Linear Vector Spaces:

Definition: A linear vector space, X is a set of elements {vectors) defined over a
scalar field, F, that satisfies the following conditions:

Dif xeXandy € Xthen xoyEX, 2) gry=yt+tx 3) Gty+tz=x+t{yt+tzg

4) There is a unique vector 0 € X, such that x + 0 =x for all x£ X

5) For each vector € Ythere 13 a unique vector in X, to be called “x), auch that
xtfa=0. 6) multiplication, for all scalars @ € ¥, and all vectors € X,
7y Forany x€ X, lx=x (for scalar 1).

8) Foranytwoscalarsa € Fandb € Fand any 2 € X, a(fg) = (a f)x .

9) (atb)x=axtbx. 10 alxry) =a gtay.

Linear Independence: Consider n vectors {x, x 1., X,). If there
exists n scalars a;, ay, ..., @,, at least one of which is nonzero, such that

axy+ axat L+ ANy =0, then the {x; } are linearly dependent.

Spanning a Space:

Let X be a linear vector space and let fuy 15 , ., 1, } be a subset of vectors in X,
This subsel spans X il and only if for every vector £ € X there exist scalars x;,
x3,....% such that X = xpup+xoust . 3l

Inner Product: /x.yv) for any scalar function of x and v .

Leey)=(yx) 2. (xay tbyz)=a (Xy1) +b(x.y2)
3.(xx) > 0, where equality holds 1ff x 1s the zero vector.

Norm: Ascalar function ||x|| is called a norm if it satisfies:

1. llx]| =0 2. llxll =0 ifand only 1f x = 0.
3 Mlaxll = lalllxll 4 llx + il < llxll + Iy |
Angle: The angle 8 bet. 2 vectors x and y is defined by cos 8 = ﬁ

Orthogonality: 2 vectors x, ¥ € X are said to be orthogonal if (x, ¥} = U
Gram Schmidt Orthogonalization:

Assume that we have » independent vectors v, v ...,», . From
these vectors we will obtain # orthogonal vectors v, v, .0

il B

1
V=Y, U=y (Vi Yic)
15T e R g fEe— e Wi
o (viowy)
v, | o
where Mui is the projection of v, on v;

(v, v;)
Vector Expansions:
T
X = ZIEI}E =xq v, e+ x,10,,

i=1
_ (v x)

T)

for orthogonal vectors, x

Reciprocal Basis Vectors:
N (0 i
(rf'l'.'i)_{l L=

To compute the reciprocal basis vectors: set B= [vy vy .. vy

R=[r; 13... 1], RF =B

r If = (:r_-'" IJ

Jd 2

In matrix form: x¥ =B~ 1 x°

Perceptron Architecture:
a = hardlim(Wp+b), W= w’ _w’

a; = hardlim(n;) = hardlim{ w"'p + b))
Decision Boundary: w'p +h =0
The decision boundary 1s always orthogonal to the weight vector.
Single-laver perceptrons can only classify linsarly separable vectors.
Perceptron Learning Rule
wnew — wﬂ!d k3 EPT pnew = bﬂi’d + e
r]
where e =t — a

T]T :

|
Hebb's Postulate: "When an axon of cell A is near enough to excite a
cell B and repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such that A's
efficiency, as one of the cells firing B, 1s increased.”

Linear Associator: a = purelin(Wp)

The Hebb Rule: Supervised Form: Wit = wil® + tq:Py;

W=¢tP +t,PL+-+ tgpg
-p'g’_-
W=t t;..tg] pf = TP

Py
Pseudoinverse Rule: W = TP*

When the number, £, of rows of P 18 greater than the num ber of
columns,(), of P and the columns of P are independent, then the

pseudoinverse can be computed by P+ = (PTP)~1P7

Variations of Ilebbian l.earning:
Filtered Learningcn s WY = (1 —

"IEW woi

Unsupervised Hebb (ch.13): w

Delta Rule chi10y:

ald
=W + ﬂraqpq

Transformations:

A transformation consists of three parts:

domamn: X' = { x, }, range: ¥ = { y, }, and a rule relating each x, €
X toanelement y, €Y.

Linear Transformations: transformation 4 1s linear if;

1. forall x,,x, e X ,A(x,+x5) = A(x;) + A(x;)

2. forallx € X,a € R, Alax) = aA(x)

Matrix Representations:

Let {v{, v75, ..., 1, } be a basis for vector space X, and let {u,, u,, ..., u, }
be a basis fDI' vector space Y. Let 4 be a linear transformation with
domain.¥ and range }: A(x) = y

The coellicients of the matrix l'Lpl'LbEﬂtﬂtiG]‘] are obtained from

) Z”””L

= [t € ... n] B
A’ = [B,'AB]
Eigenvalues & FKigenvectors:Az = Az,
Diagonalization: B= |z, z, ...Z,]| .

where{z, z,, ..., 2, } are the eigenvectors of a square matrix A,

[B_AB| = diag([A, Ay .Ag])

Change of Basis: B, w = [Wy W, ...wW,]

[[A=AIl| =0

Taylor:F(x) = F(X") + VF)T |x_x- Gx—X7) +
% (H = K*)vEF(}:)TE:x*(x —!{*) i

Grad VF() = [-FOO 5= F(0) 2 pw)|
- | ax, -
Hossmn v l"(x) =
n:i':{ 2 F[KJ Eh:l d:{z F(x) a:h:l Ei':a:n F[KJ
ﬂx? ﬂ‘u:] Fx) ﬂxgg E?}{E Ei'xn F(x)
_dxnﬁ}{l F(}{) dx, 4 EF(K)
Directional Derwatn s
T ; T =20 fu
1% Dir.Der.;: 222X ond iy pyey , BT ECP
Ipll Ipll=
Minima:

Strong Mininmen: 1f a scalar § > Oexists, such that

Fix) <Fix+ Ax) for all Ax such that § > ||Ax|| > 0.
Global Mininnen: if Fix) <F(x+ Ax) for all Ax + 0
Weak Minpnum: if it 1s not a strong minimum, and a
scalar § > Oexusts, such that Fx) <Ffx+ Ax) for all Ax
such that § > ||Ax|| > 0.

Necessarv Conditions for Optimality:

I"-Order Condition: VF(X)|gx_x- = 0 (Stationary Points)
2. Order Condition: V2F(X)|g-y* = 0 (Positive Semi-
definite Hessian Matrix).

uadratic fn.: F{x) = “xTAx+d™x+¢c
2

VF(x) = AX + d, V2F(x) = A, L.p,, < ﬂlp‘if < Apmax

General Minimization Algorithm:
Xpe1 = X FopPp or Axp = (Xpyq

Steepest Descent Algorithm:
Xiev1 = Xp — UpBi where, g, = VF(x)|4_,

Stable I.earning Rate: (¢;, = &, constant) o <

{A1 A5, ..., A, } Eigenvalues of Hessian matnix A
Learning Rate to Minimize Along the Line:

—Xp) = 0Py

oy

is
Xiop1 =X T 0P = 0 = — (For quadratic fn.)

PRTAF;,
After Minimization Along the Line:

Xppq =X 0D = 1 ¥y =)

ADALINE: a = purelin(Wp + b)

Mean Square Error: (for ADALINE it is a quadratic fn.)
F(x) = Ele*] = E[(t — a)*] = E|(t —x"2)"]
F(x)=c—2x"h+x"Rx,

c=E[t?], h=F[tz] and R=E|zzT| > A = 2R, d = —2n
Unique minimum, if it exists, s X* = R™'h,

where x = [1;] and z = [11]]

LMS Algorithm: W(k + 1) = W(k) + 2a e(k) p’ (k)
bk +1) = b(k) + 2a e(k)
Convergence Point: x* =R *h
Stable Learning Rate: 0 < a < 1/4,,,, where
A, op 18 the maxamum cigenvalue of R
Adaptive Filter ADALINE:

a(k) = purelin(Wp(k) + b) = ZW:L,:'}’(*’E —i+ 1)+ 5

=1

Backpropagation Algorithm:
Performance Index:
Mean Square error: F(x) = E|ele| =

El(t—a)! (t—a)]
Approximate Performance Index: [biﬂglﬁ sample)
F(x) = eT(ke(k) = (t(k) - a(k)) (t(k) — a(k))
aF]

-ﬂl'l Sm

v it o =
Sensitivity: § anm [ﬂﬂl

Forward Propagation: a’ =p,

avhE — pratligmblg. L WY for m= 0. 8 =1
a=a

Backward Propagation: s¥'=-2F¥(n*)(t —a),

s = FM(mM) (W)™ £ m — M —1,...,2,1 ;where
™) = disg((fm) Fr) . P
m(p"
() = n(!
Weight Update (Approximate Steepest Descent):

J
W™k + 1) = W™(k) — as™(a™)T
b™(k + 1) = b™(k) — as™

0 n<D

e |
hardiim: a = [1 = ¢ hardlims:a = { i

+1

compet: a = { I neuron with MK cathin:a = in

0 all other neurans

Delay:a(t) =ult — 1), Integrator:a(t) = f: ult)dr +

G ypurelin:a =n, Logsig:.a =

0 n<D
—1l=n=1, satiins;a = {n
1 n>»1

a(0)

*Heuristic Variations of Backpropagation:

Batchin g. The parameters are updated only after the entire training set has

been presented. The gradients calculated for each training example are

averaged together to produce a more accurate estimate of the gradient.(If the

training set is complete, i.e., covers all possible input/output pairs, then the

gradient estimate will be exact.)

Backpropagation with Momentum (MOBP):

AW™ () = yAW™(k— 1) — (1 — Y)as™(@m)7’

Ab™(k) = yAb™(k — 1) — (1 —y)as™

Variable Learning Rate Backpropagation (VLBP)

1. If the squared error {over the entire training set) increases by more than

some set percentage { (typically one to five percent) atter a weight update,

then the weight update is discarded, the learning rate is multiplied by some

factor g < 1, and the momentum coetticient p (1T 1t 13 used) 1= set to Zero.

2. If the squared error decreases after a weight update, then the weight update

is accepted and the leaming rate is multiplied by some factor 7 > 1. If ¥ has

been previously set to zero, it is reset to its original value.

3. I the squared error increases by less than £, then the weight update is

accepted but the leaming rate and the momentum coefficient are unchanged.

Association: a = hardlim(W°P° + Wp + b)
An association is a link between the inputs and outputs of a network so that
when a stimujus A 18 presented to the network, it will output a response B,

Associative Learning Rules:
Unsupervised Hebb Rule:

W(g) =W(g—1) +aalg)p’(q)
Hebb with Decav:
W(g) =(1-y)W(g—1) +aal(q)p’(q)
Instar:a = hardlim(Wp + b), a = hardlim{ ;W p + b)
The instar is activated for ;w’'p = “ 1w|| lpllcost = —b

where 0 1s the angle between pand (w.
Instar Rule:

w(g) = wig— 1) +aa(q)plg) — wilg—1)

wlg) =1 —a) wlg—1D+ap(g),if (a;,(g) =1)
Kohonen Rule:

wig) = wig—1+a(plq) — wig—1)) forieX(g
Qutstar Rule: a = satlins(Wp)
wi(q) =w;(¢g—1) +a lalg) —w;(g—1)p;(9)
Competitive Laver: a = compet(Wp) = compet(n)
Com petitive Learning with the Kohonen Rule:
w(g) = sw(g— 1) +a (plg) — w(g— 1)

=(1—a)wlg—1)+aplq)
E*W(Q) = iva_q — 1), i # {* where i*is the winning nzuron.
Self-Oreanizing with the Kohonen Rule:

wig)= wig—1) +« (p(q) — wig — 1))
=(1—-a) wg—1)+aplg), { € N-(d)
Nr’.{:d) = {jrdi,f = d}

LVO Network: (w¢, = 1) = subclass i is a part of class k

n! = —| w! —p|[,a' = compet(n'), a> =w?3a’

LVQ Network Learning with the Kohonen Rule:
~wi(g) = pwi(g—1+a (p(q) — pwi(g - 1)).
if ﬂ.iw — tkm =1
WY = pwi(g— D —a (p@@ - w'(g - 1),
fl.ffljri* =l :.f;r;,_-* =1

all_ =T

; tansig. a = 1

— , pasilin. a = [

e o

-1 n<h
—Il=n=1,

k. O diag([1 2 3]) =

	Neural Network Cheat Sheet1
	Neural Network Cheat Sheet2

