until the frame has actually been sent.

procedure ACCEPT(frame : out FRAME FORMAT; done : out BOOLEAN);
�� Check if a new frame has arrived. If so, it is removed from the controller’s input
�� buffer and returned as [frame]; [done] is set to TRUE. If there was no frame in the
�� input buffer, [done] is set to FALSE and the calling process continues immediately.

procedure WAIT FOR INDICATION;
�� To be called by a process that wants to be delayed until the arrival of a new frame
�� in the controller’s input buffer.

end MAC LAYER;

Listing 8.6 The specification for the software interface to the MAC layer.

There are two important points here. First, most computers can be extended by sim-
ply plugging interface boards into standardized sockets. In particular, this immediately
allows for memory-mapped I/O of the important registers and buffers of such a board.
The locations have already been reserved. Second, in the case of most network inter-
faces each interface will have a unique, hardwired identification. Such an identification
can either be already supplied by the manufacturer (as is often the case with Ethernet
interfaces) or it can be set manually afterwards (either by setting switches or under soft-
ware control). This identification is generally referred to as the medium access control
address, or MAC address for short.

Depending on the protocol supported at the MAC layer, there are different forms of ad-
dresses. For example, Ethernet addresses are always 48 bits wide, and so are addresses
for the standardized token ring and token bus networks. The important aspect of these
unique addressing schemes is that we can identify the computers that constitute the net-
work. And if we send a frame with the right destination address the computer whose
interface board has that address will pick up the frame and store it in its internal buffer,
where it can be removed for further processing. And that is about all there is to it. Of
course, we have to know what these addresses are, but we will discuss that later.

downloaded by wizard.z@foxmail.com

398 Local area networks

Frame layout

Now suppose we want to send a frame from one computer to another. In addition to the
data that needs to be sent, we must also include additional information. In general, the
following needs to be provided:

� A start delimiter, which is usually a unique byte by which the start of a frame can
be recognized. It is comparable to the start and stop bits of frames as discussed in
Chapter 7.

� A destination address which is the unique address at the level of the MAC layer
we mentioned above.

� A source address, by which the sender can be identified.

� Most frames reserve one to several bytes for error control also referred to as a
checksum.

� Finally, an end delimiter to identify the last byte of which the frame consists.

The use of an end delimiter indicates that frame sizes may vary and indeed, this is often
the case. For example, an Ethernet frame may consist of up to 1500 bytes of data, and a
token ring may have up to 8192 bytes. Token bus systems impose no limit on the frame
size.

� In our simple example, we assume that the maximum frame size is 1024 bytes. However,
we will now additionally assume that apart from the destination address, the sending process
will also have to provide the source address. This implies that at most 1024�2 �3 � 1018
bytes can be used for sending data. We assume that the amount of data to be sent is always
fixed, and that no checksum is provided.

8.5 Computer networks in software

Now that we have seen how we can interface to the network through software, we are
also in a position to extend our system by means of software. As we mentioned at the
beginning of Section 8.4, our goal at this point is to provide some insight into how we can
construct computer networks in terms of software. Two concepts are vital to understand-
ing this approach: (1) the layering of communication protocols, and (2) the co-existence
of several protocols at the same layer. Again, we shall introduce these two concepts en-
tirely through (albeit rather simplified) examples. First, we shall present in Section 8.5.1
an extension of our package MAC LAYER in which we make use of the data types and
procedures only available in that package. Moreover, our example will illustrate that it
is possible to hide MAC LAYER completely: we have thus provided a layer “on top” of
the MAC layer.

The second problem that we will face is that of having two communication protocols
that co-exist within the same layer. Therefore, we shall take a closer look in Section 8.5.2
at how we can implement the basic communication models discussed in Chapter 6. Our

downloaded by wizard.z@foxmail.com

Computer networks in software 399

example will illustrate how we can have two independent communication systems, one
based entirely on synchronous communication and one based entirely on asynchronous
communication. The point is that these two communication systems can exist simulta-
neously but making use of only a single basic computer network.

8.5.1 Layering the network software

As an illustration of how we can continue in implementing our network interface in soft-
ware let’s consider the development of a module that implements part of the function-
ality of the logical link control layer, i.e. the upper half of OSI’s data link layer with
the lower half being formed by the MAC layer discussed so far. In particular, our LLC

layer provides a means for submitting only one frame for transmission, without knowing
whether it arrived (a so-called unacknowledged connectionless service). The extension
we are interested in here is twofold, as we shall discuss next.

Preliminaries

First, we wish to allow several frames to be in transmission at the same time. Our imple-
mentation of the MAC layer was such that if a process PROC had submitted a transmis-
sion request, then any other process PROC� that subsequently submitted such a request
as well had to be delayed until the request by PROC was confirmed. For our LLC im-
plementation, we want to avoid this. In particular, it should be possible to have at least
NREQUEST outstanding requests at the same time. If any request is submitted after that,
an error will be reported.

A similar situation should exist when accepting frames. Again, in our implementation
of the MAC layer, no more frames could be received as long as the controller’s input buffer
had not been emptied. For our LLC implementation, we demand that at least NACCEPT

frames should be accepted for receipt before new incoming frames are rejected.
We can achieve this by creating separate queues as illustrated in Figure 8.15. In partic-

ular, we make a distinction between an output queue for temporarily storing transmis-
sion requests and an input queue for storing incoming frames. Each queue is handled
by a separate process as will be discussed below.

Addressing at the level of the LLC layer

In Section 6.4.1 we introduced the concept of a port as a means for letting two processes
communicate without having to know each other’s identity explicitly. A similar concept
is used in the OSI reference model, where it is referred to as a service access point, or
simply SAP. A SAP is used as an extension to the normal addressing at the data link layer
in order to identify a particular process that can handle incoming requests. In other words,
communicating processes at the LLC level identify each other by a combination of a num-
ber (i.e. SAP) and an address (i.e. a MAC address).

When sending frames at the level of the LLC layer it is common that not only the ad-
dresses of the source and destination station are provided but also a source and destination

downloaded by wizard.z@foxmail.com

400 Local area networks

frame
Receiver

INDICATIONCONFIRMATION

logical
link
control

medium
access
control

physical
layer

REQUEST ACCEPT

frame
Sender

data
link
layer

output
queue

input
queue

Figure 8.15 The outline of a software solution for queuing incoming and outgoing data.

package LLC LAYER is
subtype ADDRESS is INTEGER range 0..16777215;
subtype SAP is INTEGER range 0..255;
type USERDATA is array (1..1016) of MEMORY.BYTE;

type FRAME FORMAT is
record

dstStation : ADDRESS;
srcStation : ADDRESS;
dstSAP : SAP;
srcSAP : SAP;
data : USERDATA;

end record ;
...

end LLC LAYER;

Listing 8.7 Data definitions at the LLC layer.

SAP. An SAP is generally expressed as an 8-bit binary number. Taking into account that
frames in our example are limited to 1024 bytes, and that addresses are each 24 bits wide,
it should be clear that this leaves us with a total of 1016 bytes that can be used for the data.
Expressing an LLC frame in BASAL can then be done as in Listing 8.7 (where, for clarity,
we omit details with respect to the way the types are to be mapped to memory).

In our example, we have simply copied the definition of ADDRESS as was used within
the package MAC LAYER to reflect that this addressing scheme is exactly the same at the
LLC layer. The point is that an LLC frame is converted into a MAC frame, and vice versa,

downloaded by wizard.z@foxmail.com

Computer networks in software 401

LLC
address

LLC
address

MAC
address

LLC frame

MAC frame

Figure 8.16 The construction of a MAC frame based on an LLC frame.

package LLC LAYER is
...
procedure REQUEST(frame : in FRAME FORMAT; done : out BOOLEAN);
�� Submit a frame for transmission. If [frame] could be submitted, [done]
�� is set to TRUE, otherwise to FALSE.

procedure ACCEPT(frame : out FRAME FORMAT; done : out BOOLEAN);
�� Accept any incoming frame. If there was one, [done] is set to TRUE,
�� otherwise to FALSE.

procedure WAIT FOR INDICATION;
�� Delay the calling process until a frame has arrived.

end LLC LAYER;

Listing 8.8 The specification of the LLC interface.

as shown in Figure 8.16. In effect, the data part of a MAC frame will consist entirely of
an LLC frame, which only has the two SAP identifications as additional information.

Our package specification can now be completed by simply adding the procedures for
requesting a frame transmission, and checking to see if anything arrived. Recall that, with
respect to sending frames, we are not going to provide any means for confirming that the
receiver has accepted a frame. The result is shown in Listing 8.8. Our next step is to
see how these procedures are to be implemented. We note that the following subsections
may be skipped on first reading.

� Implementation of the services

When implementing our services we have to realize that there are always two sides of any
layer that require attention: (1) the lower half of a layer in which the interface with the layer
underneath is to be taken care of, and (2) the upper half which forms the implementation of
the layer’s own interface to the outside world. Let’s start by taking a look at the two halves
that implement the submission of frames for transmission. To simplify matters, we assume
that we have a package MACQUEUE at our disposal that will allow us to handle queues of
frames. This package can be specified using our generic package GENERAL QUEUE given
in Listing 4.13 on page 172:

package MACQUEUE is new GENERAL QUEUE(ELEMENT� MAC LAYER.FRAME FORMAT);

downloaded by wizard.z@foxmail.com

402 Local area networks

process FRAME SENDER is
newMacFrame : MAC LAYER.FRAME FORMAT;
empty : BOOLEAN;

begin
while TRUE loop

SEMAPHORE.WAIT(outputQueueLock);
MACQUEUE.CHECK EMPTY(outputQueue, empty);
if empty then
�� There are no pending frames to send. Suspend the calling process, but make sure
�� that it can be activated as soon as another process submits a frame to send.
senderWaiting := TRUE;
SEMAPHORE.SIGNAL(outputQueueLock);
SEMAPHORE.WAIT(outputQueueNotEmpty);
senderWaiting := FALSE;

end if ;
MACQUEUE.REMOVE(outputQueue, newMacFrame);
SEMAPHORE.SIGNAL(outputQueueLock);
MAC LAYER.REQUEST(newMacFrame);
MAC LAYER.WAIT FOR CONFIRMATION;

end loop ;
end FRAME SENDER;

Listing 8.9 The implementation of a process that handles frames to be sent.

Frame submission: lower half. As we have shown in Figure 8.15, we will construct
an independent process that is responsible for submitting frames for transmission to the MAC

layer. The behavior this process frameSender exposes is very straightforward: (1) it should
remove any outstanding frame in the output queue, and (2) it should pass this frame to the
MAC layer. To keep matters simple, we assume that queued frames are already suited for
being handled by the MAC layer, i.e. they already contain the source and destination address
that will allow them to be transmitted across the network. Now look at the process shown
in Listing 8.9.

The first point we have to realize is that the output queue (which we have expressed by the
variable outputQueue) is to be shared between frameSender and processes that submit a frame
to the LLC layer. This explains why we have used a semaphore outputQueueLock to ensure ex-
clusive access to this queue. The process frameSender first checks whether the output queue
is empty. When the queue is not empty, it simply REMOVEs the first frame, gives up its ex-
clusive access, and passes the frame to the MAC layer using synchronous communication.

The difficult part is when the queue is found to be empty, in which case frameSender will have
to postpone any further actions. Again, we can use a semaphore for that purpose as shown
in our example as outputQueueNotEmpty. The point is that this semaphore will be SIGNALed
by a requesting process as soon as it has (1) appended a frame to the output queue and (2)
finds that frameSender was waiting for the queue to be filled. In order to see that frameSender

is indeed waiting, the latter uses a Boolean variable senderWaiting, which is to be inspected
by the requesting process. This mechanism is further explained next.

Frame submission: upper half. The behavior of a requesting process is also fairly
straightforward. First, a new frame will have to be created that fits the frame layout at the
level of the MAC layer. Data is then copied into that frame after which it is appended to

downloaded by wizard.z@foxmail.com

Computer networks in software 403

procedure REQUEST(frame : in FRAME FORMAT; done : out BOOLEAN) is
newMacFrame : MAC LAYER.FRAME FORMAT;
full : BOOLEAN;

begin
newMacFrame.destination := frame.dstStation;
newMacFrame.source := frame.srcStation;
newMacFrame.data(1) := frame.dstSAP;
newMacFrame.data(2) := frame.srcSAP;
for k in 3..1018 loop

newMacFrame.data(k) := frame.data(k-2);
end loop ;

SEMAPHORE.WAIT(outputQueueLock);
MACQUEUE.CHECK FULL(outputQueue, full);
if full then

SEMAPHORE.SIGNAL(outputQueueLock);
done := FALSE;

else
MACQUEUE.APPEND(outputQueue, newMacFrame);
if senderWaiting then

SEMAPHORE.SIGNAL(outputQueueNotEmpty);
else

SEMAPHORE.SIGNAL(outputQueueLock);
end if ;
done := TRUE;

end if ;
end REQUEST;

Listing 8.10 The procedure that will be called by a process submitting a frame for sending.

the output queue. For an explanation, look at the implementation of LLC LAYER.REQUEST

(Listing 8.10).

The procedure implementation consists of two parts. In the first part we copy the data of the
LLC frame into one that is suited for the MAC layer. Note how we copy the destination and
source SAP into the first two entries of newMacFrame.data. The remaining elements are then
used for the data that should be transmitted.3

The second part, in which the new frame is appended to the output queue, is again, somewhat
difficult. First, exclusive access to the output queue is gained by WAITing for semaphore out-

putQueueLock. If the queue is full, we have finished: the request cannot be handled. Other-
wise, the process appends the frame to the queue and then checks to see if it should SIGNAL

frameSender that the queue is not empty. If frameSender is indeed waiting, the requesting
process simply SIGNALs semaphore outputQueueNotEmpty, and immediately returns from the
procedure call without SIGNALing the semaphore outputQueueLock. But this will not lead to
any problems, for it can be readily verified that it is now frameSender that has exclusive ac-
cess to the output queue. We leave this as an exercise for the reader.

Frame acceptance: lower half. We can now construct the lower half of the LLC layer
for accepting incoming frames. The behavior of the process frameReceiver that is responsi-

3We note that our implementation is not complete. Our solution requires that the type LLC LAYER.SAP
and MEMORY.BYTE are compatible, which we may not, in general, assume to be the case. We ignore these
details as they are not considered entirely relevant here.

downloaded by wizard.z@foxmail.com

404 Local area networks

process FRAME RECEIVER is
newMacFrame : MAC LAYER.FRAME FORMAT;
done, full : BOOLEAN;

begin
while TRUE loop

MAC LAYER.ACCEPT(newMacFrame, done);
if done then

SEMAPHORE.WAIT(inputQueueLock);
MACQUEUE.CHECK FULL(inputQueue, full);
if not full then

MACQUEUE.APPEND(inputQueue, newMacFrame);
SEMAPHORE.SIGNAL(inputQueueNotEmpty);

end if ;
SEMAPHORE.SIGNAL(inputQueueLock);

else
MAC LAYER.WAIT FOR INDICATION;

end if ;
end loop ;

end FRAME RECEIVER;

Listing 8.11 The process FRAME RECEIVER for handling frames coming in from the MAC layer.

ble for handling such frames is fairly simple. First, it waits for an indication that a frame
has arrived, and copies the new frame from the MAC layer. The frame is then subsequently
appended to the input queue (if possible), and any process waiting at the LLC level for incom-
ing data is signaled. To that end, we have used yet another semaphore inputQueueNotEmpty.
This leads to the process FRAME RECEIVER shown in Listing 8.11.

Again, we have protected the input queue (modeled as inputQueue) by means of a semaphore
inputQueueLock. If a frame has arrived, it is appended to the queue, unless the queue is full,
in which case the frame is simply discarded. If there is no frame, the process frameReceiver

simply waits until one arrives.

Frame acceptance: the upper half. Accepting LLC frames is similarly straightfor-
ward and like REQUEST, it consists of two parts. The first part concerns the removal of a
frame from the input queue, which is possible unless the queue is empty. The second part
again consists of converting the MAC frame to the appropriate LLC format. This leads to the
code shown in Listing 8.12. We leave it to the reader to provide the (almost trivial) imple-
mentation of the LLC procedure WAIT FOR INDICATION, which is quite analogous to its MAC

counterpart discussed earlier.

Initialization of the LLC layer. Our final implementation detail is that of declaring
and initializing the various variables used in our package LLC LAYER. The package body
can be described as Listing 8.13, where all upper- and lower-half procedures and process
specifications are to be included as well. We assume that both queues have been properly
initialized. Further initialization details have been omitted, as they require detailed attention
that is not relevant at this point.

downloaded by wizard.z@foxmail.com

Computer networks in software 405

procedure ACCEPT(frame : out FRAME FORMAT; done : out BOOLEAN) is
newMacFrame : MAC LAYER.FRAME FORMAT;
empty : BOOLEAN;

begin
SEMAPHORE.WAIT(inputQueueLock);
MACQUEUE.CHECK EMPTY(inputQueue, empty);
if empty then

SEMAPHORE.SIGNAL(inputQueueLock);
done := FALSE;

else
MACQUEUE.REMOVE(inputQueue, newMacFrame);
SEMAPHORE.SIGNAL(inputQueueLock);

frame.dstStation := newMacFrame.destination;
frame.srcStation := newMacFrame.source;
frame.dstSAP := newMacFrame.data(1);
frame.srcSAP := newMacFrame.data(2);
for k in 1..1016 loop

frame.data(k) := newMacFrame.data(k+2);
end loop ;
done := TRUE;

end if ;
end ACCEPT;

Listing 8.12 The procedure for accepting frames coming in at the level of the LLC layer.

package body LLC LAYER is
...
inputQueue : MACQUEUE.DEFINITION;
outputQueue : MACQUEUE.DEFINITION;

inputQueueLock : SEMAPHORE.DEFINITION := TRUE;
inputQueueNotEmpty : SEMAPHORE.DEFINITION := FALSE;

outputQueueLock : SEMAPHORE.DEFINITION := TRUE;
outputQueueNotEmpty : SEMAPHORE.DEFINITION := FALSE;

frameSender : FRAME SENDER;
senderWaiting : BOOLEAN;

frameReceiver : FRAME RECEIVER;
end LLC LAYER;

Listing 8.13 Declaration and initialization of the LLC variables.

8.5.2 Supporting multiple protocols

Probably the main importance of adding the LLC layer to our basic hardware interface
(the MAC layer) is that we have introduced the concept of a service access point. As
we have explained, an SAP is a means to identify services at a particular site, or, in other
words, to identify a process that is capable of handling the data that is being sent in a
frame. In this sense, an SAP is not much different than the concept of a port. In this
section we are going to use SAPs to construct two independent communication systems
that co-exist on the same basic computer network.

downloaded by wizard.z@foxmail.com

406 Local area networks

Two basic communication systems

The two communication systems, or computer networks as they can also be called, are
based on the communication models we have discussed in Chapter 6. Abstracting from
the specifics of using these models, we shall assume that we need to implement one com-
munication system that is based entirely on asynchronous communication. Its specifica-
tion is expressed in BASAL as follows:

package ASYNCHRONOUS is
type ADDRESS is ...;
type MESSAGE is ...

procedure SEND(dest : in ADDRESS; mess : in MESSAGE);
�� The indicated message [mess] is sent to the destination [dest], without
�� suspending the calling process while the message is being sent.

procedure RECEIVE(mess : out MESSAGE; delivered : out BOOLEAN);
�� Checks if a message has arrived. If so, it will be passed onto the calling
�� process as [mess], and [delivered] is set to TRUE. If no message has
�� arrived [delivered] is set to FALSE.

end ASYNCHRONOUS;

The second communication system is based entirely on synchronous communication,
and, again using BASAL, is described by the package specification SYNCHRONOUS:

package SYNCHRONOUS is
type ADDRESS is ...;
type MESSAGE is ...

procedure SEND(dest : in ADDRESS; mess : in MESSAGE);
�� The indicated message [mess] is sent to the destination [dest], and the
�� calling process is suspended until the message has been delivered, and
�� its receipt acknowledged by the destination.

procedure RECEIVE(mess : out MESSAGE);
�� The calling process is suspended until a message [mess] has been received.
�� The sending process will be acknowledged that [mess] has arrived.

end SYNCHRONOUS;

Assuming that we only have the implementation of the LLC layer at our disposal, you
should have a rough idea of how either package can be implemented by using only the
data types and procedures of that layer. Admittedly, there are many intricacies that need
special attention, but these will essentially not differ much from the way we implemented
the package LLC LAYER by making use of package MAC LAYER. Instead, the problem that
we wish to address here is how we can implement both packages, but by making use of
only one implementation of the LLC layer for each computer.

To fully comprehend our problem, consider Figure 8.17. There, we show the organiza-
tion of the implementation of both packages on top of a single LLC layer per station A or
B. The problem we are dealing with is the following. Suppose a process PROCA

sync sends
a message Msync by making use of synchronous communication. The point is that Msync

may be received only by a process PROCB
sync that, like the sending process PROCA

sync, em-

downloaded by wizard.z@foxmail.com

Computer networks in software 407

ACCEPT

?
REQUEST

SYNCHRO
NOUS

ASYNCHRO
NOUS

SYNCHRO
NOUS

ASYNCHRO
NOUS

Figure 8.17 The organization of the two communication modules with respect to the OSI layers.

ploys synchronous communication. Something else would simply make no sense, just
as it makes no sense to assume that a letter can be received through the phone, or vice
versa. A similar reasoning can be applied to asynchronous communication. If a process
PROCA

async sends a message Masync to station B using the package ASYNCHRONOUS, then
we will have to ensure that the message is received only by a process PROCB

async at B that
also employs asynchronous communication.

But there is more. If the two processes PROCA
sync and PROCA

async send their respective
messages Msync and Masync at the same time, then both messages should be sent across the
network to B, and properly delivered independently of each other. That is, message Msync

should be delivered to the process PROCB
sync without having interfered with the delivery

of message Masync to process PROCB
async. The converse should, of course, also hold: de-

livery of Masync should in no way influence the delivery of Msync.
What we are thus confronted with is the implementation of two mutually independent

communication systems that have to share the same basic network, but in such a way
that communication within one system does not affect communication within the other.
In other words, we have to devise a means to let two unrelated communication proto-
cols co-exist without mutual interference. The solution to this problem, which is that of
multiplexing an underlying network, is surprisingly simple.

Architecture of a concurrent communication layer

In order to explain a general solution to our problem you first have to realize that the
only thing we may assume is the existence of a computer network which can be inter-
faced through the data link layer, in the form of the package LLC LAYER. This means that
neither the implementation of this package nor that of the package MAC LAYER may be
changed. A second, important, issue has to do with addressing. We shall consider this
further below.

downloaded by wizard.z@foxmail.com

408 Local area networks

Taking the LLC layer as our starting point gives us at least one powerful concept that
we are going to use here: the service access point. By using an SAP we will be able to
distinguish one message type from another, and in fact, this is in principle all that we need
to construct our so-called concurrent communication layers, consisting of the imple-
mentations of the packages SYNCHRONOUS and ASYNCHRONOUS. The idea is simple.
We associate a unique SAP with either package. For example, all implementations of
the package SYNCHRONOUS will have SAP #1, whereas all implementations of ASYN-
CHRONOUS will have SAP #2.

Our next step is to add a simple process frameSplitter to each station, which is the only
process allowed to receive frames from the LLC layer. Its behavior can be outlined in
BASAL as follows:

process FRAME SPLITTER is
begin

while TRUE loop
Wait for a new LLC frame [frame] to arrive
if frame.dstSAP = 1 then

append [frame] to input queue of SYNCHRONOUS
elsif frame.dstSAP = 2 then

append [frame] to input queue of ASYNCHRONOUS
end if ;

end loop ;
end FRAME SPLITTER;

What is seen here is that the only thing frameSplitter does is accept new incoming frames,
checks the value of the destination SAP field, and subsequently forwards the frame to the
appropriate process by appending it to the (assumed) input queue of the package imple-
menting that process. At that moment, the frame is to be further dealt with by processes
adhering to the communication protocol as specified by the package SYNCHRONOUS or
ASYNCHRONOUS, respectively. This solution is shown in Figure 8.18.

Sending messages is even simpler. The only thing we need to do is set the right value
for the destination and source SAP fields of the corresponding LLC frames.

Address resolution

The final topic we need to discuss is that of addressing. So far, we have consistently used
the concept of an address as a means to identify communicating parties. We have hardly
touched upon address resolution. The problem can be stated quite easily. In order for
two parties to communicate, they will make use of a unique addressing convention. For
example, when mailing a letter, you will generally at least need to provide things like a
street, a number, a city, and also a ZIP code to ensure delivery. On the other hand, when
phoning someone, the addressing convention consists of dialing the right sequence of
digits.

In communication systems, addressing is no different: each system will use its own
scheme. But when a communication system has to make use of an existing perhaps more
primitive system, addresses will need to be converted. For example, suppose that for our
two packages SYNCHRONOUS and ASYNCHRONOUS we had the following addressing

downloaded by wizard.z@foxmail.com

Computer networks in software 409

SYNCHRO
NOUS

LLC frame

user data

ASYNCHRO
NOUS

SYNCHRO
NOUS

ASYNCHRO
NOUS

MAC frame

frameSplitter

dstSAP = 1

dstSAP = 2

if dstSAP = 1 then
 pass to SYNCHRONOUS
elsif dstSAP = 2 then
 pass to ASYNCHRONOUS
end if

Figure 8.18 Handling incoming frames for different communication protocols.

conventions:

type SYNCHRONOUS.ADDRESS is ARRAY(1..10) of CHARACTER;
subtype ASYNCHRONOUS.ADDRESS is INTEGER range 0..4095;

These two addressing schemes have nothing in common, but that need not be a problem,
for they belong to two completely independent communication protocols. The problem,
however, is that both addresses will have to be uniquely converted to addresses that make
sense at the level of the data link layer. Otherwise, sending frames across that network
will be impossible.

A general solution to this problem is manually to maintain a mapping of addresses be-
tween two layers. For example suppose the implementation of package SYNCHRONOUS

on station A from our example, has address “MODULE ONE ”, which consists of precisely
10 characters. If station A has MAC address 519, then address “MODULE ONE ” should be
resolved into the LLC address 519 with SAP #1. Similar conversions hold for addressing
in the case of ASYNCHRONOUS.

But how does this work in practice? As we have said, mappings are often maintained
manually. This is done by storing address conversions into a file (that can be kept either
local to each station or otherwise centralized at a dedicated station), and which needs
to be read each time address resolution takes place. And this is a scheme that should
look familiar to you. It is, in fact, not very different from the way that file names were
converted into file identifiers as explained in Section 5.6.3, by means of directories.

downloaded by wizard.z@foxmail.com

410 Local area networks

8.6 Discussion

8.6.1 Summary and further reading

This chapter has been devoted entirely to the principles of operation of local area net-
works (LANs). These networks have been technologically characterized by the fact that
they are based entirely on an interconnection scheme at the level of the data link layer,
which employs broadcasting. This means that any station that has a message merely
sends it to all other stations. Only the destination station (or destinations for that mat-
ter), picks up the message, while the others ignore it. As we shall see in the next chapter,
this technological aspect makes LANs different from so-called wide area networks. At
this point, let’s briefly summarize the material presented so far.

Probably the main rationale for using a broadcast mechanism is its simplicity with re-
spect to implementations. Either we use a single wire with various taps, as in the case of
Ethernet of token-bus networks, or we physically organize the stations into a ring. In both
cases the basic communication is simple: just put your message on the wire, and have it
picked up by the appropriate listener. For one thing, there is no need to be concerned
about routing messages.

But, as we have also discussed, LANs do have their drawbacks. In particular, although
the number of stations within a single LAN segment can be quite large, eventually we
are going to run into all kinds of problems if we continue to attach stations to the same
segment. The solution, in that case, is to start connecting LAN segments into an inter-
connected network. In that case, routing does become an issue. Also, we have to invent
constructions that allow us to maintain the high transmission rates that we were used to.
It is probably here that network technology shows its more interesting sides. Nowadays,
it is hard to imagine that a local area network is not constructed by interconnecting in-
dividual segments. The concept of a bridge is important in this respect. In principle, a
bridge is responsible for forwarding frames from one segment to others, such that (1) the
broadcasting principle is obeyed, but also that (2) broadcasting is done in a controlled
way.

It should be apparent by now that developing networks is generally not an easy thing
to do. An important structuring mechanism to at least make such developments more or
less manageable is to make use of layers. The OSI model introduced in the previous chap-
ter is seen to be of value in this case. How this layering approach can be used to guide
implementations has been demonstrated in Section 8.4. In particular, we have seen there
how, from an operating system’s point of view, a network can be considered as merely
another peripheral device. It is also there that we made the jump from hardware to soft-
ware. And, as we have seen sometimes so far, making such a jump often leads to impor-
tant improvements. We have also demonstrated that it is relatively easy to build several
high-level protocols using the same underlying technology. The real improvement comes
from the fact that several protocols can be used simultaneously, or, putting it differently,
can be multiplexed on a single, lower-level protocol.

The literature on local area networks is large, and many books have overlapping sub-
jects. A good general reference is Stallings (1993b) which concentrates solely on local

downloaded by wizard.z@foxmail.com

Discussion 411

area networking techniques. You will also find many references there to specific topics
on LAN technology. A good survey of medium access layer protocols can be found in
Kurose et al. (1984). On interconnecting networks, consult Perlman (1992) which con-
tains many details on bridges and LAN routing technology. Local area network technol-
ogy is also discussed in Halsall (1992) and Tanenbaum (1988). But, as with operating
systems and compilers, it is highly instructive to look at actual network software when
you really want to understand what’s going on. In that case, Comer (1987), which aug-
ments its predecessor Comer (1984), will also be of help.

8.6.2 Improving local area networks

LAN technology is certainly not at the end of its development. As of this writing, new
technologies are still being introduced and a large body of research is devoted entirely
to improving network capabilities. Before we continue with expanding our view on net-
works in the next chapter, let’s first consider where things are heading.

Performance issues

Probably the most significant improvements that have been made in the case of local area
networks is related to overall performance. In particular, LANs to date not only allow for
high transmission rates but are also capable of handling intensive communication by far
more stations than when they were first introduced.

Looking back, a popular type of LAN has always been one based on the CSMA/CD pro-
tocol, generally referred to as Ethernet. As we have shown, the CSMA/CD protocol works
well for small values of the normalized propagation delay a. Also, this generally occurs
in networks consisting of a few stations that occasionally exchange relatively large por-
tions of data, such as files. Indeed, it is under these circumstances that the protocol works
well and for which it was intended in the first place (Metcalfe and Boggs, 1976). How-
ever, modern networked computers systems tend to interact more frequently with smaller
frame sizes. For example, it is not uncommon these days to build a network as a clus-
ter of disk-less workstations, implying that all I/O is to occur across the network. And
if you realize that this statement also implies that virtual memory implementations are
to make use of the network, it is indeed not hard to imagine that network traffic can be
considerable. It will be no surprise that the original Ethernet implementations will not
survive in the long run, and that they will be replaced by more efficient protocols. How-
ever, when this will exactly be the case is something that remains an open question. It
is Metcalfe (1993) himself who poses this question in a highly readable and instructive
article reflecting his experience with Ethernet.

When talking about the performance of local area networks, two factors need to be
considered: the propagation time and the frame transmission time, which were both in-
troduced in Chapter 7. What it means in the case of LANs is that the (required) frame
transmission time is gradually coming too close to the propagation time in order for the
network to be termed “efficient”. A major research topic in the case of high-speed net-
works is to introduce efficient medium access protocols. Ethernet is certainly not such

downloaded by wizard.z@foxmail.com

412 Local area networks

a protocol for networks allowing high transmission rates. Efficient MAC protocols are
almost invariably based on the so-called attempt and defer principle. In these cases, a
station (1) always waits until the channel is free before starting transmission, and (2) de-
fers to transmissions from other stations that are logically placed “upstream” (compare
this to the DQDB protocol). The introduction of an implicit ordering of stations seems
important in order to attain efficiency. By doing it correctly, it can also be guaranteed
that a station need not wait indefinitely before it can start transmission. A more recent
comparison based on simulation studies, and which confirms previous results, is reported
in Marsan et al. (1994).

Local area networks will continue to evolve in the near future. If you are interested in
performance issues, Abeysundara and Kamal (1991) provide a good overview of high-
speed networks, focusing on recent proposals for efficient MAC protocols. Understanding
performance issues in the case of computer networks is discussed in Stuck and Arthurs
(1985). A good starting point is also Bertsekas and Gallagher (1992), which presents
network communication in connection with performance analysis.

Separating specification and implementation

Completely different technology can also be expected as well. An important develop-
ment that we shall discuss in the next chapter is the so-called asynchronous transfer
mode (ATM). In contrast to the broadcast mechanisms employed in LANs through the
use of bus and ring topologies, ATM networks are based on a true switching technology
as used in wide area networks. Broadcast mechanisms are then constructed on top of
the underlying network. As discussed in Kung (1992), switching technology will form a
prominent component of future high-speed local area networks. We shall have more to
say about this mechanism later. The important point to note here, however, is that a dis-
tinction is being made between specification and implementation of network protocols.

This separation between specifying what a protocol does, and how it is subsequently
implemented, is important. It is only by means of this explicit separation that investments
in software can be protected. For example, at present, implementations of Ethernet exist
(or, more precisely, of the IEEE 802.3 standard) in which the transmission medium is
twisted pair instead of coax cable, and the topology of the network is based on one or
several switches, with each switch having several stations attached to it. This topology,
also referred to as a star network, is similar to that of local telephone branch exchanges.
What happens is that when a frame is received at a switch it is subsequently forwarded
to the appropriate station, or, if so required, forwarded to all stations connected to the
switch. But how frames are actually transmitted from sender to receiver is of no interest
to the users. As far as they can see, they are simply dealing with an ordinary Ethernet
network (although the performance is considerably higher).

The number of LAN standards adopted by the IEEE is large and can be obtained from
the IEEE Computer Society Press. If you are in search of an overview on future LAN

technology, Stallings (1993a) provides a collection of articles that is worth consulting.
Reprints of some of the references mentioned above can also be found there.

downloaded by wizard.z@foxmail.com

Exercises 413

Exercises

1. What would be the political or legal implications of networks outside a building?

2. What happens in a contention system, when stations A and B are simultaneously
transmitting the strings h110110i and h100010i, respectively, to station C, when a
1 put by any station connected to the channel results in a 1 on the channel?

3. *Explain why a station connected to a contention-based channel must wait a con-
tention period of 2�Tprop before it can send the next frame.

4. What happens if through an error there are two tokens in a token-based network?

5. Explain in your own words the essential difference between a token ring network
and a token bus network, and why the latter is more difficult to implement.

6. Is the propagation time Tprop a constant between every pair of stations? What about
the frame transmission time?

7. *When a file is transferred between two stations connected through a contention-
based channel, is the normalized propagation delay a � 1, a � 1, or a � 1? Ex-
plain.

8. *Suppose, in a token ring system, the normalized propagation delay a is larger than
1. Do we have to shorten or lengthen the ring to return it to a� 1? What would be
an alternative?

9. Why may it not be such a good idea to use a contention-based network as a back-
bone for connecting several LAN segments?

10. Explain why in a DQDB backbone protocol a station cannot monopolize the chan-
nel.

11. If we know in advance that the bridges in an interconnected LAN are going to route
according to a spanning tree, why would we then still leave “redundant” bridges
in the network after making the interconnections?

12. *The DQDB protocol is relatively insensitive to the normalized propagation delay
a. Explain why.

13. *Show that the efficiency of a token ring is S � 1��1�a�N�, if a� 1. (Hint: nor-
malize Tframe, i.e. set it to 1.)

14. *Show that the efficiency of a token ring is S � 1��a � �1�1�N��, if a � 1.

15. What would be the spanning tree of a network consisting of Li segments, 0� i� k,
each segment Li connected only to segment Li�1 through a bridge Bi, where bridge
Bk closes the circle and connects segments Lk and L0?

16. How can a station report an error to a process that submitted a frame for transmis-
sion?

17. Describe precisely what is meant by discarding frames upon arrival at a station.

downloaded by wizard.z@foxmail.com

414 Local area networks

18. Explain why it is generally necessary to have the software that controls access to
the network be part of the operating system. Is it also necessary to have this soft-
ware run in kernel mode, or would it be sufficient to run (parts of) it in user mode,
as adopted in a client-server architecture?

19. Service access points cannot be qualified as true addresses in the sense that they
can be used to identify processes. Why not?

20. *Explain in your own words what the essential difference is between what we have
called the upper and lower layer of the software for handling frame transmission.
Did we find a similar distinction in our discussion on device drivers for hard disks
in Chapter 5?

21. Verify the synchronization between the upper and lower halves of the frame trans-
mission protocol.

22. Explain the principle of multiplexing a physical network between different higher-
level network protocols.

downloaded by wizard.z@foxmail.com

Chapter 9

Wide area networks

Our next step towards computer networks is in fact a jump. In this chapter we shall con-
centrate on the construction of networks that literally span the world. The main problem
that we shall encounter is that of finding a route from a source to a destination across a
network. Routing in worldwide networks is of a completely different order of complexity
than in local area networks. The problems arise from the fact that the broadcast mech-
anism inherent in the latter type of networks cannot be employed when communication
has to span thousands and even millions of computers all over the world. In addition,
we are confronted with the actual construction of worldwide networks. In particular, we
shall also look at so-called internetworks which are built by connecting together wide
area networks. In Section 9.4 we shall briefly look at an evolving type of network, the
so-called integrated services digital networks. We conclude this chapter by paying some
attention in Section 9.5 to the functions that are provided in OSI’s transport layer.

9.1 Expanding communication systems

9.1.1 Introduction

The approach we have been taking with respect to the construction of computer networks
so far is that of stepwise expansion. In Chapter 7 we have shown how we can start by
simply connecting pairs of computers through various transmission media. Our attention
initially focused on getting a single frame of data from one computer to another. The best
we could do with respect to connecting several computers at that point was letting a single
transmission medium be shared by means of multiplexing techniques. But multiplexing
is only one way of sharing a communication channel. In Chapter 8 we introduced the con-
cept of a LAN segment: a network in which several computers are connected employing
broadcast communication through a common channel. However, rather than allowing
several frames to be sent simultaneously as in the case of multiplexing, we showed how
the channel could be temporarily allocated to a single computer by introducing several
completely distributed allocation policies. In this way, dozens of computers were capable

415

downloaded by wizard.z@foxmail.com

416 Wide area networks

of communicating with each other all using the same communication medium.
Unfortunately, the strategy followed in these LAN segments cannot be easily expanded

to support hundreds of computers. The main problem is that as more computers are con-
nected to the channel, the probability of colliding frames increases rapidly. Alternative
approaches of devising collision-free systems such as the token ring and token bus net-
works permit many more computers to be connected, but efficiency from the perspective
of a single station does become difficult as there are simply too many competitors. In
view of this scalability problem, we came to the point that LAN segments need to be in-
terconnected into a larger network by using so-called bridges. In essence, a bridge is just
an intermediate computer that operates at the level of the medium access control layer.
In other words, it simply picks up frames from one LAN segment and forwards it onto
another.

But as simple as this may seem, in order to guarantee that frames are indeed broadcast
to every LAN segment (and thus to every station), we need explicitly to exploit routing
strategies. In other words, where broadcast communication was initially an inherent fea-
ture of our means of communication, this is no longer the case with interconnected LANs
and measures have to be taken to maintain it. Routing is a price to be paid in scalable
solutions. Fortunately, there are also benefits. When devising routing strategies we can
take into account the fact that a frame need not always be broadcast. Instead, when there
is only a single destination we can reduce network traffic by avoiding frame transmis-
sion on those LANs where the frame has no business whatsoever. And it is precisely this
strategy that we need to follow if we are to expand our networks even further.

In this chapter we shall concentrate on so-called wide area networks, or WANs. Wide
area networks, as we mentioned earlier, cover nations, countries, and literally, the entire
world. Routing data efficiently through the often intricate maze of interconnected net-
works that comprise a WAN is one of the major topics of this chapter. In order to simplify
our discussion, we shall initially assume that all WANs are more or less the same, i.e. they
all use the same protocols, so that it is relatively easy to connect them. This will allow
us to start by discussing some general issues related to WANs in the next two subsections
thereby omitting all kinds of technical details. Also, treating WANs as essentially uniform
networks permits us to put the subject of routing data into a broader perspective. In par-
ticular, in Section 9.2 we shall discuss the necessity of data fragmentation, and consider
the need for routing by describing network congestion. This provides us with a basis
for discussing adaptive routing strategies, which are generally applied to WANs. As an
example of an emerging WAN technology, we shall pay separate attention to ISDN and B-
ISDN in Section 9.4 which can be considered as the ultimate global digital network of the
future. Of course, that WANs are the same is not a realistic assumption and we shall dis-
card this in order to discuss some of the additional problems we face when constructing
so-called internets. Internetworking as it is also called, is discussed in Section 9.3.

9.1.2 Architectural features of WANs: routers

As we have mentioned in Section 7.2.4, WANs distinguish themselves from LANs and
MANs in that they are constructed as a collection of computers connected by means of

downloaded by wizard.z@foxmail.com

Expanding communication systems 417

point-to-point communication channels. This means that each station in a WAN should
explicitly decide to which other adjacent station(s) it should send or forward a message.
For reasons we shall elaborate further below, we denote these stations as routers.

Routers are much comparable to bridges as used to interconnect LAN segments. It is
illustrative to take a closer look at the two in order to get a basic idea of the technical
distinctions between, on the one hand, local and metropolitan area networks, and wide
area networks, on the other. First, consider their functionality with respect to routing.
The main reason we needed to consider routing in LANs and MANs was due to the fact
that we needed to (1) broadcast frames across the entire network, but (2) prevent the net-
work from being flooded with an infinite number of copies of the same frame. In other
words, routing in bridges essentially follows an offensive policy: forward frames but do
not be too generous in the sense that the data should reach all stations precisely once.
Effectively, this was established by cutting off alternative routes. Routing in WANs is
fundamentally different. In this case, data should only be forwarded in precisely one di-
rection in such a way that it will reach only its destination. Hence, instead of wondering
which alternative routes to cut off, a router makes a well-founded choice for exactly one
route.

Another distinction between routers and bridges related to their routing functionality is
that routers assume that the lifetime of a packet is finite. In particular, each time a packet
passes a router its age increases. If this age reaches a certain value while the data still
has not reached its destination, it will be discarded. As we shall see, this prevents data
circulating through a WAN indefinitely. Conversely, bridges in general do not take any
aging criteria into account.

But there is more. Bridges assume that routes proceed through LAN segments. This
means that they expect routes to be established at the level of the medium access control
layer. Consequently, their own interface within an interconnected LAN is completely re-
alized at the MAC layer. This means that whenever a frame is indeed forwarded, a bridge
may have to convert the frame from, say, an Ethernet protocol to a token ring protocol.
This is perhaps the only conversion that will take place. In any case, a frame is forwarded
in its entirety to another segment only by taking the MAC protocols into account. A router
does more. In particular, a router can accept data that may not fit into a single frame. For
example, a router may need to forward a contiguous piece of data comprising 8192 bytes
onto an Ethernet LAN which can only accept frames with a maximum size of 1500 bytes.
In this case, it is the router’s responsibility to fragment the 8192 bytes of data into sev-
eral smaller frames, and subsequently forward each fragment onto the Ethernet network.
Likewise, a router may also need to reassemble several fragments into the original piece
of data. We shall return to this problem in more detail later. The important point to note
is that fragmentation and reassembly of data is an additional functionality of routers.

Explicit routing and data fragmentation give routers a different status from bridges. In
particular, where bridges are used to connect LAN segments, routers are generally used
to interconnect (bridged) LANs into a wide area network. In terms of the OSI reference
model, routers typically operate at the network layer as shown in Figure 9.1. Now, this
network layer not only adds functionality by means of its routing and fragmentation al-
gorithms, it also deals with flow and error control issues at a more advanced level than

downloaded by wizard.z@foxmail.com

418 Wide area networks

network

physical

logical link control

medium access

router
lan-1 lan-2

higher
layers

Figure 9.1 The position of a router in terms of the OSI reference model.

is done at the data link layer. And there is a good reason for this. In many cases the only
connection between two routers is not a LAN but merely a simple transmission medium
such as a satellite or a cable. Consequently, routers will have to take into account that
data transmission may be subject to more errors than can be expected when connected
by LANs. As we shall see, these additional flow and error control mechanisms prohibit
fast communication, and can make the network layer relatively sophisticated. The spe-
cific functionality of routers, and thus also the communication protocols that form part of
the network layer, will be discussed extensively in the following sections of this chapter.

9.1.3 Building a worldwide network

Viewing a WAN as a collection of interconnected routers puts us in a position to take a
closer look at how these wide area networks can be organized. Again, as we have men-
tioned previously, we shall for now make the simplified assumption that all our WANs
more or less behave according to one set of communication protocols. In that case, there
are two issues that we need to consider: how we can organize routers, and how we can
connect LANs to wide area networks.1 Let’s start by looking at these issues from the per-
spective of a LAN.

Addressing

The first question that we need to address is what is meant by connecting a LAN to a WAN.
One way of answering this question is by using the perspective of reachability. When

1From now on we shall make no further distinction between LAN segments, LANs, MANs and bridged
LANs or MANs. Instead, we shall collectively refer to them simply as LANs.

downloaded by wizard.z@foxmail.com

Expanding communication systems 419

we say that a LAN L is to be connected to a WAN, we are stating that we need to address
stations that are located at some site external to L. The term “address” is the keyword in
this context.

Let’s first take a naive approach. In the case of LANs, we mentioned in the previous
chapter that each station in a network could generally be uniquely identified by means of
an LLC address (which, in turn, was based on a MAC address). For now, suppose that this
is indeed the case. Then, in view of our present discussion, addressing stations outside
the current LAN effectively means that we use an LLC address that does not correspond
to any LLC address known at the present LAN. So, the solution seems simple. Assuming
that every station in the world has a unique LLC address, we can simply use that address
to identify the destination of our messages.

But if we were to maintain to this addressing policy, we enter a danger zone. What this
policy implies is that each LAN should now need to administrate not merely the stations
that it constitutes, but, in fact, also the stations that lie outside it. This is not acceptable
as it violates the main principle of local area networks, namely that they are local. In that
case, you should be able to construct a LAN without having to know what is happening
outside that LAN. In particular, this also means that, although addresses of stations within
a LAN should be unique, it is unacceptable to insist that two stations in different LANs also
have different addresses. The principle of locality would then indeed be violated.

Therefore, we have to suggest something different, and in particular an addressing pol-
icy which is completely independent of the addressing policies as invented and used for
the construction of LANs. And it is here where OSI’s network layer falls into place. In-
stead of addressing at the level of the data link layer, we invent a completely new world-
wide addressing policy and place it “on top” of the addressing policy used at the data link
layer. In other words, if one station wants to address another station, it does so by using
a worldwide known addressing convention. It is then the responsibility of the software
comprising the network layer to resolve each network address to an LLC address, i.e. find
the LLC address in a specific network that corresponds to the given network address. We
shall return to this topic in the next chapter.

This address resolution may either succeed or fail. If it succeeds, this implies that the
destination station is on the same LAN as the sending station. In other words, if we can
find an LLC address that corresponds to the given network address, then this implies that
the message that is to be sent can simply be forwarded across the local network. On the
other hand, if address resolution fails, then apparently the destination station is not part of
the local network from where the message is being sent. In that case, we can forward the
message to a dedicated station in our local network to further handle message delivery.
Indeed, this dedicated station is a router that has a connection to other routers outside the
current LAN. It is the responsibility of this router to forward the message to other routers.
How this is done is explained later.

� Some implementation issues

We can be rather more specific by outlining a possible implementation of this scheme. As-
sume that in order to connect a LAN to a wide area network, a package NETWORK LAYER is

downloaded by wizard.z@foxmail.com

420 Wide area networks

package NETWORK LAYER is
type ADDRESS is ... �� the description of a worldwide addressing scheme
type DATA FORMAT is

record
destination : ADDRESS;
source : ADDRESS;
data : USERDATA; �� the actual data (not further specified)

end record ;

procedure REQUEST(message : in DATA FORMAT; done : out BOOLEAN);
�� Submit the indicated message for transmission across the network. If the
�� message can be submitted, [done] is set to TRUE, otherwise to FALSE.
...

end NETWORK LAYER;

Listing 9.1 The specification of the procedure REQUEST.

available that provides us with a data type ADDRESS for addressing stations worldwide:

package NETWORK LAYER is
type ADDRESS is ... �� the description of a worldwide addressing scheme.
...

end NETWORK LAYER;

This package will, of course, be implemented as a layer on top of an implementation for
the LLC layer of our network, similar to the way that we implemented the packages SYN-

CHRONOUS and ASYNCHRONOUS in the previous chapter. Resolving network addresses
will be done by means of a separate procedure RESOLVE, which we assume is specified as
follows:

procedure RESOLVE(
netAddr : in NETWORK LAYER.ADDRESS;
llcAddr : out LLC LAYER.ADDRESS;
isThere : out BOOLEAN);

�� Check at the current local area network, whether there is a station having network
�� address [netAddr]. If this is the case, [llcAddr] will contain that station’s LLC
�� address and [isThere] is set to TRUE. If there is no such station [isThere] is set
�� to FALSE.

Now suppose we wish to send some data to another station. The first point to realize is that
we will no longer directly use an LLC address to identify the destination. Instead, if we as-
sume that our own station is part of a wide area network, we shall use the addressing policy
as defined by the package NETWORK LAYER, i.e. we adhere to addressing at the level of the
network layer. Therefore, we may safely assume that our package will also have a procedure
REQUEST for sending data in this WAN, as shown in Listing 9.1.

Now let’s see how requesting the transmission of data can take place. The first thing that we
have to do is to see if our destination station is part of the same LAN from where the request
is being issued. In that case, sending the message is easy as we need merely use the com-
munication primitives as provided by our local implementation of the package LLC LAYER.
However, if it turns out that we are addressing a station outside the current LAN, we have
to forward the data to the world outside our local network. In particular, we may decide to

downloaded by wizard.z@foxmail.com

Expanding communication systems 421

procedure REQUEST(message : in DATA FORMAT; done : out BOOLEAN) is
newLLCFrame : LLC LAYER.FRAME FORMAT;
llcDestination : LLC LAYER.ADDRESS;
isThere : BOOLEAN;

begin
RESOLVE(message.destination, llcDestination, isThere);
if isThere

then newLLCFrame.dstStation := llcDestination;
else newLLCFrame.dstStation := ROUTER LLC ADDRESS;

end if ;
newLLCFrame.srcStation := LLC address of sender ;
newLLCFrame.dstService := SAP at destination station;
newLLCFrame.srcService := SAP at sending station;
newLLCFrame.data := message.data;
LLC LAYER.REQUEST(newLLCFrame, done);

end REQUEST;

Listing 9.2 An implementation outline for sending data at the level of the network layer.

forward the data to a dedicated station that has a connection to the outside world. Indeed,
such a station will form a router in the sense of the WAN terminology we discussed above.
However, this router is also part of our LAN, and thus, it has its own LLC address. Denot-
ing this address as ROUTER LLC ADDRESS, we can then outline an implementation of the
procedure REQUEST as shown in Listing 9.2.

We have omitted many details for the sake of clarity, but the outline above does reveal the
essence of address resolution and message handling when discussing the role of a LAN par-
ticipating in a wide area network. A few remarks are in order.

First, it is important to note that the implementation of message handling at the level of the
network layer requires the existence of a network of computers at the level of the data link
layer. In particular, messages that only make sense at the level of the network layer need to
be converted into frames, which in turn, are the only things that make sense at the level of
the data link layer. In other words, we are constructing a completely new network on top of
an existing one. This is no different from our implementation of a communication layer as
illustrated in Section 8.5.2.

Second, the main distinction with the approach followed in the case of LANs is that our local
network has a dedicated station, i.e. a router, which has a separate connection to the outside
world, in particular to one or more routers that may be part of other local area networks. It
is by means of these routers that we are capable of passing information across local network
boundaries, and which thus makes our higher-level network a wide area one.

The use of a service access point in our implementation of REQUEST is important. Using
SAPs we are able to identify the package at the destination station which should handle the
incoming frame. Again, this is completely analogous to our implementation of the packages
SYNCHRONOUS and ASYNCHRONOUS in Section 8.5.2. And just as we had two concurrent
communication layers in that case, we have the same situation when constructing wide area
networks. This means that we may even support several wide area network implementations
at the same time, where all implementations are based on just a single implementation of the
data link layer at a particular local area network.

downloaded by wizard.z@foxmail.com

422 Wide area networks

A general hierarchical WAN topology

So here we have it. First, we need to raise the level of abstraction by considering address-
ing conventions at a logically higher layer than the data link layer. This so-called network
layer resolves addresses in the sense that it finds out if the addressed station is part of the
current LAN. If we are addressing a station outside this LAN, it may be forwarded to one
of the possibly several available routers. Each of these routers is just another station in
the LAN. From here on, organizing a WAN is really not difficult. The first point to realize
is that if we were to connect all routers into one very large worldwide network, we would
probably find ourselves with a network comprising thousands of routers – indeed a situ-
ation we would like to avoid in view of maintenance. A generally accepted approach is
to adopt a hierarchical scheme consisting of three levels.

� At the lowest level we have what is generally referred to as a subnetwork. A sub-
network is actually what we called a LAN. It is generally a bridged LAN or MAN

with one or several routers that allow access to the outside world.

� Subnetworks, in turn, are organized into areas. An area thus consists of a collec-
tion of routers of which each is attached to a subnetwork. Two subnetworks may be
connected to each other by one or several routers. In addition, each area will have
special routers that allow communication with stations lying outside the area.

� Finally, areas are organized into so-called domains. Again, two areas within a do-
main can be connected by means of routers. Also, special routers are distinguished
to allow communication to take place with stations lying outside a specific domain.

This general architecture is shown in Figure 9.2.
We will have more to say about this hierarchical layering when we discuss internet-

working in Section 9.3. The important point to note here is that this hierarchical orga-
nization also implies a hierarchical routing scheme. For example, in order for data to
transfer from subnetwork S111 in Figure 9.2 to subnetwork S232, it will have to traverse
to a router contained in area A11, and from there to one of the routers comprising domain
D1. Once the data has reached that level, it can be forwarded to a router of domain D2
which will need to forward it to (in this case) an area router of area A23. It is then the re-
sponsibility of this latter router to get the data to subnetwork S232, in this case implying
that it will need to cross subnetwork S231 which is also contained in area A23.

9.1.4 Communication models revisited

In Section 7.2.4 we mentioned that WANs can generally be classified by their switching
technology which could be based on either packet-switching or circuit-switching. Let’s
briefly review these concepts here.

Packet-switching versus circuit-switching

In a packet-switched network a message is generally first divided into a number of smaller
packets before sending it to its destination. A packet in a wide area network is the same

downloaded by wizard.z@foxmail.com

Expanding communication systems 423

subnetwork

area

domain

router

D1

S111
A11

2D

232S231S

21A

12A

13A

22A

23A

Figure 9.2 The general architecture of a WAN in terms of subnetworks, areas, and domains.

as a frame in a local area network: a single, and indivisible unit of data. More precisely,
frame transmission takes place at the level of the data link layer, whereas packet transmis-
sion occurs at the level of the network layer. Each packet is augmented with the address
of the destination and sent across the network. Each time a packet arrives at a router,
the latter first stores it and inspects the destination address, and subsequently forwards
it to another router according to a routing strategy. The point to note is that each packet
that is part of the original message is stored and forwarded completely independently of
any other packet of that message. This may imply that each packet follows a completely
different route before it reaches the destination. Finally, when all packets have reached
the last router, they are reassembled into the original message which is then passed on
to the actual destination. Packet switching is thus comparable to national postal systems
where envelopes are forwarded from one sorting office to another. It is mandatory to pro-
vide the complete destination address so that each office can decide where to forward the
envelope.

In a circuit-switched network, on the other hand, communication starts by first setting

downloaded by wizard.z@foxmail.com

424 Wide area networks

up a complete physical connection between the sending and receiving station. To this
end, each router makes a permanent connection between a preceding and a successive
router which eventually results in a direct communication path from the source to the
destination. This path is maintained as long as required by both communicating parties,
and, moreover, it can only be used by these two. As long as the connection is maintained,
each message from the source to the destination is sent across the same path. As soon as
one of the communicating parties issues a disconnect request, the path will be broken and
message exchange is further prohibited until a new connection is set up. In this sense,
circuit-switched networks are comparable to the way we make phone calls.

The distinction between packet-switching and circuit-switching in networks is an im-
portant one and each switching method has its advantages and disadvantages. As an il-
lustration, let’s mention some more important examples of both:

� Although setting up a complete physical communication path between a source and
destination station may indeed take some time, it should be clear that once a con-
nection has been established, message exchange can be extremely efficient. For
one thing, it is no longer necessary to provide any information on where messages
are destined as this is completely determined by the physical connection itself. In
this sense, communication in a circuit-switched network can be extremely efficient
from a user’s point of view.

� The main disadvantage of circuit-switched networks, however, is that a commu-
nication path is entirely dedicated to one source and one destination station. This
means that if two other stations need to communicate, they should establish a com-
pletely distinct connection. Consequently, overall utilization of the network may
be rather poor.

� Packet-switched networks, on the other hand, avoid this situation. Because each
packet is stored and subsequently forwarded from router to router, connections be-
tween two routers immediately become available for other packets as soon as a
transmission has been completed. Consequently, packet-switched networks tend
to show a much higher overall utilization than circuit-switched networks.

� The primary disadvantage of packet-switched networks, however, is that each mes-
sage must be partitioned into a number of packets, which are later to be reassem-
bled. This may put a rather heavy burden on the routers when considering the fact
that packets may follow entirely different routes, implying that they need not arrive
at the destination in the order they were sent.

Both types of networks are important and the choice for either (or indeed, a mixture of
the two) depends on many factors. In general, whenever communication has to be reli-
able and subject to timing constraints (e.g., constant transmission rate), a circuit-switched
approach will be used. On the other hand, data communication is generally easier to re-
alize and more efficient with regard to network utilization when using packet-switched
networks.

downloaded by wizard.z@foxmail.com

Routing in wide area networks 425

Datagrams versus virtual circuits

Packet-switching and circuit-switching have their counterparts at a logical level as well.
In particular, a distinction is made between networks supporting so-called datagrams and
those supporting what is known as virtual circuits.

Datagrams are comparable to what we have termed packets above. At the logical
level, a datagram is a self-contained message that can be sent across a network indepen-
dently of any other datagram. This implies that it will include the address of the desti-
nation, which is subsequently used to forward it from station to station. In addition to
containing the destination address, a datagram generally also contains the address of the
source station, as well as information that will allow the destination station to see if the
datagram has been corrupted on its way through the network. The major difference with
packets is that datagrams exist only at the logical level. In contrast to packets, for exam-
ple, a datagram may be fragmented into smaller parts which are sent independently of
each other. It is the responsibility of the destination to ensure that the original message
is reassembled as fragments arrive.

The logical equivalent of circuit-switching is the use of so-called virtual circuits. A
virtual circuit is a logical connection between two stations across a network. Logical in
this sense means that the underlying physical network need not employ circuit-switching
technology, but may instead be based on packet-switching. In that case, it is the software
which maintains the view of a circuit between two stations. Once a virtual circuit has
been set up, messages can be sent across it, which are then guaranteed to arrive in the
same order as they were sent. In contrast to datagrams, sending messages across a vir-
tual circuit need not carry the destination address with them because the destination is
identified as the endpoint of the virtual circuit.

Using datagrams or virtual circuits corresponds with the two basic communication
models we discussed in Chapter 6. Datagrams are used in connectionless communica-
tion, where virtual circuits need to be set up in connection-oriented communication. When
discussing wide area networks, these two models are important topics. In practice, WANs
virtually always support a connectionless mode of communication. In other words, the
means to communicate across such a network is by sending datagrams. But having only
connectionless communication is really something we do not always want. Instead, it
turns out that the connection-oriented model is far more appropriate in most cases. To
that end, WANs provide additional connection-oriented services which are often built on
top of their connectionless services. We shall have more to say about the implementation
of these communication models in the following sections.

9.2 Routing in wide area networks

We are now able to concentrate on one of the major distinctions between LANs and WANs:
routing. Selecting an appropriate route is an important task for a router, and differs from
the way in which bridges select routes. In particular, routers are generally concerned with
the selection of a route that will avoid network congestion. Network congestion may be

downloaded by wizard.z@foxmail.com

426 Wide area networks

IN1

IN2

OUT1

OUT2

OUT3

Q
1

2
Q

3
Q

queue buffer packet

Figure 9.3 Accepting and storing incoming packets at a router.

observed when a number of routers are (temporarily) not adequately capable of process-
ing incoming data. How congestion may occur and how it is dealt with is discussed in
Section 9.2.1. In order to avoid congestion, routers need to generally adopt an adaptive
routing strategy. In other words, selecting a route may be dependent on the overall state
of the network. Routing strategies are discussed in Section 9.2.2.

9.2.1 Network congestion

In order to explain the phenomenon of network congestion, we first need to take a closer
look at the organization of routers. We assume that all network traffic takes place in the
form of transportation of so-called packets. We see that routers should be capable of
accepting incoming packets, and forwarding these packets to other routers. The crucial
point here is that routers need temporarily to store incoming packets before forwarding
them. This can be illustrated by considering the logical organization of a router as shown
in Figure 9.3.

In the figure we have depicted a router with two incoming links: IN1 and IN2. Packets
destined for the router will thus arrive via either one of these links. Conversely, there
are three output links: OUT1, OUT2, and OUT3, respectively. We assume that a link is
simply the direct connection from one router to precisely one other router. Now whenever
a packet arrives via one of the input links the router will need to decide via which output
link it is to be forwarded. As soon as the output link has been selected, the router then
stores the packet in an output queue Qj � j � 1�2�3� associated with that link. Queuing a
packet is necessary when the link is already being used to send another packet, or when
the receiving side is not ready to receive the next packet because it has too many packets
arriving at that moment.

Here we come to the source of our problem. Queues associated with an outgoing link
are generally limited to a maximum length. In other words, we may find ourselves in the
situation where a router cannot store an incoming packet because a queue has become
full. Network congestion is the result of the limited capacity of routers to temporarily
store incoming packets while waiting for outgoing links to become available for packet
forwarding. In essence, there are only two solutions to this problem: (1) simply discard
a packet when it cannot be stored, or (2) refuse any incoming packets until they can be

downloaded by wizard.z@foxmail.com

Routing in wide area networks 427

stored again. As we shall see, the second solution is in fact not a real alternative, and prac-
tice shows that discarding packets in packet-switched networks is almost unavoidable. In
the next two sections we shall start with taking a look at the general policy of discarding
packets. The effects of refusing incoming packets is discussed thereafter. How packet
discarding can be avoided is our third topic with respect to network congestion.

Packet discarding

Probably the simplest way to control network congestion is to discard an incoming packet
when there is nowhere to queue it. In other words, an incoming packet may still be ac-
cepted by a router, but is then simply thrown away. This may seem as a rather crude
solution, but, in fact, it turns out to work well in practice. What it means is that the net-
work simply does not guarantee reliability: it may happen that packets are simply lost.
Clearly, packets are not actually lost; they are merely deliberately discarded somewhere
on their route from source to destination.

A packet discarding policy requires that we have criteria to decide whether an accepted
packet is to be forwarded. To this end, several strategies have been developed of which
we outline one here. The point is that each router has a fixed number of buffers available
that can be used temporarily to store incoming packets. In addition, each outgoing queue
always has a minimum number of buffers at its disposal, but, on the other hand, it can
never have all buffers in use. To illustrate, reconsider our router R shown in Figure 9.3,
and assume it has a total of Nbuf buffers available, implying that it can store at most Nbuf

incoming packets. Now suppose that a packet P arrives that should be forwarded to link
OUT3, which is connected to, say, router R�. Assuming R� cannot accept a packet at the
time of P’s arrival, the router R allocates one of its buffers to store P, and subsequently
puts the buffer in queue Q3 as shown in Figure 9.4.

Now suppose that all buffers have eventually been queued for link OUT3. The problem
that arises then is that new incoming packets have to be discarded, even if they could be
forwarded to routers other than R�. This is caused by the fact that router R has no more
buffers available to store an incoming packet temporarily. The objective to prevent this
situation is to allocate a maximum number of buffers to each queue Qj. In that case, there
will always be buffers available for the other outgoing links. For example, suppose the
maximum queue length has been set at six, and that there are 12 buffers available. As
soon as queue Q3 has six buffers pending, any incoming packet for link OUT3 will then
be discarded, while packets for any other outgoing link can still be accepted and queued
(assuming that the length of the respective outgoing queues is smaller than six).

Similarly, each outgoing link may always have a minimum number of buffers at its
disposal. In this way, it can be guaranteed to a certain extent that packets for a specific
route can always be forwarded. To illustrate, assume that in our example router we re-
serve two buffers in advance for each outgoing link. Now suppose that both links OUT1
and OUT2 each already have five pending packets, whereas link OUT1 has no packets
waiting to be forwarded. As we assumed that there were a total of 12 buffers, we thus
still have two buffers available for incoming packets. Now, despite the fact that the max-
imum queue length has been set at six, the router will discard any packet for either link

downloaded by wizard.z@foxmail.com

428 Wide area networks

IN1

IN2

OUT1

OUT2

OUT3

Q
1

2
Q

3
Q

IN1

IN2

OUT1

OUT2

OUT3

P

to R*

queue buffer packet

Figure 9.4 Allocating a buffer for an incoming packet destined for link OUT3.

OUT1 or OUT2, for the simple reason that this would imply that there was only one buffer
left for link OUT3.

Using this combined strategy of allocating a maximum, and reserving a minimum num-
ber of buffers for outgoing links, turns out to work well in practice. It should be realized,
however, that although packet loss may be reduced to an acceptable minimum, we have
not achieved reliable communication. In other words, losing packets along the route is
still possible.

Refusing incoming packets

Now look at the second alternative, refusing incoming packets. Refusing to process in-
coming packets can at best be a temporary solution. The problem is that as long as one
router, say R, refuses to accept any packets, routers that wish to forward packets to R may
gradually also come to a halt as their respective outgoing queues will also eventually be-
come full. The result is what is called a deadlock, and is illustrated in Figure 9.5. What
we see there is that each outgoing queue has reached its maximum length. Consequently,
no one can forward a packet to a next station (because it cannot be queued there), and the
system comes to a halt.

Deadlocks are a major problem. First, it may take a considerable amount of work just
to detect them. But even if a deadlock has been detected, then it still is not easy to un-
tie the routers that take part in the deadlock. The best alternative, therefore, is simply
to avoid situations in which deadlocks can occur. This does mean, however, that routers
may never refuse an incoming packet. Instead, they need to adopt a policy in which pack-
ets can always be accepted. Now, of course, if we adopted the general packet discarding
policy as outlined above, deadlock would never occur. As soon as there are no more

downloaded by wizard.z@foxmail.com

Routing in wide area networks 429

Figure 9.5 The presence of deadlock in a network due to incoming packets being refused.

buffers, the total amount of packets in the network is simply brought back by throwing
packets away. In effect, the network traffic is not jammed, but rather, it is simply dis-
carded until destination stations start accepting incoming messages again. Clearly, a less
crude method would be preferable. Ideally, we would want to avoid the situation where
packets need to be discarded altogether. And this is a difficult objective to meet in prac-
tice. A compromise is always to accept packets but to give preference to those that have
already made considerable progress through the network.

� Let’s take a closer look at one such solution. We assume that each packet is bound to a max-
imum lifetime, implying that each packet has an age attached to it. Initially, a packet starts
with age 0. Each time it passes a router its age is incremented by 1. Consequently, the cur-
rent age of a packet denotes the number of routers it has passed since it was initially sent by
its source station. Now suppose that the maximum age for all packets is Amax. Furthermore,
denote by age�P� the present age of a packet P. What we can do then is organize the buffers
at each router in a hierarchical way as follows.

For each age k, there will be a fixed number of buffers available, denoted as the set class�k�.
A buffer can be either free or in use. Now the point is that a buffer buf�k� from class�k�
can only be used for a packet P with age�P� � k. In other words, a packet must be “old”
enough before it can be allotted a (free) buffer from class�k�. Each time a packet P arrives,
the router will proceed according to the following five steps:

1. Initial. Let i denote the currently inspected class of buffer. Set i� 0.

2. Inspect. If there is a free buffer from class�i�, allocate a buffer buf�i� for storing
packet P: go to Step 4. Otherwise go to Step 3.

3. Increment. No buffer from class�i� was free, so set i� i�1. If i� age�P�, continue
with Step 2, otherwise go to Step 5.

4. Allocate. Use the buffer buf�i� found in Step 2 for storing P. Register it as being in
use, and stop: allocation succeeded.

5. Discard. There is no buffer available for P, so discard the packet and stop searching.

To see that the network does not deadlock, assume the converse. In that case, we have a
situation where, for a certain router R, all buffers are presently allocated to a packet. In
particular, consider a buffer buf from class�Amax� allocated to a packet P. Clearly, we will
have age�P� � Amax, otherwise buffer buf could never have been allocated to P in the first
place. Two situations can occur. First, if P is queued for an outgoing link to which its des-
tination station is connected, then there is no problem: P can be safely delivered and buf
becomes available again. On the other hand, if the outgoing link for which P is queued is

downloaded by wizard.z@foxmail.com

430 Wide area networks

not connected to its destination, but instead to another router R�, P can still be delivered to
R�, although age�P� will be incremented by one. Consequently, upon arrival at R�, P will be
discarded because (1) there are no more buffers available at R�, and (2) P has simply become
too old. We conclude that our initial assumption, namely that the network was deadlocked
cannot hold. What we effectively have, is that as soon as the buffers at each router are grad-
ually all allocated to incoming packets, only those that have already traveled a relatively
long way will continue to their destination. Clearly, the choice of Amax is crucial and will
depend on the size of the network.

Avoiding network congestion

Discarding packets is a problem. The main disadvantage is that there is no way of guar-
anteeing reliable communication as long as there is the possibility that packets are lost
during transmission. How reliable communications can be built on top of unreliable net-
works will be discussed in Section 9.5. At this point, however, it is illustrative to look
into a situation in which packet discarding need never occur. In other words, there is an
elegant way of preventing network congestion altogether.

The problem of network congestion was caused by the lack of available buffers at
routers to store incoming packets temporarily. But in that case, there is an obvious way
to ensure that there is always a buffer available: claim it in advance. And this is precisely
what can be done when we are dealing with connection-oriented communication. In
that case, before a source station starts transmitting packets to a destination, it first sends
a request packet across the network. Now assume that this packet travels to the destina-
tion station according to a route consisting of routers R1� � � � �RN. Such a route is called a
virtual circuit. Then, each router Ri can preallocate a buffer for the packets that are yet
to be sent from the source to the destination. Clearly, all future packets will follow the
same virtual circuit, but it is also clear that none of these packets needs to be discarded as
there will always be a buffer available to them. In this sense, as soon as a route has been
successively established, no network congestion will be observed by either the source or
the destination station.

And what if a request packet does not reach the destination? In that case, there was
good reason not to preallocate a virtual circuit as the network was already congested.
Instead, the source station will receive a packet indicating that the setup of a connection
failed due to congestion. This situation is comparable to trying to phone someone during
a peak period. Although the person you want to talk to may be sitting at home waiting for
your call, you will still get the busy tone because the telephone lines are occupied by other
calls. It is important to note that due to the practicalities of network congestion, many
wide area networks do not support connection-oriented communication at the level of the
OSI network layer. Instead, the best provided service is that of unreliable communication
in the form of packet transmission as we have discussed so far.

downloaded by wizard.z@foxmail.com

Routing in wide area networks 431

9.2.2 Selecting routes

Until now, we have deliberately avoided any details concerning the routing strategies as
applied in wide area networks. But by now, it should be clear that routing is not only
an extremely important topic, it is also a difficult one when discussing WANs. The diffi-
culties primarily arise from the fact that routers should adopt a policy in which network
congestion can be circumvented. Again, notice that this is entirely different from routing
in LANs. As we have mentioned, routing in that case is primarily concerned with getting
a frame across the entire network, but also only once to each station. In the case of WANs
we are dealing with a means to use the network as efficiently as possible, and to avoid
the situation where somewhere along the line packets will have to be discarded due to
limited buffering capabilities of the individual routers.

In general, most wide area networks have adopted routing strategies that vary with
the state of network congestion. In other words, the fixed routing strategies for LANs as
discussed in Section 8.3.2 generally have no counterparts in WANs. Instead, we need to
explore adaptive routing strategies. In order to apply adaptive routing, we need to have
criteria on which a decision can be based. Also, as its name suggests, these criteria will
vary over time. Virtually all wide area networks we consider here base their decision
making on some kind of least-cost criterion. In particular, when we consider a WAN as a
graph in which the nodes are formed by the routers, and the links between these routers
as the edges, then least-cost algorithms assume that each link l has an associated cost
cost�l�. Whenever a packet P needs to traverse N links l1� � � � � lN the total cost costtot�P�
of sending P across these links is then simply computed as the sum of the individual costs:

costtot�P� �
N

∑
i�1

cost�li�

This leaves us with two issues to address: (1) how we determine the cost of a link, and
(2) how we can find a route for a packet P such that costtot�P� is minimal.

Determining the cost of a link

There are numerous ways to associate a cost to a link. The simplest relation is to set the
cost to 1. In that case, determining the minimum overall cost for sending a packet reduces
to finding the shortest route from its source to its destination. Although this may seem a
rather naive way of looking at things, in view of the fact that links may occasionally fail,
and thus that the network topology may change over time, it is seen that we may indeed
speak of an adaptive routing scheme.

A better criterion is to relate the cost to the transmission rate that is supported by the
link. For example, if a link is merely an ordinary telephone line capable of supporting
packet transmission at a rate of 20 000 bps, it would be reasonable to associate a relatively
high cost to the link. On the other hand, high-speed links that support, say, a transmission
rate of 10 Mbps would have a relatively low cost associated.

downloaded by wizard.z@foxmail.com

432 Wide area networks

Another criterion may be related to the actual costs in terms of money. For example,
satellite connections are generally not very cheap implying that packet transfer may in-
deed considerably increase the monthly bill of an institute that makes use of this transmis-
sion medium. This can already be seen with ordinary telephone lines. If you make many
calls abroad you will undoubtedly be charged at the end of the month with an amount
that is, in most cases, rather high. You may decide to resort to ordinary mail which is
generally much cheaper, although also much slower.

Yet another means to measure the cost of a link is to take a look at the number of packets
pending in its associated outgoing queue. If the length of the queue is high, it may be
a wise decision to seek an alternative link as the network is apparently subject to local
congestion.

In general, most adaptive routing strategies combine these criteria in order to arrive at
a cost per link. The problem, however, is that most costs vary over time, implying that in
order to find the best route we will have to calculate the costs at regular intervals. Doing
this too fast may imply that we can never make a decision, for as soon as a best route
has been found, it may turn out that the network may have changed in such a way that
another route may be better. On the other hand, if costs are recalculated only after a long
period of time has elapsed, they may not reflect the actual state of the network. Finding
a compromise between these two is not always easy.

Link state routing

There are a number of ways of finding the cheapest route in a network, but two of the
most popular ones are based on so-called link states and distance vectors, respectively.
We start with considering link state routing.

In the case of link state routing, each router has to know the topology of the entire
network. In particular, it has to know which routers are connected to each other and the
cost of each link. Using this information, a router can easily calculate the cheapest route
to each other router.

To find the cheapest route starting at a router R0 we divide routers into two classes: a
class S consisting of routers to which the cheapest route has been found, and a class S
for which this is not the case. A next cheapest route can then be constructed by finding a
link �R� R̂�, where R� S and R̂� S, such that the route to R̂ via R is the cheapest route that
can be constructed in this way. The router R̂ that is found according to this procedure is
then added to the set S. It is important to note that in order to find routes in this way, we
must know exactly the topology of the network.

� We can formulate link state routing more accurately in terms of the following algorithm,
which is due to Dijkstra (1959). As we have stated, adaptive routing strategies view the
network as a graph in which the nodes are formed by routers, and links constitute the edges.
Each link l is labeled with a cost costlink�l�, representing the cost of sending a packet across
that link. Dijkstra’s algorithm proceeds as follows. Suppose we want to find the cheapest
route from a router R0 to any other router in the network. Denote by costsofar

route�R0�R� the
cost of the cheapest route from R0 to R found so far, and by last�R0�R� the last link of that
cheapest route. Furthermore, denote by S the set of routers for which the cheapest route has

downloaded by wizard.z@foxmail.com

Routing in wide area networks 433

been found and by S those for which this is not the case (this will be further explained in the
algorithm). The cost of link �R�R̂� between two adjacent routers is denoted as costlink�R� R̂�.
If there is no link between these two routers, we write costlink�R� R̂� �∞, i.e. we set the cost
to infinity.

1. Initial. Initialize the set S and the various values for costsofar
route�R� and last�R0�R� as

follows:

S � fR0g

costsofar
route�R0�R� �

�
0 if R � R0

costlink�R0�R� otherwise

last�R0�R� �

�
�R0�R� if costlink�R0�R��∞
/0 otherwise

Note that S now consists of all routers except R0.

2. Expand. During each expansion step, select a router Rnew � S for which we have that
costsofar

route�R0�Rnew� is minimal. Add this router to the set S of inspected routers, and
finalize its costs, i.e.

S � S�Rnew

S � S�Rnew

costroute�R0�Rnew� � costsofar
route�R0�Rnew�

In this step, S consists of all routers for which a cheapest path has been found. The
router Rnew is the next one that is nearest to these routers (nearest in the sense that it
can be reached at minimal cost from one of the routers in S). Therefore, we add it to
S, and remove it from the set of routers that need to be further inspected.

3. Update. If S � /0, then stop. Otherwise, for each router Rrest � S, calculate a new cost
costnew

route�R0�Rrest� of a route from R0 to Rrest taking the router Rnew identified in the
previous step into account, and where

costnew
route�R0�Rrest� �

minfcostsofar
route�R0�Rrest��costroute�R0�Rnew�� costlink�Rnew�Rrest�g

If costnew
route�R0�Rrest�� costsofar

route�R0�Rrest�, i.e. the newly calculated cost is smaller than
the one found previously, then make the following replacements:

costsofar
route�R0�Rrest� � costnew

route�R0�Rrest�

last�R0�Rrest� � �Rnew�Rrest�

downloaded by wizard.z@foxmail.com

434 Wide area networks

After having done this update for each router in S, continue with the following expan-
sion, i.e. go to step 2.

This implies that if we find a cheaper route from R0 to Rrest, now via the router Rnew

which had just been added to S, then this route is recorded by updating last�R0�Rrest�,
and also updating the total cost for reaching router Rrest found so far. Clearly, Rrest

may then be eligible for selection during the next expansion of S.

The cheapest route from R0 to a destination router R is found by backtracking, i.e., starting
at R� last�R0�R� will be the last link of the cheapest route to R. If last�R0�R� � �Rpred�R�,
then the next-to-last link will be last�R0�Rpred�, etc.

The algorithm is illustrated in Figure 9.6. The starting node is 1, from which the shortest path
to each other node needs to be found. Initially, we have S � f1g, and S � f2�3�4�5�6g, and
costsofar

route�1�R� for each node R is equal to:

node: 1 2 3 4 5 6
costsofar

route : 0 50 ∞ 40 25 10
inspect? N Y Y Y Y Y

We have also indicated whether a node needs to be further inspected. For the ones that
require no further inspection, the cheapest path has already been found. Initially, this is
only the case for node 1. During the first expansion step, node 6 will be selected, because
costsofar

route�1�6� is the lowest for all nodes in S. By selecting this node, we can update the cost
to other nodes by taking a look at paths from node 1 via node 6. This leads to the following
adjustments as part of the first update step.

node: 1 2 3 4 5 6
costsofar

route : 0 35 ∞ 35 25 10
inspect? N Y Y Y Y N

Note how we have discovered cheaper routes to nodes 2 and 4, respectively. Both routes go
from node 1 via node 6.

The second expansion step will select node 5 from S, thereby making a route available to
node 3 at cost of 45. From there on, no further cost improvements can be made, and the
selection of nodes from S proceeds as shown in Figure 9.6.

Distance vector routing

Distance vector routing employs a different strategy. In this case, a router maintains in-
formation on the costs of the cheapest route (referred to as the distance) to each destina-
tion in the network. The cost of this route is calculated by taking into account only the
distance of each of its neighbors from all other routers. In this way, a router can easily
determine what its own distance is from every other router.

To illustrate, suppose that a router R0 has recorded for itself that the cost of reaching a
destination router Rdest is 93 units, and that this is achieved by forwarding packets for Rdest

to its adjacent router Rsucc. If the cost of the link between R0 and Rsucc is 12, then clearly

downloaded by wizard.z@foxmail.com

Routing in wide area networks 435

5

1 2

3

4

5

6

20

15 25

50

10

20

25

40 25

55

10

10

1 2

3

4

5

6

20

15 25

50

10

20

25

40 25

55

10

10

1

1 2

3

4

5

6

20

15 25

50

10

20

25

40 25

55

10

10

2

1 2

3

4

5

6

20

15 25

50

10

20

25

40 25

55

10

10

3

1 2

3

4

5

6

20

15 25

50

10

20

25

40 25

55

10

10

4

Figure 9.6 An example of finding all least-cost paths originating at node 1, using Dijkstra’s
algorithm.

it should cost Rsucc precisely 81 units to get packets to Rdest. Now suppose things change
in the network. In particular, assume that another router R�succ which is also adjacent to
R0 finds that it can get packets to Rdest at a cost of 85 units. If we let R0 regularly request
its neighbors to state at what price they can forward packets to Rdest, then R0 will change
its route to Rdest if the cost of the link between R0 and R�succ is smaller than 8. In that case,
the cost of sending a packet from R0 to Rdest drops below the initial value of 93.

� Let’s see how this works. Suppose we wish to determine the cheapest route starting at some

downloaded by wizard.z@foxmail.com

436 Wide area networks

router R0. Denote by cost�k�route�R0�R� the cost of the cheapest route from R0 to R, under the
constraint that the length of that route be not longer than k. In other words, there should be
no more than k� 1 intermediate routers from R0 to R. For any router R, denote by adj�R�
the set of its adjacent routers. The cost of a link between two routers R andR̂ is again de-
noted as costlink�R� R̂�. Finally, denote by first�R0�R� the first router adjacent to R0 to which
a message for router R should be forwarded. The algorithm, generally referred to as the
Bellman–Ford algorithm, works as follows:

1. Initial. Initialize the values for cost�1�route�R0�R� and first�R0�R� as follows:

cost�1�route�R0�R� �

��
�

0 if R � R0

costlink�R0�R� if R � adj�R0�
∞ otherwise

first�R0�R� �

�
�R0�R� if R � adj�R0�
/0 otherwise

The initialization step effectively establishes that the cost of getting from R0 to any
other router by means of just one link is either finite by crossing the link to an adjacent
router or infinite in the case of non-adjacent routers. By setting first�R0�R� � ∞ for
non-adjacent routers, we express that those routers cannot be directly reached.

2. Update. Starting at k � 1, during the kth update step, calculate first for each router R
the alternative cost cost�k�1�

new �R0�R� with

cost�k�1�
new �R0�R� � min

R��adj�R�
fcost�k�route�R0�R

��� costlink�R
�
�R�g

This alternative cost expresses the cost of reaching a router R by passing at most k
routers by first considering routes of length k to any router R� that is adjacent to R,
and then crossing the link between R� and R. Now suppose that the minimum value
for cost�k�1�

new �R0�R� is obtained if we traverse a route via router Rmin � adj�R�. Two
situations may occur:

(1) cost�k�1�
new �R0�R� � cost�k��R0�R�. In this case, an alternative, longer route from

R0 to R was not any cheaper than any route we had found so far. In that case, we
leave things as they are, i.e.

cost�k�1�
route �R0�R� � cost�k�route�R0�R�

first�R0�R� � unaltered

(2) cost�k�1�
new �R0�R�� cost�k��R0�R�. In this case, we have found a longer route (via

Rmin) that is cheaper than any shorter route to R found so far. The following ad-
justments are then made:

downloaded by wizard.z@foxmail.com

Routing in wide area networks 437

1 2

3

4

5

6

20

15 25

50

10

20

25

40 25

55

10

10
1 2

3

4

5

6

20

15 25

50

10

20

25

40 25

55

10

10

1 2

Figure 9.7 An example of finding the least-cost paths originating at node 1, using the Bellman–
Ford algorithm.

cost�k�1�
route �R0�R� � cost�k�1�

new �R0�R�

first�R0�R� � first�R0�Rmin�

It is important to note that we already know the cheapest route to Rmin, because
cost�k�route�R0�Rmin� had already been calculated during the previous update step.

3. Finalize. If new cost values were found in the previous step, do another update step,
thereby incrementing the value for k by 1. Otherwise, stop.

The algorithm is illustrated in Figure 9.7. The first step shows how all cheapest routes with a
maximum length of one are found; the second, and also final step shows the cheapest routes
of maximum length two. It can be verified that there are no longer cheaper routes originating
at node 1.

Link state versus distance vector routing

If we compare routing based on either link states or distance vectors, an important dis-
tinction between the two is easily identified. In order for a router to find the cheapest
routes to all routers when using link states it needs to know the entire topology of the
network. But in the case of distance vector routing, a router can find the cheapest route
to any other router by merely taking local information into account. In particular, it need
only know the cost of the link to any adjacent router, as well as the distance from each
of these adjacent routers to other routers.

Distance vector routing therefore seems more attractive than link state routing as de-
cisions can be made using only local information, which, in turn, tends to make the work
of a router simpler. However, there is one problem with distance vector routing. Al-
though the algorithm is simpler, it generally does take more time eventually to discover

downloaded by wizard.z@foxmail.com

438 Wide area networks

the cheapest route. (This may seem to contradict our example where distance vector rout-
ing required only two steps, whereas link state routing required five steps. This differ-
ence arises entirely from the fact that we have considered only a small network. As net-
works grow, it can be shown that distance vector routing is indeed much more expensive
in terms of network traffic and necessary computations.) In other words, the algorithm
converges more slowly to a final solution than link state routing. This is particularly im-
portant in view of changes in the network as we shall see below.

9.2.3 Routing organization

Merely finding a good route is just one part of the story. It is also important to know
where routes are actually calculated. In this section we shall concentrate on this organi-
zational aspect of routing, following the classification discussed in Stallings (1994). In
particular, we make a distinction based on where routing decisions are made, and where
information on the network topology and congestion is maintained. This leads to three
different classes of routing organization:

� Isolated routing which is characterized by the fact that all routing decisions are
made locally; there is no central information available nor do nodes gather infor-
mation on the global status of the network.

� In centralized routing schemes, each router takes its own decision with respect to
routing packets, but information on network topology and congestion is obtained
from a centralized location.

� Distributed routing is comparable to isolated routing, but routers additionally try
to build up a view of the actual network traffic which they take into account when
forwarding packets.

Let’s take a closer look at these three classes of routing organization.

Isolated routing

An extremely simple example of an isolated routing organization is the hot potato al-
gorithm. In this case, whenever a router accepts an incoming packet, it simply appends
the packet to the shortest outgoing queue. The important point to note is that the router
does not take into account whether the link associated with an outgoing queue is geared
in the right direction. Consequently, a packet may be forwarded into a completely wrong
direction, diverting it further from its destination. The hot potato algorithm can be con-
sidered as the bottom line for any routing algorithm. If an algorithm does routing worse,
it can be better replaced by the simple and naive hot potato scheme.

� Of course, this algorithm can be easily improved if we place some information on the net-
work topology at each router. In that case, the router can bias its decision with respect to se-
lecting an outgoing link. To illustrate, assume there are N outgoing links OUT1� � � � �OUTN.
Denote by len�Qi� the current length of queue Qi associated with link OUTi. Then, for each

downloaded by wizard.z@foxmail.com

Routing in wide area networks 439

destination station S in the network, we associate a (positive-valued) weight weighti�S� with
link OUTi. A low weight indicates that selection of the link will probably divert an incom-
ing packet from its destination. A high weight, on the other hand, indicates that selection of
the link will move the packet in the right direction. Using these notations, we can calculate
the relative weight weightrel

i �S� of each outgoing link as:

weightrel
i �S� �

weighti�S� � len�Qi�

∑N
i�1 weighti�S� � len�Qi�

and select the link for which weightrel
i �S� is the largest. Clearly, this scheme will only work if

we provide each router with some information on the network topology. Due to the variance
of the network topology, this information will need to be adapted at regular intervals. And
in that case, much better routing strategies exist.

Centralized routing

Isolated routing organizations are rarely used by routers in practice for the simple reason
that their decisions with respect to selecting appropriate routes are not very good. Much
better decisions can be made when general information on network topology and traffic is
available. To this end, some wide area networks employ a strategy in which a centralized
routing control center maintains such information.

Each router in the network periodically sends information to the routing control center.
This information may include average lengths of outgoing queues, how much traffic each
outgoing link had during the last report period, malfunctioning links, etc. The routing
control center gathers all this information and subsequently calculates for each router in
the network the optimal routes along which it should forward packets. These routing
tables, one for each router, are then passed back to the respective routers.

One of the major problems with this centralized approach is the fact that in order to
respond quickly to changing overall network traffic, routing tables will have to be fre-
quently updated. However, updating tables is a time-consuming task, especially if we
take the additional communication between the routers and the control center into ac-
count. Consequently, the centralized approach may simply be too slow to respond ade-
quately to changing traffic loads.

Another, and serious problem arises when the control center fails to work properly. In
particular, imagine what happens when the center goes down completely. In that case,
changes in network traffic cannot be responded to at all. This is an extremely vulner-
able point, for example, in the TYMNET wide area network (Tymes, 1981) where each
new user first has to communicate with the control center before even getting access to
the network. If the center has broken down, then clearly new users cannot participate in
communication across the network.

Distributed routing

A generally better but also more complex method of maintaining network information at
each station is employed in distributed routing organizations. In these cases, each router

downloaded by wizard.z@foxmail.com

440 Wide area networks

attempts to maintain its own routing table for the entire network without having to con-
sult a routing control center. The problem, of course, is how network information can
be obtained. As an illustration of how distributed routing can work in practice, we will
look at two strategies followed in the Internet (this example network is discussed further
below.)

Distance vector routing. A widely used distributed routing protocol in the Internet is
the routing information protocol, or simply RIP (Hedrick, 1988). Under normal cir-
cumstances, a router that uses RIP generally sends its routing table to its adjacent routers
once every 30 seconds. Each entry in a routing table essentially consists of the following
information:2

� The address of a destination router R

� The address of an adjacent router to which packets for R should be forwarded

� The length of the route to R.

The cost of a link between two routers is then simply taken as 1. This means that routing
is based on finding the shortest route. Whenever a router R0 receives the routing table of
an adjacent router Radj, it can easily update its own routing table. For example, suppose
R0 finds that it has a route to, say, router R of length 9. If Radj states that it can route
packets to R through a route of length 6, then R0 will adjust its entry for R by subsequently
forwarding packets to Radj. The shorter route between R0 and R will then have length 7.

If a router R0 has not received a routing table from its adjacent router Radj for more
than 3 minutes, it concludes that the link to Radj has gone down. It then sets the cost of
that link to infinity, and after another minute has passed (implying that the other adjacent
routers will have been informed of the failure of that link), all routes via Radj are removed
from the routing table.

The main problem with RIP is that it takes a long time to stabilize after a link or router
failure. By this we mean that other routers may still think that a route exists across a failed
link, leading to additional traffic to correct this. Another problem is that the maximum
length of a route that can be administrated is 15. Consequently, the size of the network
expressed as the length of the shortest path between any two routers is limited as well.

Link state routing. In the case of link state routing, a router determines who its neigh-
bors are and the cost of the link to each neighbor. This information is gathered in a so-
called link state packet (LSP), and subsequently broadcast to all other routers. Broad-
casting an LSP is an essential difference with distance vector routing: it enables each
router to build a complete picture of the topology of the network. We shall briefly dis-
cuss link state routing and the interested reader is referred to Perlman (1993) for further
details.

2Note that for clarity, we have combined the information of a routing table and that which is actually
sent by adjacent routers to allow updates.

downloaded by wizard.z@foxmail.com

Internetworking 441

The cheapest path to each other router is determined as soon as a complete picture of
the network has been obtained through the incoming LSPs. To that end, Dijkstra’s algo-
rithm (or a variant thereof) as explained above is generally applied. The real problem
with link state routing is the distribution of the LSPs throughout the network. Therefore,
each LSP contains at least the following information:

� An address identifying the router that generated the LSP

� A sequence number in order to indicate newer LSPs generated by the same router

� A field containing an expiration time until the LSP is to be considered out of date,
and thus that it should be discarded.

Now suppose a router R0 broadcasts an updated LSP. If another router receives this
LSP, it removes the previous one received from R0. The fact that the LSP just received is
indeed more recent can be seen by inspecting its sequence number. A router is forced to
generate a new LSP approximately once every hour, which corresponds to the maximum
time any LSP is considered to be valid. It is precisely because of this relatively long life
of LSPs that broadcasting the network topology across the network is feasible. Of course,
if links fail, then a router connected to a failing link can generate an LSP as well.

9.3 Internetworking

So far, we have tacitly assumed that all WANs look alike so that it is easy to send mes-
sages from one network to another. However, such an assumption is not realistic. In
practice, wide area networks are constructed by interconnecting several different kinds
of networks together, giving rise to a so-called internetwork, or internet.3 The prob-
lem with internetworks is that their constituents networks need not be the same. And
this causes a lot of trouble. In this section we shall take a closer look at the problems that
need to be solved when dealing with constructing a wide area network from different
networks.

9.3.1 What makes internetworks different

When constructing an internetwork from different networks, we should keep in mind that
its users should not be aware of the fact that there are different underlying networks at
all. In other words, the fact that the internetwork is built from different networks should
be transparent to its users. No matter where the internetwork is accessed, it should al-
ways appear in the same way. This transparency is to be achieved at the level of the OSI

network layer. In particular, we may assume that this layer is divided into two sublay-
ers as shown in Figure 9.8. The lower part of the layer, which we refer to as the subnet
layer, consists of the network protocols as supported by a specific constituent network.

3We shall use the term “internetwork” rather than the more popular “internet” in order to avoid confu-
sion with an internetwork called “Internet”.

downloaded by wizard.z@foxmail.com

442 Wide area networks

internet

physical

llc

mac

internetwork
router

subnet
network

layer

datalink
layer

Figure 9.8 The subdivision of the network layer into two sublayers to support internetworking.

The upper part, called the internet layer, consists of the protocols that are specific to an
internetwork. Note, by the way, that a constituent network may be any network that pro-
vides support at the level of the network layer. Such networks include WANs not only,
but also LANs and MANs that have been extended with communication protocols for the
network layer.

An internetwork will thus add an internet sublayer to the existing network layer which
supports the transmission of packets across the internetwork. Let’s refer to these packets
as internet packets, in order to distinguish them from what we shall call subnet packets
which are specific to the networks that constitute an internetwork. Now, in order to send
an internet packet across an internetwork, we will have to make use of the facilities pro-
vided by each of of the constituent networks. In particular, this means that each internet
packet will have to be converted into subnet packets that can be accepted by the con-
stituent networks. Clearly, the responsibility for such a conversion lies with the routers.
In order to see the kind of work that a router needs to do, reconsider Figure 9.2 and imag-
ine how data exchange between a station in network S111 and one in network S232 would
need to be supported. In particular, we may expect that a message must cross a number
of different constituent networks as shown in Figure 9.9.

The problems start as soon as network boundaries need to be crossed. For example,
the router in Figure 9.9 connecting S111 to network A11 will need to support two com-
munication protocols: the one by which all stations in S111 communicate, and the one by
which all routers in A11 communicate. But there is more. Not only should the router es-
tablish that messages can be transferred between the two networks, it should also ensure
that the services as provided by the internetwork are kept intact.

downloaded by wizard.z@foxmail.com

Internetworking 443

D2A23

D1
S111

A11

232S

Figure 9.9 Passing a message across different networks through routers.

Additional problems

Let’s be more specific, and look at some of the more apparent differences between net-
works that should be made invisible to a user when constructing an internetwork (see also
Stallings, 1994).

� Addressing schemes. First, the internetwork should provide a uniform addressing
scheme. Now this may seem an obvious thing to do, but when you realize that dif-
ferent networks generally have different addressing conventions, we may indeed
have a problem to solve. In essence, the problem lies in the fact that a router should
be capable of translating a source address at the level of the data link layer into a
target data link address of a next router that may have a completely different for-
mat. In particular, how data link addresses are found may differ substantially from
network to network.

� Reliability. Suppose that at the level of the entire internetwork we have agreed to
support reliable communication. In other words, the internetwork must provide a
mechanism by which it can guarantee delivery of packets. Now, of course, achiev-
ing reliability based on a constituent network that already guarantees reliable com-
munication is not really a problem. Instead, we run into difficulties whenever one
of the constituent networks does not support reliable communication. In that case,

downloaded by wizard.z@foxmail.com

444 Wide area networks

the routers connected to that network will need to adopt a communication protocol
by which delivery of packets is guaranteed. And as we shall see later, this is not
always easy to accomplish.

� Packet size. Of course, it should be clear what the maximum length of a packet
for an internetwork may be. Unfortunately, we may run into problems if one of the
networks that constitute the internetwork can support packets or frames only of a
smaller length than the size of a packet as supported by the internetwork. In that
case, a packet will have to be fragmented. This may be a serious problem to which
we shall return below.

� Modes of operation. Like any network, an internetwork will generally provide
connectionless communication and possibly also connection-oriented communi-
cation. However, it cannot be expected that each constituent network will support
both modes of communication as well. And even if they do, their implementation
may differ substantially from what is required from the point of view of the overall
internetwork. This important issue is also discussed further below.

We shall leave addressing and reliability problems at this point. Addressing will be il-
lustrated by means of an example in Section 9.3. Reliability is discussed in Section 9.5.
How to handle different packet and frame sizes is discussed in Section 9.3.2, and the way
to support different modes of operation is discussed in Section 9.3.3. But before doing
so, we mention one other practical problem which arises primarily from organizational
issues.

Internetwork routers

Figure 9.9 also illustrates another problem. Because the constituent networks of an inter-
network will generally belong to different organizations, it may become difficult to have
a single router connect two networks. For example, the two networks may be located
at two distant locations making it almost impossible to connect them by a single router.
Another problem is that whenever two networks run by different organizations need to
be connected by a single router, this router will need to fall under the regime of either
one or both organizations. And indeed, this may be virtually impossible in practice. The
solution is quite simple: we can split the functionality of the router into two parts, lead-
ing to what we refer to as an internetwork router, but is usually called a half-gateway.
As shown in Figure 9.10, we simply take two internetwork routers and directly connect
them by a transmission medium. In that case, the two networks need to share merely the
line that connects them, instead of a full-blown computer.

9.3.2 Internet packet fragmentation

An important problem that we have to face when dealing with internetworking is that
sizes of internet packets and subnet packets may not match. In particular, we may have
the situation where an internetwork supports packet sizes that are simply too large to be

downloaded by wizard.z@foxmail.com

Internetworking 445

internetwork
routers

(half-gateways)

regular router
(full gateway)

Figure 9.10 Using internetwork routers to construct an internetwork.

handled by one or several of its constituent networks. Imagine the following situation.
Suppose that we need to transmit an internet packet consisting of Ninet bytes, but that the
constituent network through which it should be transmitted supports only subnet packets
having a maximum size of Nsnet bytes, with Nsnet � Ninet. In that case, we are left with
no other choice than to partition our internet packet into a number of subnet packets and
send each of these subnet packets across the network, in order to reassemble them later.

Principal operation

Now fragmenting an internet packet into a number of subnet packets is not really diffi-
cult. The problems start at the other end, i.e. the destination, where these subnet packets
have to be pasted together again in order to retain the original packet. To illustrate, we
first assume that the constituent networks provide a completely reliable transportation of
subnet packets. In other words, when a router transmits a subnet packet across a con-
stituent network it is certain to arrive eventually at its destination. In that case, the major
problem we are confronted with is that subnet packets may not arrive in the same order as
they were sent. This may happen when routers follow an adaptive routing strategy and
in which a route is strictly selected on a per-packet basis. In other words, each time a
subnet packet arrives at a router the latter selects at that point only the best route for that
the packet to follow. Consequently, subnet packets belonging to the same fragmented
internet packet may follow completely different routes, and may thus arrive out of order.

So how do we paste subnet packets together again? First, we must bear in mind that a
number of subnet packets comprise a specific internet packet. To that end, each subnet

downloaded by wizard.z@foxmail.com

446 Wide area networks

packet
receiver

packet
sender

data link

physical

network

one queue per incoming message

Figure 9.11 The principle of reassembling subnet packets to their original internet packet.

packet must carry an identification that uniquely determines the original internet packet.
In addition, each subnet packet must also be augmented with a sequence number, and
likewise, it should also carry information on whether it is the last packet in the series
associated with the original packet. Given this information, the destination can now start
building a list of incoming subnet packets. In particular, it will need to maintain a list for
each unique internet packet it recognizes. This is illustrated in Figure 9.11.

As soon as all subnet packets have been received, the destination can be pursued by
pasting them together in the right order, and subsequently handing the reassembled inter-
net packet over to the higher layers. Although this principle is rather simple, it should be
clear that as long as not all subnet packets have been received, a relatively large amount
of buffer space will be required to hold all the subnet packets that have already reached
the destination. In addition, the internet sublayer, in turn, will have to maintain a list of
reassembled internet packets.

Responsibility of reassembling

But matters can get worse. The issue that we ignored above is that an internetwork con-
sists of several constituent networks, and that each of these networks may have its own
restrictions on maximum packet sizes. To explain, assume that an internet packet IP is
partitioned into K subnet packets SP1

� � � � �SP1
K for the first constituent network CN1 that

needs to be crossed. At that point, the internetwork router can follow two policies:

� First, in its role as router, it may decide to select a subsequent internetwork router
(which is also attached to CN1) to which the entire internet packet IP should be

downloaded by wizard.z@foxmail.com

Internetworking 447

forwarded. This means that the constituent network CN1 will have no choice but
to route all subnet packets SP1

1� � � � �SP1
K to the next internetwork router.

� Alternatively, the internetwork router may decide to leave the routing entirely to
the constituent network CN1. This implies that each subnet packet SP1

i will treated
as an independent packet, and is thus simply routed to one of possibly several in-
ternetwork routers attached to CN1.

Let’s take a closer look at each of these two alternatives.

Intermediate reassembly. Using the first option, reassembly becomes rather easy. Be-
cause all subnet packets are forwarded to the same (intermediate) internetwork router, the
latter can reassemble the original internet packet IP. After this has occurred the internet-
work router can decide to which router it should then forward IP, possibly after having
fragmented it again into, say, N subnet packets SP2

1� � � � �SP2
N for the next constituent net-

work. An important observation is that fragmentation of internet packets has become
completely transparent at the level of the internetwork. Each internet packet simply trav-
els in its entirety from one internetwork router to the next, although perhaps as a series
of fragments.

Although this may seem an elegant scheme, there are two disadvantages with this ap-
proach. First, it can be expected that fragmentation and reassembly will have to be done
several times, namely in those cases when a constituent network cannot handle the size
of the internet packet. Second, we are losing flexibility in adaptive routing: the inter-
network routers can take network congestion into account only at the level of the inter-
network. Local traffic within a constituent network is simply ignored. Indeed, these two
issues may degrade performance aspects.

Immediate forwarding. The second alternative, also referred to as immediate forward-
ing, is often more attractive from a performance point of view, but it does have its own
problems. In this case, reassembly is assumed to be done at the actual destination sta-
tion; in other words, intermediate routers simply handle incoming packets on a purely
individual basis. This may seem a good idea, but we do have a problem here. The point
is that a subnet packet SP1

i may itself be too large for the next constituent network. In
other words, it may happen that SP1

i needs to be fragmented into a number of subpackets
SP2

i�1� � � � �SP2
i�M. Consequently, the final destination will now have to deal with reassem-

bling an internet packet from different-sized fragments.
This is really not a major problem, but we will encounter difficulties when a subnet

packet becomes lost. Requesting the retransmission of merely a lost subpacket is out of
the question as it means that we have to request the original sender to retransmit a part
of the internet packet. But internet packets are considered by the internetwork to be in-
divisible (meaning that no one keeps a record of how packets are fragmented into subnet
packets) so this will not do. Consequently, the sender will eventually have to retransmit

downloaded by wizard.z@foxmail.com

448 Wide area networks

the entire original packet, thereby discarding all subnet packets received so far.

Probably the simplest solution is to restrict internet packet sizes to the smallest packet
size of any of the constituent networks comprising the internetwork. This at least allevi-
ates the problem of receiving differently sized portions of an internet packet. In addition,
if packets are lost, the subnet packets received so far are discarded and no retransmission
request is issued. This last policy is completely in order when reliable communication is
not supported by the network, as is often the case.

In conclusion, there is no single best solution to the problem of where to fragment and
reassemble internet packets, and different internetworks indeed adopt different solutions.
When required, a combination of immediate forwarding and intermediate reassembly
may also be a viable way to solve the problem of fragmentation.

9.3.3 Modes of operation

In Section 9.1.4 we mentioned that wide area networks generally support connection-
less communication, meaning that packets can be sent across the network, where each
packet is treated as a separate and independent unit of data. At a logical level, connec-
tionless communication is supported in the form of so-called datagrams. Although a
datagram may appear to its users as an indivisible unit of data, a wide area network may
choose to fragment a datagram into several packets, and send each of these packets sep-
arately. The destination station is then responsible for reassembling these packets. The
alternative mode of communication is referred to as connection-oriented, which is gen-
erally supported through virtual circuits. After having set up a virtual circuit, it is then
subsequently used to transfer packets across the network, which will now arrive in the
same order as they were sent.

When connecting networks into a large internetwork we have to face the fact that some
constituent networks may differ in the way that they support these two modes of com-
munication. In particular, four combinations need to be examined:

1. Setting up a connection-oriented communication when all constituent networks
support virtual circuits.

2. Setting up a connection-oriented communication but lacking the support of virtual
circuits by one or several constituent networks.

3. Providing connectionless communication based on datagrams.

4. Providing connectionless communication based on virtual circuits.

The distinction between the mode of operation as offered by the internetwork (namely
connection-oriented versus connectionless) and the way that each mode is implemented
by either virtual circuits or datagrams is an important one. And although we are present-
ing this distinction in view of internetworking, it should be clear that it may be equally
applicable within any layer. This issue is further addressed in the exercise section at the
end of this chapter. For now, let’s see what we need to deal with in any of these four
cases.

downloaded by wizard.z@foxmail.com

Internetworking 449

internal virtual circuit

routerconstituent
network

Figure 9.12 The construction of a virtual circuit in an internetwork.

Connection-oriented communication using virtual circuits

The problem we now face is that our network no longer consists of a collection of in-
timately cooperating routers. Instead, we have to deal with networks having their own
view on how to support communication, and generally also owned by different organiza-
tions. For one thing, we cannot set up a single virtual circuit, but instead, the best we can
hope for is that a connection can be established by means of a series of virtual circuits.
This is illustrated in Figure 9.12.

Each router shown in Figure 9.12 must adhere to two protocol suites: one of the in-
ternetwork and one of the constituent network for which it acts as a connector to the
other routers. In order to establish an internetwork-wide virtual circuit, each internetwork
router will have to establish an internal virtual circuit, and combine this with a connec-
tion to an internetwork router of a following constituent network. The principle is quite
simple in this case. An internetwork-wide virtual circuit is simply constructed as the con-
catenation of several internal virtual circuits. It is the job of internetwork routers to main-
tain information on which two internal virtual circuits are connected to each other. An
important observation is that packets can be sent through the virtual circuit on an individ-
ual basis. That is, whenever an internetwork router receives a packet traversing through
an internetwork-wide virtual circuit IVC, it can immediately forward that packet across
the next internal virtual circuit that forms part of IVC to the next internetwork router.

Connection-oriented communication using datagrams

What happens if the internetwork offers connection-oriented communication, but one
of its constituent networks does not provide the means to set up an internal virtual cir-
cuit, but instead supports communication only through datagrams? In that case, it is the
router’s job to maintain the view of a virtual circuit. This is best explained by an example.

downloaded by wizard.z@foxmail.com

450 Wide area networks

VC1

VC2

VC3

R1

R2

R3

R4

Figure 9.13 Realizing a virtual circuit between two routers in a network.

Consider Figure 9.13. Suppose router R1 receives a request to establish an internal vir-
tual circuit on behalf of, say sender S, to router R3, but that the constituent network (CN)
does not support connection-oriented communication. One way or the other, R1 and R3
will have to provide a solution that at least imitates the presence of an internal virtual
circuit between them. This need not be a major problem if the two routers are directly
connected to each other. It may, however, impose a rather large burden if this is not the
case.

In order to imitate the presence of an internal virtual circuit (which is shown as VC1),
R1 first sends a call request to R3 stating that all succeeding packets from S will logically
follow the same route. This generally implies two things:

� Packets sent from R1 to R3 may not be lost, i.e. the two routers will have to achieve
reliable communication

� Router R3 has to process packets in the same order as they are sent by R1.

Realizing a reliable connection is discussed later, but need not be a problem if constituent
network CN already supports it. This leaves us with the second problem. The point
here is that because network CN does not support virtual circuits, packets sent from R1
to R3 may follow different routes within CN, and may thus arrive out of order at R3.
When maintaining the internetwork-wide virtual circuit, R3 is forced temporarily to store
a packet from R1 until all its predecessors have been received (and forwarded onto the
next internal circuit). Indeed, this does put an extra burden on the capabilities of an in-
ternetwork router. The effect, however, is that R1 and R3 jointly establish a view of a true
internal virtual circuit through constituent network CN.

Connectionless communication using virtual circuits

When providing connectionless communication, things are a lot easier. However, where
connectionless communication is generally more efficient when just a single piece of data

downloaded by wizard.z@foxmail.com

Internetworking 451

needs to be transmitted, we may find ourselves in a difficult position when a constituent
network provides communication only through virtual circuits. In that case, we will be
forced to set up a complete virtual circuit for the transmission of only a single internet
packet. And as soon as the packet has been transmitted, the circuit should be canceled.

Of course, this situation should be avoided as much as possible, and in practice, it
is indeed rather hypothetical. Nevertheless, explicit attention must be paid to this phe-
nomenon. To illustrate, the wide area network type ISDN, which we shall discuss in Sec-
tion 9.4, is inherently based on the use of virtual circuits. In the case of ISDN, special
measures have been taken to allow for efficient packet switching capabilities, i.e. means
for providing connectionless communication through datagrams. And as we shall see,
it is sometimes still necessary at least to set up a partial virtual circuit before the actual
transportation by means of datagrams can take place.

Connectionless communication using datagrams

Undoubtedly, the simplest implementation scheme, apart from problems related to frag-
mentation and assembly, is that of a connectionless communication service through direct
use of datagrams. And in practice, this is indeed the easiest mode of operation to provide
in internetworks.

� 9.3.4 An example: the Internet

At this point it is illustrative to take a look at one of the world’s largest internetworks, the
Internet. We shall concentrate on some of the basic protocols on which this worldwide
network is based, in particular the so-called IP protocol.

Background

The history of the Internet has its roots in the ARPANET project which concentrated on the
development of a computer network in the late 1960s, financed by the US Department of
Defense. Since its first introduction, ARPANET has rapidly expanded by adding more and
more computers all around the world. In the beginning, ARPANET was a true wide area net-
work, in the sense that all computers that were part of it made use of the same protocol suite.
In other words, if a computer was part of the network, it ran exactly the same protocols as
any other computer in the network.

The first step towards the construction of an internetwork was made by connecting a few
(military) networks to ARPANET. These networks were adapted in such a way that a com-
puter in the ARPANET could also communicate with a computer located in one of these added
networks. In particular, this meant that internetwork routers were added (or existing routers
enhanced to internetwork routers), and that stations in the added networks were supplied
with packages containing implementations of ARPANET protocols. This growth of the net-
work continued as many universities wanted their own local area networks to be connected
to ARPANET as well. At this point, the network was becoming a true, worldwide internet-
work consisting of a variety of smaller networks, and with tens of thousands of users. By
then, it became generally known as the ARPA Internet.

downloaded by wizard.z@foxmail.com

452 Wide area networks

1 000

10 000

100 000

1 000 000

2 000 000

5 000 000

82 84 86 88 90 92 94 95

Figure 9.14 The growth of the Internet during the period 1982–1995. Source: Matrix Informa-
tion and Directory Services, Inc. (MIDS).

The popularity of the Internet, as it is known today, is very large and continues to grow at
an increasing pace. Figure 9.14 shows how the number of Internet computers has grown in
a decade. Notice that the y-axis is scaled logarithmically implying that the growth is expo-
nential. This popularity is not entirely surprising. First, as we shall see, the Internet protocol
suite is a relatively simple one. But simplicity with respect to technology is not all. In par-
ticular, it is also kept simple from an organizational point of view. To illustrate, the Berkeley
version of the UNIX operating system included the Internet protocols as part of its system –
and this version of UNIX was (almost) freely distributed throughout the world. And because
universities (1) like to experiment, (2) can easily make students acquainted with operating
systems, and (3) love systems that can be purchased for little or no money, it should be no
surprise why so many people initially used the Internet. To date, it is also the availability of
good implementations of the Internet protocol for other systems, combined with the strong
reduction of hardware costs, that make the system so attractive.

An important organizational aspect of the Internet is that its protocol specifications are pub-
licly available. This is also true for many protocol implementations, as demonstrated by
the Berkeley version of UNIX discussed above. The standards for the various protocols are
published as so-called Requests for Comments, or RFCs. An RFC is a document that de-
scribes a particular protocol adopted by the Internet. RFCs are published regularly and can
be obtained by means of electronic mail (yes, via the Internet that implements them). Com-
bined with the fact that many implementations are readily available at little or no cost, the
Internet may truly be regarded as an open system: there are no hidden details that preclude
participation of an organization in the network.

downloaded by wizard.z@foxmail.com

Internetworking 453

application layer

transport layer

network layer

physical layer

data link layer

Internet
protocols

Figure 9.15 The layering of the Internet protocol suite.

The Internet protocol suite is structured according to the layering principles we have been
discussing so far. However, its structure does not fit the OSI reference model very well, par-
ticularly the higher-level layers. Nevertheless, when speaking in terms of the OSI model, the
Internet protocols can be organized into four main layers, as shown in Figure 9.15. Here,
we shall concentrate mainly on the data link and network layer; the transport and application
layers are discussed later.

Addressing

Let’s start with one of the fundamental issues of any network: addressing. In the case of
the Internet, each station has a unique address which is expressed as a 32-bit number. This
implies that, in principle, a total of 232 � 4 � 109 different addresses can be used, and thus
that the same number of stations could be connected to the network. However, simply as-
signing addresses in this way is not practical as we shall see. Instead, addresses in the In-
ternet are organized into five classes, numbered A to E. Each address belonging to class
A, B, or C consists of a network identification (netid) and a host identification (hostid).
Hosts are considered to be stations located in a network which in turn is part of the Internet.
This means that each address is constructed as a (netid,hostid) pair. Each class has a max-
imum number of networks, as well as a maximum number of hosts per network, as shown
in Table 9.1. (We note that some (netid,hostid) combinations are special so that the actual
number of networks and hosts per network is slightly less than mentioned.) The layout of
the addressing schemes is shown in Figure 9.16. Class D networks are reserved for so-called
broadcast groups. Class E addresses are reserved for future use. The latter two addressing
schemes are not further considered here.

Internet addresses are usually represented in so-called dotted-decimal notation which cor-
responds to converting it to a number using radix 256. For example, the 32-bit number
2 188 611 653 can be written as:

2 188 611 653 � 130 �2563 �115 �2562 �144 �2561 �69 �� 130.115.144.69

downloaded by wizard.z@foxmail.com

454 Wide area networks

Table 9.1 The networks and hosts per Internet class A, B, and C

class max. networks max. hosts
per network

A 128 16 777 216
B 16 384 65 536
C 2 097 152 256

Class A: 0 netid hostid

0 7 31

Class B: 1 0 netid hostid

0 1 15 31

Class C: 1 1 0 netid hostid

0 1 2 23 31

Figure 9.16 The address layout for the first three classes of the Internet addressing convention.

which happens to be the Internet address of one of the workstations on which this book has
been written. The first number of the Internet address determines its class. In particular, we
have the following:

class range

A 0.0.0.0 � 127.255.255.255
B 128.0.0.0 � 191.255.255.255
C 192.0.0.0 � 223.255.255.255
D 224.0.0.0 � 239.255.255.255
E 240.0.0.0 � 247.255.255.255

implying that the above-mentioned address falls into class B.

But how are addresses actually assigned? For example, suppose that an organization has a
local area network that they want to connect to the Internet. In that case, at least one sta-
tion in this LAN will need to be transformed into an Internet router, and subsequently con-
nected to another, already existing, Internet router. This means enhancing the LAN software
with packages that implement the IP protocols. Second, the organization will need to get
its unique network identification. To that end, they need to contact the Internet Network
Information Center, or InterNIC, who is responsible for assigning network identifications.
The host identifications for the network are subsequently assigned by the organization – this
is not the responsibility of the InterNIC. We shall return to these issues in the next chapter.

downloaded by wizard.z@foxmail.com

Internetworking 455

Table 9.2 Information contained in an IP header

field length purpose
(bits)

source 32 The IP address of the sending station.
destination 32 The IP address of the receiving

station.
identification 16 A number that identifies the datagram

being sent.
amount-of-data 16 The size of the data part (in bytes).
protocol 8 Identifies the transport layer protocol

by which this datagram was sent.
type-of-service 8 A parameter used to determine the

way routing should take place: min-
imize delay, maximize throughput,
maximize reliability, and minimize
monetary cost.

time-to-live 8 The maximum number of routers
through which the datagram pass.

flags 3 Used when fragmentation of the data-
gram is required.

fragment-offset 13 Used to identify the next fragment
when fragmentation occurred.

The IP datagram

The network layer of the Internet is rather simple. The only thing it supports is the unreliable
transmission of IP datagrams. Indeed, this is not very much. Reliable communication is
supported at the transport layer by means of separate protocols which we shall examine in
Section 9.5. An IP datagram consists of two parts: a header and a data part. The header
consists of information that allows the data to travel from its source to its destination. To
that end, the following information is contained in a number of fields,4 as shown in Table 9.2.

The source and destination fields are obvious. The identification field uniquely determines
which datagram is being sent by a host and plays an important role when a datagram needs to
be fragmented (we shall return to fragmentation below). The amount-of-data field indicates
the size of the data part. Being a 16-bit number, the data part has a theoretical maximum
of 216 � 1 � 65 535 bytes. In practice, however, the size of the data part is restricted to
approximately 8192 bytes, and often even 512 bytes in order to avoid fragmentation.

The protocol field is used to identify the original higher-layer protocol that led to the con-
struction of the datagram, and as such is comparable to what we have called a service access
point (SAP) in Section 8.5.1. To explain this, recall that in Section 8.5.2 we discussed that it
is often necessary to use several protocols simultaneously. For example, we showed that we

4We note that we have omitted a number of additional fields for the sake of clarity.

downloaded by wizard.z@foxmail.com

456 Wide area networks

UDP
package

TCP
package

UDP datagram

UDP
package

TCP
package

protocol = UDP

user data

IP datagram

transport

network

data link

physical
if protocol = UDP then
 pass to UDP package
elsif protocol = TCP then
 pass to TCP package
endif

Figure 9.17 The transmission of a UDP datagram.

would want to have a package implementing synchronous communication at our disposal,
as well as a package for asynchronous communication. The problem that we encountered,
however, was that we needed a way to identify that messages which were sent using syn-
chronous communication, were also processed at the receiver’s end by the right package.
Here, we have the same situation. For example, two widely used higher-level protocols in
the Internet are UDP and TCP. In order to send a UDP datagram, this datagram is encapsu-
lated into an IP datagram as shown in Figure 9.17, with its protocol field set to “UDP”. Upon
arrival, the datagram can be sent to the appropriate package.

The remaining fields are related to routing and fragmentation which we discuss next.

Routing

We have already paid some attention to the general routing scheme of the Internet in Sec-
tion 9.2.2. As noted there, routing in the Internet has undergone a number of important
changes in order to arrive at a strategy that is able to handle network congestion, malfunc-
tioning of routers and links, etc. We shall not go into the details concerning the actual al-
gorithms used today as these lie beyond the scope of this book. Instead, we shall briefly
discuss the parameters that influence dynamic routing occurring as the type-of-service field
in an IP header (see also Table 9.2).

Four different routing parameters are distinguished at the network layer of the Internet. Each
parameter corresponds to a Boolean variable. If set to TRUE, the parameter should be satis-
fied, otherwise ignored. The four parameters are the following:5

5Only 4 of the 8 bits of the type-of-service field are actually used.

downloaded by wizard.z@foxmail.com

Internetworking 457

	 minimize delay: when this parameter is set, the routing strategy to be followed for the IP

datagram in question should attempt to get the datagram to the destination as soon as
possible. It is typically set in those cases that a datagram is sent to control a situation.
For example, when a high degree of interactiveness is to be expected, it is essential
that a destination can react quickly.

	 maximize throughput: this is typically a parameter that is set when large amounts of data
are to be transferred. The parameter specifies that a route should be selected that al-
lows many datagrams to be in transit at the same time. In other words, it indicates
that maximum effort should be taken to avoid network congestion. It is less important
when the data actually reaches the destination – it will presumably take some time, in
any case.

	 maximize reliability: in this case, the routing strategy is geared towards getting the data-
gram to its destination in a single attempt. In other words, routing is chosen such that
retransmissions are not or hardly ever necessary. Typically, this parameter is set for
datagram transfer that takes entirely place within one of the constituent networks, or
when the network itself needs to be examined, as is the case with discovering routes.

	 minimize monetary cost: this parameter is typically set for news bulletins. These are
applications that allow a large group of users to communicate with one another by
“posting” messages in a way similar to the use of normal bulletin boards. The only
requirement of these users when using the network is that it should be cheap.

The algorithms that make use of these parameters can be extremely intricate, and as we have
already stated, are not further discussed here. An important observation, however, is that
a user of the Internet has actual control over the way that a route is established. This is
important as it allows totally different users and applications to make use of a single network
for different purposes. Again, this type of flexibility is necessary if a network is to become
popular.

Another parameter that is important when routing is the time-to-live field in the IP header.
This 8-bit integer indicates the maximum number of routers that an IP datagram may pass
when it is sent across the network. Typically, its value is set to 32 or 64. The time-to-live
parameter prevents datagrams from circulating throughout the network forever. As soon as
the maximum number of routers have been passed, the datagram will simply be discarded
and the sender is subsequently notified (how this is done is discussed below).

Fragmentation

Fragmentation forms an important part of the IP protocol. A datagram may need to be split
into two or more fragments when a constituent network can only support packets that have a
maximum size smaller than the present size of the datagram. Fragmentation in the Internet
is dealt with in a simple and pragmatic way. For one thing, whenever fragmentation occurs,
it is up to the destination station to reassemble the original datagram. In other words, an
immediate forwarding policy is followed as discussed in Section 9.3.2.

To explain how fragmentation works in the Internet, suppose we have a datagram D that
needs to be fragmented into two parts. Denote these two fragments as D1 and D2, respec-
tively. Now each of these fragments will need to be sent across the network, or, in other

downloaded by wizard.z@foxmail.com

458 Wide area networks

words, need to be IP datagrams in their own right. To that end, they will both have (almost)
identical headers – in particular the original header from D is inherited by the two new data-
grams. The data part of D is split into two pieces, each consisting of a multiple of 8 bytes.
The first part is appended to D1, with its fragment-offset field set to 0. The second part is ap-
pended to D2, but its fragment-offset field will now be set equal to the length of the data part
of D1 expressed as multiples of 8 bytes. So, for example, if the data part of D1 has a total size
of 8192 bytes, then the fragment-offset field of D2 will be set equal to 8192 div 8 � 1024.
We shall return to this when we explain reassembly.

The flags field of each IP header is important in fragmentation. As shown in Table 9.2, this
field has a length of three bits of which only two are used. The associated Boolean param-
eters are as follows:

	 more data: setting this parameter to TRUE implies that the current datagram is a frag-
ment of a larger datagram, and moreover, that it is not the last fragment.

	 do not fragment: when this parameter is set to TRUE, the datagram may on no account
be fragmented. Consequently, if it is too large to transmit across one of the constituent
networks, it will simply be discarded.

Returning to our example, it should be clear that for datagram D1, more data must be set to
TRUE, whereas in the case of D2, it must be set to FALSE.

But suppose now that both datagrams need to be fragmented again. In particular, assume
that D1 needs to be fragmented into M smaller datagrams D1�1� � � � �D1�M, whereas D2 is frag-
mented into N datagrams D2�1� � � �D2�N. Because more data of D1 was set to TRUE, it is known
that more data is to be received before reassembly can take place. Consequently, when frag-
menting D1, we will need to set the more data parameters to TRUE not only for the first M�1
datagrams but also for the last one, D1�M. In the case of fragmentation of D2, it should be
clear that for all but the last datagram D2�k we will have to set more data to TRUE as well.

Reassembling a datagram is now rather straightforward. Denote by len�Fk� the length (in
bytes) of the data part of a fragment Fk, and by offset�Fk� the value of its fragment-offset
field. Finally, we use the notation more�Fk� to denote the value of the more data parameter of
fragment Fk. Now, first the destination station needs to identify the first fragment F1. Clearly,
we have

offset�Fk� � 0� if and only if Fk
 F1

In other words, the only fragment with a zero-valued fragment-offset field is the first one.
Also, it should be clear that the last fragment Flast is uniquely determined by its value for
the more data parameter:

more�F� � FALSE, if and only if F
 Flast

But what about the second fragment F2? It is not too difficult to see that for F2 we uniquely
have

offset�F2� � len�F1� div 8

downloaded by wizard.z@foxmail.com

Internetworking 459

IP datagram

ICMP control message

Figure 9.18 An IP datagram containing a control message.

and that, in general, the kth fragment can be found for which the following equation holds:

offset�Fk� � len�Fk�1� div 8�offset�Fk�1�

By using offsets, Internet datagrams can be repeatedly fragmented without having to be con-
cerned about the order in which they arrive at the destination. No sophisticated numbering
system is necessary to see where a fragment actually fits when it comes to reassembly. The
only problem that can occur with fragmented datagrams is that one or several fragments may
be lost. In order to detect this, the destination station uses a timeout mechanism. As soon
as a next fragment arrives, the timer is set, depending on its current value and the value of
time-to-live field of the fragment most recently received. If the timer expires all fragments
received so far are discarded. Consequently, the original datagram will have to be retrans-
mitted entirely.

Control messages

In order to communicate exceptional situations, for example when one of the fragments of a
fragmented datagram failed to reach the receiver on time, a control message is sent across
the network. Control messages, or ICMP messages as they are called, are sent as ordinary
IP datagrams. The message itself is contained in the data part of the datagram, as shown in
Figure 9.18.

Each ICMP message contains at least the following information:

	 The type of the message, identified as an integer between 0 and 18. For example, when
the type is equal to 11, this indicates that the message contains information on an ex-
pired timer.

	 For each message type, there is a further specification by means of a code, also ex-
pressed as an integer. There can be at most 256 codes associated with a single type.
To illustrate, when a timer expires due to the fact that a fragment did not reach the
receiver in time the latter sends an ICMP message of type 11 with code 1.

	 The complete header of the original IP datagram that caused the ICMP message to be
sent. This allows the sender to identify precisely for which datagram the ICMP mes-
sage is being sent and to take appropriate measures.

But not all ICMP messages indicate that something went wrong. In particular, a distinction
is made between ICMP query messages and ICMP error messages. A typical example of a
query message is the one used by routers for discovering routes throughout the network. To
that end, a router sends its routing table to each of its neighbors by means of an ICMP query

downloaded by wizard.z@foxmail.com

460 Wide area networks

message (in this case having its type set to 9 with code 0), as discussed in Section 9.2.2. We
shall omit further details here.

An interesting question is what happens when something goes wrong with an ICMP message.
For example, we may find ourselves in the situation where a message is fragmented and one
of its fragments is lost during its transmission. As a general rule, whenever an error occurs
with an ICMP error message, no message is sent as response.6 In this way, we avoid the
network being flooded with error control messages. The problem we are faced with then,
however, is that the source station is now not aware of the fact that something went wrong.
There is no general solution to this. At best, we may expect that the source continues to
behave as if nothing went wrong, resulting in unexpected situations at the receiver’s end.
The receiver, in turn, will then return a new ICMP error message, and if this one gets through,
will probably be difficult to interpret by the source. But in any case, one conclusion can be
drawn: communication failed and it is up to the source station to decide what to do.

9.4 Integrated services digital networks

The computer networks we have been discussing so far, from small LANs to the world-
wide internetworks, are currently primarily used by professionals. Until recently, the ap-
plied technology was not available to domestic uses or small businesses. Not for tech-
nological reasons, but simply because the costs were too high to be affordable by these
types of consumers. This situation, however, is rapidly changing. For example, the In-
ternet is now made available by commercial Internet service providers, and anyone with
a simple modem can connect to it. Further progress is being made with the introduction
of so-called integrated services digital networks, or ISDN for short. An ISDN is a true,
worldwide digital network that meets the demands of many small businesses. In this sec-
tion, we shall concentrate on the technology of ISDNs.

9.4.1 Introduction

At present, carriers are rapidly changing their current telephone network into one that
can support the transmission of digital information. In particular, the existing telephone
lines are upgraded to a network that will allow the transmission of digitized voice and
digital data. The resulting network is said to integrate these two forms of information
and provides several advanced services to the public. For this reason, they are referred
to as integrated services digital networks (ISDN). An ISDN will thus allow computers
and telephones to be connected to a single worldwide network, quite similar to the way
in which we currently use the telephone network to communicate either directly (by tele-
phones) or indirectly (by means of modems that connect a computer to the present net-
work).

An important issue is that ISDNs will gradually evolve from the presently available
(public) digital networks. The starting point of this evolution is formed by the current

6There are also several other rules related to broadcasting that we shall not mention here.

downloaded by wizard.z@foxmail.com

Integrated services digital networks 461

digital telephone networks. This has an important implication, for the initial services
provided by an ISDN will bear a strong resemblance to what we already use. In particu-
lar, emphasis will lie on initially providing various telephone services. This means that,
besides being able to make calls in the usual way, additional features such as automatic
redialing when a line is busy, displaying the phone number of a caller on the receiver’s
set, redirecting phone calls to another number if necessary, etc. will be made available
(and, in fact, are often already provided nowadays). Other telephone-oriented services
can easily be imagined. For example, the first generation of ISDNs allow several people
to communicate as a group, or, in other words, support a simple form of teleconferencing.

The choice for using the existing telephone network is an important one. First, tele-
phone networks employ circuit-switching technology rather than packet-switching. This
means that initially ISDN components will be based on just a single type of switching
technology, putting the very large number of existing packet-switched networks into sec-
ond place. However, packet-switched networks are predominant in computer networks
as we generally know them today. This is due to the fact that packet-switching is gen-
erally much better when asynchronous data is to be communicated instead of the syn-
chronous type of data such as digitized voice. For this reason alone, existing computer
networks cannot be ignored when integration of voice and data is to be taken seriously.
Therefore, the evolutionary approach followed by the introduction of ISDN does dictate
that existing networks should be used. In particular, those packet-switched networks that
already adhere to the standards adopted by the telecom companies will soon form part of
ISDNs. But adopting computer networks as an afterthought is not really viable.

This is already illustrated by the fact that ISDNs will never be the final word in world-
wide networks as they will support a maximum transmission rate of only 64 Kbps. This
rate is acceptable when transmitting digitized voice – it is completely inadequate for trans-
mission of, for example, motion pictures (video). To that end, transmission rates in the
order of (hundreds of) millions of bits per second are required. To meet such require-
ments, efforts are already underway to construct broadband ISDNs by applying com-
pletely new technologies. The main difference between ISDN and broadband ISDN lies
in their implementation of the physical and data link layers. The functionality and princi-
pal working of both types of networks, however, is roughly the same. Therefore, we shall
make no distinction here between ISDN and broadband ISDN, and concentrate mainly on
the original concept of ISDN.

9.4.2 ISDN architecture

At this point, let’s concentrate more on what an ISDN looks like. In order to understand
the architecture of an ISDN, it is important to make a distinction between customers and
carriers. The latter are the organizations that provide the means to connect remote sites to
each other. For example, the telecom companies can provide a digital network to which
customers can subscribe. In order for a customer to hook on to an ISDN, a carrier can
place a so-called network terminating device, abbreviated to NT1, at the subscriber’s
premises. From the outside, this is a small box with a number of outlets, comparable to
the wall socket used to connect a telephone. In terms of the OSI reference model, an NT1

downloaded by wizard.z@foxmail.com

462 Wide area networks

NT1

ISDN
Exchange

carrier’s world customer’s world

digital pipe

NT1

Figure 9.19 The basic architecture for an ISDN connection.

is found at the lowest, i.e. physical, layer. It is, in principle, the only way to connect to
the carrier’s part of an ISDN. This scheme is shown in Figure 9.19.

An NT1 is connected by means of a so-called digital pipe to an ISDN exchange owned
by the carrier. This exchange forms the interface to the carrier’s internal network. The
digital pipe is a physical connection from the ISDN exchange to one or several NT1s.
Now the reason for this digital pipe is to support the simultaneous transmission of several
series of signals. To that end, a distinction is made between different types of channels,
which are carried across the pipe using a form a time-division multiplexing as discussed
in Section 7.4. Three different types of channels are distinguished:

� A B channel allows a transmission rate of 64 Kbps, and forms the basic channel
for subscribers. This type of channel is, in principle, used for all types of commu-
nication supported by an ISDN: digitized voice and digital data.

� A D channel is used for controlling purposes, meaning that it will generally carry
only small series of signals. Accordingly, its transmission rate has been set to 16
Kbps.

� An H channel is additionally provided when higher transmission rates are needed,
for example in the case of offices requiring a connection to the outside world. Three
different transmission rates are supported: 384 Kbps (a so-called H0 channel), 1536
Kbps (an H11 channel), and 1920 Kbps (an H12 channel).

A normal subscriber can get a basic service connection to an ISDN consisting of two B
channels and a single D channel. This means that a total transmission rate is provided
of 2�64�16 � 144 Kbps. This will generally be enough for most customers, but cer-
tainly not for organizations. The latter can acquire a so-called primary service connec-
tion which supports a maximum transmission rate of either approximately 1.5 Mbps (for

downloaded by wizard.z@foxmail.com

Integrated services digital networks 463

NT1
ISDN

Exchange
NT2

NT1
ISDN

Exchange

(a)

(b)

Figure 9.20 The use of network terminating devices at a customer’s premises for (a) basic ser-
vices and (b) primary services.

Canada, the USA, and Japan), or 2 Mbps (in Europe). This means, for example, that an
organization (located in Europe) can simultaneously use 3 H0 channels, 5 B channels,
and 1 D channel across the same NT1 to an ISDN.

Now, particularly when only a basic service connection is needed, a single NT1 at the
customer’s site will be sufficient. Simple devices that adhere to the ISDN protocols (such
as telephones and adapted computers) can be directly connected to the NT1 as illustrated
in Figure 9.20(a). For organizations having a primary service connection, an additional
network terminating device, known as NT2, will generally be required, as shown in Fig-
ure 9.20(b).

An NT2 is more than just a small box. In terms of the OSI reference model it can pro-
vide functionality up through the network layer. For example, an NT2 may provide ad-
ditional switching functions as required by local telephone exchanges. In that case, the
device can make a distinction between phone calls that are internal to the organization
(meaning that it does not need to access the ISDN but that, instead, a direct internal con-
nection can be established) or external. Another example is using a special router as an
NT2, connecting a LAN to the ISDN. It may even happen that the functionality of a tele-
phone exchange is combined with that of a router.

A point to note is that the network terminating devices NT1 and NT2 are both true ISDN

downloaded by wizard.z@foxmail.com

464 Wide area networks

B channel

D channel

ISDN exchange

packet router

circuit switch

Figure 9.21 Establishing a circuit-switched based connection in an ISDN.

constituents. In other words, both devices adhere to the protocols adopted by ISDNs.
This implies that all other devices such as telephones and computers that are connected to
NT1s and NT2s should also adhere to the ISDN protocols. This puts existing equipment
in a difficult position. In order to allow these non-ISDN devices to communicate over
an ISDN, they will need to make use of specially constructed terminal adaptors (TAs),
which are actually protocol converters.

9.4.3 ISDN communication support

As with all computer networks, communication over an ISDN can only be realized if
source, intermediate, and destination stations adhere to a specific set of communication
protocols. The general aspects of wide area networks discussed in the previous sections
are equally applicable to an ISDN. The unique feature of an ISDN, however, is that it
integrates voice and data by providing the full functionality of a true circuit-switched
network, as well as that of a packet-switched network.

In this section we shall not go into details of the ISDN protocol suite, other than by
taking a look at the more exceptional situations. In particular, we shall concentrate on the
way a circuit-switched connection is set up, and consider the support for packet-switched
communication.

Circuit-switched connections

Establishing circuit-switched connections will remain one of the most important features
of an ISDN as it is the primary means for achieving standard telephone services. Tele-
phone calls and related communications such as facsimile take place over a B channel.
This implies that a complete physical connection should be made between two subscribers
of the ISDN that supports a transmission rate of 64 Kbps. In practice, such a physical
connection is made by setting switches at a number of ISDN exchanges as shown in Fig-
ure 9.21. The difference from the usual approach is that the switches are set by making
use of D channels. This approach is generally referred to as common channel signaling.

downloaded by wizard.z@foxmail.com

Integrated services digital networks 465

Suppose a subscriber wants to establish a circuit-switched connection, to which end
we shall have to make use of a B channel. In the situations we have discussed so far,
establishing a complete connection would take place via the same medium that would
be later used for the actual data transportation. In the case of ISDN, however, a different
approach is used. Instead, a request packet is sent through a D channel towards the first
ISDN exchange. The packet will contain information on the used B channel on the sub-
scriber’s side, as well as an identification of the required destination. From there on, the
ISDN exchange will try to set up a route via one of its adjacent exchanges. To that end,
it will use a separate signaling network which is part of the actual ISDN. This signaling
network is an ordinary packet-switched network that uses the D channel. The informa-
tion exchanged between ISDN exchanges is again encapsulated in packets sent across the
D channel. Establishing a route implies that a direct connection is set up between ISDN

exchanges. But the physical connection between two exchanges (i.e. a B channel) will
be different from the connection via which the information packets are being sent.

The main advantage of this approach is that the time to set up a complete connection
is relatively short compared to the traditional approaches by which information is sent
through the same channel that will later be used for exchanging the actual information.
Also, during the time the connection is maintained, the B channel can be used only for its
initial purpose, which is presumably in this case transmitting digitized voice. Any other
additional information (e.g. status of the connection, existence of additional requests to
communicate with either sender or receiver, etc.) can be sent as a packet through the
signaling network or directly via the D channel.7

Packet-switched connections

A packet-switched connection is established in much the same way as a circuit-switched
connection when it concerns setting up a virtual circuit between two subscribers. Recall
that a virtual circuit is a preallocated route between a sender and a receiver through which
all packets are sent. The main advantage of setting up a virtual circuit is that the two
communicating parties are hardly bothered by possible network congestion, and that all
packets arrive in the order they were sent.

Virtual circuits for exchanging packets in ISDN are set up as follows. First, a circuit-
switched connection is set up between the sender and an ISDN exchange, called a packet
handler, that is directly connected to a true packet-switched network. In other words, a
direct, physical connection exists between the sender and the ISDN exchange. This ex-
change then sets up a virtual circuit to a similar exchange located near the destination via
the packet-switched network as usual. From there on, a circuit-switched connection is es-
tablished to the destination, and packet exchange can commence. Again, the D channels
are used to set up the two circuit-switched parts of the connection, and to transfer any
control messages to and from the two subscribers. Control messages between the two

7It is illustrative to see how standardizations may not always turn out to be as applicable as one might
initially hope. The approach of common channel signaling, for example, is something that is simply not
considered in the OSI reference model. And indeed, although attempts have been made to fit the ISDN

protocol suite into this model, such attempts can be considered only as partially successful.

downloaded by wizard.z@foxmail.com

466 Wide area networks

ISDN exchange packet handler

circuit switch

B channel

D channel

virtual circuit
to receiving packet

handler

merger

Figure 9.22 The principle of a packet-switched virtual circuit in ISDN.

exchanges are transmitted via the packet-switched network. This principle is illustrated
in Figure 9.22.

Alternatively, an ISDN may also provide a complete packet-switched network by means
of either B or D channels. In that case, no virtual circuit needs to be set up (for it would
then have been better to establish a circuit-switched connection). The ISDN exchanges
now operate as true routers comparable to the routers found in more traditional wide area
networks.

9.4.4 Broadband ISDN

As we have stated, ISDN standards are not suited to meet the requirements for future data
transmissions: the 64 Kbps transmission rate which is fundamental to ISDNs is hope-
lessly inadequate when supporting, for example, video services. And that these services
will be required is just something that we must simply await. To that end, efforts have
already been undertaken to produce so-called broadband ISDNs, generally abbreviated
to B-ISDN.

A B-ISDN is a true extension of an ISDN in the sense that all the functionality that is
provided by an ISDN will also be supported by a B-ISDN. The important extension of
B-ISDNs is that they will provide the means to support very high transmission rates. In
particular, it is anticipated that such networks will support channels that can transmit data
at a speed of approximately 155 Mbps and 622 Mbps. From the user’s point of view, there
is this added functionality when comparing B-ISDNs to the original ISDNs. However, in
order to establish such transmission rates, a completely different type of implementation
technique needs to be applied. Let’s just briefly consider the basic principle of this un-
derlying technology.

� ATM networks

In order to achieve extremely high transmission rates, two, related basic requirements must
be met:

downloaded by wizard.z@foxmail.com

Integrated services digital networks 467

1. The overhead introduced by communication protocols must be reduced to a minimum.

2. A large part of these protocols should be implemented in hardware.

In digital networks, it is not difficult to meet the first requirement. The point is that most
overhead in communication protocols arises from the fact that transmission media need to
be shared, and in addition introduce errors. Sharing requires that control information needs
to be added to messages in order for stations to decide what to do with the incoming data.
Errors require that error detection bits are to be added to messages, in addition to error con-
trol information such as sequence and acknowledgment numbers. Erroneous transmission
is caused primarily by the transmission medium itself, which is generally metallic. Trans-
ferring electrical signals through metallic media makes these signals highly susceptible to
(always present) external electro-magnetic fields, and consequently, erroneous transmission
may result. This is no longer the case when using, for example, optical fiber. When combin-
ing transmission of digital signals with these type of media, we may expect the occurrence
of erroneous frame transmission to fall to a minimum. In that case, it is no longer justified
to introduce rather intricate schemes for error control, but instead, we should devise proto-
cols that are targeted towards an occasional correction of errors. In practice, it turns out that
error control can be completely removed from the data link layer, substantially reducing the
overhead of communication protocols. Erroneous transmission is instead entirely dealt with
at the higher-level layers.

Removing error control from the data link layer protocols makes these protocols much sim-
pler. Simplicity at this level has two consequences. First, due to the reduction of overhead,
processing of data, i.e. sending, transmission, and receipt of frames, can be done at a much
higher rate compared to more complex protocols. In other words, less work needs to be
done. Second, simplicity also allows for efficient implementation of protocols into hard-
ware. The combined effect is the realization of high transmission rates.

This approach is followed by a technique known as asynchronous transfer mode. In so-
called ATM networks, data is transferred in small units referred to as cells. A cell has a
fixed size and consists of just 48 bytes of data, with a 5-byte header. When you realize that,
for example, Ethernet frames carry at least 16 bytes of overhead information (and in most
cases, this is actually 26 bytes), and allow for as much as 1500 bytes of user data, it is seen
that cells are indeed small.

Now, in order to improve the utilization of the transmission media, a technique quite similar
to time-division multiplexing as discussed in Chapter 7 is employed. However, there is one
important difference. Recall that TDM simply scans the output buffers of a sending station
in a round-robin fashion, each time reserving a slot Si to store some data from output buffer
Bi. If buffer Bi is empty, then so will be slot Si when the frame is finally sent. In the case of
ATM networks, this will never happen. Instead, if a buffer Bi is empty, then the slot will be
filled with a cell from another buffer. Also, cells are transmitted immediately. In this way,
we ensure a continuous stream of cells across the medium, at least as long there are cells to
be sent.

Another important point about ATM networks is that routing is done entirely in hardware. To
that end, a virtual circuit, known as a virtual channel, is set up between a sender and a des-
tination. The administration needed to set up and maintain such a channel is implemented
in hardware implying that the delay at each switch when a cell arrives is minimized. The

downloaded by wizard.z@foxmail.com

468 Wide area networks

1 3
2 2
3 2

→
→
→

VC L

1 2 1 3

3 3

1 1

2link-1
link-2

link-3

ATM switch
control
table

switch
setting

in2

in3

in1 out1

out2

out3

Figure 9.23 The principle of an ATM switch.

header of a cell contains an identification of the channel through which it is to be transported.
This principle is shown in Figure 9.23. What is shown there are three virtual channels, each
identified in the header of each cell. The switch is connected to one incoming link, and two
outgoing links. Virtual channel 1 is always routed via link-1 to link-3, whereas the other two
are routed via link-2. The routing table itself is implemented in hardware, so that routing de-
cisions can be made quickly.

Virtual circuits form an important aspect of ATM networks. First, by using virtual channels
as discussed above, extremely fast cell switching can take place at each switch. But there
is more. Virtual channels are grouped into so-called virtual paths. A virtual path is thus
a virtual circuit between two stations, but which contains a number of channels. By allow-
ing several virtual channels to be contained in a single virtual path, an ATM network can
accommodate several transmission rates for different but logically related information. For
example, when transmitting video information (which requires an extremely high transmis-
sion rate), it is now also possible to send its associated audio via the same path but through
a different channel. In addition, data such as subtitles which requires even lower transmis-
sion rates can be sent through a third channel, but again, also along the same path. The main
benefit of this approach is its simplicity. For example, instead of setting up a virtual circuit
for each channel, it is now sufficient to establish a virtual circuit for the path only.

We have only briefly touched upon some of the issues of ATM networks, and indeed, this new
technology deserves more attention than we have paid to it here. However, the technology
is still emerging and no definite answers can be given concerning its impact. Rather than
elaborating any further on this subject, we refer the interested reader to Section 9.6 where
we provide references for further reading.

downloaded by wizard.z@foxmail.com

Making networks work 469

9.5 Making networks work

Let’s see what we have accomplished so far. In the preceding sections our main con-
cern has been the construction of computer networks that allow for transmission of data
across geographically large distances. The distinctive feature of these so-called wide area
networks when comparing them to local area networks is that routing should take place.
Data is thus explicitly forwarded from computer to computer until it reaches its destina-
tion. We have also seen that extremely large networks can be constructed through inter-
networking technologies.

An important distinction that we have introduced is that between so-called connection-
less communication (by means of datagrams) and connection-oriented communication
(by means of virtual circuits). There is, however, one aspect that we have been deliber-
ately ignoring: how we can make these wide area networks accessible to users. Some
hints have already been given. For example, we have illustrated how we can produce
several kinds of networks by providing software packages that are built directly on top
of implementations of the data link layer. In general, these packages will form part of an
operating system, and make the network accessible through what we have called service
programs.

But this is simply not enough. In wide area networks it is essential that we provide the
right means to enable completely different application programs, running on completely
different computers, to communicate with each other. In other words, we should provide
the right means to allow for the construction of open systems. An open system in our
case can be defined as a communication system that will allow anyone to construct a pro-
gram that can communicate with other existing programs (presumably built by someone
else) as long as communication adheres to a collection of standardized protocols. There
are two issues involved here: (1) what exactly these protocols look like, and (2) how
they should be implemented. So far, we have concentrated mainly on the second issue.
The first has hardly been touched upon. At this point, we are now in a position to cor-
rect this situation. In this section we shall concentrate on the so-called transport layer,
which forms the bridge between what we may expect from any network and that which
is available by means of an implementation of the network layer. Other issues of open
systems are discussed in Chapter 10.

9.5.1 The transport layer

From a certain perspective, the transport layer can perhaps be considered as the most
important layer of the OSI reference model. What this means is that any implementation
of this layer should provide the right interface to users and application programs that need
to communicate via some underlying network. The point is that this underlying network
is completely shielded from the user.

But why is it needed? In particular, you may wonder why the network layer cannot
provide enough functionality that will allow us to access networks. From a certain point
of view, this is true. However, the network layer has been introduced primarily to cope
with the problem of routing packets across wide area networks, and to allow for the con-

downloaded by wizard.z@foxmail.com

470 Wide area networks

struction of very large networks through internetworking technology. In this sense, the
network layer merely provides the basic support that is needed for the construction of
large networks. Separating this concern from the question of how such networks can then
be subsequently made available to application programs is just a matter of good design.
For one thing, you have to realize that the question of how data gets from a sender to a
receiver no longer needs to be addressed. But in that case, what are the issues we need to
consider? The most important, perhaps, is that the underlying communication network
should be completely shielded from application programs. We now take a closer look at
this issue.

Network types and protocol classes

When we describe computer networks at the level of the network layer, i.e. when we con-
sider a network by what kind of services it has to offer by means of its implementations
of the network and lower layers, we can make a distinction between three network types:

� Type A: This is an almost perfect network type. In this case, the network guaran-
tees error-free delivery of packets. Also, if a packet is submitted for transmission,
the network takes full responsibility for making sure that it reaches its destination.

� Type B: This is almost as good, except for the fact that the network cannot guar-
antee that delivery will actually take place. In other words, if packets can be de-
livered, then this will be done without error, but if transmission is not successful,
the sender will be notified.

� Type C: This is the worst one can expect. In this case, packets may be damaged
or become lost during transmission, and what is worse, the network will not notify
the sender at all. Consequently, if the sender and receiver want to ensure reliable
communication they cannot count on any support from the underlying network and
will thus have to agree on a separate protocol.

Fortunately, LANs can generally be classified as type A networks. Many WANs fall into
type B, which means that in general they take care of proper transmission, but from time
to time fail to recover when things really go wrong. In that case, they will at least in-
form the sender that transmission failed. Type C networks are indeed a problem, and as
it turns out, many internetworks fall into this category. This is not surprising when you
realize that the best we can generally achieve in internetworking is aiming at the greatest
common denominator, which is unreliable datagram delivery.

Protocol classes

With respect to providing communication services to application programs, there is more
or less general agreement that the transport layer should allow for (1) unreliable connec-
tionless communication, and (2) reliable connection-oriented communication. The first
is generally fairly easy to provide. The second may impose severe problems if it is to be
provided on top of a type C network. In any case, it should be clear that the complexity

downloaded by wizard.z@foxmail.com

Making networks work 471

0 2
1 3

4

type A type B type C

transport
layer

network
layer

Figure 9.24 The relationship between transport protocols and different network types.

of the protocols contained in the transport layer will vary from case to case. In particular,
five different classes of protocols are distinguished, each with increasing complexity:

(0) Simple class: protocols in this class are used for type A networks. They rely al-
most entirely on the reliable connection-oriented services offered by the underlying
network.

(1) Basic recovery class: these kind of protocols, which are constructed for type B
networks, assume that the underlying network is not capable of restoring a con-
nection after a fault has occurred, but will otherwise handle transmission in case
of lost and damaged packets.

(2) Multiplexing class: protocols in this class assume that the underlying network
provides reliable connection-oriented communication, i.e. they assume a type A
network. In addition to the functionality provided by this network, these protocols
implement several logical connections through a single network channel. Conse-
quently, a sender will now be allowed to set up several virtual circuits at the same
time to the same destination.

(3) Error recovery and multiplexing class: a combination of class 1 and class 2 pro-
tocols. These protocols assume that the underlying network is of type B.

(4) Error detection and recovery class: the ultimate collection of protocols which
assume that if anything can go wrong, it will. Clearly, these kind of protocols can
be extremely intricate, and assume that the underlying network is of type C.

The relationship between these five classes and the network types mentioned above is
shown in Figure 9.24. In this case, the height of the various layers suggests the com-
plexity of its implementation. An important observation, however, is that in the end, the
transport layer which is built on top of the network layer will provide the same function-
ality, regardless of the services offered at the level of the network layer.

In our discussion of WANs so far, it should be clear by now that we have discussed
mainly the facilities which classify them as type C network. With respect to LANs which

downloaded by wizard.z@foxmail.com

472 Wide area networks

also provide flow and error control, we are justified in saying that the mechanisms dis-
cussed so far, place them more or less as type B networks. It is therefore time that we
corrected this situation and described protocols for ensuring completely reliable com-
munication. An important observation is that although we discuss these protocols as if
they were part of the transport layer, you should realize that the same kind of mechanisms
can be used at lower layers, having the effect that reliability is provided simply at a lower
level.

� Although our discussion will be of a rather general nature, we have more or less based it
on the structure of the transport protocols supported in the Internet. The Internet transport
protocols are based on the IP protocol which forms part of the network layer. Two trans-
port protocols are available: the so-called unreliable datagram protocol (UDP) which is
just a minor extension of IP, and the important transmission control protocol (TCP), which
implements much of the functionality that is to be discussed in this section. Detailed pre-
sentations of TCP and UDP can be found in the references provided at the end of this chapter.

9.5.2 Error control

When dealing with the transmission of packets across an unreliable network that sup-
ports merely connectionless communication, we have to account for two situations: (1)
packets may be lost or damaged in which case a retransmission is required, and (2) ac-
knowledgments may not reach the other end, in which case the transmission of duplicate
packets may result. In the following we assume that a receiver should accept a series of
packets, P1� � � � �PN. A fundamental problem is that these packets may arrive out of order.
In essence, this makes the (efficient) error control mechanisms discussed in Chapter 7 no
longer applicable.

Transmission failure of packets

We first assume that packets will always arrive, but that a packet may be damaged. The
first thing we have to ensure is that the receiving station is capable of detecting that a
packet has been damaged. Consequently, we have to add information to each packet that
will allow for the mere detection of an erroneous packet. In practice, one of the error
detection schemes as discussed in Section 7.2.3 is used for this purpose. The strategy
that is usually followed by the receiver when an error is detected is simply to discard the
packet.

Consequently, a damaged packet is then considered as a packet which has never ar-
rived. But how are we to handle the complete loss of a packet? For example, suppose that
packets P1� � � � �Pi have been successfully transmitted and that packet Pj, where j � i�1,
arrives at the receiver. The point to realize is that the receiver may not conclude that all
intermediate packets Pi�1� � � � �Pj�1 have been lost, for indeed, the network does not guar-
antee delivery of packets in the order they are sent. The solution generally adopted is to
let the receiver acknowledge the successful receipt of packets. It is then up to the sender
to conclude whether packets have been lost by inspecting the returned acknowledgments.

downloaded by wizard.z@foxmail.com

Making networks work 473

This immediately leads to another question: when should acknowledgments be sent?
A rather naive solution is to acknowledge each packet separately. However, this may
lead to considerable network traffic, requiring at least two communications per packet
(one for the actual transmission, and one for the acknowledgment). A preferred scheme,
therefore, is only to send an acknowledgment of, say, packet Pi if all preceding packets
have been received as well. Further improvement can be accomplished if the receiver ex-
pects to send data back to the original sender. In that case, it waits some time before ac-
tually transmitting an acknowledgment, and instead, returns the acknowledgment along
with other data. This approach, referred to as piggybacking has at least two benefits.
First, we allow the receiver to accept more packets in the meantime, which can all be
acknowledged by just one acknowledgment. Second, if the receiver indeed has a packet
to transmit to the original sender in the form of a reply, it just adds the acknowledgment
to that packet. In other words, we are avoiding separate transmission of an acknowledg-
ment.

Transmission failure of acknowledgments

But matters become more intricate if acknowledgments are lost. The first point to note is
that the sender will be waiting for acknowledgments. Because there will be some delay
between the transmission of a packet and the receipt of its acknowledgment, the sender
will have to wait some time before it concludes that a packet did not arrive. Two situa-
tions may occur:

� A packet may indeed have been damaged or lost, so that retransmission is perfectly
in order

� The acknowledgment was lost, so that retransmission results in a duplicate packet.

If the sender does not wait long enough before initiating a retransmission, many dupli-
cate packets will cross the network, unnecessarily burdening the network’s capacity. Of
course, duplicate packets must be discarded by the receiver. On the other hand, if the
sender waits too long, the effective transmission rate may drop to an unacceptable level,
and with it, the utilization of the network. Clearly, finding the right value for the time
before a retransmission is incurred is an important design decision, and is often not easy
to determine.

9.5.3 Flow control

But our problems are not over yet. Protocols at the level of the transport layer will also
have to ensure that a sender and receiver more or less remain synchronized. This means
that a sender should at least transmit packets at a rate that can be dealt with by the re-
ceiver. If this is not taken into account, the receiver will have no choice other than to dis-
card incoming packets as soon as its input buffers become full. The sender, in turn, will
repeatedly issue retransmissions for each discarded packet, for the simple reason that it

downloaded by wizard.z@foxmail.com

474 Wide area networks

has not received an acknowledgment. It is not hard to imagine that this situation is highly
undesirable.

The solution to this problem is to adopt a sliding window protocol, similar to the one
discussed in Chapter 7. In particular, a so-called credit allocation scheme is often used.
What happens is the following. The receiver maintains a buffer of some length for stor-
ing incoming packets before passing them on to the application program for which the
packets are intended. Each time the receiver acknowledges the receipt of one or several
packets it accompanies the acknowledgment with a credit grant by which it specifies for
the sender how many packets it may actually send next. The sender, in turn, will never
exceed this grant. In other words, if it has a credit of N packets, it will stop transmitting
new packets after N have been transmitted if the receiver has not adjusted the sender’s
credit in the meantime.

This scheme is quite robust. Suppose, for example, that a credit grant (traveling along
with an acknowledgment) is lost. In that case, there is really nothing to worry about, as
the next acknowledgment returned by the receiver can carry a new, updated credit grant.
However, this scheme does rely on the return of a following acknowledgment, which
is too optimistic. To illustrate, assume that the sender has passed its credit so that it is
now waiting for a new grant from the receiver. Furthermore, assume that the latter has
acknowledged the last packet sent, together with an update of the sender’s credit, but
that this acknowledgment is lost during transmission. Indeed, packet transmission may
then come to a halt. The sender assumes it has no credit left, while the receiver assumes
it has properly updated the sender’s credit. The solution, of course, is straightforward.
When the receiver returns a credit update, it should expect delivery of new packets after
some time has elapsed. If this is not the case, it should assume that the last acknowledg-
ment that has been returned has been lost, together with the updated credit grant. Con-
sequently, the receiver will have to retransmit this acknowledgment and credit grant.

By now, note that the sender as well as the receiver should each have at least one timer
mechanism. First, the sender will be waiting for acknowledgments to arrive, and will
retransmit a packet if after some time the previous transmission had not been acknowl-
edged. The associated timer is generally referred to as a retransmission timer. Second,
the receiver will have to take into account that a credit grant had been lost, but that the
sender is assuming it has no credit left. If the receiver has not had any incoming packets
after some time has elapsed, it will have to retransmit the credit grant. In this case, we
have to construct a so-called window timer.

9.5.4 Connection management

Managing a connection is perhaps hardest to accomplish when you have only an unreli-
able connectionless network at your disposal. Let’s consider two situations: establishing
and terminating a connection, respectively.

downloaded by wizard.z@foxmail.com

Making networks work 475

Establishing a connection

In order to establish a connection, a request packet must be sent across the network, by
which a virtual circuit is set up from the sender to the receiver. In any case, the receiving
side will have to reply by sending an acknowledgment back to the sender, confirming
that the connection has been made. Now, many things can go wrong. First, assume that
either the request packet or its acknowledgment is lost, damaged, or delayed. In any case,
the originator of the connection will just be waiting some time for the acknowledgment
to arrive, and if it has waited long enough, an attempt will be made to re-establish the
connection. Let’s examine some of the situations that might occur.

� First, assume that the request packet was lost or damaged. In that case, little harm
is done because no connection had been established in any case.

� But suppose that the acknowledgment did not reach the originator. In that case, a
connection had already been established, and an attempt is now to be considered
to make an additional connection. This is not acceptable. Therefore, the receiver
will simply ignore the request, but should conclude that the acknowledgment did
not reach the originator. It therefore acknowledges the connection again.

� Similarly, suppose that the request packet is delayed too long, and that the origi-
nator assumes something went wrong. This is when we can get into real trouble.
Assume the second attempt succeeds, some communication takes place, and the
connection is terminated. After termination, the original request arrives, and the
receiver can assume that it should set up a connection again. Unfortunately, this
was not what we wanted at all. The acknowledgment returned to the originator
will merely be ignored, but clearly, the receiver will still think it has a connection
set up with the originator.

Depending on the way that the sender and receiver react, it is not hard to imagine that if no
special measures are taken, we might find ourselves in trouble. A generally adopted so-
lution to this problem is a so-called three-way handshake devised by Tomlinson (1975).
The protocol consists of the following three steps:

1. The originator starts with sending a request packet, having a unique initial sequence
number, say ISN1.

2. The receiver responds with an acknowledgment, confirming that it had just received
a request packet with sequence number ISN1, but also passing its own initial se-
quence number, say ISN2.

3. The originator, finally, acknowledges that the connection has been established by
sending back a packet acknowledging the receipt of the receiver’s sequence num-
ber ISN2.

It is the combination of the sender’s and receiver’s unique initial sequence numbers for
each connection that allows either side to detect that duplicate request packets exist. For

downloaded by wizard.z@foxmail.com

476 Wide area networks

example, suppose the receiver has a duplicate request packet. By acknowledging the re-
ceipt of this specific packet with a (again unique) sequence number, the originator can
easily determine as soon as it receives this packet that something went wrong.

And again, we will have to introduce yet another timeout mechanism in order to guar-
antee that this scheme works. In this case, the originator of the connection will have to
decide through a retransmit-request timer when to issue a next request for setting up a
connection, because it has not received an acknowledgment from the other end.

Releasing a connection

So what about releasing a connection? Well, we have some problems here as well. Sup-
pose we have a bidirectional connection between two sites. In other words, both sites
can request a connection to be released if they think communication is completed. And
here’s where the problem starts. For imagine that site A requests a connection to be re-
leased, just after site B has sent some data, but which has not yet arrived at A. Clearly,
this data will be lost if A immediately closes down the connection.

So what happens in practice is that if A wants to close down the connection, it sends
a termination request to B. This request will first have to be acknowledged by B. There
are in principle three options:

� B sends an acknowledgment, indicating that it will close the connection as well.
This is the best that can happen: both sites have agreed to end the communication.
In this case, A will acknowledge that the connection is now indeed closed, so B can
also safely assume that communication is over. Why is this additional acknowl-
edgment by A necessary? The reason is quite simple. B has no way of knowing
that its termination acknowledgment reached A. So what it will do is wait for A to
acknowledge that communication is now finished, and organize its administration.
If, in turn, A’s acknowledgment did not reach B, the latter will decide to consider
the connection closed in any case, but report an abnormal close.

� B does not send an acknowledgment, but instead transmits a separate termination
request. In this case, A can assume that its own termination request had not yet
reached B. Therefore, it will acknowledge B’s request, and subsequently wait until
its own request is acknowledged by B.

� B sends nothing at all, in which case A can assume that either its termination request
did not arrive or that B’s acknowledgment was lost. In this case, A will simply close
the connection at the risk of data being lost. And, as in the first case, it will report
an abnormal closing of the connection.

Figure 9.25 shows a state transition diagram for a site that is involved in the termination
of a connection. The squares represent a global state of a site, whereas the transitions are
written as “event � action” pairs. For example, if a site is residing in state active, and
it receives a termination request, it will make a transition to state received a request to
close, thereby sending an acknowledgment to the site that requested the termination.

downloaded by wizard.z@foxmail.com

Summary and further reading 477

received
a request
to close

inactive

active

waiting
for ack
to close

waiting
for ack

want to close ⇒
send termination
request

receive termination
request ⇒ acknowledge it

you’ll have to close ⇒
send your own termination
request

other site sends
termination request
⇒ acknowledge it

you received a combined
termination request +
acknowledgment ⇒ acknowledge
the termination

waiting
too long ⇒
disconnect
abnormally

acknowledgment
received

waiting too long ⇒
disconnect abnormally

Figure 9.25 A state transition diagram for closing a connection. Adapted from Stallings(1994).

In addition to the three timers mentioned so far, it is seen that we again need a time-
out mechanism in order ensure termination of a connection. In this case, a general per-
sistence timer is used for dealing with the situation where no acknowledgments are re-
ceived. This timer is also used for abnormally closing a connection. In fact, if a sender
has not received any acknowledgments for some time, the persistence timer will be used
as an indication that something is seriously wrong. In that case, the connection will al-
ways be closed.

Similarly, the connection will also be terminated abnormally by a receiver if it has not
received any packets for some time. The point of having a connection is that communica-
tion can be done efficiently, and at a certain rate. Therefore, if no packets are transmitted
through a connection, or at least are not perceived as such by a receiver, it may be as-
sumed that something is wrong indeed. Indicating that a connection should be closed for
this reason is performed through a so-called inactivity timer.

9.6 Summary and further reading

Where local area networks are often used for efficient sharing of local resources such as
printers and the like, wide area networks are indeed tailored to support the exchange of

downloaded by wizard.z@foxmail.com

478 Wide area networks

information between users (or the applications they use). Let’s see what we have accom-
plished so far.

9.6.1 Wide area networks

Routing

Our main concern in wide area networks is to find the correct way of exchanging infor-
mation over relatively large distances. The broadcast channels that were used in the case
of LANs have now been replaced by point-to-point links between routers, and a major
concern is then how to route data through a network. Due to the size of the network,
we have argued that adaptive routing strategies are the best. They are also considerably
more complex than the static routing applied in LANs. Part of the problems arise from
the fact that most wide area networks are indeed large, as they are constructed through
internetworking technology. Consequently, we have to face the fact that several routing
protocols are to coincide within one very large, but presumably hierarchically organized
network. The principles of routing through networks has only been touched upon in this
chapter. What routing is in practice has hardly been discussed. If you want to know more
about routing, consult Perlman (1992) for an in-depth discussion. An overview of var-
ious routing protocols is given in Bell and Jabour (1986), as well as in Perlman (1993)
which focuses more on the Internet.

One topic that we have neglected entirely is that of multicasting data. In that case,
data is to be sent to several receivers, and as such, the problem strongly resembles that
of group communication as discussed in Chapter 6. In the case of LANs the problems can,
in general, be solved more easily due to the inherent nature of broadcasting that charac-
terizes local area networking. In that case, data is sent to all stations, and those for which
it is not intended simply ignore it. This makes implementation of multicasting relatively
easy. But in multicasting in wide area networks, many problems arise. In particular, it
is definitely not feasible to first broadcast data through the entire network, to be later ig-
nored by those stations that are not supposed to receive it. Instead, multicasting has to
be done explicitly in the sense that data has to be forwarded deliberately to all required
recipients. A good starting point for further information on multicasting is to first look
at broadcast algorithms as described in Chang and Maxemchunk (1984). Multicasting is
further described in Frank et al. (1985), and a readable article by Deering and Cheriton
(1990). Approaches towards wide area multicasting are described by Ballardie (1993,
1995), and Deering et al. (1994).

Internetworking

But there is more to wide area networks than routing. As we have already mentioned,
WANs often exist only as an internetwork. The real problem with internetworking is gen-
erally the conversion from one protocol suite to another. This means not only that we
have to adapt to different formats but also that several network routing strategies have to
be supported at the same time. The definitive study on the construction of internetworks

downloaded by wizard.z@foxmail.com

Summary and further reading 479

can be found in Perlman (1992) where you will find many problems, and their solutions,
for the simultaneous support of several networks in large internetworks.

But without doubt, the best way to learn more about internetworking is to look at ex-
isting systems. In this sense, the extremely well-documented Internet forms a source of
many unanswered questions and the reader is encouraged not only to explore the use of
the Internet, but also to take a closer look at how things have came to be as they are today.
A brief introduction to the Internet is given in Kehoe (1992) and Comer (1995b), whereas
numerous other books will guide you through the Internet resources (Krol, 1992). An
overview of the technical aspects is given in Lynch and Rose (1993). A first step towards
understanding the network and transport protocols (TCP, UDP and IP) should be accom-
modated by Stevens (1994) and Wright and Stevens (1995), which is an excellent way
of getting to know more about the internals of networks in general. A good reference
to internetworking with TCP/IP is the two-volume set by Comer (1995a) and Comer and
Stevens (1994), which is a good introduction to the many intricate details of the Internet’s
protocol suite. Nevertheless, the final word on the Internet is always in the so-called re-
quests for comments (RFCs), which can be retrieved via electronic mail. Where these
RFCs can be acquired is described in Crockner (1993).

9.6.2 Wide area digital networks

Without doubt, the future of wide area networks is heading towards advanced digital net-
works that operate at extremely high transmission rates. An intermediate stage will be
formed by the present generation of ISDNs that still need to be matured, but it can be ex-
pected that the so-called gigabit networks will soon outgrow the experimental phase in
which they are today.

ISDN

Although there has been considerable scepticism about ISDNs, it can nevertheless be ex-
pected that these networks will gradually enter the homes of many, despite the fact that at
this moment, they are not capable of fully supporting advanced services such as digital
video. For that type of services, we need broadband ISDN. But it is clear that in order
to realize B-ISDN we have to make use of advanced transmission media such as optical
fiber. And that’s precisely where the main problems occur when introducing B-ISDN.
Although many countries already have a complete digital telephone network based on
optical fiber, this network has not been expanded to each home. At present, almost every
home is attached to the telephone network by means of a simple metallic wiring scheme.
Replacing these so-called local subscriber loops by optical fiber is probably necessary
to support the high transmission rates for the kind of services that are to be provided by
B-ISDN. Technically, this is not really a problem. From a financial point of view, it is.
These costs imply that subscription to a B-ISDN is going to cost a lot of money, and it re-
mains to be seen if customers are willing to pay the price for having, for example, instant
video services brought to their homes.

downloaded by wizard.z@foxmail.com

480 Wide area networks

But despite their drawbacks, “normal” ISDNs will probably be adequate in many cases
and the additional services that can be offered will undoubtedly be found to be useful. If
you want to know more about ISDN, Stallings (1992) will show to be a good reference
to many of the details we have omitted from our presentation.

Gigabit networks

The real challenge for the future is the development of systems that are constructed on top
of gigabit networks. A gigabit network is “simply” a network that supports transmission
rates in the range of 109 bits per second. This is indeed extremely high. Roughly, there
are two broad problems to be addressed: (1) how we can construct such networks, and
(2) how we are to implement adequate systems on top of this technology.

Most attention is presently paid to the development of gigabit networks. An important
role in their implementation will be reserved for the use of ATM switches as explained in
Section 9.4.4. And it is here that much research is yet to be done. Although ATM switches
are commercially available, they do not generally meet several important commercial
requirements. For example, in order to allow for a gradual transition from existing net-
work technology to full-blown ATM networks, switches should be able to support sev-
eral low-level protocols for the coming years. These, and other problems are discussed
in Rooholamini et al. (1994) which also presents different implementation technologies
for switches. Introductions to ATM are given by Lane (1994), Le Boudec (1992), and
Miller (1994), the latter putting ATM into the context of existing technology. Detailed
information on ATM networks, containing also many references for further reading can
be found in Händel et al. (1994).

The gradual transition from current technology to gigabit networks is something that
plays a role not only at the lowest layers. Of course, we want our present distributed sys-
tems and applications to execute on top of these networks as well. For some time, this
was thought of being the wrong way to go, for the simple reason that the existing pro-
tocol suites were far too tailored towards the underlying network technology. As a re-
sult, research has concentrated on the development of so-called light-weight protocols
which attempted to reduce the administrative overhead as much as possible. Much of
this overhead came from the assumption that the underlying network supported only un-
reliable connectionless communication, which indeed is not realistic in the case of many
high-speed networks based on fiber optical media. An overview of the work on these
light-weight protocols can be found in Doeringer et al. (1990). However, it remains to
be seen how useful these alternative protocols are. Many existing protocol suites, such
as for example TCP/IP have shown to be adaptable for faster networks as well (Jacobson
et al., 1992). As was already pointed out by Watson and Mamrak (1987), developers of-
ten fail to make the distinction between what a protocol is supposed to do and how they
actually accomplish things, i.e. how they are implemented. Consequently, as of today, it
seems that changing the network technology need not seriously affect the existing bulk
of distributed systems and applications, and that to a certain extent, scalability of these
systems and applications is even supported.

But implementing systems on top of gigabit networks is going to pose many more

downloaded by wizard.z@foxmail.com

Exercises 481

problems. Although these networks offer very high performance, the performance in-
crease is only to be sought in the increase of transmission rate. That means that we can
transfer more data per second than is presently possible. This does not mean, however,
that data will be transferred faster. To illustrate, even when traveling at the speed of light,
it is still going to take 70 milliseconds to get a bit to cross a distance of 20 000 kilome-
ters. For interactive programs which generally require several communications between
a client and a server per keystroke, this adds up to a few hundred milliseconds delay –
and that is something that will not go unnoticed. This long delay in the case of wide area
distributed systems (that will be built on top of gigabit networks) is going to be a major
problem to be solved. At present, some important research in this area has been con-
ducted, but more is required for these networks to be commercially attractive. It is also
here that the existing protocols will probably fail to support gigabit networks adequately.

We shall leave gigabit networks here. If you want to know more about them, Partridge
(1994) is the book to consult. Not only does the author provide details on the implemen-
tation of gigabit networks, he also supplies a lot of information on the problems when
making a transition towards gigabit networks.

Exercises

1. Ethernet boards have a (worldwide) unique MAC address. Why is it still not such
a good idea to use this address on a global basis when constructing a wide area
network?

2. What is the real gain of having a hierarchical addressing scheme such as the one
in which domains, areas, and subnetworks are distinguished?

3. Make the distinction clear between circuit-switching and packet-switching, and
also between virtual circuits and datagrams. Is it possible to construct virtual cir-
cuits on a packet-switched network? And what about sending datagrams through
a circuit-switched network?

4. Explain in detail how network congestion can occur. Take into account the func-
tional organization of routers as well as the sources of congestion.

5. Packet discarding is in principle a rather crude way of getting rid of too much traf-
fic. Name several policies that make the technique less crude to apply in the first
place.

6. If we can avoid network congestion through virtual circuits, why not apply that
technique to all communications across wide area networks?

7. Explain the difference between link state routing and distance vector routing. Iden-
tify advantages and disadvantages of both approaches, and explain why, despite
some disadvantages, link state routing is often preferred.

8. *If we compare Figure 9.6 (page 435) with Figure 9.7 (page 437), it would seem
that Dijkstra’s algorithm requires more steps than Bellman’s approach. What’s
your opinion? (Hint: think what happens in large networks.)

downloaded by wizard.z@foxmail.com

482 Wide area networks

9. *Making a distinction between, on the one hand, routing algorithms and, on the
other, routing organizations, is considered good design practice. But, in this re-
spect, is distance vector routing actually not a distributed routing algorithm?

10. Name the main additional problems that need to be dealt with when constructing
an internetwork.

11. Fragmenting packets can be avoided if the sender ensures that its packets are al-
ways small. Following this strategy is not always such a good idea. Why?

12. We have presented fragmentation as a problem inherent to internetworks. Why
need it not be a major issue in homogeneous wide area networks (i.e. a WAN built
on top of a single type of LAN)?

13. *Can you think of a reason why the Internet is growing exponentially? Wouldn’t
you expect the growth to be linear instead?

14. *If ICMP messages are sent as ordinary IP datagrams, how can we distinguish them
from other IP datagrams?

15. An ISDN will offer a basic service connection to your home consisting of two B
channels and one D channel, adding up to 144 Kbps. However, ISDN will actually
reserve a total of 192 Kbps. Can you imagine why?

16. *Suppose I have an IP datagram of 2048 bytes that I want to send across a broad-
band ISDN implemented by means of an ATM network. How many cells will need
to be sent?

17. *Taking the previous exercise into account, provide arguments for the fact that
ATM networks, although intended to support computer communication which is
strongly biased towards packet exchanges, employ circuit-switching technology.

18. *ATM networks are so reliable that cells will generally not contain any additional
error detection bits, except for the header. Why? (Hint: work out where error de-
tection takes place for the data contained in cells.)

19. Explain the main reason for introducing the transport layer, and also its main func-
tionality.

20. Why would we want multiplexing capabilities in the transport layer?

21. Transport layer protocols often have extensive error detection capabilities, even if
they are implemented directly on top of reliable networks such as those based on
ATM. Does this make sense?

22. Is it possible to devise a completely safe protocol for closing down a connection
taking into account that requests and acknowledgments may be lost?

downloaded by wizard.z@foxmail.com

Chapter 10

Towards communication architectures

In this chapter we shall discuss communication architectures. These define the function-
ality of communication services, which enable us to build distributed applications using
various computers interconnected through a communication network. In fact, we will
explore how the basic services provided by the operating system, such as file access and
inter-process communication, can be lifted to the network level. In other words, we will
discuss some of the problems encountered in trying to let computers collectively work
across a network infrastructure and what kind of solutions can be provided.

10.1 From local to global systems

In the preceding chapters we have given the basic ingredients of computer systems, their
structure, way of operation, and methods to interconnect them. After having dealt with
all problems associated with hardware, system software, and networks, we might ask our-
selves if we now have enough to allow us to construct programs using multiple computers
in a relatively straightforward and easy manner. In other words, we ask ourselves if we
have all the ingredients to build distributed applications. To that end, let’s first be more
specific about what a distributed application actually is.

10.1.1 The concept of distributed applications

We use the term distributed system to characterize properties of certain computer systems
with multiple active entities. However, we are usually rather vague about the behavioral
and physical nature of these entities. Not surprisingly, several definitions appear in the
literature that deviate from each other quite substantially. The word “distributed” sug-
gests that something is distributed, we can safely agree on that. However, it is much more
difficult to agree on what is actually distributed, and where it is distributed. Concerning
what to distribute, it seems obvious that the prime entities that can be subject to distri-
bution are computations and data. Where to distribute these entities also does not seem

483

downloaded by wizard.z@foxmail.com

484 Towards communication architectures

to lead to any problems: entities should be distributed over available resources such as
processors, memories, and other devices.

But is this enough to describe the nature of a distributed application? Let’s take a de-
generated example. Suppose we have written a BASAL program consisting of several
processes. First, assume that we have a computer system with just a single CPU and one
main memory module that is capable of compiling and executing BASAL programs. In
that case, the computations and data of our program can be distributed only over these
two main resources; the underlying operating system will have to ensure that the various
processes each get an equal share of CPU time when executing instructions.1 Intuitively,
we would not be inclined to refer to our program implementation as being a distributed
application. So let’s add some more CPUs that are all connected to the same memory
module, so that several processes forming part of our program can now be executed at
the same time. Again, speaking of a distributed program seems to be wrong here. From
the outside we see hardly any differences with our first implementation, except, perhaps
that our implementation could be executed much faster. Similarly, if we assume that there
are even several memory modules in our computer, and the data of our program is located
in different memory modules, it would still feel strange to speak of a distributed appli-
cation. From the outside we still see nothing special happening. Our BASAL compiler
merely compiles our program for this (admittedly rather advanced computer), but there
is nothing really to distinguish the program from our first one.

But then what? Some people would say: the active entities in a distributed system must
be independent or autonomous to be able to speak of being truly distributed. For instance,
if we take multiple independent computers, each running their own operating system and
having their own memories, interconnect them through a communication system (e.g. a
computer network) and agree on a message format, we would have a system that can
be used for distributed programming. A couple of personal computers interconnected
through such a network, each running an electronic mail program, is an example of a
distributed system; the mail program is then an example of such a distributed application.
Not a bad definition. However, this definition is rather biased by hardware terminology,
leaving other sensible interpretations of the concept of a distributed program uncovered.

It is better to rely on the definition of an active entity we have already encountered,
namely a process. Multiple active entities can then be interpreted as multiple processes,
each executing a program that forms part of a larger, distributed application. However,
more must be said to make an application distributed. We impose the following require-
ments on processes constituting a distributed application:

(R1): Several processes must provide a service to other processes.

(R2): Processes must have an agreed upon way of communication.

(R3): Processes must know how they can request a service, and provided services must
be used.

(R4): The order of providing services to requesting processes must be immaterial and
subject only to a fairness rule.

1Indeed, we might say that the processes are to be distributed in time, which is just another resource.

downloaded by wizard.z@foxmail.com

From local to global systems 485

Let’s go into more detail on these requirements.

(R1): Providing services. This requirement indicates that a process providing a ser-
vice must have a properly defined functional interface to enable other processes to use
that service. In terms of BASAL, this means that there should be a specification of a ser-
vice, for example in the form of a package specification containing definitions of relevant
data types and procedures. It is extremely important to note that how the service is imple-
mented is of no concern to a process requesting that service. This implies that a process
providing a service has a certain autonomy in realizing that service.

(R2): Agreed way of communication. To use a service, processes must be able to
communicate with each other. This implies that they have to agree on the way that com-
munication should proceed. In other words, they have to agree on a communication
protocol. Again, such a protocol says nothing about the way it is realized.

(R3): Requesting and using services. This requirement may seem strange, but it is, in
fact, an important one. What we are saying here is that processes that have no knowledge
of or means to use a service provided by another process simply are not considered as
being part of the distributed application. Similarly, if a process merely provides services
that are never used, it does not make sense to consider it as part of the application as
well. What we are talking about here are (1) the identification and naming disciplines
of the processes constituting a distributed application, and (2) identifying services that
play a role in a distributed application. In other words, we are requiring that a distributed
application consists of a logically coherent collection of communicating processes.

(R4): Fairness of service provision. The last requirement implies that there is no im-
posed order on providing a service to requesting processes, i.e. service can be given in
any order. The only thing we require is a certain fairness in handling service requests
from processes. Otherwise, a chosen service discipline could prevent certain processes
from making use of a service, effectively inhibiting them in taking part in the distributed
application.

In using the above description of a distributed application, nothing was said about the
hardware requirements. In fact this is not necessary. We can implement distributed ap-
plications obeying the requirements put forward on systems varying from a single pro-
cessor to a worldwide web of connected computers. A good example of this is electronic
mail which we shall discuss below. In practice users that are connected to the same com-
puter still send each other messages in exactly the same way as when they are connected
to computers that are located at geographically different sites.

downloaded by wizard.z@foxmail.com

486 Towards communication architectures

10.1.2 Implicit assumptions made so far

A central role when building distributed applications is played by operating systems. As
we have explained, an operating system provides users and programs with a virtual com-
puter: a machine consisting of resources such as processes, files, and peripheral devices,
constructed as a combination of hardware and software. Important in this respect is that
the machine manifests itself in a coherent fashion. In other words, there is a more or less
standardized interface that allows users and programs to access and use these resources.
The interface, of course, consists of the numerous service programs that can be called by
applications.

In Chapter 6 we took the approach followed then one step further. There we introduced
several package specifications that allowed us to describe communication between com-
puter systems. The implementations of these packages, which are merely other service
programs, had been omitted. However, we returned to that issue in the two preceding
chapters. By and large, using the presented implementation outlines and general descrip-
tions of how implementations could be derived would seem to be enough to obtain a sys-
tem that supports the development of distributed programs.

In fact, this is true, but we are ignoring one extremely important issue. The bottom-up
approach described here is one we cannot follow in practice. What we have to accept is
that the assumptions we are implicitly making by following a bottom-up approach will
no longer hold when building applications on top of existing wide area networks. What
are these assumptions? We mention some of the more important ones:

� A single language environment. All working principles of communication sys-
tems have been explained in this book by means of programs written in a single
language, BASAL. This implies that the BASAL compiler will take all programs
making up the complete application and translate them to executable entities as ex-
plained in Chapter 4. Because of this, we can be sure that identical declarations for
data types in different program units have the same meaning. For example, if we
declare a data type INTEGER, we may safely assume that it includes both positive
and negative numbers in both programs. But what happens when other program-
ming languages are used? Indeed, exactly what a data type stands for is no longer
uniquely defined. And because many distributed applications are developed by us-
ing several programming languages, we have a problem to solve.

� Identical processor architectures. The same meaning of data types does not nec-
essarily imply the same representation in memory. Different processor architec-
tures may have different representations for integers and floating-point numbers.
However, if the processor architecture of the processors in a system is identical,
also their representation in memory can be assumed to be identical. So far, we have
ignored any differences between the way that processors represent data in main
memory.

� A single file system. We have also assumed that we have a single file system such
that all processes in the system can name and access files in a uniform way. But, as
you may know from experience, file systems may be considerably different in this

downloaded by wizard.z@foxmail.com

On open systems 487

sense. And when several distinct file systems are used within a single worldwide
application, we will have to take those differences into account.

� A local naming system. In a computer system all kinds of resources need to be
given a name or number for their identification. Examples of such resources are
processes, users, files, and peripheral devices. The point to note is that when using
a single operating system, it is the operating system which maintains the mapping
between those names and the resources that they identify. One example is that of a
directory service as explained in Section 5.6.3: it maintains the mapping between
the name of a file and the file identifier. File naming, file identifiers, and the di-
rectory service itself fall under the regime of a single operating system. This local
naming system is acceptable for small systems; it will not, however, suffice if we
need to support wide area distributed applications.

It is thus seen that we do indeed have some problems to solve. In truly distributed ap-
plications, the assumptions listed above no longer hold. What we want is to let com-
pletely different applications (possibly written in different languages), running on com-
puters with different architectures and operating systems, communicate with each other.
In other words, we should provide the right means to allow for the construction of open
systems. An open system was defined in Section 9.5 as a system that will allow anyone
to construct a program that can communicate with other existing programs. Clearly, we
can only do this if we have a collection of standardized services.

In this chapter we are going to look at several such services. To that end, we start
by completing the OSI reference model in Section 10.2, and subsequently introducing
a simplified model to structure our further discussion. In Section 10.3 we discuss four
important commonly adopted communication services: terminal handling, file transfer,
message handling, and global naming schemes. How these services can be used by a
worldwide distributed application is illustrated in Section 10.4 where we briefly discuss
the popular World Wide Web.

10.2 On open systems

10.2.1 The OSI model completed

The problems mentioned so far are not new and have also been addressed by the OSI

reference model. At this point, it is worth considering the framework that OSI provides
to handle solutions to problems dealing with open systems. We shall also see, however,
that this framework is no longer considered entirely adequate and that another approach
needs to be followed.

Our discussion so far on the OSI reference model has ended with the description of
the transport layer in Section 9.5. With the transport layer in place, we can be certain
of making a reliable connection between any two points in a network. However com-
plicated these connections might be in terms of implementation (error control, fragmen-
tation, connection management), from a user’s perspective a pipe has been established

downloaded by wizard.z@foxmail.com

488 Towards communication architectures

physical

data link

network

transport

session

presentation

application

application-
independent
protocols

application-
specific
protocols

Figure 10.1 The complete OSI reference model.

over which bits can be pumped from one side to the other. More functionality needs to
be added to be able to construct communicating systems.

The OSI reference model adds three more layers to the transport layer: the session
layer, the presentation layer, and the application layer. These three layers work to-
gether to perform a specific user function. If we add them on top of the transport layer
we get the picture as shown in Figure 10.1. We shall briefly describe the functionality of
these three layers.

The session layer

The session layer is responsible for dialogue management between two application pro-
tocols. A dialogue is the set-up, synchronization, and clearance of a complete network
transaction. When taking the connection management facilities of the transport layer into
account, you might think that dialogue management at this level may not even be neces-
sary. And, in fact, this is often true. There are, however, a few points that need clarifica-
tion.

First, dialogue management may be skipped entirely, even at the level of the transport
layer. For instance, if we have a simple connectionless mail service, there is no dialogue
at all. The session layer can in that case safely be omitted or made transparent. And
indeed, connectionless communication at the level of the transport layer is taken care of
in the form of datagrams, so that dialogues are also non-existent at that level.

On the other hand, if we have a timely network transaction, we want to be able to cor-
rect things when something goes wrong in the middle of the transaction. For example,
suppose we were to transfer the complete catalog of the Library of Congress overnight

downloaded by wizard.z@foxmail.com

On open systems 489

block #4 block #1#2block #3

block #1block #3#4block #5

#2block #3block #4

connection breaks, block #1 has been received

transmission of blocks, starting with block #1

block #5

block #5

re-establish connection, continue with block #2

Figure 10.2 The principle of maintaining a connection by the session layer.

to the other side of the world. If during this indeed lengthly transaction an error occurs
(e.g. a connection was somehow broken), we would like to resend only the data affected
by the error and not start all over again. To do so we have to split the data to be sent
into blocks and insert synchronization points between the blocks. The session protocol
uses these synchronization points to have reference points from where a transfer can be
resumed after failure correction. The principle of operation is shown in Figure 10.2.

The presentation layer

The presentation layer is responsible for the representation of the data being transferred
between two processes forming part of a wide area application. When we transfer data
between two processes of such an application the data has a specific meaning, or in other
words, has specific semantics. Now a transfer makes sense only when this meaning is
the same for both parties in the communication, i.e. when both sender and receiver have
shared semantics. What this means is best explained by an example.

Suppose two processes want to exchange a message consisting of several data fields,
one of these fields being an integer. The point to note is that in the end the only thing
the sender can transmit with the concepts introduced so far is a bit string. It is up to the
receiver to interpret this bit string as the intended message. This leaves us with two prob-
lems. First, both the sender and receiver have to agree upon what the message looks like.
In other words, they have to agree on the data fields and the types associated with those
fields. This is called agreement on the abstract syntax.

But that’s not all. As the sender will eventually transmit the message in the form of
a bit string, both the sender and the receiver will have to agree on the way that the mes-
sage is represented as a bit string. This is called agreement on the concrete syntax. For
example, if the sender is executed on a computer in which integers are represented in
one’s complement notation, while the receiver’s computer uses two’s complement nota-
tion, somewhere a conversion needs to take place so that the receiver can still interpret
the received bit string as containing the correct value of the integer data field.

It is the responsibility of the presentation layer to take care of these matters. In par-

downloaded by wizard.z@foxmail.com

490 Towards communication architectures

type MESSAGE is
 record
 destination : ADDRESS;
 integerValue : SMALLINT;
 characterValue : ASCIICHAR;
 logicalValue : BOOLTYPE;
 end record

type MESSAGE is

BITSTRING (DATA)

presentation
layer

session &
lower layers

presentation
layer

session &
lower layers

sender receiver

48 bits
16 bits

 ADDRESS

 SMALLINT

 ASCIICHAR

 BOOLTYPE

7 bits
1 bit

Figure 10.3 The principal working of the presentation layer.

ticular, the presentation layer provides the right means for a sender and receiver to reach
an agreement on a common abstract and concrete syntax. This principle is illustrated in
Figure 10.3.

� You might wonder how we can implement this functionality in the presentation layer. To
illustrate, assume that within an application a sender wishes to pass messages of some kind
to a receiver. Say that these messages are to consist of a field by which the receiver can
be identified, as well as a field containing an integer value. In addition, messages will also
contain a character corresponding to one of the 128 possible ASCII characters, as well as a
Boolean variable. In order to reach an agreement on the abstract syntax of messages, both
the sender and the receiver will use the same notation. For example, we could use BASAL

for this. This implies that both the sender and the receiver will have BASAL at their disposal.
For example, some of the basic data types can be represented as follows:

subtype ADDRESS is INTEGER range 0..16777215;
subtype SMALLINT is INTEGER range 0..65535;
subtype ASCIICHAR is CHARACTER range CHARACTER’VAL(0)..CHARACTER’VAL(127);
subtype BOOLTYPE is BOOLEAN;

so that a message can be specified as:

downloaded by wizard.z@foxmail.com

On open systems 491

type MESSAGE is
record

destination : ADDRESS;
integerValue : SMALLINT;
characterValue : ASCIICHAR;
logicalValue : BOOLTYPE;

end record ;

The MESSAGE data type is specified to be composed of two integer data fields, a character
data field and a Boolean data field. Both the sender and the receiver will use this specifica-
tion of a message. They are said to agree on the abstract syntax of the messages they are
to exchange. Note that by explicitly specifying the subtypes ADDRESS, SMALLINT, ASCII-

CHAR, and BOOLTYPE both parties have also agreed on the values that any variable of these
data types can have.

Our specification, however, says nothing about the way that the various data types are rep-
resented as bit strings, let alone how we are to convert a MESSAGE variable into a bit string
and vice versa. To that end, we need to provide more information. In particular, we need to
specify how the basic data types are to be represented as bit strings, and using these repre-
sentations, how MESSAGE data types are represented in the form of a bit string. It will come
as no surprise that we can use BASAL’s representation clauses to this end, as explained in
Section 4.5.1. We start by specifying precisely how the basic data types are to be repre-
sented:

for ADDRESS’SIZE use 3*8;
for SMALLINT’SIZE use 2*8;
for ASCIICHAR’SIZE use 7;
for BOOLTYPE’SIZE use 1;

The definition of the subtype ADDRESS is similar to the definition in Listing 8.2 and defines
a 24-bit non-negative integer, occupying three consecutive bytes in memory. The subtype
SMALLINT occupies two bytes of memory. Because there are only 128 ASCII characters, it
suffices to use just seven bits to represent them all. Likewise, Boolean data types can be
represented by only one bit. Specifying the complete representation for a MESSAGE is now
not too difficult:

for MESSAGE use
record

destination at 0 range 0..23; �� occupies precisely 24 bits
integerValue at 0 range 24..39; �� occupies the following 16 bits
characterValue at 0 range 40..46; �� occupies precisely 7 bits
logicalValue at 0 range 47..47; �� occupies exactly the last bit

end record ;

for MESSAGE use 6*8;

Note how we have specified exactly which substrings of a 48-bit message correspond to the
respective data fields of the MESSAGE data type. It is now up to the BASAL compiler running
at both locations to ensure that this layout of MESSAGE data types is maintained.

But is this enough? The answer is easily seen to be no: the only thing we have done is
specify by how many bits each data type is to be represented. We have said nothing about

downloaded by wizard.z@foxmail.com

492 Towards communication architectures

what these bits stand for. For example, should the value TRUE be represented by “1” or by
“0”? Likewise, we have also not specified whether integers should be represented in one’s
or two’s complement. How this additional information can be added is left as an exercise
for the reader.

Having solved the problem of abstract and concrete syntax in BASAL, only one problem re-
mains: not all programs will be written in BASAL (in fact, no program will be ever written
in BASAL). Actual programs might be written in several different languages, such as C and
Fortran. All those languages usually have a different syntax for data types, different capa-
bilities to define data types, and different concrete syntax definitions (if any). To solve this
problem, the language ASN.1 has been developed, which allows abstract and concrete syn-
taxes to be precisely defined. Only those data types that are to be used in communication
need to be specified in ASN.1; a compiler subsequently translates these definitions into cor-
responding ones for the language in which the application is being written. Therefore, for
example, there are ASN.1 to C compilers as well as ones to translate ASN.1 to Fortran.

The application layer

Having dealt with dialogues and data representation, we are left with one general prob-
lem: the mechanisms provided so far are simply too general to be used efficiently. For
example, it is not hard to imagine that electronic mailing systems require a different way
of communication from order handling systems in a manufacturing environment. Where
the first type of systems mostly need to agree on the way that sender and receiver are
specified in a message, as well as the allowable characters in a message, the latter will
require information on the product that is ordered, the quantity, etc. In fact, many of these
details can be more or less identified per application domain. And it is here where the
application layer falls into place. The point is that if an application adheres to the gen-
eral protocol laid down for its domain at the level of the application layer, it need not be
further concerned about the way that information exchange takes place.

Clearly, if such communication protocols, or application protocols as they are also
called, can be agreed upon, developing wide area applications would indeed become rel-
atively simple. For one thing, the application developers need not be concerned about
the way communication itself is handled as this is completely being taken care of. It will
come as no surprise that this approach is only meaningful if the application protocols
are highly standardized. This is an area where much work is still in progress, although
standardization for certain domains has been reasonably successful.

But in the OSI reference model, the application layer is really not the final solution.
This can be seen by imagining that, for example, an order handling system may be en-
tirely based on an electronic mail handling system. In other words, orders are translated
into messages that can be treated as electronic mail. At the other end, such messages can
be converted back again to actual orders. This approach is already often used for elec-
tronically ordering books, or for even searching through remote data bases. What we
then have in fact are two application protocols placed “on top” of each other. In other
words, we have introduced yet another communication layer.

Unfortunately, the OSI reference model does not cover this approach towards applica-

downloaded by wizard.z@foxmail.com

On open systems 493

tion development as it defines only a single application layer. Adding yet another layer
to the model is really not a solution, especially if you realize that other layers, such as the
session layer, have not always proven to be very useful. To simply matters we will define
in the next section a simplified reference model, which from an application developer’s
point of view is more convenient than the standard model.

� A remark should be made at this point. The OSI reference model defines seven layers, where
the Nth layer for the realization of its communication functions relies on the services pro-
vided by the �N�1�th layer. However, the Nth layer needs to know nothing about how the
�N�1�th layer implements these services. This strict separation enables layers to be re-
placed and makes it possible to realize an application (say, an electronic mail application)
using different assemblies of layers. Such an assembly is also called a protocol suite.

Apart from protocols defined according to the OSI model, protocols are in use which do not
strictly adhere to this reference model. This is the case with, for example, the TCP/IP proto-
cols, which have been outlined in Section 9.5. Although the TCP protocol can be regarded as
a protocol of the transport layer and the IP protocol as a protocol of the network layer, both
protocols do not separate functionality and implementation as strictly as required by the OSI

model. Another important difference is that the TCP/IP protocol suite does not have layers
defined on top of the TCP layer. This means that each application must implement presen-
tation and session functions itself and no sharing of this functionality can be obtained.

10.2.2 A simplified model for open systems

To reduce complexity, we will now define a simplified reference model. This model has
four layers as opposed to the seven layers of the OSI model. The model is depicted in
Figure 10.4. The four layers describe the following functions:

� layer 1: transmission

� layer 2: transfer

� layer 3: communication

� layer 4: application.

We will describe the function of each layer of the simplified model in more detail in the
following subsections and relate each layer of the simplified model to the OSI layers.

Layer 1: Transmission

Layer 1 of the simplified model is equal to the physical layer of the OSI model. Since this
is the least spectacular layer of the OSI model, you might ask why we define a separate
layer for it. The main reason is one of economics. For example, cabling of buildings
carries large investments and the turnover frequency of these investments is in general
much higher than for other network equipment. Hence standardization of the electrical
and mechanical characteristics of transmission media will enable these investments to be
protected.

downloaded by wizard.z@foxmail.com

494 Towards communication architectures

communication layer

transfer layer

application layer

transmission layer
application
independent

Figure 10.4 The four-layered alternative model.

Layer 2: Transfer functionality

For the second layer of the simplified model we make use of the fact that up to the trans-
port layer of the OSI model all layers define application-independent protocols. These
layers are to provide reliable data paths between two communication points. As long as
this is secured, the more application-oriented layers above our transfer layer are not con-
cerned how this is accomplished. Hence we can take the data link, network, and transport
layer together and mold them into a single layer providing transfer functions. So, for ex-
ample, the TCP and IP protocols as used within the Internet and which are implemented
on top of a local area network protocol such as IEEE 802.3 (CSMA/CD) would give a com-
plete definition of this layer.

Layer 3: Communication

The third layer in our model defines common communication services as needed by many
applications. With common communication services we mean services that are needed
by most network-based applications. The communication services generally adopted in
this layer include:

� Terminal handling services

� File handling services

� Message handling services

� Name handling services

� Remote operation services

� Time handling services

� Security services.

The first four of these services will be explained in more detail in Section 10.3. Antici-
pating our further discussion, it can be noted that the functions provided by this layer are

downloaded by wizard.z@foxmail.com

Communication services 495

similar to those of traditional operating systems. For example, both name and file han-
dling services are typically services that a local operating system should also provide.
Likewise, having a facility to communicate as a user through a terminal is something
that no operating system can ignore. Naming facilities is yet another service that each
operating system will offer. Indeed, it is thus seen that the communication layer extends
the concept of an operating system to that of a network-based environment.

The other three services (remote operation, time handling, and security) have been
omitted from our discussion here for various reasons. Rather than elaborating on these
reasons now, we defer a further discussion to the end of this chapter.

Layer 4: Application domain functions

The fourth layer defines additional standards for various application domains. Many of
such application domain-specific standards deal with the definition of document formats.
Examples of such document formats are purchase orders, shipping documents, and in-
voices. Standards for the format of these documents enable trade functions to be auto-
mated, such as automated ordering of parts at various suppliers. This book is not the right
place to discuss these matters for the simple reason that they are application-specific.

10.3 Communication services

From the above, it can be concluded that our presentation so far has mainly lacked dis-
cussion of the communication layer when discussing general communication systems. It
is time that we corrected this. In this section we shall pay some more attention on the var-
ious communication services as offered by our communication layer. As we have said,
we shall concentrate on how this layer provides wide area support for dealing with com-
munication through terminals, file transfer, message handling, and the important issue of
providing naming facilities for resources. The reason for concentrating on exactly these
four services has everything to do with their illustrative nature. As of today, they are
probably not only the most widely used services, but they also reveal more clearly than
any other service the present state of wide area distributed systems. Moreover, we shall
see that these services can be relatively elegantly combined into a single user-oriented
global information system: the World Wide Web which we will discuss in Section 10.4.
Other important services, but which are more hidden from users, are briefly discussed in
Section 10.5.

10.3.1 Terminal handling services

We normally communicate with a computer through a terminal. Most terminals consist
of a keyboard and a screen (and sometimes other devices such as a mouse). If we are
to expand the functionality of an operating system so that it can still work in a network-
based environment, we will have to devise a way to connect terminals to remote sites of
the system.

downloaded by wizard.z@foxmail.com

496 Towards communication architectures

application

interrupt
handler

remote
operating
system

terminal
service program

interrupt
handler

terminal
device driver

local
operating
system

Figure 10.5 Having a remote device driver control a local terminal.

A straightforward expansion

Terminals are usually connected to the computer via an interface to the local bus as de-
scribed in Chapter 3. In essence, a device driver, forming part of the operating system,
takes care of the basic communication between a process requiring terminal input or out-
put. Additional software, usually also forming part of the operating system, is capable
of handling more sophisticated operations. To illustrate, recall that echoing characters
on the screen was actually something that we needed explicitly to take into account as
discussed in Chapter 4. Sometimes echoing is suppressed on purpose, as can be seen
when the operating system requires you to type in a password after login. The point to
note is that even for apparently simple operations such as echoing characters, we need
to devise special software that implements such operations. In other words, terminals by
themselves have very limited capabilities.

This is really not such a disadvantage as most basic operations can be handled at the
level of the operating system. But matters do become more complicated when a terminal
should also be attached to a non-local computer. Imagine that in this case we followed
the same approach as attaching a terminal to the local computer. This would require that
a remote device driver has access to the terminal. What does this mean? Take a look at
Figure 10.5 which illustrates the minimal approach to follow in this case.

Each time a key is (de)pressed, the subsequent interrupt generated by the local hard-
ware should initially be handled locally as well. Then, the interrupt handler associated
with the terminal should pass, in the form of a message, the interrupt to the remote de-
vice driver. The driver, in turn, processes that message and sends a reply, which is subse-
quently handled by a minimal amount of software or hardware at the local site. In prin-
ciple, this scheme would indeed work. There is, however, a problem with this approach
which is related to the fact that there are so many different types of terminals. The sim-
plest terminals are able to support character-oriented screens that scroll as information
is displayed. The most sophisticated ones are graphical terminals. In general, different
terminal types, and in general also terminals from different vendors, require their own,
specific device driver. In the case of a network-based system, this means that a remote
station will need the device drivers for any terminal that could possibly request a remote
connection. Realizing that device drivers are also specific to operating systems, it is then
not difficult to see that we are losing a lot of flexibility with respect to changes in the
network.

downloaded by wizard.z@foxmail.com

Communication services 497

Virtual terminals

A better solution is to define a virtual terminal. In order to explain what a virtual ter-
minal is, first reconsider how an ordinary terminal may appear to a user or an application
program. Using BASAL for this purpose, a simple scroll-based terminal can be specified
by the following package:

package TERMINAL is
procedure READ(char : out CHARACTER);
procedure WRITE(char : in CHARACTER);

end TERMINAL;

When invoking the procedure READ, the calling process is suspended until a character
has been typed, which is subsequently returned via the parameter char. Likewise, calling
the procedure WRITE results in displaying the given character on the screen.

A virtual scroll-based terminal is not much different, except for one thing: characters
are now read from a remote keyboard, and likewise, are written to a remote display. In
addition, if we standardize the interface for virtual scroll-based terminals, and base their
implementation on standard protocols available at the level of the communication layer
(such as TCP/IP), we have accomplished three important things:

� Implementations are independent of operating systems, but instead rely on stan-
dardized implementations of interfaces to the transfer layer.

� There is no dependency between virtual terminals and vendor-specific products.

� The number of implementations is limited as there is only a single concept of (in
our case) a virtual scroll-based terminal.

Now what does a virtual terminal look like? To produce a virtual terminal we make
use of two components: a client terminal running at the local computer to which the real
terminal is connected, and a server terminal running on the remote computer. This orga-
nization is shown in Figure 10.6(b). The original situation in which a program PROGRAM
depends on a local terminal is shown in Figure 10.6(a). Note that in the case of a virtual
terminal, PROGRAM will now be running on the remote computer. Also note how the
two components of a virtual terminal are placed on top of the transfer layer, and indeed
form part of the communication layer. All commands between the client and server ter-
minal are to be translated into messages that can be handled by the transfer layer. It is
important to note that neither component makes any assumptions concerning the actual
hardware or the operating systems that are being used. Instead, it relies entirely on (1)
the definition as provided by, in our case, the TERMINAL package specification, and (2)
the functions provided by the transfer layer. We have thus established a clean separation
between both systems and a decoupling of machine-specific information for both sides.

� An example: TELNET

A popular virtual terminal protocol based on TCP/IP is TELNET. The core of the protocol
is formed by a set of commands that are sufficiently general to be found in one form or an-

downloaded by wizard.z@foxmail.com

498 Towards communication architectures

terminal
service program

interrupt
handler

terminal
device driver

 client terminal

transmission
protocols

transfer
protocols

server terminal

transmission
protocols

transfer
protocols

interrupt
handler

(a)

(b)

local computer remote computer

PROGRAM

TERMINAL

PROGRAM

Figure 10.6 The principal working of a virtual terminal (b). The original situation is shown in
(a).

other on most scroll-based terminals. These commands are used to let the client and server
TELNET terminal communicate with each other. Of course, each command must be commu-
nicated between the client and server terminal in the form of a message. There is simply no
other way of doing so. This does, however, impose a problem that we will encounter with
other protocols as well: how can we distinguish commands from data? The solution is sim-
ple and straightforward. Like many other protocols, TELNET sends messages as a string of
8-bit bytes. However, data is restricted to the 7-bit ASCII coding as presented in Table 2.3.
Commands can thus be recognized by the fact that the leftmost bit of a byte has been set to
1.

Before the information exchange between the client and server terminal takes place, the two
are first involved in a negotiation phase. To that end, the following four TELNET commands
can be used:

� DO: This command, which is sent as “DO option”, is a request to the receiver to support
the indicated option. For example, a client may request the server to support message
encryption by sending the command “DO encrypt”.

� WILL: This is a command sent to the other party to express that the sender is willing to
support an option. For example, the server may indicate that message encryption will

downloaded by wizard.z@foxmail.com

Communication services 499

Table 10.1 The six different scenarios for TELNET option negotiation (adapted from Stevens,
1994).

Sender Receiver Semantics

WILL option DO option The sender wants to enable option; the
receiver agrees.

WILL option DONT option The sender wants to enable option; the
receiver disallows it.

DO option WILL option The sender wants the receiver to en-
able option; the receiver agrees.

DO option WONT option The sender wants the receiver to en-
able option; the receiver won’t do that.

WONT option DONT option The sender wants to disable op-

tion; the receiver acknowledges its
cooperation.

DONT option WONT option The sender wants the receiver to dis-
able option; the receiver acknowledges
its cooperation.

be supported by sending the command “WILL encrypt” to the client terminal.

� DONT: This is the opposite of the DO command: the sender is requesting the receiver
to disable an option.

� WONT: Likewise, this is the opposite of the WILL command: sending “WONT option”
tells the receiver that the sender wants to disable the option.

These four commands can be used in six different scenarios as shown in Table 10.1. For
example, the client terminal may want to encrypt all messages during the TELNET session
to which end it sends the command “WILL encrypt” to the server terminal. Assuming the latter
agrees to accept encrypted messages, it replies by sending the command “DO encrypt” to the
client. After several of such options have been agreed upon, initiated either by the client or
server terminal, communication between the two can commence.

Now how does TELNET appear to a user? In practice, the protocol is most often used when a
user wants to login into a remote computer. For example, suppose that you want to login into
a remote computer named hydra.cp.tn.tudelft.nl (where we assume that you have an account
for that computer). To that end, you can invoke on your own computer system the program
TELNET which forms an implementation of the TELNET protocol. What you might see on
your own screen is shown in Figure 10.7.2 Commands typed in by the user are shown in
bold.

Let’s see what is actually happening. After starting the TELNET program, we first instruct it
to show the options that are negotiated on the screen. Then we instruct to open a connec-
tion to hydra.cp.tn.tudelft.nl, which happens to have the Internet address 192�31�126�72. As

2We note that this is, in fact, an edited version of an actual transcript from a TELNET session. In this
case, we are requesting a connection from a computer in Amsterdam to one in Delft.

downloaded by wizard.z@foxmail.com

500 Towards communication architectures

% telnet start TELNET program
telnet> toggle options instruct to show info on options
Will show option processing. response by program
telnet> open hydra.cp.tn.tudelft.nl open connection to other site
Trying 192.31.126.72... TELNET seeks connection to other site
Connected to hydra.cp.tn.tudelft.nl. connection has been made
Escape character is ’ˆ]’. more info by TELNET

SENT do SUPPRESS GO AHEAD client requests to send character at a time
SENT will TERMINAL TYPE (don’t reply) client requests to negotiate terminal type
RCVD do TERMINAL TYPE (don’t reply) server acks terminal type negotiation
RCVD will SUPPRESS GO AHEAD (don’t reply) server acks character transmission
RCVD will ECHO (reply) server requests that it handles echoing
SENT do ECHO (don’t reply) client acknowledges

SunOS UNIX (hydra) we are at the other site

login: the login prompt at the other site

Figure 10.7 An example of how TELNET appears to a user on its own computer while opening
a connection to another computer hydra.cp.tn.tudelft.nl.

soon as the connection has been made, negotiation starts. In our case, the client requests
that all communication with the server terminal occurs on a per-character basis. Also, the
client and server need to negotiate over the type of terminal that is being used. After these
two steps, the client requests the server to handle echoing. This means that each time a char-
acter is sent to the server, the latter responds by sending that character back so that it will
be displayed on the screen. At that point, we are ready to login at the remote site, and have
connected our own terminal to the remote computer system. The fact that it is indeed remote
will more or less be hidden from us. The remoteness of the other computer has thus been
made transparent to us.

10.3.2 File handling services

A communication service for which there is clearly a need is remote access to a file. By
this we mean that it is possible to access files that are normally only accessible from a
remote computer system. In distributed applications based on a single operating system
running on a local area network, file access is generally transparent. No matter where
you are located within the network, you will be able to access files as if they had been
stored on a storage medium directly connected to the computer you are using at that mo-
ment. In the case of wide area distributed applications, this is still an ambitious goal,
although some steps in the right direction of making file access transparent have been
taken. An alternative approach is to support file transfer. In that case, the only thing we
can do is copy a file from a remote system to our own system.

downloaded by wizard.z@foxmail.com

Communication services 501

A virtual file structure

Copying files is a lot easier said than done. What we wish to do is copy the contents of
some remote file Fremote into a local file Flocal. Unfortunately, how data is stored in files
varies considerably between file systems. In turn, how files are organized into directories
is also very different. Supporting file transfer can only be done if we are able to divert
from these organizational details. In other words, we need some concept of a virtual file
system which forms a common denominator of currently existing file systems.

The problem that we have to deal with is that a virtual file system should be able to
support files from different real file systems. To get an insight into what we are dealing
with, consider what file systems may provide on a per-file basis:

� A file name, which is a symbolic name to identify a file. In practice, the restric-
tions imposed on file names can be different with respect to length and allowable
symbols.

� A set of attributes, containing information on a file. Typically, access permissions,
the size of the file, its owner, and time and date of creation are recorded. But again,
differences exist between file systems.

� A file structure which may vary between providing no structure at all, but merely
considering a file as a series of bits, to organizing files in terms of, for example,
indexed records.

In addition, many operating systems allow files to be arranged in different ways by or-
ganizing them into directories, as discussed in Section 5.6.3. Again, striking differences
may exist. For example, whereas in MS-DOS files can only be organized in a strict hi-
erarchical fashion in the form of a tree, UNIX systems allow files to be organized into a
more or less arbitrary directed graph.

By now, it should be clear that defining a virtual file structure is no easy task. In prac-
tice, what happens is that directory structures are simply not taken into account, and that
attention is focused merely on supporting individual files. This approach makes sense,
for in the end, what we are really interested in is fetching a particular file from a file
system, and copying it into a “new” file in our current system. Directory organizations
become less important then. To a certain extent, this approach has also been followed
within the OSI model, which includes the so-called file transfer and management stan-
dard (FTAM). The standard is intricate and reflects OSI’s strive for completeness. We will
not discuss FTAM here and refer the interested reader to the literature mentioned in Sec-
tion 10.5. Instead, to illustrate how matters can also be kept relatively simple, we discuss
a popular file transfer protocol as adopted by the Internet.

� Internet’s FTP

A commonly used application in the Internet is the FTP program, an implementation of the
Internet’s file transfer protocol, also known as FTP. The virtual file structure that FTP sup-

downloaded by wizard.z@foxmail.com

502 Towards communication architectures

command
handler

"permanent" connection
(for duration of FTP session)

temporary connection
(for one data transfer)

client server

data transfer
handler

data transfer
handler

command
handler

commands

filefile

Figure 10.8 The architecture of Internet’s FTP.

ports is certainly not general, but does cover a wide range of possible files. Different aspects
need to be considered in the case of FTP:3

� The file type where a distinction is made roughly between (1) character files, which
contain only (transmissible and printable) characters and (2) binary files, which are
considered as a stream of bits.

� The file structure, by which a choice can be made between (1) unstructured files,
which are considered as a stream of bytes, and (2) record structured files in the case
of character files.

� The transmission mode, for which a choice can be made for transmitting the file as
(1) a stream of bytes or (2) as a series of blocks of bytes.

In practice, most file transfers leave only the option of choosing between either character
or binary files. The file structure is often assumed to be that of a stream of bytes which
conforms to both MS-DOS and UNIX, which is naturally transmitted as a stream of bytes as
well. Indeed, our concept of a virtual file structure can be reduced to something simple in
many practical situations.

So how does FTP work? An important difference with the TELNET protocol is that FTP

makes use of two separate components at each site as illustrated in Figure 10.8. Both the
client and server process have a separate component that takes care of all commands that
are exchanged. In addition, each has a component that is responsible for transferring data.
When starting an FTP session, a permanent connection is set up between the two command
handlers. Each time a file is transferred during that session, a separate connection between
the data handlers is set up, and subsequently closed after file transfer has taken place. Only
after the session is over will the connection between the two command handlers be closed
as well.

Again, to illustrate how file transfer appears to the user, look at Figure 10.9 which shows an
FTP session, again with our remote computer in Delft. As in the TELNET protocol, FTP is

3For clarity, we have omitted several options which are rarely used in practice.

downloaded by wizard.z@foxmail.com

Communication services 503

% ftp -d invoke the FTP program
ftp> open hydra.cp.tn.tudelft.nl request a permanent connection
Connected to hydra.cp.tn.tudelft.nl.

220 hydra FTP server (SunOS 4.1) ready.

Name (hydra.cp.tn.tudelft.nl:steen): henk FTP requests for a user name and
---> USER henk sends command USER to other site
331 Password required for henk. FTP requests a password
Password: and the user types it in (not echoed)
---> PASS XXXX the password is sent to the other side
230 User henk logged in. and we have got our connection
ftp> get Xloadimage request transfer of a file
---> PORT 192,31,231,170,128,75 FTP tells where the client is reached
200 PORT command successful.

---> RETR Xloadimage and instructs server to transfer the file
150 ASCII data connection for Xloadimage server starts the data transfer

(192.31.231.170,32843) (111 bytes). across new data connection
226 ASCII Transfer complete. and indicates its completeness
local: Xloadimage remote: Xloadimage

113 bytes received in 0.22 seconds

ftp> close we close the permanent connection
---> QUIT the QUIT command is sent
221 Goodbye.

ftp> quit and we can leave the FTP program

Figure 10.9 An example of an FTP session with the remote host named hydra.cp.tn.tudelft.nl.

supported by means of a program FTP which, in our case, we have invoked with an additional
debugging option in order to display additional information on what’s really happening.

As in the case of using TELNET, we first set up a permanent connection between the client
(our side) and the server (at the remote site). This happens as the first command, after which
we get a reply (in the form of a 3-digit number) and some additional text. As FTP requires
that we login at the remote site, we first have to pass a user name and valid password. The
interesting part starts when we want to transfer the file Xloadimage from the remote computer
to our own computer. After having instructed FTP to get the file, it first tries to set up a data
connection between the server and the client. To that end, it requests a port at our local
operating system, and passes this port as well as the IP address of the local system to the other
side. As the transcript shows, our own IP address is 192�31�231�170, and the connection is
to be made to port #32843 (note that the number of the port is passed to the server using
decimal-dotted notation, i.e. as number 128�75 � 128� 256� 75 � 32843). The transfer
takes place, the data connection is closed, and we are then ready to close the permanent
command connection.

downloaded by wizard.z@foxmail.com

504 Towards communication architectures

10.3.3 Message handling services

The next type of communication service, and probably the one that is used more often
than any other service in user-oriented distributed applications, is that of handling mes-
sages. In this section we shall concentrate on one particular form, namely that of handling
electronic mail, also known as e-mail.

Electronic mail

We have shown how in BASAL messages between processes could be exchanged by us-
ing the SEND and RECEIVE service calls. Such services are also generally available as
communication services. But matters become more complicated then we have suggested
in all our solutions so far. First, note that in almost every situation in which we used the
SEND and RECEIVE operations we had identified the party with which communication
takes place by making explicit use of some kind of ADDRESS variable. Now where does
the value of this variable come from? You will notice that we have not said anything
about that, and indeed we have a naming problem here. We defer a presentation to solve
that problem to the next section.

A second problem that we have hardly touched upon is the distinction between sev-
eral kinds of messages. Distinctions manifest themselves at different places. For exam-
ple, contents and layout of messages may differ substantially. Likewise, we should also
make a distinction between messages exchanged between human beings and those ex-
changed between applications. Yet another completely different kind of distinction can
be made with respect to message handling itself. For example, some messages may re-
quire acknowledgment of receipt, or must be encrypted for security reasons.

These distinctions need to be taken into account when devising a message handling
service. When providing solutions at the level of a general-purpose message handling
facility, it is more common to speak about electronic mail. And as its name suggests,
solutions largely mimic the way hand-delivered mail is organized. First, mail is deliv-
ered in the form of an envelope having a header and contents. The envelope header is
the same for all sorts of mail, while the envelope contents, of course, depend on the type
of message being sent. In Figure 10.10 an example of a message is shown for interper-
sonal e-mail exchange. The envelope contains publicly known originator and recipient
addresses. These addresses are normally the addresses where the mail servers of a certain
site are located. We note that in this case, most of the information shown in the envelope
header has been generated for the convenience of the recipient.

The envelope contents, in turn, are again divided into two parts: the contents header
and the contents body. The contents header contains additional information for the re-
ceiving party for which the mail was intended in the first place. In the case of interper-
sonal e-mail, the header may contain information on the person who sent it and on the
main subject. When e-mail is sent directly to an application, such as the case with our
library example, the header may contain items such as keywords that allow automatic
further processing. Finally, the contents body contains the information to be exchanged.

It is important that both contents header and contents body can together be encrypted.

downloaded by wizard.z@foxmail.com

Communication services 505

envelope
header

envelope
contents

contents
header

contents body

From steen@cs.vu.nl Fri Dec 9 11:32:51 1994
Return-Path: <steen@cs.vu.nl>
Received: from zephyr.cs.vu.nl by cp.tn.tudelft.nl (5.67a/HB-1.18)
 id AA29642; Fri, 9 Dec 94 11:32:50 +0100
Received: from barkas.cs.vu.nl by zephyr.cs.vu.nl
 id aa21229; 9 Dec 94 11:32 MET
Date: Fri, 9 Dec 94 11:32:22 MET

From: Maarten van Steen <steen@cs.vu.nl>
To: henk@cp.tn.tudelft.nl
Subject: illustration
Message-Id: <9412091132.aa01428@barkas.cs.vu.nl>
Status: R

This is a message from Amsterdam to Delft

Figure 10.10 An example of the structure of an envelope sent via electronic mail.

This is relevant, because often we do not want other people to know the nature and con-
tents of an information exchange. In normal hand-delivered mail systems this is usually
covered by law, stating that the postal service is to keep this secret (privacy of letters).

Organization of a message handling system

Message handling systems are generally organized as follows. The core of such a dis-
tributed application is formed by a collection of message transfer agents, of which there
is at least one per site participating in message handling. A message transfer agent is re-
sponsible for handling all incoming and outgoing messages, and as such, acts as both a
client and a server.

When a message is to be sent, the transfer agent, in its role as client, sets up a connec-
tion across the transfer layer with the transfer agent located at the remote site where the
message is to be delivered. After establishing this, it places the message in an envelope
as described above. This scheme is shown in Figure 10.11. Likewise, whenever a mes-
sage arrives across a previously established connection, the transfer agent, in its role as
server, unwraps the envelope and delivers the message to the appropriate receiver. The
connection between the two transfer agents is closed after mail transfer has taken place.

This scheme implies that some work has to be done in order to get a message from a
sender to its local message transfer agent, and vice versa, delivering the message from
the transfer agent to the actual receiver. To this end, each user has its own user agent.
At the sender’s end, a user agent is responsible for providing support to let the sender
compose a message, after which it stores the message so that it can be picked up by the
local transfer agent. At the receiver’s end, we see a similar scheme. What the transfer
agent actually does is store an incoming message into a mailbox, of which there is one
per user. Physically, a mailbox is a special file in which messages are appended when
they arrive. The receiver’s user agent occasionally inspects the mailbox, and if a new
message has arrived, notifies the user who can then read its contents.

downloaded by wizard.z@foxmail.com

506 Towards communication architectures

message
transfer
agent

message
transfer
agent

user
agent

message
transfer
agent

user
agent

user
agent

mail that is
to be sent

received
mail

Figure 10.11 The general organization of a message handling system.

� A simple mail transfer protocol

The above description of how a mail handling system works is, of course, rather crude. In
reality, mail systems can be complex. There are currently two major standards. The first is
the X�400 standard, which comes from the OSI world. It is currently used in a large number
of commercial applications. The second standard is SMTP (Simple Mail Transfer Protocol),
which is heavily used in the TCP/IP world and is the de-facto standard on the Internet. As
this latter protocol is by far the simplest of the two, we consider it here as an illustration of
how electronic mail may work in practice.

Almost all message information in SMTP is simply provided as ASCII text. In addition, there
are only a few commands available that message transfer agents use to exchange mail. How-
ever, in order to distinguish the actual message contents from e.g. envelope headers and mes-
sage headers, SMTP uses the concept of reserved words, as in an ordinary programming lan-
guage. Reserved words are followed by a text string, with a semicolon separating the two.

For example, in order to identify both the sender and receiver of a message, SMTP uses the
reserved words From and To. Likewise, it also uses the reserved words Date and Subject

downloaded by wizard.z@foxmail.com

Communication services 507

Date: Fri, 9 Dec 94 11:32:22 MET

From: Maarten van Steen �steen@cs.vu.nl�

To: henk@cp.tn.tudelft.nl

Subject: illustration

Message-Id: �9412091132.aa01428@barkas.cs.vu.nl�

Status: R

This is a message from Amsterdam to Delft

Figure 10.12 An example of the message from Figure 10.10 in SMTP format.

with obvious meaning. This is illustrated by the example message from Figure 10.10, whose
contents are shown again in Figure 10.12 where keywords appear in bold.

The first text string after the reserved word Date gives the date and time the message was
sent. Note the time reference “MET” indicating that the time is measured according to Mid
European Time. The second and third text strings provide the addresses of sender and re-
ceiver of the message, respectively. Besides the Subject identifier, also other optional iden-
tifiers and associated text strings can be added to a message. For example, it is possible to
attach a list of persons to which the message should be copied.

Now, as you might have concluded from our discussion above, there are many types of user
agents. And in fact, their functionality is highly independent of whatever mail protocol that
is used. The only restriction is that they pass mail to the transfer agent in such a way that
it adheres to, in our case, SMTP, and likewise, can pick up messages in SMTP format as ap-
pended to the mailbox by a transfer agent. For this reason, it makes little sense to illustrate
SMTP by means of a transcript showing how a user agent works.

Let’s concentrate on what the message transfer agent does when it has to send mail to, for
example, henk@cp.tn.tudelft.nl. Look at Figure 10.13(a) which shows part of a transcript pro-
viding information on the actions taken by a transfer agent at our site in Amsterdam. First,
it expects that the receiver named henk has a mailbox at site cp.tn.tudelft.nl. Now it needs
to find a connection with a computer at that site that can handle incoming mail. There are
apparently two options:

� A host named orion.cp.tn.tudelft.nl with IP address 192�31�126�53

� A host named ph.tn.tudelft.nl with IP address 130�161�189�1

The transfer agent chooses to contact the transfer agent at the first computer via address
192�31�126�53, succeeds in doing so, and delivers the message. At that point, the connection
is closed again and it is up to the transfer agent at the receiver’s side to deliver the message.

What happens at the receiver’s side is shown in Figure 10.13(b) which shows the complete
message, including the envelope as received by user henk in Delft. The easiest way to trace
the delivery of the message is starting from the bottom up. Apparently the message that was
sent was

downloaded by wizard.z@foxmail.com

508 Towards communication architectures

Trying cp.tn.tudelft.nl
henk@cp.tn.tudelft.nl: cp.tn.tudelft.nl matched by inet_hosts:

routed henk@cp.tn.tudelft.nl --> henk@cp.tn.tudelft.nl at cp.tn.tudelft.nl
transport hint mx 10 orion.cp.tn.tudelft.nl

address hint orion.cp.tn.tudelft.nl 192.31.126.53
transport hint mx 20 ph.tn.tudelft.nl

address hint ph.tn.tudelft.nl 130.161.189.1
transport smtp uses driver tcpsmtp
lock retry/smtp/orion.cp.tn.tudelft.nl
lock succeeded (will defer failure) retry/smtp/orion.cp.tn.tudelft.nl
transport smtp: connect to host orion.cp.tn.tudelft.nl [192.31.126.53]/smtp

...connected
unlock (success) retry/smtp/orion.cp.tn.tudelft.nl

(a)

From steen@cs.vu.nl Fri Dec 9 11:32:51 1994
Return-Path: <steen@cs.vu.nl>
Received: from zephyr.cs.vu.nl by cp.tn.tudelft (5.67a/HB-1.18)

id AA29642; Fri, 9 Dec 94 11:32:50 +0100
Received: from barkas.cs.vu.nl by zephyr.cs.vu.nl id aa21249; 9 Dec 94 11:32 MET
Date: Fri, 9 Dec 94 11:32:22 MET
From: Maarten van Steen <steen@cs.vu.nl>
To: henk@cp.tn.tudelft.nl
Subject: illustration
Message-Id: <9412091132.aa01428@barkas.cs.vu.nl>
Status: R

This is a message from Amsterdam to Delft

(b)

Figure 10.13 The communication two message transfer agents delivering a message from
steen@cs.vu.nl to henk@cp.tn.tudelft.nl.

“This is a message from Amsterdam to Delft”

having subject “illustration”. The message came from a user named “Maarten van Steen”
known to the sending site as steen@cs.vu.nl. The message was submitted to the transfer agent
on a host named barkas.cs.vu.nl, and subsequently forwarded by that agent to the central mes-
sage transfer agent at host zephyr.cs.vu.nl. Both these transfer agents are located in Ams-
terdam. About 30 seconds later, the latter transfer agent established a connection with the
transfer agent in Delft on the host named cp.tn.tudelft.nl, but which we now know was actually
on host orion.cp.tn.tudelft.nl. The message is deposited in the mailbox of henk@cp.tn.tudelft.nl

about one second later.

A final note before we finish our discussion on mail handling systems. It would be rather
unfortunate if SMTP and X�400 users could not communicate with each other. Hence, to be
able to exchange mail between SMTP-based mail systems and X�400 mail systems, so-called
mail gateways are used. We shall not go into any details here on how these gateways work,
but you can imagine that their main task is converting messages between both systems and
ensuring delivery of mail despite different systems being used.

downloaded by wizard.z@foxmail.com

Communication services 509

10.3.4 Name handling services

At this point, it is time we started saying something naming in distributed systems. At
first, this may seem as a rather strange topic in the light of our discussion on communica-
tion services. For indeed, what does naming have to do with communication? Without
going into too many details, picture the way we would use telephones without having
any telephone directories. It would indeed become much more difficult to find out how
we could reach other users.

In computers, normally, the operating system we are working with provides all kinds
of naming services for resources. For instance, each process has a name or number which
can be used to identify that process when needed. Likewise, other resources such as print-
ers and users of the system also have identifiers. If we step outside the local operating
system environment, we are suddenly confronted with a resource identification problem.
This is caused by the simple fact that identifiers for local resources are never made avail-
able to the outside world. Therefore, in order to be able to communicate among different
systems, we need a global naming convention for resources. Let’s look in more detail at
the problems encountered.

Global process identification

On our local system we would use a local process name (or number) to communicate
with that process. If that process is running on another machine, a first thought could be
to add a machine identifier to the process name. This machine identifier is then used to
locate where the process is actually running.

Let’s illustrate this by means of an example. Suppose that we wish to construct a file
system similar to the one discussed in Chapter 5, where a single file server is responsible
for carrying out file operations on behalf of a client process. We assume that the file server
itself can be identified as a process called FILE SERVER, whereas the machine (or site as
we shall call it) where it is located is called SERVER SITE. A complete identification that
would allow us to address the file server could then take the following form:4

FILE SERVER ADDRESS :
record

site : INTEGER := SERVER SITE;
server : INTEGER := FILE SERVER;

end record ;

and a client would generally communicate with the file server as follows:

DFS.SEND(FILE SERVER ADDRESS, requested file operation);
DFS.RECEIVE(FILE SERVER ADDRESS, reply from file server);

where DFS stands for a message-based communication package supporting a Distributed
File System, derived from the general package for message passing outlined in Listing 6.6
on page 282:

4Note that such a declaration is not permitted in BASAL or Ada.

downloaded by wizard.z@foxmail.com

510 Towards communication architectures

package DFS is new MESSAGE PASSING(MESSAGE � some message type);

In general, this looks like a sensible solution to the global identification problem. How-
ever, we have made a “hard” connection between the system sending the message and
the system receiving it. To illustrate, suppose that the system on which we have imple-
mented our distributed file system changes, thereby making it necessary to place the file
server on a different machine, and thus having to change the part of its address identify-
ing the actual site. In that case, we would be forced to change all our client programs,
because they would now each refer to the wrong address for the file server.

If we had anticipated such changes, we could have followed a more defensive way of
programming the clients. One solution would be to have the client programs first find
out where the file server is located by checking all possible sites. This solution can be
outlined as follows:

found := FALSE;
site := some initial machine, or site;
while not found loop

DFS.SEND(site, request to see if FILE SERVER is there);
DFS.RECEIVE(site, answer from site);
if file server is on the questioned site then

FILE SERVER ADDRESS.site := site;
FILE SERVER ADDRESS.server := FILE SERVER;
found := TRUE;

else
site := next site to check ;

end if ;
end loop ;
DFS.SEND(FILE SERVER ADDRESS, requested file operation);
DFS.RECEIVE(FILE SERVER ADDRESS, reply from file server);

Of course, finding the location of the file server need not be done separately for every
file operation request, but only from time to time, based on how often we expect the file
server’s address to change. Note that the above solution employs a form of broadcasting
called multicasting. Now if the number of sites that is broadcast to is limited in size, this
would provide an elegant solution. The file server can be freely migrated to any machine
and the clients will still be capable of contacting it.

However, distributed systems might not be so restricted as in our example. For exam-
ple, if we are to address all companies in the country for an inquiry, it is immediately
apparent that broadcasting is not always a viable solution. An alternative solution is the
use of a separate name server. This is a server containing a name-to-address resolu-
tion mechanism. It means that a client first asks the name server where a certain service
can be found in the network. The name server replies by sending back the appropriate
location of that service. All that is now required is that the name server (hardly) ever
changes its address. To illustrate, suppose that the name server is located at a fixed ad-
dress NAME SERVER ADDRESS. In that case, client programs could issue a file operation
request as follows:

downloaded by wizard.z@foxmail.com

Communication services 511

1
2 3

1

2

3

Get address file server

Address of file server

Here’s my request

client

file
server

name
server

other
process

file
server

client

(a)

1
2

3

Are you the file server?

I am the file server

Here’s my request

1

2

3

file
server

other
process

client

(b)

(c)

Figure 10.14 Three ways of identifying processes: (a) using direct naming, (b) broadcasting a
request for identification, and (c) using a name server.

DFS.SEND(NAME SERVER ADDRESS, FILE SERVER);
DFS.RECEIVE(NAME SERVER ADDRESS, FILE SERVER ADDRESS);
DFS.SEND(FILE SERVER ADDRESS, requested file operation);
DFS.RECEIVE(FILE SERVER ADDRESS, reply from file server);

When servers are migrated, only the information in the table as maintained by the name
server has to be updated. We will return to this issue when we discuss more accurately
the distinction between names and addresses. These three forms of identifying processes
are illustrated in Figure 10.14.

Global naming systems

In an open system we also need a common way of locating resources. Most naming
schemes for locating resources are based on a tree-like hierarchy, where, upon descend-
ing the tree, the set of possible destinations decreases rapidly. Such a scheme is often
adopted when assigning global names to resources. The problem that is encountered,
however, is that we have to decide on the actual subdivision of the naming tree.

To illustrate, assume that for our electronic communication services we follow the tra-
ditional ordering as used in the postal system. In that case, in order to locate a service it

downloaded by wizard.z@foxmail.com

512 Towards communication architectures

seems reasonable first to locate the country, followed by identifying the kind of organi-
zation, and then the actual organization which provides the service. This can be further
subdivided by also considering perhaps the department, and perhaps even a group. This
approach leads to the following pathname:

country� org. domain� organization� department� � � � etc.

But there are some problems with this scheme, especially when describing resources
within a wide area distributed application. To illustrate, suppose we had a worldwide
operating company called trader with its main office in The Netherlands. It would then
seem reasonable to assign its sales department a pathname such as nl.com.trader.sales. But
in that case, we are ignoring the fact that this company operates worldwide. And in elec-
tronic services, the fact that the main office is located in The Netherlands is hardly in-
teresting, except when it is necessary to reach exactly the sales department of the main
office. And indeed, advocates of viewing the world as a global village with worldwide
organizations would like to have a different structure: first comes the organization, then
the country, organizational unit, etc. A typical pathname structure would then be

org. domain� organization� country� department� � � � etc.

so that the actual pathname for our example sales department becomes com.trader.nl.sales.
Another problem is the naming authority. In order to avoid confusion, an authority

should be established which issues names. In the postal system these authorities are orga-
nized nationwide. They establish things like ZIP codes, etc. The consequence, however,
is a non-uniform naming structure between countries. In the modern age of electronics,
this is clearly not what we want. Here a uniform structure of names is needed for elec-
tronic handling of messages. The syntax of a name is established by a worldwide author-
ity. Such an authority is, for instance, the ISO. Also the top-level names are determined
by such an authority. However, it would not be very efficient if more local names are
also to be established by a central authority. The usual approach therefore is to follow
the naming hierarchy in supplying names. So within a country, a local authority issues
the organization names, the organization hands out the organizational unit names, etc. In
this way, a flexible and decentralized naming authority is established, while keeping a
worldwide uniform naming syntax.

� Two examples

There are two main naming schemes currently in use: one is based on the international X�500
standard and one for the Internet. The Internet uses the so-called Domain Name System
(DNS) which we shall briefly discuss here. OSI’s X�500 is discussed hereafter.

The Domain Naming System. Internet’s DNS employs a hierarchical naming scheme.
The top-level domains are fixed and include domains for commercial organizations (the so-
called com domain), educational organizations (the edu domain), and country domains (us

downloaded by wizard.z@foxmail.com

Communication services 513

domain, nl domain, etc.). Hence it mixes the above-mentioned different ways of organizing
the tree hierarchy.

Each domain has a domain authority, which issues the names in the next level of subdomains.
Names are specified by separating domains and subdomains by points. An example of such
a name is cs.vu.nl, which denotes the Department of Computer Science (cs) of the Vrije Uni-
versiteit (vu) in the Netherlands (nl). The naming structure also indicates where naming au-
thorities are located. For example, the system administrators at the computer science de-
partment of the Vrije Universiteit have the responsibility of naming the department’s ma-
chines. One such machine is named barkas, which we have encountered several times. In-
deed, its full name is barkas.cs.vu.nl. Similarly, the system administrators in the Computa-
tional Physics group (cp) in the Department of Applied Physics5 (tn) at the Technical Uni-
versity in Delft (tudelft) have called one of their machines hydra, which we have used by its
full name hydra.cp.tn.tudelft.nl in our examples as well.

OSI’s X.500 directory service. The X.500 naming system is slightly different. It is object-
based, meaning that all names at a node in the tree belong to the same class. Each object
class has a set of attributes, each attribute having a type and one or more values. The type
of the attribute defines the type of the object, and the value its name. The idea behind this
is rather practical. Let’s give some examples to clarify matters.

Suppose we wish to denote our machine barkas located at the computer science department
of the Vrije Universiteit in The Netherlands. What we have to realize is that we are dealing
with several different kinds of objects: we have a country (The Netherlands), there is ap-
parently a specific group of organizations (the universities), as well as organizational units
within that group (the computer science department at the Vrije Universiteit), and host com-
puters (the one denoted as barkas). This leads to a number of classes with the following
possible attributes, types, and values:6

country attribute type value

country code (C) 2-char. string nl

org. group org. (O) 4-char. string univ

org. unit unit (OU) arbitrary char. string vu

dept (DEPT) arbitrary char. string cs

host comp. host (HOST) arbitrary char. string barkas

Using the convention to separate classes by a slash, and attributes by a comma, the full name
for our host computer would then become /C = nl /O = univ /OU = vu, DEPT = cs /HOST = barkas.

From names to addresses

So far, we have been concerned only with naming conventions. But, of course, names
make little sense if they are not associated with addresses. An address identifies the lo-
cation where a resource can be found. The distinction between a name and an address

5Applied physics is a translation of the Dutch “Technische Natuurkunde”.
6It should be noted that we have simplified matter for the sake of illustration.

downloaded by wizard.z@foxmail.com

514 Towards communication architectures

is important. A name is something that can always be assigned to a resource, no matter
where it is located (well, at least to a certain extent). An address is used by the network
protocols to set up a complete path between a source and destination so that a connection
between the two can be made.

� To give an example, in our discussion on the use of the TELNET facility we showed how we
opened a connection to the host named hydra.cp.tn.tudelft.nl. A fragment from that session,
shown in Figure 10.7 was:

telnet> open hydra.cp.tn.tudelft.nl open connection to other site
Trying 192.31.126.72... TELNET seeks connection to other site

What we see here is that our host can be found at IP address 192�31�126�72. And this is pre-
cisely the information we need to set up a connection. In other words, the Internet routers
are not at all concerned about how resources are named. The only thing they can do is trans-
fer packets from one location to another. Apparently, what happened was that our host name
had been resolved to a host address.

Names are used by human beings only because it is convenient. Names are easy to
remember as they generally reflect the way we think about how our system is organized.
Computer networks, however, cannot use names. What they need in the end are ad-
dresses, as this is the only way by which they route packets from one location to another.
Consequently, what we need is a mechanism for resolving names to addresses. And it is
here where name servers fall into place.

A name server is a process that (1) maintains a table which associates names with ad-
dresses, and (2) can be queried by other processes to find the address of a named re-
source. There is only one problem. As we are dealing with a global naming scheme,
it would seem that we would have to maintain a single name server which contains the
complete mapping between all names and addresses. Clearly, this is impossible. The
generally adopted solution is to construct a hierarchy of name servers. For example, ac-
cessing the host named hydra.cp.tn.tudelft.nl requires that we contact the name server at
site cp.tn.tudelft.nl. If we do not know the address of that server, we could also try to see
if there is a name server named tn.tudelft.nl, etc. For the sake of illustration, assume that
such a name server exists and that we know its address. The best we can expect is that
this name server knows only the locations for the name servers having names ending with
tn.tudelft.nl, such as cp.tn.tudelft.nl. Using the returned location enables us to contact the
name server we wanted (cp.tn.tudelft.nl), which, in turn, can return the address of the host
computer hydra.cp.tn.tudelft.nl.

10.4 The World Wide Web

At this point you should have a fairly good idea of the way that wide area distributed
applications can be built using the facilities provided by our communication layer. At this
point, it is worth considering a popular application which employs many of the services
we have discussed in this and the preceding chapters. In this section we shall pay some
attention to the so-called World Wide Web, also known as The Web, WWW or W3.

downloaded by wizard.z@foxmail.com

The World Wide Web 515

10.4.1 The Web’s basic functionality

The Web is becoming an extremely popular information system that, as its name sug-
gests, is distributed across the entire world. Its main functionality is that of providing
documents to users through a technique called hypertext. Let’s first explain what a hy-
pertext document is.

Most documents, like this book, are structured in such a way that you start reading
at the beginning and continue until the end, perhaps occasionally skipping a few pages,
paragraphs, or perhaps an entire chapter. In other words, most documents are structured
in a strict linear fashion. It is precisely with respect to this strict linear ordering that hy-
pertext documents distinguish themselves from ordinary documents.

A hypertext document is a collection of relatively small documents which have been
made electronically available. Each document contains a number of keywords. For ex-
ample, a chapter heading in a table of contents is an excellent candidate for being a key-
word. Other examples of typical keywords are citations, references within the document
to tables or figures, or to other chapters. The point is that each keyword is uniquely linked
to another document through what is known as a hyperlink. By selecting a keyword the
underlying hypertext system automatically fetches the document to which the keyword
is linked, and displays it to the user.

Anticipating our further discussion, let’s look at a simple example. Figure 10.15(a)
shows an electronically available one-page document providing some information on one
of the authors. That document contains six keywords, designated by means of underlin-
ing. If we select the keyword “Address info” our hypertext system automatically fetches
another one-page document containing information on how the author can be reached,
shown in Figure 10.15(b). Again, this document contains a number of keywords. By se-
lecting the keyword “User’s Home Page” the hypertext system will retrieve the page of
Figure 10.15(a).

The World Wide Web is full of these documents. In fact, the reason it is called a web is
that large collections of documents, spread all over the world, are directly, but of course
most often indirectly, linked together in the way we have just illustrated. Moreover, it
is sometimes hard to work out the precise structure of how these documents are linked
together. Fortunately, there is also no reason to know about this structure.

10.4.2 The underlying technology

Now, let’s see what’s actually under the hood. In the following, we concentrate on two
issues: what hyperlinks in the Web look like, and what happens when a link is activated.

Universal Resource Locators

A key component in the Web is formed by its hyperlinks. By activating a hyperlink a doc-
ument is retrieved and displayed on the screen. The term documents is to be taken here
in its broadest sense, including menus, images, but also the kind of pages we have shown
above. In terms of the Web, anything that can be displayed on the screen is referred to

downloaded by wizard.z@foxmail.com

516 Towards communication architectures

(a) (b)

Figure 10.15 An example of part of a hypertext document.

as a resource, and a hyperlink is to contain information on how that resource can be re-
trieved, and where it can be retrieved. Indeed, hyperlinks contain all the information on
the type of communication service that is required for retrieval of a resource. As such,
the Web itself can be viewed as an application that is built “on top” of the communication
layer introduced in this chapter.

In order to select precisely how and where a resource is to be retrieved, the Web makes
use of so-called universal resource locators, also known as URLs. A URL takes the fol-
lowing form:

communication service: // host name / path name / resource name

Each URL is divided into three parts: the first part identifies the required communication
service by specifying its protocol. For example, the two most often used services are
FTP and HTTP. The latter stands for HyperText Transfer Protocol, which, as its name
suggests, is a protocol much like FTP but which has been tailored to transfer hypertext
documents across the network. Hypertext documents in this case, are assumed to have
been written making use the HyperText Markup Language (HTML). In principle, almost
any communication service can be specified, although most require some adaptation in
order to fit into the framework of the Web. The second part of a URL specification deals
with naming the host at which the required resource resides. Being based on the Internet,
host names are given in the usual way, for example as barkas.cs.vu.nl. The third and last
part consists of a pathname within the file system at the indicated host, plus the actual

downloaded by wizard.z@foxmail.com

Discussion and further reading 517

file name where the resource is assumed to be stored. Two examples of complete URL

specifications are:

� ftp://ftp.cs.vu.nl/pub/steen/cno/answers.ps.gz

� http://www.cs.vu.nl/˜steen/cno.html

The first URL specifies a hyperlink to a resource (file) named answers.ps.gz, which can be
found via FTP on the host ftp.cs.vu.nl, in the directory pub/steen/cno. If you access this file
via the Web, you will get a document containing the answers to the book’s exercises. The
second URL specifies a hyperlink via HTTP to a one-page hypertext document containing
general information on this book. The document itself is named cno.html; it is stored in
the directory ˜steen/, and is accessible via host www.cs.vu.nl.

Organization of the Web

You will by now presumably have a fairly good idea how the Web is organized. It is eas-
iest to think about its organization in terms of clients requesting resources from servers.
A client program is executed at each host that wants to retrieve a hypertext document.
Using a URL specification for links, the client will then seek contact with a server at the
indicated host through the selected communication protocol. For example, activating the
hyperlink with URL

ftp://ftp.cs.vu.nl/pub/steen/cno/answers.ps.gz

means that the Web client sets up an FTP session with the host ftp.cs.vu.nl; transfers the
indicated file, then closes the session again. The server side in this case consists of only
an FTP server. And that’s about all there is to it.

The Web client plays a similar role as that of the message transfer agent in the case of
message handling services: it acts as a central point where all communication on behalf
of a single user goes through. In addition, in order to access the Web, you will also need
an information browser which acts as an interface between the Web client and the user.
Such a browser is comparable to the user agent in message handling systems.

10.5 Discussion and further reading

In this last chapter we have made the step from a local and relatively closed environment
of computer systems using a single language and operating system to heterogeneous sys-
tems communicating with each other through networks, possibly on a worldwide scale.
We have introduced the concept of open systems to make this possible. By simplifying
the seven-layer OSI model to a four-layer model, a natural division between application-
independent and application-oriented communication layers could be derived.

downloaded by wizard.z@foxmail.com

518 Towards communication architectures

10.5.1 On distributed applications

In order to say anything sensible about communication architectures as used by applica-
tions, we started with giving a characterization of distributed applications. We identified
four requirements that are to be met in order to call an application distributed: (1) pro-
cesses should provide services to each other, which in turn are (2) accessible and which
are used. In order to make use of services, (3) a communication protocol should have
been agreed upon. Finally, (4) service providers should account for the fact that each
request for service will eventually be honored, in order to prevent processes being inad-
vertently prohibited in taking part in the system.

This description of distributed applications takes hardly any hardware into account.
In particular, our view of distributed applications can be seen entirely independent of
whether the application is implemented on top of a computer network. In practice, of
course, distributed applications will refer to geographical distribution of data and com-
putations. And in that case, it makes sense only when we take a computer network into
account. However, such a network is to be seen as an implementation aspect, and ideally,
it should be hidden entirely from a user. In other words, to a user it should be completely
transparent whether the system he or she is working on is built on top of a computer net-
work or is just a single computer.

There are very few general textbooks on distributed systems and applications, and those
cover the subject in the context of distributed operating systems. A good starting point
is Tanenbaum’s (1995) treatment of the subject. An excellent treatise of all the relevant
issues is provided by Coulouris et al. (1994). Although discussing the material at a more
conceptual level, Goscinski (1991) and Silberschatz and Galvin (1994) may also be of in-
terest. Brief overviews of what can be expected from a distributed application are given
in Schroeder (1993) and Stankovic (1994). The first steps that were undertaken in order
to make the transition from operating systems to distributed applications, generally fo-
cused on file systems. Overviews on distributed file systems can be found in Levy and
Silberschatz (1990) and Satyanarayanan (1993). Scaling file systems for very large dis-
tributed systems is discussed in Neuman (1994).

10.5.2 The communication layer

Communication services

Up to the OSI transport layer, network functions are application-independent and merely
provide reliable connections between two end points in a network. In other words, the
best you can get from transfer functions is a point-to-point connection that allows you
reliably to send message from one end to the other (we are not taking multicasting into
account here). This is indeed the functionality as provided by the four lower layers of
the OSI reference model. We have simplified this model by introducing only two layers:
one dealing with physical connections, and one (admittedly large) layer dealing with pro-
ducing reliable connections. Which approach is taken is really not that important; what
counts is that you should realize that there are numerous ways of implementing transfer

downloaded by wizard.z@foxmail.com

Discussion and further reading 519

functionalities. And, as we have seen in the preceding chapters, numerous implementa-
tions indeed co-exist.

It makes sense to distinguish a separate layer on top of the transfer layer which we have
denoted as the communication layer. This layer roughly covers OSI’s three higher layers
(i.e. the session, presentation, and application layers) by providing several communica-
tion services that cannot be classified as universal (which they are indeed not), but also
not as application-specific. The services we have distinguished are, in fact, nothing more
than services which are normally provided by a local operating system. From a certain
perspective, we have made an attempt to raise the concept of an operating system to that
of a system that spans the world. That we have only partially succeeded in doing this is
already illustrated by the level of transparency offered by the communication services.
For example, FTP has little to do with file management. It allows you only to transfer files
from one site to another, an operation which is normally done through a copy operator that
hides any details of actual locations.

Additional communication services

We have deliberately omitted the presentation of three important services that are gener-
ally provided at the level of the communication layer:

� Remote operations

� Time handling services

� Security.

Let’s look briefly at each of these topics.

Remote operations. This service has, to a certain extent, already been discussed in
Section 6.4.2 where we described the principal working of the remote procedure calling
(RPC) mechanism. As a communication service, RPC is a convenient way to build a dis-
tributed application in terms of clients and servers. Indeed, its implementation is directly
dependent on the services provided by the transfer layer. As we have already explained
the principle underlying the RPC mechanism, and because its actual implementation de-
tails go beyond the scope of this book, we have not treated the subject any further in this
chapter. For more information, the interested reader should consult the literature men-
tioned at the end of Chapter 6.

Time handling services. As it name suggests, a time handling service must give us the
ability to determine the right time. Why do we need this? Well, as with many things, it
is sometimes important to know exactly when something happened. For example, when
communicating via electronic mail, it may be important for a receiver to know when an
incoming message was actually sent. And if the original sender is someone on the other
side of the world, an indication of the local time is not always going to be helpful. In that
case, it may be possible to receive a message at 11:00 a.m. that was sent at 5:00 p.m. that
same day.

downloaded by wizard.z@foxmail.com

520 Towards communication architectures

A worldwide distributed system should take these differences into account. Unfortu-
nately, solutions are not always found that easily, especially if it is necessary to let all
components in the system have the same idea of what the time actually is. The problems
stem from the fact that we cannot build a global view of time by using merely local in-
formation. In particular, any mechanism that makes use only of local clocks will sooner
or later be inadequate, as these local clocks will start running out of sync in due course.
Global synchronization is what is needed here, and how this can be obtained in a dis-
tributed manner lies outside the scope of this book. A good starting point for a further
treatise on these matters is Tanenbaum (1995). Also, you will find Lamport’s (1978) sem-
inal paper definitely worth reading if you are interested in what is referred to as logical
time. Keeping time on the Internet is described in Mills (1992). Without doubt this is
an informative document on how global time in a wide area distributed system can be
handled.

Security. An extremely important topic that we have not discussed in this book is that
of security. What do we mean by this? Security has everything to do with protecting your
documents against malicious persons. It covers topics such as encrypting documents so
that outsiders cannot make any sense of their contents, authentication of communicating
parties (“are you really who you say you are?”), and things such as digital signatures. The
subject is very large and can fill an entire book. We have made the decision to not say
anything about security, mainly because its technicalities are of a different nature from
any subject we have treated so far.

There is a wealth of books on security. The material is treated in a balanced and struc-
tured manner in Davies and Price (1989) and Kaufman et al. (1995). Also, Stallings
(1995) may be of interest. On authentication, Lampson et al. (1992) will show to be
good reading material.

The ideal of a common working environment across computer platforms and networks is
far from being realized. Nevertheless, some environments are presently in development
which appear to be quite promising. One is DCE (Distributed Computing Environment),
which defines a number of communication services, similar to the ones outlined in this
chapter, on which distributed applications can be built. More on DCE can be found in
Rosenberry et al. (1992).

10.5.3 Wide area distributed applications

Having wide area computer networks is one thing; but having applications that actually
exploit this technology in a manner that makes sense to users is a completely different
story. Obviously, there is one domain in which these networks are useful: simple com-
munication between people. But what does the term “simple” actually mean here? It is
not hard to imagine the kind of systems that lie ahead of us. Apart from the use of elec-
tronic mail which has seen very large growth in the last decade, it can be expected that
promises are going to be met on issues such as teleconferencing. In particular, it can be

downloaded by wizard.z@foxmail.com

Exercises 521

anticipated that within the next decade video-conferencing which requires the develop-
ment of all kinds of multimedia techniques, will come into widespread use. Integrating
voice, data, and graphics still has a long way to go, but with the advent of high-speed gi-
gabit networks, applications requiring such an integration will indeed come into practical
use.

Another area where much research is currently being conducted is that of wide area
information services. We have briefly touched upon this subject by illustrating the al-
ready very popular World Wide Web. But the Web is just a means to access information.
The real problem in this area lies in finding the information you want. This problem do-
main is generally referred to as resource discovery. If you want to know more about that
subject, Bowman et al. (1994) is a good starting point. More on particular information
browsers can be found in Obraczka et al. (1993), whereas Berners-Lee et al. (1994) and
Vetter et al. (1994) provide good general introductions to the Web.

Exercises

1. Explain how a connection may be broken, as mentioned in our discussion of the
session layer.

2. Why do programming languages not require the same representation for integers
and reals?

3. Suppose we have two processes exchanging floating point numbers in an interna-
tionally agreed format. Do we have to worry about specifying a concrete syntax?

4. *Devise an extension to BASAL that allows for the specification of representing
values of integers to either one’s or two’s complement notation.

5. Some public FTP sites contain large amounts of files that can be freely retrieved for
personal use. In order to find the files you need, these sites often have an automatic
inquiry service that accepts inquiries sent as electronic mail. When sending a mes-
sage, you will automatically receive an answer, also by electronic mail, without any
human intervention. Explain the principal working of such inquiry services.

6. The FTP file transfer protocol requires both a “permanent” and a temporary con-
nection (see Figure 10.8). Does this imply that we need a (virtual) circuit type of
connection between both systems to realize the above logical connections?

7. Virtual terminal protocols are shown to be relatively straightforward for ASCI-based
scroll terminals. How would a modern window-based virtual terminal protocol be
realized?

8. What would be the effect of requesting a virtual terminal on the same terminal you
are presently logged into? And what about requesting a file transfer from your
present machine?

9. Explain what happens when you send a copy of an electronic message to yourself.

downloaded by wizard.z@foxmail.com

522 Towards communication architectures

10. Mistakes when identifying the destination of an electronic message can easily be
made. Explain what happens when (1) the destination is an unknown user at the
other site, and (2) the destination site is not known to the mailing system. In both
cases, explain exactly where message delivery fails.

11. *Suppose an organization wants its network to be part of the Internet. To that end,
they request a name that can be subsequently used to contact them. How can your
computer succeed in locating that organization’s network, without having previ-
ously heard of them?

12. Explain the difference between a name and a (network) address, and why maintain-
ing such a distinction makes sense. To what extent are the names used for identi-
fying machines, such as barkas.cs.vu.nl location independent?

13. The Universal Resource Locators (URLs) are not pure resource identifiers. Why
not?

downloaded by wizard.z@foxmail.com

References

Abeysundara, B. and Kamal, A. “High-Speed Local Area Networks and Their Performance: A
Survey.” ACM Computing Surveys, 23(2):221–264, June 1991.

Aho, A. and Sethi, R. “How Hard is Compiler Code Generation?” In Goos, G. and Hartmanis, J.
(eds.), Compiler Construction: An Advanced Course, volume 52 of Lecture Notes in Computer
Science, pp. 1–15. Springer-Verlag, Berlin, 1977.

Aho, A., Sethi, R., and Ullman, J. Compilers: Principles, Techniques and Tools. Addison-Wesley,
Reading, Mass., 1986.

Andrews, G. Concurrent Programming: Principles and Practice. Benjamin/Cummings, Menlo
Park, Calif., 1991a.

Andrews, G. “Paradigms for Process Interaction in Distributed Programs.” ACM Computing Sur-
veys, 23(1):49–90, March 1991b.

Andrews, G. and Schneider, F. “Concepts and Notations for Concurrent Programming.” ACM
Computing Surveys, 15(1):3–43, March 1983.

Andrews, M. Principles of Firmware Engineering in Microprogram Control. Pitman, London,
1980.

ANSI. The Programming Language Ada Reference Manual, volume 155 of Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin, 1983.

Bach, M. The Design of the UNIX Operating System. Prentice-Hall, Englewood Cliffs, N.J., 1986.

Bacon, J. The Motorola MC68000: An Introduction to Processor, Memory, and Interfacing.
Prentice-Hall, Englewood Cliffs, N.J., 1986.

Bacon, J. Concurrent Systems, An Integrated Approach to Operating Systems, Database, and
Distributed Systems. Addison-Wesley, Reading, Mass., 1993.

Bal, H. and Grune, D. Programming Language Essentials. Addison-Wesley, Reading, Mass.,
1994.

Bal, H., Steiner, J., and Tanenbaum, A. “Programming Languages for Distributed Computing
Systems.” ACM Computing Surveys, 21(3):261–322, September 1989.

523

downloaded by wizard.z@foxmail.com

524 Towards communication architectures

Ballardie, A., Francis, P., and Cowcroft, J. “Core Based Trees: An Architecture for Scalable Inter-
Domain Multicast Routing.” In Proceedings ACM SIGCOMM ’93, pp. 85–95, San Francisco,
September 1993.

Ballardie, A. A New Approach to Multicast Communication in a Datagram Internetwork. Ph.D.
thesis, Department of Computer Science, University College London, May 1995.

Barnes, J. “An Overview of Ada.” Software – Practice and Experience, 10(11):851–887, Novem-
ber 1980.

Barnes, J. Programming in Ada, Plus an Overview of Ada 9X. Addison-Wesley, Reading, Mass.,
4th edition, 1994.

Barron, D. Pascal – The Language and its Implementation. John Wiley, New York, 1981.

Bell, P. and Jabour, K. “Review of Point-to-Point Routing Algorithms.” IEEE Communications
Magazine, 24(1):34–38, January 1986.

Ben-Ari, M. Principles of Concurrent and Distributed Programming. Prentice-Hall, Englewood
Cliffs, N.J., 1980.

Ben-Ari, M. Principles of Concurrent Programming. Prentice-Hall, Englewood Cliffs, N.J., 1982.

Berners-Lee, T., Cailliau, R., Nielson, H. F., and Secret, A. “The World-Wide Web.” Communi-
cations of the ACM, 37(8):76–82, August 1994.

Bertsekas, D. and Gallagher, R. Data Networks. Prentice-Hall, Englewood Cliffs, N.J., 2nd edi-
tion, 1992.

Beyda, W. Basic Data Communications, A Comprehensive Overview. Prentice-Hall, Englewood
Cliffs, N.J., 1989.

Birkhoff, G. and Bartee, T. Modern Applied Algebra. McGraw-Hill, New York, 1970.

Birman, K. “The Process Group Approach to Reliable Distributed Computing.” Communications
of the ACM, 36(12):36–53, December 1993.

Birman, K. and van Renesse, R. (eds.). Reliable Distributed Computing with the Isis Toolkit. IEEE
Computer Society Press, Los Alamitos, Calif., 1994.

Birrell, A. and Nelson, B. “Implementing Remote Procedure Calls.” ACM Transactions on Com-
puter Systems, 2(1):39–59, February 1984.

Blaauw, G. and Brooks, F. “The Structure of the System/360, part I – Outline of the Logical Struc-
ture.” IBM Systems Journal, 3(2), 1964.

Bloomer, J. Power Programming with RPC. O’Reilly & Associates, Sebastopol, Calif., 1992.

Booch, G. and Bryan, D. Software Engineering with Ada. Addison-Wesley, Reading, Mass., 3rd
edition, 1994.

Bowman, M., Danzig, P., Manber, U., and Schwartz, M. “Scalable Internet Resource Discovery:
Research Problems and Approaches.” Communications of the ACM, 37(8):98–107, August
1994.

Brinch Hansen, P. “The Nucleus of a Multiprogramming System.” Communications of the ACM,
13(4):238–241, April 1970.

Brinch Hansen, P. “The SOLO Operating System: A Concurrent Pascal Program.” Software –
Practice and Experience, 6(2):141–149, February 1976.

downloaded by wizard.z@foxmail.com

Exercises 525

Brinch Hansen, P. The Architecture of Concurrent Programs. Prentice-Hall, Englewood Cliffs,
N.J., 1977.

Chang, J. and Maxemchunk, N. “Reliable Broadcast Protocols.” ACM Transactions on Computer
Systems, 2(3):251–273, August 1984.

Chen, P., Lee, E., Gibson, G., Katz, R., and Patterson, D. “RAID: High-Performance, Reliable
Secondary Storage.” ACM Computing Surveys, 26(2):145–186, June 1994.

Christian, K. A Guide to Modula-2. Springer-Verlag, Berlin, 1986.

Clark, G. and Cain, J. Error-Correction Coding for Digital Communications. Plenum Press, New
York, 1981.

Clements, A. 68000 Family Assembly Language. PWS Publishing Company, Boston, Mass.,
1994.

Comer, D. Operating Systems Design: The XINU Approach. Prentice-Hall, Englewood Cliffs,
N.J., 1984.

Comer, D. Operating Systems Design: Internetworking with XINU. Prentice-Hall, Englewood
Cliffs, N.J., 1987.

Comer, D. Internetworking with TCP/IP, Volume I: Principles, Protocols, and Architecture. Pren-
tice Hall, Englewood Cliffs, N.J., 3rd edition, 1995.

Comer, D. The Internet Book. Prentice-Hall, Englewood Cliffs, N.J., 1995.

Comer, D. and Stevens, D. Internetworking with TCP/IP, Volume II: Design, Implementation and
Internals. Prentice Hall, Englewood Cliffs, N.J., 2nd edition, 1994.

Cooling, J. Software Design for Real-time Systems. Chapman & Hall, London, 1991.

Coulouris, G., Dollimore, J., and Kindberg, T. Distributed Systems, Concepts and Design.
Addison-Wesley, Wokingham, 2nd edition, 1994.

Crockner, D. “Evolving the System.” In Lynch, D. and Rose, M. (eds.), Internet System Handbook,
pp. 41–76. Addison-Wesley, Reading, Mass., 1993.

Davies, D. and Price, W. Security for Computer Networks. John Wiley, Chichester, 2nd edition,
1989.

Deering, S. and Cheriton, D. “Multicast Routing in Datagram Internetworks and Extended LANs.”
ACM Transactions on Computer Systems, 8(2):85–110, May 1990.

Deering, S., Estrin, D., Farinacci, D., Jacobson, V., Liu, C.-G., and Wei, L. “An Architecture for
Wide-Area Multicast Routing.” In Proceedings SIGCOMM ’94, pp. 126–135, London, August
1994. ACM.

Digital Equipment Corporation, Maynard, Mass. PDP-11 Processor Handbook, 1975.

Dijkstra, E. “A Note on Two Problems in Connection with Graphs.” Numerical Mathematics,
1:269–271, October 1959.

Dijkstra, E. “Cooperating Sequential Processes.” In F. Genuys (ed.), Programming Languages.
Academic Press, London, 1968.

Doeringer, W., Dykeman, D., Kaiserswerth, M., Meister, B., Rudin, H., and Williamson, R. “A
Survey of Light-Weight Transport Protocols for High-Speed Networks.” IEEE Transactions
on Communications, 38(11):2025–2039, November 1990.

downloaded by wizard.z@foxmail.com

526 Towards communication architectures

Fischer, C. and LeBlanc, R. Crafting a Compiler with C. Addison-Wesley, Reading, Mass., 1991.

Foster, I. Designing and Building Parallel Programs. Addison-Wesley, Reading, Mass., 1995.

Frank, A., Wittie, L., and Bernstein, A. “Multicast Communication on Network Computers.”
IEEE Software, 2(3):49–61, May 1985.

Garcia-Molina, H. and Salem, K. “Main Memory Database Systems: An Overview.” IEEE Trans-
actions on Knowledge and Data Engineering, 4(6):509–516, December 1992.

Garfinkel, S., Weise, D., and Strassmann, S. The UNIX-Haters Handbook. IDG Books, San Mateo,
Calif., 1994.

Garrod, S. and Borns, R. Digital Logic: Analysis, Application & Design. Saunders College Pub-
lishing, Philadelphia, 1991.

Ghezzi, C. and Jazayeri, M. Programming Language Concepts. John Wiley, New York, 2nd
edition, 1987.

Gifford, D., Needham, R., and Schreader, M. “The Cedar File System.” Communications of the
ACM, 31(3):288–298, March 1988.

Givone, D. Introduction to Switching Circuit Theory. McGraw-Hill, New York, 1970.

Goldberg, D. “What Every Computer Scientist Should Know About Floating-Point Arithmetic.”
ACM Computing Surveys, 23(1):5–48, March 1991.

Goodheart, B. and Cox, J. The Magic Garden Explained: The Internals of UNIX SVR4, An Open
Systems Design. Prentice-Hall, Englewood Cliffs, N.J., 1994.

Goscinski, A. Distributed Operating Systems, The Logical Design. Addison-Wesley, Sydney,
1991.

Goupille, P.-A. Introduction to Computer Hardware and Data Communications. Prentice-Hall,
Englewood Cliffs, N.J., 1993.

Graham, R. Principles of Systems Programming. John Wiley, New York, 1975.

Grosshans, D. File Systems: Design and Implementation. Prentice-Hall, Englewood Cliffs, N.J.,
1986.

Hadzilacos, V. and Toueg, S. “Fault-Tolerant Broadcasts and Related Problems.” In Mullender,
S. (ed.), Distributed Systems, pp. 97–145. Addison-Wesley, Wokingham, 2nd edition, 1993.

Halsall, F. Data Communications, Computer Networks, and Open Systems. Addison-Wesley,
Reading, Mass., 3rd edition, 1992.

Händel, R., Huber, M., and Schröder, S. ATM Networks. Addison-Wesley, Wokingham, 2nd edi-
tion, 1994.

Harbison, S. Modula-3. Prentice Hall, Englewood Cliffs, N.J., 1992.

Hedrick, C. “Routing Information Protocol.” RFC 1058, June 1988.

Hennessy, J. and Patterson, D. Computer Architecture: A Quantative Approach. Morgan Kauf-
mann, San Mateo, Calif., 1990.

Hoare, C. “Monitors: An Operating System Structuring Concept.” Communications of the ACM,
17(10):549–557, October 1974.

Holub, A. Compiler Design in C. Prentice-Hall, Englewood Cliffs, N.J., 1990.

downloaded by wizard.z@foxmail.com

Exercises 527

Hwang, K. Computer Arithmetic: Principles, Architecture, and Design. John Wiley, New York,
1979.

Hwang, K. Advanced Computer Architecture: Parallelism, Scalability, Programmability.
McGraw-Hill, New York, 1993.

ISO/IEC. “Ada Reference Manual: Language and Standard Libraries.” International Standard
ISO/IEC 8652:1995(E), 1995.

Jacobson, V., Braden, R., and Borman, D. “TCP Extensions for High Performance.” RFC 1323,
May 1992.

Jain, R. The Art of Computer Systems Performance Analysis: Techniques for Experimental De-
sign, Measurement, Simulation, and Modeling. John Wiley, New York, 1991.

Joseph, M., Prasad, V., and Natarajan, N. A Multiprocessor Operating System. Prentice-Hall,
Englewood Cliffs, N.J., 1984.

Kaufman, C., Perlman, R., and Speciner, M. Network Security: Private Communication in a Pub-
lic World. Prentice-Hall, Englewood Cliffs, N.J., 1995.

Kehoe, B. Zen and the Art of the Internet: A Beginner’s Guide. Prentice-Hall, Englewood Cliffs,
N.J., 2nd edition, 1992.

Kernighan, B. and Pike, R. The UNIX Programming Environment. Prentice-Hall, Englewood
Cliffs, N.J., 1984.

Kernighan, B. and Ritchie, D. The C Programming Language. Prentice-Hall, Englewood Cliffs,
N.J., 2nd edition, 1988.

Knuth, D. The Art of Computer Programming: Seminumerical Algorithms. Addison-Wesley,
Reading, Mass., 2nd edition, 1981.

Kobayashi, H. Modeling and Analysis: an Introduction to System Performance Evaluation
Methodology. Addison-Wesley, Reading, Mass., 2nd edition, 1979.

Krol, E. The Whole Internet User’s Guide & Catalog. O’Reilly & Associates, Sebastopol, Calif.,
1992.

Kung, H. “Gigabit Local Area Networks: A Systems Perspective.” IEEE Communications Mag-
azine, pp. 79–89, April 1992.

Kurose, J., Schwartz, M., and Yemini, Y. “Multiple-Access Protocols and Time-Constrained Com-
munication.” ACM Computing Surveys, 16(1), March 1984.

Lamport, L. “Time, Clocks, and the Ordering of Events in a Distributed System.” Communications
of the ACM, 21(7):558–565, July 1978.

Lampson, B., Abadi, M., Burrows, M., and Wobber, E. “Authentication in Distributed Systems:
Theory and Practice.” ACM Transactions on Computer Systems, 10(4):265–310, November
1992.

Lane, J. “ATM Knits Voice, Data, on any Net.” IEEE Spectrum, pp. 42–45, February 1994.

Le Boudec, J.-Y. “The Asynchronous Transfer Mode: A Tutorial.” Computer Networks and ISDN
Systems, 24:279–309, April 1992.

Leffler, S., McKusick, M., Karels, M., and Quarterman, J. The Design and Implementation of the
4.3BSD UNIX Operating System. Addison-Wesley, Reading, Mass., 1989.

downloaded by wizard.z@foxmail.com

528 Towards communication architectures

Levy, E. and Silberschatz, A. “Distributed File Systems: Concepts and Examples.” ACM Com-
puting Surveys, 22(4):321–375, December 1990.

Li, K. and Hudak, P. “Memory Cache Coherence in Shared Virtual Memory Systems.” ACM
Transactions on Computer Systems, 7(3):321–359, November 1989.

Liang, L., Chanson, S., and Neufeld, G. “Process Groups and Group Communication: Classifica-
tion and Requirements.” Computer, 23(2):56–68, February 1990.

Lippman, S. C++ Primer. Addison-Wesley, Reading, Mass., 1991.

Lister, A. and Eager, R. Fundamentals of Operating Systems. Macmillan, New York, 4th edition,
1988.

Lynch, D. and Rose, M. Internet System Handbook. Addison-Wesley, Reading, Mass., 1993.

Maekawa, M., Oldehoeft, A., and Oldehoeft, R. Operating Systems: Advanced Concepts. Ben-
jamin/Cummings, Menlo Park, Calif., 1987.

Mange, D. Microprogrammed Systems, An Introduction to Firmware Theory. Chapman & Hall,
London, 1992.

Mano, M. Digital Design. Prentice Hall, Englewood Cliffs, N.J., 1984.

Marsan, M., Albertengo, G., Casetti, C., Neri, F., and Panizzardi, G. “On the Performance of
Topologies and Access Protocols for High-Speed LANs and MANs.” Computer Networks
and ISDN Systems, 26:873–893, March 1994.

Mason, T. and Brown, D. Lex & Yacc. O’Reilly & Associates, Sebastopol, Calif., 1990.

May, C., Silha, E., Simpson, R., and Warren, H. The PowerPC Architecture. Morgan Kaufmann,
San Mateo, Calif., 2nd edition, 1994.

Metcalfe, R. “Computer/Network Interface Design: Lessons from Arpanet and Ethernet.” IEEE
Journal on Selected Areas in Communications, 11(2):173–180, February 1993.

Metcalfe, R. and Boggs, D. “Ethernet: Distributed Packet Switching for Local Computer Net-
works.” Communications of the ACM, 19(7):395–404, July 1976.

Meyer, B. Object-oriented Software Construction. Prentice Hall, Englewood Cliffs, N.J., 1988.

Meyer, T. Computer Architecture and Organization. Dilithium Press, Beaverton, Ohio, 1982.

Miller, A. “From Here to ATM.” IEEE Spectrum, pp. 20–24, June 1994.

Mills, D. “Network Time Protocol (version 3): Specification, Implementation, and Analysis.”
RFC 1305, July 1992.

Motorola. M68000: 8-/16-/32-bit Microprocessors Programmer’s Reference Manual, 5th edition,
1986.

MPI Forum. “Document for a Standard Message-Passing Interface.” Draft Technical Report,
University of Tennessee, Knoxville, Tennessee, December 1993.

Mullender, S. “Interprocess Communcation.” In Mullender, S. (ed.), Distributed Systems, pp.
217–250. Addison-Wesley, Wokingham, 2nd edition, 1993.

Natarajan, N. and Sinha, M. “Language Issues in the Implementation of a Kernel.” Software –
Practice and Experience, 9:771–778, 1979.

Nelson, G. (ed.). Systems Programming with Modula-3. Prentice Hall, Englewood Cliffs, N.J.,
1991.

downloaded by wizard.z@foxmail.com

Exercises 529

Neuman, B. “Scale in Distributed Systems.” In Casavant, T. and Singhal, M. (eds.), Readings in
Distributed Computing Systems, pp. 463–489. IEEE Computer Society Press, Los Alamitos,
Calif., 1994.

Nitzberg, B. and Lo, V. “Distributed Shared Memory: A Survey of Issues and Algorithms.” Com-
puter, 24(8):52–60, August 1991.

Obraczka, K., Danzig, P., and Li, S.-H. “Internet Resource Discovery Services.” Computer,
26(9):8–22, September 1993.

Partridge, C. Gigabit Networking. Addison-Wesley, Reading, Mass., 1994.

Patterson, D. and Hennessy, J. Computer Organization and Design, The Hardware/Software In-
terface. Morgan Kaufmann, San Mateo, Calif., 1994.

Patterson, D. “STRUM: Structured Microprogram Development System for Correct Firmware.”
IEEE Transactions on Computers, C-25(10):50–59, October 1976.

Perlman, R. Interconnections: Bridges and Routers. Addison-Wesley, Reading, Mass., 1992.

Perlman, R. “Routing Protocols.” In Lynch, D. and Rose, M. (eds.), Internet System Handbook,
pp. 157–182. Addison-Wesley, Reading, Mass., 1993.

Peterson, W. Error Correcting Codes. MIT Press, Cambridge, Mass., 1968.

Presser, L. and White, J. “Linkers and Loaders.” ACM Computing Surveys, 4(3):150–167,
September 1972.

Quinn, M. Parallel Computing, Theory and Practice. McGraw-Hill, New York, 1994.

Rauscher, T. and Adams, P. “Microprogramming: A Tutorial and Survey of Recent Develop-
ments.” IEEE Transactions on Computers, C-29(1):2–20, January 1980.

Rooholamini, R., Cherkassy, V., and Garver, M. “Finding the Right ATM Switch for the Market.”
Computer, 27(4):16–28, April 1994.

Rosenberry, W., Kenney, D., and Fisher, G. Understanding DCE. O’Reilly, Sebastopol, Calif.,
1992.

Rosenblum, M. and Oosterhout, J. “The Design and Implementation of a Log-Structured File
System.” In Proceedings 13th ACM Symposium on Operating Systems Principles, pp. 1–15,
October 1991.

Salus, P. A Quarter Century of UNIX. Addision-Wesley, Engelwood Cliffs, N.J., 1994.

Satyanarayanan, M. “Distributed File Systems.” In Mullender, S. (ed.), Distributed Systems, pp.
353–383. Addison-Wesley, Wokingham, 2nd edition, 1993.

Schroeder, M. “A State-of-the-Art Distributed System: Computing with BOB.” In Mullender, S.
(ed.), Distributed Systems, pp. 1–16. Addison-Wesley, Wokingham, 2nd edition, 1993.

Serlin, O. “MIPS, Drystones and Other Tales.” Datamation, June 1986.

Shay, W. Understanding Data Communications and Networks. PWS Publishing Company,
Boston, Mass., 1995.

Shiva, S. Computer Design and Architecture. Little, Brown and Company, Boston, Mass., 1985.

Silberschatz, A. and Galvin, P. Operating System Concepts. Addison-Wesley, Reading, Mass.,
4th edition, 1994.

downloaded by wizard.z@foxmail.com

530 Towards communication architectures

Smith, J. and Weiss, S. “PowerPC 601 and Alpha21064: A Tale of Two RISCs.” Computer,
27(6):46–58, June 1994.

Spector, A. “Performing Remote Operations Efficiently on a Local Computer Network.” Com-
munications of the ACM, 25(4):246–260, April 1982.

Stallings, W. Computer Organization and Architecture. Macmillan, New York, 1990.

Stallings, W. ISDN and Broadband ISDN. Macmillan, New York, 2nd edition, 1992.

Stallings, W. (ed.). Advances in Local and Metropolitan Area Networks. IEEE Computer Society
Press, Los Alamitos, Calif., 1993a.

Stallings, W. Local and Metropolitan Area Networks. Macmillan, New York, 4th edition, 1993b.

Stallings, W. Data and Computer Communications. Macmillan, New York, 4th edition, 1994.

Stallings, W. Network and Internetwork Security, Principles and Practice. Prentice-Hall, Engle-
wood Cliffs, N.J., 1995.

Stankovic, J. “Distributed Computing.” In Casavant, T. and Singhal, M. (eds.), Readings in Dis-
tributed Computing Systems, pp. 6–30. IEEE Computer Society Press, Los Alamitos, Calif.,
1994.

Stevens, W. UNIX Network Programming. Prentice-Hall, Englewood Cliffs, N.J., 1990.

Stevens, W. Advanced Programming in the UNIX Environment. Addison-Wesley, Reading, Mass.,
1992.

Stevens, W. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley, Reading, Mass.,
1994.

Stroustroup, B. The C++ Programming Language. Addison-Wesley, Reading, Mass., 1987.

Stuck, B. and Arthurs, E. A Computer Communications Network Performance Analysis Primer.
Prentice-Hall, Englewood Cliffs, N.J., 1985.

Stumm, M. and Zhou, S. “Algorithms Implementing Distributed Shared Memory.” Computer,
23(5):54–64, 1990.

Sunderam, V. “PVM: A Framework for Parallel Distributed Computing.” Concurrency: Practice
and Experience, 24(4):315–339, December 1990.

Tanenbaum, A. Operating Systems Design and Implementation. Prentice-Hall, Englewood Cliffs,
N.J., 1987.

Tanenbaum, A. Computer Networks. Prentice-Hall, Englewood Cliffs, N.J., 2nd edition, 1988.

Tanenbaum, A. Structured Computer Organization. Prentice-Hall, Englewood Cliffs, N.J., 3rd
edition, 1990a.

Tanenbaum, A. Modern Operating Systems. Prentice Hall, Englewood Cliffs, N.J., 1992.

Tanenbaum, A. Distributed Operating Systems. Prentice-Hall, Englewood Cliffs, N.J., 1995.

Tanenbaum, A. Computer Networks. Prentice-Hall, Englewood Cliffs, N.J., 3rd edition, 1996.

Tanenbaum, A., van Renesse, R., van Staveren, H., Sharp, G., Mullender, S., Jansen, J., and van
Rossum, G. “Experiences with the Amoeba Distributed Operating System.” Communications
of the ACM, 33(12):46–63, December 1990b.

Tomlinson, R. “Selecting Sequence Numbers.” In Proceedings ACM SIGCOMM/SIGOPS Inter-
process Communication Workshop, pp. 11–23, 1975.

downloaded by wizard.z@foxmail.com

Exercises 531

Tymes, L. “Routing and Flow Control in TYMNET.” IEEE Transactions on Communications,
COM-29(4), April 1981.

van der Goor, A. Computer Architecture and Design. Addison-Wesley, Reading, Mass., 1989.

Vetter, R., Spell, C., and Ward, C. “Mosaic and the World-Wide Web.” Computer, 27(10):49–57,
October 1994.

Watson, R. and Mamrak, S. “Gaining Efficiency in Transport Services by Appropriate Design and
Implementation Choices.” ACM Transactions on Computer Systems, 5(2):97–120, May 1987.

Watt, D. Programming Language Syntax and Semantics. Prentice-Hall, Englewood Cliffs, N.J.,
1991.

Welsh, J. and McKeag, M. Structured System Programming. Prentice-Hall, Englewood Cliffs,
N.J., 1980.

Wiederhold, G. Database Design. McGraw-Hill, New York, 2nd edition, 1983.

Wilkes, M. Automatic Digital Computers. Methuen, London, 1956.

Wirth, N. “The Programming Language Pascal.” Acta Informatica, 1:35–63, 1971.

Wirth, N. Systematic Programming. Prentice-Hall, Englewood Cliffs, N.J., 1973.

Wirth, N. Algorithms + Data Structures = Programs. Prentice-Hall, Englewood Cliffs, N.J.,
1976a.

Wirth, N. “Modula: A Language for Modular Multi-Programming.” Software – Practice & Ex-
perience, 7:3–35, 1976b.

Wirth, N. Programming in Modula-2. Springer-Verlag, Berlin, 2nd edition, 1983.

Wright, G. and Stevens, W. TCP/IP Illustrated, Volume 2: The Implementation. Addison-Wesley,
Reading, Mass., 1995.

downloaded by wizard.z@foxmail.com

Index

A
abstract syntax, 489
Abstract Syntax Notation, 492
Ada, 151, 194–195, 268, 313

generic package, 171, 194
task, 195, 268

addressing mode, 104, 139
direct, 105, 140, 143
immediate, 104, 140
indexed, 106, 140
indirect, 105, 140
memory direct, 140
register, 104
register direct, 140
register indexed, 140
register indirect, 140

ALU, see arithmetic and logic unit
arithmetic and logic unit, 58, 93, 142

1-bit, 58
4-bit, 59

ARPANET, 451
ARQ, see error control, automatic repeat re-

quest
ASCII, 36
ASN.1, see Abstract Syntax Notation
assembler, see program translator, –
assembly language, see programming language,

–
asynchronous data, 379, 381
asynchronous transfer mode, 412, 466–468

virtual channel, 467

virtual path, 468
ATM, see asynchronous transfer mode
atomic multicast, see group communication,

–
atomic operation, 230, 233

B
B-ISDN, see Broadband ISDN
backbone network, 377
bandwidth, see communication channel, –
BASAL, 150–171, 182–188
base number, 29
baseband transmission, 349
batch processing systems, 240
benchmark, 129
binary arithmetic, 30–33, 46, 47
binary digit, 29
binary switch, 49
binary timer, 66, 85
bit, 29
bit string, 16, 29, 65

distance, 326
Boolean algebra, 41–48
Boolean expression, 41
Boolean function, 39–41
Boolean operation

and, 40, 42
implementation, 50

exclusive-or, 40, 42
implementation, 52

532

downloaded by wizard.z@foxmail.com

Index 533

full adder, 47
implementation, 54

half adder, 45
implementation, 52

implementation, 51–55
majority, 44

implementation, 54
nand, 87
not, 40, 42

implementation, 50
oddbits, 45

implementation, 54
or, 40, 42

implementation, 51
Boolean variable, 39
bps, 17, 321, 324
bridge, 376, 382, 410, 416

multiport, 377
source routing, 387
transparent, 386

Broadband ISDN, 461, 466
broadband transmission, 349
broadcasting, see communication, –
buffer, 18

input, 287, 337, 346, 389, 404
output, 287, 350, 389, 402, 426

bus, 106, 231
address lines, 99, 107
arbiter, 109
arbitration, 109
backplane, 108
control lines, 99, 107
daisy chain, 109
data lines, 99, 107
direct wiring, 107
interface, 108
master processor, 109
slave processor, 109

busy waiting, 204, 232
byte, 29

C
C, 196, 241
C++, 196
cell, 467

central processing unit, 7, 101, 109
checksum, 398
chip, 56
circuit-switching, see switching technology,

–
CISC, see Complex Instruction Set Computer
client process, 248, 260, 297, 303

terminal, 497
client-server architecture, 247, 262
clock, 62

speed, 127
clock signal, 62

pulse width, 63
Cobol, 194
code, 326

cyclic redundancy (CRC), 329
error-correcting, 327
error-detecting, 327
parity-check, 327
polynomial, 329–331

factorization, 330
generator polynomial, 329

triple-repetition, 328
code generator, see program translator, –
collision-free system, 364–372
command language, 181
command shell, 249
communication

any-to-one, 283
asynchronous, 279, 291
blocking, 274, 275, 289
broadcasting, 307, 331, 357, 440
buffered, 287–290
connection-oriented, see communication

channel, –, 299, 300, 335, 425, 430,
448

through datagrams, 449
through virtual circuits, 449

connectionless, 299, 301, 336, 425, 448
through datagrams, 451
through virtual circuits, 450

interprocess, 248
interprocessor, 111
message ordering, 295, 299, 309
message-passing, 281
multicasting, 307, 478, 510

downloaded by wizard.z@foxmail.com

534 Index

non-blocking, 273, 288
point-to-point, 281–283, 308, 417
reliable, 290, 299, 308, 358, 427, 443
remote procedure call, 307
rendez-vous, 303
shared data, 268, 279
stream, 272
synchronous, 279, 291
unicasting, 307, 331
unreliable, 19, 308
via registers, 111

communication address, 281
communication channel, 294, 349

as message queue, 295
bandwidth, 321, 372
bidirectional, 299
broadcast, 332, 358
connection, 299, 334

abnormal close, 476
broken, 489
closing, 299, 476–477
listening, 299
opening, 299, 475–476
three-way handshake protocol, 475

delay, 372
full duplex mode, 340
half duplex mode, 337
ISDN, 462
link, 299, 332
mailbox, 296, 505
port, 296–299

as resource, 297
binding to a, 296

throughput, 372
utilization, 340, 362, 372, 424
well-known port, 296

communication deadlock, 389, 428
avoidance, 429–430

communication protocol, 318, 485
802.3, 363, 412
802.4, 368
802.5, 365, 379, 387
ALOHA, 361
attempt and defer principle, 412
carrier sense multiple access, 362

non-persistent, 362

p-persistent, 362
contention period, 364
continuous ARQ, 345
CSMA with collision detection, 363
distributed-queue dual-bus, 380
Ethernet, 363, 411
fiber distributed data interface, 379
go-back-N ARQ, 345
selective repeat ARQ, 345
sliding-window, 341, 345
slotted bus, 371
stop-and-wait, 337, 344
suite, 388, 493
token bus, 368

adding a station, 370
station removal, 369
token loss, 370

token ring, 365
priorities, 366

communication protocol class, 470
compiler, see program translator
compiler processor, 175
compiler-compiler, see program translator, gen-

eration of
Complex Instruction Set Computer, 103, 125
computer, 134

architecture vs. organization, 2, 126–127
assembly, 107
parallel, 127

computer network, 14, 241
computer system, 2
concrete syntax, 489
connection-oriented communication, see com-

munication, –
connectionless communication, see commu-

nication, –
constant, 157
contention system, 360–364
controller

disk, 202
interrupt, 117
keyboard, 122
network, 389–391

counter
general, 66, 85
microprogram, 85

downloaded by wizard.z@foxmail.com

Index 535

program, 97, 99, 156, 220, 235
CPU, see central processing unit
CPU scheduler, 226, 245
CRC, see code, cyclic redundancy (CRC)
CSMA, see communication protocol, carrier

sense multiple access
cyclic redundancy code, see code, –

D
data abstraction, 195
data object, 152
data type

array, 154
enumeration, 153
predefined, 152
record, 154
representation in memory, 183

datagram, 425, 448
device driver, 246
device management, 260
digital pipe, 462, 487
Dijkstra, Edsger, 229, 432
Direct Memory Access, 116, 202
directory, 257, 501
disk management, 255

block allocation table, 255
dispatcher, see microkernel, –
distributed application, 483, 484, 518
distributed shared memory, 312
DMA, see Direct Memory Access
DNS, see Domain Naming System
Domain Naming System, 512
DQDB, see communication protocol, distributed-

queue dual-bus

E
e-mail, see electronic mail
electronic mail, 504

envelope, 504
envelope contents, 504

embedded system, 194
error control, 337

automatic repeat request, 344

transport layer, 472–473
error detection, 16, 360
Ethernet, see communication protocol, –

F
FDDI, see communication protocol, fiber dis-

tributed data interface
FDM, see multiplexing, frequency-division
fetch-execute cycle, 8, 85, 160, 173, 181

general, 99
micro, 86, 89, 100

file, 242, 249, 250
attribute, 501
header, 256
identifier, 251, 258
immutable, 262
index block, 254
name, 258, 501
position in a, 250, 253
size, 250
structure, 250, 501

file block, 253
number, 253
offset, 253

file server, 303, 509
file system

index list, 256
log-structured, 262

file transfer, 500
File Transfer And Management, 501
File Transfer Protocol, 501

session, 502
firmware, 125, 133
flow control, 18, 337

transport layer, 473–474
credit allocation scheme, 474
credit grant, 474
inactivity timer, 477
persistence timer, 477
retransmission timer, 474
retransmit-request timer, 476
window timer, 474

FORTRAN, 194
frame, 326, 336, 389, 423

size, 398, 417

downloaded by wizard.z@foxmail.com

536 Index

frame transmission time, 338, 364, 373
frame window, 340
FTAM, see File Transfer And Management
FTP, see File Transfer Protocol
function composition, 40
function table, 39

G
gate, 49–51

and, 50
not, 50
or, 51

gigabit network, 480
group communication, 307

atomic multicast, 308
causal message ordering, 310
message ordering, 309
total message ordering, 310

H
half-gateway, 444
Hamming distance, 326
hard disk, see storage device, –
hardwired control, 90–91, 103
HTML, see Hypertext Markup Language
HTTP, see Hypertext Transfer Protocol
hyperlink, 515
hypertext, 515
Hypertext Markup Language, 516
Hypertext Transfer Protocol, 516

I
I/O controller, 114
I/O handling

hard disk, 201–205
terminal, 163, 167, 185–187

ICMP, see Internet, Control Message Proto-
col (ICMP)

ideal transmission factor, 340
illegal instruction, 96
index variable, 159

information superhighway, 23
input queue, 399
instruction, 95

branch, 141, 144
computation, 142
conditional branch, 142
jump, 141
load, 96, 99, 139
move, 139
pop stack, 147
push stack, 146
return-from-interrupt, 235
store, 96, 99, 140
subroutine branch, 145, 147–149
test-and-set, 234
trap, 237
use of labels, 144
use of stack, 146–147
use of variables, 143

instruction decoding, 96
instruction design, 102
instruction execution, 6, 84, 128
instruction length, 103
instruction opcode, 95
instruction set, 6–8, 93–97
integer division, 152, 213
integer representation, 29–33

as characters, 164
excess n, 33
one’s complement, 32
sign-magnitude, 32
two’s complement, 33

integrated circuit, 56
control signal, 62
pins, 56
selection bit, 57
selection mechanism, 56, 57

Integrated Services Digital Network, 460
B channel, 462
basic service, 462
circuit-switching, 464
common channel, 464
D channel, 462
H channel, 462
network terminating device, 461, 463
packet handler, 465

downloaded by wizard.z@foxmail.com

Index 537

packet-switching, 465
primary service, 462
signaling network, 465
terminal adaptor, 464

Intel, 102, 127, 193, 241
International Standards Organization, 24, 353
Internet, 440, 451–460

address, 453
dotted-decimal notation, 453
host identification, 453
network identification, 453

broadcast group, 453
Control Message Protocol (ICMP), 459
Internet Protocol (IP)

datagram, 455
packet fragmentation, 457–459
protocol suite, 453
Request for Comment, 452, 479
routing, 456–457
Transmission Control Protocol (TCP), 456,

472
Unreliable Datagram Protocol (UDP), 456,

472
Internet Network Information Center, 454
internetwork, 23, 416, 441

constituent network, 441
internetwork router, 444
InterNIC, see Internet Network Information

Center
interpreter, see program translator
interrupt

handler, 235
I/O, 117, 234
keyboard, 122
network, 390
page fault, 236, 246

interrupt handling
hard disk, 235, 236
network, 394, 395

interrupt table, 235, 236
IP, see Internet, Internet Protocol (IP)
ISDN, see Integrated Services Digital Net-

work
ISO, see International Standards Organiza-

tion

L
LAN, see local area network
latch

clocked-D, 62
set/reset, 61

lexical analyzer, see program translator, –
light-weight protocol, 480
LLC, see OSI reference model, logical link

control layer
local area network, 21, 322, 331, 357, 410

performance, 372–375, 411
segment, 376, 415

local subscriber loop, 479
LSP, see routing, link state packet

M
MAC, see OSI reference model, medium ac-

cess layer
machine language, see programming language,

–
mail gateways, 508
mailbox, see communication, –
main memory, 7, 94, 101, 109, 219, 346
main procedure, 205
mainframes, 241
MAN, see metropolitan area network
markup language, 37
memory

1-bit word, 62, 63
4-bit word, 65
address decoding, 71, 80, 111
address space, 111, 217
base address, 106, 207
location address, 141, 202
offset, 106, 142
read-only, 83, 98
state, 64, 65
state transition, 64, 66
word length, 103
word selection, 68

memory address, 70
absolute, 207, 213, 218
length, 103, 218
page, 212

downloaded by wizard.z@foxmail.com

538 Index

page number, 212
page offset, 212
relative, 207, 213

memory chip, 68
memory fragmentation, 210
memory management, 245, 259, 260
Memory Management Unit, 246
memory-mapped I/O, 113, 115–116, 182, 185,

202
message collision, 20, 359–360
message delivery, 287, 300
message handling system

mailbox, 505
transfer agent, 505
user agent, 505

message transmission, 281
decoding, 326
encoding, 326

metropolitan area network, 357, 380
MFLOPS, 129
microcalculator, 91, 98
microinstruction, 84, 86
microkernel, 242, 248

dispatcher, 244
microprogram, 125, 133
microroutine, 87, 124

address, 88
selection, 88

microstore, 84, 86, 124
minicomputer, 241
MIPS, 129
MMU, see Memory Management Unit
Modula-2, 163, 196
Motorola, 127, 137, 192, 193, 234
MS-DOS, 241, 501
multicasting, see communication, –
multiplexer, 58
multiplexing, 348

baseband frequency range, 348
demodulation, 349
frequency-division, 348
modulation, 349
network, 407, 410
synchronous time-division, 349, 462, 467

N
name handling service

global names, 509–511
name resolution, 514
naming authority, 512
pathname, 512

name server, 510, 514
network address, 390, 513

internetwork–, 443
LLC–, 399–401
MAC–, 397, 399
mapping, 409
resolution, 408, 419–421
WAN–, 418

network area, 422
network congestion, 17, 426

avoidance, 430
network domain, 422
network interface, 389, 396

LLC implementation, 401–404
MAC implementation, 391–396

network monitor, 367
network topology, 331

bus, 332
local area–, 332
ring, 332
star, 412
tree, 332
WAN–, 422
wide area–, 333

network type, 470
normalized propagation delay, 373
NT1, see Integrated Services Digital Network,

network terminating device
NT2, see Integrated Services Digital Network,

network terminating device

O
object-based systems, 262
open system, 469, 487
Open Systems Interconnection, 24
operand, 139
operating system, 12–14, 189, 206, 239

kernel, 242

downloaded by wizard.z@foxmail.com

Index 539

kernel mode, 237, 248
organization, 243–249
user mode, 237, 248

OSI, see Open Systems Interconnection
OSI reference model, 24, 353, 487

application layer, 492–493
data link layer, 24, 354, 361
internet layer, 442
logical link control layer, 361, 399
medium access layer, 361

services, 393
network layer, 24, 354, 417
physical layer, 24, 353
presentation layer, 489–492
session layer, 488
subnet layer, 441
transport layer, 24, 354, 469

output queue, 399

P
package, 166

body, 169
multiple implementations, 306

parameter, 170
specification, 167

packet, 335, 422, 426
discarding, 427–428
internet, 442

packet fragmentation, see Internet, –, 444
immediate forwarding, 447, 457
intermediate reassembly, 447

packet-switching, see switching technology,
–

page (in memory), 212
logical, 213, 217
modify bit, 219
physical, 213, 217
reference bit, 219
sharing, 215–217
size, 212

page address, see memory address, page
page handler, 245
page replacement, 219
page table, 213
parallel programming, 311

parse tree, see program translator, –
parser, see program translator, –
Pascal, 195
PDP-11, 137, 193
personal computer, 241
piggybacking, 473
polling, 117, 204
polynomial code, 329
port, see communication channel, –, 399
PowerPC, 126
PRIMAL processor, 138–139

address register, 138
data register, 138
program counter (PC), 138, 145
stack pointer (SP), 138, 146, 220
status register (CCR), 138, 142, 144

printer
ink-jet, 123, 124
laser, 124
matrix, 123

procedure, 10, 160
execution of, 162
in/out parameter, 161
input parameter, 161
local variable, 161
output parameter, 161
parameter, 161

process, 223, 224
activation, 267
control block, 226
creation, 266
declaration, 266
identifier, 293
state, 224, 236

process management, 259, 260
process synchronization, 271, 278, 290, 303
process type, 266
processing, 100
processor, 7, 97–101

control unit, 99, 101
family, 102, 127
I/O, 109, 114
pipeline, 128
speed, 128
virtual, 136, 172

processor context, 220, 228, 236

downloaded by wizard.z@foxmail.com

540 Index

program, 6, 7, 88, 100, 134, 205
code region, 216
data region, 216
data type, 151
execution, 230
execution status, 220
function, 145
placement, 209
procedure, 145
stack, 145, 167, 220, 235

pointer, 146, 220
top, 146, 168

subroutine, 145
program compilation, 11
program linking, 190
program loading, 190, 267
program representation, 176
program statement, 10, 135
program translator, 125, 136, 173, 175–179

assembler, 192
by compilation, 181
by interpretation, 181
code generator, 178–179, 197
generation of, 197
lexical analyzer, 176–177
parse tree, 177
parser, 177–178
programming a, 179–180
source language, 175
target language, 175
translation rule, 178

program unit, 160
programming

high-level language, 150–151
machine language, 150

programming language, 10–11, 134
assembly–, 134, 192
data abstraction, 135
high-level–, 135
machine–, 134, 192

propagation time, 338, 364, 373
protocol suite

Internet, 453

R
radix, 29
real number representation, 33–36

floating-point number, 35
receiver process, 281
record field, 155
Reduced Instruction Set Computer, 103, 126
register, 93

base–, 207, 209, 214
instruction, 97, 99
interrupt, 235
limit–, 209, 237
microinstruction, 85, 97
page table–, 214

remote procedure call, see communication,
–

rendez-vous, see communication, –
repetitive statement, 158
representation clause, 184, 202
resource discovery, 521
RFC, see Internet, Request for Comment
RIP, see Routing Information Protocol
RISC, see Reduced Instruction Set Computer
route, 295, 333
router, 22, 334, 417

internetwork, 444
routing, 22

adaptive, 22, 431
centralized, 438, 439
cost of a link, 431
distance vector–, 434–437, 440
distributed, 438, 439
isolated, 438

hot potato, 438
link state packet, 440
link state–, 432–434, 440
source–, 386

route directives, 387
spanning tree approach, 383–386
static, 383

routing control center, 439
Routing Information Protocol, 440
routing table, 383
RPC, see communication, remote procedure

call, 307

downloaded by wizard.z@foxmail.com

Index 541

S
SAP, see service access point
semaphore

binary, 229, 275
implementation, 232–234

counting, 275
implementation, 276–277

sender process, 281
server process, 248, 260, 296, 303

terminal, 497
service access point, 399, 405, 408, 421, 455
service program, 12, 189

memory management, 212
service table, 239
signal

analog, 319
attenuation, 319
delay distortion, 321
digital, 319
frequency, 319, 321
noise, 321

signal transmission
asynchronous, 324
bit synchronization, 324
character synchronization, 324
start bit, 323
stop bits, 324
synchronous, 324

Simple Mail Transfer Protocol, 506
Simple reference model, 493

application domain functions, 495
communication, 494
remote operations, 519
security, 520
time handling services, 519
transfer, 494
transmissions, 493

SMTP, see Simple Mail Transfer Protocol
software, 7, 134
software cache, 257
statement, 156

assignment, 10, 156
conditional, 158
control flow, 158
execution of, 157, 173
for, 159

if, 158
null, 203
procedure call, 162
while, 10, 158

storage device, 118–121, 249
floppy disk, 120
hard disk, 119

address, 119, 202, 255
block, 253, 254
cylinder, 119
sector, 119
track, 119

hard disk array, 261
magnetic, 118
optical disk, 121

land, 121
pit, 121
WORM, 121

random access, 120
read/write head, 118
sequential access, 120
tape, 118

block, 119
frame, 119
record, 119
track, 119

subnetwork, 422
subtype, 153
swap space, 217, 219
switching algebra, 41
switching technology, 333

cell–, 468
circuit–, 334, 423, 461
packet–, 335, 422, 461

symbol manipulation, 28
synchronous data, 379, 381
system call, 237

T
TA, see Integrated Services Digital Network,

terminal adaptor
TCP, see Internet, Transmission Control Pro-

tocol (TCP)
TDM, see multiplexing, synchronous time-

division

downloaded by wizard.z@foxmail.com

542 Index

teleconferencing, 461
TELNET, 497

commands, 498
negotiation phase, 498
session, 499

terminal, 121, 495
keyboard, 122

geographic coding system, 122
monitor, 122

pixel, 122
screen resolution, 122

mouse, 122
text processing, 36
text processor, 36
text representation, 36–38
thread, 262
timesharing systems, 240
token

in a computer network, 20, 360, 365
in program translation, 176

transmission cycle time, 339, 341
transmission medium, 16, 318, 322–323

shared, 19, 332
transmission rate, 324, 338, 357
transmission slot, 360, 362
truth table, 40
TYMNET, 439

U
UDP, see Internet, Unreliable Datagram Pro-

tocol (UDP)
unicasting, see communication, –
UNIX, 241, 501
URL, see World Wide Web, Universal Re-

source Locator

V
variable

declaration, 152
initialization, 157
mapping to memory locations, 183, 203

virtual circuit, 425, 430, 448
ISDN, 465

virtual computer, 182, 191, 206, 486
virtual device, 188, 189, 250
virtual display, 188
virtual file system, 501
virtual machine, 12
virtual memory, 217, 245, 357
virtual processor, 175, 180, 223, 228
virtual terminal, 497

W
WAN, see wide area network
wide area network, 21, 331, 416
Wilkes, Maurice, 125
workstation, 241, 357
World Wide Web, 514

Universal Resource Locator, 516
WWW, see World Wide Web

X
X.400, 506
X.500, 513

downloaded by wizard.z@foxmail.com

