
  
    
      
    
  


Advanced R

From: http://adv-r.had.co.nz/


Introduction

With more than 10 years experience programming in R, I’ve had the luxury of being able to spend a lot of time trying to figure out and understand how the language works. This book is my attempt to pass on what I’ve learned so that you can quickly become an effective R programmer. Reading it will help you avoid the mistakes I’ve made and dead ends I’ve gone down, and will teach you useful tools, techniques, and idioms that can help you to attack many types of problems. In the process, I hope to show that, despite its frustrating quirks, R is, at its heart, an elegant and beautiful language, well tailored for data analysis and statistics.

If you are new to R, you might wonder what makes learning such a quirky language worthwhile. To me, some of the best features are:


	It’s free, open source, and available on every major platform. As a result, if you do your analysis in R, anyone can easily replicate it.


	A massive set of packages for statistical modelling, machine learning, visualisation, and importing and manipulating data. Whatever model or graphic you’re trying to do, chances are that someone has already tried to do it. At a minimum, you can learn from their efforts.


	Cutting edge tools. Researchers in statistics and machine learning will often publish an R package to accompany their articles. This means immediate access to the very latest statistical techniques and implementations.


	Deep-seated language support for data analysis. This includes features likes missing values, data frames, and subsetting.


	A fantastic community. It is easy to get help from experts on the R-help mailing list, stackoverflow, or subject-specific mailing lists like R-SIG-mixed-models or ggplot2. You can also connect with other R learners via twitter, linkedin, and through many local user groups.


	Powerful tools for communicating your results. R packages make it easy to produce html or pdf reports, or create interactive websites.


	A strong foundation in functional programming. The ideas of functional programming are well suited to solving many of the challenges of data analysis. R provides a powerful and flexible toolkit which allows you to write concise yet descriptive code.


	An IDE tailored to the needs of interactive data analysis and statistical programming.


	Powerful metaprogramming facilities. R is not just a programming language, it is also an environment for interactive data analysis. Its metaprogramming capabilities allow you to write magically succinct and concise functions and provide an excellent environment for designing domain-specific languages.


	Designed to connect to high-performance programming languages like C, Fortran, and C++.




Of course, R is not perfect. R’s biggest challenge is that most R users are not programmers. This means that:


	Much of the R code you’ll see in the wild is written in haste to solve a pressing problem. As a result, code is not very elegant, fast, or easy to understand. Most users do not revise their code to address these shortcomings.


	Compared to other programming languages, the R community tends to be more focussed on results instead of processes. Knowledge of software engineering best practices is patchy: for instance, not enough R programmers use source code control or automated testing.


	Metaprogramming is a double-edged sword. Too many R functions use tricks to reduce the amount of typing at the cost of making code that is hard to understand and that can fail in unexpected ways.


	Inconsistency is rife across contributed packages, even within base R. You are confronted with over 20 years of evolution every time you use R. Learning R can be tough because there are many special cases to remember.


	R is not a particularly fast programming language, and poorly written R code can be terribly slow. R is also a profligate user of memory.




Personally, I think these challenges create a great opportunity for experienced programmers to have a profound positive impact on R and the R community. R users do care about writing high quality code, particularly for reproducible research, but they don’t yet have the skills to do so. I hope this book will not only help more R users to become R programmers but also encourage programmers from other languages to contribute to R.

Who should read this book

This book is aimed at two complementary audiences:


	Intermediate R programmers who want to dive deeper into R and learn new strategies for solving diverse problems.


	Programmers from other languages who are learning R and want to understand why R works the way it does.




To get the most out of this book, you’ll need to have written a decent amount of code in R or another programming language. You might not know all the details, but you should be familiar with how functions work in R and although you may currently struggle to use them effectively, you should be familiar with the apply family (like apply() and lapply()).

What you will get out of this book

This book describes the skills I think an advanced R programmer should have: the ability to produce quality code that can be used in a wide variety of circumstances.

After reading this book, you will:


	Be familiar with the fundamentals of R. You will understand complex data types and the best ways to perform operations on them. You will have a deep understanding of how functions work, and be able to recognise and use the four object systems in R.


	Understand what functional programming means, and why it is a useful tool for data analysis. You’ll be able to quickly learn how to use existing tools, and have the knowledge to create your own functional tools when needed.


	Appreciate the double-edged sword of metaprogramming. You’ll be able to create functions that use non-standard evaluation in a principled way, saving typing and creating elegant code to express important operations. You’ll also understand the dangers of metaprogramming and why you should be careful about its use.


	Have a good intuition for which operations in R are slow or use a lot of memory. You’ll know how to use profiling to pinpoint performance bottlenecks, and you’ll know enough C++ to convert slow R functions to fast C++ equivalents.


	Be comfortable reading and understanding the majority of R code. You’ll recognise common idioms (even if you wouldn’t use them yourself) and be able to critique others’ code.




Meta-techniques

There are two meta-techniques that are tremendously helpful for improving your skills as an R programmer: reading source code and adopting a scientific mindset.

Reading source code is important because it will help you write better code. A great place to start developing this skill is to look at the source code of the functions and packages you use most often. You’ll find things that are worth emulating in your own code and you’ll develop a sense of taste for what makes good R code. You will also see things that you don’t like, either because its virtues are not obvious or it offends your sensibilities. Such code is nonetheless valuable, because it helps make concrete your opinions on good and bad code.

A scientific mindset is extremely helpful when learning R. If you don’t understand how something works, develop a hypothesis, design some experiments, run them, and record the results. This exercise is extremely useful since if you can’t figure something out and need to get help, you can easily show others what you tried. Also, when you learn the right answer, you’ll be mentally prepared to update your world view. When I clearly describe a problem to someone else (the art of creating a reproducible example), I often figure out the solution myself.

Recommended reading

R is still a relatively young language, and the resources to help you understand it are still maturing. In my personal journey to understand R, I’ve found it particularly helpful to use resources from other programming languages. R has aspects of both functional and object-oriented (OO) programming languages. Learning how these concepts are expressed in R will help you leverage your existing knowledge of other programming languages, and will help you identify areas where you can improve.

To understand why R’s object systems work the way they do, I found The Structure and Interpretation of Computer Programs (SICP) by Harold Abelson and Gerald Jay Sussman, particularly helpful. It’s a concise but deep book. After reading it, I felt for the first time that I could actually design my own object-oriented system. The book was my first introduction to the generic function style of OO common in R. It helped me understand its strengths and weaknesses. SICP also talks a lot about functional programming, and how to create simple functions which become powerful when combined.

To understand the trade-offs that R has made compared to other programming languages, I found Concepts, Techniques and Models of Computer Programming by Peter van Roy and Sef Haridi extremely helpful. It helped me understand that R’s copy-on-modify semantics make it substantially easier to reason about code, and that while its current implementation is not particularly efficient, it is a solvable problem.

If you want to learn to be a better programmer, there’s no place better to turn than The Pragmatic Programmer by Andrew Hunt and David Thomas. This book is language agnostic, and provides great advice for how to be a better programmer.

Getting help

Currently, there are two main venues to get help when you’re stuck and can’t figure out what’s causing the problem: stackoverflow and the R-help mailing list. You can get fantastic help in both venues, but they do have their own cultures and expectations. It’s usually a good idea to spend a little time lurking, learning about community expectations, before you put up your first post. 

Some good general advice:


	Make sure you have the latest version of R and of the package (or packages) you are having problems with. It may be that your problem is the result of a recently fixed bug.


	Spend some time creating a reproducible example. This is often a useful process in its own right, because in the course of making the problem reproducible you often figure out what’s causing the problem.


	Look for related problems before posting. If someone has already asked your question and it has been answered, it’s much faster for everyone if you use the existing answer.
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Conventions

Throughout this book I use f() to refer to functions, g to refer to variables and function parameters, and h/ to paths.

Larger code blocks intermingle input and output. Output is commented so that if you have an electronic version of the book, e.g., http://adv-r.had.co.nz, you can easily copy and paste examples into R. Output comments look like #> to distinguish them from regular comments. 

Colophon

This book was written in Rmarkdown inside Rstudio. knitr and pandoc converted the raw Rmarkdown to html and pdf. The website was made with jekyll, styled with bootstrap, and automatically published to Amazon’s S3 by travis-ci. The complete source is available from github.

Code is set in inconsolata.


Data structures

This chapter summarises the most important data structures in base R. You’ve probably used many (if not all) of them before, but you may not have thought deeply about how they are interrelated. In this brief overview, I won’t discuss individual types in depth. Instead, I’ll show you how they fit together as a whole. If you need more details, you can find them in R’s documentation.

R’s base data structures can be organised by their dimensionality (1d, 2d, or nd) and whether they’re homogeneous (all contents must be of the same type) or heterogeneous (the contents can be of different types). This gives rise to the five data types most often used in data analysis:




	
	Homogeneous
	Heterogeneous





	1d
	Atomic vector
	List



	2d
	Matrix
	Data frame



	nd
	Array
	





Almost all other objects are built upon these foundations. In the OO field guide you’ll see how more complicated objects are built of these simple pieces. Note that R has no 0-dimensional, or scalar types. Individual numbers or strings, which you might think would be scalars, are actually vectors of length one.

Given an object, the best way to understand what data structures it’s composed of is to use str(). str() is short for structure and it gives a compact, human readable description of any R data structure. 

Quiz

Take this short quiz to determine if you need to read this chapter. If the answers quickly come to mind, you can comfortably skip this chapter. You can check your answers in answers.


	What are the three properties of a vector, other than its contents?


	What are the four common types of atomic vectors? What are the two rare types?


	What are attributes? How do you get them and set them?


	How is a list different from an atomic vector? How is a matrix different from a data frame?


	Can you have a list that is a matrix? Can a data frame have a column that is a matrix?




Outline


	Vectors introduces you to atomic vectors and lists, R’s 1d data structures.


	Attributes takes a small detour to discuss attributes, R’s flexible metadata specification. Here you’ll learn about factors, an important data structure created by setting attributes of an atomic vector.


	Matrices and arrays introduces matrices and arrays, data structures for storing 2d and higher dimensional data.


	Data frames teaches you about the data frame, the most important data structure for storing data in R. Data frames combine the behaviour of lists and matrices to make a structure ideally suited for the needs of statistical data.




Vectors

The basic data structure in R is the vector. Vectors come in two flavours: atomic vectors and lists. They have three common properties:


	Type, typeof(), what it is.

	Length, length(), how many elements it contains.

	Attributes, attributes(), additional arbitrary metadata.



They differ in the types of their elements: all elements of an atomic vector must be the same type, whereas the elements of a list can have different types.

NB: is.vector() does not test if an object is a vector. Instead it returns TRUE only if the object is a vector with no attributes apart from names. Use is.atomic(x) || is.list(x) to test if an object is actually a vector.

Atomic vectors

There are four common types of atomic vectors that I’ll discuss in detail: logical, integer, double (often called numeric), and character. There are two rare types that I will not discuss further: complex and raw.  

Atomic vectors are usually created with c(), short for combine: 

dbl_var <- c(1, 2.5, 4.5)
# With the L suffix, you get an integer rather than a double
int_var <- c(1L, 6L, 10L)
# Use TRUE and FALSE (or T and F) to create logical vectors
log_var <- c(TRUE, FALSE, T, F)
chr_var <- c("these are", "some strings")



Atomic vectors are always flat, even if you nest c()’s:

c(1, c(2, c(3, 4)))



## [1] 1 2 3 4

# the same as
c(1, 2, 3, 4)



## [1] 1 2 3 4

Missing values are specified with NA, which is a logical vector of length 1. NA will always be coerced to the correct type if used inside c(), or you can create NAs of a specific type with NA_real_ (a double vector), NA_integer_ and NA_character_. 

Types and tests

Given a vector, you can determine its type with typeof(), or check if it’s a specific type with an “is” function: is.character(), is.double(), is.integer(), is.logical(), or, more generally, is.atomic(). 

int_var <- c(1L, 6L, 10L)
typeof(int_var)



## [1] "integer"

is.integer(int_var)



## [1] TRUE

is.atomic(int_var)



## [1] TRUE

dbl_var <- c(1, 2.5, 4.5)
typeof(dbl_var)



## [1] "double"

is.double(dbl_var)



## [1] TRUE

is.atomic(dbl_var)



## [1] TRUE

NB: is.numeric() is a general test for the “numberliness” of a vector and returns TRUE for both integer and double vectors. It is not a specific test for double vectors, which are often called numeric. 

is.numeric(int_var)



## [1] TRUE

is.numeric(dbl_var)



## [1] TRUE

Coercion

All elements of an atomic vector must be the same type, so when you attempt to combine different types they will be coerced to the most flexible type. Types from least to most flexible are: logical, integer, double, and character. 

For example, combining a character and an integer yields a character:

str(c("a", 1))



##  chr [1:2] "a" "1"

When a logical vector is coerced to an integer or double, TRUE becomes 1 and FALSE becomes 0. This is very useful in conjunction with sum() and mean()

x <- c(FALSE, FALSE, TRUE)
as.numeric(x)



## [1] 0 0 1

# Total number of TRUEs
sum(x)



## [1] 1

# Proportion that are TRUE
mean(x)



## [1] 0.3333333

Coercion often happens automatically. Most mathematical functions (+, log, abs, etc.) will coerce to a double or integer, and most logical operations (&, |, any, etc) will coerce to a logical. You will usually get a warning message if the coercion might lose information. If confusion is likely, explicitly coerce with as.character(), as.double(), as.integer(), or as.logical().

Lists

Lists are different from atomic vectors because their elements can be of any type, including lists. You construct lists by using list() instead of c():  

x <- list(1:3, "a", c(TRUE, FALSE, TRUE), c(2.3, 5.9))
str(x)



## List of 4
##  $ : int [1:3] 1 2 3
##  $ : chr "a"
##  $ : logi [1:3] TRUE FALSE TRUE
##  $ : num [1:2] 2.3 5.9

Lists are sometimes called recursive vectors, because a list can contain other lists. This makes them fundamentally different from atomic vectors.

x <- list(list(list(list())))
str(x)



## List of 1
##  $ :List of 1
##   ..$ :List of 1
##   .. ..$ : list()

is.recursive(x)



## [1] TRUE

c() will combine several lists into one. If given a combination of atomic vectors and lists, c() will coerce the vectors to lists before combining them. Compare the results of list() and c():

x <- list(list(1, 2), c(3, 4))
y <- c(list(1, 2), c(3, 4))
str(x)



## List of 2
##  $ :List of 2
##   ..$ : num 1
##   ..$ : num 2
##  $ : num [1:2] 3 4

str(y)



## List of 4
##  $ : num 1
##  $ : num 2
##  $ : num 3
##  $ : num 4

The typeof() a list is list. You can test for a list with is.list() and coerce to a list with as.list(). You can turn a list into an atomic vector with unlist(). If the elements of a list have different types, unlist() uses the same coercion rules as c().

Lists are used to build up many of the more complicated data structures in R. For example, both data frames (described in data frames) and linear models objects (as produced by lm()) are lists:

is.list(mtcars)



## [1] TRUE

mod <- lm(mpg ~ wt, data = mtcars)
is.list(mod)



## [1] TRUE

Exercises


	What are the six types of atomic vector? How does a list differ from an atomic vector?


	What makes is.vector() and is.numeric() fundamentally different to is.list() and is.character()?


	Test your knowledge of vector coercion rules by predicting the output of the following uses of c():

c(1, FALSE)
c("a", 1)
c(list(1), "a")
c(TRUE, 1L)




	Why do you need to use unlist() to convert a list to an atomic vector? Why doesn’t as.vector() work?


	Why is 1 == "1" true? Why is -1 < FALSE true? Why is "one" < 2 false?


	Why is the default missing value, NA, a logical vector? What’s special about logical vectors? (Hint: think about c(FALSE, NA_character_).)




Attributes

All objects can have arbitrary additional attributes, used to store metadata about the object. Attributes can be thought of as a named list (with unique names). Attributes can be accessed individually with attr() or all at once (as a list) with attributes(). 

y <- 1:10
attr(y, "my_attribute") <- "This is a vector"
attr(y, "my_attribute")



## [1] "This is a vector"

str(attributes(y))



## List of 1
##  $ my_attribute: chr "This is a vector"

The structure() function returns a new object with modified attributes: 

structure(1:10, my_attribute = "This is a vector")



##  [1]  1  2  3  4  5  6  7  8  9 10
## attr(,"my_attribute")
## [1] "This is a vector"

By default, most attributes are lost when modifying a vector:

attributes(y[1])



## NULL

attributes(sum(y))



## NULL

The only attributes not lost are the three most important:


	Names, a character vector giving each element a name, described in names.


	Dimensions, used to turn vectors into matrices and arrays, described in matrices and arrays.


	Class, used to implement the S3 object system, described in S3.




Each of these attributes has a specific accessor function to get and set values. When working with these attributes, use names(x), dim(x), and class(x), not attr(x, "names"), attr(x, "dim"), and attr(x, "class").

Names

You can name a vector in three ways: 


	When creating it: x <- c(a = 1, b = 2, c = 3).


	By modifying an existing vector in place: x <- 1:3; names(x) <- c("a", "b", "c"). 




Or: x <- 1:3; names(x)[[1]] <- c("a"). 


	By creating a modified copy of a vector: x <- setNames(1:3, c("a", "b", "c")). 



Names don’t have to be unique. However, character subsetting, described in subsetting, is the most important reason to use names and it is most useful when the names are unique.

Not all elements of a vector need to have a name. If some names are missing when you create the vector, the names will be set to an empty string for those elements. If you modify the vector in place by setting some, but not all variable names, names() will return NA (more specifically, NA_character_) for them. If all names are missing, names() will return NULL.

y <- c(a = 1, 2, 3)
names(y)



## [1] "a" ""  ""

v <- c(1, 2, 3)
names(v) <- c('a')
names(v)



## [1] "a" NA  NA

z <- c(1, 2, 3)
names(z)



## NULL

You can create a new vector without names using unname(x), or remove names in place with names(x) <- NULL.

Factors

One important use of attributes is to define factors. A factor is a vector that can contain only predefined values, and is used to store categorical data. Factors are built on top of integer vectors using two attributes: the class, “factor”, which makes them behave differently from regular integer vectors, and the levels, which defines the set of allowed values. 

x <- factor(c("a", "b", "b", "a"))
x



## [1] a b b a
## Levels: a b

class(x)



## [1] "factor"

levels(x)



## [1] "a" "b"

# You can't use values that are not in the levels
x[2] <- "c"



## Warning in `[<-.factor`(`*tmp*`, 2, value = "c"): invalid factor level, NA
## generated

x



## [1] a    <NA> b    a   
## Levels: a b

# NB: you can't combine factors
c(factor("a"), factor("b"))



## [1] 1 1

Factors are useful when you know the possible values a variable may take, even if you don’t see all values in a given dataset. Using a factor instead of a character vector makes it obvious when some groups contain no observations:

sex_char <- c("m", "m", "m")
sex_factor <- factor(sex_char, levels = c("m", "f"))

table(sex_char)



## sex_char
## m 
## 3

table(sex_factor)



## sex_factor
## m f 
## 3 0

Sometimes when a data frame is read directly from a file, a column you’d thought would produce a numeric vector instead produces a factor. This is caused by a non-numeric value in the column, often a missing value encoded in a special way like . or -. To remedy the situation, coerce the vector from a factor to a character vector, and then from a character to a double vector. (Be sure to check for missing values after this process.) Of course, a much better plan is to discover what caused the problem in the first place and fix that; using the na.strings argument to read.csv() is often a good place to start.

# Reading in "text" instead of from a file here:
z <- read.csv(text = "value\n12\n1\n.\n9")
typeof(z$value)



## [1] "integer"

as.double(z$value)



## [1] 3 2 1 4

# Oops, that's not right: 3 2 1 4 are the levels of a factor, 
# not the values we read in!
class(z$value)



## [1] "factor"

# We can fix it now:
as.double(as.character(z$value))



## Warning: NAs introduced by coercion

## [1] 12  1 NA  9

# Or change how we read it in:
z <- read.csv(text = "value\n12\n1\n.\n9", na.strings=".")
typeof(z$value)



## [1] "integer"

class(z$value)



## [1] "integer"

z$value



## [1] 12  1 NA  9

# Perfect! :)



Unfortunately, most data loading functions in R automatically convert character vectors to factors. This is suboptimal, because there’s no way for those functions to know the set of all possible levels or their optimal order. Instead, use the argument stringsAsFactors = FALSE to suppress this behaviour, and then manually convert character vectors to factors using your knowledge of the data. A global option, options(stringsAsFactors = FALSE), is available to control this behaviour, but I don’t recommend using it. Changing a global option may have unexpected consequences when combined with other code (either from packages, or code that you’re source()ing), and global options make code harder to understand because they increase the number of lines you need to read to understand how a single line of code will behave. 

While factors look (and often behave) like character vectors, they are actually integers. Be careful when treating them like strings. Some string methods (like gsub() and grepl()) will coerce factors to strings, while others (like nchar()) will throw an error, and still others (like c()) will use the underlying integer values. For this reason, it’s usually best to explicitly convert factors to character vectors if you need string-like behaviour. In early versions of R, there was a memory advantage to using factors instead of character vectors, but this is no longer the case. 

Exercises


	An early draft used this code to illustrate structure():

structure(1:5, comment = "my attribute")



## [1] 1 2 3 4 5

But when you print that object you don’t see the comment attribute. Why? Is the attribute missing, or is there something else special about it? (Hint: try using help.) 


	What happens to a factor when you modify its levels?

f1 <- factor(letters)
levels(f1) <- rev(levels(f1))




	What does this code do? How do f2 and f3 differ from f1?

f2 <- rev(factor(letters))

f3 <- factor(letters, levels = rev(letters))






Matrices and arrays

Adding a dim attribute to an atomic vector allows it to behave like a multi-dimensional array. A special case of the array is the matrix, which has two dimensions. Matrices are used commonly as part of the mathematical machinery of statistics. Arrays are much rarer, but worth being aware of.  

Matrices and arrays are created with matrix() and array(), or by using the assignment form of dim():

# Two scalar arguments to specify rows and columns
a <- matrix(1:6, ncol = 3, nrow = 2)
# One vector argument to describe all dimensions
b <- array(1:12, c(2, 3, 2))

# You can also modify an object in place by setting dim()
c <- 1:6
dim(c) <- c(3, 2)
c



##      [,1] [,2]
## [1,]    1    4
## [2,]    2    5
## [3,]    3    6

dim(c) <- c(2, 3)
c



##      [,1] [,2] [,3]
## [1,]    1    3    5
## [2,]    2    4    6

length() and names() have high-dimensional generalisations:


	length() generalises to nrow() and ncol() for matrices, and dim() for arrays.   


	names() generalises to rownames() and colnames() for matrices, and dimnames(), a list of character vectors, for arrays.   




length(a)



## [1] 6

nrow(a)



## [1] 2

ncol(a)



## [1] 3

rownames(a) <- c("A", "B")
colnames(a) <- c("a", "b", "c")
a



##   a b c
## A 1 3 5
## B 2 4 6

length(b)



## [1] 12

dim(b)



## [1] 2 3 2

dimnames(b) <- list(c("one", "two"), c("a", "b", "c"), c("A", "B"))
b



## , , A
## 
##     a b c
## one 1 3 5
## two 2 4 6
## 
## , , B
## 
##     a  b  c
## one 7  9 11
## two 8 10 12

c() generalises to cbind() and rbind() for matrices, and to abind() (provided by the abind package) for arrays. You can transpose a matrix with t(); the generalised equivalent for arrays is aperm().    

You can test if an object is a matrix or array using is.matrix() and is.array(), or by looking at the length of the dim(). as.matrix() and as.array() make it easy to turn an existing vector into a matrix or array.

Vectors are not the only 1-dimensional data structure. You can have matrices with a single row or single column, or arrays with a single dimension. They may print similarly, but will behave differently. The differences aren’t too important, but it’s useful to know they exist in case you get strange output from a function (tapply() is a frequent offender). As always, use str() to reveal the differences. 

str(1:3)                   # 1d vector



##  int [1:3] 1 2 3

str(matrix(1:3, ncol = 1)) # column vector



##  int [1:3, 1] 1 2 3

str(matrix(1:3, nrow = 1)) # row vector



##  int [1, 1:3] 1 2 3

str(array(1:3, 3))         # "array" vector



##  int [1:3(1d)] 1 2 3

While atomic vectors are most commonly turned into matrices, the dimension attribute can also be set on lists to make list-matrices or list-arrays:  

l <- list(1:3, "a", TRUE, 1.0)
dim(l) <- c(2, 2)
l



##      [,1]      [,2]
## [1,] Integer,3 TRUE
## [2,] "a"       1

These are relatively esoteric data structures, but can be useful if you want to arrange objects into a grid-like structure. For example, if you’re running models on a spatio-temporal grid, it might be natural to preserve the grid structure by storing the models in a 3d array. 

Exercises


	What does dim() return when applied to a vector?


	If is.matrix(x) is TRUE, what will is.array(x) return?


	How would you describe the following three objects? What makes them different to 1:5?

x1 <- array(1:5, c(1, 1, 5))
x2 <- array(1:5, c(1, 5, 1))
x3 <- array(1:5, c(5, 1, 1))






Data frames

A data frame is the most common way of storing data in R, and if used systematically makes data analysis easier. Under the hood, a data frame is a list of equal-length vectors. This makes it a 2-dimensional structure, so it shares properties of both the matrix and the list. This means that a data frame has names(), colnames(), and rownames(), although names() and colnames() are the same thing. The length() of a data frame is the length of the underlying list and so is the same as ncol(); nrow() gives the number of rows. 

As described in subsetting, you can subset a data frame like a 1d structure (where it behaves like a list), or a 2d structure (where it behaves like a matrix).

Creation

You create a data frame using data.frame(), which takes named vectors as input:

df <- data.frame(x = 1:3, y = c("a", "b", "c"))
str(df)



## 'data.frame':    3 obs. of  2 variables:
##  $ x: int  1 2 3
##  $ y: Factor w/ 3 levels "a","b","c": 1 2 3

Beware data.frame()’s default behaviour which turns strings into factors. Use stringsAsFactors = FALSE to suppress this behaviour: 

df <- data.frame(
  x = 1:3,
  y = c("a", "b", "c"),
  stringsAsFactors = FALSE)
str(df)



## 'data.frame':    3 obs. of  2 variables:
##  $ x: int  1 2 3
##  $ y: chr  "a" "b" "c"

Testing and coercion

Because a data.frame is an S3 class, its type reflects the underlying vector used to build it: the list. To check if an object is a data frame, use class() or test explicitly with is.data.frame():

typeof(df)



## [1] "list"

class(df)



## [1] "data.frame"

is.data.frame(df)



## [1] TRUE

You can coerce an object to a data frame with as.data.frame():


	A vector will create a one-column data frame.


	A list will create one column for each element; it’s an error if they’re not all the same length.


	A matrix will create a data frame with the same number of columns and rows as the matrix.




Combining data frames

You can combine data frames using cbind() and rbind():  

cbind(df, data.frame(z = 3:1))



##   x y z
## 1 1 a 3
## 2 2 b 2
## 3 3 c 1

rbind(df, data.frame(x = 10, y = "z"))



##    x y
## 1  1 a
## 2  2 b
## 3  3 c
## 4 10 z

When combining column-wise, the number of rows must match, but row names are ignored. When combining row-wise, both the number and names of columns must match. Use plyr::rbind.fill() to combine data frames that don’t have the same columns.

It’s a common mistake to try and create a data frame by cbind()ing vectors together. This doesn’t work because cbind() will create a matrix unless one of the arguments is already a data frame. Instead use data.frame() directly:

bad <- data.frame(cbind(a = 1:2, b = c("a", "b")))
str(bad)



## 'data.frame':    2 obs. of  2 variables:
##  $ a: Factor w/ 2 levels "1","2": 1 2
##  $ b: Factor w/ 2 levels "a","b": 1 2

good <- data.frame(a = 1:2, b = c("a", "b"),
  stringsAsFactors = FALSE)
str(good)



## 'data.frame':    2 obs. of  2 variables:
##  $ a: int  1 2
##  $ b: chr  "a" "b"

The conversion rules for cbind() are complicated and best avoided by ensuring all inputs are of the same type.

Special columns

Since a data frame is a list of vectors, it is possible for a data frame to have a column that is a list: 

df <- data.frame(x = 1:3)
df$y <- list(1:2, 1:3, 1:4)
df



##   x          y
## 1 1       1, 2
## 2 2    1, 2, 3
## 3 3 1, 2, 3, 4

However, when a list is given to data.frame(), it tries to put each item of the list into its own column, so this fails:

data.frame(x = 1:3, y = list(1:2, 1:3, 1:4))



## Error in (function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE, : arguments imply differing number of rows: 2, 3, 4

A workaround is to use I(), which causes data.frame() to treat the list as one unit:

dfl <- data.frame(x = 1:3, y = I(list(1:2, 1:3, 1:4)))
str(dfl)



## 'data.frame':    3 obs. of  2 variables:
##  $ x: int  1 2 3
##  $ y:List of 3
##   ..$ : int  1 2
##   ..$ : int  1 2 3
##   ..$ : int  1 2 3 4
##   ..- attr(*, "class")= chr "AsIs"

dfl[2, "y"]



## [[1]]
## [1] 1 2 3

I() adds the AsIs class to its input, but this can usually be safely ignored. 

Similarly, it’s also possible to have a column of a data frame that’s a matrix or array, as long as the number of rows matches the data frame: 

dfm <- data.frame(x = 1:3, y = I(matrix(1:9, nrow = 3)))
str(dfm)



## 'data.frame':    3 obs. of  2 variables:
##  $ x: int  1 2 3
##  $ y: 'AsIs' int [1:3, 1:3] 1 2 3 4 5 6 7 8 9

dfm[2, "y"]



##      [,1] [,2] [,3]
## [1,]    2    5    8

Use list and array columns with caution: many functions that work with data frames assume that all columns are atomic vectors. 

Exercises


	What attributes does a data frame possess?


	What does as.matrix() do when applied to a data frame with columns of different types?


	Can you have a data frame with 0 rows? What about 0 columns?




Answers


	The three properties of a vector are type, length, and attributes.


	The four common types of atomic vector are logical, integer, double (sometimes called numeric), and character. The two rarer types are complex and raw.


	Attributes allow you to associate arbitrary additional metadata to any object. You can get and set individual attributes with attr(x, "y") and attr(x, "y") <- value; or get and set all attributes at once with attributes().


	The elements of a list can be any type (even a list); the elements of an atomic vector are all of the same type. Similarly, every element of a matrix must be the same type; in a data frame, the different columns can have different types.


	You can make “list-array” by assigning dimensions to a list. You can make a matrix a column of a data frame with df$x <- matrix(), or using I() when creating a new data frame data.frame(x = I(matrix())).





Subsetting

R’s subsetting operators are powerful and fast. Mastery of subsetting allows you to succinctly express complex operations in a way that few other languages can match. Subsetting is hard to learn because you need to master a number of interrelated concepts:


	The three subsetting operators.


	The six types of subsetting.


	Important differences in behaviour for different objects (e.g., vectors, lists, factors, matrices, and data frames).


	The use of subsetting in conjunction with assignment.




This chapter helps you master subsetting by starting with the simplest type of subsetting: subsetting an atomic vector with [. It then gradually extends your knowledge, first to more complicated data types (like arrays and lists), and then to the other subsetting operators, [[ and $. You’ll then learn how subsetting and assignment can be combined to modify parts of an object, and, finally, you’ll see a large number of useful applications.

Subsetting is a natural complement to str(). str() shows you the structure of any object, and subsetting allows you to pull out the pieces that you’re interested in. 

Quiz

Take this short quiz to determine if you need to read this chapter. If the answers quickly come to mind, you can comfortably skip this chapter. Check your answers in answers.


	What is the result of subsetting a vector with positive integers, negative integers, a logical vector, or a character vector?


	What’s the difference between [, [[, and $ when applied to a list?


	When should you use drop = FALSE?


	If x is a matrix, what does x[] <- 0 do? How is it different to x <- 0?


	How can you use a named vector to relabel categorical variables?




Outline


	Data types starts by teaching you about [. You’ll start by learning the six types of data that you can use to subset atomic vectors. You’ll then learn how those six data types act when used to subset lists, matrices, data frames, and S3 objects.


	Subsetting operators expands your knowledge of subsetting operators to include [[ and $, focussing on the important principles of simplifying vs. preserving.


	In Subsetting and assignment you’ll learn the art of subassignment, combining subsetting and assignment to modify parts of an object.


	Applications leads you through eight important, but not obvious, applications of subsetting to solve problems that you often encounter in a data analysis.




Data types

It’s easiest to learn how subsetting works for atomic vectors, and then how it generalises to higher dimensions and other more complicated objects. We’ll start with [, the most commonly used operator. Subsetting operators will cover [[ and $, the two other main subsetting operators.

Atomic vectors

Let’s explore the different types of subsetting with a simple vector, x.   

x <- c(2.1, 4.2, 3.3, 5.4)



Note that the number after the decimal point gives the original position in the vector.

There are five things that you can use to subset a vector:


	Positive integers return elements at the specified positions: 

x[c(3, 1)]



## [1] 3.3 2.1

x[order(x)]



## [1] 2.1 3.3 4.2 5.4

# Duplicated indices yield duplicated values
x[c(1, 1)]



## [1] 2.1 2.1

# Real numbers are silently truncated to integers
x[c(2.1, 2.9)]



## [1] 4.2 4.2


	Negative integers omit elements at the specified positions: 

x[-c(3, 1)]



## [1] 4.2 5.4

You can’t mix positive and negative integers in a single subset:

x[c(-1, 2)]



## Error in x[c(-1, 2)]: only 0's may be mixed with negative subscripts


	Logical vectors select elements where the corresponding logical value is TRUE. This is probably the most useful type of subsetting because you write the expression that creates the logical vector: 

x[c(TRUE, TRUE, FALSE, FALSE)]



## [1] 2.1 4.2

x[x > 3]



## [1] 4.2 3.3 5.4

If the logical vector is shorter than the vector being subsetted, it will be recycled to be the same length.

x[c(TRUE, FALSE)]



## [1] 2.1 3.3

# Equivalent to
x[c(TRUE, FALSE, TRUE, FALSE)]



## [1] 2.1 3.3

A missing value in the index always yields a missing value in the output:

x[c(TRUE, TRUE, NA, FALSE)]



## [1] 2.1 4.2  NA


	Nothing returns the original vector. This is not useful for vectors but is very useful for matrices, data frames, and arrays. It can also be useful in conjunction with assignment.

x[]



## [1] 2.1 4.2 3.3 5.4


	Zero returns a zero-length vector. This is not something you usually do on purpose, but it can be helpful for generating test data.

x[0]



## numeric(0)




If the vector is named, you can also use:


	Character vectors to return elements with matching names. 

(y <- setNames(x, letters[1:4]))



##   a   b   c   d 
## 2.1 4.2 3.3 5.4

y[c("d", "c", "a")]



##   d   c   a 
## 5.4 3.3 2.1

# Like integer indices, you can repeat indices
y[c("a", "a", "a")]



##   a   a   a 
## 2.1 2.1 2.1

# When subsetting with [ names are always matched exactly
z <- c(abc = 1, def = 2)
z[c("a", "d")]



## <NA> <NA> 
##   NA   NA




Lists

Subsetting a list works in the same way as subsetting an atomic vector. Using [ will always return a list; [[ and $, as described below, let you pull out the components of the list.  

Matrices and arrays

You can subset higher-dimensional structures in three ways:  


	With multiple vectors.

	With a single vector.

	With a matrix.



The most common way of subsetting matrices (2d) and arrays (>2d) is a simple generalisation of 1d subsetting: you supply a 1d index for each dimension, separated by a comma. Blank subsetting is now useful because it lets you keep all rows or all columns.

a <- matrix(1:9, nrow = 3)
colnames(a) <- c("A", "B", "C")
a[1:2, ]



##      A B C
## [1,] 1 4 7
## [2,] 2 5 8

a[c(TRUE, FALSE, TRUE), c("B", "A")]



##      B A
## [1,] 4 1
## [2,] 6 3

a[0, -2]



##      A C

By default, [ will simplify the results to the lowest possible dimensionality. See simplifying vs. preserving to learn how to avoid this.

Because matrices and arrays are implemented as vectors with special attributes, you can subset them with a single vector. In that case, they will behave like a vector. Arrays in R are stored in column-major order:

(vals <- outer(1:5, 1:5, FUN = "paste", sep = ","))



##      [,1]  [,2]  [,3]  [,4]  [,5] 
## [1,] "1,1" "1,2" "1,3" "1,4" "1,5"
## [2,] "2,1" "2,2" "2,3" "2,4" "2,5"
## [3,] "3,1" "3,2" "3,3" "3,4" "3,5"
## [4,] "4,1" "4,2" "4,3" "4,4" "4,5"
## [5,] "5,1" "5,2" "5,3" "5,4" "5,5"

vals[c(4, 15)]



## [1] "4,1" "5,3"

You can also subset higher-dimensional data structures with an integer matrix (or, if named, a character matrix). Each row in the matrix specifies the location of one value, where each column corresponds to a dimension in the array being subsetted. This means that you use a 2 column matrix to subset a matrix, a 3 column matrix to subset a 3d array, and so on. The result is a vector of values:

vals <- outer(1:5, 1:5, FUN = "paste", sep = ",")
select <- matrix(ncol = 2, byrow = TRUE, c(
  1, 1,
  3, 1,
  2, 4
))
vals[select]



## [1] "1,1" "3,1" "2,4"

Data frames

Data frames possess the characteristics of both lists and matrices: if you subset with a single vector, they behave like lists; if you subset with two vectors, they behave like matrices.  

df <- data.frame(x = 1:3, y = 3:1, z = letters[1:3])

df[df$x == 2, ]



##   x y z
## 2 2 2 b

df[c(1, 3), ]



##   x y z
## 1 1 3 a
## 3 3 1 c

# There are two ways to select columns from a data frame
# Like a list:
df[c("x", "z")]



##   x z
## 1 1 a
## 2 2 b
## 3 3 c

# Like a matrix
df[, c("x", "z")]



##   x z
## 1 1 a
## 2 2 b
## 3 3 c

# There's an important difference if you select a single 
# column: matrix subsetting simplifies by default, list 
# subsetting does not.
str(df["x"])



## 'data.frame':    3 obs. of  1 variable:
##  $ x: int  1 2 3

str(df[, "x"])



##  int [1:3] 1 2 3

S3 objects

S3 objects are made up of atomic vectors, arrays, and lists, so you can always pull apart an S3 object using the techniques described above and the knowledge you gain from str().  

S4 objects

There are also two additional subsetting operators that are needed for S4 objects: @ (equivalent to $), and slot() (equivalent to [[). @ is more restrictive than $ in that it will return an error if the slot does not exist. These are described in more detail in the OO field guide.   

Exercises


	Fix each of the following common data frame subsetting errors:

mtcars[mtcars$cyl = 4, ]
mtcars[-1:4, ]
mtcars[mtcars$cyl <= 5]
mtcars[mtcars$cyl == 4 | 6, ]




	Why does x <- 1:5; x[NA] yield five missing values? (Hint: why is it different from x[NA_real_]?)


	What does upper.tri() return? How does subsetting a matrix with it work? Do we need any additional subsetting rules to describe its behaviour?

x <- outer(1:5, 1:5, FUN = "*")
x[upper.tri(x)]




	Why does mtcars[1:20] return an error? How does it differ from the similar mtcars[1:20, ]?


	Implement your own function that extracts the diagonal entries from a matrix (it should behave like diag(x) where x is a matrix).


	What does df[is.na(df)] <- 0 do? How does it work?




Subsetting operators

There are two other subsetting operators: [[ and $. [[ is similar to [, except it can only return a single value and it allows you to pull pieces out of a list. $ is a useful shorthand for [[ combined with character subsetting.  

You need [[ when working with lists. This is because when [ is applied to a list it always returns a list: it never gives you the contents of the list. To get the contents, you need [[:


“If list x is a train carrying objects, then x[[5]] is the object in car 5; x[4:6] is a train of cars 4-6.”

— @RLangTip



Because it can return only a single value, you must use [[ with either a single positive integer or a string:  

a <- list(a = 1, b = 2)
a[[1]]



## [1] 1

a[["a"]]



## [1] 1

# If you do supply a vector it indexes recursively
b <- list(a = list(b = list(c = list(d = 1))))
b[[c("a", "b", "c", "d")]]



## [1] 1

# Same as
b[["a"]][["b"]][["c"]][["d"]]



## [1] 1

Because data frames are lists of columns, you can use [[ to extract a column from data frames: mtcars[[1]], mtcars[["cyl"]].  

S3 and S4 objects can override the standard behaviour of [ and [[ so they behave differently for different types of objects. The key difference is usually how you select between simplifying or preserving behaviours, and what the default is.

Simplifying vs. preserving subsetting

It’s important to understand the distinction between simplifying and preserving subsetting. Simplifying subsets returns the simplest possible data structure that can represent the output, and is useful interactively because it usually gives you what you want. Preserving subsetting keeps the structure of the output the same as the input, and is generally better for programming because the result will always be the same type. Omitting drop = FALSE when subsetting matrices and data frames is one of the most common sources of programming errors. (It will work for your test cases, but then someone will pass in a single column data frame and it will fail in an unexpected and unclear way.)   

Unfortunately, how you switch between simplifying and preserving differs for different data types, as summarised in the table below.









	
	Simplifying
	Preserving





	Vector
	x[[1]]
	x[1]



	List
	x[[1]]
	x[1]



	Factor
	x[1:4, drop = T]
	x[1:4]



	Array
	x[1, ] or x[, 1]
	x[1, , drop = F] or x[, 1, drop = F]



	Data frame
	x[, 1] or x[[1]]
	x[, 1, drop = F] or x[1]





Preserving is the same for all data types: you get the same type of output as input. Simplifying behaviour varies slightly between different data types, as described below:


	Atomic vector: removes names.

x <- c(a = 1, b = 2)
x[1]



## a 
## 1

x[[1]]



## [1] 1


	List: return the object inside the list, not a single element list.

y <- list(a = 1, b = 2)
str(y[1])



## List of 1
##  $ a: num 1

str(y[[1]])



##  num 1


	Factor: drops any unused levels.

z <- factor(c("a", "b"))
z[1]



## [1] a
## Levels: a b

z[1, drop = TRUE]



## [1] a
## Levels: a


	Matrix or array: if any of the dimensions has length 1, drops that dimension.

a <- matrix(1:4, nrow = 2)
a[1, , drop = FALSE]



##      [,1] [,2]
## [1,]    1    3

a[1, ]



## [1] 1 3


	Data frame: if output is a single column, returns a vector instead of a data frame.

df <- data.frame(a = 1:2, b = 1:2)
str(df[1])



## 'data.frame':    2 obs. of  1 variable:
##  $ a: int  1 2

str(df[[1]])



##  int [1:2] 1 2

str(df[, "a", drop = FALSE])



## 'data.frame':    2 obs. of  1 variable:
##  $ a: int  1 2

str(df[, "a"])



##  int [1:2] 1 2




$

$ is a shorthand operator, where x$y is equivalent to x[["y", exact = FALSE]]. It’s often used to access variables in a data frame, as in mtcars$cyl or diamonds$carat.  

One common mistake with $ is to try and use it when you have the name of a column stored in a variable:

var <- "cyl"
# Doesn't work - mtcars$var translated to mtcars[["var"]]
mtcars$var



## NULL

# Instead use [[
mtcars[[var]]



##  [1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4

There’s one important difference between $ and [[. $ does partial matching:

x <- list(abc = 1)
x$a



## [1] 1

x[["a"]]



## NULL

If you want to avoid this behaviour you can set the global option warnPartialMatchDollar to TRUE. Use with caution: it may affect behaviour in other code you have loaded (e.g., from a package).

Missing/out of bounds indices

[ and [[ differ slightly in their behaviour when the index is out of bounds (OOB), for example, when you try to extract the fifth element of a length four vector, or subset a vector with NA or NULL:  

x <- 1:4
str(x[5])



##  int NA

str(x[NA_real_])



##  int NA

str(x[NULL])



##  int(0)

The following table summarises the results of subsetting atomic vectors and lists with [ and [[ and different types of OOB value.




	Operator
	Index
	Atomic
	List





	[
	OOB
	NA
	list(NULL)



	[
	NA_real_
	NA
	list(NULL)



	[
	NULL
	x[0]
	list(NULL)



	[[
	OOB
	Error
	Error



	[[
	NA_real_
	Error
	NULL



	[[
	NULL
	Error
	Error





If the input vector is named, then the names of OOB, missing, or NULL components will be "<NA>".

Exercises


	Given a linear model, e.g., mod <- lm(mpg ~ wt, data = mtcars), extract the residual degrees of freedom. Extract the R squared from the model summary (summary(mod))




Subsetting and assignment

All subsetting operators can be combined with assignment to modify selected values of the input vector.  

x <- 1:5
x[c(1, 2)] <- 2:3
x



## [1] 2 3 3 4 5

# The length of the LHS needs to match the RHS
x[-1] <- 4:1
x



## [1] 2 4 3 2 1

# Note that there's no checking for duplicate indices
x[c(1, 1)] <- 2:3
x



## [1] 3 4 3 2 1

# You can't combine integer indices with NA
x[c(1, NA)] <- c(1, 2)



## Error in x[c(1, NA)] <- c(1, 2): NAs are not allowed in subscripted assignments

# But you can combine logical indices with NA
# (where they're treated as false).
x[c(T, F, NA)] <- 1
x



## [1] 1 4 3 1 1

# This is mostly useful when conditionally modifying vectors
df <- data.frame(a = c(1, 10, NA))
df$a[df$a < 5] <- 0
df$a



## [1]  0 10 NA

Subsetting with nothing can be useful in conjunction with assignment because it will preserve the original object class and structure. Compare the following two expressions. In the first, mtcars will remain as a data frame. In the second, mtcars will become a list.

mtcars[] <- lapply(mtcars, as.integer)
mtcars <- lapply(mtcars, as.integer)



With lists, you can use subsetting + assignment + NULL to remove components from a list. To add a literal NULL to a list, use [ and list(NULL): 

x <- list(a = 1, b = 2)
x[["b"]] <- NULL
str(x)



## List of 1
##  $ a: num 1

y <- list(a = 1)
y["b"] <- list(NULL)
str(y)



## List of 2
##  $ a: num 1
##  $ b: NULL

Applications

The basic principles described above give rise to a wide variety of useful applications. Some of the most important are described below. Many of these basic techniques are wrapped up into more concise functions (e.g., subset(), merge(), plyr::arrange()), but it is useful to understand how they are implemented with basic subsetting. This will allow you to adapt to new situations that are not dealt with by existing functions.

Lookup tables (character subsetting)

Character matching provides a powerful way to make lookup tables. Say you want to convert abbreviations: 

x <- c("m", "f", "u", "f", "f", "m", "m")
lookup <- c(m = "Male", f = "Female", u = NA)
lookup[x]



##        m        f        u        f        f        m        m 
##   "Male" "Female"       NA "Female" "Female"   "Male"   "Male"

unname(lookup[x])



## [1] "Male"   "Female" NA       "Female" "Female" "Male"   "Male"

# Or with fewer output values
c(m = "Known", f = "Known", u = "Unknown")[x]



##         m         f         u         f         f         m         m 
##   "Known"   "Known" "Unknown"   "Known"   "Known"   "Known"   "Known"

If you don’t want names in the result, use unname() to remove them.

Matching and merging by hand (integer subsetting)

You may have a more complicated lookup table which has multiple columns of information. Suppose we have a vector of integer grades, and a table that describes their properties: 

grades <- c(1, 2, 2, 3, 1)

info <- data.frame(
  grade = 3:1,
  desc = c("Excellent", "Good", "Poor"),
  fail = c(F, F, T)
)



We want to duplicate the info table so that we have a row for each value in grades. We can do this in two ways, either using match() and integer subsetting, or rownames() and character subsetting: 

grades



## [1] 1 2 2 3 1

# Using match
id <- match(grades, info$grade)
info[id, ]



##     grade      desc  fail
## 3       1      Poor  TRUE
## 2       2      Good FALSE
## 2.1     2      Good FALSE
## 1       3 Excellent FALSE
## 3.1     1      Poor  TRUE

# Using rownames
rownames(info) <- info$grade
info[as.character(grades), ]



##     grade      desc  fail
## 1       1      Poor  TRUE
## 2       2      Good FALSE
## 2.1     2      Good FALSE
## 3       3 Excellent FALSE
## 1.1     1      Poor  TRUE

If you have multiple columns to match on, you’ll need to first collapse them to a single column (with interaction(), paste(), or plyr::id()). You can also use merge() or plyr::join(), which do the same thing for you — read the source code to see how. 

Random samples/bootstrap (integer subsetting)

You can use integer indices to perform random sampling or bootstrapping of a vector or data frame. sample() generates a vector of indices, then subsetting to access the values:    

df <- data.frame(x = rep(1:3, each = 2), y = 6:1, z = letters[1:6])

# Set seed for reproducibility
set.seed(10)

# Randomly reorder
df[sample(nrow(df)), ]



##   x y z
## 4 2 3 d
## 2 1 5 b
## 5 3 2 e
## 3 2 4 c
## 1 1 6 a
## 6 3 1 f

# Select 3 random rows
df[sample(nrow(df), 3), ]



##   x y z
## 2 1 5 b
## 6 3 1 f
## 3 2 4 c

# Select 6 bootstrap replicates
df[sample(nrow(df), 6, rep = T), ]



##     x y z
## 3   2 4 c
## 4   2 3 d
## 4.1 2 3 d
## 1   1 6 a
## 4.2 2 3 d
## 3.1 2 4 c

The arguments of sample() control the number of samples to extract, and whether sampling is performed with or without replacement.

Ordering (integer subsetting)

order() takes a vector as input and returns an integer vector describing how the subsetted vector should be ordered:  

x <- c("b", "c", "a")
order(x)



## [1] 3 1 2

x[order(x)]



## [1] "a" "b" "c"

To break ties, you can supply additional variables to order(), and you can change from ascending to descending order using decreasing = TRUE. By default, any missing values will be put at the end of the vector; however, you can remove them with na.last = NA or put at the front with na.last = FALSE.

For two or more dimensions, order() and integer subsetting makes it easy to order either the rows or columns of an object:

# Randomly reorder df
df2 <- df[sample(nrow(df)), 3:1]
df2



##   z y x
## 3 c 4 2
## 1 a 6 1
## 2 b 5 1
## 4 d 3 2
## 6 f 1 3
## 5 e 2 3

df2[order(df2$x), ]



##   z y x
## 1 a 6 1
## 2 b 5 1
## 3 c 4 2
## 4 d 3 2
## 6 f 1 3
## 5 e 2 3

df2[, order(names(df2))]



##   x y z
## 3 2 4 c
## 1 1 6 a
## 2 1 5 b
## 4 2 3 d
## 6 3 1 f
## 5 3 2 e

More concise, but less flexible, functions are available for sorting vectors, sort(), and data frames, plyr::arrange(). 

Expanding aggregated counts (integer subsetting)

Sometimes you get a data frame where identical rows have been collapsed into one and a count column has been added. rep() and integer subsetting make it easy to uncollapse the data by subsetting with a repeated row index:

df <- data.frame(x = c(2, 4, 1), y = c(9, 11, 6), n = c(3, 5, 1))
rep(1:nrow(df), df$n)



## [1] 1 1 1 2 2 2 2 2 3

df[rep(1:nrow(df), df$n), ]



##     x  y n
## 1   2  9 3
## 1.1 2  9 3
## 1.2 2  9 3
## 2   4 11 5
## 2.1 4 11 5
## 2.2 4 11 5
## 2.3 4 11 5
## 2.4 4 11 5
## 3   1  6 1

Removing columns from data frames (character subsetting)

There are two ways to remove columns from a data frame. You can set individual columns to NULL: 

df <- data.frame(x = 1:3, y = 3:1, z = letters[1:3])
df$z <- NULL



Or you can subset to return only the columns you want:

df <- data.frame(x = 1:3, y = 3:1, z = letters[1:3])
df[c("x", "y")]



##   x y
## 1 1 3
## 2 2 2
## 3 3 1

If you know the columns you don’t want, use set operations to work out which colums to keep:

df[setdiff(names(df), "z")]



##   x y
## 1 1 3
## 2 2 2
## 3 3 1

Selecting rows based on a condition (logical subsetting)

Because it allows you to easily combine conditions from multiple columns, logical subsetting is probably the most commonly used technique for extracting rows out of a data frame. 

mtcars[mtcars$gear == 5, ]



##     mpg cyl  disp  hp drat    wt qsec vs am gear carb
## 27 26.0   4 120.3  91 4.43 2.140 16.7  0  1    5    2
## 28 30.4   4  95.1 113 3.77 1.513 16.9  1  1    5    2
## 29 15.8   8 351.0 264 4.22 3.170 14.5  0  1    5    4
## 30 19.7   6 145.0 175 3.62 2.770 15.5  0  1    5    6
## 31 15.0   8 301.0 335 3.54 3.570 14.6  0  1    5    8

mtcars[mtcars$gear == 5 & mtcars$cyl == 4, ]



##     mpg cyl  disp  hp drat    wt qsec vs am gear carb
## 27 26.0   4 120.3  91 4.43 2.140 16.7  0  1    5    2
## 28 30.4   4  95.1 113 3.77 1.513 16.9  1  1    5    2

Remember to use the vector boolean operators & and |, not the short-circuiting scalar operators && and || which are more useful inside if statements. Don’t forget De Morgan’s laws, which can be useful to simplify negations:


	!(X & Y) is the same as !X | !Y

	!(X | Y) is the same as !X & !Y



For example, !(X & !(Y | Z)) simplifies to !X | !!(Y|Z), and then to !X | Y | Z.

subset() is a specialised shorthand function for subsetting data frames, and saves some typing because you don’t need to repeat the name of the data frame. You’ll learn how it works in non-standard evaluation. 

subset(mtcars, gear == 5)



##     mpg cyl  disp  hp drat    wt qsec vs am gear carb
## 27 26.0   4 120.3  91 4.43 2.140 16.7  0  1    5    2
## 28 30.4   4  95.1 113 3.77 1.513 16.9  1  1    5    2
## 29 15.8   8 351.0 264 4.22 3.170 14.5  0  1    5    4
## 30 19.7   6 145.0 175 3.62 2.770 15.5  0  1    5    6
## 31 15.0   8 301.0 335 3.54 3.570 14.6  0  1    5    8

subset(mtcars, gear == 5 & cyl == 4)



##     mpg cyl  disp  hp drat    wt qsec vs am gear carb
## 27 26.0   4 120.3  91 4.43 2.140 16.7  0  1    5    2
## 28 30.4   4  95.1 113 3.77 1.513 16.9  1  1    5    2

Boolean algebra vs. sets (logical & integer subsetting)

It’s useful to be aware of the natural equivalence between set operations (integer subsetting) and boolean algebra (logical subsetting). Using set operations is more effective when:  


	You want to find the first (or last) TRUE.


	You have very few TRUEs and very many FALSEs; a set representation may be faster and require less storage.




which() allows you to convert a boolean representation to an integer representation. There’s no reverse operation in base R but we can easily create one: 

x <- sample(10) < 4
which(x)



## [1]  3  7 10

unwhich <- function(x, n) {
  out <- rep_len(FALSE, n)
  out[x] <- TRUE
  out
}
unwhich(which(x), 10)



##  [1] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE

Let’s create two logical vectors and their integer equivalents and then explore the relationship between boolean and set operations.

(x1 <- 1:10 %% 2 == 0)



##  [1] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE

(x2 <- which(x1))



## [1]  2  4  6  8 10

(y1 <- 1:10 %% 5 == 0)



##  [1] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE

(y2 <- which(y1))



## [1]  5 10

# X & Y <-> intersect(x, y)
x1 & y1



##  [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE

intersect(x2, y2)



## [1] 10

# X | Y <-> union(x, y)
x1 | y1



##  [1] FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE

union(x2, y2)



## [1]  2  4  6  8 10  5

# X & !Y <-> setdiff(x, y)
x1 & !y1



##  [1] FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE

setdiff(x2, y2)



## [1] 2 4 6 8

# xor(X, Y) <-> setdiff(union(x, y), intersect(x, y))
xor(x1, y1)



##  [1] FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE

setdiff(union(x2, y2), intersect(x2, y2))



## [1] 2 4 6 8 5

When first learning subsetting, a common mistake is to use x[which(y)] instead of x[y]. Here the which() achieves nothing: it switches from logical to integer subsetting but the result will be exactly the same. In more general cases, there are two important differences. First, when the logical vector contains NA, logical subsetting replaces these values by NA while which() drops these values. Second, x[-which(y)] is not equivalent to x[!y]: if y is all FALSE, which(y) will be integer(0) and -integer(0) is still integer(0), so you’ll get no values, instead of all values. In general, avoid switching from logical to integer subsetting unless you want, for example, the first or last TRUE value.

Exercises


	How would you randomly permute the columns of a data frame? (This is an important technique in random forests.) Can you simultaneously permute the rows and columns in one step?


	How would you select a random sample of m rows from a data frame? What if the sample had to be contiguous (i.e., with an initial row, a final row, and every row in between)?


	How could you put the columns in a data frame in alphabetical order?




Answers


	Positive integers select elements at specific positions, negative integers drop elements; logical vectors keep elements at positions corresponding to TRUE; character vectors select elements with matching names.


	[ selects sub-lists. It always returns a list; if you use it with a single positive integer, it returns a list of length one. [[ selects an element within a list. $ is a convenient shorthand: x$y is equivalent to x[["y"]].


	Use drop = FALSE if you are subsetting a matrix, array, or data frame and you want to preserve the original dimensions. You should almost always use it when subsetting inside a function.


	If x is a matrix, x[] <- 0 will replace every element with 0, keeping the same number of rows and columns. x <- 0 completely replaces the matrix with the value 0.


	A named character vector can act as a simple lookup table: c(x = 1, y = 2, z = 3)[c("y", "z", "x")]





Vocabulary

An important part of being fluent in R is having a good working vocabulary. Below, I have listed the functions that I believe constitute such a vocabulary. You don’t need to be intimately familiar with the details of every function, but you should at least be aware that they all exist. If there are functions in this list that you’ve never heard of, I strongly recommend that you read their documentation. 

I came up with this list by looking through all the functions in the base, stats, and utils packages, and extracting those that I think are most useful. The list also includes a few pointers to particularly important functions in other packages, and some of the more important options().

The basics

# The first functions to learn
?
str

# Important operators and assignment
%in%, match
=, <-, <<-
$, [, [[, head, tail, subset
with
assign, get

# Comparison 
all.equal, identical
!=, ==, >, >=, <, <=
is.na, complete.cases
is.finite

# Basic math
*, +, -, /, ^, %%, %/%
abs, sign
acos, asin, atan, atan2
sin, cos, tan
ceiling, floor, round, trunc, signif
exp, log, log10, log2, sqrt

max, min, prod, sum
cummax, cummin, cumprod, cumsum, diff
pmax, pmin
range
mean, median, cor, sd, var
rle

# Functions to do with functions
function
missing
on.exit
return, invisible

# Logical & sets 
&, |, !, xor
all, any
intersect, union, setdiff, setequal
which

# Vectors and matrices
c, matrix
# automatic coercion rules character > numeric > logical
length, dim, ncol, nrow
cbind, rbind
names, colnames, rownames
t
diag
sweep
as.matrix, data.matrix

# Making vectors 
c
rep, rep_len
seq, seq_len, seq_along
rev
sample
choose, factorial, combn
(is/as).(character/numeric/logical/...)

# Lists & data.frames 
list, unlist
data.frame, as.data.frame
split
expand.grid

# Control flow 
if, &&, || (short circuiting)
for, while
next, break
switch
ifelse

# Apply & friends
lapply, sapply, vapply
apply
tapply
replicate



Common data structures

# Date time
ISOdate, ISOdatetime, strftime, strptime, date
difftime
julian, months, quarters, weekdays
library(lubridate)

# Character manipulation 
grep, agrep
gsub
strsplit
chartr
nchar
tolower, toupper
substr
paste
trimws
library(stringr)

# Factors 
factor, levels, nlevels
reorder, relevel
cut, findInterval
interaction
options(stringsAsFactors = FALSE)

# Array manipulation
array
dim
dimnames
aperm
library(abind)



Statistics

# Ordering and tabulating 
duplicated, unique
merge
order, rank, quantile
sort
table, ftable

# Linear models 
fitted, predict, resid, rstandard
lm, glm
hat, influence.measures
logLik, df, deviance
formula, ~, I
anova, coef, confint, vcov
contrasts

# Miscellaneous tests
apropos("\\.test$")

# Random variables 
(q, p, d, r) * (beta, binom, cauchy, chisq, exp, f, gamma, geom, 
  hyper, lnorm, logis, multinom, nbinom, norm, pois, signrank, t, 
  unif, weibull, wilcox, birthday, tukey)

# Matrix algebra 
crossprod, tcrossprod
eigen, qr, svd
%*%, %o%, outer
rcond
solve



Working with R

# Workspace 
ls, exists, rm
getwd, setwd
q
source
install.packages, library, require

# Help
help, ?
help.search
apropos
RSiteSearch
citation
demo
example
vignette

# Debugging
traceback
browser
recover
options(error = )
stop, warning, message
tryCatch, try



I/O

# Output
print, cat
message, warning
dput
format
sink, capture.output
sprintf

# Reading and writing data
data
count.fields
read.csv, write.csv
read.delim, write.delim
read.fwf
readLines, writeLines
readRDS, saveRDS
load, save
library(foreign)

# Files and directories 
dir
basename, dirname, tools::file_ext
file.path
path.expand, normalizePath
file.choose
file.copy, file.create, file.remove, file.rename, dir.create
file.exists, file.info
tempdir, tempfile
download.file, library(downloader)




Style guide

Good coding style is like using correct punctuation. You can manage without it, but it sure makes things easier to read. As with styles of punctuation, there are many possible variations. The following guide describes the style that I use (in this book and elsewhere). It is based on Google’s R style guide, with a few tweaks. You don’t have to use my style, but you really should use a consistent style.  

Good style is important because while your code only has one author, it’ll usually have multiple readers. This is especially true when you’re writing code with others. In that case, it’s a good idea to agree on a common style up-front. Since no style is strictly better than another, working with others may mean that you’ll need to sacrifice some preferred aspects of your style.

The formatR package, by Yihui Xie, makes it easier to clean up poorly formatted code. It can’t do everything, but it can quickly get your code from terrible to pretty good. Make sure to read the introduction before using it.

Notation and naming

File names

File names should be meaningful and end in .R.

# Good
fit-models.R
utility-functions.R

# Bad
foo.r
stuff.r

If files need to be run in sequence, prefix them with numbers:

0-download.R
1-parse.R
2-explore.R

Object names


“There are only two hard things in Computer Science: cache invalidation and naming things.”

— Phil Karlton



Variable and function names should be lowercase. Use an underscore (_) to separate words within a name. Generally, variable names should be nouns and function names should be verbs. Strive for names that are concise and meaningful (this is not easy!).

# Good
day_one
day_1

# Bad
first_day_of_the_month
DayOne
dayone
djm1



Where possible, avoid using names of existing functions and variables. Doing so will cause confusion for the readers of your code.

# Bad
T <- FALSE
c <- 10
mean <- function(x) sum(x)



Syntax

Spacing

Place spaces around all infix operators (=, +, -, <-, etc.). The same rule applies when using = in function calls. Always put a space after a comma, and never before (just like in regular English).

# Good
average <- mean(feet / 12 + inches, na.rm = TRUE)

# Bad
average<-mean(feet/12+inches,na.rm=TRUE)



There’s a small exception to this rule: :, :: and ::: don’t need spaces around them.

# Good
x <- 1:10
base::get

# Bad
x <- 1 : 10
base :: get



Place a space before left parentheses, except in a function call.

# Good
if (debug) do(x)
plot(x, y)

# Bad
if(debug)do(x)
plot (x, y)



Extra spacing (i.e., more than one space in a row) is ok if it improves alignment of equal signs or assignments (<-).

list(
  total = a + b + c, 
  mean  = (a + b + c) / n
)



Do not place spaces around code in parentheses or square brackets (unless there’s a comma, in which case see above).

# Good
if (debug) do(x)
diamonds[5, ]

# Bad
if ( debug ) do(x)  # No spaces around debug
x[1,]   # Needs a space after the comma
x[1 ,]  # Space goes after comma not before



Curly braces

An opening curly brace should never go on its own line and should always be followed by a new line. A closing curly brace should always go on its own line, unless it’s followed by else.

Always indent the code inside curly braces.

# Good

if (y < 0 && debug) {
  message("Y is negative")
}

if (y == 0) {
  log(x)
} else {
  y ^ x
}

# Bad

if (y < 0 && debug)
message("Y is negative")

if (y == 0) {
  log(x)
} 
else {
  y ^ x
}



It’s ok to leave very short statements on the same line:

if (y < 0 && debug) message("Y is negative")



Line length

Strive to limit your code to 80 characters per line. This fits comfortably on a printed page with a reasonably sized font. If you find yourself running out of room, this is a good indication that you should encapsulate some of the work in a separate function.

Indentation

When indenting your code, use two spaces. Never use tabs or mix tabs and spaces.

The only exception is if a function definition runs over multiple lines. In that case, indent the second line to where the definition starts:

long_function_name <- function(a = "a long argument", 
                               b = "another argument",
                               c = "another long argument") {
  # As usual code is indented by two spaces.
}



Assignment

Use <-, not =, for assignment. 

# Good
x <- 5
# Bad
x = 5



Organisation

Commenting guidelines

Comment your code. Each line of a comment should begin with the comment symbol and a single space: #. Comments should explain the why, not the what. 

Use commented lines of - and = to break up your file into easily readable chunks.

# Load data ---------------------------

# Plot data ---------------------------




Functions

Functions are a fundamental building block of R: to master many of the more advanced techniques in this book, you need a solid foundation in how functions work. You’ve probably already created many R functions, and you’re familiar with the basics of how they work. The focus of this chapter is to turn your existing, informal knowledge of functions into a rigorous understanding of what functions are and how they work. You’ll see some interesting tricks and techniques in this chapter, but most of what you’ll learn will be more important as the building blocks for more advanced techniques. 

The most important thing to understand about R is that functions are objects in their own right. You can work with them exactly the same way you work with any other type of object. This theme will be explored in depth in functional programming.

Quiz

Answer the following questions to see if you can safely skip this chapter. You can find the answers at the end of the chapter in answers.


	What are the three components of a function?


	What does the following code return?

x <- 10
f1 <- function(x) {
  function() {
    x + 10
  }
}
f1(1)()




	How would you more typically write this code?

`+`(1, `*`(2, 3))




	How could you make this call easier to read?

mean(, TRUE, x = c(1:10, NA))




	Does the following function throw an error when called? Why/why not?

f2 <- function(a, b) {
  a * 10
}
f2(10, stop("This is an error!"))




	What is an infix function? How do you write it? What’s a replacement function? How do you write it?


	What function do you use to ensure that a cleanup action occurs regardless of how a function terminates?




Outline


	Function components describes the three main components of a function.


	Lexical scoping teaches you how R finds values from names, the process of lexical scoping.


	Every operation is a function call shows you that everything that happens in R is a result of a function call, even if it doesn’t look like it.


	Function arguments discusses the three ways of supplying arguments to a function, how to call a function given a list of arguments, and the impact of lazy evaluation.


	Special calls describes two special types of function: infix and replacement functions.


	Return values discusses how and when functions return values, and how you can ensure that a function does something before it exits.




Prerequisites

The only package you’ll need is pryr, which is used to explore what happens when modifying vectors in place. Install it with install.packages("pryr").

Function components

All R functions have three parts:   


	the body(), the code inside the function.


	the formals(), the list of arguments which controls how you can call the function.


	the environment(), the “map” of the location of the function’s variables.




When you print a function in R, it shows you these three important components. If the environment isn’t displayed, it means that the function was created in the global environment.   

f <- function(x) x^2
f
#> function(x) x^2

formals(f)
#> $x
body(f)
#> x^2
environment(f)
#> <environment: R_GlobalEnv>



The assignment forms of body(), formals(), and environment() can also be used to modify functions.

Like all objects in R, functions can also possess any number of additional attributes(). One attribute used by base R is “srcref”, short for source reference, which points to the source code used to create the function. Unlike body(), this contains code comments and other formatting. You can also add attributes to a function. For example, you can set the class() and add a custom print() method. 

Primitive functions

There is one exception to the rule that functions have three components. Primitive functions, like sum(), call C code directly with .Primitive() and contain no R code. Therefore their formals(), body(), and environment() are all NULL:   

sum



## function (..., na.rm = FALSE)  .Primitive("sum")

formals(sum)



## NULL

body(sum)



## NULL

environment(sum)



## NULL

Primitive functions are only found in the base package, and since they operate at a low level, they can be more efficient (primitive replacement functions don’t have to make copies), and can have different rules for argument matching (e.g., switch and call). This, however, comes at a cost of behaving differently from all other functions in R. Hence the R core team generally avoids creating them unless there is no other option.

Exercises


	What function allows you to tell if an object is a function? What function allows you to tell if a function is a primitive function?


	This code makes a list of all functions in the base package.

objs <- mget(ls("package:base"), inherits = TRUE)
funs <- Filter(is.function, objs)



Use it to answer the following questions:


	Which base function has the most arguments?


	How many base functions have no arguments? What’s special about those functions?


	How could you adapt the code to find all primitive functions?





	What are the three important components of a function?


	When does printing a function not show what environment it was created in?




Lexical scoping

Scoping is the set of rules that govern how R looks up the value of a symbol. In the example below, scoping is the set of rules that R applies to go from the symbol x to its value 10:  

x <- 10
x



## [1] 10

Understanding scoping allows you to:


	build tools by composing functions, as described in functional programming.


	overrule the usual evaluation rules and do non-standard evaluation, as described in non-standard evaluation.




R has two types of scoping: lexical scoping, implemented automatically at the language level, and dynamic scoping, used in select functions to save typing during interactive analysis. We discuss lexical scoping here because it is intimately tied to function creation. Dynamic scoping is described in more detail in scoping issues.

Lexical scoping looks up symbol values based on how functions were nested when they were created, not how they are nested when they are called. With lexical scoping, you don’t need to know how the function is called to figure out where the value of a variable will be looked up. You just need to look at the function’s definition.

The “lexical” in lexical scoping doesn’t correspond to the usual English definition (“of or relating to words or the vocabulary of a language as distinguished from its grammar and construction”) but comes from the computer science term “lexing”, which is part of the process that converts code represented as text to meaningful pieces that the programming language understands.

There are four basic principles behind R’s implementation of lexical scoping:


	name masking

	functions vs. variables

	a fresh start

	dynamic lookup



You probably know many of these principles already, although you might not have thought about them explicitly. Test your knowledge by mentally running through the code in each block before looking at the answers.

Name masking

The following example illustrates the most basic principle of lexical scoping, and you should have no problem predicting the output.

f <- function() {
  x <- 1
  y <- 2
  c(x, y)
}
f()
rm(f)



If a name isn’t defined inside a function, R will look one level up.

x <- 2
g <- function() {
  y <- 1
  c(x, y)
}
g()
rm(x, g)



The same rules apply if a function is defined inside another function: look inside the current function, then where that function was defined, and so on, all the way up to the global environment, and then on to other loaded packages. Run the following code in your head, then confirm the output by running the R code.

x <- 1
h <- function() {
  y <- 2
  i <- function() {
    z <- 3
    c(x, y, z)
  }
  i()
}
h()
rm(x, h)



The same rules apply to closures, functions created by other functions. Closures will be described in more detail in functional programming; here we’ll just look at how they interact with scoping. The following function, j(), returns a function. What do you think this function will return when we call it? 

j <- function(x) {
  y <- 2
  function() {
    c(x, y)
  }
}
k <- j(1)
k()
rm(j, k)



This seems a little magical (how does R know what the value of y is after the function has been called). It works because k preserves the environment in which it was defined and because the environment includes the value of y. Environments gives some pointers on how you can dive in and figure out what values are stored in the environment associated with each function.

Functions vs. variables

The same principles apply regardless of the type of associated value — finding functions works exactly the same way as finding variables:

l <- function(x) x + 1
m <- function() {
  l <- function(x) x * 2
  l(10)
}
m()



## [1] 20

rm(l, m)



For functions, there is one small tweak to the rule. If you are using a name in a context where it’s obvious that you want a function (e.g., f(3)), R will ignore objects that are not functions while it is searching. In the following example n takes on a different value depending on whether R is looking for a function or a variable.

n <- function(x) x / 2
o <- function() {
  n <- 10
  n(n)
}
o()



## [1] 5

rm(n, o)



However, using the same name for functions and other objects will make for confusing code, and is generally best avoided.

A fresh start

What happens to the values in between invocations of a function? What will happen the first time you run this function? What will happen the second time? (If you haven’t seen exists() before: it returns TRUE if there’s a variable of that name, otherwise it returns FALSE.)

j <- function() {
  if (!exists("a")) {
    a <- 1
  } else {
    a <- a + 1
  }
  a
}
j()
rm(j)



You might be surprised that it returns the same value, 1, every time. This is because every time a function is called, a new environment is created to host execution. A function has no way to tell what happened the last time it was run; each invocation is completely independent. (We’ll see some ways to get around this in mutable state.)

Dynamic lookup

Lexical scoping determines where to look for values, not when to look for them. R looks for values when the function is run, not when it’s created. This means that the output of a function can be different depending on objects outside its environment:

f <- function() x
x <- 15
f()



## [1] 15

x <- 20
f()



## [1] 20

You generally want to avoid this behaviour because it means the function is no longer self-contained. This is a common error — if you make a spelling mistake in your code, you won’t get an error when you create the function, and you might not even get one when you run the function, depending on what variables are defined in the global environment.

One way to detect this problem is the findGlobals() function from codetools. This function lists all the external dependencies of a function: 

f <- function() x + 1
codetools::findGlobals(f)



## [1] "+" "x"

Another way to try and solve the problem would be to manually change the environment of the function to the emptyenv(), an environment which contains absolutely nothing:

environment(f) <- emptyenv()
f()



## Error in f(): could not find function "+"

This doesn’t work because R relies on lexical scoping to find everything, even the + operator. It’s never possible to make a function completely self-contained because you must always rely on functions defined in base R or other packages.

You can use this same idea to do other things that are extremely ill-advised. For example, since all of the standard operators in R are functions, you can override them with your own alternatives. If you ever are feeling particularly evil, run the following code while your friend is away from their computer:

`(` <- function(e1) {
  if (is.numeric(e1) && runif(1) < 0.1) {
    e1 + 1
  } else {
    e1
  }
}
replicate(50, (1 + 2))



##  [1] 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 4 3 3 3 3 3 3 3 3 3
## [36] 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3

rm("(")



This will introduce a particularly pernicious bug: 10% of the time, 1 will be added to any numeric calculation inside parentheses. This is another good reason to regularly restart with a clean R session!

Exercises


	What does the following code return? Why? What does each of the three c’s mean?

c <- 10
c(c = c)




	What are the four principles that govern how R looks for values?


	What does the following function return? Make a prediction before running the code yourself.

f <- function(x) {
  f <- function(x) {
    f <- function(x) {
      x ^ 2
    }
    f(x) + 1
  }
  f(x) * 2
}
f(10)






Every operation is a function call


“To understand computations in R, two slogans are helpful:


	Everything that exists is an object.

	Everything that happens is a function call."



— John Chambers



The previous example of redefining ( works because every operation in R is a function call, whether or not it looks like one. This includes infix operators like +, control flow operators like for, if, and while, subsetting operators like [] and $, and even the curly brace {. This means that each pair of statements in the following example is exactly equivalent. Note that `, the backtick, lets you refer to functions or variables that have otherwise reserved or illegal names:   

x <- 10; y <- 5
x + y



## [1] 15

`+`(x, y)



## [1] 15

for (i in 1:2) print(i)



## [1] 1
## [1] 2

`for`(i, 1:2, print(i))



## [1] 1
## [1] 2

if (i == 1) print("yes!") else print("no.")



## [1] "no."

`if`(i == 1, print("yes!"), print("no."))



## [1] "no."

x[3]



## [1] NA

`[`(x, 3)



## [1] NA

{ print(1); print(2); print(3) }



## [1] 1
## [1] 2
## [1] 3

`{`(print(1), print(2), print(3))



## [1] 1
## [1] 2
## [1] 3

It is possible to override the definitions of these special functions, but this is almost certainly a bad idea. However, there are occasions when it might be useful: it allows you to do something that would have otherwise been impossible. For example, this feature makes it possible for the dplyr package to translate R expressions into SQL expressions. Domain specific languages uses this idea to create domain specific languages that allow you to concisely express new concepts using existing R constructs.

It’s more often useful to treat special functions as ordinary functions. For example, we could use sapply() to add 3 to every element of a list by first defining a function add(), like this: 

add <- function(x, y) x + y
sapply(1:10, add, 3)



##  [1]  4  5  6  7  8  9 10 11 12 13

But we can also get the same effect using the built-in + function.

sapply(1:5, `+`, 3)



## [1] 4 5 6 7 8

sapply(1:5, "+", 3)



## [1] 4 5 6 7 8

Note the difference between `+` and "+". The first one is the value of the object called +, and the second is a string containing the character +. The second version works because sapply can be given the name of a function instead of the function itself: if you read the source of sapply(), you’ll see the first line uses match.fun() to find functions given their names.

A more useful application is to combine lapply() or sapply() with subsetting:

x <- list(1:3, 4:9, 10:12)
sapply(x, "[", 2)



## [1]  2  5 11

# equivalent to
sapply(x, function(x) x[2])



## [1]  2  5 11

Remembering that everything that happens in R is a function call will help you in metaprogramming.

Function arguments

It’s useful to distinguish between the formal arguments and the actual arguments of a function. The formal arguments are a property of the function, whereas the actual or calling arguments can vary each time you call the function. This section discusses how calling arguments are mapped to formal arguments, how you can call a function given a list of arguments, how default arguments work, and the impact of lazy evaluation.

Calling functions

When calling a function you can specify arguments by position, by complete name, or by partial name. Arguments are matched first by exact name (perfect matching), then by prefix matching, and finally by position. 

f <- function(abcdef, bcde1, bcde2) {
  list(a = abcdef, b1 = bcde1, b2 = bcde2)
}
str(f(1, 2, 3))



## List of 3
##  $ a : num 1
##  $ b1: num 2
##  $ b2: num 3

str(f(2, 3, abcdef = 1))



## List of 3
##  $ a : num 1
##  $ b1: num 2
##  $ b2: num 3

# Can abbreviate long argument names:
str(f(2, 3, a = 1))



## List of 3
##  $ a : num 1
##  $ b1: num 2
##  $ b2: num 3

# But this doesn't work because abbreviation is ambiguous
str(f(1, 3, b = 1))



## Error in f(1, 3, b = 1): argument 3 matches multiple formal arguments

Generally, you only want to use positional matching for the first one or two arguments; they will be the most commonly used, and most readers will know what they are. Avoid using positional matching for less commonly used arguments, and only use readable abbreviations with partial matching. (If you are writing code for a package that you want to publish on CRAN you can not use partial matching, and must use complete names.) Named arguments should always come after unnamed arguments. If a function uses ... (discussed in more detail below), you can only specify arguments listed after ... with their full name.

These are good calls:

mean(1:10)
mean(1:10, trim = 0.05)



This is probably overkill:

mean(x = 1:10)



And these are just confusing:

mean(1:10, n = T)
mean(1:10, , FALSE)
mean(1:10, 0.05)
mean(, TRUE, x = c(1:10, NA))



Calling a function given a list of arguments

Suppose you had a list of function arguments: 

args <- list(1:10, na.rm = TRUE)



How could you then send that list to mean()? You need do.call():

do.call(mean, args)



## [1] 5.5

# Equivalent to
mean(1:10, na.rm = TRUE)



## [1] 5.5

Default and missing arguments

Function arguments in R can have default values. 

f <- function(a = 1, b = 2) {
  c(a, b)
}
f()



## [1] 1 2

Since arguments in R are evaluated lazily (more on that below), the default value can be defined in terms of other arguments:

g <- function(a = 1, b = a * 2) {
  c(a, b)
}
g()



## [1] 1 2

g(10)



## [1] 10 20

Default arguments can even be defined in terms of variables created within the function. This is used frequently in base R functions, but I think it is bad practice, because you can’t understand what the default values will be without reading the complete source code.

h <- function(a = 1, b = d) {
  d <- (a + 1) ^ 2
  c(a, b)
}
h()



## [1] 1 4

h(10)



## [1]  10 121

You can determine if an argument was supplied or not with the missing() function. 

i <- function(a, b) {
  c(missing(a), missing(b))
}
i()



## [1] TRUE TRUE

i(a = 1)



## [1] FALSE  TRUE

i(b = 2)



## [1]  TRUE FALSE

i(1, 2)



## [1] FALSE FALSE

Sometimes you want to add a non-trivial default value, which might take several lines of code to compute. Instead of inserting that code in the function definition, you could use missing() to conditionally compute it if needed. However, this makes it hard to know which arguments are required and which are optional without carefully reading the documentation. Instead, I usually set the default value to NULL and use is.null() to check if the argument was supplied.

Lazy evaluation

By default, R function arguments are lazy — they’re only evaluated if they’re actually used:  

f <- function(x) {
  10
}
f(stop("This is an error!"))



## [1] 10

If you want to ensure that an argument is evaluated you can use force(): 

f <- function(x) {
  force(x)
  10
}
f(stop("This is an error!"))



## Error in force(x): This is an error!

This is important when creating closures with lapply() or a loop:

add <- function(x) {
  function(y) x + y
}
adders <- lapply(1:10, add)
adders[[1]](10)



## [1] 11

adders[[10]](10)



## [1] 20

x is lazily evaluated the first time that you call one of the adder functions. At this point, the loop is complete and the final value of x is 10. Therefore all of the adder functions will add 10 on to their input, probably not what you wanted! Manually forcing evaluation fixes the problem:

add <- function(x) {
  force(x)
  function(y) x + y
}
adders2 <- lapply(1:10, add)
adders2[[1]](10)



## [1] 11

adders2[[10]](10)



## [1] 20

This code is exactly equivalent to

add <- function(x) {
  x
  function(y) x + y
}



because the force function is defined as force <- function(x) x. However, using this function clearly indicates that you’re forcing evaluation, not that you’ve accidentally typed x.

Default arguments are evaluated inside the function. This means that if the expression depends on the current environment the results will differ depending on whether you use the default value or explicitly provide one.

f <- function(x = ls()) {
  a <- 1
  x
}

# ls() evaluated inside f:
f()



## [1] "a" "x"

# ls() evaluated in global environment:
f(ls())



##  [1] "add"     "adders"  "adders2" "args"    "f"       "funs"    "g"      
##  [8] "h"       "i"       "objs"    "path"    "x"       "y"

More technically, an unevaluated argument is called a promise, or (less commonly) a thunk. A promise is made up of two parts:  


	The expression which gives rise to the delayed computation. (It can be accessed with substitute(). See non-standard evaluation for more details.)


	The environment where the expression was created and where it should be evaluated.




The first time a promise is accessed the expression is evaluated in the environment where it was created. This value is cached, so that subsequent access to the evaluated promise does not recompute the value (but the original expression is still associated with the value, so substitute() can continue to access it). You can find more information about a promise using pryr::promise_info(). This uses some C++ code to extract information about the promise without evaluating it, which is impossible to do in pure R code.

Laziness is useful in if statements — the second statement below will be evaluated only if the first is true. If it wasn’t, the statement would return an error because NULL > 0 is a logical vector of length 0 and not a valid input to if. 

x <- NULL
if (!is.null(x) && x > 0) {

}



We could implement “&&” ourselves:

`&&` <- function(x, y) {
  if (!x) return(FALSE)
  if (!y) return(FALSE)

  TRUE
}
a <- NULL
!is.null(a) && a > 0



## [1] FALSE

This function would not work without lazy evaluation because both x and y would always be evaluated, testing a > 0 even when a was NULL.

Sometimes you can also use laziness to eliminate an if statement altogether. For example, instead of:

if (is.null(a)) stop("a is null")



## Error in eval(expr, envir, enclos): a is null

You could write:

!is.null(a) || stop("a is null")



## Error in eval(expr, envir, enclos): a is null

...

There is a special argument called ... . This argument will match any arguments not otherwise matched, and can be easily passed on to other functions. This is useful if you want to collect arguments to call another function, but you don’t want to prespecify their possible names. ... is often used in conjunction with S3 generic functions to allow individual methods to be more flexible. 

One relatively sophisticated user of ... is the base plot() function. plot() is a generic method with arguments x, y and ... . To understand what ... does for a given function we need to read the help: “Arguments to be passed to methods, such as graphical parameters”. Most simple invocations of plot() end up calling plot.default() which has many more arguments, but also has ... . Again, reading the documentation reveals that ... accepts “other graphical parameters”, which are listed in the help for par(). This allows us to write code like:

plot(1:5, col = "red")
plot(1:5, cex = 5, pch = 20)



This illustrates both the advantages and disadvantages of ...: it makes plot() very flexible, but to understand how to use it, we have to carefully read the documentation. Additionally, if we read the source code for plot.default, we can discover undocumented features. It’s possible to pass along other arguments to Axis() and box():

plot(1:5, bty = "u")
plot(1:5, labels = FALSE)



To capture ... in a form that is easier to work with, you can use list(...). (See capturing unevaluated dots for other ways to capture ... without evaluating the arguments.)

f <- function(...) {
  names(list(...))
}
f(a = 1, b = 2)



## [1] "a" "b"

Using ... comes at a price — any misspelled arguments will not raise an error, and any arguments after ... must be fully named. This makes it easy for typos to go unnoticed:

sum(1, 2, NA, na.mr = TRUE)



## [1] NA

It’s often better to be explicit rather than implicit, so you might instead ask users to supply a list of additional arguments. That’s certainly easier if you’re trying to use ... with multiple additional functions.

Exercises


	Clarify the following list of odd function calls:

x <- sample(replace = TRUE, 20, x = c(1:10, NA))
y <- runif(min = 0, max = 1, 20)
cor(m = "k", y = y, u = "p", x = x)




	What does this function return? Why? Which principle does it illustrate?

f1 <- function(x = {y <- 1; 2}, y = 0) {
  x + y
}
f1()




	What does this function return? Why? Which principle does it illustrate?

f2 <- function(x = z) {
  z <- 100
  x
}
f2()






Special calls

R supports two additional syntaxes for calling special types of functions: infix and replacement functions.

Infix functions

Most functions in R are “prefix” operators: the name of the function comes before the arguments. You can also create infix functions where the function name comes in between its arguments, like + or -. All user-created infix functions must start and end with %. R comes with the following infix functions predefined: %%, %*%, %/%, %in%, %o%, %x%. (The complete list of built-in infix operators that don’t need % is: :, ::, :::, $, @, ^, *, /, +, -, >, >=, <, <=, ==, !=, !, &, &&, |, ||, ~, <-, <<-)   

For example, we could create a new operator that pastes together strings:

`%+%` <- function(a, b) paste0(a, b)
"new" %+% " string"



## [1] "new string"

Note that when creating the function, you have to put the name in backticks because it’s a special name. This is just a syntactic sugar for an ordinary function call; as far as R is concerned there is no difference between these two expressions:

"new" %+% " string"



## [1] "new string"

`%+%`("new", " string")



## [1] "new string"

Or indeed between 

1 + 5



## [1] 6

`+`(1, 5)



## [1] 6

The names of infix functions are more flexible than regular R functions: they can contain any sequence of characters (except “%”, of course). You will need to escape any special characters in the string used to define the function, but not when you call it:

`% %` <- function(a, b) paste(a, b)
`%'%` <- function(a, b) paste(a, b)
`%/\\%` <- function(a, b) paste(a, b)

"a" % % "b"



## [1] "a b"

"a" %'% "b"



## [1] "a b"

"a" %/\% "b"



## [1] "a b"

R’s default precedence rules mean that infix operators are composed from left to right:

`%-%` <- function(a, b) paste0("(", a, " %-% ", b, ")")
"a" %-% "b" %-% "c"



## [1] "((a %-% b) %-% c)"

There’s one infix function that I use very often. It’s inspired by Ruby’s || logical or operator, although it works a little differently in R because Ruby has a more flexible definition of what evaluates to TRUE in an if statement. It’s useful as a way of providing a default value in case the output of another function is NULL:

`%||%` <- function(a, b) if (!is.null(a)) a else b
function_that_might_return_null() %||% default value



Replacement functions

Replacement functions act like they modify their arguments in place, and have the special name xxx<-. They typically have two arguments (x and value), although they can have more, and they must return the modified object. For example, the following function allows you to modify the second element of a vector:  

`second<-` <- function(x, value) {
  x[2] <- value
  x
}
x <- 1:10
second(x) <- 5L
x



##  [1]  1  5  3  4  5  6  7  8  9 10

When R evaluates the assignment second(x) <- 5, it notices that the left hand side of the <- is not a simple name, so it looks for a function named second<- to do the replacement. 

I say they “act” like they modify their arguments in place, because they actually create a modified copy. We can see that by using pryr::address() to find the memory address of the underlying object.

library(pryr)
x <- 1:10
address(x)



## [1] "0x4297128"

second(x) <- 6L
address(x)



## [1] "0x3b35df8"

Built-in functions that are implemented using .Primitive() will modify in place: 

x <- 1:10
address(x)
#> [1] "0x103945110"

x[2] <- 7L
address(x)
#> [1] "0x103945110"



It’s important to be aware of this behaviour since it has important performance implications.

If you want to supply additional arguments, they go in between x and value:

`modify<-` <- function(x, position, value) {
  x[position] <- value
  x
}
modify(x, 1) <- 10
x



##  [1] 10  7  3  4  5  6  7  8  9 10

When you call modify(x, 1) <- 10, behind the scenes R turns it into:

x <- `modify<-`(x, 1, 10)



This means you can’t do things like:

modify(get("x"), 1) <- 10



because that gets turned into the invalid code:

get("x") <- `modify<-`(get("x"), 1, 10)



It’s often useful to combine replacement and subsetting:

x <- c(a = 1, b = 2, c = 3)
names(x)



## [1] "a" "b" "c"

names(x)[2] <- "two"
names(x)



## [1] "a"   "two" "c"

This works because the expression names(x)[2] <- "two" is evaluated as if you had written:

`*tmp*` <- names(x)
`*tmp*`[2] <- "two"
names(x) <- `*tmp*`



(Yes, it really does create a local variable named *tmp*, which is removed afterwards.)

Exercises


	Create a list of all the replacement functions found in the base package. Which ones are primitive functions?


	What are valid names for user-created infix functions?


	Create an infix xor() operator.


	Create infix versions of the set functions intersect(), union(), and setdiff().


	Create a replacement function that modifies a random location in a vector.




Return values

The last expression evaluated in a function becomes the return value, the result of invoking the function. 

f <- function(x) {
  if (x < 10) {
    0
  } else {
    10
  }
}
f(5)



## [1] 0

f(15)



## [1] 10

Generally, I think it’s good style to reserve the use of an explicit return() for when you are returning early, such as for an error, or a simple case of the function. This style of programming can also reduce the level of indentation, and generally make functions easier to understand because you can reason about them locally. 

f <- function(x, y) {
  if (!x) return(y)

  # complicated processing here
}



Functions can return only a single object. But this is not a limitation because you can return a list containing any number of objects.

The functions that are the easiest to understand and reason about are pure functions: functions that always map the same input to the same output and have no other impact on the workspace. In other words, pure functions have no side effects: they don’t affect the state of the world in any way apart from the value they return. 

R protects you from one type of side effect: most R objects have copy-on-modify semantics. So modifying a function argument does not change the original value: 

f <- function(x) {
  x$a <- 2
  x
}
x <- list(a = 1)
f(x)



## $a
## [1] 2

x$a



## [1] 1

(There are two important exceptions to the copy-on-modify rule: environments and reference classes. These can be modified in place, so extra care is needed when working with them.)

This is notably different to languages like Java where you can modify the inputs of a function. This copy-on-modify behaviour has important performance consequences which are discussed in depth in profiling. (Note that the performance consequences are a result of R’s implementation of copy-on-modify semantics; they are not true in general. Clojure is a new language that makes extensive use of copy-on-modify semantics with limited performance consequences.)

Most base R functions are pure, with a few notable exceptions:


	library() which loads a package, and hence modifies the search path.


	setwd(), Sys.setenv(), Sys.setlocale() which change the working directory, environment variables, and the locale, respectively.


	plot() and friends which produce graphical output.


	write(), write.csv(), saveRDS(), etc. which save output to disk.


	options() and par() which modify global settings.


	S4 related functions which modify global tables of classes and methods.


	Random number generators which produce different numbers each time you run them.




It’s generally a good idea to minimise the use of side effects, and where possible, to minimise the footprint of side effects by separating pure from impure functions. Pure functions are easier to test (because all you need to worry about are the input values and the output), and are less likely to work differently on different versions of R or on different platforms. For example, this is one of the motivating principles of ggplot2: most operations work on an object that represents a plot, and only the final print or plot call has the side effect of actually drawing the plot.

Functions can return invisible values, which are not printed out by default when you call the function.  

f1 <- function() 1
f2 <- function() invisible(1)

f1()



## [1] 1

f2()
f1() == 1



## [1] TRUE

f2() == 1



## [1] TRUE

You can force an invisible value to be displayed by wrapping it in parentheses:

(f2())



## [1] 1

The most common function that returns invisibly is <-: 

a <- 2
(a <- 2)



## [1] 2

This is what makes it possible to assign one value to multiple variables:

a <- b <- c <- d <- 2



because this is parsed as:

(a <- (b <- (c <- (d <- 2))))



## [1] 2

On exit

As well as returning a value, functions can set up other triggers to occur when the function is finished using on.exit(). This is often used as a way to guarantee that changes to the global state are restored when the function exits. The code in on.exit() is run regardless of how the function exits, whether with an explicit (early) return, an error, or simply reaching the end of the function body. 

in_dir <- function(dir, code) {
  old <- setwd(dir)
  on.exit(setwd(old))

  force(code)
}
getwd()



## [1] "/home/travis/build/hadley/adv-r"

in_dir("~", getwd())



## [1] "/home/travis"

The basic pattern is simple:


	We first set the directory to a new location, capturing the current location from the output of setwd().


	We then use on.exit() to ensure that the working directory is returned to the previous value regardless of how the function exits.


	Finally, we explicitly force evaluation of the code. (We don’t actually need force() here, but it makes it clear to readers what we’re doing.)




Caution: If you’re using multiple on.exit() calls within a function, make sure to set add = TRUE. Unfortunately, the default in on.exit() is add = FALSE, so that every time you run it, it overwrites existing exit expressions. Because of the way on.exit() is implemented, it’s not possible to create a variant with add = TRUE, so you must be careful when using it.

Exercises


	How does the chdir parameter of source() compare to in_dir()? Why might you prefer one approach to the other?


	What function undoes the action of library()? How do you save and restore the values of options() and par()?


	Write a function that opens a graphics device, runs the supplied code, and closes the graphics device (always, regardless of whether or not the plotting code worked).


	We can use on.exit() to implement a simple version of capture.output().

capture.output2 <- function(code) {
  temp <- tempfile()
  on.exit(file.remove(temp), add = TRUE)

  sink(temp)
  on.exit(sink(), add = TRUE)

  force(code)
  readLines(temp)
}
capture.output2(cat("a", "b", "c", sep = "\n"))



## [1] "a" "b" "c"

Compare capture.output() to capture.output2(). How do the functions differ? What features have I removed to make the key ideas easier to see? How have I rewritten the key ideas to be easier to understand?




Quiz answers




	The three components of a function are its body, arguments, and environment.


	f1(1)() returns 11.


	You’d normally write it in infix style: 1 + (2 * 3).


	Rewriting the call to mean(c(1:10, NA), na.rm = TRUE) is easier to understand.


	No, it does not throw an error because the second argument is never used so it’s never evaluated.


	See infix and replacement functions.


	You use on.exit(); see on exit for details.





OO field guide

This chapter is a field guide for recognising and working with R’s objects in the wild. R has three object oriented systems (plus the base types), so it can be a bit intimidating. The goal of this guide is not to make you an expert in all four systems, but to help you identify which system you’re working with and to help you use it effectively. 

Central to any object-oriented system are the concepts of class and method. A class defines the behaviour of objects by describing their attributes and their relationship to other classes. The class is also used when selecting methods, functions that behave differently depending on the class of their input. Classes are usually organised in a hierarchy: if a method does not exist for a child, then the parent’s method is used instead; the child inherits behaviour from the parent.

R’s three OO systems differ in how classes and methods are defined:


	S3 implements a style of OO programming called generic-function OO. This is different from most programming languages, like Java, C++, and C#, which implement message-passing OO. With message-passing, messages (methods) are sent to objects and the object determines which function to call. Typically, this object has a special appearance in the method call, usually appearing before the name of the method/message: e.g., canvas.drawRect("blue"). S3 is different. While computations are still carried out via methods, a special type of function called a generic function decides which method to call, e.g., drawRect(canvas, "blue"). S3 is a very casual system. It has no formal definition of classes.


	S4 works similarly to S3, but is more formal. There are two major differences to S3. S4 has formal class definitions, which describe the representation and inheritance for each class, and has special helper functions for defining generics and methods. S4 also has multiple dispatch, which means that generic functions can pick methods based on the class of any number of arguments, not just one.


	Reference classes, called RC for short, are quite different from S3 and S4. RC implements message-passing OO, so methods belong to classes, not functions. $ is used to separate objects and methods, so method calls look like canvas$drawRect("blue"). RC objects are also mutable: they don’t use R’s usual copy-on-modify semantics, but are modified in place. This makes them harder to reason about, but allows them to solve problems that are difficult to solve with S3 or S4.




There’s also one other system that’s not quite OO, but it’s important to mention here:


	base types, the internal C-level types that underlie the other OO systems. Base types are mostly manipulated using C code, but they’re important to know about because they provide the building blocks for the other OO systems.



The following sections describe each system in turn, starting with base types. You’ll learn how to recognise the OO system that an object belongs to, how method dispatch works, and how to create new objects, classes, generics, and methods for that system. The chapter concludes with a few remarks on when to use each system.

Prerequisites

You’ll need the pryr package, install.packages("pryr"), to access useful functions for examining OO properties.

Quiz

Think you know this material already? If you can answer the following questions correctly, you can safely skip this chapter. Find the answers at the end of the chapter in answers.


	How do you tell what OO system (base, S3, S4, or RC) an object is associated with?


	How do you determine the base type (like integer or list) of an object?


	What is a generic function?


	What are the main differences between S3 and S4? What are the main differences between S4 & RC?




Outline


	Base types teaches you about R’s base object system. Only R-core can add new classes to this system, but it’s important to know about because it underpins the three other systems.


	S3 shows you the basics of the S3 object system. It’s the simplest and most commonly used OO system.


	S4 discusses the more formal and rigorous S4 system.


	RC teaches you about R’s newest OO system: reference classes, or RC for short.


	Picking a system advises on which OO system to use if you’re starting a new project.




Base types

Underlying every R object is a C structure (or struct) that describes how that object is stored in memory. The struct includes the contents of the object, the information needed for memory management, and, most importantly for this section, a type. This is the base type of an R object. Base types are not really an object system because only the R core team can create new types. As a result, new base types are added very rarely: the most recent change, in 2011, added two exotic types that you never see in R, but are useful for diagnosing memory problems (NEWSXP and FREESXP). Prior to that, the last type added was a special base type for S4 objects (S4SXP) in 2005.   

Data structures explains the most common base types (atomic vectors and lists), but base types also encompass functions, environments, and other more exotic objects likes names, calls, and promises that you’ll learn about later in the book. You can determine an object’s base type with typeof(). Unfortunately the names of base types are not used consistently throughout R, and type and the corresponding “is” function may use different names: 

# The type of a function is "closure"
f <- function() {}
typeof(f)



## [1] "closure"

is.function(f)



## [1] TRUE

# The type of a primitive function is "builtin"
typeof(sum)



## [1] "builtin"

is.primitive(sum)



## [1] TRUE

You may have heard of mode() and storage.mode(). I recommend ignoring these functions because they’re just aliases of the names returned by typeof(), and exist solely for S compatibility. Read their source code if you want to understand exactly what they do. 

Functions that behave differently for different base types are almost always written in C, where dispatch occurs using switch statements (e.g., switch(TYPEOF(x))). Even if you never write C code, it’s important to understand base types because everything else is built on top of them: S3 objects can be built on top of any base type, S4 objects use a special base type, and RC objects are a combination of S4 and environments (another base type). To see if an object is a pure base type, i.e., it doesn’t also have S3, S4, or RC behaviour, check that is.object(x) returns FALSE.

S3

S3 is R’s first and simplest OO system. It is the only OO system used in the base and stats packages, and it’s the most commonly used system in CRAN packages. S3 is informal and ad hoc, but it has a certain elegance in its minimalism: you can’t take away any part of it and still have a useful OO system.  

Recognising objects, generic functions, and methods

Most objects that you encounter are S3 objects. But unfortunately there’s no simple way to test if an object is an S3 object in base R. The closest you can come is is.object(x) & !isS4(x), i.e., it’s an object, but not S4. An easier way is to use pryr::otype(): 

library(pryr)

df <- data.frame(x = 1:10, y = letters[1:10])
otype(df)    # A data frame is an S3 class



## [1] "S3"

otype(df$x)  # A numeric vector isn't



## [1] "base"

otype(df$y)  # A factor is



## [1] "S3"

In S3, methods belong to functions, called generic functions, or generics for short. S3 methods do not belong to objects or classes. This is different from most other programming languages, but is a legitimate OO style.   

To determine if a function is an S3 generic, you can inspect its source code for a call to UseMethod(): that’s the function that figures out the correct method to call, the process of method dispatch. Similar to otype(), pryr also provides ftype() which describes the object system, if any, associated with a function: 

mean



## function (x, ...) 
## UseMethod("mean")
## <bytecode: 0x399edc8>
## <environment: namespace:base>

ftype(mean)



## [1] "s3"      "generic"

Some S3 generics, like [, sum(), and cbind(), don’t call UseMethod() because they are implemented in C. Instead, they call the C functions DispatchGroup() or DispatchOrEval(). Functions that do method dispatch in C code are called internal generics and are documented in ?"internal generic". ftype() knows about these special cases too.

Given a class, the job of an S3 generic is to call the right S3 method. You can recognise S3 methods by their names, which look like generic.class(). For example, the Date method for the mean() generic is called mean.Date(), and the factor method for print() is called print.factor().  

This is the reason that most modern style guides discourage the use of . in function names: it makes them look like S3 methods. For example, is t.test() the t method for test objects? Similarly, the use of . in class names can also be confusing: is print.data.frame() the print() method for data.frames, or the print.data() method for frames? pryr::ftype() knows about these exceptions, so you can use it to figure out if a function is an S3 method or generic:

ftype(t.data.frame) # data frame method for t()



## [1] "s3"     "method"

ftype(t.test)       # generic function for t tests



## [1] "s3"      "generic"

You can see all the methods that belong to a generic with methods():

methods("mean")



## [1] mean.Date     mean.default  mean.difftime mean.POSIXct  mean.POSIXlt 
## see '?methods' for accessing help and source code

methods("t.test")



## [1] t.test.default* t.test.formula*
## see '?methods' for accessing help and source code

(Apart from methods defined in the base package, most S3 methods will not be visible: use getS3method() to read their source code.)

You can also list all generics that have a method for a given class:

methods(class = "ts")



##  [1] [             [<-           aggregate     as.data.frame cbind        
##  [6] coerce        cycle         diff          diffinv       initialize   
## [11] kernapply     lines         Math          Math2         monthplot    
## [16] na.omit       Ops           plot          print         show         
## [21] slotsFromS3   t             time          window        window<-     
## see '?methods' for accessing help and source code

There’s no way to list all S3 classes, as you’ll learn in the following section.

Defining classes and creating objects

S3 is a simple and ad hoc system; it has no formal definition of a class. To make an object an instance of a class, you just take an existing base object and set the class attribute. You can do that during creation with structure(), or after the fact with class<-():  

# Create and assign class in one step
foo <- structure(list(), class = "foo")

# Create, then set class
foo <- list()
class(foo) <- "foo"



S3 objects are usually built on top of lists, or atomic vectors with attributes. (You can refresh your memory of attributes with attributes.) You can also turn functions into S3 objects. Other base types are either rarely seen in R, or have unusual semantics that don’t work well with attributes.

You can determine the class of any object using class(x), and see if an object inherits from a specific class using inherits(x, "classname"). 

class(foo)



## [1] "foo"

inherits(foo, "foo")



## [1] TRUE

The class of an S3 object can be a vector, which describes behaviour from most to least specific. For example, the class of the glm() object is c("glm", "lm") indicating that generalised linear models inherit behaviour from linear models. Class names are usually lower case, and you should avoid .. Otherwise, opinion is mixed whether to use underscores (my_class) or CamelCase (MyClass) for multi-word class names.

Most S3 classes provide a constructor function:

foo <- function(x) {
  if (!is.numeric(x)) stop("X must be numeric")
  structure(list(x), class = "foo")
}



You should use it if it’s available (like for factor() and data.frame()). This ensures that you’re creating the class with the correct components. Constructor functions usually have the same name as the class.

Apart from developer supplied constructor functions, S3 has no checks for correctness. This means you can change the class of existing objects:

# Create a linear model
mod <- lm(log(mpg) ~ log(disp), data = mtcars)
class(mod)



## [1] "lm"

print(mod)



## 
## Call:
## lm(formula = log(mpg) ~ log(disp), data = mtcars)
## 
## Coefficients:
## (Intercept)    log(disp)  
##      5.3810      -0.4586

# Turn it into a data frame (?!)
class(mod) <- "data.frame"
# But unsurprisingly this doesn't work very well
print(mod)



##  [1] coefficients  residuals     effects       rank          fitted.values
##  [6] assign        qr            df.residual   xlevels       call         
## [11] terms         model        
## <0 rows> (or 0-length row.names)

# However, the data is still there
mod$coefficients



## (Intercept)   log(disp) 
##   5.3809725  -0.4585683

If you’ve used other OO languages, this might make you feel queasy. But surprisingly, this flexibility causes few problems: while you can change the type of an object, you never should. R doesn’t protect you from yourself: you can easily shoot yourself in the foot. As long as you don’t aim the gun at your foot and pull the trigger, you won’t have a problem.

Creating new methods and generics

To add a new generic, create a function that calls UseMethod(). UseMethod() takes two arguments: the name of the generic function, and the argument to use for method dispatch. If you omit the second argument it will dispatch on the first argument to the function. There’s no need to pass any of the arguments of the generic to UseMethod() and you shouldn’t do so. UseMethod() uses black magic to find them out for itself.  

f <- function(x) UseMethod("f")



A generic isn’t useful without some methods. To add a method, you just create a regular function with the correct (generic.class) name: 

f.a <- function(x) "Class a"

a <- structure(list(), class = "a")
class(a)



## [1] "a"

f(a)



## [1] "Class a"

Adding a method to an existing generic works in the same way:

mean.a <- function(x) "a"
mean(a)



## [1] "a"

As you can see, there’s no check to make sure that the method returns the class compatible with the generic. It’s up to you to make sure that your method doesn’t violate the expectations of existing code.

Method dispatch

S3 method dispatch is relatively simple. UseMethod() creates a vector of function names, like paste0("generic", ".", c(class(x), "default")) and looks for each in turn. The “default” class makes it possible to set up a fall back method for otherwise unknown classes. 

f <- function(x) UseMethod("f")
f.a <- function(x) "Class a"
f.default <- function(x) "Unknown class"

f(structure(list(), class = "a"))



## [1] "Class a"

# No method for b class, so uses method for a class
f(structure(list(), class = c("b", "a")))



## [1] "Class a"

# No method for c class, so falls back to default
f(structure(list(), class = "c"))



## [1] "Unknown class"

Group generic methods add a little more complexity. Group generics make it possible to implement methods for multiple generics with one function. The four group generics and the functions they include are:  


	Math: abs, sign, sqrt, floor, cos, sin, log, exp, …

	Ops: +, -, *, /, ^, %%, %/%, &, |, !, ==, !=, <, <=, >=, >

	Summary: all, any, sum, prod, min, max, range

	Complex: Arg, Conj, Im, Mod, Re



Group generics are a relatively advanced technique and are beyond the scope of this chapter but you can find out more about them in ?groupGeneric. The most important thing to take away from this is to recognise that Math, Ops, Summary, and Complex aren’t real functions, but instead represent groups of functions. Note that inside a group generic function a special variable .Generic provides the actual generic function called.

If you have complex class hierarchies it’s sometimes useful to call the “parent” method. It’s a little bit tricky to define exactly what that means, but it’s basically the method that would have been called if the current method did not exist. Again, this is an advanced technique: you can read about it in ?NextMethod. 

Because methods are normal R functions, you can call them directly:

c <- structure(list(), class = "c")
# Call the correct method:
f.default(c)



## [1] "Unknown class"

# Force R to call the wrong method:
f.a(c)



## [1] "Class a"

However, this is just as dangerous as changing the class of an object, so you shouldn’t do it. Please don’t point the loaded gun at your foot! The only reason to call the method directly is that sometimes you can get considerable performance improvements by skipping method dispatch. See performance for details.

You can also call an S3 generic with a non-S3 object. Non-internal S3 generics will dispatch on the implicit class of base types. (Internal generics don’t do that for performance reasons.) The rules to determine the implicit class of a base type are somewhat complex, but are shown in the function below:  

iclass <- function(x) {
  if (is.object(x)) {
    stop("x is not a primitive type", call. = FALSE)
  }

  c(
    if (is.matrix(x)) "matrix",
    if (is.array(x) && !is.matrix(x)) "array",
    if (is.double(x)) "double",
    if (is.integer(x)) "integer",
    mode(x)
  )
}
iclass(matrix(1:5))



## [1] "matrix"  "integer" "numeric"

iclass(array(1.5))



## [1] "array"   "double"  "numeric"

Exercises


	Read the source code for t() and t.test() and confirm that t.test() is an S3 generic and not an S3 method. What happens if you create an object with class test and call t() with it?


	What classes have a method for the Math group generic in base R? Read the source code. How do the methods work?


	R has two classes for representing date time data, POSIXct and POSIXlt, which both inherit from POSIXt. Which generics have different behaviours for the two classes? Which generics share the same behaviour?


	Which base generic has the greatest number of defined methods?


	UseMethod() calls methods in a special way. Predict what the following code will return, then run it and read the help for UseMethod() to figure out what’s going on. Write down the rules in the simplest form possible.

y <- 1
g <- function(x) {
  y <- 2
  UseMethod("g")
}
g.numeric <- function(x) y
g(10)

h <- function(x) {
  x <- 10
  UseMethod("h")
}
h.character <- function(x) paste("char", x)
h.numeric <- function(x) paste("num", x)

h("a")




	Internal generics don’t dispatch on the implicit class of base types. Carefully read ?"internal generic" to determine why the length of f and g is different in the example below. What function helps distinguish between the behaviour of f and g?

f <- function() 1
g <- function() 2
class(g) <- "function"

class(f)
class(g)

length.function <- function(x) "function"
length(f)
length(g)






S4

S4 works in a similar way to S3, but it adds formality and rigour. Methods still belong to functions, not classes, but:  


	Classes have formal definitions which describe their fields and inheritance structures (parent classes).


	Method dispatch can be based on multiple arguments to a generic function, not just one.


	There is a special operator, @, for extracting slots (aka fields) from an S4 object.




All S4 related code is stored in the methods package. This package is always available when you’re running R interactively, but may not be available when running R in batch mode. For this reason, it’s a good idea to include an explicit library(methods) whenever you’re using S4.

S4 is a rich and complex system. There’s no way to explain it fully in a few pages. Here I’ll focus on the key ideas underlying S4 so you can use existing S4 objects effectively. To learn more, some good references are:


	S4 system development in Bioconductor


	John Chambers’ Software for Data Analysis


	Martin Morgan’s answers to S4 questions on stackoverflow




Recognising objects, generic functions, and methods

Recognising S4 objects, generics, and methods is easy. You can identify an S4 object because str() describes it as a “formal” class, isS4() returns TRUE, and pryr::otype() returns “S4”. S4 generics and methods are also easy to identify because they are S4 objects with well defined classes.

There aren’t any S4 classes in the commonly used base packages (stats, graphics, utils, datasets, and base), so we’ll start by creating an S4 object from the built-in stats4 package, which provides some S4 classes and methods associated with maximum likelihood estimation:

library(stats4)

# From example(mle)
y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)
nLL <- function(lambda) - sum(dpois(y, lambda, log = TRUE))
fit <- mle(nLL, start = list(lambda = 5), nobs = length(y))

# An S4 object
isS4(fit)



## [1] TRUE

otype(fit)



## [1] "S4"

# An S4 generic
isS4(nobs)



## [1] TRUE

ftype(nobs)



## [1] "s4"      "generic"

# Retrieve an S4 method, described later
mle_nobs <- method_from_call(nobs(fit))
isS4(mle_nobs)



## [1] TRUE

ftype(mle_nobs)



## [1] "s4"     "method"

Use is() with one argument to list all classes that an object inherits from. Use is() with two arguments to test if an object inherits from a specific class.

is(fit)



## [1] "mle"

is(fit, "mle")



## [1] TRUE

You can get a list of all S4 generics with getGenerics(), and a list of all S4 classes with getClasses(). This list includes shim classes for S3 classes and base types. You can list all S4 methods with showMethods(), optionally restricting selection either by generic or by class (or both). It’s also a good idea to supply where = search() to restrict the search to methods available in the global environment.

Defining classes and creating objects

In S3, you can turn any object into an object of a particular class just by setting the class attribute. S4 is much stricter: you must define the representation of a class with setClass(), and create a new object with new(). You can find the documentation for a class with a special syntax: class?className, e.g., class?mle.  

An S4 class has three key properties:


	A name: an alpha-numeric class identifier. By convention, S4 class names use UpperCamelCase.


	A named list of slots (fields), which defines slot names and permitted classes. For example, a person class might be represented by a character name and a numeric age: list(name = "character", age = "numeric"). 


	A string giving the class it inherits from, or, in S4 terminology, that it contains. You can provide multiple classes for multiple inheritance, but this is an advanced technique which adds much complexity.




In slots and contains you can use S4 classes, S3 classes registered with setOldClass(), or the implicit class of a base type. In slots you can also use the special class ANY which does not restrict the input.

S4 classes have other optional properties like a validity method that tests if an object is valid, and a prototype object that defines default slot values. See ?setClass for more details.

The following example creates a Person class with fields name and age, and an Employee class that inherits from Person. The Employee class inherits the slots and methods from the Person, and adds an additional slot, boss. To create objects we call new() with the name of the class, and name-value pairs of slot values.  

setClass("Person",
  slots = list(name = "character", age = "numeric"))
setClass("Employee",
  slots = list(boss = "Person"),
  contains = "Person")

alice <- new("Person", name = "Alice", age = 40)
john <- new("Employee", name = "John", age = 20, boss = alice)



Most S4 classes also come with a constructor function with the same name as the class: if that exists, use it instead of calling new() directly.

To access slots of an S4 object use @ or slot():  

alice@age



## [1] 40

slot(john, "boss")



## An object of class "Person"
## Slot "name":
## [1] "Alice"
## 
## Slot "age":
## [1] 40

(@ is equivalent to $, and slot() to [[.)

If an S4 object contains (inherits from) an S3 class or a base type, it will have a special .Data slot which contains the underlying base type or S3 object: 

setClass("RangedNumeric",
  contains = "numeric",
  slots = list(min = "numeric", max = "numeric"))
rn <- new("RangedNumeric", 1:10, min = 1, max = 10)
rn@min



## [1] 1

rn@.Data



##  [1]  1  2  3  4  5  6  7  8  9 10

Since R is an interactive programming language, it’s possible to create new classes or redefine existing classes at any time. This can be a problem when you’re interactively experimenting with S4. If you modify a class, make sure you also recreate any objects of that class, otherwise you’ll end up with invalid objects.

Creating new methods and generics

S4 provides special functions for creating new generics and methods. setGeneric() creates a new generic or converts an existing function into a generic. setMethod() takes the name of the generic, the classes the method should be associated with, and a function that implements the method. For example, we could take union(), which usually just works on vectors, and make it work with data frames:    

setGeneric("union")



## [1] "union"

setMethod("union",
  c(x = "data.frame", y = "data.frame"),
  function(x, y) {
    unique(rbind(x, y))
  }
)



## [1] "union"

If you create a new generic from scratch, you need to supply a function that calls standardGeneric():

setGeneric("myGeneric", function(x) {
  standardGeneric("myGeneric")
})



## [1] "myGeneric"

standardGeneric() is the S4 equivalent to UseMethod().

Method dispatch

If an S4 generic dispatches on a single class with a single parent, then S4 method dispatch is the same as S3 dispatch. The main difference is how you set up default values: S4 uses the special class ANY to match any class and “missing” to match a missing argument. Like S3, S4 also has group generics, documented in ?S4groupGeneric, and a way to call the “parent” method, callNextMethod(). 

Method dispatch becomes considerably more complicated if you dispatch on multiple arguments, or if your classes use multiple inheritance. The rules are described in ?Methods, but they are complicated and it’s difficult to predict which method will be called. For this reason, I strongly recommend avoiding multiple inheritance and multiple dispatch unless absolutely necessary.

Finally, there are two methods that find which method gets called given the specification of a generic call:

# From methods: takes generic name and class names
selectMethod("nobs", list("mle"))

# From pryr: takes an unevaluated function call
method_from_call(nobs(fit))



Exercises


	Which S4 generic has the most methods defined for it? Which S4 class has the most methods associated with it?


	What happens if you define a new S4 class that doesn’t “contain” an existing class? (Hint: read about virtual classes in ?setClass.)


	What happens if you pass an S4 object to an S3 generic? What happens if you pass an S3 object to an S4 generic? (Hint: read ?setOldClass for the second case.)




RC

Reference classes (or RC for short) are the newest OO system in R. They were introduced in version 2.12. They are fundamentally different to S3 and S4 because:   


	RC methods belong to objects, not functions


	RC objects are mutable: the usual R copy-on-modify semantics do not apply




These properties make RC objects behave more like objects do in most other programming languages, e.g., Python, Ruby, Java, and C#. Reference classes are implemented using R code: they are a special S4 class that wraps around an environment.

Defining classes and creating objects

Since there aren’t any reference classes provided by the base R packages, we’ll start by creating one. RC classes are best used for describing stateful objects, objects that change over time, so we’ll create a simple class to model a bank account.  

Creating a new RC class is similar to creating a new S4 class, but you use setRefClass() instead of setClass(). The first, and only required argument, is an alphanumeric name. While you can use new() to create new RC objects, it’s good style to use the object returned by setRefClass() to generate new objects. (You can also do that with S4 classes, but it’s less common.) 

Account <- setRefClass("Account")
Account$new()



## Reference class object of class "Account"

setRefClass() also accepts a list of name-class pairs that define class fields (equivalent to S4 slots). Additional named arguments passed to new() will set initial values of the fields. You can get and set field values with $: 

Account <- setRefClass("Account",
  fields = list(balance = "numeric"))

a <- Account$new(balance = 100)
a$balance



## [1] 100

a$balance <- 200
a$balance



## [1] 200

Instead of supplying a class name for the field, you can provide a single argument function which will act as an accessor method. This allows you to add custom behaviour when getting or setting a field. See ?setRefClass for more details.

Note that RC objects are mutable, i.e., they have reference semantics, and are not copied-on-modify: 

b <- a
b$balance



## [1] 200

a$balance <- 0
b$balance



## [1] 0

For this reason, RC objects come with a copy() method that allow you to make a copy of the object:

c <- a$copy()
c$balance



## [1] 0

a$balance <- 100
c$balance



## [1] 0

An object is not very useful without some behaviour defined by methods. RC methods are associated with a class and can modify its fields in place. In the following example, note that you access the value of fields with their name, and modify them with <<-. You’ll learn more about <<- in Environments.   

Account <- setRefClass("Account",
  fields = list(balance = "numeric"),
  methods = list(
    withdraw = function(x) {
      balance <<- balance - x
    },
    deposit = function(x) {
      balance <<- balance + x
    }
  )
)



You call an RC method in the same way as you access a field:

a <- Account$new(balance = 100)
a$deposit(100)
a$balance



## [1] 200

The final important argument to setRefClass() is contains. This is the name of the parent RC class to inherit behaviour from. The following example creates a new type of bank account that returns an error preventing the balance from going below 0.

NoOverdraft <- setRefClass("NoOverdraft",
  contains = "Account",
  methods = list(
    withdraw = function(x) {
      if (balance < x) stop("Not enough money")
      balance <<- balance - x
    }
  )
)
accountJohn <- NoOverdraft$new(balance = 100)
accountJohn$deposit(50)
accountJohn$balance



## [1] 150

accountJohn$withdraw(200)



## Error in accountJohn$withdraw(200): Not enough money

All reference classes eventually inherit from envRefClass. It provides useful methods like copy() (shown above), callSuper() (to call the parent field), field() (to get the value of a field given its name), export() (equivalent to as()), and show() (overridden to control printing). See the inheritance section in setRefClass() for more details.

Recognising objects and methods

You can recognise RC objects because they are S4 objects (isS4(x)) that inherit from “refClass” (is(x, "refClass")). pryr::otype() will return “RC”. RC methods are also S4 objects, with class refMethodDef.

Method dispatch

Method dispatch is very simple in RC because methods are associated with classes, not functions. When you call x$f(), R will look for a method f in the class of x, then in its parent, then its parent’s parent, and so on. From within a method, you can call the parent method directly with callSuper(...). 

Exercises


	Use a field function to prevent the account balance from being directly manipulated. (Hint: create a “hidden” .balance field, and read the help for the fields argument in setRefClass().)


	I claimed that there aren’t any RC classes in base R, but that was a bit of a simplification. Use getClasses() and find which classes extend() from envRefClass. What are the classes used for? (Hint: recall how to look up the documentation for a class.)




Picking a system

Three OO systems is a lot for one language, but for most R programming, S3 suffices. In R you usually create fairly simple objects and methods for pre-existing generic functions like print(), summary(), and plot(). S3 is well suited to this task, and the majority of OO code that I have written in R is S3. S3 is a little quirky, but it gets the job done with a minimum of code. 

If you are creating more complicated systems of interrelated objects, S4 may be more appropriate. A good example is the Matrix package by Douglas Bates and Martin Maechler. It is designed to efficiently store and compute with many different types of sparse matrices. As of version 1.1.3, it defines 102 classes and 20 generic functions. The package is well written and well commented, and the accompanying vignette (vignette("Intro2Matrix", package = "Matrix")) gives a good overview of the structure of the package. S4 is also used extensively by Bioconductor packages, which need to model complicated interrelationships between biological objects. Bioconductor provides many good resources for learning S4. If you’ve mastered S3, S4 is relatively easy to pick up; the ideas are all the same, it is just more formal, more strict, and more verbose.

If you’ve programmed in a mainstream OO language, RC will seem very natural. But because they can introduce side effects through mutable state, they are harder to understand. For example, when you call f(a, b) in R you can usually assume that a and b will not be modified. But if a and b are RC objects, they might be modified in the place. Generally, when using RC objects you want to minimise side effects as much as possible, and use them only where mutable states are absolutely required. The majority of functions should still be “functional”, and free of side effects. This makes code easier to reason about and easier for other R programmers to understand.

Quiz answers


	To determine the OO system of an object, you use a process of elimination. If !is.object(x), it’s a base object. If !isS4(x), it’s S3. If !is(x, "refClass"), it’s S4; otherwise it’s RC.


	Use typeof() to determine the base class of an object.


	A generic function calls specific methods depending on the class of it inputs. In S3 and S4 object systems, methods belong to generic functions, not classes like in other programming languages.


	S4 is more formal than S3, and supports multiple inheritance and multiple dispatch. RC objects have reference semantics, and methods belong to classes, not functions.





Environments

The environment is the data structure that powers scoping. This chapter dives deep into environments, describing their structure in depth, and using them to improve your understanding of the four scoping rules described in lexical scoping. 

Environments can also be useful data structures in their own right because they have reference semantics. When you modify a binding in an environment, the environment is not copied; it’s modified in place. Reference semantics are not often needed, but can be extremely useful.

Quiz

If you can answer the following questions correctly, you already know the most important topics in this chapter. You can find the answers at the end of the chapter in answers.


	List at least three ways that an environment is different to a list.


	What is the parent of the global environment? What is the only environment that doesn’t have a parent?


	What is the enclosing environment of a function? Why is it important?


	How do you determine the environment from which a function was called?


	How are <- and <<- different?




Outline


	Environment basics introduces you to the basic properties of an environment and shows you how to create your own.


	Recursing over environments provides a function template for computing with environments, illustrating the idea with a useful function.


	Function environments revises R’s scoping rules in more depth, showing how they correspond to four types of environment associated with each function.


	Binding names to values describes the rules that names must follow (and how to bend them), and shows some variations on binding a name to a value.


	Explicit environments discusses three problems where environments are useful data structures in their own right, independent of the role they play in scoping.




Prerequisites

This chapter uses many functions from the pryr package to pry open R and look inside at the messy details. You can install pryr by running install.packages("pryr")

Environment basics

The job of an environment is to associate, or bind, a set of names to a set of values. You can think of an environment as a bag of names:  



Each name points to an object stored elsewhere in memory:

e <- new.env()
e$a <- FALSE
e$b <- "a"
e$c <- 2.3
e$d <- 1:3





The objects don’t live in the environment so multiple names can point to the same object:

e$b <- e$d





Confusingly they can also point to different objects that have the same value:

e$b <- 1:3





If an object has no names pointing to it, it gets automatically deleted by the garbage collector. This process is described in more detail in gc.

Every environment has a parent, another environment. In diagrams, I’ll represent the pointer to parent with a small black circle. The parent is used to implement lexical scoping: if a name is not found in an environment, then R will look in its parent (and so on). Only one environment doesn’t have a parent: the empty environment. 



We use the metaphor of a family to refer to environments. The grandparent of an environment is the parent’s parent, and the ancestors include all parent environments up to the empty environment. It’s rare to talk about the children of an environment because there are no back links: given an environment we have no way to find its children.

Generally, an environment is similar to a list, with four important exceptions:


	Every name in an environment is unique.


	The names in an environment are not ordered (i.e., it doesn’t make sense to ask what the first element of an environment is).


	An environment has a parent.


	Environments have reference semantics.




More technically, an environment is made up of two components, the frame, which contains the name-object bindings (and behaves much like a named list), and the parent environment. Unfortunately “frame” is used inconsistently in R. For example, parent.frame() doesn’t give you the parent frame of an environment. Instead, it gives you the calling environment. This is discussed in more detail in calling environments.  

There are four special environments:


	The globalenv(), or global environment, is the interactive workspace. This is the environment in which you normally work. The parent of the global environment is the last package that you attached with library() or require().


	The baseenv(), or base environment, is the environment of the base package. Its parent is the empty environment.


	The emptyenv(), or empty environment, is the ultimate ancestor of all environments, and the only environment without a parent.


	The environment() is the current environment.




search() lists all parents of the global environment. This is called the search path because objects in these environments can be found from the top-level interactive workspace. It contains one environment for each attached package and any other objects that you’ve attach()ed. It also contains a special environment called Autoloads which is used to save memory by only loading package objects (like big datasets) when needed. 

You can access any environment on the search list using as.environment().

search()
#> [1] ".GlobalEnv"        "package:stats"     "package:graphics" 
#> [4] "package:grDevices" "package:utils"     "package:datasets" 
#> [7] "package:methods"   "Autoloads"         "package:base"     

as.environment("package:stats")
#> <environment: package:stats>



globalenv(), baseenv(), the environments on the search path, and emptyenv() are connected as shown below. Each time you load a new package with library() it is inserted between the global environment and the package that was previously at the top of the search path.



To create an environment manually, use new.env(). You can list the bindings in the environment’s frame with ls() and see its parent with parent.env(). 

e <- new.env()
# the default parent provided by new.env() is environment from 
# which it is called - in this case that's the global environment.
parent.env(e)



## <environment: R_GlobalEnv>

ls(e)



## character(0)

The easiest way to modify the bindings in an environment is to treat it like a list:

e$a <- 1
e$b <- 2
ls(e)



## [1] "a" "b"

e$a



## [1] 1

By default, ls() only shows names that don’t begin with .. Use all.names = TRUE to show all bindings in an environment: 

e$.a <- 2
ls(e)



## [1] "a" "b"

ls(e, all.names = TRUE)



## [1] ".a" "a"  "b"

Another useful way to view an environment is ls.str(). It is more useful than str() because it shows each object in the environment. Like ls(), it also has an all.names argument.

str(e)



## <environment: 0x15e54d0>

ls.str(e)



## a :  num 1
## b :  num 2

Given a name, you can extract the value to which it is bound with $, [[, or get():


	$ and [[ look only in one environment and return NULL if there is no binding associated with the name.  


	get() uses the regular scoping rules and throws an error if the binding is not found. 




e$c <- 3
e$c



## [1] 3

e[["c"]]



## [1] 3

get("c", envir = e)



## [1] 3

Deleting objects from environments works a little differently from lists. With a list you can remove an entry by setting it to NULL. In environments, that will create a new binding to NULL. Instead, use rm() to remove the binding.  

e <- new.env()

e$a <- 1
e$a <- NULL
ls(e)



## [1] "a"

rm("a", envir = e)
ls(e)



## character(0)

You can determine if a binding exists in an environment with exists(). Like get(), its default behaviour is to follow the regular scoping rules and look in parent environments. If you don’t want this behavior, use inherits = FALSE:

x <- 10
exists("x", envir = e)



## [1] TRUE

exists("x", envir = e, inherits = FALSE)



## [1] FALSE

To compare environments, you must use identical() not ==:

identical(globalenv(), environment())



## [1] TRUE

globalenv() == environment()



## Error in globalenv() == environment(): comparison (1) is possible only for atomic and list types

Exercises


	List three ways in which an environment differs from a list.


	If you don’t supply an explicit environment, where do ls() and rm() look? Where does <- make bindings?


	Using parent.env() and a loop (or a recursive function), verify that the ancestors of globalenv() include baseenv() and emptyenv(). Use the same basic idea to implement your own version of search().




Recursing over environments

Environments form a tree, so it’s often convenient to write a recursive function. This section shows you how by applying your new knowledge of environments to understand the helpful pryr::where(). Given a name, where() finds the environment where that name is defined, using R’s regular scoping rules: 

library(pryr)
x <- 5
where("x")



## <environment: R_GlobalEnv>

where("mean")



## <environment: base>

The definition of where() is straightforward. It has two arguments: the name to look for (as a string), and the environment in which to start the search. (We’ll learn later why parent.frame() is a good default in calling environments.)

where <- function(name, env = parent.frame()) {
  if (identical(env, emptyenv())) {
    # Base case
    stop("Can't find ", name, call. = FALSE)
    
  } else if (exists(name, envir = env, inherits = FALSE)) {
    # Success case
    env
    
  } else {
    # Recursive case
    where(name, parent.env(env))
    
  }
}



There are three cases:


	The base case: we’ve reached the empty environment and haven’t found the binding. We can’t go any further, so we throw an error.


	The successful case: the name exists in this environment, so we return the environment.


	The recursive case: the name was not found in this environment, so try the parent.




It’s easier to see what’s going on with an example. Imagine you have two environments as in the following diagram:




	If you’re looking for a, where() will find it in the first environment.


	If you’re looking for b, it’s not in the first environment, so where() will look in its parent and find it there.


	If you’re looking for c, it’s not in the first environment, or the second environment, so where() reaches the empty environment and throws an error.




It’s natural to work with environments recursively, so where() provides a useful template. Removing the specifics of where() shows the structure more clearly:

f <- function(..., env = parent.frame()) {
  if (identical(env, emptyenv())) {
    # base case
  } else if (success) {
    # success case
  } else {
    # recursive case
    f(..., env = parent.env(env))
  }
}





Iteration vs. recursion


It’s possible to use a loop instead of recursion. This might run slightly faster (because we eliminate some function calls), but I think it’s harder to understand. I include it because you might find it easier to see what’s happening if you’re less familiar with recursive functions.

is_empty <- function(x) identical(x, emptyenv())

f2 <- function(..., env = parent.frame()) {
  while(!is_empty(env)) {
    if (success) {
      # success case
      return()
    }
    # inspect parent
    env <- parent.env(env)
  }

  # base case
}





Exercises


	Modify where() to find all environments that contain a binding for name.


	Write your own version of get() using a function written in the style of where().


	Write a function called fget() that finds only function objects. It should have two arguments, name and env, and should obey the regular scoping rules for functions: if there’s an object with a matching name that’s not a function, look in the parent. For an added challenge, also add an inherits argument which controls whether the function recurses up the parents or only looks in one environment.


	Write your own version of exists(inherits = FALSE) (Hint: use ls().) Write a recursive version that behaves like exists(inherits = TRUE).




Function environments

Most environments are not created by you with new.env() but are created as a consequence of using functions. This section discusses the four types of environments associated with a function: enclosing, binding, execution, and calling. 

The enclosing environment is the environment where the function was created. Every function has one and only one enclosing environment. For the three other types of environment, there may be 0, 1, or many environments associated with each function:


	Binding a function to a name with <- defines a binding environment.


	Calling a function creates an ephemeral execution environment that stores variables created during execution.


	Every execution environment is associated with a calling environment, which tells you where the function was called.




The following sections will explain why each of these environments is important, how to access them, and how you might use them.

The enclosing environment

When a function is created, it gains a reference to the environment where it was made. This is the enclosing environment and is used for lexical scoping. You can determine the enclosing environment of a function by calling environment() with a function as its first argument: 

y <- 1
f <- function(x) x + y
environment(f)
#> <environment: R_GlobalEnv>



In diagrams, I’ll depict functions as rounded rectangles. The enclosing environment of a function is given by a small black circle:



Binding environments

The previous diagram is too simple because functions don’t have names. Instead, the name of a function is defined by a binding. The binding environments of a function are all the environments which have a binding to it. The following diagram better reflects this relationship because the enclosing environment contains a binding from f to the function: 



In this case the enclosing and binding environments are the same. They will be different if you assign a function into a different environment:

e <- new.env()
e$g <- function() 1





The enclosing environment belongs to the function, and never changes, even if the function is moved to a different environment. The enclosing environment determines how the function finds values; the binding environments determine how we find the function.

The distinction between the binding environment and the enclosing environment is important for package namespaces. Package namespaces keep packages independent. For example, if package A uses the base mean() function, what happens if package B creates its own mean() function? Namespaces ensure that package A continues to use the base mean() function, and that package A is not affected by package B (unless explicitly asked for). 

Namespaces are implemented using environments, taking advantage of the fact that functions don’t have to live in their enclosing environments. For example, take the base function sd(). Its binding and enclosing environments are different:

environment(sd)
#> <environment: namespace:stats>
where("sd")
#> <environment: package:stats>



The definition of sd() uses var(), but if we make our own version of var() it doesn’t affect sd():

x <- 1:10
sd(x)



## [1] 3.02765

var <- function(x, na.rm = TRUE) 100
sd(x)



## [1] 3.02765

This works because every package has two environments associated with it: the package environment and the namespace environment. The package environment contains every publicly accessible function, and is placed on the search path. The namespace environment contains all functions (including internal functions), and its parent environment is a special imports environment that contains bindings to all the functions that the package needs. Every exported function in a package is bound into the package environment, but enclosed by the namespace environment. This complicated relationship is illustrated by the following diagram:



When we type var into the console, it’s found first in the global environment. When sd() looks for var() it finds it first in its namespace environment so never looks in the globalenv().

Execution environments

What will the following function return the first time it’s run? What about the second? 

g <- function(x) {
  if (!exists("a", inherits = FALSE)) {
    message("Defining a")
    a <- 1
  } else {
    a <- a + 1
  }
  a
}
g(10)
g(10)



This function returns the same value every time it is called because of the fresh start principle, described in a fresh start. Each time a function is called, a new environment is created to host execution. The parent of the execution environment is the enclosing environment of the function. Once the function has completed, this environment is thrown away.

Let’s depict that graphically with a simpler function. I draw execution environments around the function they belong to with a dotted border.

h <- function(x) {
  a <- 2
  x + a
}
y <- h(1)





When you create a function inside another function, the enclosing environment of the child function is the execution environment of the parent, and the execution environment is no longer ephemeral. The following example illustrates that idea with a function factory, plus(). We use that factory to create a function called plus_one(). The enclosing environment of plus_one() is the execution environment of plus() where x is bound to the value 1. 

plus <- function(x) {
  function(y) x + y
}
plus_one <- plus(1)
identical(parent.env(environment(plus_one)), environment(plus))



## [1] TRUE



You’ll learn more about function factories in functional programming.

Calling environments

Look at the following code. What do you expect i() to return when the code is run? 

h <- function() {
  x <- 10
  function() {
    x
  }
}
i <- h()
x <- 20
i()



The top-level x (bound to 20) is a red herring: using the regular scoping rules, h() looks first where it is defined and finds that the value associated with x is 10. However, it’s still meaningful to ask what value x is associated within the environment where i() is called: x is 10 in the environment where h() is defined, but it is 20 in the environment where h() is called.

We can access this environment using the unfortunately named parent.frame(). This function returns the environment where the function was called. We can also use this function to look up the value of names in that environment:

f2 <- function() {
  x <- 10
  function() {
    def <- get("x", environment())
    cll <- get("x", parent.frame())
    list(defined = def, called = cll)
  }
}
g2 <- f2()
x <- 20
str(g2())



## List of 2
##  $ defined: num 10
##  $ called : num 20

In more complicated scenarios, there’s not just one parent call, but a sequence of calls which lead all the way back to the initiating function, called from the top-level. The following code generates a call stack three levels deep. The open-ended arrows represent the calling environment of each execution environment.

x <- 0
y <- 10
f <- function() {
  x <- 1
  g()
}
g <- function() {
  x <- 2
  h()
}
h <- function() {
  x <- 3
  x + y
}
f()



## [1] 13



Note that each execution environment has two parents: a calling environment and an enclosing environment. R’s regular scoping rules only use the enclosing parent; parent.frame() allows you to access the calling parent.

Looking up variables in the calling environment rather than in the enclosing environment is called dynamic scoping. Few languages implement dynamic scoping (Emacs Lisp is a notable exception.) This is because dynamic scoping makes it much harder to reason about how a function operates: not only do you need to know how it was defined, you also need to know in what context it was called. Dynamic scoping is primarily useful for developing functions that aid interactive data analysis. It is one of the topics discussed in non-standard evaluation.  

Exercises


	List the four environments associated with a function. What does each one do? Why is the distinction between enclosing and binding environments particularly important?


	Draw a diagram that shows the enclosing environments of this function:

f1 <- function(x1) {
  f2 <- function(x2) {
    f3 <- function(x3) {
      x1 + x2 + x3
    }
    f3(3)
  }
  f2(2)
}
f1(1)




	Expand your previous diagram to show function bindings.


	Expand it again to show the execution and calling environments.


	Write an enhanced version of str() that provides more information about functions. Show where the function was found and what environment it was defined in.




Binding names to values

Assignment is the act of binding (or rebinding) a name to a value in an environment. It is the counterpart to scoping, the set of rules that determines how to find the value associated with a name. Compared to most languages, R has extremely flexible tools for binding names to values. In fact, you can not only bind values to names, but you can also bind expressions (promises) or even functions, so that every time you access the value associated with a name, you get something different! 

You’ve probably used regular assignment in R thousands of times. Regular assignment creates a binding between a name and an object in the current environment. Names usually consist of letters, digits, . and _, and can’t begin with _. If you try to use a name that doesn’t follow these rules, you get an error:

_abc <- 1
# Error: unexpected input in "_"



Reserved words (like TRUE, NULL, if, and function) follow the rules but are reserved by R for other purposes:

if <- 10
#> Error: unexpected assignment in "if <-"



A complete list of reserved words can be found in ?Reserved.   

It’s possible to override the usual rules and use a name with any sequence of characters by surrounding the name with backticks:

`a + b` <- 3
`:)` <- "smile"
`    ` <- "spaces"
ls()
#  [1] "    "   ":)"     "a + b"
`:)`
#  [1] "smile"





Quotes


You can also create non-syntactic bindings using single and double quotes instead of backticks, but I don’t recommend it. The ability to use strings on the left hand side of the assignment arrow is a historical artefact, used before R supported backticks.



The regular assignment arrow, <-, always creates a variable in the current environment. The deep assignment arrow, <<-, never creates a variable in the current environment, but instead modifies an existing variable found by walking up the parent environments.

x <- 0
f <- function() {
  x <<- 1
}
f()
x



## [1] 1

If <<- doesn’t find an existing variable, it will create one in the global environment. This is usually undesirable, because global variables introduce non-obvious dependencies between functions. <<- is most often used in conjunction with a closure, as described in Closures.

There are two other special types of binding, delayed and active:


	Rather than assigning the result of an expression immediately, a delayed binding creates and stores a promise to evaluate the expression when needed. We can create delayed bindings with the special assignment operator %<d-%, provided by the pryr package.

library(pryr)
system.time(b %<d-% {Sys.sleep(1); 1})



##    user  system elapsed 
##       0       0       0

system.time(b)



##    user  system elapsed 
##   0.000   0.000   1.001

%<d-% is a wrapper around the base delayedAssign() function, which you may need to use directly if you need more control. Delayed bindings are used to implement autoload(), which makes R behave as if the package data is in memory, even though it’s only loaded from disk when you ask for it. 


	Active are not bound to a constant object. Instead, they’re re-computed every time they’re accessed:

x %<a-% runif(1)
x



## [1] 0.4411325

x



## [1] 0.9064621

rm(x)



%<a-% is a wrapper for the base function makeActiveBinding(). You may want to use this function directly if you want more control. Active bindings are used to implement reference class fields. 




Exercises


	What does this function do? How does it differ from <<- and why might you prefer it?

rebind <- function(name, value, env = parent.frame()) {
  if (identical(env, emptyenv())) {
    stop("Can't find ", name, call. = FALSE)
  } else if (exists(name, envir = env, inherits = FALSE)) {
    assign(name, value, envir = env)
  } else {
    rebind(name, value, parent.env(env))
  }
}
rebind("a", 10)



## Error: Can't find a

a <- 5
rebind("a", 10)
a



## [1] 10


	Create a version of assign() that will only bind new names, never re-bind old names. Some programming languages only do this, and are known as single assignment languages.


	Write an assignment function that can do active, delayed, and locked bindings. What might you call it? What arguments should it take? Can you guess which sort of assignment it should do based on the input?




Explicit environments

As well as powering scoping, environments are also useful data structures in their own right because they have reference semantics. Unlike most objects in R, when you modify an environment, it does not make a copy. For example, look at this modify() function.  

modify <- function(x) {
  x$a <- 2
  invisible()
}



If you apply it to a list, the original list is not changed because modifying a list actually creates and modifies a copy.

x_l <- list()
x_l$a <- 1
modify(x_l)
x_l$a



## [1] 1

However, if you apply it to an environment, the original environment is modified:

x_e <- new.env()
x_e$a <- 1
modify(x_e)
x_e$a



## [1] 2

Just as you can use a list to pass data between functions, you can also use an environment. When creating your own environment, note that you should set its parent environment to be the empty environment. This ensures you don’t accidentally inherit objects from somewhere else:

x <- 1
e1 <- new.env()
get("x", envir = e1)



## [1] 1

e2 <- new.env(parent = emptyenv())
get("x", envir = e2)



## Error in get("x", envir = e2): object 'x' not found

Environments are data structures useful for solving three common problems:


	Avoiding copies of large data.

	Managing state within a package.

	Efficiently looking up values from names.



These are described in turn below.

Avoiding copies

Since environments have reference semantics, you’ll never accidentally create a copy. This makes it a useful vessel for large objects. It’s a common technique for bioconductor packages which often have to manage large genomic objects. Changes to R 3.1.0 have made this use substantially less important because modifying a list no longer makes a deep copy. Previously, modifying a single element of a list would cause every element to be copied, an expensive operation if some elements are large. Now, modifying a list efficiently reuses existing vectors, saving much time.

Package state

Explicit environments are useful in packages because they allow you to maintain state across function calls. Normally, objects in a package are locked, so you can’t modify them directly. Instead, you can do something like this:

my_env <- new.env(parent = emptyenv())
my_env$a <- 1

get_a <- function() {
  my_env$a
}
set_a <- function(value) {
  old <- my_env$a
  my_env$a <- value
  invisible(old)
}



Returning the old value from setter functions is a good pattern because it makes it easier to reset the previous value in conjunction with on.exit() (see more in on exit).

As a hashmap

A hashmap is a data structure that takes constant, O(1), time to find an object based on its name. Environments provide this behaviour by default, so can be used to simulate a hashmap. See the CRAN package hash for a complete development of this idea.  

Quiz answers


	There are four ways: every object in an environment must have a name; order doesn’t matter; environments have parents; environments have reference semantics.


	The parent of the global environment is the last package that you loaded. The only environment that doesn’t have a parent is the empty environment.


	The enclosing environment of a function is the environment where it was created. It determines where a function looks for variables.


	Use parent.frame().


	<- always creates a binding in the current environment; <<- rebinds an existing name in a parent of the current environment.





Debugging, condition handling, and defensive programming

What happens when something goes wrong with your R code? What do you do? What tools do you have to address the problem? This chapter will teach you how to fix unanticipated problems (debugging), show you how functions can communicate problems and how you can take action based on those communications (condition handling), and teach you how to avoid common problems before they occur (defensive programming).

Debugging is the art and science of fixing unexpected problems in your code. In this section you’ll learn the tools and techniques that help you get to the root cause of an error. You’ll learn general strategies for debugging, useful R functions like traceback() and browser(), and interactive tools in RStudio.

Not all problems are unexpected. When writing a function, you can often anticipate potential problems (like a non-existent file or the wrong type of input). Communicating these problems to the user is the job of conditions: errors, warnings, and messages.


	Fatal errors are raised by stop() and force all execution to terminate. Errors are used when there is no way for a function to continue.  


	Warnings are generated by warning() and are used to display potential problems, such as when some elements of a vectorised input are invalid, like log(-1:2).


	Messages are generated by message() and are used to give informative output in a way that can easily be suppressed by the user (?suppressMessages()). I often use messages to let the user know what value the function has chosen for an important missing argument.




Conditions are usually displayed prominently, in a bold font or coloured red depending on your R interface. You can tell them apart because errors always start with “Error” and warnings with “Warning message”. Function authors can also communicate with their users with print() or cat(), but I think that’s a bad idea because it’s hard to capture and selectively ignore this sort of output. Printed output is not a condition, so you can’t use any of the useful condition handling tools you’ll learn about below.

Condition handling tools, like withCallingHandlers(), tryCatch(), and try() allow you to take specific actions when a condition occurs. For example, if you’re fitting many models, you might want to continue fitting the others even if one fails to converge. R offers an exceptionally powerful condition handling system based on ideas from Common Lisp, but it’s currently not very well documented or often used. This chapter will introduce you to the most important basics, but if you want to learn more, I recommend the following two sources:


	A prototype of a condition system for R by Robert Gentleman and Luke Tierney. This describes an early version of R’s condition system. While the implementation has changed somewhat since this document was written, it provides a good overview of how the pieces fit together, and some motivation for its design.


	Beyond Exception Handling: Conditions and Restarts by Peter Seibel. This describes exception handling in Lisp, which happens to be very similar to R’s approach. It provides useful motivation and more sophisticated examples. I have provided an R translation of the chapter at http://adv-r.had.co.nz/beyond-exception-handling.html.




The chapter concludes with a discussion of “defensive” programming: ways to avoid common errors before they occur. In the short run you’ll spend more time writing code, but in the long run you’ll save time because error messages will be more informative and will let you narrow in on the root cause more quickly. The basic principle of defensive programming is to “fail fast”, to raise an error as soon as something goes wrong. In R, this takes three particular forms: checking that inputs are correct, avoiding non-standard evaluation, and avoiding functions that can return different types of output.

Quiz

Want to skip this chapter? Go for it, if you can answer the questions below. Find the answers at the end of the chapter in answers.


	How can you find out where an error occurred?


	What does browser() do? List the five useful single-key commands that you can use inside of a browser() environment.


	What function do you use to ignore errors in block of code?


	Why might you want to create an error with a custom S3 class?




Outline


	Debugging techniques outlines a general approach for finding and resolving bugs.


	Debugging tools introduces you to the R functions and RStudio features that help you locate exactly where an error occurred.


	Condition handling shows you how you can catch conditions (errors, warnings, and messages) in your own code. This allows you to create code that’s both more robust and more informative in the presence of errors.


	Defensive programming introduces you to some important techniques for defensive programming, techniques that help prevent bugs from occurring in the first place.




Debugging techniques


“Finding your bug is a process of confirming the many things that you believe are true — until you find one which is not true.”

—Norm Matloff



Debugging code is challenging. Many bugs are subtle and hard to find. Indeed, if a bug was obvious, you probably would’ve been able to avoid it in the first place. While it’s true that with a good technique, you can productively debug a problem with just print(), there are times when additional help would be welcome. In this section, we’ll discuss some useful tools, which R and RStudio provide, and outline a general procedure for debugging.  

While the procedure below is by no means foolproof, it will hopefully help you to organise your thoughts when debugging. There are four steps:


	Realise that you have a bug

If you’re reading this chapter, you’ve probably already completed this step. It is a surprisingly important one: you can’t fix a bug until you know it exists. This is one reason why automated test suites are important when producing high-quality code. Unfortunately, automated testing is outside the scope of this book, but you can read more about it at http://r-pkgs.had.co.nz/tests.html.


	Make it repeatable

Once you’ve determined you have a bug, you need to be able to reproduce it on command. Without this, it becomes extremely difficult to isolate its cause and to confirm that you’ve successfully fixed it.

Generally, you will start with a big block of code that you know causes the error and then slowly whittle it down to get to the smallest possible snippet that still causes the error. Binary search is particularly useful for this. To do a binary search, you repeatedly remove half of the code until you find the bug. This is fast because, with each step, you reduce the amount of code to look through by half.

If it takes a long time to generate the bug, it’s also worthwhile to figure out how to generate it faster. The quicker you can do this, the quicker you can figure out the cause.

As you work on creating a minimal example, you’ll also discover similar inputs that don’t trigger the bug. Make note of them: they will be helpful when diagnosing the cause of the bug.

If you’re using automated testing, this is also a good time to create an automated test case. If your existing test coverage is low, take the opportunity to add some nearby tests to ensure that existing good behaviour is preserved. This reduces the chances of creating a new bug.


	Figure out where it is

If you’re lucky, one of the tools in the following section will help you to quickly identify the line of code that’s causing the bug. Usually, however, you’ll have to think a bit more about the problem. It’s a great idea to adopt the scientific method. Generate hypotheses, design experiments to test them, and record your results. This may seem like a lot of work, but a systematic approach will end up saving you time. I often waste a lot of time relying on my intuition to solve a bug (“oh, it must be an off-by-one error, so I’ll just subtract 1 here”), when I would have been better off taking a systematic approach.


	Fix it and test it

Once you’ve found the bug, you need to figure out how to fix it and to check that the fix actually worked. Again, it’s very useful to have automated tests in place. Not only does this help to ensure that you’ve actually fixed the bug, it also helps to ensure you haven’t introduced any new bugs in the process. In the absence of automated tests, make sure to carefully record the correct output, and check against the inputs that previously failed.




Debugging tools

To implement a strategy of debugging, you’ll need tools. In this section, you’ll learn about the tools provided by R and the RStudio IDE. RStudio’s integrated debugging support makes life easier by exposing existing R tools in a user friendly way. I’ll show you both the R and RStudio ways so that you can work with whatever environment you use. You may also want to refer to the official RStudio debugging documentation which always reflects the tools in the latest version of RStudio.

There are three key debugging tools:


	RStudio’s error inspector and traceback() which list the sequence of calls that lead to the error.


	RStudio’s “Rerun with Debug” tool and options(error = browser) which open an interactive session where the error occurred.


	RStudio’s breakpoints and browser() which open an interactive session at an arbitrary location in the code.




I’ll explain each tool in more detail below.

You shouldn’t need to use these tools when writing new functions. If you find yourself using them frequently with new code, you may want to reconsider your approach. Instead of trying to write one big function all at once, work interactively on small pieces. If you start small, you can quickly identify why something doesn’t work. But if you start large, you may end up struggling to identify the source of the problem.

Determining the sequence of calls

The first tool is the call stack, the sequence of calls that lead up to an error. Here’s a simple example: you can see that f() calls g() calls h() calls i() which adds together a number and a string creating a error:  

f <- function(a) g(a)
g <- function(b) h(b)
h <- function(c) i(c)
i <- function(d) "a" + d
f(10)



When we run this code in RStudio we see:



Two options appear to the right of the error message: “Show Traceback” and “Rerun with Debug”. If you click “Show traceback” you see:



If you’re not using RStudio, you can use traceback() to get the same information:

traceback()
# 4: i(c) at exceptions-example.R#3
# 3: h(b) at exceptions-example.R#2
# 2: g(a) at exceptions-example.R#1
# 1: f(10)



Read the call stack from bottom to top: the initial call is f(), which calls g(), then h(), then i(), which triggers the error. If you’re calling code that you source()d into R, the traceback will also display the location of the function, in the form filename.r#linenumber. These are clickable in RStudio, and will take you to the corresponding line of code in the editor.

Sometimes this is enough information to let you track down the error and fix it. However, it’s usually not. traceback() shows you where the error occurred, but not why. The next useful tool is the interactive debugger, which allows you to pause execution of a function and interactively explore its state.

Browsing on error

The easiest way to enter the interactive debugger is through RStudio’s “Rerun with Debug” tool. This reruns the command that created the error, pausing execution where the error occurred. You’re now in an interactive state inside the function, and you can interact with any object defined there. You’ll see the corresponding code in the editor (with the statement that will be run next highlighted), objects in the current environment in the “Environment” pane, the call stack in a “Traceback” pane, and you can run arbitrary R code in the console. 

As well as any regular R function, there are a few special commands you can use in debug mode. You can access them either with the RStudio toolbar () or with the keyboard:


	Next, n: executes the next step in the function. Be careful if you have a variable named n; to print it you’ll need to do print(n).


	Step into,  or s: works like next, but if the next step is a function, it will step into that function so you can work through each line.


	Finish,  or f: finishes execution of the current loop or function.


	Continue, c: leaves interactive debugging and continues regular execution of the function. This is useful if you’ve fixed the bad state and want to check that the function proceeds correctly.


	Stop, Q: stops debugging, terminates the function, and returns to the global workspace. Use this once you’ve figured out where the problem is, and you’re ready to fix it and reload the code.




There are two other slightly less useful commands that aren’t available in the toolbar:


	Enter: repeats the previous command. I find this too easy to activate accidentally, so I turn it off using options(browserNLdisabled = TRUE).


	where: prints stack trace of active calls (the interactive equivalent of traceback).




To enter this style of debugging outside of RStudio, you can use the error option which specifies a function to run when an error occurs. The function most similar to Rstudio’s debug is browser(): this will start an interactive console in the environment where the error occurred. Use options(error = browser) to turn it on, re-run the previous command, then use options(error = NULL) to return to the default error behaviour. You could automate this with the browseOnce() function as defined below: 

browseOnce <- function() {
  old <- getOption("error")
  function() {
    options(error = old)
    browser()
  }
}
options(error = browseOnce())

f <- function() stop("!")
# Enters browser
f()
# Runs normally
f()



(You’ll learn more about functions that return functions in Functional programming.)

There are two other useful functions that you can use with the error option:


	recover is a step up from browser, as it allows you to enter the environment of any of the calls in the call stack. This is useful because often the root cause of the error is a number of calls back. 


	dump.frames is an equivalent to recover for non-interactive code. It creates a last.dump.rda file in the current working directory. Then, in a later interactive R session, you load that file, and use debugger() to enter an interactive debugger with the same interface as recover(). This allows interactive debugging of batch code. 

# In batch R process ----
dump_and_quit <- function() {
  # Save debugging info to file last.dump.rda
  dump.frames(to.file = TRUE)
  # Quit R with error status
  q(status = 1)
}
options(error = dump_and_quit)

# In a later interactive session ----
load("last.dump.rda")
debugger()






To reset error behaviour to the default, use options(error = NULL). Then errors will print a message and abort function execution.

Browsing arbitrary code

As well as entering an interactive console on error, you can enter it at an arbitrary code location by using either an Rstudio breakpoint or browser(). You can set a breakpoint in Rstudio by clicking to the left of the line number, or pressing Shift + F9. Equivalently, add browser() where you want execution to pause. Breakpoints behave similarly to browser() but they are easier to set (one click instead of nine key presses), and you don’t run the risk of accidentally including a browser() statement in your source code. There are two small downsides to breakpoints:  


	There are a few unusual situations in which breakpoints will not work: read breakpoint troubleshooting for more details.


	RStudio currently does not support conditional breakpoints, whereas you can always put browser() inside an if statement.




As well as adding browser() yourself, there are two other functions that will add it to code:


	debug() inserts a browser statement in the first line of the specified function. undebug() removes it. Alternatively, you can use debugonce() to browse only on the next run. 


	utils::setBreakpoint() works similarly, but instead of taking a function name, it takes a file name and line number and finds the appropriate function for you. 




These two functions are both special cases of trace(), which inserts arbitrary code at any position in an existing function. trace() is occasionally useful when you’re debugging code that you don’t have the source for. To remove tracing from a function, use untrace(). You can only perform one trace per function, but that one trace can call multiple functions. 

The call stack: traceback(), where, and recover()

Unfortunately the call stacks printed by traceback(), browser() + where, and recover() are not consistent. The following table shows how the call stacks from a simple nested set of calls are displayed by the three tools. 




	traceback()
	where
	recover()





	4: stop("Error")
	where 1: stop("Error")
	1: f()



	3: h(x)
	where 2: h(x)
	2: g(x)



	2: g(x)
	where 3: g(x)
	3: h(x)



	1: f()
	where 4: f()
	





Note that numbering is different between traceback() and where, and that recover() displays calls in the opposite order, and omits the call to stop(). RStudio displays calls in the same order as traceback() but omits the numbers.

Other types of failure

There are other ways for a function to fail apart from throwing an error or returning an incorrect result.


	A function may generate an unexpected warning. The easiest way to track down warnings is to convert them into errors with options(warn = 2) and use the regular debugging tools. When you do this you’ll see some extra calls in the call stack, like doWithOneRestart(), withOneRestart(), withRestarts(), and .signalSimpleWarning(). Ignore these: they are internal functions used to turn warnings into errors. 


	A function may generate an unexpected message. There’s no built-in tool to help solve this problem, but it’s possible to create one: 

message2error <- function(code) {
  withCallingHandlers(code, message = function(e) stop(e))
}

f <- function() g()
g <- function() message("Hi!")
g()
# Hi!   
message2error(g())
# Error in message("Hi!"): Hi!
traceback()
# 10: stop(e) at #2
# 9: (function (e) stop(e))(list(message = "Hi!\n", 
#      call = message("Hi!")))
# 8: signalCondition(cond)
# 7: doWithOneRestart(return(expr), restart)
# 6: withOneRestart(expr, restarts[[1L]])
# 5: withRestarts()
# 4: message("Hi!") at #1
# 3: g()
# 2: withCallingHandlers(code, message = function(e) stop(e)) 
#      at #2
# 1: message2error(g())



As with warnings, you’ll need to ignore some of the calls on the traceback (i.e., the first two and the last seven).


	A function might never return. This is particularly hard to debug automatically, but sometimes terminating the function and looking at the call stack is informative. Otherwise, use the basic debugging strategies described above.


	The worst scenario is that your code might crash R completely, leaving you with no way to interactively debug your code. This indicates a bug in the underlying C code. This is hard to debug. Sometimes an interactive debugger, like gdb, can be useful, but describing how to use it is beyond the scope of this book. 

If the crash is caused by base R code, post a reproducible example to R-help. If it’s in a package, contact the package maintainer. If it’s your own C or C++ code, you’ll need to use numerous print() statements to narrow down the location of the bug, and then you’ll need to use many more print statements to figure out which data structure doesn’t have the properties that you expect.




Condition handling

Unexpected errors require interactive debugging to figure out what went wrong. Some errors, however, are expected, and you want to handle them automatically. In R, expected errors crop up most frequently when you’re fitting many models to different datasets, such as bootstrap replicates. Sometimes the model might fail to fit and throw an error, but you don’t want to stop everything. Instead, you want to fit as many models as possible and then perform diagnostics after the fact. 

In R, there are three tools for handling conditions (including errors) programmatically:


	try() gives you the ability to continue execution even when an error occurs.


	tryCatch() lets you specify handler functions that control what happens when a condition is signalled.


	withCallingHandlers() is a variant of tryCatch() that establishes local handlers, whereas tryCatch() registers exiting handlers. Local handlers are called in the same context as where the condition is signalled, without interrupting the execution of the function. When a exiting handler from tryCatch() is called, the execution of the function is interrupted and the handler is called. withCallingHandlers() is rarely needed, but is useful to be aware of.




The following sections describe these tools in more detail.

Ignore errors with try

try() allows execution to continue even after an error has occurred. For example, normally if you run a function that throws an error, it terminates immediately and doesn’t return a value: 

f1 <- function(x) {
  log(x)
  10
}
f1("x")



## Error in log(x): non-numeric argument to mathematical function

However, if you wrap the statement that creates the error in try(), the error message will be printed but execution will continue:

f2 <- function(x) {
  try(log(x))
  10
}
f2("a")
#> Error in log(x) : non-numeric argument to mathematical function
#> [1] 10



You can suppress the message with try(..., silent = TRUE).

To pass larger blocks of code to try(), wrap them in {}:

try({
  a <- 1
  b <- "x"
  a + b
})



You can also capture the output of the try() function. If successful, it will be the last result evaluated in the block (just like a function). If unsuccessful it will be an (invisible) object of class “try-error”:

success <- try(1 + 2)
failure <- try("a" + "b")
class(success)



## [1] "numeric"

class(failure)



## [1] "try-error"

try() is particularly useful when you’re applying a function to multiple elements in a list:

elements <- list(1:10, c(-1, 10), c(TRUE, FALSE), letters)
results <- lapply(elements, log)



## Warning in FUN(X[[i]], ...): NaNs produced

## Error in FUN(X[[i]], ...): non-numeric argument to mathematical function

results <- lapply(elements, function(x) try(log(x)))



## Warning in log(x): NaNs produced

There isn’t a built-in function to test for the try-error class, so we’ll define one. Then you can easily find the locations of errors with sapply() (as discussed in Functionals), and extract the successes or look at the inputs that lead to failures.

is.error <- function(x) inherits(x, "try-error")
succeeded <- !vapply(results, is.error, logical(1))

# look at successful results
str(results[succeeded])



## List of 3
##  $ : num [1:10] 0 0.693 1.099 1.386 1.609 ...
##  $ : num [1:2] NaN 2.3
##  $ : num [1:2] 0 -Inf

# look at inputs that failed
str(elements[!succeeded])



## List of 1
##  $ : chr [1:26] "a" "b" "c" "d" ...

Another useful try() idiom is using a default value if an expression fails. Simply assign the default value outside the try block, and then run the risky code:

default <- NULL
try(default <- read.csv("possibly-bad-input.csv"), silent = TRUE)



There is also plyr::failwith(), which makes this strategy even easier to implement. See Function Operators for more details.

Handle conditions with tryCatch()

tryCatch() is a general tool for handling conditions: in addition to errors, you can take different actions for warnings, messages, and interrupts. You’ve seen errors (made by stop()), warnings (warning()) and messages (message()) before, but interrupts are new. They can’t be generated directly by the programmer, but are raised when the user attempts to terminate execution by pressing Ctrl + Break, Escape, or Ctrl + C (depending on the platform).  

With tryCatch() you map conditions to handlers, named functions that are called with the condition as an input. If a condition is signalled, tryCatch() will call the first handler whose name matches one of the classes of the condition. The only useful built-in names are error, warning, message, interrupt, and the catch-all condition. A handler function can do anything, but typically it will either return a value or create a more informative error message. For example, the show_condition() function below sets up handlers that return the type of condition signalled: 

show_condition <- function(code) {
  tryCatch(code,
    error = function(c) "error",
    warning = function(c) "warning",
    message = function(c) "message"
  )
}
show_condition(stop("!"))



## [1] "error"

show_condition(warning("?!"))



## [1] "warning"

show_condition(message("?"))



## [1] "message"

# If no condition is captured, tryCatch returns the 
# value of the input
show_condition(10)



## [1] 10

You can use tryCatch() to implement try(). A simple implementation is shown below. base::try() is more complicated in order to make the error message look more like what you’d see if tryCatch() wasn’t used. Note the use of conditionMessage() to extract the message associated with the original error.

try2 <- function(code, silent = FALSE) {
  tryCatch(code, error = function(c) {
    msg <- conditionMessage(c)
    if (!silent) message(c)
    invisible(structure(msg, class = "try-error"))
  })
}

try2(1)



## [1] 1

try2(stop("Hi"))
try2(stop("Hi"), silent = TRUE)



As well as returning default values when a condition is signalled, handlers can be used to make more informative error messages. For example, by modifying the message stored in the error condition object, the following function wraps read.csv() to add the file name to any errors:

read.csv2 <- function(file, ...) {
  tryCatch(read.csv(file, ...), error = function(c) {
    c$message <- paste0(c$message, " (in ", file, ")")
    stop(c)
  })
}
read.csv("code/dummy.csv")



## Error in file(file, "rt"): cannot open the connection

read.csv2("code/dummy.csv")



## Error in file(file, "rt"): cannot open the connection (in code/dummy.csv)

Catching interrupts can be useful if you want to take special action when the user tries to abort running code. But be careful, it’s easy to create a loop that you can never escape (unless you kill R)! 

# Don't let the user interrupt the code
i <- 1
while(i < 3) {
  tryCatch({
    Sys.sleep(0.5)
    message("Try to escape")
  }, interrupt = function(x) {
    message("Try again!")
    i <<- i + 1
  })
}



tryCatch() has one other argument: finally. It specifies a block of code (not a function) to run regardless of whether the initial expression succeeds or fails. This can be useful for clean up (e.g., deleting files, closing connections). This is functionally equivalent to using on.exit() but it can wrap smaller chunks of code than an entire function. 

withCallingHandlers()

An alternative to tryCatch() is withCallingHandlers(). The difference between the two is that the former establishes exiting handlers while the latter registers local handlers. Here the main differences between the two kind of handlers: 


	The handlers in withCallingHandlers() are called in the context of the call that generated the condition whereas the handlers in tryCatch() are called in the context of tryCatch(). This is shown here with sys.calls(), which is the run-time equivalent of traceback() — it lists all calls leading to the current function.

f <- function() g()
g <- function() h()
h <- function() stop("!")

tryCatch(f(), error = function(e) print(sys.calls()))
# [[1]] tryCatch(f(), error = function(e) print(sys.calls()))
# [[2]] tryCatchList(expr, classes, parentenv, handlers)
# [[3]] tryCatchOne(expr, names, parentenv, handlers[[1L]])
# [[4]] value[[3L]](cond)

withCallingHandlers(f(), error = function(e) print(sys.calls()))
# [[1]] withCallingHandlers(f(), 
#    error = function(e) print(sys.calls()))
# [[2]] f()
# [[3]] g()
# [[4]] h()
# [[5]] stop("!")
# [[6]] .handleSimpleError(
#    function (e) print(sys.calls()), "!", quote(h()))
# [[7]] h(simpleError(msg, call))



This also affects the order in which on.exit() is called.


	A related difference is that with tryCatch(), the flow of execution is interrupted when a handler is called, while with withCallingHandlers(), execution continues normally when the handler returns. This includes the signalling function which continues its course after having called the handler (e.g., stop() will continue stopping the program and message() or warning() will continue signalling a message/warning). This is why it is often better to handle a message with withCallingHandlers() rather than tryCatch(), since the latter will stop the program:

message_handler <- function(c) cat("Caught a message!\n")

tryCatch(message = message_handler, {
  message("Someone there?")
  message("Why, yes!")
})



## Caught a message!

withCallingHandlers(message = message_handler, {
  message("Someone there?")
  message("Why, yes!")
})



## Caught a message!

## Someone there?

## Caught a message!

## Why, yes!


	The return value of a handler is returned by tryCatch(), whereas it is ignored with withCallingHandlers():

f <- function() message("!")
tryCatch(f(), message = function(m) 1)



## [1] 1

withCallingHandlers(f(), message = function(m) 1)



## !




These subtle differences are rarely useful, except when you’re trying to capture exactly what went wrong and pass it on to another function. For most purposes, you should never need to use withCallingHandlers().

Custom signal classes

One of the challenges of error handling in R is that most functions just call stop() with a string. That means if you want to figure out if a particular error occurred, you have to look at the text of the error message. This is error prone, not only because the text of the error might change over time, but also because many error messages are translated, so the message might be completely different to what you expect. 

R has a little known and little used feature to solve this problem. Conditions are S3 classes, so you can define your own classes if you want to distinguish different types of error. Each condition signalling function, stop(), warning(), and message(), can be given either a list of strings, or a custom S3 condition object. Custom condition objects are not used very often, but are very useful because they make it possible for the user to respond to different errors in different ways. For example, “expected” errors (like a model failing to converge for some input datasets) can be silently ignored, while unexpected errors (like no disk space available) can be propagated to the user.

R doesn’t come with a built-in constructor function for conditions, but we can easily add one. Conditions must contain message and call components, and may contain other useful components. When creating a new condition, it should always inherit from condition and should in most cases inherit from one of error, warning, or message.

condition <- function(subclass, message, call = sys.call(-1), ...) {
  structure(
    class = c(subclass, "condition"),
    list(message = message, call = call),
    ...
  )
}
is.condition <- function(x) inherits(x, "condition")



You can signal an arbitrary condition with signalCondition(), but nothing will happen unless you’ve instantiated a custom signal handler (with tryCatch() or withCallingHandlers()). Instead, pass this condition to stop(), warning(), or message() as appropriate to trigger the usual handling. R won’t complain if the class of your condition doesn’t match the function, but in real code you should pass a condition that inherits from the appropriate class: "error" for stop(), "warning" for warning(), and "message" for message(). 

e <- condition(c("my_error", "error"), "This is an error")
signalCondition(e)
# NULL
stop(e)
# Error: This is an error
w <- condition(c("my_warning", "warning"), "This is a warning")
warning(w)
# Warning message: This is a warning
m <- condition(c("my_message", "message"), "This is a message")
message(m)
# This is a message



You can then use tryCatch() to take different actions for different types of errors. In this example we make a convenient custom_stop() function that allows us to signal error conditions with arbitrary classes. In a real application, it would be better to have individual S3 constructor functions that you could document, describing the error classes in more detail.

custom_stop <- function(subclass, message, call = sys.call(-1), 
                        ...) {
  c <- condition(c(subclass, "error"), message, call = call, ...)
  stop(c)
}

my_log <- function(x) {
  if (!is.numeric(x))
    custom_stop("invalid_class", "my_log() needs numeric input")
  if (any(x < 0))
    custom_stop("invalid_value", "my_log() needs positive inputs")

  log(x)
}
tryCatch(
  my_log("a"),
  invalid_class = function(c) "class",
  invalid_value = function(c) "value"
)



## [1] "class"

Note that when using tryCatch() with multiple handlers and custom classes, the first handler to match any class in the signal’s class hierarchy is called, not the best match. For this reason, you need to make sure to put the most specific handlers first:

tryCatch(custom_stop("my_error", "!"),
  error = function(c) "error",
  my_error = function(c) "my_error"
)



## [1] "error"

tryCatch(custom_stop("my_error", "!"),
  my_error = function(c) "my_error",
  error = function(c) "error"
)



## [1] "my_error"

Exercises


	Compare the following two implementations of message2error(). What is the main advantage of withCallingHandlers() in this scenario? (Hint: look carefully at the traceback.)

message2error <- function(code) {
  withCallingHandlers(code, message = function(e) stop(e))
}
message2error <- function(code) {
  tryCatch(code, message = function(e) stop(e))
}






Defensive programming

Defensive programming is the art of making code fail in a well-defined manner even when something unexpected occurs. A key principle of defensive programming is to “fail fast”: as soon as something wrong is discovered, signal an error. This is more work for the author of the function (you!), but it makes debugging easier for users because they get errors earlier rather than later, after unexpected input has passed through several functions.  

In R, the “fail fast” principle is implemented in three ways:


	Be strict about what you accept. For example, if your function is not vectorised in its inputs, but uses functions that are, make sure to check that the inputs are scalars. You can use stopifnot(), the assertthat package, or simple if statements and stop().


	Avoid functions that use non-standard evaluation, like subset, transform, and with. These functions save time when used interactively, but because they make assumptions to reduce typing, when they fail, they often fail with uninformative error messages. You can learn more about non-standard evaluation in non-standard evaluation.


	Avoid functions that return different types of output depending on their input. The two biggest offenders are [ and sapply(). Whenever subsetting a data frame in a function, you should always use drop = FALSE, otherwise you will accidentally convert 1-column data frames into vectors. Similarly, never use sapply() inside a function: always use the stricter vapply() which will throw an error if the inputs are incorrect types and return the correct type of output even for zero-length inputs.




There is a tension between interactive analysis and programming. When you’re working interactively, you want R to do what you mean. If it guesses wrong, you want to discover that right away so you can fix it. When you’re programming, you want functions that signal errors if anything is even slightly wrong or underspecified. Keep this tension in mind when writing functions. If you’re writing functions to facilitate interactive data analysis, feel free to guess what the analyst wants and recover from minor misspecifications automatically. If you’re writing functions for programming, be strict. Never try to guess what the caller wants.

Exercises


	The goal of the col_means() function defined below is to compute the means of all numeric columns in a data frame.

col_means <- function(df) {
  numeric <- sapply(df, is.numeric)
  numeric_cols <- df[, numeric]

  data.frame(lapply(numeric_cols, mean))
}



However, the function is not robust to unusual inputs. Look at the following results, decide which ones are incorrect, and modify col_means() to be more robust. (Hint: there are two function calls in col_means() that are particularly prone to problems.)

col_means(mtcars)
col_means(mtcars[, 0])
col_means(mtcars[0, ])
col_means(mtcars[, "mpg", drop = F])
col_means(1:10)
col_means(as.matrix(mtcars))
col_means(as.list(mtcars))

mtcars2 <- mtcars
mtcars2[-1] <- lapply(mtcars2[-1], as.character)
col_means(mtcars2)




	The following function “lags” a vector, returning a version of x that is n values behind the original. Improve the function so that it (1) returns a useful error message if n is not a vector, and (2) has reasonable behaviour when n is 0 or longer than x.

lag <- function(x, n = 1L) {
  xlen <- length(x)
  c(rep(NA, n), x[seq_len(xlen - n)])
}






Quiz answers


	The most useful tool to determine where a error occurred is traceback(). Or use RStudio, which displays it automatically where an error occurs.


	browser() pauses execution at the specified line and allows you to enter an interactive environment. In that environment, there are five useful commands: n, execute the next command; s, step into the next function; f, finish the current loop or function; c, continue execution normally; Q, stop the function and return to the console.


	You could use try() or tryCatch().


	Because you can then capture specific types of error with tryCatch(), rather than relying on the comparison of error strings, which is risky, especially when messages are translated.





Functional programming

R, at its heart, is a functional programming (FP) language. This means that it provides many tools for the creation and manipulation of functions. In particular, R has what’s known as first class functions. You can do anything with functions that you can do with vectors: you can assign them to variables, store them in lists, pass them as arguments to other functions, create them inside functions, and even return them as the result of a function. 

The chapter starts by showing a motivating example, removing redundancy and duplication in code used to clean and summarise data. Then you’ll learn about the three building blocks of functional programming: anonymous functions, closures (functions written by functions), and lists of functions. These pieces are twined together in the conclusion which shows how to build a suite of tools for numerical integration, starting from very simple primitives. This is a recurring theme in FP: start with small, easy-to-understand building blocks, combine them into more complex structures, and apply them with confidence.

The discussion of functional programming continues in the following two chapters: functionals explores functions that take functions as arguments and return vectors as output, and function operators explores functions that take functions as input and return them as output.

Outline


	Motivation motivates functional programming using a common problem: cleaning and summarising data before serious analysis.


	Anonymous functions shows you a side of functions that you might not have known about: you can use functions without giving them a name.


	Closures introduces the closure, a function written by another function. A closure can access its own arguments, and variables defined in its parent.


	Lists of functions shows how to put functions in a list, and explains why you might care.


	Numerical integration concludes the chapter with a case study that uses anonymous functions, closures and lists of functions to build a flexible toolkit for numerical integration.




Prequisites

You should be familiar with the basic rules of lexical scoping, as described in lexical scoping. Make sure you’ve installed the pryr package with install.packages("pryr")


Motivation

Imagine you’ve loaded a data file, like the one below, that uses −99 to represent missing values. You want to replace all the −99s with NAs.

# Generate a sample dataset
set.seed(1014)
df <- data.frame(replicate(6, sample(c(1:10, -99), 6, rep = TRUE)))
names(df) <- letters[1:6]
df



##    a  b c   d   e f
## 1  1  6 1   5 -99 1
## 2 10  4 4 -99   9 3
## 3  7  9 5   4   1 4
## 4  2  9 3   8   6 8
## 5  1 10 5   9   8 6
## 6  6  2 1   3   8 5

When you first started writing R code, you might have solved the problem with copy-and-paste:

df$a[df$a == -99] <- NA
df$b[df$b == -99] <- NA
df$c[df$c == -98] <- NA
df$d[df$d == -99] <- NA
df$e[df$e == -99] <- NA
df$f[df$g == -99] <- NA



One problem with copy-and-paste is that it’s easy to make mistakes. Can you spot the two in the block above? These mistakes are inconsistencies that arose because we didn’t have an authorative description of the desired action (replace −99 with NA). Duplicating an action makes bugs more likely and makes it harder to change code. For example, if the code for a missing value changes from −99 to 9999, you’d need to make the change in multiple places.

To prevent bugs and to make more flexible code, adopt the “do not repeat yourself”, or DRY, principle. Popularised by the “pragmatic programmers”, Dave Thomas and Andy Hunt, this principle states: “every piece of knowledge must have a single, unambiguous, authoritative representation within a system”. FP tools are valuable because they provide tools to reduce duplication.

We can start applying FP ideas by writing a function that fixes the missing values in a single vector:

fix_missing <- function(x) {
  x[x == -99] <- NA
  x
}
df$a <- fix_missing(df$a)
df$b <- fix_missing(df$b)
df$c <- fix_missing(df$c)
df$d <- fix_missing(df$d)
df$e <- fix_missing(df$e)
df$f <- fix_missing(df$e)



This reduces the scope of possible mistakes, but it doesn’t eliminate them: you can no longer accidentally type -98 instead of -99, but you can still mess up the name of variable. The next step is to remove this possible source of error by combining two functions. One function, fix_missing(), knows how to fix a single vector; the other, lapply(), knows how to do something to each column in a data frame.

lapply() takes three inputs: x, a list; f, a function; and ..., other arguments to pass to f(). It applies the function to each element of the list and returns a new list. lapply(x, f, ...) is equivalent to the following for loop:

out <- vector("list", length(x))
for (i in seq_along(x)) {
  out[[i]] <- f(x[[i]], ...)
}



The real lapply() is rather more complicated since it’s implemented in C for efficiency, but the essence of the algorithm is the same. lapply() is called a functional, because it takes a function as an argument. Functionals are an important part of functional programming. You’ll learn more about them in functionals.

We can apply lapply() to this problem because data frames are lists. We just need a neat little trick to make sure we get back a data frame, not a list. Instead of assigning the results of lapply() to df, we’ll assign them to df[]. R’s usual rules ensure that we get a data frame, not a list. (If this comes as a surprise, you might want to read subsetting and assignment.) Putting these pieces together gives us:

fix_missing <- function(x) {
  x[x == -99] <- NA
  x
}
df[] <- lapply(df, fix_missing)



This code has five advantages over copy and paste:


	It’s more compact.


	If the code for a missing value changes, it only needs to be updated in one place.


	It works for any number of columns. There is no way to accidentally miss a column.


	There is no way to accidentally treat one column differently than another.


	It is easy to generalise this technique to a subset of columns:

df[1:5] <- lapply(df[1:5], fix_missing)






The key idea is function composition. Take two simple functions, one which does something to every column and one which fixes missing values, and combine them to fix missing values in every column. Writing simple functions that can be understood in isolation and then composed is a powerful technique.

What if different columns used different codes for missing values? You might be tempted to copy-and-paste:

fix_missing_99 <- function(x) {
  x[x == -99] <- NA
  x
}
fix_missing_999 <- function(x) {
  x[x == -999] <- NA
  x
}
fix_missing_9999 <- function(x) {
  x[x == -999] <- NA
  x
}



As before, it’s easy to create bugs. Instead we could use closures, functions that make and return functions. Closures allow us to make functions based on a template:

missing_fixer <- function(na_value) {
  function(x) {
    x[x == na_value] <- NA
    x
  }
}
fix_missing_99 <- missing_fixer(-99)
fix_missing_999 <- missing_fixer(-999)

fix_missing_99(c(-99, -999))



## [1]   NA -999

fix_missing_999(c(-99, -999))



## [1] -99  NA



Extra argument


In this case, you could argue that we should just add another argument:

fix_missing <- function(x, na.value) {
  x[x == na.value] <- NA
  x
}



That’s a reasonable solution here, but it doesn’t always work well in every situation. We’ll see more compelling uses for closures in MLE.



Now consider a related problem. Once you’ve cleaned up your data, you might want to compute the same set of numerical summaries for each variable. You could write code like this:

mean(df$a)
median(df$a)
sd(df$a)
mad(df$a)
IQR(df$a)

mean(df$b)
median(df$b)
sd(df$b)
mad(df$b)
IQR(df$b)



But again, you’d be better off identifying and removing duplicate items. Take a minute or two to think about how you might tackle this problem before reading on.

One approach would be to write a summary function and then apply it to each column:

summary <- function(x) {
  c(mean(x), median(x), sd(x), mad(x), IQR(x))
}
lapply(df, summary)



That’s a great start, but there’s still some duplication. It’s easier to see if we make the summary function more realistic:

summary <- function(x) {
 c(mean(x, na.rm = TRUE),
   median(x, na.rm = TRUE),
   sd(x, na.rm = TRUE),
   mad(x, na.rm = TRUE),
   IQR(x, na.rm = TRUE))
}



All five functions are called with the same arguments (x and na.rm) repeated five times. As always, duplication makes our code fragile: it’s easier to introduce bugs and harder to adapt to changing requirements.

To remove this source of duplication, you can take advantage of another functional programming technique: storing functions in lists.

summary <- function(x) {
  funs <- c(mean, median, sd, mad, IQR)
  lapply(funs, function(f) f(x, na.rm = TRUE))
}



This chapter discusses these techniques in more detail. But before you can start learning them, you need to learn the simplest FP tool, the anonymous function.

Anonymous functions

In R, functions are objects in their own right. They aren’t automatically bound to a name. Unlike many languages (e.g., C, C++, Python, and Ruby), R doesn’t have a special syntax for creating a named function: when you create a function, you use the regular assignment operator to give it a name. If you choose not to give the function a name, you get an anonymous function.  

You use an anonymous function when it’s not worth the effort to give it a name:

lapply(mtcars, function(x) length(unique(x)))
Filter(function(x) !is.numeric(x), mtcars)
integrate(function(x) sin(x) ^ 2, 0, pi)



Like all functions in R, anonymous functions have formals(), a body(), and a parent environment():

formals(function(x = 4) g(x) + h(x))



## $x
## [1] 4

body(function(x = 4) g(x) + h(x))



## g(x) + h(x)

environment(function(x = 4) g(x) + h(x))



## <environment: R_GlobalEnv>

You can call an anonymous function without giving it a name, but the code is a little tricky to read because you must use parentheses in two different ways: first, to call a function, and second to make it clear that you want to call the anonymous function itself, as opposed to calling a (possibly invalid) function inside the anonymous function:

# This does not call the anonymous function.
# (Note that "3" is not a valid function.)
function(x) 3()



## function(x) 3()

# With appropriate parenthesis, the function is called:
(function(x) 3)()



## [1] 3

# So this anonymous function syntax
(function(x) x + 3)(10)



## [1] 13

# behaves exactly the same as
f <- function(x) x + 3
f(10)



## [1] 13

You can call anonymous functions with named arguments, but doing so is a good sign that your function needs a name.

One of the most common uses for anonymous functions is to create closures, functions made by other functions. Closures are described in the next section.

Exercises


	Given a function, like "mean", match.fun() lets you find a function. Given a function, can you find its name? Why doesn’t that make sense in R?


	Use lapply() and an anonymous function to find the coefficient of variation (the standard deviation divided by the mean) for all columns in the mtcars dataset.


	Use integrate() and an anonymous function to find the area under the curve for the following functions. Use Wolfram Alpha to check your answers.


	y = x ^ 2 - x, x in [0, 10]

	y = sin(x) + cos(x), x in [-π, π]

	y = exp(x) / x, x in [10, 20]




	A good rule of thumb is that an anonymous function should fit on one line and shouldn’t need to use {}. Review your code. Where could you have used an anonymous function instead of a named function? Where should you have used a named function instead of an anonymous function?




Closures


“An object is data with functions. A closure is a function with data.” — John D. Cook



One use of anonymous functions is to create small functions that are not worth naming. Another important use is to create closures, functions written by functions. Closures get their name because they enclose the environment of the parent function and can access all its variables. This is useful because it allows us to have two levels of parameters: a parent level that controls operation and a child level that does the work.  

The following example uses this idea to generate a family of power functions in which a parent function (power()) creates two child functions (square() and cube()).

power <- function(exponent) {
  function(x) {
    x ^ exponent
  }
}

square <- power(2)
square(2)



## [1] 4

square(4)



## [1] 16

cube <- power(3)
cube(2)



## [1] 8

cube(4)



## [1] 64

When you print a closure, you don’t see anything terribly useful:

square



## function(x) {
##     x ^ exponent
##   }
## <environment: 0x3719630>

cube



## function(x) {
##     x ^ exponent
##   }
## <environment: 0x3870b58>

That’s because the function itself doesn’t change. The difference is the enclosing environment, environment(square). One way to see the contents of the environment is to convert it to a list: 

as.list(environment(square))



## $exponent
## [1] 2

as.list(environment(cube))



## $exponent
## [1] 3

Another way to see what’s going on is to use pryr::unenclose(). This function replaces variables defined in the enclosing environment with their values:

library(pryr)
unenclose(square)



## function (x) 
## {
##     x^2
## }

unenclose(cube)



## function (x) 
## {
##     x^3
## }

The parent environment of a closure is the execution environment of the function that created it, as shown by this code:

power <- function(exponent) {
  print(environment())
  function(x) x ^ exponent
}
zero <- power(0)



## <environment: 0x3ff3db8>

environment(zero)



## <environment: 0x3ff3db8>

The execution environment normally disappears after the function returns a value. However, functions capture their enclosing environments. This means when function a returns function b, function b captures and stores the execution environment of function a, and it doesn’t disappear. (This has important consequences for memory use, see memory usage for details.)

In R, almost every function is a closure. All functions remember the environment in which they were created, typically either the global environment, if it’s a function that you’ve written, or a package environment, if it’s a function that someone else has written. The only exception is primitive functions, which call C code directly and don’t have an associated environment. 

Closures are useful for making function factories, and are one way to manage mutable state in R.

Function factories

A function factory is a factory for making new functions. We’ve already seen two examples of function factories, missing_fixer() and power(). You call it with arguments that describe the desired actions, and it returns a function that will do the work for you. For missing_fixer() and power(), there’s not much benefit in using a function factory instead of a single function with multiple arguments. Function factories are most useful when: 


	The different levels are more complex, with multiple arguments and complicated bodies.


	Some work only needs to be done once, when the function is generated.




Function factories are particularly well suited to maximum likelihood problems, and you’ll see a more compelling use of them in mathematical functionals.

Mutable state

Having variables at two levels allows you to maintain state across function invocations. This is possible because while the execution environment is refreshed every time, the enclosing environment is constant. The key to managing variables at different levels is the double arrow assignment operator (<<-). Unlike the usual single arrow assignment (<-) that always assigns in the current environment, the double arrow operator will keep looking up the chain of parent environments until it finds a matching name. (Binding names to values has more details on how it works.)  

Together, a static parent environment and <<- make it possible to maintain state across function calls. The following example shows a counter that records how many times a function has been called. Each time new_counter is run, it creates an environment, initialises the counter i in this environment, and then creates a new function.

new_counter <- function() {
  i <- 0
  function() {
    i <<- i + 1
    i
  }
}



The new function is a closure, and its enclosing environment is the environment created when new_counter() is run. Ordinarily, function execution environments are temporary, but a closure maintains access to the environment in which it was created. In the example below, closures counter_one() and counter_two() each get their own enclosing environments when run, so they can maintain different counts.

counter_one <- new_counter()
counter_two <- new_counter()

counter_one()



## [1] 1

counter_one()



## [1] 2

counter_two()



## [1] 1

The counters get around the “fresh start” limitation by not modifying variables in their local environment. Since the changes are made in the unchanging parent (or enclosing) environment, they are preserved across function calls.

What happens if you don’t use a closure? What happens if you use <- instead of <<-? Make predictions about what will happen if you replace new_counter() with the variants below, then run the code and check your predictions.

i <- 0
new_counter2 <- function() {
  i <<- i + 1
  i
}
new_counter3 <- function() {
  i <- 0
  function() {
    i <- i + 1
    i
  }
}



Modifying values in a parent environment is an important technique because it is one way to generate “mutable state” in R. Mutable state is normally hard because every time it looks like you’re modifying an object, you’re actually creating and then modifying a copy. However, if you do need mutable objects and your code is not very simple, it’s usually better to use reference classes, as described in RC.

The power of closures is tightly coupled with the more advanced ideas in functionals and function operators. You’ll see many more closures in those two chapters. The following section discusses the third technique of functional programming in R: the ability to store functions in a list.

Exercises


	Why are functions created by other functions called closures?


	What does the following statistical function do? What would be a better name for it? (The existing name is a bit of a hint.)

bc <- function(lambda) {
  if (lambda == 0) {
    function(x) log(x)
  } else {
    function(x) (x ^ lambda - 1) / lambda
  }
}




	What does approxfun() do? What does it return?


	What does ecdf() do? What does it return?


	Create a function that creates functions that compute the ith central moment of a numeric vector. You can test it by running the following code:

m1 <- moment(1)
m2 <- moment(2)

x <- runif(100)
stopifnot(all.equal(m1(x), 0))
stopifnot(all.equal(m2(x), var(x) * 99 / 100))




	Create a function pick() that takes an index, i, as an argument and returns a function with an argument x that subsets x with i.

lapply(mtcars, pick(5))
# should do the same as this
lapply(mtcars, function(x) x[[5]])






Lists of functions

In R, functions can be stored in lists. This makes it easier to work with groups of related functions, in the same way a data frame makes it easier to work with groups of related vectors. 

We’ll start with a simple benchmarking example. Imagine you are comparing the performance of multiple ways of computing the arithmetic mean. You could do this by storing each approach (function) in a list:

compute_mean <- list(
  base = function(x) mean(x),
  sum = function(x) sum(x) / length(x),
  manual = function(x) {
    total <- 0
    n <- length(x)
    for (i in seq_along(x)) {
      total <- total + x[i] / n
    }
    total
  }
)



Calling a function from a list is straightforward. You extract it then call it:

x <- runif(1e5)
system.time(compute_mean$base(x))



##    user  system elapsed 
##   0.000   0.004   0.000

system.time(compute_mean[[2]](x))



##    user  system elapsed 
##   0.000   0.000   0.001

system.time(compute_mean[["manual"]](x))



##    user  system elapsed 
##   0.060   0.004   0.066

To call each function (e.g., to check that they all return the same results), use lapply(). We’ll need either an anonymous function or a new named function, since there isn’t a built-in function to handle this situation.

lapply(compute_mean, function(f) f(x))



## $base
## [1] 0.4994771
## 
## $sum
## [1] 0.4994771
## 
## $manual
## [1] 0.4994771

call_fun <- function(f, ...) f(...)
lapply(compute_mean, call_fun, x)



## $base
## [1] 0.4994771
## 
## $sum
## [1] 0.4994771
## 
## $manual
## [1] 0.4994771

To time each function, we can combine lapply() and system.time():

lapply(compute_mean, function(f) system.time(f(x)))



## $base
##    user  system elapsed 
##       0       0       0 
## 
## $sum
##    user  system elapsed 
##       0       0       0 
## 
## $manual
##    user  system elapsed 
##    0.06    0.00    0.06

Another use for a list of functions is to summarise an object in multiple ways. To do that, we could store each summary function in a list, and then run them all with lapply():

x <- 1:10
funs <- list(
  sum = sum,
  mean = mean,
  median = median
)
lapply(funs, function(f) f(x))



## $sum
## [1] 55
## 
## $mean
## [1] 5.5
## 
## $median
## [1] 5.5

What if we wanted our summary functions to automatically remove missing values? One approach would be make a list of anonymous functions that call our summary functions with the appropriate arguments:

funs2 <- list(
  sum = function(x, ...) sum(x, ..., na.rm = TRUE),
  mean = function(x, ...) mean(x, ..., na.rm = TRUE),
  median = function(x, ...) median(x, ..., na.rm = TRUE)
)
lapply(funs2, function(f) f(x))



## $sum
## [1] 55
## 
## $mean
## [1] 5.5
## 
## $median
## [1] 5.5

This, however, leads to a lot of duplication. Apart from a different function name, each function is almost identical. A better approach would be to modify our lapply() call to include the extra argument:

lapply(funs, function(f) f(x, na.rm = TRUE))



Moving lists of functions to the global environment

From time to time you may create a list of functions that you want to be available without having to use a special syntax. For example, imagine you want to create HTML code by mapping each tag to an R function. The following example uses a function factory to create functions for the tags <p> (paragraph), <b> (bold), and <i> (italics).

simple_tag <- function(tag) {
  force(tag)
  function(...) {
    paste0("<", tag, ">", paste0(...), "</", tag, ">")
  }
}
tags <- c("p", "b", "i")
html <- lapply(setNames(tags, tags), simple_tag)



I’ve put the functions in a list because I don’t want them to be available all the time. The risk of a conflict between an existing R function and an HTML tag is high. But keeping them in a list makes code more verbose:

html$p("This is ", html$b("bold"), " text.")



## [1] "<p>This is <b>bold</b> text.</p>"

Depending on how long we want the effect to last, you have three options to eliminate the use of html$:


	For a very temporary effect, you can use with(): 

with(html, p("This is ", b("bold"), " text."))



## [1] "<p>This is <b>bold</b> text.</p>"


	For a longer effect, you can attach() the functions to the search path, then detach() when you’re done:

attach(html)
p("This is ", b("bold"), " text.")



## [1] "<p>This is <b>bold</b> text.</p>"

detach(html)




	Finally, you could copy the functions to the global environment with list2env(). You can undo this by deleting the functions after you’re done. 

list2env(html, environment())



## <environment: R_GlobalEnv>

p("This is ", b("bold"), " text.")



## [1] "<p>This is <b>bold</b> text.</p>"

rm(list = names(html), envir = environment())






I recommend the first option, using with(), because it makes it very clear when code is being executed in a special context and what that context is.

Exercises


	Implement a summary function that works like base::summary(), but uses a list of functions. Modify the function so it returns a closure, making it possible to use it as a function factory.


	Which of the following commands is equivalent to with(x, f(z))?


	x$f(x$z).

	f(x$z).

	x$f(z).

	f(z).

	It depends.






Case study: numerical integration

To conclude this chapter, I’ll develop a simple numerical integration tool using first-class functions. Each step in the development of the tool is driven by a desire to reduce duplication and to make the approach more general. 

The idea behind numerical integration is simple: find the area under a curve by approximating the curve with simpler components. The two simplest approaches are the midpoint and trapezoid rules. The midpoint rule approximates a curve with a rectangle. The trapezoid rule uses a trapezoid. Each takes the function we want to integrate, f, and a range of values, from a to b, to integrate over. For this example, I’ll try to integrate sin x from 0 to π. This is a good choice for testing because it has a simple answer: 2.

midpoint <- function(f, a, b) {
  (b - a) * f((a + b) / 2)
}

trapezoid <- function(f, a, b) {
  (b - a) / 2 * (f(a) + f(b))
}

midpoint(sin, 0, pi)



## [1] 3.141593

trapezoid(sin, 0, pi)



## [1] 1.923671e-16

Neither of these functions gives a very good approximation. To make them more accurate using the idea that underlies calculus: we’ll break up the range into smaller pieces and integrate each piece using one of the simple rules. This is called composite integration. I’ll implement it using two new functions:

midpoint_composite <- function(f, a, b, n = 10) {
  points <- seq(a, b, length = n + 1)
  h <- (b - a) / n

  area <- 0
  for (i in seq_len(n)) {
    area <- area + h * f((points[i] + points[i + 1]) / 2)
  }
  area
}

trapezoid_composite <- function(f, a, b, n = 10) {
  points <- seq(a, b, length = n + 1)
  h <- (b - a) / n

  area <- 0
  for (i in seq_len(n)) {
    area <- area + h / 2 * (f(points[i]) + f(points[i + 1]))
  }
  area
}

midpoint_composite(sin, 0, pi, n = 10)



## [1] 2.008248

midpoint_composite(sin, 0, pi, n = 100)



## [1] 2.000082

trapezoid_composite(sin, 0, pi, n = 10)



## [1] 1.983524

trapezoid_composite(sin, 0, pi, n = 100)



## [1] 1.999836

You’ll notice that there’s a lot of duplication between midpoint_composite() and trapezoid_composite(). Apart from the internal rule used to integrate over a range, they are basically the same. From these specific functions you can extract a more general composite integration function:

composite <- function(f, a, b, n = 10, rule) {
  points <- seq(a, b, length = n + 1)

  area <- 0
  for (i in seq_len(n)) {
    area <- area + rule(f, points[i], points[i + 1])
  }

  area
}

composite(sin, 0, pi, n = 10, rule = midpoint)



## [1] 2.008248

composite(sin, 0, pi, n = 10, rule = trapezoid)



## [1] 1.983524

This function takes two functions as arguments: the function to integrate and the integration rule. We can now add even better rules for integrating over smaller ranges:

simpson <- function(f, a, b) {
  (b - a) / 6 * (f(a) + 4 * f((a + b) / 2) + f(b))
}

boole <- function(f, a, b) {
  pos <- function(i) a + i * (b - a) / 4
  fi <- function(i) f(pos(i))

  (b - a) / 90 *
    (7 * fi(0) + 32 * fi(1) + 12 * fi(2) + 32 * fi(3) + 7 * fi(4))
}

composite(sin, 0, pi, n = 10, rule = simpson)



## [1] 2.000007

composite(sin, 0, pi, n = 10, rule = boole)



## [1] 2

It turns out that the midpoint, trapezoid, Simpson, and Boole rules are all examples of a more general family called Newton-Cotes rules. (They are polynomials of increasing complexity.) We can use this common structure to write a function that can generate any general Newton-Cotes rule:

newton_cotes <- function(coef, open = FALSE) {
  n <- length(coef) + open

  function(f, a, b) {
    pos <- function(i) a + i * (b - a) / n
    points <- pos(seq.int(0, length(coef) - 1))

    (b - a) / sum(coef) * sum(f(points) * coef)
  }
}

boole <- newton_cotes(c(7, 32, 12, 32, 7))
milne <- newton_cotes(c(2, -1, 2), open = TRUE)
composite(sin, 0, pi, n = 10, rule = milne)



## [1] 1.993829

Mathematically, the next step in improving numerical integration is to move from a grid of evenly spaced points to a grid where the points are closer together near the end of the range, such as Gaussian quadrature. That’s beyond the scope of this case study, but you could implement it with similar techniques.

Exercises


	Instead of creating individual functions (e.g., midpoint(), trapezoid(), simpson(), etc.), we could store them in a list. If we did that, how would that change the code? Can you create the list of functions from a list of coefficients for the Newton-Cotes formulae?


	The trade-off between integration rules is that more complex rules are slower to compute, but need fewer pieces. For sin() in the range [0, π], determine the number of pieces needed so that each rule will be equally accurate. Illustrate your results with a graph. How do they change for different functions? sin(1 / x^2) is particularly challenging.





Functionals


“To become significantly more reliable, code must become more transparent. In particular, nested conditions and loops must be viewed with great suspicion. Complicated control flows confuse programmers. Messy code often hides bugs.”

— Bjarne Stroustrup



A higher-order function is a function that takes a function as an input or returns a function as output. We’ve already seen one type of higher order function: closures, functions returned by another function. The complement to a closure is a functional, a function that takes a function as an input and returns a vector as output. Here’s a simple functional: it calls the function provided as input with 1000 random uniform numbers. 

randomise <- function(f) f(runif(1e3))
randomise(mean)



## [1] 0.4821537

randomise(mean)



## [1] 0.5041088

randomise(sum)



## [1] 525.3343

The chances are that you’ve already used a functional: the three most frequently used are lapply(), apply(), and tapply(). All three take a function as input (among other things) and return a vector as output.

A common use of functionals is as an alternative to for loops. For loops have a bad rap in R. They have a reputation for being slow (although that reputation is only partly true, see modification in place for more details). But the real downside of for loops is that they’re not very expressive. A for loop conveys that it’s iterating over something, but doesn’t clearly convey a high level goal. Instead of using a for loop, it’s better to use a functional. Each functional is tailored for a specific task, so when you recognise the functional you know immediately why it’s being used. Functionals play other roles as well as replacements for for-loops. They are useful for encapsulating common data manipulation tasks like split-apply-combine, for thinking “functionally”, and for working with mathematical functions. 

Functionals reduce bugs in your code by better communicating intent. Functionals implemented in base R are well tested (i.e., bug-free) and efficient, because they’re used by so many people. Many are written in C, and use special tricks to enhance performance. That said, using functionals will not always produce the fastest code. Instead, it helps you clearly communicate and build tools that solve a wide range of problems. It’s a mistake to focus on speed until you know it’ll be a problem. Once you have clear, correct code you can make it fast using the techniques you’ll learn in improving the speed of your code.

Outline


	My first functional: lapply() introduces your first functional: lapply().


	For loop functionals shows you variants of lapply() that produce different outputs, take different inputs, and distribute computation in different ways.


	Data structure functionals discusses functionals that work with more complex data structures like matrices and arrays.


	Functional programming teaches you about the powerful Reduce() and Filter() functions which are useful for working with lists.


	Mathematical functionals discusses functionals that you might be familiar with from mathematics, like root finding, integration, and optimisation.


	Loops that shouldn’t be converted to functions provides some important caveats about when you shouldn’t attempt to convert a loop into a functional.


	A family of functions finishes off the chapter by showing you how functionals can take a simple building block and use it to create a set of powerful and consistent tools.




Prerequisites

You’ll use closures frequently used in conjunction with functionals. If you need a refresher, review closures.

My first functional: lapply()

The simplest functional is lapply(), which you may already be familiar with. lapply() takes a function, applies it to each element in a list, and returns the results in the form of a list. lapply() is the building block for many other functionals, so it’s important to understand how it works. Here’s a pictorial representation: 



lapply() is written in C for performance, but we can create a simple R implementation that does the same thing:

lapply2 <- function(x, f, ...) {
  out <- vector("list", length(x))
  for (i in seq_along(x)) {
    out[[i]] <- f(x[[i]], ...)
  }
  out
}



From this code, you can see that lapply() is a wrapper for a common for loop pattern: create a container for output, apply f() to each component of a list, and fill the container with the results. All other for loop functionals are variations on this theme: they simply use different types of input or output.

lapply() makes it easier to work with lists by eliminating much of the boilerplate associated with looping. This allows you to focus on the function that you’re applying:

# Create some random data
l <- replicate(20, runif(sample(1:10, 1)), simplify = FALSE)

# With a for loop
out <- vector("list", length(l))
for (i in seq_along(l)) {
  out[[i]] <- length(l[[i]])
}
unlist(out)



##  [1]  3  9  1  5  6  9 10  3  3  1  8  3  3  4 10  8  6  8  7  3

# With lapply
unlist(lapply(l, length))



##  [1]  3  9  1  5  6  9 10  3  3  1  8  3  3  4 10  8  6  8  7  3

(I’m using unlist() to convert the output from a list to a vector to make it more compact. We’ll see other ways of making the output a vector shortly.)

Since data frames are also lists, lapply() is also useful when you want to do something to each column of a data frame: 

# What class is each column?
unlist(lapply(mtcars, class))



##       mpg       cyl      disp        hp      drat        wt      qsec 
## "numeric" "numeric" "numeric" "numeric" "numeric" "numeric" "numeric" 
##        vs        am      gear      carb 
## "numeric" "numeric" "numeric" "numeric"

# Divide each column by the mean
mtcars[] <- lapply(mtcars, function(x) x / mean(x))



The pieces of x are always supplied as the first argument to f. If you want to vary a different argument, you can use an anonymous function. The following example varies the amount of trimming applied when computing the mean of a fixed x.

trims <- c(0, 0.1, 0.2, 0.5)
x <- rcauchy(1000)
unlist(lapply(trims, function(trim) mean(x, trim = trim)))



## [1] -0.21383804  0.03720114  0.02254006  0.06109141

Looping patterns

It’s useful to remember that there are three basic ways to loop over a vector: 


	loop over the elements: for (x in xs)

	loop over the numeric indices: for (i in seq_along(xs))

	loop over the names: for (nm in names(xs))



The first form is usually not a good choice for a for loop because it leads to inefficient ways of saving output. With this form it’s very natural to save the output by extending a data structure, like in this example:

xs <- runif(1e3)
res <- c()
for (x in xs) {
  # This is slow!
  res <- c(res, sqrt(x))
}



This is slow because each time you extend the vector, R has to copy all of the existing elements. Avoid copies discusses this problem in more depth. Instead, it’s much better to create the space you’ll need for the output and then fill it in. This is easiest with the second form: 

res <- numeric(length(xs))
for (i in seq_along(xs)) {
  res[i] <- sqrt(xs[i])
}



Just as there are three basic ways to use a for loop, there are three basic ways to use lapply():

lapply(xs, function(x) {})
lapply(seq_along(xs), function(i) {})
lapply(names(xs), function(nm) {})



Typically you’d use the first form because lapply() takes care of saving the output for you. However, if you need to know the position or name of the element you’re working with, you should use the second or third form. Both give you an element’s position (i, nm) and value (xs[[i]], xs[[nm]]). If you’re struggling to solve a problem using one form, you might find it easier with another.

Exercises


	Why are the following two invocations of lapply() equivalent?

trims <- c(0, 0.1, 0.2, 0.5)
x <- rcauchy(100)

lapply(trims, function(trim) mean(x, trim = trim))
lapply(trims, mean, x = x)




	The function below scales a vector so it falls in the range [0, 1]. How would you apply it to every column of a data frame? How would you apply it to every numeric column in a data frame?

scale01 <- function(x) {
  rng <- range(x, na.rm = TRUE)
  (x - rng[1]) / (rng[2] - rng[1])
}




	Use both for loops and lapply() to fit linear models to the mtcars using the formulas stored in this list:

formulas <- list(
  mpg ~ disp,
  mpg ~ I(1 / disp),
  mpg ~ disp + wt,
  mpg ~ I(1 / disp) + wt
)




	Fit the model mpg ~ disp to each of the bootstrap replicates of mtcars in the list below by using a for loop and lapply(). Can you do it without an anonymous function?

bootstraps <- lapply(1:10, function(i) {
  rows <- sample(1:nrow(mtcars), rep = TRUE)
  mtcars[rows, ]
})




	For each model in the previous two exercises, extract R2 using the function below.

rsq <- function(mod) summary(mod)$r.squared






For loop functionals: friends of lapply()

The key to using functionals in place of for loops is recognising that common looping patterns are already implemented in existing base functionals. Once you’ve mastered these existing functionals, the next step is to start writing your own: if you discover you’re duplicating the same looping pattern in many places, you should extract it out into its own function.

The following sections build on lapply() and discuss:


	sapply() and vapply(), variants of lapply() that produce vectors, matrices, and arrays as output, instead of lists.


	Map() and mapply() which iterate over multiple input data structures in parallel.


	mclapply() and mcMap(), parallel versions of lapply() and Map().


	Writing a new function, rollapply(), to solve a new problem.




Vector output: sapply and vapply

sapply() and vapply() are very similar to lapply() except they simplify their output to produce an atomic vector. While sapply() guesses, vapply() takes an additional argument specifying the output type. sapply() is great for interactive use because it saves typing, but if you use it inside your functions you’ll get weird errors if you supply the wrong type of input. vapply() is more verbose, but gives more informative error messages and never fails silently. It is better suited for use inside other functions.  

The following example illustrates these differences. When given a data frame, sapply() and vapply() return the same results. When given an empty list, sapply() returns another empty list instead of the more correct zero-length logical vector.

sapply(mtcars, is.numeric)



##  mpg  cyl disp   hp drat   wt qsec   vs   am gear carb 
## TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

vapply(mtcars, is.numeric, logical(1))



##  mpg  cyl disp   hp drat   wt qsec   vs   am gear carb 
## TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

sapply(list(), is.numeric)



## list()

vapply(list(), is.numeric, logical(1))



## logical(0)

If the function returns results of different types or lengths, sapply() will silently return a list, while vapply() will throw an error. sapply() is fine for interactive use because you’ll normally notice if something goes wrong, but it’s dangerous when writing functions.

The following example illustrates a possible problem when extracting the class of columns in a data frame: if you falsely assume that class only has one value and use sapply(), you won’t find out about the problem until some future function is given a list instead of a character vector.

df <- data.frame(x = 1:10, y = letters[1:10])
sapply(df, class)



##         x         y 
## "integer"  "factor"

vapply(df, class, character(1))



##         x         y 
## "integer"  "factor"

df2 <- data.frame(x = 1:10, y = Sys.time() + 1:10)
sapply(df2, class)



## $x
## [1] "integer"
## 
## $y
## [1] "POSIXct" "POSIXt"

vapply(df2, class, character(1))



## Error in vapply(df2, class, character(1)): values must be length 1,
##  but FUN(X[[2]]) result is length 2

sapply() is a thin wrapper around lapply() that transforms a list into a vector in the final step. vapply() is an implementation of lapply() that assigns results to a vector (or matrix) of appropriate type instead of as a list. The following code shows a pure R implementation of the essence of sapply() and vapply() (the real functions have better error handling and preserve names, among other things).

sapply2 <- function(x, f, ...) {
  res <- lapply2(x, f, ...)
  simplify2array(res)
}

vapply2 <- function(x, f, f.value, ...) {
  out <- matrix(rep(f.value, length(x)), nrow = length(f.value))
  for (i in seq_along(x)) {
    res <- f(x[[i]], ...)
    stopifnot(
      length(res) == length(f.value),
      typeof(res) == typeof(f.value)
    )
    out[ ,i] <- res
  }
  out
}





vapply() and sapply() have different outputs from lapply(). The following section discusses Map(), which has different inputs.

Multiple inputs: Map (and mapply)

With lapply(), only one argument to the function varies; the others are fixed. This makes it poorly suited for some problems. For example, how would you find a weighted mean when you have two lists, one of observations and the other of weights? 

# Generate some sample data
xs <- replicate(5, runif(10), simplify = FALSE)
ws <- replicate(5, rpois(10, 5) + 1, simplify = FALSE)



It’s easy to use lapply() to compute the unweighted means:

unlist(lapply(xs, mean))



## [1] 0.5001362 0.5957105 0.5971894 0.5381643 0.5704373

But how could we supply the weights to weighted.mean()? lapply(x, means, w) won’t work because the additional arguments to lapply() are passed to every call. We could change looping forms:

unlist(lapply(seq_along(xs), function(i) {
  weighted.mean(xs[[i]], ws[[i]])
}))



## [1] 0.5096482 0.5621915 0.5599182 0.4842896 0.5773232

This works, but it’s a little clumsy. A cleaner alternative is to use Map, a variant of lapply(), where all arguments can vary. This lets us write:

unlist(Map(weighted.mean, xs, ws))



## [1] 0.5096482 0.5621915 0.5599182 0.4842896 0.5773232

Note that the order of arguments is a little different: function is the first argument for Map() and the second for lapply().

This is equivalent to:

stopifnot(length(xs) == length(ws))
out <- vector("list", length(xs))
for (i in seq_along(xs)) {
  out[[i]] <- weighted.mean(xs[[i]], ws[[i]])
}



There’s a natural equivalence between Map() and lapply() because you can always convert a Map() to an lapply() that iterates over indices. But using Map() is more concise, and more clearly indicates what you’re trying to do.

Map is useful whenever you have two (or more) lists (or data frames) that you need to process in parallel. For example, another way of standardising columns is to first compute the means and then divide by them. We could do this with lapply(), but if we do it in two steps, we can more easily check the results at each step, which is particularly important if the first step is more complicated.

mtmeans <- lapply(mtcars, mean)
mtmeans[] <- Map(`/`, mtcars, mtmeans)

# In this case, equivalent to
mtcars[] <- lapply(mtcars, function(x) x / mean(x))



If some of the arguments should be fixed and constant, use an anonymous function:

Map(function(x, w) weighted.mean(x, w, na.rm = TRUE), xs, ws)



We’ll see a more compact way to express the same idea in the next chapter.



mapply


You may be more familiar with mapply() than Map(). I prefer Map() because:


	It’s equivalent to mapply with simplify = FALSE, which is almost always what you want.


	Instead of using an anonymous function to provide constant inputs, mapply has the MoreArgs argument that takes a list of extra arguments that will be supplied, as is, to each call. This breaks R’s usual lazy evaluation semantics, and is inconsistent with other functions.




In brief, mapply() adds more complication for little gain. 



Rolling computations

What if you need a for loop replacement that doesn’t exist in base R? You can often create your own by recognising common looping structures and implementing your own wrapper. For example, you might be interested in smoothing your data using a rolling (or running) mean function: 

rollmean <- function(x, n) {
  out <- rep(NA, length(x))

  offset <- trunc(n / 2)
  for (i in (offset + 1):(length(x) - n + offset + 1)) {
    out[i] <- mean(x[(i - offset):(i + offset - 1)])
  }
  out
}
x <- seq(1, 3, length = 1e2) + runif(1e2)
plot(x)
lines(rollmean(x, 5), col = "blue", lwd = 2)
lines(rollmean(x, 10), col = "red", lwd = 2)





But if the noise was more variable (i.e., it has a longer tail), you might worry that your rolling mean was too sensitive to outliers. Instead, you might want to compute a rolling median.

x <- seq(1, 3, length = 1e2) + rt(1e2, df = 2) / 3
plot(x)
lines(rollmean(x, 5), col = "red", lwd = 2)





To change rollmean() to rollmedian(), all you need to do is replace mean with median inside the loop. But instead of copying and pasting to create a new function, we could extract the idea of computing a rolling summary into its own function: 

rollapply <- function(x, n, f, ...) {
  out <- rep(NA, length(x))

  offset <- trunc(n / 2)
  for (i in (offset + 1):(length(x) - n + offset + 1)) {
    out[i] <- f(x[(i - offset):(i + offset - 1)], ...)
  }
  out
}
plot(x)
lines(rollapply(x, 5, median), col = "red", lwd = 2)





You might notice that the internal loop looks pretty similar to a vapply() loop, so we could rewrite the function as:

rollapply <- function(x, n, f, ...) {
  offset <- trunc(n / 2)
  locs <- (offset + 1):(length(x) - n + offset + 1)
  num <- vapply(
    locs, 
    function(i) f(x[(i - offset):(i + offset)], ...),
    numeric(1)
  )

  c(rep(NA, offset), num)
}



This is effectively the same as the implementation in zoo::rollapply(), which provides many more features and much more error checking.

Parallelisation

One interesting thing about the implementation of lapply() is that because each iteration is isolated from all others, the order in which they are computed doesn’t matter. For example, lapply3() scrambles the order of computation, but the results are always the same:  

lapply3 <- function(x, f, ...) {
  out <- vector("list", length(x))
  for (i in sample(seq_along(x))) {
    out[[i]] <- f(x[[i]], ...)
  }
  out
}
unlist(lapply(1:10, sqrt))



##  [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751
##  [8] 2.828427 3.000000 3.162278

unlist(lapply3(1:10, sqrt))



##  [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751
##  [8] 2.828427 3.000000 3.162278

This has a very important consequence: since we can compute each element in any order, it’s easy to dispatch the tasks to different cores, and compute them in parallel. This is what parallel::mclapply() (and parallel::mcMap()) does. (These functions are not available in Windows, but you can use the similar parLapply() with a bit more work. See parallelise for more details.) 

library(parallel)
unlist(mclapply(1:10, sqrt, mc.cores = 4))



##  [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751
##  [8] 2.828427 3.000000 3.162278

In this case, mclapply() is actually slower than lapply(). This is because the cost of the individual computations is low, and additional work is needed to send the computation to the different cores and to collect the results.

If we take a more realistic example, generating bootstrap replicates of a linear model for example, the advantages are clearer: 

boot_df <- function(x) x[sample(nrow(x), rep = T), ]
rsquared <- function(mod) summary(mod)$r.square
boot_lm <- function(i) {
  rsquared(lm(mpg ~ wt + disp, data = boot_df(mtcars)))
}

system.time(lapply(1:500, boot_lm))



##    user  system elapsed 
##   0.740   0.016   0.757

system.time(mclapply(1:500, boot_lm, mc.cores = 2))



##    user  system elapsed 
##   0.000   0.004   0.416

While increasing the number of cores will not always lead to linear improvement, switching from lapply() or Map() to its parallelised forms can dramatically improve computational performance.

Exercises


	Use vapply() to:


	Compute the standard deviation of every column in a numeric data frame.


	Compute the standard deviation of every numeric column in a mixed data frame. (Hint: you’ll need to use vapply() twice.)





	Why is using sapply() to get the class() of each element in a data frame dangerous?


	The following code simulates the performance of a t-test for non-normal data. Use sapply() and an anonymous function to extract the p-value from every trial.

trials <- replicate(
  100, 
  t.test(rpois(10, 10), rpois(7, 10)),
  simplify = FALSE
)



Extra challenge: get rid of the anonymous function by using [[ directly.


	What does replicate() do? What sort of for loop does it eliminate? Why do its arguments differ from lapply() and friends?


	Implement a version of lapply() that supplies FUN with both the name and the value of each component.


	Implement a combination of Map() and vapply() to create an lapply() variant that iterates in parallel over all of its inputs and stores its outputs in a vector (or a matrix). What arguments should the function take?


	Implement mcsapply(), a multicore version of sapply(). Can you implement mcvapply(), a parallel version of vapply()? Why or why not?




Manipulating matrices and data frames

Functionals can also be used to eliminate loops in common data manipulation tasks. In this section, we’ll give a brief overview of the available options, hint at how they can help you, and point you in the right direction to learn more. We’ll cover three categories of data structure functionals:


	apply(), sweep(), and outer() work with matrices.


	tapply() summarises a vector by groups defined by another vector.


	the plyr package, which generalises tapply() to make it easy to work with data frames, lists, or arrays as inputs, and data frames, lists, or arrays as outputs.




Matrix and array operations

So far, all the functionals we’ve seen work with 1d input structures. The three functionals in this section provide useful tools for working with higher-dimensional data structures. apply() is a variant of sapply() that works with matrices and arrays. You can think of it as an operation that summarises a matrix or array by collapsing each row or column to a single number. It has four arguments: 


	X, the matrix or array to summarise

	MARGIN, an integer vector giving the dimensions to summarise over, 1 = rows, 2 = columns, etc.

	FUN, a summary function

	... other arguments passed on to FUN



A typical example of apply() looks like this

a <- matrix(1:20, nrow = 5)
apply(a, 1, mean)



## [1]  8.5  9.5 10.5 11.5 12.5

apply(a, 2, mean)



## [1]  3  8 13 18

There are a few caveats to using apply(). It doesn’t have a simplify argument, so you can never be completely sure what type of output you’ll get. This means that apply() is not safe to use inside a function unless you carefully check the inputs. apply() is also not idempotent in the sense that if the summary function is the identity operator, the output is not always the same as the input:

a1 <- apply(a, 1, identity)
identical(a, a1)



## [1] FALSE

identical(a, t(a1))



## [1] TRUE

a2 <- apply(a, 2, identity)
identical(a, a2)



## [1] TRUE

(You can put high-dimensional arrays back in the right order using aperm(), or use plyr::aaply(), which is idempotent.)

sweep() allows you to “sweep” out the values of a summary statistic. It is often used with apply() to standardise arrays. The following example scales the rows of a matrix so that all values lie between 0 and 1. 

x <- matrix(rnorm(20, 0, 10), nrow = 4)
x1 <- sweep(x, 1, apply(x, 1, min), `-`)
x2 <- sweep(x1, 1, apply(x1, 1, max), `/`)



The final matrix functional is outer(). It’s a little different in that it takes multiple vector inputs and creates a matrix or array output where the input function is run over every combination of the inputs: 

# Create a times table
outer(1:3, 1:10, "*")



##      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,]    1    2    3    4    5    6    7    8    9    10
## [2,]    2    4    6    8   10   12   14   16   18    20
## [3,]    3    6    9   12   15   18   21   24   27    30

Good places to learn more about apply() and friends are:


	“Using apply, sapply, lapply in R” by Peter Werner.


	“The infamous apply function” by Slawa Rokicki.


	“The R apply function - a tutorial with examples” by axiomOfChoice.


	The stackoverflow question “R Grouping functions: sapply vs. lapply vs. apply vs. tapply vs. by vs. aggregate”.




Group apply

You can think about tapply() as a generalisation to apply() that allows for “ragged” arrays, arrays where each row can have a different number of columns. This is often needed when you’re trying to summarise a data set. For example, imagine you’ve collected pulse rate data from a medical trial, and you want to compare the two groups: 

pulse <- round(rnorm(22, 70, 10 / 3)) + rep(c(0, 5), c(10, 12))
group <- rep(c("A", "B"), c(10, 12))

tapply(pulse, group, length)



##  A  B 
## 10 12

tapply(pulse, group, mean)



##     A     B 
## 69.90 75.75

tapply() works by creating a “ragged” data structure from a set of inputs, and then applying a function to the individual elements of that structure. The first task is actually what the split() function does. It takes two inputs and returns a list which groups elements together from the first vector according to elements, or categories, from the second vector:

split(pulse, group)



## $A
##  [1] 68 72 71 63 69 69 73 69 74 71
## 
## $B
##  [1] 78 78 74 70 80 72 78 76 74 79 77 73

Then tapply() is just the combination of split() and sapply():

tapply2 <- function(x, group, f, ..., simplify = TRUE) {
  pieces <- split(x, group)
  sapply(pieces, f, simplify = simplify)
}
tapply2(pulse, group, length)



##  A  B 
## 10 12

tapply2(pulse, group, mean)



##     A     B 
## 69.90 75.75

Being able to rewrite tapply() as a combination of split() and sapply() is a good indication that we’ve identified some useful building blocks. 

The plyr package

One challenge with using the base functionals is that they have grown organically over time, and have been written by multiple authors. This means that they are not very consistent: 


	With tapply() and sapply(), the simplify argument is called simplify. With mapply(), it’s called SIMPLIFY. With apply(), the argument is absent.


	vapply() is a variant of sapply() that allows you to describe what the output should be, but there are no corresponding variants for tapply(), apply(), or Map().


	The first argument of most base functionals is a vector, but the first argument in Map() is a function.




This makes learning these operators challenging, as you have to memorise all of the variations. Additionally, if you think about the possible combinations of input and output types, base R only covers a partial set of cases:




	
	list
	data frame
	array





	list
	lapply()
	
	sapply()



	data frame
	by()
	
	



	array
	
	
	apply()





This was one of the driving motivations behind the creation of the plyr package. It provides consistently named functions with consistently named arguments and covers all combinations of input and output data structures:




	
	list
	data frame
	array





	list
	llply()
	ldply()
	laply()



	data frame
	dlply()
	ddply()
	daply()



	array
	alply()
	adply()
	aaply()





Each of these functions splits up the input, applies a function to each piece, and then combines the results. Overall, this process is called “split-apply-combine”. You can read more about it and plyr in “The Split-Apply-Combine Strategy for Data Analysis”, an open-access article published in the Journal of Statistical Software. 

Exercises


	How does apply() arrange the output? Read the documentation and perform some experiments.


	There’s no equivalent to split() + vapply(). Should there be? When would it be useful? Implement one yourself.


	Implement a pure R version of split(). (Hint: use unique() and subsetting.) Can you do it without a for loop?


	What other types of input and output are missing? Brainstorm before you look up some answers in the plyr paper.




Manipulating lists

Another way of thinking about functionals is as a set of general tools for altering, subsetting, and collapsing lists. Every functional programming language has three tools for this: Map(), Reduce(), and Filter(). We’ve seen Map() already, and the following sections describe Reduce(), a powerful tool for extending two-argument functions, and Filter(), a member of an important class of functionals that work with predicates, functions that return a single TRUE or FALSE.

Reduce()

Reduce() reduces a vector, x, to a single value by recursively calling a function, f, two arguments at a time. It combines the first two elements with f, then combines the result of that call with the third element, and so on. Calling Reduce(f, 1:3) is equivalent to f(f(1, 2), 3). Reduce is also known as fold, because it folds together adjacent elements in the list.  

The following two examples show what Reduce does with an infix and prefix function:

Reduce(`+`, 1:3) # -> ((1 + 2) + 3)
Reduce(sum, 1:3) # -> sum(sum(1, 2), 3)



The essence of Reduce() can be described by a simple for loop:

Reduce2 <- function(f, x) {
  out <- x[[1]]
  for(i in seq(2, length(x))) {
    out <- f(out, x[[i]])
  }
  out
}



The real Reduce() is more complicated because it includes arguments to control whether the values are reduced from the left or from the right (right), an optional initial value (init), and an option to output intermediate results (accumulate).

Reduce() is an elegant way of extending a function that works with two inputs into a function that can deal with any number of inputs. It’s useful for implementing many types of recursive operations, like merges and intersections. (We’ll see another use in the final case study.) Imagine you have a list of numeric vectors, and you want to find the values that occur in every element:

l <- replicate(5, sample(1:10, 15, replace = T), simplify = FALSE)
str(l)



## List of 5
##  $ : int [1:15] 3 5 4 7 8 1 10 2 10 3 ...
##  $ : int [1:15] 9 4 9 6 4 9 4 3 3 8 ...
##  $ : int [1:15] 6 4 4 9 7 6 9 4 9 7 ...
##  $ : int [1:15] 5 5 8 5 7 4 7 7 1 10 ...
##  $ : int [1:15] 2 10 9 7 5 1 4 6 6 3 ...

You could do that by intersecting each element in turn:

intersect(intersect(intersect(intersect(l[[1]], l[[2]]),
  l[[3]]), l[[4]]), l[[5]])



## [1] 3 4 7 8

That’s hard to read. With Reduce(), the equivalent is:

Reduce(intersect, l)



## [1] 3 4 7 8

Predicate functionals

A predicate is a function that returns a single TRUE or FALSE, like is.character, all, or is.NULL. A predicate functional applies a predicate to each element of a list or data frame. There are three useful predicate functionals in base R: Filter(), Find(), and Position().  


	Filter() selects only those elements which match the predicate. 


	Find() returns the first element which matches the predicate (or the last element if right = TRUE). 


	Position() returns the position of the first element that matches the predicate (or the last element if right = TRUE). 




Another useful predicate functional is where(), a custom functional that generates a logical vector from a list (or a data frame) and a predicate: 

where <- function(f, x) {
  vapply(x, f, logical(1))
}



The following example shows how you might use these functionals with a data frame:

df <- data.frame(x = 1:3, y = c("a", "b", "c"))
where(is.factor, df)



##     x     y 
## FALSE  TRUE

str(Filter(is.factor, df))



## 'data.frame':    3 obs. of  1 variable:
##  $ y: Factor w/ 3 levels "a","b","c": 1 2 3

str(Find(is.factor, df))



##  Factor w/ 3 levels "a","b","c": 1 2 3

Position(is.factor, df)



## [1] 2

Exercises


	Why isn’t is.na() a predicate function? What base R function is closest to being a predicate version of is.na()?


	Use Filter() and vapply() to create a function that applies a summary statistic to every numeric column in a data frame.


	What’s the relationship between which() and Position()? What’s the relationship between where() and Filter()?


	Implement Any(), a function that takes a list and a predicate function, and returns TRUE if the predicate function returns TRUE for any of the inputs. Implement All() similarly.


	Implement the span() function from Haskell: given a list x and a predicate function f, span returns the location of the longest sequential run of elements where the predicate is true. (Hint: you might find rle() helpful.)




Mathematical functionals

Functionals are very common in mathematics. The limit, the maximum, the roots (the set of points where f(x) = 0), and the definite integral are all functionals: given a function, they return a single number (or vector of numbers). At first glance, these functions don’t seem to fit in with the theme of eliminating loops, but if you dig deeper you’ll find out that they are all implemented using an algorithm that involves iteration.

In this section we’ll use some of R’s built-in mathematical functionals. There are three functionals that work with functions to return single numeric values:   


	integrate() finds the area under the curve defined by f()

	uniroot() finds where f() hits zero

	optimise() finds the location of lowest (or highest) value of f()



Let’s explore how these are used with a simple function, sin():

integrate(sin, 0, pi)



## 2 with absolute error < 2.2e-14

str(uniroot(sin, pi * c(1 / 2, 3 / 2)))



## List of 5
##  $ root      : num 3.14
##  $ f.root    : num 1.22e-16
##  $ iter      : int 2
##  $ init.it   : int NA
##  $ estim.prec: num 6.1e-05

str(optimise(sin, c(0, 2 * pi)))



## List of 2
##  $ minimum  : num 4.71
##  $ objective: num -1

str(optimise(sin, c(0, pi), maximum = TRUE))



## List of 2
##  $ maximum  : num 1.57
##  $ objective: num 1

In statistics, optimisation is often used for maximum likelihood estimation (MLE). In MLE, we have two sets of parameters: the data, which is fixed for a given problem, and the parameters, which vary as we try to find the maximum. These two sets of parameters make the problem well suited for closures. Combining closures with optimisation gives rise to the following approach to solving MLE problems. 

The following example shows how we might find the maximum likelihood estimate for λ, if our data come from a Poisson distribution. First, we create a function factory that, given a dataset, returns a function that computes the negative log likelihood (NLL) for parameter lambda. In R, it’s common to work with the negative since optimise() defaults to finding the minimum. 

poisson_nll <- function(x) {
  n <- length(x)
  sum_x <- sum(x)
  function(lambda) {
    n * lambda - sum_x * log(lambda) # + terms not involving lambda
  }
}



Note how the closure allows us to precompute values that are constant with respect to the data.

We can use this function factory to generate specific NLL functions for input data. Then optimise() allows us to find the best values (the maximum likelihood estimates), given a generous starting range.

x1 <- c(41, 30, 31, 38, 29, 24, 30, 29, 31, 38)
x2 <- c(6, 4, 7, 3, 3, 7, 5, 2, 2, 7, 5, 4, 12, 6, 9)
nll1 <- poisson_nll(x1)
nll2 <- poisson_nll(x2)

optimise(nll1, c(0, 100))$minimum



## [1] 32.09999

optimise(nll2, c(0, 100))$minimum



## [1] 5.466681

We can check that these values are correct by comparing them to the analytic solution: in this case, it’s just the mean of the data, 32.1 and 5.4666667.

Another important mathematical functional is optim(). It is a generalisation of optimise() that works with more than one dimension. If you’re interested in how it works, you might want to explore the Rvmmin package, which provides a pure-R implementation of optim(). Interestingly Rvmmin is no slower than optim(), even though it is written in R, not C. For this problem, the bottleneck lies not in controlling the optimisation but with having to evaluate the function multiple times. 

Exercises


	Implement arg_max(). It should take a function and a vector of inputs, and return the elements of the input where the function returns the highest value. For example, arg_max(-10:5, function(x) x ^ 2) should return -10. arg_max(-5:5, function(x) x ^ 2) should return c(-5, 5). Also implement the matching arg_min() function.


	Challenge: read about the fixed point algorithm. Complete the exercises using R.




Loops that should be left as is

Some loops have no natural functional equivalent. In this section you’ll learn about three common cases: 


	modifying in place

	recursive functions

	while loops



It’s possible to torture these problems to use a functional, but it’s not a good idea. You’ll create code that is harder to understand, eliminating the main reason for using functionals in the first case.

Modifying in place

If you need to modify part of an existing data frame, it’s often better to use a for loop. For example, the following code performs a variable-by-variable transformation by matching the names of a list of functions to the names of variables in a data frame.

trans <- list(
  disp = function(x) x * 0.0163871,
  am = function(x) factor(x, labels = c("auto", "manual"))
)
for(var in names(trans)) {
  mtcars[[var]] <- trans[[var]](mtcars[[var]])
}



We wouldn’t normally use lapply() to replace this loop directly, but it is possible. Just replace the loop with lapply() by using <<-: 

lapply(names(trans), function(var) {
  mtcars[[var]] <<- trans[[var]](mtcars[[var]])
})



The for loop is gone, but the code is longer and much harder to understand. The reader needs to understand <<- and how x[[y]] <<- z works (it’s not simple!). In short, we’ve taken a simple, easily understood for loop, and turned it into something few people will understand: not a good idea!

Recursive relationships

It’s hard to convert a for loop into a functional when the relationship between elements is not independent, or is defined recursively. For example, exponential smoothing works by taking a weighted average of the current and previous data points. The exps() function below implements exponential smoothing with a for loop. 

exps <- function(x, alpha) {
  s <- numeric(length(x) + 1)
  for (i in seq_along(s)) {
    if (i == 1) {
      s[i] <- x[i]
    } else {
      s[i] <- alpha * x[i] + (1 - alpha) * s[i - 1]
    }
  }
  s
}
x <- runif(6)
exps(x, 0.5)



## [1] 0.5064340 0.6360811 0.7434069 0.7549146 0.8131808 0.4957872        NA

We can’t eliminate the for loop because none of the functionals we’ve seen allow the output at position i to depend on both the input and output at position i - 1.

One way to eliminate the for loop in this case is to solve the recurrence relation by removing the recursion and replacing it with explicit references. This requires a new set of mathematical tools, and is challenging, but it can pay off by producing a simpler function.

While loops

Another type of looping construct in R is the while loop. It keeps running until some condition is met. while loops are more general than for loops: you can rewrite every for loop as a while loop, but you can’t do the reverse. For example, we could turn this for loop:  

for (i in 1:10) print(i)



into this while loop:

i <- 1
while(i <= 10) {
  print(i)
  i <- i + 1
}



Not every while loop can be turned into a for loop because many while loops don’t know in advance how many times they will be run:

i <- 0
while(TRUE) {
  if (runif(1) > 0.9) break
  i <- i + 1
}



This is a common problem when you’re writing simulations.

In this case we can remove the loop by recognising a special feature of the problem. Here we’re counting the number of successes before Bernoulli trial with p = 0.1 fails. This is a geometric random variable, so you could replace the code with i <- rgeom(1, 0.1). Reformulating the problem in this way is hard to do in general, but you’ll benefit greatly if you can do it for your problem.

A family of functions

To finish off the chapter, this case study shows how you can use functionals to take a simple building block and make it powerful and general. I’ll start with a simple idea, adding two numbers together, and use functionals to extend it to summing multiple numbers, computing parallel and cumulative sums, and summing across array dimensions.

We’ll start by defining a very simple addition function, one which takes two scalar arguments:

add <- function(x, y) {
  stopifnot(length(x) == 1, length(y) == 1,
    is.numeric(x), is.numeric(y))
  x + y
}



(We’re using R’s existing addition operator here, which does much more, but the focus here is on how we can take very simple building blocks and extend them to do more.)

I’ll also add an na.rm argument. A helper function will make this a bit easier: if x is missing it should return y, if y is missing it should return x, and if both x and y are missing then it should return another argument to the function: identity. This function is probably a bit more general than what we need now, but it’s useful if we implement other binary operators.

rm_na <- function(x, y, identity) {
  if (is.na(x) && is.na(y)) {
    identity
  } else if (is.na(x)) {
    y
  } else {
    x
  }
}
rm_na(NA, 10, 0)



## [1] 10

rm_na(10, NA, 0)



## [1] 10

rm_na(NA, NA, 0)



## [1] 0

This allows us to write a version of add() that can deal with missing values if needed:

add <- function(x, y, na.rm = FALSE) {
  if (na.rm && (is.na(x) || is.na(y))) rm_na(x, y, 0) else x + y
}
add(10, NA)



## [1] NA

add(10, NA, na.rm = TRUE)



## [1] 10

add(NA, NA)



## [1] NA

add(NA, NA, na.rm = TRUE)



## [1] 0

Why did we pick an identity of 0? Why should add(NA, NA, na.rm = TRUE) return 0? Well, for every other input it returns a number, so even if both arguments are NA, it should still do that. What number should it return? We can figure it out because addition is associative, which means that the order of addition doesn’t matter. That means that the following two function calls should return the same value:

add(add(3, NA, na.rm = TRUE), NA, na.rm = TRUE)



## [1] 3

add(3, add(NA, NA, na.rm = TRUE), na.rm = TRUE)



## [1] 3

This implies that add(NA, NA, na.rm = TRUE) must be 0, and hence identity = 0 is the correct default.

Now that we have the basics working, we can extend the function to deal with more complicated inputs. One obvious generalisation is to add more than two numbers. We can do this by iteratively adding two numbers: if the input is c(1, 2, 3) we compute add(add(1, 2), 3). This is a simple application of Reduce():

r_add <- function(xs, na.rm = TRUE) {
  Reduce(function(x, y) add(x, y, na.rm = na.rm), xs)
}
r_add(c(1, 4, 10))



## [1] 15

This looks good, but we need to test a few special cases:

r_add(NA, na.rm = TRUE)



## [1] NA

r_add(numeric())



## NULL

These are incorrect. In the first case, we get a missing value even though we’ve explicitly asked to ignore them. In the second case, we get NULL instead of a length one numeric vector (as we do for every other set of inputs).

The two problems are related. If we give Reduce() a length one vector, it doesn’t have anything to reduce, so it just returns the input. If we give it an input of length zero, it always returns NULL. The easiest way to fix this problem is to use the init argument of Reduce(). This is added to the start of every input vector:

r_add <- function(xs, na.rm = TRUE) {
  Reduce(function(x, y) add(x, y, na.rm = na.rm), xs, init = 0)
}
r_add(c(1, 4, 10))



## [1] 15

r_add(NA, na.rm = TRUE)



## [1] 0

r_add(numeric())



## [1] 0

r_add() is equivalent to sum().

It would be nice to have a vectorised version of add() so that we can perform the addition of two vectors of numbers in element-wise fashion. We could use Map() or vapply() to implement this, but neither is perfect. Map() returns a list, instead of a numeric vector, so we need to use simplify2array(). vapply() returns a vector but it requires us to loop over a set of indices.

v_add1 <- function(x, y, na.rm = FALSE) {
  stopifnot(length(x) == length(y), is.numeric(x), is.numeric(y))
  if (length(x) == 0) return(numeric())
  simplify2array(
    Map(function(x, y) add(x, y, na.rm = na.rm), x, y)
  )
}

v_add2 <- function(x, y, na.rm = FALSE) {
  stopifnot(length(x) == length(y), is.numeric(x), is.numeric(y))
  vapply(seq_along(x), function(i) add(x[i], y[i], na.rm = na.rm),
    numeric(1))
}



A few test cases help to ensure that it behaves as we expect. We’re a bit stricter than base R here because we don’t do recycling. (You could add that if you wanted, but I find that recycling is a frequent source of silent bugs.)

# Both versions give the same results
v_add1(1:10, 1:10)



##  [1]  2  4  6  8 10 12 14 16 18 20

v_add1(numeric(), numeric())



## numeric(0)

v_add1(c(1, NA), c(1, NA))



## [1]  2 NA

v_add1(c(1, NA), c(1, NA), na.rm = TRUE)



## [1] 2 0

Another variant of add() is the cumulative sum. We can implement it with Reduce() by setting the accumulate argument to TRUE:

c_add <- function(xs, na.rm = FALSE) {
  Reduce(function(x, y) add(x, y, na.rm = na.rm), xs,
    accumulate = TRUE)
}
c_add(1:10)



##  [1]  1  3  6 10 15 21 28 36 45 55

c_add(10:1)



##  [1] 10 19 27 34 40 45 49 52 54 55

This is equivalent to cumsum().

Finally, we might want to define addition for more complicated data structures like matrices. We could create row and col variants that sum across rows and columns, respectively, or we could go the whole hog and define an array version that could sum across any arbitrary set of dimensions. These are easily implemented as combinations of r_add() and apply().

row_sum <- function(x, na.rm = FALSE) {
  apply(x, 1, r_add, na.rm = na.rm)
}
col_sum <- function(x, na.rm = FALSE) {
  apply(x, 2, r_add, na.rm = na.rm)
}
arr_sum <- function(x, dim, na.rm = FALSE) {
  apply(x, dim, r_add, na.rm = na.rm)
}



The first two are equivalent to rowSums() and colSums().

If every function we have created has an existing equivalent in base R, why did we bother? There are two main reasons:


	Since all variants were implemented by combining a simple binary operator (add()) and a well-tested functional (Reduce(), Map(), apply()), we know that our variants will behave consistently.


	We can apply the same infrastructure to other operators, especially those that might not have the full suite of variants in base R.




The downside of this approach is that these implementations are not that efficient. (For example, colSums(x) is much faster than apply(x, 2, sum).) However, even if they aren’t that fast, simple implementations are still a good starting point because they’re less likely to have bugs. When you create faster versions, you can compare the results to make sure your fast versions are still correct.

If you enjoyed this section, you might also enjoy “List out of lambda”, a blog article by Steve Losh that shows how you can produce high level language structures (like lists) out of more primitive language features (like closures, aka lambdas).

Exercises


	Implement smaller and larger functions that, given two inputs, return either the smaller or the larger value. Implement na.rm = TRUE: what should the identity be? (Hint: smaller(x, smaller(NA, NA, na.rm = TRUE), na.rm = TRUE) must be x, so smaller(NA, NA, na.rm = TRUE) must be bigger than any other value of x.) Use smaller and larger to implement equivalents of min(), max(), pmin(), pmax(), and new functions row_min() and row_max().


	Create a table that has and, or, add, multiply, smaller, and larger in the columns and binary operator, reducing variant, vectorised variant, and array variants in the rows.


	Fill in the cells with the names of base R functions that perform each of the roles.


	Compare the names and arguments of the existing R functions. How consistent are they? How could you improve them?


	Complete the matrix by implementing any missing functions.





	How does paste() fit into this structure? What is the scalar binary function that underlies paste()? What are the sep and collapse arguments to paste() equivalent to? Are there any paste variants that don’t have existing R implementations?





Function operators

In this chapter, you’ll learn about function operators (FOs). A function operator is a function that takes one (or more) functions as input and returns a function as output. In some ways, function operators are similar to functionals: there’s nothing you can’t do without them, but they can make your code more readable and expressive, and they can help you write code faster. The main difference is that functionals extract common patterns of loop use, where function operators extract common patterns of anonymous function use. 

The following code shows a simple function operator, chatty(). It wraps a function, making a new function that prints out its first argument. It’s useful because it gives you a window to see how functionals, like vapply(), work.

chatty <- function(f) {
  function(x, ...) {
    res <- f(x, ...)
    cat("Processing ", x, "\n", sep = "")
    res
  }
}
f <- function(x) x ^ 2
s <- c(3, 2, 1)
chatty(f)(1)



## Processing 1

## [1] 1

vapply(s, chatty(f), numeric(1))



## Processing 3
## Processing 2
## Processing 1

## [1] 9 4 1

In the last chapter, we saw that many built-in functionals, like Reduce(), Filter(), and Map(), have very few arguments, so we had to use anonymous functions to modify how they worked. In this chapter, we’ll build specialised substitutes for common anonymous functions that allow us to communicate our intent more clearly. For example, in multiple inputs we used an anonymous function with Map() to supply fixed arguments:

Map(function(x, y) f(x, y, zs), xs, ys)



Later in this chapter, we’ll learn about partial application using the partial() function. Partial application encapsulates the use of an anonymous function to supply default arguments, and allows us to write succinct code:

Map(partial(f, zs = zs), xs, yz)



This is an important use of FOs: by transforming the input function, you eliminate parameters from a functional. In fact, as long as the inputs and outputs of the function remain the same, this approach allows your functionals to be more extensible, often in ways you haven’t thought of.

The chapter covers four important types of FO: behaviour, input, output, and combining. For each type, I’ll show you some useful FOs, and how you can use as another to decompose problems: as combinations of multiple functions instead of combinations of arguments. The goal is not to exhaustively list every possible FO, but to show a selection that demonstrate how they work together with other FP techniques. For your own work, you’ll need to think about and experiment with how function operators can help you solve recurring problems.

Outline


	Behavioural FOs introduces you to FOs that change the behaviour of a function like automatically logging usage to disk or ensuring that a function is run only once.


	Output FOs shows you how to write FOs that manipulate the output of a function. These can do simple things like capturing errors, or fundamentally change what the function does.


	Input FOs describes how to modify the inputs to a function using a FO like Vectorize() or partial().


	Combining FOs shows the power of FOs that combine multiple functions with function composition and logical operations.




Prerequisites

As well as writing FOs from scratch, this chapter uses function operators from the memoise, plyr, and pryr packages. Install them by running install.packages(c("memoise", "plyr", "pryr")).


Behavioural FOs

Behavioural FOs leave the inputs and outputs of a function unchanged, but add some extra behaviour. In this section, we’ll look at functions which implement three useful behaviours:


	Add a delay to avoid swamping a server with requests.

	Print to console every n invocations to check on a long running process.

	Cache previous computations to improve performance.



To motivate these behaviours, imagine we want to download a long vector of URLs. That’s pretty simple with lapply() and download_file():

download_file <- function(url, ...) {
  download.file(url, basename(url), ...)
}
lapply(urls, download_file)



(download_file() is a simple wrapper around utils::download.file() which provides a reasonable default for the file name.)

There are a number of useful behaviours we might want to add to this function. If the list was long, we might want to print a . every ten URLs so we know that the function’s still working. If we’re downloading files over the internet, we might want to add a small delay between each request to avoid hammering the server. Implementing these behaviours in a for loop is rather complicated. We can no longer use lapply() because we need an external counter:

i <- 1
for(url in urls) {
  i <- i + 1
  if (i %% 10 == 0) cat(".")
  Sys.delay(1)
  download_file(url)
}



Understanding this code is hard because different concerns (iteration, printing, and downloading) are interleaved. In the remainder of this section we’ll create FOs that encapsulate each behaviour and allow us to write code like this:

lapply(urls, dot_every(10, delay_by(1, download_file)))



Implementing delay_by() is straightforward, and follows the same basic template that we’ll see for the majority of FOs in this chapter: 

delay_by <- function(delay, f) {
  function(...) {
    Sys.sleep(delay)
    f(...)
  }
}
system.time(runif(100))



##    user  system elapsed 
##       0       0       0

system.time(delay_by(0.1, runif)(100))



##    user  system elapsed 
##   0.000   0.000   0.101

dot_every() is a little bit more complicated because it needs to manage a counter. Fortunately, we saw how to do that in mutable state. 

dot_every <- function(n, f) {
  i <- 1
  function(...) {
    if (i %% n == 0) cat(".")
    i <<- i + 1
    f(...)
  }
}
x <- lapply(1:100, runif)
x <- lapply(1:100, dot_every(10, runif))



## ..........

Notice that I’ve made the function the last argument in each FO. This makes it easier to read when we compose multiple function operators. If the function were the first argument, then instead of:

download <- dot_every(10, delay_by(1, download_file))



we’d have

download <- dot_every(delay_by(download_file, 1), 10)



That’s harder to follow because (e.g.) the argument of dot_every() is far away from its call. This is sometimes called the Dagwood sandwich problem: you have too much filling (too many long arguments) between your slices of bread (parentheses). 

I’ve also tried to give the FOs descriptive names: delay by 1 (second), (print a) dot every 10 (invocations). The more clearly the function names used in your code express your intent, the easier it will be for others (including future you) to read and understand the code.

Memoisation

Another thing you might worry about when downloading multiple files is accidentally downloading the same file multiple times. You could avoid this by calling unique() on the list of input URLs, or manually managing a data structure that mapped the URL to the result. An alternative approach is to use memoisation: modify a function to automatically cache its results. 

library(memoise)



slow_function <- function() {
  Sys.sleep(1)
  10
}
system.time(slow_function())



##    user  system elapsed 
##   0.000   0.000   1.001

system.time(slow_function())



##    user  system elapsed 
##   0.000   0.000   1.001

fast_function <- memoise(slow_function)
system.time(fast_function())



##    user  system elapsed 
##   0.000   0.000   1.001

system.time(fast_function())



##    user  system elapsed 
##   0.000   0.000   0.001

Memoisation is an example of the classic computer science tradeoff of memory versus speed. A memoised function can run much faster because it stores all of the previous inputs and outputs, using more memory.

A realistic use of memoisation is computing the Fibonacci series. The Fibonacci series is defined recursively: the first two values are 1 and 1, then f(n) = f(n - 1) + f(n - 2). A naive version implemented in R would be very slow because, for example, fib(10) computes fib(9) and fib(8), and fib(9) computes fib(8) and fib(7), and so on. As a result, the value for each value in the series gets computed many, many times. Memoising fib() makes the implementation much faster because each value is computed only once. 

fib <- function(n) {
  if (n < 2) return(1)
  fib(n - 2) + fib(n - 1)
}
system.time(fib(23))



##    user  system elapsed 
##   0.084   0.000   0.086

system.time(fib(24))



##    user  system elapsed 
##   0.116   0.000   0.117

fib2 <- memoise(function(n) {
  if (n < 2) return(1)
  fib2(n - 2) + fib2(n - 1)
})
system.time(fib2(23))



##    user  system elapsed 
##   0.004   0.000   0.004

system.time(fib2(24))



##    user  system elapsed 
##   0.000   0.000   0.001

It doesn’t make sense to memoise all functions. For example, a memoised random number generator is no longer random:

runifm <- memoise(runif)
runifm(5)



## [1] 0.0633498 0.1340229 0.9141323 0.7848173 0.5176605

runifm(5)



## [1] 0.0633498 0.1340229 0.9141323 0.7848173 0.5176605

Once we understand memoise(), it’s straightforward to apply to our problem:

download <- dot_every(10, memoise(delay_by(1, download_file)))



This gives a function that we can easily use with lapply(). However, if something goes wrong with the loop inside lapply(), it can be difficult to tell what’s going on. The next section will show how we can use FOs to pull back the curtain and look inside.

Capturing function invocations

One challenge with functionals is that it can be hard to see what’s going on inside of them. It’s not easy to pry open their internals like it is with a for loop. Fortunately we can use FOs to peer behind the curtain with tee(). 

tee(), defined below, has three arguments, all functions: f, the function to modify; on_input, a function that’s called with the inputs to f; and on_output, a function that’s called with the output from f.

ignore <- function(...) NULL
tee <- function(f, on_input = ignore, on_output = ignore) {
  function(...) {
    on_input(...)
    output <- f(...)
    on_output(output)
    output
  }
}



(The function is inspired by the unix shell command tee, which is used to split up streams of file operations so that you can both display what’s happening and save intermediate results to a file.)

We can use tee() to look inside the uniroot() functional, and see how it iterates its way to a solution. The following example finds where x and cos(x) intersect: 

g <- function(x) cos(x) - x
zero <- uniroot(g, c(-5, 5))
show_x <- function(x, ...) cat(sprintf("%+.08f", x), "\n")

# The location where the function is evaluated:
zero <- uniroot(tee(g, on_input = show_x), c(-5, 5))



## -5.00000000 
## +5.00000000 
## +0.28366219 
## +0.87520341 
## +0.72298040 
## +0.73863091 
## +0.73908529 
## +0.73902425 
## +0.73908529

# The value of the function:
zero <- uniroot(tee(g, on_output = show_x), c(-5, 5))



## +5.28366219 
## -4.71633781 
## +0.67637474 
## -0.23436269 
## +0.02685676 
## +0.00076012 
## -0.00000026 
## +0.00010189 
## -0.00000026

cat() allows us to see what’s happening as the function runs, but it doesn’t give us a way to work with the values after the function as completed. To do that, we could capture the sequence of calls by creating a function, remember(), that records every argument called and retrieves them when coerced into a list. The small amount of S3 code needed is explained in S3. 

remember <- function() {
  memory <- list()
  f <- function(...) {
    # This is inefficient!
    memory <<- append(memory, list(...))
    invisible()
  }

  structure(f, class = "remember")
}
as.list.remember <- function(x, ...) {
  environment(x)$memory
}
print.remember <- function(x, ...) {
  cat("Remembering...\n")
  str(as.list(x))
}



Now we can draw a picture showing how uniroot zeroes in on the final answer:

locs <- remember()
vals <- remember()
zero <- uniroot(tee(g, locs, vals), c(-5, 5))
x <- unlist(as.list(locs))
error <- unlist(as.list(vals))
plot(x, type = "b"); abline(h = 0.739, col = "grey50")





plot(error, type = "b"); abline(h = 0, col = "grey50")





Laziness

The function operators we’ve seen so far follow a common pattern:

funop <- function(f, otherargs) {
  function(...) {
    # maybe do something
    res <- f(...)
    # maybe do something else
    res
  }
}



Unfortunately there’s a problem with this implementation because function arguments are lazily evaluated: f() may have changed between applying the FO and evaluating the function. This is a particular problem if you’re using a for loop to create multiple function operators. In the following example, we take a list of functions and delay each one. But when we try to evaluate the mean, we get the sum instead. 

funs <- list(mean = mean, sum = sum)

funs_m <- vector("list", length(funs))
for (fun in names(funs)) {
  funs_m[[fun]] <- delay_by(funs[[fun]], delay = 0.1)
}
funs_m$mean(1:10)



## [1] 55

We can avoid that problem by explicitly forcing the evaluation of f():

delay_by <- function(delay, f) {
  force(f)
  function(...) {
    Sys.sleep(delay)
    f(...)
  }
}

funs_m <- vector("list", length(funs))
for (fun in names(funs)) {
  funs_m[[fun]] <- delay_by(funs[[fun]], delay = 0.1)
}
funs_m$mean(1:10)



## [1] 5.5

Note that lapply() and friends have special “non-lazy” behaviour so you don’t see this problem:

delay_by <- function(delay, f) {
  function(...) {
    Sys.sleep(delay)
    f(...)
  }
}

funs_m <- lapply(funs, delay_by, delay = 0.1)
funs_m$mean(1:10)



## [1] 5.5

Exercises


	Write a FO that logs a time stamp and message to a file every time a function is run.


	What does the following function do? What would be a good name for it?

f <- function(g) {
  force(g)
  result <- NULL
  function(...) {
    if (is.null(result)) {
      result <<- g(...)
    }
    result
  }
}
runif2 <- f(runif)
runif2(5)



## [1] 0.3856219 0.2596573 0.3964255 0.5439418 0.3688169

runif2(10)



## [1] 0.3856219 0.2596573 0.3964255 0.5439418 0.3688169


	Modify delay_by() so that instead of delaying by a fixed amount of time, it ensures that a certain amount of time has elapsed since the function was last called. That is, if you called g <- delay_by(1, f); g(); Sys.sleep(2); g() there shouldn’t be an extra delay.


	Write wait_until() which delays execution until a specific time.


	There are three places we could have added a memoise call: why did we choose the one we did?

download <- memoise(dot_every(10, delay_by(1, download_file)))
download <- dot_every(10, memoise(delay_by(1, download_file)))
download <- dot_every(10, delay_by(1, memoise(download_file)))




	Why is the remember() function inefficient? How could you implement it in more efficient way?


	Why does the following code, from stackoverflow, not do what you expect?

# return a linear function with slope a and intercept b.
f <- function(a, b) function(x) a * x + b

# create a list of functions with different parameters.
fs <- Map(f, a = c(0, 1), b = c(0, 1))

fs[[1]](3)



## [1] 0

# should return 0 * 3 + 0 = 0



How can you modify f so that it works correctly?




Output FOs

The next step up in complexity is to modify the output of a function. This could be quite simple, or it could fundamentally change the operation of the function by returning something completely different to its usual output. In this section you’ll learn about two simple modifications, Negate() and failwith(), and two fundamental modifications, capture_it() and time_it().

Minor modifications

base::Negate() and plyr::failwith() offer two minor, but useful, modifications of a function that are particularly handy in conjunction with functionals.  

Negate() takes a function that returns a logical vector (a predicate function), and returns the negation of that function. This can be a useful shortcut when a function returns the opposite of what you need. The essence of Negate() is very simple:

Negate <- function(f) {
  force(f)
  function(...) !f(...)
}
(Negate(is.null))(NULL)



## [1] FALSE

I often use this idea to make a function, compact(), that removes all null elements from a list: 

compact <- function(x) Filter(Negate(is.null), x)



plyr::failwith() turns a function that throws an error into a function that returns a default value when there’s an error. Again, the essence of failwith() is simple; it’s just a wrapper around try(), the function that captures errors and allows execution to continue. 

failwith <- function(default = NULL, f, quiet = FALSE) {
  force(f)
  function(...) {
    out <- default
    try(out <- f(...), silent = quiet)
    out
  }
}
log("a")



## Error in log("a"): non-numeric argument to mathematical function

failwith(NA, log)("a")
#> Error in f(...) : non-numeric argument to mathematical function
#> NA



failwith(NA, log, quiet = TRUE)("a")



## [1] NA

(If you haven’t seen try() before, it’s discussed in more detail in exceptions and debugging.)

failwith() is very useful in conjunction with functionals: instead of the failure propagating and terminating the higher-level loop, you can complete the iteration and then find out what went wrong. For example, imagine you’re fitting a set of generalised linear models (GLMs) to a list of data frames. While GLMs can sometimes fail because of optimisation problems, you’d still want to be able to try to fit all the models, and later look back at those that failed: 

# If any model fails, all models fail to fit:
models <- lapply(datasets, glm, formula = y ~ x1 + x2 * x3)
# If a model fails, it will get a NULL value
models <- lapply(datasets, failwith(NULL, glm),
  formula = y ~ x1 + x2 * x3)

# remove failed models (NULLs) with compact
ok_models <- compact(models)
# extract the datasets corresponding to failed models
failed_data <- datasets[vapply(models, is.null, logical(1))]



I think this is a great example of the power of combining functionals and function operators: it lets you succinctly express what you need to solve a common data analysis problem.

Changing what a function does

Other output function operators can have a more profound effect on the operation of the function. Instead of returning the original return value, we can return some other effect of the function evaluation. Here are two examples:


	Return text that the function print()ed: 

capture_it <- function(f) {
  force(f)
  function(...) {
    capture.output(f(...))
  }
}
str_out <- capture_it(str)
str(1:10)



##  int [1:10] 1 2 3 4 5 6 7 8 9 10

str_out(1:10)



## [1] " int [1:10] 1 2 3 4 5 6 7 8 9 10"


	Return how long a function took to run: 

time_it <- function(f) {
  force(f)
  function(...) {
    system.time(f(...))
  }
}






time_it() allows us to rewrite some of the code from the functionals chapter:

compute_mean <- list(
  base = function(x) mean(x),
  sum = function(x) sum(x) / length(x)
)
x <- runif(1e6)

# Previously we used an anonymous function to time execution:
# lapply(compute_mean, function(f) system.time(f(x)))

# Now we can compose function operators:
call_fun <- function(f, ...) f(...)
lapply(compute_mean, time_it(call_fun), x)



## $base
##    user  system elapsed 
##   0.000   0.000   0.002 
## 
## $sum
##    user  system elapsed 
##   0.000   0.000   0.001

In this example, there’s not a huge benefit to using function operators, because the composition is simple and we’re applying the same operator to each function. Generally, using function operators is most effective when you are using multiple operators or if the gap between creating them and using them is large.

Exercises


	Create a negative() FO that flips the sign of the output of the function to which it is applied.


	The evaluate package makes it easy to capture all the outputs (results, text, messages, warnings, errors, and plots) from an expression. Create a function like capture_it() that also captures the warnings and errors generated by a function.


	Create a FO that tracks files created or deleted in the working directory (Hint: use dir() and setdiff().) What other global effects of functions might you want to track?




Input FOs

The next step up in complexity is to modify the inputs of a function. Again, you can modify how a function works in a minor way (e.g., setting default argument values), or in a major way (e.g., converting inputs from scalars to vectors, or vectors to matrices).

Prefilling function arguments: partial function application

A common use of anonymous functions is to make a variant of a function that has certain arguments “filled in” already. This is called “partial function application”, and is implemented by pryr::partial(). Once you have read metaprogramming, I encourage you to read the source code for partial() and figure out how it works — it’s only 5 lines of code!   

partial() allows us to replace code like

f <- function(a) g(a, b = 1)
compact <- function(x) Filter(Negate(is.null), x)
Map(function(x, y) f(x, y, zs), xs, ys)



with

f <- partial(g, b = 1)
compact <- partial(Filter, Negate(is.null))
Map(partial(f, zs = zs), xs, ys)



We can use this idea to simplify the code used when working with lists of functions. Instead of:

funs2 <- list(
  sum = function(...) sum(..., na.rm = TRUE),
  mean = function(...) mean(..., na.rm = TRUE),
  median = function(...) median(..., na.rm = TRUE)
)



we can write:

library(pryr)
funs2 <- list(
  sum = partial(sum, na.rm = TRUE),
  mean = partial(mean, na.rm = TRUE),
  median = partial(median, na.rm = TRUE)
)



Using partial function application is a straightforward task in many functional programming languages, but it’s not entirely clear how it should interact with R’s lazy evaluation rules. The approach pryr::partial() takes is to create a function that is as similar as possible to the anonymous function that you’d create by hand. Peter Meilstrup takes a different approach in his ptools package. If you’re interested in the topic, you might want to read about the binary operators he created: %()%, %>>%, and %<<%.

Changing input types

It’s also possible to make a major change to a function’s input, making a function work with fundamentally different types of data. There are a few existing functions that work along these lines:


	base::Vectorize() converts a scalar function to a vector function. It takes a non-vectorised function and vectorises it with respect to the arguments specified in the vectorize.args argument. This doesn’t give you any magical performance improvements, but it’s useful if you want a quick and dirty way of making a vectorised function. 

A mildly useful extension to sample() would be to vectorize it with respect to size. Doing so would allow you to generate multiple samples in one call. 

sample2 <- Vectorize(sample, "size", SIMPLIFY = FALSE)
str(sample2(1:5, c(1, 1, 3)))



## List of 3
##  $ : int 4
##  $ : int 5
##  $ : int [1:3] 3 4 2

str(sample2(1:5, 5:3))



## List of 3
##  $ : int [1:5] 2 4 5 1 3
##  $ : int [1:4] 2 3 5 4
##  $ : int [1:3] 1 5 4

In this example we have used SIMPLIFY = FALSE to ensure that our newly vectorised function always returns a list. This is usually what you want.


	splat() converts a function that takes multiple arguments to a function that takes a single list of arguments.  

splat <- function (f) {
  force(f)
  function(args) {
    do.call(f, args)
  }
}



This is useful if you want to invoke a function with varying arguments:

x <- c(NA, runif(100), 1000)
args <- list(
  list(x),
  list(x, na.rm = TRUE),
  list(x, na.rm = TRUE, trim = 0.1)
)
lapply(args, splat(mean))



## [[1]]
## [1] NA
## 
## [[2]]
## [1] 10.45751
## 
## [[3]]
## [1] 0.57812


	plyr::colwise() converts a vector function to one that works with data frames: 

median(mtcars)



## Error in median.default(mtcars): need numeric data

median(mtcars$mpg)



## [1] 19.2

plyr::colwise(median)(mtcars)



##    mpg cyl  disp  hp  drat    wt  qsec vs am gear carb
## 1 19.2   6 196.3 123 3.695 3.325 17.71  0  0    4    2




Exercises


	Our previous download() function only downloads a single file. How can you use partial() and lapply() to create a function that downloads multiple files at once? What are the pros and cons of using partial() vs. writing a function by hand?


	Read the source code for plyr::colwise(). How does the code work? What are colwise()’s three main tasks? How could you make colwise() simpler by implementing each task as a function operator? (Hint: think about partial().)


	Write FOs that convert a function to return a matrix instead of a data frame, or a data frame instead of a matrix. If you understand S3, call them as.data.frame.function() and as.matrix.function().


	You’ve seen five functions that modify a function to change its output from one form to another. What are they? Draw a table of the various combinations of types of outputs: what should go in the rows and what should go in the columns? What function operators might you want to write to fill in the missing cells? Come up with example use cases.


	Look at all the examples of using an anonymous function to partially apply a function in this and the previous chapter. Replace the anonymous function with partial(). What do you think of the result? Is it easier or harder to read?




Combining FOs

Besides just operating on single functions, function operators can take multiple functions as input. One simple example of this is plyr::each(). It takes a list of vectorised functions and combines them into a single function. 

summaries <- plyr::each(mean, sd, median)
summaries(1:10)



##    mean      sd  median 
## 5.50000 3.02765 5.50000

Two more complicated examples are combining functions through composition, or through boolean algebra. These capabilities are the glue that allow us to join multiple functions together.

Function composition

An important way of combining functions is through composition: f(g(x)). Composition takes a list of functions and applies them sequentially to the input. It’s a replacement for the common pattern of anonymous function that chains multiple functions together to get the result you want:   

sapply(mtcars, function(x) length(unique(x)))



##  mpg  cyl disp   hp drat   wt qsec   vs   am gear carb 
##   25    3   27   22   22   29   30    2    2    3    6

A simple version of compose looks like this:

compose <- function(f, g) {
  function(...) f(g(...))
}



(pryr::compose() provides a more full-featured alternative that can accept multiple functions and is used for the rest of the examples.)

This allows us to write:

sapply(mtcars, compose(length, unique))



##  mpg  cyl disp   hp drat   wt qsec   vs   am gear carb 
##   25    3   27   22   22   29   30    2    2    3    6

Mathematically, function composition is often denoted with the infix operator, o, (f o g)(x). Haskell, a popular functional programming language, uses . to the same end. In R, we can create our own infix composition function: 

"%o%" <- compose
sapply(mtcars, length %o% unique)



##  mpg  cyl disp   hp drat   wt qsec   vs   am gear carb 
##   25    3   27   22   22   29   30    2    2    3    6

sqrt(1 + 8)



## [1] 3

compose(sqrt, `+`)(1, 8)



## [1] 3

(sqrt %o% `+`)(1, 8)



## [1] 3

Compose also allows for a very succinct implementation of Negate, which is just a partially evaluated version of compose(). 

Negate <- partial(compose, `!`)



We could implement the population standard deviation with function composition:

square <- function(x) x^2
deviation <- function(x) x - mean(x)

sd2 <- sqrt %o% mean %o% square %o% deviation
sd2(1:10)



## [1] 2.872281

This type of programming is called tacit or point-free programming. (The term point-free comes from the use of “point” to refer to values in topology; this style is also derogatorily known as pointless). In this style of programming, you don’t explicitly refer to variables. Instead, you focus on the high-level composition of functions rather than the low-level flow of data. The focus is on what’s being done, not on objects it’s being done to. Since we’re using only functions and not parameters, we use verbs and not nouns. This style is common in Haskell, and is the typical style in stack based programming languages like Forth and Factor. It’s not a terribly natural or elegant style in R, but it is fun to play with.  

compose() is particularly useful in conjunction with partial(), because partial() allows you to supply additional arguments to the functions being composed. One nice side effect of this style of programming is that it keeps a function’s arguments near its name. This is important because as the size of the chunk of code you have to hold in your head grows code becomes harder to understand.

Below I take the example from the first section of the chapter and modify it to use the two styles of function composition described above. Both results are longer than the original code, but they may be easier to understand because the function and its arguments are closer together. Note that we still have to read them from right to left (bottom to top): the first function called is the last one written. We could define compose() to work in the opposite direction, but in the long run, this is likely to lead to confusion since we’d create a small part of the langugage that reads differently from every other part.

download <- dot_every(10, memoise(delay_by(1, download_file)))

download <- pryr::compose(
  partial(dot_every, 10),
  memoise,
  partial(delay_by, 1)
)(download_file)

download <- (partial(dot_every, 10) %o%
  memoise %o%
  partial(delay_by, 1))(download_file)



Logical predicates and boolean algebra

When I use Filter() and other functionals that work with logical predicates, I often find myself using anonymous functions to combine multiple conditions: 

Filter(function(x) is.character(x) || is.factor(x), iris)



As an alternative, we could define function operators that combine logical predicates:

and <- function(f1, f2) {
  force(f1); force(f2)
  function(...) {
    f1(...) && f2(...)
  }
}

or <- function(f1, f2) {
  force(f1); force(f2)
  function(...) {
    f1(...) || f2(...)
  }
}

not <- function(f) {
  force(f)
  function(...) {
    !f(...)
  }
}



This would allow us to write:

Filter(or(is.character, is.factor), iris)
Filter(not(is.numeric), iris)



And we now have a boolean algebra on functions, not on the results of functions. 

Exercises


	Implement your own version of compose() using Reduce and %o%. For bonus points, do it without calling function.


	Extend and() and or() to deal with any number of input functions. Can you do it with Reduce()? Can you keep them lazy (e.g., for and(), the function returns once it sees the first FALSE)?


	Implement the xor() binary operator. Implement it using the existing xor() function. Implement it as a combination of and() and or(). What are the advantages and disadvantages of each approach? Also think about what you’ll call the resulting function to avoid a clash with the existing xor() function, and how you might change the names of and(), not(), and or() to keep them consistent.


	Above, we implemented boolean algebra for functions that return a logical function. Implement elementary algebra (plus(), minus(), multiply(), divide(), exponentiate(), log()) for functions that return numeric vectors.





Non-standard evaluation


“Flexibility in syntax, if it does not lead to ambiguity, would seem a reasonable thing to ask of an interactive programming language.”

— Kent Pitman



R has powerful tools for computing not only on values, but also on the actions that lead to those values. If you’re coming from another programming language, they are one of the most surprising features of R. Consider the following simple snippet of code that plots a sine curve:

x <- seq(0, 2 * pi, length = 100)
sinx <- sin(x)
plot(x, sinx, type = "l")





Look at the labels on the axes. How did R know that the variable on the x axis is called x and the variable on the y axis is called sinx? In most programming languages, you can only access the values of a function’s arguments. In R, you can also access the code used to compute them. This makes it possible to evaluate code in non-standard ways: to use what is known as non-standard evaluation, or NSE for short. NSE is particularly useful for functions when doing interactive data analysis because it can dramatically reduce the amount of typing. 

Outline


	Capturing expressions teaches you how to capture unevaluated expressions using substitute().


	Non-standard evaluation shows you how subset() works by combining substitute() with eval() to allow you to succinctly select rows from a data frame.


	Scoping issues discusses scoping issues specific to NSE, and will show you how to resolve them.


	Calling from another function shows why every function that uses NSE should have an escape hatch, a version that uses regular evaluation.


	Substitute teaches you how to use substitute() to work with functions that don’t have an escape hatch.


	The downsides finishes off the chapter with a discussion of the downsides of NSE.




Prerequisites

Before reading this chapter, make sure you’re familiar with environments (Environments) and lexical scoping (Lexical scoping). You’ll also need to install the pryr package with install.packages("pryr"). Some exercises require the plyr package, which you can install from CRAN with install.packages("plyr").

Capturing expressions

substitute() makes non-standard evaluation possible. It looks at a function argument and instead of seeing the value, it sees the code used to compute the value: 

f <- function(x) {
  substitute(x)
}
f(1:10)



## 1:10

x <- 10
f(x)



## x

y <- 13
f(x + y^2)



## x + y^2

For now, we won’t worry about exactly what substitute() returns (that’s the topic of the following chapter), but we’ll call it an expression.

substitute() works because function arguments are represented by a special type of object called a promise. A promise captures the expression needed to compute the value and the environment in which to compute it. You’re not normally aware of promises because the first time you access a promise its code is evaluated in its environment, yielding a value. 

substitute() is often paired with deparse(). That function takes the result of substitute(), an expression, and turns it into a character vector. 

g <- function(x) deparse(substitute(x))
g(1:10)



## [1] "1:10"

g(x)



## [1] "x"

g(x + y^2)



## [1] "x + y^2"

There are a lot of functions in Base R that use these ideas. Some use them to avoid quotes:

library(ggplot2)
# the same as
library("ggplot2")



Other functions, like plot.default(), use them to provide default labels. data.frame() labels variables with the expression used to compute them:

x <- 1:4
y <- letters[1:4]
names(data.frame(x, y))



## [1] "x" "y"

We’ll learn about the ideas that underlie all these examples by looking at one particularly useful application of NSE: subset().

Exercises


	One important feature of deparse() to be aware of when programming is that it can return multiple strings if the input is too long. For example, the following call produces a vector of length two:

g(a + b + c + d + e + f + g + h + i + j + k + l + m +
  n + o + p + q + r + s + t + u + v + w + x + y + z)



Why does this happen? Carefully read the documentation for ?deparse. Can you write a wrapper around deparse() so that it always returns a single string?


	Why does as.Date.default() use substitute() and deparse()? Why does pairwise.t.test() use them? Read the source code.


	pairwise.t.test() assumes that deparse() always returns a length one character vector. Can you construct an input that violates this expectation? What happens?


	f(), defined above, just calls substitute(). Why can’t we use it to define g()? In other words, what will the following code return? First make a prediction. Then run the code and think about the results.

f <- function(x) substitute(x)
g <- function(x) deparse(f(x))
g(1:10)
g(x)
g(x + y ^ 2 / z + exp(a * sin(b)))






Non-standard evaluation in subset

While printing out the code supplied to an argument value can be useful, we can actually do more with the unevaluated code. Take subset(), for example. It’s a useful interactive shortcut for subsetting data frames: instead of repeating the name of data frame many times, you can save some typing: 

sample_df <- data.frame(a = 1:5, b = 5:1, c = c(5, 3, 1, 4, 1))

subset(sample_df, a >= 4)



##   a b c
## 4 4 2 4
## 5 5 1 1

# equivalent to:
# sample_df[sample_df$a >= 4, ]

subset(sample_df, b == c)



##   a b c
## 1 1 5 5
## 5 5 1 1

# equivalent to:
# sample_df[sample_df$b == sample_df$c, ]



subset() is special because it implements different scoping rules: the expressions a >= 4 or b == c are evaluated in the specified data frame rather than in the current or global environments. This is the essence of non-standard evaluation.

How does subset() work? We’ve already seen how to capture an argument’s expression rather than its result, so we just need to figure out how to evaluate that expression in the right context. Specifically, we want x to be interpreted as sample_df$x, not globalenv()$x. To do this, we need eval(). This function takes an expression and evaluates it in the specified environment. 

Before we can explore eval(), we need one more useful function: quote(). It captures an unevaluated expression like substitute(), but doesn’t do any of the advanced transformations that can make substitute() confusing. quote() always returns its input as is:  

quote(1:10)



## 1:10

quote(x)



## x

quote(x + y^2)



## x + y^2

We need quote() to experiment with eval() because eval()’s first argument is an expression. So if you only provide one argument, it will evaluate the expression in the current environment. This makes eval(quote(x)) exactly equivalent to x, regardless of what x is:

eval(quote(x <- 1))
eval(quote(x))



## [1] 1

eval(quote(y))



## Error in eval(expr, envir, enclos): object 'y' not found

quote() and eval() are opposites. In the example below, each eval() peels off one layer of quote()’s.

quote(2 + 2)



## 2 + 2

eval(quote(2 + 2))



## [1] 4

quote(quote(2 + 2))



## quote(2 + 2)

eval(quote(quote(2 + 2)))



## 2 + 2

eval(eval(quote(quote(2 + 2))))



## [1] 4

eval()’s second argument specifies the environment in which the code is executed:

x <- 10
eval(quote(x))



## [1] 10

e <- new.env()
e$x <- 20
eval(quote(x), e)



## [1] 20

Because lists and data frames bind names to values in a similar way to environments, eval()’s second argument need not be limited to an environment: it can also be a list or a data frame.

eval(quote(x), list(x = 30))



## [1] 30

eval(quote(x), data.frame(x = 40))



## [1] 40

This gives us one part of subset():

eval(quote(a >= 4), sample_df)



## [1] FALSE FALSE FALSE  TRUE  TRUE

eval(quote(b == c), sample_df)



## [1]  TRUE FALSE FALSE FALSE  TRUE

A common mistake when using eval() is to forget to quote the first argument. Compare the results below:

a <- 10
eval(quote(a), sample_df)



## [1] 1 2 3 4 5

eval(a, sample_df)



## [1] 10

eval(quote(b), sample_df)



## [1] 5 4 3 2 1

eval(b, sample_df)



## Error in eval(b, sample_df): object 'b' not found

We can use eval() and substitute() to write subset(). We first capture the call representing the condition, then we evaluate it in the context of the data frame and, finally, we use the result for subsetting:

subset2 <- function(x, condition) {
  condition_call <- substitute(condition)
  r <- eval(condition_call, x)
  x[r, ]
}
subset2(sample_df, a >= 4)



##   a b c
## 4 4 2 4
## 5 5 1 1

Exercises


	Predict the results of the following lines of code:

eval(quote(eval(quote(eval(quote(2 + 2))))))
eval(eval(quote(eval(quote(eval(quote(2 + 2)))))))
quote(eval(quote(eval(quote(eval(quote(2 + 2)))))))




	subset2() has a bug if you use it with a single column data frame. What should the following code return? How can you modify subset2() so it returns the correct type of object?

sample_df2 <- data.frame(x = 1:10)
subset2(sample_df2, x > 8)



## [1]  9 10


	The real subset function (subset.data.frame()) removes missing values in the condition. Modify subset2() to do the same: drop the offending rows.


	What happens if you use quote() instead of substitute() inside of subset2()?


	The third argument in subset() allows you to select variables. It treats variable names as if they were positions. This allows you to do things like subset(mtcars, , -cyl) to drop the cylinder variable, or subset(mtcars, , disp:drat) to select all the variables between disp and drat. How does this work? I’ve made this easier to understand by extracting it out into its own function.

select <- function(df, vars) {
  vars <- substitute(vars)
  var_pos <- setNames(as.list(seq_along(df)), names(df))
  pos <- eval(vars, var_pos)
  df[, pos, drop = FALSE]
}
select(mtcars, -cyl)




	What does evalq() do? Use it to reduce the amount of typing for the examples above that use both eval() and quote().




Scoping issues

It certainly looks like our subset2() function works. But since we’re working with expressions instead of values, we need to test things more extensively. For example, the following applications of subset2() should all return the same value because the only difference between them is the name of a variable: 

y <- 4
x <- 4
condition <- 4
condition_call <- 4

subset2(sample_df, a == 4)



##   a b c
## 4 4 2 4

subset2(sample_df, a == y)



##   a b c
## 4 4 2 4

subset2(sample_df, a == x)



##       a  b  c
## 1     1  5  5
## 2     2  4  3
## 3     3  3  1
## 4     4  2  4
## 5     5  1  1
## NA   NA NA NA
## NA.1 NA NA NA

subset2(sample_df, a == condition)



## Error in eval(expr, envir, enclos): object 'a' not found

subset2(sample_df, a == condition_call)



## Warning in a == condition_call: longer object length is not a multiple of
## shorter object length

## [1] a b c
## <0 rows> (or 0-length row.names)

What went wrong? You can get a hint from the variable names I’ve chosen: they are all names of variables defined inside subset2(). If eval() can’t find the variable inside the data frame (its second argument), it looks in the environment of subset2(). That’s obviously not what we want, so we need some way to tell eval() where to look if it can’t find the variables in the data frame.

The key is the third argument to eval(): enclos. This allows us to specify a parent (or enclosing) environment for objects that don’t have one (like lists and data frames). If the binding is not found in env, eval() will next look in enclos, and then in the parents of enclos. enclos is ignored if env is a real environment. We want to look for x in the environment from which subset2() was called. In R terminology this is called the parent frame and is accessed with parent.frame(). This is an example of dynamic scope: the values come from the location where the function was called, not where it was defined. 

With this modification our function now works:

subset2 <- function(x, condition) {
  condition_call <- substitute(condition)
  r <- eval(condition_call, x, parent.frame())
  x[r, ]
}

x <- 4
subset2(sample_df, a == x)



##   a b c
## 4 4 2 4

Using enclos is just a shortcut for converting a list or data frame to an environment. We can get the same behaviour by using list2env(). It turns a list into an environment with an explicit parent: 

subset2a <- function(x, condition) {
  condition_call <- substitute(condition)
  env <- list2env(x, parent = parent.frame())
  r <- eval(condition_call, env)
  x[r, ]
}

x <- 5
subset2a(sample_df, a == x)



##   a b c
## 5 5 1 1

Exercises


	plyr::arrange() works similarly to subset(), but instead of selecting rows, it reorders them. How does it work? What does substitute(order(...)) do? Create a function that does only that and experiment with it.


	What does transform() do? Read the documentation. How does it work? Read the source code for transform.data.frame(). What does substitute(list(...)) do?


	plyr::mutate() is similar to transform() but it applies the transformations sequentially so that transformation can refer to columns that were just created:

df <- data.frame(x = 1:5)
transform(df, x2 = x * x, x3 = x2 * x)
plyr::mutate(df, x2 = x * x, x3 = x2 * x)



How does mutate work? What’s the key difference between mutate() and transform()?


	What does with() do? How does it work? Read the source code for with.default(). What does within() do? How does it work? Read the source code for within.data.frame(). Why is the code so much more complex than with()?




Calling from another function

Typically, computing on the language is most useful when functions are called directly by users and less useful when they are called by other functions. While subset() saves typing, it’s actually difficult to use non-interactively. For example, imagine we want to create a function that randomly reorders a subset of rows of data. A nice way to do that would be to compose a function that reorders with another that selects. Let’s try that: 

subset2 <- function(x, condition) {
  condition_call <- substitute(condition)
  r <- eval(condition_call, x, parent.frame())
  x[r, ]
}

scramble <- function(x) x[sample(nrow(x)), ]

subscramble <- function(x, condition) {
  scramble(subset2(x, condition))
}



But it doesn’t work:

subscramble(sample_df, a >= 4)
# Error in eval(expr, envir, enclos) : object 'a' not found
traceback()
#> 5: eval(expr, envir, enclos)
#> 4: eval(condition_call, x, parent.frame()) at #3
#> 3: subset2(x, condition) at #1
#> 2: scramble(subset2(x, condition)) at #2
#> 1: subscramble(sample_df, a >= 4)



What’s gone wrong? To figure it out, let us debug() subset2() and work through the code line-by-line:

debugonce(subset2)
subscramble(sample_df, a >= 4)
#> debugging in: subset2(x, condition)
#> debug at #1: {
#>     condition_call <- substitute(condition)
#>     r <- eval(condition_call, x, parent.frame())
#>     x[r, ]
#> }
n
#> debug at #2: condition_call <- substitute(condition)
n
#> debug at #3: r <- eval(condition_call, x, parent.frame())
r <- eval(condition_call, x, parent.frame())
#> Error in eval(expr, envir, enclos) : object 'a' not found
condition_call
#> condition
eval(condition_call, x)
#> Error in eval(expr, envir, enclos) : object 'a' not found
Q



Can you see what the problem is? condition_call contains the expression condition. So when we evaluate condition_call it also evaluates condition, which has the value a >= 4. However, this can’t be computed because there’s no object called a in the parent environment. But, if a were set in the global environment, even more confusing things can happen:

a <- 4
subscramble(sample_df, a == 4)



##   a b c
## 1 1 5 5
## 3 3 3 1
## 5 5 1 1
## 4 4 2 4
## 2 2 4 3

a <- c(1, 1, 4, 4, 4, 4)
subscramble(sample_df, a >= 4)



##     a  b  c
## 4   4  2  4
## NA NA NA NA
## 5   5  1  1
## 3   3  3  1

This is an example of the general tension between functions that are designed for interactive use and functions that are safe to program with. A function that uses substitute() might reduce typing, but it can be difficult to call from another function.

As a developer, you should always provide an escape hatch: an alternative version of the function that uses standard evaluation. In this case, we could write a version of subset2() that takes an already quoted expression:

subset2_q <- function(x, condition) {
  r <- eval(condition, x, parent.frame())
  x[r, ]
}



Here I use the suffix _q to indicate that it takes a quoted expression. Most users won’t need this function so the name can be a little longer.

We can then rewrite both subset2() and subscramble() to use subset2_q():

subset2 <- function(x, condition) {
  subset2_q(x, substitute(condition))
}

subscramble <- function(x, condition) {
  condition <- substitute(condition)
  scramble(subset2_q(x, condition))
}

subscramble(sample_df, a >= 3)



##   a b c
## 5 5 1 1
## 4 4 2 4
## 3 3 3 1

subscramble(sample_df, a >= 3)



##   a b c
## 3 3 3 1
## 5 5 1 1
## 4 4 2 4

Base R functions tend to use a different sort of escape hatch. They often have an argument that turns off NSE. For example, require() has character.only = TRUE. I don’t think it’s a good idea to use an argument to change the behaviour of another argument because it makes function calls harder to understand.

Exercises


	The following R functions all use NSE. For each, describe how it uses NSE, and read the documentation to determine its escape hatch.

	rm()

	library() and require()

	substitute()

	data()

	data.frame()




	Base functions match.fun(), page(), and ls() all try to automatically determine whether you want standard or non-standard evaluation. Each uses a different approach. Figure out the essence of each approach then compare and contrast.


	Add an escape hatch to plyr::mutate() by splitting it into two functions. One function should capture the unevaluated inputs. The other should take a data frame and list of expressions and perform the computation.


	What’s the escape hatch for ggplot2::aes()? What about plyr::.()? What do they have in common? What are the advantages and disadvantages of their differences?


	The version of subset2_q() I presented is a simplification of real code. Why is the following version better?

subset2_q <- function(x, cond, env = parent.frame()) {
  r <- eval(cond, x, env)
  x[r, ]
}



Rewrite subset2() and subscramble() to use this improved version.




Substitute

Most functions that use non-standard evaluation provide an escape hatch. But what happens if you want to call a function that doesn’t have one? For example, imagine you want to create a lattice graphic given the names of two variables: 

library(lattice)
xyplot(mpg ~ disp, data = mtcars)

x <- quote(mpg)
y <- quote(disp)
xyplot(x ~ y, data = mtcars)



## Error in tmp[subset]: object of type 'symbol' is not subsettable

We might turn to substitute() and use it for another purpose: to modify an expression. Unfortunately substitute() has a feature that makes modifying calls interactively a bit of a pain. When run from the global environment, it never does substitutions: in fact, in this situation it behaves just like quote(): 

a <- 1
b <- 2
substitute(a + b + z)
#> a + b + z



However, if you run it inside a function, substitute() does substitute and leaves everything else as is:

f <- function() {
  a <- 1
  b <- 2
  substitute(a + b + z)
}
f()



## 1 + 2 + z

To make it easier to experiment with substitute(), pryr provides the subs() function. It works exactly the same way as substitute() except it has a shorter name and it works in the global environment. These two features make experimentation easier:

a <- 1
b <- 2
subs(a + b + z)



## 1 + 2 + z

The second argument (of both subs() and substitute()) can override the use of the current environment, and provide an alternative via a list of name-value pairs. The following example uses this technique to show some variations on substituting a string, variable name, or function call:

subs(a + b, list(a = "y"))



## "y" + b

subs(a + b, list(a = quote(y)))



## y + b

subs(a + b, list(a = quote(y())))



## y() + b

Remember that every action in R is a function call, so we can also replace + with another function:

subs(a + b, list("+" = quote(f)))



## f(a, b)

subs(a + b, list("+" = quote(`*`)))



## a * b

You can also make nonsense code:

subs(y <- y + 1, list(y = 1))



## 1 <- 1 + 1

Formally, substitution takes place by examining all the names in the expression. If the name refers to:


	an ordinary variable, it’s replaced by the value of the variable.


	a promise (a function argument), it’s replaced by the expression associated with the promise.


	..., it’s replaced by the contents of ....




Otherwise it’s left as is.

We can use this to create the right call to xyplot():

x <- quote(mpg)
y <- quote(disp)
subs(xyplot(x ~ y, data = mtcars))



## xyplot(mpg ~ disp, data = mtcars)

It’s even simpler inside a function, because we don’t need to explicitly quote the x and y variables (rule 2 above):

xyplot2 <- function(x, y, data = data) {
  substitute(xyplot(x ~ y, data = data))
}
xyplot2(mpg, disp, data = mtcars)



## xyplot(mpg ~ disp, data = mtcars)

If we include ... in the call to substitute, we can add additional arguments to the call:

xyplot3 <- function(x, y, ...) {
  substitute(xyplot(x ~ y, ...))
}
xyplot3(mpg, disp, data = mtcars, col = "red", aspect = "xy")



## xyplot(mpg ~ disp, data = mtcars, col = "red", aspect = "xy")

To create the plot, we’d then eval() this call.

Adding an escape hatch to substitute

substitute() is itself a function that uses non-standard evaluation and doesn’t have an escape hatch. This means we can’t use substitute() if we already have an expression saved in a variable: 

x <- quote(a + b)
substitute(x, list(a = 1, b = 2))



## x

Although substitute() doesn’t have a built-in escape hatch, we can use the function itself to create one:

substitute_q <- function(x, env) {
  call <- substitute(substitute(y, env), list(y = x))
  eval(call)
}

x <- quote(a + b)
substitute_q(x, list(a = 1, b = 2))



## 1 + 2

The implementation of substitute_q() is short, but deep. Let’s work through the example above: substitute_q(x, list(a = 1, b = 2)). It’s a little tricky because substitute() uses NSE so we can’t use the usual technique of working through the parentheses inside-out.


	First substitute(substitute(y, env), list(y = x)) is evaluated. The expression substitute(y, env) is captured and y is replaced by the value of x. Because we’ve put x inside a list, it will be evaluated and the rules of substitute will replace y with its value. This yields the expression substitute(a + b, env)


	Next we evaluate that expression inside the current function. substitute() evaluates its first argument, and looks for name value pairs in env. Here, it evaluates as list(a = 1, b = 2). Since these are both values (not promises), the result will be 1 + 2




A slightly more rigorous version of substitute_q() is provided by the pryr package.

Capturing unevaluated …

Another useful technique is to capture all of the unevaluated expressions in .... Base R functions do this in many ways, but there’s one technique that works well across a wide variety of situations: 

dots <- function(...) {
  eval(substitute(alist(...)))
}



This uses the alist() function which simply captures all its arguments. This function is the same as pryr::dots(). Pryr also provides pryr::named_dots(), which, by using deparsed expressions as default names, ensures that all arguments are named (just like data.frame()). 

Exercises


	Use subs() to convert the LHS to the RHS for each of the following pairs:

	a + b + c -> a * b * c

	f(g(a, b), c) -> (a + b) * c

	f(a < b, c, d) -> if (a < b) c else d




	For each of the following pairs of expressions, describe why you can’t use subs() to convert one to the other.

	a + b + c -> a + b * c

	f(a, b) -> f(a, b, c)

	f(a, b, c) -> f(a, b)




	How does pryr::named_dots() work? Read the source.



The downsides of non-standard evaluation

The biggest downside of NSE is that functions that use it are no longer referentially transparent. A function is referentially transparent if you can replace its arguments with their values and its behaviour doesn’t change. For example, if a function, f(), is referentially transparent and both x and y are 10, then f(x), f(y), and f(10) will all return the same result. Referentially transparent code is easier to reason about because the names of objects don’t matter, and because you can always work from the innermost parentheses outwards. 

There are many important functions that by their very nature are not referentially transparent. Take the assignment operator. You can’t take a <- 1 and replace a by its value and get the same behaviour. This is one reason that people usually write assignments at the top-level of functions. It’s hard to reason about code like this:

a <- 1
b <- 2
if ((b <- a + 1) > (a <- b - 1)) {
  b <- b + 2
}



Using NSE prevents a function from being referentially transparent. This makes the mental model needed to correctly predict the output much more complicated. So, it’s only worthwhile to use NSE if there is significant gain. For example, library() and require() can be called either with or without quotes, because internally they use deparse(substitute(x)) plus some other tricks. This means that these two lines do exactly the same thing: 

library(ggplot2)
library("ggplot2")



Things start to get complicated if the variable is associated with a value. What package will this load?

ggplot2 <- "plyr"
library(ggplot2)



There are a number of other R functions that work in this way, like ls(), rm(), data(), demo(), example(), and vignette(). To me, eliminating two keystrokes is not worth the loss of referential transparency, and I don’t recommend you use NSE for this purpose.

One situation where non-standard evaluation is worthwhile is data.frame(). If not explicitly supplied, it uses the input to automatically name the output variables:

x <- 10
y <- "a"
df <- data.frame(x, y)
names(df)



## [1] "x" "y"

I think it’s worthwhile because it eliminates a lot of redundancy in the common scenario when you’re creating a data frame from existing variables. More importantly, if needed, it’s easy to override this behaviour by supplying names for each variable.

Non-standard evaluation allows you to write functions that are extremely powerful. However, they are harder to understand and to program with. As well as always providing an escape hatch, carefully consider both the costs and benefits of NSE before using it in a new domain.

Exercises


	What does the following function do? What’s the escape hatch? Do you think that this is an appropriate use of NSE?

nl <- function(...) {
  dots <- named_dots(...)
  lapply(dots, eval, parent.frame())
}




	Instead of relying on promises, you can use formulas created with ~ to explicitly capture an expression and its environment. What are the advantages and disadvantages of making quoting explicit? How does it impact referential transparency?


	Read the standard non-standard evaluation rules found at http://developer.r-project.org/nonstandard-eval.pdf.





Expressions

In non-standard evaluation, you learned the basics of accessing and evaluating the expressions underlying computation in R. In this chapter, you’ll learn how to manipulate these expressions with code. You’re going to learn how to metaprogram: how to create programs with other programs!  

Outline


	Structure of expressions begins with a deep dive into the structure of expressions. You’ll learn about the four components of an expression: constants, names, calls, and pairlists.


	Names goes into further details about names.


	Calls gives more details about calls.


	Capturing the current call takes a minor detour to discuss some common uses of calls in base R.


	Pairlists completes the discussion of the four major components of an expression, and shows how you can create functions from their component pieces.


	Parsing and deparsing discusses how to convert back and forth between expressions and text.


	Walking the call tree with recursive functions concludes the chapter, combining everything you’ve learned about writing functions that can compute on and modify arbitrary R code.




Prerequisites

Throughout this chapter we’re going to use tools from the pryr package to help see what’s going on. If you don’t already have it, install it by running install.packages("pryr").

Structure of expressions

To compute on the language, we first need to understand the structure of the language. That will require some new vocabulary, some new tools, and some new ways of thinking about R code. The first thing you’ll need to understand is the distinction between an operation and a result: 

x <- 4
y <- x * 10
y



## [1] 40

We want to distinguish the action of multiplying x by 10 and assigning that result to y from the actual result (40). As we’ve seen in the previous chapter, we can capture the action with quote():

z <- quote(y <- x * 10)
z



## y <- x * 10

quote() returns an expression: an object that represents an action that can be performed by R. (Unfortunately expression() does not return an expression in this sense. Instead, it returns something more like a list of expressions. See parsing and deparsing for more details.) 

An expression is also called an abstract syntax tree (AST) because it represents the hierarchical tree structure of the code. We’ll use pryr::ast() to see this more clearly:  

ast(y <- x * 10)



## \- ()
##   \- `<-
##   \- `y
##   \- ()
##     \- `*
##     \- `x
##     \-  10

There are four possible components of an expression: constants, names, calls, and pairlists.


	constants are length one atomic vectors, like "a" or 10. ast() displays them as is. 

ast("a")



## \-  "a"

ast(1)



## \-  1

ast(1L)



## \-  1L

ast(TRUE)



## \-  TRUE

Quoting a constant returns it unchanged:

identical(1, quote(1))



## [1] TRUE

identical("test", quote("test"))



## [1] TRUE


	names, or symbols, represent the name of an object rather than its value. ast() prefixes names with a backtick.  

ast(x)



## \- `x

ast(mean)



## \- `mean

ast(`an unusual name`)



## \- `an unusual name


	calls represent the action of calling a function. Like lists, calls are recursive: they can contain constants, names, pairlists, and other calls. ast() prints () and then lists the children. The first child is the function that is called, and the remaining children are the function’s arguments. 

ast(f())



## \- ()
##   \- `f

ast(f(1, 2))



## \- ()
##   \- `f
##   \-  1
##   \-  2

ast(f(a, b))



## \- ()
##   \- `f
##   \- `a
##   \- `b

ast(f(g(), h(1, a)))



## \- ()
##   \- `f
##   \- ()
##     \- `g
##   \- ()
##     \- `h
##     \-  1
##     \- `a

As mentioned in every operation is a function call, even things that don’t look like function calls still have this hierarchical structure:

ast(a + b)



## \- ()
##   \- `+
##   \- `a
##   \- `b

ast(if (x > 1) x else 1/x)



## \- ()
##   \- `if
##   \- ()
##     \- `>
##     \- `x
##     \-  1
##   \- `x
##   \- ()
##     \- `/
##     \-  1
##     \- `x


	pairlists, short for dotted pair lists, are a legacy of R’s past. They are only used in one place: the formal arguments of a function. ast() prints [] at the top-level of a pairlist. Like calls, pairlists are also recursive and can contain constants, names, and calls. 

ast(function(x = 1, y) x)



## \- ()
##   \- `function
##   \- []
##     \ x = 1
##     \ y =`MISSING
##   \- `x
##   \- <srcref>

ast(function(x = 1, y = x * 2) {x / y})



## \- ()
##   \- `function
##   \- []
##     \ x = 1
##     \ y =()
##       \- `*
##       \- `x
##       \-  2
##   \- ()
##     \- `{
##     \- ()
##       \- `/
##       \- `x
##       \- `y
##   \- <srcref>




Note that str() does not follow these naming conventions when describing objects. Instead, it describes names as symbols and calls as language objects:

str(quote(a))



##  symbol a

str(quote(a + b))



##  language a + b

Using low-level functions, it is possible to create call trees that contain objects other than constants, names, calls, and pairlists. The following example uses substitute() to insert a data frame into a call tree. This is a bad idea, however, because the object does not print correctly: the printed call looks like it should return “list” but when evaluated, it returns “data.frame”. 

class_df <- substitute(class(df), list(df = data.frame(x = 10)))
class_df



## class(list(x = 10))

eval(class_df)



## [1] "data.frame"

Together these four components define the structure of all R code. They are explained in more detail in the following sections.

Exercises


	There’s no existing base function that checks if an element is a valid component of an expression (i.e., it’s a constant, name, call, or pairlist). Implement one by guessing the names of the “is” functions for calls, names, and pairlists.


	pryr::ast() uses non-standard evaluation. What’s its escape hatch to standard evaluation?


	What does the call tree of an if statement with multiple else conditions look like?


	Compare ast(x + y %+% z) to ast(x ^ y %+% z). What do they tell you about the precedence of custom infix functions?


	Why can’t an expression contain an atomic vector of length greater than one? Which one of the six types of atomic vector can’t appear in an expression? Why?




Names

Typically, we use quote() to capture names. You can also convert a string to a name with as.name(). However, this is most useful only when your function receives strings as input. Otherwise it involves more typing than using quote(). (You can use is.name() to test if an object is a name.)  

as.name("name")



## name

identical(quote(name), as.name("name"))



## [1] TRUE

is.name("name")



## [1] FALSE

is.name(quote(name))



## [1] TRUE

is.name(quote(f(name)))



## [1] FALSE

(Names are also called symbols. as.symbol() and is.symbol() are identical to as.name() and is.name().)

Names that would otherwise be invalid are automatically surrounded by backticks: 

as.name("a b")



## `a b`

as.name("if")



## `if`

There’s one special name that needs a little extra discussion: the empty name. It is used to represent missing arguments. This object behaves strangely. You can’t bind it to a variable. If you do, it triggers an error about missing arguments. It’s only useful if you want to programmatically create a function with missing arguments. 

f <- function(x) 10
formals(f)$x



is.name(formals(f)$x)



## [1] TRUE

as.character(formals(f)$x)



## [1] ""

missing_arg <- formals(f)$x
# Doesn't work!
is.name(missing_arg)



## Error in eval(expr, envir, enclos): argument "missing_arg" is missing, with no default

To explicitly create it when needed, call quote() with a named argument:

quote(expr =)



Exercises


	You can use formals() to both get and set the arguments of a function. Use formals() to modify the following function so that the default value of x is missing and y is 10.

g <- function(x = 20, y) {
  x + y
}




	Write an equivalent to get() using as.name() and eval(). Write an equivalent to assign() using as.name(), substitute(), and eval(). (Don’t worry about the multiple ways of choosing an environment; assume that the user supplies it explicitly.)




Calls

A call is very similar to a list. It has length, [[ and [ methods, and is recursive because calls can contain other calls. The first element of the call is the function that gets called. It’s usually the name of a function: 

x <- quote(read.csv("important.csv", row.names = FALSE))
x[[1]]



## read.csv

is.name(x[[1]])



## [1] TRUE

But it can also be another call:

y <- quote(add(10)(20))
y[[1]]



## add(10)

is.call(y[[1]])



## [1] TRUE

The remaining elements are the arguments. They can be extracted by name or by position.

x <- quote(read.csv("important.csv", row.names = FALSE))
x[[2]]



## [1] "important.csv"

x$row.names



## [1] FALSE

names(x)



## [1] ""          ""          "row.names"

The length of a call minus 1 gives the number of arguments:

length(x) - 1



## [1] 2

Modifying a call

You can add, modify, and delete elements of the call with the standard replacement operators, $<- and [[<-: 

y <- quote(read.csv("important.csv", row.names = FALSE))
y$row.names <- TRUE
y$col.names <- FALSE
y



## read.csv("important.csv", row.names = TRUE, col.names = FALSE)

y[[2]] <- quote(paste0(filename, ".csv"))
y[[4]] <- NULL
y



## read.csv(paste0(filename, ".csv"), row.names = TRUE)

y$sep <- ","
y



## read.csv(paste0(filename, ".csv"), row.names = TRUE, sep = ",")

Calls also support the [ method. But use it with care. Removing the first element is unlikely to create a useful call.

x[-3] # remove the second argument



## read.csv("important.csv")

x[-1] # remove the function name - but it's still a call!



## "important.csv"(row.names = FALSE)

x



## read.csv("important.csv", row.names = FALSE)

If you want a list of the unevaluated arguments (expressions), use explicit coercion:

# A list of the unevaluated arguments
as.list(x[-1])



## [[1]]
## [1] "important.csv"
## 
## $row.names
## [1] FALSE

Generally speaking, because R’s function calling semantics are so flexible, getting or setting arguments by position is dangerous. For example, even though the values at each position are different, the following three calls all have the same effect:

m1 <- quote(read.delim("data.txt", sep = "|"))
m2 <- quote(read.delim(s = "|", "data.txt"))
m3 <- quote(read.delim(file = "data.txt", , "|"))



To work around this problem, pryr provides standardise_call(). It uses the base match.call() function to convert all positional arguments to named arguments:  

standardise_call(m1)



## read.delim(file = "data.txt", sep = "|")

standardise_call(m2)



## read.delim(file = "data.txt", sep = "|")

standardise_call(m3)



## read.delim(file = "data.txt", sep = "|")

Creating a call from its components

To create a new call from its components, you can use call() or as.call(). The first argument to call() is a string which gives a function name. The other arguments are expressions that represent the arguments of the call.  

call(":", 1, 10)



## 1:10

call("mean", quote(1:10), na.rm = TRUE)



## mean(1:10, na.rm = TRUE)

as.call() is a minor variant of call() that takes a single list as input. The first element is a name or call. The subsequent elements are the arguments.

as.call(list(quote(mean), quote(1:10)))



## mean(1:10)

as.call(list(quote(adder(10)), 20))



## adder(10)(20)

Exercises


	The following two calls look the same, but are actually different:

(a <- call("mean", 1:10))



## mean(1:10)

(b <- call("mean", quote(1:10)))



## mean(1:10)

identical(a, b)



## [1] FALSE

What’s the difference? Which one should you prefer?


	Implement a pure R version of do.call().


	Concatenating a call and an expression with c() creates a list. Implement concat() so that the following code works to combine a call and an additional argument.

concat(quote(f), a = 1, b = quote(mean(a)))
#> f(a = 1, b = mean(a))




	Since list()s don’t belong in expressions, we could create a more convenient call constructor that automatically combines lists into the arguments. Implement make_call() so that the following code works.

make_call(quote(mean), list(quote(x), na.rm = TRUE))
#> mean(x, na.rm = TRUE)
make_call(quote(mean), quote(x), na.rm = TRUE)
#> mean(x, na.rm = TRUE)




	How does mode<- work? How does it use call()?


	Read the source for pryr::standardise_call(). How does it work? Why is is.primitive() needed?


	standardise_call() doesn’t work so well for the following calls. Why?

standardise_call(quote(mean(1:10, na.rm = TRUE)))



## mean(x = 1:10, na.rm = TRUE)

standardise_call(quote(mean(n = T, 1:10)))



## mean(x = 1:10, n = T)

standardise_call(quote(mean(x = 1:10, , TRUE)))



## mean(x = 1:10, , TRUE)


	Read the documentation for pryr::modify_call(). How do you think it works? Read the source code.


	Use ast() and experimentation to figure out the three arguments in an if() call. Which components are required? What are the arguments to the for() and while() calls?




Capturing the current call

Many base R functions use the current call: the expression that caused the current function to be run. There are two ways to capture a current call: 


	sys.call() captures exactly what the user typed. 


	match.call() makes a call that only uses named arguments. It’s like automatically calling pryr::standardise_call() on the result of sys.call() 




The following example illustrates the difference between the two:

f <- function(abc = 1, def = 2, ghi = 3) {
  list(sys = sys.call(), match = match.call())
}
f(d = 2, 2)



## $sys
## f(d = 2, 2)
## 
## $match
## f(abc = 2, def = 2)

Modelling functions often use match.call() to capture the call used to create the model. This makes it possible to update() a model, re-fitting the model after modifying some of original arguments. Here’s an example of update() in action: 

mod <- lm(mpg ~ wt, data = mtcars)
update(mod, formula = . ~ . + cyl)



## 
## Call:
## lm(formula = mpg ~ wt + cyl, data = mtcars)
## 
## Coefficients:
## (Intercept)           wt          cyl  
##      39.686       -3.191       -1.508

How does update() work? We can rewrite it using some tools from pryr to focus on the essence of the algorithm.

update_call <- function (object, formula., ...) {
  call <- object$call

  # Use update.formula to deal with formulas like . ~ .
  if (!missing(formula.)) {
    call$formula <- update.formula(formula(object), formula.)
  }

  modify_call(call, dots(...))
}
update_model <- function(object, formula., ...) {
  call <- update_call(object, formula., ...)
  eval(call, parent.frame())
}
update_model(mod, formula = . ~ . + cyl)



## 
## Call:
## lm(formula = mpg ~ wt + cyl, data = mtcars)
## 
## Coefficients:
## (Intercept)           wt          cyl  
##      39.686       -3.191       -1.508

The original update() has an evaluate argument that controls whether the function returns the call or the result. But I think it’s better, on principle, that a function returns only one type of object, rather than different types depending on the function’s arguments.

This rewrite also allows us to fix a small bug in update(): it re-evaluates the call in the global environment, when what we really want is to re-evaluate it in the environment where the model was originally fit — in the formula.

f <- function() {
  n <- 3
  lm(mpg ~ poly(wt, n), data = mtcars)
}
mod <- f()
update(mod, data = mtcars)



## Error in poly(wt, n): object 'n' not found

update_model <- function(object, formula., ...) {
  call <- update_call(object, formula., ...)
  eval(call, environment(formula(object)))
}
update_model(mod, data = mtcars)



## 
## Call:
## lm(formula = mpg ~ poly(wt, n), data = mtcars)
## 
## Coefficients:
##  (Intercept)  poly(wt, n)1  poly(wt, n)2  poly(wt, n)3  
##      20.0906      -29.1157        8.6358        0.2749

This is an important principle to remember: if you want to re-run code captured with match.call(), you also need to capture the environment in which it was evaluated, usually the parent.frame(). The downside to this is that capturing the environment also means capturing any large objects which happen to be in that environment, which prevents their memory from being released. This topic is explored in more detail in garbage collection. 

Some base R functions use match.call() where it’s not necessary. For example, write.csv() captures the call to write.csv() and mangles it to call write.table() instead:

write.csv <- function(...) {
  Call <- match.call(expand.dots = TRUE)
  for (arg in c("append", "col.names", "sep", "dec", "qmethod")) {
    if (!is.null(Call[[arg]])) {
      warning(gettextf("attempt to set '%s' ignored", arg))
    }
  }
  rn <- eval.parent(Call$row.names)
  Call$append <- NULL
  Call$col.names <- if (is.logical(rn) && !rn) TRUE else NA
  Call$sep <- ","
  Call$dec <- "."
  Call$qmethod <- "double"
  Call[[1L]] <- as.name("write.table")
  eval.parent(Call)
}



To fix this, we could implement write.csv() using regular function call semantics:

write.csv <- function(x, file = "", sep = ",", qmethod = "double", 
                      ...) {
  write.table(x = x, file = file, sep = sep, qmethod = qmethod, 
    ...)
}



This is much easier to understand: it’s just calling write.table() with different defaults. This also fixes a subtle bug in the original write.csv(): write.csv(mtcars, row = FALSE) raises an error, but write.csv(mtcars, row.names = FALSE) does not. The lesson here is that it’s always better to solve a problem with the simplest tool possible.

Exercises


	Compare and contrast update_model() with update.default().


	Why doesn’t write.csv(mtcars, "mtcars.csv", row = FALSE) work? What property of argument matching has the original author forgotten?


	Rewrite update.formula() to use R code instead of C code.


	Sometimes it’s necessary to uncover the function that called the function that called the current function (i.e., the grandparent, not the parent). How can you use sys.call() or match.call() to find this function?




Pairlists

Pairlists are a holdover from R’s past. They behave identically to lists, but have a different internal representation (as a linked list rather than a vector). Pairlists have been replaced by lists everywhere except in function arguments. 

The only place you need to care about the difference between a list and a pairlist is if you’re going to construct functions by hand. For example, the following function allows you to construct a function from its component pieces: a list of formal arguments, a body, and an environment. The function uses as.pairlist() to ensure that the function() has the pairlist of args it needs.   

make_function <- function(args, body, env = parent.frame()) {
  args <- as.pairlist(args)

  eval(call("function", args, body), env)
}



This function is also available in pryr, where it does a little extra checking of arguments. make_function() is best used in conjunction with alist(), the argument list function. alist() doesn’t evaluate its arguments so that alist(x = a) is shorthand for list(x = quote(a)).

add <- make_function(alist(a = 1, b = 2), quote(a + b))
add(1)



## [1] 3

add(1, 2)



## [1] 3

# To have an argument with no default, you need an explicit =
make_function(alist(a = , b = a), quote(a + b))



## function (a, b = a) 
## a + b

# To take `...` as an argument put it on the LHS of =
make_function(alist(a = , b = , ... =), quote(a + b))



## function (a, b, ...) 
## a + b

make_function() has one advantage over using closures to construct functions: with it, you can easily read the source code. For example:

adder <- function(x) {
  make_function(alist(y =), substitute({x + y}), parent.frame())
}
adder(10)



## function (y) 
## {
##     10 + y
## }

One useful application of make_function() is in functions like curve(). curve() allows you to plot a mathematical function without creating an explicit R function:

curve(sin(exp(4 * x)), n = 1000)





Here x is a pronoun. x doesn’t represent a single concrete value, but is instead a placeholder that varies over the range of the plot. One way to implement curve() would be with make_function():

curve2 <- function(expr, xlim = c(0, 1), n = 100, 
                   env = parent.frame()) {
  f <- make_function(alist(x = ), substitute(expr), env)

  x <- seq(xlim[1], xlim[2], length = n)
  y <- f(x)

  plot(x, y, type = "l", ylab = deparse(substitute(expr)))
}



Functions that use a pronoun are called anaphoric functions. They are used in Arc (a lisp like language), Perl, and Clojure.  

Exercises


	How are alist(a) and alist(a = ) different? Think about both the input and the output.


	Read the documentation and source code for pryr::partial(). What does it do? How does it work? Read the documentation and source code for pryr::unenclose(). What does it do and how does it work?


	The actual implementation of curve() looks more like

curve3 <- function(expr, xlim = c(0, 1), n = 100,
                   env = parent.frame()) {
  env2 <- new.env(parent = env)
  env2$x <- seq(xlim[1], xlim[2], length = n)

  y <- eval(substitute(expr), env2)
  plot(env2$x, y, type = "l", 
    ylab = deparse(substitute(expr)))
}



How does this approach differ from curve2() defined above?




Parsing and deparsing

Sometimes code is represented as a string, rather than as an expression. You can convert a string to an expression with parse(). parse() is the opposite of deparse(): it takes a character vector and returns an expression object. The primary use of parse() is parsing files of code to disk, so the first argument is a file path. Note that if you have code in a character vector, you need to use the text argument: 

z <- quote(y <- x * 10)
deparse(z)



## [1] "y <- x * 10"

parse(text = deparse(z))



## expression(y <- x * 10)

Because there might be many top-level calls in a file, parse() doesn’t return just a single expression. Instead, it returns an expression object, which is essentially a list of expressions: 

exp <- parse(text = c("
  x <- 4
  x
  5
"))
length(exp)



## [1] 3

typeof(exp)



## [1] "expression"

exp[[1]]



## x <- 4

exp[[2]]



## x

You can create expression objects by hand with expression(), but I wouldn’t recommend it. There’s no need to learn about this esoteric data structure if you already know how to use expressions. 

With parse() and eval(), it’s possible to write a simple version of source(). We read in the file from disk, parse() it and then eval() each component in a specified environment. This version defaults to a new environment, so it doesn’t affect existing objects. source() invisibly returns the result of the last expression in the file, so simple_source() does the same. 

simple_source <- function(file, envir = new.env()) {
  stopifnot(file.exists(file))
  stopifnot(is.environment(envir))

  lines <- readLines(file, warn = FALSE)
  exprs <- parse(text = lines)

  n <- length(exprs)
  if (n == 0L) return(invisible())

  for (i in seq_len(n - 1)) {
    eval(exprs[i], envir)
  }
  invisible(eval(exprs[n], envir))
}



The real source() is considerably more complicated because it can echo input and output, and also has many additional settings to control behaviour.

Exercises


	What are the differences between quote() and expression()?


	Read the help for deparse() and construct a call that deparse() and parse() do not operate symmetrically on.


	Compare and contrast source() and sys.source().


	Modify simple_source() so it returns the result of every expression, not just the last one.


	The code generated by simple_source() lacks source references. Read the source code for sys.source() and the help for srcfilecopy(), then modify simple_source() to preserve source references. You can test your code by sourcing a function that contains a comment. If successful, when you look at the function, you’ll see the comment and not just the source code.




Walking the AST with recursive functions

It’s easy to modify a single call with substitute() or pryr::modify_call(). For more complicated tasks we need to work directly with the AST. The base codetools package provides some useful motivating examples of how we can do this: 


	findGlobals() locates all global variables used by a function. This can be useful if you want to check that your function doesn’t inadvertently rely on variables defined in their parent environment.


	checkUsage() checks for a range of common problems including unused local variables, unused parameters, and the use of partial argument matching.




To write functions like findGlobals() and checkUsage(), we’ll need a new tool. Because expressions have a tree structure, using a recursive function would be the natural choice. The key to doing that is getting the recursion right. This means making sure that you know what the base case is and figuring out how to combine the results from the recursive case. For calls, there are two base cases (atomic vectors and names) and two recursive cases (calls and pairlists). This means that a function for working with expressions will look like:

recurse_call <- function(x) {
  if (is.atomic(x)) {
    # Return a value
  } else if (is.name(x)) {
    # Return a value
  } else if (is.call(x)) {
    # Call recurse_call recursively
  } else if (is.pairlist(x)) {
    # Call recurse_call recursively
  } else {
    # User supplied incorrect input
    stop("Don't know how to handle type ", typeof(x), 
      call. = FALSE)
  }
}



Finding F and T

We’ll start simple with a function that determines whether a function uses the logical abbreviations T and F. Using T and F is generally considered to be poor coding practice, and is something that R CMD check will warn about. Let’s first compare the AST for T vs. TRUE:

ast(TRUE)



## \-  TRUE

ast(T)



## \- `T

TRUE is parsed as a logical vector of length one, while T is parsed as a name. This tells us how to write our base cases for the recursive function: while an atomic vector will never be a logical abbreviation, a name might, so we’ll need to test for both T and F. The recursive cases can be combined because they do the same thing in both cases: they recursively call logical_abbr() on each element of the object. 

logical_abbr <- function(x) {
  if (is.atomic(x)) {
    FALSE
  } else if (is.name(x)) {
    identical(x, quote(T)) || identical(x, quote(F))
  } else if (is.call(x) || is.pairlist(x)) {
    for (i in seq_along(x)) {
      if (logical_abbr(x[[i]])) return(TRUE)
    }
    FALSE
  } else {
    stop("Don't know how to handle type ", typeof(x), 
      call. = FALSE)
  }
}

logical_abbr(quote(TRUE))



## [1] FALSE

logical_abbr(quote(T))



## [1] TRUE

logical_abbr(quote(mean(x, na.rm = T)))



## [1] TRUE

logical_abbr(quote(function(x, na.rm = T) FALSE))



## [1] TRUE

Finding all variables created by assignment

logical_abbr() is very simple: it only returns a single TRUE or FALSE. The next task, listing all variables created by assignment, is a little more complicated. We’ll start simply, and then make the function progressively more rigorous. 

Again, we start by looking at the AST for assignment:

ast(x <- 10)



## \- ()
##   \- `<-
##   \- `x
##   \-  10

Assignment is a call where the first element is the name <-, the second is the object the name is assigned to, and the third is the value to be assigned. This makes the base cases simple: constants and names don’t create assignments, so they return NULL. The recursive cases aren’t too hard either. We lapply() over pairlists and over calls to functions other than <-.

find_assign <- function(x) {
  if (is.atomic(x) || is.name(x)) {
    NULL
  } else if (is.call(x)) {
    if (identical(x[[1]], quote(`<-`))) {
      x[[2]]
    } else {
      lapply(x, find_assign)
    }
  } else if (is.pairlist(x)) {
    lapply(x, find_assign)
  } else {
    stop("Don't know how to handle type ", typeof(x), 
      call. = FALSE)
  }
}
find_assign(quote(a <- 1))



## a

find_assign(quote({
  a <- 1
  b <- 2
}))



## [[1]]
## NULL
## 
## [[2]]
## a
## 
## [[3]]
## b

This function works for these simple cases, but the output is rather verbose and includes some extraneous NULLs. Instead of returning a list, let’s keep it simple and use a character vector. We’ll also test it with two slightly more complicated examples:

find_assign2 <- function(x) {
  if (is.atomic(x) || is.name(x)) {
    character()
  } else if (is.call(x)) {
    if (identical(x[[1]], quote(`<-`))) {
      as.character(x[[2]])
    } else {
      unlist(lapply(x, find_assign2))
    }
  } else if (is.pairlist(x)) {
    unlist(lapply(x, find_assign2))
  } else {
    stop("Don't know how to handle type ", typeof(x), 
      call. = FALSE)
  }
}

find_assign2(quote({
  a <- 1
  b <- 2
  a <- 3
}))



## [1] "a" "b" "a"

find_assign2(quote({
  system.time(x <- print(y <- 5))
}))



## [1] "x"

This is better, but we have two problems: dealing with repeated names and neglecting assignments inside other assignments. The fix for the first problem is easy. We need to wrap unique() around the recursive case to remove duplicate assignments. The fix for the second problem is a bit more tricky. We also need to recurse when the call is to <-. find_assign3() implements both strategies:

find_assign3 <- function(x) {
  if (is.atomic(x) || is.name(x)) {
    character()
  } else if (is.call(x)) {
    if (identical(x[[1]], quote(`<-`))) {
      lhs <- as.character(x[[2]])
    } else {
      lhs <- character()
    }

    unique(c(lhs, unlist(lapply(x, find_assign3))))
  } else if (is.pairlist(x)) {
    unique(unlist(lapply(x, find_assign3)))
  } else {
    stop("Don't know how to handle type ", typeof(x), 
      call. = FALSE)
  }
}

find_assign3(quote({
  a <- 1
  b <- 2
  a <- 3
}))



## [1] "a" "b"

find_assign3(quote({
  system.time(x <- print(y <- 5))
}))



## [1] "x" "y"

We also need to test subassignment:

find_assign3(quote({
  l <- list()
  l$a <- 5
  names(l) <- "b"
}))



## [1] "l"     "$"     "a"     "names"

We only want assignment of the object itself, not assignment that modifies a property of the object. Drawing the tree for the quoted object will help us see what condition to test for. The second element of the call to <- should be a name, not another call.

ast(l$a <- 5)



## \- ()
##   \- `<-
##   \- ()
##     \- `$
##     \- `l
##     \- `a
##   \-  5

ast(names(l) <- "b")



## \- ()
##   \- `<-
##   \- ()
##     \- `names
##     \- `l
##   \-  "b"

Now we have a complete version:

find_assign4 <- function(x) {
  if (is.atomic(x) || is.name(x)) {
    character()
  } else if (is.call(x)) {
    if (identical(x[[1]], quote(`<-`)) && is.name(x[[2]])) {
      lhs <- as.character(x[[2]])
    } else {
      lhs <- character()
    }

    unique(c(lhs, unlist(lapply(x, find_assign4))))
  } else if (is.pairlist(x)) {
    unique(unlist(lapply(x, find_assign4)))
  } else {
    stop("Don't know how to handle type ", typeof(x), 
      call. = FALSE)
  }
}

find_assign4(quote({
  l <- list()
  l$a <- 5
  names(l) <- "b"
}))



## [1] "l"

While the complete version of this function is quite complicated, it’s important to remember we wrote it by working our way up by writing simple component parts.

Modifying the call tree

The next step up in complexity is returning a modified call tree, like what you get with bquote(). bquote() is a slightly more flexible form of quote: it allows you to optionally quote and unquote some parts of an expression (it’s similar to the backtick operator in Lisp). Everything is quoted, unless it’s encapsulated in .() in which case it’s evaluated and the result is inserted: 

a <- 1
b <- 3
bquote(a + b)



## a + b

bquote(a + .(b))



## a + 3

bquote(.(a) + .(b))



## 1 + 3

bquote(.(a + b))



## [1] 4

This provides a fairly easy way to control what gets evaluated and when. How does bquote() work? Below, I’ve rewritten bquote() to use the same style as our other functions: it expects input to be quoted already, and makes the base and recursive cases more explicit:

bquote2 <- function (x, where = parent.frame()) {
  if (is.atomic(x) || is.name(x)) {
    # Leave unchanged
    x
  } else if (is.call(x)) {
    if (identical(x[[1]], quote(.))) {
      # Call to .(), so evaluate
      eval(x[[2]], where)
    } else {
      # Otherwise apply recursively, turning result back into call
      as.call(lapply(x, bquote2, where = where))
    }
  } else if (is.pairlist(x)) {
    as.pairlist(lapply(x, bquote2, where = where))
  } else {
    # User supplied incorrect input
    stop("Don't know how to handle type ", typeof(x), 
      call. = FALSE)
  }
}

x <- 1
y <- 2
bquote2(quote(x == .(x)))



## x == 1

bquote2(quote(function(x = .(x)) {
  x + .(y)
}))



## function(x = 1) {
##     x + 2
## }

The main difference between this and the previous recursive functions is that after we process each element of calls and pairlists, we need to coerce them back to their original types.

Note that functions that modify the source tree are most useful for creating expressions that are used at run-time, rather than those that are saved back to the original source file. This is because all non-code information is lost:

bquote2(quote(function(x = .(x)) {
  # This is a comment
  x +  # funky spacing
    .(y)
}))



## function(x = 1) {
##     x + 2
## }

These tools are somewhat similar to Lisp macros, as discussed in Programmer’s Niche: Macros in R by Thomas Lumley. However, macros are run at compile-time, which doesn’t have any meaning in R, and always return expressions. They’re also somewhat like Lisp fexprs. A fexpr is a function where the arguments are not evaluated by default. The terms macro and fexpr are useful to know when looking for useful techniques from other languages.  

Exercises


	Why does logical_abbr() use a for loop instead of a functional like lapply()?


	logical_abbr() works when given quoted objects, but doesn’t work when given an existing function, as in the example below. Why not? How could you modify logical_abbr() to work with functions? Think about what components make up a function.

f <- function(x = TRUE) {
  g(x + T)
}
logical_abbr(f)




	Write a function called ast_type() that returns either “constant”, “name”, “call”, or “pairlist”. Rewrite logical_abbr(), find_assign(), and bquote2() to use this function with switch() instead of nested if statements.


	Write a function that extracts all calls to a function. Compare your function to pryr::fun_calls().


	Write a wrapper around bquote2() that does non-standard evaluation so that you don’t need to explicitly quote() the input.


	Compare bquote2() to bquote(). There is a subtle bug in bquote(): it won’t replace calls to functions with no arguments. Why?

bquote(.(x)(), list(x = quote(f)))



## .(x)()

bquote(.(x)(1), list(x = quote(f)))



## f(1)


	Improve the base recurse_call() template to also work with lists of functions and expressions (e.g., as from parse(path_to_file)).





Domain specific languages

The combination of first class environments, lexical scoping, non-standard evaluation, and metaprogramming gives us a powerful toolkit for creating embedded domain specific languages (DSLs) in R. Embedded DSLs take advantage of a host language’s parsing and execution framework, but adjust the semantics to make them more suitable for a specific task. DSLs are a very large topic, and this chapter will only scratch the surface, focussing on important implementation techniques rather than on how you might come up with the language in the first place. If you’re interested in learning more, I highly recommend Domain Specific Languages by Martin Fowler. It discusses many options for creating a DSL and provides many examples of different languages. 

R’s most popular DSL is the formula specification, which provides a succinct way of describing the relationship between predictors and the response in a model. Other examples include ggplot2 (for visualisation) and plyr (for data manipulation). Another package that makes extensive use of these ideas is dplyr, which provides translate_sql() to convert R expressions into SQL:

library(dplyr)
translate_sql(sin(x) + tan(y))



## <SQL> SIN("x") + TAN("y")

translate_sql(x < 5 & !(y >= 5))



## <SQL> "x" < 5.0 AND NOT(("y" >= 5.0))

translate_sql(first %like% "Had*")



## <SQL> "first" LIKE 'Had*'

translate_sql(first %in% c("John", "Roger", "Robert"))



## <SQL> "first" IN ('John', 'Roger', 'Robert')

translate_sql(like == 7)



## <SQL> "like" = 7.0

This chapter will develop two simple, but useful DSLs: one to generate HTML, and the other to turn mathematical expressions expressed in R code into LaTeX.

Prerequisites

This chapter together pulls together many techniques discussed elsewhere in the book. In particular, you’ll need to understand environments, functionals, non-standard evaluation, and metaprogramming.

HTML

HTML (hypertext markup language) is the language that underlies the majority of the web. It’s a special case of SGML (standard generalised markup language), and it’s similar but not identical to XML (extensible markup language). HTML looks like this: 

<body>
  <h1 id='first'>A heading</h1>
  <p>Some text &amp; <b>some bold text.</b></p>
  <img src='myimg.png' width='100' height='100' />
</body>



Even if you’ve never looked at HTML before, you can still see that the key component of its coding structure is tags, <tag></tag>. Tags can be contained inside other tags and intermingled with text. Generally, HTML ignores whitespaces (a sequence of whitespace is equivalent to a single space) so you could put the previous example on a single line and it would still display the same in a browser:

<body><h1 id='first'>A heading</h1><p>Some text &amp; <b>some bold
text.</b></p><img src='myimg.png' width='100' height='100' />
</body>



However, like R code, you usually want to indent HTML to make the structure more obvious.

There are over 100 HTML tags. But to illustrate HTML, we’re going to focus on just a few:


	<body>: the top-level tag that all content is enclosed within

	<h1>: creates a heading-1, the top level heading

	<p>: creates a paragraph

	<b>: emboldens text

	<img>: embeds an image



(You probably guessed what these did already!)

Tags can also have named attributes. They look like <tag a="a" b="b"></tag>. Attribute values should always be enclosed in either single or double quotes. Two important attributes used with just about every tag are id and class. These are used in conjunction with CSS (cascading style sheets) in order to control the style of the document.

Some tags, like <img>, can’t have any content. These are called void tags and have a slightly different syntax. Instead of writing <img></img>, you write <img />. Since they have no content, attributes are more important. In fact, img has three that are used for almost every image: src (where the image lives), width, and height.

Because < and > have special meanings in HTML, you can’t write them directly. Instead you have to use the HTML escapes: &gt; and &lt;. And, since those escapes use &, if you want a literal ampersand you have to escape with &amp;.

Goal

Our goal is to make it easy to generate HTML from R. To give a concrete example, we want to generate the following HTML with code that looks as similar to the HTML as possible.

<body>
  <h1 id='first'>A heading</h1>
  <p>Some text &amp; <b>some bold text.</b></p>
  <img src='myimg.png' width='100' height='100' />
</body>



To do so, we will work our way up to the following DSL:

with_html(body(
  h1("A heading", id = "first"),
  p("Some text &", b("some bold text.")),
  img(src = "myimg.png", width = 100, height = 100)
))



Note that the nesting of function calls is the same as the nesting of tags: unnamed arguments become the content of the tag, and named arguments become their attributes. Because tags and text are clearly distinct in this API, we can automatically escape & and other special characters.

Escaping

Escaping is so fundamental to DSLs that it’ll be our first topic. To create a way of escaping characters, we need to give “&” a special meaning without ending up double-escaping. The easiest way to do this is to create an S3 class that distinguishes between regular text (that needs escaping) and HTML (that doesn’t). 

html <- function(x) structure(x, class = "html")
print.html <- function(x, ...) {
  out <- paste0("<HTML> ", x)
  cat(paste(strwrap(out), collapse = "\n"), "\n", sep = "")
}



We then write an escape method that leaves HTML unchanged and escapes the special characters (&, <, >) for ordinary text. We also add a list method for convenience.

escape <- function(x) UseMethod("escape")
escape.html <- function(x) x
escape.character <- function(x) {
  x <- gsub("&", "&amp;", x)
  x <- gsub("<", "&lt;", x)
  x <- gsub(">", "&gt;", x)

  html(x)
}
escape.list <- function(x) {
  lapply(x, escape)
}

# Now we check that it works
escape("This is some text.")



## <HTML> This is some text.

escape("x > 1 & y < 2")



## <HTML> x &gt; 1 &amp; y &lt; 2

# Double escaping is not a problem
escape(escape("This is some text. 1 > 2"))



## <HTML> This is some text. 1 &gt; 2

# And text we know is HTML doesn't get escaped.
escape(html("<hr />"))



## <HTML> <hr />

Escaping is an important component for many DSLs.

Basic tag functions

Next, we’ll write a few simple tag functions and then figure out how to generalise this function to cover all possible HTML tags. Let’s start with <p>. HTML tags can have both attributes (e.g., id or class) and children (like <b> or <i>). We need some way of separating these in the function call. Given that attributes are named values and children don’t have names, it seems natural to separate using named arguments from unnamed ones. For example, a call to p() might look like:

p("Some text.", b("some bold text"), class = "mypara")



We could list all the possible attributes of the <p> tag in the function definition. However, that’s hard not only because there are many attributes, but also because it’s possible to use custom attributes. Instead, we’ll just use ... and separate the components based on whether or not they are named. To do this correctly, we need to be aware of an inconsistency in names():

names(c(a = 1, b = 2))



## [1] "a" "b"

names(c(a = 1, 2))



## [1] "a" ""

names(c(1, 2))



## NULL

With this in mind, we create two helper functions to extract the named and unnamed components of a vector:

named <- function(x) {
  if (is.null(names(x))) return(NULL)
  x[names(x) != ""]
}
unnamed <- function(x) {
  if (is.null(names(x))) return(x)
  x[names(x) == ""]
}



We can now create our p() function. Notice that there’s one new function here: html_attributes(). It uses a list of name-value pairs to create the correct specification of HTML attributes. It’s a little complicated (in part, because it deals with some idiosyncracies of HTML that I haven’t mentioned.). However, because it’s not that important and doesn’t introduce any new ideas, I won’t discuss it here (you can find the source online).

source("dsl-html-attributes.r", local = TRUE)
p <- function(...) {
  args <- list(...)
  attribs <- html_attributes(named(args))
  children <- unlist(escape(unnamed(args)))

  html(paste0(
    "<p", attribs, ">",
    paste(children, collapse = ""),
    "</p>"
  ))
}

p("Some text")



## <HTML> <p>Some text</p>

p("Some text", id = "myid")



## <HTML> <p id = 'myid'>Some text</p>

p("Some text", image = NULL)



## <HTML> <p image>Some text</p>

p("Some text", class = "important", "data-value" = 10)



## <HTML> <p class = 'important' data-value = '10'>Some text</p>

Tag functions

With this definition of p(), it’s pretty easy to see how we can apply this approach to different tags: we just need to replace "p" with a variable. We’ll use a closure to make it easy to generate a tag function given a tag name:

tag <- function(tag) {
  force(tag)
  function(...) {
    args <- list(...)
    attribs <- html_attributes(named(args))
    children <- unlist(escape(unnamed(args)))

    html(paste0(
      "<", tag, attribs, ">",
      paste(children, collapse = ""),
      "</", tag, ">"
    ))
  }
}



(We’re forcing the evaluation of tag with the expectation that we’ll be calling this function from a loop. This will help to avoid potential bugs caused by lazy evaluation.)

Now we can run our earlier example:

p <- tag("p")
b <- tag("b")
i <- tag("i")
p("Some text.", b("Some bold text"), i("Some italic text"),
  class = "mypara")



## <HTML> <p class = 'mypara'>Some text.<b>Some bold text</b><i>Some
## italic text</i></p>

Before we continue writing functions for every possible HTML tag, we need to create a variant of tag() for void tags. It can be very similar to tag(), but if there are any unnamed tags, it needs to throw an error. Also note that the tag itself will look slightly different:

void_tag <- function(tag) {
  force(tag)
  function(...) {
    args <- list(...)
    if (length(unnamed(args)) > 0) {
      stop("Tag ", tag, " can not have children", call. = FALSE)
    }
    attribs <- html_attributes(named(args))

    html(paste0("<", tag, attribs, " />"))
  }
}

img <- void_tag("img")
img(src = "myimage.png", width = 100, height = 100)



## <HTML> <img src = 'myimage.png' width = '100' height = '100' />

Processing all tags

Next we need a list of all the HTML tags:

tags <- c("a", "abbr", "address", "article", "aside", "audio", 
  "b","bdi", "bdo", "blockquote", "body", "button", "canvas", 
  "caption","cite", "code", "colgroup", "data", "datalist", 
  "dd", "del","details", "dfn", "div", "dl", "dt", "em", 
  "eventsource","fieldset", "figcaption", "figure", "footer", 
  "form", "h1", "h2", "h3", "h4", "h5", "h6", "head", "header", 
  "hgroup", "html", "i","iframe", "ins", "kbd", "label", 
  "legend", "li", "mark", "map","menu", "meter", "nav", 
  "noscript", "object", "ol", "optgroup", "option", "output", 
  "p", "pre", "progress", "q", "ruby", "rp","rt", "s", "samp", 
  "script", "section", "select", "small", "span", "strong", 
  "style", "sub", "summary", "sup", "table", "tbody", "td", 
  "textarea", "tfoot", "th", "thead", "time", "title", "tr",
  "u", "ul", "var", "video")

void_tags <- c("area", "base", "br", "col", "command", "embed",
  "hr", "img", "input", "keygen", "link", "meta", "param", 
  "source", "track", "wbr")



If you look at this list carefully, you’ll see there are quite a few tags that have the same name as base R functions (body, col, q, source, sub, summary, table), and others that have the same name as popular packages (e.g., map). This means we don’t want to make all the functions available by default, in either the global environment or the package environment. Instead, we’ll put them in a list and add some additional code to make it easy to use them when desired. First, we make a named list:

tag_fs <- c(
  setNames(lapply(tags, tag), tags),
  setNames(lapply(void_tags, void_tag), void_tags)
)



This gives us an explicit (but verbose) way to call tag functions:

tag_fs$p("Some text.", tag_fs$b("Some bold text"),
  tag_fs$i("Some italic text"))



## <HTML> <p>Some text.<b>Some bold text</b><i>Some italic
## text</i></p>

We can then finish off our HTML DSL with a function that allows us to evaluate code in the context of that list:

with_html <- function(code) {
  eval(substitute(code), tag_fs)
}



This gives us a succinct API which allows us to write HTML when we need it but doesn’t clutter up the namespace when we don’t.

with_html(body(
  h1("A heading", id = "first"),
  p("Some text &", b("some bold text.")),
  img(src = "myimg.png", width = 100, height = 100)
))



## <HTML> <body><h1 id = 'first'>A heading</h1><p>Some text
## &amp;<b>some bold text.</b></p><img src = 'myimg.png' width =
## '100' height = '100' /></body>

If you want to access the R function overridden by an HTML tag with the same name inside with_html(), you can use the full package::function specification.

Exercises


	The escaping rules for <script> and <style> tags are different: you don’t want to escape angle brackets or ampersands, but you do want to escape </script> or </style>. Adapt the code above to follow these rules.


	The use of ... for all functions has some big downsides. There’s no input validation and there will be little information in the documentation or autocomplete about how they are used in the function. Create a new function that, when given a named list of tags and their

attribute names (like below), creates functions which address this problem.

list(
  a = c("href"),
  img = c("src", "width", "height")
)



All tags should get class and id attributes.


	Currently the HTML doesn’t look terribly pretty, and it’s hard to see the structure. How could you adapt tag() to do indenting and formatting?




LaTeX

The next DSL will convert R expressions into their LaTeX math equivalents. (This is a bit like ?plotmath, but for text instead of plots.) LaTeX is the lingua franca of mathematicians and statisticians: whenever you want to describe an equation in text (e.g., in an email), you write it as a LaTeX equation. Since many reports are produced using both R and LaTeX, it might be useful to be able to automatically convert mathematical expressions from one language to the other. 

Because we need to convert both functions and names, this mathematical DSL will be more complicated than the HTML DSL. We’ll also need to create a “default” conversion, so that functions we don’t know about get a standard conversion. Like the HTML DSL, we’ll also write functionals to make it easier to generate the translators.

Before we begin, let’s quickly cover how formulas are expressed in LaTeX.

LaTeX mathematics

LaTeX mathematics are complex. Fortunately, they are well documented. That said, they have a fairly simple structure:


	Most simple mathematical equations are written in the same way you’d type them in R: x * y, z ^ 5. Subscripts are written using _ (e.g., x_1).


	Special characters start with a \: \pi = π, \pm = ±, and so on. There are a huge number of symbols available in LaTeX. Googling for latex math symbols will return many lists. There’s even a service that will look up the symbol you sketch in the browser.


	More complicated functions look like \name{arg1}{arg2}. For example, to write a fraction you’d use \frac{a}{b}. To write a square root, you’d use \sqrt{a}.


	To group elements together use {}: i.e., x ^ a + b vs. x ^ {a + b}.


	In good math typesetting, a distinction is made between variables and functions. But without extra information, LaTeX doesn’t know whether f(a * b) represents calling the function f with input a * b, or is shorthand for f * (a * b). If f is a function, you can tell LaTeX to typeset it using an upright font with \textrm{f}(a * b).




Goal

Our goal is to use these rules to automatically convert an R expression to its appropriate LaTeX representation. We’ll tackle this in four stages:


	Convert known symbols: pi -> \pi


	Leave other symbols unchanged: x -> x, y -> y


	Convert known functions to their special forms: sqrt(frac(a, b)) -> \sqrt{\frac{a, b}}


	Wrap unknown functions with \textrm: f(a) -> \textrm{f}(a)




We’ll code this translation in the opposite direction of what we did with the HTML DSL. We’ll start with infrastructure, because that makes it easy to experiment with our DSL, and then work our way back down to generate the desired output.

to_math

To begin, we need a wrapper function that will convert R expressions into LaTeX math expressions. This will work the same way as to_html(): capture the unevaluated expression and evaluate it in a special environment. However, the special environment is no longer fixed. It will vary depending on the expression. We do this in order to be able to deal with symbols and functions that we haven’t yet seen.

to_math <- function(x) {
  expr <- substitute(x)
  eval(expr, latex_env(expr))
}



Known symbols

Our first step is to create an environment that will convert the special LaTeX symbols used for Greek, e.g., pi to \pi. This is the same basic trick used in subset that makes it possible to select column ranges by name (subset(mtcars, , cyl:wt)): bind a name to a string in a special environment.

We create that environment by naming a vector, converting the vector into a list, and converting the list into an environment.

greek <- c(
  "alpha", "theta", "tau", "beta", "vartheta", "pi", "upsilon",
  "gamma", "gamma", "varpi", "phi", "delta", "kappa", "rho",
  "varphi", "epsilon", "lambda", "varrho", "chi", "varepsilon",
  "mu", "sigma", "psi", "zeta", "nu", "varsigma", "omega", "eta",
  "xi", "Gamma", "Lambda", "Sigma", "Psi", "Delta", "Xi", 
  "Upsilon", "Omega", "Theta", "Pi", "Phi")
greek_list <- setNames(paste0("\\", greek), greek)
greek_env <- list2env(as.list(greek_list), parent = emptyenv())



We can then check it:

latex_env <- function(expr) {
  greek_env
}

to_math(pi)



## [1] "\\pi"

to_math(beta)



## [1] "\\beta"

Unknown symbols

If a symbol isn’t Greek, we want to leave it as is. This is tricky because we don’t know in advance what symbols will be used, and we can’t possibly generate them all. So we’ll use a little bit of metaprogramming to find out what symbols are present in an expression. The all_names function takes an expression and does the following: if it’s a name, it converts it to a string; if it’s a call, it recurses down through its arguments.

all_names <- function(x) {
  if (is.atomic(x)) {
    character()
  } else if (is.name(x)) {
    as.character(x)
  } else if (is.call(x) || is.pairlist(x)) {
    children <- lapply(x[-1], all_names)
    unique(unlist(children))
  } else {
    stop("Don't know how to handle type ", typeof(x), 
      call. = FALSE)
  }
}

all_names(quote(x + y + f(a, b, c, 10)))



## [1] "x" "y" "a" "b" "c"

We now want to take that list of symbols, and convert it to an environment so that each symbol is mapped to its corresponding string representation (e.g., so eval(quote(x), env) yields "x"). We again use the pattern of converting a named character vector to a list, then converting the list to an environment.

latex_env <- function(expr) {
  names <- all_names(expr)
  symbol_list <- setNames(as.list(names), names)
  symbol_env <- list2env(symbol_list)

  symbol_env
}

to_math(x)



## [1] "x"

to_math(longvariablename)



## [1] "longvariablename"

to_math(pi)



## [1] "pi"

This works, but we need to combine it with the Greek symbols environment. Since we want to give preference to Greek over defaults (e.g., to_math(pi) should give "\\pi", not "pi"), symbol_env needs to be the parent of greek_env. To do that, we need to make a copy of greek_env with a new parent. While R doesn’t come with a function for cloning environments, we can easily create one by combining two existing functions:

clone_env <- function(env, parent = parent.env(env)) {
  list2env(as.list(env), parent = parent)
}



This gives us a function that can convert both known (Greek) and unknown symbols.

latex_env <- function(expr) {
  # Unknown symbols
  names <- all_names(expr)
  symbol_list <- setNames(as.list(names), names)
  symbol_env <- list2env(symbol_list)

  # Known symbols
  clone_env(greek_env, symbol_env)
}

to_math(x)



## [1] "x"

to_math(longvariablename)



## [1] "longvariablename"

to_math(pi)



## [1] "\\pi"

Known functions

Next we’ll add functions to our DSL. We’ll start with a couple of helper closures that make it easy to add new unary and binary operators. These functions are very simple: they only assemble strings. (Again we use force() to make sure the arguments are evaluated at the right time.)

unary_op <- function(left, right) {
  force(left)
  force(right)
  function(e1) {
    paste0(left, e1, right)
  }
}

binary_op <- function(sep) {
  force(sep)
  function(e1, e2) {
    paste0(e1, sep, e2)
  }
}



Using these helpers, we can map a few illustrative examples of converting R to LaTeX. Note that with R’s lexical scoping rules helping us, we can easily provide new meanings for standard functions like +, -, and *, and even ( and {.

# Binary operators
f_env <- new.env(parent = emptyenv())
f_env$"+" <- binary_op(" + ")
f_env$"-" <- binary_op(" - ")
f_env$"*" <- binary_op(" * ")
f_env$"/" <- binary_op(" / ")
f_env$"^" <- binary_op("^")
f_env$"[" <- binary_op("_")

# Grouping
f_env$"{" <- unary_op("\\left{ ", " \\right}")
f_env$"(" <- unary_op("\\left( ", " \\right)")
f_env$paste <- paste

# Other math functions
f_env$sqrt <- unary_op("\\sqrt{", "}")
f_env$sin <- unary_op("\\sin(", ")")
f_env$log <- unary_op("\\log(", ")")
f_env$abs <- unary_op("\\left| ", "\\right| ")
f_env$frac <- function(a, b) {
  paste0("\\frac{", a, "}{", b, "}")
}

# Labelling
f_env$hat <- unary_op("\\hat{", "}")
f_env$tilde <- unary_op("\\tilde{", "}")



We again modify latex_env() to include this environment. It should be the last environment R looks for names in: in other words, sin(sin) should work.

latex_env <- function(expr) {
  # Known functions
  f_env

  # Default symbols
  names <- all_names(expr)
  symbol_list <- setNames(as.list(names), names)
  symbol_env <- list2env(symbol_list, parent = f_env)

  # Known symbols
  greek_env <- clone_env(greek_env, parent = symbol_env)
}

to_math(sin(x + pi))



## [1] "\\sin(x + \\pi)"

to_math(log(x_i ^ 2))



## [1] "\\log(x_i^2)"

to_math(sin(sin))



## [1] "\\sin(sin)"

Unknown functions

Finally, we’ll add a default for functions that we don’t yet know about. Like the unknown names, we can’t know in advance what these will be, so we again use a little metaprogramming to figure them out:

all_calls <- function(x) {
  if (is.atomic(x) || is.name(x)) {
    character()
  } else if (is.call(x)) {
    fname <- as.character(x[[1]])
    children <- lapply(x[-1], all_calls)
    unique(c(fname, unlist(children)))
  } else if (is.pairlist(x)) {
    unique(unlist(lapply(x[-1], all_calls), use.names = FALSE))
  } else {
    stop("Don't know how to handle type ", typeof(x), call. = FALSE)
  }
}

all_calls(quote(f(g + b, c, d(a))))



## [1] "f" "+" "d"

And we need a closure that will generate the functions for each unknown call.

unknown_op <- function(op) {
  force(op)
  function(...) {
    contents <- paste(..., collapse = ", ")
    paste0("\\mathrm{", op, "}(", contents, ")")
  }
}



And again we update latex_env():

latex_env <- function(expr) {
  calls <- all_calls(expr)
  call_list <- setNames(lapply(calls, unknown_op), calls)
  call_env <- list2env(call_list)

  # Known functions
  f_env <- clone_env(f_env, call_env)

  # Default symbols
  symbols <- all_names(expr)
  symbol_list <- setNames(as.list(symbols), symbols)
  symbol_env <- list2env(symbol_list, parent = f_env)

  # Known symbols
  greek_env <- clone_env(greek_env, parent = symbol_env)
}

to_math(f(a * b))



## [1] "\\mathrm{f}(a * b)"

Exercises


	Add escaping. The special symbols that should be escaped by adding a backslash in front of them are \, $, and %. Just as with HTML, you’ll need to make sure you don’t end up double-escaping. So you’ll need to create a small S3 class and then use that in function operators. That will also allow you to embed arbitrary LaTeX if needed.


	Complete the DSL to support all the functions that plotmath supports.


	There’s a repeating pattern in latex_env(): we take a character vector, do something to each piece, convert it to a list, and then convert the list to an environment. Write a function that automates this task, and then rewrite latex_env().


	Study the source code for dplyr. An important part of its structure is partial_eval() which helps manage expressions when some of the components refer to variables in the database while others refer to local R objects. Note that you could use very similar ideas if you needed to translate small R expressions into other languages, like JavaScript or Python.





Performance

R is not a fast language. This is not an accident. R was purposely designed to make data analysis and statistics easier for you to do. It was not designed to make life easier for your computer. While R is slow compared to other programming languages, for most purposes, it’s fast enough. 

The goal of this part of the book is to give you a deeper understanding of R’s performance characteristics. In this chapter, you’ll learn about some of the trade-offs that R has made, valuing flexibility over performance. The following four chapters will give you the skills to improve the speed of your code when you need to:


	In Profiling, you’ll learn how to systematically make your code faster. First you figure what’s slow, and then you apply some general techniques to make the slow parts faster.


	In Memory, you’ll learn about how R uses memory, and how garbage collection and copy-on-modify affect performance and memory usage.


	For really high-performance code, you can move outside of R and use another programming language. Rcpp will teach you the absolute minimum you need to know about C++ so you can write fast code using the Rcpp package.


	To really understand the performance of built-in base functions, you’ll need to learn a little bit about R’s C API. In R’s C interface, you’ll learn a little about R’s C internals.




Let’s get started by learning more about why R is slow.

Why is R slow?

To understand R’s performance, it helps to think about R as both a language and as an implementation of that language. The R-language is abstract: it defines what R code means and how it should work. The implementation is concrete: it reads R code and computes a result. The most popular implementation is the one from r-project.org. I’ll call that implementation GNU-R to distinguish it from R-language, and from the other implementations I’ll discuss later in the chapter. 

The distinction between R-language and GNU-R is a bit murky because the R-language is not formally defined. While there is the R language definition, it is informal and incomplete. The R-language is mostly defined in terms of how GNU-R works. This is in contrast to other languages, like C++ and javascript, that make a clear distinction between language and implementation by laying out formal specifications that describe in minute detail how every aspect of the language should work. Nevertheless, the distinction between R-language and GNU-R is still useful: poor performance due to the language is hard to fix without breaking existing code; fixing poor performance due to the implementation is easier.

In Language performance, I discuss some of the ways in which the design of the R-language imposes fundamental constraints on R’s speed. In Implementation performance, I discuss why GNU-R is currently far from the theoretical maximum, and why improvements in performance happen so slowly. While it’s hard to know exactly how much faster a better implementation could be, a >10x improvement in speed seems achievable. In alternative implementations, I discuss some of the promising new implementations of R, and describe one important technique they use to make R code run faster.

Beyond performance limitations due to design and implementation, it has to be said that a lot of R code is slow simply because it’s poorly written. Few R users have any formal training in programming or software development. Fewer still write R code for a living. Most people use R to understand data: it’s more important to get an answer quickly than to develop a system that will work in a wide variety of situations. This means that it’s relatively easy to make most R code much faster, as we’ll see in the following chapters.

Before we examine some of the slower parts of the R-language and GNU-R, we need to learn a little about benchmarking so that we can give our intuitions about performance a concrete foundation.

Microbenchmarking

A microbenchmark is a measurement of the performance of a very small piece of code, something that might take microseconds (µs) or nanoseconds (ns) to run. I’m going to use microbenchmarks to demonstrate the performance of very low-level pieces of R code, which help develop your intuition for how R works. This intuition, by-and-large, is not useful for increasing the speed of real code. The observed differences in microbenchmarks will typically be dominated by higher-order effects in real code; a deep understanding of subatomic physics is not very helpful when baking. Don’t change the way you code because of these microbenchmarks. Instead wait until you’ve read the practical advice in the following chapters. 

The best tool for microbenchmarking in R is the microbenchmark package. It provides very precise timings, making it possible to compare operations that only take a tiny amount of time. For example, the following code compares the speed of two ways of computing a square root.

library(microbenchmark)

x <- runif(100)
microbenchmark(
  sqrt(x),
  x ^ 0.5
)



## Unit: nanoseconds
##     expr   min    lq  mean median     uq    max neval
##  sqrt(x) 1,440 1,850  2314  2,220  2,540 12,800   100
##    x^0.5 8,890 9,520 10505  9,900 10,200 58,400   100

By default, microbenchmark() runs each expression 100 times (controlled by the times parameter). In the process, it also randomises the order of the expressions. It summarises the results with a minimum (min), lower quartile (lq), median, upper quartile (uq), and maximum (max). Focus on the median, and use the upper and lower quartiles (lq and uq) to get a feel for the variability. In this example, you can see that using the special purpose sqrt() function is faster than the general exponentiation operator.

As with all microbenchmarks, pay careful attention to the units: here, each computation takes about 2,000 ns, 2,000 billionths of a second. To help calibrate the impact of a microbenchmark on run time, it’s useful to think about how many times a function needs to run before it takes a second. If a microbenchmark takes:


	1 ms, then one thousand calls takes a second

	1 µs, then one million calls takes a second

	1 ns, then one billion calls takes a second



The sqrt() function takes about 2,000 ns, or 2 µs, to compute the square root of 100 numbers. That means if you repeated the operation a million times, it would take 2 s. So changing the way you compute the square root is unlikely to significantly affect real code.

Exercises


	Instead of using microbenchmark(), you could use the built-in function system.time(). But system.time() is much less precise, so you’ll need to repeat each operation many times with a loop, and then divide to find the average time of each operation, as in the code below.

n <- 1:1e6
system.time(for (i in 1:n) sqrt(x)) / length(n)
system.time(for (i in 1:n) x ^ 0.5) / length(n)



How do the estimates from system.time() compare to those from microbenchmark()? Why are they different?


	Here are two other ways to compute the square root of a vector. Which do you think will be fastest? Which will be slowest? Use microbenchmarking to test your answers.

x ^ (1 / 2)
exp(log(x) / 2)




	Use microbenchmarking to rank the basic arithmetic operators (+, -, *, /, and ^) in terms of their speed. Visualise the results. Compare the speed of arithmetic on integers vs. doubles.


	You can change the units in which the microbenchmark results are expressed with the unit parameter. Use unit = "eps" to show the number of evaluations needed to take 1 second. Repeat the benchmarks above with the eps unit. How does this change your intuition for performance?




Language performance

In this section, I’ll explore three trade-offs that limit the performance of the R-language: extreme dynamism, name lookup with mutable environments, and lazy evaluation of function arguments. I’ll illustrate each trade-off with a microbenchmark, showing how it slows GNU-R down. I benchmark GNU-R because you can’t benchmark the R-language (it can’t run code). This means that the results are only suggestive of the cost of these design decisions, but are nevertheless useful. I’ve picked these three examples to illustrate some of the trade-offs that are key to language design: the designer must balance speed, flexibility, and ease of implementation.

If you’d like to learn more about the performance characteristics of the R-language and how they affect real code, I highly recommend “Evaluating the Design of the R Language” by Floreal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek. It uses a powerful methodology that combines a modified R interpreter and a wide set of code found in the wild.

Extreme dynamism

R is an extremely dynamic programming language. Almost anything can be modified after it is created. To give just a few examples, you can:


	Change the body, arguments, and environment of functions.

	Change the S4 methods for a generic.

	Add new fields to an S3 object, or even change its class.

	Modify objects outside of the local environment with <<-.



Pretty much the only things you can’t change are objects in sealed namespaces, which are created when you load a package.

The advantage of dynamism is that you need minimal upfront planning. You can change your mind at any time, iterating your way to a solution without having to start afresh. The disadvantage of dynamism is that it’s difficult to predict exactly what will happen with a given function call. This is a problem because the easier it is to predict what’s going to happen, the easier it is for an interpreter or compiler to make an optimisation. (If you’d like more details, Charles Nutter expands on this idea at On Languages, VMs, Optimization, and the Way of the World.) If an interpreter can’t predict what’s going to happen, it has to consider many options before it finds the right one. For example, the following loop is slow in R, because R doesn’t know that x is always an integer. That means R has to look for the right + method (i.e., is it adding doubles, or integers?) in every iteration of the loop.

x <- 0L
for (i in 1:1e6) {
  x <- x + 1
}



The cost of finding the right method is higher for non-primitive functions. The following microbenchmark illustrates the cost of method dispatch for S3, S4, and RC. I create a generic and a method for each OO system, then call the generic and see how long it takes to find and call the method. I also time how long it takes to call the bare function for comparison. 

f <- function(x) NULL

s3 <- function(x) UseMethod("s3")
s3.integer <- f

A <- setClass("A", representation(a = "list"))
setGeneric("s4", function(x) standardGeneric("s4"))
setMethod(s4, "A", f)

B <- setRefClass("B", methods = list(rc = f))

a <- A()
b <- B$new()



microbenchmark(
  fun = f(),
  S3 = s3(1L),
  S4 = s4(a),
  RC = b$rc()
)



## Unit: nanoseconds
##  expr    min     lq  mean median     uq     max neval
##   fun    240    276   459    334    398  12,300   100
##    S3  1,040  1,520  2162  1,780  2,100  28,100   100
##    S4 10,700 12,800 15306 13,600 14,200  79,200   100
##    RC  7,110  8,230 16792  9,140  9,880 670,000   100

The bare function takes about 300 ns. S3 method dispatch takes an additional 1,000 ns; S4 dispatch, 10,000 ns; and 9,000 dispatch, 10,000 ns. S3 and S4 method dispatch are expensive because R must search for the right method every time the generic is called; it might have changed between this call and the last. R could do better by caching methods between calls, but caching is hard to do correctly and a notorious source of bugs.

Name lookup with mutable environments

It’s surprisingly difficult to find the value associated with a name in the R-language. This is due to combination of lexical scoping and extreme dynamism. Take the following example. Each time we print a it comes from a different environment: 

a <- 1
f <- function() {
  g <- function() {
    print(a)
    assign("a", 2, envir = parent.frame())
    print(a)
    a <- 3
    print(a)
  }
  g()
}
f()



## [1] 1
## [1] 2
## [1] 3

This means that you can’t do name lookup just once: you have to start from scratch each time. This problem is exacerbated by the fact that almost every operation is a lexically scoped function call. You might think the following simple function calls two functions: + and ^. In fact, it calls four because { and ( are regular functions in R.

f <- function(x, y) {
  (x + y) ^ 2
}



Since these functions are in the global environment, R has to look through every environment in the search path, which could easily be 10 or 20 environments. The following microbenchmark hints at the performance costs. We create four versions of f(), each with one more environment (containing 26 bindings) between the environment of f() and the base environment where +, ^, (, and { are defined.

random_env <- function(parent = globalenv()) {
  letter_list <- setNames(as.list(runif(26)), LETTERS)
  list2env(letter_list, envir = new.env(parent = parent))
}
set_env <- function(f, e) {
  environment(f) <- e
  f
}
f2 <- set_env(f, random_env())
f3 <- set_env(f, random_env(environment(f2)))
f4 <- set_env(f, random_env(environment(f3)))

microbenchmark(
  f(1, 2),
  f2(1, 2),
  f3(1, 2),
  f4(1, 2),
  times = 10000
)



## Unit: nanoseconds
##      expr min  lq mean median    uq       max neval
##   f(1, 2) 570 710 1207    867 1,170    74,100 10000
##  f2(1, 2) 575 749 1235    901 1,200    57,600 10000
##  f3(1, 2) 592 783 1313    946 1,250    53,000 10000
##  f4(1, 2) 652 824 1460    972 1,270 1,500,000 10000

Each additional environment between f() and the base environment makes the function slower by about 30 ns.

It might be possible to implement a caching system so that R only needs to look up the value of each name once. This is hard because there are so many ways to change the value associated with a name: <<-, assign(), eval(), and so on. Any caching system would have to know about these functions to make sure the cache was correctly invalidated and you didn’t get an out-of-date value. 

Another simple fix would be to add more built-in constants that you can’t override. This, for example, would mean that R always knew exactly what +, -, {, and ( meant, and you wouldn’t have to repeatedly look up their definitions. That would make the interpreter more complicated (because there are more special cases) and hence harder to maintain, and the language less flexible. This would change the R-language, but it would be unlikely to affect much existing code because it’s such a bad idea to override functions like { and (.

Lazy evaluation overhead

In R, function arguments are evaluated lazily (as discussed in lazy evaluation and capturing expressions). To implement lazy evaluation, R uses a promise object that contains the expression needed to compute the result and the environment in which to perform the computation. Creating these objects has some overhead, so each additional argument to a function decreases its speed a little. 

The following microbenchmark compares the runtime of a very simple function. Each version of the function has one additional argument. This suggests that adding an additional argument slows the function down by ~20 ns.

f0 <- function() NULL
f1 <- function(a = 1) NULL
f2 <- function(a = 1, b = 1) NULL
f3 <- function(a = 1, b = 2, c = 3) NULL
f4 <- function(a = 1, b = 2, c = 4, d = 4) NULL
f5 <- function(a = 1, b = 2, c = 4, d = 4, e = 5) NULL
microbenchmark(f0(), f1(), f2(), f3(), f4(), f5(), times = 10000)



## Unit: nanoseconds
##  expr min  lq mean median  uq    max neval
##  f0() 155 177  286    180 193 56,800 10000
##  f1() 171 212  396    218 306 45,000 10000
##  f2() 208 236  484    244 401 52,500 10000
##  f3() 233 265  582    275 524 65,200 10000
##  f4() 243 285  655    312 630 38,900 10000
##  f5() 289 311  750    385 743 73,500 10000

In most other programming languages there is little overhead for adding extra arguments. Many compiled languages will even warn you if arguments are never used (like in the above example), and automatically remove them from the function.

Exercises


	scan() has the most arguments (21) of any base function. About how much time does it take to make 21 promises each time scan is called? Given a simple input (e.g., scan(text = "1 2 3", quiet = T)) what proportion of the total run time is due to creating those promises?


	Read “Evaluating the Design of the R Language”. What other aspects of the R-language slow it down? Construct microbenchmarks to illustrate.


	How does the performance of S3 method dispatch change with the length of the class vector? How does performance of S4 method dispatch change with number of superclasses? How about RC?


	What is the cost of multiple inheritance and multiple dispatch on S4 method dispatch?


	Why is the cost of name lookup less for functions in the base package?




Implementation performance

The design of the R language limits its maximum theoretical performance, but GNU-R is currently nowhere near that maximum. There are many things that can (and will) be done to improve performance. This section discusses some aspects of GNU-R that are slow not because of their definition, but because of their implementation.

R is over 20 years old. It contains nearly 800,000 lines of code (about 45% C, 19% R, and 17% Fortran). Changes to base R can only be made by members of the R Core Team (or R-core for short). Currently R-core has twenty members, but only six are active in day-to-day development. No one on R-core works full time on R. Most are statistics professors who can only spend a relatively small amount of their time on R. Because of the care that must be taken to avoid breaking existing code, R-core tends to be very conservative about accepting new code. It can be frustrating to see R-core reject proposals that would improve performance. However, the overriding concern for R-core is not to make R fast, but to build a stable platform for data analysis and statistics. 

Below, I’ll show two small, but illustrative, examples of parts of R that are currently slow but could, with some effort, be made faster. They are not critical parts of base R, but they have been sources of frustration for me in the past. As with all microbenchmarks, these won’t affect the performance of most code, but can be important for special cases.

Extracting a single value from a data frame

The following microbenchmark shows five ways to access a single value (the number in the bottom-right corner) from the built-in mtcars dataset. The variation in performance is startling: the slowest method takes 30x longer than the fastest. There’s no reason that there has to be such a huge difference in performance. It’s simply that no one has had the time to fix it.  

microbenchmark(
  "[32, 11]"      = mtcars[32, 11],
  "$carb[32]"     = mtcars$carb[32],
  "[[c(11, 32)]]" = mtcars[[c(11, 32)]],
  "[[11]][32]"    = mtcars[[11]][32],
  ".subset2"      = .subset2(mtcars, 11)[32]
)



## Unit: nanoseconds
##           expr    min     lq  mean median     uq     max neval
##       [32, 11] 15,300 16,300 18354 17,000 17,800  76,400   100
##      $carb[32]  8,860  9,930 12836 10,600 11,600  85,400   100
##  [[c(11, 32)]]  7,200  8,110  9293  8,780  9,350  21,300   100
##     [[11]][32]  6,330  7,580  8377  8,100  8,690  20,900   100
##       .subset2    334    566  4461    669    800 368,000   100

ifelse(), pmin(), and pmax()

Some base functions are known to be slow. For example, take the following three implementations of squish(), a function that ensures that the smallest value in a vector is at least a and its largest value is at most b. The first implementation, squish_ife(), uses ifelse(). ifelse() is known to be slow because it is relatively general and must evaluate all arguments fully. The second implementation, squish_p(), uses pmin() and pmax(). Because these two functions are so specialised, one might expect that they would be fast. However, they’re actually rather slow. This is because they can take any number of arguments and they have to do some relatively complicated checks to determine which method to use. The final implementation uses basic subassignment.   

squish_ife <- function(x, a, b) {
  ifelse(x <= a, a, ifelse(x >= b, b, x))
}
squish_p <- function(x, a, b) {
  pmax(pmin(x, b), a)
}
squish_in_place <- function(x, a, b) {
  x[x <= a] <- a
  x[x >= b] <- b
  x
}

x <- runif(100, -1.5, 1.5)
microbenchmark(
  squish_ife      = squish_ife(x, -1, 1),
  squish_p        = squish_p(x, -1, 1),
  squish_in_place = squish_in_place(x, -1, 1),
  unit = "us"
)



## Unit: microseconds
##             expr   min    lq  mean median   uq   max neval
##       squish_ife 30.30 33.20 39.64  34.60 37.1 123.0   100
##         squish_p 19.00 21.10 29.79  22.50 24.4 634.0   100
##  squish_in_place  4.72  6.23  7.53   6.92  7.6  57.4   100

Using pmin() and pmax() is about 2x faster than ifelse(), and using subsetting directly is about 3x as fast again. We can often do even better by using C++. The following example compares the best R implementation to a relatively simple, if verbose, implementation in C++. Even if you’ve never used C++, you should still be able to follow the basic strategy: loop over every element in the vector and perform a different action depending on whether or not the value is less than a and/or greater than b.

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector squish_cpp(NumericVector x, double a, double b) {
  int n = x.length();
  NumericVector out(n);

  for (int i = 0; i < n; ++i) {
    double xi = x[i];
    if (xi < a) {
      out[i] = a;
    } else if (xi > b) {
      out[i] = b;
    } else {
      out[i] = xi;
    }
  }

  return out;
}



(You’ll learn how to access this C++ code from R in Rcpp.)

microbenchmark(
  squish_in_place = squish_in_place(x, -1, 1),
  squish_cpp      = squish_cpp(x, -1, 1),
  unit = "us"
)



## Unit: microseconds
##             expr  min   lq mean median   uq  max neval
##  squish_in_place 5.77 7.63 9.32   8.47 9.15 51.9   100
##       squish_cpp 2.86 3.76 4.59   4.19 4.62 32.3   100

The C++ implementation is around 2x faster than the best pure R implementation.

Exercises


	The performance characteristics of squish_ife(), squish_p(), and squish_in_place() vary considerably with the size of x. Explore the differences. Which sizes lead to the biggest and smallest differences?


	Compare the performance costs of extracting an element from a list, a column from a matrix, and a column from a data frame. Do the same for rows.




Alternative R implementations

There are some exciting new implementations of R. While they all try to stick as closely as possible to the existing language definition, they improve speed by using ideas from modern interpreter design. The four most mature open-source projects are: 


	pqR (pretty quick R) by Radford Neal. Built on top of R 2.15.0, it fixes many obvious performance issues, and provides better memory management and some support for automatic multithreading. 


	Renjin by BeDataDriven. Renjin uses the Java virtual machine, and has an extensive test suite. 


	FastR by a team from Purdue. FastR is similar to Renjin, but it makes more ambitious optimisations and is somewhat less mature. 


	Riposte by Justin Talbot and Zachary DeVito. Riposte is experimental and ambitious. For the parts of R it implements, it is extremely fast. Riposte is described in more detail in Riposte: A Trace-Driven Compiler and Parallel VM for Vector Code in R. 




These are roughly ordered from most practical to most ambitious. Another project, CXXR by Andrew Runnalls, does not provide any performance improvements. Instead, it aims to refactor R’s internal C code in order to build a stronger foundation for future development, to keep behaviour identical to GNU-R, and to create better, more extensible documentation of its internals. 

R is a huge language and it’s not clear whether any of these approaches will ever become mainstream. It’s a hard task to make an alternative implementation run all R code in the same way as GNU-R. Can you imagine having to reimplement every function in base R to be not only faster, but also to have exactly the same documented bugs? However, even if these implementations never make a dent in the use of GNU-R, they still provide benefits:


	Simpler implementations make it easy to validate new approaches before porting to GNU-R.


	Knowing which aspects of the language can be changed with minimal impact on existing code and maximal impact on performance can help to guide us to where we should direct our attention.


	Alternative implementations put pressure on the R-core to incorporate performance improvements.




One of the most important approaches that pqR, Renjin, FastR, and Riposte are exploring is the idea of deferred evaluation. As Justin Talbot, the author of Riposte, points out: “for long vectors, R’s execution is completely memory bound. It spends almost all of its time reading and writing vector intermediates to memory”. If we could eliminate these intermediate vectors, we could improve performance and reduce memory usage. 

The following example shows a very simple example of how deferred evaluation can help. We have three vectors, x, y, z, each containing 1 million elements, and we want to find the sum of x + y where z is TRUE. (This represents a simplification of a pretty common sort of data analysis question.)

x <- runif(1e6)
y <- runif(1e6)
z <- sample(c(T, F), 1e6, rep = TRUE)

sum((x + y)[z])



In R, this creates two big temporary vectors: x + y, 1 million elements long, and (x + y)[z], about 500,000 elements long. This means you need to have extra memory available for the intermediate calculation, and you have to shuttle the data back and forth between the CPU and memory. This slows computation down because the CPU can’t work at maximum efficiency if it’s always waiting for more data to come in.

However, if we rewrote the function using a loop in a language like C++, we only need one intermediate value: the sum of all the values we’ve seen:

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
double cond_sum_cpp(NumericVector x, NumericVector y, 
                    LogicalVector z) {
  double sum = 0;
  int n = x.length();

  for(int i = 0; i < n; i++) {
    if (!z[i]) continue;
    sum += x[i] + y[i];
  }

  return sum;
}



cond_sum_r <- function(x, y, z) {
  sum((x + y)[z])
}

microbenchmark(
  cond_sum_cpp = cond_sum_cpp(x, y, z),
  cond_sum_r = cond_sum_r(x, y, z),
  unit = "ms"
)



## Unit: milliseconds
##          expr  min    lq  mean median    uq   max neval
##  cond_sum_cpp 4.44  4.51  4.55   4.56  4.58  4.65   100
##    cond_sum_r 9.81 10.00 12.91  10.10 13.30 73.10   100

On my computer, this approach is about 2x faster than the vectorised R equivalent, which is already pretty fast.

The goal of deferred evaluation is to perform this transformation automatically, so you can write concise R code and have it automatically translated into efficient machine code. Sophisticated translators can also figure out how to make the most of multiple cores. In the above example, if you have four cores, you could split x, y, and z into four pieces performing the conditional sum on each core, then adding together the four individual results. Deferred evaluation can also work with for loops, automatically discovering operations that can be vectorised.

This chapter has discussed some of the fundamental reasons that R is slow. The following chapters will give you the tools to do something about it when it impacts your code.


Optimising code


“Programmers waste enormous amounts of time thinking about, or worrying about, the speed of noncritical parts of their programs, and these attempts at efficiency actually have a strong negative impact when debugging and maintenance are considered.”

— Donald Knuth.



Optimising code to make it run faster is an iterative process: 


	Find the biggest bottleneck (the slowest part of your code).

	Try to eliminate it (you may not succeed but that’s ok).

	Repeat until your code is “fast enough.”



This sounds easy, but it’s not.

Even experienced programmers have a hard time identifying bottlenecks in their code. Instead of relying on your intuition, you should profile your code: use realistic inputs and measure the run-time of each individual operation. Only once you’ve identified the most important bottlenecks can you attempt to eliminate them. It’s difficult to provide general advice on improving performance, but I try my best with six techniques that can be applied in many situations. I’ll also suggest a general strategy for performance optimisation that helps ensure that your faster code will still be correct code.

It’s easy to get caught up in trying to remove all bottlenecks. Don’t! Your time is valuable and is better spent analysing your data, not eliminating possible inefficiencies in your code. Be pragmatic: don’t spend hours of your time to save seconds of computer time. To enforce this advice, you should set a goal time for your code and optimise only up to that goal. This means you will not eliminate all bottlenecks. Some you will not get to because you’ve met your goal. Others you may need to pass over and accept either because there is no quick and easy solution or because the code is already well optimised and no significant improvement is possible. Accept these possibilities and move on to the next candidate. 

Outline


	Measuring performance describes how to find the bottlenecks in your code using line profiling.


	Improving performance outlines seven general strategies for improving the performance of your code.


	Code organisation teaches you how to organise your code to make optimisation as easy, and bug free, as possible.


	Already solved reminds you to look for existing solutions.


	Do as little as possible emphasises the importance of being lazy: often the easiest way to make a function faster is to let it to do less work.


	Vectorise concisely defines vectorisation, and shows you how to make the most of built-in functions.


	Avoid copies discusses the performance perils of copying data.


	Byte code compilation shows you how to take advantage of R’s byte code compiler.


	Case study: t-test pulls all the pieces together into a case study showing how to speed up repeated t-tests by ~1000x.


	Parallelise teaches you how to use parallelisation to spread computation across all the cores in your computer.


	Other techniques finishes the chapter with pointers to more resources that will help you write fast code.




Prerequisites

In this chapter we’ll be using the lineprof package to understand the performance of R code. Get it with:

devtools::install_github("hadley/lineprof")



Measuring performance

To understand performance, you use a profiler. There are a number of different types of profilers. R uses a fairly simple type called a sampling or statistical profiler. A sampling profiler stops the execution of code every few milliseconds and records which function is currently executing (along with which function called that function, and so on). For example, consider f(), below:  

library(lineprof)
f <- function() {
  pause(0.1)
  g()
  h()
}
g <- function() {
  pause(0.1)
  h()
}
h <- function() {
  pause(0.1)
}



(I use lineprof::pause() instead of Sys.sleep() because Sys.sleep() does not appear in profiling outputs because as far as R can tell, it doesn’t use up any computing time.) 

If we profiled the execution of f(), stopping the execution of code every 0.1 s, we’d see a profile like below. Each line represents one “tick” of the profiler (0.1 s in this case), and function calls are nested with >. It shows that the code spends 0.1 s running f(), then 0.2 s running g(), then 0.1 s running h().

f() 
f() > g()
f() > g() > h()
f() > h()

If we actually profile f(), using the code below, we’re unlikely to get such a clear result.

tmp <- tempfile()
Rprof(tmp, interval = 0.1)
f()
Rprof(NULL)



That’s because profiling is hard to do accurately without slowing your code down by many orders of magnitude. The compromise that RProf() makes, sampling, only has minimal impact on the overall performance, but is fundamentally stochastic. There’s some variability in both the accuracy of the timer and in the time taken by each operation, so each time you profile you’ll get a slightly different answer. Fortunately, pinpoint accuracy is not needed to identify the slowest parts of your code. 

Rather than focussing on individual calls, we’ll visualise aggregates using the lineprof package. There are a number of other options, like summaryRprof(), the proftools package, and the profr package, but these tools are beyond the scope of this book. I wrote the lineprof package as a simpler way to visualise profiling data. As the name suggests, the fundamental unit of analysis in lineprof() is a line of code. This makes lineprof less precise than the alternatives (because a line of code can contain multiple function calls), but it’s easier to understand the context.

To use lineprof, we first save the code in a file and source() it. Here profiling-example.R contains the definition of f(), g(), and h(). Note that you must use source() to load the code. This is because lineprof uses srcrefs to match up the code to the profile, and the needed srcrefs are only created when you load code from disk. We then use lineprof() to run our function and capture the timing output. Printing this object shows some basic information. For now, we’ll just focus on the time column which estimates how long each line took to run and the ref column which tells us which line of code was run. The estimates aren’t perfect, but the ratios look about right. 

library(lineprof)
source("profiling-example.R")
l <- lineprof(f())
l
#>    time alloc release dups           ref     src
#> 1 0.074 0.001       0    0 profiling.R#2 f/pause
#> 2 0.143 0.002       0    0 profiling.R#3 f/g    
#> 3 0.071 0.000       0    0 profiling.R#4 f/h   



lineprof provides some functions to navigate through this data structure, but they’re a bit clumsy. Instead, we’ll start an interactive explorer using the shiny package. shine(l) will open a new web page (or if you’re using RStudio, a new pane) that shows your source code annotated with information about how long each line took to run. shine() starts a shiny app which “blocks” your R session. To exit, you’ll need to stop the process using escape or ctrl + c.



The t column visualises how much time is spent on each line. (You’ll learn about the other columns in memory profiling.) While not precise, it allows you to spot bottlenecks, and you can get precise numbers by hovering over each bar. This shows that twice as much time is spent on g() as on h(), so it would make sense to drill down into g() for more details. To do so, click g():



Then h():



This technique should allow you to quickly identify the major bottlenecks in your code.

Limitations

There are some other limitations to profiling:


	Profiling does not extend to C code. You can see if your R code calls C/C++ code but not what functions are called inside of your C/C++ code. Unfortunately, tools for profiling compiled code are beyond the scope of this book (i.e., I have no idea how to do it).


	Similarly, you can’t see what’s going on inside primitive functions or byte code compiled code.


	If you’re doing a lot of functional programming with anonymous functions, it can be hard to figure out exactly which function is being called. The easiest way to work around this is to name your functions.


	Lazy evaluation means that arguments are often evaluated inside another function. For example, in the following code, profiling would make it seem like i() was called by j() because the argument isn’t evaluated until it’s needed by j().

i <- function() {
  pause(0.1)
  10
}
j <- function(x) {
  x + 10
}
j(i())



If this is confusing, you can create temporary variables to force computation to happen earlier.




Improving performance


“We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%. A good programmer will not be lulled into complacency by such reasoning, he will be wise to look carefully at the critical code; but only after that code has been identified.”

— Donald Knuth.



Once you’ve used profiling to identify a bottleneck, you need to make it faster. The following sections introduce you to a number of techniques that I’ve found broadly useful:  


	Look for existing solutions.

	Do less work.

	Vectorise.

	Parallelise.

	Avoid copies.

	Byte-code compile.



A final technique is to rewrite in a faster language, like C++. That’s a big topic and is covered in Rcpp.

Before we get into specific techniques, I’ll first describe a general strategy and organisational style that’s useful when working on performance.

Code organisation

There are two traps that are easy to fall into when trying to make your code faster:


	Writing faster but incorrect code.

	Writing code that you think is faster, but is actually no better.



The strategy outlined below will help you avoid these pitfalls. 

When tackling a bottleneck, you’re likely to come up with multiple approaches. Write a function for each approach, encapsulating all relevant behaviour. This makes it easier to check that each approach returns the correct result and to time how long it takes to run. To demonstrate the strategy, I’ll compare two approaches for computing the mean:

mean1 <- function(x) mean(x)
mean2 <- function(x) sum(x) / length(x)



I recommend that you keep a record of everything you try, even the failures. If a similar problem occurs in the future, it’ll be useful to see everything you’ve tried. To do this I often use R Markdown, which makes it easy to intermingle code with detailed comments and notes.

Next, generate a representative test case. The case should be big enough to capture the essence of your problem but small enough that it takes only a few seconds to run. You don’t want it to take too long because you’ll need to run the test case many times to compare approaches. On the other hand, you don’t want the case to be too small because then results might not scale up to the real problem.

Use this test case to quickly check that all variants return the same result. An easy way to do so is with stopifnot() and all.equal(). For real problems with fewer possible outputs, you may need more tests to make sure that an approach doesn’t accidentally return the correct answer. That’s unlikely for the mean. 

x <- runif(100)
stopifnot(all.equal(mean1(x), mean2(x)))



Finally, use the microbenchmark package to compare how long each variation takes to run. For bigger problems, reduce the times parameter so that it only takes a couple of seconds to run. Focus on the median time, and use the upper and lower quartiles to gauge the variability of the measurement. 

microbenchmark(
  mean1(x),
  mean2(x)
)



## Unit: nanoseconds
##      expr   min    lq mean median    uq    max neval
##  mean1(x) 3,590 3,750 4656  4,000 4,350 28,100   100
##  mean2(x)   817   990 1383  1,180 1,340 12,700   100

(You might be surprised by the results: mean(x) is considerably slower than sum(x) / length(x). This is because, among other reasons, mean(x) makes two passes over the vector to be more numerically accurate.)

Before you start experimenting, you should have a target speed that defines when the bottleneck is no longer a problem. Setting such a goal is important because you don’t want to spend valuable time over-optimising your code.

If you’d like to see this strategy in action, I’ve used it a few times on stackoverflow:


	http://stackoverflow.com/questions/22515525#22518603

	http://stackoverflow.com/questions/22515175#22515856

	http://stackoverflow.com/questions/3476015#22511936



Has someone already solved the problem?

Once you’ve organised your code and captured all the variations you can think of, it’s natural to see what others have done. You are part of a large community, and it’s quite possible that someone has already tackled the same problem. If your bottleneck is a function in a package, it’s worth looking at other packages that do the same thing. Two good places to start are:


	CRAN task views. If there’s a CRAN task view related to your problem domain, it’s worth looking at the packages listed there.


	Reverse dependencies of Rcpp, as listed on its CRAN page. Since these packages use C++, it’s possible to find a solution to your bottleneck written in a higher performance language.




Otherwise, the challenge is describing your bottleneck in a way that helps you find related problems and solutions. Knowing the name of the problem or its synonyms will make this search much easier. But because you don’t know what it’s called, it’s hard to search for it! By reading broadly about statistics and algorithms, you can build up your own knowledge base over time. Alternatively, ask others. Talk to your colleagues and brainstorm some possible names, then search on Google and stackoverflow. It’s often helpful to restrict your search to R related pages. For Google, try rseek. For stackoverflow, restrict your search by including the R tag, [R], in your search. 

As discussed above, record all solutions that you find, not just those that immediately appear to be faster. Some solutions might be initially slower, but because they are easier to optimise they end up being faster. You may also be able to combine the fastest parts from different approaches. If you’ve found a solution that’s fast enough, congratulations! If appropriate, you may want to share your solution with the R community. Otherwise, read on.

Exercises


	What are faster alternatives to lm? Which are specifically designed to work with larger datasets?


	What package implements a version of match() that’s faster for repeated lookups? How much faster is it?


	List four functions (not just those in base R) that convert a string into a date time object. What are their strengths and weaknesses?


	How many different ways can you compute a 1d density estimate in R?


	Which packages provide the ability to compute a rolling mean?


	What are the alternatives to optim()?




Do as little as possible

The easiest way to make a function faster is to let it do less work. One way to do that is use a function tailored to a more specific type of input or output, or a more specific problem. For example:


	rowSums(), colSums(), rowMeans(), and colMeans() are faster than equivalent invocations that use apply() because they are vectorised (the topic of the next section).


	vapply() is faster than sapply() because it pre-specifies the output type.


	If you want to see if a vector contains a single value, any(x == 10) is much faster than 10 %in% x. This is because testing equality is simpler than testing inclusion in a set.




Having this knowledge at your fingertips requires knowing that alternative functions exist: you need to have a good vocabulary. Start with the basics, and expand your vocab by regularly reading R code. Good places to read code are the R-help mailing list and stackoverflow.

Some functions coerce their inputs into a specific type. If your input is not the right type, the function has to do extra work. Instead, look for a function that works with your data as it is, or consider changing the way you store your data. The most common example of this problem is using apply() on a data frame. apply() always turns its input into a matrix. Not only is this error prone (because a data frame is more general than a matrix), it is also slower.

Other functions will do less work if you give them more information about the problem. It’s always worthwhile to carefully read the documentation and experiment with different arguments. Some examples that I’ve discovered in the past include:


	read.csv(): specify known column types with colClasses.


	factor(): specify known levels with levels.


	cut(): don’t generate labels with labels = FALSE if you don’t need them, or, even better, use findInterval() as mentioned in the “see also” section of the documentation.


	unlist(x, use.names = FALSE) is much faster than unlist(x).


	interaction(): if you only need combinations that exist in the data, use drop = TRUE.




Sometimes you can make a function faster by avoiding method dispatch. As we saw in (Extreme dynamism), method dispatch in R can be costly. If you’re calling a method in a tight loop, you can avoid some of the costs by doing the method lookup only once: 


	For S3, you can do this by calling generic.class() instead of generic().


	For S4, you can do this by using getMethod() to find the method, saving it to a variable, and then calling that function.




For example, calling mean.default() quite a bit faster than calling mean() for small vectors:

x <- runif(1e2)

microbenchmark(
  mean(x),
  mean.default(x)
)



## Unit: microseconds
##             expr  min   lq mean median   uq  max neval
##          mean(x) 3.16 3.37 4.19   3.51 3.88 38.2   100
##  mean.default(x) 1.33 1.48 2.08   1.62 1.79 25.9   100

This optimisation is a little risky. While mean.default() is almost twice as fast, it’ll fail in surprising ways if x is not a numeric vector. You should only use it if you know for sure what x is.

Knowing that you’re dealing with a specific type of input can be another way to write faster code. For example, as.data.frame() is quite slow because it coerces each element into a data frame and then rbind()s them together. If you have a named list with vectors of equal length, you can directly transform it into a data frame. In this case, if you’re able to make strong assumptions about your input, you can write a method that’s about 20x faster than the default.

quickdf <- function(l) {
  class(l) <- "data.frame"
  attr(l, "row.names") <- .set_row_names(length(l[[1]]))
  l
}

l <- lapply(1:26, function(i) runif(1e3))
names(l) <- letters

microbenchmark(
  quick_df      = quickdf(l),
  as.data.frame = as.data.frame(l)
)



## Unit: microseconds
##           expr   min      lq   mean  median      uq     max neval
##       quick_df    13    14.7   19.8    17.2    22.6    90.5   100
##  as.data.frame 1,870 1,940.0 2136.7 1,980.0 2,150.0 3,910.0   100

Again, note the trade-off. This method is fast because it’s dangerous. If you give it bad inputs, you’ll get a corrupt data frame:

quickdf(list(x = 1, y = 1:2))



## Warning in format.data.frame(x, digits = digits, na.encode = FALSE):
## corrupt data frame: columns will be truncated or padded with NAs

##   x y
## 1 1 1

To come up with this minimal method, I carefully read through and then rewrote the source code for as.data.frame.list() and data.frame(). I made many small changes, each time checking that I hadn’t broken existing behaviour. After several hours work, I was able to isolate the minimal code shown above. This is a very useful technique. Most base R functions are written for flexibility and functionality, not performance. Thus, rewriting for your specific need can often yield substantial improvements. To do this, you’ll need to read the source code. It can be complex and confusing, but don’t give up!

The following example shows a progressive simplification of the diff() function if you only want computing differences between adjacent values. At each step, I replace one argument with a specific case, and then check to see that the function still works. The initial function is long and complicated, but by restricting the arguments I not only make it around twice as fast, I also make it easier to understand.

First, I take the code of diff() and reformat it to my style: 

diff1 <- function (x, lag = 1L, differences = 1L) {
  ismat <- is.matrix(x)
  xlen <- if (ismat) dim(x)[1L] else length(x)
  if (length(lag) > 1L || length(differences) > 1L || 
      lag < 1L || differences < 1L)
    stop("'lag' and 'differences' must be integers >= 1")

  if (lag * differences >= xlen) {
    return(x[0L])
  }

  r <- unclass(x)
  i1 <- -seq_len(lag)
  if (ismat) {
    for (i in seq_len(differences)) {
      r <- r[i1, , drop = FALSE] - 
        r[-nrow(r):-(nrow(r) - lag + 1L), , drop = FALSE]
    }
  } else {
    for (i in seq_len(differences)) {
      r <- r[i1] - r[-length(r):-(length(r) - lag + 1L)]
    }
  }
  class(r) <- oldClass(x)
  r
}



Next, I assume vector input. This allows me to remove the is.matrix() test and the method that uses matrix subsetting.

diff2 <- function (x, lag = 1L, differences = 1L) {
  xlen <- length(x)
  if (length(lag) > 1L || length(differences) > 1L || 
      lag < 1L || differences < 1L)
    stop("'lag' and 'differences' must be integers >= 1")

  if (lag * differences >= xlen) {
    return(x[0L])
  }

  i1 <- -seq_len(lag)
  for (i in seq_len(differences)) {
    x <- x[i1] - x[-length(x):-(length(x) - lag + 1L)]
  }
  x
}
diff2(cumsum(0:10))



##  [1]  1  2  3  4  5  6  7  8  9 10

I now assume that difference = 1L. This simplifies input checking and eliminates the for loop:

diff3 <- function (x, lag = 1L) {
  xlen <- length(x)
  if (length(lag) > 1L || lag < 1L)
    stop("'lag' must be integer >= 1")

  if (lag >= xlen) {
    return(x[0L])
  }

  i1 <- -seq_len(lag)
  x[i1] - x[-length(x):-(length(x) - lag + 1L)]
}
diff3(cumsum(0:10))



##  [1]  1  2  3  4  5  6  7  8  9 10

Finally I assume lag = 1L. This eliminates input checking and simplifies subsetting.

diff4 <- function (x) {
  xlen <- length(x)
  if (xlen <= 1) return(x[0L])

  x[-1] - x[-xlen]
}
diff4(cumsum(0:10))



##  [1]  1  2  3  4  5  6  7  8  9 10

Now diff4() is both considerably simpler and considerably faster than diff1():

x <- runif(100)
microbenchmark(
  diff1(x),
  diff2(x),
  diff3(x),
  diff4(x)
)



## Unit: microseconds
##      expr  min   lq  mean median    uq  max neval
##  diff1(x) 8.04 8.90 11.08   9.36 11.10 37.6   100
##  diff2(x) 6.47 7.13  8.71   7.62  8.90 22.1   100
##  diff3(x) 5.25 5.85  8.09   6.35  7.65 56.9   100
##  diff4(x) 3.55 4.05  5.31   4.50  6.52 14.3   100

You’ll be able to make diff() even faster for this special case once you’ve read Rcpp.

A final example of doing less work is to use simpler data structures. For example, when working with rows from a data frame, it’s often faster to work with row indices than data frames. For instance, if you wanted to compute a bootstrap estimate of the correlation between two columns in a data frame, there are two basic approaches: you can either work with the whole data frame or with the individual vectors. The following example shows that working with vectors is about twice as fast. 

sample_rows <- function(df, i) sample.int(nrow(df), i, 
  replace = TRUE)

# Generate a new data frame containing randomly selected rows
boot_cor1 <- function(df, i) {
  sub <- df[sample_rows(df, i), , drop = FALSE]
  cor(sub$x, sub$y)
}

# Generate new vectors from random rows
boot_cor2 <- function(df, i ) {
  idx <- sample_rows(df, i)
  cor(df$x[idx], df$y[idx])
}

df <- data.frame(x = runif(100), y = runif(100))
microbenchmark(
  boot_cor1(df, 10),
  boot_cor2(df, 10)
)



## Unit: microseconds
##               expr min    lq  mean median    uq max neval
##  boot_cor1(df, 10) 113 118.0 135.5  129.0 137.0 775   100
##  boot_cor2(df, 10)  68  69.9  75.1   71.1  78.2 121   100

Exercises


	How do the results change if you compare mean() and mean.default() on 10,000 observations, rather than on 100?


	The following code provides an alternative implementation of rowSums(). Why is it faster for this input?

rowSums2 <- function(df) {
  out <- df[[1L]]
  if (ncol(df) == 1) return(out)

  for (i in 2:ncol(df)) {
    out <- out + df[[i]]
  }
  out
}

df <- as.data.frame(
  replicate(1e3, sample(100, 1e4, replace = TRUE))
)
system.time(rowSums(df))



##    user  system elapsed 
##   0.060   0.016   0.072

system.time(rowSums2(df))



##    user  system elapsed 
##   0.036   0.008   0.043


	What’s the difference between rowSums() and .rowSums()?


	Make a faster version of chisq.test() that only computes the chi-square test statistic when the input is two numeric vectors with no missing values. You can try simplifying chisq.test() or by coding from the mathematical definition.


	Can you make a faster version of table() for the case of an input of two integer vectors with no missing values? Can you use it to speed up your chi-square test?


	Imagine you want to compute the bootstrap distribution of a sample correlation using cor_df() and the data in the example below. Given that you want to run this many times, how can you make this code faster? (Hint: the function has three components that you can speed up.)

n <- 1e6
df <- data.frame(a = rnorm(n), b = rnorm(n))

cor_df <- function(df, n) {
  i <- sample(seq(n), n, replace = TRUE)
  cor(df[i, , drop = FALSE])[2,1]
}



Is there a way to vectorise this procedure?




Vectorise

If you’ve used R for any length of time, you’ve probably heard the admonishment to “vectorise your code”. But what does that actually mean? Vectorising your code is not just about avoiding for loops, although that’s often a step. Vectorising is about taking a “whole object” approach to a problem, thinking about vectors, not scalars. There are two key attributes of a vectorised function: 


	It makes many problems simpler. Instead of having to think about the components of a vector, you only think about entire vectors.


	The loops in a vectorised function are written in C instead of R. Loops in C are much faster because they have much less overhead.




Functionals stressed the importance of vectorised code as a higher level abstraction. Vectorisation is also important for writing fast R code. This doesn’t mean simply using apply() or lapply(), or even Vectorise(). Those functions improve the interface of a function, but don’t fundamentally change performance. Using vectorisation for performance means finding the existing R function that is implemented in C and most closely applies to your problem.

Vectorised functions that apply to many common performance bottlenecks include:


	rowSums(), colSums(), rowMeans(), and colMeans(). These vectorised matrix functions will always be faster than using apply(). You can sometimes use these functions to build other vectorised functions.

rowAny <- function(x) rowSums(x) > 0
rowAll <- function(x) rowSums(x) == ncol(x)




	Vectorised subsetting can lead to big improvements in speed. Remember the techniques behind lookup tables (lookup tables) and matching and merging by hand (matching and merging by hand). Also remember that you can use subsetting assignment to replace multiple values in a single step. If x is a vector, matrix or data frame then x[is.na(x)] <- 0 will replace all missing values with 0.


	If you’re extracting or replacing values in scattered locations in a matrix or data frame, subset with an integer matrix. See matrix subsetting for more details.


	If you’re converting continuous values to categorical make sure you know how to use cut() and findInterval().


	Be aware of vectorised functions like cumsum() and diff().




Matrix algebra is a general example of vectorisation. There loops are executed by highly tuned external libraries like BLAS. If you can figure out a way to use matrix algebra to solve your problem, you’ll often get a very fast solution. The ability to solve problems with matrix algebra is a product of experience. While this skill is something you’ll develop over time, a good place to start is to ask people with experience in your domain. 

The downside of vectorisation is that it makes it harder to predict how operations will scale. The following example measures how long it takes to use character subsetting to lookup 1, 10, and 100 elements from a list. You might expect that looking up 10 elements would take 10x as long as looking up 1, and that looking up 100 elements would take 10x longer again. In fact, the following example shows that it only takes about 9 times longer to look up 100 elements than it does to look up 1.

lookup <- setNames(as.list(sample(100, 26)), letters)

x1 <- "j"
x10 <- sample(letters, 10)
x100 <- sample(letters, 100, replace = TRUE)

microbenchmark(
  lookup[x1],
  lookup[x10],
  lookup[x100]
)



## Unit: nanoseconds
##          expr   min    lq mean median     uq    max neval
##    lookup[x1]   542   691  807    798    888  1,830   100
##   lookup[x10] 1,930 2,180 2993  2,400  2,530 46,900   100
##  lookup[x100] 7,290 8,320 9421  9,610 10,200 16,500   100

Vectorisation won’t solve every problem, and rather than torturing an existing algorithm into one that uses a vectorised approach, you’re often better off writing your own vectorised function in C++. You’ll learn how to do so in Rcpp.

Exercises


	The density functions, e.g., dnorm(), have a common interface. Which arguments are vectorised over? What does rnorm(10, mean = 10:1) do?


	Compare the speed of apply(x, 1, sum) with rowSums(x) for varying sizes of x.


	How can you use crossprod() to compute a weighted sum? How much faster is it than the naive sum(x * w)?




Avoid copies

A pernicious source of slow R code is growing an object with a loop. Whenever you use c(), append(), cbind(), rbind(), or paste() to create a bigger object, R must first allocate space for the new object and then copy the old object to its new home. If you’re repeating this many times, like in a for loop, this can be quite expensive. You’ve entered Circle 2 of the “R inferno”. 

Here’s a little example that shows the problem. We first generate some random strings, and then combine them either iteratively with a loop using collapse(), or in a single pass using paste(). Note that the performance of collapse() gets relatively worse as the number of strings grows: combining 100 strings takes almost 30 times longer than combining 10 strings. 

random_string <- function() {
  paste(sample(letters, 50, replace = TRUE), collapse = "")
}
strings10 <- replicate(10, random_string())
strings100 <- replicate(100, random_string())

collapse <- function(xs) {
  out <- ""
  for (x in xs) {
    out <- paste0(out, x)
  }
  out
}

microbenchmark(
  loop10  = collapse(strings10),
  loop100 = collapse(strings100),
  vec10   = paste(strings10, collapse = ""),
  vec100  = paste(strings100, collapse = "")
)



## Unit: microseconds
##     expr    min     lq   mean median    uq     max neval
##   loop10  23.80  28.50  34.73  30.70  33.2    98.2   100
##  loop100 844.00 867.00 903.18 892.00 913.0 1,080.0   100
##    vec10   6.14   6.88   8.21   7.31   7.8    46.4   100
##   vec100  46.90  48.00  50.45  48.90  49.9    76.0   100

Modifying an object in a loop, e.g., x[i] <- y, can also create a copy, depending on the class of x. Modification in place discusses this issue in more depth and gives you some tools to determine when you’re making copies.

Byte code compilation

R 2.13.0 introduced a byte code compiler which can increase the speed of some code. Using the compiler is an easy way to get improvements in speed. Even if it doesn’t work well for your function, you won’t have invested a lot of time in the effort. The following example shows the pure R version of lapply() from functionals. Compiling it gives a considerable speedup, although it’s still not quite as fast as the C version provided by base R.  

lapply2 <- function(x, f, ...) {
  out <- vector("list", length(x))
  for (i in seq_along(x)) {
    out[[i]] <- f(x[[i]], ...)
  }
  out
}

lapply2_c <- compiler::cmpfun(lapply2)

x <- list(1:10, letters, c(F, T), NULL)
microbenchmark(
  lapply2(x, is.null),
  lapply2_c(x, is.null),
  lapply(x, is.null)
)



## Unit: microseconds
##                   expr  min   lq  mean median    uq  max neval
##    lapply2(x, is.null) 6.28 7.83 10.89   8.63 10.70 74.8   100
##  lapply2_c(x, is.null) 2.70 3.42  4.51   3.93  4.63 15.5   100
##     lapply(x, is.null) 2.88 3.88  5.42   4.43  5.13 41.3   100

Byte code compilation really helps here, but in most cases you’re more likely to get a 5-10% improvement. All base R functions are byte code compiled by default.

Case study: t-test

The following case study shows how to make t-tests faster using some of the techniques described above. It’s based on an example in “Computing thousands of test statistics simultaneously in R” by Holger Schwender and Tina Müller. I thoroughly recommend reading the paper in full to see the same idea applied to other tests. 

Imagine we have run 1000 experiments (rows), each of which collects data on 50 individuals (columns). The first 25 individuals in each experiment are assigned to group 1 and the rest to group 2. We’ll first generate some random data to represent this problem:

m <- 1000
n <- 50
X <- matrix(rnorm(m * n, mean = 10, sd = 3), nrow = m)
grp <- rep(1:2, each = n / 2)



For data in this form, there are two ways to use t.test(). We can either use the formula interface or provide two vectors, one for each group. Timing reveals that the formula interface is considerably slower.

system.time(for(i in 1:m) t.test(X[i, ] ~ grp)$stat)



##    user  system elapsed 
##   1.092   0.028   1.119

system.time(
  for(i in 1:m) t.test(X[i, grp == 1], X[i, grp == 2])$stat
)



##    user  system elapsed 
##   0.264   0.000   0.265

Of course, a for loop computes, but doesn’t save the values. We’ll use apply() to do that. This adds a little overhead:

compT <- function(x, grp){
  t.test(x[grp == 1], x[grp == 2])$stat
}
system.time(t1 <- apply(X, 1, compT, grp = grp))



##    user  system elapsed 
##   0.268   0.000   0.267

How can we make this faster? First, we could try doing less work. If you look at the source code of stats:::t.test.default(), you’ll see that it does a lot more than just compute the t-statistic. It also computes the p-value and formats the output for printing. We can try to make our code faster by stripping out those pieces.

my_t <- function(x, grp) {
  t_stat <- function(x) {
    m <- mean(x)
    n <- length(x)
    var <- sum((x - m) ^ 2) / (n - 1)

    list(m = m, n = n, var = var)
  }

  g1 <- t_stat(x[grp == 1])
  g2 <- t_stat(x[grp == 2])

  se_total <- sqrt(g1$var / g1$n + g2$var / g2$n)
  (g1$m - g2$m) / se_total
}
system.time(t2 <- apply(X, 1, my_t, grp = grp))



##    user  system elapsed 
##   0.032   0.000   0.033

stopifnot(all.equal(t1, t2))



This gives us about a 6x speed improvement.

Now that we have a fairly simple function, we can make it faster still by vectorising it. Instead of looping over the array outside the function, we will modify t_stat() to work with a matrix of values. Thus, mean() becomes rowMeans(), length() becomes ncol(), and sum() becomes rowSums(). The rest of the code stays the same.

rowtstat <- function(X, grp){
  t_stat <- function(X) {
    m <- rowMeans(X)
    n <- ncol(X)
    var <- rowSums((X - m) ^ 2) / (n - 1)

    list(m = m, n = n, var = var)
  }

  g1 <- t_stat(X[, grp == 1])
  g2 <- t_stat(X[, grp == 2])

  se_total <- sqrt(g1$var / g1$n + g2$var / g2$n)
  (g1$m - g2$m) / se_total
}
system.time(t3 <- rowtstat(X, grp))



##    user  system elapsed 
##   0.000   0.000   0.001

stopifnot(all.equal(t1, t3))



That’s much faster! It’s at least 40x faster than our previous effort, and around 1000x faster than where we started.

Finally, we could try byte code compilation. Here we’ll need to use microbenchmark() instead of system.time() in order to get enough accuracy to see a difference:

rowtstat_bc <- compiler::cmpfun(rowtstat)

microbenchmark(
  rowtstat(X, grp),
  rowtstat_bc(X, grp),
  unit = "ms"
)



## Unit: milliseconds
##                 expr   min    lq  mean median   uq  max neval
##     rowtstat(X, grp) 0.762 0.842 1.002   1.04 1.08 2.81   100
##  rowtstat_bc(X, grp) 0.751 0.831 0.981   1.04 1.09 1.22   100

In this example, byte code compilation doesn’t help at all.

Parallelise

Parallelisation uses multiple cores to work simultaneously on different parts of a problem. It doesn’t reduce the computing time, but it saves your time because you’re using more of your computer’s resources. Parallel computing is a complex topic, and there’s no way to cover it in depth here. Some resources I recommend are:  


	Parallel R by Q. Ethan McCallum and Stephen Weston.


	Parallel Computing for Data Science by Norm Matloff.




What I want to show is a simple application of parallel computing to what are called “embarrassingly parallel problems”. An embarrassingly parallel problem is one that’s made up of many simple problems that can be solved independently. A great example of this is lapply() because it operates on each element independently of the others. It’s very easy to parallelise lapply() on Linux and the Mac because you simply substitute mclapply() for lapply(). The following code snippet runs a trivial (but slow) function on all cores of your computer.

library(parallel)



cores <- detectCores()
cores



## [1] 32

pause <- function(i) {
  function(x) Sys.sleep(i)
}

system.time(lapply(1:10, pause(0.25)))



##    user  system elapsed 
##   0.004   0.000   2.504

system.time(mclapply(1:10, pause(0.25), mc.cores = cores))



##    user  system elapsed 
##   0.012   0.024   0.275

Life is a bit harder in Windows. You need to first set up a local cluster and then use parLapply():  

cluster <- makePSOCKcluster(cores)
system.time(parLapply(cluster, 1:10, function(i) Sys.sleep(i)))



##    user  system elapsed 
##   0.012   0.000  10.015

The main difference between mclapply() and makePSOCKcluster() is that the individual processes generated by mclapply() inherit from the current process, while those generated by makePSOCKcluster() start with a fresh session. This means that most real code will need some setup. Use clusterEvalQ() to run arbitrary code on each cluster and load needed packages, and clusterExport() to copy objects in the current session to the remote sessions.

x <- 10
psock <- parallel::makePSOCKcluster(1L)
clusterEvalQ(psock, x)
#> Error: one node produced an error: object 'x' not found 

clusterExport(psock, "x")
clusterEvalQ(psock, x)
#> [[1]]
#> [1] 10



There is some communication overhead with parallel computing. If the subproblems are very small, then parallelisation might hurt rather than help. It’s also possible to distribute computation over a network of computers (not just the cores on your local computer) but that’s beyond the scope of this book, because it gets increasingly complicated to balance computation and communication costs. A good place to start for more information is the high performance computing CRAN task view.

Other techniques

Being able to write fast R code is part of being a good R programmer. Beyond the specific hints in this chapter, if you want to write fast R code, you’ll need to improve your general programming skills. Some ways to do this are to:


	Read R blogs to see what performance problems other people have struggled with, and how they have made their code faster.


	Read other R programming books, like Norm Matloff’s The Art of R Programming or Patrick Burns’ R Inferno to learn about common traps.


	Take an algorithms and data structure course to learn some well known ways of tackling certain classes of problems. I have heard good things about Princeton’s Algorithms course offered on Coursera.


	Read general books about optimisation like Mature optimisation by Carlos Bueno, or the Pragmatic Programmer by Andrew Hunt and David Thomas.




You can also reach out to the community for help. Stackoverflow can be a useful resource. You’ll need to put some effort into creating an easily digestible example that also captures the salient features of your problem. If your example is too complex, few people will have the time and motivation to attempt a solution. If it’s too simple, you’ll get answers that solve the toy problem but not the real problem. If you also try to answer questions on stackoverflow, you’ll quickly get a feel for what makes a good question.


Memory

A solid understanding of R’s memory management will help you predict how much memory you’ll need for a given task and help you to make the most of the memory you have. It can even help you write faster code because accidental copies are a major cause of slow code. The goal of this chapter is to help you understand the basics of memory management in R, moving from individual objects to functions to larger blocks of code. Along the way, you’ll learn about some common myths, such as that you need to call gc() to free up memory, or that for loops are always slow. 

Outline


	Object size shows you how to use object_size() to see how much memory an object occupies, and uses that as a launching point to improve your understanding of how R objects are stored in memory.


	Memory usage and garbage collection introduces you to the mem_used() and mem_change() functions that will help you understand how R allocates and frees memory.


	Memory profiling with lineprof shows you how to use the lineprof package to understand how memory is allocated and released in larger code blocks.


	Modification in place introduces you to the address() and refs() functions so that you can understand when R modifies in place and when R modifies a copy. Understanding when objects are copied is very important for writing efficient R code.




Prerequisites

In this chapter, we’ll use tools from the pryr and lineprof packages to understand memory usage, and a sample dataset from ggplot2. If you don’t already have them, run this code to get the packages you need:

install.packages("ggplot2")
install.packages("pryr")
install.packages("devtools")
devtools::install_github("hadley/lineprof")



Sources


The details of R’s memory management are not documented in a single place. Most of the information in this chapter was gleaned from a close reading of the documentation (particularly ?Memory and ?gc), the memory profiling section of R-exts, and the SEXPs section of R-ints. The rest I figured out by reading the C source code, performing small experiments, and asking questions on R-devel. Any mistakes are entirely mine.

Object size

To understand memory usage in R, we will start with pryr::object_size(). This function tells you how many bytes of memory an object occupies: 

library(pryr)
object_size(1:10)



## 88 B

object_size(mean)



## 832 B

object_size(mtcars)



## 6.74 kB

(This function is better than the built-in object.size() because it accounts for shared elements within an object and includes the size of environments.)

Something interesting occurs if we use object_size() to systematically explore the size of an integer vector. The code below computes and plots the memory usage of integer vectors ranging in length from 0 to 50 elements. You might expect that the size of an empty vector would be zero and that memory usage would grow proportionately with length. Neither of those things are true! 

sizes <- sapply(0:50, function(n) object_size(seq_len(n)))
plot(0:50, sizes, xlab = "Length", ylab = "Size (bytes)", 
  type = "s")





This isn’t just an artefact of integer vectors. Every length 0 vector occupies 40 bytes of memory:

object_size(numeric())



## 40 B

object_size(logical())



## 40 B

object_size(raw())



## 40 B

object_size(list())



## 40 B

Those 40 bytes are used to store four components possessed by every object in R:


	Object metadata (4 bytes). These metadata store the base type (e.g. integer) and information used for debugging and memory management.


	Two pointers: one to the next object in memory and one to the previous object (2 * 8 bytes). This doubly-linked list makes it easy for internal R code to loop through every object in memory.


	A pointer to the attributes (8 bytes).




All vectors have three additional components: 


	The length of the vector (4 bytes). By using only 4 bytes, you might expect that R could only support vectors up to 24 × 8 − 1 (231, about two billion) elements. But in R 3.0.0 and later, you can actually have vectors up to 252 elements. Read R-internals to see how support for long vectors was added without having to change the size of this field.  


	The “true” length of the vector (4 bytes). This is basically never used, except when the object is the hash table used for an environment. In that case, the true length represents the allocated space, and the length represents the space currently used.


	The data (?? bytes). An empty vector has 0 bytes of data. Numeric vectors occupy 8 bytes for every element, integer vectors 4, and complex vectors 16.




If you’re keeping count you’ll notice that this only adds up to 36 bytes. The remaining 4 bytes are used for padding so that each component starts on an 8 byte (= 64-bit) boundary. Most cpu architectures require pointers to be aligned in this way, and even if they don’t require it, accessing non-aligned pointers tends to be rather slow. (If you’re interested, you can read more about it in C structure packing.)

This explains the intercept on the graph. But why does the memory size grow irregularly? To understand why, you need to know a little bit about how R requests memory from the operating system. Requesting memory (with malloc()) is a relatively expensive operation. Having to request memory every time a small vector is created would slow R down considerably. Instead, R asks for a big block of memory and then manages that block itself. This block is called the small vector pool and is used for vectors less than 128 bytes long. For efficiency and simplicity, it only allocates vectors that are 8, 16, 32, 48, 64, or 128 bytes long. If we adjust our previous plot to remove the 40 bytes of overhead, we can see that those values correspond to the jumps in memory use.

plot(0:50, sizes - 40, xlab = "Length", 
  ylab = "Bytes excluding overhead", type = "n")
abline(h = 0, col = "grey80")
abline(h = c(8, 16, 32, 48, 64, 128), col = "grey80")
abline(a = 0, b = 4, col = "grey90", lwd = 4)
lines(sizes - 40, type = "s")





Beyond 128 bytes, it no longer makes sense for R to manage vectors. After all, allocating big chunks of memory is something that operating systems are very good at. Beyond 128 bytes, R will ask for memory in multiples of 8 bytes. This ensures good alignment.

A subtlety of the size of an object is that components can be shared across multiple objects. For example, look at the following code:

x <- 1:1e6
object_size(x)



## 4 MB

y <- list(x, x, x)
object_size(y)



## 4 MB

y isn’t three times as big as x because R is smart enough to not copy x three times; instead it just points to the existing x.

It’s misleading to look at the sizes of x and y individually. If you want to know how much space they take up together, you have to supply them to the same object_size() call:

object_size(x, y)



## 4 MB

In this case, x and y together take up the same amount of space as y alone. This is not always the case. If there are no shared components, as in the following example, then you can add up the sizes of individual components to find out the total size:

x1 <- 1:1e6
y1 <- list(1:1e6, 1:1e6, 1:1e6)

object_size(x1)



## 4 MB

object_size(y1)



## 12 MB

object_size(x1, y1)



## 16 MB

object_size(x1) + object_size(y1) == object_size(x1, y1)



## [1] TRUE

The same issue also comes up with strings, because R has a global string pool. This means that each unique string is only stored in one place, and therefore character vectors take up less memory than you might expect: 

object_size("banana")



## 96 B

object_size(rep("banana", 10))



## 216 B

Exercises


	Repeat the analysis above for numeric, logical, and complex vectors.


	If a data frame has one million rows, and three variables (two numeric, and one integer), how much space will it take up? Work it out from theory, then verify your work by creating a data frame and measuring its size.


	Compare the sizes of the elements in the following two lists. Each contains basically the same data, but one contains vectors of small strings while the other contains a single long string.

vec <- lapply(0:50, function(i) c("ba", rep("na", i)))
str <- lapply(vec, paste0, collapse = "")




	Which takes up more memory: a factor (x) or the equivalent character vector (as.character(x))? Why?


	Explain the difference in size between 1:5 and list(1:5).




Memory usage and garbage collection

While object_size() tells you the size of a single object, pryr::mem_used() tells you the total size of all objects in memory: 

library(pryr)
mem_used()



## 45 MB

This number won’t agree with the amount of memory reported by your operating system for a number of reasons:


	It only includes objects created by R, not the R interpreter itself.


	Both R and the operating system are lazy: they won’t reclaim memory until it’s actually needed. R might be holding on to memory because the OS hasn’t yet asked for it back.


	R counts the memory occupied by objects but there may be gaps due to deleted objects. This problem is known as memory fragmentation.




mem_change() builds on top of mem_used() to tell you how memory changes during code execution. Positive numbers represent an increase in the memory used by R, and negative numbers represent a decrease. 

# Need about 4 mb to store 1 million integers
mem_change(x <- 1:1e6)



## 4.01 MB

# We get that memory back when we delete it
mem_change(rm(x))



## -4 MB

Even operations that don’t do anything use up a little memory. This is because R is tracking the history of everything you do. You can ignore anything smaller than a couple kB.

mem_change(NULL)



## 1.3 kB

mem_change(NULL)



## 1.3 kB

In some languages, you have to explicitly delete unused objects for their memory to be returned. R uses an alternative approach: garbage collection (or GC for short). GC automatically releases memory when an object is no longer used. It does this by tracking how many names point to each object, and when there are no names pointing to an object, it deletes that object. 

# Create a big object
mem_change(x <- 1:1e6)



## 4 MB

# Also point to 1:1e6 from y
mem_change(y <- x)



## 1.36 kB

# Remove x, no memory freed because y is still pointing to it
mem_change(rm(x))



## 1.25 kB

# Now nothing points to it and the memory can be freed
mem_change(rm(y))



## -4 MB

Despite what you might have read elsewhere, there’s never any need to call gc() yourself. R will automatically run garbage collection whenever it needs more space; if you want to see when that is, call gcinfo(TRUE). The only reason you might want to call gc() is to ask R to return memory to the operating system. However, even that might not have any effect: older versions of Windows had no way for a program to return memory to the OS. 

GC takes care of releasing objects that are no longer used. However, you do need to be aware of possible memory leaks. A memory leak occurs when you keep pointing to an object without realising it. In R, the two main causes of memory leaks are formulas and closures because they both capture the enclosing environment. The following code illustrates the problem. In f1(), 1:1e6 is only referenced inside the function, so when the function completes the memory is returned and the net memory change is 0. f2() and f3() both return objects that capture environments, so that x is not freed when the function completes. 

f1 <- function() {
  x <- 1:1e6
  10
}
mem_change(x <- f1())



## 1.26 kB

object_size(x)



## 48 B

f2 <- function() {
  x <- 1:1e6
  a ~ b
}
mem_change(y <- f2())



## 4 MB

object_size(y)



## 4 MB

f3 <- function() {
  x <- 1:1e6
  function() 10
}
mem_change(z <- f3())



## 4 MB

object_size(z)



## 4.01 MB

Memory profiling with lineprof

mem_change() captures the net change in memory when running a block of code. Sometimes, however, we may want to measure incremental change. One way to do this is to use memory profiling to capture usage every few milliseconds. This functionality is provided by utils::Rprof() but it doesn’t provide a very useful display of the results. Instead we’ll use the lineprof package. It is powered by Rprof(), but displays the results in a more informative manner. 

To demonstrate lineprof, we’re going to explore a bare-bones implementation of read.delim() with only three arguments: 

read_delim <- function(file, header = TRUE, sep = ",") {
  # Determine number of fields by reading first line
  first <- scan(file, what = character(1), nlines = 1,
    sep = sep, quiet = TRUE)
  p <- length(first)

  # Load all fields as character vectors
  all <- scan(file, what = as.list(rep("character", p)),
    sep = sep, skip = if (header) 1 else 0, quiet = TRUE)

  # Convert from strings to appropriate types (never to factors)
  all[] <- lapply(all, type.convert, as.is = TRUE)

  # Set column names
  if (header) {
    names(all) <- first
  } else {
    names(all) <- paste0("V", seq_along(all))
  }

  # Convert list into data frame
  as.data.frame(all)
}



We’ll also create a sample csv file:

library(ggplot2)
write.csv(diamonds, "diamonds.csv", row.names = FALSE)



Using lineprof is straightforward. source() the code, apply lineprof() to an expression, then use shine() to view the results. Note that you must use source() to load the code. This is because lineprof uses srcrefs to match up the code and run times. The needed srcrefs are only created when you load code from disk.

library(lineprof)

source("code/read-delim.R")
prof <- lineprof(read_delim("diamonds.csv"))
shine(prof)





shine() will also open a new web page (or if you’re using RStudio, a new pane) that shows your source code annotated with information about memory usage. shine() starts a shiny app which will “block” your R session. To exit, press escape or ctrl + break.

Next to the source code, four columns provide details about the performance of the code:


	t, the time (in seconds) spent on that line of code (explained in measuring performance).


	a, the memory (in megabytes) allocated by that line of code.


	r, the memory (in megabytes) released by that line of code. While memory allocation is deterministic, memory release is stochastic: it depends on when the GC was run. This means that memory release only tells you that the memory released was no longer needed before this line.


	d, the number of vector duplications that occurred. A vector duplication occurs when R copies a vector as a result of its copy on modify semantics.




You can hover over any of the bars to get the exact numbers. In this example, looking at the allocations tells us most of the story:


	scan() allocates about 2.5 MB of memory, which is very close to the 2.8 MB of space that the file occupies on disk. You wouldn’t expect the two numbers to be identical because R doesn’t need to store the commas and because the global string pool will save some memory.


	Converting the columns allocates another 0.6 MB of memory. You’d also expect this step to free some memory because we’ve converted string columns into integer and numeric columns (which occupy less space), but we can’t see those releases because GC hasn’t been triggered yet.


	Finally, calling as.data.frame() on a list allocates about 1.6 megabytes of memory and performs over 600 duplications. This is because as.data.frame() isn’t terribly efficient and ends up copying the input multiple times. We’ll discuss duplication more in the next section.




There are two downsides to profiling:


	read_delim() only takes around half a second, but profiling can, at best, capture memory usage every 1 ms. This means we’ll only get about 500 samples.


	Since GC is lazy, we can never tell exactly when memory is no longer needed.




You can work around both problems by using torture = TRUE, which forces R to run GC after every allocation (see gctorture() for more details). This helps with both problems because memory is freed as soon as possible, and R runs 10–100x slower. This effectively makes the resolution of the timer greater, so that you can see smaller allocations and exactly when memory is no longer needed.

Exercises


	When the input is a list, we can make a more efficient as.data.frame() by using special knowledge. A data frame is a list with class data.frame and row.names attribute. row.names is either a character vector or vector of sequential integers, stored in a special format created by .set_row_names(). This leads to an alternative as.data.frame():

to_df <- function(x) {
  class(x) <- "data.frame"
  attr(x, "row.names") <- .set_row_names(length(x[[1]]))
  x
}



What impact does this function have on read_delim()? What are the downsides of this function?


	Line profile the following function with torture = TRUE. What is surprising? Read the source code of rm() to figure out what’s going on.

f <- function(n = 1e5) {
  x <- rep(1, n)
  rm(x)
}






Modification in place

What happens to x in the following code?  

x <- 1:10
x[5] <- 10
x



##  [1]  1  2  3  4 10  6  7  8  9 10

There are two possibilities:


	R modifies x in place.


	R makes a copy of x to a new location, modifies the copy, and then uses the name x to point to the new location.




It turns out that R can do either depending on the circumstances. In the example above, it will modify in place. But if another variable also points to x, then R will copy it to a new location. To explore what’s going on in greater detail, we use two tools from the pryr package. Given the name of a variable, address() will tell us the variable’s location in memory and refs() will tell us how many names point to that location.  

library(pryr)
x <- 1:10
c(address(x), refs(x))
# [1] "0x103100060" "1"

y <- x
c(address(y), refs(y))
# [1] "0x103100060" "2"



(Note that if you’re using RStudio, refs() will always return 2: the environment browser makes a reference to every object you create on the command line.)

refs() is only an estimate. It can only distinguish between one and more than one reference (future versions of R might do better). This means that refs() returns 2 in both of the following cases: 

x <- 1:5
y <- x
rm(y)
# Should really be 1, because we've deleted y
refs(x)



## [1] 2

x <- 1:5
y <- x
z <- x
# Should really be 3
refs(x)



## [1] 2

When refs(x) is 1, modification will occur in place. When refs(x) is 2, R will make a copy (this ensures that other pointers to the object remain unaffected). Note that in the following example, y keeps pointing to the same location while x changes.

x <- 1:10
y <- x
c(address(x), address(y))



## [1] "0x6a52c98" "0x6a52c98"

x[5] <- 6L
c(address(x), address(y))



## [1] "0x6adbd18" "0x6a52c98"

Another useful function is tracemem(). It prints a message every time the traced object is copied: 

x <- 1:10
# Prints the current memory location of the object
tracemem(x)
# [1] "<0x7feeaaa1c6b8>"

x[5] <- 6L

y <- x
# Prints where it has moved from and to
x[5] <- 6L
# tracemem[0x7feeaaa1c6b8 -> 0x7feeaaa1c768]:



For interactive use, tracemem() is slightly more useful than refs(), but because it just prints a message, it’s harder to program with. I don’t use it in this book because it interacts poorly with knitr, the tool I use to interleave text and code.

Non-primitive functions that touch the object always increment the ref count. Primitive functions usually don’t. (The reasons are a little complicated, but see the R-devel thread confused about NAMED.) 

# Touching the object forces an increment
f <- function(x) x
{x <- 1:10; f(x); refs(x)}



## [1] 2

# Sum is primitive, so no increment
{x <- 1:10; sum(x); refs(x)}



## [1] 1

# f() and g() never evaluate x, so refs don't increment
f <- function(x) 10
g <- function(x) substitute(x)

{x <- 1:10; f(x); refs(x)}



## [1] 1

{x <- 1:10; g(x); refs(x)}



## [1] 1

Generally, provided that the object is not referred to elsewhere, any primitive replacement function will modify in place. This includes [[<-, [<-, @<-, $<-, attr<-, attributes<-, class<-, dim<-, dimnames<-, names<-, and levels<-. To be precise, all non-primitive functions increment refs, but a primitive function may be written in such a way that it doesn’t. The rules are sufficiently complicated that there’s little point in trying to memorise them. Instead, you should approach the problem practically by using refs() and address() to figure out when objects are being copied. 

While determining that copies are being made is not hard, preventing such behaviour is. If you find yourself resorting to exotic tricks to avoid copies, it may be time to rewrite your function in C++, as described in Rcpp.

Loops

For loops in R have a reputation for being slow. Often that slowness is because you’re modifying a copy instead of modifying in place. Consider the following code. It subtracts the median from each column of a large data frame: 

x <- data.frame(matrix(runif(100 * 1e4), ncol = 100))
medians <- vapply(x, median, numeric(1))

for(i in seq_along(medians)) {
  x[, i] <- x[, i] - medians[i]
}



You may be surprised to realise that every iteration of the loop copies the data frame. We can see that more clearly by using address() and refs() for a small sample of the loop:

for(i in 1:5) {
  x[, i] <- x[, i] - medians[i]
  print(c(address(x), refs(x)))
}



## [1] "0x303a4a0" "2"        
## [1] "0x315cec0" "2"        
## [1] "0x3d56de0" "2"        
## [1] "0x3b80380" "2"        
## [1] "0x6bcaa00" "2"

For each iteration, x is moved to a new location so refs(x) is always 2. This occurs because [<-.data.frame is not a primitive function, so it always increments the refs. We can make the function substantially more efficient by using a list instead of a data frame. Modifying a list uses primitive functions, so the refs are not incremented and all modifications occur in place:

y <- as.list(x)

for(i in 1:5) {
  y[[i]] <- y[[i]] - medians[i]
  print(c(address(y), refs(y)))
}



## [1] "0x2388b50" "1"        
## [1] "0x2388b50" "1"        
## [1] "0x2388b50" "1"        
## [1] "0x2388b50" "1"        
## [1] "0x2388b50" "1"

This behaviour was substantially more problematic prior to R 3.1.0, because every copy of the data frame was a deep copy. This made the motivating example take around 5 s, compared to 0.01 s today.

Exercises


	The code below makes one duplication. Where does it occur and why? (Hint: look at refs(y).)

y <- as.list(x)
for(i in seq_along(medians)) {
  y[[i]] <- y[[i]] - medians[i]
}




	The implementation of as.data.frame() in the previous section has one big downside. What is it and how could you avoid it?





High performance functions with Rcpp

Sometimes R code just isn’t fast enough. You’ve used profiling to figure out where your bottlenecks are, and you’ve done everything you can in R, but your code still isn’t fast enough. In this chapter you’ll learn how to improve performance by rewriting key functions in C++. This magic comes by way of the Rcpp package, a fantastic tool written by Dirk Eddelbuettel and Romain Francois (with key contributions by Doug Bates, John Chambers, and JJ Allaire). Rcpp makes it very simple to connect C++ to R. While it is possible to write C or Fortran code for use in R, it will be painful by comparison. Rcpp provides a clean, approachable API that lets you write high-performance code, insulated from R’s arcane C API.  

Typical bottlenecks that C++ can address include:


	Loops that can’t be easily vectorised because subsequent iterations depend on previous ones.


	Recursive functions, or problems which involve calling functions millions of times. The overhead of calling a function in C++ is much lower than that in R.


	Problems that require advanced data structures and algorithms that R doesn’t provide. Through the standard template library (STL), C++ has efficient implementations of many important data structures, from ordered maps to double-ended queues.




The aim of this chapter is to discuss only those aspects of C++ and Rcpp that are absolutely necessary to help you eliminate bottlenecks in your code. We won’t spend much time on advanced features like object oriented programming or templates because the focus is on writing small, self-contained functions, not big programs. A working knowledge of C++ is helpful, but not essential. Many good tutorials and references are freely available, including http://www.learncpp.com/ and http://www.cplusplus.com/. For more advanced topics, the Effective C++ series by Scott Meyers is popular choice. You may also enjoy Dirk Eddelbuettel’s Seamless R and C++ integration with Rcpp, which goes into much greater detail into all aspects of Rcpp.

Outline


	Getting started with C++ teaches you how to write C++ by converting simple R functions to their C++ equivalents. You’ll learn how C++ differs from R, and what the key scalar, vector, and matrix classes are called.


	Using sourceCpp shows you how to use sourceCpp() to load a C++ file from disk in the same way you use source() to load a file of R code.


	Attributes & other classes discusses how to modify attributes from Rcpp, and mentions some of the other important classes.


	Missing values teaches you how to work with R’s missing values in C++.


	Rcpp sugar discusses Rcpp “sugar”, which allows you to avoid loops in C++ and write code that looks very similar to vectorised R code.


	The STL shows you how to use some of the most important data structures and algorithms from the standard template library, or STL, built-in to C++.


	Case studies shows two real case studies where Rcpp was used to get considerable performance improvements.


	Putting Rcpp in a package teaches you how to add C++ code to a package.


	Learning more concludes the chapter with pointers to more resources to help you learn Rcpp and C++.




Prerequistes

All examples in this chapter need version 0.10.1 or above of the Rcpp package. This version includes cppFunction() and sourceCpp(), which makes it very easy to connect C++ to R. Install the latest version of Rcpp from CRAN with install.packages("Rcpp").

You’ll also need a working C++ compiler. To get it:


	On Windows, install Rtools.

	On Mac, install Xcode from the app store.

	On Linux, sudo apt-get install r-base-dev or similar.



Getting started with C++

cppFunction() allows you to write C++ functions in R: 

library(Rcpp)



## 
## Attaching package: 'Rcpp'

## The following object is masked from 'package:inline':
## 
##     registerPlugin

cppFunction('int add(int x, int y, int z) {
  int sum = x + y + z;
  return sum;
}')
# add works like a regular R function
add



## function (x, y, z) 
## .Primitive(".Call")(<pointer: 0x7fef601e5fb0>, x, y, z)

add(1, 2, 3)



## [1] 6

When you run this code, Rcpp will compile the C++ code and construct an R function that connects to the compiled C++ function. We’re going to use this simple interface to learn how to write C++. C++ is a large language, and there’s no way to cover it all in just one chapter. Instead, you’ll get the basics so that you can start writing useful functions to address bottlenecks in your R code.

The following sections will teach you the basics by translating simple R functions to their C++ equivalents. We’ll start simple with a function that has no inputs and a scalar output, and then get progressively more complicated:


	Scalar input and scalar output

	Vector input and scalar output

	Vector input and vector output

	Matrix input and vector output



No inputs, scalar output

Let’s start with a very simple function. It has no arguments and always returns the integer 1:

one <- function() 1L



The equivalent C++ function is:

int one() {
  return 1;
}



We can compile and use this from R with cppFunction

cppFunction('int one() {
  return 1;
}')



This small function illustrates a number of important differences between R and C++:


	The syntax to create a function looks like the syntax to call a function; you don’t use assignment to create functions as you do in R.


	You must declare the type of output the function returns. This function returns an int (a scalar integer). The classes for the most common types of R vectors are: NumericVector, IntegerVector, CharacterVector, and LogicalVector.


	Scalars and vectors are different. The scalar equivalents of numeric, integer, character, and logical vectors are: double, int, String, and bool.


	You must use an explicit return statement to return a value from a function.


	Every statement is terminated by a ;.




Scalar input, scalar output

The next example function implements a scalar version of the sign() function which returns 1 if the input is positive, and -1 if it’s negative:

signR <- function(x) {
  if (x > 0) {
    1
  } else if (x == 0) {
    0
  } else {
    -1
  }
}

cppFunction('int signC(int x) {
  if (x > 0) {
    return 1;
  } else if (x == 0) {
    return 0;
  } else {
    return -1;
  }
}')



In the C++ version:


	We declare the type of each input in the same way we declare the type of the output. While this makes the code a little more verbose, it also makes it very obvious what type of input the function needs.


	The if syntax is identical — while there are some big differences between R and C++, there are also lots of similarities! C++ also has a while statement that works the same way as R’s. As in R you can use break to exit the loop, but to skip one iteration you need to use continue instead of next.




Vector input, scalar output

One big difference between R and C++ is that the cost of loops is much lower in C++. For example, we could implement the sum function in R using a loop. If you’ve been programming in R a while, you’ll probably have a visceral reaction to this function!

sumR <- function(x) {
  total <- 0
  for (i in seq_along(x)) {
    total <- total + x[i]
  }
  total
}



In C++, loops have very little overhead, so it’s fine to use them. In STL, you’ll see alternatives to for loops that more clearly express your intent; they’re not faster, but they can make your code easier to understand.

cppFunction('double sumC(NumericVector x) {
  int n = x.size();
  double total = 0;
  for(int i = 0; i < n; ++i) {
    total += x[i];
  }
  return total;
}')



The C++ version is similar, but:


	To find the length of the vector, we use the .size() method, which returns an integer. C++ methods are called with . (i.e., a full stop).


	The for statement has a different syntax: for(init; check; increment). This loop is initialised by creating a new variable called i with value 0. Before each iteration we check that i < n, and terminate the loop if it’s not. After each iteration, we increment the value of i by one, using the special prefix operator ++ which increases the value of i by 1.


	In C++, vector indices start at 0. I’ll say this again because it’s so important: IN C++, VECTOR INDICES START AT 0! This is a very common source of bugs when converting R functions to C++.


	Use = for assignment, not <-.


	C++ provides operators that modify in-place: total += x[i] is equivalent to total = total + x[i]. Similar in-place operators are -=, *=, and /=.




This is a good example of where C++ is much more efficient than R. As shown by the following microbenchmark, sumC() is competitive with the built-in (and highly optimised) sum(), while sumR() is several orders of magnitude slower.

x <- runif(1e3)
microbenchmark(
  sum(x),
  sumC(x),
  sumR(x)
)



## Unit: microseconds
##     expr    min     lq   mean median     uq      max neval
##   sum(x)   1.22   1.39   1.80   1.69   1.97     7.77   100
##  sumC(x)   2.66   3.34   4.92   4.16   5.20    45.10   100
##  sumR(x) 379.00 400.00 475.61 463.00 529.00 1,440.00   100

Vector input, vector output


Next we’ll create a function that computes the Euclidean distance between a value and a vector of values:

pdistR <- function(x, ys) {
  sqrt((x - ys) ^ 2)
}



It’s not obvious that we want x to be a scalar from the function definition. We’d need to make that clear in the documentation. That’s not a problem in the C++ version because we have to be explicit about types:

cppFunction('NumericVector pdistC(double x, NumericVector ys) {
  int n = ys.size();
  NumericVector out(n);

  for(int i = 0; i < n; ++i) {
    out[i] = sqrt(pow(ys[i] - x, 2.0));
  }
  return out;
}')



This function introduces only a few new concepts:


	We create a new numeric vector of length n with a constructor: NumericVector out(n). Another useful way of making a vector is to copy an existing one: NumericVector zs = clone(ys).


	C++ uses pow(), not ^, for exponentiation.




Note that because the R version is fully vectorised, it’s already going to be fast. On my computer, it takes around 8 ms with a 1 million element y vector. The C++ function is twice as fast, ~4 ms, but assuming it took you 10 minutes to write the C++ function, you’d need to run it ~150,000 times to make rewriting worthwhile. The reason why the C++ function is faster is subtle, and relates to memory management. The R version needs to create an intermediate vector the same length as y (x - ys), and allocating memory is an expensive operation. The C++ function avoids this overhead because it uses an intermediate scalar.

In the sugar section, you’ll see how to rewrite this function to take advantage of Rcpp’s vectorised operations so that the C++ code is almost as concise as R code.

Matrix input, vector output

Each vector type has a matrix equivalent: NumericMatrix, IntegerMatrix, CharacterMatrix, and LogicalMatrix. Using them is straightforward. For example, we could create a function that reproduces rowSums():

cppFunction('NumericVector rowSumsC(NumericMatrix x) {
  int nrow = x.nrow(), ncol = x.ncol();
  NumericVector out(nrow);

  for (int i = 0; i < nrow; i++) {
    double total = 0;
    for (int j = 0; j < ncol; j++) {
      total += x(i, j);
    }
    out[i] = total;
  }
  return out;
}')
set.seed(1014)
x <- matrix(sample(100), 10)
rowSums(x)



##  [1] 458 558 488 458 536 537 488 491 508 528

rowSumsC(x)



##  [1] 458 558 488 458 536 537 488 491 508 528

The main differences:


	In C++, you subset a matrix with (), not [].


	Use .nrow() and .ncol() methods to get the dimensions of a matrix.




Using sourceCpp

So far, we’ve used inline C++ with cppFunction(). This makes presentation simpler, but for real problems, it’s usually easier to use stand-alone C++ files and then source them into R using sourceCpp(). This lets you take advantage of text editor support for C++ files (e.g., syntax highlighting) as well as making it easier to identify the line numbers in compilation errors. 

Your stand-alone C++ file should have extension .cpp, and needs to start with:

#include <Rcpp.h>
using namespace Rcpp;



And for each function that you want available within R, you need to prefix it with:

// [[Rcpp::export]]



Note that the space is mandatory.

If you’re familiar with roxygen2, you might wonder how this relates to @export. Rcpp::export controls whether a function is exported from C++ to R; @export controls whether a function is exported from a package and made available to the user.

You can embed R code in special C++ comment blocks. This is really convenient if you want to run some test code:

/*** R
# This is R code
*/



The R code is run with source(echo = TRUE) so you don’t need to explicitly print output.

To compile the C++ code, use sourceCpp("path/to/file.cpp"). This will create the matching R functions and add them to your current session. Note that these functions can not be saved in a .Rdata file and reloaded in a later session; they must be recreated each time you restart R. For example, running sourceCpp() on the following file implements mean in C++ and then compares it to the built-in mean():

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
double meanC(NumericVector x) {
  int n = x.size();
  double total = 0;

  for(int i = 0; i < n; ++i) {
    total += x[i];
  }
  return total / n;
}

/*** R
library(microbenchmark)
x <- runif(1e5)
microbenchmark(
  mean(x),
  meanC(x)
)
*/



NB: if you run this code yourself, you’ll notice that meanC() is much faster than the built-in mean(). This is because it trades numerical accuracy for speed.

For the remainder of this chapter C++ code will be presented stand-alone rather than wrapped in a call to cppFunction. If you want to try compiling and/or modifying the examples you should paste them into a C++ source file that includes the elements described above.

Exercises

With the basics of C++ in hand, it’s now a great time to practice by reading and writing some simple C++ functions. For each of the following functions, read the code and figure out what the corresponding base R function is. You might not understand every part of the code yet, but you should be able to figure out the basics of what the function does.

double f1(NumericVector x) {
  int n = x.size();
  double y = 0;

  for(int i = 0; i < n; ++i) {
    y += x[i] / n;
  }
  return y;
}

NumericVector f2(NumericVector x) {
  int n = x.size();
  NumericVector out(n);

  out[0] = x[0];
  for(int i = 1; i < n; ++i) {
    out[i] = out[i - 1] + x[i];
  }
  return out;
}

bool f3(LogicalVector x) {
  int n = x.size();

  for(int i = 0; i < n; ++i) {
    if (x[i]) return true;
  }
  return false;
}

int f4(Function pred, List x) {
  int n = x.size();

  for(int i = 0; i < n; ++i) {
    LogicalVector res = pred(x[i]);
    if (res[0]) return i + 1;
  }
  return 0;
}

NumericVector f5(NumericVector x, NumericVector y) {
  int n = std::max(x.size(), y.size());
  NumericVector x1 = rep_len(x, n);
  NumericVector y1 = rep_len(y, n);

  NumericVector out(n);

  for (int i = 0; i < n; ++i) {
    out[i] = std::min(x1[i], y1[i]);
  }

  return out;
}



To practice your function writing skills, convert the following functions into C++. For now, assume the inputs have no missing values.


	all()


	cumprod(), cummin(), cummax().


	diff(). Start by assuming lag 1, and then generalise for lag n.


	range.


	var. Read about the approaches you can take on wikipedia. Whenever implementing a numerical algorithm, it’s always good to check what is already known about the problem.




Attributes and other classes

You’ve already seen the basic vector classes (IntegerVector, NumericVector, LogicalVector, CharacterVector) and their scalar (int, double, bool, String) and matrix (IntegerMatrix, NumericMatrix, LogicalMatrix, CharacterMatrix) equivalents.

All R objects have attributes, which can be queried and modified with .attr(). Rcpp also provides .names() as an alias for the name attribute. The following code snippet illustrates these methods. Note the use of ::create(), a class method. This allows you to create an R vector from C++ scalar values:  

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector attribs() {
  NumericVector out = NumericVector::create(1, 2, 3);

  out.names() = CharacterVector::create("a", "b", "c");
  out.attr("my-attr") = "my-value";
  out.attr("class") = "my-class";

  return out;
}



For S4 objects, .slot() plays a similar role to .attr().

Lists and data frames

Rcpp also provides classes List and DataFrame, but they are more useful for output than input. This is because lists and data frames can contain arbitrary classes but C++ needs to know their classes in advance. If the list has known structure (e.g., it’s an S3 object), you can extract the components and manually convert them to their C++ equivalents with as(). For example, the object created by lm(), the function that fits a linear model, is a list whose components are always of the same type. The following code illustrates how you might extract the mean percentage error (mpe()) of a linear model. This isn’t a good example of when to use C++, because it’s so easily implemented in R, but it shows how to work with an important S3 class. Note the use of .inherits() and the stop() to check that the object really is a linear model.  


#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
double mpe(List mod) {
  if (!mod.inherits("lm")) stop("Input must be a linear model");

  NumericVector resid = as<NumericVector>(mod["residuals"]);
  NumericVector fitted = as<NumericVector>(mod["fitted.values"]);

  int n = resid.size();
  double err = 0;
  for(int i = 0; i < n; ++i) {
    err += resid[i] / (fitted[i] + resid[i]);
  }
  return err / n;
}



mod <- lm(mpg ~ wt, data = mtcars)
mpe(mod)



## [1] -0.0154

Functions

You can put R functions in an object of type Function. This makes calling an R function from C++ straightforward. We first define our C++ function: 

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
RObject callWithOne(Function f) {
  return f(1);
}



Then call it from R:

callWithOne(function(x) x + 1)



## [1] 2

callWithOne(paste)



## [1] "1"

What type of object does an R function return? We don’t know, so we use the catchall type RObject. An alternative is to return a List. For example, the following code is a basic implementation of lapply in C++:

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
List lapply1(List input, Function f) {
  int n = input.size();
  List out(n);

  for(int i = 0; i < n; i++) {
    out[i] = f(input[i]);
  }

  return out;
}



Calling R functions with positional arguments is obvious:

f("y", 1);



But to use named arguments, you need a special syntax:

f(_["x"] = "y", _["value"] = 1);



Other types

There are also classes for many more specialised language objects: Environment, ComplexVector, RawVector, DottedPair, Language, Promise, Symbol, WeakReference, and so on. These are beyond the scope of this chapter and won’t be discussed further.

Missing values

If you’re working with missing values, you need to know two things: 


	how R’s missing values behave in C++’s scalars (e.g., double).

	how to get and set missing values in vectors (e.g., NumericVector).



Scalars

The following code explores what happens when you take one of R’s missing values, coerce it into a scalar, and then coerce back to an R vector. Note that this kind of experimentation is a useful way to figure out what any operation does.

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
List scalar_missings() {
  int int_s = NA_INTEGER;
  String chr_s = NA_STRING;
  bool lgl_s = NA_LOGICAL;
  double num_s = NA_REAL;

  return List::create(int_s, chr_s, lgl_s, num_s);
}



str(scalar_missings())



## List of 4
##  $ : int NA
##  $ : chr NA
##  $ : logi TRUE
##  $ : num NA

With the exception of bool, things look pretty good here: all of the missing values have been preserved. However, as we’ll see in the following sections, things are not quite as straightforward as they seem.

Integers

With integers, missing values are stored as the smallest integer. If you don’t do anything to them, they’ll be preserved. But, since C++ doesn’t know that the smallest integer has this special behaviour, if you do anything to it you’re likely to get an incorrect value: for example, evalCpp('NA_INTEGER + 1') gives -2147483647.

So if you want to work with missing values in integers, either use a length one IntegerVector or be very careful with your code.

Doubles

With doubles, you may be able to get away with ignoring missing values and working with NaNs (not a number). This is because R’s NA is a special type of IEEE 754 floating point number NaN. So any logical expression that involves a NaN (or in C++, NAN) always evaluates as FALSE:

evalCpp("NAN == 1")



## [1] FALSE

evalCpp("NAN < 1")



## [1] FALSE

evalCpp("NAN > 1")



## [1] FALSE

evalCpp("NAN == NAN")



## [1] FALSE

But be careful when combining them with boolean values:

evalCpp("NAN && TRUE")



## [1] TRUE

evalCpp("NAN || FALSE")



## [1] TRUE

However, in numeric contexts NaNs will propagate NAs:

evalCpp("NAN + 1")



## [1] NaN

evalCpp("NAN - 1")



## [1] NaN

evalCpp("NAN / 1")



## [1] NaN

evalCpp("NAN * 1")



## [1] NaN

Strings

String is a scalar string class introduced by Rcpp, so it knows how to deal with missing values.

Boolean

While C++’s bool has two possible values (true or false), a logical vector in R has three (TRUE, FALSE, and NA). If you coerce a length 1 logical vector, make sure it doesn’t contain any missing values otherwise they will be converted to TRUE.

Vectors

With vectors, you need to use a missing value specific to the type of vector, NA_REAL, NA_INTEGER, NA_LOGICAL, NA_STRING:

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
List missing_sampler() {
  return List::create(
    NumericVector::create(NA_REAL),
    IntegerVector::create(NA_INTEGER),
    LogicalVector::create(NA_LOGICAL),
    CharacterVector::create(NA_STRING));
}



str(missing_sampler())



## List of 4
##  $ : num NA
##  $ : int NA
##  $ : logi NA
##  $ : chr NA

To check if a value in a vector is missing, use the class method ::is_na():

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
LogicalVector is_naC(NumericVector x) {
  int n = x.size();
  LogicalVector out(n);

  for (int i = 0; i < n; ++i) {
    out[i] = NumericVector::is_na(x[i]);
  }
  return out;
}



is_naC(c(NA, 5.4, 3.2, NA))



## [1]  TRUE FALSE FALSE  TRUE

Another alternative is the sugar function is_na(), which takes a vector and returns a logical vector.

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
LogicalVector is_naC2(NumericVector x) {
  return is_na(x);
}



is_naC2(c(NA, 5.4, 3.2, NA))



## [1]  TRUE FALSE FALSE  TRUE

Exercises


	Rewrite any of the functions from the first exercise to deal with missing values. If na.rm is true, ignore the missing values. If na.rm is false, return a missing value if the input contains any missing values. Some good functions to practice with are min(), max(), range(), mean(), and var().


	Rewrite cumsum() and diff() so they can handle missing values. Note that these functions have slightly more complicated behaviour.




Rcpp sugar

Rcpp provides a lot of syntactic “sugar” to ensure that C++ functions work very similarly to their R equivalents. In fact, Rcpp sugar makes it possible to write efficient C++ code that looks almost identical to its R equivalent. If there’s a sugar version of the function you’re interested in, you should use it: it’ll be both expressive and well tested. Sugar functions aren’t always faster than a handwritten equivalent, but they will get faster in the future as more time is spent on optimising Rcpp.

Sugar functions can be roughly broken down into


	arithmetic and logical operators

	logical summary functions

	vector views

	other useful functions



Arithmetic and logical operators

All the basic arithmetic and logical operators are vectorised: +, *, -, /, pow, <, <=, >, >=, ==, !=, !. For example, we could use sugar to considerably simplify the implementation of pdistC().

pdistR <- function(x, ys) {
  sqrt((x - ys) ^ 2)
}



#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector pdistC2(double x, NumericVector ys) {
  return sqrt(pow((x - ys), 2));
}



Logical summary functions

The sugar function any() and all() are fully lazy so that any(x == 0), for example, might only need to evaluate one element of a vector, and return a special type that can be converted into a bool using .is_true(), .is_false(), or .is_na(). We could also use this sugar to write an efficient function to determine whether or not a numeric vector contains any missing values. To do this in R, we could use any(is.na(x)):

any_naR <- function(x) any(is.na(x))



However, this will do the same amount of work regardless of the location of the missing value. Here’s the C++ implementation:

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
bool any_naC(NumericVector x) {
  return is_true(any(is_na(x)));
}



x0 <- runif(1e5)
x1 <- c(x0, NA)
x2 <- c(NA, x0)

microbenchmark(
  any_naR(x0), any_naC(x0),
  any_naR(x1), any_naC(x1),
  any_naR(x2), any_naC(x2)
)



## Unit: microseconds
##         expr    min     lq   mean median     uq     max neval
##  any_naR(x0) 520.00 523.00 608.55 526.00 533.00 1,590.0   100
##  any_naC(x0) 583.00 584.00 592.65 585.00 588.00   639.0   100
##  any_naR(x1) 520.00 524.00 608.65 526.00 537.00 1,680.0   100
##  any_naC(x1) 583.00 584.00 591.40 585.00 587.00   649.0   100
##  any_naR(x2) 326.00 331.00 423.52 334.00 357.00 1,440.0   100
##  any_naC(x2)   1.85   2.42   3.38   3.11   3.96     9.2   100

Vector views

A number of helpful functions provide a “view” of a vector: head(), tail(), rep_each(), rep_len(), rev(), seq_along(), and seq_len(). In R these would all produce copies of the vector, but in Rcpp they simply point to the existing vector and override the subsetting operator ([) to implement special behaviour. This makes them very efficient: for instance, rep_len(x, 1e6) does not have to make a million copies of x.

Other useful functions

Finally, there’s a grab bag of sugar functions that mimic frequently used R functions:


	Math functions: abs(), acos(), asin(), atan(), beta(), ceil(), ceiling(), choose(), cos(), cosh(), digamma(), exp(), expm1(), factorial(), floor(), gamma(), lbeta(), lchoose(), lfactorial(), lgamma(), log(), log10(), log1p(), pentagamma(), psigamma(), round(), signif(), sin(), sinh(), sqrt(), tan(), tanh(), tetragamma(), trigamma(), trunc().


	Scalar summaries: mean(), min(), max(), sum(), sd(), and (for vectors) var().


	Vector summaries: cumsum(), diff(), pmin(), and pmax().


	Finding values: match(), self_match(), which_max(), which_min().


	Dealing with duplicates: duplicated(), unique().


	d/q/p/r for all standard distributions.




Finally, noNA(x) asserts that the vector x does not contain any missing values, and allows optimisation of some mathematical operations. For example, when computing the mean of a vector with no missing values, Rcpp doesn’t need to check each value is not missing when computing the sum and the length.

The STL

The real strength of C++ shows itself when you need to implement more complex algorithms. The standard template library (STL) provides a set of extremely useful data structures and algorithms. This section will explain some of the most important algorithms and data structures and point you in the right direction to learn more. I can’t teach you everything you need to know about the STL, but hopefully the examples will show you the power of the STL, and persuade you that it’s useful to learn more. 

If you need an algorithm or data structure that isn’t implemented in STL, a good place to look is boost. Installing boost on your computer is beyond the scope of this chapter, but once you have it installed, you can use boost data structures and algorithms by including the appropriate header file with (e.g.) #include <boost/array.hpp>.

Using iterators

Iterators are used extensively in the STL: many functions either accept or return iterators. They are the next step up from basic loops, abstracting away the details of the underlying data structure. Iterators have three main operators: 


	Advance with ++.

	Get the value they refer to, or dereference, with *.

	Compare with ==.



For example we could re-write our sum function using iterators:

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
double sum3(NumericVector x) {
  double total = 0;
  
  NumericVector::iterator it;
  for(it = x.begin(); it != x.end(); ++it) {
    total += *it;
  }
  return total;
}



The main changes are in the for loop:


	We start at x.begin() and loop until we get to x.end(). A small optimization is to store the value of the end iterator so we don’t need to look it up each time. This only saves about 2 ns per iteration, so it’s only important when the calculations in the loop are very simple.


	Instead of indexing into x, we use the dereference operator to get its current value: *it.


	Notice the type of the iterator: NumericVector::iterator. Each vector type has its own iterator type: LogicalVector::iterator, CharacterVector::iterator, etc.




Iterators also allow us to use the C++ equivalents of the apply family of functions. For example, we could again rewrite sum() to use the accumulate() function, which takes a starting and an ending iterator, and adds up all the values in the vector. The third argument to accumulate gives the initial value: it’s particularly important because this also determines the data type that accumulate uses (so we use 0.0 and not 0 so that accumulate uses a double, not an int.). To use accumulate() we need to include the <numeric> header.

#include <numeric>
#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
double sum4(NumericVector x) {
  return std::accumulate(x.begin(), x.end(), 0.0);
}



accumulate() (along with the other functions in <numeric>, like adjacent_difference(), inner_product(), and partial_sum()) is not that important in Rcpp because Rcpp sugar provides equivalents.

Algorithms

The <algorithm> header provides a large number of algorithms that work with iterators. A good reference is available at http://www.cplusplus.com/reference/algorithm/. For example, we could write a basic Rcpp version of findInterval() that takes two arguments a vector of values and a vector of breaks, and locates the bin that each x falls into. This shows off a few more advanced iterator features. Read the code below and see if you can figure out how it works. 

#include <algorithm>
#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
IntegerVector findInterval2(NumericVector x, NumericVector breaks) {
  IntegerVector out(x.size());

  NumericVector::iterator it, pos;
  IntegerVector::iterator out_it;

  for(it = x.begin(), out_it = out.begin(); it != x.end(); 
      ++it, ++out_it) {
    pos = std::upper_bound(breaks.begin(), breaks.end(), *it);
    *out_it = std::distance(breaks.begin(), pos);
  }

  return out;
}



The key points are:


	We step through two iterators (input and output) simultaneously.


	We can assign into an dereferenced iterator (out_it) to change the values in out.


	upper_bound() returns an iterator. If we wanted the value of the upper_bound() we could dereference it; to figure out its location, we use the distance() function.


	Small note: if we want this function to be as fast as findInterval() in R (which uses handwritten C code), we need to compute the calls to .begin() and .end() once and save the results. This is easy, but it distracts from this example so it has been omitted. Making this change yields a function that’s slightly faster than R’s findInterval() function, but is about 1/10 of the code.




It’s generally better to use algorithms from the STL than hand rolled loops. In Effective STL, Scott Meyers gives three reasons: efficiency, correctness, and maintainability. Algorithms from the STL are written by C++ experts to be extremely efficient, and they have been around for a long time so they are well tested. Using standard algorithms also makes the intent of your code more clear, helping to make it more readable and more maintainable.

Data structures

The STL provides a large set of data structures: array, bitset, list, forward_list, map, multimap, multiset, priority_queue, queue, dequeue, set, stack, unordered_map, unordered_set, unordered_multimap, unordered_multiset, and vector. The most important of these data structures are the vector, the unordered_set, and the unordered_map. We’ll focus on these three in this section, but using the others is similar: they just have different performance trade-offs. For example, the deque (pronounced “deck”) has a very similar interface to vectors but a different underlying implementation that has different performance trade-offs. You may want to try them for your problem. A good reference for STL data structures is http://www.cplusplus.com/reference/stl/ — I recommend you keep it open while working with the STL.

Rcpp knows how to convert from many STL data structures to their R equivalents, so you can return them from your functions without explicitly converting to R data structures.

Vectors

An STL vector is very similar to an R vector, except that it grows efficiently. This makes vectors appropriate to use when you don’t know in advance how big the output will be. Vectors are templated, which means that you need to specify the type of object the vector will contain when you create it: vector<int>, vector<bool>, vector<double>, vector<String>. You can access individual elements of a vector using the standard [] notation, and you can add a new element to the end of the vector using .push_back(). If you have some idea in advance how big the vector will be, you can use .reserve() to allocate sufficient storage. 

The following code implements run length encoding (rle()). It produces two vectors of output: a vector of values, and a vector lengths giving how many times each element is repeated. It works by looping through the input vector x comparing each value to the previous: if it’s the same, then it increments the last value in lengths; if it’s different, it adds the value to the end of values, and sets the corresponding length to 1.

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
List rleC(NumericVector x) {
  std::vector<int> lengths;
  std::vector<double> values;

  // Initialise first value
  int i = 0;
  double prev = x[0];
  values.push_back(prev);
  lengths.push_back(1);

  NumericVector::iterator it;
  for(it = x.begin() + 1; it != x.end(); ++it) {
    if (prev == *it) {
      lengths[i]++;
    } else {
      values.push_back(*it);
      lengths.push_back(1);

      i++;
      prev = *it;
    }
  }

  return List::create(
    _["lengths"] = lengths, 
    _["values"] = values
  );
}



(An alternative implementation would be to replace i with the iterator lengths.rbegin() which always points to the last element of the vector. You might want to try implementing that yourself.)

Other methods of a vector are described at http://www.cplusplus.com/reference/vector/vector/.

Sets

Sets maintain a unique set of values, and can efficiently tell if you’ve seen a value before. They are useful for problems that involve duplicates or unique values (like unique, duplicated, or in). C++ provides both ordered (std::set) and unordered sets (std::unordered_set), depending on whether or not order matters for you. Unordered sets tend to be much faster (because they use a hash table internally rather than a tree), so even if you need an ordered set, you should consider using an unordered set and then sorting the output. Like vectors, sets are templated, so you need to request the appropriate type of set for your purpose: unordered_set<int>, unordered_set<bool>, etc. More details are available at http://www.cplusplus.com/reference/set/set/ and http://www.cplusplus.com/reference/unordered_set/unordered_set/. 

The following function uses an unordered set to implement an equivalent to duplicated() for integer vectors. Note the use of seen.insert(x[i]).second. insert() returns a pair, the .first value is an iterator that points to element and the .second value is a boolean that’s true if the value was a new addition to the set.

// [[Rcpp::plugins(cpp11)]]
#include <Rcpp.h>
#include <unordered_set>
using namespace Rcpp;

// [[Rcpp::export]]
LogicalVector duplicatedC(IntegerVector x) {
  std::unordered_set<int> seen;
  int n = x.size();
  LogicalVector out(n);

  for (int i = 0; i < n; ++i) {
    out[i] = !seen.insert(x[i]).second;
  }

  return out;
}



Note that unordered sets are only available in C++ 11, which means we need to use the cpp11 plugin, [[Rcpp::plugins(cpp11)]].

Map

A map is similar to a set, but instead of storing presence or absence, it can store additional data. It’s useful for functions like table() or match() that need to look up a value. As with sets, there are ordered (std::map) and unordered (std::unordered_map) versions. Since maps have a value and a key, you need to specify both types when initialising a map: map<double, int>, unordered_map<int, double>, and so on. The following example shows how you could use a map to implement table() for numeric vectors: 

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
std::map<double, int> tableC(NumericVector x) {
  std::map<double, int> counts;

  int n = x.size();
  for (int i = 0; i < n; i++) {
    counts[x[i]]++;
  }

  return counts;
}



Note that unordered maps are only available in C++ 11, so to use them, you’ll again need [[Rcpp::plugins(cpp11)]].

Exercises

To practice using the STL algorithms and data structures, implement the following using R functions in C++, using the hints provided:


	median.default() using partial_sort.


	%in% using unordered_set and the find() or count() methods.


	unique() using an unordered_set (challenge: do it in one line!).


	min() using std::min(), or max() using std::max().


	which.min() using min_element, or which.max() using max_element.


	setdiff(), union(), and intersect() for integers using sorted ranges and set_union, set_intersection and set_difference.




Case studies

The following case studies illustrate some real life uses of C++ to replace slow R code.

Gibbs sampler


The following case study updates an example blogged about by Dirk Eddelbuettel, illustrating the conversion of a Gibbs sampler in R to C++. The R and C++ code shown below is very similar (it only took a few minutes to convert the R version to the C++ version), but runs about 20 times faster on my computer. Dirk’s blog post also shows another way to make it even faster: using the faster random number generator functions in GSL (easily accessible from R through the RcppGSL package) can make it another 2–3x faster. 

The R code is as follows:

gibbs_r <- function(N, thin) {
  mat <- matrix(nrow = N, ncol = 2)
  x <- y <- 0

  for (i in 1:N) {
    for (j in 1:thin) {
      x <- rgamma(1, 3, y * y + 4)
      y <- rnorm(1, 1 / (x + 1), 1 / sqrt(2 * (x + 1)))
    }
    mat[i, ] <- c(x, y)
  }
  mat
}



This is straightforward to convert to C++. We:


	add type declarations to all variables


	use ( instead of [ to index into the matrix


	subscript the results of rgamma and rnorm to convert from a vector into a scalar




#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericMatrix gibbs_cpp(int N, int thin) {
  NumericMatrix mat(N, 2);
  double x = 0, y = 0;

  for(int i = 0; i < N; i++) {
    for(int j = 0; j < thin; j++) {
      x = rgamma(1, 3, 1 / (y * y + 4))[0];
      y = rnorm(1, 1 / (x + 1), 1 / sqrt(2 * (x + 1)))[0];
    }
    mat(i, 0) = x;
    mat(i, 1) = y;
  }

  return(mat);
}



Benchmarking the two implementations yields:

microbenchmark(
  gibbs_r(100, 10),
  gibbs_cpp(100, 10)
)



## Unit: microseconds
##                expr   min    lq mean median    uq    max neval
##    gibbs_r(100, 10) 6,820 6,980 8607  8,330 8,420 55,900   100
##  gibbs_cpp(100, 10)   317   338  366    350   362    747   100

R vectorisation vs. C++ vectorisation


This example is adapted from “Rcpp is smoking fast for agent-based models in data frames”. The challenge is to predict a model response from three inputs. The basic R version of the predictor looks like:

vacc1a <- function(age, female, ily) {
  p <- 0.25 + 0.3 * 1 / (1 - exp(0.04 * age)) + 0.1 * ily
  p <- p * if (female) 1.25 else 0.75
  p <- max(0, p)
  p <- min(1, p)
  p
}



We want to be able to apply this function to many inputs, so we might write a vector-input version using a for loop.

vacc1 <- function(age, female, ily) {
  n <- length(age)
  out <- numeric(n)
  for (i in seq_len(n)) {
    out[i] <- vacc1a(age[i], female[i], ily[i])
  }
  out
}



If you’re familiar with R, you’ll have a gut feeling that this will be slow, and indeed it is. There are two ways we could attack this problem. If you have a good R vocabulary, you might immediately see how to vectorise the function (using ifelse(), pmin(), and pmax()). Alternatively, we could rewrite vacc1a() and vacc1() in C++, using our knowledge that loops and function calls have much lower overhead in C++.

Either approach is fairly straightforward. In R:

vacc2 <- function(age, female, ily) {
  p <- 0.25 + 0.3 * 1 / (1 - exp(0.04 * age)) + 0.1 * ily
  p <- p * ifelse(female, 1.25, 0.75)
  p <- pmax(0, p)
  p <- pmin(1, p)
  p
}



(If you’ve worked R a lot you might recognise some potential bottlenecks in this code: ifelse, pmin, and pmax are known to be slow, and could be replaced with p + 0.75 + 0.5 * female, p[p < 0] <- 0, p[p > 1] <- 1. You might want to try timing those variations yourself.)

Or in C++:

#include <Rcpp.h>
using namespace Rcpp;

double vacc3a(double age, bool female, bool ily){
  double p = 0.25 + 0.3 * 1 / (1 - exp(0.04 * age)) + 0.1 * ily;
  p = p * (female ? 1.25 : 0.75);
  p = std::max(p, 0.0);
  p = std::min(p, 1.0);
  return p;
}

// [[Rcpp::export]]
NumericVector vacc3(NumericVector age, LogicalVector female, 
                    LogicalVector ily) {
  int n = age.size();
  NumericVector out(n);

  for(int i = 0; i < n; ++i) {
    out[i] = vacc3a(age[i], female[i], ily[i]);
  }

  return out;
}



We next generate some sample data, and check that all three versions return the same values:

n <- 1000
age <- rnorm(n, mean = 50, sd = 10)
female <- sample(c(T, F), n, rep = TRUE)
ily <- sample(c(T, F), n, prob = c(0.8, 0.2), rep = TRUE)

stopifnot(
  all.equal(vacc1(age, female, ily), vacc2(age, female, ily)),
  all.equal(vacc1(age, female, ily), vacc3(age, female, ily))
)



The original blog post forgot to do this, and introduced a bug in the C++ version: it used 0.004 instead of 0.04. Finally, we can benchmark our three approaches:

microbenchmark(
  vacc1 = vacc1(age, female, ily),
  vacc2 = vacc2(age, female, ily),
  vacc3 = vacc3(age, female, ily)
)



## Unit: microseconds
##   expr   min      lq mean  median      uq   max neval
##  vacc1 4,240 4,450.0 4904 4,770.0 4,960.0 7,380   100
##  vacc2   138   144.0  171   158.0   192.0   268   100
##  vacc3    27    29.2   34    32.7    39.3    54   100

Not surprisingly, our original approach with loops is very slow. Vectorising in R gives a huge speedup, and we can eke out even more performance (~10x) with the C++ loop. I was a little surprised that the C++ was so much faster, but it is because the R version has to create 11 vectors to store intermediate results, where the C++ code only needs to create 1.

Using Rcpp in a package

The same C++ code that is used with sourceCpp() can also be bundled into a package. There are several benefits of moving code from a stand-alone C++ source file to a package: 


	Your code can be made available to users without C++ development tools.


	Multiple source files and their dependencies are handled automatically by the R package build system.


	Packages provide additional infrastructure for testing, documentation, and consistency.




To add Rcpp to an existing package, you put your C++ files in the src/ directory and modify/create the following configuration files:


	In DESCRIPTION add

LinkingTo: Rcpp
Imports: Rcpp


	Make sure your NAMESPACE includes:

useDynLib(mypackage)
importFrom(Rcpp, sourceCpp)

We need to import something (anything) from Rcpp so that internal Rcpp code is properly loaded. This is a bug in R and hopefully will be fixed in the future.




To generate a new Rcpp package that includes a simple “hello world” function you can use Rcpp.package.skeleton():

Rcpp.package.skeleton("NewPackage", attributes = TRUE)



To generate a package based on C++ files that you’ve been using with sourceCpp(), use the cpp_files parameter:

Rcpp.package.skeleton("NewPackage", example_code = FALSE,
                      cpp_files = c("convolve.cpp"))



Before building the package, you’ll need to run Rcpp::compileAttributes(). This function scans the C++ files for Rcpp::export attributes and generates the code required to make the functions available in R. Re-run compileAttributes() whenever functions are added, removed, or have their signatures changed. This is done automatically by the devtools package and by Rstudio.

For more details see the Rcpp package vignette, vignette("Rcpp-package").

Learning more

This chapter has only touched on a small part of Rcpp, giving you the basic tools to rewrite poorly performing R code in C++. The Rcpp book is the best reference to learn more about Rcpp. As noted, Rcpp has many other capabilities that make it easy to interface R to existing C++ code, including:


	Additional features of attributes including specifying default arguments, linking in external C++ dependencies, and exporting C++ interfaces from packages. These features and more are covered in the Rcpp attributes vignette, vignette("Rcpp-attributes").


	Automatically creating wrappers between C++ data structures and R data structures, including mapping C++ classes to reference classes. A good introduction to this topic is Rcpp modules vignette, vignette("Rcpp-modules")


	The Rcpp quick reference guide, vignette("Rcpp-quickref"), contains a useful summary of Rcpp classes and common programming idioms.




I strongly recommend keeping an eye on the Rcpp homepage and Dirk’s Rcpp page as well as signing up for the Rcpp mailing list. Rcpp is still under active development, and is getting better with every release.

Other resources I’ve found helpful in learning C++ are:


	Effective C++ and Effective STL by Scott Meyers.


	C++ Annotations, aimed at “knowledgeable users of C (or any other language using a C-like grammar, like Perl or Java) who would like to know more about, or make the transition to, C++”.


	Algorithm Libraries, which provides a more technical, but still concise, description of important STL concepts. (Follow the links under notes).




Writing performance code may also require you to rethink your basic approach: a solid understanding of basic data structures and algorithms is very helpful here. That’s beyond the scope of this book, but I’d suggest the Algorithm Design Manual, MIT’s Introduction to Algorithms, Algorithms by Robert Sedgewick and Kevin Wayne which has a free online textbook and a matching coursera course.
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R’s C interface

Reading R’s source code is an extremely powerful technique for improving your programming skills. However, many base R functions, and many functions in older packages, are written in C. It’s useful to be able to figure out how those functions work, so this chapter will introduce you to R’s C API. You’ll need some basic C knowledge, which you can get from a standard C text (e.g., The C Programming Language by Kernigan and Ritchie), or from Rcpp. You’ll need a little patience, but it is possible to read R’s C source code, and you will learn a lot doing it. 

The contents of this chapter draw heavily from Section 5 (“System and foreign language interfaces”) of Writing R extensions, but focus on best practices and modern tools. This means it does not cover the old .C interface, the old API defined in Rdefines.h, or rarely used language features. To see R’s complete C API, look at the header file Rinternals.h. It’s easiest to find and display this file from within R:

rinternals <- file.path(R.home("include"), "Rinternals.h")
file.show(rinternals)



All functions are defined with either the prefix Rf_ or R_ but are exported without it (unless #define R_NO_REMAP has been used).

I do not recommend using C for writing new high-performance code. Instead write C++ with Rcpp. The Rcpp API protects you from many of the historical idiosyncracies of the R API, takes care of memory management for you, and provides many useful helper methods.

Outline


	Calling C shows the basics of creating and calling C functions with the inline package.


	C data structures shows how to translate data structure names from R to C.


	Creating and modifying vectors teaches you how to create, modify, and coerce vectors in C.


	Pairlists shows you how to work with pairlists. You need to know this because the distinction between pairlists and list is more important in C than R.


	Input validation talks about the importance of input validation so that your C function doesn’t crash R.


	Finding the C source for a function concludes the chapter by showing you how to find the C source code for internal and primitive R functions.




Prerequisites

To understand existing C code, it’s useful to generate simple examples of your own that you can experiment with. To that end, all examples in this chapter use the inline package, which makes it extremely easy to compile and link C code to your current R session. Get it by running install.packages("inline"). To easily find the C code associated with internal and primitive functions, you’ll need a function from pryr. Get the package with install.packages("pryr").

You’ll also need a C compiler. Windows users can use Rtools. Mac users will need the Xcode command line tools. Most Linux distributions will come with the necessary compilers.

In Windows, it’s necessary that the Rtools executables directory (typically C:\Rtools\bin) and the C compiler executables directory (typically C:\Rtools\gcc-4.6.3\bin) are included in the Windows PATH environment variable. You may need to reboot Windows before R can recognise these values.

Calling C functions from R

Generally, calling a C function from R requires two pieces: a C function and an R wrapper function that uses .Call(). The simple function below adds two numbers together and illustrates some of the complexities of coding in C:

// In C ----------------------------------------
#include <R.h>
#include <Rinternals.h>

SEXP add(SEXP a, SEXP b) {
  SEXP result = PROTECT(allocVector(REALSXP, 1));
  REAL(result)[0] = asReal(a) + asReal(b);
  UNPROTECT(1);

  return result;
}



# In R ----------------------------------------
add <- function(a, b) {
  .Call("add", a, b)
}



(An alternative to using .Call is to use .External. It is used almost identically, except that the C function will receive a single argument containing a LISTSXP, a pairlist from which the arguments can be extracted. This makes it possible to write functions that take a variable number of arguments. However, it’s not commonly used in base R and inline does not currently support .External functions so I don’t discuss it further in this chapter.)  

In this chapter we’ll produce the two pieces in one step by using the inline package. This allows us to write: 

add <- cfunction(c(a = "integer", b = "integer"), "
  SEXP result = PROTECT(allocVector(REALSXP, 1));
  REAL(result)[0] = asReal(a) + asReal(b);
  UNPROTECT(1);

  return result;
")
add(1, 5)



## [1] 6

Before we begin reading and writing C code, we need to know a little about the basic data structures.

C data structures

At the C-level, all R objects are stored in a common datatype, the SEXP, or S-expression. All R objects are S-expressions so every C function that you create must return a SEXP as output and take SEXPs as inputs. (Technically, this is a pointer to a structure with typedef SEXPREC.) A SEXP is a variant type, with subtypes for all R’s data structures. The most important types are: 


	REALSXP: numeric vector

	INTSXP: integer vector

	LGLSXP: logical vector

	STRSXP: character vector

	VECSXP: list

	CLOSXP: function (closure)

	ENVSXP: environment



Beware: In C, lists are called VECSXPs not LISTSXPs. This is because early implementations of lists were Lisp-like linked lists, which are now known as “pairlists”.

Character vectors are a little more complicated than the other atomic vectors. A STRSXPs contains a vector of CHARSXPs, where each CHARSXP points to C-style string stored in a global pool. This design allows individual CHARSXP’s to be shared between multiple character vectors, reducing memory usage. See object size for more details.

There are also SEXPs for less common object types:


	CPLXSXP: complex vectors

	LISTSXP: “pair” lists. At the R level, you only need to care about the distinction lists and pairlists for function arguments, but internally they are used in many more places

	DOTSXP: ‘…’

	SYMSXP: names/symbols

	NILSXP: NULL



And SEXPs for internal objects, objects that are usually only created and used by C functions, not R functions:


	LANGSXP: language constructs

	CHARSXP: “scalar” strings

	PROMSXP: promises, lazily evaluated function arguments

	EXPRSXP: expressions



There’s no built-in R function to easily access these names, but pryr provides sexp_type():

library(pryr)

sexp_type(10L)



## [1] "INTSXP"

sexp_type("a")



## [1] "STRSXP"

sexp_type(T)



## [1] "LGLSXP"

sexp_type(list(a = 1))



## [1] "VECSXP"

sexp_type(pairlist(a = 1))



## [1] "LISTSXP"

Creating and modifying vectors

At the heart of every C function are conversions between R data structures and C data structures. Inputs and output will always be R data structures (SEXPs) and you will need to convert them to C data structures in order to do any work. This section focusses on vectors because they’re the type of object you’re most likely to work with.

An additional complication is the garbage collector: if you don’t protect every R object you create, the garbage collector will think they are unused and delete them.

Creating vectors and garbage collection

The simplest way to create a new R-level object is to use allocVector(). It takes two arguments, the type of SEXP (or SEXPTYPE) to create, and the length of the vector. The following code creates a three element list containing a logical vector, a numeric vector, and an integer vector, all of length four: 

dummy <- cfunction(body = '
  SEXP dbls = PROTECT(allocVector(REALSXP, 4));
  SEXP lgls = PROTECT(allocVector(LGLSXP, 4));
  SEXP ints = PROTECT(allocVector(INTSXP, 4));

  SEXP vec = PROTECT(allocVector(VECSXP, 3));
  SET_VECTOR_ELT(vec, 0, dbls);
  SET_VECTOR_ELT(vec, 1, lgls);
  SET_VECTOR_ELT(vec, 2, ints);

  UNPROTECT(4);
  return vec;
')
dummy()



## [[1]]
## [1] 7.76e-317 7.80e-317 7.76e-317 7.75e-317
## 
## [[2]]
## [1] TRUE TRUE TRUE TRUE
## 
## [[3]]
## [1] 1 2 3 1

You might wonder what all the PROTECT() calls do. They tell R that the object is in use and shouldn’t be deleted if the garbage collector is activated. (We don’t need to protect objects that R already knows we’re using, like function arguments.)

You also need to make sure that every protected object is unprotected. UNPROTECT() takes a single integer argument, n, and unprotects the last n objects that were protected. The number of protects and unprotects must match. If not, R will warn about a “stack imbalance in .Call”. Other specialised forms of protection are needed in some circumstances:


	UNPROTECT_PTR() unprotects the object pointed to by the SEXPs.


	PROTECT_WITH_INDEX() saves an index of the protection location that can be used to replace the protected value using REPROTECT().




Consult the R externals section on garbage collection for more details.

Properly protecting the R objects you allocate is extremely important! Improper protection leads to difficulty diagnosing errors, typically segfaults, but other corruption is possible as well. In general, if you allocate a new R object, you must PROTECT it.

If you run dummy() a few times, you’ll notice the output varies. This is because allocVector() assigns memory to each output, but it doesn’t clean it out first. For real functions, you may want to loop through each element in the vector and set it to a constant. The most efficient way to do that is to use memset():

zeroes <- cfunction(c(n_ = "integer"), '
  int n = asInteger(n_);

  SEXP out = PROTECT(allocVector(INTSXP, n));
  memset(INTEGER(out), 0, n * sizeof(int));
  UNPROTECT(1);

  return out;
')
zeroes(10);



##  [1] 0 0 0 0 0 0 0 0 0 0

Missing and non-finite values

Each atomic vector has a special constant for getting or setting missing values:


	INTSXP: NA_INTEGER

	LGLSXP: NA_LOGICAL

	STRSXP: NA_STRING



Missing values are somewhat more complicated for REALSXP because there is an existing protocol for missing values defined by the floating point standard (IEEE 754). In doubles, an NA is NaN with a special bit pattern (the lowest word is 1954, the year Ross Ihaka was born), and there are other special values for positive and negative infinity. Use ISNA(), ISNAN(), and !R_FINITE() macros to check for missing, NaN, or non-finite values. Use the constants NA_REAL, R_NaN, R_PosInf, and R_NegInf to set those values. 

We can use this knowledge to make a simple version of is.NA():

is_na <- cfunction(c(x = "ANY"), '
  int n = length(x);

  SEXP out = PROTECT(allocVector(LGLSXP, n));

  for (int i = 0; i < n; i++) {
    switch(TYPEOF(x)) {
      case LGLSXP:
        LOGICAL(out)[i] = (LOGICAL(x)[i] == NA_LOGICAL);
        break;
      case INTSXP:
        LOGICAL(out)[i] = (INTEGER(x)[i] == NA_INTEGER);
        break;
      case REALSXP:
        LOGICAL(out)[i] = ISNA(REAL(x)[i]);
        break;
      case STRSXP:
        LOGICAL(out)[i] = (STRING_ELT(x, i) == NA_STRING);
        break;
      default:
        LOGICAL(out)[i] = NA_LOGICAL;
    }
  }
  UNPROTECT(1);

  return out;
')
is_na(c(NA, 1L))



## [1]  TRUE FALSE

is_na(c(NA, 1))



## [1]  TRUE FALSE

is_na(c(NA, "a"))



## [1]  TRUE FALSE

is_na(c(NA, TRUE))



## [1]  TRUE FALSE

Note that base::is.na() returns TRUE for both NA and NaNs in a numeric vector, as opposed to the C ISNA() macro, which returns TRUE only for NA_REALs.

Accessing vector data

There is a helper function for each atomic vector that allows you to access the C array which stores the data in a vector. Use REAL(), INTEGER(), LOGICAL(), COMPLEX(), and RAW() to access the C array inside numeric, integer, logical, complex, and raw vectors. The following example shows how to use REAL() to inspect and modify a numeric vector: 

add_one <- cfunction(c(x = "numeric"), "
  int n = length(x);
  SEXP out = PROTECT(allocVector(REALSXP, n));
  
  for (int i = 0; i < n; i++) {
    REAL(out)[i] = REAL(x)[i] + 1;
  }
  UNPROTECT(1);

  return out;
")
add_one(as.numeric(1:10))



##  [1]  2  3  4  5  6  7  8  9 10 11

When working with longer vectors, there’s a performance advantage to using the helper function once and saving the result in a pointer:

add_two <- cfunction(c(x = "numeric"), "
  int n = length(x);
  double *px, *pout;

  SEXP out = PROTECT(allocVector(REALSXP, n));

  px = REAL(x);
  pout = REAL(out);
  for (int i = 0; i < n; i++) {
    pout[i] = px[i] + 2;
  }
  UNPROTECT(1);

  return out;
")
add_two(as.numeric(1:10))



##  [1]  3  4  5  6  7  8  9 10 11 12

x <- as.numeric(1:1e6)
microbenchmark(
  add_one(x),
  add_two(x)
)



## Unit: milliseconds
##        expr  min   lq mean median  uq  max neval
##  add_one(x) 5.46 8.57 9.08   8.89 9.9 42.3   100
##  add_two(x) 1.33 4.29 5.03   4.59 5.6 38.6   100

On my computer, add_two() is about twice as fast as add_one() for a million element vector. This is a common idiom in base R.

Character vectors and lists

Strings and lists are more complicated because the individual elements of a vector are SEXPs, not basic C data structures. Each element of a STRSXP is a CHARSXPs, an immutable object that contains a pointer to C string stored in a global pool. Use STRING_ELT(x, i) to extract the CHARSXP, and CHAR(STRING_ELT(x, i)) to get the actual const char* string. Set values with SET_STRING_ELT(x, i, value). Use mkChar() to turn a C string into a CHARSXP and mkString() to turn a C string into a STRSXP. Use mkChar() to create strings to insert in an existing vector, use mkString() to create a new (length 1) vector.

The following function shows how to make a character vector containing known strings:

abc <- cfunction(NULL, '
  SEXP out = PROTECT(allocVector(STRSXP, 3));

  SET_STRING_ELT(out, 0, mkChar("a"));
  SET_STRING_ELT(out, 1, mkChar("b"));
  SET_STRING_ELT(out, 2, mkChar("c"));

  UNPROTECT(1);

  return out;
')
abc()



## [1] "a" "b" "c"

Things are a little harder if you want to modify the strings in the vector because you need to know a lot about string manipulation in C (which is hard, and harder to do right). For any problem that involves any kind of string modification, you’re better off using Rcpp.

The elements of a list can be any other SEXP, which generally makes them hard to work with in C (you’ll need lots of switch statements to deal with the possibilities). The accessor functions for lists are VECTOR_ELT(x, i) and SET_VECTOR_ELT(x, i, value).

Modifying inputs

You must be very careful when modifying function inputs. The following function has some rather unexpected behaviour:

add_three <- cfunction(c(x = "numeric"), '
  REAL(x)[0] = REAL(x)[0] + 3;
  return x;
')
x <- 1
y <- x
add_three(x)



## [1] 4

x



## [1] 4

y



## [1] 4

Not only has it modified the value of x, it has also modified y! This happens because of R’s lazy copy-on-modify semantics. To avoid problems like this, always duplicate() inputs before modifying them:

add_four <- cfunction(c(x = "numeric"), '
  SEXP x_copy = PROTECT(duplicate(x));
  REAL(x_copy)[0] = REAL(x_copy)[0] + 4;
  UNPROTECT(1);
  return x_copy;
')
x <- 1
y <- x
add_four(x)



## [1] 5

x



## [1] 1

y



## [1] 1

If you’re working with lists, use shallow_duplicate() to make a shallow copy; duplicate() will also copy every element in the list.

Coercing scalars

There are a few helper functions that turn length one R vectors into C scalars:


	asLogical(x): LGLSXP -> int

	asInteger(x): INTSXP -> int

	asReal(x): REALSXP -> double

	CHAR(asChar(x)): STRSXP -> const char*



And helpers to go in the opposite direction:


	ScalarLogical(x): int -> LGLSXP

	ScalarInteger(x): int -> INTSXP

	ScalarReal(x): double -> REALSXP

	mkString(x): const char* -> STRSXP



These all create R-level objects, so they need to be PROTECT()ed.

Long vectors

As of R 3.0.0, R vectors can have length greater than 231 − 1. This means that vector lengths can no longer be reliably stored in an int and if you want your code to work with long vectors, you can’t write code like int n = length(x). Instead use the R_xlen_t type and the xlength() function, and write R_xlen_t n = xlength(x). 

Pairlists

In R code, there are only a few instances when you need to care about the difference between a pairlist and a list (as described in Pairlists). In C, pairlists play much more important role because they are used for calls, unevaluated arguments, attributes, and in .... In C, lists and pairlists differ primarily in how you access and name elements. 

Unlike lists (VECSXPs), pairlists (LISTSXPs) have no way to index into an arbitrary location. Instead, R provides a set of helper functions that navigate along a linked list. The basic helpers are CAR(), which extracts the first element of the list, and CDR(), which extracts the rest of the list. These can be composed to get CAAR(), CDAR(), CADDR(), CADDDR(), and so on. Corresponding to the getters, R provides setters SETCAR(), SETCDR(), etc.

The following example shows how CAR() and CDR() can pull out pieces of a quoted function call:

car <- cfunction(c(x = "ANY"), 'return CAR(x);')
cdr <- cfunction(c(x = "ANY"), 'return CDR(x);')
cadr <- cfunction(c(x = "ANY"), 'return CADR(x);')

x <- quote(f(a = 1, b = 2))
# The first element
car(x)



## f

# Second and third elements
cdr(x)



## $a
## [1] 1
## 
## $b
## [1] 2

# Second element
car(cdr(x))



## [1] 1

cadr(x)



## [1] 1

Pairlists are always terminated with R_NilValue. To loop over all elements of a pairlist, use this template:

count <- cfunction(c(x = "ANY"), '
  SEXP el, nxt;
  int i = 0;

  for(nxt = x; nxt != R_NilValue; el = CAR(nxt), nxt = CDR(nxt)) {
    i++;
  }
  return ScalarInteger(i);
')
count(quote(f(a, b, c)))



## [1] 4

count(quote(f()))



## [1] 1

You can make new pairlists with CONS() and new calls with LCONS(). Remember to set the last value to R_NilValue. Since these are R objects as well, they are eligible for garbage collection and must be PROTECTed. In fact, it is unsafe to write code like the following:

new_call <- cfunction(NULL, '
  return LCONS(install("+"), LCONS(
    ScalarReal(10), LCONS(
      ScalarReal(5), R_NilValue
    )
  ));
')
gctorture(TRUE)
new_call()



## 5 + 5

gctorture(FALSE)



On my machine, I get the result 5 + 5 — highly unexpected! In fact, to be safe, we must PROTECT each ScalarReal that is generated, as every R object allocation can trigger the garbage collector.

new_call <- cfunction(NULL, '
  SEXP REALSXP_10 = PROTECT(ScalarReal(10));
  SEXP REALSXP_5 = PROTECT(ScalarReal(5));
  SEXP out = PROTECT(LCONS(install("+"), LCONS(
    REALSXP_10, LCONS(
      REALSXP_5, R_NilValue
    )
  )));
  UNPROTECT(3);
  return out;
')
gctorture(TRUE)
new_call()



## 10 + 5

gctorture(FALSE)



TAG() and SET_TAG() allow you to get and set the tag (aka name) associated with an element of a pairlist. The tag should be a symbol. To create a symbol (the equivalent of as.symbol() in R), use install().

Attributes are also pairlists, but come with the helper functions setAttrib() and getAttrib():

set_attr <- cfunction(c(obj = "SEXP", attr = "SEXP", value = "SEXP"), '
  const char* attr_s = CHAR(asChar(attr));

  duplicate(obj);
  setAttrib(obj, install(attr_s), value);
  return obj;
')
x <- 1:10
set_attr(x, "a", 1)



##  [1]  1  2  3  4  5  6  7  8  9 10
## attr(,"a")
## [1] 1

(Note that setAttrib() and getAttrib() must do a linear search over the attributes pairlist.)

There are some (confusingly named) shortcuts for common setting operations: classgets(), namesgets(), dimgets(), and dimnamesgets() are the internal versions of the default methods of class<-, names<-, dim<-, and dimnames<-.

Input validation

If the user provides unexpected input to your function (e.g., a list instead of a numeric vector), it’s very easy to crash R. For this reason, it’s a good idea to write a wrapper function that checks arguments are of the correct type. It’s usually easier to do this at the R level. For example, going back to our first example of C code, we might rename the C function to add_ and write a wrapper around it to check that the inputs are ok:

add_ <- cfunction(signature(a = "integer", b = "integer"), "
  SEXP result = PROTECT(allocVector(REALSXP, 1));
  REAL(result)[0] = asReal(a) + asReal(b);
  UNPROTECT(1);

  return result;
")
add <- function(a, b) {
  stopifnot(is.numeric(a), is.numeric(b))
  stopifnot(length(a) == 1, length(b) == 1)
  add_(a, b)
}



Alternatively, if we wanted to be more accepting of diverse inputs we could do the following:

add <- function(a, b) {
  a <- as.numeric(a)
  b <- as.numeric(b)

  if (length(a) > 1) warning("Only first element of a used")
  if (length(b) > 1) warning("Only first element of b used")
  
  add_(a, b)
}



To coerce objects at the C level, use PROTECT(new = coerceVector(old, SEXPTYPE)). This will return an error if the SEXP can not be converted to the desired type.

To check if an object is of a specified type, you can use TYPEOF, which returns a SEXPTYPE:

is_numeric <- cfunction(c("x" = "ANY"), "
  return ScalarLogical(TYPEOF(x) == REALSXP);
")
is_numeric(7)



## [1] TRUE

is_numeric("a")



## [1] FALSE

There are also a number of helper functions which return 0 for FALSE and 1 for TRUE:


	For atomic vectors: isInteger(), isReal(), isComplex(), isLogical(), isString().


	For combinations of atomic vectors: isNumeric() (integer, logical, real), isNumber() (integer, logical, real, complex), isVectorAtomic() (logical, integer, numeric, complex, string, raw).


	For matrices (isMatrix()) and arrays (isArray()).


	For more esoteric objects: isEnvironment(), isExpression(), isList() (a pair list), isNewList() (a list), isSymbol(), isNull(), isObject() (S4 objects), isVector() (atomic vectors, lists, expressions).




Note that some of these functions behave differently to similarly named R functions with similar names. For example isVector() is true for atomic vectors, lists, and expressions, where is.vector() returns TRUE only if its input has no attributes apart from names.

Finding the C source code for a function

In the base package, R doesn’t use .Call(). Instead, it uses two special functions: .Internal() and .Primitive(). Finding the source code for these functions is an arduous task: you first need to look for their C function name in src/main/names.c and then search the R source code. pryr::show_c_source() automates this task using GitHub code search:  

tabulate



## function (bin, nbins = max(1L, bin, na.rm = TRUE)) 
## {
##     if (!is.numeric(bin) && !is.factor(bin)) 
##         stop("'bin' must be numeric or a factor")
##     if (typeof(bin) != "integer") 
##         bin <- as.integer(bin)
##     if (nbins > .Machine$integer.max) 
##         stop("attempt to make a table with >= 2^31 elements")
##     nbins <- as.integer(nbins)
##     if (is.na(nbins)) 
##         stop("invalid value of 'nbins'")
##     .Internal(tabulate(bin, nbins))
## }
## <bytecode: 0x50dc4b8>
## <environment: namespace:base>

pryr::show_c_source(.Internal(tabulate(bin, nbins)))
#> tabulate is implemented by do_tabulate with op = 0



This reveals the following C source code (slightly edited for clarity):

SEXP attribute_hidden do_tabulate(SEXP call, SEXP op, SEXP args, 
                                  SEXP rho) {
  checkArity(op, args);
  SEXP in = CAR(args), nbin = CADR(args);
  if (TYPEOF(in) != INTSXP)  error("invalid input");

  R_xlen_t n = XLENGTH(in);
  /* FIXME: could in principle be a long vector */
  int nb = asInteger(nbin);
  if (nb == NA_INTEGER || nb < 0)
    error(_("invalid '%s' argument"), "nbin");
  
  SEXP ans = allocVector(INTSXP, nb);
  int *x = INTEGER(in), *y = INTEGER(ans);
  memset(y, 0, nb * sizeof(int));
  for(R_xlen_t i = 0 ; i < n ; i++) {
    if (x[i] != NA_INTEGER && x[i] > 0 && x[i] <= nb) {
      y[x[i] - 1]++;
    }
  }
     
  return ans;
}



Internal and primitive functions have a somewhat different interface than .Call() functions. They always have four arguments:


	SEXP call: the complete call to the function. CAR(call) gives the name of the function (as a symbol); CDR(call) gives the arguments.


	SEXP op: an “offset pointer”. This is used when multiple R functions use the same C function. For example do_logic() implements &, |, and !. show_c_source() prints this out for you.


	SEXP args: a pairlist containing the unevaluated arguments to the function.


	SEXP rho: the environment in which the call was executed.




This gives internal functions an incredible amount of flexibility as to how and when the arguments are evaluated. For example, internal S3 generics call DispatchOrEval() which either calls the appropriate S3 method or evaluates all the arguments in place. This flexibility come at a price, because it makes the code harder to understand. However, evaluating the arguments is usually the first step and the rest of the function is straightforward.

The following code shows do_tabulate() converted into standard a .Call() interface:

tabulate2 <- cfunction(c(bin = "SEXP", nbins = "SEXP"), '
  if (TYPEOF(bin) != INTSXP)  error("invalid input");
  
  R_xlen_t n = XLENGTH(bin);
  /* FIXME: could in principle be a long vector */
  int nb = asInteger(nbins);
  if (nb == NA_INTEGER || nb < 0)
    error("invalid \'%s\' argument", "nbin");

  SEXP ans = allocVector(INTSXP, nb);
  int *x = INTEGER(bin), *y = INTEGER(ans);
  memset(y, 0, nb * sizeof(int));
  for(R_xlen_t i = 0 ; i < n ; i++) {
    if (x[i] != NA_INTEGER && x[i] > 0 && x[i] <= nb) {
      y[x[i] - 1]++;
    }
  }
     
  return ans;
')
tabulate2(c(1L, 1L, 1L, 2L, 2L), 3)



## [1] 3 2 0

To get this to compile, I also removed the call to _() which is an internal R function used to translate error messages between different languages.

The final version below moves more of the coercion logic into an accompanying R function, and does some minor restructuring to make the code a little easier to understand. I also added a PROTECT(); this is probably missing in the original because the author knew that it would be safe.

tabulate_ <- cfunction(c(bin = "SEXP", nbins = "SEXP"), '  
  int nb = asInteger(nbins);

  // Allocate vector for output - assumes that there are 
  // less than 2^32 bins, and that each bin has less than 
  // 2^32 elements in it.
  SEXP out = PROTECT(allocVector(INTSXP, nb));
  int *pbin = INTEGER(bin), *pout = INTEGER(out);
  memset(pout, 0, nb * sizeof(int));

  R_xlen_t n = xlength(bin);
  for(R_xlen_t i = 0; i < n; i++) {
    int val = pbin[i];
    if (val != NA_INTEGER && val > 0 && val <= nb) {
      pout[val - 1]++; // C is zero-indexed
    }
  }
  UNPROTECT(1);   
  
  return out;
')

tabulate3 <- function(bin, nbins) {
  bin <- as.integer(bin)
  if (length(nbins) != 1 || nbins <= 0 || is.na(nbins)) {
    stop("nbins must be a positive integer", call. = FALSE)
  }
  tabulate_(bin, nbins)
}
tabulate3(c(1, 1, 1, 2, 2), 3)



## [1] 3 2 0
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1 # ---- read_delim
2 read_delim <- function(file, header = TRUE, sep = ",") {

3 # Determine number of fields by reading first line

4 first <- scan(file, what = character(l), nlines = 1, se..

5 p <- length(first)

6

7 # Load all fields as character vectors

8 all <- scan(file, what = as.list(rep(”character”, p)), .. - ..l
9 skip = if (header) 1 else @, quiet = TRUE)

10

11 # Convert from strings to appropriate types (never to f..

12 all[] <- lapply(all, type.convert, as.is = TRUE) l l'

13

14 # Set column names

15 if (header) {

16 names(all) <- first

17 } else {

18 names(all) <- paste@("V", seg_along(all))
19 }

20

21 # Convert list into data frame

22| as.data.frame(all) | -l .

23 }





