

Software Engineering for Internet Applications

by
Eve Andersson,
Philip Greenspun,
and
Andrew Grumet

MIT Press 2006; ISBN 0262511916; order a hardcopy from amazon.com

Preface

Acknowledgments

Chapters:

	Introduction

	Basics

	Planning

	Software Structure

	User Registration and Management

	Content Management

	Software Modularity

	Discussion

	Adding Mobile Users To Your Community

	Voice (VoiceXML)

	Scaling Gracefully

	Search

	Planning Redux

	Distributed Computing with HTTP, XML, SOAP, and WSDL

	Metadata (programs that write programs)

	User Activity Analysis

	Writeup

Reference Chapters:

	HTML

	Engagement Management by Cesar Brea

	Grading Standards (mostly for MIT students)

Glossary

To the Instructor

Sample Contract (between student team and client)

About the Authors

Return to Table of Contents

eve@eveandersson.com,
philg@mit.edu,
aegrumet@mit.edu

Preface

This is the textbook for the MIT course "Software Engineering for
Internet Applications". The course is intended for juniors and
seniors in computer science. We assume that they know how to write a
computer program and debug it. We do not assume knowledge of any
particular programming languages, standards, or protocols. The most
concise statement of the course goal is that "The student finishes
knowing how to build amazon.com by him or herself."

Other people who might find this book useful include the following:

	professional software developers building online communities or
other multi-user Internet applications

	managers who are evaluating packaged software aimed at supporting
online communities—various chapters contain criteria for judging
the features of products such as Microsoft Sharepoint or Microsoft
Content Management Server

	university students and faculty looking to add some structure to a
"capstone" project at the end of a computer science degree

If you're confused by the "student knows how to build amazon.com"
statement, we can break it down in terms of principles and skills.
The fundamental difference between server-based Internet applications
and the desktop applications that students have already learned to
build is that server-based applications have multiple simultaneous
users. Coupled with the unreliability of networks, this gives rise to
the problems of concurrency and transactions. Stateless
communications protocols such as HTTP mean that the student must learn
how to build a stateful user experience on top of stateless protocols.
For persistence between clicks and management of concurrency and
transactions, the student needs to learn how to use the relational
database management system. Finally, though, this goes beyond the
simple standalone amazon.com-style service, students ought to learn
about object-oriented distributed computing where each object is a Web
service.

In addition to learning these principles, we'd like the student to
learn some skills. This is a laboratory course, and we want students
who graduate to be competent software engineers. We'd like our
students to be able to take vague and ambitious specifications and
turn them into a system design that can be built and launched within a
few months, with the features most important to users and easiest to
develop built first and the difficult bells and whistles deferred to a
second version. We'd like our students to know how to test prototypes
with end-users and refine their application design once or twice
within even a three-month project. When business requirements are
extreme, e.g., "build me amazon.com by yourself in three months," we
want our students to understand how to cope with the challenge via
automatic code generation and use of open-source toolkits where
appropriate.

We can recast the "student knows how to build amazon.com" statement in
terms of technologies used. By the time someone has finished reading
and doing the exercises in this book, he or she will understand HTTP,
HTML, SQL, mobile browsers on telephones, VoiceXML, data modeling,
page flow and interaction design, server-side scripting, and usability
analysis.

This book is available on the Web, at no charge to readers or other
universities that adopt the course, at a permanent URL:
http://philip.greenspun.com/seia/. If you
don't like it, the authors will happily refund your purchase price.
:-)

Eve Andersson, Philip Greenspun, Andrew Grumet

Cambridge, Massachusetts

December 2003

Continue on to Introduction

Acknowledgments

The book is an outgrowth of six semesters of teaching experience at
MIT and other universities. So our first thanks must go to our students, who taught us what
worked and what didn't work. It is a privilege to teach at MIT, and
every instructor should have the opportunity once in a lifetime.

We did not teach alone. Hal Abelson and the late Michael Dertouzos
were our partners on the lecture podium. Hal was Mr. Pedagogy and
also pushed the distributed computing ideas to the fore. Michael gave
us an early push into voice applications. Lydia Sandon was our first
teaching assistant. Ben Adida was our TA at MIT in the fall of 2003
when this book took its final pre-print shakedown cruise.

In semesters where we did not have a full-time TA, the students' most
valuable partners were their industry mentors, most of whom were MIT
alumni volunteering their time: David Abercrombie, Tracy Adams, Ben
Adida, Mike Bonnet, Christian Brechbuhler, James Buszard-Welcher,
Bryan Che, Bruce Keilin, Chris McEniry, Henry Minsky, Neil Mayle, Dan
Parker, Richard Perng, Lydia Sandon, Mike Shurpik, Steve Strassman,
Jessica Wong, and certainly a few more whose names have slipped from
our memory.

We've gotten valuable feedback from instructors at other universities
using these materials, notably Aurelius Prochazka at Caltech and Oscar
Bonilla at Universidad Galileo.

Introduction

"The concern for man and his destiny must always be the chief interest
of all technical effort. Never forget it between your diagrams and
equations."

-- Albert Einstein

A twelve-year-old can build a nice Web application using the tools that came
standard with any Linux or Windows machine. Thus it is worth asking
ourselves, "What is challenging, interesting, and inspiring about
Internet-based applications?"

There are some easy-to-identify technology-related challenges. For
example, in many situations it would be more convenient to interact
with an information system by talking and listening. You're in the
bathtub reading New Yorker. You want to know whether
there are any early morning appointments on your calendar that would
prevent you from staying in the tub and finishing an interesting
article. You've bought a new DVD player. You could read the manual
and master the remote control. But in a dark room wouldn't it be
easier if you could simply ask the house or the machine to "back up 30
seconds"? You're driving in your car and curious to know the
population of Thailand and the country's size relative to the state of
California; voice is your only option.

There are some easy-to-identify missing features in typical Web-based
applications. For example, shareable and portable sessions. You can
use the Internet to share your photos. You can use the Internet to
share your music. You can use the Internet to share your documents.
The one thing that you can't typically share on the Internet is your
experience of using the Internet. Suppose that you're surfing a
travel site, planning a trip for yourself and three friends. Wouldn't
it be nice if your companions could see what you're looking at, page
by page, and speak comments into a shared voice session? If everyone
has the same brand of computer and special software, this is easy
enough. But shareable sessions ought to be a built-in feature of
sites that are usable from any browser. The same infrastructure could
be used to make sessions portable. You could start browsing on a
desktop computer with a big screen and finish your session in a taxi
on a mobile phone.

Speaking of mobile browsers, their small screens raise the issues of
multi-modal user interfaces and personalization. With the General
Packet Radio Service or "GPRS", rolled out across the world in late
2001, it became possible for a mobile user to simultaneously speak
and listen in a voice connection while using text screens delivered
via a Web connection. As an engineer, you'll have to decide when it
makes sense to talk to the user, listen to the user, print out a
screen of options to the user, and ask the user to highlight and click
to choose from that screen of options. For example, when booking an
airline flight it is much more convenient to speak the departure and
arrival cities than to choose from a menu of thousands of airports
worldwide. But if there are ten options for making the connection you
don't want to wait for the computer to read out those ten and you don't
want to have to hold all the facts about those ten options in your
mind. It would be more convenient for the travel service to send you
a Web page with the ten options printed and scrollable.

On the personalization front, consider the corporate "knowledge
sharing" or "knowledge management" system. Initially, workers are
happy simply to have this kind of system in place. But after a few
years the system becomes so filled with stuff that it is difficult to
find anything relevant. Given an organization in which one thousand
documents are generated every day, wouldn't it be nice to have a
computer system smart enough to figure out which three are likely to be
most interesting to you? And display the titles on the three lines of
your phone's display?

A more interesting challenge is presented by asking the question, "Can
a computer help me be all that I can be?" Engineers often build
things that are easy to engineer. Fifty years after the development
of television, we started building high-definition television (HDTV).
Could engineers build a higher resolution standard? Absolutely. Did
consumers care? So far it seems that not too many do care.

Let's put it this way: Given a choice between watching Laverne and
Shirley in HDTV and being twenty pounds thinner, which would you
prefer?

Thought so.

If you take a tape measure down to the self-help section of your local
bookstore you'll discover a world of unmet human goals. A lot of
these goals are tough to reach because we lack willpower. Olympic
athletes also lack willpower at times. But they get to the Olympics,
and we're still fat. Why? Maybe because they have a coach and we
don't. Where are the engineering challenges in building a
network-based diet coach? First look at a proposed interaction with
the computer system that we'll call "Dr. Rachel":

	

0900: you're walking to work; you call Dr. Rachel from your mobile:

	Dr. Rachel: "What did you have for breakfast this morning?" (she
knows that it is morning in your typical time zone; she knows that
you've not called in so far today)

	You: "Glass of Orange Juice. Two eggs. Two slices of bread.
Coffee with milk and sugar."

	Dr. Rachel: "Was the orange juice glass small, medium, or large?"

	You: "Medium"

	Dr. Rachel: "Anything else?"

	You: hang up.

1045: your programmer officemate brings in a box of donuts; you
eat one. Since you're at your computer anyway, you pull down the
Dr. Rachel bookmark from the Web browser's "favorites" menu. You
quickly inform Dr. Rachel of your consumption. She confirms the donut
and shows you a summary page with your current estimated weight, what
you've reported eating so far today, the total calories consumed so
far today and how many are left in your budget. The page shows a
warning red "Don't eat more than one small sandwich for lunch" hint.

1330: you're at the cafe down the street, having a small sandwich
and a Diet Coke. It is noisy and you don't want to disturb people at
the neighboring tables. You use your mobile phone's browser to connect to
Dr. Rachel. She knows that it is lunchtime and that you've not told her
about lunch so the lunch menus come up first. You report your
consumption.

1600: your desktop machine has crashed (again). Fortunately the
software company where you work provides free snacks and soda. You go
into the kitchen and power down on a bag of potato chips and some
Mountain Dew. When you get back to your desk, your computer is still
dead. You call Dr. Rachel from your wired phone and tell her about the
snack and soda. She cautions you that you'll have to go to the gym
tonight.

1900: driving back from the gym, you call Dr. Rachel from your car
and tell her that you worked out for 45 minutes.

2030: you're finished with dinner and weigh yourself. You use the
Web browser on your home computer to report the food consumption and
weight as measured by the scale. Dr. Rachel responds with a Web page
informing you that the measured weight is higher than she would have
predicted. She's going to adjust her assumptions about your portion
estimates, e.g., in the future when you say "medium" she'll assume
"large".

From the sample interaction, you can infer that Dr. Rachel must
include the following components: an adaptive model of the user; a
database of calorie counts for different foods; some knowledge about
effective dieting, e.g., how many calories can be consumed per day if
one intends to reach Weight X by Date Y; a Web browser interface; a
mobile browser interface; a conversational voice interface (though
perhaps one could get by with a simple VoiceXML interface).

What if, after two months, you're still fat? Should Dr. Rachel call
you up in the middle of meals to suggest that you don't need to clean
your plate? Where's the line between effective and annoying? Can the
computer system read your facial expression to figure out when to back
off?

What are the enduring unmet human goals? To connect with other people
and to learn. Email and "reference library" were the two universally
appealing applications of the Internet, according to a December 1999
survey conducted by Norman Nie and Lutz Erbring and
reported in "Internet and Society", a January 2000 report of the
Stanford Institute for the Quantitative Study of Society (http://www.stanford.edu/group/siqss/Press_Release/Preliminary_Report.pdf).
Entertainment and business-to-consumer e-commerce were far down the
list.

Let's consider the "connecting with other people" goal. Suppose the
people already know each other. They may be able to meet
face-to-face. They can almost surely pick up the telephone and call
each other using a system that dates from the Nineteeth Century. They may
choose to exchange email, a system that dates from the 1960s. It
doesn't look as though there is any challenge for twenty-first
century engineers here.

Suppose the people don't already know each other. Can technology
help? First we might ask "Should technology help?" Why would you
want to talk to a bunch of strangers rather than your close friends
and family? The problem with your friends and family is that by and
large they (a) know the same things that you know, and (b) know the
same people that you know. Mark Granovetter's classic 1973 study "The
Strength of Weak Ties" (American Journal of Sociology
78:1360-80) showed that most people got their jobs from people whom
they did not know very well. Friends of friends of friends, perhaps.
There are aggregate social and economic advantages to networks of
people with a lot of weak ties. These networks have much faster
information flow than networks in which people stick to their families
and their villages. If you're exploring a new career or area of
interest, you want to reach out beyond the people whom you know very
well. If you're starting a new enterprise, you'll need to hire people
with very different skills from your own. Where better to meet those
new people than on the Internet? You probably won't become as
strongly tied to them as you are to your best friends. But they'll
give you the help that you need.

How will you find the people who can help you, though? Should you
send a broadcast email to all 100 million Internet users? That seems
to be a popular strategy but it isn't clear how effective it is at
generating the good will that you'll need. Perhaps we need an
information system where individuals interested in a particular
subject can communicate with each other, i.e., an online
community. This is precisely the kind of information system on
which the chapters that follow will dwell.

What about the second big goal (learning)? Heavy technological
artillery has been applied to education starting in the 1960s. The
basic idea has always been to amplify the efforts of our greatest
current teachers, usually by canning and shipping them to new
students. The canning mechanism is almost always a video camera. In
the 1960s we shipped the resulting cans via closed-circuit television.
In the 1970s the Chinese planned to ship their best educational cans
all over their nine-million-square-kilometer land via satellite
television. In the 1980s we shipped the cans on VHS video tapes. In
the 1990s we shipped the cans via streaming Internet media. We've
been pursuing essentially the same approach for forty years. If it
worked you'd expect to have seen dramatic results.

What if, instead of increasing the number of learners per teacher, we
increased the number of teachers? There are already plenty of
opportunities to learn at your convenience. If it is 3:00 am and you
want to learn about quantum mechanics, you need only pull a book from
your shelf and turn on the reading light. But what if you want to
teach at 3:00 am? Your friends may not appreciate being called up at
0300 and told "Hey, I just learned that the Franck-Hertz Experiment in
1914 confirmed the theory that electrons occupy only discrete,
quantized energy states." What if you could go to a server-based
information system and say "show me a listing of all the unanswered
questions posted by other users"? You might be willing to answer a
few, simply for the satisfaction of helping another person and feeling
like an expert. When you got tired, you'd go to bed. Teaching is fun
if you don't have to do it forty hours per week for thirty years.

Imagine if every learning photographer had a group of experienced
photographers answering his or her questions? That's the online
community photo.net, started by
one of the authors as a collection of tutorial articles and a
question-and-answer forum in 1993 and, as of August 2005, home to 426,000
registered users engaged in answering each other's questions and
critiquing each other's photographs. Imagine if every current MIT
student had an alumnus mentor? That's what some folks at MIT have
been working on. It seems like a much more effective strategy to get
some volunteer labor out of the 90,000 alumni than to try to squeeze
more from the 930 faculty members. Most of MIT's alumni don't live in
the Boston area. Students can benefit from the volunteerism of
distant alumni only if (1) student-faculty interaction is done in a
computer-mediated fashion so that it becomes visible to authorized
mentors, and (2) mentors can use the same information system as the
students and faculty to get access to handouts, assignments, and
lecture notes. We're coordinating people separated in space and time
who share a common purpose. Again, that's an online community.

Online communities are challenging because learning is difficult and
people are idiosyncratic. Online communities are challenging because
the software that works for a community of 200 won't work for a
community of 2,000 or 20,000. Online communities are inspiring
engineering projects because they deliver to users two of the things
that they want most out of life: connections to other people and
education.

If your interest in this book stems from the desire to build a
straightforward e-commerce site, don't despair. It turns out that the
most successful e-commerce and collaborative commerce sites are, at
their core, actually online communities. Amazon is the best known
example. In 1995 there were dozens of online bookstores with
comprehensive catalogs. Amazon had a catalog but, with its reader
review facility, Amazon also had a mechanism for users to communicate
with each other. Thus did the programmers at Amazon crush their
competition.

As you work through this book, you're going to build an online
learning community. Along the way, you'll pick up all the important
principles, skills, and technologies for building desktop Web, mobile
Web, and voice applications of all types.

More

	on GPRS: "Emerging Technology: Clear Signals for General
Packet Radio Service" by Peter Rysavy in the December 2000 issue of
Network Magazine, available at http://www.rysavy.com/Articles/GPRS2/gprs2.html

	on the state-of-the-art in easy-to-build voice applications: Chapter 10 on VoiceXML (stands by itself
reasonably well)

Basics

In this chapter you'll learn how to evaluate Internet application
development environments. Then you'll pick one. Then you'll learn
how to use it.

You're also going to learn about the stateless and anonymous protocol
that makes Web development different from classical inter-computer
application development. You'll learn why the relational database
management system is key to controlling the concurrency problem that
arises from multiple simultaneous users. You'll develop software to
read and write Extensible Markup Language (XML).

Old-Style Communications Protocols

In a traditional communications protocol, Computer Program A opens a
connection to Computer Program B. Both programs run continuously for
the duration of the communication. This makes it easy for Program B
to remember what Program A has said already. Program B can build up
state in its memory. The memory can in fact contain a
complete log of everything that has come over the wire from Program A.

**** insert figure here ****

Figure 2.1:

In a traditional stateful communications protocol,
two programs running on two separate computers establish a connection
and proceed to use that connection for as long as necessary, typically
until one of the programs terminates.

HTTP: Stateless and Anonymous

HyperText Transfer Protocol (HTTP) is the fundamental means of
exchanging information and requesting services on the Web. HTTP is
also used when developing text services for mobile phone users and,
with VoiceXML, also used to implement voice-controlled applications.

The most important thing to know about HTTP is that it is
stateless. If you view ten Web pages, your browser makes ten
independent HTTP requests of the publisher's Web server. At any time
in between those requests, you are free to restart your browser
program. At any time in between those requests, the publisher is free
to restart its server program.

Here's the anatomy of a typical HTTP session:

	user types "www.yahoo.com" into a browser

	browser translates www.yahoo.com into an IP address and tries to
open a TCP connection with port 80 of that address (TCP is "Transmission
Control Protocol" and is the fundamental system via which two
computers on the Internet send streams of bytes to each other.)

	once a connection is established, the browser sends the following
byte stream: "GET / HTTP/1.0" (plus two carriage-return line-feeds).
The "GET" means that the browser is requesting a file. The "/" is the
name of the file, in this case simply the root index page. The
"HTTP/1.0" says that this browser would prefer to get a result back
adhering to the HTTP 1.0 protocol.

	Yahoo responds with a set of headers indicating which protocol is
actually being used, whether or not the file requested was found, how
many bytes are contained in that file, and what kind of information is
contained in the file (the Multipurpose Internet Mail Extensions or
"MIME" type)

	Yahoo's server sends a blank line to indicate the end of the headers

	Yahoo sends the contents of its index page

	The TCP connection is closed when the file has been received by
the browser.

You can try it yourself from an operating system shell:

	

bash-2.03$ telnet www.yahoo.com 80
Trying 216.32.74.53...
Connected to www.yahoo.akadns.net.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.0 200 OK
Content-Length: 18385
Content-Type: text/html

<html><head><title>Yahoo!</title><base href=http://www.yahoo.com/>...

In this case we've used the Unix telnet command with an
optional argument specifying the port number for the target
host--everything typed by the programmer is here indicated in bold.
We typed the "GET ..." line ourselves and then hit Enter twice on the
keyboard. Yahoo's first header back is "HTTP/1.0 200 OK". The HTTP
status code of 200 means that the file was found ("OK").

See the HTTP standard at http://www.w3.org/Protocols/
for more information on HTTP.

Don't get too lost in the details of the HTTP example. The point is
that when the connection is over, it is over. If the user follows a hyperlink
from the Yahoo front page to "Photography," for example, that's a
brand new HTTP request. If Yahoo is using multiple servers to operate
its site, the second request might go to an entirely different
machine. This sounds fine for browsing Yahoo. But suppose you're
shopping at an e-commerce site such as Amazon. If you put something in
your shopping cart on one HTTP request, you still want it to be there
ten clicks later. Or suppose you've logged into photo.net on Click 23
and on Click 45 are responding to a discussion forum posting. You
don't want the photo.net server to have forgotten your identity and
demand your username and password again.

This presents you, the engineer, with a challenge: creating a stateful
user experience on top of a fundamentally stateless protocol.

Where can you store state from request to request? Perhaps in a log
file on the Web server. The server would write down "Joe Smith wants
three copies of Bus Nine to Paradise by Leo Buscaglia".
On any subsequent request by Joe Smith, the server-side script can
simply check the log and display the contents of the shopping cart. A
problem with this idea, however, is that HTTP is anonymous.
A Web server doesn't know that it is Joe Smith connecting. The server
only knows the IP address of the computer making the request.
Sometimes this translates into a host name. If it is
joe-smiths-desktop.stanford.edu, perhaps you can identify subsequent
requests from this IP address as coming from the same person. But
what if it is cache-rr02.proxy.aol.com, one of the HTTP proxy servers
connecting America Online's 20 million users to the public Internet?
The same user's next request will very likely come from a different
IP address, i.e., another physical computer within AOL's racks and
racks of proxy machines. The next request from
cache-rr02.proxy.aol.com will very likely come from a different
person, i.e., another physical human being among AOL's 20 million
subscribers who share a common pool of proxy machines.

Somehow you need to write some information out to an individual user
that will be returned on that user's next request.

If all of your pages are generated by computer programs as opposed to
being static HTML, one idea would be to rewrite all the hyperlinks on
the pages served. Instead of sending the same files to everyone, with
the same embedded URLs, customize the output so that a user who
follows a link is sending extra information back to the server. Here
is an example of how amazon.com embeds a session key in URLs:

	Suppose that a shopper follows a link to a page that displays a single book for sale, e.g., http://www.amazon.com/exec/obidos/ASIN/1588750019/.
Note that 1588750019 is an International Standard Book Number (ISBN) and
completely identifies the product to be presented.

	The amazon.com server redirects the request to a URL that includes
a session ID after the last slash, e.g.,
"http://www.amazon.com/exec/obidos/ASIN/1588750019/103-9609966-7089404"

	If the shopper rolls a mouse over the hyperlinks on the page
served, he or she will notice that all the hyperlinks contain, at the
end, this same session ID.

Note that this session ID does not change in length no matter how long
a shopper's session or how many items are placed in the shopping cart.
The session ID is being used as a key to look up the shopping basket
contents in a database within amazon.com. An alternative
implementation would be to encode the complete contents of the
shopping cart in the URLs instead of the session ID. Suppose, for
example, that Joe Shopper puts three books in his shopping cart.
Amazon's server could simply add three ISBNs to all the hyperlink URLs
that he might follow, separated by slashes. The URLs will be getting
a bit long but Amazon's programmers can take encouragement from this
quote from the HTTP spec:

The HTTP protocol does not place any a priori limit on the length of a
URI. Servers MUST be able to handle the URI of any resource they
serve, and SHOULD be able to handle URIs of unbounded length if they
provide GET-based forms that could generate such URIs. A server SHOULD
return 414 (Request-URI Too Long) status if a URI is longer than the
server can handle (see section 10.4.15).

There is no need to worry about turning away Amazon's best customers,
the ones with really big shopping carts, with a return status of "414
Request-URI Too Long". Or is there? Here is a comment from the HTTP
spec:

Note: Servers ought to be cautious about depending on URI lengths
above 255 bytes, because some older client or proxy
implementations might not properly support these lengths.

Perhaps this is why the real live amazon.com stores only session ID in
the URLs.

Cookies

Instead of playing games with rewriting hyperlinks in HTML pages we
can take advantage of an extension to HTTP known as
cookies. We said that we needed a way to write some
information out to an individual user that will be returned on that
user's next request. The first paragraph of Netscape's "Persistent Client State HTTP Cookies
 — Preliminary Specification" (http://wp.netscape.com/newsref/std/cookie_spec.html)
reads

Cookies are a general mechanism which server side connections (such as
CGI scripts) can use to both store and retrieve information on the
client side of the connection. The addition of a simple, persistent,
client-side state significantly extends the capabilities of Web-based
client/server applications.

How does it work? After Joe Smith adds a book to his shopping cart,
the server writes

Set-Cookie: cart_contents=1588750019; path=/

As long as Joe does not quit his browser, on every subsequent request
to your server, the browser adds a header:

Cookie: cart_contents=1588750019

Your server-side scripts can read this header and extract the current
contents of the shopping cart.

Sound like the perfect solution? In some ways it is. If you're a
computer science egghead you can take pride in the fact that this is a
distributed database management system. Instead of keeping a big log
file on your server, you're keeping bits of information on thousands
of users' machines worldwide. But one problem with cookies is that
the spec limits you to asking each browser to store no more than 20
cookies on behalf of your server and each of those cookies must be no
more than 4 kilobytes in size. A minor problem is that cookie
information will be passed back up to your server on every page load.
If you have indeed indulged yourself by parking 80 Kbytes of
information in 20 cookies and your user is on a modem, this is going to
slow down Web interaction.

A deeper problem with cookies is that they aren't portable for the
user. If Joe Smith starts shopping from his desktop computer at work
and wants to continue from a mobile phone in a taxi or from a Web
browser at home, he can't retrieve the contents of his cart so far.
The shopping cart resides in the memory of his computer at work.

A final problem with cookies is that a small percentage of users have
disabled them due to the privacy problems illustrated in figure 2.2.

Figure 2.2:

Cookies coupled with the open-hearted behavior of 1990s browsers meant
the end of privacy on the Internet. Suppose that three publishers
cooperate and agree to serve all of their banner ads from
http://noprivacy.com. When Joe User visits search-engine.com and types
in "acne cream", the page comes back with an IMG referencing
noprivacy.com. Joe's browser will automatically visit noprivacy.com
and ask for "the GIF for SE9734". If this is Joe's first
time using any of these three cooperating services, noprivacy.com will
issue a Set-Cookie header to Joe's browser. Meanwhile,
search-engine.com sends a message to noprivacy.com saying "SE9734
was a request for acne cream pages." The "acne cream"
string gets stored in noprivacy.com's database along with
"browser_id 7586." When Joe visits bigmagazine.com, he is
forced to register and give his name, e-mail address, Snail mail
address, and credit card number. There are no ads in
bigmagazine.com. They have too much integrity for that. So they
include in their pages an IMG referencing a blank GIF at
noprivacy.com. Joe's browser requests "the blank GIF for
BM17377" and, because it is talking to noprivacy.com, the site
that issued the Set-Cookie header, the browser includes a cookie
header saying "I'm browser_id 7586." When all is said and
done, the noprivacy.com folks know Joe User's name, his interests, and
the fact that he has downloaded six spanking JPEGs from kiddieporn.com.

A reasonable engineering approach to using cookies is to send a unique
identifier for the data rather than the data, just as in the
amazon.com "session ID in the URL" example previously described.
Information about the contents of the shopping cart will be kept in
some sort of log on the server. This means that it can be picked up
from another location. To see how this works in practice, go to an
operating system shell and request the home page of photo.net:

	

bash-2.03$ telnet www.eveandersson.com 80
Trying 64.94.245.206...
Connected to www.eveandersson.com.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.0 200 OK
Set-Cookie: ad_browser_id=3291092; Path=/; Expires=Fri, 01-Jan-2010 01:00:00 GMT
Set-Cookie: ad_session_id=3291093%2c0%2c6634C478EF46FC%2c10622158; Path=/; Max-Age=86400
Set-Cookie: last_visit=1071622158; path=/; expires=Fri, 01-Jan-2010 01:00:00 GMT
Content-Type: text/html; charset=iso-8859-1
MIME-Version: 1.0
Date: Thu, 03 Feb 2005 00:49:18 GMT
Server: AOLserver/3.3.1+ad13
Content-Length: 8289
Connection: close

<html>
 <head>
...

Note that two cookies are set. The first one,
ad_browser_id is given an explicit expiration date in
January 2010. This instructs the browser to record the cookie value,
in this case "3291092," on the hard drive. The cookie's value will
continue to be sent back up to the server for the next five years,
even if the user quits and restarts the browser. What's the point of
having a browser cookie? If the user says "I prefer text-only" or "I
prefer French language" that's probably worthwhile information to keep
with the browser. The text-only preference may be related to a slow
Internet connection to that computer. If the computer is in a home
full of Francophones, chances are that all the people who share the
browser will prefer French.

The second cookie set, ad_session_id is set to expire
after one hour ("Max-Age=3600"). If not explicitly set to expire, it
would expire when the user quit his or her browser. Things worth
associating with a session ID include the contents of a shopping cart
on an e-commerce site, though note that if photo.net were a shopping
site, it would not be a good idea to expire the session cookie after
one hour! It is annoying to build up a cart, be called away from your
computer for a few hours, and then have to start over when you return
to what you thought was a working Web page.

If we were logged into photo.net, there would be a third cookie, one
that identifies the user. Languages and presentation preferences
stored on the server on behalf of the user would then override
preferences kept with the browser ID.

Server-Side Storage

You've got ID information going out to and coming back from browsers,
via either the cookie extension to HTTP or URL rewriting.
Now you have to figure out a way to keep associated information on the
Web server.

For flexibility in how you present and analyze user-contributed data,
you'll probably want to keep the information in a structured form.
For example, it would be nice to have a table of all the items put
into shopping carts by various users. And another table of orders.
And another table of reader-contributed product reviews. And another
table of questions and answers.

What's a good tool for storing tables of information? Consider first
a spreadsheet program. These are inexpensive and easy to use. One
should never apply more complex technology than necessary for solving
a problem. Something like Visicalc, Lotus 1-2-3, Microsoft
Excel, or StarOffice Calc would seem to serve nicely.

The problem with a spreadsheet program is that it is designed for one
user. The program listens for user input from two sources: mouse and
keyboard. The program reports its results to one place: the screen.
Any source of persistence for a Web server has to contend with
potentially thousands of simultaneous users both reading and writing
to the database. This is the problem that database management
systems (DBMS) were intended to solve.

A good way to think about a relational database management system
(RDBMS, the most popular type of DBMS) is as a spreadsheet program
that sits inside a dark closet. If you need to create a new table you
slip a little strip of paper under the door with "CREATE TABLE ..."
written on it. To add a row of data to that table, you slip another
little strip under the door saying "INSERT...". To change some data
within the table, you write "UPDATE.. " on a paper strip. To remove a
row, you send in a strip starting with "DELETE".

Notice that we've solved the concurrency problem here. Suppose
that you have only one copy of Bus Nine to Paradise left
in inventory and 1000 users at the same instant request
Dr. Buscaglia's work. By arranging the strips of paper in a row, the
program in the closet can decide to process one INSERT into the orders
table and reject the 999 others. This is better than 1000 people
fighting over a single keyboard and mouse.

Once we've sent information into the closet, how do we get it back
out? We can write down a request for a report on a strip of paper
starting with "SELECT" and slide it under the door. The DBMS in the
dark closet will prepare a report for us and slide that back to us
under the same door.

How do we evaluate whether or not a DBMS is powerful enough for our
application? Starting in the 1960s IBM proposed the "ACID test":

	Atomicity

	

Results of a transaction's execution are either all committed or all
rolled back. All changes take effect, or none do. Suppose that a user
is registering by uploading name, address, and JPEG portrait into
three separate tables. A Web script tells the database to perform
three inserts as part of a transaction. If the hard drive fills up after the name and address
have been inserted but before the portrait can be stored, the changes
to the name and address tables will be rolled back.

	

Consistency

	

The database is transformed from one valid state to another valid
state. A transaction is legal only if it obeys user-defined integrity
constraints. Illegal transactions aren't allowed and, if an integrity
constraint can't be satisfied, the transaction is rolled back. For
example, suppose that you define a rule that postings in a discussion
forum table must be attributed to a valid user ID. Then you hire Joe Novice
to write some admin pages. Joe writes a delete-user page that doesn't
bother to check whether or not the deletion will result in an orphaned
discussion forum posting. An ACID-compliant DBMS will check, though,
and abort any transaction that would result in you having a discussion
forum posting by a deleted user.

	

Isolation

	

The results of a transaction are invisible to other transactions until
the transaction is complete. For example, suppose you have a page to
show new users and their photographs. This page is coded in reliance
on the publisher's directive that there will be a portrait for every
user and will present a broken image if there is not. Jane Newuser is
registering at your site at the same time that Bill Olduser is viewing
the new user page. The script processing Jane's registration has
completed inserting her name and address into their respective tables.
But it is not done storing her JPEG portrait. If Bill's query starts
before Jane's transaction commits, Bill won't see Jane at all on his
new-users page, even though Jane's insertion into some of the tables
is complete.

	

Durability

	

Once committed (completed), the results of a transaction are permanent
and survive future system and media failures. Suppose your e-commerce
system inserts an order from a customer into a database table and then
instructs CyberSource to bill the customer $500. A millisecond later,
before your server has heard back from CyberSource, someone trips over
the machine's power cord. An ACID-compliant DBMS will not have forgotten
about the new order. Furthermore, if a programmer spills coffee into
a disk drive, it will be possible to install a new disk and recover
the transactions up to the coffee spill, showing that you tried to
bill someone for $500 and still aren't sure what happened over at
CyberSource. Notice that to achieve the D part of ACID requires that
your computer have more than one hard disk.

Why the Relational Database Management System?

Why is the relational database management system (RDBMS) the dominant
technology for persistence behind a Web server? There are three main
factors.

The first pillar of RDBMS popularity is a declarative query language
called "SQL". The most common style of programming is not declarative; it is called
"imperative" or "procedural". You tell the computer what to do, step
by step:

	do this

	do this

	do this

	if it is after March 17, 2023, do this, this, and then this;
otherwise do this

	do this

...

Programs written in this style have two drawbacks. First, they
quickly become complex and then can be developed and maintained
only by professional programmers. Second, they contain a lot of errors.
For example, the program sketched above may have quite a few bugs. It
is not after March 17, 2023. So we can't be sure that the steps
specified in the THEN clause of the IF statement are error-free.

An alternative style of programming is "declarative". We tell the
computer what we want, e.g., a report of users who've been registered
for more than one year but who haven't answered any questions in the
discussion forum. We don't tell the RDBMS whether to scan the users
table first and then check the discussion forum table or vice versa.
We just specify the desired characteristics of the report and it is
the job of the RDBMS to prepare it.

Stop someone in the street. Pick someone with fashionable clothing so
you can be sure he or she is not a professional programmer. Ask this
person, "Have you ever programmed in a declarative computer language?"
Follow that up with "Have you ever used a spreadsheet program?"
Chances are that you can find quite a few people who will tell you
that they've never written any kind of computer program but yet
they've developed fairly sophisticated spreadsheet models. Why? The
spreadsheet language is declarative: "Make this cell be the sum of
these three other cells". The user doesn't tell the spreadsheet
program in what order to perform the computation, merely the desired
result.

The declarative language of the spreadsheet created an explosion in
the number of people who were able to develop working computer
programs. Through the mid-1970s, organizations that worked with data
kept a staff of programmers. If you wanted some analysis performed
you'd call one into your office, explain the assumptions and formulae
to be used, then wait a few days for a report. In 1979 Dan Bricklin (MIT EECS '73) and Bob Frankston (MIT EECS '70)
developed Visicalc and suddenly most of the people who'd been
hollering for programming services were able to build their own
models.

With an RDBMS the metaphoric little strips of paper pushed under the door are
declarative programs in the SQL language. (See SQL for Web
Nerds at http://philip.greenspun.com/sql/
for a SQL language tutorial.)

The second pillar of RDBMS popularity is isolation of important data
from programmers' mistakes. With other kinds of database management
systems it is possible for a computer program to make arbitrary
changes to the data set. This can be convenient for applications such
as computer-aided design systems with very complex data structures.
However if your goal is to preserve a data set over a twenty-five-year period,
letting arbitrarily buggy imperative programs make arbitrary changes
isn't a good idea. The RDBMS limits programmers to uttering very
simple statements of the form INSERT, DELETE, and UPDATE.
Furthermore, if you're unhappy with the contents of your database you
can simply review all the strips of paper that were pushed under the
door. Each strip will contain an SQL statement and the name of the
program or programmer that authored the strip. This makes it easy to
correct mistakes and reform offenders.

The third and final pillar of RDBMS popularity is good performance
with many thousands of simultaneous users. This is more a reflection
on the refined state of commercial development of systems such as IBM
DB2, Oracle, Microsoft SQL Server, and the open-source PostgreSQL,
than an inherent feature of the RDBMS itself.

The Steps

When building any Internet application you're going to go through the
following steps:

	Develop a data model. What information are you going to store and
how will you represent it?

	Develop a collection of legal transactions on that model, e.g.,
inserts and updates.

	Design the page flow. How will the user interact with the system?
What steps will lead up to one of those legal transactions? (Note that
"page flow" embraces interaction design on Web, mobile browsers, and also via
hierarchical voice menus in VoiceXML but not conversational
speech systems.)

	Implement the individual pages. You'll be writing scripts that
query information from the data model, wrap that information in a
template (in HTML for a Web application), and return the combined
result to the user.

It is very unlikely that you'll have a choice of tools for persistent
storage. You will be using an RDBMS and won't be making any
fundamental technology decisions at Steps 1 or 2. Designing the page
flow is a purely abstract exercise. There are some technology-imposed
limits on the interface but those are generally derived from public
standards such as HTML, XHTML Mobile Profile, and VoiceXML. So you need not make any
technology choices for Step 3.

Step 4 is intellectually uninteresting and also uninteresting from an
engineering point of view. An Internet service lives or dies by Steps
1 through 3. What can the service do for the user? Is the page flow
comprehensible and usable? The answers to these questions are
determined at Steps 1 through 3. However, Step 4 is where you have a
huge range of technology choices and therefore it seems to generate a
lot of discussion. This course and this book are neutral on the
subject of how you go about Step 4 but we provide some guidance on how
to make choices.

First, though, let's step back and make sure that everyone knows HTML.

[bookmark: html]
HTML

Here is some legal HTML:

My Samoyed is really hairy.

That is a perfectly acceptable HTML document. Type it up in a text
editor, save it as index.html, and put it on your Web server. A Web
server can serve it. A user with Netscape Navigator can view it. A
search engine can index it.

Suppose you want something more expressive. You want the word
really to be in italic type:

My Samoyed is <I>really</I> hairy.

HTML stands for Hypertext Markup Language. The <I> is markup. It
tells the browser to start rendering words in italics. The </I>
closes the <I> element and stops the italics. If you want to be
more tasteful, you can tell the browser to emphasize the word
really:

My Samoyed is really hairy.

Most browsers use italics to emphasize, but some use boldface and browsers for ancient ASCII terminals (e.g., Lynx) have to ignore this tag or come up with a clever rendering method. A picky user with the right browser program can even customize the rendering of particular tags.

There are a few dozen more tags in HTML. You can learn them by
choosing View Source from your Web browser when visiting sites whose
formatting you admire. You can look at the HTML reference chapter of this book.
You can
learn them by starting at Yahoo's directory of HTML guides and tutorials, http://dir.yahoo.com/Computers_and_Internet/Data_Formats/HTML/Guides_and_Tutorials/. Or you can buy

HTML & XHTML: The Definitive Guide

(Musciano and Kennedy; O'Reilly, 2002).

Document Structure

Armed with a big pile of tags, you can start strewing them among your
words more or less at random. Though browsers are extremely forgiving of
technically illegal markup, it is useful to know that an HTML document
officially consists of two pieces: the head and the body.
The head contains information about the document as a whole, such as the
title. The body contains information to be displayed by the user's
browser.

Another structure issue is that you should try to make sure that you
close every element that you open. If your document has a
<BODY> it should have a </BODY> at the end. If you
start an HTML table with a <TABLE> and don't have a
</TABLE>, a browser may display nothing. Tags can
overlap, but you should close the most recently opened before the
rest, e.g., for something both boldface and italic:

My Samoyed is <I>really</I> hairy.

Something that confuses a lot of new users is that the <P> element
used to surround a paragraph has an optional closing tag </P>.
Browsers by convention assume that an open <P> element is
implicitly closed by the next <P> element. This leads a lot of
publishers (including lazy old us) to use <P> elements as
paragraph separators.

Here's the source HTML from a simply formatted Web document:

<html>
 <head>
 <title>Nikon D1 Digital Camera Review</title>
 </head>
 <body bgcolor=white text=black>
 <h2>Nikon D1</h2>
 by Philip Greenspun
 <hr>
 Little black spots are appearing at the top of every ...
 <h3>Basics</h3>
 The Nikon D1 is a good digital camera for ...
 <p>
 The camera's 15.6x23.7mm CCD image sensor ...
 <h3>User Interface</h3>
 If you wanted a camera with lots of buttons, switches, and dials ...
 <hr>
 <address>
 philg@mit.edu
 </address>
 </body>
</html>

Let's go through this document piece by piece (see
for how it looks rendered by a browser).

The <HTML> tag at the top says "I'm an HTML document". Note
that this tag is closed at the end of the document. It turns out that
this tag is unnecessary. We've saved the document in the file
"simply-page.html". When a user requests this document, the Web server looks
at the ".html" extension and adds a MIME
header to tell the user's
browser that this document is of type "text/html".

The HEAD element here is useful mostly so that the
TITLE element can be used to give this document a
name. Whatever text you place between <TITLE> and </TITLE>
will appear at the top of the user's browser window, on the Go
(Netscape) or Back (MSIE) menu, and in the bookmarks menu should the
user bookmark this page. After closing the head with a </HEAD>,
we open the body of the document with a <BODY> tag, to which
are added some parameters that set the background to white and the
text to black. Some Web browsers default to a gray background, and the
resulting lack of contrast between background and text is so tough on
users that it may be worth changing the colors manually. This is a
violation of interface design principles since it potentially
introduces an inconsistency in the user's experience of the Web.
However, we do it at photo.net without feeling too guilty about it
because (1) a lot of browsers use a white background by default, (2)
enough other publishers set a white background that our pages won't
seem inconsistent, and (3) it doesn't affect the core user interface
the way that setting custom link colors would.

Just below the body, we have a headline, size 2, wrapped in an
<H2> tag. This will be displayed to the user at the top of
the page. We probably should use <H1> but browsers typically
render that in a frighteningly huge font. Underneath the headline, the
phrase "Philip Greenspun" is a hypertext anchor which is why it
is wrapped in an A element. The <A HREF= says "this is a
hyperlink." If the reader clicks anywhere from here up to the
 the browser should fetch http://philip.greenspun.com/.

After the headline, author, and optional navigation, we put in a
horizontal rule tag: <HR>. One of the good things that we
learned from designer Dave Siegel (see http://philip.greenspun.com/wtr/getting-dates)
is not to overuse horizontal rules: Real graphic designers use
whitespace for separation. We use <H3> headlines in the text to
separate sections and only put an <HR> at the very bottom of the
document.

Underneath the last <HR>, we sign our documents with the email
address of the author. This way a reader can scroll to the bottom of
a browser window and find out who is responsible for what they've just
read and where to send corrections. The <ADDRESS> tag
usually results in an italics rendering by browser programs. Note
that this one is wrapped in an anchor tag with a target of "mailto:"
rather than "http:". If the user clicks on the anchor text (Philip's email
address), the browser will pop up a "send mail to philg@mit.edu"
window.

Picking a Programming Environment

Now you get to pick a programming environment for the rest of the
semester. If you've been building RDBMS-backed Internet applications
for some time, you can just use whatever you've been using. Switching
tools is seldom a path to glory. If you haven't built this kind of
software before, read on...

Choosing an RDBMS

There are probably three reasonable choices for an RDBMS this
semester: (1) Microsoft SQL Server, (2) Oracle, and (3) PostgreSQL.

For experienced Windows programmers, Microsoft SQL Server is easy to
install and administer. And if you expect to spend the rest of your
professional life in a Microsoft environment you might as well learn it.

Concurrency is Oracle's strongest suit relative to its commercial
competitors. In Oracle, readers never wait for writers and writers
never wait for readers. Suppose the publisher at a large site starts
a query at 12:00 PM summarizing usage by user. Oracle might have to
spend an hour sifting through 200 GB of tracking data. The disk
drives grind and one CPU is completely used up until 1:30 PM. Further
suppose that User #356712 comes in at 12:30 PM and changes his email
address, thus updating a row in the users table. If the
usage tracking query arrives at this row at 12:45 PM, Oracle will
notice that the row was last modified after the query started. Under
the "I" in ACID, Oracle is required to isolate the publisher from the
user's update. Oracle does this by reaching into the rollback segment
and producing data from user row #356712 as it was at 12:00 PM when
the query started. Here's the scenario in a table:

	Time
	Publisher
	Public Web Application

	12:00 PM
	Starts a 90-minute query summarizing usage for preceding
year
	--

	12:30 PM
	usage summary continues to chug away

	User #356712 updates email address from "joe@foobar.com"
to "joe@yahoo.com"

	12:45 PM
	usage summary arrives at User #356712; Oracle reaches
into rollback segment and pulls out "joe@foobar.com" for the report,
since that's what the value was at 12:30 PM
	--

	1:30 PM
	usage summary report completes
	--

How would this play out in Microsoft SQL Server? When you're reading,
you take read locks on the information that you're about to read.
Nobody can write until you release them. When you're writing, you
take write locks on the information that you're about to update.
Nobody can read or write until you release the locks. In the
preceding example, User #356712 would submit his request for the
address change at 12:30 PM. The thread on the Web server would be
blocked waiting for the read locks to clear. How long would it wait?
A full hour with a spinning/waving "browser still receiving
information" icon in the upper right corner of the browser window. If
you're thoughtful, you can program around this locking architecture in
SQL Server, but most Internet service operators would rather just
install Oracle than train their programmers to think more carefully
about concurrency.

The open-source purist's only realistic choice for an RDBMS is
PostgreSQL, available from www.postgresql.org. In some ways,
PostgreSQL has more advanced features than any commercial RDBMS, and it
has an Oracle-style multi-version concurrency system. PostgreSQL is
easy to install and administer, but is not used by operators of large
services because there is no way to build a truly massive PostgreSQL
installation or one that can tolerate hardware failures.

Most of the SQL examples in this book will use Oracle syntax. This is
partly because Oracle is the world's most popular RDBMS, but mostly
because Oracle is what we had running at MIT when we started working
in this area back in 1994 and therefore we have whole file systems
full of Oracle code. Problem set supplements (see end of chapter) may contain translations
for ANSI SQL databases such as Microsoft SQL Server and PostgreSQL.

Choosing a Procedural Language

As mentioned above, most of the time your procedural code, a.k.a. "Web
scripts", will be doing little more than querying the RDBMS and
merging the results with an HTML, XHTML Mobile Profile, or VoiceXML template. So your
productivity and code maintainability won't be affected much by your
choice of procedural language.

That said, let us put in a kind word for scripting languages. If you
need to write some heavy-duty abstractions you can always do those in
Java running inside Oracle or C# running within Microsoft .NET. But
for your presentation layer, i.e., individual pages, don't overlook
the advantages of using simpler and terser languages such as Perl,
Tcl, and Visual Basic.

Choosing an Execution Environment

Below are some things to look for when choosing Web servers and
Web/application servers.

one URL = one file

The first thing you should look for in an execution environment is the
property that one user-visible URL corresponds to one file in the file
system. It is much faster to debug a system if, given a complaint
about http://photo.net/foobar you can know that you'll find the
responsible computer program in the file system at
/web/photonet/www/foobar.something. Programming environments where
this is true

	Perl CGI

	Microsoft Active Server Pages

	Java Server Pages

	AOLserver ADP templates and .tcl scripts

A notable exception to this property is Java servlets. One servlet
typically processes several URLs. This proves cumbersome in practice
because it slows you down when trying to fix a bug in someone else's
code. The ideas of modularity and code reuse are nice, but try to
think about how many files a programmer must wade through in order to
fix a bug. One is great. Two is probably okay. N where N
is uncertain is not okay.

filters

We said that modularity and code reuse could be tossed in favor of
preserving the sacred principle of "one URL = one file". The way that
you get modularity and code reuse back is via filters, the
ability to instruct the Web server to "run this fragment of code
before serving any URL that starts with /yow/". This is particularly
useful for access control code. Suppose that you have fifteen scripts that
constitute the administration experience for a contest system. You
want to make sure that only authorized administrators can use the
pages. Checking for administrative access requires an SQL query. You
could write a procedure called
CheckForContestAdminAuthority and instruct your script
authors to include a call to this procedure in each of the fifteen admin
scripts. You've still got fifteen copies of some code: one IF statement,
one procedure call, and a call to an error message procedure if
CheckForContestAdminAuthority returns "unauthorized".
But the SQL query occurs only in one place and can be updated
centrally.

The main problem with this approach is not the fifteen copies of the IF
statement and its consequents. The problem is that inevitably one of
the script authors will forget to include the check. So your site has
a security hole. You close the hole and eliminate fourteen copies of the IF
statement by installing the code as a server filter. Note that for
this to work the filter mechanism must include an API for aborting
service of the requested page. Your filter needs to be able to tell
the Web server "Don't proceed with serving the user with the script or
document requested".

abstract URLs

As an engineer your primary contributions to an Internet service will
be data model and interaction design (Steps 1 through 3). When you're
sketching the page flow for a discussion forum on a white board you
give the pages names such as "all-topics", "one-topic", "one-thread",
"post-reply", "post-reply-confirm", etc. Let's call these abstract
URLs. Suppose that you elect to implement your service in Java
Server Pages. Does it make sense to have the URLs be
"all-topics.jsp", "one-topic.jsp", "one-thread.jsp", etc.? Why should
the users see that you've used JSP? Should they care? And if you
change your mind and switch to Perl, will you change the user-visible
URLs to "all-topics.pl", "one-topic.pl", "one-thread.pl", etc.? This
will break everyone's bookmarks. More importantly, this change will
break all of the links from other sites to yours. That's a high price
to pay for an implementation change that should have been invisible to
end-users.

You need a Web programming environment powerful enough that you can
build something that we'll call a request processor. This
program looks at an incoming abstract URL, e.g., "one-topic", and
follows the following logic:

	is there a .jsp file in the file system; if so, execute it

	look for headers requesting XHTML Mobile Profile for a cell phone
browser; if so and there is a .mobile file in the file system, serve
it, if not, continue

	look for a .html file

	look for a .jpg

	look for a .gif

(You'll want to customize the preference order for your server.)

centralized logging of RDBMS queries

The main job of your Web scripts will be to formulate SQL queries and
transactions. If things go wrong the most valuable information that
you can get is "what did my Web scripts tell the RDBMS to do and in
what order". The best Web/application server programs have a single
error log file into which they will optionally write all the queries
that are sent to the RDBMS.

Exercises

After solving these problems you will know

	How to log into your development server

	Rudiments of whatever programming language you've chosen

	How to create, execute, test, and debug a dynamic Web page

	How to write a Web page that queries a foreign server

	Rudiments of SQL

	How to query an RDBMS from the shell

	How to write a Web page that queries an RDBMS

	How to personalize Web applications by issuing and reading cookies

	How to read and write data in XML

	How to load a flat-file of data into an RDBMS table

If you're using Microsoft .NET, you'll find the examples helpful in
http://philip.greenspun.com/seia/examples-basics/dot-net-examples/.

Exercise 1: Finding Your Place in the World

Find your Web server's page root, the directory where the Web server
begins looking for files. Put a file there named "index.html" and
fill it with text identifying this as your server. Include your
hyperlinked email address at the bottom of the page.

Connect to your server from a Web browser, using only the host name.
For the rest of this problem set, we're going to assume that your
hostname is "yourhostname.com". Verify that when you request
http://yourhostname.com your customized page is presented. If you get
a directory listing instead your Web server is probably not configured
to look for index files named "index.html"; you'll have to reconfigure
your server. Now use an HTML validator to make sure that your HTML
is legal (see Yahoo's directory of HTML validators at http://dir.yahoo.com/Computers_and_Internet/Data_Formats/HTML/Validation_and_Checkers/
for a list of programs and services).

You've made at least two requests from your Web server now. These
will have been logged in the server access log. Find it in the file
system and verify that the times and files requested shown make sense
to you.

Exercise 2: Your first program

Create a subdirectory called "basics" at the same level in the file
system as the index.html file that you just created, i.e., basics
should be one level below the Web server root. This directory should
be accessible at http://yourhostname.com/basics/

Put a file in the directory so that it is accessible at
http://yourhostname.com/basics/my-first-program (if you haven't yet
figured out how to implement abstract URLs, this may be
"my-first-program.pl" or "my-first-program.asp" or similar).

When we visit http://yourhostname.com/basics/my-first-program we
should see the current time wrapped in a legal HTML page of some sort,
signed with your email address.

Add some code that will generate a divide-by-zero error to your
program. Find and visit the server error log to see how this error is
communicated to you. With some execution environments, it may be
possible to have the error message and stack backtrace presented to
you in the browser window when the error occurs. If you can configure
your server thusly, you'll find that debugging goes much faster this
semester. If not, make sure that you know how to quickly display the
latest errors. On a Unix machine you'd use the command "tail -f
error.log" in a shell or "M-x revert-buffer" in an Emacs editor
visiting the error log.

Just before the code that generates the divide-by-zero error, add a
line of code to write the following message into the error log:
"About to divide by zero". Request
http://yourhostname.com/basics/my-first-program from a browser again
and then visit the error log to verify that your "About to divide by
zero" statement precedes the actual error.

Exercise 3: Processing Forms

Visit http://philip.greenspun.com/seia/examples-basics/lens
and look at the focal length calculator under "Exactly how long a lens
do you need?"

Make this service work on your server. Note that this will involve
(1) learning a bit about HTML forms, (2) following the "view the
source code" link on the results page at photo.net and pulling the
mathematical formula out of the program there, (3) parking a static
.html file containing the form on your server at
/basics/lens-calculator, and (4) parking a program to process the form
at /basics/lens-calculator-2.

(Note the naming convention above. When possible this semester we'd
like you to adhere to the idea that a script that processes a form at
"foobar" is found at "foobar-2". If there is a pipeline of steps that
a user must follow, we like to see them at "foobar", "foobar-2",
"foobar-3", etc.)

Exercise 3a: Add a View Source Link

A big part of our work this semester is looking at other folks' source
code. We do this so that we can examine alternative approaches to the
same problem. You can facilitate this by adding a "view source" link
to the bottom of the page that you just made. A user who clicks on
this link ought to be served a file showing all of the source code
behind the page in question, but not including procedures shared with
other pages on the site.

Hints: you'll want to deliver your script and any template file, if
applicable, with a MIME type of "text/plain". This way the receiving
browser won't try to render the HTML source. Some Web browsers are
super aggressive and try to render anything that looks like HTML, even
if it comes through without the text/html MIME type. An alternative
approach that works with such browsers is to quote all of your HTML by
replacing < with <,
> with >, and &
with &, then wrap source code in a <PRE> tag.

Servers that query foreign servers

Some of the highest achievement-to-effort ratios can be achieved by
aggregating information from multiple existing data sources.
Consider, for example, the Bill Gates Personal Wealth Clock, at http://philip.greenspun.com/WealthClock
(Figure 2.3). This program queries a public stock quote server (the
first "foreign server") to find the current price of Microsoft
Corporation stock. The second foreign server queried is a U.S. Census
Bureau "population clock" for an estimate of the current
U.S. population.

Figure 2.3:

The Bill Gates Personal Wealth Clock. This program queries a public
stock quote server to find the price of Microsoft stock and the
U.S. Census Bureau's server for the current U.S. population, then
combines the numbers on one page.

There are several interesting things about this program, which was
built by one of the authors in 1995. One is that it was enabled by
the existence of a procedure built into AOLserver that went out and
grabbed a page from the wider Internet, ns_httpget. This
enabled the entire project to be completed in one hour. Engineering
is all about cost. If building this little application would have
required several days of work it probably would not have been done. A
second item worth noting is that the program has required substantial
maintenance over the years, far exceeding its initial development
cost. The program relies on using regular expressions to pull data
out of HTML pages that are designed for human eyes. As the publishers
of the underlying data sources have changed their HTML formatting over
the years, these regular expressions have had to be updated.

The final point worth mentioning about this program is that part of
the hour of coding went into building a general-purpose caching or
memoization system to record the results of evaluating any Tcl
expression in a global variable. Why? It seemed like bad netiquette
to write a program that had the potential to impose an unreasonable
load on the Census Bureau and stock quote servers. Also, in the event
that the Wealth Clock became popular it would be asking the underlying
servers several times a second for the same data. Lastly it seemed
that users shouldn't have to wait for the two subsidiary pages to be
fetched if they didn't need up-to-the-minute data. With the complete
HTML page stored in a global variable, it is available from AOLserver's
virtual memory space and can be accessed much faster than even a
static file. Users who want a real-time answer can demand one with an
extra mouse click. The calculation performed for them then updates the
cache for casual users.

The caching mechanism might sound like overengineering but from time to
time the Wealth Clock would be linked to from extremely popular news
sites and receive several requests per second. The ability to handle
a reasonably high load like that, back in the mid-1990s, without an
enormous server farm was rather rare. Had those requests been passed
directly through to the Census Bureau, for example, the entire service
would have slowed to a crawl.

The source code for this program is available at http://philip.greenspun.com/seia/examples-basics/wealth-clock.tcl.txt
and may prove helpful in doing the next exercise.

Exercise 4: Comparative Book Shopping

Drawing upon the Bill Gates Personal Wealth Clock and its source code
as a model, build a new Web application that takes the ISBN of a book
from a form and queries several online bookstores to find price and
stock information. The results should be displayed in an HTML table
(price and in stock/out of stock at each store). Make your service
available at /basics/books (the entry form) and /basics/books-2 (the
results page).

We suggest querying barnesandnoble.com and www.powells.com. Your
program should be robust to timeouts, errors at the foreign sites, and
network problems. In other words, in no situation should your user
ever get a "Server Error 500" page. To ensure this you'll have to
learn about exception handling in your chosen language. In Java, for
example, you'll want to use try and catch.
Test your program with the following ISBNs: 0590353403,
0140260404, 0679762906, 1588750019.

Try adding more bookstores, but you may have trouble getting them to
work. For example, amazon.com and wordsworth.com tend to respond with
a 302 redirect if the client doesn't give them a session ID in the
query.

Extra credit: Which of the preceding books states that "The obvious
mathematical breakthrough would be development of an easy way to
factor large prime numbers"?

"Remember that it is a mistake to compare Harry Potter to
Shakespeare... That's because Harry Potter is a fictional character
whereas Shakespeare was an author. What you really ought to be doing
is comparing J.K. Rowling to Shakespeare" -- Jin S. Choi.

Exercise 5: Talking to the RDBMS

It turns out that it takes less time to learn the basics of SQL than
it does to figure out how to deliver an SQL command to your RDBMS.
These instructions are for Oracle. Refer to your supplement if you're
using another RDBMS.

On Unix, the most convenient way to drive Oracle is generally from
within Emacs, assuming you're already an Emacs user. Type "M-x shell"
to get a Unix shell. Type "M-x rename-buffer" to rename the shell to
"sql-shell" so that you can always type "M-x shell" again and get an
operating system shell. In the sql-shell buffer type "sqlplus" to
start SQL*Plus, the Oracle shell client. If you're using Windows,
look for the program "SQLPLUS.EXE" or "PLUS80.EXE".

SQL*Plus will prompt you for a username and password. If you're using
a school-supplied development server, you may need to get these from
your TA. If you set up the RDBMS yourself, you might need to create a
new tablespace and user before you can do this exercise.

Type the following at the SQL*Plus prompt to create a table for keeping track of
the classes you're taking this semester:

create table my_courses (
	course_number	varchar(20)
);

Note that you have to end your SQL commands with a semicolon in
SQL*Plus. These are not part of the SQL language and you shouldn't
use these when writing SQL in your Web scripts.

Insert a few rows, e.g.,

insert into my_courses (course_number) values ('6.171');

See what you've got:

select * from my_courses;

Commit your changes:

commit;

Note that until you typed this COMMIT, another connected database user
wouldn't have been able to see the row that you inserted. "Connected
database user" includes the Web server. A common source of student
consternation with Oracle is that they've inserted information with
SQL*Plus and neglected to COMMIT. The new information does not appear
on any of their Web pages, and they tear their hair out debugging. Of
course nothing is wrong with their scripts. It is just that the ACID
guarantees mean that the Web server sees a different view of the database
than the user who is in the middle of a transaction.

Your view of the table shouldn't change after a COMMIT, but maybe
check again:

select * from my_courses;

One of the main benefits of using an RDBMS is persistence.
Everything that you create stays around even after you log out.
Normally, that's a good thing, but in this case you probably want to
clean up after your experiment:

drop table my_courses;

Quit SQL*Plus with the quit command.

Reading Interlude

Now would be a good time to take a break and read about SQL. We
suggest chapters 1 through 9 of SQL for Web
Nerds at http://philip.greenspun.com/sql/.

Exercise 6: Web scripts that talk to the RDBMS

Look at the file
http://philip.greenspun.com/seia/examples-basics/quotations-pseudo-code.txt,
which is pseudo-code for a page that displays quotations that have been
stored in the Oracle database.

If your instructors are being nice to you, they'll already have
translated this pseudo-code into something that works with the
infrastructure you're using at your school. If not, you'll have to
translate it yourself, along with
http://philip.greenspun.com/seia/examples-basics/quotation-add-pseudo-code.txt
. Park your finished program at
/basics/quotations (plus a file extension if you must). Add a
hyperlink from your site index page to this service.

Use the form on the Web page to manually add some quotations. If you
don't feel inspired to surf, here are a few to get you going:

	"I feel like those Jewish people in Germany in 1942." — Ted
Turner (on being prevented from buying another TV station)

	"If a man speaks in the forest and there is no woman there to hear
him, is he still wrong?" — Unknown Heroine

	"Men are like a fine wine. They all start out like grapes, and
it's our job to stomp on them and keep them in the dark where they
will mature into something you'd want to have dinner with." — Unknown
Heroine

	"A woman needs four animals in her life. A mink in the closet. A
jaguar in the garage. A tiger in bed. And an ass to pay for it all."
— Anne Slater

	 "An editor should have a pimp for a brother, so he'd have someone
to look up to." — Gene Fowler

	"The newest computer can merely compound, at speed, the oldest
problem in the relations between human beings, and in the end the
communicator will be confronted with the old problem, of what to say
and how to say it." — Edward R Murrow

	"Egotism is the anesthetic that dulls the pain of stupidity." —
Frank Leahy

	"Some for renown, on scraps of learning dote, And think they grow
immortal as they quote." — Edward Young

Return to your RDBMS shell client (e.g., SQL*Plus for Oracle) and
select * from the table to see that your quotation has
been inserted into the table.

In your RDBMS shell client, insert a quotation with some hand-coded
SQL. To see the form of the SQL INSERT command you should use, examine
the code on the page quotation-add. After creating this new table
row, do select * again, and you should now see two rows.

Hint: Don't forget that SQL quotes strings using single quotes, not
double quotes
.

Now reload the quotations URL from your Web browser. If
you don't see your new quotation here, that's because you didn't type
"commit;" at SQL*Plus and the Web server is being protected from
seeing the unfinished transaction.

Exercise 6a: Eliminating the lock table via a sequence

Read about Oracle's sequence database object in the "Data
Modeling" and "Transactions" chapters of SQL for Web Nerds
at http://philip.greenspun.com/sql/data-modeling
and http://philip.greenspun.com/sql/transactions.
By creating a sequence, you should be able to edit the quotation-add
script to

	eliminate the need for lock table

	eliminate the transaction machinery (since you're no longer tying
multiple SQL statements together)

	generate a unique key for the new quotation within the INSERT
statement itself

Exercise 7: Improving the user interface for data entry

Go back to the main quotations page and modify it so that categories
entry is done via a select box of existing categories (you will want
to use the "SELECT DISTINCT" SQL command). For new categories,
provide an alternative text entry box labeled "new category". Make
sure to modify quotation-add so that it recognizes when a new category
is being defined.

Exercise 8: Searching

Add a small form at the top of /basics/quotations that takes a single
query word from the user. Build a target for this form that returns
all quotes containing the specified word. Your search should be
case-insensitive and also look through the authors column. Hints:
like '%foo%' and SQL's UPPER and LOWER functions.

Exercise 9: Personalizing your service with cookies

Now implement per-browser personalization of the quotation database.
The overall goal should be

	A user can "kill" a quotation and have it never show up again
either from the top-level page or the search page.

	Killing a quotation is persistent and survives the quitting and
restarting of a browser.

	Quotations killed by one user have no effect on what is seen by
other users.

	Users can erase their personalizations and see the complete
quotation database again by clicking on an "erase my personalization"
link on the main page. This link should appear only if the user has
personalized the quotation database.

You'll implement this using cookies. From your technology supplement
you'll need to learn how to read the incoming HTTP request headers and
then parse out the Cookie header or perhaps you'll have an API that
makes it easy to get the value of a particular cookie. Note that you
can expire a cookie by reissuing it with an expiration date that has
already passed.

Hint 1: It is possible to build this system using an ID cookie for the
browser and keeping the set of killed quotations in the RDBMS.
However, if you're not going to allow users to log in and claim their
profile, there really isn't much point in keeping data on the server.

Hint 2: It isn't strictly copacetic with the cookie spec, but browsers
accept cookie values containing spaces. So you can store the killed
quotations as a space-separated list if you like.

Hint 3: Don't filter the quotations in your Web script. It is
generally a sign of incompetent programming when you query more data
from the RDBMS than you're going to display to the end-user. SQL is a
very powerful query language. You can use the NOT IN feature to
exclude a list of quotations.

Exercise 10: Publishing data in XML

As you learned above from querying bookstores, data on the Web have
not traditionally been formatted for convenient use by computer
programs. In theory, people who wish to exchange data over the Web
can cooperate using XML, a 1998 standard from the Web Consortium (http://www.w3.org/XML/). In
practice, you'll be hard-pressed to get any XML-based cooperation from
the average Web site right now (2005). Fortunately for your sake
in completing this problem set, you can cooperate with your fellow
students: the overall goal is to make quotations in your database
exportable in a structured format so that other students' applications
can read them.

Here's what we need in order to cooperate:

	an agreed-upon URL at everyone's server where the quotations
database may be obtained: "/basics/quotations-xml"

	an agreed-upon format for the quotations.

(In point of fact, we could avoid the need for prior agreement by
setting up infrastructures for service discovery and by
employing techniques for self-describing data — both of
which we'll deal with later in the semester — but we'll keep things
simple for now.)

We'll format the quotations using XML, a conventional notation for
describing structured data. XML structures consist of data strings
enclosed in HTML-like tags of the form <foo> and
</foo>, describing what kind of thing the data is
supposed to be.

Here's an informal example, showing the structure we'll use for our
quotations:

<quotations>
 <onequote>
 <quotation_id>1</quotation_id>
 <insertion_date>2004-01-26</insertion_date>
 <author_name>Britney Spears</author_name>
 <category>Pop Musician Leisure Activities</category>
 <quote>I shop, go to movies, soak up the sun when possible and go out to eat.</quote>
 </onequote>
 <onequote>
 .. another row from the quotations table ...
 </onequote>
 ... some more rows
</quotations>

Notice that there's a separate tag for each column in our SQL data model:

<quotation_id>
<insertion_date>
<author_name>
<category>
<quote>

There's also a "wrapper" tag that identifies each row as a
<onequote> structure, and an outer wrapper that
identifies a sequence of <onequote> structures as a
<quotations> document.

Building a DTD

We can give a formal description of our XML structure, rather than an
informal example, by means of an XML Document Type Definition (DTD).

Our DTD will start with a definition of the quotations
tag:

<!ELEMENT quotations (onequote)+>

This says that the quotations element must contain at
least one occurrence of onequote but may contain more
than one. Now we have to say what constitutes a legal
onequote element:

<!ELEMENT onequote (quotation_id,insertion_date,author_name,category,quote)>

This says that the sub-elements, such as quotation_id must
each appear exactly once and in the specified order. Now we have to
define an XML element that actually contains something other than
other XML elements:

<!ELEMENT quotation_id (#PCDATA)>

This says that whatever falls between <quotation_id>
and </quotation_id> is to be interpreted as raw
characters rather than as containing further tags (PCDATA stands for
"parsed character data").

Here's our complete DTD:

<!-- quotations.dtd -->
<!ELEMENT quotations (onequote)+>

<!ELEMENT onequote (quotation_id,insertion_date,author_name,category,quote)>

<!ELEMENT quotation_id (#PCDATA)>
<!ELEMENT insertion_date (#PCDATA)>
<!ELEMENT author_name (#PCDATA)>
<!ELEMENT category (#PCDATA)>
<!ELEMENT quote (#PCDATA)>

You will find this extremely useful... Hey, actually you won't find
this DTD useful at all for completing this part of the problem set.
The only situation in which a DTD is useful is when feeding documents
to an XML parser because then the parser can automatically tokenize each
XML document. For implementing your quotations-xml page, you will
only need to look at the informal example.

The meat of this exercise: Write a script that queries the
quotations table, produces an XML document in the
preceding form, and returns it to the client with a MIME type of
"application/xml". Place this in the file system at
/basics/quotations-xml, so that other users can retrieve the data by
visiting that agreed-upon URL.

Exercise 11: Importing XML

Write a program to import the quotations from another student's XML
output page. Your program must

	Grab /basics/quotations-xml from another student's
server.

	Parse the resulting XML structure into records and then parse the
records into fields.

	If a quote from the foreign server has identical author and
content as a quote in your own database, ignore it; otherwise, insert
it into your database with a new quotation_id. (You
don't want keys from the foreign server conflicting with what is
already in your database.)

Hint: You can set up a temporary table using create table
quotations_temp as select * from quotations and then drop it
after you're done debugging, so that you don't mess up your own
quotations database.

You are not expected to write an XML parser as part of this exercise.
You will either use a general-purpose XML parser or your TAs will give
you a simple program that is capable only of parsing this particular
format. If you aren't getting any help from your TAs and you're using
Oracle, keep in mind that the Oracle RDBMS has extensive built-in
support for processing XML. Read the Oracle documentation, notably
the Oracle XML DB Developer's Guide - Oracle XML
DB. If you're
using Java or Perl there are plenty of free open-source XML parsers
available. The Microsoft .NET Framework Class Library contains
classes that provide a full set of XML tools.

Exercise 12: Taking Credit

Please go through your source code files. Make sure that there is a
header at the top explaining (1) who wrote the code, (2) on what date
it was written, and (3) what problem it is trying to solve. Please go
through your Web pages. Make sure that at the bottom of each page
there is a mailto: link to your permanent email address.

It is your professional obligation to other programmers to take
responsibility for your source code. It is your professional
obligation to end-users to take responsibility for their experience
with your program.

Database Exercises

We're going to shift gears now into a portion of the problem set
designed to teach you more about the RDBMS and SQL. See your
supplement if you're using an RDBMS other than Oracle.

To facilitate turning in your problem set, keep a text file transcript
of relevant parts of your database session at
http://yourhostname.com/basics/db-exercises.txt.

DB Exercise 1: SQL*Loader

	Use a standard text editor to create a plain text file containing
five lines, each line to contain your favorite stock symbol, an
integer number of shares owned, and a date acquired (in the form
MM/DD/YYYY). Separate the fields on each line with tabs.

	create an Oracle table to hold these data:

create table my_stocks (
 symbol	 varchar(20) not null,
 n_shares	 integer not null,
 date_acquired date not null
);

	use the sqlldr shell command on Unix to invoke
SQL*Loader to slurp up your tab-separated file into the
my_stocks table

Depending on how resourceful you are with skimming documentation, this
exercise can take fifteen minutes or a lifetime. The book Oracle:
The Complete Reference, discussed in the More section of this
chapter is very helpful. You can also read about SQL*Loader in the
official Oracle docs, linked from http://www.oracle.com/, typically in
the Utilities book. Note that finding Oracle
documentation online requires a bit of persistence and oftentimes
registration (free). Look for links that say "view library" and tabs
that say "books".

DB Exercise 2: Copying Data from One Table to Another

This exercise exists because we found that, when faced with the task
of moving data from one table to another, programmers were dragging
the data across SQL*Net from Oracle into their Web server,
manipulating it in a Web script, then pushing it back into Oracle over
SQL*Net. This is not the way! SQL is a very powerful language and
there is no need to bring in any other tools if what you want to do is
move data around within the RDBMS.

	using only one SQL statement, create a table called
stock_prices with three columns: symbol,
quote_date, price. Within this one statement, fill the table you're creating
 with one row per symbol in
my_stocks. The date and price columns should be filled
with the current date and a nominal price. Hint:

select symbol, sysdate as quote_date, 31.415 as price from my_stocks;
.

	create a new table:
create table newly_acquired_stocks (
 symbol	 varchar(20) not null,
 n_shares	 integer not null,
 date_acquired date not null
);

	using a single insert into ... select ... statement
(with a WHERE clause appropriate to your sample data), copy about half
the rows from my_stocks into newly_acquired_stocks

DB Exercise 3: JOIN

With a single SQL statement JOINing my_stocks and
stock_prices, produce a report showing symbol, number of
shares, price per share, and current value.

DB Exercise 4: OUTER JOIN

Insert a row into my_stocks. Rerun your query from the
previous exercise. Notice that your new stock does not appear in the
report. This is because you've JOINed them with the constraint that
the symbol appear in both tables.

Modify your statement to use an OUTER JOIN instead so that you'll get
a complete report of all your stocks, but won't get price information
if none is available.

DB Exercise 5: PL/SQL

Inspired by Wall Street's methods for valuing Internet companies,
we've developed our own valuation method for this problem set: a stock
is valued at the sum of the ASCII characters making up its symbol.
(Note that students who've used lowercase letters to represent symbols
will have higher-valued portfolios than those who've used
all-uppercase symbols; "IBM" is worth only $216 whereas "ibm" is worth
$312!)

	define a PL/SQL function that takes a trading symbol as
its argument and returns the stock value. Hint: Oracle's built-in
ASCII function will be helpful.

	with a single UPDATE statement, update stock_prices
to set each stock's value to whatever is returned by this PL/SQL
procedure

	define a PL/SQL function that takes no arguments and returns the
aggregate value of the portfolio (n_shares * price for
each stock). You'll want to define your JOIN from DB Exercise 3
(above) as a cursor and then use the PL/SQL Cursor FOR LOOP facility.
Hint: when you're all done, you can run this procedure from SQL*Plus
with select portfolio_value() from dual;.

SQL*Plus Tip: though it is not part of the SQL language, you will find
it very useful to type "/" after your PL/SQL definitions if you're
feeding them to Oracle via the SQL*Plus application. Unless you write
perfect code, you'll also want to know about the SQL*Plus command
"show errors". For exposure to the full range of this kind of
obscurantism, see the SQL*Plus User's Guide and Reference, one of the books included in Oracle's database documentation.

DB Exercise 6: Buy More of the Winners

Rather than taking your profits on the winners, buy more of them!

	use SELECT AVG() to figure out the average price of your holdings

	Using a single INSERT with SELECT statement, double your holdings
in all the stocks whose price is higher than average (with
date_acquired set to sysdate)

Rerun your query from DB Exercise 4. Note that in some cases you will
have two rows for the same symbol. If what you're really interested
in is your current position, you want a report with at most one row
per symbol.

	use a select ... group by ... query from my_stocks to
produce a report of symbols and total shares held

	use a select ... group by ... query JOINing with
stock_prices to produce a report of symbols and total
value held per symbol

	use a select ... group by ... having ... query to produce a report of
symbols, total shares held, and total value held per symbol
restricted to symbols in which you have at least two blocks of
shares (i.e., the "winners")

DB Exercise 7: Encapsulate Your Queries with a View

Using the final query above, create a view called
stocks_i_like that encapsulates the final query.

More

	on HTTP: The Web Consortium's canonical standard at http://www.w3.org/Protocols/

	on HTML: the HTML reference chapter of this book

	on ASP.NET: Stephen Walther's ASP.NET Unleashed (Sams 2003)

	on the Oracle RDBMS: a very helpful hardcopy book is Kevin Loney's
Oracle XX: The Complete Reference from Oracle Press,
where "XX" is whatever the latest version of Oracle is. At press time
Oracle
10g: The Complete Reference (2004) is available. All Oracle
documentation is available online at www.oracle.com, but it can be
overwhelming for beginners.

Problem Set Supplements

	for people using Microsoft .NET: http://philip.greenspun.com/seia/examples-basics/dot-net-examples/

	for people using Java: http://philip.greenspun.com/seia/examples-basics/java-examples/

	refer to the online version of this chapter periodically to find new supplements: http://philip.greenspun.com/seia/basics

Time and Motion

The luckiest students spend only two hours setting up their RDBMS and
development environment. An average student who makes reasonable
technology choices can expect to spend a day or two getting things
connected properly. Some students who are unlucky with sysadmin,
hardware, or who are not resourceful with Internet and face-to-face
sources of help can spend many days without building a working
environment. At MIT we have the students start on sysadmin/dbadmin at
least three weeks before the first class.

Given an established development environment, the exercises in this
chapter take between six and twelve hours for MIT students working in
a lab where teaching assistants are available and possibly as long as
twenty hours for those working by themselves.

Planning

If you're reading this chapter, we assume that you've completed the
"Basics" problem set and are going to stay with the course for the
rest of the semester. Welcome. Now it is time to plan your work
during the core of the course.

Everyone in this course will be building an online learning community,
a site where users teach each other. The work may be done alone or in
groups of two or three students. Ideally, you or your instructors will find
a real client for you, someone who wants to publish and administer the
community on an ongoing basis. A good client would be a non-profit
organization that wants to educate people about the subject
surrounding its mission. A good client would be a medium-sized
company that wants a knowledge-sharing system for employees. A good
client would be a student group at your university. If you can't find
a client, pick something that you're passionate about. It could be
Islamic architecture. It could be African Cichlids (a family of
freshwater fishes, living mostly in the rift lakes of East Africa; see
www.cichlid.org). It could be
cryptography. Pick something where you think that you can easily get
or generate magnet content, some tutorial information that will
attract users to your service.

You are building the same type of project as everyone else in the
class. Thus it will be easy for you to compare approaches to, for
example, user registration or content management.

Before you starting writing code, however, we'd like you to do some
planning and competitive analysis. Fundamentally you need to answer
the questions "Who is going to teach what to whom?" and "What
alternatives are currently available for this kind of learning?"

User Classes

Start by dividing your users into classes. Two users should fall into
the same class if you expect them to want substantially the same
experience with your service. It is almost always useful to think
about different levels of administrative privileges as you are dividing the
users into classes. It is almost never useful to think about teachers
versus learners; the whole point of an online community is that each
user learning some of the time and each user is teaching some of the
time.

Example user class decomposition on photo.net

To give you an idea of what a user class decomposition might look
like, we'll walk through one for the
photo.net service.

First, consider the overall objective of photo.net: A place where a
person can go and get the answer to any question about photography.

Second, consider levels of administrative privilege. There are
site-wide administrators, who are free to edit or delete any
content on the site. These administrators also have the power to
adjust the authority of other users. We have moderators who
have authority to approve or delete postings in particular
discussion forums. Finally there are regular users who can
read, post, and edit their own contributions. A less popular service
could probably get away with only two levels of admin privilege.

A different way of dividing the users is by purpose in visiting the
service:

	wanna-be point-and-shooter — wants quick advice on what
point-and-shoot camera to buy and where to buy it; wants to invest
minimal time, effort, and money in photography

	novice photographer shopper — wants to begin taking
pictures for purposes of artistic expression, but does not have a
camera with flexible controls right now

	novice photographer learner — has the right equipment, but wants
ideas for where, when, and how to use it; wants critiques of finished
work

	expert photographer — wants new ideas, to see what is new in the
world of hardware, wants to share expertise, wants community

	wanna-be commercial photographer — might be a high school or
college student curious about the future or an older person wanting to
change careers; wants to know whether it is feasible to make a living
doing photography and, if so, how to start.

	exhibitor — wants to upload photos into the photo
sharing system and develop an audience among the photo.net readership

	traveler — wants to know about locations worldwide for photography
incidental to an already planned trip or wants ideas for where to travel
for photographic inspiration

	reader — likes the travel stories like Travels with
Samantha and viewing photographs but does not want to take
photographs him or herself

A final way of dividing users that may be useful is by how they
connect. In the case of photo.net, it is easy to envision the Web
browser user. This user is uploading and downloading photos,
participating in discussions, reading tutorials, shopping for
equipment, etc. The same person may connect via a mobile phone, in
which case he or she becomes a mobile user. If the mobile user
is in the middle of a photographic project, we want to provide
information about nearby camera shops, processing labs, repair shops,
time of sunset, good locations, and other useful data. If the mobile
user is connecting for social purposes, we need to think about what are
practical ways for a person on a mobile phone to participate in an
online community. Our engineering challenge is similar for the
telephone user.

Usage Scenarios

For each class of user, you should write down a rough idea of what a
person in this class would get from your new service. You may want to
hint at page flow.

Example: novice photographer shopper at photo.net

The novice should start by reading a bunch of carefully authored
camera-buying advice articles and then reviews of specific cameras.
Much of the best shopping advice is contained in question-and-answer
exchanges within the discussion forums so editors will need a way to
pick out and point to the best threads in the forum archives. After
our user has read all of this stuff, it would be ideal if he or she
could be directed into a Q&A forum where "here's what I've decided
to buy; what do you think?" questions are welcomed. That could be
implemented as an explicitly social shopping system with one column for
responses from other readers and an adjacent column for bids from
camera shops.

Example: site-wide administrator at photo.net

The site-wide administrator should log in and see a page that gives
the pulse of the community with statistics on the number of new users
registered, the quantity of photos uploaded into the photo sharing
system, the activity in the discussion forums, the relative efforts of
the moderators (volunteers from the community). If there are unbanned
users who have been responsible for an onerous amount of moderator work in
deleting off-topic postings, etc., these should be listed with a
summary of their problematic activities and an option to ban.

Exercise 1a

Answer the following questions:

	What subject will people be able to learn in the community that
you're building?

	What do you want people to say about your service after a visit?

	What are the relevant distinct user classes?

	What should a user on a mobile phone be able to do? Is it
productive to mix voice and text interaction? (See "Multimodal Requirements
for Voice Markup Languages" from the Web Consortium at http://www.w3.org/TR/multimodal-reqs
for some hints as to what will be possible.)

Make sure that your answers to this and all subsequent exercises are
Web-accessible. It is a good idea to get into the discipline of
ensuring that all documents relevant to your project are available on
the project server itself, perhaps in the /doc/ directory.

Exercise 1b: Build User Profile Pages

When building an application it would be ideal to have the potential
users in the room with you at all times. Their needs would then be
concrete and manifest. This isn't very practical, however, and
therefore as an aid to making the people for whom you're building the
application concrete, you should build two or three profile pages. A
profile page contains the following information: (a) a picture of the
user, (b) the user's name, age, occupation, marital status, housing
situation, and income, (c) the user's short-term and long-term goals
relevant to the online community that you're building, (d) the
immediate questions that this user will bring to the site, (e) the
kind of computer equipment and connection in this person's house, and
(f) any other information that will help to humanize this fictitious
person.

To assist you in this task we've created a couple of examples for an
online learning community in the area of general aviation:

	Rachel Lipschitz (http://philip.greenspun.com/seia/examples-planning/user-profile-1)

	Melvin Cohen (http://philip.greenspun.com/seia/examples-planning/user-profile-2)

	Mindy Silverblatt (http://philip.greenspun.com/seia/examples-planning/user-profile-3)

If you don't have a good photo library of your own, lift photos (with
credit) from photo.net and other online sources.

Don't spend more than one hour on this exercise; plenty of truly awful
software has been written with fancy user profiles on the programmers'
desks. There is no substitute for launching a service to real users
and then watching their behavior attentively.

Exercise 1c

For each class of user identified in Exercise 1a, produce a textual or
graphical usage scenario for how that user will experience your
service.

Evaluating Alternatives: Offline

[image: Nick Gittes and Alex. 1998.]

Whenever Nick Gittes (1902–2000; grandfather of one of the authors)
would see a computer advertised on television, he'd say "A home
computer. Why would anyone want a thing like that?"

The dotcom boom is over. You ought to have a good reason for building
an information system. If a curmudgeon wants to know why you need all
these fancy computers instead of a book, some chalk, and pencil and
paper, it would be nice to have a convincing answer.

There are good reasons to look at the best elements of offline
resources and systems. After several millenia, many of these systems
are exquisitely refined and extremely effective. Your online
community and technology-aided learning environment can be much
improved by careful study of the best offline alternatives.

Example: Popular Photography magazine

The largest circulation offline publication in the U.S. world of
photography is the sixty-five-year-old magazine Popular
Photography. It is extremely effective at answering the
following questions: What is the price of a Nikon 50/1.4 lens? What
are the latest cameras available? How does the new Canon Elan 7 body
perform on a test bench?

The magazine is ineffective for start-to-finish learning. It is
impossible for Popular Photography to sell enough ads to
run a twenty-page tutorial article much less a complete beginner's
textbook on photography. The magazine is ineffective for finding the
average price for a used or obscure item. (Shutterbug is
the place for used and classic camera dealer ads.)

The magazine is ineffective as a means of getting answers to arbitrary
questions. There is a "Too Hot to Handle" section in every issue that
promises "Honest, forthright answers to your most probing questions."
Unfortunately, only four questions are answered per issue. Presumably
these were submitted at least a couple of months previously. And the
answers come only from the editors of the magazine; they don't tap the
reserves of knowledge that may reside among the hundreds of thousands
of subscribers.

The magazine is ineffective as a means of exhibiting reader work. The
"Your Best Shot" column displays five or six reader-contributed photos
in every issue, but being selected is a slow and uncertain process.

Example: face-to-face course

The main strength of a face-to-face course in photography is
guaranteed mentoring. The instructor keeps track of each student's
progress and questions. Another strength of a face-to-face course is
the availability of critiques from other students and the instructor.

Face-to-face courses require more travel, time, effort, and commitment
than many people are able to give. Once the course is over, the
student is unable to avail him or herself of mentoring and critiques
from the instructor and other students.

Exercise 2

Write down the best features of offline alternatives for learning the
subject matter of the service that you're building. Indicate those
features that you think can be translated into an online community
and, if so, how. Write a three-sentence justification for why your
online learning community will be an improvement over offline
alternatives for at least some group of people.

Evaluating Alternatives: Online

In performing your analysis of online competitors you should look at
any service or resources for learning in your subject area. But pay
special attention to online learning communities. Before setting off
to surf, you might find it useful to think about the following
elements of sustainable online community:

	magnet content authored by experts

	means of collaboration

	powerful facilities for browsing and searching both magnet content
and contributed content

	means of delegation of moderation

	means of identifying members who are imposing an undue burden on the
community and ways of changing their behavior and/or excluding them
from the community without them realizing it

	means of software extension by community members themselves

When you visit a site ask yourself "Did they author or license a
substantial body of tutorial content?" Look at the ratio between
publisher-authored and user-authored content. If more than half of
the content is authored by users, the site is heading away from
publishing and toward community. Note the number of
different ways in which a user can post some information that then
becomes available to other users ("means of collaboration"). See
whether the default search utility on the site returns results from
things like discussion forum postings. As an unprivileged user, it
will be hard for you to determine whether or not the site has
provisions for distributing the content moderation burden or excluding
difficult users. However, you can sometimes make inferences about
Element 6, whether or not the software can be extended by people who
are regular users and administrators of the community but aren't
expert programmers. If the site is commercial, check the job listings
to see what skills are required. If the site hasn't adopted the
abstract URL religion (see "Basics" chapter) the file extensions may
give you a clue as to implementation technology. A ".pl", ".asp",
".php", ".adp", or ".tcl" indicates the use of a scripting language
amenable to program extensions by novices. A ".jsp" or the term
"servlet" in the URL indicates the use of Java, a language that is
intended only for professional programmers.

Exercise 3

Find the best existing online communities in your subject area. Note
how closely they conform to the six elements of sustainability listed
above. Also write down anything strikingly good or bad about the
registration process and the mechanisms of collaboration, e.g., in
discussion forums, comments on articles, and chat rooms. Look for
voice and mobile interfaces. If present, try them out. (The "Adding Mobile Users To Your Community" chapter

provides a list of desktop
browser-based phone emulators so that you won't have to use your mobile
phone; alternatively type "WAP emulator" or "Mobile browser emulator"
into a public search engine.) Look for evidence of personalization
and direct controls over preferences.

Does the World Need More than One Online Community?

Suppose that in Exercise 3 you found 100 online communities in your
subject area. Should you be discouraged? A search at amazon.com for
"aquarium" yields 679 books on the subject of keeping fish at home.
The National Center for Educational Statistics (nces.ed.gov) found that there were 3913
colleges and universities in the United States in 1998. The computing
world historically has tended toward concentration. There is only
room for one or two desktop user interfaces, one or two word
processors, one or two spreadsheets, a handful of enterprise
accounting systems, etc. Two factors prevent similar concentration in
the world of online learning communities. One is the idiosyncracy of
authorship. A person may believe that Anna Karenina is
the best novel ever written and simultaneously be interested in
reading C. D. Payne's Youth
in Revolt. A moviegoer may believe that Gone with the
Wind will never be excelled and yet still invest two hours in
Charade.

The range of idiosyncracy is narrower in explicitly tutorial works.
Nonetheless one can admit the towering accomplishment of Stroebel's Basic Photographic Materials and
Processes and still profit from working through
Mastering Black-And-White Photography
(Bernhard Seuss 1995).

The second force that prevents concentration in the world of online
learning communities is the nature of community itself.
Christopher Alexander, Sara Ishikawa, and Murray Silverstein argue in
A
Pattern Language (Oxford University Press 1977) against countries of more than a few million
people:

"It is not hard to see why the government of a region becomes less and
less manageable with size. In a population of N persons, there are of
the order of N^2 person-to-person links needed to keep channels of
communication open. Naturally, when N goes beyond a certain limit, the
channels of communication needed for democracy and justice and
information are simply too clogged, and too complex; bureaucracy
overwhelms human process. ...

"We believe the limits are reached when the population of a region
reaches some 2 to 10 million. Beyond this size, people become remote
from the large-scale processes of government. Our estimate may seem
extraordinary in the light of modern history: the nation-states have
grown mightily and their governments hold power over tens of millions,
sometimes hundreds of millions, of people. But these huge powers cannot
claim to have a natural size. They cannot claim to have struck the
balance between the needs of towns and communities, and the needs of the
world community as a whole. Indeed, their tendency has been to override
local needs and repress local culture, and at the same time aggrandize
themselves to the point where they are out of reach, their power barely
conceivable to the average citizen."

If it were possible for everyone to pile into a single community and
have a great learning experience, America Online would long ago have
subsumed all the smaller communities on the Internet. One of the
later chapters of this book is devoted to the topic of growing an
online community gracefully to a large size. But, for now, rest assured
that it is a hard problem that nobody has solved. Given sufficiently
high quality magnet content and an initial group of people dedicated
to teaching, there will always be room for a new learning community.

Exercise 4

Identify sources of magnet content for your community this semester.
If some of this content is going to come from other people, write to
them and ask for permission. Even if you're only using their work
experimentally, one concern that an author or publisher might have is
that your site will get indexed by search engines and readers will be
misdirected to your site instead of theirs. In practice, this is not
a problem if your server isn't accessible from the public Internet or
if you include a robots.txt file that will instruct search engines to
exclude certain content. You may get a friendlier response from
copyright holders if you agree to provide a hyperlinked credit and to
ensure that their content does not become multiply indexed.

If you have a client who is supplying all the magnet content, write
down a summary of what is going to be available and when. Next to
each class of documents note the person responsible for assembling and
delivering them. As an engineer, it isn't your job to assemble and
develop content, but it is your job to identify risks to a project,
such as "not enough magnet content" or "nobody has thought about
magnet content".

Domain Name System

The Domain Name System (DNS) translates human-readable hostnames,
e.g., www.google.com, into machine-readable and
network-routable IP addresses, e.g., 216.239.57.100. DNS
is a distributed application in that there is no single computer that
holds translations for all possible hostnames. A domain registrar,
e.g., register.com, records
that the domain servers for the google.com domain are at particular IP
addresses. A user's local name server will query the name
servers for google.com to find the translation for the hostname
www.google.com. Note that there is nothing magic about
"www"; it is merely a conventional name for a computer that runs a Web
server. The procedure for translating a hostname such as froogle.google.com
is the same as that applied for translating www..

Exercise 5: Settle on a Hostname

Working with your client, pick a hostname for the application that
you'll be building this semester. If you're building something within
MIT, for example, you'll probably want to pick
something.mit.edu. You and your client will need to
navigate the IT bureaucracy to register that hostname and map it to
the IP address of your server. If you're building a service for a
client who does not have an Internet domain, encourage them to
come up with a good name and register it. The authors have had good
experience with register.com, a
service that includes bundled use of their DNS servers; the domain
owner can edit the hostname-to-IP-address translations with a Web
browser interface.

Exercise 6: Negotiate Intellectual Property Rights

One of the thing that distinguishes a professional software engineer
is success in negotiating intellectual property rights. If you give
away all rights to everything that you produce as a "work for hire",
you won't have a personal toolkit of software that you can reuse on
new projects. If you don't give away any rights, nobody will be able
to run your software, which probably means that you won't be able to
solve social or organizational problems. A good negotiator gives away
things that are valuable to the other side, but that aren't valuable to
his or her side.

During this course, for example, you will ideally want to retain
ownership of all software that you produce. You will therefore be
free to reuse the code in any way, shape, or form. The client, however,
is going to be putting in a lot of time and effort working with you
over a period of months and is thus entitled to some benefit. Your
university tuition payments have probably drained away all of the cash
in your bank account and therefore you won't be giving the client
money as compensation for his or her time. What you can do is give
the client a license to use your software. This obviously benefits
the client but it also benefits you. The more people that are out
there happily running your software the better your professional
resume looks.

Should you try to limit what the client can do with your software?
Generally this isn't worthwhile. Any organization that comes to you
for programming assistance is probably not an organization that will
want to hang out a shingle and offer to develop software for others.
If they do decide that it would make sense to adapt your software to
another application within the company, it is very likely that they
will call you first to offer a consulting fee in exchange for your
assistance.

How about limiting your liability? Oftentimes software engineers are
called upon to write programs whose failure would have catastrophic
results. Suppose that you are offered $100,000 to write a trading
program for an investment bank. That may seem like a great deal until
the bank sues you for $100 million, alleging that a bug in your
program cost them $100 million in lost profits. In the biomedical
field a bug can be much more serious. There is the famous case of the
Therac-25 radiation treatment machine, bugs in whose control software
cost lives (see http://sunnyday.mit.edu/therac-25.html).

Disclaiming liability is difficult, even for trained lawyers, and
hence this is best left to professionals. Nearly every commercial
software license includes a disclaimer of warranty. Here's a snippet
from the Microsoft End User License Agreement (EULA):

19. DISCLAIMER OF WARRANTIES. TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, MICROSOFT AND ITS SUPPLIERS PROVIDE THE SOFTWARE AND
SUPPORT SERVICES (IF ANY) AS IS AND WITH ALL FAULTS, AND HEREBY
DISCLAIM ALL OTHER WARRANTIES AND CONDITIONS, WHETHER EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY (IF ANY)
IMPLIED WARRANTIES, DUTIES OR CONDITIONS OF MERCHANTABILITY, OF
FITNESS FOR A PARTICULAR PURPOSE, OF RELIABILITY OR AVAILABILITY, OF
ACCURACY OR COMPLETENESS OF RESPONSES, OF RESULTS, OF WORKMANLIKE
EFFORT, OF LACK OF VIRUSES, AND OF LACK OF NEGLIGENCE, ALL WITH REGARD
TO THE SOFTWARE, AND THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT OR
OTHER SERVICES, INFORMATION, SOFTWARE, AND RELATED CONTENT THROUGH THE
SOFTWARE OR OTHERWISE ARISING OUT OF THE USE OF THE SOFTWARE. ALSO,
THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
POSSESSION, CORRESPONDENCE TO DESCRIPTION, OR NON-INFRINGEMENT WITH
REGARD TO THE SOFTWARE.

20. EXCLUSION OF INCIDENTAL, CONSEQUENTIAL, AND CERTAIN OTHER
DAMAGES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO
EVENT SHALL MICROSOFT OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, PUNITIVE, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER
(INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFITS OR
CONFIDENTIAL OR OTHER INFORMATION, FOR BUSINESS INTERRUPTION, FOR
PERSONAL INJURY, FOR LOSS OF PRIVACY, FOR FAILURE TO MEET ANY DUTY
INCLUDING OF GOOD FAITH OR OF REASONABLE CARE, FOR NEGLIGENCE, AND FOR
ANY OTHER PECUNIARY OR OTHER LOSS WHATSOEVER) ARISING OUT OF OR IN ANY
WAY RELATED TO THE USE OF OR INABILITY TO USE THE SOFTWARE, THE
PROVISION OF OR FAILURE TO PROVIDE SUPPORT OR OTHER SERVICES,
INFORMATION, SOFTWARE, AND RELATED CONTENT THROUGH THE SOFTWARE OR
OTHERWISE ARISING OUT OF THE USE OF THE SOFTWARE, OR OTHERWISE UNDER
OR IN CONNECTION WITH ANY PROVISION OF THIS EULA, EVEN IN THE EVENT OF
THE FAULT, TORT (INCLUDING NEGLIGENCE), MISREPRESENTATION, STRICT
LIABILITY, BREACH OF CONTRACT, OR BREACH OF WARRANTY OF MICROSOFT OR
ANY SUPPLIER, AND EVEN IF MICROSOFT OR ANY SUPPLIER HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

21. LIMITATION OF LIABILITY AND REMEDIES. NOTWITHSTANDING ANY DAMAGES
THAT YOU MIGHT INCUR FOR ANY REASON WHATSOEVER (INCLUDING, WITHOUT
LIMITATION, ALL DAMAGES REFERENCED HEREIN AND ALL DIRECT OR GENERAL
DAMAGES IN CONTRACT OR ANYTHING ELSE), THE ENTIRE LIABILITY OF
MICROSOFT AND ANY OF ITS SUPPLIERS UNDER ANY PROVISION OF THIS EULA
AND YOUR EXCLUSIVE REMEDY HEREUNDER (EXCEPT FOR ANY REMEDY OF REPAIR
OR REPLACEMENT ELECTED BY MICROSOFT WITH RESPECT TO ANY BREACH OF THE
LIMITED WARRANTY) SHALL BE LIMITED TO THE GREATER OF THE ACTUAL
DAMAGES YOU INCUR IN REASONABLE RELIANCE ON THE SOFTWARE UP TO THE
AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE OR U.S.$5.00. THE
FOREGOING LIMITATIONS, EXCLUSIONS, AND DISCLAIMERS SHALL APPLY TO THE
MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, EVEN IF ANY REMEDY FAILS
ITS ESSENTIAL PURPOSE.

This is so important to Microsoft that it is the only part of a
twelve-page agreement that is printed in boldface and the only part that
is presented in a French translation for Canadian customers as well.

If you don't want to cut and paste Microsoft's verbiage, which might
expose you to a copyright infringement action from Redmond, consider
employing a standard free software or open-source license, of which
the GNU General Public License is the best-known example. Note that
using a free software license doesn't mean that your software is now
free to the world. You may have licensed one client under the GNU GPL
but whether or not you decide to offer anyone else a license is a
decision for the future.

If you wish, you can use the sample contract at the
end of this book as a starting point in negotiating rights with
your client. And remember that old bromide of business: You don't get
what you deserve; you get what you negotiate.

More

 	"The
case for on-line communities", McKinsey Quarterly,
Shona Brown et al, 2002, Number 1, http://www.mckinseyquarterly.com/article_abstract.asp?ar=1143

To the Instructor

It is helpful during the second meeting of the class to bring clients
on campus to give three-minute presentations pitching their projects.
Here is a suggested outline to the client for the presentation:

	introduce the speaker and the organization he or she represents
(15 seconds)

	explain who the users are and why they need to interact via an
Internet application, i.e., what problem is this online community
solving (1.5 minutes)

	describe how users will be attracted to the site initially, e.g.,
is there a collection of magnet content that these people need that
isn't available anywhere else? (30 seconds)

	after the site has been up and running for a few months, what will
a typical interaction look like for a new user? (30 seconds)

	what will happen after the semester is over, how will the system
be funded and sustained? (15 seconds)

The client should be prepared to answer questions for a minute or two
after the presentation.

Time and Motion

This problem set involves a two-hour meeting with the client, perhaps
two hours of discussion and Web surfing among the students, an hour to
build the user-profile pages, two hours of writing. That's seven
hours total, most of which requires the entire team to work together.

Software Structure

Before embarking on a development project it is a good idea to sketch
the overall structure of the system to be built.

Gross Anatomy

Any good online learning community will have roughly the same core
structure:

	user database

	content database

	user/content map

	user/user map

As used above, "database" is an abstract term. The user database, for
example, could be implemented as a set of SQL tables within a relational
database management system. The tables for the user database need not
be separated in any way from tables used to implement other modules,
i.e., they would all be owned by the same user and reside within the
same tablespace. On the other hand, the user database might be
external to the online learning community's core source of
persistence. A common case in which the user database can become
external is that of a corporation's knowledge-management system, where
employees are authenticated by checking a central LDAP server.

A more modern example of how these core databases might become split
up would be in the world of Web services. Microsoft Hailstorm, for
example, offers to provide user database services to the rest of the
Internet. A university might set up complementary communities, one
for high school students and one for colleagues at other schools, both
anchored by the same database of genomics content. The genomics
content database might be running on a physically separate computer
from the online communities and advertise its services via WSDL and provide those services via SOAP.

User Database

At a bare minimum the user database has to record the real name and
email address of the user. Remember that the more identified,
authenticated, and accountable people are, the better the opportunity
for building a community out of an aggregate. An environment where
anonymous users shout at each other from behind screen names isn't
worth the programming and system administration effort. The user
database should have a facility for recording the reliability of a
user's name and email address since the name is likely to become more
reliably known over time and the email address less likely.

To contribute to an accountable and identified environment the user
database should be able to store a personal URL for each user. If
this is a Yahoo! Geocities page it won't contribute too much to
accountability and identification. On the other hand, if the URL
starts with "http://research.hp.com/personal/" it will give other
users some confidence. Since one of the sad features of the Web as
architected in 1990 is that URLs rot, a user database needs an extra
field to keep track of what has happened when a robot tries to visit
the recorded URL. If a URL has not been reachable on several separate
occasions over a one-week period, it is probably safe for a computer
program to assume that the URL is out of date and stop displaying it
publicly.

The user database should record privacy and contact preferences. Is
Jane User willing to let you show her email address to the public? To
other registered users? Is Joe User willing to let you spam him with
news of the site?

Content Database

The content of an online learning community always includes questions
and answers in a discussion forum. A programmer might start by
building a table for discussion forum postings. Of the six
required elements of online community, magnet content is listed first.
Most online learning communities offer published articles that are
distinguished from user-contributed questions. A programmer would
therefore create a separate table to hold articles. Any well-crafted
site that publishes articles provides a facility for users to
contribute comments on those articles. This will be another separate
table.

Is a pattern emerging here? We distinguish a question in the
discussion forum table because it is an item of content that is not a
response to any other discussion forum posting. We distinguish
articles from comments because an article is an item of content that
is not a response to any other content item. Perhaps the
representation of articles, comments on articles, questions, answers,
etc. should be unified to the maximum extent possible. Each is a
content item. Each has one or more authors. Each may optionally be a
response to another content item.

Here are some services that would be nice to centralize in a single
content repository within the content database:

	versioning of content

	whether an item of content is a reply to, a comment on, or an
attachment to some other item

	whether an item of content has been approved or disapproved by the
site moderators

	to whom may the content be shown? Is it only for members of a
group, a particular user, or le grand public (as they say in
France)

	who has the right to edit the content?

	who has the right to change who has the right to view or edit?

	who has the right to comment on an item? Who must review comments
that have been posted before they go live?

	timing the content: When does it go live? When does it expire?

	quality or importance of the content: Should this be highlighted to
users? Should it be withheld until it graduates from draft status?

	full-text indexing of the content

	summaries, descriptions, and keywords for the content

	a consistent site-wide taxonomy

plus some things that really belong in the user/content map below

	who authored or contributed an item, with a distinction among
publisher-authored, group-authored, and user-authored stuff

	who should be notified via email when a comment on or response to
an item is posted

	whether a content item is rated of high interest by a user or
low/no interest; given these stats, this implies the ability to pick
out "new content that is likely to be of interest to User #17"
(depends on text processing software that can compute document
similarity)

User/Content Map

An online learning community generally needs to be able to record the
following statements:

	User #21 contributed Comment #37 on Article #529

	User #192 asked Question #512

	User #451 posted Answer #3 to Question #924

	User #1392 has read Article #456

	User #8923 is interested in being alerted when a change is made to
Article #223

	User #8923 is interested in being alerted when an answer to
Question #9213 is posted

We are careful to record authorship because attributed content
contributes to our chances of building a real community. To offer
users the service of email notifications when someone responds to a
question or comments on an article, it is necessary to record
authorship.

Why record the fact that a particular user has read, or at least
downloaded, a particular document? Consider an online learning
community of professors and students at a university. It is necessary
to record readership if one wishes to write a robot that sends out
messages like the following:

To: Sam Student
From: Community Nag Robot
Date: Friday, 4:30 pm
Subject: Your Lazy Bones

Sam,

I notice that you have four assignments due on Monday and that you
have not even looked at two of them. I hope that you aren't planning
to go to a fraternity party tonight instead of studying.

Very truly yours,

Some SQL Code

Once an online learning community is recording the act of readership,
it is natural to consider recording whether or not the act of reading
proved worthwhile. In general collaborative filtering is the last
refuge of those too cowardly to edit. However, recording "User #7241
really liked Article #2451" opens up interesting possibilities for
personalization.

Consider a corporate knowledge-management system. At the beginning
the database is empty and there are only a few users. Scanning the
titles of all contributed content would take only a few minutes.
After five years, however, the database contains 100,000 documents and
the 10,000 active users are contributing several hundred new documents
every day (keep in mind that a question or answer in a discussion
forum is a "document" for the purpose of this discussion). If Jane
User wants to see what her coworkers have been up to in the last 24
hours, it might take her 30 minutes to scan the titles of the new
content. Jane User may well abandon an online learning community
that, when smaller, was very useful to her.

Suppose now that the database contains 100 entries of the form "Jane
liked this article" and 100 entries of the form "Jane did not
like this article". Before Jane has arrived at work, a batch job can
compare every new article in the system to the 100 articles that Jane
liked and the 100 articles that Jane said she did not like. This
comparison can be done using most standard full-text search software,
which will take two documents and score them for similarity based on
words used. Each new document is given a score of the form

avg(similarity(:new_doc, all_docs_marked_as_liked_by_user(:user_id)))
-
avg(similarity(:new_doc, all_docs_marked_as_disliked_by_user(:user_id)))

The new documents are then presented to Jane ranked by descending
score. If you're an Intel stockholder you'll be pleased to consider
the computational implications of this personalization scheme. Every
new document must be compared to every document previously marked by a
user. Perhaps that is 200 comparisons. If there are 10,000 users,
this scoring operation must be repeated 10,000 times. So that is
2,000,000 comparisons per day per new document in the system.
Full-text comparisons generally are quite slow as they rely on looking up
up each word in a document to find its occurrence frequency in
standard written English. A comparison of two documents can take
1/10th of a second of CPU time. We're thus looking at about 200,000 seconds of
CPU time per new document added to the system, plus the insertion of
10,000 rows in the database, each row containing the personalization
score of that document for a particular user. There are 86,400
seconds in a day. Thus we're talking roughly about enough work to
keep a 3-CPU multiprocessor machine busy for an entire day. What if
500 documents are uploaded every day? We'll need 1500 CPUs to compute
personalization scores.

User/User Map

Relationships among users become increasingly important as communities
grow. Someone who is in a discussion forum with 100 others may wish
to say "I am offended by User #45's perspective; I want the system to
suppress his contributions in pages served to me or email alerts sent
to me". The technical term for this is bozo filtration and it
dates back at least to the early 1980s and the USENET (Netnews)
distributed discussion forum system. Someone who is in a discussion
forum with 100,000 others may wish to say "I am overwhelmed; I never
want to see anything more from this forum unless User #67329
has contributed to a thread."

Grouping of users is the most fundamental operation within the
User/User database. In a collaborative medical records system, you
need to be able say "All of these users work at the same hospital and
can have access to records for patients at that hospital." In a
corporate knowledge-sharing system, you need to be able to say "All of
these users work in the same department and therefore should have
access to private departmental documents, a private discussion forum
devoted to departmental issues, and should receive email notifications
of departmental events."

Let's move on from the core data model to some tips for the software
that you're soon to be building on top of the database...

Send SQL, Not Data, to the Database's SQL Parser

In the Basics chapter you might have written scripts that took user
input combined them with bits of SQL and sent a final single string
command to the relational database management system (RDBMS).

Here's a C# example stolen from one of our students:

string cmd = "Insert into quotations(author_name, category, quote)
 values ('" + txtAuthor.Text.Replace("'", "''") + "',
 '" + ctg.Replace("'", "''") + "',
 '" + txtQuotation.Text.Replace("'", "''") + "')";

UpdateDB(cmd); // ship that big string to SQL Server

There are several minor things wrong with this approach, which mixes
SQL and string literals obtained from the user:

	the programmer must remember to escape any single quote characters
in the uploaded string, replacing ' with '' [these are two single quotes,
not one double quote]

	the statement might become too long for some RDBMS SQL parsers to
handle and/or the string literals might exceed limits (Oracle 9.x
imposes a 4000-character limit on string literals) if the user is
waxing expansive at the browser

	repeated invocations of this script will result in the RDBMS being
fed versions of this SQL statement that are morphologically the same
but differ in actual text; depending on how the RDBMS is implemented
this might prevent the query plan from being reused

Much more serious, however, is the possibility that a malicious user
could craft a form submission that would result in destruction of data
or violation of privacy. For example, consider the following code:

string EventQuery = "select *
 from events
 where event_id = " + EventIDfromBrowser;

Expecting a numeric event ID and knowing that numbers do not need to
be wrapped in quotes like a string literal, the programmer does no
processing on EventIDfromBrowser, a variable read from
the open Internet.

Suppose that an evil-minded person submits a form with
EventIDfromBrowser set to "42; select * from
user_passwords". The semicolon near the beginning of this string
could potentially terminate the first SELECT and the unauthorized
"select * from user_passwords" query might then be executed. If the
unauthorized query is well-crafted the information resulting from it
might be presented in a browser window. Another scary construct would
be "42; delete from customers".

You can solve all of these problems by separating SQL code and
variable data. Here's a pseudo-code example of how it has been done
using standard libraries going back to the late 1970s:

// associate the name "event_query" with a string of SQL
PrepareStatement("event_query","select * from events where event_id = :event_id");

// associate the bind variable :event_id with the particular value for this page
BindVar("event_query",":event_id",3722);

// ask the RDBMS to execute the completed query
ExecuteStatement("event_query");

... fetch results ...

Note that the structure of the SQL seen by the RDBMS is fixed as
"select * from events where event_id = :event_id",
regardless of what input is received in the form. Only the value of
:event_id changes.

This is an example of using bind variables, which is standard
practice in most software that talks to an RDBMS.

Bind Variables in C#

using System;
using System.Configuration;
using System.Data;
using System.Data.SqlClient;

namespace ExecuteScalar
{
 ///
 /// An example of how to use named parameters in ADO.NET.
 ///
 class Class1
 {
 ///
 /// The main entry point for the application.
 ///
 [STAThread]
 static void Main(string[] args)
 {
 object objResult = null;
 string strResult = null;
 string strEmployeeID = "PMA42628M";

 //Initialize the database connection, command and parameter objects.
 SqlConnection conn = new SqlConnection(
 ConfigurationSettings.AppSettings["connStr"]
);
 SqlCommand cmd = new SqlCommand(
 "select fname from employee where emp_id = @emp_id"
);
 SqlParameter param = new SqlParameter("@emp_id",strEmployeeID);

 //Associate the connection with the command.
 cmd.Connection = conn;

 //Bind the parameter value to the command.
 cmd.Parameters.Add(param);

 //Connect to the database and run the command.
 try
 {
 conn.Open();
 objResult = cmd.ExecuteScalar();
 }
 catch (Exception e)
 {
 Console.WriteLine("Database error: {0}", e.ToString());
 }
 finally
 {
 //Clean up.
 if (!conn.State.Equals(ConnectionState.Closed))
 {
 conn.Close();
 }
 }

 //Convert the query result to a string.
 if (objResult == null)
 {
 strResult = "[NULL]";
 }
 else
 {
 strResult = objResult.ToString();
 }

 Console.WriteLine("Employee #{0}'s first name is: '{1}'", strEmployeeID, strResult);
 Console.ReadLine();
 }
 }
}

Not too much to note here except that Microsoft seems to like
@emp_id rather than Oracle's :emp_id, i.e.,
they use the at-sign rather than the colon to indicate that something
is a bind variable.

Bind Variables in Java

Here's a code fragment showing the use of bind variables in Java:

PreparedStatement updateSales = con.prepareStatement(
	"UPDATE COFFEES SET SALES = ? WHERE COF_NAME LIKE ? ");
updateSales.setInt(1, 75);
updateSales.setString(2, "Colombian");
updateSales.executeUpdate():

Source: The Java Tutorial at http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html.

Note that JDBC, the Java database connectivity library, uses "?" as a
bind variable. It is up to the programmer to count the Nth occurrence
of the ? in a SQL string and bind a value to that. As you can imagine
this process becomes error-prone if the SQL statement contains fifteen or
more variables, a very common situation in real applications. You can
also imagine the possibilities for introducing subtle bugs if the SQL
query is changed and the bind variable sequence numbers are not
properly updated.

Supposedly this situation has been improved in JDBC 3.0, but this
example of Java's inferiority to C interfaces from twenty years earlier
should remind you to be skeptical of vendor claims for the advantages
of new languages and development tools.

Configurable View Source Links

In the "Basics" chapter you added a hard-coded "View Source" link to
every page that you built. It is important for the remainder of the
course to continue making your source code available to colleagues.
On the other hand, when the application launches to the public you
wouldn't necessarily want everyone to see your dirty laundry. You
probably want a single switch, somewhere on the server, that can turn
on or off all the "view source" links on the site. This means that
all of your scripts will have to be calling a single procedure to
decide whether or not to offer a "View Source" link. In the long run,
this procedure might decide based on IP address or logged-in user ID
whether to serve a View Source link.

Get the Database Username and Password out of the Page Scripts

Suppose that you have the following code in one of your page scripts:

dbconn = OpenDBConn("sysid=local,username=joestest,password=joerocks");

There are several problems with this approach to connecting to an RDBMS:

	An evildoer reading this source code might be able to connect to
the RDBMS running on your server and drop all of your tables.

	Running this code against a test database, which will necessarily
have a different database username, will require editing each and
every page script.

	Reusing this code on another project will require changing the
database username and password.

Every good Web development environment has a means of pooling
connections from the page scripts to the database so that the Web
server need not re-connect and re-authenticate itself to the database
millions of times per day. Generally the idea is that the Web server
will open a handful of connections to the RDBMS and keep them open.
When a page script needs to execute a query, it grabs one of the
connections from the pool and uses it until page service is complete.
The connection is then returned to the pool. This scheme is called
connection pooling.

Often a good way to get the database username and password out of page
scripts is to use the Web server's database connection pooling system.

Time and Motion

Teams should spend at least an hour together drawing a pen and paper
sketch that identifies and locates the basic information that the
system will process. Detailed data modeling is not necessary, as it
will be covered in the next two chapters.

The work of figuring out bind variables, hiding the database password,
and generalizing the view source code may be split among the team
members. This ought to be doable within six to eight programmer-hours.

User Registration and Management

As noted in the "Software Structure" chapter, the more identified,
authenticated, and accountable people are, the better the opportunity
for building a community out of an aggregate. Thus the user database
should record as much information as possible that might help Person A
assess Person B's credibility.

As you will see in the chapter on scaling, it may become important to
facilitate occasional face-to-face meetings among subgroups of users.
Thus it will be helpful to record their country of residence and
postal code (what Americans call "Zoning Improvement Plan code" or
"ZIP code").

Fat versus Skinny: the Ideas

Suppose that the system specifications start off with very simple
requirements for the user database, one that can be handled by the
following single table:

create table users (
	user_id			integer primary key,
	first_names		varchar(50),
	last_name		varchar(50) not null,
	email			varchar(100) not null unique,
	-- we encrypt passwords using operating system crypt function
	password		varchar(30) not null,
	registration_date	timestamp(0)
);

Notice that the comment about password encryption is placed above,
rather than below, the column name and that the primary key constraint
is clearly visible to other programmers. It is good to get into the
habit of writing data model files in a text editor and including
comments and examples of the queries that you expect to support. If
you use a desktop application with a graphical user interface to
create tables you're losing a lot of important design information.
Remember that the data model is the most critical part of your
application. You need to think about how you're going to communicate
your design decisions to other programmers.

After a few weeks online, someone says, "wouldn't it be nice to see the
user's picture and hyperlink through to his or her home page?"

create table users (
	user_id			integer primary key,
	first_names		varchar(50),
	last_name		varchar(50) not null,
	email			varchar(100) not null unique,
	password		varchar(30) not null,
	-- user's personal homepage elsewhere on the Internet
	url			varchar(200),
	registration_date	timestamp(0),
	-- an optional photo; if Oracle Intermedia Image is installed
	-- use the image datatype instead of BLOB
	portrait		blob
);

After a few more months ...

create table users (
	user_id			integer primary key,
	first_names		varchar(50),
	last_name		varchar(50) not null,
	email			varchar(100) not null unique,
	password		varchar(30) not null,
	-- user's personal homepage elsewhere on the Internet
	url			varchar(200),
	registration_date	timestamp(0)
	-- an optional photo; if Oracle Intermedia Image is installed
	-- use the image datatype instead of BLOB
	portrait		blob,
	-- with a 4 GB maximum, we're all set for Life of Johnson
	biography		clob,
	birthdate		date,
	-- current politically correct column name would be "gender"
	-- but data models often outlive linguistic fashion so
	-- we stick with more established usage
	sex			char(1) check (sex in ('m','f')),
	country_code		char(2) references country_codes(iso),
	postal_code		varchar(80),
	home_phone		varchar(100),
	work_phone		varchar(100),
	mobile_phone		varchar(100),
	pager			varchar(100),
	fax			varchar(100),
	aim_screen_name		varchar(50),
	icq_number		varchar(50)
);

The table just keeps getting fatter. As the table gets fatter, more
and more columns are likely to be NULL for any given user. With
Oracle 9i you're unlikely to run up against the hard database limit of
1000 columns per table. Nor is there a storage efficiency problem.
Nearly every database management system is able to record a NULL value
with a single bit, even if the column is defined
char(500) or whatever. Still, something seems unclean
about having to add more and more columns to deal with the possibility
of a user having more and more phone numbers.

Medical informaticians have dealt with this problem for many years.
The example above is referred to as a "fat data model." In the
hospital world you'll very likely find something like this for storing
patient demographic and insurance coverage data. But for laboratory
tests, the fat approach begins to get ugly. There are thousands of
possible tests that a hospital could perform on a patient. New tests
are done every day that a patient is in the hospital. Some hospitals
have experimented with a "skinny" data model for lab tests. The table
looks something like the following:

create table labs (
	lab_id		integer primary key,
	patient_id	integer not null references patients,
	test_date	timestamp(0),
	test_name	varchar(100) not null,
	test_units	varchar(100) not null,
	test_value	number not null,
	note		varchar(4000)
);

-- make it fast to query for "all labs for patient #4527"
-- or "all labs for patient #4527, ordered by recency"
create index labs_by_patient_and_date on labs(patient_id, test_date);

-- make it fast to query for "complete history for patient #4527 insulin levels"
create index labs_by_patient_and_test on labs(patient_id, test_name);

Note that this table doesn't have a lot of integrity constraints. If
you were to specify patient_id as unique that would
limit each hospital patient to having only one test done. Nor does it
work to specify the combination of patient_id and
test_date as unique because there are fancy machines that
can do multiple tests at the same time on a single blood sample, for
example.

We can apply this idea to user registration:

create table users (
	user_id			integer primary key,
	first_names		varchar(50),
	last_name		varchar(50) not null,
	email			varchar(100) not null unique,
	password		varchar(30) not null,
	registration_date	timestamp(0)
);

create table users_extra_info (
	user_info_id		integer primary key,
	user_id			not null references users,
	field_name		varchar(100) not null,
	field_type		varchar(100) not null,
	-- one of the three columns below will be non-NULL
	varchar_value	varchar(4000),
	blob_value	blob,
	date_value	timestamp(0),
	check (not (varchar_value is null and
 blob_value is null and
		 date_value is null))
	-- in a real system, you'd probably have additional columns
	-- to store when each row was inserted and by whom

);

-- make it fast to get all extra fields for a particular user
create index users_extra_info_by_user on users_extra_info(user_id);

Here is a example of how such a data model might be filled:

users table

 	user_id	first_names	last_name	email	password

 	1	Wile E.	Coyote	supergenius@yahoo.com	IFUx42bQzgMjE

users_extra_info table

 	user_info_id	user_id	field_name	field_type	varchar_value	blob_value	date_value

 	1	1	birthdate	date	--	--	1949-09-17

 	2	1	biography	blob_text	--	Created by Chuck Jones...	--

 	3	1	aim_screen_name	string	iq207	--	--

 	4	1	annual_income	number	35000	--	--

Figure 5.1:
Example user record that is split between a skinny table and a second table.

	

If you're using a fancy commercial RDBMS and wish to make queries like
this really fast, check out bitmap indices, often documented under
"Data Warehousing". These are intended for columns of low
cardinality, i.e., not too many distinct values compared to the number
of rows in the table. You'd build a bitmap index on the
field_name column.

Note that numbers are stored in a column of type VARCHAR. Won't this
preclude queries such as "Find the average income of a registered
user"? Not if you're using Oracle. Oracle is smart about
automatically casting between character strings and numbers. It will
work just fine to

select average(varchar_value)
from users_extra_info
where field_name = 'annual_income'

One complication of this kind of data model is that it is tough to use
simple built-in integrity constraints to enforce uniqueness if you're
also going to use the users_extra_info for many-to-one
relations.

For example, it doesn't make sense to have two rows in the info table,
both for the same user ID and both with a field name of "birthdate".
A user can only have one birthday. Maybe we should

create unique index users_extra_info_user_id_field_idx on users_extra_info (user_id, field_name);

(Note that this will make it really fast to fetch a particular field
for a particular user as well as enforcing the unique constraint.)

But what about "home_phone"? Nothing should prevent a user from
getting two home phone numbers and listing them both. If we try to
insert two rows with the "home_phone" value in the
field_name column and 451 in the user_id
column, the RDBMS will abort the transactions due to violation of the
unique constraint defined above.

How to deal with this apparent problem? One way is to decide that the
users_extra_info table will be used only for
single-valued properties. Another approach would be to abandon the
idea of using the RDBMS to enforce integrity constraints and put logic
into the application code to make sure that a user can have only one
birthdate. A complex but complete approach is to define RDBMS
triggers that run a short procedural program inside the RDBMS—in
Oracle this would be a program in the PL/SQL or Java programming
languages. This program can check that uniqueness is preserved for
fields that indeed must be unique.

Fat versus Skinny: the Decision

Deciding between fat-style and skinny-style is an engineering
judgement call. You can certainly build a working system using either
approach, but how much guidance does that give you? You know that you
can build a computer program in any Turing-complete computer language,
but that doesn't make Assembler as practical as Basic, C#, Eiffel,
Java, Lisp, or ML.

One argument in favor of fat-style is maintainability and
self-documentation. Fat is the convention in the database world. A
SQL programmer who takes over your work will expect fat. He or she
will sit down and start to understand your system by querying the
data dictionary, the RDBMS's internal representation of what
tables are defined. Here's how it looks with Oracle:

select table_name from user_tables;

describe users
 *** SQL*Plus lists the column names ***
describe other_table_name
 *** SQL*Plus lists the column names ***
describe other_table_name_2
 *** SQL*Plus lists the column names ***
...

Suppose that you were storing all of your application data in a single
table:

create table my_data (
	key_id			integer,
	field_name		varchar,
	field_type		varchar,
	field_value		varchar
);

This is an adequate data model in the same sense that raw instructions
for a Turing machine is an adequate programming language. Querying
the data dictionary would be of no help toward understanding the
purpose of the application. One would have to sample the contents of
the rows of my_data to see what was being stored.
Suppose, by contrast, you were poking around in an unfamiliar database
and encountered this table definition:

create table address_book (
	address_book_id	integer primary key,
	user_id		not null references users,
	first_names	varchar(30),
	last_name	varchar(30),
	email		varchar(100),
	email2		varchar(100),
	line1		varchar(100),
	line2		varchar(100),
	city		varchar(100),
	state_province	varchar(20),
	postal_code	varchar(20),
	country_code	char(2) references country_codes(iso),
	phone_home	varchar(30),
	phone_work	varchar(30),
	phone_cell	varchar(30),
	phone_other	varchar(30),
	birthdate	date,
	days_in_advance_to_remind	integer,
	date_last_reminded		date,
	notes				varchar(4000)
);

	

Note the use of ISO country codes, constrained by reference to a table
of valid codes, to represent country in the table above. You don't
want records with "United States", "US", "us", "USA", "Umited Stares",
etc. These are maintained by the ISO 3166 Maintenance agency, from
which you can download the most current data in text format. See http://www.iso.ch/iso/en/prods-services/iso3166ma/index.html.

The author's source code comments have been stripped out, yet it is
reasonably clear that this table exists to support an online address
book. Moreover the purpose of each column can be inferred from its
name. Quite a few columns will be NULL for each address book entry,
but not so many that the table will be absurdly sparse. Because NULL
columns take up so little space in the database, you shouldn't decide
between skinny and fat based on presumed data storage efficiency.

Skinny is good when you are storing wildly disparate data on each
user, such that you'd expect more than 75 percent of columns to be
NULL in a fat data model. Skinny can result in strange-looking SQL
queries and data dictionary opacity.

User Groups

One of the most powerful constructs in an online community is a user
group. A group of users might want to collaborate on publishing some
content. A group of users might want a private discussion forum. A
group of users might be the only people authorized to perform certain
actions or view certain files. The bottom line is that you'll want to
be able to refer to groups of users from other objects in your
database.

When building user groups you might want to think about on-the-fly
groups. You definitely want to have a user group where each member is
represented by a row in a table: "user #37 is part of user group
#421". With this kind of data model people can explicitly join and
separate from user groups. It is also useful, however, to have groups
generated on-the-fly from queried properties. For example, it might
be nice to be able to say "this discussion forum is limited to those
users who live in France" without having to install database triggers
to insert rows in a user group map table every time someone registers
a French address. Rather than denormalizing the data, it will be much
cleaner to query for "users who live in France" every time group
membership is needed.

A typical data model will include a USERS table and a USER_GROUPS
table. This leads to a bit of ugliness in that many of the other
tables in the system must include two columns, one for user_id and one
for user_group_id. If the user_id column is not NULL, the row belongs
to a user. If the user_group_id is not NULL, the row references a
user group. Integrity constraints ensure that only one of the columns
will be non-NULL.

Representing Membership in a Group (First Normal Form)

Suppose that you have a USERS table and a USER_GROUPS table. How do
you represent the fact that User 234 is a member of Groups 17 and 18?
It might seem that the simplest way to do this is with a data
structure stored in a column within the USERS table:

create table users (
	user_id			integer primary key,
 ...
	-- a space-separated list of group IDs
	group_memberships	varchar(4000),
	...
);

In this case, we'd store the string "17 18" in the
group_memberships column. This is known as a
repeating group or a multivalued column and it has the
following problems:

	you might not have enough space if the number of values in the
column grows larger than anticipated

	the combination of table name, column name, and key value no longer
specifies a datum

	the basic INSERT, UPDATE, and SELECT operations are not sufficient
to manipulate multivalued columns

	programmers' brains will have to adapt simultaneously to unordered
data in table rows and ordered data inside a multivalued column

	design opacity: If you use multivalued columns even once, people
will never know what to expect when they look under the hood of your
design; did you use multiple tables to express a many-to-one relation or
multivalued columns?

To get the data model into First Normal Form, in which there
are no multivalued columns, you'd create a mapping table:

create table user_group_map (
	user_id		not null references users;
	user_group_id	not null references user_groups;
	unique(user_id, user_group_id)
);

Note that in Oracle the unique constraint results in the
creation of an index. Here it will be a concatenated index starting
with the user_id column. This index will make it fast to ask the
question "To which groups does User 37 belong?" but will be of no use
in answering the question "Which users belong to Group 22?"

A good general rule is that representing a many-to-one relation
requires two tables: Things A and Things B, where many
Bs can be associated with one A. Another general rule is that
representing a many-to-many relation requires three tables: Things A,
Things B, and a mapping table to associate arbitrary numbers of As
with arbitrary numbers of Bs.

Derivable Data

Storing users and groups in three tables seems as though it might be
inefficient and ugly. To answer the question "To which groups does
Norman Horowitz belong" we must JOIN the following tables:
users, user_groups, user_group_map:

select user_groups.group_name
from users, user_groups, user_group_map
where users.first_names = 'Norman' and users.last_name = 'Horowitz'
and users.user_id = user_group_map.user_id
and user_groups.user_group_id = user_group_map.user_group_id;

To answer the question "Is Norman Horowitz part of the Tanganyikan
Ciclid interest group and therefore entitled to their private page" we
must execute a query like the following:

select count(*)
from user_group_map
where user_id = (select user_id
 from users
 where first_names = 'Norman'
 and last_name = 'Horowitz')
and user_group_id = (select user_group_id
 from user_groups
 where group_name = 'Tanganyikans')

	

Note the use of the _p suffix to denote a boolean column.
Oracle does not support a boolean data type and therefore we simulate
it with a CHAR(1) that is restricted to "t" and "f". The "p" in the
suffix stands for "predicate" and is a naming convention that dates
back to Lisp programmers circa 1960.

If this is a popular group, there is a temptation among new database
programmers to denormalize the data model by adding a column to
the users table, e.g., tanganyikan_group_member_p. This
column will be set to "t" when a user is added to the Tanganyikans
group and reset to "f" when a user unsubscribes from the group. This
feels like progress. We can answer our questions by querying one
table instead of three. Historically, however, RDBMS programmers have
been bitten badly any time that they stored derivable data,
i.e., information in one table that can be derived by querying other,
more fundamental, tables. Inevitably a programmer comes along who is
not aware of the unusual data model and writes application code that
updates the information in one place but not another.

What if you really need to simplify queries? Use a view:

create view tanganyikan_group_members
as
select * from users
where exists (select 1
 from user_group_map, user_groups
 where user_group_map.user_id = users.user_id
 and user_group_map.user_group_id = user_groups.user_group_id
 and group_name = 'Tanganyikans');

What if you know that you're going to need this information
almost every time that you query the USERS table?

create view users_augmented
as
select
 users.*,
 (select count(*)
 from user_group_map ugm, user_groups ug
 where users.user_id = ugm.user_id
 and ugm.user_group_id = ug.user_group_id
 and ug.group_name = 'Tanganyikans') as tanganyikan_group_membership
from users
where exists (select 1
 from user_group_map, user_groups
 where user_group_map.user_id = users.user_id
 and user_group_map.user_group_id = user_groups.user_group_id
 and group_name = 'Tanganyikans');

This results in a virtual table containing all the columns of users
plus an additional column called
tanganyikan_group_membership that is 1 for users who are
members of the group in question and 0 for users who aren't. In
Oracle, if you want the column to bear the standard ANSI
boolean data type values, you can wrap the DECODE function around the
query in the select list:

decode(select count(*) ..., 1, 't', 0, 'f') as tanganyikan_group_membership_p

Notice that we've added an "_p" suffix to the column name, harking
back to the Lisp programming language in which functions that could
return only boolean values conventionally had names ending in "p".

Keep in mind that data model complexity can always be tamed with
views. Note, however, that views are purely syntactic. If a query is
running slowly when fed directly to the RDBMS, it won't run any faster
simply by having been renamed into a view. Were you to have 10,000
members of a group, each of whom was requesting one page per second
from the group's private area on your Web site, doing three-way JOINs on
every page load would become a substantial burden on your RDBMS
server. Should you fix this by denormalizing, thus speeding up
queries by perhaps 5X over a join of indexed tables? No. Speed it up
by 1000X by caching the results of authorization queries in the
virtual memory of the HTTP server process.

Clean up ugly queries with views. Clean up ugly performance problems
with indices. If you're facing Yahoo! or Amazon levels of usage, look
into unloading the RDBMS altogether with application-level caching.

Access Control and Approval

Suppose that you are building a corporate knowledge-sharing site. You
might decide to place the server on the public Internet to facilitate
employee access while at home or traveling. Perhaps some close
collaborators within other organizations will be allowed access.
However, you won't want random people registering at the site and
getting immediate access. Each new user should probably have to be
approved by an administrator.

Or perhaps you're building a public online learning community. You
want users to be identified and accountable at the very least to their
Internet Service Provider. So you'll want to limit access to only
those registrants who've verified receipt of an email message at the
address that they supplied upon registering. You may also want to
reject registration from users whose only email address is at
hotmail.com or a similar anonymous provider.

A community may need to change its policies as the membership grows.

One powerful way to manage user access is by modeling user
registration as a finite-state machine, such as the one shown in
figure 5.1.

			Not a user
		 	 |	
		 V
	 Need Email Verification Rejected (via any
	 Need Admin Approval pre-authorization state)
 			 |				
 		 	 | 	
Need admin approval<--------- -------------="">Need email verification
 |						 |
 | 		 			|
 --------------------->Authorized<--------------------- |="" banned------------=""><-------- ------=""><---------------deleted <="" pre="">

Content Management

[image: Parco dei Mostri (park of monsters), below the town of Bomarzo, Italy (1.5 hours north of Rome). This was the park of the 16th century Villa Orsini and is filled with grotesque sculptures.]

There are two fundamental elements to content management: (1) storing
stuff in a content repository, and (2) supporting the workflow
of a group of people engaged in putting stuff into that repository.
This chapter will treat the storage problem first and then the
workflow support problem. We'll also look at version control for both
content and software, at look and feel design for individual pages, and at
navigation design and information architecture.

Part of the art of content management for an online learning community
is reducing the number of types of content. For example, consider a
community where the publisher says "I want articles [magnet content],
comments from users on articles, news from the publisher, comments on
news from users, questions from users, and answers to questions." A
naive implementation from these specifications would result in the
creation of six database tables: articles, comments_on_articles,
news, comments_on_news, questions, answers. From the RDBMS's
perspective, there is nothing overwhelming about six tables. But
consider that every new table defined in the RDBMS implies roughly twenty
Web scripts. Ten of these scripts will constitute a user experience:
view a directory of content in Table A, view one category, view one
item, view the newest items, grab a form to insert an item, confirm
insertion, request an email alert of comments on an item. Ten of
these scripts will constitute an administrator's experience: view a
directory of content in Table A, view one category, view one item,
view the newest items, approve an item, disapprove an item, delete an
item, confirm deletion of an item, etc. It will be a bit tough to
code these twenty scripts in a general fashion because the SQL statements will differ
in at least the table names used.

Consider further that to offer a complete index of site content,
you'll have to write a program that pulls text from at least six
tables into a single index.

How different are these six kinds of content, really? We'll look at
the tables that we need to define for storing articles, then proceed
to the other types of content.

A Simple Data Model for Articles

Here's a very basic data model for storing articles:

create table articles (
	article_id		integer primary key,
	-- who contributed this and when
	creation_user		not null references users,
	creation_date		not null date,
	-- what language is this in?
	-- visit http://www.w3.org/International/O-charset-lang
	-- to see the allowable 2-character codes (en is English, ja is Japanese)
	language		char(2) references language_codes,
	-- could be text/html or text/plain or some sort of XML document
	mime_type		varchar(100) not null,
	-- will hold the title in most cases
	one_line_summary	varchar(200) not null,
	-- the entire article; 4 GB limit
	body			clob
);

Should all articles in the database be shown to all users? Perhaps it
would be nice to have the ability to store an article and hold it for
editorial examination:

create table articles (
	article_id		integer primary key,
	creation_user		not null references users,
	creation_date		not null date,
	language		char(2) references language_codes,
	mime_type		varchar(100) not null,
	one_line_summary	varchar(200) not null,
	body			clob,
	editorial_status	varchar(30)
 check (editorial_status in ('submitted','rejected','approved','expired'))
);

Do you trust all the programmers in your organization to remember to
include a where editorial_status = 'approved' clause in
every script on the site? If not, perhaps it would be better to
rename the table altogether and build a view for use by application
programmers:

create table articles_raw (
	article_id		integer primary key,
	...
	editorial_status	varchar(30)
 check (editorial_status in ('submitted','rejected','approved','expired'))
);

create view articles_approved
as
select *
from articles_raw
where editorial_status = 'approved';

If you change your mind about how to represent approval status, you
won't need to update dozens of Web scripts; you need only change the
definition of the articles_approved view. (See the views
chapter of SQL for Web Nerds at http://philip.greenspun.com/sql/views
for more on this idea of using SQL views as a means of programming
abstraction.)

Comments on Articles

Recall the six required elements of online community:

	magnet content authored by experts

	means of collaboration

	powerful facilities for browsing and searching both magnet content
and contributed content

	means of delegation of moderation

	means of identifying members who are imposing an undue burden on the
community and ways of changing their behavior and/or excluding them
from the community without them realizing it

	means of software extension by community members themselves

A facility that lets a user post an alternative perspective to a
published article is a means of collaboration that distinguishes a
one-way publishing site from an online community. More interestingly,
the facility lifts the Internet application out of the constraints of
the literate culture within which Western culture has operated ever
since Gutenberg (1452). A literate culture produces such works as the
Michelin Green Guide to Italy: "Extending below the
town is the park of the 16th-century Villa Orsini (Parco dei Mostri)
which is a Mannerist creation with a series of fantastically shaped
sculptures." Compare that description to these photos showing
just a tiny portion of the Parco dei Mostri ("Park of
Monsters"):

[image: Parco dei Mostri. Bomarzo, Italy.]

[image: Parco dei Mostri. Bomarzo, Italy.]

If a friend of yours came back from this place and showed these
slides, you'd expect to hear something much richer and more
interesting than the Michelin Guide's sentence. A literate culture
operates with the implicit assumption that knowledge is closed, that
Italian tourism can fit into a book. Perhaps the 350 pages of the
Green Guide aren't enough, but some quantity of writers and pages
would suffice to encapsulate everything worth knowing about Italy.

	

Comments are often the most interesting material on a site. Here's
one from http://philip.greenspun.com/humor/bill-gates:

"I must say, that all of you who do not recognize
the absolute genius of Bill Gates are stupid.
You say that bill gates stole this operating
system. Hmm.. i find this interesting. If he
stole it from steve jobs, why hasn't Mr. Jobs
relentlessly sued him and such. Because Mr. Jobs
has no basis to support this. Macintosh operates
NOTHING like Windows 3.1 or Win 95/NT/98. Now
for the mac dissing. Mac's are good for 1
thing. Graphics. Thats all. Anything else a
mac sucks at. You look in all the elementary
schools of america.. You wont see a PC. Youll
see a mac. Why? Because Mac's are only used by
people with undeveloped brains."

-- Allen (chuggie@geocities.com), August 10, 1998

Oral cultures do not share this belief. Knowledge is open-ended. People
may hold differing opinions without one person being wrong. There is not
necessarily one truth; there may be many truths. Though he didn't grow
up in an oral culture, Shakespeare knew this. Watch Troilus and
Cressida and its five perspectives on the nature of a woman's
love and try to figure out which perspective Shakespeare thinks is correct.

Feminists, chauvinists, warmongers, pacifists, Jew-haters, inclusivists,
cautious people, heedless people, misers, doctors, medical malpractice
lawyers, atheists, and the pious are all able to quote Shakespeare in
support of their beliefs. That's because Shakespeare uses the multiple
characters in each of his plays to show his culture's multiple truths.

In the 400 years since Shakespeare we've become much more
literate. There is usually one dominant truth. Sometimes this is
because we've truly figured something out. It is tough to argue that a
physics textbook on Newtonian mechanics should be an open-ended
discussion (though a user comment facility might still be very useful
in providing clarifying explanations for confusing sections). Yet even
in the natural sciences, one can find many examples in which the
culture of literacy distorts discourse.

Academic journals of taxonomic botany reveal disagreement on whether
Specimen 947 collected from a particular field in Montana is a member
of species X or species Y. But the journals imply agreement on the
taxonomy, i.e., on how to build a categorization tree for the various
species. If you were to eavesdrop on a cocktail party in a
university's department of botany, you'd discover that even this
agreement is illusory. There is widespread disagreement on what
constitutes the correct taxonomy. Hardly anyone believes that the
taxonomy used in journals is correct, but botanists have to stick with
it for publication because otherwise older journal articles would be
rendered incomprehensible. Taxonomic botany based on an oral culture
or a computer system capable of showing multiple views would look
completely different.

The Internet and computers, used competently and creatively, make it
much easier and cheaper to collect and present multiple truths than in
the old world of print, telephone, and snail mail. Multiple-truth Web
sites are much more interesting than single-truth Web sites and, per
unit of effort and money invested, much more effective at educating
users.

Implementing Comments

Comments on articles will be represented in a separate table:

create table comments_on_articles_raw (
	comment_id		integer primary key,
	-- on what article is this a comment?
	refers_to		not null references articles,
	creation_user		not null references users,
	creation_date		not null date,
	language		char(2) references language_codes,
	mime_type		varchar(100) not null,
	one_line_summary	varchar(200) not null,
	body			clob,
	editorial_status	varchar(30)
 check (editorial_status in ('submitted','rejected','approved','expired'))
);

create view comments_on_articles_approved
as
select *
from comments_on_articles_raw
where editorial_status = 'approved';

This table differs from the articles table only in a
single column: refers_to. How about combining the two:

create table content_raw (
	content_id		integer primary key,
	-- if not NULL, this row represents a comment
	refers_to		references content_raw,
	-- who contributed this and when
	creation_user		not null references users,
	creation_date		not null date,
	-- what language is this in?
	-- visit http://www.w3.org/International/O-charset-lang
	-- to see the allowable 2-character codes (en is English, ja is Japanese)
	language		char(2) references language_codes,
	-- could be text/html or text/plain or some sort of XML document
	mime_type		varchar(100) not null,
	one_line_summary	varchar(200) not null,
	-- the entire article; 4 GB limit
	body			clob,
	editorial_status	varchar(30)
 check (editorial_status in ('submitted','rejected','approved','expired'))
);

-- if we want to be able to write some scripts without having to think
-- about the fact that different content types are merged

create view articles_approved
as
select *
from content_raw
where refers_to is null
and editorial_status = 'approved';

create view comments_on_articles_approved
as
select *
from content_raw
where refers_to is not null
and editorial_status = 'approved';

-- let's build a single full-text index on both articles and comments
-- using Oracle Intermedia Text (formerly known as "Context")

create index content_ctx on content_raw (body)
indextype is ctxsys.context;

What is Different about News?

What is so different about news that we need to have a separate table?
Oftentimes news has an expiration date, after which it is no longer
interesting and should be pushed into an archive. "Pushing into an
archive" does not necessarily mean that the item must be moved into a
different table. It might be enough to program the presentation
scripts so that unexpired news items are on the first page and expired
items are available by clicking on "archives".

Often a company's press release will be tagged "for release Monday,
April 17." If a publisher wants to continue receiving press
releases from this company, it will respect these dates. This implies
the need for a release_time column in the news data
model.

Other than these two columns (expiration_time and
release_time), it would seem that a news story needs more
or less the same columns as articles: a place for a one-line summary,
a place for the body of the story, a way to indicate authorship, a way
to indicate approval within the editorial workflow.

Upon further reflection, however, perhaps these columns could be
useful for all site content. An article on upgrading from Windows
2000 to Windows XP probably should be set to expire in 2006. If a
bunch of authors and editors are working on a major site update,
perhaps it would be nice to synchronize the release of the new content
for Tuesday at midnight. Let's go back to content_raw:

create table content_raw (
	content_id		integer primary key,
	refers_to		references content_raw,
	creation_user		not null references users,
	creation_date		not null date,
	release_time		date,	-- NULL means "immediate"
	expiration_time		date,	-- NULL means "never expires"
	language		char(2) references language_codes,
	mime_type		varchar(100) not null,
	one_line_summary	varchar(200) not null,
	body			clob,
	editorial_status	varchar(30)
 check (editorial_status in ('submitted','rejected','approved','expired'))
);

How do we find news stories amongst all the content rows? What
distinguishes a news story with a scheduled release time and
expiration date from an article on the Windows 2003 operating system
with a scheduled release time and expiration date? We'll need one more
column:

create table content_raw (
	content_id		integer primary key,
	content_type		varchar(100) not null,
	refers_to		references content,
	creation_user		not null references users,
	creation_date		not null date,
	release_time		date,
	expiration_time		date,
	language		char(2) references language_codes,
	mime_type		varchar(100) not null,
	one_line_summary	varchar(200) not null,
	body			clob,
	editorial_status	varchar(30)
 check (editorial_status in ('submitted','rejected','approved','expired'))
);

create view news_current_and_approved
as
select *
from content_raw
where content_type = 'news'
and (release_time is null or sysdate >= release_time)
and (expiration_time is null or sysdate <= expiration_time)
and editorial_status = 'approved';

Notice the explicit checks for NULL in the view definition above.
You'd think that something simpler such as

and sysdate between release_time and expiration_time

would work. The problem here is SQL's three-valued logic. For the
RDBMS to return a row, all of the AND clauses must return true. NULL
is not true. Any expression or calculation including a NULL evaluates
to NULL. Thus

where sysdate >= release_time

will exclude any rows where release_time is NULL.

What is Different about Discussion?

It seems that we've managed to treat four of the six required content
types with one table. What's more, we've done it without having a
long list of NULLed columns for a typical item. For an article,
refers_to will be NULL. For content that is not
temporal, the release and expiration times will be NULL. Otherwise,
most of the columns will be filled most of the time.

What about questions and answers in a discussion forum? If there is
only one forum on the site, we can simply add rows to the
content_raw table with a content_type of
"forum_posting" and query for the questions by checking
refers_to is null. On a site with multiple forums, we'd
need to add a parent_id column to indicate under which
topic a given question falls. Within a forum with many archived
posts, we'll also need some way of storing categorization, e.g., "this
is a Darkroom question". See http://www.photo.net/bboard/
for a running example of a multi-forum system in which older postings
are categorized. The "Discussion" chapter of this book treats this
subject in more detail.

Why Not Use the File System?

Let's step back for a moment and ask ourselves why we aren't making
more use of the hierarchical file system on our server. What would be
wrong with having articles stored as .html files in directories? This
is the way that most Web sites were built in the 1990s and it is
certainly impossible to argue with the performance and reliability of
this approach.

One good thing about the file system is that there are a lot of tools
for users with different levels of skill to add, update, remove, and
rename files. Programmers can use text editors. Designers can use
Web design tools and FTP the results. Page authors can use HTML
editors such as Microsoft Front Page.

One bad thing about giving many people access to the file system is
the potential for chaos. A designer is supposed to upload a template,
but ends up removing a script by mistake. Now users can't log into
the site anymore. The standard Windows and Unix file systems aren't
versioned. It isn't possible to go back and ask "What did this file
look like six months ago?" The file system does not by itself support any
workflow (see below). You authorize someone to modify a file or not.
You can't say "User 37 is authorized to update this article on
aquarium filters, but the members shouldn't see that update until it is
approved by an editor."

The deepest problem with using the file system as a cornerstone of
your content management system is that files are outside of the
database. You will need to store a lot of references to content in
the database, e.g., "User 960 is the author of Article 231", "Comment
912 is a comment on Article 529", etc. It is very difficult to keep a
set of consistent references to things outside the RDBMS. Suppose
that your RDBMS tables are referring to file system files by file
name. Someone renames a file. The database doesn't know. The
database's referential integrity constraint mechanisms cannot be
invoked to protect against this circumstance. It is much easier to
keep a set of data structures consistent if they are all within the
RDBMS.

Static .html files also have the problem of being, well, static.
Suppose that you want a standard header and footer on every page. You
can cut and paste these into every .html file on the system. But what
if you want to change "Copyright 2003" to "Copyright 2006" in
the site-wide footer? You may have to update thousands of files.
Suppose that you want the header to include a "Login" link if the
request comes in with no user authorization cookie and a "Logout" link
if the request comes in from a registered user.

Some of the problems with publisher maintenance of static .html files
can be solved by periodically writing and running clever Perl scripts.
Deeper problems with the user experience remain, however. First and
foremost is the fact that with a static .html file every person who
views the page thinks that he or she might be the only person ever to
have viewed the page. This makes for a very lonely Internet
experience and, generally speaking, not a very profitable one for the
publisher.

A sustainable online business will typically offer some sort of online
community interaction anchored by its content and will offer a
consistently personalized user experience. These requirements entail
some sort of computer program executing on every page load. So you
might as well take this to its logical conclusion and build every URL
in your application the same way: script in the file system executes
and pulls content from the RDBMS.

Exercise 1

Develop a data model for the content that you'll be storing on your
site. Note that at a bare minimum your content repository needs to be
capable of handling a discussion forum since we'll be building that in
a later chapter.

You might find that, in making the data model precise with SQL table
definitions, questions for the client arise. You realize that your
earlier discussions with the client were too vague in some areas.
This is a natural consequence of building a SQL data model. Pick up
the phone and call your client to get clarifications. Email with
several alternative concrete scenarios. Get your client accustomed to
fielding questions in a timely manner.

Show the draft data model to your teaching assistant and discuss with
other students before proceeding.

How the Workflow Problem Arises

It is easy to build and maintain a Web site if

	one person is publisher, author, and programmer

	the site comprises only a few pages

	nobody cares whether these few pages are formatted consistently

	nobody cares about retrieving old versions or figuring out how a
version got to be the way that it is

Fortunately for companies and programmers that hope to make a nice
living from providing content management "solutions", the preceding
conditions seldom obtain at better-financed Web sites. What is more
typical are the following conditions:

	labor is divided among publishers, information designers, graphic
designers, authors, and programmers

	the site contains thousands of pages

	pages must be consistent within sections and sections must have a
unifying theme

	version control is critical

The publisher decides what major content sections are available, when
a content section goes live, and the relative prominence to be
assigned each content section.

The information designer decides what navigational links are available
from every document on the page, how to present the available content
sections, and what graphic design elements are required.

The graphic designer contributes drawings, logos, and other artwork in
service of the information designer's objectives. The graphic designer
also produces mock-up templates (static HTML files) in which these
artwork elements are used.

The programmer builds production templates and computer programs that
reflect the instructions of publisher, information designer, and
graphic designer.

Editors approve content and decide when specific pages go live.
Editors assign relative prominence among pages within sections.

In keeping with their relative financial compensation, we consider the
needs and contributions of authors second to last. Authors stuff
fragments of HTML, plain text, photographs, music, and sound, into the
database. These authored entities will be viewed by users only through
the templates developed by the programmers.

Below is an example workflow that we used to assign to students at
MIT:

	

Your "practice project" will be a content management system to support a
guide to Boston, along the lines of the AOL City Guide at http://home.digitalcity.com/boston/. You
will need to produce a design document and a prototype implementation.
The prototype implementation should be able to support the following
scenario:

	log in as publisher and visit /admin/content-sections/

	build a section called "movies" at /movies

	build a section called "dining" at /dining

	build a section called "news" at /news

	log out

	log in as information designer and visit /cm and specify navigation.
From anywhere in dining, readers should be able to get to movies. From
movies, readers should be able to get to dining or news.

	log out

	log in as programmer and visit /cm

	make two templates for the movie section, one called movie_review
and one called actor_profile; make one template for the dining section
called restaurant_review

	log out

	log in as author and visit /cm

	add two movie reviews and two actor profiles to the movies section
and a review of your favorite restaurant to the dining section

	log out

	log in as editor and visit /cm

	approve two of the movie reviews, one of the actor profiles, and the
restaurant review

	log out

	without logging in (i.e., you're just a regular public Web surfer
now), visit the /movies section and, ideally, you should see that the
approved content has gone live

	follow a hyperlink from a movie review to the dining section and
note that you can find your restaurant review

	log in as author and visit /cm

	edit the restaurant review to reflect a new and exciting dessert

	log out

	visit the /dining section and note that the old (approved) version
of the restaurant review is still live

	log in as editor and visit /cm and approve the edited restaurant
review

	log out

	visit the /dining section and check that the new (with dessert)
version of the restaurant review is being served

A Workflow Problem without Any Work

The preceding section dealt with the problem of supporting the
standard publishing world. You know all the authors. They know what
they're supposed to write. In an online learning community,
especially a non-commercial one, the workflow problem arises before
any work has been done or assigned. For example, suppose that the
publishers behind the photo.net community decide that they want the
following articles:

	Basic black and white darkroom photography

	Basic color darkroom (color negative)

	Making Ilfochrome prints

	Hardcore black and white printmaking

	Platinum prints

Among the 300,000 people who visit photo.net every month, surely there
are people capable of writing each of the preceding articles. We want
a system where

	Joe User can transactionally sign up to write "Platinum prints",
thus marking the article "assignment requested pending editorial
approval", supplying a brief outline and committing to completing a
draft by July 1.

	Jane Editor can approve the outline and schedule, thus generating
an email alert back to Joe.

	Joe User gets periodic email reminders of what he has signed up to
do and by when.

	Jane Editor is alerted when Joe's first draft is submitted on July
17 (Joe is unlikely to be the first author in the history of the world
to submit work on time).

	Joe User gets an email alert asking him to review Jane's corrected
version and sign off his approval.

	The platinum printing article shows up at the top of Jane Editor's
workspace page as "signed off by author" and she clicks to push it live.

Notice the intricacies of the workflow and also the idiosyncracies.
The New York Times and the Boston Globe put
out very similar-looking products. They are owned by the same
corporation. What do you think the chances are that software that
supports one newspaper's workflow will be adequate to support the
other's?

Exercise 2

Lay out the workflow for each content item that will be user-visible
in your online learning community. For each workflow step, specify (1)
who needs to give approval, (2) what email alerts are generated, (3)
what happens if approval is given, and (4) what happens if approval is
denied.

Tip: we recommend modeling workflow as a finite-state machine in which
a content item can be in only one state at a time and that single
state tells you everything that you need to know about the item. In
other words, your software can take action without ever needing to go
back and look to see what states the article was in previously.

Version Control (for Content)

Anyone involved in the administration and editing of an online
learning community ought to be able to fetch an old version of a
content item. If an author complains that a paragraph was dropped,
the editors should be able to retrieve the first draft of the article
from the content management system. Old versions are sometimes useful
for public users as well. For example, on photo.net in the
mid-1990s we had a lot of classified ads whose subject lines were of
the form "Reduced to $395!" A check through the server logs revealed
that the ad had been posted earlier that day with a price of $400,
then edited a few hours later. So technically the subject line was
true, but it was misleading. Instead of hiring additional
administrators to notice this kind of problem, we changed the software
to store all previous versions of a classified ad. When presenting an
ad that had been edited, the new scripts offered a link to view old
versions of the ad. The practice of screaming "Reduced!" stopped.

Version control becomes critical for preventing lost updates when
people are working together. Here's how a lost update can happen:

	Ira grabs Version A of a document at 9:00 am from the Web site in
order to fix a typo. He fixes it at 9:01 am, but forgets to write the
document back to the Web site.

	Shoshana grabs Version A at 10:00 am and spends six hours adding a
chapter of text, writing it back at 4:00 pm (call this Version B).

	Ira notices that he forgot to write his typo correction back to the
server and does so at 5:00 pm (call this Version C).

Unfortunately, Version C (the typo fix) is what future users will see;
all of Shoshana's work was wasted.

Programmers and technical writers at large companies are familiar with
the problem of lost updates when multiple people are editing the same
document. File-system based version control systems were developed to
help coordinate multiple contributors. These systems include the
original Walter Tichy's Revision Control System (RCS; early
1980s), Dick Grune and Brian Berliner's Concurrent Versions System
(CVS; 1986), and Marc Rochkind's Source Code Control System
(SCCS; 1972). These systems require more training than is
practical for casual users. For example, RCS mandates explicit
check-out and check-in. While a file is checked out by User A it is
locked and nobody but User A can check it back in. Suppose that User
A goes out to lunch, but there is some important news that absolutely
must be put on the site. What if User A leaves for a two-week
vacation and forgets to check a bunch of files back in? These
problems can be worked around manually, but it becomes a challenge when
the collaborators are on opposite sides of the globe and cannot see
"Oh, Schlomo's coat is still on the back of his chair so he's not yet
left for the day."

For distributed authorship of Web content by geographically
distributed casually connected users, the most practical system turns
out to be one in which check-in is allowed at any time by any
authorized person. However, all versions of every document are kept
in the database so that one can always revert to an earlier version or
pull a section out of an earlier version. This implies that your
content management system will have an audit trail: a record of
past values held by row-column intersections in a database table, who
was responsible for any changes in those values, and when the values
were changed.

There are two classical ways to implement an audit trail in an RDBMS.
The first is to set up separate audit tables, one for each production
table. Every time an update is made to a production table, the old
row is written out to an audit table, with a time stamp. This can be
accomplished transparently via RDBMS triggers, which are described
in the "Triggers" chapter of SQL for Web Nerds at http://philip.greenspun.com/sql/triggers
and demonstrated in practice in an open-source audit trail package
documented at http://philip.greenspun.com/seia/examples-content-management/audit-acs-doc.

The second classical approach is to keep current and archived
information in the same table. This is more expensive in terms of
computing resources required because the information that you want for
the live site is interspersed with seldom-retrieved archived
information. But it is easier if you want to program in the
capability to show the site as it was on a particular day. Your
templates won't have to query a different table, they will merely need
a different WHERE clause.

Michael Stonebraker, a professor at University of California Berkeley,
looked at this problem around 1990 and decided to build an RDBMS with,
among other advanced features, native support for versioning. This
became the PostgreSQL open-source RDBMS. The original PostgreSQL had
a "no-overwrite architecture" in which a change to a row resulted in a
complete new version of that row being written out to the disk. Thus
the hard disk drive contained all previous versions of every row in the
table. A programmer could select * from
content_table['epoch','1995-01-01'] ... to get all versions
from the beginning of time ("epoch") until January 1, 1995. This
innovation made for some nice articles in academic journals, but
execrable transaction processing performance. The modern PostgreSQL
scrapped this idea in favor of Oracle-style write-ahead logging in
which only updates are written to the hard drive (see the "Write-Ahead
Logging" chapter of the PostgreSQL documentation at http://www.postgresql.org/docs/current/static/wal.html).

Second Normal Form

Suppose that you decide to keep multiple versions in a single
content repository table:

create table content_raw (
	content_id		integer primary key,
	content_type		varchar(100) not null,
	refers_to		references content_raw,
	creation_user		not null references users,
	creation_date		not null date,
	release_time		date,
	expiration_time		date,
	-- some of our content is geographically specific
	zip_code		varchar(5),
	-- a lot of our readers will appreciate Spanish versions
	language		char(2) references language_codes,
	mime_type		varchar(100) not null,
	one_line_summary	varchar(200) not null,
	-- let's use BLOB in case this is a Microsoft Word doc or JPEG
	-- a BLOB can also hold HTML or plain text
	body			blob,
	editorial_status	varchar(30)
 check (editorial_status in ('submitted','rejected','approved','expired'))
);

If this table were to contain seven versions of an article with a Content ID
of 5657 that would violate the primary key constraint on the
content_id column. What if we remove the primary key
constraint? In Oracle this prevents us from establishing referential
integrity constraints pointing to this ID. With no integrity
constraints, we will be running the risk, for example, that our
database will contain comments on content items that have been
deleted. With multiple rows for each content item, our pointers become
ambiguous. The statement "User 739 has read Article 5657" points from
a specific row in the users table into a set of rows in
the content_raw. Should we try to be more specific? Do
we want a comment on an article to refer to a specific version of that
article? Do we want to know that a reader has read a specific version
of an article? Do we want to know that an editor has approved a
specific version of an article? It depends. For some purposes, we
probably do want to point to a version, e.g., for approval, and at
other times we want to point to the article in the abstract. If we
add a version_number column, this becomes relatively
straightforward.

create table content_raw (
	-- the combination of these two is the key
	content_id		integer,
	version_number		integer,
	...
	primary key (content_id, version_number)

);

Retrieving information for a specific version is easy. Retrieving
information that is the same across multiple versions of a content
item becomes clumsy and requires a GROUP BY, since we want to collapse
information from several rows into a one-row report:

-- note the use of MAX on VARCHAR column; this works just fine

select content_id, max(zip_code)
from content_raw
where content_id = 5657
group by content_id

We're not really interested in the largest ZIP code for a particular
content item version. In fact, unless there has been some kind of
mistake in our application code, we assume that all ZIP codes for
multiple versions of the same content item are the same. However,
GROUP BY is a mechanism for collapsing information from multiple rows.
The SELECT list can contain column names only for those columns that
are being GROUPed BY. Anything else in the SELECT list must be the
result of aggregating the multiple values for columns that aren't
GROUPed. The choices with most RDBMSes are pretty limited: MAX, MIN,
AVERAGE, SUM. There is no "pick any" function. So we use MAX.

Updates are similarly problematic. The U.S. Postal Service
periodically redraws the ZIP code maps. Updating one piece of
information, e.g., "20016" to "20816", will touch more than one row
per content item.

This data model is in First Normal Form. Every value is available at
the intersection of a table name, column name, and key (the composite
primary key of content_id and
version_number). However, it is not in Second Normal
Form, which is why our queries and updates appear strange.

In Second Normal Form, all columns are functionally dependent on the
whole key. Less formally, a Second Normal Form table is one that is
in First Normal Form with a key that determines all non-key column
values. Even less formally, a Second Normal Form table contains
statements about only one kind of thing.

Our current content_raw table contains some information
that depends on the whole key of content_id and
version_number, e.g., the body and the language code.
But much of the information depends only on the
content_id portion of the key: author, creation time,
release time, ZIP code.

When we need to store statements about two different kinds of things,
it makes sense to create two different tables, i.e., to use Second
Formal Form:

-- stuff about an item that doesn't change from version to version
create table content_raw (
	content_id		integer primary key,
	content_type		varchar(100) not null,
	refers_to		references content_raw,
	creation_user		not null references users,
	creation_date		not null date,
	release_time		date,
	expiration_time		date,
	mime_type		varchar(100) not null,
	zip_code		varchar(5)
);

-- stuff about a version of an item
create table content_versions (
	version_id		integer primary key,
	content_id		not null references content_raw,
	version_date		date not null,
	language		char(2) references language_codes,
	one_line_summary	varchar(200) not null,
	body			blob,
	editorial_status	varchar(30)
 check (editorial_status in ('submitted','rejected','approved','expired')),
	-- audit the person who made the last change to editorial status
	editor_id		references users,
	editorial_status_date	date
);

How does one query into the versions table and find the latest
version? A first try might look something like the following:

select *
from content_versions
where content_id = 5657
and editorial_status = 'approved'
and version_date = (select max(version_date)
 from content_versions
 where content_id = 5657
 and editorial_status = 'approved')

Is this guaranteed to return only one row? No! There is no unique
constraint on content_id, version_date. In theory, two
editors or authors could submit new versions of an item within
the same second. Remember that the date datatype in Oracle is precise
only to within one second. Even more likely is that an editor doing a
revision might click on an editing form submit button twice with the
mouse or perhaps use the Reload command impatiently. Here's a slight
improvement:

select *
from content_versions
where content_id = 5657
and editorial_status = 'approved'
and version_id = (select max(version_id)
 from content_versions
 where content_id = 5657
 and editorial_status = 'approved')

The version_id column is constrained unique, but we're
relying on unstated knowledge of our application code, i.e., that
version_id will be larger for later versions.

Some RDBMS implementations have extended the SQL language so that you
can ask for the first row returned by a query. A brief look at the
Oracle manual would lead one to try

select *
from content_versions
where content_id = 5657
and editorial_status = 'approved'
and rownum = 1
order by version_date desc

but a deeper reading of the manual would reveal that the
rownum pseudo-column is set before the ORDER BY clause is
processed. An accepted way to do this in one query is the nested
SELECT:

select *
from (select *
 from content_versions
 where content_id = 5657
 and editorial_status = 'approved'
 order by version_date desc)
where rownum = 1;

Another common style of programming in SQL that may seem surprising is
taking the following steps:

	open a cursor for the SQL statement

select *
from content_versions
where content_id = 5657
and editorial_status = 'approved'
order by version_date desc

	fetch one row from the cursor (this will be the one with the max
value in version_date)

	close the cursor

Third Normal Form

An efficiency-minded programmer might look at the preceding queries
and observe that a content version is updated at most ten times per
year, whereas the public pages may be querying for and delivering the
latest version ten times per second. Wouldn't it make more sense to
compute and tag the most current approved version at insertion/update
time?

create table content_versions (
	version_id		integer primary key,
	content_id		not null references content_raw,
	version_date		date not null,
	...
	editorial_status	varchar(30)
 check (editorial_status in ('submitted','rejected','approved','expired')),

	current_version_p	char(1) check(current_version_p in ('t','f')),
	...
);

The new current_version_p column can be maintained via a
trigger that runs after insert or update and examines the
version_date and editorial_status columns.

Querying for user pages can be simplified with the following view:

create view live_versions
as
select *
from content_versions
where current_version_p = 't';

Modern commercial RDBMS implementations offer a feature via which rows
in a table can be spread across different tablespaces, each of which
is located on a physically separate disk drive. In Oracle, this is
referred to as partitioning:

create table content_versions (
	version_id		integer primary key,
	content_id		not null references content_raw,
	version_date		date not null,
	...
	editorial_status	varchar(30)
 check (editorial_status in ('submitted','rejected','approved','expired')),

	current_version_p	char(1) check(current_version_p in ('t','f')),
	...
)
partition by range
 (current_version_p)
 (partition old_crud values less than 's'
 tablespace slow_extra_disk_tablespace
 partition live_site values less than(maxvalue)
 tablespace fast_new_disk_tablespace)
;

All of the rows for the live site will be kept together in relatively
compact blocks. Even if the ratio of old versions to live content is
99:1 it won't affect performance or the amount of RAM consumed for
caching database blocks from the disk. As soon as Oracle sees a
"WHERE CURRENT_VERSION_P =" clause it knows that it can safely ignore
an entire tablespace and won't bother checking any of the irrelevant
blocks.

Have we reached Nirvana? Not according to the database eggheads,
whose relational calculus formulae do not embrace such factors as how
data are spread among physical disk drives. The database theoretician
would note that our data model is in Second Normal Form but not in
Third Normal Form. In a table that is part of a Third Normal Form
data model, all columns are directly dependent on the whole key. The
column current_version_p is not dependent on the table
key, but rather on two other non-key columns
(editorial_status and version_date). SQL
programmers refer to this kind of performance-enhancing storage of
derivable data as "denormalization".

If you want to serve ten million requests per day directly from an
RDBMS running on a server of modest capacity, you may need to break
some rules. However, the most maintainable production data models
usually result from beginning with Third Normal Form and adding a
handful of modest and judicious denormalizations that are documented
and justified.

Note that any data model in Third Normal Form is also in Second Normal
Form. A data model in Second Normal Form is in First Normal Form.

Version Control (for Computer Programs)

Note that a solution to the version control problem for site content
(stuff in the database) still leaves you, as an engineer, with the
problem of version control for the computer programs that implement
the site. These are most likely in the operating system file system
and are edited by a handful of professional software developers. During
this class you may decide that it is not worth the effort to set up
and use version control, in which case your de facto version
control system becomes backup tapes, so make sure that you've got daily
backups. However, in the long run you need to learn about approaches
to version control for Internet application development.

Throughout this section, keep in mind that a project with a very clear
publishing objective, specs that never change, and one very smart
developer, does not need version control. A project with evolving
objectives, changing specifications, and multiple contributors
needs version control.

Classical Solution: one development area per developer

Classically, version control is used by C developers with each C
programmer working from his or her own directory. This makes sense
because there is no persistence in the C world. Code is compiled. A
binary runs that builds data structures in RAM. When the program
terminates, it doesn't leave anything behind. The entire "tree" of
software is checked out from a version control repository into the
file system of the development computer. Changed files are checked
back into the repository when the programmer is satisfied.

A shallow objection to this development method in the world of
database-backed Internet applications is that it becomes very tedious
to make a small change. The programmer checks out the tree onto a
development server. The programmer installs an RDBMS, then creates an
RDBMS user and a tablespace. The programmer exports the RDBMS from
the production site into a dump file, transfers that dump file over
the network to the development machine, and imports it into the RDBMS
installation on the development server. Keep in mind that for many
Internet applications the database may approach one terabyte in size, and
therefore it could take hours or days to transfer and import the dump
file. Finally, the programmer finds a free IP address or port and
sets up an HTTP server rooted at the development tree. Ready to code!

A deeper objection to applying this development method to our world is
that it is an obstacle to collaboration. In the Internet application
business, developers always work with the publisher and users. Those
collaborators need to know, at all times, where to find the latest
running version of the software so that they can offer criticism and
advice. If there are ten software developers on a service it is not
reasonable to ask the publishers and users to check ten separate
development sites.

A Solution for Our Times

	three HTTP servers (they can be on one physical computer)

	two or three RDBMS users/tablespaces (they can be in one RDBMS instance)

	one version control repository

Let's go through these item by item.

Item 1: Three HTTP Servers

Suppose that a publisher's overall objective is to serve an Internet
application accessible at "foobar.com". This requires a production
server, rooted in the file system at /web/foobar/ (Server 1).
It is too risky to have programmers making changes on the live
production site. This requires a development server, rooted at
/web/foobar-dev/ (Server 2). Perhaps this is enough. When
everyone is happy with the way that the dev server is functioning,
declare a code freeze, test a bit, then copy the dev code over to the
production directory and restart.

What's wrong with the two-server plan? Nothing if the development and
testing teams are the same, in which case there is no possibility of
simultaneous development and testing. For a complex site, however,
the publisher may wish to spend a week testing before launching a
revision. It isn't acceptable to idle authors and developers while a
handful of testers bangs away at the development server. The addition
of a staging server, rooted at /web/foobar-staging/ (Server
3) allows development to proceed while testers are preparing for the
public launch of a new version.

Here's how the three servers are used:

	developers work continuously in /web/foobar-dev/

	when the publisher is mostly happy with the development site, a
named version or branch is created and installed at /web/foobar-staging/

	the testers bang away at the /web/foobar-staging/ server, checking
fixes back into the version control repository but only into the
staging branch

	when the testers and publishers sign off on the staging server's
performance, the site is released to /web/foobar/ (production)

	any fixes made to the staging branch of the code that have not
already been fixed by the development team are merged back into the
development branch in the version control repository

Item 2: Two or Three RDBMS Users/Tablespaces

Suppose that the publisher has a working production site running
version 1.0 of the software. One could connect the development server
rooted at /web/foobar-dev/ to the production database. After all, the
raison d'être of the RDBMS is concurrency control. It will be
happy to handle eight simultaneous connections from a production Web
server plus two or three from a development server. The fly in this
ointment is that one of the developers might get sloppy and write a
program that sends drop table users rather than
drop table users_experimental_extra_table to the
database. Or, less dramatically, a junior developer might leave out a
WHERE clause in an SQL statement and inadvertently request a result
set of 109 rows, thus slowing down the production site.

So it would seem that this publisher will need at least one new
database. Here are the steps:

	create a new database user and tablespace; if this is on a separate
physical computer from your production RDBMS server it will protect
your production server's performance from inadvertent
denial-of-service attacks by sloppy development SQL statements

	export the production database into a file system file, which is a
good periodic practice in any case as it will verify the integrity of
the database

	import the database export into the new development database

	every time that a developer alters a table, adds a table, or
populates a new table, record the operation in
a "patches.sql" file

	when ready to move code from staging to production, hastily apply all
the data model modifications from patches.sql to the production RDBMS

Should there be three databases, i.e., one for dev, one for staging,
and one for production? Not necessarily. Unless one expects radical
data model evolution it may be acceptable to use the same database for
development and staging. Keep in mind that adding a column to a
relational database table seldom breaks old queries. This was one of
the objectives set forth by E.F. Codd in 1970 in "A Relational Model
of Data for Large Shared Data Banks" (http://www.acm.org/classics/nov95/toc.html)
and certainly modern implementations of the relational model have
lived up to Codd's hopes in this respect.

Item 3: One Version Control Repository

The function of the version control repository is to

	remember what all the previous checked-in versions of a file
contained

	show the difference between what's in a checked-out tree and
what's in the repository

	help merge changes made simultaneously by multiple authors who
might have been unaware of each other's work

	group a snapshot of currently checked-in versions of files as
"Release 2.1" or "JuneIssue"

An example of a system that meets the preceding requirements is
Concurrent Versions System (CVS), which is free and open-source. CVS
uses a single file system directory as its repository or "CVS root".
CVS can run over the Internet so that the repository is on Computer A
and dev, staging, and prod servers are on Computers B, C, and D.
Alternatively, you can run everything in separate file system
directories on one physical computer.

Good things about this solution

Let's summarize the good things about the version control (for
computer programs) solution proposed here:

	if something is screwy with the production server, one can easily
revert to a known and tested version of the software

	programmers can protect and comment their changes by explicitly
checking files in after significant changes

	teams of programmers and testers can work indepently

Further reading:

Open
Source Development With CVS (Fogel and Bar 2001; Coriolis), a
portion of which is available online at
http://cvsbook.red-bean.com/cvsbook.html.

Exercise 3: Version Control

Write down your answers to the following questions:

	What is your system for versioning content?

	What is your system for versioning the software behind your
application, including data model and page scripts?

	What kind of answer can your system produce to the question "Who
is responsible for the content on this current user-visible page?"

Note that generally most teams must write some additional SQL code to
complete this exercise, augmenting the data model that they built in
Exercise 1.

Exercise 4: Skeletal Implementation

Build enough of the pages so that a group of users can cooperate to
put a few pieces of content live on your server. Focus your efforts
on the primary kinds of publisher-authored content that you expect to
have in your online learning community. For most projects, this will
be articles and navigation pages to those articles.

After you've got a few articles in, step back and ask the following
questions:

	Is this data model working?

	Is it taking a reasonable number of clicks to get some content
live?

	Do the people who need to approve new content have an easy way of
figuring out what needs approval and what has been approved or
rejected already? Must those editors come to the site every few hours and
check or will they get email alerts when new content needs review?

A skeletal implementation should have stable and consistent URLs,
i.e., the home page should be just the hostname of the server and
filenames should be consistent. If you haven't had a chance to make
abstract URLs work (see the "Basics" chapter), this is a good time to
do it. Every page should have a descriptive title so that the
browser's Back button and bookmarks ("favorites") are fully
functional. Every page should have a "View Source" link at the bottom
and a way to contact the persons responsible for page function and
content. Some sort of consistent navigation system should be in place
(also see below). The look and feel of a skeletal implementation will
be plain, but it need not be ugly or inconsistent. Look to Google for
inspiration, not the personal home pages of fellow students at your
university.

Look and Feel

At this point you have some content on your server. It is thus
possible to begin experimenting with the look and feel of HTML pages.
A good place to start is with the following issues:

	space

	time

	words

	color

Screen Space

In the 1960s a computer user could tap into a 1/100th share of a
computer with 1 MB of memory and capable of executing 1 million
instructions per second, viewing the results on a 19-inch monitor. In
2005, a computer user gets a full share of a computer with 2000 MB of
memory (2 GB) and capable of executing 4 billion instructions per
second. This is roughly a 400,000-fold improvement in available
computing capability. How does our modern computer user view the
results of his or her computations? On a 19-inch monitor.

Programmers of most applications no longer need concern themselves too
much with processor and memory efficiency, which were obsessions in
the 1960s. CPU and RAM are available in abundance. But screen real
estate is as precious as ever. Look at your page designs. Is the
most important information available without scrolling? (In the
newspaper business, the term for this is "above the fold".) Are you
making the best use of the screen space that you have? Are there
large swaths of empty space on the page? Could you be using HTML
tables to present two or three columns of information at the same
time?

One particularly egregious waste of screen space is the use of icons.
Typically, users can't understand what the icons mean so they need to
be supplemented with plain language annotation. Generally the best
policy is to let the information be the interface, e.g.,
display a list of article categories (the information) where clicking on
a category is the way to navigate to a page showing articles within
that category.

Time

Most people prefer fast to slow. Most people prefer consistent
service time to inconsistent service time. These two preferences
contribute substantially to the popularity of McDonald's restaurants
worldwide. When people are done with their lunch they bring those
same preferences to computer applications: fast is better than slow;
response time should be consistent from session to session.

Computer and network speeds will change over the years but human
beings will evolve much more slowly. Thus we should start by
considering limits derived from the humanity of our users. The
experimental psychologists will tell us that short-term memory is good
for remembering only about seven things at once ("The Magical Number
Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing
Information", George A. Miller, The Psychological
Review 1956, 63:81-97; http://www.well.com/user/smalin/miller.html) and that this memory is good for only
about twenty seconds. It is thus unwise to build any computer application
in which users are required to remember too much from one page to
another. It is also unwise to build any computer application where
the interpage delay is more than twenty seconds. People might forget what
task they were trying to accomplish!

IBM Corporation carried out some studies around 1970 and discovered
the following required computer response times:

	0.1 seconds for direct manipulation, e.g., moving objects around
on a screen with a pointer

	1 second for maximum productivity in screen-click-screen
systems such as they had on the IBM 3270 terminal back in 1970 and we
have on the Web in 2005

	less than 10 seconds to hold the full attention of a user; when
response times extended beyond 10 seconds users would try to engage in
another task, such as reading a magazine, while also using the
computer application

A reasonable goal to strive for in an Internet application is
sub-second response time. This goal is based partly on IBM's
research, partly on the inability to achieve (in 2005) the 0.1-second
mark at which direct manipulation becomes possible, and partly on what
is being achieved by the best practitioners. Your users will have
used Amazon and Yahoo! and eBay. Any service that is slower than
these is going to set off alarm bells in the user's mind: maybe this
site is going to fail altogether? Maybe I should try to find a
competitive site that does the same job but is faster?

One factor that affects page-loading time is end-to-end bandwidth
between your server and the user. You can't do much about this except
measure and average. Some Web servers can be configured or
reprogrammed to log the total time spent serving a page. By looking
at the times spent serving large photographs, for example, you can
infer average bandwidth available between your server and the users.
If the tenth percentile users are getting 50 Kbits per second, you know
that, even if your server were infinitely fast at preparing pages, you
should try to make sure that your pages, with graphics, are either no
larger than 50 Kbits in size or that the HTML is designed such that
the page will render incrementally. (A page that is one big TABLE is
bad; a page in which any images have WIDTH and HEIGHT tags is good
because the text will be rendered immediately with blank spaces that
will be gradually filled in as the images are loaded.)

You can verify your decisions about page layout and graphics heaviness
by comparing your pages to those of the most successful Internet
service operators such as eBay, Yahoo!, and Amazon.

Remember that in the book and magazine world every page design loads
at the same speed, which means that page design is primarily a
question of aesthetics. In the Internet world page design and
application speed are inextricably linked, which makes page design an
engineering problem.

Words

As a programmer, there are two kinds of text that you will be putting
into the services that you build: instructions and error messages.

For instructions, you can choose active or passive voice and first,
second, or third person. Instructions should be second person
imperative. Leave out the pronouns, e.g., "Enter departure date"
rather than "Enter your departure date".

Oftentimes you can build a system such that error messages are
unnecessary. The best user interfaces are those where the user can't
make a mistake. For example, suppose that an application needs to
prompt for a date. One could do this with a blank text entry box and
no hint, expecting the user to type MM/DD/YYYY, e.g., 09/28/1963 for
September 28, 1963. If the user's input did not match this pattern or
the date did not exist, e.g., 02/30/2002, the application returns a
page explaining the requirements. A minor improvement would be to add
a note next to the box: "MM/DD/YYYY". If the application logs showed
that the number of error pages served was reduced, but not eliminated,
perhaps defaulting the text entry box to today's date in MM/DD/YYYY
format would be better. Surf over to your favorite travel site,
however, and you'll probably find that they've chosen "none of the
above". Users are asked to pick a date from a JavaScript calendar
widget or pull down month and day from HTML menus.

	Bad
	Date:

	Better
	Date (MM/DD/YYYY):

	Best
	Date:

January

February

March

April

May

June

July

August

September

October

November

December

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

2005

2006

2007

2008

Figure 6.1:

Different ways of asking the user to specify a date. Generally it is
best to ask in such a way that the user cannot possibly make a mistake
and necessitate the serving of an error page reading "date not properly
formatted", "invalid date", or "date in the past".

Sadly, you won't be able to eliminate the need for all error messages.
Thus you'll have to make a choice between terse or verbose and between
lazy or energetic. A lazy system will respond "syntax error" to any
user input that won't work. An energetic system will try to
autocorrect the user's input or at least figure out what is likely to
be wrong.

Studies have shown that it is worthwhile to develop sophisticated
error-handling pages, e.g., ones that correct the user's input and
serve a confirmation page. At the very least, it is worth running some
regular expressions against the user's offending input to see if its
defects fall into a common pattern that can be explained on an error
page. It is best to avoid anthropomorphism—the computer shouldn't
say "I didn't understand what you typed".

Color

	

"The natural world is too green and badly lit."

-- Francois Boucher, 18th century painter

Text is most readable when it is black against a white or off-white
background. It is best to avoid using color as part of your interface
with the exception of sticking with conventions such as "blue text =
hyperlink; purple text = visited hyperlink". If you limit your
creativity to <body bgcolor=white text=black>, the
browser will treat your users kindly with familiar link colors. By
this sparing use of color in your interface you'll have most of the
color spectrum available for presenting information: charts, graphs,
photos. Compare www.britneyspears.com and http://britneyspears.ac/physics/basics/basics.htm, for example, to see these principles at work.

Be a bit careful with medium gray tones at the very top of Web pages.
Many Web browsers use various shades of gray for the backgrounds of
menu and button bars at the top of windows. If a Web page has a solid
gray area at the top, a user may have trouble distinguishing where the
browser software ends and the page content begins. Notice that pages
on Yahoo! and Amazon include a bit of extra white space at the top to
separate their page content from the browser location and menu bars.

Whatever scheme you choose, keep it consistent site-wide. In 1876 MIT
agreed on cardinal and gray for school colors. See how the agreement
is holding up by visiting www.mit.edu, click on "Administration"
and then look at the subsites for four departments: IS, Medical, Arts,
Disabilities Service.

For an excellent discussion of the use of color, see Macintosh
Human Interface Guidelines, available online at http://developer.apple.com/documentation/mac/HIGuidelines/HIGuidelines-2.html.
Basically the messages are the following: (1) use color sparingly, (2)
make sure that a colorblind person can make full use of the
application, and (3) avoid red because of its association with alerts and
danger.

Navigation

As with page design, the best strategy for navigation is to copy the
most successful and therefore familiar-to-your-users Internet
applications. Best practice for a site home-page circa 2005 seems to
boil down to the following elements:

	a navigation directory to the rest of the site

	news and events

	a single text input box for site-wide search

	a quick form targeting the most frequently requested service on
the site, e.g., on an airline site, a quick fare/schedule finder with
form inputs for cities and dates

In building the navigation directory, look at www.yahoo.com. Note that Yahoo! does
not use icons for category navigation. To get to the photography category, underneath Arts
& Humanities, you click on the word "Photography". The
information is the interface. This principle is articulated in
Edward Tufte's classic Visual
Explanations (Graphics Press, 1997). Tufte notes that if you were to have icons
you'd also need a text explanation underneath. Why not let the text
alone be the interface? Tufte also argues for broad and flat
presentation of information; a user shouldn't have to click through
eight screens each with only a handful of choices.

On interior pages, it is important to answer the following questions:

	Where am I?

	Where have I been?

	Where can I go?

To answer "Where am I?" relative to other sites on the Internet, you
can include a logo graphic or font-distinguished site name in the
upper left corner of each page, hyperlinked to the site home-page.
See the interior pages at amazon.com for how this works. To answer
"Where am I?" relative to other pages on the same site, you can
include a site map with the current page highlighted. On a complex
site, this won't scale very well: better to use the Yahoo-style
navigation bar, also known as "hierarchical path" or "bread crumbs".
For example, http://dir.yahoo.com/Arts/Visual_Arts/Photography/Panoramic/
contains the following navigation bar:

Home > Arts > Visual Arts > Photography > Panoramic

Note that this bar grows in size as O[log N] where N is the number of
pages on the site. Showing a full site map or top tabs results in
linear growth.

To answer "Where have I been?", start by not instructing the browser
to change the standard link colors. The user will thus be cued by the
browser for any links that have already been visited. If you're
careful with your programming and consistent with your page titles, the
user will be able to right-click on the Back button and optionally
return to any previous place on your service. Note further that the
Yahoo-style navigation bar is effective at answering "Where have I
been?" for users who have actually clicked down from the home page.

To answer "Where can I go?" you need ... links! Let the browser
default to standard colors so that users will perceive the links as
links. It is generally a bad idea to use rollovers, select boxes, or
graphics. These controls won't work the same from site to site and
therefore users may not understand how to use them. These controls
don't have the property that visited links turn a different
color; they generally can't or don't tap into the browser's history
database. Finally, these controls aren't effective at showing the user
where he or she can go because many of the choices are hidden.

Exercise 5: Criticism

Take or get a tour of the other projects being built by your
classmates in this course. For each project make sure that you
familiarize yourself with the overall service objectives and the data
model. Then register as a user and author an article. (If you get
stuck on any of these steps, contact the team members behind the
project by phone and email and ask them to add links or hints to their
server.)

Working with your project team members, write a plain-text critique of
each project that you review. Look for situations in which the
client's requirements, as expressed in the planning exercise
solutions, can't be fulfilled with the data model that you see. Look
for opportunities to provide constructive criticism. Remember that
your classmates don't need a self-esteem boost; they need the benefit
of your engineering skills.

Here are some suggested areas where it might be easy to find
improvements:

	page flows in user registration and content authoring—could the
number of clicks to accomplish a task be reduced?

	look, feel, and navigation referenced to the standards outlined above

	version control and audit trail

	where do/should attachments go, e.g., is there a place to store a
JPEG photo attached to a comment on an article?

	categorization and presentation hints—can the content be
presented within a clear information architecture?

	is there a place to store keywords, i.e., hand-authored
collections of words associated with a content item (to aid full-text
search)

	can the content repository store an arbitrary data type, e.g., a
video, an audio clip, or a photograph?

Sign the critique with the name of your project team and also the
names of all team members.

Email your critique to the team members whose work you've just
reviewed. Archive these in a file and make them available at
http://yourservername/doc/critiques/cm-sent.txt. Watch your own
inbox for critiques coming in from the rest of the class. Please
assemble these into one file and make them available at
http://yourservername/doc/critiques/cm-received.txt

Information Architecture: Implicit or Explicit?

Suppose that there are 1000 content items on a site. The manner of
organizing, labeling, and presenting these 1000 items to a user is
referred to as the information architecture of the site. For
the sake of simplicity, let's start by assuming that we will be
presenting all 1000 items on one page. For the sake of concreteness,
we'll assume that all the content is related to photography. Even
this degenerate one-page user experience requires some information
architecture decisions. Here are a few possibilities:

	sort from newest to oldest (good for experienced users)

	sort from highest quality to lowest quality (might be good for
first-time users)

	categorize by what's in front of the camera and present the items
separated by subheadlines, e.g., "Portraits", "Architecture",
"Wedding", "Family", "Animals"

	categorize by type of camera used and present items separated by
subheadlines such as "Digital point and shoot", "Digital SLR", "35mm
point and shoot", "35mm SLR", "Medium Format", "Large Format"

Information architecture decisions have a strong effect on the
percentage of users who say "I got my questioned answered." Most
studies of corporate Web sites, all of which owe their tested form to
hundreds of thousands of dollars in design work, find that users have
less than a 50 percent chance of finding the answer to questions that
are in fact answerable from documents present on the site. We redid
the information architecture on the photo.net site, a change that
touched only about six top-level pages, and the number of new users
registering each day doubled.

One reason that the information architecture on a typical site is so
ill-suited to the user is that the architecture is implicit in scripts
and HTML pages. To test an alternative would involve expensive
hand-manipulation of computer programs and HTML markup. To offer an
individual user or class of user a custom information architecture
would be impossible.

What if we represented information architecture explicitly in database
tables? These tables would hold the following information:

	information about information architectures: who made them, when,
which ones are current and for whom

	whether items underneath a category or subcategory, within a given
information architecture (IA), should be presented in-line on one page
or merely summarized with links down to separate pages for each item

	where a content item fits in a given IA: what subcategory
(category can be inferred from the subcategory), what presentation
order ("sort key") compared to other items at the same level

	how a content item or category should be described

With such a large part of the user experience driven from database
tables, testing an alternative is as easy as inserting some rows into
the database from the information architecture admin pages. If during
a site's conceptualization people can't agree on the best
categorization of content, it becomes possible to launch with two
alternatives. Half the users see IA 1 and half see IA 2. If users
who've experienced IA 1 are more likely to register and return, we can
assume that IA 1 is superior, at least for first-time users.

For the application that you build in this course, it is acceptable to
take the expedient path of pounding out scripts with an implicit
information architecture. However, we'd like you to be aware of the
power for development and testing that can be gained from an explicit
information architecture.

Exercise 6: The Lived-In Look

A skeletal prototype has one big limitation: it is skeletal.
Incorporating the feedback that you've gotten from other students (in
Exercise 5) and from instructors, beef up your content management
system while simultaneously pouring in enough content that your
application has a "lived-in" look. This will ensure that your system
truly is powerful enough to handle the users' basic needs.

If your client has an existing site, use that as a source of content
and minimum requirements. Also look at a couple of sites run by
organizations with comparable missions and sizes. For example, if
you're building something for an academic group you might look at
Harvard University's Department of Molecular and Cellular Biology's
Web site at http://www.mcb.harvard.edu/.
This site illustrates the basic requirements for a medium-sized
organization's Web site. An "overview" section describes the
department's purpose and history. A "news" section offers press
releases. A "faculty" section explains who works there and what their
specialties are. There are also sections for prospective
undergraduates and graduate students, i.e., the potential customers
for this organization. If you're building something for a small
non-profit organization, look at the Web sites for Sustainable Harvest
(www.sustainableharvest.org)
and the Southern Animal Rescue Association (www.sarasanctuary.org). If
you're working for a small manufacturing company, look at www.cirrusdesign.com, the Web site for
Cirrus Design Corporation, a Duluth, Minnesota maker of small airplanes.

What if you can't reach your client in time to complete the
assignment? Or if you can't get content from your client? Use
content from their existing site or a site operated by a similar
organization. Make sure that at a minimum there is a lived-in look
for a reader who comes to see the "About", "News", and "Contact Us"
sections. During the remainder of the course you'll have an
opportunity to replace the placeholder content with content from your
client.

Note that before embarking on this you may want to read at least the
"Separating the Designers and the Programmers" section on templates in
the "Software Modularity" chapter.

Exercise 7: Client Signoff

Ask your client to register as a user and try out the "lived-in" site.
Most people have a difficult time designing on a blank sheet of paper.
You'll get new and different insights from your client by showing them
a partially finished site than you did at the beginning of the
project.

Record your client's answers to the following questions:

	What changes would you like to see in the plan, now that you've
tried out the prototype?

	What will be the fastest way to fill this site with real content?

	Are we collecting the right amount of information on initial user
registration?

Presenting Your Work

If you're enrolled in a course using this textbook, you'll probably be
asked at this point to give a four-minute presentation of your work on
the content management system and skeletal implementation of the site.

Four minutes isn't very long so you'll need to rehearse and you'll
want to make sure that all team members know what they're supposed to
do. As a general rule, the person speaking should be addressing the
audience, not typing at a computer. Team Member A talks; Team Member
B drives. Perhaps at some point in the presentation they switch, but
nobody is ever talking and driving a computer at the same time.

Open with an "elevator pitch", i.e., the kind of thirty-second explanation
that you'd give to someone you met during an elevator ride. The pitch
should explain what problem you're solving and why your system will be
better than existing mechanisms available to people.

Create one or more users ahead of time so that you don't have to show
your user registration pages. Everyone who has used the Internet has
registered at sites. They'll assume that you copied the best
practices from amazon.com and other popular sites. If you did, the
audience will be bored. If you didn't, the audience will be appalled
by your sloppiness. Either way it is best to log in as
already-registered users. In fact, sometimes you can arrange to
prepare two browsers, e.g., Mozilla and MSIE, one of which is logged
in as a new user of the service and one of which is logged in as a
site administrator or some other role that you want to demonstrate.

It is best not to refer to "users" during your talk. Instead talk
about the roles by name. If, for example, you are building a service
around flying, you could say "A student pilot logs in [your teammate
logs in], finds an article on flight schools in San Francisco [your
teammate navigates to this article], and posts a comment at the bottom
about how much he likes his particular instructor." Then perhaps swap
positions and your teammate comes up to say "The site editor [you
switch browsers to the one logged in as a site admin], clicks on the
new content page [you click], sees that there are some new comments
pending approval, reads this one from a student pilot, and approves it
[you click]." You return the browser to the public page where the
comment may now be seen in the live site.

Close by parking the browser at a page that reveals as much of the
site's overall structure as possible. Don't despair if you weren't
able to show every feature of what you've built. Computer
applications are all about the tasks that can be accomplished. If
you've made the audience believe that it will be easy to complete a few
clearly important tasks, you will have instilled confidence in them.

Exercise 8 (For the Instructor)

Call up each team's clients and ask how strongly they agree with the
following statements:

	I believe that my student team understands my problem.

	I understand what my student team is planning to accomplish and by
what dates, right through the end of the course.

	My student team has been well-prepared for our meetings.

	My student team is responsive.

	I believe that the content management system my student team has
built will be adequate to support the types of documents on my site
and the workflow required for publishing those documents.

	I think it is easy for users to register at my site, to recover a
lost password, and that users are being asked all the required
personal information.

	I like the user administration pages that my student team has built.

	My student team has made it easy for me to check on their progress
myself.

	My student team has kept me well informed of their progress.

	I am impressed by the clarity and thoroughness of the
documentation prepared so far.

Score this exercise by adding scores from each question: 0 for
"disagree" or wishy-washy agreement (clients won't want to say bad
things about young volunteers), 1 for "agree", 2 for "strongly agree".

Time and Motion

The data modeling, workflow, and version control exercises are
intended to be done by the entire team working together. They should
take about three hours. Many projects will need to do little more
than adapt data models and policies from this chapter and put them in
their own server's /doc directory.

The skeletal implementation may be challenging depending on how
ambitious the goals of the content management system are, but perhaps
10 to 20 programmer-hours of work.

Criticizing other teams' work should take about 15 minutes per project
criticized or about two hours total in a class with 8 to 10 projects.
This could be done as a group or divided and conquered.

Achieving a lived-in look by pouring in real content shouldn't take
more than two hours and ought to be divisible among team members.

Talking to the client will probably take about one hour.

Software Modularity

At this point in the course, you've built enough software that things
may be starting to get unwieldy. What will life be like for those who
maintain your code? Will they be able to figure out what modules
you've written? Will they be able to find your documentation? Will
it be simple to make small changes site-wide?

This chapter is about ways to group all the code for a module, to
record the existence of documentation for that module, to publish APIs
to other parts of the system, and methods for storing configuration
parameters.

Grouping Code

Each module in your system will contain the following kinds of
software:

	RDBMS table definitions

	stored procedures that run in the database (in Oracle these would
be PL/SQL or Java programs)

	procedures that run inside your Web or application server program
that are shared by more than one page (we'll call these shared
procedures)

	scripts that generate individual pages

	(possibly) templates that work in conjunction with page scripts

	documentation explaining the objectives of the module

Here are some examples of the modules that might be behind a large
online community:

	user registration

	articles and comments

	discussion forum (shares the same tables with articles, but has radically
different workflow for moderation and different presentation scripts)

	chat (separate tables from other content, optimized for extremely
rapid queries, custom JavaScript client software)

	adserver for selling, placing, and logging banner advertisements

	calendar (personal, group, and site-wide events)

	classified ads and auctions

	e-commerce (catalog of products, table of orders, presentation of
product pages with reviews from community members, billing and
accounting)

	email, server-based email (like Hotmail) for community members

	survey (opinion polls and other types of surveys among the members)

	weblog, private blogs for each community member who wants one,
possibly sharing tables with articles, but different editing, approval
workflow, and presentation interfaces plus RSS feeds, trackback, and
the rest of the machine-to-machine interfaces that are expected in the
blog world

	(trouble) ticket tracker for bug and feature request tracking

Good software developers might disagree on the division into modules.
For example, rather than create a separate classified ads module, a
person might decide that classifieds and discussion are so similar
that adding price and bid columns to an
existing content table makes more sense than constructing new tables
and that adding a lot of IF statements to the scripts that present
discussion questions and answers makes more sense than writing new
scripts.

If the online community is used to support a group of university
students and teachers, additional specialized modules would be added,
e.g., for recording which courses are being taught by whom and when,
which students are registered in which courses, what handouts are
associated with each class, what assignments are due and by when, and
what grades have been assigned and by which teachers.

Recall that the software behind an Internet service is frequently
updated as the community grows and new ideas are developed.
Frequently updated software is going to have bugs, which means that
the system will be frequently debugged, oftentimes at 2:00 am and
usually by a programmer other than the one who wrote the software. It
is thus important to publish and abide by conventions that make it
easy for a new programmer to figure out where the relevant source code
files are. It might take only fifteen minutes to figure out what is wrong
and patch the system. But if it takes three hours to find the source code
files to begin with, what would have been an insignificant bug becomes
a half-day project.

Let's walk through an example of how the software is arranged on the
photo.net service. The server is configured to operate multiple Internet
services. Each one is located at /web/service-name/
which means that all the directories associated with photo.net are
underneath /web/photonet/. The page root for the site is
/web/photonet/www/. The Web server is configured to look
for "library" procedures (shared by multiple pages) in
/web/photonet/tcl/, a name derived from the fact that
photo.net is run on AOLserver,
whose default extension language is Tcl.

RDBMS table, index, and stored procedure definitions for a module are
stored in a single file in the /doc/sql/ directory
(directory names in this chapter are relative to the Web server page root
unless specified as absolute). The name for this file is the module
name followed by a .sql extension, e.g.,
chat.sql for the chat module. Shared procedures for all
modules are stored in the single library directory
/web/photonet/tcl/, with each file named
"modulename-defs.tcl", e.g., chat-defs.tcl.

Scripts that generate individual pages are parked at the following
locations: /module-name/ for the user pages;
/module-name/admin/ for the moderator pages, e.g., where
a user with moderator privileges would go to delete a posting;
/admin/module-name/ for the site administrator pages,
e.g., where the service operator would go to enable or disable a
service, delegate moderation authority to another user, etc.

A high-level document explaining each module is stored in
/doc/module-name.html and linked from the index page in
/doc/. This document is intended as a starting point for
programmers who are considering using the module or extending a
feature of the module. The document has the following structure:

	Where to find all the software associated with this module
(site-wide conventions are nice, but it doesn't hurt to be explicit).

	Big picture information: Why was this module built? Why
aren't/weren't existing alternatives adequate for solving the problem?
What are the high-level good and bad features of this module? What
choices were considered in developing the data model?

	Configuration information: What can be changed easily by editing
parameters?

	Use and maintenance information.

For an example of such a document, see
http://philip.greenspun.com/seia/examples-software-modularity/chat.

Shared Procedures versus Stored Procedures

Even in the simplest Web development environments, there are generally
at least two places where procedural abstractions, i.e., fragments of
programs that are shared by multiple pages, can be developed. Modern
relational database management systems can interpret Turing-complete
imperative programming languages such as C#, Java, and PL/SQL. Thus
any computation that could be performed by any computer could, in
principle, be performed by a program running inside an RDBMS such as
Microsoft SQL Server, Oracle, or PostgreSQL. In other words, you
don't need a Web server or any other tools but could implement page
scripting and an HTTP server within the database management system in
the form of stored procedures.

As we'll see in the "Scaling Gracefully" chapter, there are some
performance advantages to be had in splitting off the presentation
layer of an application into a set of separate physical computers.
Thus our page scripts will most definitely reside outside of the
RDBMS. This gives us the opportunity to write additional software
that will run within or close to the Web server program, typically in
the same computer language that is used for page scripting, in the
form of shared procedures. In the case of a PHP script, for
example, a shared procedure could be an include file. In the case of
a site where individual pages are scripted in Java or C#, a shared
procedure might be some classes and methods used by multiple pages.

How do you choose between using shared procedures and stored
procedures? Start by thinking about the multiple applications that
may connect to the same database. For example, there could be a
public Web server, a nightly program that pulls out all new
information for analysis, a maintenance tool for administrators built
on top of Microsoft Excel or Access, etc.

If you think that a piece of code might be useful to those other
systems that connect to the same data model, put it in the database as
a stored procedure. If you are sure that a piece of code is only
useful for the particular Web application that you're building, keep it in
the Web server as a shared procedure.

Documentation

"As we enter the 21st century we find that rifle marksmanship has been
largely lost in the military establishments of the world. The notion
that technology can supplant incompetence is upon us in all sorts of
endeavors, including that of shooting."

-- Jeff Cooper in The Art of the
Rifle (1997; Paladin Press)

Given a system with 1000 procedures and no documentation, the typical
manager will lay down an edict to the programmers: you must write a
"doc string" for every procedure saying what inputs it takes, what
outputs it generates, and how it transforms those inputs into outputs.
Virtually every programming environment going back to the 1960s has
support for this kind of thinking. The fancier "doc string" systems
will even parse through directories of source code, extract the doc
strings, and print a nice-looking manual of 1000 doc strings.

How useful are doc strings? Useful, but not sufficient. The
programmer new to a system won't have any idea which of the 1000
procedures and corresponding doc strings are most important. The new
programmer won't have any idea why these procedures were built, what
problem they solve, and whether the whole system has been deprecated in
favor of newer software from another source. Certainly the 1000 doc
strings aren't going to convince any programmers to adopt a piece
of software. It is much more important to present clear English prose
that demonstrates the quality of your thinking and design work in
attacking a real problem. The prose does not have to be more than a
few pages long, but it needs to be carefully crafted.

Separating the Designers and the Programmers

Criticism and requests for changes will come in proportion to the
number of people who understand that part of the system being
criticized. Very few people are capable of data modeling or
interaction design. Although these are the only parts of the system
that deeply affect the user experience or the utility of an
information system to its operators, you will thus very seldom be
required to entertain a suggestion in this area. Only someone with
years of relevant experience is likely to propose that a column be
added to an SQL table or that five tables can be replaced with three
tables. A much larger number of people are capable of writing Web
scripts. So you'll sometimes be derided for your choice of
programming environment, regardless of what it is or how
state-of-the-art it was supposed to be at the time you adopted it.
Virtually every human being on the planet, however, understands that
mauve looks different from fuchsia and that Helvetica looks different
from Times Roman. Thus the largest number of suggestions for changes
to a Web application will be design-related. Someone wants to add a
new logo to every page on the site. Someone wants to change the
background color in the discussion forum section. Someone wants to
make a headline larger on a particular page. Someone wants to add a
bit of whitespace here and there.

Suppose that you've built your Web application in the simplest and
most direct manner. For each URL there is a corresponding script,
which contains SQL statements, some procedural code in the scripting
language (IF statements, basically), and static strings of HTML that
will be combined with the values returned from the database to form
the completed page. If you break down what is inside a Visual Basic
Active Server Page or a Java Server Page or a Perl CGI script, you
always find these three items: SQL, IF statements, HTML.

Development of an application with this style of programming is easy.
You can see all the relevant code for a page in one text editor
buffer. Maintenance is also straightforward. If a user sends in a
bug report saying "There is a spelling error on
http://www.yourcommunity.org/foo/bar" you know that you need only look
in one file in the file system (/foo/bar.asp or /foo/bar.jsp or
/foo/bar.pl or whatever) and you are guaranteed to find the source of
the user's problem. This goes for SQL and procedural programming
errors as well.

What if people want site-wide changes to fonts, colors, headers and
footers? This could be easy or hard depending on how you've crafted
the system. Suppose that default colors are read from a configuration
parameter system and headers, footers, and per-page navigation aids
are generated by the page script calling shared procedures. In this
happy circumstance, making site-wide changes might take only a few
minutes.

What if people want to change the wording of some annotation in the
static HTML for a page? Or make a particular headline on one page
larger? Or add a bit of white space in one place on one page? This
will require a programmer because the static HTML strings associated
with that page are embedded in a file that contains SQL and procedural
language code. You don't want someone to bring a section of the
service down because of a botched attempt to fix a typo or add a hint.

The Small Hammer

The simplest way to separate the programmers from the designers is to
create two files for each URL. File 1 contains SQL statements and
some procedural code that fills local variables or a data structure
with information from the RDBMS. The last statement in File 1 is a
call to a procedure that will fetch File 2, a template file that looks
like standard HTML with simple references to data prepared in File 1.

Suppose that File 1 is named index.pl and is a Perl
script. By convention, File 2 will be named
index.template. In preparing a template, a designer needs
to know (a) the names of the variables being set in index.pl, (b) that
one references a variable from the template with a dollar sign, e.g.,
$standard_navbar, and (c) that to send an actual dollar
sign or at-sign character to the user it should be escaped with a
backslash. The merging of the template and local variables
established in index.pl can be accomplished with a single call to
Perl's built-in eval procedure, which performs standard
Perl string interpolation, i.e., replacing $foo with the
value of the variable foo.

The Medium Hammer

If the SQL/procedural script and the HTML template are in separate
files in the same directory, there is always a risk that a careless
designer will delete, rename, or modify a computer program. It may
make more sense to establish a separate directory and give the
designers permission only on that parallel tree. For example on
photo.net you might have the page scripts in
/web/photonet/www/ and templates underneath
/web/photonet/templates/. A script at
/e-commerce/checkout.tcl finishes by calling the shared
procedure return_template. This procedure first
invokes the Web server API to find out what URI is being served. A
configuration parameter specifies the start of the templates tree.
return_template uses the URL plus the template tree
root to probe in the file system for a template to evaluate. If found,
the template, in AOLserver ADP format (same syntax as Microsoft ASP),
is evaluated in the context of return_template's
caller, which means that local variables set in the script will be
available to the ADP file.

The "medium hammer" approach keeps programmers and designers
completely separated from a file system permissioning point of view.
It also has the advantage that the shared procedure called at the end
of every script can do some poking around. Is this a user who prefers
text-only pages? If so, is there a text-only template available? Is
this a user who prefers a language other than the site's default? If
so, is there a template available in which the annotation is in the
user's preferred language?

The SQL Hammer

If a system already has extensive RDBMS-backed facilities for
versioning and permissioning, it may seem natural to store templates in
a database table. These templates can then be edited from a browser,
and changes to templates can be managed as part of a site's overall
publishing workflow. If the information architecture of a site is
represented explicitly in RDBMS tables (see the Content Management chapter), it may
be natural to keep templates and template fragments in the database
along with content types, categories, and subcategories.

The Sledgehammer

Back in 1999, Karl Goldstein was the sole programmer building the
entire information system for a commercial online community. The
managers of the community changed their minds about fifteen times about how
the site should look. Every page should have a horizontal navbar.
Maybe vertical would be better, actually. But move the navbar on
every page from the left to the right. After two or three of these
massive changes in direction, Goldstein developed an elegant and
efficient system:

	every page script would have a corresponding template, e.g.,
register.tcl would look for register.template

	nearly all templates would include a "master" tag indicating that
the template was only designed to render a portion of the page

	the server would look for a master.template file in
the same directory as the script; if found, the content rendered by
the page script and its corresponding template would be substituted
for the <slave> tag in the master template and the
result of evaluating the master template returned to the user

	when a master template was not found in the same directory as the
script, the server would search at successively higher levels in the
file system until a master template was found, then apply that one

Here's an example of how what the user viewed would be divided by
master and slave templates:

	Logo	Ad Banner

	Navigation/Context Bar

	Section
Links
	

CONTENT
AREA

	Footer

Content in gray is derived from the master template. Note that
doesn't mean that it is static or not page-specific. If a template is
an ASP or JSP fragment it can execute arbitrarily complex computer
programs to generate what appears within its portion of the page.
Content in aqua comes from the per-page template.

This sounds inefficient due to the large number of file system probes.
However, once a system is in production, it is easy for the Web server
to cache, per-URL, the results of the file system investigation. In
fact, the Web server could cache all of the templates in its virtual
memory for maximum speed. The reason that one wouldn't do this during
development is that it would make debugging difficult. Every time you
changed a template you'd have to restart the Web server or clear the cache in order to
view the results of the change.

Intermodule APIs

Recall from the "User
Registration and Management" chapter that we want people to be
accountable for their actions within an online community. One way to
enhance accountability is by offering a "user contributions" page that
will show all contributions from a particular user. Wherever a
person's name appears within the application it will be a hyperlink to
this user contributions page.

Given that all site content is stored in relational database tables,
the most obvious way to start writing the user contributions page
script is by looking at the SQL data models for each individual
module. Then we can write a program that queries a few dozen tables
to find all contributions by a particular user.

A drawback to this approach is that we now have code that may break if
we change a module's data model, yet this code is not within that
module's subdirectory, and this code is probably being authored by a
programmer other than the one maintaining the individual module.

Let's consider a different application: email alerts. Suppose that
your community offers a discussion forum and a classified ad system,
coded as separate modules. A user wishes to get a daily summary of
activity in both areas. Each module could offer a completely separate
alerts mechanism. However, this would mean that the user would get
two email messages every night when a single combined email was
desired. If we build a combined email alert system, however, we have
the same problem as with the user history page: shared code that
depends on the data models of individual modules.

Finally, let's look at the site administrator's job. The site
administrator is probably a busy volunteer. He or she does not want
to waste twenty mouse clicks to see today's new content. The site
administrator ought to be able to view recently contributed content
from all modules on a single page. Does that mean we will yet again
have a script that depends on every table definition from every
module?

Here's a hint at a solution. On the photo.net site each module
defines a "new stuff" procedure, which takes the following arguments:

	since_when — the date of the earliest content we're
interested in

	only_from_new_users_p — a boolean indicating whether
or not we want to limit the report to contributions from new users
(useful for site administration because new users are the ones who
don't understand community standards and norms)

	purpose — "admin", "email_summary", or "user"; this
controls delivery of unapproved content, inclusion of links to
administration options such as approval/disapproval, and the format of
the report

The output of such a procedure can be simple: HTML for a Web page or
plain text for an email message. The output of such a procedure can
be a data structure. The output of such a procedure could be an XML
document, to be rendered with an XSL style sheet. The important thing
is that pages interested in "new stuff" site-wide need not be familiar
with the data models of individual modules, only the name of the "new
stuff" procedure corresponding to each module. This latter task is
made easy on photo.net: as each module is loaded by the Web server, it
adds its "new stuff" procedure name to a site-wide list. A page that
wants to display site-wide new stuff loops through this list, calling
each named procedure in turn.

Configuration Parameters

It is possible, although not very tasteful, to build a working
Internet application with the following items hard-coded into each
individual page:

	RDBMS username and password

	email addresses of site administrators who wish notifications on
events such as new user registration or new content posting

	the email address of a sysadmin to notify if the Web server can't
connect to the RDBMS or in case of other errors

	IP addresses of users we don't like

	legacy URLs and the new URLs to which requests for the old ones
should be redirected

	the name of the site

	the names of the editors and publishers

	the maximum attachment size that the site is willing to accept
(maybe you don't want a user uploading an 800 MB TIFF image as an
attachment to a bboard posting)

	whether or not to serve a link offering the source code behind the
page

The ancient term for this approach to building software is "putting
magic numbers in the code." With magic numbers in the code, it is
tough to grab a few scripts from one service and apply them to another
application. With magic numbers in the code, it is tough to know how
many programs you have to examine and modify after a personnel
change. With magic numbers in the code, it is tough to know if rules
are being enforced consistently site-wide.

Where should you store parameters such as these? Except for the
database username and password, an obvious answer would seem to be "in
the database." There are a bunch of keys (the parameter names) and a
bunch of values (the parameters). This is the very problem for which
a database management system is ideal.

-- use Oracle's unique key generator
create sequence config_param_seq start with 1;

create table config_param_keys (
	config_param_key_id	integer primary key,
	key_name		varchar(4000) not null,
	param_comment		varchar(4000)
);

-- we store the values in a separate table because there might
-- be more than one for a given key
create table config_param_values (
	config_param_key_id	not null references config_param_keys,
	value_index		integer default 1 not null,
	param_value		varchar(4000) not null
);

-- we use the Oracle operator "nextval" to get the next
-- value from the sequence generator
insert into config_param_keys
values
(config_param_seq.nextval, 'view_source_link_p', 'damn 6.171 instructor is making me do this');

-- we use the Oracle operator "currval" to get the last
-- value from the sequence generator (so that rows inserted in this transaction
-- will all have the same ID)
insert into config_param_values
values
(config_param_seq.currval, 1, 't');

commit;

insert into config_param_keys
values
(config_param_seq.nextval, 'redirect', 'dropping the /wtr/ directory');

insert into config_param_values
values
(config_param_seq.currval, 1, '/wtr/thebook/');

insert into config_param_values
values
(config_param_seq.currval, 2, '/panda/');

commit;

At the end of every page script we can query these tables:

select cpv.param_value
from config_param_keys cpk, config_param_values cpv
where cpk.config_param_key_id = cpv.config_param_key_id
and key_name = 'view_source_link_p'

If the script gets a row with "t" back, it includes a "View Source"
link at the bottom of the page. If not, no link.

Recording a redirect required the storage of two rows in the
config_param_values table, one for the "from" and one for
the "to" URL. When a request comes in, the Web server will want to
query to figure out if a redirect exists:

select cpk.config_param_key_id
from config_param_keys cpk, config_param_values cpv
where cpk.config_param_key_id = cpv.config_param_key_id
and key_name = 'redirect'
and value_index = 1
and param_value = :requested_url

where :requested_url is a bind variable containing the
URL requested by the currently-connected Web client. Note that this
query tells us only that such a redirect exists; it does not give us
the destination URL, which is stored in a separate row of
config_param_values. Believe it or not, the conventional
thing to do here is a three-way join, including a self-join of
config_param_values:

select cpv2.param_value
from
 config_param_keys cpk,
 config_param_values cpv1,
 config_param_values cpv2
where cpk.config_param_key_id = cpv1.config_param_key_id
and cpk.config_param_key_id = cpv2.config_param_key_id
and cpk.key_name = 'redirect'
and cpv1.value_index = 1
and cpv1.param_value = :requested_url
and cpv2.value_index = 2

-- that was pretty ugly; maybe we can encapsulate it in a view

create view redirects
as
select cpv1.param_value as from_url, cpv2.param_value as to_url
from
 config_param_keys cpk,
 config_param_values cpv1,
 config_param_values cpv2
where cpk.config_param_key_id = cpv1.config_param_key_id
and cpk.config_param_key_id = cpv2.config_param_key_id
and cpk.key_name = 'redirect'
and cpv1.value_index = 1
and cpv2.value_index = 2

-- a couple of Oracle SQL*Plus formatting commands
column from_url format a25
column to_url format a30

-- let's look at our virtual table now
select * from redirects;

FROM_URL TO_URL
------------------------- ------------------------------
/wtr/thebook/ /panda/

N-way joins notwithstanding, how tasteful is this approach to storing
parameters? The surface answer is "extremely tasteful." All of our
information is in the RDBMS where it belongs. There are no magic
numbers in the code. The parameters are amenable to editing from
admin pages that have the same form as all the other pages on the
site: SQL queries and SQL updates. After a little more time spent with this
problem, however, one asks "Why are we querying the RDBMS one
million times per day for information that changes once per year?"

Questions of taste aside, an extra five to ten RDBMS queries per request is a
significant burden on the database server, which is the most difficult
part of an Internet application to distribute across multiple physical
computers (see the "Scaling" chapter) and
therefore the most expensive layer in which to expand capacity.

A good rule of thumb is that Web scripts shouldn't be querying the
RDBMS to figure out what to do; they should query the RDBMS only for
content and user data.

For reasonable performance, configuration parameters should be
accessible to Web scripts from the Web server's virtual memory.
Implementing such a scheme with a threaded Web server is pretty
straightforward because all the code is executing within one virtual
memory space:

	look in the server API documentation to find a mechanism for
saying "run this bit of code at server startup time"

	build an in-memory hash table where the parameter keys are the
hash table keys

	load the parameter values associated with a key into the hash
table as a list

	document an API to the hash table that takes a key as an input and
returns a value or a list of values as an output

A hash table is best because it offers O[1] access to the data, i.e.,
the time that it takes to answer the question "what is the value
associated with the key 'foobar'" does not grow as the number of keys
grows. In some hobbyist computer languages, built-in hash tables might
be known as "associative arrays".

If you expect to have a lot of configuration parameters, it might be
best to add a "section" column to the config_param_keys
table and query by section and key. Thus, for example, you can have a
parameter called "bug_report_email" in both the "discussion" and
"user_registration" sections. The key to the hash table then becomes
a composite of the section name and key name.

With Microsoft .NET

Configuration parameters are added to IIS/ASP.NET applications in the
Web.config file for the application.

For example, if you place the following in
c:\Inetpub\wwwroot\Web.config (assuming default IIS installation)

<configuration>
 <appSettings>
 <add key="publisherEmail"
 value="marketing@mycompany.com" />
 </appSettings>
</configuration>

you will be able to access publisherEmail in a VB .aspx page as follows

<%

Dim publisherEmail as String
publisherEmail = ConfigurationSettings.AppSettings("publisherEmail")

%>

<html>
<body>

...

For further information please contact us at <%= publisherEmail %>

...

</body>
</html>

By default, configuration settings apply to a directory and all its
subdirectories.
Also by default, these settings can be overridden by settings in Web.config
files in the subdirectories. More elaborate rules for scoping and override
behavior can be established using the <location> tag.

More:

	"ASP.NET Configuration" from .NET Framework Developer's Guide at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconaspnetconfiguration.asp

(note that the MSDN guys haven't figured out how to do abstract URLs
and they also haven't converted to .aspx yet!)

With Java Server Pages

The following is Jin S. Choi's recommendation for storing and
accessing configuration parameters when using Java Server Pages.

Specify Parameter tags within the Context specification for your
application in conf/server.xml. Example:

<Context path="/myapp" docBase="myapp" debug="0"
 reloadable="true" crossContext="true">
 <Parameter name="companyName" value="My Company, Inc."
 override="false"/>
</Context>

You can also specify the parameter in the WEB-INF/web.xml file for your application:

<context-param>
 <param-name>companyName</param-name>
 <param-value>My Company, Inc.</param-value>
</context-param>

The "override" attribute in the first example specifies that you do
not want this value to be overridden by a context-param tag in the
web.xml file. The default value is "true" (allow overrides).

To retrieve parameters from a servlet or JSP, you can call:

getServletContext().getInitParameter("companyName");

More:

	documentation for Context: http://jakarta.apache.org/tomcat/tomcat-4.0-doc/config/context.html

	javadoc for ServletContext: http://jakarta.apache.org/tomcat/tomcat-4.0-doc/servletapi/javax/servlet/ServletContext.html

Exercise 1

Create a /doc/ directory on your team server. Create an
index page in this directory that links to a development standards
document (/doc/development-standards would be a
reasonable URL but you can use whatever you like so long as it is
clearly linked from /doc/).

In this development standards document, cover at least the following
issues:

	naming of URLs: abstract versus non-abstract (bleah), dashes
versus underscores (hard for many users to read), spelled out or
abbreviated

	naming of URLs used in forms and form processing—will these be at
the same URL or will a user working through a sequence of forms
proceed /foo/bar, /foo/bar-1, /foo/bar-2, etc.

	RDBMS used

	computer languages used for Web scripts and procedural code within
the RDBMS

	means of connecting to the RDBMS (libraries, bind variables, etc.)

	variable-naming conventions

	how to document a module

	how to document a shared procedure

	how to document a Web script (author, valid inputs)

	how Web form inputs are validated by scripts

	templating strategy chosen (if any)

	how to add a configuration variable and how to name it so that at
least all parameters associated with a particular module can be
identified quickly

Step back from your document before moving on to the next exercise.
Ask yourself "If a new programmer joined this project tomorrow, and I
asked her to build a surveys module, would she be able to be an
effective consistent developer in my environment without talking to
me?" Remember that a surveys module will require an extensive
administrative interface for creation of surveys, questions, and
possible answers, both admin and user interfaces for looking at
results, and a user interface for answering surveys. If the answer to
the question is "Gee, this new programmer would have to ask me a lot
of questions", go back and make your development standards document
more explicit and add some more examples.

Exercise 2

Document your team's intermodule API within the /doc/
directory, perhaps at /doc/intermodule-API, linked from
the doc index page. Your strategy must be able to handle at least the
following cases:

	production of a site administrator's page containing all content
going back a selectable number of days, with administration links next
to each item without the page script having any dependence on any
module's data model

	production of a user-level page showing new content site-wide

	a centralized email alert system in which a user gets a nightly
summary combining new content from multiple modules

Protecting Users from Each Other's HTML

Fundamentally, the job of the server behind an online community is to
take text from User A and display it to User B. Unfortunately, there
is a security risk inherent in this activity. Suppose that User A is
malicious and includes tags such as <SCRIPT> in a
comment body? When User B visits the page containing this comment,
suddenly JavaScript may be executing on his machine, downloading
objectionable images from various locations around the Internet,
playing music, popping up new windows, and ultimately forcing the
user's browser to visit a page of User A's choosing.

The most obvious solution would seem to be disallowing all HTML tags.
Any uploaded text is scanned for the characters < and > and, if
those are present, the posting is rejected with an explanation. This
wouldn't work out that well in a site for mathematicians! Maybe they
need to use greater-than and less-than signs in their postings.

The beginning of a workable solution is a procedure, perhaps named
something such as quoteHTML that takes a user-uploaded
text string and performs the following conversions:

	< characters to <.

	> characters to >.

	& characters to &.

If your page scripts call this procedure any time they are writing
user-uploaded content out to a browser, no browser will ever interpret
user-uploaded data as an HTML tag.

That works great for fields such as first_names,
last_name, street_address, subject summary
lines, etc., where there is no value to having an HTML tag. For some
longer documents obtained from users, however, it might be nice to
enable them to use a restricted set of HTML tags such as B, I, EM, P,
BR, UL, LI, etc. If you're going to store HTML in the database once
and serve it back out thousands of times per day, it is better to check
for legal tags at upload time. The problem with checking for
disallowed tags such as SCRIPT, DIV, and FONT is that HTML keeps
getting extended in de jure and de facto ways. Unless you want the
responsibility of keeping current with all of the ways in which new
HTML tags can make browsers behave, it may be better to check for
approved tags. Either way, you'll want the allowed or disallowed tags
list to be kept in an easy-to-modify configuration file. Further, you
probably want to perform a bit of validation on the use of allowed
tags such as B or I. A user who makes a mistake and forgets to close
one of these tags might render 100 comments underneath in an unusual
font style.

Exercise 3

Document your team's approach to preventing one user from attacking
other users with malicious HTML. Your documentation of this
infrastructure should include procedure names and examples of how
those procedures are to be used.

Time and Motion

All of the exercises in this chapter are intended to be done by the
team as a whole. A team that takes the assignment seriously should
spend about 3 hours together agreeing to and documenting standards.
They then might decide to rework some of their older code to conform
to these standards, which could take another 5 or 10 programmer-hours.
The second step is optional, though by the end of the course we would
expect all the projects to be internally consistent.

Discussion

A discussion forum is one of the most basic tools for
computer-supported cooperation among human beings. User A can post a
question. User B can post an answer. User C can view both question
and answer and learn from the exchange. In a threaded forum,
User D has the choice of posting a response to User A's question or to
User B's response. In a Q&A format forum, Users D, E,
and F can post responses to User A's question, and the responses will
simply be presented in the order that they were submitted. With minor
tweaks to the presentation layer, a discussion forum system can
function as a personal commentable weblog.

In this chapter you'll prototype a discussion forum, conduct a
usability test, and then refine your system based on what you learned
from observing the users.

Discussion Forum as Community?

A well-designed discussion forum can by itself fulfill all of the
requirements for a sustainable online learning community. Recall that
these elements are the following:

	magnet content authored by experts

	means of collaboration

	powerful facilities for browsing and searching both magnet content
and contributed content

	means of delegation of moderation

	means of identifying members who are imposing an undue burden on the
community and ways of changing their behavior and/or excluding them
from the community without them realizing it

	means of software extension by community members themselves

	

Aviation in itself is not inherently dangerous. But to an even greater
degree than the sea, it is terribly unforgiving of any carelessness,
incapacity or neglect.

-- Captain A. G. Lamplugh, 1930s

An early example of the forum-as-community is USENET, which was
started in 1979 and is also known to old people as "NetNews" and
to young people as "Google Groups". Each newsgroup is a more or less
self-contained community of people interested in a particular topic,
collaborating through a threaded discussion forum. A good example is
rec.aviation.soaring,
where people talk about flying around in airplanes without engines.

In a USENET group the magnet content can be any longish posting from a
recognized expert. Keep in mind that the number of people using a
group such as rec.aviation.soaring is fairly small—most
people get nervous in little planes and even more nervous in a little
plane with no engine. An analysis of October 2004's activity
by Marc Smith's Netscan service (netscan.research.microsoft.com)
shows that the group had only 174 "Returnees". Thus it will
be fairly straightforward for these core users to recognize each other
by name or email address. A typical magnet content posting in a
newsgroup is the FAQ or frequently asked questions summary in which
each question has an agreed-upon-by-the-group-experts answer.

	

If the engine stops for any reason, you are due to tumble, and that's
all there is to it!

— Clyde Cessna

The means of collaboration in the USENET group is the ability for any
member to start a new thread or reply to a message within an existing
thread. In the early days of USENET, the means of browsing and
searching were reasonably good for recent messages, but terrible or
non-existent for learning from older exchanges. Starting in the
mid-1990s, Web-based search engines such as DejaNews provided fast and
easy access to old messages.

USENET has traditionally been weak on the fourth required element ("means
of delegation of moderation"). Not enough people have volunteered to
moderate, software to divide the effort of moderating a single forum
among multiple moderators was non-existent, and the news protocols had
security holes that let commercial spam messages through even on
moderated groups. For an overview of the circa 2001 state of the art,
read http://www.landfield.com/usenet/moderators/handbook/.
For a discussion of spam in history, see
"Origin of the term 'spam' to mean net abuse"
by Brad Templeton at
http://www.templetons.com/brad/spamterm.html, a site that contains a lot of other interesting
articles on the history of Internet.

	

Flying is inherently dangerous. We like to gloss that over with clever
rhetoric and comforting statistics, but these facts remain: gravity is
constant and powerful, and speed kills. In combination, they are
particularly destructive.

— Dan Manningham

Where USENET has fallen tragically short is element 5: "Means of
excluding burdensome people." Most USENET clients include "bozo
filters" that enable an individual user to filter out messages from a
persistently troublesome poster. But there is no collective way for
a group to exclude a person who consistently starts irrelevant threads,
spams the group, abuses others, or otherwise becomes unwelcome.

With regard to element 6, software extension by community members
themselves, USENET has done remarkably well. USENET servers and
clients tend to be monolithic C programs where small modifications can
have catastrophic consequences. On the other hand, the average user of
the early Internet was a skilled software developer. So if not every
USENET user was a programmer of USENET tools, it was at least safe to
say that every programmer of USENET tools was a user of USENET.

Beyond USENET

If the online learning community that you build is only as good as
USENET, congratulate yourself. The Google USENET archive contains 700
million messages from twenty years. Hundreds of thousands of people have
gotten the answers to their questions, as shown in Figure 8.1.

.

Figure 8.1:

A December 25, 2001 USENET exchange in the group
rec.aviation.soaring regarding mounting a camera on the
wing of a glider. Notice that the first answer comes less than two
hours after the question was posted.

When building our own database-backed discussion forum system, there
are some simple improvements that we can add over the traditional
USENET system:

	an optional "mail me when a response is posted" field

	e-mail summaries or instant alerts

	up-to-the-second full text indexing (assuming your RDBMS supports it)

	secure transmission of data to and from the bboard via SSL

	collaborative moderation via admin pages to delete
stale/ugly/whatever messages

	older postings browsable by category

More dramatic improvements can be obtained with attention to element
5: "Means of excluding burdensome people." Your software can do the
SQL query "show me users who've submitted questions that were deleted
by a moderator as redundant" and then automatically welcome those
users back to the forum with an interstitial page explaining how to
search and browse archived threads. If the online community is short
on moderator time, it will make a lot of sense to query for those users
whose postings have resulted in moderator intervention. If it turns
out that 0.1 percent of the users consume 50 percent of the
moderators' time, perhaps it is better to ban those handful of users
and thereby double the community's available moderation resources.

As the semester proceeds, you'll discover another advantage of building
your own discussion forum, which is that it becomes an integrated part
of your service. All of a user's contributions in different areas,
including the discussion forum, are queryable from a single database
and viewable on a single page.

Exercise 1

Visit five sites on the public Internet with discussion forums,
one of which can be the Medium
Format Digest forum at photo.net
(http://www.photo.net/bboard/q-and-a?topic_id=35). For each site gather
the following statistics:

	given an already-registered user, the number of clicks required
to post a message

	the number of clicks required to go from the top-level forum page
to a single thread

	if there are 20 postings within a thread, the number of clicks
required to view all the text within all of the postings

	the number of clicks required to view the subject lines of all
archived postings in a particular category

List the user interface and customer service features that you think
are the best from these five sites and give a brief explanation of why
each feature is good.

One Forum or Many?

	

I certainly had no feeling for harmony, and Schoenberg thought that
that would make it impossible for me to write music. He said, 'You'll
come to a wall you won't be able to get through.' So I said, 'I'll
beat my head against that wall.'

—John Cage

How many forums should a site have? Let's consider a site for music
lovers. Would one forum be enough? Maybe not. Will the classical
music lovers be interested in a discussion of Pat
Boone's cover of AC-DC's "It's a Long Way to the Top (If You Wanna
Rock 'N' Roll)"? So it will be a good idea to split the discussion
into at least two forums: Classical and Pop. Let's say that a Pat
Boone fan comes into the Pop forum one day and encounters a discussion
of the lyrics from Ice
Cube's Death Certificate or an MP3 from Prodigy's
Fat of the Land? We'll clearly need to split up the
Pop forum into Christian Pop, Techno, and Rap. We're expecting a lot
of Beatles fans as well. Which of these forums would they gravitate
toward? Maybe we need a '60s Rock forum. On the classical side there
are a lot of grand opera nuts who won't want to be distracted by
discussions about authentic instrument performances of Baroque music.
Sophisticated modern music fans discussing John Cage's "Four Minutes,
Thirty-three Seconds" won't want to waste time discussing the fossils
of the 18th and 19th Centuries. And if we turn our attention to the many
styles of Jazz ...

	

If something is boring after two minutes, try it for four. If still
boring, then eight. Then sixteen. Then thirty-two. Eventually one
discovers that it is not boring at all.

—John Cage

It would be easy to justify the creation of 100 separate forums on our
music site. And indeed USENET contains more than
50 rec.music.* groups, including
rec.music.beatles.moderated, for example. That turns out
to be the tip of the iceberg, for the alternative hierarchy sports more than
700 alt.music.* groups , including
alt.music.celine-dion and
alt.music.j-s-bach. If USENET can support nearly 1000
discussion forums, surely a popular comprehensive music site ought to
have at least 100.

Maybe not.

	

She had a voice like the New Jersey State Anthem played on an electric razor.

— Bright Lights, Big City by Jay McInerney

When discussion is fragmented, it is hard for a community to get off
the ground. If there are 50 users and 100 forums, how will those
users find each other? The average visit will result in a user
concluding that the community isn't active. Such a user is unlikely
to return or refer a friend to the site. Even when a community is
large enough to support numerous forums, presenting discussion in a
fragmented manner leads to extra work for the user whose interests are
diverse. Suppose that a music scholar comes to USENET looking to see
if there has been any recent discussion of Bach's "Schubler Chorales"
and their influence on later composers. That's as simple as visiting
alt.music.j-s-bach. If that scholar wants to check up on
recent postings concerning Celine Dion's "My Heart Will Go On", he or
she will have to scan alt.music.celine-dion separately.

A good example of a thriving community with a single discussion forum
is slashdot.org. It is very
easy to find the topics being actively discussed on slashdot: look at
the front page.

It is possible to take the "one forum" and "many forum" approaches on
the same site at the same time. For example, look at http://www.photo.net/bboard/
(static copy at http://philip.greenspun.com/seia/images-discussion/photonet-bboard-original.htm
). There are separate Medium Format, Nature Photography, and
Photo Critique forums. For a user to browse the new postings in these
three forums will require seven mouse clicks: down into this page,
down into Medium Format, back, down into Nature, back, down into
Critique. With a different SQL query, however, postings from all
these very same forums can be combined on one page, as in http://www.photo.net/bboard/unified/
(static copy at http://philip.greenspun.com/seia/images-discussion/photonet-bboard-unified.htm). Postings from particular forum topics may be distinguished
with a special publisher-chosen color or icon. Suppose that the user
finds the Photo Critique forum overwhelming and uninteresting. These
postings can be excluded from his or her personalized unified view via
clicking on the "Customize forums" link at the top (static copy at http://philip.greenspun.com/seia/images-discussion/unified-forum-personalization.htm) and unchecking those forums that are no longer of interest.

Exercise 2: Design the User Experience

Figure out whether your service should have one forum, one forum with
categories, several forums, several forums each with categories, or
something else. Document the page flow for your users (recall the example page flow
diagram from the "User Registration" chapter).

Exercise 3: Document the Data Model

Document how you intend to spread the discussion forum data among the
content repository tables that you defined in the "Content Management" chapter.

Exercise 4: Build the User Pages

Implement the user experience that you designed in Exercise 2.

Exercise 5: Build the Admin Pages

Design a set of admin pages. In this case it is usually better to
start with a required list of tasks that must be accomplished. Then
try to build a page flow that will let the administrator accomplish
those tasks in as few clicks as possible.

Recall from the "User Registration" chapter an important user interface
principle to keep in mind: it is more natural for most computer users
to pick the noun first and then the verb. For example, the forum
moderator might first click on a message's subject line to select it
and then, on a subsequent page, select an action to perform to this
message: delete, approve, rate, categorize, etc. It is technically
feasible to build a system in which the moderator is first asked
"Would you like to delete some messages?" and then is prompted for the
messages to be deleted. However, this is not how the Apple Macintosh
was designed, and therefore anyone who has used the Macintosh user
interface or its derivatives, notably Microsoft Windows, will be
accustomed to the noun-verb order.

This is your community and these are your users. So in the long run
only you can know what administrative actions are most needed. At a
minimum, however, you should support the following:

	find the most active contributors

	select a contributor to become a co-moderator (presumably from the
above list)

	approve or disapprove a posting or a thread (this might be handled
by more general pages from your content management system, though
remember that moderating a discussion forum ought to be a very
streamlined process); note that these functions could be worked into
the user pages, but only enabled for those logged-in users who have
moderator privileges

In-Class Presentations

At this point we recommend that teams present their functioning
discussion forum implementations. So that the audience can evaluate
the workability of the interface, the forums should be preloaded with
questions and answers of realistic length, with material copied from
Google Groups if necessary.

A suggested outline for the presentation is the
following:

	explain the kinds of people who are expected to use the discussion
subsystem, e.g., it might be only the site administrators (30 seconds)

	without logging in or logged in as a casual visitor, demonstrate
the pages that show all the forums (if more than one), questions
within a forum, and questions and answers within a single thread (1
minute)

	demonstrate responding to an existing question/adding to an
existing thread (30 seconds)

	demonstrate asking a new question/starting a new thread (30 seconds)

	log in as a forum moderator or site administrator (15 seconds)

	demonstrate disapproving or moderating down a posting (30 seconds)

	demonstrate viewing statistics on forum usage and participation
level by user (1 minute)

	show the source code for the page that shows a single thread (one
question, many answers), with the SQL query (or queries) highlighted
(1 minute)

	show the execution plan for that query or those queries, i.e., the
output of whatever SQL performance-tracing tool is available in the
RDBMS chosen for this project (1 minute)

The presentation should be accompanied by a handout that shows (a) the
data model that supports discussion, (b) any SQL code invoked by the
URL that displays one thread of discussion (pulled out of whatever
imperative language scripts it is imbedded in), and (c) the results of
the query trace.

Usability

At this point your discussion forum should work. Users can register.
Users can ask questions. Users can post answers. Is it usable?
Well, consider that most computer programs were considered perfect at
one time by their creator(s). It is only in encounters with real
users that most problems become evident.

[image: You could be a user yourself. Men's room interior. Singapore]

[image: It is an offense not to flush the toilet after use. Men's room interior. Singapore]

These encounters between freshly minted Internet applications and
first users have become increasingly startling for all parties. One
reason is the large and growing user experience gap. In 1994
the average Web user was a researcher with a Unix machine on his or
her desk. Very likely the user knew how to write at least simple
computer programs. The average Web page was straight HTML 2.0 with no
scripts or other active components. All Web pages worked the same:
you read the black text, you clicked on the blue text, you were
reminded by the purple text that you'd already visited a link. Once
you learned how to use your first Web site you knew how to use all
subsequently visited sites.

The user experience gap has grown larger because the users are less
sophisticated while the applications have grown more complex. In 2005
the average Web user is a first-time computer user and the Web
browser may be the only application that he or she knows how to use.
Despite the manifest inability of these users to cope with a complex
user interface, Web sites have been tarted up with JavaScript,
ActiveX, Java, Flash, to the point where they are as hard to use and
different from each other as old Unix applications. Users unable or
unwilling to deal with the horrors of custom user interfaces have voted
with their mice. They buy at Amazon. They search at Google. They
get their information from Yahoo! and nytimes.com.

Figure 8.2:

As the Internet gets older, applications become more complex and
difficult to use while the average user becomes less and less
experienced. Source: Mark Hurst, www.goodexperience.com.

Idiosyncratic ideas make sense for magazine and television
advertisements. Different is good when it takes the user the same 30
seconds to absorb the message. But different is bad if it means the
user needs extra time or extra clicks to get to the desired task.
Some studies show that on each extra click there is a 50 percent
chance that a user will abandon the site altogether.

	

As an aid to deciding whether to spend your
future as an engineer or go on to business school, note that Webvan
CEO George Shaheen ran the company into the ground, then resigned
shortly before the bankruptcy filing, collecting a
$375,000-per-year for life retirement package.

In mid-2000, Webvan purchased
HomeGrocer, a competing grocery delivery company, and converted the
old HomeGrocer users to the new Webvan user interface. Orders fell by
more than half. The HomeGrocer business went from breaking even to
losing lots of cash simply because of the inferior usability of the
Webvan software. Ultimately Webvan went bankrupt, taking with it $1.2
billion of invested cash.

How is it possible that people follow what they imagine to be their
own good taste instead of either copying the successful Internet
services (e.g., Yahoo!, Amazon, Google) or listening to the users?
And that people continue to believe in the value of their own ideas
even as the red ink starts to dominate their financial reports?
Justin Kruger and David Dunning, experimental psychologists at Cornell
University, wondered the same thing and wrote up their findings in "Unskilled and
Unaware of It: How Difficulties in Recognizing One's Own Incompetence
Lead to Inflated Self-Assessments" (Journal of Personality and
Social Psychology; Vol 77, No. 6, pp 1121-1134; http://www.phule.net/mirrors/unskilled-and-unaware.html). Kruger and Dunning
found that people in the 12th percentile of skill estimated themselves
to be in the 62nd. Furthermore, these incompetent people failed to
recalibrate themselves when shown the range of performance by their
peer group. The authors concluded that "those with limited knowledge
in a domain suffer a dual burden: Not only do they reach mistaken
conclusions and make regrettable errors, but their incompetence robs
them of the ability to realize it."

Figure 8.3:

Source: "Why You Only Need to Test With 5 Users" by Jakob Nielsen;
http://www.useit.com/alertbox/20000319.html

Exercise 6: The Usability Test

	

A scientist is someone who measures her results against Nature. An
engineer is someone who measures her results against human needs. A
computer scientist is someone who doesn't measure his results.

— us

An ideal usability test involves the following elements:

	a test subject whose experience with computers and the Internet is
comparable to what you expect for your average user

	a set of tasks that you want the subject to try to accomplish

	a quiet comfortable environment for the test subject

	no assistance from the product developers

	observation of the test subject through a one-way mirror

	videotaping of the test subject's experience for later study

Conduct a usability test of your discussion forum software,
incorporating elements 1-4 from the list above. You should find at
least four testers from among your friends—do not pick anyone who is
taking this course (classmates will have too many subconscious
expectations). Run your usability test subjects in series, one after
the other, with your entire team observing and writing down what
happens. Ask your subjects to voice their thoughts aloud. How long
does it take the subject to complete a task? Does the subject get
stuck on any step? Does the subject indicate confusion as to the
appropriate next step at any time?

Use the following script of tasks (cut and paste these into a separate
document and print it out, after filling in the bracketed sections),
with no extra hints:

	starting as an unregistered user at the site home page, find the
area on the site where one would ask questions of other users (if you
can't accomplish this task, or any other task on this page, within 3
minutes, give up and move on)

	read through the existing questions and answers to determine
whether or not [some question that has been asked already] has
been asked and answered already; if not, post a question on that
subject (registering if necessary)

	read through the existing questions and answers to determine
whether or not [some question that has been not been asked already]
has been asked and answered already; if not, post a question on that
subject

	log out

	log in with the existing username/password of [user/pass] and try to
find all the unanswered questions in the discussion forum

	answer the question(s) that you yourself posted a few minutes
earlier, pretending to be this other user

	log out

	log in with the existing username/password of [admin username/password]
and find the administrator's pages

	delete the discussion forum thread(s) that you created earlier

	log out

In between test subjects, clean up any rows that they may have left in
database tables. If your first subject has a disastrous experience,
consider taking a few hours off to fix your software, add links and
annotation, etc., before proceeding with the second subject.

Stand as far away from the subject as you possibly can while still
being able to see the computer screen and hear the subject's comments.
Force yourself to remain absolutely silent. If the subject is
completely confused and clicking around randomly, let the subject
continue until he or she figures it out. Keep track of the number of
seconds each subject requires to complete each task.

Post a report on your team server at
/doc/testing/discussion-usability. This report will
contain a summary of what you learned from this test with average task
times and average total time (we can use these to compare the
efficiency of various teams' solutions). The report should contain
hyperlinks to sub-pages that contain transcripts of individual user
sessions, what each test subject said, and what happened. Link to your
report from your main documentation index page.

Discussion for Education

Recall from the introduction that our goal in working through this
text is to build an online learning community. An active
discussion forum might be evidence of a tremendous amount of
member-to-member education or it could merely be a place where
loudmouths enjoy seeing their name in print. Moderation is the first
line of defense against postings that aren't responsive to the
original question or helpful to the would-be learners.

Building more structure into a discussion forum is an option worth
considering, especially if your discussion forum is supporting an
organized class. The Berkman Center at Harvard Law School (HLS) was a
pioneer in this area. The teachers at HLS weren't happy with the bias
in favor of early responders inherent in a standard discussion forum
system. The first response to a question gets the most readers
because it is near the top of the page, so it might be more
ego-gratifying to be first than to spend more time crafting a
thoughtful response. This shortcoming was addressed by writing what
they call a semi-synchronous discussion forum. Responses are
collected for a period of time, but not made public until the deadline
for responses is reached. The system is called the Rotisserie.

An additional capability of the Rotisserie is the ability to randomly
assign participants to respond to postings. For example, every
student in a class will be required to post an essay in response to a
question. After a deadline lapses, those essays are made public. The
Rotisserie then assigns to each participant the task of responding to
a particular essay. Every student must write an essay. Every essay
gets a response. A particularly good or controversial essay might get
additional responses. A particularly loudmouthed participant might
elect to respond to many essays.

See http://h2o.law.harvard.edu for
more information about the Rotisserie, to try it out, or to download
the software.

Suppose that your online learning community is more open and fluid.
You can't insist that particular people respond at all or that people
respond on any kind of schedule. Is there anything that can be done
with software to help ensure that all questions get answered
appropriately? Yes! Build server-mediated mentoring.

Server-mediated mentoring requires, at a minimum, two things: (1) a
mechanism for novice members (mentees) to be connected with more
experienced members (mentors), and (2) asking people who post
questions whether or not their question has been adequately answered.
To make the service as effective as possible, you'll probably want to
add at least the following: (3) automated reminders from the server to
mentors who have left mentees hanging, and (4) rewards, rankings, and
distinguishing typography to recognize community members who are
answering a lot of questions and mentoring a lot of novices.

Imagine the following interaction:

	Joe Novice, never having kept an aquarium before, visits a local pet
store and finds himself attracted to the intelligent colorful fish in
the African Cichlid tank.

	Joe Novice, after a Google search, visits world-o-cichlids.org,
reads the articles on fish that live in Lake Malawi, and finds that it
raises additional questions, which he posts in the discussion forum.

	Lured by email notifications of replies to his questions, Joe
returns to world-o-cichlids.org to sift through them. As soon as Joe
logs in, his "workspace" page shows all of the questions that he has
asked, all of which are initially marked "open". Having some difficulty
sorting out conflicting responses, Joe clicks on the "get a mentor page,"
explaining that he is a complete beginner with the goal of keeping
African Cichlids.

	Jane Experienced visits the "be a mentor page" and browsing
through the requests sees that most people asking for help want
to keep South American cichlids, with which she has no experience.
However, Jane has had an African tank for five years and feels confident
that she can help Joe. She agrees to mentor Joe.

	Jane's "workspace" page now contains a subsection relating to her
mentoring of Joe and lists his currently open questions. Jane clicks on
a question title and, seeing that none of the current responses are
truly adequate, posts her own authoritative answer.

	A week later Joe returns to world-o-cichlids.org and finds that his
list of "open" questions has gotten quite long and that in fact many of
these questions are no longer relevant for him. He clicks on the
"close" button next to a question, and the server asks him "Which of the
responses actually answered the question for you." Joe clicks on a
response from Ned Malawinut, and the database records (1) that the
question has been adequately answered and should no longer appear in a
mentor's workspace, and (2) that Ned Malawinut has contributed an answer
that was seen as useful by another member.

	Joe has a question that he thinks might be ridiculous and is afraid
to try it out on the community at large. When posting he checks the
"initially show only to my mentor" option, and the question gets sent via
email to Jane and appears in her workspace.

	Jane returns to the server and decides that Joe's question is not so
easy to answer. She marks it for release to the general membership.

	Two weeks later Jane gets an email from the world-o-cichlids.org
server. A summary of some discussion threads that she has been
following constitutes the bulk of her email, but right at the top is a
note "You haven't logged in for more than a week and Joe, whom you're
supposed to be mentoring, has accumulated three questions that haven't
been adequately answered after five days." (This prodding mechanism
addresses the issue revealed when a large management consulting firm
surveyed its employees asking "Whom are you mentoring?" and "Who is
mentoring you?" When matching the responses, there was surprisingly
little overlap!)

How can you estimate the effort required in building the full user
experience example? Start by looking at the number of new tables and
columns that you'd be adding to the system and the number of new URLs to
which the server would be responding. Then try to find a subsystem that
you've already built for this project with a similar number of tables
and page scripts. The implementation effort should be comparable.

Let's start with the data model first. To support requests for and
assignment of mentors, you'll need at least one table,
mentor_mentee_map with the following columns:
mentee, mentor (NULL, if not assigned),
date_of_request, date_of_assignment,
mentee_goal. To support the query "who is the currently
connected member mentoring" and build the workspace subsection page for
Jane, you'll want to add an index on the mentor column. To
support the query "are there any mentors who should be notified about a
message posted by a member", you would add an index on the
mentee column. If you were to make this a concatenated
index on mentee, mentor, it would help the database identify
outstanding requests for mentors (mentor is NULL)
efficiently for the "be a mentor page".

Attempting to support the open/closed question status display and the
query "Which members have answered a lot of questions well?" might make
you regret some of the data model decisions that you made in the
preceding exercises and/or in the "Content Management" chapter exercises.
In the "Content Management" chapter we have a headline asking "What is
Different about Discussion?" above the suggestion that the
content_raw table can be used to support forum questions
and answers. If you went down that route and were implementing the
mentoring user experience, this is where discussion would diverge a bit
from the rest of the content on the site. You need a way to represent
in the database management system whether a discussion forum question is
open or closed. If you add a
discussion_forum_question_status column to the
content_raw table you'll have a NULL column value whenever
the content item is not a discussion forum question. That's not very
clean. You may also be adding a closed_question_p boolean
column to indicate that a forum posting had been identified by the
original questioner as having answered the question. This will be NULL
for more than 99 percent of content items. That's not a storage
efficiency problem, but it is sort of ugly.

An alternative to adding columns is to build some sort of
bag-on-the-side table recording which questions are open and closed and
which answers closed them. To decide whether or not this is a
reasonable approach, it is worth starting by asking "In what percentage
of queries will the helper table need to be JOINed in?" When presenting
articles and comments, you wouldn't need the table. When presenting the
discussion forum to a public user, i.e., someone who wasn't logged in,
the discussion forum page scripts wouldn't need the table data. You
might need these data only when serving workspace pages to members and
when serving an individual discussion forum thread to a logged-in
member. It might be worth considering a table of the following form:

-- content_id is the primary key here; it is possible to have at most
-- one row in this table for a row in the content_raw table

create table discussion_question_status (
 content_id not null primary key references content_raw,
 status varchar(10) check (status in ('open', 'closed')),
 -- if the question is closed the next column will contain
 -- the content_id of the posting that closed it
 closed_by references content_raw
);

-- make it fast to figure out whether a posting closed a question
create index discussion_question_status_by_closed_by on
discussion_question_status(closed_by);

As the community gains experience with this system, it will probably
eventually want to give greater prominence to responses from members
with a history of writing good answers. In a fully normalized data
model, for each answer displayed, the server would have to count up
the number of old answers from the author and query the
discussion_question_status table to figure out what
percentage of those were marked as closing the question. In practice,
you'd probably want to maintain a denormalized metric as an extra
column or columns in the users table, perhaps columns for
n_answers_posted and n_answers_closing,
counts maintained by nightly batch updates or database triggers.

Supporting the "initially show only to my mentor" option for new
content would require the addition of a
show_only_to_mentor column to the
content_raw table, where it could be used for discussion
forum postings, comments on articles, and any other content item.
Rather than changing all of the pages that use the content tables it
would be easier to update the SQL views that those tables use, e.g.,
articles_approved, so as to exclude content that should
be shown only to a mentor.

Some new page scripts would be required, at least the following:

	/workspace — a page or sidebar providing a logged-in member with
links to previously asked questions and possibly other information as
well, e.g., new content since last visit, recent content by members
previously marked as interesting, etc. A mentor viewing this page
would also be offered links to content marked "show only to my mentor"
by the author.

	/mentoring/request-form — a page whereby a member can sign up to
request a mentor

	/mentoring/request-confirm — a script that processes the
preceding form and adds a row to the mentor_mentee_map
table

	/mentoring/sign-up — a page that shows members who are requesting
mentors, with at least the first 200 characters of their request
underneath

	/mentoring/request-detail — a click-down page showing more
details of a member's request for a mentor

	/mentoring/sign-up-confirm — a script that accepts a member's
agreement to serve as a mentor, updating a row in the
mentor_mentee_map table

	/mentoring/admin/ — a page showing summary statistics for the
service

Modifications would likely be required to the following pages:

	buttons would be added to the page that shows a discussion forum
question-and-answer exchange to "mark this answer as closing the
thread", to be displayed only to the user who asked the question and
only when the question has not previously been marked as closed

	the page that displays a community member's profile would be
augmented with information as to the number of members mentored and
the number of question-closing responses submitted

For the purposes of this course, you need not implement all of these
grand ideas, and indeed some of them don't make sense when a community is
just getting started because the number of members is so small. If,
however, some of these ideas strike you as interesting consider adding
them to your project implementation plan.

Exercise 7: Refinement Plan

Prepare a plan for how you're going to improve your discussion forum
system, including any changes to data model, page flow, navigation
links, page layout, annotation (help text), etc. Place this plan on
your team server at /doc/planning/YYYYMMDD-discussion. (If
you name files with year-month-day in the beginning, they will sort in
order of creation.)

Exercise 8: Client Signoff

Ask your client to visit the discussion forum user and admin pages.
Ask your client to review your usability test results and refinement
plan. This is a good chance to impress your client with the soundness
of your methodology. If your client responds via email, make that
your answer to this exercise. If your client responds orally, make
notes from that conversation your answer.

Exercise 9: Execute

After consultation with your teaching assistant, execute your planned
improvements.

Time and Motion

One programmer who has mastered the basics of Web/db scripting can
usually whip out a basic question-and-answer forum in 8 hours. The
team together will need to spend about one hour preparing a good
in-class presentation. The team together will generally require 3
hours to conduct and write up the user test. Talking to the client
and refining the forum will generally take at least as long as the
initial development effort.

Adding Mobile Users To Your Community

Among the principles of sustainable online community in the "Planning" chapter of this textbook, notice
that the following are not mentioned:

	means of waiting for machines to boot up

	means of chaining users to their desks

	means of producing repetitive strain injury

Though the alternatives vary in popularity from country to country as
we write this chapter (February 2005), there is no reason to believe that
desktop computer programs such as Mozilla Firefox and Microsoft
Internet Explorer are the best way of participating in online
communities.

In this chapter you'll learn how to open your community to users
connecting from small mobile devices.

Be the User

If you were to close your eyes and visualize a person participating in
your community, what would this participation look like? The users you've considered
thus far would probably be sitting at a desk with their hands
keyboarding sixty words per minute and their gazes set upon an 20-inch
screen. By contrast, a mobile user might be walking along a busy
street or looking down from a mountain top. Their screen will be a
few inches across, and they may be able to type only five or ten words
per minute. What kinds of content and means of participation will
best suit this class of users?

Exercise 1

Either using your phone or one of the emulators discussed later in
this chapter, use the mobile Internet to

	find the weather forecast for your city

	get a stock quote for IBM

	look up "ineluctable" in the dictionary

	order a book from amazon.com (at least up to the final checkout page)

	visit www.photo.net and find the latest question that has been
asked

For each task, write down how long it takes you to accomplish the
task. Then repeat the tasks with a desktop HTML browser and write
down how long each task takes.

Exercise 2

Come up with a list of two or three services from your learning community
that will be valuable to mobile users. You may find the following
guidelines useful:

	Timeliness. A community is sustained by the active
participation of its members. Though the members will often be
separated in time, anyone who has participated in a heated bulletin
board debate, an online auction, or a chat session can appreciate the
value of timely interaction. Mobile browsers are particularly well
suited to this type of interaction because they allow the user to stay
connected in a wide variety of settings.

	Brevity. Users with small screens will have a difficult
time receiving, reading, and entering large amounts of content.

	Native applications. Mobile browsers are commonly bundled
with cellular telephones. Until phone companies provide General
Packet Radio Service (GPRS) in your users' region, it is impossible to
deliver an application that simultaneously uses voice and hypertext.
However, it is possible to produce a hypertext document that provides
one-click dialing to a publisher-specified phone number.

Standards

Though the bits may be transported through a proprietary network,
anyone can serve content to mobile devices with a standard Web
server (figure 9.1).

Figure 9.1:

Content to mobile devices goes from an HTTP server on the public
Internet via TCP/IP and is sometimes translated into proprietary
formats and protocols within a phone company's wireless network before
reaching the handset.

As illustrated above, the cell phone connects to your server through
the service provider's wireless network. Depending on the phone and
network, the "Wireless Network" cloud may contain standard Internet
Protocol (IP) routing, a standard HTTP proxy, or a WAP gateway. In
the last case, the gateway and phone communicate using a special set
of protocols that, among other things, compresses data before
transmission over the wireless network. The net effect is that the
phone's browser (sometimes called a microbrowser) looks to a
public HTTP server like a standard Web browser issuing HTTP GETs and
POSTs.

	

 The mobile industry is consuming markup languages at a rapid rate.
 The progression has taken us from the Handheld Device Markup
 Language (HDML; 1997) to the Wireless Markup Language (WML; 1998) to
 the current recommendation, XHTML Mobile Profile (XHTML-MP; 2001).
 We can take heart from the fact that XHTML-MP is derived from XHTML,
 the World Wide Web Consortion recommendation for standard browsers.
 Gone are the bad old days when a developer had to learn a new markup
 language, and servers had to be configured to send new
 Content-Type headers, in order to deliver mobile content.
 We expect that XHTML-MP will thereby enjoy wider adoption and
 greater stability.

Content is delivered in "XHTML Mobile Profile", a strict subset of
XHTML, which is an XML-conformant version of HTML. Here's a shell
session resulting in the return of an XHTML-MP document short enough
to print in its entirety:

 	XHTML-MP Example Document

 	
% telnet philip.greenspun.com 80
Trying 216.127.244.134...
Connected to philip.greenspun.com.
Escape character is '^]'.
GET /seia/mobile/ex1.html HTTP/1.0

HTTP/1.0 200 OK
MIME-Version: 1.0
Content-Type: text/html

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">

 <head>
 <title>
 XHTML-MP Example
 </title>
 </head>

 <body>
 <p>We're not in the 1970s anymore.</p>
 </body>

</html>

Connection closed by foreign host.

The text in bold (above) is what the programmer types, simulating a
microbrowser request. The exchange looks a lot like what we'd see for
a regular HTML browser. The main differences are the inclusion of the
XML declaration and document-type definition in the first two lines of
the document, and the use of the namespace attribute,
xmlns, in the opening html tag.

A server wishing to distinguish between desktop and mobile users could
search the contents of the HTTP Accept header for the
string application/xhtml+xml;
profile="http://www.wapforum.org/xhtml", which is supposedly
required by the XHTML Mobile Profile specification (http://www.openmobilealliance.org/tech/affiliates/wap/wap-277-xhtmlmp-20011029-a.pdf).
By contrast, a desktop browser, if it lists XHTML among the formats
that it accepts, will generally not refer to the mobile profile.
Here's what Microsoft Internet Explorer 6.0 supplies as an Accept
header:

image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/vnd.ms-excel, application/vnd.ms-powerpoint, application/msword, application/x-shockwave-flash, */*

Mozilla 1.4a (the open-source Netscape Navigator) does promise to
accept XHTML:

text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,*/*;q=0.1

Note that Mozilla is making full use of the original conception of the
Web in which the server and the client would negotiate to provide the
user with the best possible file in response to a request for an
abstract URL. The order of the MIME types in the Accept header is
irrelevant. The browser indicates its preference with quality
values, for example in the value text/html;q=0.9,
Mozilla is indicating that plain vanilla HTML is less preferred than
the three preceding XML types, which default to a quality of 1.0. To
learn more about this system, see the section on "Quality Values" in
the HTTP 1.1 specification, at http://www.w3.org/Protocols/rfc2616/rfc2616.html

A second method for distinguishing between desktop and microbrowsers
is examining the User-Agent HTTP header. Consider the
following two shell sessions, in which the user-typed input is
highlighted in bold:

	No Extra Headers	Claiming to be a Palm

	
% telnet www.google.com 80
Trying 216.239.57.99...
Connected to www.google.com.
Escape character is '^]'.
GET / HTTP/1.1

HTTP/1.1 200 OK
Date: Tue, 22 Apr 2003 01:20:53 GMT
Cache-control: private
Content-Type: text/html
Server: GWS/2.0
Content-length: 2691

<html><head>
<meta http-equiv="content-type"
 content="text/html; charset=ISO-8859-1">
<title>Google</title><style>...</style>...
</head><body>...</body></html>

Connection closed by foreign host.

	
% telnet www.google.com 80
Trying 216.239.57.99...
Connected to www.google.com.
Escape character is '^]'.
GET / HTTP/1.1
User-Agent: UPG1 UP/4.0 (compatible; Blazer 1.0)

HTTP/1.1 302 Found
Date: Tue, 22 Apr 2003 01:37:18 GMT
Location: http://www.google.com/palm
Content-Type: text/html
Server: GWS/2.0
Content-length: 156

<HTML><HEAD><TITLE>302 Moved</TITLE></HEAD>
<BODY>
<H1>302 Moved</H1>
The document has moved
here.
</BODY></HTML>

Connection closed by foreign host.

Though neither request indicates a preferred media type, Google's
server recognizes the "Blazer" browser that ships with Handspring
palm-top devices and redirects the browser, via the response lines
HTTP/1.1 302 Found and Location:
http://www.google.com/palm. Sadly, there is no centrally
maintained registry of user agents and therefore success with this
method is largely a matter of programmer diligence.

Exercise 3

Summary. Paste the XHTML-MP example document above, starting
with the <?xml ...> declaration and running through
the closing </html> tag, into a file called
ex1.html on your Web server and load the example into
different kinds of browsers. We recommend that you place this file in
a /mbl/ subdirectory underneath your Web server's page root.

	 Step 1 — mobile browser.

Load the page into a mobile browser and admire your handiwork. If you
do not have access to a Web-enabled phone, install or locate emulator
software, either a PC microbrowser emulator or Web-based tool. See
the links at the end of this chapter for suggestions. Suppose for a
moment that you had placed the document at
/mbl/software-engineering-for-internet-applications/examples/example1.html.
Would that affect the amount of time required to complete this
exercise? 	

Figure 9.2:

Step 2 — desktop browser.

Now load the page into your favorite desktop browser program. Marvel
at the cross-browser compatibility of your document. Compare your
subjective experience of the content in the two cases, then answer the
following question: In a world where desktop browsers and mobile
browsers can parse the same markup syntax, do we need to distinguish
between the two, or can we serve the same document to every type of
user?

Keypad Hyperlinks

Let's look at a page with hyperlinks:

 	
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile 1.0//EN"
 "http://www.wapforum.org/DTD/xhtml-mobile10.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">

 <head>
 <title>
 Student Life
 </title>
 </head>
 <body>

 Calendar
 Grades
 Urgent Messages
 Fraternity Parties
 News

 </body>

</html>

	

Figure 9.3:

A numbered series of choices is presented in a list, with each choice
hyperlinked to the appropriate target. We take advantage of the
anchor tag's accesskey attribute to improve usability by
letting the user link to any of the choices with a single keypress.

Exercise 4

Forms and server-side processing work the same way for mobile browsers
as they do for desktop browsers. Write an XHTML-MP document that
prompts for an email address (or screen name, if you've decided to
ignore the sociologists' advice about anonymity) and password, then
POSTs these to a target on your server. The server's response should
print back the email address entered and the first character of the
password, followed by one period for each subsequent password
character. We recommend that you place your code so that it is
accessible via URIs starting with "/mbl/".

Exercise 5: Authentication via Cookies

The phones and gateways in the U.S. that we've tried have supported HTTP
cookies, including persistent cookies, in the same manner as standard
Web browsers, with one exception: a comma in a cookie value breaks
everything. (Note that commas are illegal in the strict HTTP
specification, but desktop browsers have typically been permissive.)

For authentication via cookies, you need to go back to the form built
for Exercise 4 and back it up with a script that generates a
Set-Cookie header with an authentication token. We
recommend that you make this cookie persistent since typing a full email
address is pretty painful on a numeric keypad. Note that on an
organization's intranet site you can autocomplete the "@foobar.com" or
"@yow.org" portion of the email address for most users.

Exercise 6: Linking to a phone number

Check http://www.wapforum.org/what/technical.htm
and http://developer.openwave.com
(requires free registration) for information about the Wireless
Telephony Application Interface (WTAI).

Write a page entitled "mom.html" that serves a link anchored by the
text "Here is a dime; Go call your mother and tell her there are
serious doubts as to whether you will become a lawyer". When this
link is followed, the telephone should dial your mother's phone
number. We apologize for the inappropriate length of this hyperlink
anchor, but just in case you end up in an organization where
self-esteem is valued more than achievement, we thought it would be
good to remind everyone what life is like at Harvard Law School.

Background: The Paper Chase (1973, dir. James Bridges).

Exercise 7: Build a Pulse Page

You're walking around and someone expresses skepticism that your
online learning community is worthwhile. You whip out your phone and
go to the "pulse" page on your server. This returns, in XHTML-MP, the
following information:

	the number of new users registered in the last 24 hours and 7 days

	the number of new discussion forum messages in the last 24 hours and 7 days

	any other statistics that you, as the site owner, find interesting

Exercise 8: Design and Build the Mobile Interface to your Community

Now that you've mastered the fundamentals, design and build the mobile
interface to your community. Keep in mind that

	Phones and emulators may behave differently.

	Microbrowsers are not nearly as forgiving as desktop browsers such as
Internet Explorer; 100 percent correct syntax is required.

	Real phones may be unable to load pages from servers running on
nonstandard ports.

The mobile interface should be accessible to the mobile user who types
only the hostname of your site, i.e., the user should not have to
type in the "/mbl/" subdirectory. This is typically accomplished by
an IF statement in the top-level script of your Web
server's page root.

This is a good opportunity to be creative. Browsing from a phone can
be slow, expensive, and painful. Every line of information has to be
critically important to the user. To get you
started, here are a few ideas:

	someone who has asked a question in an online community will be
very interested in new answers to that question

	in a small community, a simple list of users and their phone
numbers that can be dialed with one keypress from a mobile browser
might be very useful

Exercise 9: Client Signoff

Mobile interfaces are a little too outré for many clients, and
thus you can't ask them for ideas without first showing them something
that works and that is relevant to their users. Show your mobile
interface to the client, ideally in a face-to-face meeting where you
use a real phone. If you can't arrange that, have a face-to-face
meeting where you use an emulator. If that isn't practical, try to
work through the interface in a conference call, during which the
client uses either a phone or an emulator.

Write down the client's answers to the following questions:

	How useful do you think the mobile interface that you just saw will be?

	What extra information should we make available to mobile users?

	What are the most crucial tasks that users would like to be able
to accomplish from their phones?

Watch for Opportunities to Push

Thus far we've considered the synchronous request/response model,
brought over to mobile devices from the world of desktop Web surfing.
In another common form of communication, the user receives
asynchronously from a server robot or a fellow community member.
Desktop users will recognize email alerts and instant messaging as
applications of this mode. Two key requirements for asynchronous,
user-bound communication are (a) the user must be addressable, e.g. by
an email address or a screen name, and (b) the user must be running
software that is listening on their behalf, e.g. a mail server or an
instant messaging client. These capabilities are known collectively
as push to the wireless industry.

Depending on the user's wireless service provider, there may be
opportunities to push text or multimedia messages out to your user as
interesting events unfold within your community. Many mobile phones,
for example, can receive short text messages through the email system.
The phone's "email address" is formed by appending a provider-specific
domain to the phone's voice number. So if John's Verizon Wireless
phone number is 617-555-1212, we can alert him by sending email to
6175551212@vtext.com.

The Future

In most countries the mobile Internet has not lived up to expectations
of wide success. The standout exception is the i-mode system, which
has become the dominant means of Internet access in Japan. We think
that two reasons explain i-mode's relative success: always-on
connectivity and revenue opportunities for publishers.

Western mobile Internet systems typically involved a dialup and sign-on
delay of as long as two minutes for the first page; with the always-on
i-mode system, the user gets consistent performance and relatively
quick results for initial requests. Early Western mobile systems
charged per minute, which was painful for users who typed text slowly
on numeric keypads and received pages at 9800 baud. Always-on systems
such as i-mode tend to charge a per-byte or flat per-month rate for
access, which greatly reduces the possibility of a huge end-of-month
bill.

In most mobile Internet systems, the phone company decides what sites
are going to be interesting to users and places them on a set of
default bookmarks. The phone company often charges the site publisher
to be promoted to its customers. The result? Every early system in
the U.S. made it easy to connect to amazon.com and shop for books, which
turned out not to be a popular activity. DoCoMo, the Japanese company
that runs the i-mode service, took a different approach. DoCoMo
decided that they weren't creative enough to figure out what consumers
would want out of the mobile Internet. They therefore came up with a
system in which content providers are more or less equally available.
Content providers can earn revenue via banner advertisements or by
charging for premium content. When a provider wants to charge, DoCoMo
handles the payment, taking a 5-9 percent commission.

The combination of always-on and non-starvation for content providers
created an explosion of creativity on the part of publishers. The
most popular services seem to be those that connect people with other
people, rather than business-to-consumer amazon.com-style e-commerce.

Is there hope that the mobile Internet will eventually become as
popular as i-mode is in Japan? The first ray of hope was provided by
General Packet Radio Service (GPRS). GPRS takes advantage of lulls in
voice traffic within a cell to deliver a theoretically maximum of
160Kbits/second via unused frequencies at any particular moment. GPRS
requires new handsets that are equipped to listen simultaneously on
both the dedicated circuit-switched connection in use for a voice call
and also monitor GPRS frequencies for incoming packets. In practice,
GPRS may provide only three or four times faster throughput than
existing WAP systems. More important is the fact that GPRS can, in
theory, deliver an "always-on" experience similar to that of i-mode or
a hardwired desktop computer.

As noted above, with GPRS the wireless Internet will become a place
that supports simultaneous voice and text interaction. For example,
the following scenario can be realized:

	User dials an airline phone number

	Airline: "Please speak your departure city"

	User: "London"

	Airline: "Please speak your destination city"

	User: "Paris"

	Airline: sends a WAP document via GPRS to the user's phone, listing
alternative flights

	User: scrolls through the WAP document, scanning with eyes the flight
times and prices, and picks with the phone keypad the desired flight

	...

Notice that voice prompting and recognition are convenient when a user
is choosing from among hundreds of alternatives, e.g., the world's
airports. However, voice becomes agonizing if the user must listen to
a long list of detailed choices—prompting with text may be much
better when more than two or three choices are available, especially if each
choice requires elaborate specification. Keep in mind "The Magical
Number Seven, Plus or Minus Two: Some Limits on Our Capacity for
Processing Information" by George A. Miller (The Psychological
Review, 1956, vol. 63, pp. 81-97; http://www.well.com/user/smalin/miller.html).

There is no evidence that the phone companies outside Japan will wise
up to the power of revenue sharing. However, with the introduction of
GPRS the wireless Internet will become something better than a
novelty. For more on the subject of GPRS see Peter Rysavy's "Emerging Technology: Clear Signals for General Packet
Radio Service" in Network Magazine,
December 2000 (http://www.rysavy.com/Articles/GPRS2/gprs2.html).

More

Standards information:

 	
 http://www.openmobilealliance.org — Open Mobile Alliance, the standards-making body for mobile computing

 	
 http://www.wapforum.org/what/technical.htm — Legacy site for the WAP Forum, a predecessor of the Open Mobile Alliance. Much of the WAP technical documentation, including the XHTML-MP, WTAI, and WAP architecture specifications reside here.

 	
 http://www.w3.org/TR/css-mobile — CSS Mobile Profile 1.0 specification, for controlling the display style of XHTML-MP documents

[bookmark: sdks]
Software development kits ("SDKs") and WAP-enabled browsers are available from

 	http://developer.openwave.com/ — Openwave Developer Website (requires free registration)

	http://www.forum.nokia.com/main.html — Nokia Website, in the WAP Developer Forum area (requires free registration)

	http://www.ericsson.com/mobilityworld/sub/open/index.html — Ericcson Developer's Zone (requires free registration)

	http://www.gelon.net/ — Gelon WAPalizer, can be run through your browser.

General Packet Radio Service (GPRS):

 	http://www.rysavy.com/Articles/GPRS2/gprs2.html

The old WML standard:

	the previous version of this chapter at http://philip.greenspun.com/seia/mobile/index-old

Time and Motion

Each member of the team should work through the basics, Exercises 1-6,
individually and expect to spend roughly five hours doing so.

The team should plan to spend one to two hours together designing the
mobile interface, but may divide the work of prototyping and refining
the mobile interface. A reasonable scope is eight to twelve programmer-hours.

The time required for client signoff will vary depending on
the client's level of interest and familiarity with the mobile Web.
Plan to spend at least thirty minutes on the signoff.

Voice (VoiceXML)

In every computing era, programmers have been responsible for writing the fundamental
application logic. During the desktop application era (1980s), the
attention given to this logic was generally dwarfed by that given to the user interface,
 event handling, and
graphics code that a programming team needed to write to get a
computer program into the hands of users. Result: very little
innovation at the individual level; most widely used computer programs were written by large
companies.

During the Web era (1990s), the user interface and graphics were
rendered by the Web browser, e.g., Netscape Navigator or Microsoft
Internet Explorer. Programmers were able to deliver a complete system
to end-users after writing only the application logic and some simple
HTML specifying the user interface behavior. Result: a revolution in
innovation, with most Web applications written in a few months by a
handful of people.

Suppose that you'd observed that telephones are much more common and
portable than personal computers and Web browsers. Furthermore, you'd
noticed that telephones are able to be used by almost everyone, whereas many
consumers have little patience for the complexities of the PC. Thus,
you'd want to make your information system accessible to a user with
only a telephone. How would you have done it? In the 1980s, you'd
rent a telephone line, buy a big specialized box to recognize
utterances, buy another specialized box to talk to the user, and park
those boxes right next to the main server for your application. In
the 1990s, you'd have had to rent a telephone line, buy specialized
software, and park a standard computer running that software next to
the server running your application. Result in both decades: very
little innovation, with only the largest organizations offering
voice/telephone interfaces to their information systems.

With the advent of today's voice browsers, the coming years promise to
be a period of tremendous innovation in the development of
telephone-accessible Internet applications. With a Web application, you
operate the HTTP server and run the application code; someone else runs the
browser. The idea of the voice browser is the same. You operate a
server and the application. Someone else, perhaps the phone company,
runs the telephone lines and voice browser.

Bottom line: voice browsers allow you to build telephone voice
applications with nothing more than an HTTP server.
From this, great innovation shall spring.

Illustration

Suppose Tracy, a vice president at a Boston-based firm, has just flown into
Los Angeles. She wants to know the telephone number and address
of her company's Los Angeles office, as well as the direct number
for one of the employees. Since her company intranet is not
telephone-accessible, she has to call up her assistant and ask
him to open up a Web browser to look up the information in the
intranet.

With VoiceXML, it can take as little as a few hours for a developer
to take virtually any information available on the Web and make it available
by telephone — not just to callers with high-tech cellphones, but to anyone with any
kind of telephone. Tracy would be able to dial a number and say which
office or employee she is looking for. After searching through some
of the intranet's database tables, the VoiceXML application can read aloud
the phone numbers and addresses she wants. And next time Tracy
arrives confused in a foreign city, she won't have to rely on her
assistant being at his desk.

What is VoiceXML?

VoiceXML, or VXML, is a markup language like HTML. The difference:
HTML is rendered by your Web browser to format content and user-input
forms; VoiceXML is rendered by a voice browser. Your application can
speak to the user via synthesized speech or by prerecorded audio
files. Your software can receive input from the user via speech or by
the tones from their telephone keypad. If you've ever built a Web
application, you're ready to get started with your phone application.

How to make your content telephone-accessible

As in the old days, you can still rent a telephone line and run commercial
voice recognition software and text-to-speech (TTS) conversion
software. However, the most interesting aspect of the VoiceXML revolution
is that you need not actually do so. There are free VoiceXML gateways, such as Tellme
(http://www.tellme.com),
BeVocal (http://www.bevocal.com),
 and
VoiceGenie (http://www.voicegenie.com).
These take VoiceXML pages from your Web server and read them to
your user. If your application needs input from the user, the gateway
will interpret the incoming response and pass that response to your
server in a way that your software can understand.

Figure 10.1:

HTML: Publisher owns the HTTP server, which uses HTML to specify a
user experience that is rendered on the reader's desktop computer.
VoiceXML: Publishers owns the HTTP server, which uses VoiceXML to
specify a user experience that is rendered on a 3rd-party gateway
system and delivered as audio to the user's telephone.

You use a Web form to configure the gateway with the URL of your application, and it
will associate a telephone number with it. In the case of Tellme,
your users call 1-800-555-TELL, dial your 5-digit extension, and now
they're talking to your application.

Exercise 1

Use Tellme (1-800-555-TELL) to

	get driving directions between two bastions of higher education:
Caltech (1201 East California Boulevard, Pasadena, CA)
and
Pasadena City College (1570 East Colorado Boulevard, Pasadena, CA)

	find the latest price for a share of stock in Oracle Corporation

	listen to your horoscope

	listen to today's top news stories

Record the amount of time required to complete the first three tasks.

Exercise 2

Come up with a list of two or three services from your learning community that
will be valuable to telephone users. You may find the following guidelines useful:

	

A positive development in this area is that a number of voice gateways (e.g., VoiceGenie, www.voicegenie.com) are
now partnering with providers of biometric voice authentication software
such as VoiceTrust (www.voice-trust.com/) and Vocent (www.vocent.com).

	It is difficult for users to log on. With voice applications, entering
a username is even more tedious and error-prone than with mobile applications. You may want to
restrict your voice services to ones that can be accessed by the entire
community and not just registered users. An alternative to the standard
username/password authentication is to assign a numeric user_id and pin to
each registered user, but that makes it more cumbersome to do Web/mobile/phone services
all in one.

	It is easy to give information to the user, but it is hard for them to
give information back to your service. It is typically practical for
them to pick options from a menu, but impractical for them to provide any
meaningful unstructured data.

VoiceXML Basics

The format of a VoiceXML document is simple. Here's how to say "Hello,
World" to your visitors:

<?xml version="1.0"?>
<vxml version="2.0">
 <form>
 <block>
 <audio>Hello, World</audio>
 </block>
 </form>
</vxml>

The first tag, <?xml version="1.0"?>, specifies that the document
to follow conforms to the XML 1.0 standard. All VoiceXML documents follow this
standard.

As in any XML document, every opening tag (e.g., <vxml>) has to be closed,
either with a closing tag like </vxml>, or with a slash
(/) at the end of the tag, as in the <else/> tag in the next example.
The other important rule to remember is that all attribute values must be enclosed in
quotation marks, as in version="2.0". XML is much stricter than HTML in these
two regards.

The <vxml version="2.0"> tag specifies that this is a VoiceXML 2.0 document.
Within that is a <form>, which can either be an interactive element
— requesting
input from the user — or informational. You can have as many
forms as you want within a VoiceXML document. A <block> is a
container for your executables, meaning that all your tags that
make your application do something, such as <audio>,
<goto>, and a variety of others, can be clumped together inside of a block.
<audio>text</audio> will read the text with a TTS
converter, whereas <audio src="wav_file_URL"/> will play
a pre-recorded .wav audio file.

Exercise 3

Sign up for a developer account at one of the VoiceXML gateways
(see the list at the end of this chapter). All of the gateways have free developer accounts and many
useful services for developers. We prefer BeVocal for its extensive documentation and the
plethora of tools it provides, including: a syntax checker; a Web-based emulator so that
you can do some of your testing on your PC without using a telephone; an on-line debugger; a log of calls, including error
messages, variable values, and even recordings of the actual user utterances; a library
of grammars and code that you can use; and more. However, all of the gateways have their
own strengths and weaknesses, so use the one you like the best; there is no wrong
choice.

The gateway will assign you a telephone number or extension that you can
point to your Web server. Point it to a file called hello-world.vxml
that contains the VoiceXML example above. This example should work with most
gateways, but each gateway employs slightly different VoiceXML syntax, so glance over the
online documentation provided for the gateway you choose.

More VoiceXML

Here's an example that accepts user input and
behaves differently depending on what the user says:

<?xml version="1.0"?>
<vxml version="2.0">
 <form id="animal_questionnaire">
 <field name="favorite_animal">
 <prompt>
 <audio>Which do you like better, dogs or cats?</audio>
 </prompt>
 <grammar>
 <![CDATA[
 [
 [dog dogs] {<option "dogs">}
 [cat cats] {<option "cats">}
]
]]>
 </grammar>
 <!-- if the user gave a valid response, the filled block
 is executed. -->
 <filled>
 <if cond="favorite_animal == 'dogs'">
 <!-- this would take the user to a form called
 popular_dog_facts within the same VoiceXML
 document -->
 <goto next="#popular_dog_facts"/>
 <else/>
 <!-- this expression is an EMCAScript (JavaScript)
 expression, composed of a concatenated string
 and variable; this will take the user to the
 URI psychological_evaluation.cgi?affliction=cats
 -->
 <goto expr="'psychological_evaluation.cgi?affliction='
 + favorite_animal"/>
 </if>
 </filled>
 <!-- if the user responded but it didn't match the
 grammar, the nomatch block is executed -->
 <nomatch>
 I'm sorry, I didn't understand what you said.
 <reprompt/>
 </nomatch>
 <!-- if there is no response for a few seconds, the
 noinput block is executed -->
 <noinput>
 I'm sorry, I didn't hear you.
 <reprompt/>
 </noinput>
 </field>
 </form>
 <!-- additional forms can go here -->
</vxml>

In this example, we:

	ask the caller whether they prefer dogs or cats

	listen for a response

	redirect the caller to another location based on the response

The structure of the VoiceXML code in this example is
basically identical to that of the
"Hello, World" example, with a few additional elements.
The top two lines are present in every VoiceXML 2.0 document.
Next, we have a form; this time the form is named, as we must
do if we are to have more than one form in a document.

	

Note on grammars

In VoiceXML 1.0, the W3C did not specify the grammar format, allowing
each VoiceXML platform to implement grammars as they chose. In
VoiceXML 2.0, each platform is required to implement the XML format of
the W3C's Speech Recognition Grammar Format (SRGF), the latest
draft of which is available from http://www.w3.org/TR/grammar-spec/.

In one vendor's implementation, the following SRGF grammar can be
used in place of the grammar in the example:

<grammar xml:lang="en-US"
type="application/srgs+xml" version="1.0">
 <rule id="animal" scope="public">
 <one-of>
 <item>
 <one-of tag="dogs">
 <item>dog</item>
 <item>dogs</item>
 </one-of>
 </item>
 <item>
 <one-of tag="cats">
 <item>cat</item>
 <item>cats</item>
 </one-of>
 </item>
 </one-of>
 </rule>
</grammar>

However, other vendors have implemented the SRGF slightly differently.
As the SRGF specification graduates from a "candidate recommendation",
vendors' implementations of SRGF should converge.

We created a variable called
favorite_animal using the
<field> tag.
After we've prompted the user for a response, we have to specify
what the user is allowed to answer by defining a grammar.
You'll find that various gateways tend to use different grammar formats.
The grammar in this example is in the GSL (Nuance's Grammar Specification
Language) format, which is used by Tellme and BeVocal, among others.
The grammar above specifies that if the user says "dog" or "dogs",
the value of favorite_animal
becomes "dogs." If they respond "cat" or "cats",
favorite_animal will be set to "cats".

That's all there is to getting user input. Now we can use the value of their response in our
program. In this example, if their answer is "dogs", they will be sent to a form named
"popular_dog_facts" within the same VoiceXML document. If they answer "cats",
they will be sent to a different URL, psychological_evaluation.cgi?affliction=cats. Note how we used a JavaScript expression in
the goto tag in order to use the value of the
favorite_animal variable.

Those two examples are enough to give you the gist of VoiceXML and hopefully
an appreciation for the simplicity of voice application development
using VoiceXML.

Excellent tutorial and reference material can be found on the developer
sites at Tellme
(http://studio.tellme.com/)
and BeVocal
(http://cafe.bevocal.com/).

Exercise 4: Grammar Accuracy

Create a simple page that asks the user to name a city in Canada.
Start out with a small grammar, e.g.:

[vancouver toronto halifax] {<option "valid_city">}

Your application should respond to the user with something like
"Yes, that is a Canadian city" or "I've never heard of that city."

Try out your application. Name some cities that are not on
your list and see if it mistakenly thinks they are valid cities.
Now add some more cities to your list (e.g., Calgary, Winnipeg,
Victoria, Saskatoon). As you make your list longer and longer,
you'll tend to start getting a few false positives.

Decide on a rule of thumb for how many elements it's reasonable
to have in one grammar.

There are applications that have thousands of elements in
a grammar. However, they've typically gone through a process of
grammar tuning using representative probabilities for grammar matches.
For this exercise, just extend the standard grammar above.

Exercise 5: What's New and Who's New

Add voice-accessible "what's new" and "who's new" features to your
community. A user should be able to call up and hear the most
recent five contributions by other community members and the names of
the last five people who registered.

Consider that if you're authenticating users over the phone the
contributions that might be most interesting are any new responses to
questions asked by that user.

Exercise 6: Content Approval/Rejection by Telephone

Many Web sites have user-created content that must be approved by an
administrator or moderator before it becomes live on the site. Examples
are the product reviews at amazon.com, article submissions at
slashdot.org, and bulletin board postings in a moderated forum.

Typically you'd open your Web browser, log in, and go to an admin page
from which you can approve, reject, or edit submissions.

But it sure would be nice to approve and reject submissions with
your cellphone when you're out walking the dog. (Editing is harder to
do by phone, but it's less common anyway, so it can wait until you're
back at your desk.)

Create some simple voice-accessible admin pages. Since the typical
username/password authentication is so tedious, you might want to
make them accessible with just a numeric pin. Note that it isn't
ideal in general to protect a set of pages with just one pin because
that makes it harder to delegate/revoke admin privileges later, but
it will do for this exercise.

Exercise 7: Implement Some Real Services

Depending on the complexity of the services you came up with in
Exercise 2, implement one or two or three of them. If you implement
more than one, you may wish to create a voice service menu as the
entry point for all your voice users.

Exercise 8: Client Signoff

As with mobile browser interfaces, a voice interface is tough for most
people to think about until they've actually used one. Try to sit
down with your client face-to-face and observe them going through all
the nooks and crannies of your VoiceXML interface. If that isn't
practical, email your client explicit instructions and then follow up
with a phone call.

Write down the client's answers to the following questions:

	How useful do you think the voice interface that you just tried
will be?

	What extra information should we make available via voice?

	What are the most crucial tasks that users would like to be able
to accomplish from a standard phone using only touch tones and voice?

Mobile versus Voice Applications

Mobile text browsers and VoiceXML each have strengths and weaknesses
and are therefore appropriate for different applications — or for
different parts of the same application.

	Mobile Browser	VoiceXML

	requires browser-enhanced telephones	can be used with any phone

	user-input with uncomfortable keypads	speech or keypad input

	works well in noisy environments	hard to use in noisy environments

	you need to develop versions of your software for a variety of mobile gateways	you only need to develop one version of your software

	works well for displaying long lists of information	works poorly for giving the user long lists of information

	user can enter arbitrary information	user can only say predefined phrases

Figure 10.2:

One way to take advantage of the best of mobile and voice interfaces will be to develop multi-modal applications like the GPRS airline reservation system in the last chapter.
A number of groups are actively developing specifications for
multi-modal applications, including the Speech Application
Language Tags (SALT) Forum
(http://www.saltforum.org/).

Beyond VoiceXML: Conversational Speech

Will all voice applications be VoiceXML applications? The current syntax
of VoiceXML is geared at producing a user experience of navigating through
hierarchical menus. State-of-the-art research is moving beyond this towards
conversational systems in which any utterance makes sense at any time and where context
is carried from exchange to exchange. For example, you can call the
MIT Laboratory for Computer Science's server at 1-888-573-8255:

	You: Will it rain tomorrow in Boston?

	JUPITER: To my knowledge, the forecast calls for no rain tomorrow in Boston.

	You: What about Detroit?

	JUPITER: To my knowledge, the forecast calls for no rain tomorrow in Detroit.

	You: Are there any floods in the United States?

	JUPITER: Flood warnings have been issued for Louisiana and Mississippi.

	You: Will it be sunny in Phoenix?

...

Notice how the system, more fully described at http://groups.csail.mit.edu/sls/applications/jupiter.shtml,
assumed that you were still interested in rain when asking about
Detroit, context carried over from the Boston question.

In the long run, as these more natural conversational technologies are
perfected, the syntax of VoiceXML will have to grow to accommodate the full
power of speech interpreters or be eclipsed by another standard.

More

[bookmark: vxml_gateways]VoiceXML gateways:

	Tellme (http://studio.tellme.com/)

	VoiceGenie (http://developer.voicegenie.com/)

	Voxeo (http://www.voxeo.com/)

	BeVocal Cafe (http://cafe.bevocal.com/)
	HeyAnita Freespeech (http://freespeech.heyanita.com/)

Related links:

	VoiceXML Forum (http://www.voicexml.org/)

	Voice articles at developer.com (http://www.developer.com/voice/)

	Specifications and news from the Web Consortium, http://www.w3.org/Voice/. Notably interesting specs at press time include

	Voice Extensible Markup Language (VoiceXML) Specification Version 2.0 (http://www.w3.org/TR/voicexml20/)

	Speech Recognition Grammar Specification Version 1.0 (http://www.w3.org/TR/grammar-spec/)

	source code and case studies from an earlier version of this article, "VoiceXML: Letting People Talk to your HTTP Server through the Telephone", available at
http://eveandersson.com/arsdigita/asj/vxml

Time and Motion

Each member of the team should work through the basics, Exercises 1-4,
individually and expect to spend two to three hours.

The team should plan to spend one to two hours together designing the
voice interface, but may divide the work of prototyping and refining
the voice interface plus Exercises 5 and 6. A reasonable scope is eight to
twelve programmer-hours.

The time required for client signoff will vary depending on the
client's level of interest. Plan to spend at least thirty minutes on the
signoff.

Scaling Gracefully

Let's look again at the passage from A
Pattern Language, quoted in the "Planning" chapter:

"It is not hard to see why the government of a region becomes less and
less manageable with size. In a population of N persons, there are of
the order of N2 person-to-person links needed to keep channels of
communication open. Naturally, when N goes beyond a certain limit, the
channels of communication needed for democracy and justice and
information are simply too clogged, and too complex; bureaucracy
overwhelms human process. ...

"We believe the limits are reached when the population of a region
reaches some 2 to 10 million. Beyond this size, people become remote
from the large-scale processes of government. Our estimate may seem
extraordinary in the light of modern history: the nation-states have
grown mightily and their governments hold power over tens of millions,
sometimes hundreds of millions, of people. But these huge powers cannot
claim to have a natural size. They cannot claim to have struck the
balance between the needs of towns and communities, and the needs of the
world community as a whole. Indeed, their tendency has been to override
local needs and repress local culture, and at the same time aggrandize
themselves to the point where they are out of reach, their power barely
conceivable to the average citizen."

Let's also remind ourselves of the empirical evidence that enormous
online communities cannot satisfy every need. America Online has not
subsumed all the smaller communities on the Internet. People
unsubscribe from mailing lists when the traffic level becomes too
high. Early adopters of USENET discussion groups (called "Netnews" or
"Newsgroups" back in the 1970s and "Google Groups" to most people in
2005) stopped participating because they found the utility of the
groups diminished when the community size grew beyond a certain
point.

So the good news is that, no matter how large one's competitors, there
will always be room for a new online community. The bad news is that
growth results in significant engineering challenges. Some of the
challenges boil down to simple performance engineering: How can one
divide the load of supporting an Internet application among multiple
CPUs and disk drives? These can typically be solved with money, even
in the absence of any cleverness. The deeper challenges cannot be
solved with money and hardware. Consider, for example, the following questions:

	How can 100,000 people hold a conversation?

	How can an online learning community support 50,000 people with
50,000 different levels of passion for the topic and for
participation?

	What is the electronic analog of keeping in touch with one's neighbors?
With one's friends?

In this chapter we will first consider the straightforward hardware
and software issues, then move on to the more subtle challenges that
grow progressively more difficult as the user community expands.

Tasks in the Engine Room

Here are the fundamental tasks that are happening on the servers of
virtually every interactive Internet application:

	transport-layer encryption (SSL if the site has secure HTTPS
pages)

	HTTP service

	presentation layer (page composition; script execution)

	abstraction provision (sometimes called "business logic"; any
layer of code on top of the raw database where each procedure is used
by more than one page)

	persistence

At a modestly visited site, it would be possible to have one CPU
performing all of these tasks. In fact, for ease of maintenance and
reliability it is best to have as few and as simple servers as
possible. Consider your desktop PC, for example. How long has it
been since the hardware failed? If you look into a room with 50
simple PCs or single-board workstations, how often do you see one that
is unavailable due to hardware failure? Suppose, however, that you
combine computers to support your application. If one machine is 99
percent reliable, a site that depends on 10 such machines will be only
0.9910 reliable or 90 percent. The probability analysis here is the
same as flipping coins but with a heavy 0.99 bias towards heads. You
need to get 10 heads in a row in order to have a working service.
What if you needed 100 machines to be up and running? That's only
going to happen 0.99100th of the time, or roughly 37 percent.

It isn't challenging to throw hardware at a performance problem. What
is challenging is setting up that hardware so that the service is
working if any of the components are operational rather than
only if all of the components are operational.

We'll examine each layer individually.

Persistence Layer

For most interactive Web applications, the persistence layer is a
relational database management system (RDBMS). The RDBMS server
program is parsing SQL queries, writing transactions to the disk,
rooting around on the disk(s) for seldom-used data, gluing together
data in RAM, and returning it to the RDBMS client program. The
average engineer's top-of-the-head viewpoint is that RDBMS performance
is limited by the speed of the disk(s). The programmers at Oracle
disagree: "A properly configured Oracle server will run CPU-bound."

Suppose that we have a popular application and need 16 CPUs to support
all the database queries. And let's further suppose that we've
decided that the RDBMS will run all by itself on one or more physical
computers. Should we buy 16 small computers, each with one CPU, or
one big computer with 16 CPUs inside? The local computer shop sells
1-CPU PCs for about $500, implying a total cost of $8000 for 16 CPUs.
If we visit the Web site for Sun Microsystems (www.sun.com) we find that the price of a
16-CPU Sunfire 6800 is too high even to list, but if the
past is any guide we won't get away for less than $200,000. We will
pay 25 times as much to get 16 CPUs of the same power, but all inside
one physical computer.

Why would anyone do this?

Let's consider the peculiarities of the RDBMS application. The RDBMS
server talks to multiple clients simultaneously. If Client A updates
a record in the database and, a split-second later, Client B requests
that record, the RDBMS is required to deliver the updated information
to Client B. If we were to spread the RDBMS server program across
multiple physical computers, it is possible that Client A would be
served from Computer I and Client B would be served from Computer II.
A database transaction cannot be committed unless it has been written
out to the hard disk drive. Thus all that these computers need do is
check the disk for updates before returning any results to Client B.
Disk drives are 100,000 times slower than RAM. A single computer running an
RDBMS keeps an up-to-date version of the commonly used portions of the
database in RAM. So our multi-computer RDBMS server that ensures
database coherency across processors via reference to the hard disk
will start out 100,000 times slower than a single-computer RDBMS
server.

Typical commercial RDBMS products, such as Oracle Parallel Server,
work via each computer keeping copies of the database in RAM and
informing each other of updates via high-speed communications
networks. The machine-to-machine communication can be as simple as a
high-speed Ethernet link or as complex as specialized circuit boards
and cables that achieve memory bus speeds.

Don't we have the same problem of inter-CPU synchronization with a
multi-CPU single box server? Absolutely. CPU I is serving Client A.
CPU II is serving Client B. The two CPUs need to apprise each other
of database updates. They do this by writing into the multiprocessor
machine's shared RAM. It turns out that the CPU-CPU bandwidth
available on typical high-end servers circa 2002 is 100 Gbits/second,
which is 100 times faster than the fastest available Gigabit Ethernet,
FireWire, and other inexpensive machine-to-machine interconnection
technologies.

Bottom line: if you need more than one CPU to run the RDBMS, it usually
makes most sense to buy all the CPUs in one physical box.

Abstraction Layer

Suppose that you have a complex calculation that must be performed in
several different places within a computer program. Most likely you'd
encapsulate that calculation into a procedure and then call that
procedure from every part of the program where the calculation was
required. The benefits of procedural abstraction are that you
only have to write and debug the calculation code once and that, if
the rules change, you can be sure that by updating the single
procedure you've updated your entire application.

The abstraction layer is sometimes referred to as "business logic".
Something that is complex and fundamental to the business ought to be
separated out so that it can be used in multiple places consistently
and updated in one place if necessary. Below is an example from an
e-commerce system that Eve Andersson wrote. This
system offered substantially all of the features of amazon.com circa
1999. Eve expected that a lot of ham-fisted programmers who adopted
her open-source creation would be updating the page scripts in order
to give their site a unique look and feel. Eve expected that laws and
accounting procedures regarding sales tax would change. So she
encapsulated the looking up of sales tax by state, the figuring out if
that state charges tax on shipping, and the multiplication of tax rate
by price into an Oracle PL/SQL function:

create or replace function ec_tax
 (v_price IN number, v_shipping IN number, v_order_id IN integer)
return number
IS
	taxes			ec_sales_tax_by_state%ROWTYPE;
	tax_exempt_p		ec_orders.tax_exempt_p%TYPE;
BEGIN
	SELECT tax_exempt_p INTO tax_exempt_p
	FROM ec_orders
	WHERE order_id = v_order_id;

	IF tax_exempt_p = 't' THEN
		return 0;
	END IF;	
	
	SELECT t.* into taxes
	FROM ec_orders o, ec_addresses a, ec_sales_tax_by_state t
	WHERE o.shipping_address=a.address_id
	AND a.usps_abbrev=t.usps_abbrev(+)
	AND o.order_id=v_order_id;

	IF nvl(taxes.shipping_p,'f') = 'f' THEN
		return nvl(taxes.tax_rate,0) * v_price;
	ELSE
		return nvl(taxes.tax_rate,0) * (v_price + v_shipping);
	END IF;
END;

The Web script or other PL/SQL procedure that calls this function need
only know the proposed cost of an item, the proposed shipping cost, and
the order ID to which this item might be added (these are the
three arguments to ec_tax). That sales taxes for each
state are stored in the ec_sales_tax_by_state table, for
example, is hidden from the rest of the application. If an
organization that adopted this software decided to switch to using
third-party software for calculating tax, that organization would need
to change only this one function rather than wading through hundreds
of Web scripts looking for tax-related code.

Should the abstraction layer run on its own physical computer? For
most applications, the answer is "no". These procedures are not
sufficiently CPU-intensive to make splitting them off onto a separate
computer worthwhile in terms of system administration effort and
increased vulnerability to hardware failure. What's more, these
procedures often do not even warrant a new execution environment.
Most procedures in the abstraction layer of an Internet service require
intimate access to relational database tables. That access is fastest
when the procedures are running inside the RDBMS itself. All modern
RDBMSes provide for the execution of standard procedural languages
within the database server. This trend was pioneered by Oracle with
PL/SQL and then Java. With the latest Microsoft SQL Server one can
supposedly run any .NET-supported computer language inside the
database.

When should you consider a separate environment ("application server"
process) for the abstraction layer? Suppose that a big bank, the
result of several mergers, has an IBM mainframe to manage checking
accounts, an Oracle RDBMS for managing credit accounts, and a SQL
Server-based customer support system. If Jane Customer phones up the
bank and asks to pay her credit card bill from her checking account, a
computer program needs to perform a transaction on the mainframe
(debit checking), a transaction on the Oracle system (credit Visa
card), and a transaction on the SQL Server database (payment handled
during a phone call with Agent #451). It is technically possible for,
say, a Java program running inside the Oracle RDBMS to connect to
these other database management systems but traditionally this kind of
problem has been attacked by a stand-alone "application server",
usually a custom-authored C program. The term "application server"
has subsequently become used to describe the physical computers on
which such a program might run and, in the late 1990s, execution
environments for Java or C programs that served some function on a Web
site other than page presentation or persistence.

Another example of where a separate physical application server might
be desirable is where substantial computation must be performed. On
most photo sharing sites, every time a photo is uploaded the server
must create scaled versions in standard sizes. The performance
challenge at the orbitz.com travel
site is even more serious. Every user request results in the execution
of a Lisp program written by MIT Artificial Intelligence Lab alumni at
itasoftware.com. This Lisp
program searches through a database of two billion flights and fares.
The database machines that are performing transactions such as ticket
bookings would collapse if they had to support these searches as well.

If separate physical CPUs are to be employed in the abstraction layer,
should they all come in the same box or will it work just as well to
rack and stack cheap 1-CPU machines? That rather depends on where
state is kept. Remember that HTTP is a stateless protocol. Somewhere
the server needs to remember things such as "Registered User 137 wants
to see pages in the French language", "Unregistered user who started
Session 6781205 has placed the hardcover edition of The
Cichlid Fishes in his or her shopping cart." In a
multi-process multi-computer server farm, it is impossible to guarantee
that a particular user will always be returned to the same running
computer program, if for no other reason than you want the user
experience to be robust to failure of an individual physical computer.
If session state is being kept anywhere other than in a cookie or the
persistence layer (RDBMS), your application server programs will need
to communicate with each other constantly to make sure that their ad
hoc database is coherent. In that case, it might make sense to get an
expensive multi-CPU machine to support the application server.
However, if all the layers are stateless except for the persistence
layer, the application server layer can be handled by multiple cheap
one-CPU machines. At orbitz.com, for example, racks of cheap computers
are loaded with identical local copies of the fare and schedule
database. Each time a user clicks to see the options for traveling
from New York to London, one of those application server machines is
randomly selected for action.

Presentation Layer

Computer programs in the presentation layer pull information from the
persistence layer (RDBMS) and merge those results with a template
appropriate to the user's preferences and client software. In a Web
application these computer programs are doing an SQL query and merging
the results with an HTML template for delivery to the user's Web
browser. Such a program is so simple that it is often referred to as
a "script". You can think of the presentation layer as "where the
scripts execute".

The most common place for script execution is within the operating
system process occupied by the Web server. In other words, the script
language interpreter is built into the Web server. Examples of this
architecture are Microsoft Internet Information Server (IIS) and
Active Server Pages, AOLserver and its built-in Tcl interpreter,
Apache and the mod_perl add-in. If you've chosen to use one of these
popular styles of Web development, you've chosen to merge the
presentation layer with the HTTP service layer, and spreading the load
among multiple CPUs for one layer will automatically spread it for the
other.

The multi-CPU box versus multiple-separate-box decision here should again
be based on whether or not the presentation layer holds state. If no
session state is held by the running presentation scripts, it is more
economical to add CPUs inside separate physical computers.

HTTP Service

HTTP service per se is so simple that it hardly warrants its own
layer, unless you're delivering audio and video files to a mass
audience. A high performance pure HTTP server program such as Zeus
Web Server (see www.zeus.com) can
handle more than 6000 requests per second and saturate a 100 Mbps
network link on a single 500 MHz Intel Celeron processor (that 100 Mbps
link would cost about $50,000 annually as of February 2005, by the
way). Why then would anyone ever need to deploy multiple CPUs to
support HTTP service of basic HTML pages with embedded images?

The main reason that people run out of capacity on a single front-end
Web server is that HTTP server programs are usually packaged with
software to support computationally more expensive layers. For
example, the Oracle RDBMS server, capable of supporting the persistence
layer and the abstraction layer, also includes the necessary software
for interpreting Java Server Pages and performing HTTP service. If
you were running a popular service directly from Oracle you'd probably
need more than one CPU. More common examples are Web servers such as
IIS and AOLserver that are capable of handling the presentation and
HTTP service layers from the same operating system process. If your
scripts involve a lot of template parsing, it is easy to overload a
single CPU with the demands of the Web server/script interpreter.

If no state is being stored in the HTTP Service layer it is cheapest
to add CPUs in separate physical boxes. HTTP is stateless and user
interaction is entirely mediated by the RDBMS. Therefore there is no
reason for a CPU serving a page to User A to want to communicate with
a CPU serving a page to User B.

Transport-Layer Encryption

Whenever a Web page is served, two application programs on separate
computers have communicated with each other. As discussed in the "Basics" chapter, the client opens a Transmission
Control Protocol (TCP) connection to the server, specifies the page
desired, and receives the data back over that connection. TCP is one
layer up from the basic unreliable Internet Protocol (IP). What TCP
adds is reliability: if a packet of data is not acknowledged, it will
be retransmitted. Neither TCP nor the IP of the 1990s, IPv4, provides
any encryption of the data being transmitted. Thus anyone able to
monitor the packets on the local-area network of the server or client
or on the backbone routers may be able to learn, for example, the
particular pages requested by a particular user. If you were running
an online community about a degenerative disease, this might cause one
of your users to lose his or her job.

There are two ways to protect your users' privacy from packet
sniffers. The first is by using a newer version of Internet Protocol,
IPv6, which provides native data security as well as authentication.
In the glorious IPv6 world, we can be sure of the origin of a packet,
whether it is from a legitimate user or a denial-of-service attacker.
In the glorious IPv6 world, we can be sure that it will be impractical
to sniff credit card numbers or other user-sensitive data from Web
traffic. As of spring 2005, however, it isn't possible to sign up for
a home IPv6 connection. Thus we are forced to fall back on the
1990s-style approach of adding a layer between HTTP and TCP. This was
pioneered by Netscape Communications as Secure Sockets Layer (SSL) and
is now being standardized as TLS 1.0 (see http://www.ietf.org/html.charters/tls-charter.html).

However it is performed, encryption is processor-intensive. On the
client side, that's not a big deal. The client machine probably has a
2 GHz processor that is 98 percent idle. However on the server end
performing encryption can tie up a whole CPU per user for the duration
of a request.

If you've run out of processing power the only thing to do is ... add
processing power. The question is what kind and where. Adding
general-purpose processors to a multi-CPU computer is very expensive
as mentioned earlier. Adding additional single-CPU front-end servers
to a two-tier server farm might not be a bad strategy especially
because, if you're already running a two-tier server farm, it requires
no new thinking or system administration skills. It is possible,
however, that special-purpose hardware will be more cost-effective or
easier to administer. In particular it is possible to do encryption
in the router for IPv6. SSL encryption for HTTP connections can be
done with plug-in boards, an example of which is the Compaq AXL300,
PCI card, available in 2005 for $1400 with a claimed performance of
handling 330 SSL connections per second. Finally it is possible to
interpose a hardware encryption machine between the Web server, which
communicates via ordinary HTTP, and the client, which makes requests
via HTTPS. This feature is, for example, an option on load-balancing
routers from F5 Networks (www.f5.com).

Do you have enough CPUs?

After reading the preceding sections, you've gone out and gotten some
computer hardware. How do you know whether or not it will be adequate
to support the expected volume of requests? A good rule of thumb is
that you can't handle more than 10 requests for dynamic pages per
second per CPU. A "dynamic" page is one that involves the execution
of any computer program on the server side other than simple HTTP
service, i.e., anything other than sending a JPEG or HTML file. The
10-per-second figure assumes that the pages either are not encrypted
or that the encryption is done by additional hardware in front of the
HTTP server. For example, if you have a 4-CPU RDBMS server handling
persistence and abstraction and 4 1-CPU front-end machines handling
presentation and HTTP service you shouldn't expect to deliver more
than 80 dynamic pages per second.

You might ask what CPU speed is this 10 hits per second per CPU number
based upon? The number is independent of CPU speed! In the mid-1990s,
we had 200 MHz CPUs. Web scripts queried the database and merged the
results with strings embedded in the script. Everything ran on one
physical computer so there was no overhead from copying data around.
Only the final credit card processing pages were encrypted. We
struggled to handle 10 hits per second. In the late 1990s we had 400
MHz CPUs. Web scripts queried the database and merged the results
with templates that had to be parsed. Data were networked from the
RDBMS server to the Web server before heading to the user. We secured
more pages in response to privacy concerns. We struggled to handle 10
hits per second. In 2000 we had 1 GHz CPUs. Web scripts queried the
referer header to find out if the request came from a customer of one
of our co-brand partners. The script then selected the appropriate
template. We'd freighted down the server with Java Server Pages and
Enterprise Java Beans. We struggled to handle 10 hits per second. In
2002 we had 2 GHz CPUs. The programmers had decided to follow the
XML/XSLT fashion. We struggled to handle 10 hits per second....

It seems reasonable to expect that hardware engineers will continue to
deliver substantial performance improvements and that fashions in
software development and business complexity will continue to rob
users of any enjoyment of those improvements. So stick to 10 requests
per second per CPU until you've got your own application-specific
benchmarks that demonstrate otherwise.

Load Balancing

As noted earlier in this chapter, an Internet service with 100 CPUs spread
among 15 physical computers isn't going to be very reliable if all 100
CPUs must be working for the overall service to function. We need to
develop a strategy for load balancing so that (1) user requests are
divided more or less evenly among the available CPUs, (2) when a piece
of hardware fails, it doesn't result in too many errors returned to
users, and (3) we can reconfigure hardware and network without
breaking users' bookmarks and links from other sites.

We will start by positing a two-tier server farm with a single
multi-CPU machine running the RDBMS and multiple single-CPU front-end
machines, each of which runs the Web server program, interprets page
scripts, performs SSL encryption, and generally does any computation
not being performed within the RDBMS.

**** insert drawing of our example server farm ****

Figure 11.1:

A typical server configuration for a medium-to-high volume Internet
application. A powerful multi-CPU server supports the relational
database management system. Multiple small 1-CPU machines run the
HTTP server program.

Load Balancing in the Persistence Layer

Our persistence layer is the multi-CPU computer running the RDBMS.
The RDBMS itself is typically a multi-process or multi-threaded
application. For each database client, the RDBMS spawns a separate
process or thread. In this case, each front-end machine presents
itself to the RDBMS as one or more database clients. If we assume
that the load of user requests are spread among the front-end
machines, the load of database work will be spread among the multiple
CPUs of the RDBMS server by the operating system process or thread
scheduler.

Load Balancing among the Front-End Machines

Circa 1995 a popular strategy for high-volume Web sites was
round-robin DNS. Each front-end machine was assigned a unique
publicly routable IP address. The Domain Name System (DNS) server for
the Web site was programmed to give different answers when asked for a
translation of the Web server's hostname. For example, www.cnn.com
was using round-robin DNS. They had a central NFS file server
containing the content of the site and a rack of small front-end
machines, each of which was a Web server and an NFS client. This
architecture enabled CNN to update their site consistently by touching
only one machine, i.e., the central NFS server.

How was the CNN system experienced by users? When a student at MIT
requested http://www.cnn.com/TECH/, his or
her desktop machine would ask the local name server for a translation
of the hostname www.cnn.com into a 32-bit IP address. (Remember that
all Internet communication is machine-to-machine and requires numeric
IP addresses; alphanumeric hostnames such as "www.amazon.com" or
"web.mit.edu" are used only for user interface.) The MIT name server
would contact the InterNIC registry to learn the IP addresses of the
name servers for the cnn.com domain. The MIT name server would then
contact CNN's name servers and learn that "www.cnn.com" was available
at the IP address 207.25.71.5. Subsequent users within the same
subnetwork at MIT would, for a period of time designated by CNN, get
the same answer of 207.25.71.5 without the MIT name server going back
to the CNN name servers.

Where is the load balancing in this system? Suppose that a Biology
major at Harvard University requested http://www.cnn.com/HEALTH/.
Harvard's name server would also contact CNN's name
servers to learn the translation of "www.cnn.com". This time,
however, the CNN server would provide a different answer:
207.25.71.20, leading that user, and subsequent users within
Harvard's network, to a different front-end server
than the machine providing pages to users at MIT.

Round-robin DNS is not a very popular load balancing method today.
For one thing, it is not very balanced. Suppose that the CNN name
server tells America Online's name server that www.cnn.com is
reachable at 207.25.71.29. AOL is perfectly free to provide that
translation to all of its more than 20 million customers. Another problem with
round-robin DNS is the impact on users when a front-end machine dies.
If the box at 207.25.71.29 were to fail, none of AOL's customers would
be able to reach www.cnn.com until the expiration time on the
translation had elapsed—the site would be up and running and
providing pages to hundreds of thousands of users worldwide, but not
to those users who'd received an unlucky DNS translation to the dead
machine. For a typical domain, this period of time might be anywhere
from 6 hours to 1 week. CNN, aware of this problem, could shorten the
expiration and "minimum time-to-live" on cnn.com but if these were cut
down to, say, 30 seconds, the load on CNN's name servers might start
approaching the intensity of the load on its Web servers. Nearly
every user page request would be preceded by a request for a DNS
translation. (In fact, CNN set their minimum time-to-live to 15
minutes.)

A final problem with round-robin DNS is that it does not provide
abstraction. Suppose that CNN, whose primary servers were all Unix
machines, wished to run some discussion forum software that was only
available for Windows. The IP addresses of all of its servers are
publicly exposed. The only way to direct users to a different machine
for a particular part of the service would be to link them to a
different hostname, which could therefore be translated into a
distinct IP address. For example, CNN would link users to
"http://forums.cnn.com". Users who enjoyed these forums would
bookmark the URL, and other sites on the Internet would insert
hyperlinks to this URL. After a year, suppose that the Windows
servers were dying and the people who knew how to maintain them had
moved on to other jobs. Meanwhile, the discussion forum software has
become available for Unix as well. CNN would like to pull the
discussion service back onto its main server farm, at a URL of
http://www.cnn.com/discuss/. Why should users be aware of this
reshuffling of hardware?

**** insert drawing of server farm (cloud), load balancer, public
Internet (cloud) ****

Figure 11.2:

To preserve the freedom of rearranging components within the server
farm, typically users on the public Internet only talk to a load
balancing router, which is the "public face" of the service and whose
IP address is what www.popularservice.com translates to.

The modern approach to load balancing is the load balancing router.
This machine, typically built out of standard PC hardware running a
free Unix operating system and a thin layer of custom software, is the
only machine that is visible from the public Internet. All of the
server hardware is behind the load balancer and has IP addresses that
aren't routable from the rest of the Internet. If a user requests
www.photo.net, for example, this is translated to 216.127.244.133,
which is the IP address of photo.net's load balancer. The load
balancer accepts the TCP connection on port 80 and waits for the Web
client to provide a request line, e.g., "GET / HTTP/1.0". Only after
that request has been received does the load balancer attempt to
contact a Web server on the private network behind it.

Notice first that this sort of router provides some inherent security.
The Web servers and RDBMS server cannot be directly contacted by
crackers on the public Internet. The only ways in are via a
successful attack on the load balancer, an attack on the Web server
program (Microsoft Internet Information Server suffered from many
buffer overrun vulnerabilities), or an attack on publisher-authored
page scripts. The router also provides some protection against
denial-of-service attacks. If a Web server is configured to spawn a
maximum of 100 simultaneous threads, a malicious user can effectively
shut down the site simply by opening 100 TCP connections to the server
and then never sending a request line. The load balancers are smart
about reaping such idle connections and in any case have very long
queues.

The load balancer can execute arbitrarily complex algorithms in
deciding how to route a user request. It can forward the request to a
set of front-end servers in a round-robin fashion, taking a server out
of the rotation if it fails to respond. The load balancer can
periodically pull load and health information from the front-end
servers and send each incoming request to the least busy server. The
load balancer can inspect the URI requested and route to a particular
server, for example, sending any request that starts with "/discuss/"
to the Windows machine that is running the discussion forum software.
The load balancer can keep a table of where previous requests were
routed and try to route successive requests from a particular user to
the same front-end machine (useful in cases where state is built up in
a layer other than the RDBMS).

Whatever algorithm the load balancer is using, a hardware failure in
one of the front-end machines will generally result in the failure of
only a handful of user requests, i.e., those in-process on the machine
that actually fails.

How are load balancers actually built? It seems that we need a
computer program that waits for a Web request, takes some action, then
returns a result to the user. Isn't this what Web server programs do?
So why not add some code to a standard Web server program, run the
combination on its own computer, and call that our load balancer?
That's precisely the approach taken by the Zeus Load Balancer (http://www.zeus.com/products/zlb/) and mod_backhand (http://www.backhand.org/mod_backhand/), a load
balancer module for the Apache Web server. An alternative is
exemplified by F5 Networks, a company
that sells out-of-the-box load balancers built on PC hardware, the
NetBSD Unix operating system, and unspecified magic software.

Failover

Remember our strategic goals: (1) user requests are divided more or
less evenly among the available CPUs; (2) when a piece of hardware
fails it doesn't result in too many errors returned to users; (3)
we can reconfigure hardware and network without breaking users'
bookmarks and links from other sites.

It seems as though the load-balancing router out front and
load-balancing operating system on the RDBMS server in back have
allowed us to achieve goals 1 and 3. And if the hardware failure occurs
in a front-end single-CPU machine, we've achieved goal 2 as well. But
what if the multi-CPU RDBMS server fails? Or what if the load
balancer itself fails?

Failover from a broken load balancer to a working one is essentially a
network configuration challenge, beyond the scope of this textbook.
Basically what is required are two identical load balancers and
cooperation with the next routing link in the chain that connects your
server farm to the public Internet. Those upstream routers must know
how to route requests for the same IP address to one or the other load
balancer depending upon which is up and running. What keeps this from
becoming an endless spiral of load balancing is that the upstream
routers aren't actually looking into the TCP packets to find the GET
request. They're doing the much simpler job of IP routing.

Ensuring failover from a broken RDBMS server is a more difficult
challenge and one where a large variety of ideas has been tried and
found wanting. The first idea is to make sure that the RDBMS server
never fails. The machine will have three power supplies, only two of
which are required. Each disk drive will be mirrored. If a CPU board
fails, the operating system will gracefully fail back to running on the
remaining CPUs. There will be several network cards. There will be
two paths to each disk drive. Considering the number of moving parts
inside, the big complex servers are remarkably reliable, but they
aren't 100 percent reliable.

Given that a single big server isn't reliable enough, we can buy a
whole bunch of them and plug them all into the same disk subsystem,
then run something like Oracle Parallel Server. Database clients
connect to whichever physical server machine is available. If they
can't get a response from a particular server, the client retries
after a few seconds to another physical server. Thus an RDBMS server
machine that fails causes the return of errors to any in-process user
requests being handled by that machine and perhaps a few seconds of
interrupted or slow service for users who've been directed to the
clients of that down machine, but it causes no longer term site unavailability.

As discussed in the "Persistence Layer" section of this chapter, this
approach entails a lot of wasted CPU time and bandwidth as the
physical machines keep each other apprised of database updates. A
compromise approach introduced by Oracle in 2000 was to configure a
two-node parallel server. The first machine would process online
transactions. The second machine would be allowed to lag as much as,
say, ten minutes behind the first in terms of updates. If you wanted a
CPU-intensive report querying last month's user activity, you'd talk
to the backup machine. If Machine #1 failed, however, Machine #2
would notice almost immediately and start rolling its own state
forward from the transaction log on the hard disk. Once Machine #2
was up to date with the last committed transaction, it would begin
offering service as the primary database server. Oracle proudly
stated that, for customers willing to spend twice as much for RDBMS
server hardware, the two-node failover configuration was "only a
little bit slower" than a single machine.

Hardware Scaling Exercises

Exercise 1: Web Server-based Load Balancer

How can a product like the Zeus Load Balancer work? We were worried
about our Web server program becoming overwhelmed so we added nine extra
machines running nine extra copies of the program. Can it be a good idea
to add the bottleneck of requiring all of our users to go through a
Web server program running on one machine, which was probably how we
had it set up in the first place?

Exercise 2: New York Times

Consider the basic New York Times Web site. Ignore any
bag-on-the-side community features such as chat or discussion forums.
Concentrate on the problem of delivering the core articles and
advertising. Every user will see the same articles but with
potentially different advertisements. Design a server hardware and
software infrastructure that will (1) let the New York Times staff
update the site using Web forms with the user experience lagging those
updates by no more than one minute, and (2) result in minimum cost of
computer hardware and system administration.

Be explicit about the number of computers employed, the number of CPUs
within each computer, and the connections among the computers.

Your answer to this exercise should be no longer than half a page of
text.

Exercise 3: eBay

Visit www.ebay.com and familiarize
yourself with their basic services of auction bidding and user
ratings. Assume that you need to support 100 million registered users,
800 million page views per day, 10 million bids per day, 10 million
searches per day, and 0.5 million new user ratings per day. Design a
server hardware and software infrastructure that will represent a
reasonable compromise among reliability (including graceful
degradation), initial cost, and cost of administration.

Be explicit about the number of computers employed, the number of CPUs
within each computer, and the connections among the computers. If
you're curious about the real numbers, remember that eBay is a public
corporation and publishes annual reports, which are available at http://investor.ebay.com/.

Your answer
to this exercise should be no longer than one page.

Exercise 4: eBay Proxy Bidding

eBay offers a service called "proxy bidding" or "automatic bidding" in
which you specify a maximum amount that you're willing to pay and the
server itself will submit bids for you in increments that depend on
the current high bid. How would you implement proxy bidding on the
infrastructure that you designed for the preceding exercises? Rough
out any SQL statements or triggers that you would need. Be explicit
about where the code for proxy bidding would execute: on which server?
in which execution environment?

Exercise 5: Uber-eBay

Suppose that eBay went up to one billion bids per day. How would that
change your design, if at all?

Exercise 6: Hotmail

Suppose that Hotmail were an RDBMS-backed Internet service with 200 million
active users. What would be the minimum cost hardware configuration
that still provided reasonable reliability and maintainability? What
is the fundamental difference between Hotmail and eBay?

Note: http://philip.greenspun.com/ancient-history/webmail/
describes an Oracle-backed Web mail system built by Jin S. Choi.

Exercise 7: Scorecard

Provide a one-paragraph design for the server infrastructure behind www.scorecard.org, justifying
your decisions.

Moving on to the Hard Stuff

We can build a big server. We can support a lot of users. As the
community grows in size, though, can those users continue to interact
in the purposeful manner necessary for our service to be an
online learning community? How can we prevent the discussion and the
learning from devolving into chaos and chat?

Perhaps we can take some ideas from the traditional face-to-face
world. Let's look at some of the things that make for good offline
communities and how we can translate them to the online world.

Translating the Elements of Good Communities from the Offline to
the OnlineWorld

A face-to-face community is almost always one in which people are
identified, authenticated, and accountable. Suppose that you're a
50-year-old, 6 foot tall, 250 pound guy, known to everyone in town as "Fred
Jones". Can you walk up to the twelve-year-old daughter of one of your
neighbors and introduce yourself as a thirteen-year-old girl? Probably not
very successfully. Suppose that you fly a Nazi flag out in front of
your house. Can you express an opinion at the next town meeting
without people remembering that you were "the Nazi flag guy"? Seems
unlikely.

How do we translate the features of identifiability, authentication,
and accountability into the online world? In private communities,
such as corporate knowledge management systems or university
coordination services, it is easy. We don't let anyone use the system
unless they are an employee or a registered student and, in the online
environment, we identify users by their full names. Such heavyweight
authentication is at odds with the practicalities of running a public
online community. For example, would it be practical to schedule
face-to-face meetings with each potential registrant of photo.net,
where the new user would show an ID? On the other hand, as discussed
in the "User Registration and Management" chapter, we can take a stab
at authentication in a public online community by requiring email
verification and by requiring alternative authentication for people
with Hotmail-style email accounts. In both public and private
communities, we can enhance accountability simply by making each
user's name a hyperlink to the complete record of their contributions
to the site.

In the face-to-face world, a speaker gets a chance to gauge audience
reaction as he or she is speaking. Suppose that you're a politician
speaking to a women's organization, the WAGC ("Women Against Gun
Control", www.wagc.com). Your
schedule is so heavy that you can't recall what your aides told you
about this organization, so you plan to trot out your standard speech
about how you've always worked to ensure higher taxes, more government
intervention in individuals' lives, and, above all, to make it more
difficult for Americans to own guns. Long before you took credit for
your contribution to the assault rifle ban, you'd probably have noticed that
the audience did not seem very receptive to your brand of paternalism
and modified your planned speech. Typical computer-mediated
communication systems make it easy to broadcast your ideas to everyone
else in the service, but without an opportunity to get useful feedback
on how your message is being received. You can send the long email to
the big mailing list. You'll get your first inkling as to whether
people liked it or not after the first 500 have it in their inbox.
You can post your reply to an emotionally charged issue in a
discussion forum, but you won't get any help from other community
members, at least not through the same software, before you finalize
that reply.

Perhaps you can craft your software so that a user can expose a
response to a test audience of 1 percent of the ultimate audience, get
a reaction back from those sample recipients, and refine the message
before authorizing it for delivery to the whole group.

When groups too large for effective discussion assemble in the offline
world, there is often a provision for breaking out into smaller groups
and then reassembling. For example, academic conferences usually are
about half "one to very many" lectures and half breaks and meals
during which numerous "handful to handful" discussions are held.
Suppose that an archived discussion forum is used by 10,000 people.
You're pretty sure that you know the answer to a question, but not sure
that your idea is sufficiently polished for exposure to 10,000 people
and permanent enshrinement in the database. Wouldn't it be nice to
shout out the proposed response to those users who happen to be logged
in at this moment and try the idea out with them first? The
electronic equivalent of shouting to a roomful of people is typing
into a chat room. We experimented at photo.net by comparing an HTML-
and JavaScript-based chatroom run on our own server to a simple
hyperlink to a designated chatroom on the AOL Instant Messenger
infrastructure:

photo.net chatroom

This causes a properly configured browser to launch the AIM client (try it). Although the
AIM-based chat offered superior interactivity, it was not as successful
due to (1) some users not having the AIM software on their computers,
(2) some users being behind firewalls that prevented them from using
AIM, but mostly because (3) photo.net users knew each other by
real names and could not recognize their friends by their AIM screen
names. It seems that providing a breakout and reassemble chat room is
useful, but that it needs to be tightly integrated with the rest of the
online community and that, in particular, user identity must be
preserved across all services within a community.

People like computers and the Internet because they are fast. If you
want an answer to a question, you turn to the search engine that
responds quickest and with the most relevant results. In the offline
world, people generally desire speed. A Big Mac delivered in thirty
seconds is better than a Big Mac delivered in ten minutes. However,
when emotions and stakes are high, we as a society often choose delay.
We could elect a president in two weeks, but instead we choose
presidential campaigns that last nearly two years. We could have
tried and sentenced Thomas Junta immediately after July 5, 2000, when
he beat Michael Costin, father of another ten-year-old hockey player,
to death in a Boston-area ice rink. After all, the crime was
witnessed by dozens of people and there was little doubt as to Junta's
guilt. But it was not until January 2002 that Junta was brought to
trial, convicted, and sentenced to six to ten years in prison. Instant
messaging, chat rooms, and Web-based discussion forums don't always
lend themselves to thoughtful discourse, particular when the topic is
emotional.

	

"As an online discussion grows longer, the probability of a comparison
involving Nazis or Hitler approaches 1" — (Mike) Godwin's Law

For some communities it may be appropriate to consider
adding an artificial delay in posting. Suppose that you respond to
Joe Ranter's message by comparing him to Adolf Hilter. Twenty-four
hours later you get an email message from the server: "Does the
message below truly represent your best thinking? Choose an option by
clicking on one of the URLs below: confirm | edit | discard." You've
had some time to cool down and think. Is Joe Ranter a talented oil
painter? Was Joe Ranter ever designated TIME Magazine Man of the Year
(Hitler
made it in 1938)? Upon reflection, the comparison to Hitler was
inapt and you choose to edit the message before it becomes public.

How difficult is it in the offline world to find people interested in
the issues that are important to us? If you believe that charity
begins at home and all politics is local, finding people who share
your concerns is as simple as walking around your neighborhood. One
way to translate that to the online world would be to build separate
communities for each geographical region. If you wanted to find out
about the environment in your state, you'd go to
massachusetts.envrionmentaldefense.org. But what if your interests
were a bit broader? If you were interested in the environment
throughout New England, should you have to visit five or six separate
servers in order to find the hot topics? Or suppose that your
interests were narrower. Should you have to wade through a lot of
threads regarding the heavily populated eastern portion of
Massachusetts if you live right up against the New York State border
and are worried about a particular chemical plant?

The geospatialized discussion forum, developed by Bill Pease
and Jin S. Choi for the scorecard.org service, is an
interesting solution to this problem. Try out the following pages:

	discussions about problems in a bunch of Western states:
http://www.scorecard.org/bboard/usgeospatial-2.tcl?topic=Pollution%20in%20Your%20Community&epa_region=9

	the same forum, but narrowed to threads about California:
http://www.scorecard.org/bboard/usgeospatial-one-state.tcl?topic=Pollution%20in%20Your%20Community&usps_abbrev=CA

	the same forum, but narrowed to threads about Santa Clara County:
http://www.scorecard.org/bboard/usgeospatial-one-county.tcl?topic=Pollution%20in%20Your%20Community&fips_county_code=06085

	same forum, but narrowed to threads about one factory:
http://www.scorecard.org/bboard/usgeospatial-one-facility.tcl?topic=Pollution%20in%20Your%20Community&tri_id=95050WNSCR960CE

A user could bookmark any of these pages and enter the site
periodically to participate in as wide a discussion as interest
dictated.

Another way to look at geospatialization is of the users themselves.
Consider, for example, an online learning community centered around the
breeding of African Cichlids. Most of the articles and discussion
would be of interest to all users worldwide. However it would be nice
to help members who were geographically proximate find each other.
Geographical clumps of members can share information about the best
aquarium shops and can arrange to get together on weekends to swap
young fish. To facilitate geospatialization of users, your software
should solicit country of residence and postal code from each new user
during registration. It is almost always possible to find a database
of latitude and longitude centroids for each postal code in a country.
In the United States, for example, you should look for the "Gazetteer
files" on www.census.gov, in
particular those for ZIP Code Tabulation Areas (ZCTAs).

Despite applying the preceding tricks, it is always possible for
growth in a community to outstrip an old user's ability to cope with
all the new users and their contributions. Every Internet
collaboration system going back to the early 1970s has drawn
complaints of the form "I used to like this [mailing
list|newsgroup|MUD|Web community] when it was smaller, but now it is
big and full of flaming losers; the interesting thoughtful material is
buried under a heavy layer of dross." The earliest technological fix
for this complaint was the bozo filter. If you didn't like
what someone had to say, you added them to your bozo list and the
software would hide their contributions from your view of the
community.

In mid-2001 we added an "inverse bozo filter" facility to the
photo.net community. If you find a work of great creativity in the
photo sharing system or a thoughtful response in a discussion forum
you can mark the author as "interesting". On subsequent logins you
will find a "Your Friends" section in your personal workspace on the
site. The people that you've marked as interesting are listed in
order of their most recent contribution to the site. Six months after the
feature was added 5,000 users had established 25,000 "I think that
other user is interesting" relationships.

Human Scaling Exercises

Exercise 8: Newspaper's Online Community

Pick a discussion forum server operated by an online newspaper with a
national or international audience, e.g., www.nytimes.com, etc. Select a
discussion area that is of interest to you. How effectively does this
function as an online learning community? What are the features that
are helpful? What features would you add if this were your service?

What is it about a newspaper that makes it particularly tough for that
organization to act as the publisher of an online community?

Exercise 9: amazon.com

List the features of amazon.com
that would seem to lead to more graceful scaling of their online
community. Explain how each feature helps.

Exercise 10: Scaling Plan for Your Community

Create a document at the abstract URL
/doc/planning/YYYYMMDD-scaling on your server and start writing a
scaling plan for your community. This plan should list those features
that you expect to modify or add as the site grows. The features
should be grouped by phases.

Add a link to your new plan from /doc/ or a planning
subindex page.

Exercise 11: Implement Phase 1

Implement Phase 1 of your scaling plan. This could be as simple as
ensuring that every time a user's name or email address appears on
your service, the text is an anchor to a page showing all of that
person's contributions to the community (accountability). Or it could
be as complex as complete geospatialization. It really depends on how
large a community your client expects to serve in the coming months.

Spam-Proofing Public Online Communities

A public online community is one in which registration is accepted
from any IP address on the public Internet and one that serves content
back to the public Internet. In a private online community, for
example, a corporate knowledge-sharing system that is behind a company
firewall and that only accepts members who are employees, you don't
have to worry too much about spam, where spam in this case is
defined as "Any content that is off-topic, violates the terms of use,
is posted multiple times in multiple places, or is otherwise unhelpful
to other community members trying to learn."

Let's look at some concrete scenarios. Let's assume that we have a
public community in which user-contributed content goes live
immediately, without having to be approved by a moderator. The
problem of spam is greatly reduced in any community where content must
be pre-approved before appearing to other members, but such communities
require a larger staff of moderators if discussion is to flow freely.

Scenario 1: Sarah Moneylover has registered as User #7812 and posted
50 article comments and discussion forum messages with links to her
"natural Viagra" sales site. Sarah clicked around by hand and pasted
in a text string from a word processor open on her desktop, investing
about 20 minutes in her spamming activity. The appropriate tool for
dealing with Sarah is a set of efficient administration pages. Here's
how the clickstream would proceed:

	site administrator visits a "all content posted within the last 30
days" link, resulting in page after page of stuff

	site administrator clicks a control up at the top to limit the
display to only content from newly registered users, who are
traditionally the most problematic, and that results in a manageable
5-screen listing

	site administrator reviews the content items, each presented with
a summary headline at the top and the first 200 words of the body with
a "more" hyperlink to view the complete item and a hyperlinked
author's name at the end

	site administrator clicks on the name "Sarah Moneylover"
underneath a posting that is clearly off-topic and commercial spam;
this brings up a page summarizing Sarah's registration on the server
and all of her contributed content

	site administrator clicks the "nuke this user" link from Sarah
Moneylover and is presented with a "Do you really want to delete Sarah
Moneylover, User #7812, and all of her contributed content?"

	site administrator confirms the nuking and a big SQL transaction
is executed in which all rows related to Sarah Moneylover are deleted
from the RDBMS. Note that this is different from a moderator marking
content as "unapproved" and having that content remain in the database
but not displayed on pages. The assumption is that commercial spam
has no value and that Sarah is not going to be converted into a
productive member of the community. In fact the row in the
users table associated with User #7812 ought to be
deleted as well.

The site administrator, assuming he or she was already reviewing all
new content on the site, spent less than 30 seconds removing content
that took the spammer 20 minutes to post, a ratio of 40:1. As long as
it is much easier to remove spam than to post it the community is
relatively spam-proof. Note that Sarah would not have been able to
deface the community if a policy of pre-approval for content
contributed by newly registered users was established.

Scenario 2: Ira Angrywicz, User #3571, has developed a grudge against
Herschel Mellowman, User #4189. In every discussion forum thread
where Herschel has posted, Ira has posted a personal attack on Herschel
right underneath. The procedure followed to deal with Sarah
Moneylover is not appropriate here because Ira, prior to getting angry
with Herschel, posted 600 useful discussion forum replies that we
would be loathe to delete. The right tool to deal with this problem
is an administration page showing all content contributed by User
#3571 sorted by date. Underneath each content item's headline are the
first 200 words of the body so that the administrator can evaluate
without clicking down whether or not the message is anti-Herschel
spam. Adjacent to each content item is a checkbox and at the bottom
of all the content is a button marked "Disapprove all checked items."
For every angry reply that Ira had to type, the administrator had
to click the mouse only once on a checkbox, perhaps a 100:1 ratio between
spammer effort and admin effort.

Scenario 3: A professional programmer hired to boost a company's
search engine rank writes scripts to insert content all around the
Internet with hyperlinks to his client's Web site. The programs are
sophisticated enough to work through the new user registration pages
in your community, registering 100 new accounts each with a unique
name and email address. The programmer has also set up robots to
respond to email address verification messages sent by your software.
Now you've got 100 new (fake) users each of whom has posted two
messages. If the programmer has been a bit sloppy, it is conceivable
that all of the user registrations and content were posted from the
same IP address in which case you could defend against this kind of
attack by adding an originating_ip_address column to your
content management tables and building an admin page letting you view
and potentially delete all content from a particular IP address.
Discovering this problem after the fact, you might deal with it by
writing an admin page that would summarize the new user registrations
and contributions with a checkbox bulk-nuke capability to remove those
users and all of their content. After cleaning out the spam you'd
probably add a "verify that you're a human" step in the user
registration process in which, for example, a hard-to-read word was
obscured inside a patterned bitmap image and the would-be registrant
had to recognize the word amidst the noise and type it in. This would
prevent a robot from establishing 100 fake accounts.

No matter how carefully and intelligently programmed a public online
community is to begin with, it will eventually fall prey to a new
clever form of spam. Planning otherwise is like being an American
circa 1950 when antibiotics, vaccines, and DDT were eliminating one
dreaded disease after another. The optimistic new suburbanites never
imagined that viruses would turn out to be smarter than human beings.
Budget at least a few programmer days every six months to write new
admin pages or other protections against new ideas in the world of
spam.

More

	"Face-to-Face and
Computer-Mediated Communities, a Comparative Analysis" by Amitai
Etzioni and Oren Etzioni, from The Information Society
Vol. 15, No. 4, (October-December 1999), p. 241-248 or
http://www.gwu.edu/~ccps/etzioni/E31.html.

	The Linux Virtual Server, a very simple load balancer based purely on packet rewriting; www.linuxvirtualserver.org

Time and Motion

The hardware scaling exercises should take one half to one hour each.
Students not familiar with eBay should plan to spend an extra half
hour familiarizing themselves with it. The human scaling exercises might
take one to two hours. The time required for Phase I will depend on
its particulars.

Search

Recall from the "Planning" chapter our principles
of sustainable online community:

	magnet content authored by experts

	means of collaboration

	powerful facilities for browsing and searching both magnet content
and contributed content

	means of delegation of moderation

	means of identifying members who are imposing an undue burden on the
community and ways of changing their behavior and/or excluding them
from the community without them realizing it

	means of software extension by community members themselves

A sustainable online community is one that can accommodate new users.
If Joe Novice, via browsing and searching, cannot find existing
content relevant to his needs, he will ask questions that will annoy
other community members: "Didn't you search the archives?" "Haven't
you read the FAQ?" Long-term community members, instead of being
stimulated by discussion of new and interesting topics, find their
membership a tiresome burden of directing new users to pages that they
"should" have been able to find on their own.

A community's first line of defense is high quality information
architecture and navigation, as discussed at the end of the "Content Management" chapter. Users
are better at browsing than formulating search queries. A community's
second line of defense, however, is a superb full-text search
facility. The search database must include both publisher-authored
and user-contributed content. Here are some example query
categories:

	question answering: e.g., planning a trip to Sanibel Island
(Florida) to take pictures of birds and wanting to know which long
telephoto lens to rent, the user types "best lens Sanibel"

	navigation: the user knows that a document exists on the server,
but can't remember where it is, e.g., remembering that a tutorial
exists on how to take pictures in gardens, the user types "garden
photography"

	task accomplishment: the user wants to find the photo upload page,
not find discussions of photo sharing when he or she types "photo
sharing"

	housekeeping: the user wants to find the site's privacy policy,
not a discussion about privacy policies, after typing "privacy policy"

On a large site a user might wish to restrict the search in some way.
If the search form is at the top of a document that is a chapter of an
online book, it might make sense to offer "whole site" and "within the
chapters of this book" options. If the publisher or the other users
have gone to the trouble of rating content, the default search might
limit results to those documents that have been rated of high quality.
If there are multiple discussion forums on the site, each of which is
essentially a self-contained subcommunity, the search boxes on those
pages might offer a "restrict searching to postings in this forum"
option. If a user hasn't visited the site for a month and wants to
see if there is anything new and relevant, the site should perhaps
offer a "restrict searching to content added within the last 30 days"
option.

What's Wrong with SQL (Search Quality)

The relational database management system (RDBMS) sounds like the
perfect tool for this job. We have a lot of data and we want to
provide a lot of flexibility in querying. Suppose a person comes to a
site for athletes and types "running" into the search form. The site
sends the following SQL query to the database:

select *
from content
where body like '%' || :user_query || '%'

which, by the time the bind variable :user_query is
substituted, turns into

select *
from content
where body like '%running%'

In Oracle this won't pick up a row whose message contains the same
word but with a different capitalization. Instead we do

select *
from content
where upper(body) like upper('%running%')

What if the user typed multiple words? The query

select *
from content
where upper(body) like upper('%running shoes%')

would not pick up a message that contained the phrase "shoes for
running". Instead we'll need multiple where clauses:

select *
from content
where upper(body) like upper('%running%')
and upper(body) like upper('%shoes%')

This AND clause isn't quite right. If there are lots of documents
that contain both "running" and "shoes", these are the ones that we'd
like to see. However, if there aren't any rows with all query terms,
we should probably offer the user rows that contain some of the query
terms. We might need to use OR, a scoring function, and an ORDER BY
so that the rows containing both query terms are returned first. If
we insist on the AND clause, we've created a situation in which the
more the user tells us about her interests the fewer documents we'll
return in response to a search, eventually returning "0 results found"
if she keeps adding words. (Note that public search engines circa
2005, such as Google, Yahoo, A9, and MSN, do implicitly use
AND and do return 0 results if a user keeps adding words to a
query and there aren't any documents in the database that contain each
and every one of those words.)

There are some deeper problems with the Caveperson SQL Programmer
approach to full-text search. Suppose that a message contains the
phrase "My brother-in-law Billy Bob ran 20 miles yesterday"
but not the word "running". Or a message contains the phrase "My
cousin Gertrude runs 15 miles every day". These should be
returned as relevant to the query "running", but the LIKE clause won't
do the job. What is needed is a system for stemming both the
query terms and the indexed terms: "running", "runs", and "ran" would
all be bashed down to the stem word "run" for indexing and retrieval.

What about a message saying "I attended the 100th
anniversary Boston Marathon"? The LIKE query won't pick that up.
What is needed is a system for expanding queries through a thesaurus
powerful enough to make the connection between "running" and
"marathon".

What's Wrong with SQL (Performance)

Let's return to the simplest possible LIKE query:

select *
from content
where body like '%running%'

The RDBMS must examine every row in the content table to
answer this query, i.e., must perform a sequential table scan(O[N]
time, where N is the number of rows in the table). Suppose that a
standard RDBMS index is defined on the body column. The
values of body will be used as keys for a B-tree and
we could perform

select *
from content
where body = 'running'

and maybe, depending on the implementation,

select *
from content
where body like 'running%'

in O[logN] time. But the user's interest isn't restricted to
documents whose only word is "running" or documents that begin with
the word "running". The user wants documents in which the word
"running" may be buried. A single B-tree index is not going to help.

Abandoning the RDBMS

We can solve both the performance and search quality problems by
dumping all of our data into a full-text search system. As
the name implies, these systems index every word in a document, not
just the first words as with the standard RDBMS B-tree. A full-text
index can answer the question "Find me the documents containing the
word 'running'" in time that approaches O[1], i.e., an amount of time
that does not vary with the size of the corpus indexed. If
there are 10 million documents in the corpus, a search through those
10 million documents will not take much longer than a search through a
corpus of 1000 documents. (Getting close to constant time in this
situation would require that the 10-million-document collection did
not use a larger vocabulary than the 1000-document collection and that
it was not the case that, say, 90 percent of the documents contained
the word "running".)

How does it work? Like every other indexing strategy: extra work at
insertion time is traded for less work at query time. Consider
constructing a big table of every word in the English language next to
the database keys of those documents that contain the word:

	Word	Document IDs

	absquatulate	612

	bedizen	36, 9211

	cryptogenic	9

	dactylioglyph	7214

	exheredate	57, 812, 4010

	feuilleton	87, 349, 1203

	genetotrophic	5000

	hartebeest	710

	inspissate	549, 21, 3987

	...

	samoyed	17, 91, 1000, 3492

	sesquipedalian	723

	the	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...

	uberous	6, 800

	velutinous	45, 2307

	widdershins	7300

	xenial	3611

	ypsiliform	5607

	zibeline	4782

If we build this as a hash table, we have O[1] access to a row in the
table. If we merely keep the rows in sorted order, we have O[log W]
access to any row in the table, where W is the number of words in our
vocabulary. Performance does not vary with the number of documents in
the collection... or does it? Just about every English document will
contain the word "the" and therefore simply returning the value of the
document_ids column for the word "the" will take O[N]
time, where N is the number of documents in the corpus. This row
isn't useful anyway because it isn't selective, i.e., we could get the
same information almost as fast with a sequential scan of the
documents table, collecting all the document IDs. While indexing a
document, a full-text search system will refer to a list of
stopwords, words that are too common to be worth indexing. For
standard English, the stopword list includes such words as "a", "and",
"as", "at", "for", "or", "the", etc.

Inserting a new document into the collection will be slow. We'll have
to go through the document, word by word, and update as many rows in
the index as there are distinct words in the document. But that extra
work at insertion time pays off in a reduction in query time from O[N]
to O[1].

Given a data structure of the preceding form, we can quickly find all
documents containing the word "running". We can also quickly find all
documents containing the word "shoes". We can intersect these result
sets quickly, giving us the documents that contain both "running" and
"shoes". With some fancier indexing data structures we can restrict
our search to documents that contain the contiguous phrase "running
shoes" as opposed to documents where those words appear separately.
But suppose that there are 1000 documents in the collection containing
these two words. Which are the most relevant to the user's query of
"running shoes"?

We need a new data structure: the word-frequency histogram.
This will tell us which words occur in a document and how frequently
they occur in a way that is easily adjusted for the total length of a
document.

Here's a word-frequency histogram for the first sentence of
Tolstoy's
Anna Karenina:

	Word 	 Count	 Frequency

	all	1	1/16

	another	1	1/16

	but	1	1/16

	each	1	1/16

	families	1	1/16

	family	1	1/16

	happy	1	1/16

	in	1	1/16

	is	1	1/16

	its	1	1/16

	one	1	1/16

	own	1	1/16

	resemble	1	1/16

	unhappy	2	2/16

	way	1	1/16

One might argue that this sentence makes better literature as
"All happy families resemble one another, but each unhappy family
is unhappy in its own way," but the full-text search software
finds it more useful in this form.

After the crude histogram is made, it is typically adjusted for the
prevalence of words in standard English. So, for example, the
appearance of "resemble" is more interesting than "happy" because
"resemble" occurs less frequently in standard English. Stopwords such
as "is" are thrown away altogether. Stemming is another useful
refinement. In the index and in queries we convert all words to their
stems. The stem word for "families", for example, is "family". With
stemming, a query for "families" would match a document containing
"family" and vice versa.

Given a body of histograms it is possible to answer queries such as
"Show me documents that are similar to this one" or "Show me documents
whose histogram is closest to a user-entered string." The
inter-document similarity query can be handled by comparing histograms
already stored in the text database.

The search string "platinum mines in New Zealand" might be processed
first by throwing away the stopwords "in" and "new". By using
histogram comparison, the software would deliver articles that that
have the most occurrences of "platinum", "mines", and
"Zealand". Suppose that "Zealand" is a rarer word than
"platinum". Then a document with one occurrence of "Zealand" is
favored over one with one occurrence of "platinum". A document with one
occurrence of each word is preferred to an article where only one of
those words shows up. A document that contains only the
words "platinum mines Zealand" is a better match than a document that
contains 100,000 words, three of which happen to match the query
terms.

The power of this kind of system is enticing and raises the question
"Can we run our entire Web application from a specialized full-text search
database system?" Indeed, why not chuck the RDBMS altogether?

We don't chuck the RDBMS because we put it in to handle the problem of
concurrency: two users trying to update the same item simultaneously.
A better query tool is nice, but we can't adopt it as our primary
database management system unless it handles the concurrency problem
as well as the RDBMS.

A pragmatic approach would seem to start by keeping all the documents
in the RDBMS: articles, user comments, discussion forum postings, etc.
Either once per night or every time a new document was added, update a
full-text search system's collection. Pages that are part of the
standard user experience and workflow operate from the RDBMS. The
search box at the upper right corner of every page, however, queries
against the full-text search system. Let's call this a split-system
design.

**** insert figure *****

Figure 12.1:

A split-system approach to providing full-text search. The
application's content is stored in a relational database management
system. Scripts periodically maintain a second copy in a
specialized text database. The Web server program performs queries,
inserts, and updates to the RDBMS. When a user requests a full-text
search, however, the query is sent to the text database.

One argument against the split-system approach is that two copies of
the document collection are being kept. In an age of $200 disk drives
of absurdly high capacity, this isn't a powerful argument. It is
nearly impossible to fill a modern disk drive with words typed by
humans. One can fill up a disk drive with video or audio streams, but
not text. And in any case some full-text search systems can build an
index to a document collection without themselves keeping the original
document around, i.e., you would in fact have only one copy of the
document in the RDBMS.

A second argument against using RDBMS and full-text search systems
simultaneously is that the collections will get out of sync. If the
Web server crashes in the middle of an RDBMS transaction, all work is
rolled back. If the Web server was simultaneously inserting a
document into a full-text search system, it is possible that the
full-text database will contain a document that is not in fact
available on the main pages of the site—the site being generated from the
RDBMS. Alternatively, the RDBMS insert might succeed while the
full-text insert fails, leading to a document that is available on the
site, but not searchable. This argument, too, ultimately lacks power.
It is true that the RDBMS is a convenient and nearly foolproof means
of managing transactions and concurrency. However, it is not the only
way. If one were to hire sufficiently careful programmers and
sufficiently dedicated system and database administrators, it would be
possible to keep two databases in sync.

A third argument against the split system is the disparity of
interfaces. Suppose that our RDBMS is Oracle. The Web developers
know how to talk to Oracle through Active Server Pages. The desktop
programmers know how to talk to Oracle through the C API. The
marketing people know how to talk to Oracle through various reporting
tools. Some individual users have figured out to talk to Oracle from
standard desktop programs such as Microsoft Excel and Microsoft
Access. The cost of bringing in a new programmer grows if you have to
teach that person not only about an RDBMS, but also about specialized
tools, each with its own library of interfaces.

However, the best argument against using both an RDBMS and a
"bag-on-the-side" full-text search system is that the split system
does not naturally support the kinds of queries that are necessary:

	show me documents matching "best restaurants" written by users
whose recorded street address is within 10 miles of zip code 02138

	show me documents matching "studio photography" written by users
whose contributions have been rated above average by other users (said
content item ratings being stored in RDBMS tables)

	show me documents matching "best advertising tricks" written by
users whose recent classified ads have attracted more than 5 bids each

Augmenting the RDBMS

Consider a full-text indexing system. It needs a way of writing stuff
down (the index data structures) and typically chooses the operating
system file system. It needs a way of performing computation in a
procedural computer language, typically C circa 2004.

Consider a modern relational database management system. It offers a
way of writing stuff down: CREATE TABLE and INSERT. It offers a way
of executing software written in a procedural language: C, Java, or
PL/SQL in the case of Oracle; any .NET-supported computer language in
the case of Microsoft SQL Server.

Why couldn't one build a full-text search indexer inside the RDBMS?
That's exactly what some of the commercial RDBMS vendors have done.
Oracle was a pioneer in this area and the relevant Oracle product is
called "Oracle Text".

create table content (
	content_id		integer primary key,
	refers_to		references content_raw,
	-- who contributed this and when
	creation_user		not null references users,
	creation_date		not null date,
	modified_date		not null date,
	mime_type		varchar(100) not null,
	one_line_summary	varchar(200) not null,
	body			clob,
	editorial_status	varchar(30)
 check (editorial_status in ('submitted','rejected','approved','expired'))
);

-- create an Oracle Text index (the product used to be called
-- Oracle Context, hence the CTX prefixes on many procedures)

create index content_text
on content(body)
indextype is ctxsys.context;

-- let's look at opinions on running shoes from
-- users who registered in the last 30 days, sorting
-- results in order of decreasing relevance

select
 score(1),
 content.content_id,
 content.one_line_summary,
 users.first_names,
 users.last_name
from content, users
where contains(body, 'running shoes', 1) > 0
and users.registration_date > current_timestamp - interval '30' day
and content.creation_us
er = users.user_id
order by score(1) desc;

In the preceding example, Oracle Text builds its own index on the
body column of the content table. When a
Text index is defined on a table it becomes possible to use the
contains operator in a WHERE clause. The Oracle RDBMS
SQL query processor is smart enough to know how to use the Text index
to answer this query without doing a sequential table scan. It is
possible to have more than one call to contains in the
same query. Thus the last argument of contains is an
integer identifying the query, in this case "1". It is possible to
get a relevance score out in the select list or in an ORDER BY clause
with the function score and an argument identifying from which
contains call the score should be pulled.

Oracle Text is one of the more difficult and complex Oracle RDBMS
products to use. For example, if you want to be able to search for a
phrase that occurs in either the one_line_summary or
body and combine the relevance score, you need to build a
multi-column index:

ctx_ddl.create_preference('content_multi','MULTI_COLUMN_DATASTORE');

ctx_ddl.set_attribute('content_multi', 'COLUMNS', 'one_line_summary, body');

create index content_text
on content(modified_date)
indextype is ctxsys.context
parameters('datastore content_multi');

Notice that the index itself is built on the column
modified_date, which is not itself indexed. The call to
ctx_ddl.set_attribute in which the COLUMNS attribute is
set is what determines which columns get indexed.

For an example of a system that tackles the challenge of indexing text
from disparate Oracle tables, see http://philip.greenspun.com/seia/examples-search/site-wide-search

Oracle Text also has the property that its default search mode is
exact phrase matching. A user who types "zippy pinhead" into a search
engine will expect to find documents that contain the phrase "Zippy
the Pinhead". This won't happen if your script passes the raw user
query right through to the Contains operator. More
problematic is what happens when a user types a query string that
contains characters that Oracle Text treats specially. This can
result in an error being raised by the SQL query and a "Server Error
500" returned to the user if you don't catch the error in your
procedural script. It would be nice if Oracle Text had a built-in
procedure called "ProcessRawQueryFromWebForm" or something. But it
doesn't, at least we couldn't find one in the documentation for
Oracle version 10g. The next best thing is a procedure called
pavtranslate, available from http://technet.oracle.com/sample_code/products/text/htdocs/query_syntax_translators/query_syntax_translators.html.

Oracle Text, via the "INSO filters" option, has the capability to
index a remarkable variety of documents in a BLOB column. For
example, the software can recognize a Microsoft Excel spreadsheet, pull
the text out and add it to the index. At the same time it is smart
enough to know when to ignore a document entirely, e.g., if the BLOB
column were filled with a JPEG photograph.

Exercise 1: Expected Queries

Ask your client what kinds of queries he or she expects to be most
common in your community. For example, in a site for academics, it
might be very important to type in a person's name and get all of the
publications authored by that person. In a site for shoppers, it might
be essential to query for a brand name and get back product reviews.
Only your client can say authoritatively.

Exercise 2: Document Your Design

Place a document at /doc/search in which you describe your team's plan
for providing full-text search over the content on your site. If your
content management system has left you with a mixed bag of stuff in
the file system and stuff in the RDBMS, explain how you're going to
synchronize and unify these documents in one full-text index. If
nightly maintenance scripts are required, document them here.

Include your client's answers to Exercise 1 in this document.

Exercise 3: Build the Basic Search Module

Build a basic search module that provides the following functions:

	user query from the URI /search/, targeting
/search/results

	administrator ability to view statistics on the size and structure
of the corpus (how many documents of each type, total size of collection)

	administrator ability to drop and rebuild the full-text index.
Sadly this is necessary periodically with most tools and you don't
want the publisher to be forced into obscure shell commands. An ideal
solution will be completely maintainable from a Web browser.

Exercise 4: Big Brother

Generally users prefer to browse rather than search. If users are
resorting to searches in order to get standard answers or perform
common tasks, there may be something wrong with a site's navigation or
information architecture. If users are performing searches and
getting zero results back from your full-text search facility, either
your index or the site's content needs augmentation.

Record user search strings in an RDBMS table and let admins see what
the popular search terms are (by the day, week, or month). Make sure
to highlight any searches that resulted in the user seeing a page "No
documents matched your query". Ask yourself whether it would be
ethical to implement a facility whereby the site administrators could
view a report of search strings and the users who typed them in.

Update your /doc/search file to reflect the addition of
this facility.

Exercise 5: Linkage

Find logical places among your community's pages to link to the search
facility. For example, on many sites it will make sense to have a
quick search box in the upper-right corner of every page served. On
most sites, it makes sense to link back to search from the search
results page with a "search again" box filled in by default with the
original query.

Make sure that your main documentation page links to the docs for this
new module.

Working with the Public Search Engines

If your online community is on the public Internet you probably would
like to see your content indexed by public search engines such as Google (www.google.com). First, Google has to
know about your server. This happens either when someone already in
the Google index links to your site or when you manually add your URL
from a form off the google.com home page. Second, Google has to be
able to read the text on your server. At least as of 2005 none of the
public search engines implemented optical character recognition (OCR).
This means that text embedded in a GIF, Flash animation, or a Java
applet won't be indexed. It might be readable by a human user with
perfect eyesight, but it won't be readable by the computer programs
that crawl the Web to build databases for public search engines.
Third, Google has to be able to get into all the pages on your server.
If you've been requiring registration to view discussions, for
example, those discussions won't be indexed by Google unless your
software is smart enough to recognize that it is Google behind the
request and make an exception. How to recognize Google? Here's a
one-line snippet from the philip.greenspun.com access log (newlines inserted for
readability):

66.249.71.53 - - [10/Feb/2005:02:13:15 -0500]
"GET /sql/triggers.html HTTP/1.0" 200 0 ""
"Googlebot/2.1 (+http://www.google.com/bot.html)"

Notice the user-agent header at the end: Googlebot/2.1, with its
included suggestion that Web publishers check http://www.google.com/bot.html
for more information.

Because some search engines archive what they index, you would not want
to provide registration-free access to content that is truly private
to members. In theory a <META NAME="ROBOTS"
CONTENT="NOARCHIVE"> placed in the HEAD of your HTML
documents would prevent search engines from archiving the page, but
robots are not guaranteed to follow such directives.

Some search engines allow you to provide indexing hints and hints for
presentation once a user is looking at a search results page. For
example, in the table of contents page for this book, we have the
following META tags in the HEAD:

<meta name="keywords" content="web development
online communities MIT 6.171 textbook">

<meta name="description" content="This is the textbook for the MIT
course Software Enginering for Internet Applications">

The "keywords" tag adds some words that are relevant to the document,
but not present in the visible text. This would help someone who
decided to search for "MIT 6.171 textbook", for example. The
"description" tag can be used by a search engine when summarizing a
page. If it isn't present, a search engine may show the first 20 words
on the page or follow some heuristics to build a reasonable summary.
These tags have been routinely abused. A publisher might add popular
search terms such as "sex" to a site that is unrelated to those terms,
in hopes of capturing more readers. A company might add the names of
its competitors as keywords. Users wouldn't see these dirty tricks
unless they went to the trouble of using the View Source command in
their browser. Because of this history of abuse, many public search
engines ignore these tags.

See http://searchenginewatch.com/resources/metasuits.html
for accounts of various lawsuits that have been fought over the
contents of meta tags.

A particularly destructive practice is "cloaking", in which a Web
server is programmed to send entirely different pages to the search
engines and human users (identified by having "Mozilla" or "MSIE" in
their user-agent headers). An unscrupulous publisher would find out
what are the current most popular search terms on public search engines
(http://searchenginewatch.com/facts/searches.html offers a list of windows into various search services),
string those terms together, and serve a mishmash of those to
search engines. Meanwhile, when a regular user came to the site the
page presented would be a banal product pitch. Google threatens to
ban from their index any site that engages in this practice.

The /robots.txt File

Suppose that you don't want the public search engines indexing
anything underneath the /staging/ directory on your
server. This content isn't exactly secret, but neither do you want it
released before its time. Nor do you want two copies of the same
content in the Google index, one copy in the staging area and one copy
in its final position on the site.

You need to read the Standard for Web Exclusion, a protocol for
communication between Web publishers and Web crawlers, available from
http://www.robotstxt.org/wc/norobots.html. You
the publisher put a file on your site, accessible at /robots.txt,
with instructions for robots. Here's an example that excludes the
staging directory:

User-agent: *
let's keep the robots away from our half-baked stuff
Disallow: /staging

The User-agent line specifies for which robots the
injunctions are intended. Each Disallow asks a robot not
to look in a particular directory. Nothing requires a robot to observe
these injunctions, but the standard seems to have been adopted by all
the major indices nonetheless.

Visit http://www.ibm.com/robots.txt
to get a bit of insight into how a site may evolve over time.

Exercise 6: robots.txt

Place a file on your server at /robots.txt that excludes
robots from appropriate portions of your server. Put some comments at
the top of the file explaining who created this, when it was created,
and the rationale behind the exclusions.

If you're doing a 100 percent database-backed content management
system, you are free to put the content of the robots.txt file in the
RDBMS, just so long as it is served when the URI
/robots.txt is requested.

Exercise 7: Client Signoff

Review the search facility, both user and admin pages, with your
client. Write down your client's reaction to this new module, paying
particular attention to any new ideas that the client might have for
what will be typical queries on the site.

The Future

As an online community grows older and larger it becomes ever more
likely that a user will be overwhelmed with "100,000 documents matched
your query". When a community is new and small, it is possible to
search for an answer merely by reading the titles of everything on the
site, i.e., by browsing. As a community grows, therefore, the greater
the importance of information retrieval tools. The exercises in this
chapter focus on answering a user's query by presenting links to
relevant documents. Suppose that we build a search facility that
always returns the very most relevant document in the corpus. Is that
an optimal solution? Only if you believe that users like to read.

Suppose that Joe User visits photo.net and types "At what shutter
speeds is a tripod required?" into the search box. Is it reasonable
to assume that Joe wants to read a 10,000-word document that contains
the answer to this question? Or would Joe rather get ... the answer
to his question. The answer "at shutter speeds slower than
1/lens-focal-length" is a lot smaller and quicker to read than a
document containing this information.

To get a feel for how a question answering system can be built on top
of a full-text indexer, read "Scaling Question Answering to the Web"
(Cody Kwok, Oren Etzioni, Dan Weld; WWW10 conference, May 2001; http://www.www10.org/cdrom/papers/pdf/p120.pdf),
which describes a system built at the University of Washington. This
system includes all of the expected linguistic gymnastics plus code to
sort out the Internet-specific problem of noise. Traditional
information retrieval systems are designed to work with authoritative
documents, e.g., the Encyclopedia Britannica, a binder of
corporate policies, or the design notes for a jetliner. The documents
in the corpus are presumed to be authoritative. There won't be four
different answers, three of them flat wrong, to questions such as "In
what year was Gioacchino Rossini born?", "How many signatures are
required for a purchase of $57,300?", or "How wide is the wingspan of
the airplane?" With user-authored content in an online community,
however, it seems safe to assume that while the average answer is
likely to be correct, for every 100 correct answers there will be at
least three or four incorrect ones. Even when the data require no
interpretation, there will be typos. For example, a Google
search for "rossini 1792-1868" returned 50,900 documents in February 2005; a search
for "rossini 1792-1869" returned 43 documents.
A question-answering system built on top of lightly moderated user-authored
content will have to exercise the same sort of judgment as do humans:
How many documents contain Answer A versus Answer B? What is the
relative authority of conflicting documents? Which of two conflicting
documents is more recent?

Mobile Internet devices put an even greater stress on information
retrieval. Connection speeds are slower. Screens are smaller. It
isn't practical for a user to drill down into 20 documents returned by
a search engine as possibly relevant to a query, especially if the
user is driving a car and using a voice browser.

If you want to emerge as a hero from the dust of the next Internet
collapse, work on information retrieval.

More

	http://www.oracle.com/technology/products/text/, technical overviews for Oracle Text

	http://trec.nist.gov, for the
proceedings of the Text REtrieval Conferences (TREC)

Time and Motion

The two client interviews, at the beginning of the exercises and again
at the end, should each take under an hour.

The search design and documentation should be a team effort, and take
one to two hours.

The luckiest teams will be able to get their search systems up and
running in an hour. Unlucky teams using difficult-to-install search
systems may require the better part of a day. Teams with a single
content table and no static html pages should be able to build the
basic page scripts in one to two hours. Additional time will be
required for designs that manage content across multiple tables and
the filesystem.

The remaining exercises should be doable in 2 to 4 programmer-hours.

Planning Redux

A lot has changed since the the "Planning"
chapter. You have a better understanding of the challenge, which
may have sparked new service ideas in your mind. Your clients have
had a chance to see a prototype of the ultimate service, which may
have sparked new ideas in their minds. Your clients should have an
increased respect for your abilities and therefore an increased
willingness to devote thought and attention to this project. Consider
that most computer programmers suffer from profound deficits in the
following areas:

	thinking critically about what a computer application should do

	writing down a design

	writing down an implementation plan

	documenting important features or design decisions

	clean modular design

	exercising good judgement (e.g., don't try to build something
complete and complex when you only have a week or two)

	communicating project status

To the extent that you've demonstrated that you're a cut above
software developers with whom your clients have worked in the past,
you'll find that their confidence in you has increased since the
beginning of the class.

Why You Are Talking to the Client

Recall how much you learned in conducting the usability test in the "Discussion" chapter. Computer science
textbooks and RDBMS manuals can teach you how to handle concurrency,
but only observations of and interactions with users can teach you how
to build a better user experience. Your client holds the keys to the
kingdom: (1) content to attract people; (2) authority to launch the
service; (3) editorial power over existing Web sites that can link to
the new service; (4) email addresses and phone numbers of people who
would be likely to find the new service useful.

If you can launch your online learning community before the end of the
course you'll have an opportunity to learn from the first users and,
by making minor changes, end up with a vastly improved application by
the last day of the class.

Clean Up the Code

Before beginning the planning process for the rest of the course, it is
worth going through what you've done already in order to (a) clean it
up a bit, and (b) familiarize yourself with things that will need
significant rewrites. Work through every page script, data model
file, and documentation page and ask yourselves the following
questions:

	Is every script signed and dated? Does the header explain what
the script does? Is that description still accurate?

	Are all of the SQL queries within scripts readable and properly indented? (see
http://philip.greenspun.com/sql/style
for some tips)

	Do the data model files contain appropriate comments?

	Are the file and variable names consistent?

	Is the structure consistent with the standards that you set forth
in the "Software Modularity" chapter exercises?

	If you're using some sort of templating or code-behind system, are
you using it on every page?

	Is the documentation all signed, dated, and appropriately linked?

	Is the documentation consistent with the standards that you set
forth in the "Software Modularity" chapter exercises?

Fix the small discrepancies and record the large ones for inclusion in
your rest-of-course implementation plan (see below).

Clean up the User Experience

With multiple programmers working on a system, it is easy for small
inconsistencies to creep into the designs of various pages. Come up
with a set of representative tasks that are important for users to
accomplish within your application and document these tasks at
/doc/testing/representative-tasks. Work through the
tasks as a team to see if indeed there are small things that should be
cleaned up in terms of what the user sees.

At the same time look for larger problems. Ask yourself how consistent
task accomplishment within the application you've built is with the
page design and flow at popular public Internet applications, such as
Amazon, eBay, and Google. Remember that it is unique content
that should distinguish one Web site from another, not unique
interface.

Are you bubbling information up to the highest possible level? For
example, on a page that shows categories of things from a database
table does your application display a count next to each category of
how many items are within that category? Or must the user click down
one more level to find out how many items are in a category (then back
up and click down to another, then back up and click down to another,
...)?

Are you letting the information be the interface? For example, in the
preceding example of the list of categories, does the user navigate
down by clicking on the name of the category ("the information") or
must she click on a "click here for more info" text string or icon?

How much of the screen space is taken up by site bureaucracy versus
how much is available for displaying information? Site bureaucracy
includes such things as identifying logos, navigation links and icons,
mini search forms, and copyright and policy notes. Could some of that
bureaucracy be eliminated, or at the very least be pushed to the bottom of
the page?

Exercise 1: Usability Test Lite

Between the discussion forum user test and the clean-up items in this
chapter, you've cleaned up the obvious problems with your user
interface. This is a good time to do another usability test, this
time a bit less structured than the last one.

Find someone who has never seen your project before and ask them to
work through the tasks in
/doc/testing/representative-tasks with your entire team
observing. Write down a brief report of how it went at
/doc/testing/planning-redux-usability.

Exercise 2: Feature Grid

By telephone or in a face-to-face meeting, work with your client to
determine what work must be done before your online learning community
can be launched. The launch can be private (limited to invitees),
soft (public, but not advertised), or public. The important thing is
that the application is treated as complete and presented to at least
a few dozen users.

Be careful of the layperson's tendency to try to pack in as many
features as he or she can conceive. When a site is young, it should be
simple and have few collaboration areas. If there are 30 separate
discussion forums and comment areas, how are the first 15 users going
to find each other? Remind your client that www.slashdot.org, "news for nerds",
has operated since 1997 as a single uncategorized forum and in 2005 was serving
approximately 250 million pages per month to 10 million readers.

Does a competitive site have lots of bells and whistles? That's not a
reason to delay launch until an equivalently complex user interface
has been built. Are users of the competitive site actually using all
of those features? Or are most of them congregating in a couple of
places?

People new to the world of online communities tend to see Launch Day
as the most important day in the life of an Internet application. In
fact, far more users will come to a site in its 36th month of
existence compared to its first month. The only risk is launching
something so terrible that a test user will be alienated and never
return. In a world of 6 billion people, this might not seem like a
serious problem, but if the potential users are, for example,
corporate employees invited to try a new intranet, it may be essential
to make a good first impression. Here are some minimum requirements
for making a good first impression:

	high quality content, unavailable elsewhere on the Internet and
relevant to users' current tasks

	easy and fast user interface (no 30-second Flash downloads or
confusing blind alleys)

If a client proposes a feature that is unnecessary for meeting these
requirements, ask the question "Why does this keep us from launching?"
Every day the service isn't launched is a day that you're not learning
from users. Every day the service isn't launched is a day that the
client's organization isn't learning how to operate the service.

In collaboration with your client, develop a feature grid dividing the
desired features into the following categories:

	Minimum Launchable Feature Set, i.e., things that are required for
the launch

	Version 1.0 (try to finish by the end of this course)

	Version 2.0 (write down so that a planned follow-on implementation
can be accomplished)

Most admin pages can be excluded from the Minimum Launchable Feature
Set. Until there are users, there won't be any user activity and
therefore little need for statistics or moderation and organization of
content. Things that are valuable to the users and client and
reasonably easy to implement should be in Version 1.0. Anything that
requires serious programming effort or that cannot be completely
specified right now should be pushed out to Version 2.0.

Place your feature grid at
/doc/planning/YYYYMMDD-feature-grid.

Exercise 3: Implementation Plan

Now that you've figured out what you're going to do, it is time to
write down how you're going to do it. Write an implementation plan
that covers all activity by team members and the client through the
last day of this course. The implementation plan should include dates
for code freezes, acceptance testing, launch, and any relaunches. The
implementation plan should be explicit and specific about which team
member is going to do what and, more important, what the client's
responsibilities are. "Joe Client will deliver additional site
content by early May" is too vague. Better: "Joe Client will deliver
copy for the /about-us, /privacy, /copyright, and /contact pages by
May 2."

Keep in mind that your goal is to launch the service as soon as
possible so that everyone can learn from interaction with real live
users.

How can you estimate the number of hours that will be required to
execute the tasks in the plan? After all, you've never done the
things in the implementation plan before or they wouldn't be in the
"to-be-implemented plan". The best tool for estimating a new project
is a record of how long it took to do a bunch of old projects. To
what is the new project most similar? Suppose that it took you three days
to build a discussion forum system, for example, and you're asked to
build a classified ad system. Both systems need a comparable number
of database tables. Both systems accept content from users and require
some sort of administrator approval. If built on the same server that
is currently running the discussion forum, the classified ad system
doesn't require any new software, subsystems, or other tools that you
haven't already installed and used. Thus it would probably be safe to
estimate the classified ad system as a three-day project.

Place your completed plan at
/doc/planning/YYYYMMDD-implementation and email your
client(s) and instructors notifying them that the plan is ready for
final review.

Is this Necessary?

Suppose that your team is only two people and your client is one team
member's mother, owner of a local SCUBA diving shop. Is it necessary
to engage in such a formal process? Wouldn't it be possible to obtain
a successful result by sitting down in one room and hacking out code,
periodically calling Mom over to look at what's been done?

Absolutely.

Why the emphasis on process then when the teams are so small? It is a
good habit for every software developer to get into, especially as
modern software projects tend to stretch across corporate and
international borders.

Consider a software project from a Jane Decision-Maker's perspective.
Jane doesn't know enough to distinguish between good code and bad
code. Nor can she look at a mostly-finished project and figure out
how much more coding is required to make it work. Jane Decision-Maker
is not going to be comforted by a team of programmers with a track record
of pulling everything together with a last-minute miracle. How does
she know that the miracle will happen again on her project?

What Jane will be comforted by is process and programmers who appear
to operate in a manner that is predictable to them and their client.
The more detailed the plain-language plans, the more comforted Jane
will be, especially if the work has been contracted out to a separate
corporation.

In summary, larger teams require more process, longer projects require
more process, and work that is spread across enterprises and/or
international borders requires more process. Your project for this
class is being done by a small team on a condensed schedule and,
ideally, within the same city as the client. What benefit is there to
you from using a process that isn't absolutely necessary?

One benefit from using a more thorough process is that you'll tend to
impress people a lot more in presentations of your work. People who
conduct programmer job interviews have seen plenty of code monkeys, but
they won't have seen too many who show up with printouts of their
clear plans and schedules and then can talk about how they met those
plans and schedules.

A deeper benefit is that you'll get good at the process and it will
become less of an effort on succeeding projects.

The deepest benefit is that working with a written plan will become an
unconscious habit. Pilots are trained to follow checklists and
procedures extremely carefully and consistently. The plane won't fall
out of the sky if things aren't done in the same order or same way on
every flight, and a lot of the stuff doesn't matter if you're flying on
a sunny day in a well-maintained airplane. Unless the checklists and
procedures have become a habit, however, the pilot who encounters bad
weather or mechanical problems has a good chance of dying. People
tell themselves "I'm being sloppy today because this is an
unchallenging flight, but I'll be careful when I need to be," but in
fact the skills of carefulness aren't very useful unless they are
habitual.

Exercise 4 (For the Instructor)

Call up each student team's clients and ask how strongly they agree
with the following statements:

	I consider the work that my student team has done to be comparable
in quality to the services that I visit every day on the public Internet.

	The service that my student team has built is a complete solution to
the challenges we outlined at the beginning of the semester.

	The service that my student team has built is well organized and
easy to use.

	I am impressed with the information and utility available to me on
the administration pages.

	I understand what work has been done, what is going to be done by
the end of the course, and what is left for a Version 2.0.

	My student team has made it easy for me to check on their progress
myself.

	My student team has kept me well informed of their progress.

	My student team has involved me appropriately in design and feature
decisions.

	I was impressed by the thoroughness of the user testing done by my
student team.

	I am impressed by the clarity and thoroughness of the
documentation.

	I think it would be easy for a new programmer to take this project
over in the event that my student team disappeared.

	I am impressed by the mobile phone interface to my service.

	I am impressed by the VoiceXML interface to my service.

	My student team is the best group of engineers that I have ever
worked with.

	My student team consists of people that I would very much like to
work with again.

Score this exercise by adding scores from each question: 0 for
"disagree" or wishy-washy agreement (clients won't want to say bad
things about young volunteers), 1 for "agree", 2 for "strongly agree".

Time and Motion

The whole team working together ought to be able to do the code and
user experience clean-ups in one working day or 6 to 8 hours. The
usability test should require no more than one hour. For a team that
has kept its planning documents, schedule, and client meetings
up-to-date, the feature grid and implementation plan should take less
than one hour because this information is already written down and on
their server. For a team that has let planning and documentation slip,
it could be five hours to restore currency.

Distributed Computing with HTTP, XML, SOAP, and
WSDL

"I think there is a world market for maybe five computers."
 - Thomas Watson, chairman of IBM, 1943

Perhaps Watson was off by four.

In the early 1990s, few people had heard of Tim Berners-Lee's World
Wide Web, and, of those that had, many fewer appreciated its
significance. After all, computers had been connected to the Internet
since the 1970s, and transferring data among computers was
commonplace. Yet the Web brought something really new: the
perspective of viewing the whole Internet as a single information
space, where users accessing data could move seamlessly and
transparently from machine to machine by following links.

A similar shift in perspective is currently underway, this time
with application programs. Although distributed computing has been
around for as long as there have been computer networks, it's only
recently that applications that draw upon many interconnected machines
as one vast computing medium are being deployed on a large scale.
What's making this possible are new protocols for distributed
computing built upon HTTP, and that are designed for programs
interacting with programs, rather than for people surfing
with browsers.

There are several kinds of protocols:

	Data exchange: Something better than scraping
text from Web pages intended for humans to read. As you saw in the
"Basics" chapter, you can use XML here.

	Program invocation: Some way to do remote
method invocation, that is, for programs to call programs running
on other machines and to reply to such invocations. The emerging
standard here, submitted to the Web Consortium in May 2000, is called
SOAP (Simple Object Access Protocol).

	Self-description: A machine-readable way for
programs to describe how they are supposed to be called, e.g., with
Web Services Description Language (WSDL).

	Discovery: A way for programs to automatically
learn about other programs, e.g., with Universal Description Discovery
and Integration (UDDI), standardized by www.uddi.org.

We're currently moving from an environment where applications are
deployed on individual machines and Web servers, to a world where
applications are composed of pieces — called services in the
current jargon — that are spread across many different machines, and
where the services interact seamlessly and transparently to produce an
overall effect. While the consequences of this change could be minor,
it's also possible that they could be as profound as the introduction
of the Web. In any case, companies are introducing new Web
service frameworks that exploit the new infrastructure.
Microsoft's .NET is one such framework.

In this chapter, you'll build applications that consume Web
services to combine data from from your online learning community with
remote data in Google and Amazon. You'll be building SOAP
clients to these public services. In the final exercises, you'll be
creating your own service that provides information about recent
content appearing in your community. You'll make this service
available both in the de jure standard of SOAP and the de facto
standard of RSS, a breakout from the world of weblogs.

**** insert figure *****

Figure 14.1:

A Web services interaction. Human users talk to servers A and B via
the HTTP protocol receiving results in HTML pages. When Server A
needs to invoke a procedure on Server B it first tries to figure out
what the names of the functions are and their arguments. This
information comes back in a Web Services Description Language (WSDL)
document. Using the information in that WSDL document, Server A is
able to formulate a legal Simple Object Access Protocol (SOAP) request
and process the results.

SOAP on the Wire

Depending on what tools you're using you might never need to know
what SOAP requests and replies actually look like. Nonetheless, let's
start with a behind-the-scenes look at SOAP messages, which are
typically sent across the network embedded in HTTP POSTs.

 Here's a raw SOAP request/response pair for a hypothetical "who's
online" service that returns information about users who have been
active in the last N seconds:

Request (plus whitespace for readability)

	
POST /services/WhosOnline.asmx HTTP/1.1
Host: somehost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: "http://jpfo.org/WhosOnline"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <WhosOnline xmlns="http://jpfo.org/">
 <n_seconds>600</n_seconds>
 </WhosOnline>
 </soap:Body>
</soap:Envelope>

Response (plus whitespace for readability)

	
HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <WhosOnlineResponse xmlns="http://jpfo.org/">
 <WhosOnlineResult>
 <user>
 <first_names>Eve</first_names>
 <last_name>Andersson</last_name>
 <email>eve@eveandersson.com</email>
 </user>
 <user>
 <first_names>Philip</first_names>
 <last_name>Greenspun</last_name>
 <email>philg@mit.edu</email>
 </user>
 <user>
 <first_names>Andrew</first_names>
 <last_name>Grumet</last_name>
 <email>aegrumet@alum.mit.edu</email>
 </user>
 </WhosOnlineResult>
 </WhosOnlineResponse>
 </soap:Body>
</soap:Envelope>

Exercise 1: Community Reading List, Data Model and Amazon API

Your goal in this exercise is to provide a facility for your community
members to develop a shared reading list, a set of books that new or
novice members might find useful. You'll use the SOAP interface that
is part of Amazon Web Services (http://www.amazon.com/webservices/)
to retrieve product information directly from the Amazon servers that
will then be displayed within your server's HTML pages.

Start by writing a design document that lays out your SQL data model
and how you're going to use the Amazon API (which functions to call?
which values to process?). Your recommended_books table
probably should be keyed by the International Standard Book Number
(ISBN). For most of your career as a data modeler, it is best to use
generated keys. However, in this case there is an entire
infrastructure to ensure the uniqueness of the ISBN (see www.isbn.org) and therefore it is safe
for use as a primary key.

For each book, your data model ought to be able to record at least the
following:

	title

	authors (either mushed together in one column, a horrifying
violation of First Normal Form, or broken out if you have the energy)

	description

	URL for a photo of the cover and the width and height in pixels of
that image, if you can get them easily

	when this book was recommended

	who recommended the book

	a comment by the person who recommended the book as to why it is
particularly relevant to this community

You may wish to start your exploration of the Amazon SOAP API by
locating the Web Services Description Language (WSDL) file for the
service. The WSDL file is a formal description of the callable
functions, argument names and types, and return value type. Most
Internet application development environments provide a SOAP toolset
that transforms the WSDL file into a set of proxy classes or function
libraries that can be called as if the service were implemented in the
local runtime. In Microsoft Visual Studio .NET, this operation is
referred to as "Adding a Web Reference". If you're not a Microsoft
Achiever you might find the "SOAP Implementations" links at the end of
the chapter useful.

Exercise 2: Community Reading List, Building the Pages

We suggest creating a subdirectory at /reading-list/ for
the page scripts that will make up your new module. We suggest
implementing the following URLs:

	an index page, listing the books on the reading list by title,
author, and with cover art displayed, and perhaps the first 100 words
of the description

	a /reading-list/one-book page, which will show the
full description, who recommended the book and why

	a /reading-list/search page, the target of a text
entry box on the index page, which returns a list of books from the
Amazon API that match a query string; books that are already in the
reading list should be displayed, but greyed-out and somehow marked as
already on the list (and there shouldn't be a button to add them
again!). Books that aren't on the list should be hyperlinks to an
"add-book" URL. (You can make the title of the book be the hyperlink
anchor; remember always to let the information be the interface.)

	a /reading-list/add-book page, which solicits a
comment from the suggesting user as to why this particular book is
good for other community members

A good rule of thumb is that every table you add to your data model
implies roughly 5 user-accessible URLs and 5 administrative URLs. So
far we're up to 4 user pages and if you were to launch this feature
you'd need to build some admin pages.

Exercise 3: Encouraging Searching Before Asking and the Google APIs

A major challenge threatening online communities is the clutter of
recurring questions and the effort of pointing those who ask them to
the FAQ or the search engine. An existing content item on your server
or elsewhere on the Internet might not provide a complete answer to
Joe Newbie's question, but reading it would perhaps cause him to focus
his query in a different direction.

In this exercise, you'll create an alternative post confirmation
process that will entail writing two new Web scripts, the search
capabilities that you developed in the "Search"
chapter, and the Google Web APIs service (http://www.google.com/apis/).
The goal is to put some internal and external links in front of Joe
Newbie and encourage him to look at them before finalizing his
question for presentation to the entire community.

Your new post confirmation process should be invoked only for
questions that start a discussion thread, not for answers to a
question. Our experience with online communities is that it is more
important to moderate the questions that determine what will be
discussed rather than individual answers.

If your current post confirmation page is at
/forum/confirm, we suggest adding a -query
suffix for your new script, e.g., /forum/confirm-query.
This page should have the following form:

	at the top, the user's question as it will appear in the forum,
with "Confirm" and "Edit" buttons underneath

	the top 5-10 matches among the site's articles and existing
discussion forum postings that match the user's question in a
full-text search (feed the one-line summary or perhaps the entire
question to your local search engine)

	the top 5-10 matches in the Google database for the user's
question, again using the user's question as the Google query string

At this point you have something of a challenge. Suppose that you want
the user to browse down into some of the internal and external links
before posting. Let's assume that, in fact, the question is a new one.
You don't want to force Joe Newbie to back up to find the confirm page
(and you really don't want the browser to say "Page Expired" and force
Joe to resubmit). Ideally, Joe can go forward into the links and yet
still have those Confirm and Edit buttons in front of him at all
times.

There are a few ways to achieve this. One is to make all of the links
target a separate window using the HTML target= syntax
for the anchor (<a) tag. Novice users might become
confused, however, as the extra window pops up on their screen and
they might not know how to use their browser or operating system to
get back to the Confirm/Edit page. A JavaScript pop-up in a small
size might reduce the scale of this problem. Another option is to use
the dreaded Frames feature of HTML, putting the Confirm/Edit page in
one frame and the other stuff in another frame. When Joe finally
decides to Confirm/Edit, the Frames syntax provides a mechanism for the
server to tell the browser "go back to only one window now". A third
option is to do a "server-side frame" in which you build pages of the
form /forum/confirm-follow-link in which the full posting
with Confirm/Edit buttons is carried through and the content of the
external or internal link is presented inside a single page.

For the purpose of this exercise, you're free to choose any of these
methods or one that we haven't thought of. Note that this exercise
should not require modifying any of your database tables or existing
scripts except for one link from the "ask a new question" page.

Exercise 4: Related Books to a Thread (Amazon Again)

In this exercise you'll put a list of related books somewhere
alongside the presentation of a discussion forum thread. This is
useful for the following reasons: (a) a reader might find it very
useful to learn that there is a relevant book on the topic being
discussed, and (b) the Amazon Associates program provides Web
publishers with a referral fee ("kickback") every time a community
member follows an encoded link over to Amazon and buys something.

How can the server tell which books are related to a
question-and-answer exchange? Start by building a procedure that will
go through the question and all replies to build a list of frequently
occurring words. Your procedure should exclude those words that are
in a stopwords list of exceedingly common English words such as "the",
"and", "or", etc. Whatever full-text search tool that you used in the
"Search" chapter probably contains such a list somewhere in a file
system file or a database table. You can use the top few words in
this list to query Amazon for a list of matching titles.

For the purpose of this exercise, you can fetch your Amazon data on
every page load. In practice, on a production site this would be bad
for your users due to the extra latency and bad for your relationship
with Amazon because you might be performing the same query against
their services several times per second. You'd probably decide to
store the related books in your local database, along with a "last
message" stamp and rebuild periodically if there were new replies to a
thread.

Each related book should have a link to the product page on
Amazon.com, optionally keyed with an Amazon Associates ID. Here's an
example reference:

<cite>Basic
Photographic Materials and Processes</cite>

The ISBN goes after the "ASIN", and the Associates ID in this example is
"pgreenspun-20".

Exercise 5: What's New Page

If you don't already have one, build an HTML page that lists the ten
most recently added content items in your community. For each content
item display the following:

	title or one-line summary

	A text summary of the content or, if appropriate, the content itself

	The name of the person that created the item, hyperlinked to that
person's user profile page

	The time the item was created (RFC 822 format, precise to the
second, e.g. Wed, 29 Oct 2003 00:09:19 GMT)

Make this page available at new-content in a directory of
your choice. Note that it should be easy to build this page using a
function drawing on the intermodule API that you defined as part of
your work on the Software Modularity
chapter exercises.

Exercise 6: What's New Web Service

Expose your procedure to the wider world so that other applications
can take advantage via remote method invocation. Install a SOAP
handler that accomplishes the following:

	handles HTTP requests to /services/new-content and
checks for correct SOAP syntax

	pulls the n_items parameter out of the request, if present

	executes the procedure call and fetches the results

	delivers the results as a valid SOAP response containing zero or more
"item" records, with the fields listed in Exercise 5 for each item

Your development platform may provide tools that, once you've mapped
the external Web service to the internal procedure call, handle the
HTTP and SOAP mechanics transparently. If not, you will need to skim
the examples in the SOAP specification and read the introductory
articles linked below.

Exercise 7: Self-Description

Write a WSDL contract that describes the inputs and outputs for your
new-content service. Note that if you are using Microsoft
.NET, these WSDL contracts will be automatically generated in most
cases. You need only expose them.

Your WSDL should be available either by adding a ?WSDL to
the URL of the service itself (convenient for Microsoft .NET users) or
available by adding a .wsdl extension to the URL of the
service itself.

Validate your WSDL contract and SOAP methods by inviting another
team to test your service. Do the same for them. Alternatively,
look for and employ validation tools out on the Web.

The March of Progress

The initial Web standards, circa 1990, were simple. HTTP is simple
enough that any competent programmer can write a basic server in a day
or two. HTML is simple enough that programmers were able to build
their first page within thirty minutes and non-programmers weren't far
behind. In fact, the initial Web standards were so simple that
academic computer scientists predicted that the system wouldn't work.

Within a decade, however, the Web Consortium was focussing its efforts
on the "Semantic Web" and Resource Description Framework (see http://www.w3.org/RDF). Where
standards committee members once talked about whether or not to
facilitate adding a caption to a photograph, you now hear words like
"ontology" thrown around. Web development has thus become as
challenging as cracking the Artificial Intelligence problem.

Where do SOAP and WSDL sit on this continuum from the simplicity of
HTML to the AI-complete problem of a semantic Web? Apparently they
are closer to RDF than to HTML because it is taking many years for
SOAP and WSDL to catch on as opposed to the wildfire-like spread of
the human-readable Web.

The dynamic world of weblogs has settled on a standard that has spread
very quickly indeed and enabled the construction of quite a few
computer programs that aggregate information from multiple weblogs.
This standard, pushed forward primarily by Userland's Dave Winer, is
known as Really Simple Syndication or RSS and is
documented at http://blogs.law.harvard.edu/tech/rss.

Exercise 8: What's New Syndication Feed

As a kindness to the thousands of people who run desktop weblog
aggregators, create an RSS feed for your content at
/services/new-content-rss.xml. The feed should contain
just the title, description, and a globally unique identifier (GUID)
for each item. You are encouraged to use the fully
qualified URL for the item as its GUID, if it has one.

Validate your feed using a RSS reader or the validator at http://rss.scripting.com.

Template

	
<?xml version="1.0"?>
<rss version="2.0">
 <channel>
 <title>{site name}</title>
 <link>{site url}</link>
 <description>{site description}</description>
 <language>en-us</language>
 <copyright>Copyright {dates}</copyright>
 <lastBuildDate>{rfc822 date}</lastBuildDate>
 <managingEditor>{your email addr}</managingEditor>
 <pubDate>{rfc822 date}</pubDate>
 <item>
 <title>{item1 title}</title>
 <description>{description for item1}</description>
 <guid>{guid for item1}</guid>
 <pubDate>{rfc822 date for when item1 went live}</pubDate>
 </item>

 <item>
 <title>{item2 title}</title>
 <description>{description for item2}</description>
 <guid>{guid for item2}</guid>
 <pubDate>{rfc822 date for when item2 went live}</pubDate>
 </item>
 </channel>
 </rss>

Remember to escape any markup in your titles and descriptions, so
that, for example, Whoa! becomes
Whoa!.

More

	http://www.soapware.org/bdg — A Busy Developer's Guide to SOAP

	http://www-106.ibm.com/developerworks/library/ws-soap/?dwzone=components#2 — Using WSDL in SOAP Applications (An introduction to WSDL for SOAP programmers)

	http://www.w3.org/TR/wsdl.html — Web Service Description Language (WSDL)

	http://www.sun.com/software/sunone/wp-arch — Sun Open Net Environment (Sun One) White Papers

	http://www.xmlrpc.com — XML-RPC

	http://dmoz.org/Computers/Programming/Internet/Web_Services/SOAP/Implementations — A directory of SOAP implementations

	http://www.jabber.org — an
instant messaging client plus open platform for XML messaging and
presence information that interoperates with AOL Instant Messenger,
MSN Messenger, Yahoo messenger, ICQ and IRC.

	http://www.ietf.org/rfc/rfc0822.txt?number=822 — RFC822 standard for the format of Internet text messages.

	http://blogs.law.harvard.edu/tech/directory/5/aggregators — a directory of RSS readers

	http://rss.scripting.com — RSS validator

Time and Motion

Teams using a SOAP toolkit ought to be able to complete the three
major API-consuming sections (Amazon, Google, Amazon again) in two to four
hours each. If working in divide-and-conquer mode, it might make
sense to have the same team members do both Amazon sections. The
remaining exercises (5 through 8) should each take an hour or less.

Metadata (and Automatic Code Generation)

In this section you'll build a machine-readable representation of the
requirements of an application and then build a computer program to
generate the computer programs that implement that application. We'll
treat this material in the context of building a knowledge management
system, one of the most common types of online communities, and try to
introduce you to terminology used by business people in this area.

Organizations have complex requirements for their information systems.
A period of rapid economic growth can result in insane schedules and
demands that a new information system be ready within weeks. Finally,
organizations are fickle and have no compunction about changing the
requirements mid-stream.

Technical people have traditionally met these challenges ... by
arguing over programming tools. The data model can't represent the
information that the users need, the application doesn't do what what
the users need it to do, and instead of writing code, the "engineers"
are arguing about Java versus Lisp versus ML versus C# versus Perl
versus VB. If you want to know why computer programmers get paid less
than medical doctors, consider the situation of two trauma surgeons
arriving at an accident scene. The patient is bleeding profusely. If
surgeons were like programmers, they'd leave the patient to bleed out
in order to have a really satisfying argument over the merits of two
different kinds of tourniquet.

	

War Story

The authors were asked to help Siemens and Boston Consulting Group
(BCG) realize a knowledge sharing system for 17,000 telephone switch
salespeople spread among 84 countries. This was back in the 1990s
when (a) telephone companies were expanding capacity, and (b)
corporations invested in information systems as a way of beating
competitors.

Siemens had spent 6 months working with a Web development contractor
that was expert in building HTML pages but had trouble programming
SQL. They'd promised to launch the elaborately specified system 6
weeks from our first meeting. We concluded that many of the features
that they wanted could be adapted from the source code behind the
photo.net online community but that adding the "knowledge repository"
would require 4 programmers working full-time for 6 weeks. What's
worse, in looking at the specs we decided that the realized system
would be unusably complex, especially for busy salespeople.

Instead of blindly cranking out the code, we assigned only one
programmer to the project, our friend Tracy Adams. She turned the
human-readable design notebooks into machine-readable database
metadata tables. Tracy proceeded to build a
program-to-write-the-program with no visible results. Siemens and BCG
were nervous until Week 4 when the completed system was available for
testing.

"How do you like it?" we asked. "This is the worst information system
that we've ever used," they replied. "How do you compare it to your
specs?" we asked. "Hmmm... maybe we should simplify the
specification," they replied.

After two more iterations the system, dubbed "ICN Sharenet" was
launched on time and was adopted quickly, credited by Siemens with
$122 million in additional sales during its first year of operation.

If you're programming one Web page at a time, you can switch to the
language du jour in search of higher productivity. But you won't
achieve significant gains unless you quit writing code for one page at
a time. Think about ways to write down a machine-readable description
of the application and user experience, then let the computer generate
the application automatically.

One thing that we hope you've learned during this course is the value
of testing with users and iterative improvement of an application. If
an application is machine-generated, you can test it with users, edit
the specification based on their feedback, and regenerate the
application in a matter of minutes, ready for a new test.

We're going to explore metadata (data about the data model) and
automatic code generation in the problem domain of knowledge
management.

What is "Knowledge Management"?

A knowledge management or knowledge sharing system is a
multi-user information system enabling users to share knowledge
about a shared domain of expertise or inquiry. What is "knowledge"?
One way to answer this question is to spend ten years in a university
philosophy department's epistemology group. From the perspective of a
relational database management system, however, it may be easier to
define knowledge as "text, authored by a user of the community, to
which the user may attach a document, photograph, or spreadsheet".
Other users can comment on the knowledge, submitting text and optional
attachments of their own. From this definition, it would seem that the
discussion forum you built earlier would meet the users' needs.
Indeed, it is true that an archived-and-indexed question-and-answer
forum may serve many of the needs of a community of practice, a
group of people trying to solve similar problems who can learn from
each others' experiences. However, there are a few features beyond a
discussion forum that an organization may request, for example the
following:

	links among knowledge "objects" (this is the term used by MBAs in
the field)

	more structured facilities for browsing and searching than
provided by a raw discussion forum, possibly including a link to an
existing structured data set (e.g., in Example 2 below, the list of all
airports in the United States)

	tracking and rewarding of contributions and reuse

Why Do Organizations Want Knowledge Management?

In any enterprise, the skills and experience of a group of workers or
students will have an approximately Gaussian distribution: a handful
of people who know almost nothing (beginners, incompetents, lazy
bones), a handful of wizards who know almost everything (old-timers,
geniuses, grinds), and a big hump in the middle of people who are
moderately knowledgeable. The managers of the enterprise ask
themselves "How much more could we accomplish if all of the people in
this enterprise were as knowledgeable as the wizards?" Typically, the
initial assumption is that knowledge is finite and this results in the
construction of a system to contain a mostly static body of knowledge,
to be extracted from the brains of the experts and codified into a
series of files or database rows. Users quickly discover, however,
that the situations they are facing are not quite analogous to the situations
described in the "knowledge base" and the "knowledge management
system" comes to be seen rather as a "knowledge mortuary".

An organization's second attempt at an information system intended to
help beginners and average performers with the expertise of the most
capable is typically dubbed knowledge sharing. In a
knowledge-sharing system, User A has the ability to put a question in
front of the community so that Users B, C, and D can write new
material and/or point A to previously authored articles.

If nothing else, a knowledge-sharing system provides a means for
employees at the leaf nodes of a hierarchy to converse amongst
themselves. Consider the organization depicted in figure 15.1.
Suppose that a worker in Singapore has a question that could be
answered by a worker in Des Moines. The act of finding the coworker
and getting assistance requires going all the way up the hierarchy to the
chief executive in London and then back down a different path through
the hierarchy to Des Moines. This bottleneck could be eliminated by
eliminating the hierarchy. However, most organizations don't want to
eliminate their hierarchies. It is the hierarchy that enables the
corporation to reduce management complexity by establishing
profit-and-loss responsibility at intermediate levels. Better to
supplement the hierarchy with an informal mechanism by which
the Singapore-based worker can ask for help and the Des Moines-based
worker can offer it, i.e., a knowledge-sharing system.

**** insert drawing of corporate hierarchy ****

Figure 15.1:

Multinational corporations are organized around a
command-and-control hierarchy. This is good for assigning
profit-and-loss responsibility, but creates information flow
bottlenecks. Building a knowledge-sharing system is one way to
facilitate information flow among the leaves of the tree.

Exercise 1: Develop an Ontology

The American Heritage Dictionary defines ontology as "The
branch of metaphysics that deals with the nature of being." Computer
science researchers speak of "an ontology" as a structure for
knowledge representation, i.e., the ontology constrains the kinds of
information that we can record (you will be forgiven if you confuse
this advanced Computer Science concept with mere data modeling).

Your ontology will consist of class definitions and, because a
relational database is the source of persistence behind your online
community, your implementation of this ontology will consist of SQL
table definitions, one table for each class. To assist you in
developing a useful ontology for your community, here are a couple of
examples.

Example Ontology 1: Computer Science

Corporations all have knowledge-management systems even though
generally they may not have any knowledge. Universities claim to have
knowledge, and yet none have knowledge-management systems. What would
a knowledge management system for a university computer science
department look like?

Let's assume that we'll have at least the following types in our
ontology:

	person

	publication

	data structure

	system

	algorithm

	problem

	language

For each of these types, we will define a table and call a row in one
of those tables an "object". To say that "John McCarthy developed the
Lisp programming language", the author would create two objects: one
of type language and one of type person.
Why not link to the users table instead? John McCarthy
might not be a registered user of the system. Some of the people
you'll be referencing, e.g., John von Neumann, are dead.

Each object comprises a set of elements. An element is stored in a
column. For every object in the system, we want to record the
following elements:

	name (a short description of the thing)

	overview (a longer description)

	who created this object

	when they created it

	who modified it last

	when they modified it

	who has the right to modify it

	who has the right to view it

	does it need approval?

	has it been approved?

	if so, by whom and when?

	if so, under what section?

In addition to these housekeeping elements, we will define
type-specific elements:

	for the person type

	date_of_birth, title

	for the language type

	syntax_example, garbage_collection_p (whether the language
has automatic storage allocation like Lisp or memory leaks like C),
strongly_typed_p, type_inferencing_p, lexical_scoping_p, date_first_used

	for the publication type

	this is for storing references to books and journal articles so
you want all the fields that you'd expect to see when referencing
something; include also an abstract field

	for the data structure type

	complexity_for_insertion, complexity_for_retrieval
(varchars containing "O(1)", "O(N)", etc.)

	for the system type

	examples of systems are "Multics", "Xerox Alto", "TCP/IP", "MIT
Lisp Machine", "Apple Macintosh", "Unix", "World Wide Web". Includes
fields for date_of_conception, date_of_birth, organization_name,
open_source_p. No need to include fields for the names of developers
because we can instead use links to objects of type
person to represent prime developers or promoters.

	for the problem type

	examples of problems are "traveling salesman", "dining
philosophers", "sort", "query for inclusion in sorted list". We'll want
elements for storing initial conditions and solution criteria.

In general, objects of type
problem will be linked to objects of type
algorithm (algorithms that solve the problem),
publication (papers that set forth the problem),
and person (people who were involved
in stating or solving the problem)

	for the algorithm type

	examples include "Quicksort" and "binary search"
elements for pseudo_code and high_level_explanation. In general,
objects of type algorithm will be linked to objects of
type problem (what need the algorithm addresses),
publication (papers that describe the algorithm or
implementations of it), and person (people who were involved
in developing the algorithm)

For an example of what a completed system of this nature might look
like, visit Paul Black's
Dictionary of Algorithms, Data Structures, and Problems
at
http://www.nist.gov/dads/.

Example Ontology 2: Flying

We want a system that will enable pilots to assist each other by
relating experience, e.g., "The autopilot in N123 is not to be
trusted", "Avoid the nachos at the airport cafe in Hopedale", with the
comments anchored by official U.S. government information regarding
airports, runways, and radio beacons for navigation.

Object types include:

	person

	publication

	airplane design

	airplane

	airport

	runway

	navigation aid ("navaid")

	restaurant

	hotel

	flight school

	flight instructor

In addition to the housekeeping elements defined in Example 1, we
define type-specific elements:

	for the airplane design type

	For each kind of airplane flying, there is one entry in this
table. An example might be "Cessna 172" or "Boeing 747". We need
elements to specify performance such as stall_speed (how slow you can
go before tumbling out of the sky), approach_speech (how fast you
should go when coming near the runway to land), and cruise_speed. We
want elements such as date_certified, manufacturer_name, and
manufacturer_address to describe the design.

	for the airplane type

	An entry in this table is a specific airplane, very likely a
rental machine belonging to a flight school. We want elements such as
date_manufactured, ifr_capable_p (legal to fly in the clouds?), and
optional_equipment.

	for the airport type

	We want to know where the airport is: lat_long; elevation;
relation_to_city (distance and direction from a named town). We want
to know whether the airport is military-only, private, or public.
We want to know whether or not the airport has a
rotating green/white beacon and runway lights. We want to store the
frequencies for weather information, contacting other pilots (if
non-towered) or the control tower (if towered), and air traffic control
for instrument flight clearances. We need to record runway lengths
and conditions. An airport may have several runways, however, thus
giving rise to a many-to-one relation, which is why we model runways
separately and link them to airports.

	for the runway type

	number (e.g., "09/27"), length, condition. Note that the runway
number implies the magnetic orientation: 09 implies a heading of 090
or landing facing magnetic east; if the wind favors a landing on the
same strip of asphalt in the opposite direction, you're on 27, which
implies a heading of 270 or due west (36 faces north; 18 faces south).

	for the navigation aid type

	The U.S. Federal Aviation Administration maintains a nationwide
network of Very High Frequency Omni Ranging beacons (VORs). These
transmit two signals, one of which is constant in phase regardless of
an airplane's bearing to the VOR. The second signal varies in phase
as one circles a VOR. Thus a VOR receiver in the airplane can compare
the phase of the two signals and determine that an airplane is, for
example, on the 123-degree radial from the VOR. If you didn't have a
Global Positioning System receiver in your airplane, you'd determine
your position on the chart by plotting radials out from two VORs. For
a navaid, we need to store its type (could be an old non-directional
beacon, which simply puts out an AM radio-style broadcast), frequency,
position, and Morse code ID (you want to listen to the dot-dash
pattern to make sure that you're receiving the proper navaid).

	for the restaurant type

	menu_excerpt, hours, distance_from_airport, phone_number, url, email, street_address

	for the hotel type

	price, distance_from_airport, phone_number, url, email, street_address

For an example of a running system along these lines, visit http://www.airnav.com/airports/
and type in the name or code for your favorite airport.

Back to Your Ontology ...

Following the structure that you designed in the "Software Modularity"
chapter, create a module called "km" (for "knowledge management") and
start the high-level document for this module with (a) a statement of
purpose for the subsystem, and (b) a list of object types, housekeeping
elements shared among types, and type-specific elements.

For ease of evaluation and interaction with your classmates, we
suggest placing the user pages at http://yourservername/km/.

Exercise 2: Design a Metadata Data Model

The document that you wrote in the preceding exercise is a good basis
for discussion among your team members, the client, and teaching
assistants. However, it is not machine-readable. In theory, nothing
would be wrong with developing a machine-readable metadata repository
in a tab-separated file system file, to be edited with a text editor.
In practice, however, systems are cleaner when there are fewer
mechanisms underneath. Thus far your primary source of persistence
has been the relational database management system, so you might as
well use that for your metadata repository as well. At the very
least, the database is where a programmer new to the project would
expect to find the metadata.

Here's an example SQL data model for a metadata repository:

-- note that this is designed for the Oracle 8i/9i RDBMS

-- we'll have one row in this table for every object type
-- and thus for every new SQL table that gets defined; an
-- object type and its database table name are the same;
-- Oracle limits schema objects to 30 characters and thus
-- we limit a table_name to 21 characters so that we can
-- have some freedom to create schema objects whose names
-- are prefixed with an object type

-- a "pretty name" is a synonym used when presenting pages
-- to users; the prettiness could be as simple as replacing
-- underscores with spaces or spelling out abbreviations;
-- e.g., for an object type of "airplane_design", the pretty
-- form might be "airplane design", and pretty_plural
-- "airplane designs"

create table km_metadata_object_types (
 table_name varchar(21) primary key,
 pretty_name varchar(100) not null,
 pretty_plural varchar(100)
);

-- here is the table for elements that are unique to an object type
-- (the housekeeping elements can be defined implicitly in the source
-- code for the application generator); there will be one row in
-- the metadata table per element

create table km_metadata_elements (
 metadata_id integer primary key,
 table_name not null references km_metadata_object_types,
 column_name varchar(30) not null,
 pretty_name varchar(100) not null,
 abstract_data_type varchar(30) not null, 	-- ie. "text" or "shorttext" "boolean" "user"
	-- this one is not null except when abstract_data_type is "user"
 oracle_data_type varchar(30), -- "varchar(4000)"
 -- e.g., "not null" or "check foobar in ('christof', 'patrick')"
 extra_sql varchar(4000),
 -- values are 'text', 'textarea', 'select', 'radio',
	-- 'selectmultiple', 'checkbox', 'checkboxmultiple', 'selectsql'
 presentation_type varchar(100) not null,
 -- e.g., for textarea, this would be "rows=6 cols=60", for select, Tcl list,
 -- for selectsql, an SQL query that returns N district values
 -- for email addresses mailto:
 presentation_options varchar(4000),
 -- pretty_name is going to be the short prompt,
	-- e.g., for an update page, but we also need something
	-- longer if we have to walk the user through a long form
 entry_explanation varchar(4000),
	-- if they click for yet more help
 help_text varchar(4000),
 -- note that this does NOT translate into a "not null" constraint in Oracle
 -- if we did this, it would preclude an interface in which users create rows incrementally
 mandatory_p char(1) check (mandatory_p in ('t','f')),
 -- ordering in Oracle table creation, 0 would be on top, 1 underneath, etc.
 sort_key integer,
 -- ordering within a form, lower number = higher on page
 form_sort_key integer,
 -- if there are N forms, starting with 0, to define this object,
	-- on which does this go? (relevant for very complex objects where
	-- you need more than one page to submit)
 form_number integer,
 -- for full text index
 include_in_ctx_index_p char(1) check (include_in_ctx_index_p in ('t','f')),
 -- add forms should be prefilled with the default value
 default_value varchar(200),
	check ((abstract_data_type not in ('user') and oracle_data_type is not null)
 or
 (abstract_data_type in ('user'))),
 unique(table_name,column_name)
);

Exercise 3: Write a Program to Generate DDL Statements

Begin an admin interface to your km module, starting with a page
whose URL ends in "ddl-generate". This should be a script that will
generate CREATE TABLE (data definition language) statements from the
metadata tables. You'll want to have a look at the SQL before feeding
it to the RDBMS, and therefore you may wish to write your script so
that it simply outputs the DDL statements to the Web browser with a
MIME type of text/plain. You can save this to your local
file system as km-generated.sql and feed it to your SQL
client when you're satisfied.

In addition to the housekeeping elements that you've defined for your
application, each object table should have an object_id
column. The value of this column should be unique across all of the
tables in the km module, which is easy to do in Oracle if you use a
single sequence to generate all the keys. Given unique object IDs
across types, if you were to add a km_object_registry
table, you'd be able to publish cleaner URLs that pass around only
object IDs rather than object IDs and types.

In addition to the metadata-driven object table definitions, your
script should define a generalized mapping table to support links
between knowledge objects. Here's an Oracle-syntax example:

create table km_object_object_map (
 object_id_a		integer not null,
 object_id_b		integer not null,
	-- the objects are uniquely identified above but let's save ourselves
	-- hassle by recording in which tables to find them
	table_name_a		not null references km_metadata_object_types,
 table_name_b		not null references km_metadata_object_types,
 -- User-entered reason for relating two objects, e.g.
 -- to distinguish between John McCarthy the developer of
	-- Lisp and Gerry Sussman and Guy Steele, who added lexical scoping
 -- in the Scheme dialect
	map_comment		varchar(4000),
	creation_user		not null references users,
	creation_date		date default sysdate not null,
 primary key (object_id_a, object_id_b)
);

Notice that this table allows the users to map an object to any other
object in the system, regardless of type.

For simplicity, assume that associations are bidirectional. Suppose
that a knowledge author associates the Huffman encoding algorithm
(used in virtually every compression scheme, including JPEG) with the
person David A. Huffman (1925-1999; an MIT graduate student at the
time of his invention, which was submitted as a term paper). We
should also interpret that to mean that the person David A. Huffman is
associated with the algorithm for Huffman encoding. This is why the
columns in km_object_object_map have names such as
"object_id_a" instead of "from_object".

In an Oracle database, the primary key constraint above has the side
effect of creating an index that makes it fast to ask the question
"What objects are related to Object 17, where Object 17 happens to
appear in the A slot?" For efficiency in querying "What objects are
related to Object 17, where Object 17 happens to appear in the B
slot?", create a concatenated index on the columns in the reverse
order from that of the primary key constraint.

The "Trees" chapter of SQL for Web Nerds, at http://philip.greenspun.com/sql/trees,
gives some examples of concatenated indices. If you're using Oracle
you may want to read the composite indices section of the
Performance Guide and Reference manual (online and in the
product documentation) and the SQL Reference manual's
section on "Create Index".

Exercise 4: Write a Program to Generate a "Drop All Tables" Script

Write a script in the same admin directory as
ddl-generate, called drop-tables-generate.
This should generate DROP TABLE statements from the metadata tables.
You probably won't get your data model right the first time, so you
might as well be ready to clear out the RDBMS and start over.

Feed the database management system the results of your data model
creation and clean-up scripts until you stop getting error messages.

Dimensional Controls

When displaying a long list of information on a page, consider adding
dimensional controls to the top. Suppose for example that you
wish to help an administrator browse among the registered users of a
site. You have a feeling that the user community will grow too large
for the complete list to be useful. You therefore add an intermediate
page with the following options:

	show users who've registered in the last 30 days

	show users from the same geographical area as me (site
administration tends to be divided up by region)

	show users who have contributed more than 5 items

	show users whose content has been rated below "C" (looking for
people who add a lot of crud to the database)

A well-designed page of this form will have a discreet little number next to
each option, showing the number of users who will be displayed if that
option is selected. A poorly designed page will simply leave the
administrator guessing as to how much information will be shown after
an option is selected.

This traditional approach has some drawbacks. First, it adds a mouse
click before the administrator can see any user names. Ideally, you
want every page of an application to display information and/or
potential actions rather than pure bureaucracy and navigation.
Second, and more seriously, this approach doesn't scale very well.
When an administrator says "I need to see users who've registered
within the last 30 days, who've contributed more than 4 product
reviews, and who've bought at least $100 of stuff so that I can spam
them with a coupon," another option must be added to the list.
Eventually the navigation page groans with choices.

Imagine instead that the very first mouse click takes the
administrator to a page that shows all the users who've registered in
the last 30 days, in one big long list. At the top are sliders. Each
slider controls a dimension, each of which can restrict or expand the
number of items in the list. Here are some example dimensions for a
community e-commerce site such as amazon.com:

	recency of registration, from 1 day ago (restrictive) to the beginning of time (loose)

	geographical proximity, from same postal code (restrictive) to same city to same
state to anywhere in the world (loose)

	total purchases, from at least $10,000 (restrictive) to at least $500 to $0 or more (loose)

	review activity, from Top 100 Reviewer (restrictive) to Top 1000
Reviewer to 0 or more reviews (loose)

	content quality, from average review rated 4.5 stars or better (restrictive) to any average

If the default page shows too many names, the administrator will
adjust a slider or two to be more restrictive. If the administrator
wants to see more names, he or she will adjust a slider towards the
loose end of that dimension.

How to implement dimensional controls? Sadly, there is no HTML tag
that will generate a little continuous slider. You can simulate a
slider by offering, for each dimension, a set of discrete points along
the dimension, each of which is a simple text hyperlink anchor. For
example, for content quality you might offer "4 or better", "3 or
better", "2 or better", "all".

Exercise 5: Build the Knowledge Capture Pages

Here is a list of URLs that we think you'll want to create, named with
a "noun-verb" convention:

	index

	object-create

	object-display

	object-summarize

	object-edit-element

	link-add

	one-type-browse

Start by creating an index page in your /km/ directory. At the very
least, the index page should display an unordered list of object types
and, next to each type, options to "browse" or "create". You don't
have any information in the database, so you should build a script
called object-create first. This page will query the metadata
tables to build a data entry form to create a single object of a
particular type.

When your object creation pipeline is done inserting the row into the
database, it should redirect the author's browser to a page where the
object is displayed (name the script object-display if
you don't have a better idea). Presumably the original author has
authority to edit this object and therefore this page should display
small hyperlinks to edit single fields. All of these links can target
the URL object-edit-element with different arguments.
The object display page should also summarize all the currently linked
objects and have an "add link" hyperlink whose target is
link-add.

The page returned by link-add will look virtually
identical to the index page, i.e., a list of object types. Each
object type can be a hyperlink to a multi-purpose script at
one-type-browse. When called with only a
table_name argument, this page will display a table of object
names with dimensional controls at the top. The dimensions should be
"mine|everyone's" and "creation date". The user ought to be able to
click on a table header and sort by that column.

When called with extra arguments, one-type-browse will
pass those arguments through to object-summarize, a
script very similar to object-display, but only showing
enough information that the author can positively identify the object
and with the additional ability to accept arguments for a potential
link, e.g., table_name_a and object_id_a.

Carrots and Sticks; Chicken and Egg

Most workers get rewarded for working; why would they want to take
time out to author knowledge and answer questions in an online system?
People take the time to ask questions in venues where they can expect
answers. If nobody is answering, nobody will ask, thus leading to a
chicken-and-egg problem.

It is important to create an incentive system that rewards users for
exhibiting the desired behavior. At amazon.com, for example, the site
owners want users to write a lot of reader reviews. At the same time,
they apparently don't want to pay people to write reviews. The
solution circa 2003 is to recognize contributors with a "reviewer
rank". If a lot of other Amazon users have clicked to say that they
found your reviews useful, you may rise above 1000 and a "Top 1000
Reviewer" icon appears next to your name. From the home page of
Amazon, navigate to "Friends and favorites" (under "Special
Features"). Then, underneath "Explore", click on "Top Reviewers".
Notice that some of the top 10 reviewers have written more than 5000
reviews, all free of charge to Amazon!

What makes sense to reward in an online community? We could start
with a couple of obvious activities: content authoring and question
answering. Every night our system could query the content tables and
update user ranks according to how many articles and answers they'd
posted into the database. Is it really a good idea to reward users
purely on the basis of volume? Shouldn't we give more weight to
content that has actually helped people? For example, suppose that
there are ten answers to a discussion forum question. It makes sense
to give the maximum reward to the author of the answer that the person
asking the question felt was most valuable. If a question can be
marked "urgent" by the asker, it probably makes sense to give greater
rewards to people who answer urgent questions than non-urgent ones.
An article is nice, but an article that prompts another user to say "I
reused this idea in my area of the organization" is much nicer and
should be encouraged with a greater reward.

Exercise 6: Gather Statistics

Rather than do surgery on the discussion forum system right now, let's
start by adding an accounting system to our new knowledge management
data model. Start by creating a table to hold object views. Here's
an example:

create sequence km_object_view_id;

create table km_object_views (
	object_view_id	integer primary key,
	-- which user
	user_id		not null references users,
	-- two columns to specify which object
	object_id	integer not null,
	table_name	varchar(21) not null,
	view_time	timestamp(0) not null,
	reuse_p		char(1) default 'f' check(reuse_p in ('t','f'))		
);

Modify object-view-one so that it will insert a row into
the km_object_views table if and only if there isn't
already a log row for this user/object pair within twenty-four hours. You
can do this with the following procedure:

	open a transaction

	lock the table

	count the number of matching rows within the last 24 hours

	compare the result to 0 and insert if necessary

	close the transaction

This appears to be an awfully big hammer for a seemingly simple
problem. Is it possible to do this in one statement?

Let's start with Oracle. Here's an example of an INSERT statement
that only has an effect if there isn't already a row in the table:

insert into km_object_views (object_view_id, user_id, object_id, table_name, view_time)
select km_object_view_id.nextval, 227, 891, 'algorithm', current_timestamp(0)
from dual
where 0 = (select count(*)
 from km_object_views
 where user_id = 227
 and object_id = 891
 and view_time > current_timestamp - interval '1' day);

The structure of this statement is "insert into KM_OBJECT_VIEWS the
result of querying the 1-row system table DUAL". We're not pulling
any data from the DUAL table, only including constants in the SELECT
list. Nor is the WHERE clause restricting results based on
information in the DUAL table; it is querying KM_OBJECT_VIEWS. This
is a seemingly perverse way to use SQL, but in fact is fairly
conventional because there are no IF statements in standard SQL.

Suppose, however, that two copies of this INSERT start simultaneously.
Recall that a transaction processing system provides the ACID
guarantees: Atomicity, Consistency, Isolation, and
Durability. Oracle's implementation of isolation, "the
results of a transaction are invisible to other transactions until the
transaction is complete", works by giving each user a virtual version
of the database as it was when the transaction started.

	Session A	Session B

	
Sends INSERT to Oracle at system change number ("SCN", a pseudo-time internal to Oracle) 30561.

Oracle counts the rows in km_object_views and finds 0.

Oracle inserts a row into km_object_views at SCN 30567
(took a while for the COUNT(*) to complete; meanwhile other users have
been inserting and updates rows in other tables).

	

Sends INSERT to Oracle at system change number 30562, a tick after
Session A started its transaction but several ticks before Session A
accomplished its insertion.

Oracle, busy with other users, doesn't start counting rows in
km_object_views until SCN 30568, after the insert from
Session A. The database, however, will return 0 blocks because it is
presenting Session B with a view of the database as it was at SCN
30562, when the transaction started.

Having found 0 rows in the count, the INSERT proceeds to insert one
row, thus creating a duplicate log entry.

Figure 15.2:

More: See the "Data Concurrency and Consistency" chapter of
Oracle9i Database Concepts, one of the books included in
Oracle documentation.

Now consider the same query running in SQL Server:

insert into km_object_views (user_id, object_id, table_name, view_time)
select 227, 891, 'algorithm', current_timestamp
where 0 = (select count(*)
 from km_object_views
 where user_id = 227
 and object_id = 891
 and datediff(hour, view_time, current_timestamp) < 24)

There are minor syntatic differences from the Oracle statement above,
but the structure is the same. A new row is inserted only if no
matching rows are found within the last twenty-four hours.

SQL Server achieves the same isolation level as Oracle ("Read
Committed"), but in a different way. Instead of creating virtual
versions of the database, SQL Server holds exclusive locks during
data-modification operations. In the example above, Session B's
INSERT cannot begin until Session A's INSERT has completed. Once it
is allowed to begin, Session B will see the result of Session A's
insert, and will therefore not insert a duplicate row.

More: See the "Understanding Locking in SQL Server" chapter of
SQL Server Books Online, the Microsoft SQL Server
documentation.

Whenever you are performing logging, it is considerate to do it on the
server's time, not the user's. In many Web development environments,
you can do this by calling an API procedure that will close the TCP
connection to the user, which stops the upper-right browser corner
icon from spinning/waving. Meanwhile your thread (IIS, AOLserver,
Apache 2) or process (Apache 1.x) is still alive on the server and can
run whatever code is necessary to perform the logging. Many Web
servers allow you to define filters that run after the delivery of a
page to the user.

Help with date/time arithmetic: see the "Dates" chapter of SQL for Web Nerds at http://philip.greenspun.com/sql/dates.

Exercise 7: Gather More Statistics

Modify object-view-one to add a "I reused this knowledge"
button. This should link to object-mark-reused, a page
that updates the reuse_p flag of the most recent relevant
row in km_object_views. The page should raise an error
if it can't find a row to update.

Exercise 8: Explain the Concurrency Problem in Exercise 7

Given an implementation of object-view-one that does its
logging on the server's time, explain the concurrency problem that
arises in Exercise 7 and talk about ways to address it.

Write up your solutions to these non-coding exercises either in your
km module overview document or in a file named
metadata-exercises in the same directory.

Exercise 9: Do a Little Performance Tuning

Create an index on km_object_views that will make the
code in Exercises 6 and 7 go fast.

Exercise 10: Display Statistics

Build a summary page, e.g., at /km/admin/statistics to
show, by day, the number of objects viewed and reused. This report
should be broken down by object type and all the statistics should be
links to "drill-down" pages where the underlying data are exposed,
e.g., which actual users viewed or reused knowledge and when.

Exercise 11: Think about Full-text Indexing

Write up a strategy for adding the objects authored in this system to
the site-wide full-text index.

Exercise 12: Think about Unifying with Your Content Tables

Write up a strategy for unifying your pre-existing content tables with
the system that you built in this chapter. Discuss the pros and cons
of using new tables for the knowledge management module or extending
old ones.

Feel Free to Hand-Edit

Suppose that an autogenerated application is more or less complete and
functional, but you can see some room for improvement. Is it
acceptable practice to pull some of the generated code into a text
editor and change it by hand? Absolutely! The point of using
metadata is to tackle extreme requirements and get a prototype in
front of real users as quickly as possible. Don't feel like a failure
because you haven't solved the fifty-year-old research problem of
automating programming altogether.

Time and Motion

The team should work together with the client to develop the ontology.
These discussions and the initial documentation should require two to three
hours. Designing the metadata data model may be a simple copy/paste
operation for teams building with Oracle, but in any case should
require no more than an hour. Generating the DDL statements and drop
tables script should take about two hours of work by one programmer.
Building out the system pages, Exercise 5 through 10, should require eight
to twelve programmer-hours. This part can be divided to an extent, but
it's probably best to limit the programming to two individuals working
together closely since the exercises build upon one another. Finally,
the writeups at the end should take one to two hours total.

User Activity Analysis

This chapter looks at ways that you can monitor user activity within
your community and how that information can be used to personalize a
user's experience.

Step 1: Ask the Right Questions

Before considering what is technically feasible, it is best to start
with a wishlist of the questions about user activity that have
relevance for your client's application. Here are some starter
questions:

	What are the URLs that are producing server errors? (answer leads
to action: fix broken code)

	How many users requested non-existent files, and where did they get
the bad URLs? (answer leads to action: fix bad links)

	Are at least 50 percent of users visiting /foobar/,
our newest and most important section? (answer leads to action: maybe
add more pointers to the new section from other areas of the site)

	How popular are the voice and wireless interfaces to the
application? (answer leads to action: invest more effort in popular
interfaces)

	Which pages are causing users to get stuck and abandon their
sessions? I.e., what are the typical last pages viewed before a user
disappears for the day? (answer leads to action: clarify user
interface or annotation on those pages)

	Suppose that we operate an e-commerce site and that we've purchased
advertisements on Google and www.nytimes.com. How likely are visitors
from those two sources to buy something? How do the dollar amounts
compare? (answer leads to action: buy more ads from the place that
sends high-profit users)

Step 2: Look at What's Easily Available

Every HTTP server program can be configured to log its actions.
Typically the server will write two logs: (1) the "access log",
containing one line corresponding to every user request, and (2) the
"error log", containing complete information about what went wrong
during those requests that resulted in program errors. A "file not
found" will result in an access log entry, but not a error log entry
because the server did not have to catch a script bug. By contrast, a
script sending an illegal SQL command to the database will result in
both an access log and an error log entry.

Below is a snippet from the file http://philip.greenspun.com/seia/examples-user-activity-analysis/2003-03-06.log.gz,
which records one day of activity on this server (philip.greenspun.com).
Notice that the name of the log file, "2003-03-06", is arranged so
that chronological success will result in lexicographical sorting
succession and therefore, when viewing files in a directory listing,
you'll see a continuous progression from oldest to newest. The file
itself is in the "Common Logfile Format", a standard developed in
1995.

193.2.79.250 - - [06/Mar/2003:09:11:59 -0500] "GET /dogs/george HTTP/1.1" 200 0 "http://www.photo.net/" "Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt)"
193.2.79.250 - - [06/Mar/2003:09:11:59 -0500] "GET /dogs/sky-and-philip.jpg HTTP/1.1" 200 9596 "http://philip.greenspun.com/dogs/george" "Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt)"
193.2.79.250 - - [06/Mar/2003:09:11:59 -0500] "GET /dogs/george-28.jpg HTTP/1.1" 200 10154 "http://philip.greenspun.com/dogs/george" "Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt)"
193.2.79.250 - - [06/Mar/2003:09:11:59 -0500] "GET /dogs/nika-36.jpg HTTP/1.1" 200 8627 "http://philip.greenspun.com/dogs/george" "Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt)"
193.2.79.250 - - [06/Mar/2003:09:11:59 -0500] "GET /dogs/george-nika-provoke.jpg HTTP/1.1" 200 11949 "http://philip.greenspun.com/dogs/george" "Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt)"
152.31.2.221 - - [06/Mar/2003:09:11:59 -0500] "GET /comments/attachment/36106/bmwz81.jpg HTTP/1.1" 200 38751 "http://philip.greenspun.com/materialism/cars/nsx.html" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)"
193.2.79.250 - - [06/Mar/2003:09:12:00 -0500] "GET /dogs/george-nika-grapple.jpg HTTP/1.1" 200 7887 "http://philip.greenspun.com/dogs/george" "Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt)"
193.2.79.250 - - [06/Mar/2003:09:12:00 -0500] "GET /dogs/george-nika-bite.jpg HTTP/1.1" 200 10977 "http://philip.greenspun.com/dogs/george" "Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt)"
193.2.79.250 - - [06/Mar/2003:09:12:00 -0500] "GET /dogs/george-29.jpg HTTP/1.1" 200 10763 "http://philip.greenspun.com/dogs/george" "Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt)"
193.2.79.250 - - [06/Mar/2003:09:12:00 -0500] "GET /dogs/philip-and-george-sm.jpg HTTP/1.1" 200 9574 "http://philip.greenspun.com/dogs/george" "Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt)"
152.31.2.221 - - [06/Mar/2003:09:12:00 -0500] "GET /comments/attachment/44949/FriendsProjectCar.jpg HTTP/1.1" 200 36340 "http://philip.greenspun.com/materialism/cars/nsx.html" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)"
193.2.79.250 - - [06/Mar/2003:09:12:00 -0500] "GET /comments/attachment/35069/muffin.jpg HTTP/1.1" 200 15017 "http://philip.greenspun.com/dogs/george" "Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt)"
152.31.2.221 - - [06/Mar/2003:09:12:01 -0500] "GET /comments/attachment/77819/z06.jpg HTTP/1.1" 200 46996 "http://philip.greenspun.com/materialism/cars/nsx.html" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)"
151.199.192.112 - - [06/Mar/2003:09:12:01 -0500] "GET /comments/attachment/137758/GT%20NSX%202.jpg HTTP/1.1" 200 12656 "http://philip.greenspun.com/materialism/cars/nsx" "Mozilla/4.0 (compatible; MSIE 5.0; Mac_PowerPC)"
152.31.2.221 - - [06/Mar/2003:09:12:02 -0500] "GET /comments/attachment/171519/photo_002.jpg HTTP/1.1" 200 45618 "http://philip.greenspun.com/materialism/cars/nsx.html" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)"
151.199.192.112 - - [06/Mar/2003:09:12:27 -0500] "GET /comments/attachment/143336/Veil%20Side%20Skyline%20GTR2.jpg HTTP/1.1" 200 40372 "http://philip.greenspun.com/materialism/cars/nsx" "Mozilla/4.0 (compatible; MSIE 5.0; Mac_PowerPC)"
147.102.16.28 - - [06/Mar/2003:09:12:29 -0500] "GET /photo/pcd1253/canal-street-43.1.jpg HTTP/1.1" 302 336 "http://philip.greenspun.com/wtr/application-servers.html" "Mozilla/4.0 (compatible; MSIE 5.01; Windows NT)"
147.102.16.28 - - [06/Mar/2003:09:12:29 -0500] "GET /photo/pcd2388/john-harvard-statue-7.1.jpg HTTP/1.1" 302 342 "http://philip.greenspun.com/wtr/application-servers.html" "Mozilla/4.0 (compatible; MSIE 5.01; Windows NT)"
147.102.16.28 - - [06/Mar/2003:09:12:31 -0500] "GET /wtr/application-servers.html HTTP/1.1" 200 0 "http://www.google.com/search?q=application+servers&ie=ISO-8859-7&hl=el&lr=" "Mozilla/4.0 (compatible; MSIE 5.01; Windows NT)"

The first line can be decoded as follows:

A user on a computer at the IP address 193.2.79.250, who is not
telling us his login name on that computer nor supplying an HTTP
authentication login name to the Web server (- -), on March 6,
2003 at 9 hours 11 minutes 59 seconds past midnight in a timezone 5
hours behind Greenwich Mean Time (06/Mar/2003:09:11:59 -0500),
requested the file /dogs/george using the GET method of
the HTTP/1.1 protocol. The file was found by the server and
returned normally (status code of 200) but it was returned by
an ill-behaved script that did not give the server information about
how many bytes were written, hence the 0 after the status
code. This user followed a link to this URL from
http://www.photo.net/ (the referer header) and is using a
browser that first falsely identifies itself as Netscape 4.0
(Mozilla 4.0), but then explains that it is actually merely
compatible with Netscape and is really Microsoft Internet
Explorer 5.0 on Windows NT (MSIE 5.0; Windows NT). On a
lightly used service we might have configured the server to use
nslookup and log the hostname of
stargate.fs.uni-lj.si rather than the IP address, in
which case we'd have been able to glance at the log and see that it
was someone at a university in Slovenia.

That's a lot of information in one line, but consider what is missing.
If this user previously logged in and presented a user_id
cookie, we can't tell and we don't have that user ID. On an e-commerce
site we might be able to infer that the user purchased something by
the presence of a line showing a successful request for a
"complete-purchase" URL. However we won't see the dollar amount of
that purchase, and surely a $1000 purchase is much more interesting
than a $10 purchase.

Step 3: Figure Out What Extra Information You Need to Record

If your client is unhappy with the kind of information available from
the standard logs, there are three basic alternatives:

	configure the HTTP server program to add cookie header contents to
the standard access log

	augment your software to log additional user activity into the
RDBMS and construct ad hoc query pages in the site administrator area
of the service

	construct a full dimensional data warehouse of user activity

If all that you need is the user ID for every request, it is often a
simple matter to configure the HTTP server program, e.g., Apache or
Microsoft Internet Information Server, to append the contents of the
entire cookie header or just one named cookie to each line in the
access log.

When that isn't sufficient, you can start adding columns to database
tables. In a sense you've already started this process. You probably
have a registration_date column in your
users table, for example. This information could be
derived from the access logs, but if you need it to show a "member
since 2001" annotation as part of their user profile, it makes more
sense to keep it in the RDBMS. If you want to offer members a page of
"new items since your last visit" you'll probably add
last_login and second_to_last_login columns
to the users table. Note that you need
second_to_last_login because as soon as User #345 returns
to the site your software will update last_login. When
he or she clicks the "new since last visit" page, it might be only thirty
seconds since the timestamp in the last_login column.
What User #345 will more likely expect is new content since the
preceding Monday, his or her previous session with the service.

Suppose the marketing department starts running ad campaigns on ten
different sites with the goal of attracting new members. They'll want
a report of how many people registered who came from each of those ten
foreign sites. Each ad would be a hyperlink to an encoded URL on your
server. This would set a session cookie saying "source=nytimes" ("I
came from an ad on the New York Times Web site"). If that person
eventually registered as a member, the token "nytimes" would be written
into a source column in the users table.
After a month you'll be asked to write an admin page querying the
database and displaying a histogram of registration by day, by month,
by source, etc.

The road of adding columns to transaction-processing tables and
building ad hoc SQL queries to answer questions is a long and tortuous
one. The traditional way back to a manageable information system with
users getting the answers they need is the dimensional data
warehouse, discussed at some length in the data warehousing chapter of
SQL for Web Nerds at http://philip.greenspun.com/sql/data-warehousing.
A data warehouse is a heavily denormalized copy of the information in
the transaction-processing tables, arranged so as to facilitate
queries rather than updates.

The exercises in this chapter will walk you through these three
alternatives, each of which has its place.

Exercise 1: See How the Other Half Lives

Most Web publishers have limited budgets and therefore limited access
to programmers. Consequently they rely on standard log analysis
programs analyzing standard server access logs. In this exercise
you'll see what they see. Pick a standard log analyzer, e.g., the
analog program referenced at the end of this chapter, and prepare a
report of all recorded user activity for the last month.

An acceptable solution to this exercise will involve linking the most
recent report from the site administration pages so that the publisher
can view it. A better solution will involve placing a "prepare
current report" link in the admin pages that will invoke the log
analyzer on demand and display the report. An exhaustive
(exhausting?) solution will consist of a scheduled process ("cron job"
in Unix parlance, "at command" or "scheduled task" on Windows) that
runs the log analyzer every day, updating cumulative reports and
preparing a new daily report, all of which are accessible from the
site admin pages.

Make sure that your report clearly shows "404 Not Found" requests (any
standard log analyzer can be configured to display these) and that the
referer header is displayed so that you can figure out where the bad
link is likely to be.

Security Risks of Running Programs in Response to a Web Request

Running the log analyzer in response to an administrator's request
sounds innocent, but any system in which an HTTP server program can
start up a new process in response to a Web request presents a
security risk. Many Web scripting languages have "exec" commands in
which the Web server has all of the power of a logged-in user typing
at a command line. This is a powerful and useful capability, but a
malicious user might be able to, for example, run a program that will
return the username/password file for the server.

In the Unix world the most effective solution to this challenge is
chroot, short for change root. This command
changes the file system root of the Web server, and any program
started by the Web server, to some other place in the file system,
e.g., /web/main-server/. A program in the directory
/usr/local/bin/ can't be executed by the chrooted Web
server because the Web server can't even describe a file unless its
path begins with /web/main-server/. The root directory,
/, is now /web/main-server/. One downside
of this approach is that if the Web server needs to run a program in
the directory /usr/local/bin/ it can't. The solution is
to take all of the utilities, server log analyzers, and other required
programs and move them underneath /web/main-server/, e.g., to
/web/main-server/bin/.

Sadly, there does not seem to be a Windows equivalent to
chroot, though there are other ways to lock down a Web server
in Windows so that its process can't execute programs.

Exercise 2: Comedy of Errors

The last thing that any publisher wants is for a user to be faced with
a "Server Error" in response to a request. Unfortunately, chances are that if
one user gets an error there will be plenty more to follow. The HTTP
server program will log each event, but unless a site is newly launched
chances are that no programmer is watching the error log at any given
moment.

First make sure that your server is configured to log as much
information as possible about each error. At the very least you need
the server to log the URL where the error occurred and the error
message from the procedure that raised the error. Better Web
development environments will also log a stack backtrace.

Second, provide a hyperlink from the site-wide administration pages to
a page that shows the most recent 500 lines of the error log, with an
option to go back a further 500 lines, etc.

Third, write a procedure that runs periodically, either as a separate
process or as part of the HTTP server program itself, and scans the
error log for new entries since the preceding run of the procedure.
If any of those new entries are actual errors, the procedure emails
them to the programmers maintaining the site. You might want to start
with an interval of one hour.

Real-time Error Notifications

The system that you built in Exercise 2 guarantees that a programmer
will find out about an error within about one hour. On a high-profile
site this might not be adequate. It might be worth building error
notification into the software itself. Serious errors can be caught
and the error handler can call a notify_the_maintainers
procedure that sends email. This might be worth including, for
example, in a centralized facility that allows page scripts to connect
to the relational database management system (RDBMS). If the RDBMS is
unavailable, the sysadmins, dbadmins, and programmers ought to be
notified immediately so that they can figure out what went wrong and
bring the system back up.

Suppose that an RDBMS failure were combined with a naive
implementation of notify_the_maintainers on a site that
gets 10 requests per second. Suppose further that all of the people
on the email notification list have gone out for lunch together for
one hour. Upon their return, they will find 60x60x10 = 36,000
identical email messages in their inbox.

To avoid this kind of debacle, it is probably best to have
notify_the_maintainers record a
last_notification_sent timestamp in the HTTP server's
memory or on disk and use it to ignore or accumulate requests for
notification that come in, say, within 15 minutes of a previous
request. A reasonable assumption is that a programmer, once alerted,
will visit the server and start looking at the full error logs. Thus
notify_the_maintainers need not actually send out
information about every problem encountered.

Exercise 3: Talk to Your Client

Using the standardized Web server log reports that you obtained in an
earlier exercise as a starting point, talk to your client about what
kind of user activity analysis he or she would really like to see.
You want to do this after you've got at least something to show so
that the discussion is more concrete and because the client's thinking
is likely to be spurred by looking over a log analyzer's reports and
noticing what's missing.

Write down the questions that your client says are the most important.

Exercise 4: Design a Data Warehouse

Write a SQL data model for a dimensional data warehouse of user
activity. Look at the retail examples in http://philip.greenspun.com/sql/data-warehousing
for inspiration. The resulting data model should be able to answer
the questions put forth by your client in Exercise 3.

The biggest design decision that you'll face during this exercise is
the granularity of the fact table. If you're interested in how users
get from page to page within a site, the granularity of the fact table
must be "one request". On a site such as the national "don't call
me" registry, www.donotcall.gov, launched in
2003, one would expect a person to visit only once. Therefore the
user activity data warehouse might store just one row per registered
user, summarizing their appearance at the site and completion of
registration, a fact table granularity of "one user". For many
services, an intermediate granularity of "one session" will be
appropriate.

With a "one session" granularity and appropriate dimensions it is
possible to ask questions such as "What percentage of the sessions
were initiated in response to an ad at Google.com?" (source field
added to the fact table) "Compare the likelihood that a purchase was
made by users on their fourth versus fifth sessions with the service?"
(nth-session field added to the fact table) "Compare the value of
purchases made in sessions by foreign versus domestic customers"
(purchase amount field added to the fact table plus a customer
dimension).

More

	www.analog.cx — download
the analog Web server log analyzer

	http://www.microsoft.com/technet/scriptcenter/tools/logparser/ — Microsoft
Log Parser

	www.cygwin.com — standard
Unix tools for Windows

Time and Motion

Generating the first access log report might take anywhere from a few
minutes to an hour depending on the quality of the log analysis tool.
As a whole the first exercise shouldn't take more than two hours.
Tracking errors should take two to four hours. Talking to the client
will probably take about one hour. Designing the data warehouse
should take about one to two hours, depending on the student's
familiarity with data warehousing.

Writeup

If I am not for myself, who is for me?

When I am for myself, what am I?

If not now, when?

-- Hillel (circa 70 B.C. - 10 A.D.)

If I do not document my results, who will?

If the significance of my work is not communicated to others, what am
I?

If not now, when?

-- philg

Do you believe that the world owes you attention? If not, why do you
think that anyone is going to spend thirty minutes surfing around the
community that you've built in order to find the most interesting
features? In any case, if much of your engineering success is
embodied in administration pages, how would someone without admin
privileges ever see them?

In code reviews at the beginning of this class, we often find students
producing source code files without attribution ("I know who wrote
it") and Web pages without email signatures ("nobody is actually going
to use this"). Maimonides's commentary on Hillel's quote above is
that a person acquires habits of doing right or wrong—virtues and
vices—while young; youths should do good deeds now, and not wait
until adulthood. I.e., if you don't take steps to help other users
and programmers now, as a university student, there is no reason to
believe that you'll develop habits of virtue post-graduation. An
alternative way of thinking about this is to ask yourself how you feel
when you're stuck trying to use someone else's Web page and there is
no clear way to send feedback or get help or how much fun it is to
be reading the source code for an application and not have any idea
who wrote it, why, or where to ask questions. Continuing the Talmudic
theme of the chapter, keep in mind Hillel's response to a gentile
interested in Judaism: "That which is hateful to you, do not do to
your neighbor. That is the whole Torah; the rest is commentary. Go and
study it."

A comment header at the top of every source code file and an email
address at the bottom of every page. That's a good start toward
building a professional reputation. But it isn't enough. For every
computer application that you build, you ought to prepare an
overview document. This will be a single HTML page containing
linear text that can be read simply by scrolling, i.e., the reader
need not follow any hyperlinks in order to understand your
achievement. It is probably reasonable to expect that you can hold
the average person's attention for four or five screens worth of text
and illustrations. What to include in the overview illustrations?
In-line images of Web or mobile browser screens that display the
application's capabilities. If the application supports a complex
workflow, perhaps a graphic showing all the states and transitions.

Here are some examples done by folks just like yourself:

	any of the reports in the 6.171 Project Galleries at
http://philip.greenspun.com/seia/gallery/spring2002/
and
http://philip.greenspun.com/seia/gallery/fall2003/

from an earlier version of this course

	http://philip.greenspun.com/seia/gallery/spring1999/arfdigita/

	http://philip.greenspun.com/seia/gallery/spring2000/poa/

	http://philip.greenspun.com/seia/gallery/fall2000/wap/
(a WAP-only application)

	http://philip.greenspun.com/seia/gallery/fall2000/eaa/

In case you're looking for inspiration, do remember that if Microsoft,
Oracle, Red Hat, or Sun products either worked simply or simply
worked, half of the people in the information technology industry
would be out of jobs. Also keep in mind that for every person reading
this chapter a poor villager in India is learning SQL and Java. A big
salary can evaporate quickly. Between March 2001 and April 2004
roughly 400,000 American jobs in information technology were
eliminated. Many of those who had coded Java in obscurity ended
up as cab drivers or greeters at Walmart.

A personal professional reputation, by contrast, is a bit harder to
build than the big salary but also harder to lose. If you don't
invest some time in writing (prose, not code), however, you'll never
have any reputation outside your immediate circle of colleagues, who
themselves may end up working at McDonald's and be unable to help you
get an engineering job during a recession.

Exercise 1

Prepare an overview document for the application that you built this
semester. Place the document at /doc/overview on your
server.

Try to make sure that your audience can stop reading at any point and
still get a complete picture. Thus the first paragraph or two should
say what you've built and why it is important to this group of users.
This introduction should say a little something about the community
for whom the application has been built and why they can't simply get
together in the same room at the same time.

It is probably worth concentrating on screen shots that illustrate
your application's unique and surprising features. Things such as
standalone discussion forums or full-text search pages can be
described in a single bullet item or sentence and easily imagined by
the reader.

If you find that your screen shots aren't very compelling and that it
takes 5 or 6 screen shots to tell a story, consider redesigning some
of your pages! If it makes sense to see all the site's most important
features and information on one screen in your overview document, it
probably makes sense for the everyday users of the site to see them on
one screen as well.

You have two basic options for structure. If it is more or less
obvious how people are going to use the service, you might be able to
get away with the Laundry List Structure: list the features of the
application, punctuated by screen shots. In general, however, the
Day-in-the-Life Structure is probably more compelling and
understandable. Here you walk through a scenario of how several users
might come to the application and accomplish tasks. For example, on a
photo critique site you might show the following:

	Schlomo Mendelssohn uploads his latest photograph of his dog
(screen shot of photo upload page)

	Winston Wu views a page of the most recently submitted photos and
picks Schlomo's

	Winston uploads a comment on Schlomo's photo, attaching an edited
version of the photo (screen shot of the "attach a file to your
comment" page)

	Schlomo checks in from his mobile phone's browser to see who has critiqued his
photo

	Winona Horowitz calls in from a friend's telephone and finds out
from the VoiceXML interface that a lot of new content has been posted
in the last 24 hours

	Winona goes home to a Web browser and visits the administration
page and deletes a duplicate posting and three off-topic posts (screen
shot of the "all recently uploaded content")

	...

You can work in all of the site's important features in such a
scenario, while giving the reader an idea of how these features are
relevant to user and administrator goals.

Note how the example above works in the mobile and VoiceXML interfaces of
the site. All of your readers will have used Web sites before, but mobile
and VoiceXML are relative novelties.

What Do We Mean by "Professional"?

What do we mean by "professional"? Does it even make sense in the
context of software engineering? The standard professions (law and
medicine) require a specific educational degree and certification by
other professionals. By contrast, plenty of folks who never took a
computer science course are coding up a storm in Java right now. Nor
has their work in Java been evaluated and certified by other
programmers. In theory, if your incompetence kills enough patients,
your fellow physicians can prevent you from practicing medicine
anymore. If you steal too much from your clients, your fellow lawyers
are empowered by the state to prevent you from working.

Without a required educational program or state-imposed sanctions on
entry to the field, what can it mean to be a "professional
programmer"? Let's take a step back and look at degrees of
professional achievement within medicine. Consider three doctors:

	Surgeon 1 does the same operation over and over in a Beverly
Hills clinic and makes a lot of money.

	Surgeon 2 is competent in all the standard operations, but in
addition has developed an innovative procedure and, because of the
time devoted to innovation, makes less money than Surgeon 1.

	Surgeon 3 has developed an innovative procedure and practices it
regularly, but also makes time for occasional travel to France, China,
Japan, and Argentina to teach other doctors how to practice the
innovation.

Most of their fellow physicians would agree that Surgeon 3 is the
"most professional" doctor of the group. Surgeon 3 has practiced at
the state of the art, improved the state of the art, and taught others
how to improve their skills. Is there a way for a programmer to excel
along these dimensions?

Professionalism in the Software Industry (circa 1985)

As the packaged software industry reached its middle age around 1985,
it was difficult for an individual programmer to have an
impact. Software had to be marketed via traditional media, burned onto
a physical medium, put into a fancy package, and shipped to a
retailer. Consequently, fifty or more people were involved in any piece
of code reaching an end-user. It would have been tough for a software
engineer to aspire to the same standards of professionalism that put
Surgeon 3 over the top. How can the software engineer ensure that his
or her innovation will ever reach an end-user if shipping it out the
door requires fifty other people to be paid on an ongoing basis? How can
the software engineer teach other programmers how to practice the
innovation if the software is closed-source and his or her
organization's employment agreements mandate secrecy?

The industrial programmer circa 1985 was a factory employee, pure and
simple. He or she might aspire to achieve high standards of
craftsmanship, but never professionalism.

What were a programmer's options, then, if in fact craftsmanship
proved to be an unsatisfying career goal? The only escape from the
strictures of closed-source and secrecy was the university. A
programmer could join a computer science research lab at a university
where, very likely, he or she would be permitted to teach others via
publication, source code release, and face-to-face instruction of
students. However, by going into a university, where the required
team of fifty would never be assembled to deliver a software product to
market, the programmer was giving up the opportunity to work at the
state of the art as well as innovate and teach.

Professionalism in the Software Industry (circa 2000)

There is some evidence that standards are shifting. Richard Stallman
and Linus Torvalds draw crowds of admirers worldwide. These pioneers
in the open-source software movement are beginning to exhibit some of
the elements of Surgeon 3 (above):

	they practice at the state of the art, writing computer programs
that are used by millions of people worldwide (the GNU set of Unix
tools and the Linux kernel)

	they have innovated; Stallman having developed the Emacs text
editor (one of the first multi-window systems) and Torvalds having
developed a new method for coordinating development worldwide

	they have taught others how to practice their innovation by
releasing their work as open-source software and by writing
documentation

The Internet makes it easier for an individual programmer to
distribute work to a large audience, thus making it easier to practice
at the state of the art. The open-source movement makes it easier for
an individual programmer to find a job where it will be practical to
release his or her creations to other programmers who might build on
that work.

It is thus now within a programmer's power to improve his or her
practice as a software engineering professional, where the definition
of professional is similar to that used in medicine.

A Proposed New Definition

Suppose that we define software engineering professionalism with the
following objectives:

	a professional programmer picks a worthwhile problem to attack; we
are engineers, not scientists, and therefore should attempt solutions
that will solve real user problems.

	a professional programmer has a dedication to the end-user
experience; most computer applications built these days are Internet
applications built by small teams and hence it is now possible for an
individual programmer to ensure that end users aren't confused or
frustrated (in the case of a programmer working on a tool for other
programmers, the goal is defined to be "dedication to ease of use by
the recipient programmer").

	a professional programmer does high quality work; we
preserve the dedication to good system design, maintainability, and
documentation, that constituted pride of craftsmanship.

	a professional programmer innovates; information systems
are not good enough, the users are entitled to better, and it is our job
to build better systems.

	a professional programmer teaches by example; open-source
is the one true path for a professional software engineer.

	a professional programmer teaches by documentation; writing
is hard but the best software documentation has always been written by
programmers who were willing to make an extra effort.

	a professional programmer teaches face-to-face; we've not
found a substitute for face-to-face interaction so a software
engineering professional should teach fellow workers via code review,
teach short overview lectures to large audiences, and help teach
multi-week courses.

Could one create an organization where programmers can excel along
these seven dimensions? In a previous life, the authors did just
this! We created a free open-source toolkit for building Internet
applications, i.e., something to save customers the agony of doing
what you've just spent all semester doing (building an application
from scratch). Here's how we worked toward the previously stated
objectives:

	committing to attack the hardest problems for a wide range of
computer users; niche software products are easy and profitable to
build but most of the programmers on such a product are putting in the
10,000th feature. Our company simultaneously attacked the problems of
public online community, B2B e-commerce, B2C e-commerce, cooperative
work inside an organization, cooperative work across organizations,
running a university, accounting and personnel (HR) for a services
company, etc. This gave our programmers plenty of room to grow.

	staying lean on the sales, account management, user interface,
and user experience specialists; a programming team was in direct
contact with the Internet service operator and oftentimes with
end-users. Our programmers had a lot of control over and
responsibility for the end-user experience.

	hiring good people and paying them well; it is only
possible to build a high-quality system if one has high-quality
colleagues. Despite a tough late 1990s recruiting market, we limited
ourselves to hiring people who had demonstrated an ability to produce
high-quality code on a trio of problem sets (originally developed for
this course's predecessor at MIT).

	giving little respect to our old code and not striving for
compatibility with too many substrate systems; we let our
programmers build their professional reputation for innovation rather
than become embroiled in worrying about whether a new thing will
inconvenience legacy users (we had support contracts for them) or how
to make sure that new code works on every brand of RDBMS.

	having a strict open-source software policy; reusable code
was documented and open-sourced in the hope that it would aid other
programmers worldwide.

	dragging people out to writing retreats; most programmers
say that they can't write, but experience shows that peoples' writing
skills improve dramatically if only they will practice writing. We
had a beach house near our headquarters and dragged people out for
long weekends to finish writing projects with help from other
programmers who were completing their own writing projects.

	establishing our own university, assistant teaching at existing
universities, and mentoring within our offices; a lot of PhD
computer scientists are reluctant to leave academia because they won't
be able to teach. But we started our own one-year post-baccalaureate
program teaching the normal undergraduate computer science curriculum,
and we were happy to pay a developer to spend a month there teaching a
course. We encouraged our developers to volunteer as teaching
assistants or lecturers at universities near our offices. We insisted
that senior developers review junior developers' code internally.

How did it work out? Adhering to these principles, we built a
profitable business with $20 million in annual revenue. Being
engineers rather than business people we thought we were being smart
by turning the company over to professional managers and
well-established venture capital firms. In search of higher profit,
they abandoned our principles and, in less than two years, turned what
had been monthly profits into losses, burning through $50 million in
cash. The company, by now thoroughly conventional, tanked.

In short, despite the experiment having ended rather distressingly, it
provided evidence that these seven principles can yield exceptionally
high achievement and profits.

Exercise 2

Write down your own definition of software engineering
professionalism. Explain how you would put it into practice and how
you could build a sustainable organization to support that definition.

Final Presentation

In any course using this textbook, we suggest allocating 20 minutes of
class time at the end of any course, per project, for a final
presentation to a panel of outsiders. Each team then has an
opportunity to polish its presentation skills to an audience of
decision-makers, as distinct from the audience of technical peers that
have listened to earlier in-class presentations.

Young engineers need practice in convincing people with money to write
checks that will fund their work. Consequently, the best panelists are
people who, in their daily lives, listen to proposals from technical
people and decide whether or not to write checks. Examples of such
people include executives at large companies and venture capitalists.

We suggest the following format for each presentation:

	elevator pitch, a 30-second explanation of what problem has been
solved and why the system is better than existing mechanisms available
to people

	demo of the completed system (see the
"Content Management" chapter for some tips on making crisp
demonstrations of multi-user applications) (5 minutes; make it clear
whether or not the system has been publicly launched or not)

	a slide showing system architecture and what components were used to
build the system (1 minute)

	discussion of the toughest technical challenges faced during the
project and how they were addressed (2 minutes; possibly additional slides)

	tour of documentation (2 minutes) — you want to convince the
audience that there is enough for long-term maintenance

	the future (1 minute) — what are the next milestones? Who is
carrying on the work?

Total time: 12 minutes max.

Notice that the technical stuff is at the end. Nobody cares about
technology until they've seen what problem has been solved.

Lessons from MIT

From observing interaction between our students and panelists at MIT, a
few consistent themes have emerged.

Panelists love documentation. They've all seen code monkeys and
they've all seen running programs. Very seldom in their lives have
they seen clear and comprehensive documentation. We've seen senior
executives from Microsoft Corporation get tears in their eyes looking
at the documentation for a discussion forum module. The forum itself
had attracted a "seen it before" yawn, but the executives perked up at the
sight of a single document containing a three-paragraph overview, the
SQL data model, a page flow diagram, a list of all the scripts, some
sample SQL queries, and a list of all the helper functions.

Panelists need to have the rationale for the application clearly
explained at the beginning. Otherwise the demo is boring. Practice
your first few minutes in front of some people who've never seen your
project, and ask them to explain back to you what problem you've solved
and why.

Decision-makers who are also good technologists like to have the scale
of the challenge quantified. The chief information officer from a
large enterprise wanted to know how many hours went into development
of the application that he was seeing and how many tables were in the
data model. He was beyond the point in his career when he was writing
his own SQL code, but he knew that each extra table typically implies
extra cost for development and maintenance.

You need to distinguish your application from packaged software and
other systems that the panelists expect are easily available. Don't
spend five minutes showing a discussion forum, for example. Every
panelist will have seen that. Show one page of the forum, explain
that there is a forum, that there are several levels of moderator and
privacy, and then move on to what is unique about what you've built.
After one presentation, a panelist said "Everything that you showed is
built into Microsoft Sharepoint". A venture capitalist on the panel
chimed in "If at any time during a pitch someone points out that there
is a Microsoft product that solves the same problem, the meeting is
over."

At the same time, unless you're being totally innovative, a good place
to start is by framing your achievement in terms of something that the
audience is already familiar with, e.g., Yahoo! Groups or generic
online community toolkits and then talk about what is different. You
don't want the decision-maker to think to herself "Hey, I think I've
seen this before in Microsoft Sharepoint" and have that thought in her
head unaddressed the whole time.

Decision-makers often bring senior engineers with them to attend
presentations, and these folks can get stuck on personal leitmotifs.
Suppose Joe Panelist chose to build his last project by generating XML
from the database and then turning that into HTML via some expensive
industry-leading middleware and XSLT, plus lots of Java and
Enterprise Java Beans. This approach probably consumes 100 times more
server resources than using Microsoft Visual Basic in Active Server
Pages or a Perl script from 1993, but it is arguably cleaner and more
modern. After a 12-minute presentation, no listener could have learned
enough to say for sure that a project would have benefited from the
XML/XSLT approach, but out he comes with the challenge. You could
call him a pinhead because he doesn't know enough about your client
and the original goals, e.g., not having to buy a 100-CPU server farm
to support a small community. You could demonstrate that he is a
pinhead by pointing out large and successful applications that use a
similar architecture to what you've chosen. But as a junior engineer
these probably aren't the best ways to handle unfair or incorrect
criticism from a senior engineer at a meeting, especially if that
person has been brought along by the decision-maker. It is much
better to flatter this person by asking them to schedule a 30-minute
meeting where you can really discuss the issue. Use that 30-minute
meeting to show why you designed the thing the way that you did
initially. You might turn the senior engineer around to your way of
thinking. At the very least, you won't be arguing in front of the
decision-maker or appearing to be arrogant/overconfident.

To the Panelists

Imagine that each student team was hired by your predecessor. You're
trying to figure out what they did, whether to fund the next version,
and, if so, whether this is the right team to build and launch that
next version.

As a presentation proceeds, write down numerical scores (1-10) for
how well a team has done at the following:

	This team has communicated clearly what problem they've solved.

	The demo gave me a good feeling for how the system works.

	This team has done an impressive job tackling engineering challenges.

	This team has documented their system clearly and thoroughly.

	I'd really like to hire these people for my own organization.

Following a team's 12-minute presentation, tell them what they could
have done better.

Don't be shy about interrupting with short questions during a team's
presentation. If the presentation were from one of your subordinates
or a startup company asking for funds and you'd interrupt them, then
interrupt our students.

Parting Words

Work on something that excites you enough that you want to work 24/7
on it. Become an expert on data model and page flow. Build some great
systems by yourself and link to their overview documents from your
resume — be able to say "I built X" or "Susan and I built X" rather
than "I built a piece of X as part of a huge team".

More

	6.171 Project Gallery, Spring 2002 at
http://philip.greenspun.com/seia/gallery/spring2002/

	6.171 Project Gallery, Fall 2003 at
http://philip.greenspun.com/seia/gallery/fall2003/

Time and Motion

The writeup should take four to six hours and may be split among team
members. An effective division of labor might be: screen shot
technician, writer, proofreader. Thinking about and writing down a
definition of professionalism ought to take one to two hours. The
presentation will go faster if the team has kept up with their
documentation, but ought to take no more than a few hours to prepare
plus an hour to practice a few times.

HTML

Hypertext Markup Language, or HTML, is the language used to specify how a
browser should display a Web page. HTML is a markup language, as opposed
to a programming language, meaning that it contains codes that say how
a page should be formatted, but does not contain procedural code.

Let's take a look at a simple example:

 	Code Example
 	Typical Rendering

		
	<p>
Don't look at your instruments and adjust
the flight controls to, for example,
keep the altimeter steady. The instruments
have a tendency to lag behind reality
and therefore you're overcorrecting and
oscillating.
</p>

	
		
	
Don't look at your instruments and adjust
the flight controls to, for example,
keep the altimeter steady. The instruments
have a tendency to lag behind reality
and therefore you're overcorrecting and
oscillating.

	
	

	

HTML consists of tags, such as <p>, interspersed
with plain text. The <p> tag begins a paragraph;
</p> ends the paragraph. Similarly,
starts text emboldening and ends it.

Basics

In HTML, almost every opening tag has a closing tag, as in the example
above. There are a few exceptions, which we will encounter shortly,
but the overwhelming majority of tags must be closed.

Some tags have attributes, such as the face
attribute of the tag. Example:

If an attribute value contains a space, it is necessary to enclose
it in quotation marks:

Logical Markup

HTML has two kinds of markup: logical markup and physical markup.
Physical markup, such as the bold () tag specifies how the
browser is supposed to render text. In contrast, logical markup, or semantic tags,
specifies something about the meaning of what is being marked
up; the browser is free to choose a rendering that is sensible for the
user's hardware, e.g., italics might be a good choice on a desktop PC,
but reverse video might work better on a low-resolution mobile phone.

Here are a few examples of semantic tags:

 	Tag
 	Code Example
 	Typical Rendering

		
	Emphasis

	
	
		
	You can fly all day in mid-air
without using the airplane's rudder.

	
		
	You can fly all day in mid-air
without using the airplane's rudder.
	
	

	
	
		
	Strong

	
	
		
	On short final, press relatively hard
on both rudder pedals.

	
		
	On short final, press relatively hard
on both rudder pedals.
	
	

	
	
		
	Code

	<code>
	
		
	Alaska and Hawaii's airports are
identified starting with a
<code>PA</code> for "Pacific".

	
		
	Alaska and Hawaii's airports are
identified starting with a
PA for "Pacific".
	
	

	
	
		
	Headline Level 1

	<h1>
	
		
	<h1>Flight Plan</h1>

	
		
	Flight Plan

	
	

	
	
		
	Headline Level 2

	<h2>
	
		
	<h2>Flight Plan</h2>

	
		
	Flight Plan

	
	

	
	
		
	Headline Level 3

	<h3>
	
		
	<h3>Flight Plan</h3>

	
		
	Flight Plan

	
	

	
	
		
	Headline Level 4

	<h4>
	
		
	<h4>Flight Plan</h4>

	
		
	Flight Plan

	
	

	
	
		
	Headline Level 5

	<h5>
	
		
	<h5>Flight Plan</h5>

	
		
	Flight Plan

	
	

	
	
		
	Headline Level 6

	<h6>
	
		
	<h6>Flight Plan</h6>

	
		
	Flight Plan

	
	

	
	

Physical Markup

Here are some common physical markup tags and attributes:

 	Tag
 	Code Example
 	Typical Rendering

		
	Bold

	
	
		
	Use the flight controls
to keep the nose of the airplane
at a constant attitude
relative to the horizon.

	
		
	Use the flight controls
to keep the nose of the airplane
at a constant attitude
relative to the horizon.
	
	

	
	
		
	Italics

	<i>
	
		
	Have you read <i>Stick and
Rudder</i>?

	
		
	Have you read Stick and
Rudder?
	
	

	
	
		
	Underline

	<u>
	
		
	Flying in the clouds on a summer
afternoon, you run the risk of
entering an <u>embedded
thunderstorm</u>.

	
		
	Flying in the clouds on a summer
afternoon, you run the risk of
entering an embedded
thunderstorm.
	
	

		Note: Generally it's
best to avoid the <u> tag; underlining
should be reserved for hyperlinks.

	
		
	Superscript

	<sup>
	
		
	Avogadro's number is
approximately equal to 6.022
x 10²³

	
		
	Avogadro's number is
approximately equal to 6.022
x 1023
	
	

	
	
		
	Subscript

	<sub>
	
		
	log_ex

	
		
	logex
	
	

	
	
		
	Font Size

	
	
		
	I want a huge
 house, a
big
dog, and a
small waist.

	
		
	I want a huge
 house, a
big
dog, and a
small waist.
	
	

	
	
		
	Font Color

	
	
		
	An airplane's navigation lights
are green
on the right wing and
red
on the left.

	
		
	An airplane's navigation lights
are green
on the right wing and
red
on the left.
	
	

		Note: A table of colors and their
hexadecimal equivalents is available from
http://falco.elte.hu/COMP/HTML/colors.html

	
		
	Font Face

	
	
		
	The <font face="arial narrow,
arial, helvetica">NASA Aviation
Safety Program is the only
source of innovation.

	
		
	The NASA Aviation
Safety Program is the only
source of innovation.
	
	

	
	
		
	Typewriter Text

	<tt>
	
		
	The terminal forecast called
for winds <tt>02015G25KT</tt>,
which means from the northeast at
15 knots, gusting to 25 knots.

	
		
	The terminal forecast called
for winds 02015G25KT,
which means from the northeast at
15 knots, gusting to 25 knots.
	
	

	
	
		
	Preformatted Text

	<pre>
	
		
	Winds aloft for Buffalo, Boston,
and Nantucket, at 3000, 6000, and
9000':
<pre>
 3000 6000 9000
BUF 0517 0215+01 3306-01
BOS 2218 2325+08 2321+03
ACK 2118 2012+08 1917+03
</pre>

	
		
	Winds aloft for Buffalo, Boston,
and Nantucket, at 3000, 6000, and
9000':

 3000 6000 9000
BUF 0517 0215+01 3306-01
BOS 2218 2325+08 2321+03
ACK 2118 2012+08 1917+03

	
	

	
	
		
	Blockquote

	<blockquote>
	
		
	Aviation safety quote:
<blockquote>
All life is the management of
risk, not its elimination.

— Walter Wriston,
former Chairman of Citibank
</blockquote>

	
		
	Aviation safety quote:

All life is the management of
risk, not its elimination.

— Walter Wriston,
former Chairman of Citibank

	
	

	
	

It's generally considered more tasteful to use logical markup instead
of physical markup. It has become especially important now that there
is such a wide variety of devices on which to browse Web sites, e.g.,
mobile phones and handheld devices. A phone might ignore
 tags, but it will probably try to make
headlines (<h1>) stand out.

Hyperlinks

Hyperlinks, often just called links, allow the user to jump to a new page or
a new location within the same page. Hyperlinks are generally represented by blue, underlined
text. Although it is possible to change how hyperlinks appear to the user, we recommended against
it; users expect a consistent user interface for Web pages.

An absolute link is a hyperlink that specifies the full URL of the destination. Example:

aviationweather.gov

Relative links are hyperlinks to documents in relation to the location of the
current document. You do not need to specify the server name in the URL. Example:

Glossary

embedded in a file in the directory
/seia/ will take a user to the
glossary file in the same directory. If you're reading
this book online, try it out right here: Glossary.

You can make a Web page open up in a new browser window by specifying a target
window:

Glossary

If there is no browser window named glossary_window, a
new window will pop up. However, you should use this feature
sparingly because the appearance of new windows can be confusing to
users. Furthermore, a number of users have pop-up ad blockers
installed; these ad blockers will also prevent legitimate windows from
popping up. If you're reading this book online, try it out right
here: Glossary.

You can also link to specific locations within a document
so that your user doesn't have to scroll down to find a
particular item on the page.
To accomplish this, first you have to mark the location in the document to which you
need to link. For example,

DNS

Then you can link to that location within the file with:

see the glossary entry for DNS

If you're reading this book online, try it out right here: see the glossary entry for DNS. Note that if you want
to link to another location within the same file you can omit the file
name, e.g., DNS.

You will often see a question mark followed by form variables at the end
of a URL; this is called the query string. For example,

rec.aviation.student newsgroup

The variables in this query string are hl (headline
language?) and group. Most Web programming APIs provide convenient facilities for reading
the values of query string variables. If you're reading this online,
try out the link above with its French-language headers.

Breaks

All whitespace is treated equally in HTML, meaning that spaces, tabs,
and linebreaks are all rendered as single spaces. To force a newline
to occur, you need to use a tag.

Here are some common breaks:

 	Tag
 	Code Example
 	Typical Rendering

		
	Paragraph

	<p>
	
		
	<p>
"I'll be seeing you,"
he said.
</p>
<p>
Then he walked away.
</p>

	
		
	
"I'll be seeing you,"
he said.

Then he walked away.

	
	

	
	
		
	Line Break

	

	
		
	Carson's Plumbing

123 Main St.

Seattle, WA 98101

	
		
	Carson's Plumbing

123 Main St.

Seattle, WA 98101
	
	

	
	
		
	Horizontal Rule

	<hr>
	
		
	And they lived happily
ever after.
<hr>
The End

	
		
	And they lived happily
ever after.

The End
	
	

	
	

Notice that
 and <hr> have no closing tags.
Additionally, the </p>
tag is optional; the browser assumes that, when it encounters a new <p>
tag, the old paragraph has ended.

Lists

The most common types of lists are ordered lists, in which the browser
places a number before each list item, and unordered lists, which appear
as a series of bulleted items. You can also create definition lists, useful
for online dictionaries or glossaries.

 	Tag
 	Code Example
 	Typical Rendering

		
	Ordered List

	
	
		
	Alaska summer survival gear:

rations for each occupant
one axe or hatchet
one first aid kit

Common training airplanes:

<ol type=A>
Cessna 172
Diamond DA20
Piper Tomahawk

Class B VFR Weather Minimums:
<ol type=i>
3 statute miles visibility
clear of clouds

	
		
	Alaska summer survival gear:

	rations for each occupant

	one axe or hatchet

	one first aid kit

Common training airplanes:

	Cessna 172

	Diamond DA20

	Piper Tomahawk

Class B VFR Weather Minimums:

	3 statute miles visibility

	clear of clouds

	
	

	
	
		
	Unordered List

	
	
		
	Checklist for Mexican Flying:

proof of airplane ownership
proof of liability insurance
pilot's license and medical
seldom asked-for documents:

 radio station license
 radio operator's license

border-crossing flight plan

	
		
	Checklist for Mexican Flying:

	proof of airplane ownership

	proof of liability insurance

	pilot's license and medical

	seldom asked-for documents:

 	radio station license

	radio operator's license

	border-crossing flight plan

	
	

	
	
		
	Definition List

	<dl>
	
		
	<dl>
<dt>IFR
<dd>Instrument Flight Rules
<dt>VFR
<dd>Visual Flight Rules
<dt>VOR
<dd>Very High Frequency Omni Ranging
radio navigation beacon
</dl>

	
		
	
	IFR

	Instrument Flight Rules

	VFR

	Visual Flight Rules

	VOR

	Very High Frequency Omni Ranging
radio navigation beacon

	
	

	
	

Images

Images are stored as separate files, not part of the HTML page. An image can
be included in a page as follows:

This tag instructs the user's browser to make a new request, possibly
to a different server than the one from which the HTML document was
obtained, for the image.

There are many optional attributes for images. The most important are
the width and height attributes; by telling
the browser the size of the image, it can render the entire Web page,
leaving space for the image, before it has downloaded the image file
itself.

 	Attribute
 	Code Example
 	Typical Rendering

		
	Dimensions

	width/ height
	
		
	<img width=100 height=100
src="http://www.eveandersson.com/alex.jpg">

	
		
	
	
	

	
	
		
	Border

	border
	
		
	<img width=100 height=100 border=2
src="http://www.eveandersson.com/alex.jpg">

	
		
	
	
	

	
	
		
	Alignment

	align
	
		
	<img align=right
width=100 height=100
src="http://www.eveandersson.com/alex.jpg">
Canine-American

	
		
	
Canine-American
	
	

	
	
		
	Alignment

	align
	
		
	<img align=left
width=100 height=100
src="http://www.eveandersson.com/alex.jpg">
Canine-American

	
		
	
Canine-American
	
	

	
	
		
	Horizontal Space (on both sides)

	hspace
	
		
	<img hspace=10
align=left width=100 height=100
src="http://www.eveandersson.com/alex.jpg">
Canine-American

	
		
	
Canine-American
	
	

	
	
		
	Vertical Space (top and bottom)

	vspace
	
		
	<img vspace=10
width=100 height=100
src="http://www.eveandersson.com/alex.jpg">

	
		
	
	
	

	
	

Tables

Here are the tags used when creating HTML tables:

	<table>, </table> 	start and end a table

	<tr>, </tr>	table row

	<td>, </td>	table cell

	<th>, </th>	table heading; like a table cell except that the text is bold and centered

Many of these tags can have attributes, e.g. to specify alignment, borders, cell spacing and padding, and
background colors. Examples:

 	Code Example
 	Typical Rendering

		
	<table border=2
 cellspacing=5
 cellpadding=5>
<tr>
 <th>Year</th>
 <th>Revenue</th>
 <th>Expenditures</th>
 <th>Profits</th>
</tr>
<tr>
 <td>1999</td>
 <td>$58,295</td>
 <td>$73,688</td>
 <td>$(15,393)</td>
</tr>
<tr>
 <td>2000</td>
 <td>$902,995</td>
 <td>$145,400</td>
 <td>$757,595</td>
</tr>
</table>

	
		
	

 	Year
 	Revenue
 	Expenditures
 	Profits

 	1999
 	$58,295
 	$73,688
 	$(15,393)

 	2000
 	$902,995
 	$145,400
 	$757,595

	
	

	
		
	<!-- reduce the
cellspacing and
right-align the
text in the cells -->

<table border=2
 cellspacing=2
 cellpadding=5>
<tr>
 <th>Year</th>
 <th>Revenue</th>
 <th>Expenditures</th>
 <th>Profits</th>
</tr>
<tr>
 <td>1999</td>
 <td align=right>
 $58,295</td>
 <td align=right>
 $73,688</td>
 <td align=right>
 $(15,393)</td>
</tr>
<tr>
 <td>2000</td>
 <td align=right>
 $902,995</td>
 <td align=right>
 $145,400</td>
 <td align=right>
 $757,595</td>
</tr>
</table>

	
		
	

 	Year
 	Revenue
 	Expenditures
 	Profits

 	1999
 	
 $58,295
 	
 $73,688
 	
 $(15,393)

 	2000
 	
 $902,995
 	
 $145,400
 	
 $757,595

	
	

	
		
	<!-- remove the
border -->

<table border=0
 cellspacing=2
 cellpadding=5>
<tr>
 <th>Year</th>
 <th>Revenue</th>
 <th>Expenditures</th>
 <th>Profits</th>
</tr>
<tr>
 <td>1999</td>
 <td>$58,295</td>
 <td>$73,688</td>
 <td>$(15,393)</td>
</tr>
<tr>
 <td>2000</td>
 <td>$902,995</td>
 <td>$145,400</td>
 <td>$757,595</td>
</tr>
</table>

	
		
	

 	Year
 	Revenue
 	Expenditures
 	Profits

 	1999
 	$58,295
 	$73,688
 	$(15,393)

 	2000
 	$902,995
 	$145,400
 	$757,595

	
	

	
		
	<!-- shade every
other row -->

<table border=0
 cellspacing=2
 cellpadding=5>
<tr bgcolor="#cecece">
 <th>Year</th>
 <th>Revenue</th>
 <th>Expenditures</th>
 <th>Profits</th>
</tr>
<tr bgcolor=white>
 <td>1999</td>
 <td>$58,295</td>
 <td>$73,688</td>
 <td>$(15,393)</td>
</tr>
<tr bgcolor="#cecece">
 <td>2000</td>
 <td>$902,995</td>
 <td>$145,400</td>
 <td>$757,595</td>
</tr>
</table>

	
		
	

 	Year
 	Revenue
 	Expenditures
 	Profits

 	1999
 	$58,295
 	$73,688
 	$(15,393)

 	2000
 	$902,995
 	$145,400
 	$757,595

	
	

	

Forms

To collect data from users, use the form tag:

<form method=POST action=/register/new>

The action is the URL to which the form is submitted,
which may correspond to a computer program in the server file system,
e.g., a Java Server Page, a PHP or Perl script, etc.

The form's method can be either GET or
POST. The only difference is that, with
method=GET, the variables that the user submits are
presented in the query string of the following page's URL. This is
useful if you want the user to be able to bookmark the resulting page.
However, if the user is expected to enter long strings of data,
method=POST is more appropriate because some old browsers
only handle query strings containing fewer than 256 characters (newer
browsers can handle a few thousand). Note further that if you use the
GET method, the form variable values will appear in the
server access log and could create a security or privacy risk.

 	Code Example

		
	<form method=POST action=/survey/demographic>
<input type=hidden name=user_id value=2205>
Age: <input type=text size=2>

Sex: <input type=radio name=sex value=m>male
 <input type=radio name=sex value=f>female

What are you interested in (check all that apply)?
<input type=checkbox name=interest value="aerobatics">Aerobatics
<input type=checkbox name=interest value="helicopters">Helicopters
<input type=checkbox name=interest value="IFR">IFR
<input type=checkbox name=interest value="seaplanes">Seaplanes

Where do you live?
 <select name=continent_live>
 <option value=north_america>North America
 <option value=south_america>South America
 <option value=africa>Africa
 <option value=europe>Europe
 <option value=asia>Asia
 <option value=australia>Australia	
 </select>

Which continents have you visited?

 <select multiple size=3 name=continent_visited>
 <option value=north_america>North America
 <option value=south_america>South America
 <option value=africa>Africa
 <option value=europe>Europe
 <option value=asia>Asia
 <option value=australia>Australia	
 </select>

Describe your favorite airplane trip:

<textarea name=favorite_trip_story rows=5 cols=50></textarea>
<p>
<input type=submit value="Continue">
</form>

	
	

 	

	
		Typical Rendering
	

	
		
	

Age:

Sex: male
 female

What are you interested in (check all that apply)?
Aerobatics
Helicopters
IFR
Seaplanes

Where do you live?

 North America

South America

Africa

Europe

Asia

Australia	

Which continents have you visited?

 North America

South America

Africa

Europe

Asia

Australia	

Describe your favorite airplane trip:

	
	

	

Special Characters

A wide variety of non-alphanumeric characters can be specified in HTML. Here is a small sampling:

 	Entity
 	Code Example
 	Typical Rendering

		
	n, tilde

	ñ
	
		
	piñata

	
		
	piñata
	
	

	
	
		
	e, acute accent

	é
	
		
	café

	
		
	café
	
	

	
	
		
	inverted question mark

	¿
	
		
	¿Qué pasa?

	
		
	¿Qué pasa?
	
	

	
	
		
	non-breaking space

	
	
		
	a b

	
		
	a b
	
	

	
	
		
	greater-than

	>
	
		
	4 > 3

	
		
	4 > 3
	
	

	
	
		
	less-than

	<
	
		
	5 < 6

	
		
	5 < 6
	
	

	
	
		
	copyright

	©
	
		
	© 2004

	
		
	© 2004
	
	

	
	
		
	pound sterling

	£
	
		
	£50

	
		
	£50
	
	

	
	

A more complete special character reference can be found at
http://webmonkey.wired.com/webmonkey/reference/special_characters/.

HTML Document Structure

Up to this point, we have looked at individual tags within an HTML document.
But what is the overall structure of an HTML document?

HTML documents are broken into two main sections: the head and the body.
The head contains information pertaining to the entire document (most
importantly, the document's title). The body contains the content of
the page that appears within the browser window. Here is a basic
HTML document:

<html>
<head>
 <title>This is the Title</title>
</head>
<body>
 ... This is the content of the page. ...
</body>
</html>

News pages often include instructions that the browser refetch the
page. Here's a tag, located in the head, from news.google.com:

<meta HTTP-EQUIV="refresh" CONTENT="900">

If you load this page into a browser and step back from the computer,
you should notice it updating itself every 900 seconds (15 minutes).

Also within the head, you can specify keywords and a description of the page. These tags were
originally intended to help search engines index pages, but now they are often ignored due
to abuse such as page authors using incorrect keywords to get more hits.

<META NAME="description" CONTENT="An owner's review of the Diamond Star DA40">
<META NAME="keywords" CONTENT="Diamond Star DA40 review Cirrus SR20 SR22">

You can modify properties of the Web page by using <body> tag attributes. For example:

<body bgcolor=white text=black link=blue vlink=purple alink=red>

However, you should use this sparingly; users are accustomed to the standard text colors
and may become frustrated if they can't tell what's a link and what isn't.

Cascading Style Sheets

Ever since the development of the Web there has been a tension between
people who focus on content and those who are more interested in
presentation. The content people want to get relevant information on
every page, possibly marking up a phrase with the H3 tag
to say "this is a headline". The presentation folks say things like
"move this two pixels to the right", "stick this in 18-point Helvetica
Bold and make it red", and "stick this in 14-point Times Italic".
They use tricks such as blank images for spacing and tags such as
font and color.

Here are some of the problems with filling up site content and scripts
with tags like font and color:

	Older browsers will ignore them; the latest and greatest tags tend
to have been introduced with the latest and greatest browsers;
H3 and EM, however, are understood by
browsers going back to the early 1990s.

	Newer browsers will ignore them; mobile phones, palmtops, and
hiptops often have very basic browsers that understand only the basic
tags.

	When your service hires a new graphic designer, the programmers
will have to edit 10,000 HTML documents and thousands of scripts.

A site-wide cascading style sheet addresses all of these issues.
Here's part of the cascading style sheet for the online version of
this book
(http://philip.greenspun.com/seia/style-sheet.css):

body {margin-left: 10% ; margin-right: 10%}

P { margin-top: 0.3em; text-indent : 2em }

P.stb { margin-top: 12pt }
P.mtb { margin-top: 24pt; text-indent : 0in}
P.ltb { margin-top: 36pt; text-indent : 0in}

p.marginnote { background: #E0E0E0;
 text-indent: 0in ; padding-left: 5%; padding-right: 5%; padding-top: 3pt;
 font-size: 75%}
p.bodynote { background-color: #E0E0E0 }
...

Each line of the style sheet gives formatting instructions for one
HTML element and/or a subclass of an HTML element. The
body tag is augmented so that all of the pages will have
extra left and right whitespace margins. The next directive, for the
P tag, tells browsers not to separate paragraphs with a
full blank line but rather to indent the first line of a new paragraph
by "2em" and add only a smidgen of blank vertical space ("margin-top:
0.3em"). Now paragraphs will be mushed together like those in a
printed book or magazine. Books and magazines do sometimes use
whitespace, however, mostly to show thematic breaks in the text. We
therefore define three classes of thematic breaks and tell browsers
how to render them. The first, "stb" (for "small thematic break")
will insert 12 points of white space. A paragraph of class "stb" will
inherit the 2em first-line indent of the regular P
element. For medium and large thematic breaks, more whitespace
is specified, as well as an override for the first-line indent.

How does one use a style sheet? Park it somewhere on the server in a
file with the extension ".css". This extension will tell the Web
server program to MIME-type it "text/css". Inside each document that
uses the cascading style sheet, put the following link
element inside the document head:

<LINK REL=STYLESHEET HREF="/seia/style-sheet.css" TYPE="text/css">

The first time the user's browser sees a page that references this
style sheet, it will come back and request
"http://philip.greenspun.com/seia/style-sheet.css"
before rendering any of the page. Note that this will slow down page
viewing a bit, although if all of my pages refer to the same site-wide
style sheet, users' browsers should be smart enough to cache it. If
you read ten chapters from this book online, for example, the browser
should request the common style sheet only once.

Okay, now the browser knows where to get the style sheet and that a small
thematic break should be rendered with an extra bit of whitespace. How
do we tell the browser that a particular paragraph is "of class stb"?
Instead of "<P>", we use

<P CLASS="stb">

An excellent CSS reference can be found at
http://www.w3schools.com/css/default.asp.

Frames

Frames consist of independent windows within a single Web page.
Usually each window can be scrolled separately. Often, when you click
a link, only one frame is updated with a new URL; the rest of the page
content stays the same.

Frames sounded like a good idea at the time (mid-1990s), but have
proven to be painful for both users and developers for the following
reasons:

	Frames waste screen space. Often frames have their own scrollbars, which take
up valuable space within the browser window. Furthermore, if you are only
interested in one frame and you scroll down within that frame, the other
frames remain in place, leaving less space for
the content you want.

	Frames make it difficult to bookmark pages. When the user
follows links that only update one frame, the URL of the page does not
change. Suppose Joe User visits a travel site, follows five links
within frames to get to a page about a tour of Mexico's Copper Canyon,
and then bookmarks that page; the bookmark will point to the front
page of the travel site, not the Copper Canyon page.

	Frames make it difficult to share pages. Suppose Joe User
wants to see if his friend is interested in going on the Copper Canyon
tour. While looking at the tour advertisement, he cuts and pastes the
URL from the browser's Address field into an email message. Joe's
friend clicks on the URL and gets the travel site home page, not the
interior page about the Copper Canyon tour.

	Frames make it difficult to report errors. Consider a
frame-using site with 200 scripts. A user isn't happy with the way a
page works. You ask her "What's the URL of the broken script?" She
looks in her browser's Address field and gives you the URL of the
site's front page.

	Frames make scrolling more difficult. Experienced users
know that you don't have to use a mouse to scroll through a Web page;
you can use the space bar or arrow keys. However, if the page uses
frames, the user must first click on the frame in which they wish to
scroll.

	Frames break the Reload button. In our hypothetical
travel site, if Joe User pushes Reload when looking at the Copper
Canyon page, the browser will often show the travel site home page,
because the URL has not been updated.

	Frames break the Back button. In some browsers, frames
break the Back button; if a user visits a frame-based site and clicks
100 times on interior links, a click on the Back button may take the
user back 101 steps rather than 1.

	Search engines send users to subpages. Suppose your site
uses two frames: one for navigation and one for content. Since each
frame is defined by a separate HTML document at a separate URL, a
public search engine such as Google is most likely to send the user to
the HTML document containing content only. That user will never see
the navigation frame and therefore won't be able to find the other
parts of your site.

HTML Considered Harmful?

Vanilla HTML imposes limits on how you can display and collect
information. Users can't drag and drop objects. There are no
sliders, no paintbrushes, no real-time direct manipulation of screen
objects. You can get around these limitations with a Java applet,
Flash, or code targeted at another browser plugin, but it might not be
a good idea.

Part of the genius of HTML and the Web is that all sites using HTML
markup and forms work the same. A user who has learned to use
amazon.com can apply his or her experience to using Google. Users
visit a Web site because they are looking for unique content and
services, not a unique interface.

Administration pages may constitute an exception to the "custom
interface is bad" rule. Suppose you hire and train customer service
agents who will be using the administration pages on a daily basis.
If a Macintosh/Windows-like drag-and-drop interface saves them a lot
of time (and you money), it is perfectly reasonable to write custom
code that will run in their browsers. You may have to spend fifteen
minutes training each agent, an unacceptably long time for a casual
user, but the long-run productivity dividends make it worthwhile.

The Future

In the practical world, HTML is king. In the conference rooms of
standards committees, however, it has been superseded by Extensible
Hypertext Markup Language (XHTML). Should you wish to keep up with
events in this area, visit http://www.w3.org/MarkUp/.

More

	visit your favorite Web page and use the browser command "View Source"

	HTML tag reference: http://www.w3schools.com/html/html_reference.asp (Web) and
HTML & XHTML: The Definitive Guide by Musciano and Kennedy (O'Reilly, 2002; print)

	Colors and their hexadecimal equivalents: http://falco.elte.hu/COMP/HTML/colors.html

	Special characters: http://webmonkey.wired.com/webmonkey/reference/special_characters/

	Cascading Style Sheets: http://www.w3schools.com/css/default.asp

Engagement Management

This section was primarily authored by Cesar Brea.

Most of this book is about building a great experience for the users. In parallel, however, it is important to ensure that you're creating a great experience for your client and his or her sponsors during your team's engagement with this client. These are the folks who will pay the bills and sing your praises.

Whether or not your praises get sung depends primarily on whether the application that you build delivers the benefits your client expects. Thus it is important at all times to keep in mind an answer to the question "What does my client expect?" One comforting factor is that you have a lot of control over the client's expectations. You are preparing the planning documents, you are writing the schedule, and you are bringing agendas to meetings with clients.

This chapter presents an engagement management worksheet, a lightweight tool for managing your relationship with the client.

Definitions:

	
Organization — the company or non-profit corporation for whom you are building the application; if you're working for an enormous enterprise, e.g. a university or Fortune 500, it is probably best to put down a particular department or division as the organization

	
Sponsor — the person whose budget is paying for this, or who is accountable for business results the application supports; in some cases, if you are working directly for the top manager at a small organization, the sponsor will be the board of directors

	
Client — the manager, typically a subordinate of the sponsor, who is your day-to-day contact

The worksheet has five sections:

	About the Organization

	About the Application

	About the Project

	Sign-Offs

	Assets Developed

We recommend you go through this formally with your team at least once a week. You can also use it to structure introductory and update meetings with your client, though the worksheet is primarily for your team.

About the Organization

To contribute to discussions about scope and which features are
critical, you need to understand what the client's organization is
trying to accomplish as a whole. It helps to know a bit about not
just the organization's purpose, but also about its size, resources,
and trends in the its fortunes.

It also helps to understand your client personally, and to understand his/her place and influence in the organization. How much can be forced through? What must be proven before the application will get support from higher management?

	Organization Name	

	Organization Purpose (does what? for whom?)	

	Organization Size (#people? annual budget?)	

	Organizational Performance (revenue/ profit/ budget trend, actual vs. plan)	

	Sponsor's Name, Title, and Organizational Role/ Level
(person whose budget is paying for this, or who is accountable for business results the application supports)	

	Client's Name, Title, and Organizational Role/ Level
(person responsible for what gets delivered)	

	Business Goals Served by Application
(doing exactly what "better, more, faster, cheaper", quantifiably how much?)	

	Client Clout (leader, has say, follower?)	

	Client Tenure In Job (new, mid-term, leaving) 	

	Client Technical Knowledge (none, some, lots) 	

About the Application

You want to document at a high level what the client wants, what you think the client should want (if different), and if there are differences, what the plan for persuading the client to follow your lead is. Some of these items are confusing and they are explained below.

	Topic	What the Client Wants	What We Think	Persuasion Plan*

	Capabilities for Site-Wide Administrator	First, Next, Nice	 	

	Capabilities for Registered Community Member	First, Next, Nice	 	

	Capabilities for Unregistered Casual Visitor	First, Next, Nice	 	

	Capabilities for User Class N	First, Next, Nice	 	

	Design Preferences	 	 	

	Performance Requirements	Page loading times	 	

	Technical Infrastructure Constraints	 	 	

	Application Maintenance Plans / Resources	 	 	

	Budget Through First Year	 	 	

	Deadlines	Soft launch, full rollout, first business benefit	 	

Capabilities for Site-Wide Administrator. For this as for other user class items, list those features that are needed first (must-have to launch the service in any form), next (what you'd do if you had a little bit of extra time and effort available), and nice-to-have. One example for the site-wide administrator user class is the following:

First = publish / manage content
Next = spam members with news/offers
Nice = track activity at individual registered user level

Design Preferences. If your organization has an existing Web site or sites you can probably infer their design style. If they suggest Flash, frames, a lot of JavaScript, you've got a potential problem and might want to point out that Google, Amazon, eBay, and the other successful Internet applications stick to a plain, fast-loading, easily understood design.

Performance Requirements/Expectations. Start by suggesting your own standards of loading times in seconds for the index page and more complex pages on the site. Let the client react to these suggestions. If everyone agrees on sub-second page loading times, that will make it a lot easier to kick out the worst user interface ideas, such as Flash introductions.

Technical Infrastructure Constraints. A small or medium-sized organization will generally have only expertise and staff appropriate for maintaining one kind of server. If you're not building the project on top of that server, you're implicitly asking the organization to spend $100,000 per year to bring in additional maintenance staff and/or push the new service out to a contract hosting organization. It is best to be clear up front about what will need to happen when it comes time to move the system into production.

Application Maintenance Plans / Resources. Who's going to look after what you deliver? How experienced is this person?

Budget. What is the total budget for hardware, software, integration, launch (including populating with content), training, and maintenance?

Deadlines. You'll probably use other tools to keep a detailed schedule. Use this worksheet to keep track of some high-level scheduling goals that both you and the client are working towards. Avoid the temptation of stereotypical technical people to think in terms of their own requirements and tasks. Your client and sponsor don't care about SQL. They care about the date on which full business benefit (FBB) is realized for this application, i.e., when is the system adding to profitability or otherwise contributing to organizational goals. Working back from that date and recognizing that one or two version launches will probably be necessary to achieve FBB, establish a public launch date. Working back from the public launch date, establish a soft launch or full user test date. Working back from that date establish a "feature-complete build" date on which the programmers are only testing and fixing bugs rather than adding new features.

Persuasion Plan. For each item in this section, if differences of opinion arise during initial meetings, document a persuasion plan. Here are some elements of the plan that should be sketched in this worksheet:

	battle worth fighting?

	objective: total victory? acceptable compromise?

	agreement driven by facts/logic? emotion/relationship?

	who else should be involved? (e.g., course staff or experienced alumni engineers)

About the Project

You'll have more detailed project management documents than this section of the worksheet. Consider this a high-level summary of how things are going. Try to have as many face-to-face meetings as possible, supplemented by telephone conferences and email, always anchoring the discussion with documents and written schedules. At a minimum, try to do a face-to-face meeting every three weeks and a phone call every week. This section of the worksheet should be updated every two weeks and will serve to flag any major problems.

It's tempting to blow this off, but projects need to be managed
face-to-face (at least occasionally) and in writing. These
disciplines force you and your client to be honest and realistic with
each other. You don't have to overdo it with endless meetings and
thick reports. A meeting at the beginning, middle, and end will do
just fine, supplemented by weekly phone calls. And the table below
will be plenty to flag major problems. Review it at least once every
two weeks.

	Date of most recent face-to-face meeting with Client	

	Date of most recent telephone meeting with Client	

	Date of most recent face-to-face meeting with Sponsor	

	Date of most recent telephone meeting with Sponsor	

	Have engagement letter (see below) signed by Client and Sponsor?	

	Current specs signed by Client and Sponsor?	

	Have weekly update meeting minutes, signed by Client?
(includes changes requested / agreed / under discussion)	

	Estimated delivery date vs. committed delivery date	

	Estimated budget vs. committed budget	

	Client mood (unhappy to happy)	

	Team mood	

	Mood of the average user who has tried the application	

A good engagement letter covers at least the following subjects:

	overall description of client situation and need

	summary of application to be built

	deadlines

	budgets

	mutual obligations

	other terms

Sign-Offs

Try to schedule comprehensive project reviews every three weeks or so, ideally face-to-face. Notes and decisions from those reviews should be signed by both sides (team or team leader and client). Requiring a signature has a way of forcing issues to closure.

Assets Developed

In building a profitable business or a professional reputation it is important to learn from and build on experience. Here are some of the things that you can take away from a project:

	experience with the problem domain and knowledge of how to solve a similar problem in the future

	lessons about dealing with this particular organization

	lessons about working with this particular team

	general lessons about teamwork and working with organizations of a particular size

	data models, stored procedures, and maybe even some page scripts for re-use on the next Internet applications that you build

	a good reference from the Client

	magazine or newspaper articles describing the application

	a "white paper" describing your team's achievement to a technical audience

	some sort of written summary describing your team's achievement to a business audience

At the midpoint of the project, write down what you're hoping to take away from the experience. At the end, write down what you actually did take away.

Grading Standards

These are the grading standards used by the authors in 6.171 at MIT.
If you're a student in 6.171, please keep these in mind throughout the
semester. If you're an instructor at another school, you might find
these a useful model.

Our overall goal in 6.171 is producing professionally competent
software engineers. If by the end of the semester, you have the skills
of a professional programmer you will get an A for the class.

A professional programmer ought to be able to pick worthwhile problems
to attack. Engineering is the art of building cost-effective
solutions to problems that society regards as significant. A person
who blindly does what he or she is told, without independently
figuring out the context and significance of the problem, is not doing
engineering. A professional programmer needs to be able to sit at a
meeting with decision-makers, prepared with substantial domain
knowledge, and make significant contributions to the discussion. In
evaluating your performance in 6.171, we look at (i) how well you've
steered your client into solving the most important problems for users
first, (ii) what you've said during in-class discussions of potential
projects, and (iii) whether you've made useful suggestions to other
teams in the realm of service design.

A professional programmer needs to be skilled at realizing
clean-sheet-of-paper designs: (i) taking vague organizational
aspirations and turning them into concrete specifications, (ii)
selecting appropriate tools for a substrate, (iii) building and
testing a prototype, (iv) using that prototype to obtain feedback from
users and the sponsoring organization, (v) implementing and launching
Release 1.0, (vi) refining the specs for Release 2.0 based on
experience with 1.0. In evaluating your performance in 6.171, we look
at whether you managed to launch your service to real users and how
successful your project was at meeting technical and organizational
goals. The mid-term exam is also aimed at figuring out whether you
can look at a desired user experience and perform the most critical
aspects of system design such as data modeling.

Notice that a critical element of the realization process,
selecting appropriate tools, requires that a programmer
maintain a network of professional colleagues. It is extremely risky
to pick software tools based on vendor claims, 99 percent of which
have proven to be, uh, optimistic. A programmer who can draw on a
group of friends and get unbiased information as to which tools are
reliable is much more effective than a programmer working in
isolation, reading press releases and advertising. You'll get extra
credit in 6.171 if you can say "I really liked feature X from Team Y's
project so I asked them how they did it and adapted their ideas and
code for our project."

A professional programmer needs to have a dedication to the quality of
the end-user experience. A coder, ripe for outsourcing to the Third
World, can unthinkingly implement whatever system design that results
from management and graphic designer whims. An engineer, however,
makes sure that what he or she is doing makes effective use of the
end-user's time, partially by reference to established principles of
user interface design and partially by conducting prototype tests with
a handful of potential users. In evaluating your performance in 6.171
we look at whether you made effective use of user testing, ideally
beyond the minimum required in the exercises.

A professional programmer is skilled in communicating. This means
writing documentation that will enable another programmer to take over
a project. Communicating also means writing white papers that explain
the significance of a problem, how it was attacked, and what the
results were. A programmer also ought to be good at making short oral
presentations that communicate the main points of a project to a
technical or non-technical audience. Finally, a programmer should know
how to make good use of face-to-face interactions with users and
customers. In evaluating your performance in 6.171, we ask "Can we
understand all of this structure and source code purely by reading
what is in the /doc directory?" We also look at (i) whether you gave
clear and compelling presentations in class, (ii) whether your client
felt that he or she was kept apprised of project status, and (iii) the
quality of your final overview document.

A professional programmer is not afraid of a challenge. An MIT
graduate certainly should never be afraid of a challenge. You get
extra points in 6.171 for tackling a hard problem and solving it in
an elegant or clever way.

Speaking of challenges... most software projects are too difficult for
one person to tackle alone. Consequently, a professional programmer is
good at working within a team, managing risks, establishing
milestones, and meeting deadlines. In evaluating your performance in
6.171, we'll look at whether you helped your projectmates function as
a team and whether you discharged the responsibilities for the role(s)
that you assumed within the team.

For a software engineer to have a successful career, he or she must
have a portfolio of projects that actually launched and customers who
were satisfied and say "I would really like to work with this engineer
again." We look at whether you did the last painful 5 percent of work
that is necessary to push your project out into the hands of real
users and how your client feels about the overall experience of
working with you.

Glossary

	[bookmark: AbstractURL]Abstract URL

	An abstract URL is one without a file extension, e.g.,
http://foobar.com/contact-info rather than
http://foobar.com/contact-info.html or
http://foobar.com/contact-info.aspx. If you publish only
abstract URLs, you have the freedom to change your implementation
technology without breaking users' bookmarks and links from other sites.

	[bookmark: AcceptanceTest]Acceptance Test

	A test performed by an end-user or system owner
to verify that the delivered software functions correctly and meets requirements.

	[bookmark: ACIDTest]ACID Test

	A test proposed by IBM in the 1960s for transaction database
management systems: Atomicity, Consistency, Isolation, Durability. An
ACID-compliant database such as Oracle or SQL Server can guarantee
that two updates will be done together (atomicity), that rules for
integrity can be established and enforced (consistency), that
concurrent users won't see each others' half-finished work
(isolation), that information won't be lost even if a hard disk dies
(durability). See the "Basics" chapter
and SQL for Web Nerds at http://philip.greenspun.com/sql/ for more.

	[bookmark: ApplicationServer]Application Server

	see "Middleware"

	[bookmark: AOLserver]AOLserver

	Released in early 1995 as "NaviServer", AOLserver remains one of
the most powerful Web server programs on the market and it is free and
open-source. It is a multi-threaded server that provides a lot of
support for connecting to relational database management systems.
AOLserver is documented at www.aolserver.com.

	[bookmark: Apache]Apache

	Vies with Microsoft Internet Information Server for the title of
"world's most popular Web server". Apache was never very technically
advanced, but it was the best of the free and open-source Web servers
for a time and grew to dominance. More: http://philip.greenspun.com/panda/server.

	[bookmark: API]API

	Application Programming Interface. An abstraction barrier between
custom/extension code and a core, usually commercial, program. The goal
of an API is to let you write programs that won't break when you upgrade
the underlying system. The authors of the core program are saying,
"Here are a bunch of hooks into our code. We guarantee and document
that they will work a certain way. We reserve the right to change the
core program, but we will endeavor to preserve the behavior of the API
call. If we can't, then we'll tell you in the release notes that we
broke an old API call."

	[bookmark: ASP]ASP

	Active Server Pages, introduced by Microsoft in the mid-1990s.
This is the standard programming system for Internet applications
hosted on Windows servers. It is bundled with Internet Information
Server (IIS) when you buy Windows. The fundamental idea is that you
write HTML pages with little embedded bits of Visual Basic, C# or
other languages, that are interpreted by the server.

	[bookmark: AuditTrail]Audit Trail

	A record of past activity. For instance, a log of all past values held by columns
in a database row. Or a sequence of all cash register transactions over
the last three months. Or a print-out of all customer service interactions
related to a given order, regardless of whether communication takes place by telephone,
email, or live chat with a rep.

	[bookmark: Blog]Blog

	An online journal, published frequently (often daily). Readers can post comments
on each journal entry. Some blogs gain a wide readership, such as this one:
http://blogs.law.harvard.edu/philg/.
The term blog is a shortening of weblog.

	[bookmark: BozoFiler]Bozo Filter

	An individual user request that the server filter out
contributions from some particular other community member.

	[bookmark: CableModem]Cable Modem

	A cable modem is an Internet connection provided by a cable TV
operator, typically with at least 1.5 Mbits per second of download
bandwidth (50-100 times faster than modems that work over analog
telephone lines).

	[bookmark: Cache]Cache

	Computer systems typically incorporate capacious storage devices
that are slow (e.g., disk drives) and smaller storage devices that are
fast (e.g., memory chips, which are 100,000 times faster than disk).
File systems and database management systems keep recently used
information from the slow devices in a cache in the fast device.

	[bookmark: CGI]CGI

	Common Gateway Interface. This is a standard that lets
programmers write Web scripts without depending on details of the Web
server program being used. Thus, for example, an Internet service
implemented in CGI could be moved from a site running AOLserver to a site running Apache. CGI scripts, which run as separately
launched operating system processes, are typically very slow compared
to scripts than run inside a Web server program.

	[bookmark: ClientServer]Client/Server

	In the 1960s, computers were so expensive that each company could
have only one. "The computer" ran one program at a time, typically
reading instructions and data from punch cards. This was batch
processing. In the 1970s, that computer was able to run several
programs simultaneously, responding to users at interactive terminals.
This was timesharing (it would be nice if modesty prevented one of the authors
from noting that this was developed by his lab at MIT circa 1960). In
the 1980s, companies could afford lots of computers. The big computers
were designated servers and would wait for requests to come in
from a network of client computers. The client computer might
sit on a user's desktop and produce an informative graph of the
information retrieved from the server. The overall architecture was
referred to as client/server. Because of the high cost of
designing, developing, and maintaining the programs that run on the
client machines, Corporate America is rapidly discarding this
architecture in favor of Intranet: Client machines run a simple
Web browser and servers do more of the work required to present the
information.

	[bookmark: CodeFreeze]Code Freeze

	The point at which all coding stops, usually to allow software
testing without the introduction of new bugs.

	[bookmark: CollaborativeFiltering]Collaborative Filtering

	If you can persuade a group of people to rate movies on a 1-10
scale, for example, it becomes possible to identify people whose
tastes are similar. Given a new movie that only a few people have
seen and rated, a collaborative filter can identify others in
the community who might like it. Some e-commerce sites provide this
service, noting for example that "customers who bought the product
you're looking at right now also tended to buy these other three
things". Collaborative filtering is easy to program, but ultimately is
a poor substitute for human reviewers and editors.

	[bookmark: CommunitySite]Community Site

	A community site exists to support the interaction of an online
community of users. These users typically come together because of a
shared interest and are most vibrant when there is an educational
dimension, i.e., when the more experienced users are helping the novices
improve their skills.

	[bookmark: Compression]Compression

	When storing information in digital form, it is often possible
to reduce the amount of space required by exploiting regular patterns in
the data. For example, documents written in English frequently contain
"the". A compression system might notice this fact and represent the
complete word "the" (24 bits) with a shorter code. A picture containing
your friend's face plus a lot of blue sky could be compressed if the
upper region were described as "a lot of blue sky". All popular Web
image, video, and sound formats incorporate compression.

	[bookmark: ContentRepository]Content Repository

	Instead of having one SQL table for every different kind of
content on a site, e.g., articles, comments, news, questions,
answers, it is possible to define a single content
repository table that is flexible enough to store all of these in
one place. This approach to data modeling makes it simpler to perform
queries such as "show me all the new stuff since yesterday" or "show
me all the content contributed by User #37". With a content
repository, it is also easier to program and enforce consistent
site-wide policies regarding approval, editing, and administration of
content.

	[bookmark: Cookie]Cookie

	The Cookie protocol allows a Web application to conveniently
maintain a "session" with a particular user. The Web server sends the
client a "magic cookie" (piece of information) that the client is
required to return on subsequent requests.

The original specification is at
http://home.netscape.com/newsref/std/cookie_spec.html.

	[bookmark: DataModel]Data Model

	A data model is the structure in which a computer program stores
persistent information. In a relational
database, data models are built from tables. Within a table,
information is stored in homogeneous columns, e.g., a column named
registration_date would contain information only of type
date. A data model is interesting because it shows what
kinds of information a computer application can process. For example,
if there is no place in the data model for the program to store the IP
address from which content was posted, the publisher will never be able
to automatically delete all content that came from the IP address of a
spammer.

	[bookmark: DNS]DNS

	The Domain Name System translates human-readable hostnames, e.g.,
www.google.com, into machine-readable and
network-routable IP addresses, e.g., 216.239.57.100. DNS
is a distributed application in that there is no single computer that
holds translations for all possible hostnames. A domain registrar,
e.g., www.register.com, records
that the domain servers for the google.com domain are at particular IP
addresses. A user's local name server will query the name
servers for google.com to find the translation for the hostname
www.google.com. Note that there is nothing magic about
"www"; it is merely a conventional name for a computer that runs a Web
server. The procedure for translating a hostname such as froogle.google.com
is the same as that applied for www. Round robin
DNS was an early load-balancing technique in which multiple
computers at different IP addresses were configured to serve an
application; browsers asking the DNS servers to translate the site's
hostname would get different answers depending on when they asked,
thus spreading out the users among the multiple computers hosting the
application.

	[bookmark: DTD]DTD

	Document Type Definition. The specification of an XML document's schema,
including its elements, attributes, and data structure. DTDs are used for
validating that an XML document is well-formed. You can also
share a DTD with your collaborators in order to agree upon the structure of
XML documents that will be exchanged.

	[bookmark: DynamicSite]Dynamic Site

	A dynamic site is one that is able to collect information from
User A, serve it back to Users B and C immediately, and hide it from
User D because the server knows that User D isn't interested in this
kind of content. Dynamic sites are typically built on top of relational database management systems because these
programs make it easy to organize content submitted by hundreds of
concurrent users. An example of a simple dynamic site would be a
classified ad system.

	[bookmark: Emacs]Emacs

	World's most powerful text editor, written by Richard Stallman (RMS)
in 1976 for the Incompatible Timesharing System (ITS) on the PDP-10s at
MIT. Emacs has been subsequently ported to virtually every kind of
computer hardware and operating system between 1976 and the present
(including the Macintosh, Windows 95/NT, and every flavor of Unix).
Good programmers tend to spend their entire working lives in Emacs,
which is capable of functioning as a mail reader, USENET news reader,
Web browser, shell, calendar, calculator, and Lisp
evaluator. Emacs is infinitely customizable because users can write
their own commands in Lisp. You can find out more about Emacs
at
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-519A.pdf
(Stallman's 1979 MIT AI Lab report), at
www.gnu.org
(where you can download the source code for free), or by reading
Learning
Emacs (Cameron et al 1996; O'Reilly). If you want to program Emacs
and then you'll want
Writing
Gnu Emacs Extensions (Bob Glickstein 1997; O'Reilly).

	[bookmark: Filter]Filter

	The best Web server APIs allow the programmer to
say "run this little piece of code before [or after] serving files
that match a particular URL pattern." Filters that run after a file
is served are useful if you want to add extra logging to an
application. Filters that run before a file is served or a script is
run are useful for implementing a security policy in a consistent
fashion, rather than relying on the authors of individual scripts to
insert an authentication check.

	[bookmark: Firewall]Firewall

	A computer that sits between a company's internal network of
computers and the public Internet. The firewall's job is to make sure
that internal users can get out to enjoy the benefits of the Internet
while external crackers are unable to make connections to machines
behind the firewall.

	[bookmark: FlatFile]Flat-file

	A flat-file database keeps information organized in a structured
manner, typically in one big file. A desktop spreadsheet application is
an example of a flat-file database management system. These are useful
for Web publishers preparing content because a large body of information
can be assembled and then distributed in a consistent format. Flat-file
databases typically lack support for processing transactions (inserts
and updates) from concurrent users. Thus, collaboration or e-commerce
Web sites generally rely on a relational database
management system as a back-end.

	[bookmark: GIF]GIF

	Graphical Interchange Format. Developed in 1987 by CompuServe, this
is a way of storing compressed images with up to 256 colors. It became
popular on the Web because it was the only format that could be
displayed in-line by the first multi-platform Web browser (NCSA
Mosaic). The JPEG image file format results in much better looking
images with much smaller sized files.

	[bookmark: HTML]HTML

	Hyper Text Markup Language. Developed by Tim Berners-Lee, this
specifies a format for the most popular kind of document distributed over
the Web (via HTTP). Documented sketchily in
this book, documented badly
at http://www.w3.org, and documented well in
HTML: The Definitive Guide
(Musciano and Kennedy 2002; O'Reilly).

	[bookmark: HTTP]HTTP

	Hyper Text Transfer Protocol. Developed by Tim Berners-Lee, this
specifies how a Web browser asks for a document from a Web server.
Question such as "how does a server tell the browser that a document
has moved?" or "how does a browser ask the time that a document was
last modified?" may be answered by reference to this protocol, which
is documented badly at http://www.w3.org and documented well in
various books such as HTTP:
The Definitive Guide (David Gourley, Brian Totty; O'Reilly 2002).

	[bookmark: IIS]IIS

	Internet Information Server. A threaded Web server program that
is included by Microsoft when you purchase the Windows operating
system.

	[bookmark: Java]Java

	Java is first a programming language, developed by Sun
Microsystems around 1992, intended for use on the tiny computers
inside cell phones and similar devices. Java is second an
interpreter, the Java virtual machine, formerly compiled into popular
Web browsers (back when Netscape Navigator was popular and before Sun
sued Microsoft). Java is third a security system that purports to
guarantee that a program downloaded from an untrusted source on the
Internet can run safely inside the interpreter. Java is the only
realistic way for a Web publisher to take advantage of the computing
power available on a user's desktop. Java is generally a cumbersome
language for server-side software development. For more background on
the language, see the "Java" chapter from Database Backed Web
Sites at http://philip.greenspun.com/wtr/dead-trees/53008.htm.

	[bookmark: JPEG]JPEG

	Joint Photographic Experts Group. A bunch of people who sat down
and designed a standard for image compression, conveniently titled "IS
10918-1 (ITU-T T.81)". This standard works particularly well for
24-bit color photographs. C-Cube Microsystems came up with the JFIF
standard for encoding color images in a file. Such a file is what
people commonly refer to as "a JPEG" and typically ends in ".jpg" or
".jpeg". The main problem with JFIF files is that they record only 8
bits per color, a vastly smaller range of intensities than is present
in the natural world and significantly smaller than the 12- and
14-bits-per-color signals that come out of the best digital scanners
and cameras. This defect and more are remedied in the JPEG 2000
standard. See www.jpeg.org for more
about the standard.

	[bookmark: LDAP]LDAP

	Lightweight Directory Access Protocol. A typical LDAP server is a
simple network-accessible database where an organization stores
information about its authorized users and what privileges each user
has. Thus, rather than create a new employee account on 50
different computers, the new employee is entered into LDAP and granted
rights to those 50 systems. If the employee leaves, revoking all
privileges is as simple as removing one entry in the LDAP directory.
LDAP is a bit confusing because original implementations were
presented as alternatives to the Web and the relational database
management system. Nowadays many LDAP servers are implemented using
standard RDBMSes underneath, and they talk to the rest of the world via
XML documents served over HTTP.

	[bookmark: Linux]Linux

	A free version of the Unix operating system, primarily composed of
tools developed over a 15-year period by Richard Stallman and Project
GNU. However, the final spectacular push was provided by Linus Torvalds
who wrote a kernel (completed in 1994), organized a bunch of programmers
Internet-wide, and managed releases.

	[bookmark: Lisp]Lisp

	Lisp is the most powerful and also easiest-to-use programming
language ever developed. Invented by John McCarthy at MIT in the late
1950s, Lisp is today used by the most sophisticated programmers
pushing the limits of computers in mathematical physics, computer-aided
engineering, and computer-aided genetics. Lisp is also used by
thousands of people who don't think of themselves as programmers at
all, only people who want to define shortcuts in AutoCAD or the Emacs
text editor. The best introduction to Lisp is also the best
introduction to computer science: Structure and Interpretation of Computer Programs
(Abelson and Sussman 1996; MIT Press).

	[bookmark: LogAnalyzer]Log Analyzer

	A program that reads a Web server's access log file (one line per request
served) and produces a comprehensible report with summary statistics,
e.g., "You served 234,812 requests yesterday to 2,039 different
computers; the most popular file was /samoyed-faces.html".

	[bookmark: MagnetContent]Magnet Content

	Material authored by a publisher in hopes of establishing an online
community. In the long-run, a majority of the content in a successful
community site will be user-authored.

	[bookmark: Middleware]Middleware

	

A vague term that, when used in the context of Internet applications,
means "software sold to people who don't know how to program by people
who don't know how to program." In theory, middleware sits between your
relational database management system and your application program and
makes the whole system run more reliably, just like adding a bunch of
extra moving parts to your car would make it more reliable.

	[bookmark: MIME]MIME

	Multi-Purpose Internet Mail Extensions. Developed in 1991 by Nathan
Borenstein of Bellcore so that people could include images and other
non-plain-text documents in e-mail messages. MIME is a critical
standard for the World Wide Web because an HTTP server answering a
request always includes the MIME type of the document served. For
example, if a browser requests "foobar.jpg", the server will return a
MIME type of "image/jpeg". The Web browser will decide, based on this
type, whether or not to attempt to render the document. A JPEG image
can be rendered by all modern Web browsers. If, for example, a Web
browser sees a MIME type of "application/x-pilot" (for the .prc files
that PalmPilots employ), the browser will invite the user to save the
document to disk or select an appropriate application to launch for this
kind of document.

	[bookmark: MultiModal]Multi-modal

	A multi-modal user interface allows you to interact with a piece
of software in a variety of means simultaneously. For example, you
may be able to communicate using a keyboard
or stylus, or with your voice, or even with hand or face gestures.
These are all "modes" of communication.
The advent of GPRS makes simultaneous voice/keypad
interaction possible on cellular telephones.

	[bookmark: OperatingSystem]Operating System (OS)

	A big complicated computer program that lets multiple simultaneously
executing big complicated computer programs coexist peacefully on one
physical computer. The operating system is also responsible for
hiding the details of the computer hardware from the application
programmers, e.g., letting a programmer say "I want to write ABC into a
file named XYZ" without the programmer having to know how many disk
drives the computer has or what company manufactured those drives.
Examples of operating systems are Unix and Windows XP. Examples of
things that try to be operating systems, but mostly fail to fulfill the
"coexist peacefully" condition, are Windows 98 and the Macintosh OS.

	[bookmark: Oracle]Oracle

	Oracle is the most popular relational database management system
(RDBMS). It was developed by Larry Ellison's Oracle Corporation in the
late 1970s.

	[bookmark: Perl]Perl

	Perl is a scripting language developed by Larry Wall in 1986 to
make his Unix sysadmin job a little easier. It unifies a bunch of
capabilities from disparate older Unix tools. Like Unix, Perl is
perhaps best described as "ugly but fast and useful". Perl is free,
has particularly powerful string processing operators, and quickly
developed a large following and, therefore, a large library for CGI
scripting. For more info, see www.perl.com or www.perl.org.

Historical Note: Lisp programmers forced to look at Perl code would
usually say "if there were any justice in this world, the guys who
wrote this would go to jail." In a rare case of Lisp programmers
getting their wish, in 1995 Intel Corporation persuaded local
authorities to send Randal Schwartz, author of Learning
Perl (O'Reilly 2001), to the Big House for 90 days (plus 5
years of probation, 480 hours of community service, and $68,000 of
"restitution" to Intel). Sadly, however, it seems that Schwartz's
official crime was not corrupting young minds with Perl syntax and
semantics. Most Unix sysadmins periodically run a program called
"crack" that tries to guess user passwords. When crack is successful,
the sysadmins send out email saying "your password has been cracked;
please change it to something harder to guess." Obviously they do not
need the passwords since they have root access to all the boxes and
can read any of the data contained on them. At a university, you get
paid about $50,000/year for doing this. In Oregon if you do this for
a multi-billion-dollar company that has recently donated $100,000 to
the local law enforcement authorities, you've committed a crime. See
http://www.lightlink.com/spacenka/fors/
for more on State of Oregon v. Randal Schwartz.

	[bookmark: Persistence]Persistence

	The continued existence of data. A persistence mechanism is something
that provides long-term data storage, even when the application that created the
data is no longer running. Examples include RDBMSes, XML
documents, and flat-file databases.

	[bookmark: RDBMS]RDBMS

	Relational Database Management System. A computer program that lets
you store, index, and retrieve tables of data. The simplest way to look
at an RDBMS is as a spreadsheet that multiple users can update. The
most important thing that an RDBMS does is provide transactions.

	[bookmark: RequestProcessor]Request Processor

	Portion of a Web server program that decides how to handle an
incoming request. A well-designed request processor enables a
publisher to expose only abstract URLs,
e.g., "glossary" rather than "glossary.html". The job of the request
processor is to dig around in the file system and find a document to
deliver or a script to execute.

	[bookmark: RMS]RMS

	Richard M. Stallman. In 1976, he developed Emacs,
the world's best and most widely used text editor. He went on to develop
gcc, the most widely used compiler for the C programming language, and won
a $240,000 MacArthur fellowship in 1990. Stallman is the founder of the
free software movement (see www.fsf.org),
and Project GNU, which gave rise to Linux.

	[bookmark: Robot]Robot

	In the technologically optimistic portion of the 20th century,
robots were intelligent anthropomorphic machines that understood human
speech, interpreted visual scenes, and manipulated objects in the real
world. In the technologically realistic 21st century, robots are
absurdly primitive programs that do things like "Go look up this book
title at three different online bookstores and see who has the lowest
price; fail completely if any one of the online bookstores has added a
comma to their HTML page." Also known as intelligent agents (an intellectually
vacuous term but useful for getting tenure if you're a university
professor). Some simple but very useful examples of robots are the
spiders or Web crawlers that fill the content database at public search
engine sites such as AltaVista.

	[bookmark: Scalable]Scalable

	

A marketing term used to sell defective software to executives at big
companies. Internet applications are fundamentally concerned
with processing updates from thousands of concurrent users. This is
what database management systems were built for. Smart engineers
build Web applications so that if the database is up and running, the Web
site will be up and running. Period. Adding more users to the site
will inevitably require adding capacity to the database management
system, no matter what other software is employed. The thoughtful
engineer will realize that a provably scalable site is one that
relies on no other software besides the database management system and
the thinnest of software layers on top, such as Apache, AOLserver, or
Microsoft IIS.

	[bookmark: SemanticTag]Semantic Tag

	The most popular Web markup language is HTML, which provides for
formatting tags, e.g., "this is a headline" or "this should be rendered
in italics." This is useful for humans reading Web pages. What would be
more useful for computer programs trying to read Web pages is a
semantic tag, e.g., "the following numbers represent the price of
the product in dollars", or "the following characters represent the
date this document was initially authored".
More: http://www.w3.org/RDF/.

	[bookmark: SOAP]SOAP

	Simple Object Access Protocol. A way for a Web server to call a
procedure on another, physically separate Web server, and get back a
machine-readable result in a standardized XML format. Useful for
building a Web page that combines dynamic information pulled from
multiple foreign sites. Also useful for building a single Web form
that can perform multiple actions at foreign sites on behalf of a
user. See http://msdn.microsoft.com/soap/
and http://www.w3.org/TR/SOAP/.

	[bookmark: SGML]SGML

	Standard Generalized Markup Language, standardized in 1980. A
language for marking up documents so that they could be parsed by
computer programs. Each community of people that wishes to author and
parse documents must agree on a Document Type Definition (DTD), which is
itself a machine-parsable description of what tags a marked-up document
must or may have. HTML is an example of an SGML DTD. XML is a
simplified descendant of SGML.

	[bookmark: SoftLaunch]Soft Launch

	Placing a server on the public Internet but only telling a handful
of people about it gives the developers a chance to see how real users
interact with the system, fix bugs, and see how the servers handle a
gradually increasing load. A soft launch like this is much safer than
a Big Bang-style launch in which the server is made public just as a
massive advertising campaign airs.

	[bookmark: Spider]Spider

	A spider or Web crawler is a program that exhaustively surfs
all the links from a page and returns them to another program for
processing. For example, all of the Internet search engine sites rely
on spider robots to discover new Web sites and add them to their index.
Another typical use of a spider is by a publisher against his or her own
site. The spider program makes sure that all of the links function
correctly and reports dead links.

	[bookmark: SQL]SQL

	Structured Query Language. Developed by IBM in the mid-1970s as a
way to get information into and out of relational
database management systems. A fundamental difference between SQL
and standard programming languages is that SQL is declarative. You
specify what kind of data you want from the database; the RDBMS is
responsible for figuring out how to retrieve it. A full tutorial on
SQL is available at http://philip.greenspun.com/sql/.

	[bookmark: StaticSite]Static Site

	A static Web site comprises content that does not change depending
on the identity of the user, the time of day, or what other users might
have contributed recently. A static Web site is typically built using
static documents in HTML format with graphics in GIF format and images
in JPEG format. Collectively, these are referred to as static
files. Contrast with a dynamic site, in which content can be
automatically collected from users, personalized for the viewer, or
changed as a function of the time of day.

	[bookmark: TCPIP]TCP/IP

	Transmission Control Protocol and Internet Protocol. These are the
standards that govern transmission of data among computer systems. They
are the foundation of the Internet. IP is a way of saying "send these
next 1000 bits from Computer A to Computer B". TCP is a way of saying
"send this stream of data reliably between Computer A and Computer B"
(it is built on top of IP). TCP/IP is a beautiful engineering
achievement, documented beautifully in
TCP/IP Illustrated, Volume 1
(W. Richard Stevens 1994; Addison-Wesley).

	[bookmark: transaction]Transaction

	A transaction is a set of operations for which it is
important that all succeed or all fail. On an e-commerce site, when a
customer confirms a purchase, you'd like to send an order to the
shipping department and simultaneously bill the customer's credit card.
If the credit card can't be billed, you want to make sure that the
order doesn't get shipped. If the shipping database can't accept the
order, you want to make sure that the credit card doesn't get billed.
RDBMSes such as Oracle
provide significant support for implementing transactions.

	[bookmark: UDDI]UDDI

	Universal Description, Discovery, and Integration. Like a worldwide
Yellow Pages, this is an XML-based registry where companies can list
the Web services they provide. More:
uddi.org.

	[bookmark: Unix]Unix

	An operating system developed by
Ken Thompson and Dennis Ritchie at Bell Laboratories in 1969, vaguely
inspired by the advanced MULTICS system built by MIT. Unix really
took off after 1979, when Bill Joy at UC Berkeley released a version
for Digital's VAX minicomputer. Unix fragmented into a bewildering
variety of mutually incompatible versions, thus enabling Microsoft
Windows to take over most of the server market. The only surviving
variants of Unix are Sun's Solaris and Linux.

	[bookmark: URL]URL

	Uniform Resource Locator, also Uniform Resource Identifier (URI).
A way of specifying the location of something on the Internet, e.g.,
"http://philip.greenspun.com/seia/glossary" is the URL for this
glossary. The part before the colon specifies the protocol (HTTP). Legal alternatives include encrypted
protocols such as HTTPS and legacy protocols such as FTP, news,
gopher, etc. The part after the "//" is the server hostname
("philip.greenspun.com"). The part after the next "/" is the name of the file on
the remote server. Also see "Abstract URL". More: http://www.w3.org/Addressing/.

	[bookmark: USENET]USENET

	A threaded discussion system that today connects millions of users
from around the Internet into newsgroups such as
rec.photo.equipment.35mm. The original system was built in the late
1970s and ran on one of the wide-area computer networks later subsumed into
the Internet.

	[bookmark: VersionControlSystem]Version Control System

	A system for keeping track of multiple versions of a file, usually
source code. Version control systems are most useful when many developers
are working together on a project, to help prevent one developer from overwriting
another developer's changes, and to make
it easy to revert to a previous version of a file. An excellent open-source version
control system is CVS, Concurrent Versions System: www.cvshome.org.

	[bookmark: VoiceXML]VoiceXML

	A markup language used for the development of voice applications. Using
only a traditional Web infrastructure, you can create applications that are
accessible over the telephone. With VoiceXML, you can specify call flow,
speech recognition, and text-to-speech. See the "Voice" chapter
for more.

	[bookmark: W3C]W3C

	The World Wide Web Consortium. The W3C is a vendor-neutral industry
consortium that promotes standards for the World Wide Web. Popular W3C
standards include HTML, HTTP,
URL, XML,
SOAP, VoiceXML, and many more:
www.w3.org.

	[bookmark: WAP]WAP

	Wireless Application Protocol. A set of standard communication
protocols for wireless devices. See the "Mobile" chapter
for more.

	[bookmark: WebService]Web Service

	These days, the term Web service typically refers to a
modular application that can be invoked through the Internet. The consumers
of Web services are other computer applications that communicate, usually
over HTTP, using XML standards including SOAP,
WSDL, and UDDI. Sometimes Web service will
still be used in the older sense of the word, as a user-facing application
like amazon.com or photo.net.

	[bookmark: Weblog]Weblog

	See Blog.

	[bookmark: WindowsNT]Windows NT/2000/XP

	A real operating system that can run
the same programs with more or less the same user interface as the
popular Windows 95/98 system. Windows NT was developed from scratch by
a programming team at Microsoft that was mostly untainted by the people
who brought misery to the world in the form of Windows 3.1/95. The
latest versions of Windows work surprisingly well.

	[bookmark: WML]WML

	Wireless Markup Language. An out-of-date markup language for the
development of mobile browser applications. Replaced by XHTML-MP.

	[bookmark: Workflow]Workflow

	The management of steps in a business processes. A workflow
specifies what tasks need to be done, in what order (sometimes
linearly, sometimes in parallel), and who has permission to perform
each task. Most tasks are performed by humans but they can also be
automated processes.

	[bookmark: WSDL]WSDL

	Web Services Description Language. A way for a Web server to
answer, in a machine-readable form, the question "what services do you
provide?" with said services ultimately to be provided by SOAP. See http://www.w3.org/TR/wsdl.

	[bookmark: WYSIWYG]WYSIWYG

	What You See Is What You Get. A WYSIWYG word processor, for
example, lets a user view an on-screen document as it will appear
on the printed page, e.g., with text in italics appearing on-screen in
italics. This approach to software was pioneered by Xerox Palo Alto
Research Center in the 1970s and widely copied since then, notably by
the Apple Macintosh. WYSIWYG is extremely effective for structurally
simple documents that are printed once and never worked on again.
WYSIWYG is extremely ineffective for the production of complex documents
and documents that must be maintained and kept up-to-date over many
years. Thus Quark Xpress and Adobe FrameMaker facilitated a tremendous boom
in desktop publishing, while Microsoft FrontPage and similar WYSIWYG
tools for Web page construction have probably hindered development of
interesting Web applications.

	[bookmark: XHTML]XHTML

	The next generation of HTML, compliant with XML standards. Although
it is very similar to the current HTML, it follows a stricter set of rules, thus
allowing for better automatic code validation. This structure also makes it possible
to embed other XML-based languages such as MathML (for equations) and
SMIL (for multimedia) inside of XHTML pages. More:
www.wdvl.com/Authoring/Languages/XML/XHTML/

	[bookmark: XHTMLMP]XHTML-MP

	XHTML Mobile Profile. A strict subset of XHTML, used as a markup language
for wireless application development. See the "Mobile" chapter for more.

	[bookmark: XML]XML

	Extensible Markup Language, a simplified version of SGML with enhanced features for defining hyperlinks.
As with SGML, it solves the trivial problem of defining a syntax for
exchanging structured information but doesn't do any of the hard work of
getting users to agree on semantic structure.

To the Instructor

Thank you for considering this textbook. This section is intended to
help you use it effectively for students at the following levels:

	juniors and seniors in Computer Science taking a one-term cram
course in Internet application design (the MIT way)

	juniors and seniors in Computer Science taking a one-year
"capstone" course in software engineering

	seniors in Computer Science doing a capstone independent study
project or bachelor's thesis

	sophomores in Computer Science or non-majors spending a semester
learning about building modern information systems

With respect to these goals, we will treat the following issues: (1)
what to do during lectures, (2) how to find clients for your students,
(3) what to put on exams, (4) how to find and use alumni mentors, and
(5) evaluation and grading.

Before plunging into these issues, let's take a step back and reflect
on the rationale for teaching this material at all.

A Step Back

Why is software engineering part of the undergraduate computer science
curriculum? There are enough mathematical and theoretical aspects of
computer science to occupy students through a bachelor's degree. Yet
most schools have always included at least some hands-on programming.
Why? Perhaps there is a belief that someone with an engineering degree
ought to be able to engineer the sorts of systems that society demands.
In the 1980s, users wanted desktop applications. Universities adapted
by teaching students how to build a computer program that interacted
with a single user at a time, processing input from the mouse and
keyboard and displaying results graphically. Starting in the early
1990s, however, demand shifted toward server-based Internet
applications. With 1000 users potentially attempting the same action at
the same instant, the technical challenge shifts to managing concurrency
and transactions. Given stateless protocols such as HTTP, software
engineers must learn to develop stateful user experiences. Given the
ubiquitous network and evolving standards for remote procedure calls,
students can learn practical ways of implementing distributed
computing.

Once we've taught students how to build Internet applications, it is
gratifying to observe their enormous potential. A computer science
graduate in 1980 was, by his or her efforts alone, able to reach only
a handful of users. Thanks to the ubiquitous Internet, a computer
science student today is able to write a program that hundreds of
thousands of people will use before that student ever graduates. One
of our student teams, for example, built a photo-sharing service
launched to the users of photo.net.
Through March 2003, the software built by the students is holding more
than 500,000 photographs on behalf of roughly 33,000 users.

What deep principles do they need to learn?

To contribute to the information systems of the next twenty years, in
addition to teaching the material in the core computer science curriculum, we
have to teach students:

	object-oriented design where each object is a Web service
(distributed computing, demonstrating the old adage that "The exciting
thing in computer science is always whatever we tried twenty years ago that
didn't work.")

	about concurrency and transactions

	how to build a stateful user experience on top of stateless protocols

	about the relational database management system

	that they're only as good as their last user test

Universities have long taught theoretical methods for dealing with
concurrency and transactions. The Internet raises new challenges in
these areas. A dozen users may simultaneously ask for the same
airline seat. Twenty responses to a discussion forum question may
come in simultaneously. The radio or hardwired connection to a user
may be interrupted halfway through an attempt to register at a site.
Starting in 1994 there has been a convergence of solutions to these
problems, with the fundamental element of the solution being the
relational database management system (RDBMS). At a school like MIT,
where the RDBMS has not been taught, this textbook gives an
opportunity to introduce SQL and data modeling with tables. At a
school with an existing database course, this textbook can be used to
get students excited about using the RDBMS as a black box before they
embark on a more formal course where the underpinnings are explained.

Scientists measure their results against nature. Engineers measure
their results against human needs. Programmers ... don't measure
their results. As a final overarching deep principle, we need to
teach students to measure their results against the end-user
experience. Anyone can build an Internet application. The
applications that are successful and have impact are those whose data
model and page flow permit the users to accomplish their tasks with a
minimum of time and confusion.

What Skills Do They Need to Learn?

In a world where it seems that every villager in India has learned
Java, we want our graduates to be more than mere coders. A graduate
who can do nothing more than sit in a corner and code Java classes
from specs is doing a job that is certain to be sent to a low-wage
country eventually.

We'd like our students to be able to take vague and ambitious
specifications and turn them into a system design that can be built
and launched within a few months, with the features most
important-to-users and easiest-to-develop built first, and the
difficult bells and whistles deferred to a second version. We'd like
our students to know how to test prototypes with end-users and refine
their application design once or twice within even a three-month
project. We'd like our students to be able to think on their feet and
speak up with constructive criticism at design reviews.

These desires translate into some aspects of how we use this textbook
at MIT: real clients so that students are exposed to the vagueness and
confusion of real-world problems; user testing built into the homework
problems; "lecture" time primarily devoted to student-student
interaction, with the instructors moderating the discussion.

Survey courses considered helpful?

Suppose that one were convinced that the foregoing are the correct
topics to teach a computer science undergraduate. Should we teach
them one at a time, in-depth? Or should we start with a survey course
that teaches all the concepts simultaneously in the context of building
actual applications (this book)?

Students in a traditional computer science curriculum will

	spend a term learning the syntax of a language

	spend a term learning how to implement lists, stacks, hash tables

	spend a term learning that sorting is O(n log n)

	spend a term learning how to interpret a high-level language

	spend a term learning how to build a time-sharing operating system

	spend a term learning about the underpinnings of several different
kinds of database management systems

	spend a term learning about AI algorithms

Students in MIT course 6.001 (Structure and Interpretation of
Computer Programs, based on the Abelson/Sussman textbook of the
same name) learn all of the above in one semester, albeit not very
thoroughly. By the end of the semester, they're either really excited
about the challenges in computer science or... they've wised up and
switched to biology.

Survey courses have been similarly successful on the electrical
engineering side of our department. In the good old days, MIT offered
6.01, a linear networks course. Students learned RLC networks in
detail. But they forgot why they'd wanted to major in electrical
engineering. Today the first hardware course is 6.002, where students
play with op-amps before learning about the transistor!

One of the most celebrated courses at MIT is the Aeronautics and
Astronautics department's Unified Engineering. Here is the
first semester's description from the course catalog:

Presents the principles and methods of engineering, as well as their
interrelationships and applications, through lectures, recitations,
design problems, and labs. Disciplines introduced include: statics,
materials and structures, dynamics, fluid dynamics, thermodynamics,
materials, propulsion, signal and system analysis, and circuits. Topics:
mechanics of solids and fluids; statics and dynamics for bodies systems
and networks; conservation of mass and momentum; properties of solids
and fluids; temperature, conservation of energy; stability and response
of static and dynamic systems. Applications include particle and rigid
body dynamics; stress and deformations in truss members; airfoils and
nozzles in high-speed flow; passive and active circuits. Laboratory
exposure to empirical methods in engineering; illustration of principles
and practice. Design of typical aircraft or spacecraft elements.

Note that this is all presented in one semester, albeit with double
the standard credit hours. For almost every topic in the course
description, MIT has one or more full-semester courses exclusively
devoted to that topic.

Experiences like these led us to develop Software Engineering
for Internet Applications and the corresponding survey course
in building computer systems for collaboration.

Using This Book for a Thesis Project

Most computer science programs require bachelor's candidates to engage
in an open-ended development project, either as a "capstone" project
or a thesis. Oftentimes the freedom inherent in this requirement
serves as a quantity of rope sufficient for a student to hang him or
herself. The student might choose to build anything from a graphics
system to a compiler. A faculty member supervising the project might
have to do a fair amount of work merely to determine what standards
are appropriate in the student's chosen area. For example, if it is a
compiler project, is it reasonable to expect the student to develop a
complete Ada compiler in Lisp in one year? The core of an ML
type-inferencer? A simple optimizing modification to gcc?

If you agree with the student to work within the framework of
Software Engineering for Internet Applications,
the project has enough
structure that risk is minimized, yet enough flexibility that the
student's creativity can flower. For example, using this book means
that the student will be using a relational database management
system. All of the code that you have to review will be in SQL. Yet
the student is free to experiment with the operating system and HTML
glue environment of his or her choice. The student will be building
an Internet application that has user registration, content
management, a discussion forum, and full-text search, and a combination
of the book and the public Internet provide a good context for
evaluating the student's achievement in these areas. Yet almost any
client will put before the student idiosyncratic challenges that
should give the student an opportunity to build something unusual.

We consider Mozart to have been creative although he did not develop
new musical forms, relying instead on the structure laid down by
Haydn. A student will accomplish more if he or she can spend the
first months of a project working rather than figuring out what field
in which to work, roughly what the scope of the project should be,
what tools to choose from an unlimited palette, etc.

The One-Term Cram Course

When teaching this material in one semester, it is important that
students set up their environments before the first class meeting. A
student might have to reinstall operating systems and relational
database management systems, contact technical support, or abandon an
initial choice of tools.

The One-Year Thorough Course

There are several possible reasons for spreading this material over a
full year:

	students who don't appreciate or can't handle a gung-ho pace

	students working individually rather than in teams (more coding
per student)

	opportunity to go deeper into some of the underlying concepts and
systems

	opportunity to launch services to real users mid-way through the
course

If we had an extra semester, we would devote more attention to the
inner workings of the relational database management system,
demystifying the SQL parser and the various methods for handling
concurrency. We would have the students look more carefully at the
HTTP standard, possibly building their own simple Web server. We
would cover some of the more exotic Web Consortium work, such as
semantic Web and RDF, and multi-modal interfaces. We would devote more
time to performance measurement and engineering. We would push the
teams and clients to launch their sites to real users as quickly as
possible so that the students could learn from user activity and user
feedback.

It would be nice to include a section on high-level formal
specification of page flow and data model. Unfortunately, as of 2005,
there are no tools available for this that compile into standard
executable languages such as SQL and Java. A quick glance at Unified
Modeling Language (UML) might make one think that this is a useful nod
in the direction of formal specification of Internet applications.
However, UML cannot be compiled into a working system nor can it
be verified against a system built in executable languages such as SQL
and Java. Even if students mastered the 150 primitives of UML, the
only thing that they would learn is that people in the IT industry can
get paid high salaries despite never having learned to write clear
English prose. Object Role Modeling (ORM), however, is a high-level
formal specification language that looks promising for automatic code generation
in the coming years.

A Course for Sophomores

Less mature engineers are going to have more difficulty choosing an
appropriate set of tools, more difficulty with tool installation and
administration, and are going to be less resourceful in seeking
assistance when appropriate. Thus if you are using this textbook with
sophomores, it is probably a good idea to reduce flexibility and
increase the physical rootedness of the students and the amount of
hands-on assistance available.

Juniors and seniors might have had summer jobs working with Oracle
and PHP on Debian Linux or with Microsoft .NET and SQL Server. They
will probably be most productive if they can continue using their
familiar tools. Furthermore, having a variety of tools in use during
the semester provides all the students with an opportunity to learn a
little bit about other development styles. The main risk to having
students choose their tools is that some get sucked in by software
vendor hype and elect to use, for example, three-tiered architectures
and application servers. At MIT the students have three weeks before
the start of the semester in which to install their chosen tools. All
of the MIT students who decided to go the application server route
were unable to get their systems up and running in time to do the
"Basics" problem set and hence were forced to drop the class.

For sophomores, it is less likely that students will have extensive
development experience with a particular set of tools and the risk of
a student choosing an inappropriate set of tools is increased. It may
be best to standardize on one set of tools so that everyone in the
class is using the same systems.

Universities spend hundreds of millions of dollars on dormitories so
that students can drink beer and sleep together, but are seemingly
reluctant to spend a dime on shared workspaces for students. This is
a shame because for learning most technical material it is much more
effective for students to work together and live separately. A
student working in a common laboratory with TAs and fellow students
nearby won't get stuck on something simple, such as "how do I launch
SQL*Plus?" If you can possibly arrange a room with a bunch of desks
and PCs and make that the center of your class, this will be an
enormous help to less experienced students.

What to Do During Lectures

We try to keep our mouths shut during class meeting times (two
80-minute sessions per week). Students in 6.171 are learning to
present their work to other engineers and to offer on-the-fly
constructive criticism in response to an engineering presentation by
others. If we're talking, they're not learning these skills. At
various times in the semester, notably at the beginning of the course,
the students won't have anything to present. We might fill a meeting
time with a 25-minute lecture on RDBMS fundamentals, followed by a
collaborative project in which students break up into teams to
solve a data modeling problem.

At a minimum, the meeting room must have one Web browser connected to a
video projector. Ideally the room will also have extra Web
browsers and keyboards distributed around the room, one for every 3-6
students, and blackboards or whiteboards for collaborative work by
small teams.

Here is a sample schedule, the goal of which is to drive the student
projects to public launch as quickly as possible:

	Week -3: students informed that they are accepted into the class,
thus giving them time to prepare their computing environments.

Inform students that they ought to make sure their environment
works by building at least one Web page that returns data queried from
the RDBMS. They may simply wish to do "Basics" problems 1 through 6.

	Week 1, Meeting 1: schedule, grading standards, and other
bureaucracy relegated to handouts and a URL reference; we establish a
precedent that class time is devoted to engineering. After a 5-minute
"welcome to the course" in which we explain what we want them to
learn, we give a 15-minute lecture on why online learning communities
are important and what are the required elements for a sustainable
online community. To get the students accustomed to the idea that
they are going to be speaking up in class, we pick a few examples of
online communities from the public Internet and ask students to
criticize the features and user interface. We follow this with a
20-minute introduction of the RDBMS. Remind students that they
must turn in the "Basics" problems in one week or be dropped from the
class.

	Week 1, Meeting 2: In grappling with the "Basics" problem set, the
students have now had a chance to work with SQL. We give a 20-minute
lecture on serialization and concurrency control in the RDBMS,
pointing out the practical differences between optimistic and
pessimistic locking. The rest of the class time is devoted to pitches
by prospective clients. The clients introduce themselves and explain
what they want to accomplish with their Internet application. Each
client should get about 5 minutes. For those projects where the
client is unable to present in person, an instructor gives the pitch
on behalf of the client.

	Week 2, Meeting 1: Students turn in the "Basics" problems.
Today is the day that you assign teams to clients, and hence today is
the day that you decide who is staying in the class. Drop anyone who
did not turn in the problem set. They are not capable of building
database-backed Web pages and hence are very unlikely to catch up.
Most of the class time is devoted to code review on the "Basics"
problems. You have secretly been surfing around before class looking
at source code from various students. You're looking to get a
discussion going on at least the following issues: (a) lack of
commenting or identified authorship, (b) error handling in the
comparative shopping problem, (c) different approaches to generating
unique keys in the face of concurrency, (d) escaping single quote
characters in the search pages, (e) user interface design for the
quote personalization system (tables versus bulleted list, "kill"
buttons versus checkboxes and a submit button), (f) different ways of
parsing XML. Spend the last 5-10 minutes of class with some hints on
working with the client. Students often have the most trouble
contacting their client. They'll say "I sent him email a week ago, but
he hasn't responded." Remind them to pick up the phone twice per day
until they get a phone or in-person meeting with their client.

(Giving students one week to do the "Basics" problem set seemed harsh to
us and hence we decided one term to give them two weeks to do it.
Rather than spreading the work out, the result was that most students
did nothing until two or three days before the due date and ended up
staying up all night.)

	Week 2, Meeting 2: Students break up into groups and work on a
data modeling problem, e.g., "design an airline reservation system".
The specification is open-ended, but you supply English-language
queries that they'll have to translate into SQL against their tables
and columns. A group can be one project team or two project teams
working together. Ideally the classroom will have many separate
blackboards. The instructors walk around answering questions and
coaching the groups. After 30-40 minutes, you ask two or three of the
best groups to present their work. After each presentation you
moderate a discussion of the merits of the data model and how much
work the RDBMS will have to do in answering the queries. You close
the meeting time by introducing the B-tree index and explaining how to
add indices to a data model to improve query performance.

	Week 3, Meeting 1: Students turn in their work on "User
Registration and Management". Class time is devoted to presentation
and discussion of different teams' approaches to the "User Registration"
chapter problems. At least a couple of teams will have been
successful in meeting with their clients and drafting solutions to the
"Planning" chapter. Devote 5-10 minutes of class time to discussing the
work of the farthest-along teams in this area as a way of inspiring
the rest of the class.

	Week 3, Meeting 2: Students turn in their work on "Planning" and
Exercises 1 through 3 in "Content Management" (up to but not including
the skeletal implementation). Class time is devoted to
presentation and discussion of teams' approaches to content management
data models. Consider breaking up into teams to take a single-table
data model and put it into Third Normal Form.

	Week 4, Meeting 1: Devoted to look and feel criticism of public
Internet applications and the more advanced teams's projects.

	Week 4, Meeting 2: Students complete all exercises in "Content
Management", including client sign-off. Class time devoted to team
presentations of work so far and plans for immediate future.

	Week 5, Meeting 1: Students complete all exercises in "Software
Modularity". Class time devoted to team presentations of their
design decisions and documentation.

	Week 5, Meeting 2: Students complete exercises in the "Discussion"
chapter up to, but not including the usability test.

	Week 6, Meeting 1: Students complete all exercises in
"Discussion" chapter except execution of the refinement plan. Class
time devoted to discussion of usability test results and whether the
numbers could have been predicted from the page flow and HTML designs.

	Week 6, Meeting 2: Students present their refined discussion
forum systems. Class time devoted to presentation of the refined
systems. Close with an exhortation that students spend the weekend
starting the "Mobile" and "VoiceXML" problems in parallel so that if they are
stuck with the tools they'll have an early warning.

	Week 7, Meeting 1: Students complete all exercises in the "Mobile"
chapter. Class time devoted to presentations and discussion of the
wireless interfaces to the applications.

	Week 7, Meeting 2: Students complete all exercises in the
"VoiceXML" chapter. Class devoted to presentations and discussion.
It would be very helpful to have an amplified telephone system so that
the entire class can hear interactions between a team's system and a
user.

	Week 8, Meeting 1: Students complete all exercises in the "Scaling
Gracefully" chapter. Take-home mid-term exam handed out (an individual
rather than a team project). Class discussion of scaling
exercises, ideally starting with each answer being presented by a
separate team.

	Week 8, Meeting 2: Exercises 1 and 2 from "Search" due.
Discussion of team designs for full-text search.

	Week 9, Meeting 1: Mid-term exam due. All exercises from the
"Search" chapter due. Class time devoted to discussion of exam
questions, answers, and implications.

	Week 9, Meeting 2: "Planning Redux" exercises due. Note that
the instructors must interview the clients as part of this chapter.
Team presentations of their work and plans for public launch.

What to put on exams

You might think that exams are unnecessary in a project-oriented
course such as this one. We give exams for the following reasons:

	we want to make sure that a student isn't being carried by his or
her teammates

	we want to make sure that students are reading and re-reading the
principles outlined in this textbook

	we want to make sure that students understand data modeling and
concurrency

	we want to see if a student is capable of writing good analyses
of Internet applications and compelling written justifications of his
or her design work

	by giving take-home exams rather than in-class quizzes we are able
to create an experience that will add to the students' skills

A good style of question involves asking the students to try out a
particular public Internet service and then build a data model that
would support what they've just seen. The students should then load
their data model and try to solve some SQL puzzles against them.

Another good question asks the students to visit a public Internet
application, try it out, and write a critique of the user experience.
In our exam we include the following admonition: "Your critique should
be clear concerning what is wrong with the current system. Your
critique should be explicit about what to change, such that a junior
programmer could implement your improvements without depending on his
or her own taste and judgment."

You might also want to ask the students to propose and justify a
hardware and software architecture to handle a specific service and
user load.

Note that all of these questions are sufficiently open-ended to lead
to interesting classroom discussion. Note further that these exams
must be graded by someone experienced with software engineering and
data modeling.

Finding Clients

A real-world client has much to offer your students. A real-world
client will phrase problems in vague and general terms. A real-world
client will bring content and users to flesh out what would otherwise
be a purely academic exercise. A real-world client can provide
students with performance feedback. A real-world client forces
students to confront the challenge of demonstrating their achievement
to a non-technical audience.

What can your students offer real-world clients? In some cases, a
student team will build a launchable, documented, maintainable,
high-performance system that the client can run for years. This happy
result, however, is not necessary in order for a client to get value
from participating in a course based on this textbook. Oftentimes
working with a student team will enable a client to make decisions and
formulate precise specifications. Most people are unable to make good
decisions about information systems without seeing a prototype. We
don't promise clients that their student team will solve their problem,
but we do promise clients that the experience will clarify their
goals and, whatever else, will be over in 3.5 months.

Working groups within your own university can be a good source of
clients. Groups that need to work with off-campus people, such as
alumni, parents, or colleagues at other institutions, are especially
logical candidates for online community support. Non-profit
organizations can also be good sources of projects because they are
usually much more patient than for-profit corporations and can afford
to (a) wait for your semester to start, and (b) start over if
necessary at the end of your semester in the event that the student
team does not produce a launchable system. For-profit organizations
can provide well-organized and highly motivated clients. Both
cash-starved startups and small neglected departments within larger
companies may be attracted to working with a student team. With
any potential client, however, try to make sure that they have enough
resources to gather content and users.

A bit of diversity among the client projects is nice, but at their
cores all of the client projects should be online communities. At the
very least, a project needs to have a discussion forum where User A can
ask a question that User B will answer. Much of the value in this
course comes from student teams comparing their differing approaches
to the similar challenges of user registration, content management,
and discussion support. If a client wants a 100-percent voice
interface, their team won't be able to learn from other teams very
effectively nor will other teams building primarily Web browser sites
be able to learn from the voice-browser-only team. If a client says
"I want an online store", just respond "no". If a client says "I want
an online store where the customers talk to each other," respond with
"Okay, but the students aren't going to build the checkout pages until
the end of the term, and you'll have to offer them summer jobs if you
want e-commerce admin pages."

Here are some criteria for selecting among clients:

	spirit of the project; does it look like an online learning
community in which the users share a common purpose and the more
experienced will teach the less experienced?

	availability of magnet content and users; is the client dreaming
or does he or she have compelling unique content that will draw users
or some other way of bringing users to the application?

	availability of the client; the university calendar is unforgiving
and the client needs to be able to respond within 24 hours to a
request for a critique

	long-term resources; it is great if students can go into a job
interview and say "point your Web browser at http://www.foobar.org to
see what I built," but this won't happen unless the client has the
long-term wherewithal to host and maintain an Internet application

Alumni Mentors

In 1950 tuition at Ivy League schools was about $500 and the average
new car cost nearly $2000 (4X tuition). In 2003 tuition is
approaching $30,000 per year and a beautiful Honda Accord can be had
for $15,000 (1/2X tuition). Thanks to improvements in design and
manufacturing engineering, the relative price of an automobile has
fallen by a factor of 8 while its quality has improved dramatically.
Why has the cost of a university education soared relative to
automobiles and other manufactured goods? Consider the classroom
circa 1950: 25 students, 1 teacher, 1 blackboard, 25 chairs. Compare
to the classroom experience circa 2003: 25 students, 1 teacher, 1
blackboard, 25 chairs. Even if universities were to exercise
restraint in the hiring of administrative staff, the cost of tuition is
doomed to outstrip inflation because education is the only industry in
America where there are no productivity improvements.

This problem is not too severe for teaching Physics 101. The school
pays one instructor and fills a room with 300 tuition-paying students.
But teaching software engineering effectively requires that students
be given an apprenticeship. No school will want to pay the army of
instructors that would represent an optimum-sized teaching staff for a
software engineering project course like this one. Even if a school
had infinite money, professors and graduate students are probably the
wrong people for the job. How much experience does the average
academic computer scientist have in comparing a collection of software
source code to a statement of user requirements and suggesting
improvements?

We can solve the staffing and expertise problems in one stroke by
bringing in alumni volunteers. A typical school has 10 or 20 times as
many alumni as current students. If students are broken up into teams
of 3 and each volunteer can assist two teams, we only need to convince
approximately 1 percent of our alumni to volunteer each semester.
As working software engineers, our graduates will likely do a much
better job of assisting students than a fresh graduate student would
and perhaps even a better job in some areas than a seasoned
professor.

A course based on Software Engineering for Internet Applications is
uniquely amenable to alumni mentoring because all of the students'
work is accessible from any Web browser anywhere on the Internet.
Between the plans and the /doc directory and the mandated "View
Source" links at the bottom of every student-authored page, an alumnus
3000 miles away ought to be able to contribute almost as effectively
as someone who is willing to come down to campus two nights per week.

Evaluation and Grading

The daily cost of attending a top university these days is about the
same as the daily rate to stay at the Four Seasons hotel in Boston,
living on room-service lobster and champagne. It is no wonder, then,
that the student feels entitled to have a pleasant experience.
Suppose that you tell a student that his work is substandard. He may
be angry with you for adversely affecting his self-esteem. He may
complain to a dean, who will send you email and invite you to a
meeting. You've upheld the standards of the institution but what
favor have you done yourself? Remember that the A students will
probably go on to graduate school, get PhDs, and settle into
$35,000/year post-docs. The mediocre students are the ones who are
likely to rise to high positions in Corporate America, and these are
the ones from whom you'll be asking for funding, donations of computer
systems, etc. Why alienate paying customers and future executives
merely because they aren't willing to put effort into software
engineering?

In teaching with Software Engineering
for Internet Applications, you have a
natural opportunity to separate evaluation from teaching. The quality
of the user experience and the solution engineered by a team is best
evaluated by their client and the end-users. If the client responds
to the questionnaire in Exercise 3 of the Planning Redux chapter by
saying "Our team has solved all of our problems and we love working
with them", what does your opinion matter? Similarly if a usability
study shows that test users are able to accomplish tasks quickly and
reliably, what does your opinion of the page flow matter? During most
of this course we try to act as coaches to help our students achieve
high performance as perceived by their clients and end-users. We use
every opportunity to arrange for students to get real-world feedback
rather than letter grades from us.

The principal area where we must retain the role of evaluator is in
looking at a team's documentation. The main question here is "How
easy would it be for a new team of programmers, with access only to
what is in the /doc directory on a team's server, to take over the
project?"

Contract

This is an agreement made __________________________ (today's date)
between __________________ ("Client") and the Student Team whose
members are listed below.

Ownership of computer programs developed during the software
engineering course in which the Student Team is enrolled remains with
the individual students who developed that software. However, in
exchange for the Client's advice, supervision, and participation in
the class, the undersigned members of the Student Team grant the
Client a perpetual royalty-free license to use that software.

The intent of this agreement is that the students are free to reuse
the software that they've developed in future projects, in which, for
example, user registration and a discussion forum are required. The
Client has the right, without payment of any fees, to continue
operating an Internet or intranet service based on the software
developed by the Student Team and may hire any programmers whom it
wishes to make modifications and extensions to the code.

The Client acknowledges that this software is delivered with no
warranty. The Student Team is licensing this software to the Client
under the terms of the GNU General Public License ("GPL"), the full
text of which is available from http://www.gnu.org/licenses/gpl.txt.
The effect of this license is that the Client cannot demand that
Student Team fix bugs beyond the last day of the class. Nor can the
Client hold members of the Student Team responsible for any economic
losses that result from the operation of software delivered by the
Student Team.

All copyrighted site content provided by the Client remains the
property of the Client or the content author(s).

Signed by the Client

Print name:_________________________________

for Organization:___________________________

by (signature):_____________________________

Signed by the Student Team

Print name:_________________________________

Signature: _________________________________
Date: ____________

Print name:_________________________________

Signature: _________________________________
Date: ____________

Print name:_________________________________

Signature: _________________________________
Date: ____________

Print name:_________________________________

Signature: _________________________________
Date: ____________

Print name:_________________________________

Signature: _________________________________
Date: ____________

About the Authors

Eve Andersson

Eve is Senior Vice President and Chair of the Bachelor of Science in Computer Science at Neumont University in
Salt Lake City, Utah.
She has engineered dozens of enterprise Web applications and a handful
of voice applications. Her open-source software for building online
communities and e-commerce sites has been adopted by thousands of
Internet application operators worldwide. Eve is a co-author of
Early Adopter VoiceXML (Wrox Press, 2001).

Eve holds a
B.S. from Caltech in Engineering and Applied Science, and an M.S. from
U.C. Berkeley in Mechanical Engineering (1998). She was Visiting
Professor of Computer Science at Galileo University in Guatemala in 2002,
where she led the development of the university's learning management
system.
She can recite the first few hundred digits of pi
from memory, although she confesses that she knows fewer than 100 digits of e.
More: eveandersson.com.

Philip Greenspun

Philip has been in and around the Massachusetts Institute of
Technology since 1979. In addition to teaching Software Engineering for
Internet Applications, the course in which this text is used, he has
helped teach many of the core electrical engineering classes,
including circuits, signals and systems, and probability theory.
Greenspun holds a commercial pilot's certificate with instrument,
multi-engine, seaplane, and helicopter ratings and has flown small
aircraft across most of the North American continent and portions of
three other continents.

In the mid-1990s, Greenspun founded the Scalable Systems for Online
Communities research group at MIT and spun it out into a profitable
$20 million (revenue) open-source enterprise software company.
Greenspun has participated in the design and engineering of more than
200 collaborative Internet applications.
More: philip.greenspun.com.

Andrew Grumet

Andrew holds a Ph.D. in Electrical