

 	
 [image: Nick Gittes and Alex. 1998.]

 	
 SQL for Web Nerds

 by Philip Greenspun

 [image: Alex. Harvard Yard 1998.]

 Preface

 	Introduction

 	Data modeling

 	simple queries: one table, one table with subquery, JOIN, JOIN with subquery, OUTER JOIN

 	more complex queries: GROUP BY, aggregates, HAVING

 	Transactions (inserts and updates)

 	triggers

 	views

 	style

 	escaping to the procedural world: PL/SQL and Java executing inside the Oracle server

 	trees

 	handling dates in Oracle

 	limits in Oracle; how they will bite you and how to work around them

 	tuning, what to do when your query runs too slowly

 	data warehousing, what to do when your query doesn't answer your questions

 	foreign and legacy data, making foreign Web sites look like local SQL tables

 	normalization

 Afterword

 Appendix A: Setting up your own RDBMS
 Appendix B: Getting real work done with Oracle

 More:

 	the complete Oracle doc set is available online, as a link from www.oracle.com; some particularly interesting books are the Application Developer's Guide and Concepts

 	Oracle 10g: The Complete Reference

 philg@mit.edu

 	
 [image: Alex holding a Cool Water Kong. Harvard Yard.]

 	
 Preface

 to
 SQL for Web Nerds
by
 Philip Greenspun

 [image: Dublin, Ireland.]

The last thing the world needs is another SQL tutorial. So here's
ours ...

 We could wallpaper all 500 rooms of the computer science building at MIT with different SQL tutorials from various publishers. Yet when it came time to sit down with our students and teach them this material, we couldn't bear to use any of the commercial texts.

 The CS department at MIT doesn't offer a course in SQL (or in any other computer language per se for that matter). But lots of universities do and therefore you can choose from many textbooks designed to teach SQL to 20-year-old CS majors. Perfect, eh? Not for us. Part of the problem is that universities try to give students what they deem to be eternal knowledge. So rather than focus on the relational model and SQL, the overwhelmingly dominant system for the past 20 years, introductory database textbooks spend several chapters talking about database management systems that were used in the 1960s.

 The second part of the problem with college-level texts is that these books are too dreary and long. In our class, the students face the tangible problem of building a sophisticated db-backed Web service in 12 weeks. This motivates them to learn whatever intricacies of SQL that they need. But what keeps a student going through 500 pages of SQL and RDBMS? We can't figure this out.

 The third problem is that most of the college-level textbooks bring to mind the old question "What is the difference between a tenured professor of computer science and an ape?" (The ape doesn't think he can program.) Sure, the academic egghead author can learn the syntax of SQL but he or she won't have any personal experience with real-life interesting systems. That's because no real user of the RDBMS is stupid enough to hire a professor to write any SQL code.

 In our computer-obsessed society, we need not be stuck with the dry theoretical offerings of computer scientists. Walk into any bookstore and you'll find SQL tutorials. Sadly, due to structural problems in the trade computer book industry (see http://philip.greenspun.com/wtr/dead-trees/story), most of these books are written by authors who picked up SQL as they were writing. There are some good ones, however, our favorite being The Practical SQL Handbook (Bowman, Emerson, Darnovsky; Addison-Wesley). We truly do like this book so we can feel free to pick on it:

 	though it is 450 pages long, by straining to offer complete coverage of simple boring stuff the authors run out of space and energy to cover the interesting and sophisticated stuff

 	students have to learn SQL in the context of a data model; like its competitors The Practical SQL Handbook forces readers to live in the dessicated world of business data processing for several hundred pages. This is where the RDBMS started in the 1970s and if you want to get a job in a corporate IS department, this is not a bad place to live while learning SQL. However, we're trying to demonstrate how the concurrency control and transaction management capabilities of the RDBMS enable the construction of powerful reliable Web services. We can dazzle the students with much more interesting and relevant data models than Practical SQL's "bookbiz database about a fictitious publishing company".

 	the authors write with the assumption that the reader is unaccustomed to thinking formally and using formal languages

 	the authors avoid the ugly fact that SQL is not a standard. Most SQL queries involve dates and times. Yet there are only two pages out of 450 involving the date data type. Why? The authors don't explain but perhaps it is because they didn't want to say "here's what ANSI SQL date-time arithmetic looks like and, by the way, Oracle has completely different syntax and semantics."

 	the authors assume that the Web doesn't exist, i.e., that the physical book must be self-contained and comprehensive. Anyone actually using an RDBMS is going to have full documentation on the Web or at least (shudder) on CD-ROM. This book started on the Web and therefore we assume that we can cover the interesting and pedagogically valuable stuff then link students to the full documentation.

 Bashing other authors and publishers is fun but isn't pedagogically effective. Thus it is probably worth stating what this SQL tutorial tries to do.

 First and foremost, we keep our readers in the world of Web services. Most often they are working within the data model for online communities chronicled in Philip and Alex's Guide to Web Publishing. Sometimes we drag readers into the dreary world of commerce but at least it is the flashier-than-average corner of ecommerce.

 Second, our examples are all drawn from real production Web sites that get close to 1 million requests per day. This should make the examples more interesting, particularly as the sites are mostly still up and running so the students will be able to visit pages and see the queries in action on up-to-the-minute data sets.

 Third, we assume that our readers are bright and accustomed to formal languages. We don't assume any experience with declarative languages, database query languages, or any specific programming language. But once we can assume that the reader has written code, it is possible to use more sophisticated examples and get to the interesting stuff more quickly. So if this book ends up being a bad choice for the office manager who wants to start building marketing reports, we hope that we make up for it by making it a great choice for the MIT student or the working programmer.

 Fourth, we assume that our readers will be using Oracle. This is a safe assumption for our class because we set up the computing facility and, in fact, Oracle8 is the only RDBMS running on it! It is also a safe assumption for much of the world: Oracle is the most popular RDBMS system available. We find it burdensome to maintain. We wish it were open-source. We wish it were free. Yet if we accept Oracle as part of the landscape, we don't have to waste a lot of ink pretending that SQL is a standard.

 Next: introduction/overview

 philg@mit.edu

 Add a comment

 	

 	
 Introduction

 by Philip Greenspun, part of
 SQL for Web Nerds

 After writing a preface lampooning academic eggheads who waste a lot of
ink placing the relational database management system (RDBMS) in the
context of 50 years of database management software, how does this book
start? With a chapter placing the RDBMS in the context of other
database management software.

 Why? You ought to know why you're paying the huge performance, financial, and administration cost of an RDBMS. This chapter doesn't dwell on mainframe systems that people stopped using in the 1970s, but it does cover the alternative approaches to data management taken by Web sites that you've certainly visited and perhaps built.

 The architect of any new information system must decide how much responsibility for data management the new custom software should take and how much should be left to packaged software and the operating system. This chapter explains what kind of packaged data management software is available, covering files, flat file database management systems, the RDBMS, object-relational database management systems, and object databases. This chapter also introduces the SQL language.

 What's wrong with a file system (and also what's right)

 [image: Arizona]

The file system that comes with your computer is a very primitive kind
of database management system. Whether your computer came with the Unix
file system, NTFS, or the Macintosh file system, the basic idea is the
same. Data are kept in big unstructured named clumps called files.
The great thing about the file system is its invisibility. You probably
didn't purchase it separately, you might not be aware of its existence,
you won't have to run an ad in the newspaper for a file system administrator with 5+ years of experience, and it will pretty much
work as advertised. All you need to do with a file system is back it up
to tape every day or two.

 Despite its unobtrusiveness, the file system on a Macintosh, Unix, or Windows machine is capable of storing any data that may be represented in digital form. For example, suppose that you are storing a mailing list in a file system file. If you accept the limitation that no e-mail address or person's name can contain a newline character, you can store one entry per line. Then you could decide that no e-mail address or name may contain a vertical bar. That lets you separate e-mail address and name fields with the vertical bar character.

 So far, everything is great. As long as you are careful never to try storing a newline or vertical bar, you can keep your data in this "flat file." Searching can be slow and expensive, though. What if you want to see if "philg@mit.edu" is on the mailing list? You computer must read through the entire file to check.

 Let's say that you write a program to process "insert new person" requests. It works by appending a line to the flat file with the new information. Suppose, however, that several users are simultaneously using your Web site. Two of them ask to be added to the mailing list at exactly the same time. Depending on how you wrote your program, the particular kind of file system that you have, and luck, you could get any of the following behaviors:

 	Both inserts succeed.

 	One of the inserts is lost.

 	Information from the two inserts is mixed together so that both are corrupted.

 In the last case, the programs you've written to use the data in the
flat file may no longer work.

 So what? Emacs may be ancient but it is still the best text editor in the world. You love using it so you might as well spend your weekends and evenings manually fixing up your flat file databases with Emacs. Who needs concurrency control?

 It all depends on what kind of stove you have.

 Yes, that's right, your stove. Suppose that you buy a $268,500 condo in Harvard Square. You think to yourself, "Now my friends will really be impressed with me" and invite them over for brunch. Not because you like them, but just to make them envious of your large lifestyle. Imagine your horror when all they can say is "What's this old range doing here? Don't you have a Viking stove?" [image: Old fishing hamlet of Helgumannen. Faro, Gotland. Sweden]

 A Viking stove?!? They cost $5000. The only way you are going to come up with this kind of cash is to join the growing ranks of on-line entrepreneurs. So you open an Internet bank. An experienced Perl script/flat-file wizard by now, you confidently build a system in which all the checking account balances are stored in one file, checking.text, and all the savings balances are stored in another file, savings.text.

 A few days later, an unlucky combination of events occurs. Joe User is transferring $10,000 from his savings to his checking account. Judy User is simultaneously depositing $5 into her savings account. One of your Perl scripts successfully writes the checking account flat file with Joe's new, $10,000 higher, balance. It also writes the savings account file with Joe's new, $10,000 lower, savings balance. However, the script that is processing Judy's deposit started at about the same time and began with the version of the savings file that had Joe's original balance. It eventually finishes and writes Judy's $5 higher balance but also overwrites Joe's new lower balance with the old high balance. Where does that leave you? $10,000 poorer, cooking on an old GE range, and wishing you had Concurrency Control.

 After a few months of programming and reading operating systems theory books from the 1960s that deal with mutual exclusion, you've solved your concurrency problems. Congratulations. However, like any good Internet entrepreneur, you're running this business out of your house and you're getting a little sleepy. So you heat up some coffee in the microwave and simultaneously toast a bagel in the toaster oven. The circuit breaker trips. This is the time when you are going to regret having bought that set of Calphalon pots to go with your Viking stove rather than investing in an uninterruptible power supply for your server. You hear the sickening sound of disks spinning down. You scramble to get your server back up and don't really have time to look at the logs and notice that Joe User was back transferring $25,000 from savings to checking. What happened to Joe's transaction? [image: Santa Karin. Visby, Gotland. Sweden]

 The good news for Joe is that your Perl script had just finished crediting his checking account with $25,000. The bad news for you is that it hadn't really gotten started on debiting his savings account. You're so busy preparing the public offering for your on-line business that you fail to notice the loss. But your underwriters eventually do and your plans to sell the bank to the public go down the toilet.

 Where does that leave you? Cooking on an old GE range and wishing you'd left the implementation of transactions to professionals.

 What Do You Need for Transaction Processing?

 Data processing folks like to talk about the "ACID test" when
deciding whether or not a database management system is adequate for
handling transactions. An adequate system has the following properties:

 	Atomicity

 	Results of a transaction's execution are either all committed or all rolled back. All changes take effect, or none do. That means, for Joe User's money transfer, that both his savings and checking balances are adjusted or neither are. For a Web content management example, suppose that a user is editing a comment. A Web script tells the database to "copy the old comment value to an audit table and update the live table with the new text". If the hard drive fills up after the copy but before the update, the audit table insertion will be rolled back.

 	Consistency

 	[image: Welcome to Universal City (shopping mall built in the style of a city street; Los Angeles California).] The database is transformed from one valid state to another valid state. This defines a transaction as legal only if it obeys user-defined integrity constraints. Illegal transactions aren't allowed and, if an integrity constraint can't be satisfied then the transaction is rolled back. For example, suppose that you define a rule that postings in a discussion forum table must be tied to a valid user ID. Then you hire Joe Novice to write some admin pages. Joe writes a delete-user page that doesn't bother to check whether or not the deletion will result in an orphaned discussion forum posting. The DBMS will check, though, and abort any transaction that would result in you having a discussion forum posting by a deleted user.

 	Isolation

 	The results of a transaction are invisible to other transactions until the transaction is complete. For example, if you are running an accounting report at the same time that Joe is transferring money, the accounting report program will either see the balances before Joe transferred the money or after, but never the intermediate state where checking has been credited but savings not yet debited.

 	Durability

 	Once committed (completed), the results of a transaction are permanent and survive future system and media failures. If the airline reservation system computer gives you seat 22A and crashes a millisecond later, it won't have forgotten that you are sitting in 22A and also give it to someone else. Furthermore, if a programmer spills coffee into a disk drive, it will be possible to install a new disk and recover the transactions up to the coffee spill, showing that you had seat 22A.

 That doesn't sound too tough to implement, does it? And, after all, one of the most refreshing things about the Web is how it encourages people without formal computer science backgrounds to program. So why not build your Internet bank on a transaction system implemented by an English major who has just discovered Perl?

 Because you still need indexing.

 Finding Your Data (and Fast)

 [image: Stockholm airport, hopskotch]

One facet of a database management system is processing inserts,
updates, and deletes. This all has to do with putting information into
the database. Sometimes it is also nice, though, to be able to get
data out. And with popular sites getting 100 hits per second, it pays to be
conscious of speed.

 Flat files work okay if they are very small. A Perl script can read the whole file into memory in a split second and then look through it to pull out the information requested. But suppose that your on-line bank grows to have 250,000 accounts. A user types his account number into a Web page and asks for his most recent deposits. You've got a chronological financial transactions file with 25 million entries. Crunch, crunch, crunch. Your server laboriously works through all 25 million to find the ones with an account number that matches the user's. While it is crunching, 25 other users come to the Web site and ask for the same information about their accounts.

 You have two choices: (1) buy a 64-processor Sun E10000 server with 64 GB of RAM, or (2) build an index file. If you build an index file that maps account numbers to sequential transaction numbers, your server won't have to search all 25 million records anymore. However, you have to modify all of your programs that insert, update, or delete from the database to also keep the index current.

 This works great until two years later when a brand new MBA arrives from Harvard. She asks your English major cum Perl hacker for "a report of all customers who have more than $5,000 in checking or live in Oklahoma and have withdrawn more than $100 from savings in the last 17 days." It turns out that you didn't anticipate this query so your indexing scheme doesn't speed things up. Your server has to grind through all the data over and over again.

 Enter the Relational Database

 You are building a cutting-edge Web service. You need the latest and
greatest in computer technology. That's why you use, uh,
Unix. Yeah. Anyway, even if your operating system was developed in 1969,
you definitely can't live without the most modern database management
system available. Maybe this guy E.F. Codd can help:

 "Future users of large data banks must be protected from having to
know how the data is organized in the machine (the internal
representation). ... Activities of users at terminals and most
application programs should remain unaffected when the internal
representation of data is changed and even when some aspects of the
external representation are changed. Changes in data representation will
often be needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information.

 "Existing noninferential, formatted data systems provide users with tree-structured files or slightly more general network models of the data. In Section 1, inadequacies of these models are discussed. A model based on n-ary relations, a normal form for data base relations, and the concept of a universal data sublanguage are introduced. In Section 2, certain operations on relations (other than logical inference) are discussed and applied to the problems of redundancy and consistency in the user's model."

 Sounds pretty spiffy, doesn't it? Just like what you need. That's the
abstract to "A Relational Model of Data for Large Shared Data
Banks", a paper Codd wrote while working at IBM's San Jose research
lab. It was published in the Communications of the ACM in June,
1970.

 [image: Volvo. Visby, Gotland, near Fiskarporten.]

 Yes, that's right, 1970. What you need to do is move your Web site into the '70s with one of these newfangled relational database management systems (RDBMS). Actually, as Codd notes in his paper, most of the problems we've encountered so far in this chapter were solved in the 1960s by off-the-shelf mainframe software sold by IBM and the "seven dwarves" (as IBM's competitors were known). By the early 1960s, businesses had gotten tired of losing important transactions and manually uncorrupting databases. They began to think that their applications programmers shouldn't be implementing transactions and indexing on an ad hoc basis for each new project. Companies began to buy database management software from computer vendors like IBM. These products worked fairly well but resulted in brittle data models. If you got your data representation correct the first time and your business needs never changed then a 1967-style hierarchical database was great. Unfortunately, if you put a system in place and subsequently needed new indices or a new data format then you might have to rewrite all of your application programs.

 From an application programmer's point of view, the biggest innovation in the relational database is that one uses a declarative query language, SQL (an acronym for Structured Query Language and pronounced "ess-cue-el" or "sequel"). Most computer languages are procedural. The programmer tells the computer what to do, step by step, specifying a procedure. In SQL, the programmer says "I want data that meet the following criteria" and the RDBMS query planner figures out how to get it. There are two advantages to using a declarative language. The first is that the queries no longer depend on the data representation. The RDBMS is free to store data however it wants. The second is increased software reliability. It is much harder to have "a little bug" in an SQL query than in a procedural program. Generally it either describes the data that you want and works all the time or it completely fails in an obvious way.

 Another benefit of declarative languages is that less sophisticated users are able to write useful programs. For example, many computing tasks that required professional programmers in the 1960s can be accomplished by non-technical people with spreadsheets. In a spreadsheet, you don't tell the computer how to work out the numbers or in what sequence. You just declare "This cell will be 1.5 times the value of that other cell over there."

 RDBMSes can run very very slowly. Depending on whether you are selling or buying computers, this may upset or delight you. Suppose that the system takes 30 seconds to return the data you asked for in your query. Does that mean you have a lot of data? That you need to add some indices? That the RDBMS query planner made some bad choices and needs some hints? Who knows? The RDBMS is an enormously complicated program that you didn't write and for which you don't have the source code. Each vendor has tracing and debugging tools that purport to help you, but the process is not simple. Good luck figuring out a different SQL incantation that will return the same set of data in less time. If you can't, call 1-800-USESUNX and ask them to send you a 16-processor Sun Enterprise 10000 with 32 GB of RAM.. Alternatively, you can keep running the non-relational software you used in the 1960s, which is what the airlines do for their reservations systems.

 How Does This RDBMS Thing Work?

 [image: Botaniska Tradgarden. Visby, Gotland.]

Database researchers love to talk about relational algebra, n-tuples,
normal form, and natural composition, while throwing around mathematical
symbols. This patina of mathematical obscurity tends to distract your
attention from their bad suits and boring personalities, but is of no
value if you just want to use a relational database management system.

 In fact, this is all you need to know to be a Caveman Database Programmer: A relational database is a big spreadsheet that several people can update simultaneously.

 Each table in the database is one spreadsheet. You tell the RDBMS how many columns each row has. For example, in our mailing list database, the table has two columns: name and email. Each entry in the database consists of one row in this table. An RDBMS is more restrictive than a spreadsheet in that all the data in one column must be of the same type, e.g., integer, decimal, character string, or date. Another difference between a spreadsheet and an RDBMS is that the rows in an RDBMS are not ordered. You can have a column named row_number and ask the RDBMS to return the rows ordered according to the data in this column, but the row numbering is not implicit as it would be with Visicalc or its derivatives such as Lotus 1-2-3 and Excel. If you do define a row_number column or some other unique identifier for rows in a table, it becomes possible for a row in another table to refer to that row by including the value of the unique ID.

 Here's what some SQL looks like for the mailing list application:

 create table mailing_list (email varchar(100) not null primary key, name varchar(100));

 The table will be called mailing_list and will have two
columns, both variable length character strings. We've added a couple of
integrity constraints on the email column. The not null will prevent any program from inserting a row where
 name is specified but email is not. After all,
the whole point of the system is to send people e-mail so there isn't much
value in having a name with no e-mail address. The primary key
tells the database that this column's value can be used to uniquely
identify a row. That means the system will reject an attempt to
insert a row with the same e-mail address as an existing row. This
sounds like a nice feature, but it can have some unexpected performance
implications. For example, every time anyone tries to insert a row into
this table, the RDBMS will have to look at all the other rows in the
table to make sure that there isn't already one with the same e-mail
address. For a really huge table, that could take minutes, but if you had
also asked the RDBMS to create an index for mailing_list on
 email then the check becomes almost instantaneous. However,
the integrity constraint still slows you down because every update to
the mailing_list table will also require an update to the index and
therefore you'll be doing twice as many writes to the hard disk.

 That is the joy and the agony of SQL. Inserting two innocuous looking words can cost you a factor of 1000 in performance. Then inserting a sentence (to create the index) can bring you back so that it is only a factor of two or three. (Note that many RDBMS implementations, including Oracle, automatically define an index on a column that is constrained to be unique.)

 Anyway, now that we've executed the Data Definition Language "create table" statement, we can move on to Data Manipulation Language: an INSERT.

 insert into mailing_list (name, email) values ('Philip Greenspun','philg@mit.edu');

 Note that we specify into which columns we are inserting. That way, if
someone comes along later and does

 alter table mailing_list add (phone_number varchar(20));

 (the Oracle syntax for adding a column), our INSERT will still
work. Note also that the string quoting character in SQL is a single
quote. Hey, it was the '70s. If you visit the newsgroup
 comp.databases right now, I'll bet that you can find someone
asking "How do I insert a string containing a single quote into an
RDBMS?" Here's one harvested from AltaVista:

 demaagd@cs.hope.edu (David DeMaagd) wrote:

>hwo can I get around the fact that the ' is a reserved character in
>SQL Syntax? I need to be able to select/insert fields that have
>apostrophies in them. Can anyone help?

You can use two apostrophes '' and SQL will treat it as one.

===
Pete Nelson | Programmers are almost as good at reading
weasel@ecis.com | documentation as they are at writing it.
===

 We'll take Pete Nelson's advice and double the single quote in
"O'Grady":

 insert into mailing_list (name, email)
values ('Michael O''Grady','ogrady@fastbuck.com');

 Having created a table and inserted some data, at last we are ready to experience the awesome power of the SQL SELECT. Want your data back?

 select * from mailing_list;

 If you typed this query into a standard shell-style RDBMS client
program, for example Oracle's SQL*PLUS, you'd get ... a horrible mess.
That's because you told Oracle that the columns could be as wide as 100
characters (varchar(100)). Very seldom will you need to
store e-mail addresses or names that are anywhere near as long as 100
characters. However, the solution to the "ugly report" problem is not
to cut down on the maximum allowed length in the database. You don't
want your system failing for people who happen to have exceptionally
long names or e-mail addresses. The solution is either to use a more
sophisticated tool for querying your database or to give SQL*Plus some
hints for preparing a report:

 SQL> column email format a25 SQL> column name format a25 SQL> column phone_number format a12 SQL> set feedback on SQL> select * from mailing_list; EMAIL NAME PHONE_NUMBER ------------------------- ------------------------- ------------ philg@mit.edu Philip Greenspun ogrady@fastbuck.com Michael O'Grady 2 rows selected.

 Note that there are no values in the phone_number column
because we haven't set any. As soon as we do start to add phone
numbers, we realize that our data model was inadequate. This is the
Internet and Joe Typical User will have his pants hanging around his
knees under the weight of a cell phone, beeper, and other personal
communication accessories. One phone number column is clearly inadequate
and even work_phone and home_phone columns
won't accommodate the wealth of information users might want to give us.
The clean database-y way to do this is to remove our
 phone_number column from the mailing_list
table and define a helper table just for the phone numbers. Removing or
renaming a column turns out to be impossible in Oracle 8 (see the "Data
Modeling" chapter for some ALTER TABLE commands that become possible
starting with Oracle 8i), so we

 drop table mailing_list; create table mailing_list (email varchar(100) not null primary key, name varchar(100)); create table phone_numbers (email varchar(100) not null references mailing_list(email), number_type varchar(15) check (number_type in ('work','home','cell','beeper')), phone_number varchar(20) not null);

 Note that in this table the email column is not a primary
key. That's because we want to allow multiple rows with the same e-mail
address.

If you are hanging around with a database nerd friend, you can say that
there is a relationship between the rows in the
 phone_numbers table and the mailing_list
table. In fact, you can say that it is a many-to-one relation
because many rows in the phone_numbers table may correspond
to only one row in the mailing_list table. If you spend
enough time thinking about and talking about your database in these
terms, two things will happen:

 	You'll get an A in an RDBMS course at any state university.

 	You'll pick up readers of Psychology Today who think you are sensitive and caring because you are always talking about relationships. [see "Using the Internet to Pick up Babes and/or Hunks" at http://philip.greenspun.com/wtr/getting-dates.html before following any of my dating advice]

 Another item worth noting about our two-table data model is that we do
not store the user's name in the phone_numbers table. That
would be redundant with the mailing_list table and
potentially self-redundant as well, if, for example,
"robert.loser@fastbuck.com" says he is "Robert
Loser" when he types in his work phone and then "Rob
Loser" when he puts in his beeper number, and "Bob Lsr"
when he puts in his cell phone number while typing on his laptop's
cramped keyboard. A database nerd would say that that this data model is
consequently in "Third Normal Form". Everything in each row in each
table depends only on the primary key and nothing is dependent on only
part of the key. The primary key for the phone_numbers
table is the combination of email and
 number_type. If you had the user's name in this table, it
would depend only on the email portion of the key.

 Anyway, enough database nerdism. Let's populate the phone_numbers table:

 SQL> insert into phone_numbers values ('ogrady@fastbuck.com','work','(800) 555-1212'); ORA-02291: integrity constraint (SCOTT.SYS_C001080) violated - parent key not found

 Ooops! When we dropped the mailing_list table, we lost all
the rows. The phone_numbers table has a referential
integrity constraint ("references mailing_list") to make sure that we
don't record e-mail addresses for people whose names we don't know. We
have to first insert the two users into mailing_list:

 insert into mailing_list (name, email) values ('Philip Greenspun','philg@mit.edu'); insert into mailing_list (name, email) values ('Michael O''Grady','ogrady@fastbuck.com'); insert into phone_numbers values ('ogrady@fastbuck.com','work','(800) 555-1212'); insert into phone_numbers values ('ogrady@fastbuck.com','home','(617) 495-6000'); insert into phone_numbers values ('philg@mit.edu','work','(617) 253-8574'); insert into phone_numbers values ('ogrady@fastbuck.com','beper','(617) 222-3456');

 Note that the last four INSERTs use an evil SQL shortcut and don't
specify the columns into which we are inserting data. The system
defaults to using all the columns in the order that they were
defined. Except for prototyping and playing around, we don't recommend
ever using this shortcut.

 The first three INSERTs work fine, but what about the last one, where Mr. O'Grady misspelled "beeper"?

 ORA-02290: check constraint (SCOTT.SYS_C001079) violated

 We asked Oracle at table definition time to check (number_type in ('work','home','cell','beeper')) and it did. The database cannot be left
in an inconsistent state.

 Let's say we want all of our data out. Email, full name, phone numbers. The most obvious query to try is a join.

 SQL> select * from mailing_list, phone_numbers; EMAIL NAME EMAIL TYPE NUMBER ---------------- ---------------- ---------------- ------ -------------- philg@mit.edu Philip Greenspun ogrady@fastbuck. work (800) 555-1212 ogrady@fastbuck. Michael O'Grady ogrady@fastbuck. work (800) 555-1212 philg@mit.edu Philip Greenspun ogrady@fastbuck. home (617) 495-6000 ogrady@fastbuck. Michael O'Grady ogrady@fastbuck. home (617) 495-6000 philg@mit.edu Philip Greenspun philg@mit.edu work (617) 253-8574 ogrady@fastbuck. Michael O'Grady philg@mit.edu work (617) 253-8574 6 rows selected.

 Yow! What happened? There are only two rows in the mailing_list table
and three in the phone_numbers table. Yet here we have six rows
back. This is how joins work. They give you the Cartesian product
of the two tables. Each row of one table is paired with all the rows of
the other table in turn. So if you join an N-row table with an M-row
table, you get back a result with N*M rows. In real databases, N and M
can be up in the millions so it is worth being a little more specific as
to which rows you want:

 select * from mailing_list, phone_numbers where mailing_list.email = phone_numbers.email; EMAIL NAME EMAIL TYPE NUMBER ---------------- ---------------- ---------------- ------ -------------- ogrady@fastbuck. Michael O'Grady ogrady@fastbuck. work (800) 555-1212 ogrady@fastbuck. Michael O'Grady ogrady@fastbuck. home (617) 495-6000 philg@mit.edu Philip Greenspun philg@mit.edu work (617) 253-8574 3 rows selected.

 Probably more like what you had in mind. Refining your SQL statements in
this manner can sometimes be more exciting. For example, let's say that
you want to get rid of Philip Greenspun's phone numbers but aren't sure
of the exact syntax.

 SQL> delete from phone_numbers; 3 rows deleted.

 Oops. Yes, this does actually delete all the rows in the
table. You probably wish you'd typed

 delete from phone_numbers where email = 'philg@mit.edu';

 but it is too late now.

 There is one more fundamental SQL statement to learn. Suppose that Philip moves to Hollywood to realize his long-standing dream of becoming a major motion picture producer. Clearly a change of name is in order, though he'd be reluctant to give up the e-mail address he's had since 1976. Here's the SQL:

 SQL> update mailing_list set name = 'Phil-baby Greenspun' where email = 'philg@mit.edu'; 1 row updated. SQL> select * from mailing_list; EMAIL NAME -------------------- -------------------- philg@mit.edu Phil-baby Greenspun ogrady@fastbuck.com Michael O'Grady 2 rows selected.

 As with DELETE, don't play around with UPDATE statements unless you have a WHERE clause at the end.

 Brave New World

 The original mid-1970s RDBMS let companies store the following kinds of
data: numbers, dates, and character strings. After more than twenty
years of innovation, you can today run out to the store and spend
$300,000 on an "enterprise-class" RDBMS that will let you store the
following kinds of data: numbers, dates, and character strings.

 With an object-relational database, you get to define your own data types. For example, you could define a data type called url...

 http://www.postgresql.org.

 Braver New World

 [image: Millesgarden. Stockholm, Sweden]

If you really want to be on the cutting edge, you can use a bona fide
object database, like Object Design's ObjectStore (acquired by
Progress Software). These persistently store the sorts of object and
pointer structures that you create in a Smalltalk, Common Lisp, C++,
or Java program. Chasing pointers and certain kinds of transactions
can be 10 to 100 times faster than in a relational database. If you
believed everything in the object database vendors' literature, then
you'd be surprised that Larry Ellison still has $100 bills to fling to
peasants as he roars past in his Acura NSX. The relational database
management system should have been crushed long ago under the weight
of this superior technology, introduced with tremendous hype in the
mid-1980s.

 After 10 years, the market for object database management systems is about $100 million a year, perhaps 1 percent the size of the relational database market. Why the fizzle? Object databases bring back some of the bad features of 1960s pre-relational database management systems. The programmer has to know a lot about the details of data storage. If you know the identities of the objects you're interested in, then the query is fast and simple. But it turns out that most database users don't care about object identities; they care about object attributes. Relational databases tend to be faster and better at coughing up aggregations based on attributes. The critical difference between RDBMS and ODBMS is the extent to which the programmer is constrained in interacting with the data. With an RDBMS the application program--written in a procedural language such as C, COBOL, Fortran, Perl, or Tcl--can have all kinds of catastrophic bugs. However, these bugs generally won't affect the information in the database because all communication with the RDBMS is constrained through SQL statements. With an ODBMS, the application program is directly writing slots in objects stored in the database. A bug in the application program may translate directly into corruption of the database, one of an organization's most valuable assets.

 More

 	"A Relational Model of Data for Large Shared Data Banks", E.F. Codd's paper in the June 1970 Communications of the ACM is reprinted in Readings in Database Systems (Stonebraker and Hellerstein 1998; Morgan Kaufmann). You might be wondering why, in 1999, eight years after the world's physicists gave us the Web, I didn't hyperlink you over to Codd's paper at www.acm.org. However, the organization is so passionately dedicated to demonstrating simultaneously the greed and incompetence of academic computer scientists worldwide that they charge money to electronically distribute material that they didn't pay for themselves.

 	For some interesting history about the first relational database implementation, visit http://www.mcjones.org/System_R/

 	For a look under the hoods of a variety of database management systems, get Readings in Database Systems (above)

 Reference

 	If you want to sit down and drive Oracle, you'll find SQL*Plus User's Guide and Reference useful.

 	If you're hungry for detail, you can get God's honest truth (well, Larry Ellison's honest truth anyway, which is pretty much the same thing in the corporate IT world) from Oracle8 Server Concepts.

 Next: data modeling

 philg@mit.edu

 Reader's Comments

 Actually, the ACM do make A Relational Model of Data for Large Shared Data Banks freely available, but that's the exception rather than the rule.

		

 -- Tom L, November 26, 2003

 I'm using MySQL, and I wanted to comment on a snag I ran into while I was following the tutorial in this page. Maybe other newbies can benefit from this.

 As far as I can tell:

 a) MySQL supports different "storage engines" for tables. This is presumably a good thing. However, not all engines support referencial constraints.

 b) For a MySQL table to support a "references" constraint, it must be of type InnoDB. In my installation (on SuSE Linux, right out of a standard RPM binary package), this is *not* the default. So you have to either change the server configuration to make this the default, or specify "ENGINE = InnoDB" after the closing parenthesis in the table definition.

 c) Even for InnoDB, the syntax described by Phil above does not work, though it is not rejected, merely ignored. According to the manual, this is effectively just a comment to the developer that this column is supposed to reference another column, even if the constraint is not enforced by mysql.

 d) So, the only way to make this kind of constraint work is to: 1. make the table InnoDB and 2. use the "FOREIGN KEY (email) REFERENCES mailing_list(email)" format as a separate entry inside the table definition.

 [MySQL won't even give a warning! Not even a reminder that such reference clauses are merely "comments". It will just happily ignore them and allow any old value in that row. Ugh.]

 -- Antonio Ramirez, March 19, 2007

 Another addendum for MySQL is that "The CHECK clause is parsed but ignored by all storage engines" (http://dev.mysql.com/doc/refman/5.1/en/create-table.html). The CHECK can be accomplished, however, with an appropriate TRIGGER.

		

 -- Eddie Marks, June 22, 2010

 I'd avoid MySQL when learning about RDBMSes - it's philosophically a bit different, as evidenced by the silent errors and nondefault status of InnoDB. I use PostGres instead - it's free, and the command line tools are excellent. It's straightforward to configure and install, and has mature support pretty much anywhere you care to use it.

		

 -- chris cooney, September 2, 2010

 The default storage engine can be changed in the MySQL config file, which on Linux (e.g. RHEL, CentOS, Debian, SLES, etc.) is stored at /etc/my.cnf

 Within that file there SHOULD be a section labeled [mysqld]. Add the following line immediately below that label so that the result is as follows:

 	
 [mysqld]

 	
 default-storage-engine = myisam

 You will then need to restart the mysqld process. There are different ways to accomplish this task depending upon your version of Linux. One way is as follow:

 	
 /etc/init.d/mysql stop

 	
 /etc/init.d/mysql start

 Enjoy!

 -- Cai Black, June 9, 2011

 Add a comment

 	
 [image: IMTA Show 1995 Manhattan]

 	
 Data Modeling

 part of
 SQL for Web Nerds
by Philip Greenspun

 	
 [image: IMTA Show 1995 Manhattan]

 [image: Christina Perreault, aged 14, suffering from chicken pox at the 1995 IMTA Show in Manhattan. Being made up by Francesca Milano.]

Data modeling is the hardest and most important activity in the RDBMS
world. If you get the data model wrong, your application might not do
what users need, it might be unreliable, it might fill up the database
with garbage. Why then do we start a SQL tutorial with the most
challenging part of the job? Because you can't do queries, inserts, and
updates until you've defined some tables. And defining tables is data modeling.

 When data modeling, you are telling the RDBMS the following:

 	what elements of the data you will store

 	how large each element can be

 	what kind of information each element can contain

 	what elements may be left blank

 	which elements are constrained to a fixed range

 	whether and how various tables are to be linked

 Three-Valued Logic

 Programmers in most computer languages are familiar with Boolean logic.
A variable may be either true or false. Pervading SQL, however, is
the alien idea of three-valued logic. A column can be true,
false, or NULL. When building the data model you must affirmatively
decide whether a NULL value will be permitted for a column and, if so,
what it means.

 For example, consider a table for recording user-submitted comments to a Web site. The publisher has made the following stipulations:

 	comments won't go live until approved by an editor

 	the admin pages will present editors with all comments that are pending approval, i.e., have been submitted but neither approved nor disapproved by an editor already

 Here's the data model:

 create table user_submitted_comments (comment_id integer primary key, user_id not null references users, submission_time date default sysdate not null, ip_address varchar(50) not null, content clob, approved_p char(1) check(approved_p in ('t','f')));

 Implicit in this model is the assumption that approved_p
can be NULL and that, if not explicitly set during the INSERT, that is
what it will default to. What about the check constraint? It would
seem to restrict approved_p to values of "t" or "f". NULL,
however, is a special value and if we wanted to prevent
 approved_p from taking on NULL we'd have to add an explicit
 not null constraint.

 How do NULLs work with queries? Let's fill user_submitted_comments with some sample data and see:

 insert into user_submitted_comments (comment_id, user_id, ip_address, content) values (1, 23069, '18.30.2.68', 'This article reminds me of Hemingway'); Table created. SQL> select first_names, last_name, content, user_submitted_comments.approved_p from user_submitted_comments, users where user_submitted_comments.user_id = users.user_id; FIRST_NAMES LAST_NAME CONTENT APPROVED_P ------------ --------------- ------------------------------------ ------------ Philip Greenspun This article reminds me of Hemingway

 We've successfully JOINed the user_submitted_comments and
 users table to get both the comment content and the name of
the user who submitted it. Notice that in the select list we had to
explicitly request
 user_submitted_comments.approved_p. This is because
the users table also has an approved_p
column.

 When we inserted the comment row we did not specify a value for the approved_p column. Thus we expect that the value would be NULL and in fact that's what it seems to be. Oracle's SQL*Plus application indicates a NULL value with white space.

 For the administration page, we'll want to show only those comments where the approved_p column is NULL:

 SQL> select first_names, last_name, content, user_submitted_comments.approved_p from user_submitted_comments, users where user_submitted_comments.user_id = users.user_id and user_submitted_comments.approved_p = NULL; no rows selected

 "No rows selected"? That's odd. We know for a fact that we have one
row in the comments table and that is approved_p column is
set to NULL. How to debug the query? The first thing to do is simplify
by removing the JOIN:

 SQL> select * from user_submitted_comments where approved_p = NULL; no rows selected

 What is happening here is that any expression involving NULL evaluates
to NULL, including one that effectively looks like "NULL = NULL". The
WHERE clause is looking for expressions that evaluate to true. What you
need to use is the special test IS NULL:

 SQL> select * from user_submitted_comments where approved_p is NULL; COMMENT_ID USER_ID SUBMISSION_T IP_ADDRESS ---------- ---------- ------------ ---------- CONTENT APPROVED_P ------------------------------------ ------------ 1 23069 2000-05-27 18.30.2.68 This article reminds me of Hemingway

 An adage among SQL programmers is that the only time you can use
"= NULL" is in an UPDATE statement (to set a column's value to
NULL). It never makes sense to use "= NULL" in a WHERE clause.

 The bottom line is that as a data modeler you will have to decide which columns can be NULL and what that value will mean.

 Back to the Mailing List

 Let's return to the mailing list data model from the introduction:

 create table mailing_list (email varchar(100) not null primary key, name varchar(100)); create table phone_numbers (email varchar(100) not null references mailing_list, number_type varchar(15) check (number_type in ('work','home','cell','beeper')), phone_number varchar(20) not null);

 This data model locks you into some realities:

 	You will not be sending out any physical New Year's cards to folks on your mailing list; you don't have any way to store their addresses.

 	You will not be sending out any electronic mail to folks who work at companies with elaborate Lotus Notes configurations; sometimes Lotus Notes results in email addresses that are longer than 100 characters.

 	You are running the risk of filling the database with garbage since you have not constrained phone numbers in any way. American users could add or delete digits by mistake. International users could mistype country codes.

 	You are running the risk of not being able to serve rich people because the number_type column may be too constrained. Suppose William H. Gates the Third wishes to record some extra phone numbers with types of "boat", "ranch", "island", and "private_jet". The check (number_type in ('work','home','cell','beeper')) statement prevents Mr. Gates from doing this.

 	You run the risk of having records in the database for people whose name you don't know, since the name column of mailing_list is free to be NULL.

 	Changing a user's email address won't be the simplest possible operation. You're using email as a key in two tables and therefore will have to update both tables. The references mailing_list keeps you from making the mistake of only updating mailing_list and leaving orphaned rows in phone_numbers. But if users changed their email addresses frequently, you might not want to do things this way.

 	Since you've no provision for storing a password or any other means of authentication, if you allow users to update their information, you run a minor risk of allowing a malicious change. (The risk isn't as great as it seems because you probably won't be publishing the complete mailing list; an attacker would have to guess the names of people on your mailing list.)

 These aren't necessarily bad realities in which to be locked. However,
a good data modeler recognizes that every line of code in the .sql file
has profound implications for the Web service.

 Papering Over Your Mistakes with Triggers

 Suppose that you've been using the above data model to collect the names
of Web site readers who'd like to be alerted when you add new articles.
You haven't sent any notices for two months. You want to send everyone
who signed up in the last two months a "Welcome to my Web service;
thanks for signing up; here's what's new" message. You want to send the
older subscribers a simple "here's what's new" message. But you can't
do this because you didn't store a registration date. It is easy enough
to fix the table:

 alter table mailing_list add (registration_date date);

 But what if you have 15 different Web scripts that use this table? The
ones that query it aren't a problem. If they don't ask for the new
column, they won't get it and won't realize that the table has been
changed (this is one of the big selling features of the RDBMS). But
the scripts that update the table will all need to be changed. If you
miss a script, you're potentially stuck with a table where various
random rows are missing critical information.

 Oracle has a solution to your problem: triggers. A trigger is a way of telling Oracle "any time anyone touches this table, I want you to execute the following little fragment of code". Here's how we define the trigger mailing_list_registration_date:

 create trigger mailing_list_registration_date before insert on mailing_list for each row when (new.registration_date is null) begin :new.registration_date := sysdate; end;

 Note that the trigger only runs when someone is trying to insert a row
with a NULL registration date. If for some reason you need to copy over
records from another database and they have a registration date, you
don't want this trigger overwriting it with the date of the copy.

 A second point to note about this trigger is that it runs for each row. This is called a "row-level trigger" rather than a "statement-level trigger", which runs once per transaction, and is usually not what you want.

 A third point is that we're using the magic Oracle procedure sysdate, which will return the current time. The Oracle date type is precise to the second even though the default is to display only the day.

 A fourth point is that, starting with Oracle 8, we could have done this more cleanly by adding a default sysdate instruction to the column's definition.

 The final point worth noting is the :new. syntax. This lets you refer to the new values being inserted. There is an analogous :old. feature, which is useful for update triggers:

 create or replace trigger mailing_list_update before update on mailing_list for each row when (new.name <> old.name) begin -- user is changing his or her name -- record the fact in an audit table insert into mailing_list_name_changes (old_name, new_name) values (:old.name, :new.name); end; / show errors

 This time we used the create or replace syntax. This keeps
us from having to drop trigger mailing_list_update if we
want to change the trigger definition. We added a comment using the SQL
comment shortcut "--". The syntax new. and
 old. is used in the trigger definition, limiting the
conditions under which the trigger runs. Between the begin
and end, we're in a PL/SQL block. This is Oracle's
procedural language, described later, in which new.name
would mean "the name element from the record in
 new". So you have to use :new instead.
It is obscurities like this that lead to competent Oracle
consultants being paid $200+ per hour.

 The "/" and show errors at the end are instructions to Oracle's SQL*Plus program. The slash says "I'm done typing this piece of PL/SQL, please evaluate what I've typed." The "show errors" says "if you found anything to object to in what I just typed, please tell me".

 The Discussion Forum -- philg's personal odyssey

 Back in 1995, I built a threaded discussion forum, described ad nauseum in http://philip.greenspun.com/wtr/dead-trees/53013.htm.
Here's how I stored the postings:

 create table bboard (msg_id char(6) not null primary key, refers_to char(6), email varchar(200), name varchar(200), one_line varchar(700), message clob, notify char(1) default 'f' check (notify in ('t','f')), posting_time date, sort_key varchar(600));

 German order reigns inside the system itself: messages are uniquely
keyed with msg_id, refer to each other (i.e., say "I'm a
response to msg X") with refers_to, and a thread can be
displayed conveniently by using the sort_key column.

 Italian chaos is permitted in the email and name columns; users could remain anonymous, masquerade as "president@whitehouse.gov" or give any name.

 This seemed like a good idea when I built the system. I was concerned that it work reliably. I didn't care whether or not users put in bogus content; the admin pages made it really easy to remove such postings and, in any case, if someone had something interesting to say but needed to remain anonymous, why should the system reject their posting?

 One hundred thousand postings later, as the moderator of the photo.net Q&A forum, I began to see the dimensions of my data modeling mistakes.

 First, anonymous postings and fake email addresses didn't come from Microsoft employees revealing the dark truth about their evil bosses. They came from complete losers trying and failing to be funny or wishing to humiliate other readers. Some fake addresses came from people scared by the rising tide of spam email (not a serious problem back in 1995).

 Second, I didn't realize how the combination of my email alert systems, fake email addresses, and Unix mailers would result in my personal mailbox filling up with messages that couldn't be delivered to "asdf@asdf.com" or "duh@duh.net".

 Although the solution involved changing some Web scripts, fundamentally the fix was add a column to store the IP address from which a post was made:

 alter table bboard add (originating_ip varchar(16));

 Keeping these data enabled me to see that most of the anonymous posters
were people who'd been using the forum for some time, typically from the
same IP address. I just sent them mail and asked them to stop,
explaining the problem with bounced email.

 After four years of operating the photo.net community, it became apparent that we needed ways to

 	display site history for users who had changed their email addresses

 	discourage problem users from burdening the moderators and the community

 	carefully tie together user-contributed content in the various subsystems of photo.net

 The solution was obvious to any experienced database nerd: a canonical
users table and then content tables that reference it. Here's a
simplified version of the data model, taken from a toolkit for building
online communities, describe in
 http://philip.greenspun.com/panda/community:

 create table users (user_id integer not null primary key, first_names varchar(100) not null, last_name varchar(100) not null, email varchar(100) not null unique, ..); create table bboard (msg_id char(6) not null primary key, refers_to char(6), topic varchar(100) not null references bboard_topics, category varchar(200), -- only used for categorized Q&A forums originating_ip varchar(16), -- stored as string, separated by periods user_id integer not null references users, one_line varchar(700), message clob, -- html_p - is the message in html or not html_p char(1) default 'f' check (html_p in ('t','f')), ...); create table classified_ads (classified_ad_id integer not null primary key, user_id integer not null references users, ...);

 Note that a contributor's name and email address no longer appear in the
 bboard table. That doesn't mean we don't know who posted a
message. In fact, this data model can't even represent an anonymous
posting: user_id integer not null references users
requires that each posting be associated with a user ID and that there
actually be a row in the users table with that ID.

 First, let's talk about how much fun it is to move a live-on-the-Web 600,000 hit/day service from one data model to another. In this case, note that the original bboard data model had a single name column. The community system has separate columns for first and last names. A conversion script can easily split up "Joe Smith" but what is it to do with William Henry Gates III?

 How do we copy over anonymous postings? Remember that Oracle is not flexible or intelligent. We said that we wanted every row in the bboard table to reference a row in the users table. Oracle will abort any transaction that would result in a violation of this integrity constraint. So we either have to drop all those anonymous postings (and any non-anonymous postings that refer to them) or we have to create a user called "Anonymous" and assign all the anonymous postings to that person. The technical term for this kind of solution is kludge.

 A more difficult problem than anonymous postings is presented by long-time users who have difficulty typing and or keeping a job. Consider a user who has identified himself as

 	Joe Smith; jsmith@ibm.com

 	Jo Smith; jsmith@ibm.com (typo in name)

 	Joseph Smith; jsmth@ibm.com (typo in email)

 	Joe Smith; cantuseworkaddr@hotmail.com (new IBM policy)

 	Joe Smith-Jones; joe_smithjones@hp.com (got married, changed name, changed jobs)

 	Joe Smith-Jones; jsmith@somedivision.hp.com (valid but not canonical corporate email address)

 	Josephina Smith; jsmith@somedivision.hp.com (sex change; divorce)

 	Josephina Smith; josephina_smith@hp.com (new corporate address)

 	Siddhartha Bodhisattva; josephina_smith@hp.com (change of philosophy)

 	Siddhartha Bodhisattva; thinkwaitfast@hotmail.com (traveling for awhile to find enlightenment)

 Contemporary community members all recognize these postings as coming
from the same person but it would be very challenging even to build a
good semi-automated means of merging postings from this person into one
user record.

 Once we've copied everything into this new normalized data model, notice that we can't dig ourselves into the same hole again. If a user has contributed 1000 postings, we don't have 1000 different records of that person's name and email address. If a user changes jobs, we need only update one column in one row in one table.

 The html_p column in the new data model is worth mentioning. In 1995, I didn't understand the problems of user-submitted data. Some users will submit plain text, which seems simple, but in fact you can't just spit this out as HTML. If user A typed < or > characters, they might get swallowed by user B's Web browser. Does this matter? Consider that "<g>" is interpreted in various online circles as an abbreviation for "grin" but by Netscape Navigator as an unrecognized (and therefore ignore) HTML tag. Compare the meaning of

 "We shouldn't think it unfair that Bill Gates has more wealth than the
100 million poorest Americans combined. After all, he invented the
personal computer, the graphical user interface, and the Internet."

 with

 "We shouldn't think it unfair that Bill Gates has more wealth than the
100 million poorest Americans combined. After all, he invented the
personal computer, the graphical user interface, and the Internet. <g>"

 It would have been easy enough for me to make sure that such characters never got interpreted as markup. In fact, with AOLserver one can do it with a single call to the built-in procedure ns_quotehtml. However, consider the case where a nerd posts some HTML. Other users would then see

 "For more examples of my brilliant thinking and modesty, check out my home page."

 I discovered that the only real solution is to ask the user whether the
submission is an HTML fragment or plain text, show the user an approval
page where the content may be previewed, and then remember what the user
told us in an html_p column in the database.

 Is this data model perfect? Permanent? Absolutely. It will last for at least... Whoa! Wait a minute. I didn't know that Dave Clark was replacing his original Internet Protocol, which the world has been running since around 1980, with IPv6 (http://www.faqs.org/rfcs/rfc2460.html). In the near future, we'll have IP addresses that are 128 bits long. That's 16 bytes, each of which takes two hex characters to represent. So we need 32 characters plus at least 7 more for periods that separate the hex digits. We might also need a couple of characters in front to say "this is a hex representation". Thus our brand new data model in fact has a crippling deficiency. How easy is it to fix? In Oracle:

 alter table bboard modify (originating_ip varchar(50));

 You won't always get off this easy. Oracle won't let you shrink a
column from a maximum of 50 characters to 16, even if no row has a value
longer than 16 characters. Oracle also makes it tough to add a column
that is constrained not null.

 Representing Web Site Core Content

 Free-for-all Internet discussions can often be useful and occasionally
are compelling, but the anchor of a good Web site is usually a set of
carefully authored extended documents. Historically these have tended
to be stored in the Unix file system and they don't change too often.
Hence I refer to them as static pages. Examples of static
pages on the photo.net server include this book chapter, the tutorial on
light for photographers at http://www.photo.net/making-photographs/light.

 We have some big goals to consider. We want the data in the database to

 	help community experts figure out which articles need revision and which new articles would be most valued by the community at large.

 	help contributors work together on a draft article or a new version of an old article.

 	collect and organize reader comments and discussion, both for presentation to other readers but also to assist authors in keeping content up-to-date.

 	collect and organize reader-submitted suggestions of related content out on the wider Internet (i.e., links).

 	help point readers to new or new-to-them content that might interest them, based on what they've read before or based on what kind of content they've said is interesting.

 The big goals lead to some more concrete objectives:

 	We will need a table that holds the static pages themselves.

 	Since there are potentially many comments per page, we need a separate table to hold the user-submitted comments.

 	Since there are potentially many related links per page, we need a separate table to hold the user-submitted links.

 	Since there are potentially many authors for one page, we need a separate table to register the author-page many-to-one relation.

 	Considering the "help point readers to stuff that will interest them" objective, it seems that we need to store the category or categories under which a page falls. Since there are potentially many categories for one page, we need a separate table to hold the mapping between pages and categories.

 create table static_pages (page_id integer not null primary key, url_stub varchar(400) not null unique, original_author integer references users(user_id), page_title varchar(4000), page_body clob, obsolete_p char(1) default 'f' check (obsolete_p in ('t','f')), members_only_p char(1) default 'f' check (members_only_p in ('t','f')), price number, copyright_info varchar(4000), accept_comments_p char(1) default 't' check (accept_comments_p in ('t','f')), accept_links_p char(1) default 't' check (accept_links_p in ('t','f')), last_updated date, -- used to prevent minor changes from looking like new content publish_date date); create table static_page_authors (page_id integer not null references static_pages, user_id integer not null references users, notify_p char(1) default 't' check (notify_p in ('t','f')), unique(page_id,user_id));

 Note that we use a generated integer page_id key for this
table. We could key the table by the url_stub (filename),
but that would make it very difficult to reorganize files in the Unix
file system (something that should actually happen very seldom on a Web
server; it breaks links from foreign sites).

 How to generate these unique integer keys when you have to insert a new row into static_pages? You could

 	lock the table

 	find the maximum page_id so far

 	add one to create a new unique page_id

 	insert the row

 	commit the transaction (releases the table lock)

 Much better is to use Oracle's built-in sequence generation facility:

 create sequence page_id_sequence start with 1;

 Then we can get new page IDs by using
 page_id_sequence.nextval in INSERT statements (see
 the Transactions chapter for a fuller
discussion of sequences).

 Reference

 Here is a summary of the data modeling tools available to you in
Oracle, each hyperlinked to the Oracle documentation. This reference
section covers the following:

 	data types

 	statements for creating, altering, and dropping tables

 	constraints

 Data Types

 For each column that you define for a table, you must specify the data
type of that column. Here are your options:

 	
 Character Data

 	
 char(n)

 	
 A fixed-length character string, e.g., char(200) will take
up 200 bytes regardless of how long the string actually is. This works
well when the data truly are of fixed size, e.g., when you are recording
a user's sex as "m" or "f". This works badly when the data are of
variable length. Not only does it waste space on the disk and in the
memory cache, but it makes comparisons fail. For example, suppose you
insert "rating" into a comment_type column of type
 char(30) and then your Tcl program queries the database.
Oracle sends this column value back to procedural language clients
padded with enough spaces to make up 30 total characters. Thus if you
have a comparison within Tcl of whether $comment_type == "rating", the comparison will fail because
 $comment_type is actually "rating" followed by 24 spaces.

 The maximum length char in Oracle8 is 2000 bytes.

 	
 varchar(n)

 	
 A variable-length character string, up to 4000 bytes long in Oracle8.
These are stored in such a way as to minimize disk space usage, i.e., if
you only put one character into a column of type
 varchar(4000), Oracle only consumes two bytes on disk.
The reason that you don't just make all the columns
 varchar(4000) is that the Oracle indexing system is limited
to indexing keys of about 700 bytes.

 	
 clob

 	
 A variable-length character string, up to 4 gigabytes long in Oracle8.
The CLOB data type is useful for accepting user input from such
applications as discussion forums. Sadly, Oracle8 has tremendous
limitations on how CLOB data may be inserted, modified, and queried.
Use varchar(4000) if you can and
prepare to suffer if you can't.

 In a spectacular demonstration of what happens when companies don't follow the lessons of The Mythical Man Month, the regular string functions don't work on CLOBs. You need to call identically named functions in the DBMS_LOB package. These functions take the same arguments but in different orders. You'll never be able to write a working line of code without first reading the DBMS_LOB section of the Oracle8 Server Application Developer's Guide.

 	
 nchar, nvarchar, nclob

 	
 The n prefix stands for "national character set". These work like char,
varchar, and clob but for multi-byte characters (e.g., Unicode; see
 http://www.unicode.org).

 	
 Numeric Data

 	
 number

 	
 Oracle actually only has one internal data type that is used for storing
numbers. It can handle 38 digits of precision and exponents from -130
to +126. If you want to get fancy, you can specify precision and scale
limits. For example, number(3,0) says "round everything to an
integer [scale 0] and accept numbers than range from -999 to +999". If
you're American and commercially minded, number(9,2) will
probably work well for storing prices in dollars and cents (unless
you're selling stuff to Bill Gates, in which case the billion dollar limit imposed by the
precision of 9 might prove constraining). If you are Bill Gates, you might not want to get distracted by
insignificant numbers: Tell Oracle to round everything to the nearest
million with number(38,-6).

 	
 integer

 	
 In terms of storage consumed and behavior, this is not any different
from number(38) but I think it reads better and it is more
in line with ANSI SQL (which would be a standard if anyone actually
implemented it).

 	
 Dates and Date/Time Intervals (Version 9i and newer)

 	
 timestamp

 	
 A point in time, recorded with sub-second precision. When creating a
column you specify the number of digits of precision beyond one second
from 0 (single second precision) to 9 (nanosecond precision). Oracle's
calendar can handle dates between between January 1, 4712 BC and
December 31, 9999 AD. You can put in values with the
 to_timestamp function and query them out using the
 to_char function. Oracle offers several variants of this
datatype for coping with data aggregated across multiple timezones.

 	
 interval year to month

 	
 An amount of time, expressed in years and months.

 	
 interval day to second

 	
 An amount of time, expressed in days, hours, minutes, and seconds. Can
be precise down to the nanosecond if desired.

 	
 Dates and Date/Time Intervals (Versions 8i and earlier)

 	
 date

 	
 Obsolete as of version 9i. A point in time,
recorded with one-second precision, between January 1, 4712 BC and
December 31, 4712 AD. You can put in values with the
 to_date function and query them out using the
 to_char function. If you don't use these functions, you're
limited to specifying the date with the default system format mask,
usually 'DD-MON-YY'. This is a good recipe for a Year 2000 bug since
January 23, 2000 would be '23-JAN-00'. On better-maintained systems,
this is often the ANSI default: 'YYYY-MM-DD', e.g., '2000-01-23' for
January 23, 2000.

 	
 number

 	
 Hey, isn't this a typo? What's number doing in the date
section? It is here because this is how Oracle versions prior to 9i
represented date-time intervals, though their docs never say this
explicitly. If you add numbers to dates, you get new dates. For
example, tomorrow at exactly this time is sysdate+1. To
query for stuff submitted in the last hour, you limit to
 submitted_date > sysdate - 1/24.

 	
 Binary Data

 	
 blob

 	
 BLOB stands for "Binary Large OBject". It doesn't really have
to be all that large, though Oracle will let you store up to 4 GB. The
BLOB data type was set up to permit the storage of images, sound
recordings, and other inherently binary data. In practice, it also gets
used by fraudulent application software vendors. They spend a few years
kludging together some nasty format of their own. Their MBA executive
customers demand that the whole thing be RDBMS-based. The software
vendor learns enough about Oracle to "stuff everything into a BLOB".
Then all the marketing and sales folks are happy because the application
is now running from Oracle instead of from the file system. Sadly, the
programmers and users don't get much because you can't use SQL very
effectively to query or update what's inside a BLOB.

 	
 bfile

 	
 A binary file, stored by the operating system (typically Unix)
and kept track of by Oracle. These would be useful when you
need to get to information both from SQL (which is kept purposefully
ignorant about what goes on in the wider world) and from an application
that can only read from standard files (e.g., a typical Web server).
The bfile data type is pretty new but to my mind it is already
obsolete: Oracle 8.1 (8i) lets external applications view content in
the database as though it were a file on a Windows NT server. So why
not keep everything as a BLOB and enable Oracle's Internet File System?

 Despite this plethora of data types, Oracle has some glaring holes that
torture developers. For example, there is no Boolean data type. A
developer who needs an approved_p column is forced to use
 char(1) check(this_column in ('t','f')) and then, instead
of the clean query where approved_p is forced into
 where approved_p = 't'.

 Oracle8 includes a limited ability to create your own data types. Covering these is beyond the scope of this book. See Oracle8 Server Concepts, User-Defined Datatypes.

 Tables

 The basics:

 CREATE TABLE your_table_name (the_key_column key_data_type PRIMARY KEY, a_regular_column a_data_type, an_important_column a_data_type NOT NULL, ... up to 996 intervening columns in Oracle8 ... the_last_column a_data_type);

 Even in a simple example such as the one above, there are few items
worth noting. First, I like to define the key column(s) at the very
top. Second, the primary key constraint has some powerful
effects. It forces the_key_column to be non-null. It
causes the creation of an index on the_key_column, which
will slow down updates to your_table_name but improve the
speed of access when someone queries for a row with a particular value
of the_key_column. Oracle checks this index when inserting
any new row and aborts the transaction if there is already a row with
the same value for the_key_column. Third, note that there
is no comma following the definition of the last row. If you are
careless and leave the comma in, Oracle will give you a very confusing
error message.

 If you didn't get it right the first time, you'll probably want to

 alter table your_table_name add (new_column_name a_data_type any_constraints);

 or

 alter table your_table_name modify (existing_column_name new_data_type new_constraints);

 In Oracle 8i you can drop a column:

 alter table your_table_name drop column existing_column_name;

 (see http://www.oradoc.com/keyword/drop_column).

 If you're still in the prototype stage, you'll probably find it easier to simply

 drop table your_table_name;

 and recreate it. At any time, you can see what you've got defined in
the database by querying Oracle's Data Dictionary:

 SQL> select table_name from user_tables order by table_name; TABLE_NAME ------------------------------ ADVS ADV_CATEGORIES ADV_GROUPS ADV_GROUP_MAP ADV_LOG ADV_USER_MAP AD_AUTHORIZED_MAINTAINERS AD_CATEGORIES AD_DOMAINS AD_INTEGRITY_CHECKS BBOARD ... STATIC_CATEGORIES STATIC_PAGES STATIC_PAGE_AUTHORS USERS ...

 after which you will typically type describe table_name_of_interest in SQL*Plus:

 SQL> describe users; Name Null? Type ------------------------------- -------- ---- USER_ID NOT NULL NUMBER(38) FIRST_NAMES NOT NULL VARCHAR2(100) LAST_NAME NOT NULL VARCHAR2(100) PRIV_NAME NUMBER(38) EMAIL NOT NULL VARCHAR2(100) PRIV_EMAIL NUMBER(38) EMAIL_BOUNCING_P CHAR(1) PASSWORD NOT NULL VARCHAR2(30) URL VARCHAR2(200) ON_VACATION_UNTIL DATE LAST_VISIT DATE SECOND_TO_LAST_VISIT DATE REGISTRATION_DATE DATE REGISTRATION_IP VARCHAR2(50) ADMINISTRATOR_P CHAR(1) DELETED_P CHAR(1) BANNED_P CHAR(1) BANNING_USER NUMBER(38) BANNING_NOTE VARCHAR2(4000)

 Note that Oracle displays its internal data types rather than the ones
you've given, e.g., number(38) rather than
 integer and varchar2 instead of the specified
 varchar.

 Constraints

 When you're defining a table, you can constrain single rows by adding
some magic words after the data type:

 	not null; requires a value for this column

 	unique; two rows can't have the same value in this column (side effect in Oracle: creates an index)

 	primary key; same as unique except that no row can have a null value for this column and other tables can refer to this column

 	check; limit the range of values for column, e.g., rating integer check(rating > 0 and rating <= 10)<="" code="">

 	references; this column can only contain values present in another table's primary key column, e.g., user_id not null references users in the bboard table forces the user_id column to only point to valid users. An interesting twist is that you don't have to give a data type for user_id; Oracle assigns this column to whatever data type the foreign key has (in this case integer).

 Constraints can apply to multiple columns:

 create table static_page_authors (page_id integer not null references static_pages, user_id integer not null references users, notify_p char(1) default 't' check (notify_p in ('t','f')), unique(page_id,user_id));

 Oracle will let us keep rows that have the same page_id and
rows that have the same user_id but not rows that have the
same value in both columns (which would not make sense; a person can't
be the author of a document more than once). Suppose that you run a
university distinguished lecture series. You want speakers who are
professors at other universities or at least PhDs. On the other hand,
if someone controls enough money, be it his own or his company's, he's
in. Oracle stands ready:

 create table distinguished_lecturers (lecturer_id integer primary key, name_and_title varchar(100), personal_wealth number, corporate_wealth number, check (instr(upper(name_and_title),'PHD') <> 0 or instr(upper(name_and_title),'PROFESSOR') <> 0 or (personal_wealth + corporate_wealth) > 1000000000)); insert into distinguished_lecturers values (1,'Professor Ellen Egghead',-10000,200000); 1 row created. insert into distinguished_lecturers values (2,'Bill Gates, innovator',75000000000,18000000000); 1 row created. insert into distinguished_lecturers values (3,'Joe Average',20000,0); ORA-02290: check constraint (PHOTONET.SYS_C001819) violated

 As desired, Oracle prevented us from inserting some random average loser
into the distinguished_lecturers table, but the error
message was confusing in that it refers to a constraint given the name
of "SYS_C001819" and owned by the PHOTONET user. We can give our
constraint a name at definition time:

 create table distinguished_lecturers (lecturer_id integer primary key, name_and_title varchar(100), personal_wealth number, corporate_wealth number, constraint ensure_truly_distinguished check (instr(upper(name_and_title),'PHD') <> 0 or instr(upper(name_and_title),'PROFESSOR') <> 0 or (personal_wealth + corporate_wealth) > 1000000000)); insert into distinguished_lecturers values (3,'Joe Average',20000,0); ORA-02290: check constraint (PHOTONET.ENSURE_TRULY_DISTINGUISHED) violated

 Now the error message is easier to understand by application programmers.

 Creating More Elaborate Constraints with Triggers

 The default Oracle mechanisms for constraining data are not always
adequate. For example, the ArsDigita Community System auction module
has a table called au_categories. The
 category_keyword column is a unique shorthand way of
referring to a category in a URL. However, this column may be NULL
because it is not the primary key to the table. The shorthand method of
referring to the category is optional.

 create table au_categories (category_id integer primary key, -- shorthand for referring to this category, -- e.g. "bridges", for use in URLs category_keyword varchar(30), -- human-readable name of this category, -- e.g. "All types of bridges" category_name varchar(128) not null);

 We can't add a UNIQUE constraint to the category_keyword
column. That would allow the table to only have one row where
 category_keyword was NULL. So we add a trigger that can
execute an arbitrary PL/SQL expression and raise an error to prevent an
INSERT if necessary:

 create or replace trigger au_category_unique_tr before insert on au_categories for each row declare existing_count integer; begin select count(*) into existing_count from au_categories where category_keyword = :new.category_keyword; if existing_count > 0 then raise_application_error(-20010, 'Category keywords must be unique if used'); end if; end;

 This trigger queries the table to find out if there are any matching
keywords already inserted. If there are, it calls the built-in Oracle
procedure raise_application_error to abort the transaction.

 The True Oracle Religion

 	Oracle8 Server Application Developer's Guide, Selecting a Datatype

 	Oracle8 Server Concepts, Built-In Datatypes

 	Oracle8 Server Concepts, User-Defined Datatypes

 Next: queries

 philg@mit.edu

 Add a comment

 	
 [image: Traffic on the 405. Los Angeles, California. View from the Getty Center.]

 	
 Queries

 part of
 SQL for Web Nerds
by Philip Greenspun

 	
 [image: Cactus Garden overlooking the city. Getty Center. Los Angeles, California.]

 If you start up SQL*Plus, you can start browsing around immediately with
the SELECT statement. You don't even need to define a table; Oracle
provides the built-in dual table for times when you're
interested in a constant or a function:

 SQL> select 'Hello World' from dual; 'HELLOWORLD ----------- Hello World SQL> select 2+2 from dual; 2+2 ---------- 4 SQL> select sysdate from dual; SYSDATE ---------- 1999-02-14

 ... or to test your knowledge of three-valued logic (see the "Data
Modeling" chapter):

 SQL> select 4+NULL from dual; 4+NULL ----------

 (any expression involving NULL evaluates to NULL).

 There is nothing magic about the dual table for these purposes; you can compute functions using the bboard table instead of dual:

 select sysdate,2+2,atan2(0, -1) from bboard; SYSDATE 2+2 ATAN2(0,-1) ---------- ---------- ----------- 1999-01-14 4 3.14159265 1999-01-14 4 3.14159265 1999-01-14 4 3.14159265 1999-01-14 4 3.14159265 ... 1999-01-14 4 3.14159265 1999-01-14 4 3.14159265 1999-01-14 4 3.14159265 55010 rows selected.

 but not everyone wants 55010 copies of the same result. The
 dual table is predefined during Oracle installation and,
though it is just a plain old table, it is guaranteed to contain only
one row because no user will have sufficient privileges to insert or
delete rows from dual.

 Getting beyond Hello World

 To get beyond Hello World, pick a table of interest. As we saw in the
introduction,

 select * from users;

 would retrieve all the information from every row of the
 users table. That's good for toy systems but in any
production system, you'd be better off starting with

 SQL> select count(*) from users; COUNT(*) ---------- 7352

 You don't really want to look at 7352 rows of data, but you would like
to see what's in the users table, start off by asking SQL*Plus to query
Oracle's data dictionary and figure out what columns are available in
the users table:

 SQL> describe users Name Null? Type ------------------------------- -------- ---- USER_ID NOT NULL NUMBER(38) FIRST_NAMES NOT NULL VARCHAR2(100) LAST_NAME NOT NULL VARCHAR2(100) PRIV_NAME NUMBER(38) EMAIL NOT NULL VARCHAR2(100) PRIV_EMAIL NUMBER(38) EMAIL_BOUNCING_P CHAR(1) PASSWORD NOT NULL VARCHAR2(30) URL VARCHAR2(200) ON_VACATION_UNTIL DATE LAST_VISIT DATE SECOND_TO_LAST_VISIT DATE REGISTRATION_DATE DATE REGISTRATION_IP VARCHAR2(50) ADMINISTRATOR_P CHAR(1) DELETED_P CHAR(1) BANNED_P CHAR(1) BANNING_USER NUMBER(38) BANNING_NOTE VARCHAR2(4000)

 The data dictionary is simply a set of built-in tables that Oracle uses
to store information about the objects (tables, triggers, etc.) that
have been defined.

Thus SQL*Plus isn't performing any black magic when you type
 describe; it is simply querying
 user_tab_columns, a view of some of the tables in Oracle's
data dictionary. You could do the same explicitly, but it is a little
cumbersome.

 column fancy_type format a20 select column_name, data_type || '(' || data_length || ')' as fancy_type from user_tab_columns where table_name = 'USERS' order by column_id;

 Here we've had to make sure to put the table name ("USERS") in
all-uppercase. Oracle is case-insensitive for table and column names in
queries but the data dictionary records names in uppercase. Now that we
know the names of the columns in the table, it will be easy to explore.

 Simple Queries from One Table

 A simple query from one table has the following structure:

 	the select list (which columns in our report)

 	the name of the table

 	the where clauses (which rows we want to see)

 	the order by clauses (how we want the rows arranged)

 Let's see some examples. First, let's see how many users from MIT are
registered on our site:

 SQL> select email from users where email like '%mit.edu'; EMAIL ------------------------------ philg@mit.edu andy@california.mit.edu ben@mit.edu ... wollman@lcs.mit.edu ghomsy@mit.edu hal@mit.edu ... jpearce@mit.edu richmond@alum.mit.edu andy_roo@mit.edu kov@mit.edu fletch@mit.edu lsandon@mit.edu psz@mit.edu philg@ai.mit.edu philg@martigny.ai.mit.edu andy@californnia.mit.edu ty@mit.edu teadams@mit.edu 68 rows selected.

 The email like '%mit.edu' says "every row where the email
column ends in 'mit.edu'". The percent sign is Oracle's wildcard
character for "zero or more characters". Underscore is the wildcard for
"exactly one character":

 SQL> select email from users where email like '___@mit.edu'; EMAIL ------------------------------ kov@mit.edu hal@mit.edu ... ben@mit.edu psz@mit.edu

 Suppose that we notice in the above report some similar email
addresses. It is perhaps time to try out the ORDER BY clause:

 SQL> select email from users where email like '%mit.edu' order by email; EMAIL ------------------------------ andy@california.mit.edu andy@californnia.mit.edu andy_roo@mit.edu ... ben@mit.edu ... hal@mit.edu ... philg@ai.mit.edu philg@martigny.ai.mit.edu philg@mit.edu

 Now we can see that this users table was generated by grinding over
pre-ArsDigita Community Systems postings starting from 1995. In those
bad old days, users typed their email address and name with each
posting. Due to typos and people intentionally choosing to use
different addresses at various times, we can see that we'll have to
build some sort of application to help human beings merge some of the
rows in the users table (e.g., all three occurrences of "philg" are in
fact the same person (me)).

 Restricting results

 Suppose that you were featured on Yahoo in September 1998 and want to
see how many users signed up during that month:

 SQL> select count(*) from users where registration_date >= '1998-09-01' and registration_date < '1998-10-01'; COUNT(*) ---------- 920

 We've combined two restrictions in the WHERE clause with an AND. We can
add another restriction with another AND:

 SQL> select count(*) from users where registration_date >= '1998-09-01' and registration_date < '1998-10-01' and email like '%mit.edu'; COUNT(*) ---------- 35

 OR and NOT are also available within the WHERE clause. For example, the
following query will tell us how many classified ads we have that either
have no expiration date or whose expiration date is later than the
current date/time.

 select count(*) from classified_ads where expires >= sysdate or expires is null;

 Subqueries

 You can query one table, restricting the rows returned based on
information from another table. For example, to find users who have
posted at least one classified ad:

 select user_id, email from users where 0 < (select count(*) from classified_ads where classified_ads.user_id = users.user_id); USER_ID EMAIL ---------- ----------------------------------- 42485 twm@meteor.com 42489 trunghau@ecst.csuchico.edu 42389 ricardo.carvajal@kbs.msu.edu 42393 gon2foto@gte.net 42399 rob@hawaii.rr.com 42453 stefan9@ix.netcom.com 42346 silverman@pon.net 42153 gallen@wesleyan.edu ...

 Conceptually, for each row in the users table Oracle is
running the subquery against classified_ads to see how many
ads are associated with that particular user ID. Keep in mind that this
is only conceptually; the Oracle SQL parser may elect to
execute this query in a more efficient manner.

 Another way to describe the same result set is using EXISTS:

 select user_id, email from users where exists (select 1 from classified_ads where classified_ads.user_id = users.user_id);

 This may be more efficient for Oracle to execute since it hasn't been
instructed to actually count the number of classified ads for each
user, but only to check and see if any are present. Think of
EXISTS as a Boolean function that

 	takes a SQL query as its only parameter

 	returns TRUE if the query returns any rows at all, regardless of the contents of those rows (this is why we can use the constant 1 as the select list for the subquery)

 JOIN

 A professional SQL programmer would be unlikely to query for users who'd
posted classified ads in the preceding manner. The SQL programmer knows
that, inevitably, the publisher will want information from the
classified ad table along with the information from the users table.
For example, we might want to see the users and, for each user, the
sequence of ad postings:

 select users.user_id, users.email, classified_ads.posted from users, classified_ads where users.user_id = classified_ads.user_id order by users.email, posted; USER_ID EMAIL POSTED ---------- ----------------------------------- ---------- 39406 102140.1200@compuserve.com 1998-09-30 39406 102140.1200@compuserve.com 1998-10-08 39406 102140.1200@compuserve.com 1998-10-08 39842 102144.2651@compuserve.com 1998-07-02 39842 102144.2651@compuserve.com 1998-07-06 39842 102144.2651@compuserve.com 1998-12-13 ... 41284 yme@inetport.com 1998-01-25 41284 yme@inetport.com 1998-02-18 41284 yme@inetport.com 1998-03-08 35389 zhupanov@usa.net 1998-12-10 35389 zhupanov@usa.net 1998-12-10 35389 zhupanov@usa.net 1998-12-10

 Because of the JOIN restriction, where users.user_id = classified_ads.user_id, we only see those users who have posted
at least one classified ad, i.e., for whom a matching row may be found
in the classified_ads table. This has the same effect as
the subquery above.

 The order by users.email, posted is key to making sure that the rows are lumped together by user and then printed in order of ascending posting time.

 OUTER JOIN

 Suppose that we want an alphabetical list of all of our users, with
classified ad posting dates for those users who have posted
classifieds. We can't do a simple JOIN because that will exclude users
who haven't posted any ads. What we need is an OUTER JOIN, where Oracle
will "stick in NULLs" if it can't find a corresponding row in the
 classified_ads table.

 select users.user_id, users.email, classified_ads.posted from users, classified_ads where users.user_id = classified_ads.user_id(+) order by users.email, posted; ... USER_ID EMAIL POSTED ---------- ----------------------------------- ---------- 52790 dbrager@mindspring.com 37461 dbraun@scdt.intel.com 52791 dbrenner@flash.net 47177 dbronz@free.polbox.pl 37296 dbrouse@enter.net 47178 dbrown@cyberhighway.net 36985 dbrown@uniden.com 1998-03-05 36985 dbrown@uniden.com 1998-03-10 34283 dbs117@amaze.net 52792 dbsikorski@yahoo.com ...

 The plus sign after classified_ads.user_id is our
instruction to Oracle to "add NULL rows if you can't meet this JOIN
constraint".

 Extending a simple query into a JOIN

 Suppose that you have a query from one table returning almost everything
that you need, except for one column that's in another table. Here's a
way to develop the JOIN without risking breaking your application:

 	add the new table to your FROM clause

 	add a WHERE constraint to prevent Oracle from building a Cartesian product

 	hunt for ambiguous column names in the SELECT list and other portions of the query; prefix these with table names if necessary

 	test that you've not broken anything in your zeal to add additional info

 	add a new column to the SELECT list

 Here's an example from Problem Set 2 of a course that we give at MIT
(see http://www.photo.net/teaching/psets/ps2/ps2.adp).
Students build a conference room reservation system. They generally
define two tables: rooms and
 reservations. The top level page is supposed to show
a user what reservations he or she is current holding:

 select room_id, start_time, end_time from reservations where user_id = 37

 This produces an unacceptable page because the rooms are referred to by
an ID number rather than by name. The name information is in the
 rooms table, so we'll have to turn this into a JOIN.

 Step 1: add the new table to the FROM clause

 select room_id, start_time, end_time from reservations, rooms where user_id = 37

 We're in a world of hurt because Oracle is now going to join every row
in rooms with every row in reservations where
the user_id matches that of the logged-in user.

 Step 2: add a constraint to the WHERE clause

 select room_id, start_time, end_time from reservations, rooms where user_id = 37 and reservations.room_id = rooms.room_id

 Step 3: look for ambiguously defined columns

 Both reservations and rooms contain columns
called "room_id". So we need to prefix the room_id column
in the SELECT list with "reservations.". Note that we don't have to prefix
 start_time and end_time because these columns
are only present in reservations.

 select reservations.room_id, start_time, end_time from reservations, rooms where user_id = 37 and reservations.room_id = rooms.room_id

 Step 4: test

 Test the query to make sure that you haven't broken anything. You
should get back the same rows with the same columns as before.

 Step 5: add a new column to the SELECT list

 We're finally ready to do what we set out to do: add
 room_name to the list of columns for which we're querying.

 select reservations.room_id, start_time, end_time, rooms.room_name from reservations, rooms where user_id = 37 and reservations.room_id = rooms.room_id

 Reference

 	Oracle8 Server SQL Reference, SELECT command section

 Next: complex queries

 philg@mit.edu

 Add a comment

 	
 [image: Chinatown. San Francisco, California]

 	
 Complex Queries

 part of
 SQL for Web Nerds
by Philip Greenspun

 	
 [image: Golden Gate Bridge. San Francisco, California.]

 Suppose that you want to start lumping together information from
multiple rows. For example, you're interested in JOINing users with
their classified ads. That will give you one row per ad posted. But
you want to mush all the rows together for a particular user and just
look at the most recent posting time. What you need is the GROUP BY
construct:

 select users.user_id, users.email, max(classified_ads.posted) from users, classified_ads where users.user_id = classified_ads.user_id group by users.user_id, users.email order by upper(users.email); USER_ID EMAIL MAX(CLASSI ---------- ----------------------------------- ---------- 39406 102140.1200@compuserve.com 1998-10-08 39842 102144.2651@compuserve.com 1998-12-13 41426 50@seattle.va.gov 1997-01-13 37428 71730.345@compuserve.com 1998-11-24 35970 aaibrahim@earthlink.net 1998-11-08 36671 absolutsci@aol.com 1998-10-06 35781 alevy@agtnet.com 1997-07-14 40111 alexzorba@aol.com 1998-09-25 39060 amchiu@worldnet.att.net 1998-12-11 35989 andrew.c.beckner@bankamerica.com 1998-08-13 33923 andy_roo@mit.edu 1998-12-10

 The group by users.user_id, users.email tells SQL to "lump
together all the rows that have the same values in these two columns."
In addition to the grouped by columns, we can run aggregate functions on
the columns that aren't being grouped. For example, the MAX above
applies to the posting dates for the rows in a particular group. We can
also use COUNT to see at a glance how active and how recently active a
user has been:

 select users.user_id, users.email, count(*), max(classified_ads.posted) from users, classified_ads where users.user_id = classified_ads.user_id group by users.user_id, users.email order by upper(users.email); USER_ID EMAIL COUNT(*) MAX(CLASSI ---------- ----------------------------------- ---------- ---------- 39406 102140.1200@compuserve.com 3 1998-10-08 39842 102144.2651@compuserve.com 3 1998-12-13 41426 50@seattle.va.gov 1 1997-01-13 37428 71730.345@compuserve.com 3 1998-11-24 35970 aaibrahim@earthlink.net 1 1998-11-08 36671 absolutsci@aol.com 2 1998-10-06 35781 alevy@agtnet.com 1 1997-07-14 40111 alexzorba@aol.com 1 1998-09-25 39060 amchiu@worldnet.att.net 1 1998-12-11 35989 andrew.c.beckner@bankamerica.com 1 1998-08-13 33923 andy_roo@mit.edu 1 1998-12-10

 A publisher who was truly curious about this stuff probably wouldn't be
interested in these results alphabetically. Let's find our most
recently active users. At the same time, let's get rid of the unsightly
"MAX(CLASSI" at the top of the report:

 select users.user_id, users.email, count(*) as how_many, max(classified_ads.posted) as how_recent from users, classified_ads where users.user_id = classified_ads.user_id group by users.user_id, users.email order by how_recent desc, how_many desc; USER_ID EMAIL HOW_MANY HOW_RECENT ---------- ----------------------------------- ---------- ---------- 39842 102144.2651@compuserve.com 3 1998-12-13 39968 mkravit@mindspring.com 1 1998-12-13 36758 mccallister@mindspring.com 1 1998-12-13 38513 franjeff@alltel.net 1 1998-12-13 34530 nverdesoto@earthlink.net 3 1998-12-13 34765 jrl@blast.princeton.edu 1 1998-12-13 38497 jeetsukumaran@pd.jaring.my 1 1998-12-12 38879 john.macpherson@btinternet.com 5 1998-12-12 37808 eck@coastalnet.com 1 1998-12-12 37482 dougcan@arn.net 1 1998-12-12

 Note that we were able to use our correlation names of
"how_recent" and "how_many" in the ORDER BY clause. The
 desc ("descending") directives in the ORDER BY clause
instruct Oracle to put the largest values at the top. The default sort
order is from smallest to largest ("ascending").

 Upon close inspection, the results are confusing. We instructed Oracle to rank first by date and second by number of postings. Yet for 1998-12-13 we don't see both users with three total postings at the top. That's because Oracle dates are precise to the second even when the hour, minute, and second details are not displayed by SQL*Plus. A better query would include the clause

 order by trunc(how_recent) desc, how_many desc

 where the built-in Oracle function trunc truncates each date
to midnight on the day in question.

 Finding co-moderators: The HAVING Clause

 The WHERE clause restricts which rows are returned. The HAVING clause
operates analogously but on groups of rows. Suppose, for example, that
we're interested in finding those users who've contributed heavily to
our discussion forum:

 select user_id, count(*) as how_many from bboard group by user_id order by how_many desc; USER_ID HOW_MANY ---------- ---------- 34474 1922 35164 985 41112 855 37021 834 34004 823 37397 717 40375 639 ... 33963 1 33941 1 33918 1 7348 rows selected.

 Seventy three hundred rows. That's way too big considering that we are
only interested in nominating a couple of people. Let's restrict to
more recent activity. A posting contributed three years ago is not
necessarily evidence of interest in the community right now.

 select user_id, count(*) as how_many from bboard where posting_time + 60 > sysdate group by user_id order by how_many desc; USER_ID HOW_MANY ---------- ---------- 34375 80 34004 79 37903 49 41074 46 ... 1120 rows selected.

 We wanted to kill rows, not groups, so we did it with a WHERE clause.
Let's get rid of the people who are already serving as maintainers.

 select user_id, count(*) as how_many from bboard where not exists (select 1 from bboard_authorized_maintainers bam where bam.user_id = bboard.user_id) and posting_time + 60 > sysdate group by user_id order by how_many desc;

 The concept of User ID makes sense for both rows and groups, so we can
restrict our results either with the extra WHERE clause above or by
letting the relational database management system produce the groups and
then we'll ask that they be tossed out using a HAVING clause:

 select user_id, count(*) as how_many from bboard where posting_time + 60 > sysdate group by user_id having not exists (select 1 from bboard_authorized_maintainers bam where bam.user_id = bboard.user_id) order by how_many desc;

 This doesn't get to the root cause of our distressingly large query
result: we don't want to see groups where how_many is less
than 30. Here's the SQL for "show me users who've posted at least 30
messages in the past 60 days, ranked in descending order of volubility":

 select user_id, count(*) as how_many from bboard where posting_time + 60 > sysdate group by user_id having count(*) >= 30 order by how_many desc; USER_ID HOW_MANY ---------- ---------- 34375 80 34004 79 37903 49 41074 46 42485 46 35387 30 42453 30 7 rows selected.

 We had to do this in a HAVING clause because the number of rows in a
group is a concept that doesn't make sense at the per-row level on which
WHERE clauses operate.

 Oracle 8's SQL parser is too feeble to allow you to use the how_many correlation variable in the HAVING clause. You therefore have to repeat the count(*) incantation.

 Set Operations: UNION, INTERSECT, and MINUS Oracle provides set operations that can be used to combine rows produced by two or more separate SELECT statements. UNION pools together the rows returned by two queries, removing any duplicate rows. INTERSECT combines the result sets of two queries by removing any rows that are not present in both. MINUS combines the results of two queries by taking the the first result set and subtracting from it any rows that are also found in the second. Of the three, UNION is the most useful in practice.

 In the ArsDigita Community System ticket tracker, people reporting a bug or requesting a feature are given a menu of potential deadlines. For some projects, common project deadlines are stored in the ticket_deadlines table. These should appear in an HTML SELECT form element. We also, however, want some options like "today", "tomorrow", "next week", and "next month". The easiest way to handle these is to query the dual table to perform some date arithmetic. Each of these queries will return one row and if we UNION four of them together with the query from ticket_deadlines, we can have the basis for a very simple Web script to present the options:

 select 'today - ' || to_char(trunc(sysdate),'Mon FMDDFM'), trunc(sysdate) as deadline from dual UNION select 'tomorrow - '|| to_char(trunc(sysdate+1),'Mon FMDDFM'), trunc(sysdate+1) as deadline from dual UNION select 'next week - '|| to_char(trunc(sysdate+7),'Mon FMDDFM'), trunc(sysdate+7) as deadline from dual UNION select 'next month - '|| to_char(trunc(ADD_MONTHS(sysdate,1)),'Mon FMDDFM'), trunc(ADD_MONTHS(sysdate,1)) as deadline from dual UNION select name || ' - ' || to_char(deadline, 'Mon FMDDFM'), deadline from ticket_deadlines where project_id = :project_id and deadline >= trunc(sysdate) order by deadline

 will produce something like

 today - Oct 28

 tomorrow - Oct 29

 next week - Nov 4

 next month - Nov 28

 V2.0 freeze - Dec 1

 V2.0 ship - Dec 15

 The INTERSECT and MINUS operators are seldom used. Here are some contrived examples. Suppose that you collect contest entries by Web users, each in a separate table:

 create table trip_to_paris_contest (user_id references users, entry_date date not null); create table camera_giveaway_contest (user_id references users, entry_date date not null);

 Now let's populate with some dummy data:

 -- all three users love to go to Paris insert into trip_to_paris_contest values (1,'2000-10-20'); insert into trip_to_paris_contest values (2,'2000-10-22'); insert into trip_to_paris_contest values (3,'2000-10-23'); -- only User #2 is a camera nerd insert into camera_giveaway_contest values (2,'2000-05-01');

 Suppose that we've got a new contest on the site. This time we're giving away a trip to Churchill, Manitoba to photograph polar bears. We assume that the most interested users will be those who've entered both the travel and the camera contests. Let's get their user IDs so that we can notify them via email (spam) about the new contest:

 select user_id from trip_to_paris_contest intersect select user_id from camera_giveaway_contest; USER_ID ---------- 2

 Or suppose that we're going to organize a personal trip to Paris and want to find someone to share the cost of a room at the Crillon. We can assume that anyone who entered the Paris trip contest is interested in going. So perhaps we should start by sending them all email. On the other hand, how can one enjoy a quiet evening with the absinthe bottle if one's companion is constantly blasting away with an electronic flash? We're interested in people who entered the Paris trip contest but who did not enter the camera giveaway:

 select user_id from trip_to_paris_contest minus select user_id from camera_giveaway_contest; USER_ID ---------- 1 3

 Next: Transactions

 philg@mit.edu

 Reader's Comments

 In less trivial uses of UNION, you can use UNION ALL, instructing Oracle not to remove duplicates and saving the sort if you know there aren't going to be any duplicate rows(or maybe don't care)

		

 -- Neal Sidhwaney, December 10, 2002

 Another example of using MINUS is shown in the following crazy-looking (and Oracle-specific [1]) query which selects the 91st through 100th rows of a subquery.

 with subq as (select * from my_table order by my_id)

select * from subq
where rowid in (select rowid from subq
 where rownum <= 100="" minus="" select="" rowid="" from="" subq="" where="" rownum="" <="90)" pre="">

[1] The Oracle dependencies in this query are rowid and rownum. Other databases have other means of limiting query results by row position.

		

-- Kevin Murphy, February 10, 2003

 And in PostgreSQL (and MySQL too for that matter) it is as simple as:

 select * from my_table order by my_id limit 90,10

 An easier way for Oracle (according to a random post in a devshed.com forum I googled) would be like this:

 select * from my_table order by my_id where rownum between 90,100

 (Though the whole point about how to use MINUS is well taken)

 -- Gabriel Ricard, February 26, 2003

 Oops. I was wrong. Phil emailed me and explained that my rownum example won't work (just goes to show that not everything you find on the internet is right!).

		

 -- Gabriel Ricard, March 17, 2003

 Add a comment

 	
 [image: The Saw. Fulton Fish Market. Manhattan 1994 (pre burning).]

 	
 Transactions

 part of
 SQL for Web Nerds
by Philip Greenspun

 	
 [image: Handbills. Manhattan 1995.]

 In the introduction we covered some examples of inserting data into a
database by typing at SQL*Plus:

 insert into mailing_list (name, email) values ('Philip Greenspun','philg@mit.edu');

 Generally, this is not how it is done. As a programmer, you write code
that gets executed every time a user submits a discussion forum posting
or classified ad. The structure of the SQL statement remains fixed but
not the string literals after the values.

 The simplest and most direct interface to a relational database involves a procedural program in C, Java, Lisp, Perl, or Tcl putting together a string of SQL that is then sent to to the RDBMS. Here's how the ArsDigita Community System constructs a new entry in the clickthrough log:

 insert into clickthrough_log (local_url, foreign_url, entry_date, click_count) values ('$local_url', '$foreign_url', trunc(sysdate), 1)"

 The INSERT statement adds one row, filling in the four list columns.
Two of the values come from local variables set within the Web server,
 $local_url and $foreign_url. Because these
are strings, they must be surrounded by single quotes. One of the
values is dynamic and comes straight from Oracle:
 trunc(sysdate). Recall that the date data
type in Oracle is precise to the second. We only want one of these rows
per day of the year and hence truncate the date to midnight. Finally,
as this is the first clickthrough of the day, we insert a constant value
of 1 for click_count.

 Atomicity

 Each SQL statement executes as an atomic transaction. For example,
suppose that you were to attempt to purge some old data with

 delete from clickthrough_log where entry_date + 120 < sysdate;

 (delete clickthrough records more than 120 days old) and that 3500 rows
in clickthrough_log are older than 120 days. If your
computer failed halfway through the execution of this DELETE, i.e.,
before the transaction committed, you would find that none of the rows
had been deleted. Either all 3500 rows will disappear or none will.

 More interestingly, you can wrap a transaction around multiple SQL statements. For example, when a user is editing a comment, the ArsDigita Community System keeps a record of what was there before:

 ns_db dml $db "begin transaction" # insert into the audit table ns_db dml $db "insert into general_comments_audit (comment_id, user_id, ip_address, audit_entry_time, modified_date, content) select comment_id, user_id, '[ns_conn peeraddr]', sysdate, modified_date, content from general_comments where comment_id = $comment_id" # change the publicly viewable table ns_db dml $db "update general_comments set content = '$QQcontent', html_p = '$html_p' where comment_id = $comment_id" # commit the transaction ns_db dml $db "end transaction"

 This is generally referred to in the database industry as
 auditing. The database itself is used to keep track of what has
been changed and by whom.

 Let's look at these sections piece by piece. We're looking at a Tcl program calling AOLserver API procedures when it wants to talk to Oracle. We've configured the system to reverse the normal Oracle world order in which everything is within a transaction unless otherwise committed. The begin transaction and end transaction statements never get through to Oracle; they are merely instructions to our Oracle driver to flip Oracle out and then back into autocommit mode.

 The transaction wrapper is imposed around two SQL statements. The first statement inserts a row into general_comments_audit. We could simply query the general_comments table from Tcl and then use the returned data to create a standard-looking INSERT. However, if what you're actually doing is moving data from one place within the RDBMS to another, it is extremely bad taste to drag it all the way out to an application program and then stuff it back in. Much better to use the "INSERT ... SELECT" form.

 Note that two of the columns we're querying from general_comments don't exist in the table: sysdate and '[ns_conn peeraddr]'. It is legal in SQL to put function calls or constants in your select list, just as you saw at the beginning of the Queries chapter where we discussed Oracle's one-row system table: dual. To refresh your memory:

 select sysdate from dual; SYSDATE ---------- 1999-01-14

 You can compute multiple values in a single query:

 select sysdate, 2+2, atan2(0, -1) from dual; SYSDATE 2+2 ATAN2(0,-1) ---------- ---------- ----------- 1999-01-14 4 3.14159265

 This approach is useful in the transaction above, where we combine
information from a table with constants and function calls. Here's a
simpler example:

 select posting_time, 2+2 from bboard where msg_id = '000KWj'; POSTING_TI 2+2 ---------- ---------- 1998-12-13 4

 Let's get back to our comment editing transaction and look at the basic
structure:

 	open a transaction

 	insert into an audit table whatever comes back from a SELECT statement on the comment table

 	update the comment table

 	close the transaction

 Suppose that something goes wrong during the INSERT. The tablespace in
which the audit table resides is full and it isn't possible to add a
row. Putting the INSERT and UPDATE in the same RDBMS transactions
ensures that if there is a problem with one, the other won't be applied
to the database.

 Consistency

 Suppose that we've looked at a message on the bulletin board and decide
that its content is so offensive we wish to delete the user from our
system:

 select user_id from bboard where msg_id = '000KWj'; USER_ID ---------- 39685 delete from users where user_id = 39685; * ERROR at line 1: ORA-02292: integrity constraint (PHOTONET.SYS_C001526) violated - child record found

 Oracle has stopped us from deleting user 39685 because to do so would
leave the database in an inconsistent state. Here's the definition of
the bboard table:

 create table bboard (msg_id char(6) not null primary key, refers_to char(6), ... user_id integer not null references users, one_line varchar(700), message clob, ...);

 The user_id column is constrained to be not null.
Furthermore, the value in this column must correspond to some row in the
 users table (references users). By asking
Oracle to delete the author of msg_id 000KWj from the users
table before we deleted all of his or her postings from the
 bboard table, we were asking Oracle to leave the RDBMS in
an inconsistent state.

 Mutual Exclusion

 [image: Bachelor's Walk. Dublin, Ireland.]

When you have multiple simultaneously executing copies of the same
program, you have to think about mutual exclusion. If a program
has to

 	read a value from the database

 	perform a computation based on that value

 	update the value in the database based on the computation

 Then you want to make sure only one copy of the program is executing at
a time through this segment.

 The /bboard module of the ArsDigita Community System has to do this. The sequence is

 	read the last message ID from the msg_id_generator table

 	increment the message ID with a bizarre collection of Tcl scripts

 	update the last_msg_id column in the msg_id_generator table

 First, anything having to do with locks only makes sense when the three
operations are grouped together in a transaction. Second, to avoid
deadlocks a transaction must acquire all the resources (including locks)
that it needs at the start of the transaction. A SELECT in Oracle does
not acquire any locks but a SELECT .. FOR UPDATE does. Here's the
beginning of the transaction that inserts a message into the
 bboard table (from /bboard/insert-msg.tcl):

 select last_msg_id from msg_id_generator for update of last_msg_id

 Mutual Exclusion (the Big Hammer)

 The for update clause isn't a panacea. For example, in the
Action Network (described in Chapter 16 of Philip and Alex's Guide to Web Publishing), we need to make sure that a
double-clicking user doesn't generate duplicate FAXes to politicians.
The test to see if the user has already responded is

 select count(*) from an_alert_log where member_id = $member_id and entry_type = 'sent_response' and alert_id = $alert_id

 By default, Oracle locks one row at a time and doesn't want you to throw
a FOR UPDATE clause into a SELECT COUNT(*). The implication of that
would be Oracle recording locks on every row in the table. Much more
efficient is simply to start the transaction with

 lock table an_alert_log in exclusive mode

 This is a big hammer and you don't want to hold a table lock for more
than an instant. So the structure of a page that gets a table lock
should be

 	open a transaction

 	lock table

 	select count(*)

 	if the count was 0, insert a row to record the fact that the user has responded

 	commit the transaction (releases the table lock)

 	proceed with the rest of the script

 	...

 What if I just want some unique numbers?

 Does it really have to be this hard? What if you just want some unique
integers, each of which will be used as a primary key? Consider a table
to hold news items for a Web site:

 create table news (title varchar(100) not null, body varchar(4000) not null, release_date date not null, ...);

 You might think you could use the title column as a key,
but consider the following articles:

 insert into news (title, body, release_date) values ('French Air Traffic Controllers Strike', 'A walkout today by controllers left travelers stranded..', '1995-12-14'); insert into news (title, body, release_date) values ('French Air Traffic Controllers Strike', 'Passengers at Orly faced 400 canceled flights ...', '1997-05-01'); insert into news (title, body, release_date) values ('Bill Clinton Beats the Rap', 'Only 55 senators were convinced that President Clinton obstructed justice ...', '1999-02-12'); insert into news (title, body, release_date) values ('Bill Clinton Beats the Rap', 'The sexual harassment suit by Paula Jones was dismissed ...', '1998-12-02);

 It would seem that, at least as far as headlines are concerned,
little of what is reported is truly new. Could we add

 primary key (title, release_date)

 at the end of our table definition? Absolutely. But keying by title
and date would result in some unwieldy URLs for editing or approving
news articles. If your site allows public suggestions, you might find
submissions from multiple users colliding. If you accept comments on
news articles, a standard feature of the ArsDigita Community System,
each comment must reference a news article. You'd have to be
sure to update both the comments table and the news table if you needed
to correct a typo in the title column or changed the
 release_date.

 The traditional database design that gets around all of these problems is the use of a generated key. If you've been annoyed by having to carry around your student ID at MIT or your patient ID at a hospital, now you understand the reason why: the programmers are using generated keys and making their lives a bit easier by exposing this part of their software's innards.

 Here's how the news module of the ArsDigita Community System works, in an excerpt from http://software.arsdigita.com/www/doc/sql/news.sql:

 create sequence news_id_sequence start with 1; create table news (news_id integer primary key, title varchar(100) not null, body varchar(4000) not null, release_date date not null, ...);

 We're taking advantage of the nonstandard but very useful Oracle
 sequence facility. In almost any Oracle SQL statement, you can
ask for a sequence's current value or next value.

 SQL> create sequence foo_sequence; Sequence created. SQL> select foo_sequence.currval from dual; ERROR at line 1: ORA-08002: sequence FOO_SEQUENCE.CURRVAL is not yet defined in this session

 Oops! Looks like we can't ask for the current value until we've
asked for at least one key in our current session with Oracle.

 SQL> select foo_sequence.nextval from dual; NEXTVAL ---------- 1 SQL> select foo_sequence.nextval from dual; NEXTVAL ---------- 2 SQL> select foo_sequence.nextval from dual; NEXTVAL ---------- 3 SQL> select foo_sequence.currval from dual; CURRVAL ---------- 3

 You can use the sequence generator directly in an insert, e.g.,

 insert into news (news_id, title, body, release_date) values (news_id_sequence.nextval, 'Tuition Refund at MIT', 'Administrators were shocked and horrified ...', '1998-03-12);

 Background on this story: http://philip.greenspun.com/school/tuition-free-mit.html

 In the ArsDigita Community System implementation, the news_id is actually generated in /news/post-new-2.tcl:

 set news_id [database_to_tcl_string $db "select news_id_sequence.nextval from dual"]

 This way the page that actually does the database insert,
/news/post-new-3.tcl, can be sure when the user has inadvertently hit
submit twice:

 if [catch { ns_db dml $db "insert into news (news_id, title, body, html_p, approved_p, release_date, expiration_date, creation_date, creation_user, creation_ip_address) values ($news_id, '$QQtitle', '$QQbody', '$html_p', '$approved_p', '$release_date', '$expiration_date', sysdate, $user_id, '$creation_ip_address')" } errmsg] { # insert failed; let's see if it was because of duplicate submission if { [database_to_tcl_string $db "select count(*) from news where news_id = $news_id"] == 0 } { # some error other than dupe submission ad_return_error "Insert Failed" "The database ..." return } # we don't bother to handle the cases where there is a dupe submission # because the user should be thanked or redirected anyway }

 In our experience, the standard technique of generating the key at the
same time as the insert leads to a lot of duplicate information in the
database.

 Sequence Caveats

 Oracle sequences are optimized for speed. Hence they offer the minimum
guarantees that Oracle thinks are required for primary key generation
and no more.

 If you ask for a few nextvals and roll back your transaction, the sequence will not be rolled back.

 You can't rely on sequence values to be, uh, sequential. They will be unique. They will be monotonically increasing. But there might be gaps. The gaps arise because Oracle pulls, by default, 20 sequence values into memory and records those values as used on disk. This makes nextval very fast since the new value need only be marked use in RAM and not on disk. But suppose that someone pulls the plug on your database server after only two sequence values have been handed out. If your database administrator and system administrator are working well together, the computer will come back to life running Oracle. But there will be a gap of 18 values in the sequence (e.g., from 2023 to 2041). That's because Oracle recorded 20 values used on disk and only handed out 2.

 More

 	Oracle8 Server Application Developer's Guide, Controlling Transactions

 	Orace8 Server SQL Reference, CREATE SEQUENCE section

 Next: Triggers

 philg@mit.edu

 Add a comment

 	
 [image: Fixing a Macintosh so that it doesn't crash when you connect it to the Internet.]

 	
 Triggers

 part of
 SQL for Web Nerds
by Philip Greenspun

 	
 [image: Eve preparing to stop a Macintosh from crashing]

 A trigger is a fragment of code that you tell Oracle to run before or
after a table is modified. A trigger has the power to

 	make sure that a column is filled in with default information

 	make sure that an audit row is inserted into another table

 	after finding that the new information is inconsistent with other stuff in the database, raise an error that will cause the entire transaction to be rolled back

 Consider the general_comments table:

 create table general_comments (comment_id integer primary key, on_what_id integer not null, on_which_table varchar(50), user_id not null references users, comment_date date not null, ip_address varchar(50) not null, modified_date date not null, content clob, -- is the content in HTML or plain text (the default) html_p char(1) default 'f' check(html_p in ('t','f')), approved_p char(1) default 't' check(approved_p in ('t','f')));

 Users and administrators are both able to edit comments. We want to
make sure that we know when a comment was last modified so that we can
offer the administrator a "recently modified comments page". Rather
than painstakingly go through all of our Web scripts that insert or
update comments, we can specify an invariant in Oracle that "after every
time someone touches the general_comments table, make sure
that the modified_date column is set equal to the current
date-time." Here's the trigger definition:

 create trigger general_comments_modified before insert or update on general_comments for each row begin :new.modified_date := sysdate; end; / show errors

 We're using the PL/SQL programming language, discussed in the procedural language chapter. In this
case, it is a simple begin-end block that sets the
 :new value of modified_date to the result of
calling the sysdate function.

 When using SQL*Plus, you have to provide a / character to get the program to evaluate a trigger or PL/SQL function definition. You then have to say "show errors" if you want SQL*Plus to print out what went wrong. Unless you expect to write perfect code all the time, it can be convenient to leave these SQL*Plus incantations in your .sql files.

 An Audit Table Example

 [image: Turf Accountants. Dublin, Ireland.]

The canonical trigger example is the stuffing of an audit table. For
example, in the data warehouse section of the ArsDigita Community
System, we keep a table of user queries. Normally the SQL code for a
query is kept in a query_columns table. However, sometimes
a user might hand edit the generated SQL code, in which case we simply
store that in the query_sqlqueries table. The SQL code for a query might be very
important to a business and might have taken years to evolve. Even if
we have good RDBMS backups, we don't want it getting erased because of a
careless mouse click. So we add a queries_audit table to
keep historical values of the query_sql column:

 create table queries (query_id integer primary key, query_name varchar(100) not null, query_owner not null references users, definition_time date not null, -- if this is non-null, we just forget about all the query_columns -- stuff; the user has hand edited the SQL query_sql varchar(4000)); create table queries_audit (query_id integer not null, audit_time date not null, query_sql varchar(4000));

 Note first that queries_audit has no primary key. If we
were to make query_id the primary key, we'd only be able to
store one history item per query, which is not our intent.

 How to keep this table filled? We could do it by making sure that every Web script that might update the query_sql column inserts a row in queries_audit when appropriate. But how to enforce this after we've handed off our code to other programmers? Much better to let the RDBMS enforce the auditing:

 create or replace trigger queries_audit_sql before update on queries for each row when (old.query_sql is not null and (new.query_sql is null or old.query_sql <> new.query_sql)) begin insert into queries_audit (query_id, audit_time, query_sql) values (:old.query_id, sysdate, :old.query_sql); end;

 The structure of a row-level trigger is the following:

 CREATE OR REPLACE TRIGGER ***trigger name*** ***when*** ON ***which table*** FOR EACH ROW ***conditions for firing*** begin ***stuff to do*** end;

 Let's go back and look at our trigger:

 	It is named queries_audit_sql; this is really of no consequence so long as it doesn't conflict with the names of other triggers.

 	It will be run before update, i.e., only when someone is executing an SQL UPDATE statement.

 	It will be run only when someone is updating the table queries.

 	It will be run only when the old value of query_sql is not null; we don't want to fill our audit table with NULLs.

 	It will be run only when the new value of query_sql is different from the old value; we don't want to fill our audit table with rows because someone happens to be updating another column in queries. Note that SQL's three-valued logic forces us to put in an extra test for new.query_sql is null because old.query_sql <> new.query_sql will not evaluate to true when new.query_sql is NULL (a user wiping out the custom SQL altogether; a very important case to audit).

 Reference

 	Oracle Application Developer's Guide, Using Database Triggers

 Next: views

 philg@mit.edu

 Add a comment

 	
 [image: Disneyland. Los Angeles, California.]

 	
 Views

 part of
 SQL for Web Nerds
by Philip Greenspun

 [image: A view of the Spider Rock in Canyon de Chelly. This is where the spider woman came down and taught the Navajo how to weave.]

The relational database provides programmers with a high degree of
abstraction from the physical world of the computer. You can't tell
where on the disk the RDBMS is putting each row of a table. For all you
know, information in a single row might be split up and spread out
across multiple disk drives. The RDBMS lets you add a column to a
billion-row table. Is the new information for each row going to be
placed next to the pre-existing columns or will a big new block of disk
space be allocated to hold the new column value for all billion rows?
You can't know and shouldn't really care.

 A view is a way of building even greater abstraction.

 Suppose that Jane in marketing says that she wants to see a table containing the following information:

 	user_id

 	email address

 	number of static pages viewed

 	number of bboard postings made

 	number of comments made

 This information is spread out among four tables. However, having read
the preceding chapters of this book, you're perfectly equipped to serve
Jane's needs with the following query:

 select u.user_id,
 u.email,
 count(ucm.page_id) as n_pages,
 count(bb.msg_id) as n_msgs,
 count(c.comment_id) as n_comments
from users u, user_content_map ucm, bboard bb, comments c
where u.user_id = ucm.user_id(+)
and u.user_id = bb.user_id(+)
and u.user_id = c.user_id(+)
group by u.user_id, u.email
order by upper(email)

 Then Jane adds "I want to see this every day, updated with the latest
information. I want to have a programmer write me some desktop software
that connects directly to the database and looks at this information; I
don't want my desktop software breaking if you reorganize the data
model."

 create or replace view janes_marketing_view
as
select u.user_id,
 u.email,
 count(ucm.page_id) as n_pages,
 count(bb.msg_id) as n_msgs,
 count(c.comment_id) as n_comments
from users u, user_content_map ucm, bboard bb, comments c
where u.user_id = ucm.user_id(+)
and u.user_id = bb.user_id(+)
and u.user_id = c.user_id(+)
group by u.user_id, u.email
order by upper(u.email)

 To Jane, this will look and act just like a table when she queries it:

 select * from janes_marketing_view;

 Why should she need to be aware that information is coming from four
tables? Or that you've reorganized the RDBMS so that the information
subsequently comes from six tables?

 Protecting Privacy with Views

 A common use of views is protecting confidential data. For example,
suppose that all the people who work in a hospital collaborate by using
a relational database. Here is the data model:

 create table patients (patient_id integer primary key, patient_name varchar(100), hiv_positive_p char(1), insurance_p char(1), ...);

 If a bunch of hippie idealists are running the hospital, they'll think
that the medical doctors shouldn't be aware of a patient's insurance
status. So when a doc is looking up a patient's medical record, the
looking is done through

 create view patients_clinical as select patient_id, patient_name, hiv_positive_p from patients;

 The folks over in accounting shouldn't get access to the patients'
medical records just because they're trying to squeeze money out of
them:

 create view patients_accounting as select patient_id, patient_name, insurance_p from patients;

 Relational databases have elaborate permission systems similar to those
on time-shared computer systems. Each person in a hospital has a unique
database user ID. Permission will be granted to view or modify certain
tables on a per-user or per-group-of-users basis. Generally the RDBMS
permissions facilities aren't very useful for Web applications. It is
the Web server that is talking to the database, not a user's desktop
computer. So the Web server is responsible for figuring out who is
requesting a page and how much to show in response.

 Protecting Your Own Source Code

 The ArsDigita Shoppe system, described in http://philip.greenspun.com/panda/ecommerce,
represents all orders in one table, whether they were denied by the
credit card processor, returned by the user, or voided by the merchant.
This is fine for transaction processing but you don't want your
accounting or tax reports corrupted by the inclusion of failed orders.
You can make a decision in one place as to what constitutes a reportable
order and then have all of your report programs query the view:

 create or replace view sh_orders_reportable as select * from sh_orders where order_state not in ('confirmed','failed_authorization','void');

 Note that in the privacy example (above) we were using the view to leave
unwanted columns behind whereas here we are using the view to leave
behind unwanted rows.

 If we add some order states or otherwise change the data model, the reporting programs need not be touched; we only have to keep this view definition up to date. Note that you can define every view with "create or replace view" rather than "create view"; this saves a bit of typing when you have to edit the definition later.

 If you've used select * to define a view and subsequently alter any of the underlying tables, you have to redefine the view. Otherwise, your view won't contain any of the new columns. You might consider this a bug but Oracle has documented it, thus turning the behavior into a feature.

 Views-on-the-fly and OUTER JOIN

 Let's return to our first OUTER JOIN example, from the simple queries
chapter:

 select users.user_id, users.email, classified_ads.posted from users, classified_ads where users.user_id = classified_ads.user_id(+) order by users.email, posted; ... USER_ID EMAIL POSTED ---------- ----------------------------------- ---------- 52790 dbrager@mindspring.com 37461 dbraun@scdt.intel.com 52791 dbrenner@flash.net 47177 dbronz@free.polbox.pl 37296 dbrouse@enter.net 47178 dbrown@cyberhighway.net 36985 dbrown@uniden.com 1998-03-05 36985 dbrown@uniden.com 1998-03-10 34283 dbs117@amaze.net 52792 dbsikorski@yahoo.com ...

 The plus sign after classified_ads.user_id is our instruction to Oracle to "add NULL rows if you can't meet this JOIN constraint".

 Suppose that this report has gotten very long and we're only interested in users whose email addresses start with "db". We can add a WHERE clause constraint on the email column of the users table:

 select users.user_id, users.email, classified_ads.posted from users, classified_ads where users.user_id = classified_ads.user_id(+) and users.email like 'db%' order by users.email, posted; USER_ID EMAIL POSTED ---------- ------------------------------ ---------- 71668 db-designs@emeraldnet.net 112295 db1@sisna.com 137640 db25@umail.umd.edu 35102 db44@aol.com 1999-12-23 59279 db4rs@aol.com 95190 db@astro.com.au 17474 db@hotmail.com 248220 db@indianhospitality.com 40134 db@spindelvision.com 1999-02-04 144420 db_chang@yahoo.com 15020 dbaaru@mindspring.com ...

 Suppose that we decide we're only interested in classified ads since
January 1, 1999. Let's try the naive approach, adding another WHERE
clause constraint, this time on a column from the
 classified_ads table:

 select users.user_id, users.email, classified_ads.posted from users, classified_ads where users.user_id = classified_ads.user_id(+) and users.email like 'db%' and classified_ads.posted > '1999-01-01' order by users.email, posted; USER_ID EMAIL POSTED ---------- ------------------------------ ---------- 35102 db44@aol.com 1999-12-23 40134 db@spindelvision.com 1999-02-04 16979 dbdors@ev1.net 2000-10-03 16979 dbdors@ev1.net 2000-10-26 235920 dbendo@mindspring.com 2000-08-03 258161 dbouchar@bell.mma.edu 2000-10-26 39921 dbp@agora.rdrop.com 1999-06-03 39921 dbp@agora.rdrop.com 1999-11-05 8 rows selected.

 Hey! This completely wrecked our outer join! All of the rows where the
user had not posted any ads have now disappeared. Why? They didn't
meet the and classified_ads.posted > '1999-01-01'
constraint. The outer join added NULLs to every column in the report
where there was no corresponding row in the classified_ads
table. The new constraint is comparing NULL to January 1, 1999 and the
answer is... NULL. That's three-valued logic for you. Any computation
involving a NULL turns out NULL. Each WHERE clause constraint must
evaluate to true for a row to be kept in the result set of the SELECT.
What's the solution? A "view on the fly". Instead of OUTER JOINing the
 users table to the classified_ads, we will
OUTER JOIN users to a view of
 classified_ads that contains only those ads posted since
January 1, 1999:

 select users.user_id, users.email, ad_view.posted from users, (select * from classified_ads where posted > '1999-01-01') ad_view where users.user_id = ad_view.user_id(+) and users.email like 'db%' order by users.email, ad_view.posted; USER_ID EMAIL POSTED ---------- ------------------------------ ---------- 71668 db-designs@emeraldnet.net 112295 db1@sisna.com 137640 db25@umail.umd.edu 35102 db44@aol.com 1999-12-23 59279 db4rs@aol.com 95190 db@astro.com.au 17474 db@hotmail.com 248220 db@indianhospitality.com 40134 db@spindelvision.com 1999-02-04 144420 db_chang@yahoo.com 15020 dbaaru@mindspring.com ... 174 rows selected.

 Note that we've named our "view on the fly" ad_view for the
duration of this query.

 How Views Work

 Programmers aren't supposed to have to think about how views work.
However, it is worth noting that the RDBMS merely stores the view
definition and not any of the data in a view. Querying against a view
versus the underlying tables does not change the way that data are
retrieved or cached. Standard RDBMS views exist to make programming
more convenient or to address security concerns, not to make data access
more efficient.

 [bookmark: materialized]

 How Materialized Views Work

 [image: Powerscourt. South of Dublin, Ireland.]

Starting with Oracle 8.1.5, introduced in March 1999, you can have a
 materialized view, also known as a summary. Like a
regular view, a materialized view can be used to build a black-box
abstraction for the programmer. In other words, the view might be
created with a complicated JOIN, or an expensive GROUP BY with sums and
averages. With a regular view, this expensive operation would be done
every time you issued a query. With a materialized view, the expensive
operation is done when the view is created and thus an individual query
need not involve substantial computation.

 Materialized views consume space because Oracle is keeping a copy of the data or at least a copy of information derivable from the data. More importantly, a materialized view does not contain up-to-the-minute information. When you query a regular view, your results includes changes made up to the last committed transaction before your SELECT. When you query a materialized view, you're getting results as of the time that the view was created or refreshed. Note that Oracle lets you specify a refresh interval at which the materialized view will automatically be refreshed.

 At this point, you'd expect an experienced Oracle user to say "Hey, these aren't new. This is the old CREATE SNAPSHOT facility that we used to keep semi-up-to-date copies of tables on machines across the network!" What is new with materialized views is that you can create them with the ENABLE QUERY REWRITE option. This authorizes the SQL parser to look at a query involving aggregates or JOINs and go to the materialized view instead. Consider the following query, from the ArsDigita Community System's /admin/users/registration-history.tcl page:

 select to_char(registration_date,'YYYYMM') as sort_key, rtrim(to_char(registration_date,'Month')) as pretty_month, to_char(registration_date,'YYYY') as pretty_year, count(*) as n_new from users group by to_char(registration_date,'YYYYMM'), to_char(registration_date,'Month'), to_char(registration_date,'YYYY') order by 1; SORT_K PRETTY_MO PRET N_NEW ------ --------- ---- ---------- 199805 May 1998 898 199806 June 1998 806 199807 July 1998 972 199808 August 1998 849 199809 September 1998 1023 199810 October 1998 1089 199811 November 1998 1005 199812 December 1998 1059 199901 January 1999 1488 199902 February 1999 2148

 For each month, we have a count of how many users registered at
photo.net. To execute the query, Oracle must sequentially scan the
 users table. If the users table grew large and you wanted
the query to be instant, you'd sacrifice some timeliness in the stats
with

 create materialized view users_by_month enable query rewrite refresh complete start with 1999-03-28 next sysdate + 1 as select to_char(registration_date,'YYYYMM') as sort_key, rtrim(to_char(registration_date,'Month')) as pretty_month, to_char(registration_date,'YYYY') as pretty_year, count(*) as n_new from users group by to_char(registration_date,'YYYYMM'), to_char(registration_date,'Month'), to_char(registration_date,'YYYY') order by 1

 Oracle will build this view just after midnight on March 28, 1999. The
view will be refreshed every 24 hours after that. Because of the
 enable query rewrite clause, Oracle will feel free to grab
data from the view even when a user's query does not mention the view.
For example, given the query

 select count(*) from users where rtrim(to_char(registration_date,'Month')) = 'January' and to_char(registration_date,'YYYY') = '1999'

 Oracle would ignore the users table altogether and pull
information from users_by_month. This would give the same
result with much less work. Suppose that the current month is March
1999, though. The query

 select count(*) from users where rtrim(to_char(registration_date,'Month')) = 'March' and to_char(registration_date,'YYYY') = '1999'

 will also hit the materialized view rather than the users
table and hence will miss anyone who has registered since midnight
(i.e., the query rewriting will cause a different result to be returned).

 More:

 Reference

 	High level: Oracle8 Server Concepts, View section. Oracle Application Developer's Guide, Managing Views section.

 	Low level: Oracle8 Server SQL Reference, Create View syntax, and Create Materialized View section

 Next: style

 philg@mit.edu

 Reader's Comments

 In this on views you state that condition "classified_ads.posted > '1999-01-01' " will not give the desired results because the column 'posted' is nullable hence this condition will compute to NULL whenever 'posted' column is NULL. Hence the query will never return rows where 'posted' value is NULL.

 And in order to solve this issue you go onto to create a view with the following query: (select * from classified_ads where posted > '1999-01-01')

 Wont this view suffer from the same issue? Why will this view contain columns where 'posted' column is NULL.

 Please explain.

 -- sanjay raj, August 25, 2005

 Re Sanjay Raj's comment: Well it has been almost 9 years since you asked the question, so probably by now you've either found the answer elsewhere or lost interest in databases altogether. But since others might be confused and no one else has responded I figured I would. This view-on-the-fly (ad_view) is a list of all ads with dates after 1999-01-01. This is then outer joined to the users table ("where users.user_id = ad_view.user_id(+)") so that users whose ids are included in ad_view will have their ads next to them, but all other users (including both those with no ads and those whose most recent ads were before 1999-01-01 and thus didn't make the cut for ad_view) will be listed with null/white space.

 The difference is that rather than outer joining and then filtering for date, which breaks it because you're filtering out the nulls, you're instead filtering for date first by creating the view, and then outer joining, so you don't touch the nulls after they're created.

 -- Dan Cusher, June 10, 2014

 Add a comment

 	
 [image: Tal. French Roast, 6th Avenue and 11th, Manhattan 1995.]

 	
 Style

 part of
 SQL for Web Nerds
by Philip Greenspun

 Here's a familiar simple example from the complex queries chapter:

 select user_id, count(*) as how_many from bboard where not exists (select 1 from bboard_authorized_maintainers bam where bam.user_id = bboard.user_id) and posting_time + 60 > sysdate group by user_id order by how_many desc;

 Doesn't seem so simple, eh? How about if we rewrite it:

 select user_id, count(*) as how_many from bboard where not exists (select 1 from bboard_authorized_maintainers bam where bam.user_id = bboard.user_id) and posting_time + 60 > sysdate group by user_id order by how_many desc;

 If your code isn't properly indented then you will never be able to
debug it. How can we justify using the word "properly"? After all, the
SQL parser doesn't take extra spaces or newlines into account.

 Software is indented properly when the structure of the software is revealed and when the indentation style is familiar to a community of programmers.

 Rules for All Queries

 If it fits on one line, it is okay to leave on one line:

 select email from users where user_id = 34;

 If it doesn't fit nicely on one line, give each clause a separate line:

 select * from news where sysdate > expiration_date and approved_p = 't' order by release_date desc, creation_date desc

 If the stuff for a particular clause won't fit on one line, put a
newline immediately after the keyword that opens the clause. Then
indent the items underneath. Here's an example from the ArsDigita
Community System's static .html page administration section. We're
querying the static_pages table, which holds a copy of any
.html files in the Unix file system:

 select to_char(count(*),'999G999G999G999G999') as n_pages, to_char(sum(dbms_lob.getlength(page_body)),'999G999G999G999G999') as n_bytes from static_pages;

 In this query, there are two items in the select list, a count of all
the rows and a sum of the bytes in the page_body column (of
type CLOB, hence the requirement to use dbms_lob.getlength
rather than simply length). We want Oracle to format these
numbers with separation characters between every three digits. For
this, we have to use the to_char function and a mask of
 '999G999G999G999G999' (the "G" tells Oracle to use the
appropriate character depending on the country where it is installed,
e.g., comma in the U.S. and period in Europe). Then we have to give the
results correlation names so that they will be easy to use as Tcl
variables. By the time we're done with all of this, it would be
confusing to put both items on the same line.

 Here's another example, this time from the top-level comment administation page for the ArsDigita Community System. We're going to get back a single row with a count of each type of user-submitted comment:

 select count(*) as n_total, sum(decode(comment_type,'alternative_perspective',1,0)) as n_alternative_perspectives, sum(decode(comment_type,'rating',1,0)) as n_ratings, sum(decode(comment_type,'unanswered_question',1,0)) as n_unanswered_questions, sum(decode(comment_type,'private_message_to_page_authors',1,0)) as n_private_messages from comments

 Notice the use of sum(decode to count the number of each
type of comment. This gives us similar information to what we'd get
from a GROUP BY, but we get a sum total as well as category totals.
Also, the numbers come out with the column names of our choice. Of
course, this kind of query only works when you know in advance the
possible values of comment_type.

 	The Oracle docs on DECODE

 	for an explanation of the number formatting wizardry, see Oracle8 Server SQL Reference section on format conversion

 Rules for GROUP BY queries

 When you're doing a GROUP BY, put the columns that determine the group
identity first in the select list. Put the aggregate columns that
compute a function for that group afterwards:

 select links.user_id, first_names, last_name, count(links.page_id) as n_links from links, users where links.user_id = users.user_id group by links.user_id, first_names, last_name order by n_links desc

 Next: procedural

 philg@mit.edu

 Reader's Comments

 The where clause is in two lines in the example above though the text suggests one line:

 "If it doesn't fit nicely on one line, give each clause a separate line:

 select *

 from news

 where sysdate > expiration_date

 and approved_p = 't'

 order by release_date desc, creation_date desc"

 In this case, one line would be the better, of course.

		

 -- Peter Tury, June 12, 2002

 Add a comment | Add a link

 	
 [image: Secret Service guys checking out the press. MIT Graduation 1998.]

 	
 Escaping to the procedural world

 part of
 SQL for Web Nerds
by Philip Greenspun

 [image: MIT Graduation 1998]

Declarative languages can be very powerful and reliable, but sometimes
it is easier to think about things procedurally. One way to do this is
by using a procedural language in the database client. For example,
with AOLserver we generally program in Tcl, a procedural language, and
read the results of SQL queries. For example, in the /news module of
the ArsDigita Community System, we want to

 	query for the current news

 	loop through the rows that come back and display one line for each row (with a link to a page that will show the full story)

 	for the first three rows, see if the news story is very short. If so, just display it on this page

 The words above that should give a SQL programmer pause are in the last
bullet item: if and for the first three rows. There are
no clean ways in standard SQL to say "do this just for the first N rows"
or "do something special for a particular row if its data match a
certain pattern".

 Here's the AOLserver Tcl program. Note that depending on the contents of an item in the news table, the Tcl program may execute an SQL query (to figure out if there are user comments on a short news item).

 set selection [ns_db select $db "select * from news where sysdate between release_date and expiration_date and approved_p = 't' order by release_date desc, creation_date desc"] while { [ns_db getrow $db $selection] } { set_variables_after_query # we use the luxury of Tcl to format the date nicely ns_write "[util_AnsiDatetoPrettyDate $release_date]: " if { $counter <= 3 && [string length $body] < 300 } { # it is one of the top three items and it is rather short # so, let's consider displaying it right here # first, let's go back to Oracle to find out if there are any # comments on this item set n_comments [database_to_tcl_string $db_sub "select count(*) from general_comments where on_what_id = $news_id and on_which_table = 'news'"] if { $n_comments > 0 } { # there are some comments; just show the title ns_write "$title\n" } else { # let's show the whole news item ns_write "$title\n<blockquote>\n[util_maybe_convert_to_html $body $html_p]\n" if [ad_parameter SolicitCommentsP news 1] { ns_write "

\ncomment\n" } ns_write "</blockquote>\n" } } else { ns_write "$title\n" } }

 Suppose that you have a million rows in your news table, you want five, but you can only figure out which five with a bit of procedural logic. Does it really make sense to drag those million rows of data all the way across the network from the database server to your client application and then throw out 999,995 rows?

 Or suppose that you're querying a million-row table and want the results back in a strange order. Does it make sense to build a million-row data structure in your client application, sort them in the client program, then return the sorted rows to the user?

 Visit http://www.scorecard.org/chemical-profiles/ and search for "benzene". Note that there are 328 chemicals whose names contain the string "benzene":

 select count(*) from chemical where upper(edf_chem_name) like upper('%benzene%'); COUNT(*) ---------- 328

 The way we want to display them is

 	exact matches on top

 	line break

 	chemicals that start with the query string

 	line break

 	chemicals that contain the query string

 Within each category of chemicals, we want to sort alphabetically.
However, if there are numbers or special characters in front of a
chemical name, we want to ignore those for the purposes of sorting.

 Can you do all of that with one query? And have them come back from the database in the desired order?

 You could if you could make a procedure that would run inside the database. For each row, the procedure would compute a score reflecting goodness of match. To get the order correct, you need only ORDER BY this score. To get the line breaks right, you need only have your application program watch for changes in score. For the fine tuning of sorting equally scored matches alphabetically, just write another procedure that will return a chemical name stripped of leading special characters, then sort by the result. Here's how it looks:

 select edf_chem_name, edf_substance_id, score_chem_name_match_score(upper(edf_chem_name),upper('%benzene%')) as match_score from chemical where upper(edf_chem_name) like upper('%benzene%'); order by score_chem_name_match_score(upper(edf_chem_name),upper('benzene')), score_chem_name_for_sorting(edf_chem_name)

 We specify the procedure score_chem_name_match_score to take two arguments: one the chemical name from the current row, and one the query string from the user. It returns 0 for an exact match, 1 for a chemical whose name begins with the query string, and 2 in all other cases (remember that this is only used in queries where a LIKE clause ensures that every chemical name at least contains the query string. Once we defined this procedure, we'd be able to call it from a SQL query, the same way that we can call built-in SQL functions such as upper.

 So is this possible? Yes, in all "enterprise-class" relational database management systems. Historically, each DBMS has had a proprietary language for these stored procedures. Starting in 1997, DBMS companies began to put Java byte-code interpreters into the database server. Oracle added Java-in-the-server capability with its 8.1 release in February 1999. If you're looking at old systems such as Scorecard, though, you'll be looking at procedures in Oracle's venerable PL/SQL language:

 create or replace function score_chem_name_match_score (chem_name IN varchar, query_string IN varchar) return integer AS BEGIN IF chem_name = query_string THEN return 0; ELSIF instr(chem_name,query_string) = 1 THEN return 1; ELSE return 2; END IF; END score_chem_name_match_score;

 Notice that PL/SQL is a strongly typed language. We say what arguments
we expect, whether they are IN or OUT, and what types they must be. We
say that score_chem_name_match_score will return an
integer. We can say that a PL/SQL variable should be of the same type
as a column in a table:

 create or replace function score_chem_name_for_sorting (chem_name IN varchar) return varchar AS stripped_chem_name chem_hazid_ref.edf_chem_name%TYPE; BEGIN stripped_chem_name := ltrim(chem_name,'1234567890-+()[],'' #'); return stripped_chem_name; END score_chem_name_for_sorting;

 The local variable stripped_chem_name is going to be the
same type as the edf_chem_name column in the
 chem_hazid_ref table.

 If you are using the Oracle application SQL*Plus to define PL/SQL functions, you have to terminate each definition with a line containing only the character "/". If SQL*Plus reports that there were errors in evaluating your definition, you then have to type "show errors" if you want more explanation. Unless you expect to write perfect code all the time, it can be convenient to leave these SQL*Plus incantations in your .sql files. Here's an example:

 -- note that we prefix the incoming arg with v_ to keep it -- distinguishable from the database column of the same name -- this is a common PL/SQL convention create or replace function user_group_name_from_id (v_group_id IN integer) return varchar IS -- instead of worrying about how many characters to -- allocate for this local variable, we just tell -- Oracle "make it the same type as the group_name -- column in the user_groups table" v_group_name user_groups.group_name%TYPE; BEGIN if v_group_id is null then return ''; end if; -- note the usage of INTO below, which pulls a column -- from the table into a local variable select group_name into v_group_name from user_groups where group_id = v_group_id; return v_group_name; END; / show errors

 Choosing between PL/SQL and Java

 How to choose between PL/SQL and Java? Easy: you don't get to choose.
In lots of important places, e.g., triggers, Oracle forces you to
specify blocks of PL/SQL. So you have to learn at least the rudiments
of PL/SQL. If you're going to build major packages, Java is probably a
better long-term choice.

 Reference

 	Overview: Oracle8 Server Application Developer's Guide, "Using Procedures and Packages" at http://www.oradoc.com/keyword/using_procedures_and_packages

 	PL/SQL User's Guide and Reference at http://www.oradoc.com/keyword/plsql

 	Java Stored Procedures Developer's Guide at http://www.oradoc.com/keyword/java_stored_procedures

 Next: trees

 philg@mit.edu

 Add a comment

 	
 [image: Hawaii]

 	
 Trees in Oracle SQL

 part of
 SQL for Web Nerds
by Philip Greenspun

 [image: A tree in Canyon de Chelly]

On its face, the relational database management system would appear to
be a very poor tool for representing and manipulating trees. This
chapter is designed to accomplish the following things:

 	show you that a row in an SQL database can be thought of as an object

 	show you that a pointer from one object to another can be represented by storing an integer key in a regular database column

 	demonstrate the Oracle tree extensions (CONNECT BY ... PRIOR)

 	show you how to work around the limitations of CONNECT BY with PL/SQL

 The canonical example of trees in Oracle is the org chart.

 create table corporate_slaves (slave_id integer primary key, supervisor_id references corporate_slaves, name varchar(100)); insert into corporate_slaves values (1, NULL, 'Big Boss Man'); insert into corporate_slaves values (2, 1, 'VP Marketing'); insert into corporate_slaves values (3, 1, 'VP Sales'); insert into corporate_slaves values (4, 3, 'Joe Sales Guy'); insert into corporate_slaves values (5, 4, 'Bill Sales Assistant'); insert into corporate_slaves values (6, 1, 'VP Engineering'); insert into corporate_slaves values (7, 6, 'Jane Nerd'); insert into corporate_slaves values (8, 6, 'Bob Nerd'); SQL> column name format a20 SQL> select * from corporate_slaves; SLAVE_ID SUPERVISOR_ID NAME ---------- ------------- -------------------- 1 Big Boss Man 2 1 VP Marketing 3 1 VP Sales 4 3 Joe Sales Guy 6 1 VP Engineering 7 6 Jane Nerd 8 6 Bob Nerd 5 4 Bill Sales Assistant 8 rows selected.

 [image: Joshua Tree National Park]

The integers in the supervisor_id are actually pointers to
other rows in the corporate_slaves table. Need to display
an org chart? With only standard SQL available, you'd write a program
in the client language (e.g., C, Lisp, Perl, or Tcl) to do the
following:

 	query Oracle to find the employee where supervisor_id is null, call this $big_kahuna_id

 	query Oracle to find those employees whose supervisor_id = $big_kahuna_id

 	for each subordinate, query Oracle again to find their subordinates.

 	repeat until no subordinates found, then back up one level

 With the Oracle CONNECT BY clause, you can get all the rows out at once:

 select name, slave_id, supervisor_id from corporate_slaves connect by prior slave_id = supervisor_id; NAME SLAVE_ID SUPERVISOR_ID -------------------- ---------- ------------- Big Boss Man 1 VP Marketing 2 1 VP Sales 3 1 Joe Sales Guy 4 3 Bill Sales Assistant 5 4 VP Engineering 6 1 Jane Nerd 7 6 Bob Nerd 8 6 VP Marketing 2 1 VP Sales 3 1 Joe Sales Guy 4 3 Bill Sales Assistant 5 4 Joe Sales Guy 4 3 Bill Sales Assistant 5 4 VP Engineering 6 1 Jane Nerd 7 6 Bob Nerd 8 6 Jane Nerd 7 6 Bob Nerd 8 6 Bill Sales Assistant 5 4 20 rows selected.

 This seems a little strange. It looks as though Oracle has produced all
possible trees and subtrees. Let's add a START WITH clause:

 select name, slave_id, supervisor_id from corporate_slaves connect by prior slave_id = supervisor_id start with slave_id in (select slave_id from corporate_slaves where supervisor_id is null); NAME SLAVE_ID SUPERVISOR_ID -------------------- ---------- ------------- Big Boss Man 1 VP Marketing 2 1 VP Sales 3 1 Joe Sales Guy 4 3 Bill Sales Assistant 5 4 VP Engineering 6 1 Jane Nerd 7 6 Bob Nerd 8 6 8 rows selected.

 [image: Trees at sunrise. Big Sur, California.]

Notice that we've used a subquery in the START WITH clause to find out
who is/are the big kahuna(s). For the rest of this example, we'll just
hard-code in the slave_id 1 for brevity.

 Though these folks are in the correct order, it is kind of tough to tell from the preceding report who works for whom. Oracle provides a magic pseudo-column that is meaningful only when a query includes a CONNECT BY. The pseudo-column is level:

 select name, slave_id, supervisor_id, level from corporate_slaves connect by prior slave_id = supervisor_id start with slave_id = 1; NAME SLAVE_ID SUPERVISOR_ID LEVEL -------------------- ---------- ------------- ---------- Big Boss Man 1 1 VP Marketing 2 1 2 VP Sales 3 1 2 Joe Sales Guy 4 3 3 Bill Sales Assistant 5 4 4 VP Engineering 6 1 2 Jane Nerd 7 6 3 Bob Nerd 8 6 3 8 rows selected.

 The level column can be used for indentation. Here we will
use the concatenation operator (||) to add spaces in front
of the name column:

 column padded_name format a30 select lpad(' ', (level - 1) * 2) || name as padded_name, slave_id, supervisor_id, level from corporate_slaves connect by prior slave_id = supervisor_id start with slave_id = 1; PADDED_NAME SLAVE_ID SUPERVISOR_ID LEVEL ------------------------------ ---------- ------------- ---------- Big Boss Man 1 1 VP Marketing 2 1 2 VP Sales 3 1 2 Joe Sales Guy 4 3 3 Bill Sales Assistant 5 4 4 VP Engineering 6 1 2 Jane Nerd 7 6 3 Bob Nerd 8 6 3 8 rows selected.

 If you want to limit your report, you can use standard WHERE clauses:

 select lpad(' ', (level - 1) * 2) || name as padded_name, slave_id, supervisor_id, level from corporate_slaves where level <= 3 connect by prior slave_id = supervisor_id start with slave_id = 1; PADDED_NAME SLAVE_ID SUPERVISOR_ID LEVEL ------------------------------ ---------- ------------- ---------- Big Boss Man 1 1 VP Marketing 2 1 2 VP Sales 3 1 2 Joe Sales Guy 4 3 3 VP Engineering 6 1 2 Jane Nerd 7 6 3 Bob Nerd 8 6 3 7 rows selected.

 Suppose that you want people at the same level to sort alphabetically.
Sadly, the ORDER BY clause doesn't work so great in conjunction with
CONNECT BY:

 select lpad(' ', (level - 1) * 2) || name as padded_name, slave_id, supervisor_id, level from corporate_slaves connect by prior slave_id = supervisor_id start with slave_id = 1 order by level, name; PADDED_NAME SLAVE_ID SUPERVISOR_ID LEVEL ------------------------------ ---------- ------------- ---------- Big Boss Man 1 1 VP Engineering 6 1 2 VP Marketing 2 1 2 VP Sales 3 1 2 Bob Nerd 8 6 3 Jane Nerd 7 6 3 Joe Sales Guy 4 3 3 Bill Sales Assistant 5 4 4 select lpad(' ', (level - 1) * 2) || name as padded_name, slave_id, supervisor_id, level from corporate_slaves connect by prior slave_id = supervisor_id start with slave_id = 1 order by name; PADDED_NAME SLAVE_ID SUPERVISOR_ID LEVEL ------------------------------ ---------- ------------- ---------- Big Boss Man 1 1 Bill Sales Assistant 5 4 4 Bob Nerd 8 6 3 Jane Nerd 7 6 3 Joe Sales Guy 4 3 3 VP Engineering 6 1 2 VP Marketing 2 1 2 VP Sales 3 1 2

 SQL is a set-oriented language. In the result of a CONNECT BY query, it
is precisely the order that has value. Thus it doesn't make much sense
to also have an ORDER BY clause.

 JOIN doesn't work with CONNECT BY

 [image: Carlingford, Ireland.]

If we try to build a report showing each employee and his or her
supervisor's name, we are treated to one of Oracle's few informative
error messages:

 select lpad(' ', (level - 1) * 2) || cs1.name as padded_name, cs2.name as supervisor_name from corporate_slaves cs1, corporate_slaves cs2 where cs1.supervisor_id = cs2.slave_id(+) connect by prior cs1.slave_id = cs1.supervisor_id start with cs1.slave_id = 1; ERROR at line 4: ORA-01437: cannot have join with CONNECT BY

 We can work around this particular problem by creating a view:

 create or replace view connected_slaves as select lpad(' ', (level - 1) * 2) || name as padded_name, slave_id, supervisor_id, level as the_level from corporate_slaves connect by prior slave_id = supervisor_id start with slave_id = 1;

 Notice that we've had to rename level so that we didn't end
up with a view column named after a reserved word. The view works just
like the raw query:

 select * from connected_slaves; PADDED_NAME SLAVE_ID SUPERVISOR_ID THE_LEVEL ------------------------------ ---------- ------------- ---------- Big Boss Man 1 1 VP Marketing 2 1 2 VP Sales 3 1 2 Joe Sales Guy 4 3 3 Bill Sales Assistant 5 4 4 VP Engineering 6 1 2 Jane Nerd 7 6 3 Bob Nerd 8 6 3 8 rows selected.

 but we can JOIN now

 select padded_name, corporate_slaves.name as supervisor_name from connected_slaves, corporate_slaves where connected_slaves.supervisor_id = corporate_slaves.slave_id(+); PADDED_NAME SUPERVISOR_NAME ------------------------------ -------------------- Big Boss Man VP Marketing Big Boss Man VP Sales Big Boss Man Joe Sales Guy VP Sales Bill Sales Assistant Joe Sales Guy VP Engineering Big Boss Man Jane Nerd VP Engineering Bob Nerd VP Engineering 8 rows selected.

 If you have sharp eyes, you'll notice that we've actually OUTER JOINed
so that our results don't exclude the big boss.

 Select-list subqueries do work with CONNECT BY

 Instead of the VIEW and JOIN, we could have added a subquery to the
select list:

 select lpad(' ', (level - 1) * 2) || name as padded_name, (select name from corporate_slaves cs2 where cs2.slave_id = cs1.supervisor_id) as supervisor_name from corporate_slaves cs1 connect by prior slave_id = supervisor_id start with slave_id = 1; PADDED_NAME SUPERVISOR_NAME ------------------------------ -------------------- Big Boss Man VP Marketing Big Boss Man VP Sales Big Boss Man Joe Sales Guy VP Sales Bill Sales Assistant Joe Sales Guy VP Engineering Big Boss Man Jane Nerd VP Engineering Bob Nerd VP Engineering 8 rows selected.

 The general rule in Oracle is that you can have a subquery that returns
a single row anywhere in the select list.

 Does this person work for me?

 Suppose that you've built an intranet Web service. There are things
that your software should show to an employee's boss (or boss's boss)
that it shouldn't show to a subordinate or peer. Here we try to figure
out if the VP Marketing (#2) has supervisory authority over Jane Nerd
(#7):

 select count(*) from corporate_slaves where slave_id = 7 and level > 1 start with slave_id = 2 connect by prior slave_id = supervisor_id; COUNT(*) ---------- 0

 Apparently not. Notice that we start with the VP Marketing (#2) and
stipulate level > 1 to be sure that we will never
conclude that someone supervises him or herself. Let's ask if the Big
Boss Man (#1) has authority over Jane Nerd:

 select count(*) from corporate_slaves where slave_id = 7 and level > 1 start with slave_id = 1 connect by prior slave_id = supervisor_id; COUNT(*) ---------- 1

 Even though Big Boss Man isn't Jane Nerd's direct supervisor, asking
Oracle to compute the relevant subtree yields us the correct result. In
the ArsDigita Community System Intranet module, we decided that this
computation was too important to be left as a query in individual Web
pages. We centralized the question in a PL/SQL procedure:

 create or replace function intranet_supervises_p (query_supervisor IN integer, query_user_id IN integer) return varchar is n_rows_found integer; BEGIN select count(*) into n_rows_found from intranet_users where user_id = query_user_id and level > 1 start with user_id = query_supervisor connect by supervisor = PRIOR user_id; if n_rows_found > 0 then return 't'; else return 'f'; end if; END intranet_supervises_p;

 Family trees

 What if the graph is a little more complicated than employee-supervisor?
For example, suppose that you are representing a family tree. Even
without allowing for divorce and remarriage, exotic South African
fertility clinics, etc., we still need more than one pointer for each
node:

 create table family_relatives (relative_id integer primary key, spouse references family_relatives, mother references family_relatives, father references family_relatives, -- in case they don't know the exact birthdate birthyear integer, birthday date, -- sadly, not everyone is still with us deathyear integer, first_names varchar(100) not null, last_name varchar(100) not null, sex char(1) check (sex in ('m','f')), -- note the use of multi-column check constraints check (birthyear is not null or birthday is not null)); -- some test data insert into family_relatives (relative_id, first_names, last_name, sex, spouse, mother, father, birthyear) values (1, 'Nick', 'Gittes', 'm', NULL, NULL, NULL, 1902); insert into family_relatives (relative_id, first_names, last_name, sex, spouse, mother, father, birthyear) values (2, 'Cecile', 'Kaplan', 'f', 1, NULL, NULL, 1910); update family_relatives set spouse = 2 where relative_id = 1; insert into family_relatives (relative_id, first_names, last_name, sex, spouse, mother, father, birthyear) values (3, 'Regina', 'Gittes', 'f', NULL, 2, 1, 1934); insert into family_relatives (relative_id, first_names, last_name, sex, spouse, mother, father, birthyear) values (4, 'Marjorie', 'Gittes', 'f', NULL, 2, 1, 1936); insert into family_relatives (relative_id, first_names, last_name, sex, spouse, mother, father, birthyear) values (5, 'Shirley', 'Greenspun', 'f', NULL, NULL, NULL, 1901); insert into family_relatives (relative_id, first_names, last_name, sex, spouse, mother, father, birthyear) values (6, 'Jack', 'Greenspun', 'm', 5, NULL, NULL, 1900); update family_relatives set spouse = 6 where relative_id = 5; insert into family_relatives (relative_id, first_names, last_name, sex, spouse, mother, father, birthyear) values (7, 'Nathaniel', 'Greenspun', 'm', 3, 5, 6, 1930); update family_relatives set spouse = 7 where relative_id = 3; insert into family_relatives (relative_id, first_names, last_name, sex, spouse, mother, father, birthyear) values (8, 'Suzanne', 'Greenspun', 'f', NULL, 3, 7, 1961); insert into family_relatives (relative_id, first_names, last_name, sex, spouse, mother, father, birthyear) values (9, 'Philip', 'Greenspun', 'm', NULL, 3, 7, 1963); insert into family_relatives (relative_id, first_names, last_name, sex, spouse, mother, father, birthyear) values (10, 'Harry', 'Greenspun', 'm', NULL, 3, 7, 1965);

 In applying the lessons from the employee examples, the most obvious
problem that we face now is whether to follow the mother or the father
pointers:

 column full_name format a25 -- follow patrilineal (start with my mom's father) select lpad(' ', (level - 1) * 2) || first_names || ' ' || last_name as full_name from family_relatives connect by prior relative_id = father start with relative_id = 1; FULL_NAME ------------------------- Nick Gittes Regina Gittes Marjorie Gittes -- follow matrilineal (start with my mom's mother) select lpad(' ', (level - 1) * 2) || first_names || ' ' || last_name as full_name from family_relatives connect by prior relative_id = mother start with relative_id = 2; FULL_NAME ------------------------- Cecile Kaplan Regina Gittes Suzanne Greenspun Philip Greenspun Harry Greenspun Marjorie Gittes

 Here's what the official Oracle docs have to say about CONNECT BY:

 specifies the relationship between parent rows and child rows of the
hierarchy. condition can be any condition as described in
"Conditions". However, some part of the condition must use the
PRIOR operator to refer to the parent row. The part of the condition
containing the PRIOR operator must have one of the following
forms:

 PRIOR expr comparison_operator expr
expr comparison_operator PRIOR expr

 There is nothing that says comparison_operator has to be
merely the equals sign. Let's start again with my mom's father but
CONNECT BY more than one column:

 -- follow both select lpad(' ', (level - 1) * 2) || first_names || ' ' || last_name as full_name from family_relatives connect by prior relative_id in (mother, father) start with relative_id = 1; FULL_NAME ------------------------- Nick Gittes Regina Gittes Suzanne Greenspun Philip Greenspun Harry Greenspun Marjorie Gittes

 Instead of arbitrarily starting with Grandpa Nick, let's ask Oracle to
show us all the trees that start with a person whose parents are
unknown:

 select lpad(' ', (level - 1) * 2) || first_names || ' ' || last_name as full_name from family_relatives connect by prior relative_id in (mother, father) start with relative_id in (select relative_id from family_relatives where mother is null and father is null); FULL_NAME ------------------------- Nick Gittes Regina Gittes Suzanne Greenspun Philip Greenspun Harry Greenspun Marjorie Gittes Cecile Kaplan Regina Gittes Suzanne Greenspun Philip Greenspun Harry Greenspun Marjorie Gittes Shirley Greenspun Nathaniel Greenspun Suzanne Greenspun Philip Greenspun Harry Greenspun Jack Greenspun Nathaniel Greenspun Suzanne Greenspun Philip Greenspun Harry Greenspun 22 rows selected.

 PL/SQL instead of JOIN

 [image: Tree branch at Glen Ellis Falls on Rt. 16 in New Hampshire]

The preceding report is interesting but confusing because it is hard to
tell where the trees meet in marriage. As noted above, you can't do a
JOIN with a CONNECT BY. We demonstrated the workaround of burying the
CONNECT BY in a view. A more general workaround is using PL/SQL:

 create or replace function family_spouse_name (v_relative_id family_relatives.relative_id%TYPE) return varchar is v_spouse_id integer; spouse_name varchar(500); BEGIN select spouse into v_spouse_id from family_relatives where relative_id = v_relative_id; if v_spouse_id is null then return null; else select (first_names || ' ' || last_name) into spouse_name from family_relatives where relative_id = v_spouse_id; return spouse_name; end if; END family_spouse_name; / show errors column spouse format a20 select lpad(' ', (level - 1) * 2) || first_names || ' ' || last_name as full_name, family_spouse_name(relative_id) as spouse from family_relatives connect by prior relative_id in (mother, father) start with relative_id in (select relative_id from family_relatives where mother is null and father is null); FULL_NAME SPOUSE ------------------------- -------------------- Nick Gittes Cecile Kaplan Regina Gittes Nathaniel Greenspun Suzanne Greenspun Philip Greenspun Harry Greenspun Marjorie Gittes Cecile Kaplan Nick Gittes Regina Gittes Nathaniel Greenspun Suzanne Greenspun Philip Greenspun Harry Greenspun Marjorie Gittes Shirley Greenspun Jack Greenspun Nathaniel Greenspun Regina Gittes Suzanne Greenspun Philip Greenspun Harry Greenspun Jack Greenspun Shirley Greenspun Nathaniel Greenspun Regina Gittes Suzanne Greenspun Philip Greenspun Harry Greenspun

 PL/SQL instead of JOIN and GROUP BY

 Suppose that in addition to displaying the family tree in a Web page, we
also want to show a flag when a story about a family member is
available. First we need a way to represent stories:

 create table family_stories (family_story_id integer primary key, story clob not null, item_date date, item_year integer, access_control varchar(20) check (access_control in ('public', 'family', 'designated')), check (item_date is not null or item_year is not null)); -- a story might be about more than one person create table family_story_relative_map (family_story_id references family_stories, relative_id references family_relatives, primary key (relative_id, family_story_id)); -- put in a test story insert into family_stories (family_story_id, story, item_year, access_control) values (1, 'After we were born, our parents stuck the Wedgwood in a cabinet and bought indestructible china. Philip and his father were sitting at the breakfast table one morning. Suzanne came downstairs and, without saying a word, took a cereal bowl from the cupboard, walked over to Philip and broke the bowl over his head. Their father immediately started laughing hysterically.', 1971, 'public'); insert into family_story_relative_map (family_story_id, relative_id) values (1, 8); insert into family_story_relative_map (family_story_id, relative_id) values (1, 9); insert into family_story_relative_map (family_story_id, relative_id) values (1, 7);

 To show the number of stories alongside a family member's listing, we
would typically do an OUTER JOIN and then GROUP BY the columns other
than the count(family_story_id). In order not to disturb
the CONNECT BY, however, we create another PL/SQL function:

 create or replace function family_n_stories (v_relative_id family_relatives.relative_id%TYPE) return integer is n_stories integer; BEGIN select count(*) into n_stories from family_story_relative_map where relative_id = v_relative_id; return n_stories; END family_n_stories; / show errors select lpad(' ', (level - 1) * 2) || first_names || ' ' || last_name as full_name, family_n_stories(relative_id) as n_stories from family_relatives connect by prior relative_id in (mother, father) start with relative_id in (select relative_id from family_relatives where mother is null and father is null); FULL_NAME N_STORIES ------------------------- ---------- Nick Gittes 0 ... Shirley Greenspun 0 Nathaniel Greenspun 1 Suzanne Greenspun 1 Philip Greenspun 1 Harry Greenspun 0 ...

 [image: Tree at Point Lobos. California Coast, just south of Carmel.]

 Working Backwards

 What does it look like to start at the youngest generation and work back?

 select lpad(' ', (level - 1) * 2) || first_names || ' ' || last_name as full_name, family_spouse_name(relative_id) as spouse from family_relatives connect by relative_id in (prior mother, prior father) start with relative_id = 9; FULL_NAME SPOUSE ------------------------- -------------------- Philip Greenspun Regina Gittes Nathaniel Greenspun Nick Gittes Cecile Kaplan Cecile Kaplan Nick Gittes Nathaniel Greenspun Regina Gittes Shirley Greenspun Jack Greenspun Jack Greenspun Shirley Greenspun

 We ought to be able to view all the trees starting from all the leaves
but Oracle seems to be exhibiting strange behavior:

 select lpad(' ', (level - 1) * 2) || first_names || ' ' || last_name as full_name, family_spouse_name(relative_id) as spouse from family_relatives connect by relative_id in (prior mother, prior father) start with relative_id not in (select mother from family_relatives union select father from family_relatives); no rows selected

 What's wrong? If we try the subquery by itself, we get a reasonable
result. Here are all the relative_ids that appear in the
 mother or father column at least once.

 select mother from family_relatives union select father from family_relatives MOTHER ---------- 1 2 3 5 6 7 7 rows selected.

 The answer lies in that extra blank line at the bottom. There is a NULL
in this result set. Experimentation reveals that Oracle behaves
asymmetrically with NULLs and IN and NOT IN:

 SQL> select * from dual where 1 in (1,2,3,NULL); D - X SQL> select * from dual where 1 not in (2,3,NULL); no rows selected

 The answer is buried in the Oracle documentation of NOT IN: "Evaluates
to FALSE if any member of the set is NULL." The correct query in this
case?

 select lpad(' ', (level - 1) * 2) || first_names || ' ' || last_name as full_name, family_spouse_name(relative_id) as spouse from family_relatives connect by relative_id in (prior mother, prior father) start with relative_id not in (select mother from family_relatives where mother is not null union select father from family_relatives where father is not null); FULL_NAME SPOUSE ------------------------- -------------------- Marjorie Gittes Nick Gittes Cecile Kaplan Cecile Kaplan Nick Gittes Suzanne Greenspun Regina Gittes Nathaniel Greenspun Nick Gittes Cecile Kaplan Cecile Kaplan Nick Gittes Nathaniel Greenspun Regina Gittes Shirley Greenspun Jack Greenspun Jack Greenspun Shirley Greenspun Philip Greenspun Regina Gittes Nathaniel Greenspun Nick Gittes Cecile Kaplan Cecile Kaplan Nick Gittes Nathaniel Greenspun Regina Gittes Shirley Greenspun Jack Greenspun Jack Greenspun Shirley Greenspun Harry Greenspun Regina Gittes Nathaniel Greenspun Nick Gittes Cecile Kaplan Cecile Kaplan Nick Gittes Nathaniel Greenspun Regina Gittes Shirley Greenspun Jack Greenspun Jack Greenspun Shirley Greenspun 24 rows selected.

 Performance and Tuning

 [image: Elke in a tree. Victoria, British Columbia 1993.]

Oracle is not getting any help from the Tree Fairy in producing results
from a CONNECT BY. If you don't want tree queries to take O(N^2) time,
you need to build indices that let Oracle very quickly answer questions
of the form "What are all the children of Parent X?"

 For the corporate slaves table, you'd want two concatenated indices:

 create index corporate_slaves_idx1 on corporate_slaves (slave_id, supervisor_id); create index corporate_slaves_idx2 on corporate_slaves (supervisor_id, slave_id);

 Reference

 [image: A tree in Petrified Forest (north-central Arizona).]

 	SQL Reference section on CONNECT BY

 	PL/SQL User's Guide and Reference

 Gratuitous Photos

 [image: Joshua Tree National Park][image: Mojave Desert. Joshua Tree National Park][image: Florence's Boboli Gardens][image: Maple trees near Peacham, Vermont]

 [image: Joshua Tree. Joshua Tree National Park.]

 Next: dates

 philg@mit.edu

 Reader's Comments

 Oracle9i does CONNECT BY on joins. It also adds an "ORDER SIBLINGS BY" clause, fixing the omission that prevents you from ordering each level of the query.

 Couldn't find the article at Dartmouth :(, it looked really interesting!

 -- Andrew Wolfe, March 24, 2004

 Interested readers should check out Joe Celko's nested set model for representing trees in SQL. No need to be locked into proprietary SQL dialects and probably a couple of orders of magnitude faster to query!

 Here's some links...

 + http://www.intelligententerprise.com/001020/celko.jhtml

 + http://www.dbmsmag.com/9603d06.html

 + http://www.dbmsmag.com/9604d06.html

 + http://www.dbmsmag.com/9605d06.html

 + http://www.dbmsmag.com/9606d06.html

 + http://www.sqlteam.com/Forums/topic.asp?TOPIC_ID=14099

 + http://www.dbazine.com/oracle/or-articles/tropashko4

 + http://mrnaz.com/static/articles/trees_in_sql_tutorial/mptt_overview.php

 Regards, Mattster

 -- Matt Anon, April 3, 2007

 Add a comment

 Related Links

 	representing an m-ary tree in sql- This method allows for very fast retrieval of descendants and modification of an m-ary tree. no self-referencing or nested select statements are necessary to retrieve some or all descendants. the labelling of nodes is such that it allows very simple and fast querying for DFS order of nodes. it was partially inspired by huffman encoding. (contributed by Anthony D'Auria)

 	Dead link- The link above to Dartmouth college appears to be dead, but Web Archive kept a copy of the page (contributed by Tom Lebr)

 Add a link

 	
 [image: Out for the evening in San Diege, California.]

 	
 Dates

 part of
 SQL for Web Nerds
by Philip Greenspun, updated June 13, 2003

 [image: Harry and Katerina's wedding. Lake Placid. September 4, 1999.]

When representing date-time information in Oracle it becomes absolutely
critical to know with which version of the Oracle server you are
working. From version 9 onwards it is possible to represent points in
time and time intervals using ANSI SQL data types such as
 timestamp and interval. Earlier versions of
Oracle represented points in time with the date datatype,
which is precise to within one second, and time intervals as numbers
(where 1 = one day).

 We strongly recommend that you use the newly available ANSI data types when building new applications. These are cleaner and more powerful than the older Oracle-specific way of doing things and further will make it easier to port your application to another RDBMS if necessary.

 If you are stuck using an older version of Oracle or are writing queries and transactions to an older data model, please visit http://philip.greenspun.com/sql/dates-pre-9.

 Querying by Date

 Suppose that we have the following table to record user registrations:

 create table users (user_id integer primary key, first_names varchar(50), last_name varchar(50) not null, email varchar(100) not null unique, -- we encrypt passwords using operating system crypt function password varchar(30) not null, -- we only need precision to within one second registration_date timestamp(0)); -- add some sample data insert into users (user_id, first_names, last_name, email, password, registration_date) values (1,'schlomo','mendelowitz','schlomo@mendelowitz.com','67xui2', to_timestamp('2003-06-13 09:15:00','YYYY-MM-DD HH24:MI:SS')); insert into users (user_id, first_names, last_name, email, password, registration_date) values (2,'George Herbert Walker','Bush','former-president@whitehouse.gov','kl88q', to_timestamp('2003-06-13 15:18:22','YYYY-MM-DD HH24:MI:SS'));

 Let's query for people who registered during the last day:

 column email format a35 column registration_date format a25 select email, registration_date from users where registration_date > current_date - interval '1' day; EMAIL REGISTRATION_DATE ----------------------------------- ------------------------- schlomo@mendelowitz.com 13-JUN-03 09.15.00 AM former-president@whitehouse.gov 13-JUN-03 03.18.22 PM

 Note how the registration date comes out in a non-standard format that
won't sort lexicographically and that does not have a full four digits
for the year. You should curse your database administrator at this
point for not configuring Oracle with a more sensible default. You can
fix the problem for yourself right now, however:

 alter session set nls_timestamp_format = 'YYYY-MM-DD HH24:MI:SS'; select email, registration_date from users where registration_date > current_date - interval '1' day; EMAIL REGISTRATION_DATE ----------------------------------- ---------------------- schlomo@mendelowitz.com 2003-06-13 09:15:00 former-president@whitehouse.gov 2003-06-13 15:18:22

 You can query for shorter time intervals:

 select email, registration_date from users where registration_date > current_date - interval '1' hour; EMAIL REGISTRATION_DATE ----------------------------------- ------------------------- former-president@whitehouse.gov 2003-06-13 15:18:22 select email, registration_date from users where registration_date > current_date - interval '1' minute; no rows selected select email, registration_date from users where registration_date > current_date - interval '1' second; no rows selected

 You can be explicit about how you'd like the timestamps formatted:

 select email, to_char(registration_date,'Day, Month DD, YYYY') as reg_day from users order by registration_date; EMAIL REG_DAY ----------------------------------- ----------------------------- schlomo@mendelowitz.com Friday , June 13, 2003 former-president@whitehouse.gov Friday , June 13, 2003

 Oops. Oracle pads some of these fields by default so that reports will
be lined up and neat. We'll have to trim the strings ourselves:

 select email, trim(to_char(registration_date,'Day')) || ', ' || trim(to_char(registration_date,'Month')) || ' ' || trim(to_char(registration_date,'DD, YYYY')) as reg_day from users order by registration_date; EMAIL REG_DAY ----------------------------------- ---------------------------- schlomo@mendelowitz.com Friday, June 13, 2003 former-president@whitehouse.gov Friday, June 13, 2003

 Some Very Weird Things

 One reason that Oracle may have resisted ANSI date-time datatypes and
arithmetic is that they can make life very strange for the programmer.

 alter session set nls_date_format = 'YYYY-MM-DD'; -- old select add_months(to_date('2003-07-31','YYYY-MM-DD'),-1) from dual; ADD_MONTHS ---------- 2003-06-30 -- new select to_timestamp('2003-07-31','YYYY-MM-DD') - interval '1' month from dual; ERROR at line 1: ORA-01839: date not valid for month specified -- old select to_date('2003-07-31','YYYY-MM-DD') - 100 from dual; TO_DATE('2 ---------- 2003-04-22 -- new (broken) select to_timestamp('2003-07-31','YYYY-MM-DD') - interval '100' day from dual; ERROR at line 1: ORA-01873: the leading precision of the interval is too small -- new (note the extra "(3)") select to_timestamp('2003-07-31','YYYY-MM-DD') - interval '100' day(3) from dual; TO_TIMESTAMP('2003-07-31','YYYY-MM-DD')-INTERVAL'100'DAY(3) --- 2003-04-22 00:00:00

 Some Profoundly Painful Things

 Calculating time intervals between rows in a table can be very painful
because there is no way in standard SQL to refer to "the value of this
column from the previous row in the report". You can do this easily
enough in an imperative computer language, e.g., C#, Java, or Visual
Basic, that is reading rows from an SQL database but doing it purely in
SQL is tough.

 Let's add a few more rows to our users table to see how this works.

 insert into users (user_id, first_names, last_name, email, password, registration_date) values (3,'Osama','bin Laden','50kids@aol.com','dieusa', to_timestamp('2003-06-13 17:56:03','YYYY-MM-DD HH24:MI:SS')); insert into users (user_id, first_names, last_name, email, password, registration_date) values (4,'Saddam','Hussein','livinlarge@saudi-online.net','wmd34', to_timestamp('2003-06-13 19:12:43','YYYY-MM-DD HH24:MI:SS'));

 Suppose that we're interested in the average length of time between
registrations. With so few rows we could just query all the data out
and eyeball it:

 select registration_date from users order by registration_date; REGISTRATION_DATE ------------------------- 2003-06-13 09:15:00 2003-06-13 15:18:22 2003-06-13 17:56:03 2003-06-13 19:12:43

 If we have a lot of data, however, we'll need to do a self-join.

 column r1 format a21 column r2 format a21 select u1.registration_date as r1, u2.registration_date as r2 from users u1, users u2 where u2.user_id = (select min(user_id) from users where registration_date > u1.registration_date) order by r1; R1 R2 --------------------- --------------------- 2003-06-13 09:15:00 2003-06-13 15:18:22 2003-06-13 15:18:22 2003-06-13 17:56:03 2003-06-13 17:56:03 2003-06-13 19:12:43

 Notice that to find the "next row" for the pairing we are using the
 user_id column, which we know to be sequential and unique,
rather than the registration_date column, which may not be unique
because two users could register at exactly the same time.

 Now that we have information from adjacent rows paired up in the same report we can begin to calculate intervals:

 column reg_gap format a21 select u1.registration_date as r1, u2.registration_date as r2, u2.registration_date-u1.registration_date as reg_gap from users u1, users u2 where u2.user_id = (select min(user_id) from users where registration_date > u1.registration_date) order by r1; R1 R2 REG_GAP --------------------- --------------------- --------------------- 2003-06-13 09:15:00 2003-06-13 15:18:22 +000000000 06:03:22 2003-06-13 15:18:22 2003-06-13 17:56:03 +000000000 02:37:41 2003-06-13 17:56:03 2003-06-13 19:12:43 +000000000 01:16:40

 The interval for each row of the report has come back as days, hours,
minutes, and seconds. At this point you'd expect to be able to average
the intervals:

 select avg(reg_gap) from (select u1.registration_date as r1, u2.registration_date as r2, u2.registration_date-u1.registration_date as reg_gap from users u1, users u2 where u2.user_id = (select min(user_id) from users where registration_date > u1.registration_date)) ERROR at line 1: ORA-00932: inconsistent datatypes: expected NUMBER got INTERVAL

 Oops. Oracle isn't smart enough to aggregate time intervals. And sadly
there doesn't seem to be an easy way to turn a time interval into a
number of seconds, for example, that would be amenable to averaging. If
you figure how out to do it, please let me know!

 Should we give up? If you have a strong stomach you can convert the timestamps to old-style Oracle dates through character strings before creating the intervals. This will give us a result as a fraction of a day:

 select avg(reg_gap) from (select u1.registration_date as r1, u2.registration_date as r2, to_date(to_char(u2.registration_date,'YYYY-MM-DD HH24:MI:SS'),'YYYY-MM-DD HH24:MI:SS') - to_date(to_char(u1.registration_date,'YYYY-MM-DD HH24:MI:SS'),'YYYY-MM-DD HH24:MI:SS') as reg_gap from users u1, users u2 where u2.user_id = (select min(user_id) from users where registration_date > u1.registration_date)) AVG(REG_GAP) ------------ .13836034

 If we're going to continue using this ugly query we ought to create a view:

 create view registration_intervals as select u1.registration_date as r1, u2.registration_date as r2, to_date(to_char(u2.registration_date,'YYYY-MM-DD HH24:MI:SS'),'YYYY-MM-DD HH24:MI:SS') - to_date(to_char(u1.registration_date,'YYYY-MM-DD HH24:MI:SS'),'YYYY-MM-DD HH24:MI:SS') as reg_gap from users u1, users u2 where u2.user_id = (select min(user_id) from users where registration_date > u1.registration_date)

 Now we can calculate the average time interval in minutes:

 select 24*60*avg(reg_gap) as avg_gap_minutes from registration_intervals; AVG_GAP_MINUTES --------------- 199.238889

 Reporting

 Here's an example of using the to_char function an GROUP BY
to generate a report of sales by calendar quarter:

 select to_char(shipped_date,'YYYY') as shipped_year, to_char(shipped_date,'Q') as shipped_quarter, sum(price_charged) as revenue from sh_orders_reportable where product_id = 143 and shipped_date is not null group by to_char(shipped_date,'YYYY'), to_char(shipped_date,'Q') order by to_char(shipped_date,'YYYY'), to_char(shipped_date,'Q'); SHIPPED_YEAR SHIPPED_QUARTER REVENUE -------------------- -------------------- ---------- 1998 2 1280 1998 3 1150 1998 4 350 1999 1 210

 This is a hint that Oracle has all kinds of fancy date formats (covered
in their online documentation). We're using the "Q" mask to get the
calendar quarter. We can see that this product started shipping in Q2
1998 and that revenues trailed off in Q4 1998.

 More

 	"New Datatypes, New Possibilities" by Steven Feuerstein

 Next: limits

 philg@mit.edu

 Reader's Comments

 You state:
>> no way in standard SQL to refer to "the value of this column from the previous row in the report".

 At least in Oracle 8i SQL, there is a way in to refer to this, I'm sure it isn't standard, but useful nonetheless, and so I present it here.

 It is called an Analytic Function. There are several, but the one demonstrated in this example is LAST_VALUE.

 SELECT r1, r2, r2 - r1 reg_gap FROM (SELECT u1.update_date AS r1, LAST_VALUE (update_date) OVER (ORDER BY update_date ASC ROWS BETWEEN CURRENT ROW AND 1 FOLLOWING) AS r2 FROM users u1 WHERE u1.user_id > 100000) WHERE r1 <> r2 ORDER BY r1

 From the inside out, I take the update_date from the users table, and using the LAST_VALUE function, I ask for the last update_date value, including in the window the current row and the next chronologically ordered row.

 I used a higher level query to do the difference simply to avoid repeating the long function, but I could have done it in one.

 The results are the same:

 "R1" "R2" "REG_GAP" 11/10/2003 5:19:00 PM 11/10/2003 8:23:24 PM 0.128055555555556 11/10/2003 8:23:24 PM 11/12/2003 7:53:10 AM 1.47900462962963 11/12/2003 7:53:10 AM 2/13/2004 3:44:47 PM 93.3275115740741

 Although, as I said, I'm using 8i so I don't have the interval type.

 To find out more about Analytic Functions, check out the Oracle Documentation SQL Reference.

 KSF

 -- K SF, September 1, 2004

 "Some Profoundly Painful Things -- Calculating time intervals between rows in a table" is very useful, thank you. Some people may need the following technique to establish a sequential numeric identifier.
(In the example you assume "user_id column, which we know to be sequential and unique")

 declare @tmp (registration_date datetime)

 insert @tmp

 select identity(int,1,1) as Sequence, registration_date into #x from users order by registration_date

 ... (now use #x instead of users in the example)

 drop table #x

 -- Steve Davis, January 29, 2006

 You say: "Oops. Oracle pads some of these fields by default so that reports will be lined up and neat. We'll have to trim the strings ourselves."

Not quite: one can use FM modifier in format string to instruct Oracle to trim whitespace from resulting string automatically, like this:

 SQL> select to_char(sysdate,'Day, Month DD, YYYY') from dual;

TO_CHAR(SYSDATE,'DAY,MONTHDD,

Monday , May 22, 2006

SQL> select to_char(sysdate,'FMDay, Month DD, YYYY') from dual;

TO_CHAR(SYSDATE,'FMDAY,MONTHD

Monday, May 22, 2006

 Note that FM is a switch - second FM in format string negates the effect of the first.

		

 -- Vladimir Zakharychev, May 22, 2006

 Not pretty at all but it works...

 CREATE OR REPLACE FUNCTION interval_to_seconds(x INTERVAL DAY TO SECOND) RETURN NUMBER IS
s VARCHAR2(26);
days_s VARCHAR2(26);
time_s VARCHAR2(26);
N NUMBER(10,6);
BEGIN
 s := TO_CHAR(x);
 days_s := SUBSTR(s,2,INSTR(s,' ')-2);
 time_s := SUBSTR(s,2+LENGTH(days_s)+1);
 N := 86400*TO_NUMBER(days_s) + 3600*TO_NUMBER(SUBSTR(time_s,1,2)) + 60*TO_NUMBER(SUBSTR(time_s,4,2)) + TO_NUMBER(SUBSTR(time_s,7));
 IF SUBSTR(s,1,1) = '-' THEN
 N := - N;
 END IF;
 RETURN N;
END;

 -- Andre Mostert, June 20, 2006

 1.Find the first monday on every quater based on date ?

 Select Next_day(trunc(to_date(sysdate,'DD-MON-YYYY'), 'Q')-1,'Monday') from dual

 -- Mohamed Kaleel, April 13, 2007

 Computing number of seconds in an interval:

 FUNCTION seconds_from_interval(invInterval IN INTERVAL DAY TO SECOND) RETURN NUMBER IS BEGIN

 RETURN EXTRACT (DAY FROM invInterval) * 86400 +

 EXTRACT (HOUR FROM invInterval) * 3600 +

 EXTRACT (MINUTE FROM invInterval) * 60 +

 EXTRACT (SECOND FROM invInterval);

 END seconds_from_interval;

 -- Bob Jarvis, March 4, 2008

 Add a comment

 	

 	
 Limits

 part of
 SQL for Web Nerds
by Philip Greenspun

The most painful limit in Oracle is the 4000-byte maximum length of a
VARCHAR. For most Web applications, this turns out to be long enough
to hold 97% of user-entered data. The remaining 3% are sufficiently
important that you might be unable to use VARCHAR.

 Oracle8 includes a Character Large Objects (CLOB) data type, which can be up to 4 GB in size.

 create table foobar
(mykey integer,
 moby clob);

insert into foobar values (1, 'foo');

 The first time I used CLOBs was for an Oracle 8 port of my Q&A forum software (what you see running at photo.net). I use it for the MESSAGE column. In my Illustra implementation, it turned out that only 46 out of the 12,000 rows in the table had messages longer than 4000 bytes (the VARCHAR limit in Oracle 8). But those 46 messages were very interesting and sometimes contained quoted material from other works. So it seemed desirable to allow users to post extremely long messages if they want.

 Minor Caveats:

 	CLOBs don't work like strings. You can't ask for the LENGTH of a CLOB column, for example. You can work around this with PL/SQL calls but it isn't much fun.

 	LOBs are not allowed in GROUP BY, ORDER BY, SELECT DISTINCT, aggregates and JOINS

 	alter table bboard modify message clob; does not work (even with no rows in the table). If you want to use CLOBs, you apparently have to say so at table creation time.

 If you thought that these limitations were bad, you haven't gotten to
the big one: the Oracle SQL parser can only handle string literals up
to 4000 characters in length. SQL*Plus is even more restricted. It can
handle strings up to 2500 characters in length. From most Oracle
clients, there will in fact be no way to insert data longer than 4000
characters long into a table. A statement/system that works perfectly
with a 4000-character string will fail completely with a 4001-character
string. You have to completely redesign the way you're doing things to
work with strings that might be long.

 My partner Cotton was custom writing me an Oracle 8 driver for AOLserver (my preferred RDBMS client). So he decided to use C bind variables instead. It turned out that these didn't work either for strings longer than 4000 chars. There is some special CLOB type for C that you could use if you knew in advance that the column was CLOB. But of course Cotton's C code was just taking queries from my AOLserver Tcl code. Without querying the database before every INSERT or SELECT, he had no way of knowing which columns were going to be CLOB.

 One of the most heavily touted features of Oracle 8 is that you can partition tables, e.g., say "every row with an order_date column less than January 1, 1997 goes in tablespace A; every row with order_date less than January 1, 1998 goes in tablespace B; all the rest go in tablespace C." Assuming that these tablespaces are all on separate disk drives, this means that when you do a GROUP BY on orders during the last month or two, Oracle isn't sifting through many years worth of data; it only has to scan the partition of the table that resides in tablespace C. Partitioning seems to be a good idea, or at least the Informix customers who've been using it over the years seem to think so. But if you are a CLOB Achiever, you won't be using partitioning.

 Right now, my take on CLOBs is that they are so unpleasant to use as to be almost not worth it. It has taken Cotton longer to get this one feature working than everything else he did with his driver. Informix Universal Server lets you have 32,000-character long VARCHARs and I'm looking longingly at that system right now...

 Reference

 	Oracle Server Reference, "Limits", http://www.oradoc.com/keyword/limits

 Next: tuning

 philg@mit.edu

 Reader's Comments

 Both MySQL and MS SQL have higher limit of VARCHAR: 1,048,543 and 8000, respectively. This is taken from http://dev.mysql.com/tech-resources/crash-me.php?res_id=38

		

 -- Victor F, August 21, 2004

 A few years ago I was working on a Sybase SQL Server database to store the text of transcribed medical reports. The good folks at Sybase warned us not to use columns of type TEXT (the equivalent of an Oracle CLOB) and to store lines of text in a VARCHAR column instead. (At the time Sybase limited VARCHAR columns to 255 bytes.) This works well as long as you don't have any lines longer than 255 characters. The only problem is that you have to parse the text into lines and then do an indefinite number of INSERTs. But it was less work that using the functions to manipulate TEXT data.

		

 -- David Smith, June 29, 2005

 In Oracle 11g length() now works with NCLOBs. Sadly, select distinct still does not.

		

 -- Janek Bogucki, July 2, 2009

 Add a comment

 	

 	
 Indexing and Tuning

 part of
 SQL for Web Nerds
by Philip Greenspun

 [image: Downtown Las Vegas (Fremont Street) by night.]

One of the great dividends of investing in an RDBMS is that you don't
have to think too much about the computer's inner life. You're the
programmer and say what kinds of data you want. The computer's job is
to fetch it and you don't really care how.

 Maybe you'll start caring after that $500,000 database server has been grinding away on one of your queries for two solid hours...

 While software is being developed, it is rare for tables to contain more than a handful of rows. Nobody wants to sit in SQL*Plus or at Web forms and type in test data. After the application launches and tables begin to fill up, people eventually notice that a particular section of the site is slow. Here are the steps that you must take

 	Find a URL that is running too slowly.

 	If possible, enable query logging from your Web or application server. What you want is for the Web server to write every SQL query and transaction into a single file so that you can see exactly what the database management system was told to do and when. This the kind of feature that makes a Web programming environment truly productive that it is tough to advertise it to the Chief Technology Officer types who select Web programming environment (i.e., if you're stuck using some closed-source Web connectivity middleware/junkware you might not be able to do this).

 With AOLserver, enable query logging by setting Verbose=On in the [ns/db/pool/**poolname**] section of your .ini file. The queries will show up in the error log ("/home/nsadmin/log/server.log" by default).

 	Request the problematic URL from a Web browser.

 	fire up Emacs and load the query log into a buffer; spawn a shell and run sqlplus from the shell, logging in with the same username/password as used by the Web server

 	you can now cut (from server.log) and paste (into sqlplus) the queries performed by the script backing the slow URL. However, first you must turn on tracing so that you can see what Oracle is doing.

 SQL> set autotrace on
Unable to verify PLAN_TABLE format or existence
Error enabling EXPLAIN report

 Oops! It turns out that Oracle is unhappy about just writing to standard output. For each user that wants to trace queries, you need to feed sqlplus the file $ORACLE_HOME/rdbms/admin/utlxplan.sql which contains a single table definition:

 create table PLAN_TABLE (
	statement_id 	varchar2(30),
	timestamp 	date,
	remarks 	varchar2(80),
	operation 	varchar2(30),
	options 	varchar2(30),
	object_node 	varchar2(128),
	object_owner 	varchar2(30),
	object_name 	varchar2(30),
	object_instance numeric,
	object_type varchar2(30),
	optimizer varchar2(255),
	search_columns number,
	id		numeric,
	parent_id	numeric,
	position	numeric,
	cost		numeric,
	cardinality	numeric,
	bytes		numeric,
	other_tag varchar2(255),
	partition_start varchar2(255),
 partition_stop varchar2(255),
 partition_id numeric,
	other		long);

 	Type "set autotrace on" again (it should work now; if you get an error about the PLUSTRACE role then tell your dbadmin to run $ORACLE_HOME/sqlplus/admin/plustrce.sql as SYS then GRANT your user that role).

 	Type "set timing on" (you'll get reports of elapsed time)

 	cut and paste the query of interest.

 Now that we're all set up, let's look at a few examples.

 A simple B-Tree Index

 Suppose that we want to ask "Show me the users who've requested a page
within the last few minutes". This can support a nice "Who's online
now?" page, like what you see at http://www.photo.net/shared/whos-online.

Here's the source code to find users who've requested a page within the
last 10 minutes (600 seconds):

 select user_id, first_names, last_name, email from users where last_visit > sysdate - 600/86400 order by upper(last_name), upper(first_names), upper(email)

 We're querying the users table:

 create table users (user_id integer primary key, first_names varchar(100) not null, last_name varchar(100) not null, ... email varchar(100) not null unique, ... -- set when user reappears at site last_visit date, -- this is what most pages query against (since the above column -- will only be a few minutes old for most pages in a session) second_to_last_visit date, ...);

 Suppose that we ask for information about User #37. Oracle need not
scan the entire table because the declaration that user_id
be the table's primary key implicitly causes an index to be constructed.
The last_visit column, however, is not constrained to be
unique and therefore Oracle will not build an index on its own.
Searching for the most recent visitors at photo.net will require
scanning all 60,000 rows in the users table. We can add a
B-Tree index, for many years the only kind available in any database
management system, with the following statement:

 create index users_by_last_visit on users (last_visit);

 Now Oracle can simply check the index first and find pointers to rows in
the users table with small values of
 last_visit.

 Tracing/Tuning Case 1: did we already insert the message? The SQL here comes from an ancient version of the bulletin board system in the ArsDigita Community System (see http://www.photo.net/bboard/ for an example). In the bad old days when we were running the Illustra relational database management system, it took so long to do an INSERT that users would keep hitting "Reload" on their browsers. When they were all done, there were three copies of a message in the bulletin board. So we modified the insertion script to check the bboard table to see if there was already a message with exactly the same values in the one_line and message columns. Because message is a CLOB column, you can't just do the obvious "=" comparison and need to call the PL/SQL function dbms_lob.instr, part of Oracle's built-in DBMS_LOB package.

 Here's a SQL*Plus session looking for an already-posted message with a subject line of "foo" and a body of "bar":

 SQL> select count(*) from bboard
where topic = 'photo.net'
and one_line = 'foo'
and dbms_lob.instr(message,'bar') > 0 ;

 COUNT(*)

	 0

Execution Plan
--
 0	 SELECT STATEMENT Optimizer=CHOOSE
 1	0 SORT (AGGREGATE)
 2	1 TABLE ACCESS (BY INDEX ROWID) OF 'BBOARD'
 3	2	INDEX (RANGE SCAN) OF 'BBOARD_BY_TOPIC' (NON-UNIQUE)

Statistics
--
	 0 recursive calls
	 0 db block gets
 59967 consistent gets
 10299 physical reads
	 0 redo size
	570 bytes sent via SQL*Net to client
	741 bytes received via SQL*Net from client
	 4 SQL*Net roundtrips to/from client
	 1 sorts (memory)
	 0 sorts (disk)
	 1 rows processed

 Note the "10,299 physical reads". Disk drives are very slow. You don't really want to be doing more than a handful of physical reads. Let's look at the heart of the query plan:

 2	1 TABLE ACCESS (BY INDEX ROWID) OF 'BBOARD'
 3	2	INDEX (RANGE SCAN) OF 'BBOARD_BY_TOPIC' (NON-UNIQUE)

 Looks as though Oracle is hitting the bboard_by_topic index for the ROWIDs of "just the rows that have a topic of 'photo.net'". It is then using the ROWID, an internal Oracle pointer, to pull the actual rows from the BBOARD table. Presumably Oracle will then count up just those rows where the ONE_LINE and MESSAGE columns are appropriate. This might not actually be so bad in an installation where there were 500 different discussion groups. Hitting the index would eliminate 499/500 rows. But BBOARD_BY_TOPIC isn't a very selective index. Let's investigate the selectivity with the query select topic, count(*) from bboard group by topic order by count(*) desc:

 	
 topic

 	
 count(*)

 	
 photo.net

 	
 14159

 	
 Nature Photography

 	
 3289

 	
 Medium Format Digest

 	
 1639

 	
 Ask Philip

 	
 91

 	
 web/db

 	
 62

 The bboard table only has about 19,000 rows and the photo.net topic has 14,000 of them, about 75%. So the index didn't do us much good. In fact, you'd have expected Oracle not to use the index. A full table scan is generally faster than an index scan if more than 20% of the rows need be examined. Why didn't Oracle do the full table scan? Because the table hadn't been "analyzed". There were no statistics for the cost-based optimizer so the older rule-based optimizer was employed. You have to periodically tell Oracle to build statistics on tables if you want the fancy cost-based optimizer:

 SQL> analyze table bboard compute statistics;

Table analyzed.

SQL> select count(*) from bboard
where topic = 'photo.net'
and one_line = 'foo'
and dbms_lob.instr(message,'bar') > 0 ;

 COUNT(*)

	 0

Execution Plan
--
 0	 SELECT STATEMENT Optimizer=CHOOSE (Cost=1808 Card=1 Bytes=828)
 1	0 SORT (AGGREGATE)
 2	1 TABLE ACCESS (FULL) OF 'BBOARD' (Cost=1808 Card=1 Bytes=828)

Statistics
--
	 0 recursive calls
	 4 db block gets
 74280 consistent gets
 12266 physical reads
	 0 redo size
	572 bytes sent via SQL*Net to client
	741 bytes received via SQL*Net from client
	 4 SQL*Net roundtrips to/from client
	 1 sorts (memory)
	 0 sorts (disk)
	 1 rows processed

 The final numbers don't look much better. But at least the cost-based optimizer has figured out that the topic index won't be worth much. Now we're just scanning the full bboard table. While transferring 20,000 rows from Illustra to Oracle during a photo.net upgrade, we'd not created any indices. This speeded up loading but then we were so happy to have the system running deadlock-free that we forgot to recreate an index that we'd been using on the Illustra system expressly for the purpose of making this query fast.

 SQL> create index bboard_index_by_one_line on bboard (one_line);

Index created.

 Bboard postings are now indexed by subject line, which should be a very selective column because it is unlikely that many users would choose to give their question the same title. This particular query will be faster now but inserts and updates will be slower. Why? Every INSERT or UPDATE will have to update the bboard table blocks on the hard drive and also the bboard_index_by_one_line blocks, to make sure that the index always has up-to-date information on what is in the table. If we have multiple physical disk drives we can instruct Oracle to keep the index in a separate tablespace, which the database administrator has placed on a separate disk:

 SQL> drop index bboard_index_by_one_line;

SQL> create index bboard_index_by_one_line
 on bboard (one_line)
 tablespace philgidx;

Index created.

 Now the index will be kept in a different tablespace (philgidx) from the main table. During inserts and updates, data will be written on two separate disk drives in parallel. Let's try the query again:

 SQL> select count(*) from bboard
where topic = 'photo.net'
and one_line = 'foo'
and dbms_lob.instr(message,'bar') > 0 ;

 COUNT(*)

	 0

Execution Plan
--
 0	 SELECT STATEMENT Optimizer=CHOOSE (Cost=2 Card=1 Bytes=828)
 1	0 SORT (AGGREGATE)
 2	1 TABLE ACCESS (BY INDEX ROWID) OF 'BBOARD' (Cost=2 Card=1 Bytes=828)
 3	2	INDEX (RANGE SCAN) OF 'BBOARD_INDEX_BY_ONE_LINE' (NON-UNIQUE) (Cost=1 Card=1)

Statistics
--
	 0 recursive calls
	 0 db block gets
	 3 consistent gets
	 3 physical reads
	 0 redo size
	573 bytes sent via SQL*Net to client
	741 bytes received via SQL*Net from client
	 4 SQL*Net roundtrips to/from client
	 1 sorts (memory)
	 0 sorts (disk)
	 1 rows processed

 We've brought physical reads down from 12266 to 3. Oracle is checking the index on one_line and then poking at the main table using the ROWIDs retrieved from the index. It might actually be better to build a concatenated index on two columns: the user ID of the person posting and the subject line, but at this point you might make the engineering decision that 3 physical reads is acceptable.

 Tracing/Tuning Case 2: new questions

 At the top of each forum page, e.g.,
 http://www.photo.net/bboard/q-and-a.tcl?topic=photo.net,
the ArsDigita Community System shows questions asked in the last few
days (configurable, but the default is 7 days).

After the forum filled up with 30,000 messages, this page was
perceptibly slow.

 SQL> select msg_id, one_line, sort_key, email, name
from bboard
where topic = 'photo.net'
and refers_to is null
and posting_time > (sysdate - 7)
order by sort_key desc;

...

61 rows selected.

Execution Plan
--
 0	 SELECT STATEMENT Optimizer=CHOOSE (Cost=1828 Card=33 Bytes=27324)

 1	0 SORT (ORDER BY) (Cost=1828 Card=33 Bytes=27324)
 2	1 TABLE ACCESS (FULL) OF 'BBOARD' (Cost=1808 Card=33 Bytes=27324)

Statistics
--
	 0 recursive calls
	 4 db block gets
 13188 consistent gets
 12071 physical reads
	 0 redo size
 7369 bytes sent via SQL*Net to client
 1234 bytes received via SQL*Net from client
	 8 SQL*Net roundtrips to/from client
	 2 sorts (memory)
	 0 sorts (disk)
	 61 rows processed

 A full table scan and 12,071 physical reads just to get 61 rows! It was
time to get medieval on this query. Since the query's WHERE clause
contains topic, refers_to, and posting_time, the obvious thing to try is
building a concatenated index on all three columns:

 SQL> create index bboard_for_new_questions
 on bboard (topic, refers_to, posting_time)
 tablespace philgidx;

Index created.

SQL> select msg_id, one_line, sort_key, email, name
from bboard
where topic = 'photo.net'
and refers_to is null
and posting_time > (sysdate - 7)
order by sort_key desc;

...

61 rows selected.

Execution Plan
--
 0	 SELECT STATEMENT Optimizer=CHOOSE (Cost=23 Card=33 Bytes=27324)

 1	0 SORT (ORDER BY) (Cost=23 Card=33 Bytes=27324)
 2	1 TABLE ACCESS (BY INDEX ROWID) OF 'BBOARD' (Cost=3 Card=33 Bytes=27324)
 3	2	INDEX (RANGE SCAN) OF 'BBOARD_FOR_NEW_QUESTIONS' (NON-UNIQUE) (Cost=2 Card=33)

Statistics
--
	 0 recursive calls
	 0 db block gets
	 66 consistent gets
	 60 physical reads
	 0 redo size
 7369 bytes sent via SQL*Net to client
 1234 bytes received via SQL*Net from client
	 8 SQL*Net roundtrips to/from client
	 2 sorts (memory)
	 0 sorts (disk)
	 61 rows processed

 60 reads is better than 12,000. One bit of clean-up, though. There is
no reason to have a BBOARD_BY_TOPIC index if we are going to keep this
BBOARD_FOR_NEW_QUESTIONS index, whose first column is TOPIC. The query
optimizer can use BBOARD_FOR_NEW_QUESTIONS even when the SQL only
restricts based on the TOPIC column. The redundant index won't cause
any services to fail, but it will slow down inserts.

 SQL> drop index bboard_by_topic;

Index dropped.

 We were so pleased with ourselves that we decided to drop an index on
 bboard by the refers_to column, reasoning that
nobody ever queries refers_to without also querying on
 topic. Therefore they could just use the first two columns
in the bboard_for_new_questions index. Here's a query
looking for unanswered questions:

 SQL> select msg_id, one_line, sort_key, email, name
from bboard bbd1
where topic = 'photo.net'
and 0 = (select count(*) from bboard bbd2 where bbd2.refers_to = bbd1.msg_id)
and refers_to is null
order by sort_key desc;

...

57 rows selected.

Execution Plan
--
 0	 SELECT STATEMENT Optimizer=CHOOSE (Cost=49 Card=33 Bytes=27324)

 1	0 SORT (ORDER BY) (Cost=49 Card=33 Bytes=27324)
 2	1 FILTER
 3	2	TABLE ACCESS (BY INDEX ROWID) OF 'BBOARD' (Cost=29 Card=33 Bytes=27324)
 4	3	 INDEX (RANGE SCAN) OF 'BBOARD_FOR_NEW_QUESTIONS' (NON-UNIQUE) (Cost=2 Card=33)
 5	2	INDEX (FULL SCAN) OF 'BBOARD_FOR_NEW_QUESTIONS' (NON-UNIQUE) (Cost=26 Card=7 Bytes=56)

Statistics
--
	 0 recursive calls
	 0 db block gets
 589843 consistent gets
 497938 physical reads
	 0 redo size
 6923 bytes sent via SQL*Net to client
 1173 bytes received via SQL*Net from client
	 7 SQL*Net roundtrips to/from client
	 2 sorts (memory)
	 0 sorts (disk)
	 57 rows processed

 Ouch! 497,938 physical reads. Let's try it with the index in place:

 SQL> create index bboard_index_by_refers_to
 on bboard (refers_to)
 tablespace philgidx;

Index created.

SQL> select msg_id, one_line, sort_key, email, name
from bboard bbd1
where topic = 'photo.net'
and 0 = (select count(*) from bboard bbd2 where bbd2.refers_to = bbd1.msg_id)
and refers_to is null
order by sort_key desc;

...

57 rows selected.

Execution Plan
--
 0	 SELECT STATEMENT Optimizer=CHOOSE (Cost=49 Card=33 Bytes=27324)
 1	0 SORT (ORDER BY) (Cost=49 Card=33 Bytes=27324)
 2	1 FILTER
 3	2	TABLE ACCESS (BY INDEX ROWID) OF 'BBOARD' (Cost=29 Card=33 Bytes=27324)
 4	3	 INDEX (RANGE SCAN) OF 'BBOARD_FOR_NEW_QUESTIONS' (NON-UNIQUE) (Cost=2 Card=33)
 5	2	INDEX (RANGE SCAN) OF 'BBOARD_INDEX_BY_REFERS_TO' (NON-UNIQUE) (Cost=1 Card=7 Bytes=56)

Statistics
--
	 0 recursive calls
	 0 db block gets
 8752 consistent gets
 2233 physical reads
	 0 redo size
 6926 bytes sent via SQL*Net to client
 1173 bytes received via SQL*Net from client
	 7 SQL*Net roundtrips to/from client
	 2 sorts (memory)
	 0 sorts (disk)
	 57 rows processed

 This is still a fairly expensive query, but 200 times faster than
before and it executes in a fraction of a second. That's probably fast
enough considering that this is an infrequently requested page.

 Tracing/Tuning Case 3: forcing Oracle to cache a full table scan

 You may have a Web site that is basically giving users access to a huge
table. For maximum flexibility, it might be the case that this table
needs to be sequentially scanned for every query. In general, Oracle
won't cache blocks retrieved during a full table scan. The Oracle
tuning guide helpfully suggests that you include the following cache
hints in your SQL:

 select /*+ FULL (students) CACHE(students) */ count(*) from students;

 You will find, however, that this doesn't work if your buffer cache
(controlled by db_block_buffers; see above) isn't large enough to
contain the table. Oracle is smart and ignores your hint. After you've
reconfigured your Oracle installation to have a larger buffer cache,
you'll probably find that Oracle is still ignoring your cache
hint. That's because you also need to

 analyze table students compute statistics;

 and then Oracle will work as advertised in the tuning guide. It makes
sense when you think about it because Oracle can't realistically start
stuffing things into the cache unless it knows roughly how large the
table is.

 If it is still too slow

 [image: The Samaritans. Dublin, Ireland.]

If your application is still too slow, you need to talk to the database
administrator. If you are the database administrator as well as
the programmer, you need to hire a database administrator ("dba").

 A professional dba is great at finding queries that are pigs and building indices to make them faster. The dba might be able to suggest that you partion your tables so that infrequently used data are kept on a separate disk drive. The dba can make you extra tablespaces on separate physical disk drives. By moving partitions and indices to these separate disk drives, the dba can speed up your application by factors of 2 or 3.

 A factor of 2 or 3? Sounds pretty good until you reflect on the fact that moving information from disk into RAM would speed things up by a factor of 100,000. This isn't really possible for database updates, which must be recorded in a durable medium (exception: fancy EMC disk arrays, which contain write caches and batteries to ensure durability of information in the write cache). However, it is relatively easy for queries. As a programmer, you can add indices and supply optimizer hints to increase the likelihood that your queries will be satisfied from Oracle's block cache. The dba can increase the amount of the server's RAM given over to Oracle. If that doesn't work, the dba can go out and order more RAM!

 In 1999, Oracle running on a typical ArsDigita server gets 1 GB of RAM.

 Reference

 	Guy Harrison's Oracle SQL High-Performance Tuning

 	Oracle8 Server Tuning

 Next: data warehousing

 philg@mit.edu

 Add a comment

 	
 [image: The circular staircase leading up to the Vatican museums. It was designed by Giuseppe Momo in 1932]

 	
 Data Warehousing

 part of
 SQL for Web Nerds
by Philip Greenspun

 [image: Tom Huntington in waterfall. Grand Canyon National Park.]

In the preceding chapters, you've been unwittingly immersed in the world
of on-line transaction processing (OLTP). This world carries with it
some assumptions:

 	Only store a piece of information once. If there are N copies of something in the database and you need to change it, you might forget to change it in all N places. Note that only storing information in one spot also enables updates to be fast.

 	It is okay if queries are complex because they are authored infrequently and by professional programmers.

 	Never sequentially scan large tables; reread the tuning chapter if Oracle takes more than one second to perform any operation.

 These are wonderful rules to live by if one is booking orders, adding
user comments to pages, recording a clickthrough, or seeing if someone
is authorized to download a file.

 You can probably continue to live by these rules if you want some answers from your data. Write down a list of questions that are important and build some report pages. You might need materialized views to make these reports fast and your queries might be complex, but you don't need to leave the OLTP world simply because business dictates that you answer a bunch of questions.

 Why would anyone leave the OLTP world? Data warehousing is useful when you don't know what questions to ask.

 What it means to facilitate exploration

 [image: Reenactment of Powell's trip. Lava Falls. Grand Canyon National Park. August 1999.]

Data exploration is only useful when non-techies are able to explore.
That means people with very weak skills will be either authoring queries
or specifying queries with menus. You can't ask a marketing executive
to look at a 600-table data model and pick and choose the relevant
columns. You can't ask a salesman to pull the answer to "is this a
repeat customer or not?" out of a combination of the
 customers and orders tables.

 If a data exploration environment is to be useful it must fulfill the following criteria:

 	complex questions can be asked with a simple SQL query

 	different questions imply very similar SQL query structure

 	very different questions require very similar processing time to answer

 	exploration can be done from any computer anywhere

 The goal is that a business expert can sit down at a Web browser, use a
sequence of forms to specify a query, and get a result back in an amount
of time that seems reasonable.

 It will be impossible to achieve this with our standard OLTP data models. Answering a particular question may require JOINing in four or five extra tables, which could result in a 10,000-fold increase in processing time. Even if a novice user could be guided to specifying a 7-way JOIN from among 600 tables, that person would have no way of understanding or predicting query processing time. Finally there is the question of whether you want novices querying your OLTP tables. If they are only typing SELECTs they might not be doing too much long-term harm but the short-term processing load might result in a system that feels crippled.

 It is time to study data warehousing.

 Classical Retail Data Warehousing

 "Another segment of society that has constructed a language of its own
is business. ... [The businessman] is speaking a language that is
familiar to him and dear to him. Its portentous nouns and verbs invest
ordinary events with high adventure; the executive walks among ink
erasers caparisoned like a knight. This we should be tolerant of--every
man of spirit wants to ride a white horse. ... A good many of the
special words of business seem designed more to express the user's
dreams than to express his precise meaning."

 -- last chapter of
 The Elements of Style, Strunk and White

 Let's imagine a conversation between the Chief Information Officer of
WalMart and a sales guy from Sybase. We've picked these
companies for concreteness but they stand for "big Management
Information System (MIS) user" and "big relational database management
system (RDBMS) vendor".

 Walmart: "I want to keep track of sales in all of my stores
simultaneously."

 Sybase: "You need our wonderful RDBMS software. You can stuff data in as
sales are rung up at cash registers and simultaneously query data out
right here in your office. That's the beauty of concurrency control."

 So Walmart buys a $1 million Sun E10000 multi-CPU server and a $500,000 Sybase license. They buy Database Design for Smarties and build themselves a normalized SQL data model:

 create table product_categories (
	product_category_id	integer primary key,
	product_category_name	varchar(100) not null
);

create table manufacturers (
	manufacturer_id		integer primary key,
	manufacturer_name	varchar(100) not null
);

create table products (
	product_id		integer primary key,
	product_name		varchar(100) not null,
	product_category_id	references product_categories,
	manufacturer_id		references manufacturers
);

create table cities (
	city_id			integer primary key,
	city_name		varchar(100) not null,
	state			varchar(100) not null,
	population		integer not null
);

create table stores (
	store_id		integer primary key,
	city_id			references cities,
	store_location		varchar(200) not null,
	phone_number		varchar(20)	
);

create table sales (
	product_id	not null references products,
	store_id	not null references stores,
	quantity_sold	integer not null,
	-- the Oracle "date" type is precise to the second
	-- unlike the ANSI date datatype
	date_time_of_sale	date not null
);

-- put some data in

insert into product_categories values (1, 'toothpaste');
insert into product_categories values (2, 'soda');

insert into manufacturers values (68, 'Colgate');
insert into manufacturers values (5, 'Coca Cola');

insert into products values (567, 'Colgate Gel Pump 6.4 oz.', 1, 68);
insert into products values (219, 'Diet Coke 12 oz. can', 2, 5);

insert into cities values (34, 'San Francisco', 'California', 700000);
insert into cities values (58, 'East Fishkill', 'New York', 30000);

insert into stores values (16, 34, '510 Main Street', '415-555-1212');
insert into stores values (17, 58, '13 Maple Avenue', '914-555-1212');

insert into sales values (567, 17, 1, to_date('1997-10-22 09:35:14', 'YYYY-MM-DD HH24:MI:SS'));
insert into sales values (219, 16, 4, to_date('1997-10-22 09:35:14', 'YYYY-MM-DD HH24:MI:SS'));
insert into sales values (219, 17, 1, to_date('1997-10-22 09:35:17', 'YYYY-MM-DD HH24:MI:SS'));

-- keep track of which dates are holidays
-- the presence of a date (all dates will be truncated to midnight)
-- in this table indicates that it is a holiday
create table holiday_map (
holiday_date		date primary key
);

-- where the prices are kept
create table product_prices (
product_id	not null references products,
from_date	date not null,
price		number not null
);

insert into product_prices values (567,'1997-01-01',2.75);
insert into product_prices values (219,'1997-01-01',0.40);

 What do we have now?

 SALES table

 	
 product id

 	
 store id

 	
 quantity sold

 	
 date/time of sale

 	
 567

 	
 17

 	
 1

 	
 1997-10-22 09:35:14

 	
 219

 	
 16

 	
 4

 	
 1997-10-22 09:35:14

 	
 219

 	
 17

 	
 1

 	
 1997-10-22 09:35:17

 	
 ...

 PRODUCTS table

 	
 product id

 	
 product name

 	
 product category

 	
 manufacturer id

 	
 567

 	
 Colgate Gel Pump 6.4 oz.

 	
 1

 	
 68

 	
 219

 	
 Diet Coke 12 oz. can

 	
 2

 	
 5

 	
 ...

 PRODUCT_CATEGORIES table

 	
 product category id

 	
 product category name

 	
 1

 	
 toothpaste

 	
 2

 	
 soda

 	
 ...

 MANUFACTURERS table

 	
 manufacturer id

 	
 manufacturer name

 	
 68

 	
 Colgate

 	
 5

 	
 Coca Cola

 	
 ...

 STORES table

 	
 store id

 	
 city id

 	
 store location

 	
 phone number

 	
 16

 	
 34

 	
 510 Main Street

 	
 415-555-1212

 	
 17

 	
 58

 	
 13 Maple Avenue

 	
 914-555-1212

 	
 ...

 CITIES table

 	
 city id

 	
 city name

 	
 state

 	
 population

 	
 34

 	
 San Francisco

 	
 California

 	
 700,000

 	
 58

 	
 East Fishkill

 	
 New York

 	
 30,000

 	
 ...

 After a few months of stuffing data into these tables, a WalMart
executive, call her Jennifer Amolucre asks "I noticed that there
was a Colgate promotion recently, directed at people who live in small
towns. How much Colgate toothpaste did we sell in those towns
yesterday? And how much on the same day a month ago?"

 At this point, reflect that because the data model is normalized, this information can't be obtained from scanning one table. A normalized data model is one in which all the information in a row depends only on the primary key. For example, the city population is not contained in the stores table. That information is stored once per city in the cities table and only city_id is kept in the stores table. This ensures efficiency for transaction processing. If Walmart has to update a city's population, only one record on disk need be touched. As computers get faster, what is more interesting is the consistency of this approach. With the city population kept only in one place, there is no risk that updates will be applied to some records and not to others. If there are multiple stores in the same city, the population will be pulled out of the same slot for all the stores all the time.

 Ms. Amolucre's query will look something like this...

 select sum(sales.quantity_sold) from sales, products, product_categories, manufacturers, stores, cities where manufacturer_name = 'Colgate' and product_category_name = 'toothpaste' and cities.population < 40000 and trunc(sales.date_time_of_sale) = trunc(sysdate-1) -- restrict to yesterday and sales.product_id = products.product_id and sales.store_id = stores.store_id and products.product_category_id = product_categories.product_category_id and products.manufacturer_id = manufacturers.manufacturer_id and stores.city_id = cities.city_id;

 This query would be tough for a novice to read and, being a 6-way JOIN of some fairly large tables, might take quite a while to execute. Moreover, these tables are being updated as Ms. Amolucre's query is executed.

 Soon after the establishment of Jennifer Amolucre's quest for marketing information, store employees notice that there are times during the day when it is impossible to ring up customers. Any attempt to update the database results in the computer freezing up for 20 minutes. Eventually the database administrators realize that the system collapses every time Ms. Amolucre's toothpaste query gets run. They complain to Sybase tech support.

 Walmart: "We type in the toothpaste query and our system wedges."

 Sybase: "Of course it does! You built an on-line transaction processing
(OLTP) system. You can't feed it a decision support system (DSS) query
and expect things to work!"

 Walmart: "But I thought the whole point of SQL and your RDBMS was that
users could query and insert simultaneously."

 Sybase: "Uh, not exactly. If you're reading from the database, nobody
can write to the database. If you're writing to the database, nobody
can read from the database. So if you've got a query that takes 20
minutes to run and don't specify special locking instructions, nobody
can update those tables for 20 minutes."

 Walmart: "That sounds like a bug."

 Sybase: "Actually it is a feature. We call it pessimistic locking."

 Walmart: "Can you fix your system so that it doesn't lock up?"

 Sybase: "No. But we made this great loader tool so that you can copy
everything from your OLTP system into a separate DSS system at 100
GB/hour."

 Since you are reading this book, you are probably using Oracle, which is one of the few database management systems that achieves consistency among concurrent users via versioning rather than locking (the other notable example is the free open-source PostgreSQL RDBMS). However, even if you are using Oracle, where readers never wait for writers and writers never wait for readers, you still might not want the transaction processing operation to slow down in the event of a marketing person entering an expensive query.

 Basically what IT vendors want Walmart to do is set up another RDBMS installation on a separate computer. Walmart needs to buy another $1 million of computer hardware. They need to buy another RDBMS license. They also need to hire programmers to make sure that the OLTP data is copied out nightly and stuffed into the DSS system--data extraction. Walmart is now building the data warehouse.

 Insight 1

 A data warehouse is a separate RDBMS installation that contains copies
of data from on-line systems. A physically separate data warehouse is
not absolutely necessary if you have a lot of extra computing
horsepower. With a DBMS that uses optimistic locking you might even
be able to get away with keeping only one copy of your data.

 As long as we're copying...

 As long as you're copying data from the OLTP system into the DSS
system ("data warehouse"), you might as well think about organizing
and indexing it for faster retrieval. Extra indices on production
tables are bad because they slow down inserts and updates. Every time
you add or modify a row to a table, the RDBMS has to update the
indices to keep them consistent. But in a data warehouse, the data
are static. You build indices once and they take up space and
sometimes make queries faster and that's it.

 If you know that Jennifer Amolucre is going to do the toothpaste query every day, you can denormalize the data model for her. If you add a town_population column to the stores table and copy in data from the cities table, for example, you sacrifice some cleanliness of data model but now Ms. Amolucre's query only requires a 5-way JOIN. If you add manufacturer and product_category columns to the sales table, you don't need to JOIN in the products table.

 Where does denormalization end?

 Once you give up the notion that the data model in the data warehouse
need bear some resemblance to the data model in the OLTP system, you
begin to think about reorganizing the data model further. Remember that
we're trying to make sure that new questions can be asked by people with
limited SQL experience, i.e., many different questions can be answered
with morphologically similar SQL. Ideally the task of constructing SQL
queries can be simplified enough to be doable from a menu system. Also,
we are trying to delivery predictable response time. A minor change in a
question should not result in a thousand-fold increase in system
response time.

 The irreducible problem with the OLTP data model is that it is tough for novices to construct queries. Given that computer systems are not infinitely fast, a practical problem is inevitably that the response times of a query into the OLTP tables will vary in a way that is unpredictable to the novice.

 Suppose, for example, that Bill Novice wants to look at sales on holidays versus non-holidays with the OLTP model. Bill will need to go look at the data model, which on a production system will contain hundreds of tables, to find out if any of them contain information on whether or not a date is a holiday. Then he will need to use it in a query, something that isn't obvious given the peculiar nature of the Oracle date data type:

 select sum(sales.quantity_sold)
from sales, holiday_map
where trunc(sales.date_time_of_sale) = trunc(holiday_map.holiday_date)

 That one was pretty simple because JOINing to the
 holiday_map table knocks out sales on days that aren't
holidays. To compare to sales on non-holidays, he will need to come
up with a different query strategy, one that knocks out sales on days
that are holidays. Here is one way:

 select sum(sales.quantity_sold)
from sales
where trunc(sales.date_time_of_sale)
not in
(select holiday_date from holiday_map)

 Note that the morphology (structure) of this query is completely
different from the one asking for sales on holidays.

 Suppose now that Bill is interested in unit sales just at those stores where the unit sales tended to be high overall. First Bill has to experiment to find a way to ask the database for the big-selling stores. Probably this will involve grouping the sales table by the store_id column:

 select store_id
from sales
group by store_id
having sum(quantity_sold) > 1000

 Now we know how to find stores that have sold more than 1000 units
total, so we can add this as a subquery:

 select sum(quantity_sold)
from sales
where store_id in
(select store_id
 from sales
 group by store_id
 having sum(quantity_sold) > 1000)

 Morphologically this doesn't look very different from the preceding
non-holiday query. Bill has had to figure out how to use the GROUP BY
and HAVING constructs but otherwise it is a single table query with a
subquery. Think about the time to execute, however. The
 sales table may contain millions of rows. The
 holiday_map table probably only contains 50 or 100 rows,
depending on how long the OLTP system has been in place. The most
obvious way to execute these subqueries will be to perform the
subquery for each row examined by the main query. In the case of the
"big stores" query, the subquery requires scanning and sorting the
entire sales table. So the time to execute this query
might be 10,000 times longer than the time to execute the "non-holiday
sales" query. Should Bill Novice expect this behavior? Should he
have to think about it? Should the OLTP system grind to a halt
because he didn't think about it hard enough?

 Virtually all the organizations that start by trying to increase similarity and predictability among decision support queries end up with a dimensional data warehouse. This necessitates a new data model that shares little with the OLTP data model.

 Dimensional Data Modeling: First Steps

 Dimensional data modeling starts with a fact table. This is
where we record what happened, e.g., someone bought a Diet Coke in
East Fishkill. What you want in the fact table are facts about the
sale, ideally ones that are numeric, continuously valued, and
additive. The last two properties are important because typical fact
tables grow to a billion rows or more. People will be much happier
looking at sums or averages than detail. An important decision to
make is the granularity of the fact table. If Walmart doesn't care
about whether or not a Diet Coke was sold at 10:31 AM or 10:33 AM,
recording each sale individually in the fact table is too granular.
CPU time, disk bandwidth, and disk space will be needlessly consumed.
Let's aggregate all the sales of any particular product in one store
on a per-day basis. So we will only have one row in the fact table
recording that 200 cans of Diet Coke were sold in East Fishkill on
November 30, even if those 200 cans were sold at 113 different times
to 113 different customers.

 create table sales_fact (
	sales_date	date not null,
	product_id	integer,
	store_id	integer,
	unit_sales	integer,
	dollar_sales	number
);

 So far so good, we can pull together this table with a query JOINing
the sales, products, and
 product_prices (to fill the dollar_sales
column) tables. This JOIN will group by product_id,
 store_id, and the truncated
 date_time_of_sale. Constructing this query will require
a professional programmer but keep in mind that this work only need be
done once. The marketing experts who will be using the data warehouse
will be querying from the sales_fact table.

 In building just this one table, we've already made life easier for marketing. Suppose they want total dollar sales by product. In the OLTP data model this would have required tangling with the product_prices table and its different prices for the same product on different days. With the sales fact table, the query is simple:

 select product_id, sum(dollar_sales)
from sales_fact
group by product_id

 We have a fact table. In a dimensional data warehouse there
will always be just one of these. All of the other tables will define
the dimensions. Each dimension contains extra information
about the facts, usually in a human-readable text string that can go
directly into a report. For example, let us define the time
dimension:

 create table time_dimension (
	time_key		integer primary key,
	-- just to make it a little easier to work with; this is
	-- midnight (TRUNC) of the date in question
	oracle_date		date not null,
	day_of_week		varchar(9) not null, -- 'Monday', 'Tuesday'...
	day_number_in_month	integer not null, -- 1 to 31
	day_number_overall	integer not null, -- days from the epoch (first day is 1)
	week_number_in_year	integer not null, -- 1 to 52
	week_number_overall	integer not null, -- weeks start on Sunday
	month			integer not null, -- 1 to 12
	month_number_overall	integer not null,
	quarter			integer not null, -- 1 to 4
	fiscal_period		varchar(10),
	holiday_flag		char(1) default 'f' check (holiday_flag in ('t', 'f')),
	weekday_flag		char(1) default 'f' check (weekday_flag in ('t', 'f')),
	season			varchar(50),
	event			varchar(50)
);

 Why is it useful to define a time dimension? If we keep the date of
the sales fact as an Oracle date column, it is still just about as
painful as ever to ask for holiday versus non-holiday sales. We need
to know about the existence of the holiday_map table and
how to use it. Suppose we redefine the fact table as follows:

 create table sales_fact (
	time_key integer not null references time_dimension,
	product_id	integer,
	store_id	integer,
	unit_sales	integer,
	dollar_sales	number
);

 Instead of storing an Oracle date in the fact table, we're keeping
an integer key pointing to an entry in the time dimension. The time
dimension stores, for each day, the following information:

 	whether or not the day was a holiday

 	into which fiscal period this day fell

 	whether or not the day was part of the "Christmas season" or not

 If we want a report of sales by season, the query is
straightforward:

 select td.season, sum(f.dollar_sales)
from sales_fact f, time_dimension td
where f.time_key = td.time_key
group by td.season

 If we want to get a report of sales by fiscal quarter or sales by day
of week, the SQL is structurally identical to the above. If we want
to get a report of sales by manufacturer, however, we realize that we
need another dimension: product. Instead of storing the
 product_id that references the OLTP products
table, much better to use a synthetic product key that references a
product dimension where data from the OLTP products,
 product_categories, and manufacturers tables
are aggregated.

 Since we are Walmart, a multi-store chain, we will want a stores dimension. This table will aggregate information from the stores and cities tables in the OLTP system. Here is how we would define the stores dimension in an Oracle table:

 create table stores_dimension (
	stores_key		integer primary key,
	name			varchar(100),
	city			varchar(100),
	county			varchar(100),
	state			varchar(100),
	zip_code		varchar(100),
	date_opened		date,
	date_remodeled		date,
	-- 'small', 'medium', 'large', or 'super'
	store_size		varchar(100),
	...
);

 This new dimension gives us the opportunity to compare sales for large versus small stores, for new and old ones, and for stores in different regions. We can aggregate sales by geographical region, starting at the state level and drilling down to county, city, or ZIP code. Here is how we'd query for sales by city:

 select sd.city, sum(f.dollar_sales)
from sales_fact f, stores_dimension sd
where f.stores_key = sd.stores_key
group by sd.city

 Dimensions can be combined. To report sales by city on a quarter-by-quarter basis, we would use the following query:

 select sd.city, td.fiscal_period, sum(f.dollar_sales)
from sales_fact f, stores_dimension sd, time_dimension td
where f.stores_key = sd.stores_key
and f.time_key = td.time_key
group by sd.stores_key, td.fiscal_period

 (extra SQL compared to previous query shown in bold).

 The final dimension in a generic Walmart-style data warehouse is promotion. The marketing folks will want to know how much a price reduction boosted sales, how much of that boost was permanent, and to what extent the promoted product cannibalized sales from other products sold at the same store. Columns in the promotion dimension table would include a promotion type (coupon or sale price), full information on advertising (type of ad, name of publication, type of publication), full information on in-store display, the cost of the promotion, etc.

 At this point it is worth stepping back from the details to notice that the data warehouse contains less information than the OLTP system but it can be more useful in practice because queries are easier to construct and faster to execute. Most of the art of designing a good data warehouse is in defining the dimensions. Which aspects of the day-to-day business may be condensed and treated in blocks? Which aspects of the business are interesting?

 Real World Example: A Data Warehouse for Levis Strauss

 In 1998, ArsDigita Corporation built a Web service as a front end to
an experimental custom clothing factory operated by Levi Strauss. Users
would visit our site to choose a style of khaki pants, enter their
waist, inseam, height, weight, and shoe size, and finally check out
with their credit card. Our server would attempt to authorize a
charge on the credit card through CyberCash. The factory IT system
would poll our server's Oracle database periodically so that it could
start cutting pants within 10 minutes of a successfully authorized
order.

 The whole purpose of the factory and Web service was to test and analyze consumer reaction to this method of buying clothing. Therefore, a data warehouse was built into the project almost from the start.

 We did not buy any additional hardware or software to support the data warehouse. The public Web site was supported by a mid-range Hewlett-Packard Unix server that had ample leftover capacity to run the data warehouse. We created a new "dw" Oracle user, GRANTed SELECT on the OLTP tables to the "dw" user, and wrote procedures to copy all the data from the OLTP system into a star schema of tables owned by the "dw" user. For queries, we added an IP address to the machine and ran a Web server program bound to that second IP address.

 Here is how we explained our engineering decisions to our customer (Levi Strauss):

 We employ a standard star join schema for the following reasons:

* Many relational database management systems, including Oracle 8.1,
are heavily optimized to execute queries against these schemata.

* This kind of schema has been proven to scale to the world's
largest data warehouses.

* If we hired a data warehousing nerd off the street, he or she
would have no trouble understanding our schema.

In a star join schema, there is one fact table ("we sold a pair of
khakis at 1:23 pm to Joe Smith") that references a bunch of dimension
tables. As a general rule, if we're going to narrow our interest
based on a column, it should be in the dimension table. I.e., if
we're only looking at sales of grey dressy fabric khakis, we should
expect to accomplish that with WHERE clauses on columns of a product
dimension table. By contrast, if we're going to be aggregating
information with a SUM or AVG command, these data should be stored in
the columns of the fact table. For example, the dollar amount of the
sale should be stored within the fact table. Since we have so few
prices (essentially only one), you might think that this should go in
a dimension. However, by keeping it in the fact table we're more
consistent with traditional data warehouses.

 After some discussions with Levi's executives, we designed in the following dimension tables:

 	time
 for queries comparing sales by season, quarter, or holiday

 	product
 for queries comparing sales by color or style

 	ship to
 for queries comparing sales by region or state

 	promotion
 for queries aimed at determining the relationship between discounts and sales

 	consumer
 for queries comparing sales by first-time and repeat buyers

 	user experience
 for queries looking at returned versus exchanged versus accepted items (most useful when combined with other dimensions, e.g., was a particular color more likely to lead to an exchange request)

 These dimensions allow us to answer questions such as

 	In what regions of the country are pleated pants most popular? (fact table joined with the product and ship-to dimensions)

 	What percentage of pants were bought with coupons and how has that varied from quarter to quarter? (fact table joined with the promotion and time dimensions)

 	How many pants were sold on holidays versus non-holidays? (fact table joined with the time dimension)

 The Dimension Tables

 The time_dimension table is identical to the example
given above.

 create table time_dimension (
	time_key		integer primary key,
	-- just to make it a little easier to work with; this is
	-- midnight (TRUNC) of the date in question
	oracle_date		date not null,
	day_of_week		varchar(9) not null, -- 'Monday', 'Tuesday'...
	day_number_in_month	integer not null, -- 1 to 31
	day_number_overall	integer not null, -- days from the epoch (first day is 1)
	week_number_in_year	integer not null, -- 1 to 52
	week_number_overall	integer not null, -- weeks start on Sunday
	month			integer not null, -- 1 to 12
	month_number_overall	integer not null,
	quarter			integer not null, -- 1 to 4
	fiscal_period		varchar(10),
	holiday_flag		char(1) default 'f' check (holiday_flag in ('t', 'f')),
	weekday_flag		char(1) default 'f' check (weekday_flag in ('t', 'f')),
	season			varchar(50),
	event			varchar(50)
);

 We populated the time_dimension table with a single
INSERT statement. The core work is done by Oracle date formatting
functions. A helper table, integers, is used to supply a
series of numbers to add to a starting date (we picked July 1, 1998, a
few days before our first real order).

 -- Uses the integers table to drive the insertion, which just contains
-- a set of integers, from 0 to n.
-- The 'epoch' is hardcoded here as July 1, 1998.

-- d below is the Oracle date of the day we're inserting.
insert into time_dimension
(time_key, oracle_date, day_of_week, day_number_in_month,
 day_number_overall, week_number_in_year, week_number_overall,
 month, month_number_overall, quarter, weekday_flag)
select n, d, rtrim(to_char(d, 'Day')), to_char(d, 'DD'), n + 1,
 to_char(d, 'WW'),
 trunc((n + 3) / 7), -- July 1, 1998 was a Wednesday, so +3 to get the week numbers to line up with the week
 to_char(d, 'MM'), trunc(months_between(d, '1998-07-01') + 1),
 to_char(d, 'Q'), decode(to_char(d, 'D'), '1', 'f', '7', 'f', 't')
from (select n, to_date('1998-07-01', 'YYYY-MM-DD') + n as d
 from integers);

 Remember the Oracle date minutia that you learned in the chapter on
dates. If you add a number to an Oracle date, you get another Oracle
date. So adding 3 to "1998-07-01" will yield "1998-07-04".

 There are several fields left to be populated that we cannot derive using Oracle date functions: season, fiscal period, holiday flag, season, event. Fiscal period depended on Levi's choice of fiscal year. The event column was set aside for arbitrary blocks of time that were particularly interesting to the Levi's marketing team, e.g., a sale period. In practice, it was not used.

 To update the holiday_flag field, we used two helper tables, one for "fixed" holidays (those which occur on the same day each year), and one for "floating" holidays (those which move around).

 create table fixed_holidays (
	month			integer not null check (month >= 1 and month <= 12),="" day="" integer="" not="" null="" check="" (day="">= 1 and day <= 31),="" name="" varchar(100)="" not="" null,="" primary="" key="" (month,="" day)="");="" --="" specifies="" holidays="" that="" fall="" on="" the="" nth="" day_of_week="" in="" month.="" negative="" means="" count="" backwards="" from="" end.="" create="" table="" floating_holidays="" (="" month="" integer="" null="" check="" (month="">= 1 and month <= 12),="" day_of_week="" varchar(9)="" not="" null,="" nth="" integer="" name="" varchar(100)="" primary="" key="" (month,="" day_of_week,="" nth)="");="" <="" pre="">

 Some example holidays:

 insert into fixed_holidays (name, month, day)
 values ('New Year''s Day', 1, 1);
insert into fixed_holidays (name, month, day)
 values ('Christmas', 12, 25);
insert into fixed_holidays (name, month, day)
 values ('Veteran''s Day', 11, 11);
insert into fixed_holidays (name, month, day)
 values ('Independence Day', 7, 4);

insert into floating_holidays (month, day_of_week, nth, name)
 values (1, 'Monday', 3, 'Martin Luther King Day');
insert into floating_holidays (month, day_of_week, nth, name)
 values (10, 'Monday', 2, 'Columbus Day');
insert into floating_holidays (month, day_of_week, nth, name)
 values (11, 'Thursday', 4, 'Thanksgiving');
insert into floating_holidays (month, day_of_week, nth, name)
 values (2, 'Monday', 3, 'President''s Day');
insert into floating_holidays (month, day_of_week, nth, name)
 values (9, 'Monday', 1, 'Labor Day');
insert into floating_holidays (month, day_of_week, nth, name)
 values (5, 'Monday', -1, 'Memorial Day');

 An extremely clever person who'd recently read SQL for Smarties would probably be able to come up with an SQL
statement to update the holiday_flag in the
 time_dimension rows. However, there is no need to work
your brain that hard. Recall that Oracle includes two procedural
languages, Java and PL/SQL. You can implement the following
pseudocode in the procedural language of your choice:

 foreach row in "select name, month, day from fixed_holidays"
 update time_dimension
 set holiday_flag = 't'
 where month = row.month and day_number_in_month = row.day;
end foreach

foreach row in "select month, day_of_week, nth, name from floating_holidays"
 if row.nth > 0 then
	# If nth is positive, put together a date range constraint
 # to pick out the right week.
 ending_day_of_month := row.nth * 7
 starting_day_of_month := ending_day_of_month - 6

	update time_dimension
 set holiday_flag = 't'
 where month = row.month
 and day_of_week = row.day_of_week
 and starting_day_of_month <= day_number_in_month
 and day_number_in_month <= ending_day_of_month;
 else
	# If it is negative, get all the available dates
 # and get the nth one from the end.
 i := 0;
 foreach row2 in "select day_number_in_month from time_dimension
 where month = row.month
 and day_of_week = row.day_of_week
 order by day_number_in_month desc"
 i := i - 1;
 if i = row.nth then
 update time_dimension
 set holiday_flag = 't'
 where month = row.month
 and day_number_in_month = row2.day_number_in_month
 break;
 end if
 end foreach
 end if
end foreach	

 The product dimension The product dimension contains one row for each unique combination of color, style, cuffs, pleats, etc.

 create table product_dimension (
	product_key integer primary key,
	-- right now this will always be "ikhakis"
	product_type varchar(20) not null,
	-- could be "men", "women", "kids", "unisex adults"
	expected_consumers varchar(20),
	color varchar(20),
	-- "dressy" or "casual"
	fabric varchar(20),
	-- "cuffed" or "hemmed" for pants
	-- null for stuff where it doesn't matter
	cuff_state varchar(20),
	-- "pleated" or "plain front" for pants
	pleat_state varchar(20)
);

 To populate this dimension, we created a one-column table for each field in the dimension table and use a multi-table join without a WHERE clause. This generates the cartesian product of all the possible values for each field:

 create table t1 (expected_consumers varchar(20));
create table t2 (color varchar(20));
create table t3 (fabric varchar(20));
create table t4 (cuff_state varchar(20));
create table t5 (pleat_state varchar(20));

insert into t1 values ('men');
insert into t1 values ('women');
insert into t1 values ('kids');
insert into t1 values ('unisex');
insert into t1 values ('adults');
[etc.]

insert into product_dimension
(product_key, product_type, expected_consumers,
color, fabric, cuff_state, pleat_state)
select
 product_key_sequence.nextval,
 'ikhakis',
 t1.expected_consumers,
 t2.color,
 t3.fabric,
 t4.cuff_state,
 t5.pleat_state
from t1,t2,t3,t4,t5;

 Notice that an Oracle sequence, product_key_sequence, is used to generate unique integer keys for each row as it is inserted into the dimension.

 The promotion dimension The art of building the promotion dimension is dividing the world of coupons into a broad categories, e.g., "between 10 and 20 dollars". This categorization depended on the learning that the marketing executives did not care about the difference between a $3.50 and a $3.75 coupon.

 create table promotion_dimension (
	promotion_key integer primary key,
	-- can be "coupon" or "no coupon"
	coupon_state varchar(20),
	-- a text string such as "under $10"
	coupon_range varchar(20)
);

 The separate coupon_state and coupon_range columns allow for reporting of sales figures broken down into fullprice/discounted or into a bunch of rows, one for each range of coupon size.

 The consumer dimension We did not have access to a lot of demographic data about our customers. We did not have a lot of history since this was a new service. Consequently, our consumer dimension is extremely simple. It is used to record whether or not a sale in the fact table was to a new or a repeat customer.

 create table consumer_dimension (
	consumer_key integer primary key,
	-- 'new customer' or 'repeat customer'
	repeat_class varchar(20)
);

 The user experience dimension If we are interested in building a report of the average amount of time spent contemplating a purchase versus whether the purchase was ultimately kept, the user_experience_dimension table will help.

 create table user_experience_dimension (
	user_experience_key integer primary key,
	-- 'shipped on time', 'shipped late'
	on_time_status varchar(20),
	-- 'kept', 'returned for exchange', 'returned for refund'
	returned_status varchar(30)
);

 The ship-to dimension Classically one of the most powerful dimensions in a data warehouse, our ship_to_dimension table allows us to group sales by region or state.

 create table ship_to_dimension (
	ship_to_key integer primary key,
	-- e.g., Northeast
	ship_to_region varchar(30) not null,
	ship_to_state char(2) not null
);

create table state_regions (
	state char(2) not null primary key,
	region varchar(50) not null
);

-- to populate:
insert into ship_to_dimension
(ship_to_key, ship_to_region, ship_to_state)
select ship_to_key_sequence.nextval, region, state
from state_regions;

 Notice that we've thrown out an awful lot of detail here. Had this been a full-scale product for Levi Strauss, they would probably have wanted at least extra columns for county, city, and zip code. These columns would allow a regional sales manager to look at sales within a state.

 (In a data warehouse for a manufacturing wholesaler, the ship-to dimension would contain columns for the customer's company name, the division of the customer's company that received the items, the sales district of the salesperson who sold the order, etc.)

 The Fact Table

 The granularity of our fact table is one order. This is finer-grained
than the canonical Walmart-style data warehouse as presented above,
where a fact is the quantity of a particular SKU sold in one store on
one day (i.e., all orders in one day for the same item are aggregated).
We decided that we could afford this because the conventional wisdom in
the data warehousing business in 1998 was that up to billion-row fact
tables were manageable. Our retail price was $40 and it was tough to
foresee a time when the factory could make more than 1,000 pants per
day. So it did not seem extravagant to budget one row per order.

 Given the experimental nature of this project we did not delude ourselves into thinking that we would get it right the first time. Since we were recording one row per order we were able to cheat by including pointers from the data warehouse back into the OLTP database: order_id and consumer_id. We never had to use these but it was nice to know that if we couldn't get a needed answer for the marketing executives the price would have been some custom SQL coding rather than rebuilding the entire data warehouse.

 create table sales_fact (
	-- keys over to the OLTP production database
	order_id integer primary key,
	consumer_id integer not null,
	time_key not null references time_dimension,
	product_key not null references product_dimension,
	promotion_key not null references promotion_dimension,
	consumer_key not null references consumer_dimension,
	user_experience_key not null references user_experience_dimension,
	ship_to_key not null references ship_to_dimension,
	-- time stuff
	minutes_login_to_order number,
	days_first_invite_to_order number,
	days_order_to_shipment number,
	-- this will be NULL normally (unless order was returned)
	days_shipment_to_intent number,
	pants_id integer,
	price_charged number,
	tax_charged number,
	shipping_charged number
);

 After defining the fact table, we populated it with a single insert statement:

 -- find_product, find_promotion, find_consumer, and find_user_experience
-- are PL/SQL procedures that return the appropriate key from the dimension
-- tables for a given set of parameters

insert into sales_fact
 select o.order_id, o.consumer_id, td.time_key,
 find_product(o.color, o.casual_p, o.cuff_p, o.pleat_p),
 find_promotion(o.coupon_id),
 find_consumer(o.pants_id),
 find_user_experience(o.order_state, o.confirmed_date, o.shipped_date),
 std.ship_to_key,
 minutes_login_to_order(o.order_id, usom.user_session_id),
 decode(sign(o.confirmed_date - gt.issue_date), -1, null, round(o.confirmed_date - gt.issue_date, 6)),
 round(o.shipped_date - o.confirmed_date, 6),
 round(o.intent_date - o.shipped_date, 6),
 o.pants_id, o.price_charged, o.tax_charged, o.shipping_charged
 from khaki.reportable_orders o, ship_to_dimension std,
 khaki.user_session_order_map usom, time_dimension td,
 khaki.addresses a, khaki.golden_tickets gt
 where o.shipping = a.address_id
 and std.ship_to_state = a.usps_abbrev
 and o.order_id = usom.order_id(+)
 and trunc(o.confirmed_date) = td.oracle_date
 and o.consumer_id = gt.consumer_id;

 As noted in the comment at top, most of the work here is done by
PL/SQL procedures such as find_product that dig up the
right row in a dimension table for this particular order.

 The preceding insert will load an empty data warehouse from the on-line transaction processing system's tables. Keeping the data warehouse up to date with what is happening in OLTP land requires a similar INSERT with an extra restriction WHERE clause limiting orders to only those order ID is larger than the maximum of the order IDs currently in the warehouse. This is a safe transaction to execute as many times per day as necessary--even two simultaneous INSERTs would not corrupt the data warehouse with duplicate rows because of the primary key constraint on order_id. A daily update is traditional in the data warehousing world so we scheduled one every 24 hours using the Oracle dbms_job package (http://www.oradoc.com/ora816/server.816/a76956/jobq.htm#750).

 Sample Queries

 We have (1) defined a star schema, (2) populated the dimension tables,
(3) loaded the fact table, and (4) arranged for periodic updating of
the fact table. Now we can proceed to the interesting part of our
data warehouse: getting information back out.

 Using only the sales_fact table, we can ask for

 	the total number of orders, total revenue to date, tax paid, shipping costs to date, the average price paid for each item sold, and the average number of days to ship:

 select count(*) as n_orders,
 round(sum(price_charged)) as total_revenue,
 round(sum(tax_charged)) as total_tax,
 round(sum(shipping_charged)) as total_shipping,
 round(avg(price_charged),2) as avg_price,
 round(avg(days_order_to_shipment),2) as avg_days_to_ship
from sales_fact;

 	the average number of minutes from login to order (we exclude user sessions longer than 30 minutes to avoid skewing the results from people who interrupted their shopping session to go out to lunch or sleep for a few hours):

 select round(avg(minutes_login_to_order), 2)
from sales_fact
where minutes_login_to_order < 30

 	the average number of days from first being invited to the site by email to the first order (excluding periods longer than 2 weeks to remove outliers):

 select round(avg(days_first_invite_to_order), 2)
from sales_fact
where days_first_invite_to_order < 14

 Joining against the ship_to_dimension table lets us ask how many pants were shipped to each region of the United States:

 select ship_to_region, count(*) as n_pants
from sales_fact f, ship_to_dimension s
where f.ship_to_key = s.ship_to_key
group by ship_to_region
order by n_pants desc

 	
 Region

 	
 Pants Sold

 	
 New England Region

 	
 612

 	
 NY and NJ Region

 	
 321

 	
 Mid Atlantic Region

 	
 318

 	
 Western Region

 	
 288

 	
 Southeast Region

 	
 282

 	
 Southern Region

 	
 193

 	
 Great Lakes Region

 	
 177

 	
 Northwestern Region

 	
 159

 	
 Central Region

 	
 134

 	
 North Central Region

 	
 121

 Note: these data are based on a random subset of orders from the
Levi's site and we have also made manual changes to the report values.
The numbers are here to give you an idea of what these queries do, not
to provide insight into the Levi's custom clothing business.

 Joining against the time_dimension, we can ask how many pants were sold for each day of the week:

 select day_of_week, count(*) as n_pants
from sales_fact f, time_dimension t
where f.time_key = t.time_key
group by day_of_week
order by n_pants desc

 	
 Day of Week

 	
 Pants Sold

 	
 Thursday

 	
 3428

 	
 Wednesday

 	
 2823

 	
 Tuesday

 	
 2780

 	
 Monday

 	
 2571

 	
 Friday

 	
 2499

 	
 Saturday

 	
 1165

 	
 Sunday

 	
 814

 We were able to make pants with either a "dressy" or "casual" fabric. Joining against the product_dimension table can tell us how popular each option was as a function of color:

 select color, count(*) as n_pants, sum(decode(fabric,'dressy',1,0)) as n_dressy
from sales_fact f, product_dimension p
where f.product_key = p.product_key
group by color
order by n_pants desc

 	
 Color

 	
 Pants Sold

 	
 % Dressy

 	
 dark tan

 	
 486

 	
 100

 	
 light tan

 	
 305

 	
 49

 	
 dark grey

 	
 243

 	
 100

 	
 black

 	
 225

 	
 97

 	
 navy blue

 	
 218

 	
 61

 	
 medium tan

 	
 209

 	
 0

 	
 olive green

 	
 179

 	
 63

 Note: 100% and 0% indicate that those colors were available only in
one fabric.

 Here is a good case of how the data warehouse may lead to a practical result. If these were the real numbers from the Levi's warehouse, what would pop out at the manufacturing guys is that 97% of the black pants sold were in one fabric style. It might not make sense to keep an inventory of casual black fabric if there is so little consumer demand for it.

 Query Generation: The Commercial Closed-Source Route

 The promise of a data warehouse is not fulfilled if all users must
learn SQL syntax and how to run SQL*PLUS. From being exposed to 10
years of advertising for query tools, we decided that the state of
forms-based query tools must be truly advanced. We thus suggested to
Levi Strauss that they use Seagate Crystal Reports and Crystal Info to
analyze their data. These packaged tools, however, ended up not
fitting very well with what Levi's wanted to accomplish. First,
constructing queries was not semantically simpler than coding SQL.
The Crystal Reports consultant that we brought in said that most of
his clients ended up having a programmer set up the report queries and
the business people would simply run the report every day against new
data. If professional programmers had to construct queries, it seemed
just as easy just to write more admin pages using our standard Web
development tools, which required about 15 minutes per page. Second,
it was impossible to ensure availability of data warehouse queries to
authorized users anywhere on the Internet. Finally there were
security and social issues associated with allowing a SQL*Net
connection from a Windows machine running Crystal Reports out through
the Levi's firewall to our Oracle data warehouse on the Web.

 Not knowing if any other commercial product would work better and not wanting to disappoint our customer, we extended the ArsDigita Community System with a data warehouse query module that runs as a Web-only tool. This is a free open-source system and comes with the standard ACS package that you can download from http://www.arsdigita.com/download/.

 Query Generation: The Open-Source ACS Route

 The "dw" module in the ArsDigita Community System is designed with the
following goals:

 	naive users can build simple queries by themselves

 	professional programmers can step in to help out the naive users

 	a user with no skill can re-execute a saved query

 We keep one row per query in the queries table:

 create table queries (
 query_id integer primary key,
 query_name varchar(100) not null,
 query_owner not null references users,
 definition_time date not null,
 -- if this is non-null, we just forget about all the query_columns
 -- stuff; the user has hand-edited the SQL
 query_sql varchar(4000)
);

 Unless the query_sql column is populated with a
hand-edited query, the query will be built up by looking at several
rows in the query_columns table:

 -- this specifies the columns we we will be using in a query and
-- what to do with each one, e.g., "select_and_group_by" or
-- "select_and_aggregate"

-- "restrict_by" is tricky; value1 contains the restriction value, e.g., '40'
-- or 'MA' and value2 contains the SQL comparion operator, e.g., "=" or ">"

create table query_columns (
 query_id not null references queries,
 column_name varchar(30),
 pretty_name varchar(50),
 what_to_do varchar(30),
 -- meaning depends on value of what_to_do
 value1 varchar(4000),
 value2 varchar(4000)
);

create index query_columns_idx on query_columns(query_id);

 The query_columns definition appears strange at first.
It specifies the name of a column but not a table. This module is
predicated on the simplifying assumption that we have one enormous
view, ad_hoc_query_view, that contains all the dimension
tables' columns alongside the fact table's columns.

 Here is how we create the view for the Levi's data warehouse:

 create or replace view ad_hoc_query_view
as
select minutes_login_to_order, days_first_invite_to_order,
 days_order_to_shipment, days_shipment_to_intent, pants_id,
 price_charged, tax_charged, shipping_charged,
 oracle_date, day_of_week,
 day_number_in_month, week_number_in_year, week_number_overall,
 month, month_number_overall, quarter, fiscal_period,
 holiday_flag, weekday_flag, season, color, fabric, cuff_state,
 pleat_state, coupon_state, coupon_range, repeat_class,
 on_time_status, returned_status, ship_to_region, ship_to_state
from sales_fact f, time_dimension t, product_dimension p,
 promotion_dimension pr, consumer_dimension c,
 user_experience_dimension u, ship_to_dimension s
where f.time_key = t.time_key
and f.product_key = p.product_key
and f.promotion_key = pr.promotion_key
and f.consumer_key = c.consumer_key
and f.user_experience_key = u.user_experience_key
and f.ship_to_key = s.ship_to_key;

 At first glance, this looks like a passport to sluggish Oracle
performance. We'll be doing a seven-way JOIN for every data warehouse
query, regardless of whether we need information from some of the
dimension tables or not.

 We can test this assumption as follows:

 -- tell SQL*Plus to turn on query tracing
set autotrace on

-- let's look at how many pants of each color
-- were sold in each region

SELECT ship_to_region, color, count(pants_id)
FROM ad_hoc_query_view
GROUP BY ship_to_region, color;

 Oracle will return the query results first...

 	
 ship_to_region

 	
 color

 	
 count(pants_id)

 	
 Central Region

 	
 black

 	
 46

 	
 Central Region

 	
 dark grey

 	
 23

 	
 Central Region

 	
 dark tan

 	
 39

 	
 ..

 	
 Western Region

 	
 medium tan

 	
 223

 	
 Western Region

 	
 navy blue

 	
 245

 	
 Western Region

 	
 olive green

 	
 212

 ... and then explain how those results were obtained:

 Execution Plan
--
 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=181 Card=15 Bytes=2430)
 1 0 SORT (GROUP BY) (Cost=181 Card=15 Bytes=2430)
 2 1 NESTED LOOPS (Cost=12 Card=2894 Bytes=468828)
 3 2 HASH JOIN (Cost=12 Card=885 Bytes=131865)
 4 3 TABLE ACCESS (FULL) OF 'PRODUCT_DIMENSION' (Cost=1 Card=336 Bytes=8400)
 5 3 HASH JOIN (Cost=6 Card=885 Bytes=109740)
 6 5 TABLE ACCESS (FULL) OF 'SHIP_TO_DIMENSION' (Cost=1 Card=55 Bytes=1485)
 7 5 NESTED LOOPS (Cost=3 Card=885 Bytes=85845)
 8 7 NESTED LOOPS (Cost=3 Card=1079 Bytes=90636)
 9 8 NESTED LOOPS (Cost=3 Card=1316 Bytes=93436)
 10 9 TABLE ACCESS (FULL) OF 'SALES_FACT' (Cost=3 Card=1605 Bytes=93090)
 11 9 INDEX (UNIQUE SCAN) OF 'SYS_C0016416' (UNIQUE)
 12 8 INDEX (UNIQUE SCAN) OF 'SYS_C0016394' (UNIQUE)
 13 7 INDEX (UNIQUE SCAN) OF 'SYS_C0016450' (UNIQUE)
 14 2 INDEX (UNIQUE SCAN) OF 'SYS_C0016447' (UNIQUE)

 As you can see from the table names in bold face, Oracle was smart
enough to examine only tables relevant to our query:
 product_dimension, because we asked about color;
 ship_to_dimension, because we asked about region;
 sales_fact, because we asked for a count of pants sold.
Bottom line: Oracle did a 3-way JOIN instead of the 7-way JOIN
specified by the view.

 To generate a SQL query into ad_hoc_query_view from the information stored in query_columns is most easily done with a function in a procedural language such as Java, PL/SQL, Perl, or Tcl (here is pseudocode):

 proc generate_sql_for_query(a_query_id)
 select_list_items list;
 group_by_items list;
 order_clauses list;

 foreach row in "select column_name, pretty_name
 from query_columns
 where query_id = a_query_id
 and what_to_do = 'select_and_group_by'"]
 if row.pretty_name is null then
 append_to_list(group_by_items, row.column_name)
 else
 append_to_list(group_by_items, row.column_name || ' as "' || row.pretty_name || '"'
 end if
 end foreach

 foreach row in "select column_name, pretty_name, value1
 from query_columns
 where query_id = a_query_id
 and what_to_do = 'select_and_aggregate'"
 if row.pretty_name is null then
	 append_to_list(select_list_items, row.value1 || row.column_name)
 else
 append_to_list(select_list_items, row.value1 || row.column_name || ' as "' || row.pretty_name || '"'
 end if
 end foreach

 foreach row in "select column_name, value1, value2
 from query_columns
 where query_id = a_query_id
 and what_to_do = 'restrict_by'"
 append_to_list(where_clauses, row.column_name || ' ' || row.value2 || ' ' || row.value1)
 end foreach

 foreach row in "select column_name
 from query_columns
 where query_id = a_query_id
 and what_to_do = 'order_by'"]
 append_to_list(order_clauses, row.column_name)
 end foreach

 sql := "SELECT " || join(select_list_items, ', ') ||
 " FROM ad_hoc_query_view"

 if list_length(where_clauses) > 0 then
 append(sql, ' WHERE ' || join(where_clauses, ' AND '))
 end if

 if list_length(group_by_items) > 0 then
 append(sql, ' GROUP BY ' || join(group_by_items, ', '))
 end if

 if list_length(order_clauses) > 0 then
 append(sql, ' ORDER BY ' || join(order_clauses, ', '))
 end if

 return sql
end proc

 How well does this work in practice? Suppose that we were going to
run regional advertisements. Should the models be pictured where
pleated or plain front pants? We need to look at recent sales by
region. With the ACS query tool, a user can use HTML forms to specify
the following:

 	pants_id : select and aggregate using count

 	ship_to_region : select and group by

 	pleat_state : select and group by

 The preceding pseudocode turns that into

 SELECT ship_to_region, pleat_state, count(pants_id)
FROM ad_hoc_query_view
GROUP BY ship_to_region, pleat_state

 which is going to report sales going back to the dawn of time. If we
weren't clever enough to anticipate the need for time windowing in our
forms-based interface, the "hand edit the SQL" option will save us. A
professional programmer can be grabbed for a few minutes to add

 SELECT ship_to_region, pleat_state, count(pants_id)
FROM ad_hoc_query_view
WHERE oracle_date > sysdate - 45
GROUP BY ship_to_region, pleat_state

 Now we're limiting results to the last 45 days:

 	
 ship_to_region

 	
 pleat_state

 	
 count(pants_id)

 	
 Central Region

 	
 plain front

 	
 8

 	
 Central Region

 	
 pleated

 	
 26

 	
 Great Lakes Region

 	
 plain front

 	
 14

 	
 Great Lakes Region

 	
 pleated

 	
 63

 	
 Mid Atlantic Region

 	
 plain front

 	
 56

 	
 Mid Atlantic Region

 	
 pleated

 	
 162

 	
 NY and NJ Region

 	
 plain front

 	
 62

 	
 NY and NJ Region

 	
 pleated

 	
 159

 	
 New England Region

 	
 plain front

 	
 173

 	
 New England Region

 	
 pleated

 	
 339

 	
 North Central Region

 	
 plain front

 	
 7

 	
 North Central Region

 	
 pleated

 	
 14

 	
 Northwestern Region

 	
 plain front

 	
 20

 	
 Northwestern Region

 	
 pleated

 	
 39

 	
 Southeast Region

 	
 plain front

 	
 51

 	
 Southeast Region

 	
 pleated

 	
 131

 	
 Southern Region

 	
 plain front

 	
 13

 	
 Southern Region

 	
 pleated

 	
 80

 	
 Western Region

 	
 plain front

 	
 68

 	
 Western Region

 	
 pleated

 	
 120

 If we strain our eyes and brains a bit, we can see that plain front
pants are very unpopular in the Great Lakes and South but more popular
in New England and the West. It would be nicer to see percentages
within region, but standard SQL does not make it possible to combine
results to values in surrounding rows. We will need to refer to the "SQL for Analysis" chapter in the Oracle data warehousing
documents to read up on extensions to SQL that makes this possible:

 SELECT
 ship_to_region,
 pleat_state,
 count(pants_id),
 ratio_to_report(count(pants_id)) over (partition by ship_to_region) as percent_in_region
FROM ad_hoc_query_view
WHERE oracle_date > sysdate - 45
GROUP BY ship_to_region, pleat_state

 We're asked Oracle to window the results ("partition by
ship_to_region") and compare the number of pants in each row to the
sum across all the rows within a regional group. Here's the result:

 	
 ship_to_region

 	
 pleat_state

 	
 count(pants_id)

 	
 percent_in_region

 	
 ...

 	
 Great Lakes Region

 	
 plain front

 	
 14

 	
 .181818182

 	
 Great Lakes Region

 	
 pleated

 	
 63

 	
 .818181818

 	
 ...

 	
 New England Region

 	
 plain front

 	
 173

 	
 .337890625

 	
 New England Region

 	
 pleated

 	
 339

 	
 .662109375

 	
 ...

 This isn't quite what we want. The "percents" are fractions of 1 and
reported with far too much precision. We tried inserting the Oracle
built-in round function in various places of this SQL
statement but all we got for our troubles was "ERROR at line 5:
ORA-30484: missing window specification for this function". We had to
add an extra layer of SELECT, a view-on-the-fly, to get the report
that we wanted:

 select ship_to_region, pleat_state, n_pants, round(percent_in_region*100)
from
(SELECT
 ship_to_region,
 pleat_state,
 count(pants_id) as n_pants,
 ratio_to_report(count(pants_id))
 over (partition by ship_to_region) as percent_in_region
 FROM ad_hoc_query_view
 WHERE oracle_date > sysdate - 45
 GROUP BY ship_to_region, pleat_state)

 returns

 	
 ship_to_region

 	
 pleat_state

 	
 count(pants_id)

 	
 percent_in_region

 	
 ...

 	
 Great Lakes Region

 	
 plain front

 	
 14

 	
 18

 	
 Great Lakes Region

 	
 pleated

 	
 63

 	
 82

 	
 ...

 	
 New England Region

 	
 plain front

 	
 173

 	
 34

 	
 New England Region

 	
 pleated

 	
 339

 	
 66

 	
 ...

 What if you're in charge of the project?

 If you are in charge of a data warehousing project, you need to assemble
the necessary tools. Do not be daunted by this prospect. The entire
Levi Strauss system described above was implemented in three days by two
programmers.

 The first tool that you need is intelligence and thought. If you pick the right dimensions and put the required data into them, your data warehouse will be useful. If you don't get your dimensions right, you won't even be able to ask the interesting questions. If you're not smart or thoughtful, probably the best thing to do is find a boutique consulting firm with expertise in building data warehouses for your industry. Get them to lay out the initial star schema. They won't get it right but it should be close enough to live with for a few months. If you can't find an expert, The Data Warehouse Toolkit (Ralph Kimball 1996) contains example schemata for 10 different kinds of businesses.

 You will need some place to store your data and query parts back out. Since you are using SQL your only choice is a relational database management system. There are specialty vendors that have historically made RDBMSes with enhanced features for data warehousing, such as the ability to compute a value based on information from the current row compared to information from a previously output row of the report. This gets away from the strict unordered set-theoretic way of looking at the world that E.F. Codd sketched in 1970 but has proven to be useful. Starting with version 8.1.6, Oracle has added most of the useful third-party features into their standard product. Thus all but the very smallest and very largest modern data warehouses tend to be built using Oracle (see the "SQL for Analysis" chapter in the Oracle8i Data Warehousing Guide volume of the Oracle documentation).

 Oracle contains two features that may enable you to construct and use your data warehouse without investing in separate hardware. First is the optimistic locking system that Oracle has employed since the late 1980s. If someone is doing a complex query it will not affect transactions that need to update the same tables. Essentially each query runs in its own snapshot of the database as it existed when the query was started. The second Oracle feature is materialized views or summaries. It is possible to instruct the database to keep a summary of sales by quarter, for example. If someone asks for a query involving quarterly sales, the small summary table will be consulted instead of the comprehensive sales table. This could be 100 to 1000 times faster.

 One typical goal of a data warehousing project is to provide a unified view of a company's disparate information systems. The only way to do this is to extract data from all of these information systems and clean up those data for consistency and accuracy. This is purportedly a challenging task when RDBMSes from different vendors are involved, though it might not seem so on the surface. After all, every RDBMS comes with a C library. You could write a C program to perform queries on the Brand X database and do inserts on the Brand Y database. Perl and Tcl have convenient facilities for transforming text strings and there are db connectivity interfaces from these scripting languages to DBMS C libraries. So you could write a Perl script. Most databases within a firm are accessible via the Web, at least within a company's internal network. Oracle includes a Java virtual machine and Java libraries to fetch Web pages and parse XML. So you could write a Java or PL/SQL program running inside your data warehouse Oracle installation to grab the foreign information and bring it back (see the chapter on foreign and legacy data).

 If you don't like to program or have a particularly knotty connectivity problem involving an old mainframe, various companies make software that can help. For high-end mainframe stuff, Oracle Corporation itself offers some useful layered products. For low-end "more-convenient-than-Perl" stuff, Data Junction (www.datajunction.com) is useful.

 Given an already-built data warehouse, there are a variety of useful query tools. The theory is that if you've organized your data model well enough, a non-technical user will be able to navigate around via a graphic user interface or a Web browser. The best known query tool is Crystal Reports (www.seagatesoftware.com), which we tried to use in the Levi Strauss example. See http://www.arsdigita.com/doc/dw for details on the free open-source ArsDigita Community System data warehouse query module.

 Is there a bottom line to all of this? If you can think sufficiently clearly about your organization and its business to construct the correct dimensions and program SQL reasonably well, you will be successful with the raw RDBMS alone. Extra software tools can potentially make the project a bit less painful or a bit shorter but they won't be of critical importance.

 More Information

 The construction of data warehouses is a guild-like activity. Most of
the expert knowledge is contained within firms that specialize not in
data warehousing but in data warehousing for a particular kind of
company. For example, there are firms that do nothing but build data
warehouses for supermarkets. There are firms that do nothing but
build data warehouses for department stores. Part of what keeps this
a tight guild is the poor quality of textbooks and journal articles on
the subject. Most of the books on data warehousing are written by and
for people who do not know SQL. The books focus on (1) stuff that you
can buy from a vendor, (2) stuff that you can do from a graphical user
interface after the data warehouse is complete, and (3) how to
navigate around a large organization to get all the other suits to
agree to give you their data, their money, and a luxurious schedule.

 The only worthwhile introductory book that we've found on data warehousing in general is Ralph Kimball's The Data Warehouse Toolkit. Kimball is also the author of an inspiring book on clickstream data warehousing: The Data Webhouse Toolkit. The latter book is good if you are interested in applying classical dimensional data warehousing techniques to user activity analysis.

 It isn't exactly a book and it isn't great for beginners but the Oracle8i Data Warehousing Guide volume of the official Oracle server documentation is extremely useful.

 Data on consumer purchasing behavior are available from A.C. Nielsen (www.acnielsen.com), Information Resources Incorporated (IRI; www.infores.com), and a bunch of other companies listed in http://dir.yahoo.com/Business_and_Economy/Business_to_Business/Marketing_and_Advertising/Market_Research/.

 Reference

 	Oracle8i Data Warehousing Guide, particularly the the "SQL for Analysis" chapter

 	ROLLUP examples from the Oracle Application Developer's Guide: http://www.oradoc.com/keyword/rollup

 Next: Foreign and Legacy Data

 philg@mit.edu

 Reader's Comments

 I really like that Walmart/Sybase example, because Walmart is actually running the largest commercial data warehouse in the world including 2 years of detail data with tens of billions of detail rows.
Of course, it's not using an OLTP system like Sybase/Oracle, it's a decision support database, Teradata.

		

 -- Dieter Noeth, May 14, 2003

 I would dispute that:
http://www.wintercorp.com/vldb/2003_TopTen_Survey/TopTenWinners.asp
Shows that France Telecom has the largest DSS system in Oracle.

Walmart is not in the top-ten list, and surprise, surprise,
the squashed competitor Kmart is.

		

 -- what ever, January 7, 2004

 Your comments about Sybase are naive and incorrect. Perhaps you had a bad run dealing with Sybase support, not sure if I can influence it otherwise.

Sybase IQ for years now has been the bane some of the World's Largest data warehouses. Query performance and scalability are notably the highlights of all Sybase IQ implementations.

Sybase customer, comScore Networks, received the Grand Prize in the 2003 Winter Corporation TopTen Program for Largest Database Size and Most Rows/Records for Microsoft Windows-based systems using Sybase IQ, the highly scalable analytics engine.

Other Winter Corporation TopTen award-winning Sybase customers in UNIX categories include Nielsen Media Research and Korean-based customers Health Insurance Review Agency (HIRA), LG Card, Samsung Card and Chohung Bank.

http://www.sybase.be/belgium/press/20031111-ipg-IQwintercorp.jsp

I appreciate that you have given an opportunity to comment on this page.

		

 -- Subraya Pai, May 9, 2004

 Crystal Reports is not the reporting tool usually choosen for ad-hoc querying of datawarehouses, so maybe that's the reason your end customers weren't very happy about it. Tools better suited to this task are BusinessObjects (who also aquired CrystalReports a couple of month ago), Brio (aquired by Hyperion about 1 year ago), Microstrategy, Oracle Discoverer and Cognos. All of them allow you to build metadata about the datamodel of the datawarehouse and present the end user with the world in terms known to them (no criptic database table column names, predefined filter conditions and so on). For the end-user it's really only a matter of dragging and dropping the "objects" in their report and "pressing" a button. The tool will the generate the proper SQL, query the database (some of them even rewrite the query if you have aggregate tables, allow you to "join" in the report query results from different queries and databases or take a stored procedure as the data source) allow you to do simple computations (excel-like) on the result set etc.

 Regards, Georg

 -- Georg Breazu, November 15, 2004

 this article considered as a good article in data warehousing.

 I want to say that there is a query language called multidimensional Expression MDX .It is now the standard query language for OLAP.it is like Sql but with more capabilities in Grouping and more functions to facilitate OLAP operations.The most common function are ROLLUP and CUBE>>>>>>>>>>>>>>>>>>>>>>>>>>>etc. thanks to all.....

 -- drtech dr, December 22, 2008

 good n useful article..tnx for sharing..

		

 -- mitesh trivedi, February 9, 2010

 Add a comment

 Related Links

 	Optimize Data Warehouse- Optimize performance and usability of large data warehouses using parallelism, partitions, and aggregate summaries across the complete application stack comprising of ETL, databases, and reporting. (contributed by Jag Singh)

 	DBMS 2 on data warehousing- Data warehouse technology, developments, and trends, from what is now the industry-leading source of database management news and analysis. (contributed by Curt Monash)

 Add a link

 	

 	
 Foreign and Legacy Data

 part of
 SQL for Web Nerds
(this chapter written
 by Michael Booth
 and Philip Greenspun)

Most of the world's useful data are either residing on a server beyond
your control or inside a database management system other than Oracle.
Either way, we refer to these data as foreign from the
perspective of one's local Oracle database. Your objective is always
the same: Treat foreign data as though they were residing in local SQL tables.

 The benefits of physically or virtually dragging foreign data back to your Oracle cave are the following:

 	New developers don't have to think about where data are coming from.

 	Developers can work with foreign data using the same query language that they use every day: SQL.

 	Developers can work with the same programming tools and systems that they've been using daily. They might use COBOL, they might use C, they might use Java, they might use Common Lisp, they might use Perl or Tcl, but you can be sure that they've learned how to send an SQL query to Oracle from these tools and therefore that they will be able to use the foreign data.

 A good conceptual way to look at what we're trying to accomplish is the
construction of an SQL view of the foreign data. A standard SQL view
may hide a 5-way join from the novice programmer. A foreign table hides the fact that data are coming from a foreign source.

 We will refer to the system that makes foreign data available locally as an aggregation architecture. In designing an individual aggregation architecture you will need to address the following issues:

 	Coherency: Is it acceptable for your local version of the data to be out of sync with the foreign data? If so, to what extent?

 	Updatability: Is your local view updatable? I.e., can a programmer perform a transaction on the foreign database management system by updating the local view?

 	Social: To what extent is the foreign data provider willing to let you into his or her database?

 Degenerate Aggregation

 If the foreign data are stored in an Oracle database and the people who
run that database are cooperative, you can practice a degenerate form of
aggregation: Oracle to Oracle communication.

 The most degenerate form of degenerate aggregation is when the foreign data are in the same Oracle installation but owned by a different user. To make it concrete, let's assume that you work for Eli Lilly in the data warehousing department, which is part of marketing. Your Oracle user name is "marketing". The foreign data in which you're interested are in the prozac_orders table, owned by the "sales" user. In this case your aggregation architecture is the following:

 	connect to Oracle as the foreign data owner (sales) and GRANT SELECT ON PROZAC_ORDERS TO MARKETING

 	connect to Oracle as the local user (marketing) and type SELECT * FROM SALES.PROZAC_ORDERS

 Done.

 Slightly Less Degenerate Aggregation

 Imagine now that Prozac orders are processed on a dedicated on-line
transaction processing (OLTP) database installation and your data
warehouse (DW) is running on a physically separate computer. Both the
OLTP and DW systems are running the Oracle database server and they are
connected via a network. You need to take the following steps:

 	set up SQL*Net (Net8) on the OLTP system

 	set up the DW Oracle server to be a client to the OLTP server. If you are not using the Oracle naming services, you must edit $ORACLE_HOME/network/admin/tnsnames.ora to reference the OLTP system.

 	create a "marketing" user on the OLTP system

 	on the OLTP system, log in as "sales" and GRANT SELECT ON PROZAC_ORDERS TO MARKETING

 	on the DW system, create a database link to the OLTP system named "OLTP": CREATE DATABASE LINK OLTP CONNECT TO MARKETING IDENTIFIED BY password for marketing USING 'OLTP';

 	on the DW system, log in as "marketing" and SELECT * FROM SALES.PROZAC_ORDERS@OLTP;

 In both of these degenerate cases, there were no coherency issues. The foreign data were queried in real-time from their canonical database. This was made possible because of social agreement. The owners of the foreign data were willing to grant you unlimited access. Similarly, social issues decided the issue of updatability. With a GRANT only on SELECT, the foreign table would not be updatable.

 Non-Oracle-Oracle Aggregation

 What if foreign data aren't stored in an Oracle database or they are but
you can't convince the owners to give you access? You will need some
sort of computer program that knows how to fetch some or all of the
foreign data and stuff it into an Oracle table locally. Let's start
with a concrete example.

 Suppose you work at Silicon Valley Blue Cross. The dimensional data warehouse has revealed a strong correlation between stock market troubles and clinical depression. People working for newly public companies with volatile stocks tend to get into a funk when their paper wealth proves illusory. The suits at Blue Cross think that they can save money and doctors' visits by automatically issuing prescriptions for Prozac whenever an insured's employer's stock drops more than 10% in a day. To find candidates for happy pills, the following query should suffice:

 select patients.first_names, patients.last_name, stock_quotes.percent_change
from patients, employers, stock_quotes
where patients.employer_id = employers.employer_id
and employers.ticker_symbol = stock_quotes.ticker_symbol
and stock_quotes.percent_change < -0.10
order by stock_quotes.percent_change

 The stock_quotes table is the foreign table here. Blue
Cross does not operate a stock exchange. Therefore the authoritative
price change data must necessarily be pulled from an external source.
Imagine that the external source is http://quote.yahoo.com/. The mature
engineering perspective on a Web site such as quote.yahoo.com is that it
is an object whose methods are its URLs and the arguments to those
methods are the form variables. To get a quotation for the software
company Ariba (ticker ARBA), for example, we need to visit http://quote.yahoo.com/q?s=arba
in a Web browser. This is invoking the method "q" with an argument of
"arba" for the form variable "s". The results come back in a
human-readable HTML page with a lot of presentation markup and English
text. It would be more convenient if Yahoo gave us results in a
machine-readable form, e.g., a comma-separated list of values or an XML
document. However, the HTML page may still be used as long as its
structure does not vary from quote to quote and the percent change
number can be pulled out with a regular expression or other computer
program.

 What are the issues in designing an aggregation architecture for this problem? First is coherency. It would be nice to have up-to-the-minute stock quotes but, on the other hand, it seems kind of silly to repeatedly query quote.yahoo.com for the same symbol. In fact, after 4:30 PM eastern time when the US stock market closes, there really isn't any reason to ask for a new quote on a symbol until 9:30 AM the next day. Given some reasonable assumptions about caching, once the stock_quotes table has been used a few times, queries will be able to execute much much faster since quote data will be pulled from a local cache rather than fetched over the Internet.

 We don't have to think very hard about updatability. Blue Cross does not run a stock exchange therefore Blue Cross cannot update a stock's price. Our local view will not be updatable.

 The social issue seems straightforward at first. Yahoo is making quotes available to any client on the public Internet. It looks at first glance as though our computer program can only request one quote at a time. However, if we fetch http://quote.yahoo.com/q?s=arba+ibm, we can get two quotes at the same time. It might even be possible to grab all of our insureds' employers' stock prices in one big page. A potential fly in the ointment is Yahoo's terms of service at http://docs.yahoo.com/info/terms/ where they stipulate

 10. NO RESALE OF SERVICE

You agree not to reproduce, duplicate, copy, sell, resell or exploit for
any commercial purposes, any portion of the Service, use of the Service,
or access to the Service.

 Where and when to run our programs

 We need to write a computer program (the "fetcher") that can fetch the HTML
page from Yahoo, pull out the price change figures, and stuff them into
the stock_quotes table. We also need a more general
computer program (the "checker") that can look at the foreign data
required, see how old the cached data in stock_quotes are,
and run the fetcher program if necessary.

 There are three Turing-complete computer languages built into Oracle: C, Java, PL/SQL. "Turing-complete" means that any program that can be written for any computer can be written to run inside Oracle. Since you eventually want the foreign data to be combined with data inside Oracle, it makes sense to run all of your aggregation code inside the database. Oracle includes built-in functions to facilitate the retrieval of Web pages (see http://oradoc.photo.net/ora816/server.816/a76936/utl_http.htm#998100).

 In an ideal world you could define a database trigger that would fire every time a query was about to SELECT from the stock_quotes table. This trigger would somehow figure out which rows of the foreign table were going to be required. It would run the checker program to make sure that none of the cached data were too old, and the checker in turn might run the fetcher.

 Why won't this work? As of Oracle version 8.1.6, it is impossible to define a trigger on SELECT. Even if you could, there is no advertised way for the triggered program to explore the SQL query that is being executed or to ask the SQL optimizer which rows will be required.

 The PostgreSQL RDBMS has a "rule system" (see http://www.postgresql.org/docs/programmer/x968.htm) which can intercept and transform a SELECT. It takes the output of the SQL parser, applies one or more transformation rules, and produces a new set of queries to be executed. For example, a rule may specify that any SELECT which targets the table "foo" should be turned into a SELECT from the table "bar" instead; this is how Postgres implements views. As it stands, the only transformation that can be applied to a SELECT is to replace it with a single, alternative SELECT - but PostgreSQL is open source software which anyone is free to enhance.

 The long term fix is to wait for the RDBMS vendors to augment their products. Help is on the way. The good news is that a portion of the ANSI/ISO SQL-99 standard mandates that RDBMS vendors, including Oracle, provide support for wrapping external data sources. The bad news is that the SQL-99 standard is being released in chunks, the wrapper extension won't be published until 2001, and it may be several years before commercial RDBMSes implement the new standard.

 The short term fix is to run a procedure right before we send the query to Oracle:

 call checker.stock_quotes(0.5)

select patients.first_names, patients.last_name, stock_quotes.percent_change ...

 Our checker is an Oracle stored procedure named
 checker.stock_quotes. It checks every ticker symbol in
 stock_quotes and calls the fetcher if the quote is
older than the specified interval, measured in days. If
we want to add a new ticker_symbol to the table, we call
a different version of checker.stock_quotes:

 call checker.stock_quotes(0.5, 'IBM')

 If there is no entry for IBM which is less than half a day old, the checker will
ask the fetcher to get a stock quote for IBM.

 An Aggregation Example

 Blue Cross will dispense a lot of Prozac before Oracle implements the
SQL-99 wrapper extension. So let's build a stock_quotes foreign
table which uses Java stored procedures to do
the checking and fetching. We'll begin with a data model:

 create table stock_quotes (
	ticker_symbol		varchar(20) primary key,
	last_trade		number,
 -- the time when the last trade occurred (reported by Yahoo)
	last_trade_time		date,
	percent_change 		number,
 -- the time when we pulled this data from Yahoo
	last_modified		date not null	
);

 This is a stripped-down version, where we only store the most recent
price quote for each ticker symbol. In a real application we would
certainly want to maintain an archive of old quotes, perhaps by using
 triggers to populate an audit table
whenever stock_quotes is updated. Even if your external
source provides its own historical records, fetching them is
bound to be slower, less reliable, and more complicated than pulling
data from your own audit tables.

 We'll create a single source code file, StockUpdater.java. Oracle 8.1.6 includes a Java compiler as well as a virtual machine, so when this file is ready we can load it into Oracle and compile it with a single command:

 bash-2.03$ loadjava -user username/password -resolve -force StockUpdater.java
 ORA-29535: source requires recompilation
 StockUpdater:171: Class Perl5Util not found.
 StockUpdater:171: Class Perl5Util not found.
 StockUpdater:218: Class PatternMatcherInput not found.
 StockUpdater:218: Class PatternMatcherInput not found.
 Info: 4 errors
loadjava: 6 errors
bash-2.03$

 Oops. The -resolve option tells Oracle's loadjava utility to
compile and link the class right away, but StockUpdater depends on classes
that haven't yet been loaded into Oracle. Most Java virtual machines are designed to
automatically locate and load classes at runtime by searching through the filesystem, but
the Oracle JVM requires every class to be loaded into the database in advance.

 We need to obtain the Perl5Util and PatternMatcherInput classes. These are part of the Oro library, an open-source regular expression library that's available from http://jakarta.apache.org/oro/index.html. When we download and untar the distribution, we'll find a JAR file that contains the classes we need. We'll load the entire JAR file into Oracle and then try to load StockUpdater again.

 bash-2.03$ loadjava -user username/password -resolve jakarta-oro-2.0.jar
bash-2.03$ loadjava -user username/password -resolve -force StockUpdater.java
bash-2.03$

 These commands take a while to execute. When they're done, we can check the results
by running this SQL query:

 SELECT RPAD(object_name,31) ||
 RPAD(object_type,14) ||
 RPAD(status,8)
 "Java User Objects"
 FROM user_objects
 WHERE object_type LIKE 'JAVA %';

 Here's a small portion of the output from this query:

 Java User Objects
--
StockUpdater		 JAVA CLASS VALID
StockUpdater		 JAVA SOURCE VALID
org/apache/oro/text/awk/OrNode JAVA CLASS VALID
org/apache/oro/text/regex/Util JAVA CLASS VALID
org/apache/oro/util/Cache JAVA CLASS VALID
org/apache/oro/util/CacheFIFO JAVA CLASS VALID
...

 Our source code is marked VALID, and there's an
associated class which is also VALID. There are a bunch
of VALID regexp classes. All is well.

 If we wanted, we could have compiled the StockUpdater class using a free-standing Java compiler and then loaded the resulting class files into Oracle. We aren't required to use the built-in Oracle compiler.

 The -force option forces loadjava to overwrite any existing class with the same name, so if we change our class we don't necessarily have to drop the old version before loading the new one. If we do want to drop one of Oracle's stored Java classes, we can use the dropjava utility.

 Calling our Stored Procedures

 [image: Diagram of the aggregation architecture]

 Figure 15-1: The aggregation architecture. The client
application obtains data by querying Oracle tables using SQL. To keep
the foreign tables up to date, the application calls the Checker and
the Fetcher, which are Java stored procedures running inside
Oracle. The Checker is called via two layers of PL/SQL: one layer is a
call spec which translates a PL/SQL call to a Java call, and the other
is a wrapper procedure which provides an autonomous transaction for
the aggregation code to run in.

 In order to call Java stored procedures from SQL, we need to define
 call specs, which are PL/SQL front ends to static Java
methods. Here's an example of a call spec:

 PROCEDURE stock_quotes_spec (interval IN number)
 	AS LANGUAGE JAVA
 	NAME 'StockUpdater.checkAll(double)';

 This code says: "when the programmer calls this PL/SQL procedure, call
the checkAll method of the Java class
 StockUpdater." The checkAll method must be
 static: Oracle doesn't automatically construct a new
 StockUpdater object.

 We don't allow developers to use the call spec directly. Instead we make them call a separate PL/SQL procedure which initiates an autonomous transaction. We need to do this because an application might call the checker in the middle of a big transaction. The checker uses the fetcher to add fresh data to the stock_quotes table. Now the question arises: when do we commit the changes to the stock_quotes table? There are three options:

 	Have the fetcher issue a COMMIT. This will commit the changes to stock_quotes. It will also commit any changes that were made before the checker was called. This is a very bad idea.

 	Have the fetcher update stock_quotes without issuing a COMMIT. This is also a bad idea: if the calling routine decides to abort the transaction, the new stock quote data will be lost.

 	Run the checker and the fetcher in an independent transaction of their own. The fetcher can commit or roll back changes without affecting the main transaction. Oracle provides the AUTONOMOUS_TRANSACTION pragma for this purpose, but the pragma doesn't work in a call spec - it's only available for regular PL/SQL procedures. So we need a separate layer of glue code just to initiate the autonomous transaction.

 Here's the SQL which defines all of our PL/SQL procedures:

 CREATE OR REPLACE PACKAGE checker AS
 PROCEDURE stock_quotes(interval IN number);
 PROCEDURE stock_quotes(interval IN number, ticker_symbol IN varchar);
END checker;
/
show errors

CREATE OR REPLACE PACKAGE BODY checker AS

 -- Autonomous transaction wrappers
 PROCEDURE stock_quotes (interval IN number)
 IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 BEGIN
 stock_quotes_spec(interval);
 END;

 PROCEDURE stock_quotes (interval IN number, ticker_symbol IN varchar)
 IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 BEGIN
 stock_quotes_spec(interval, ticker_symbol);
 END;

 -- Call specs
 PROCEDURE stock_quotes_spec (interval IN number)
 	AS LANGUAGE JAVA
 	NAME 'StockUpdater.checkAll(double)';

 PROCEDURE stock_quotes_spec (interval IN number, ticker_symbol IN varchar)
 	AS LANGUAGE JAVA
 	NAME 'StockUpdater.checkOne(double, java.lang.String)';

END checker;
/
show errors

 We've placed the routines in a package called
 checker. Packages allow us to group procedures and
datatypes together. We're using one here because packaged procedure
definitions can be overloaded. The
 checker.stock_quotes procedure can be called with either
one or two arguments and a different version will be run in each
case. The stock_quotes_spec procedure also comes in two
versions.

 Writing a Checker in Java

 We're ready to start looking at the StockUpdater.java file
itself. It begins in typical Java fashion:

 // Standard Java2 classes, already included in Oracle
import java.sql.*;
import java.util.*;
import java.io.*;
import java.net.*;

// Regular expression classes
import org.apache.oro.text.perl.*;
import org.apache.oro.text.regex.*;

public class StockUpdater {

 Then we have the two checker routine, starting with the one that updates the
entire table:

 public static void checkAll(double interval)
 throws SQLException {
	
	// Query the database for the ticker symbols that haven't
	// been updated recently
	String sql = new String("SELECT ticker_symbol " +
 "FROM stock_quotes " +
				 "WHERE (sysdate - last_modified) > " +
				 String.valueOf(interval));

	// Build a Java List of the ticker symbols

	// Use JDBC to execute the given SQL query.
	Connection conn = getConnection();
	Statement stmt = conn.createStatement();
	stmt.execute(sql);
	ResultSet res = stmt.getResultSet();
	
	// Go through each row of the result set and accumulate a list
	List tickerList = new ArrayList();
	while (res.next()) {
	 String symbol = res.getString("ticker_symbol");
	 if (symbol != null) {
		tickerList.add(symbol);
	 }
	}
	stmt.close();

	System.out.println("Found a list of " + tickerList.size() + " symbols.");
		
	// Pass the List of symbols on to the fetcher
	fetchList(tickerList);
 }

 This routine uses JDBC to access the stock_quotes
table. JDBC calls throw exceptions of type
 SQLException which we don't bother to catch; instead, we
propagate them back to the calling programmer to indicate that
something went wrong. We also print debugging information to standard
output. When running this class outside Oracle, the debug messages
will appear on the screen. Inside Oracle, we can view them by issuing
some SQL*Plus commands in advance:

 SET SERVEROUTPUT ON
CALL dbms_java.set_output(5000);

 Standard output will be echoed to the screen, 5000 characters at a time.

 The second checker operates on one ticker symbol at a time, and is used to add a new ticker symbol to the table:

 public static void checkOne(double interval, String tickerSymbol)
 throws SQLException {

 // Set up a list in case we need it
 List tickerList = new ArrayList();
	tickerList.add(tickerSymbol);

	// Query the database to see if there's recent data for this tickerSymbol
	String sql = new String("SELECT " +
 " ticker_symbol, " +
 " (sysdate - last_modified) as staleness " +
				 "FROM stock_quotes " +
				 "WHERE ticker_symbol = '" + tickerSymbol + "'");
	Connection conn = getConnection();
	Statement stmt = conn.createStatement();
	stmt.execute(sql);
	ResultSet res = stmt.getResultSet();
	
	if (res.next()) {
	 // A row came back, so the ticker is in the DB
	 // Is the data recent?
	 if (res.getDouble("staleness") > interval) {
		// Fetch fresh data
		fetchList(tickerList);
	 }

	} else {
	 // The stock isn't in the database yet
	 // Insert a blank entry
	 stmt.executeUpdate("INSERT INTO stock_quotes " +
				"(ticker_symbol, last_modified) VALUES " +
				"('" + tickerSymbol + "', sysdate)");
	 conn.commit();
	
	 // Now refresh the blank entry to turn it into a real entry
 fetchList(tickerList);
	}
	stmt.close();
 }

 Writing a Fetcher in Java

 The fetcher is implemented as a long Java method called
 fetchList. It begins by retrieving a Web page from
Yahoo. For speed and simplicity, we extract all of the stock quotes on
a single page.

 /** Accepts a list of stock tickers and retrieves stock quotes from Yahoo Finance
	at http://quote.yahoo.com/
 */
 private static void fetchList(List tickerList)
 throws SQLException {
	
	// We need to pass Yahoo a string containing ticker symbols separated by "+"
	String tickerListStr = joinList(tickerList, "+");

	if (tickerListStr.length() == 0) {
	 // We don't bother to fetch a page if there are no ticker symbols
	 System.out.println("Fetcher: no ticker symbols were supplied");
	 return;
	}

	try {
	 // Go get the Web page
	 String url = "http://quote.yahoo.com/q?s=" + tickerListStr;
	 String yahooPage = getPage(url);

 The fetcher uses a helper routine called getPage to
retrieve Yahoo's HTML, which we stuff into the yahooPage
variable. Now we can use Perl 5 regular expressions to extract the
values we need. We create a new Perl5Util object and use
the split() and match() methods to extract
the section of the page where the data is:

 // ... continuing the definition of fetchList ...

	 // Get a regular expression matcher
	 Perl5Util regexp = new Perl5Util();

	 // Break the page into sections using </table> tags as boundaries
	 Vector allSections = regexp.split("/<\\/table>/", yahooPage);

	 // Pick out the section which contains the word "Symbol"
	 String dataSection = "";
	 boolean foundSymbolP = false;
	 Iterator iter = allSections.iterator();
	 while (iter.hasNext()) {
		dataSection = (String) iter.next();
		if (regexp.match("/<th.*?>Symbol<\\/th>/", dataSection)) {
		 foundSymbolP = true;
		 break;
		}
	 }

	 // If we didn't find the section we wanted, throw an error
	 if (! foundSymbolP) {
		throw new SQLException("Couldn't find the word 'Symbol' in " + url);
	 }

 We need to pick out today's date from the page. This is the date when the page was retrieved,
which we'll call the "fetch date". Each stock quote also has an individual timestamp,
which we'll call the "quote date". We use a little class of our own (OracleDate) to
represent dates, and a helper routine (matchFetchDate) to do the regexp matching.

 	 OracleDate fetchDate = matchFetchDate(dataSection);
	 if (fetchDate == null) {
		throw new SQLException("Couldn't find the date in " + url);
	 }
	 System.out.println("The date appears to be: '" + fetchDate.getDate() + "'");	

 If we can't match the fetch date, we throw an exception to
tell the client programmer that the fetcher didn't work. Perhaps the
network is down, or Yahoo's server is broken, or Yahoo's graphic designers
decided to redesign the page layout.

 We're ready to extract the stock quotes themselves. They're in an HTML table, with one row for each quote. We set up a single JDBC statement which will be executed over and over, using placeholders to represent the data:

 	 String update_sql = "UPDATE stock_quotes SET " +
		"last_trade = ?, " +
		"last_trade_time = to_date(?, ?), " +
		"percent_change = ?, " +
		"last_modified = sysdate " +
		"WHERE ticker_symbol = ? ";
	 Connection conn = getConnection();
	 PreparedStatement stmt = conn.prepareStatement(update_sql);

 Now we pick apart the HTML table one row at a time, using a huge regexp
that represents an entire table row. By using a
 PatternMatcherInput object, we can make regexp.match()
traverse the dataSection
string and return one match after another until it runs out of
matches. For each stock quote we find, we clean up the data and perform a
database INSERT.

 	 // Use a special object to make the regexp search run repeatedly
	 PatternMatcherInput matchInput = new PatternMatcherInput(dataSection);

	 // Search for one table row after another
	 while (regexp.match("/<tr.*?>.*?" +
				 "<td nowrap.*?>(.*?)<\\/td>.*?" +
				 "<td nowrap.*?>(.*?)<\\/td>.*?" +
				 "<td nowrap.*?>(.*?)<\\/td>.*?" +
				 "<td nowrap.*?>(.*?)<\\/td>.*?" +
				 "<td nowrap.*?>(.*?)<\\/td>.*?" +
				 "<\\/tr>/s" , matchInput)) {
		// Save the regexp groups into variables
		String tickerSymbol = regexp.group(1);
		String timeStr = regexp.group(2);
		String lastTrade = regexp.group(3);
		String percentChange = regexp.group(5);

		// Filter the HTML from the ticker symbol		
		tickerSymbol = regexp.substitute("s/<.*?>//g", tickerSymbol);
		stmt.setString(5, tickerSymbol);

		// Parse the time stamp
		OracleDate quoteDate = matchQuoteDate(timeStr, fetchDate);
		if (quoteDate == null) {
		 throw new SQLException("Bad date format");
		}
		stmt.setString(2, quoteDate.getDate());
		stmt.setString(3, quoteDate.getDateFormat());
		
		// Parse the lastTrade value, which may be a fraction
		stmt.setFloat(1, parseFraction(lastTrade));

		// Filter HTML out of percentChange, and remove the % sign
		percentChange = regexp.substitute("s/<.*?>//g", percentChange);
		percentChange = regexp.substitute("s/%//g", percentChange);
		stmt.setFloat(4, Float.parseFloat(percentChange));

		// Do the database update
		stmt.execute();
	 }

	 stmt.close();
 // Commit the changes to the database
	 conn.commit();

	} catch (Exception e) {
	 throw new SQLException(e.toString());
	}
 } // End of the fetchList method

 Helper Routines for the Fetcher

 The fetcher loads HTML pages using the getPage method,
which uses the URL class from the Java standard
library. For a simple HTTP GET, this routine is all we need.

 /** Fetch the text of a Web page using HTTP GET
 */
 private static String getPage(String urlString)
 throws MalformedURLException, IOException {
	URL url = new URL(urlString);
	BufferedReader pageReader =
	 new BufferedReader(new InputStreamReader(url.openStream()));
	String oneLine;
	String page = new String();
	while ((oneLine = pageReader.readLine()) != null) {
	 page += oneLine + "\n";
	}
	return page;
 }

 Dates, along with their Oracle format strings, are stored inside OracleDate objects. OracleDate is an "inner class", defined inside the StockUpdater class. Because it is a private class, it can't be seen or used outside of StockUpdater. Later, if we think OracleDate will be useful for other programmers, we can turn it into a public class by moving the definition to a file of its own.

 /** A class which represents Oracle timestamps. */
 private static class OracleDate {
	/** A string representation of the date */	
	private String date;
	/** The date format, in Oracle's notation */
	private String dateFormat;

	/** Methods for accessing the date and the format */
	String getDate() { return date; }
	String getDateFormat() { return dateFormat; }
	void setDate(String newDate) { date = newDate; }
	void setDateFormat(String newFormat) { dateFormat = newFormat; }

	/** A constructor that builds a new OracleDate */
	OracleDate(String newDate, String newFormat) {
	 setDate(newDate);
	 setDateFormat(newFormat);
	} 	
 }

 To extract the dates from the Web page, we have a couple of
routines called matchFetchDate and
 matchQuoteDate:

 /** Search through text from a Yahoo quote page to find a date stamp */
 private static OracleDate matchFetchDate(String text) {
	Perl5Util regexp = new Perl5Util();

	if (regexp.match("/<p>\\s*(\\S+\\s+\\S+\\s+\\d+\\s+\\d\\d\\d\\d)\\s+[0-9:]+[aApP][mM][^<]*<table>/", text)) {
	 return new OracleDate(regexp.group(1), "Day, Month DD YYYY");

	} else {
	 return null;
	}
 }
	

 /** Search through the time column from a single Yahoo stock quote
	and set the time accordingly. */
 private static OracleDate matchQuoteDate(String timeText, OracleDate fetchDate) {
	Perl5Util regexp = new Perl5Util();

	if (regexp.match("/\\d?\\d:\\d\\d[aApP][mM]/", timeText)) {
	 // When the time column of the stock quote doesn't include the day,
	 // the day is pulled from the given fetchDate.
	 String date = fetchDate.getDate() + " " + timeText;
	 String format = fetchDate.getDateFormat() + " HH:MIam";
	 return new OracleDate(date, format);

	} else if (regexp.match("/[A-Za-z]+ +\\d\\d?/", timeText)) {
	 // After midnight but before the market opens, Yahoo reports the date
	 // rather than the time.
	 return new OracleDate(timeText, "Mon DD");

	} else {
	 return null;
	}
 }

 The stock prices coming back from Yahoo often contain fractions, which have special
HTML markup. The parseFraction method pulls the HTML apart and returns the
stock price as a Java float:

 /** Convert some HTML from the Yahoo quotes page to a float, handling
	fractions if necessary */
 private static float parseFraction(String s) {	
	Perl5Util regexp = new Perl5Util();
	if (regexp.match("/^\\D+(\\d+)\\s*^(\\d*)/_(\\d*)/", s)) {
	 // There's a fraction
	 float whole_num = Float.parseFloat(regexp.group(1));
	 float numerator = Float.parseFloat(regexp.group(2));
	 float denominator = Float.parseFloat(regexp.group(3));
	 return whole_num + numerator / denominator;
	
	} else {
	 // There is no fraction
	 // strip the HTML and go
	 return Float.parseFloat(regexp.substitute("s/<.*?>//g", s));
	}
 }

 Odds and Ends

 All of our methods obtain their JDBC connections by calling
 getConnection(). By routing all database connection
requests through this method, our class will be able to run either
inside or outside the database - getConnection checks its
environment and sets up the connection accordingly. Loading Java into
Oracle is a tedious process, so it's nice to be able to debug
your code from an external JVM.

 public static Connection getConnection()
 throws SQLException {

	Connection conn;

	// In a real program all of these constants should
	// be pulled from a properties file:
	String driverClass = "oracle.jdbc.driver.OracleDriver";
	String connectString = "jdbc:oracle:oci8:@ora8i_ipc";
	String databaseUser = "username";
	String databasePassword = "password";
	
	try {
	 // Figure out what environment we're running in
	 if (System.getProperty("oracle.jserver.version") == null) {
		// We're not running inside Oracle
		DriverManager.registerDriver((java.sql.Driver) Class.forName(driverClass).newInstance());
		conn = DriverManager.getConnection(connectString, databaseUser, databasePassword);
		
	 } else {
		// We're running inside Oracle
		conn = DriverManager.getConnection("jdbc:default:connection:");
	 }
	
	 // The Oracle JVM automatically has autocommit=false,
	 // and we want to be consistent with this if we're in an external JVM
	 conn.setAutoCommit(false);
	
	 return conn;

	} catch (Exception e) {
	 throw new SQLException(e.toString());
	}
 }

 To call StockUpdater from the command line, we also need to
provide a main method:

 /** This method allows us to call the class from the command line
 */
 public static void main(String[] args)
 throws SQLException {
	if (args.length == 1) {
	 checkAll(Double.parseDouble(args[0]));
	} else if (args.length == 2) {
	 checkOne(Double.parseDouble(args[0]), args[1]);
	} else {
	 System.out.println("Usage: java StockUpdater update_interval [stock_ticker]");
	}
 }

 Finally, the fetcher needs a utility which can join strings
together. It's similar to the "join" command in Perl or Tcl.

 /** Builds a single string by taking a list of strings
 and sticking them together with the given separator.
	If any of the elements of the list is not a String,
 an empty string in inserted in place of that element.
 */
 public static String joinList(List stringList, String separator) {
	
	StringBuffer joinedStr = new StringBuffer();

	Iterator iter = stringList.iterator();
	boolean firstItemP = true;	
	while (iter.hasNext()) {	
	 if (firstItemP) {
		firstItemP = false;
	 } else {
		joinedStr.append(separator);
	 }

 Object s = iter.next();
 if (s != null && s instanceof String) {
 joinedStr.append((String) s);
 }
	}
	return joinedStr.toString();
 }
} // End of the StockUpdater class

 A Foreign Table In Action

 Now that we've implemented all of this, we can take a look at our foreign table in SQL*Plus:

 SQL> select ticker_symbol, last_trade,
 (sysdate - last_modified)*24 as hours_old
 from stock_quotes;

TICKER_SYMBOL	 LAST_TRADE HOURS_OLD
-------------------- ---------- ----------
AAPL			22.9375 3.62694444
IBM			112.438 3.62694444
MSFT			 55.25 3.62694444

 This data is over three hours old. Let's request data from within the last hour:

 SQL> call checker.stock_quotes(1/24);

Call completed.

SQL> select ticker_symbol, last_trade,
 (sysdate - last_modified)*24 as hours_old
 from stock_quotes;

TICKER_SYMBOL	 LAST_TRADE HOURS_OLD
-------------------- ---------- ----------
AAPL			 23.625 .016666667
IBM			114.375 .016666667
MSFT			55.4375 .016666667

 That's better. But I'm curious about the Intel Corporation.

 SQL> call checker.stock_quotes(1/24, 'INTC');

Call completed.

SQL> select ticker_symbol, last_trade,
 (sysdate - last_modified)*24 as hours_old
 from stock_quotes;

TICKER_SYMBOL	 LAST_TRADE HOURS_OLD
-------------------- ---------- ----------
AAPL			 23.625 .156666667
IBM			114.375 .156666667
MSFT			55.4375 .156666667
INTC			 42 .002777778

 Reference

 	The pioneering work in this area was done in the mid-1990s by the Garlic project at IBM Almaden Research Center. This is the same laboratory that developed System R, the first relational database management system, which eventually became IBM's DB2 product. To see how IBM's ideas unfolded in the area of wrapping legacy databases and foreign Web sites, visit http://www.almaden.ibm.com/cs/garlic/.

 	Java Stored Procedures Developer's Guide at http://www.oradoc.com/keyword/java_stored_procedures.

 	PL/SQL User's Guide and Reference at http://www.oradoc.com/keyword/plsql.

 	Sun's Java2 Documentation at http://java.sun.com/j2se/1.3/docs/index.html.

 Next: Normalization

 mbooth@arsdigita.com

 philg@mit.edu

 Reader's Comments

 Okay, I think the statute of limitations on this page has expired, so I'm free to point out that (alas!) my email address is no longer mbooth@arsdigita.com.

 You can find me at michaelfbooth.com.

 -- Michael Booth, November 15, 2007

 Add a comment | Add a link

 	

 	
 I'm OK, You're Abnormal

 part of
 SQL for Web Nerds
by Philip Greenspun

 [image: The rules. Mutianyu (Great Wall of China)]

Normalization is a way of splitting up data until each table represents
propositions about a single type of thing. Normalization is a beloved
subject in academic courses on database management systems and in job
interviews because (1) it has a patina of formalism, and (2) it is easy
to test. If you tell people that you took a DBMS course and then look
blank when they ask you whether your data are in Third Normal Form,
you'll never get any respect from database nerds. A lot of the ideas
will seem like common sense and much of the debate is held over from the
1960s before the RDBMS was conceived and grew to dominate data storage.
However, the mid-1990s object-relational database fad has revived some
of these issues and it is therefore worth examining normalization.

 Abnormal

 Suppose that you're determined to marry Winona Ryder, the movie actress
who was born "Winona Horowitz" on October 29, 1971. Thanks to the
convergence of Hollywood and Silicon Valley, you've managed to get a
seat at the Academy Awards ceremony. You'll want to be well-informed
about Ms. Ryder's work while sounding casual. You decide to make a
little database to coach you before the awards night and to serve the
same data on demand to your WAP phone in case you get stumped in
conversation with Ms. Ryder.

 	
 Movie ID

 	
 Title

 	
 Year Released

 	
 Producer

 	
 Director

 	
 Writer

 	
 Composer

 	
 Steadicam Operator

 	
 1

 	
 Alien: Resurrection

 	
 1997

 	
 Bill Badalato

 	
 Jean-Pierre Jeunet

 	
 Joss Whedon

 	
 John Frizzell

 	
 David Emmerichs

 	
 2

 	
 The Age of Innocence

 	
 1993

 	
 Barbara De Fina

 	
 Martin Scorsese

 	
 Edith Wharton, Jay Cocks, and Martin Scorsese

 	
 Elmer Bernstein

 	
 Larry McConkey

 	
 3

 	
 Heathers

 	
 1989

 	
 Denise Di Novi

 	
 Michael Lehmann

 	
 Daniel Waters

 	
 David Newman

 	
 --

 If you memorize this material, you can attract Ms. Ryder's attention with such questions as "Didn't you think Larry McConkey's Steadicam work in The Age of Innocence was much better than David Emmerichs's in Alien 4?" Or if you want to impress with your knowledge of American literature, say "It is amazing how rich a script Jay Cocks and Martin Scorsese produced considering the thinness of the material they had to start with from Edith Wharton's original novella."

 Suppose that Winona Ryder is sufficiently impressed by your knowledge to come back to your suite at the Regent Beverly Wilshire. Taking advantage of the in-room Ethernet connection, you've left a remote Emacs window up and running on your laptop. Ms. Ryder sees your SQL queries in the source code for your coaching app and shouts out "Hey, these data aren't even in First Normal Form (1NF)."

 My this is a faux pas. If your data aren't in First Normal Form, there isn't even an egghead DBMS nerd term for what you've got. Loosely speaking, your data are abnormal. What is wrong with your data model? For Alien and Heathers you've got a single name in the Writer column. For The Age of Innocence, you've got a trio of names. This is known as a repeating group or a multivalued column and it has the following problems:

 	you might not have enough space if the number of values in the column grows larger than anticipated

 	the combination of table name, column name, and key value no longer specifies a datum

 	the basic INSERT, UPDATE, and SELECT operations are not sufficient to manipulate multivalued columns

 	programmers' brains will have to adapt simultaneously to unordered data in table rows and ordered data inside a multivalued column

 	design opacity. If you use multivalued columns even once, people will never know what to expect when they look under the hood of your design; did you use multiple tables to express a many-to-one relation or multivalued columns?

 Do these problems mean that multivalued columns are useless? Probably
not. Oracle introduced two kinds of support for multivalued
columns with the 8.0 release of their server:

 For modelling one-to-many relationships, Oracle supports two collection
datatypes: varrays and nested tables. For example, a purchase order has
an arbitrary number of line items, so you may want to put the line items
into a collection.

 Varrays have a maximum number of elements, although you can change
 the upper bound. The order of elements is defined. Varrays are stored
 as opaque objects (that is, raw or BLOB).

 Nested tables can have any number of elements, and you can select,
 insert, delete, and so on the same as with regular tables. The order
 of the elements is not defined. Nested tables are stored in a storage
 table with every element mapping to a row in the storage table.

If you need to loop through the elements in order, store only a fixed
number of items, or retrieve and manipulate the entire collection as a
value, then use varrays.

If you need to run efficient queries on collections, handle arbitrary
numbers of elements, or do mass insert/update/delete operations, then
use nested tables. If the collections are very large and you want to
retrieve only subsets, you can model the collection as a nested table
and retrieve a locator for the result set.

For example, a purchase order object may have a nested table of line
items, while a rectangle object may contain a varray with 4 coordinates.

 With the nested tables option, Oracle is simply doing what an RDBMS
purist would have told you to do in the first place: use multiple
tables to represent many-to-one relations.

 First Normal Form

 If you'd seen The Crucible, where Winona Ryder plays
Abigail Wiliams, you'd have remembered the following scene:

 Abigail: I am but God's finger, John. If he would condemn Elizabeth, she
will be condemned. Arguments against normalization continue to sway
practitioners. Fabian Pascal says that this costs dearly and reveals
the poor understanding of sound database principles by even those who
profess to be experts in the field. It is both a major reason for and a
consequence of deficiencies in SQL implementations and for technology
regressions, such as ODBMS and OLAP, that have come to haunt SQL DBMSs
in the town of Salem.

 Before leaving your hotel room, Ms. Ryder recasts your movie database in
First Normal Form:

 Movie Facts

 	
 Movie ID

 	
 Title

 	
 Year Released

 	
 Producer

 	
 Director

 	
 Composer

 	
 Steadicam Operator

 	
 1

 	
 Alien: Resurrection

 	
 1997

 	
 Bill Badalato

 	
 Jean-Pierre Jeunet

 	
 John Frizzell

 	
 David Emmerichs

 	
 2

 	
 The Age of Innocence

 	
 1993

 	
 Barbara De Fina

 	
 Martin Scorsese

 	
 Elmer Bernstein

 	
 Larry McConkey

 	
 3

 	
 Heathers

 	
 1989

 	
 Denise Di Novi

 	
 Michael Lehmann

 	
 David Newman

 	
 --

 Movie Writers

 	
 Movie ID

 	
 Writer

 	
 1

 	
 Joss Whedon

 	
 2

 	
 Edith Wharton

 	
 2

 	
 Jay Cocks

 	
 2

 	
 Martin Scorsese

 	
 3

 	
 Daniel Waters

 Event Registration

 Having struck out with Winona Ryder due to the abnormal nature of your
data model, you decide to go on a nationwide speaking tour. You're
going to give three different talks:

 	How to pick up Jewish babes in Hollywood

 	Using your SQL programming expertise to get a seat at the Academy Awards

 	What I learned about normalization from Winona Ryder

 Each of these three talks will be given about 20 times in different
cities. We'll call a particular occurrence of a talk an event.
Rather than hire a staff to process registration for each lecture, you
build a database-backed Web application:

 -- one row for every different talk that we give

create table talks (
	talk_id		integer primary key,
	talk_title	varchar(100) not null,
	description	varchar(4000),
	speaker_name	varchar(100),
	speaker_bio	varchar(4000)
);

-- one row for every time that we give a talk

create table events (
 event_id		integer primary key,
 -- which of the three talks will we give
 talk_id		references talks,
 -- Location
 venue_name	varchar(200) not null,
 street_address	varchar(200) not null,
 city varchar(100) not null,
 -- state if this is in the US
 usps_abbrev char(2),
 -- country code is this is a foreign city
 iso		char(2) default 'us',
 -- Date and time
 start_time	date not null,
 end_time		date not null,
 ticket_price	number
);

 This data model is in First Normal Form. There are no multivalued
columns. However, it has some deficiencies. Suppose that you fly into
New York City and give each of your three talks over three days. Each
time you're speaking at the same venue: Radio City Music Hall. Because
of the way that the events table is designed, you'll be
recording the street address of Radio City Music Hall three times. If
the street address were to change, you'd have to change it in three
places. If you're contemplating using a new venue and want to enter the
street address, city, and country code or state abbrevation, you've
nowhere to store the information unless you've already got an event
scheduled for a specific time. If there is only one event in the
database scheduled for a particular venue, deleting that event also
deletes all information for the venue.

 Second Normal Form

 If all columns are functionally dependent on the whole key, the
data model is in second normal form. Less formally, a second normal
form table is one that is in first normal form with a key that
determines all non-key column values.

 -- one row for every different talk that we give

create table talks (
	talk_id		integer primary key,
	talk_title	varchar(100) not null,
	description	varchar(4000),
	speaker_name	varchar(100),
	speaker_bio	varchar(4000)
);

-- one row for every place where we give a talk

create table venues (
 venue_id		integer primary key,
 venue_name	varchar(200) not null,
 street_address	varchar(200) not null,
 city varchar(100) not null,
 -- state if this is in the US
 usps_abbrev char(2),
 -- country code
 iso		char(2) default 'us'
);

-- one row for every time that we give a talk

create table events (
 event_id		integer primary key,
 -- which of the three talks will we give
 talk_id		references talks,
 -- Location
 venue_id		references venues,
 -- Date and time
 start_time	date not null,
 end_time		date not null,
 ticket_price	number
);

 Note that any data model in second normal form is also in first normal form.

 Third Normal Form

 If all columns are directly dependent on the whole key, the
data model is in third normal form. How is this different from second
normal form? For example, suppose the price of the talk is a function
of which talk is being given and the talk length. Thus the pair of
 start_time and end_time
will determine the value of the ticket_price column.
If we add one more table, our data model will be in third normal form:

 create table ticket_price (
 up_to_n_minutes	 	integer,
 price			number
);

 Note that any data model in third normal form is also in second normal form.

 Reference

 	Chapter 4 of Access Database Design & Programming

 	Chapter 1 of Transact-SQL Programming

 	

 	

 Next: Afterword

 mbooth@arsdigita.com

 philg@mit.edu

 Add a comment | Add a link

 	
 [image: Striped butt.]

 	
 Afterword

 part of
 SQL for Web Nerds
by Philip Greenspun

 [image: A Citroen in a Florence side street]

Congratulations: You've learned SQL. You can tap into the power of the
relational database management system for concurrency control and
transaction management. This power is useful for almost any activity in
which computers are employed.

 If you aren't already saddled with a job, I encourage you to think about building Web services for collaboration, which I think are the most valuable things that we nerds can give to society. To that end, I wrote Philip and Alex's Guide to Web Publishing, available at http://philip.greenspun.com/panda/ and more recently Software Engineering for Internet Applications, at http://philip.greenspun.com/seia/

 philg@mit.edu

 Add a comment | Add a link

 	
 [image: Head of the Charles Regatta, Sunday, October 18, 1998. From the footbridge to Harvard Business School]

 	
 Appendix A: Setting up your own RDBMS

 by Philip Greenspun, part of
 SQL for Web Nerds

 This book was written for students at MIT who have access to our Web/db
development systems. The second category of reader who could use this
book painlessly is the corporate slave who works at Bloatco, Inc. where
they have a professionally-maintained Oracle server. If you are
unfortunate enough to fall outside of those categories, you might need
to install and maintain your own RDBMS. This appendix is intended to
help you choose and run an RDBMS that will be good for learning SQL and
that will let you grow into running production Web sites.

 Choosing an RDBMS Vendor (Quick and Dirty)

 [image: A fruit and flower market in central Stockholm]

The quick and dirty way to choose a database management system is to
start from a list of products that seem viable in the long term.
Basically you can choose from among three:

 	Microsoft SQL Server (popularity maintained by Microsoft's overall market power)

 	Oracle (you won't get fired)

 	PostgreSQL (free open-source)

 If want to ignore the RDBMS and concentrate your energy on attacking
higher-level application challenges, Oracle is the best choice. It is
the most powerful and feature-rich RDBMS. You can run the same software
on a $500 PC or in a $5 million multiply redundant server configuration.

 PostgreSQL is an interesting alternative. It is free and open-source. Like Oracle, it has optimistic locking (writers need not wait for readers; readers need not wait for writers). PostgreSQL can be easier to install and maintain than Oracle. PostgreSQL was built from the ground up as an object-relational database and offers some important features that Oracle still lacks. Business folks who are more concerned with support, reliability, and the possibility of redundancy may question your choice of PostgreSQL, however. See www.postgresql.org for the latest on this rapidly evolving system.

 Microsoft SQL Server is an uninteresting alternative. Microsoft started with the source code from Sybase and has gradually improved the product. The system can be problematic for Web use because of its traditional pessimistic locking architecture. If you hire a new programmer and he or she executes a slow-to-return query, users won't be able to update information, place orders, or make comments until the query completes. In theory the management of these locks can be manually adjusted but in practice Web programmers never have the time, ability, or inclination to manage locks properly. SQL Server is generally behind Oracle in terms of features, e.g., the ability to run Java inside the database, SQL extensions that are convenient for data warehousing, or layered products that help organizations with extreme performance or reliability demands. All of this said, SQL Server probably won't disappear because Microsoft has so much power in a large portion of the server world. So if you're part of an organization that is 100 percent Microsoft and people are already skilled at maintaining SQL Server, it is a reasonable technical decision to continue to use it.

 Choosing an RDBMS Vendor (From First Principles)

 Here are the factors that we think are important in choosing an RDBMS to
sit behind a Web site:

 	cost/complexity to administer

 	lock management system

 	full-text indexing option

 	maximum length of VARCHAR data type

 	ease of running standard programming languages internally

 	support

 Cost/Complexity to Administer

 [image: Stockholm viewed from Stadshuset]

Sloppy RDBMS administration is one of the most common causes of downtime
at sophisticated sites. If you don't have an experienced staff of
database administrators to devote to your site, you should consider
either outsourcing database administration or running a simple RDBMS
such as PostgreSQL.

 Lock Management System

 [image: Guard at Royal Palace in Gamla Stan in central Stockholm]

Relational database management systems exist to support concurrent
users. If you didn't have 100 people simultaneously updating
information, you'd probably be better off with a Perl script than a
commercial RDBMS (i.e., 100 MB of someone else's C code).

 All database management systems handle concurrency problems with locks. Before an executing statement can modify some data, it must grab a lock. While this lock is held, no other simultaneously executing SQL statement can update the same data. In order to prevent another user from reading half-updated data, while this lock is held, no simultaneously executing SQL statement can even read the data.

 Readers must wait for writers to finish writing. Writers must wait for readers to finish reading.

 This kind of system is simple to implement, works great in the research lab, and can be proven correct mathematically. The only problem with it? It doesn't work. Sometimes it doesn't work because of a bug. A particular RDBMS's implementation of this scheme get confused and stuck when there are a bunch of users. More often it doesn't work because pessimistic locking is a bug. A programmer writes an hour-long back-end query and forgets that by doing so he or she will cause every updating page on the Web site to wait for the full hour.

 With the Oracle RDBMS, readers never wait for writers and writers never wait for readers. If a SELECT starts reading at 9:01 and encounters a row that was updated (by another session) at 9:02, Oracle reaches into a rollback segment and digs up the pre-update value for the SELECT (this preserves the Isolation requirement of the ACID test). A transaction does not need to take locks unless it is modifying a table and, even then, only takes locks on the specific rows that are to be modified.

 This is the kind of RDBMS locking architecture that you want for a Web site. Oracle and PostgreSQL offer it.

 Full-text Indexing Option

 Suppose that a user says he wants to find out information on
"dogs". If you had a bunch of strings in the database, you'd
have to search them with a query like

 select * from magazines where description like '%dogs%';

 [image: A door in Skansen in Stockholm]

This requires the RDBMS to read every row in the table, which is
slow. Also, this won't turn up magazines whose description includes the
word "dog".

 A full-text indexer builds a data structure (the index) on disk so that the RDBMS no longer has to scan the entire table to find rows containing a particular word or combination of words. The software is smart enough to be able to think in terms of word stems rather than words. So "running" and "run" or "dog" and "dogs" can be interchanged in queries. Full-text indexers are also generally able to score a user-entered phrase against a database table of documents for relevance so that you can query for the most relevant matches.

 Finally, the modern text search engines are very smart about how words relate. So they might deliver a document that did not contain the word "dog" but did contain "Golden Retriever". This makes services like classified ads, discussion forums, etc., much more useful to users.

 Relational database management system vendors are gradually incorporating full-text indexing into their products. Sadly, there is no standard for querying using this index. Thus, if you figure out how to query Oracle 8.1 with ConText for "rows relating to 'running' or its synonyms", the SQL syntax will not be useful for asking the same question of Microsoft SQL Server 7.0 with its corresponding full-text indexing option.

 My best experiences have been with the Illustra/PLS combination. I fed it 500 short classified ads for photography equipment then asked "What word is most related to Nikon". The answer according to Illustra/PLS: Nikkor (Nikon's brand name for lenses).

 Maximum Length of VARCHAR Data Type

 [image: Malibu, California.]

You might naively expect a relational database management system to
provide abstraction for data storage. After defining a column to hold a
character string, you'd expect to be able to give the DBMS a
ten-character string or a million-character string and have each one
stored as efficiently as possible.

 In practice, current commercial systems are very bad at storing unexpectedly long data, e.g., Oracle only lets you have 4,000 characters in a VARCHAR. This is okay if you're building a corporate accounting system but bad for a public Web site. You can't be sure how long a user's classified ad or bulletin board posting is going to be. Modern database vendors typically provide a character large object (CLOB) data type. A CLOB theoretically allows you to store arbitrarily large data. However, in practice there are so many restrictions on a CLOB column that it isn't very useful. For example, with Oracle 8i you can't use a CLOB in a SQL WHERE clause and thus the preceding "LIKE '%dogs%'" would fail. You can't build a standard index on a LOB column. You may also have a hard time getting strings into or out of a LOB. The Oracle SQL parser only accepts string literals up to 4,000 characters in length. After that, you'll have to use special C API calls. LOBs will give your Oracle database administrator fits: they break the semantics of EXPORT and IMPORT. At least as of Oracle 8.1.6, if you export a database containing LOBs you won't be able to import it to another Oracle installation unless that installation happens to have a tablespace with the same name as the one where the LOBs were stored in the exported installation.

 PostgreSQL has a "text" data type that theoretically has no limit. However, an entire PostgreSQL row must be no longer than 8,000 characters. So in practice PostgreSQL is less powerful than Oracle in this respect.

 *** research Microsoft SQL Server but last I checked it was 255 characters! *****

 Caveat emptor.

 Ease of Running Standard Programming Languages Internally

 Within Oracle it is fairly easy to run Java and the quasi-standard
PL/SQL. Within PostgreSQL it is fairly easy to run Perl, Tcl, and a
sort-of-PL/SQL-like PL/pgSQL. Within Microsoft SQL Server *****
(research this).

 Support

 In theory you won't be calling for support very often but you want to
make sure that when you do it is to an organization that takes RDBMS
reliability and uptime very seriously.

 [bookmark: paying]

 Paying an RDBMS Vendor

 [image: Big Save. Hawaii]

"PostgreSQL is available without cost," is the opening to Chapter 1 of
the PostgreSQL documentation. Microsoft has the second
easiest-to-figure-out pricing: visit http://www.microsoft.com/sql/
and click on "pricing and licensing". The price in 1998 was $4400 for
software that could be used on a 4-CPU machine sitting behind a Web
site. As of September 2000 they were charging either $20,000 or $80,000
for a 4-CPU Web server, depending on whether you wanted "enterprise" or
"standard" edition.

 Despite its industrial heritage, Oracle can be much cheaper than Microsoft. Microsoft charges $500 for a crippled developer edition of SQL Server; Oracle lets developers download the real thing for free from technet.oracle.com. Microsoft wants $20,000 per CPU; Oracle negotiates the best deal that they can get but lately has been selling startups a "garage" license for $10,000 for two years.

 Performance

 [image: Orangutan. Audubon Zoo. New Orleans, Louisiana.]

Be assured that any RDBMS product will be plenty slow. We once had
70,000 rows of data to insert into Oracle8. Each row contained six
numbers. It turned out that the data wasn't in the most convenient
format for importation so we wrote a one-line Perl script to reformat
it. It took less than one second to read all 70,000 rows, reformat
them, and write them back to disk in one file. Then we started
inserting them into an Oracle 8 table from a custom C application. It
took about 20 minutes (60 rows/second). By using SQL*Loader we probably
could have approached 1000 rows/second but that still would have been 70
times slower than the Perl script. Providing application programmers
with the ACID guarantees is always going to be slow.

 There are several ways to achieve high performance. If most of your activity is queries, you could start by buying a huge multi-processor computer with enough RAM to hold your entire database at once. Unfortunately, if you are paying by the CPU, your RDBMS vendor will probably give your bank account a reaming that it will not soon forget. And if you are processing a lot of INSERTs and UPDATEs, all those CPUs bristling with RAM won't help you. The bottleneck will be disk spindle contention. The solution to this is to chant "Oh what a friend I have in Seagate." Disks are slow. Very slow. Literally almost one million times slower than the computer. It would be best to avoid ever going to disk as we did in the case of SELECTs by buying up enough RAM to hold the entire data set. However, the Durability requirement in the ACID test for transactions means that some record of a transaction will have to be written to a medium that won't be erased in the event of a power failure. If a disk can only do 100 seeks a second and you only have one disk, your RDBMS is going to be hard pressed to do more than about 100 updates a second.

 Oracle manages to process more transactions per second than a disk's writes/second capacity. What the DBMS does is batch up transactions that come in at roughly the same time from different users. It writes enough to disk to make them all durable and then returns to those users all at once.

 The first thing you should do is mirror all of your disks. If you don't have the entire database in RAM, this speeds up SELECTs because the disk controller can read from whichever disk is closer to the desired track. The opposite effect can be achieved if you use "RAID level 5" where data is striped across multiple disks. Then the RDBMS has to wait for five disks to seek before it can cough up a few rows. Straight mirroring, or "RAID level 1", is what you want.

 The next decision that you must make is "How many disks?" The Oracle8i DBA Handbook (Loney and Theriault; 1999) recommends a 7x2 disk configuration as a minimum compromise for a machine doing nothing but database service. Their solutions start at 9x2 disks and go up to 22x2. The idea is to keep files that might be written in parallel on separate disks so that one can do 2200 seeks/second instead of 100.

 Here's the Oracle8 DBA Handbook's 17-disk (mirrored X2) solution for avoiding spindle contention:

 	
 Disk

 	
 Contents

 	
 1

 	
 Oracle software

 	
 2

 	
 SYSTEM tablespace

 	
 3

 	
 RBS tablespace (roll-back segment in case a transaction goes badly)

 	
 4

 	
 DATA tablespace

 	
 5

 	
 INDEXES tablespace (changing data requires changing indices; this allows those changes to proceed in parallel)

 	
 6

 	
 TEMP tablespace

 	
 7

 	
 TOOLS tablespace

 	
 8

 	
 Online Redo log 1, Control file 1 (these would be separated on a 22-disk machine)

 	
 9

 	
 Online Redo log 2, Control file 2

 	
 10

 	
 Online Redo log 3, Control file 3

 	
 11

 	
 Application Software

 	
 12

 	
 RBS_2

 	
 13

 	
 DATA_2 (tables that tend to be grabbed in parallel with those in DATA)

 	
 14

 	
 INDEXES_2

 	
 15

 	
 TEMP_USER

 	
 16

 	
 Archived redo log destination disk

 	
 17

 	
 Export dump file destination disk

 Now that you have lots of disks, you finally have to be very thoughtful
about how you lay your data out across them. "Enterprise" relational
database management systems force you to think about where your data
files should go. On a computer with one disk, this is merely annoying
and keeps you from doing development; you'd probably get similar
performance with a simple RDBMS like PostgreSQL. But the
flexibility is there in enterprise databases because you know which of
your data areas tend to be accessed simultaneously and the computer
doesn't. So if you do have a proper database server with a rack of disk
drives, an intelligent manual layout can improve performance fivefold.

 Don't forget to back up

 [image: Burning car. New Jersey 1995.]

Be afraid. Be very afraid. Standard Unix or Windows NT file system
backups will not leave you with a consistent and therefore restoreable
database on tape. Suppose that your RDBMS is storing your database in
two separate Unix filesystem files, foo.db and bar.db. Each of these
files is 200 MB in size. You start your backup program running and it
writes the file foo.db to tape. As the backup is proceeding, a
transaction comes in that requires changes to foo.db and bar.db. The
RDBMS makes those changes, but the ones to foo.db occur to a portion of
the file that has already been written out to tape. Eventually the
backup program gets around to writing bar.db to tape and it writes the
new version with the change. Your system administrator arrives at 9:00 am
and sends the tapes via courier to an off-site storage facility.

 [image: A fireplace in Skansen in Stockholm] At noon, an ugly mob of users assembles outside your office, angered by your introduction of frames and failure to include WIDTH and HEIGHT tags on IMGs. You send one of your graphic designers out to explain how "cool" it looked when run off a local disk in a demo to the vice-president. The mob stones him to death and then burns your server farm to the ground. You manage to pry your way out of the rubble with one of those indestructible HP Unix box keyboards. You manage to get the HP disaster support people to let you use their machines for awhile and confidently load your backup tape. To your horror, the RDBMS chokes up blood following the restore. It turned out that there were linked data structures in foo.db and bar.db. Half of the data structures (the ones from foo.db) are the "old pre-transaction version" and half are the "new post-transaction version" (the ones from bar.db). One transaction occurring during your backup has resulted in a complete loss of availability for all of your data. Maybe you think that isn't the world's most robust RDBMS design but there is nothing in the SQL standard or manufacturer's documentation that says Oracle, Postgres, or SQL Server can't work this way.

 Full mirroring keeps you from going off-line due to media failure. But you still need snapshots of your database in case someone gets a little excited with a DELETE FROM statement or in the situation described above.

 There are two ways to back up a relational database: off-line and on-line. For an off-line backup, you shut down the databases, thus preventing transactions from occurring. Most vendors would prefer that you use their utility to make a dump file of your off-line database, but in practice it will suffice just to back up the Unix or NT filesystem files. Off-line backup is typically used by insurance companies and other big database users who only need to do transactions for eight hours a day.

 Each RDBMS vendor has an advertised way of doing on-line backups. It can be as simple as "call this function and we'll grind away for a couple of hours building you a dump file that contains a consistent database but minus all the transactions that occurred after you called the function." Here is the shell command that will export a snapshot of an Oracle database into a dump file:

 exp DBUSER/DBPASSWD file=/exportdest/foo.980210.dmp owner=DBUSER consistent=Y

 This exports all the tables owned by DBUSER, pulling old rows from a
rollback segment if a table has undergone transactions since the dump
started. If you read Oracle Performance Tuning (Gurry and Corrigan 1996; O'Reilly),
you'll find some dark warnings that you must export
periodically in order to flush out cases where Oracle has corrupted its
internal data structures. Another good reason to export is that
periodically dropping all of your tables and importing them is a great
way to defragment data. At ArsDigita we export every customer's
Oracle database every night, except the handful of customers with
terabytes of data.

 What if your database is too large to be exported to a disk and can't be taken offline? Here's a technique practiced by a lot of experienced IT groups:

 	Break the mirror.

 	Back up from the disks that are off-line as far as the database is concerned.

 	Reestablish the mirror.

 What if one of the on-line disks fails during backup? Are transactions
lost? No. The redo log is on a separate disk from the rest of the
database. This increases performance in day-to-day operation and ensures
that it is possible to recover transactions that occur when the mirror
is broken, albeit with some off-line time. Some organizations have
three mirrors. They can pull pull off one set of physical disks and
back them up without running the risk that a drive failure during the
backup window will take the database management system offline.

 The lessons here are several. First, whatever your backup procedure, make sure you test it with periodic restores. Second, remember that the backup and maintenance of an RDBMS is done by a full-time staffer at most companies, called "the dba", short for "database administrator". If the software worked as advertised, you could expect a few days of pain during the install and then periodic recurring pain to keep current with improved features. However, dba's earn their moderately lavish salaries. No amount of marketing hype suffices to make a C program work as advertised. That goes for an RDBMS just as much as for a word processor. Coming to terms with bugs can be a full-time job at a large installation. Most often this means finding workarounds since vendors are notoriously sluggish with fixes. Another full-time job is hunting down users who are doing queries that are taking 1000 times longer than necessary because they forgot to build indices or don't know SQL very well. Children's Hospital has three full-time dbas and they work hard.

 If all of this sounds rather tedious just to ensure that your data are still around tomorrow, you might be cheered by the knowledge that Oracle dbas are always in high demand and start at $60,000 to $80,000 a year. When the Web bubble bursts and your friends who are "HTML programmers" are singing in the subway, you'll be kicking back at some huge financial services firm.

 We'll close by quoting Perrin Harkins. A participant in the Web/db question-and-answer forum (http://www.arsdigita.com/bboard/q-and-a.tcl?topic=web/db) asked whether caching database queries in Unix files would speed up his Web server. Here's Perrin's response:

 "Modern databases use buffering in RAM to speed up access to often
requested data. You don't have to do anything special to make this
happen, except tune your database well (which could take the rest of
your life)."

 Reference

 	Oracle8i Server Backup and Recovery Guide, part of the Oracle doc set

 	Oracle Server Administrator's Guide, part of the Oracle doc set

 	Oracle 8i Backup and Recovery (Velpuri 2000; Oracle Press)

 philg@mit.edu

 Reader's Comments

 Thought I'd point this out:- Oracle 9i has now apparently become one of the betterXML databases available. While I have no practical experience as to whether PostgreSQL's implementation is better or even comparable, it's nevertheless interesting to note that even Yukonprobably wont carry this feature.

		

 -- Akshay R, May 25, 2004

 Since MS Sql Server 7, the varchar data type can hold 8000 characters. (Don't know about earlier versions). MS Sql Server 2005 Yukon is supposed to allow .NET code in stored procedures. In my opinion, the chief limitation of MS Sql Server is that it lacks "Oracle Forms and Reports." Yukon is supposed to remedy this.

		

 -- Louis N, July 29, 2004

 PostgreSQL does support arbitrarily long text fields, I have been using it at least since the 7.3 (probably 7.2) days:

 SELECT length(nota) as size from articulo order by size desc;
 size

 70720
 56067
 38961
 34634
 33388
 (...)

 -- Gunnar Wolf, December 17, 2004

 Add a comment

 	
 [image: Head of the Charles Regatta, Sunday, October 18, 1998. From the footbridge to Harvard Business School]

 	
 Appendix B: Getting Real Work Done with Oracle

 by Philip Greenspun, part of
 SQL for Web Nerds

 Consider John Q. Nerd with his bona fide SQL expertise and MIT PhD. How
much useful work can John get out of Oracle? None. John Q. Nerd only
knows how to drive Oracle from SQL*Plus. This appendix covers the
little details such as getting data into or out of Oracle. It is
organized as an FAQ.

 How do I get data into Oracle?

 	Answer 1: Start up SQL*Plus. Type really fast.

 	Answer 2: If you need to load 1000+ rows per second, a fairly common requirement in the data warehousing world, read the Oracle8 Server Utilities, SQL*Loader section.

 	Answer 3: If SQL*Loader makes you feel like ripping out what's left of your hair, go with Perl DBD/DBI (a module available from http://www.cpan.org; explanation available in Advanced Perl Programming (Srinivasan 1997; O'Reilly).

 	Answer 4: If your data are imprisoned in another RDBMS, consider using a fancy GUI tool such as Data Junction (http://www.datajunction.com). These are PC-based applications that open simultaneous connections to your Oracle database and some other RDBMS. They can generally show you what's available in the other database and drag whatever you think necessary into Oracle.

 	Answer 5: If your data are in another Oracle database, read up in the Oracle Server Utilities manual about exp and imp (http://www.oradoc.com/keyword/export_import).

 	Answer 6: If your data are coming in from an email message, configure your mailer to fork a Perl DBD/DBI script that will then parse out the content from the headers and other such crud, open up Oracle, and then send an insert statement. Due to the fork and the opening of Oracle, this is 1/100th the efficiency of a Web script running in a threaded Web server with database connection pooling. However, you probably won't be getting 40 email messages per second so it doesn't really matter. The old open-source ArsDigita Community System includes a Perl script that you could use as a starting point. See http://philip.greenspun.com/ancient-history/software/acs-3.4.10.tar.tgz for details.

 How do I get data out of Oracle?

 	If you want to publish data on the Web, look at the approaches articulated in Philip and Alex's Guide to Web Publishing, Chapter 13 (http://philip.greenspun.com/panda/databases-interfacing).

 	If you are sending data to another Oracle installation, use exp, documented in the Oracle8 Server Utilities manual, exp and imp section.

 philg@mit.edu

 Add a comment

OEBPS/Images/5c0e7c5b1bc555ab5e82bd442e822596.jpg

OEBPS/Images/854aa475d933949e060b89fab3f871fb.jpg

OEBPS/Images/77d6b0b907fe6615aefea2599d77657b.jpg

OEBPS/Images/718ca4c8449e1408e2e4c0efebe0d9f1.jpg
a ke

» N

.'4 -\"s\

OEBPS/Images/17b7699b1e0448581b0dbe14c40581a3.jpg

OEBPS/Images/c59cd0e592a3493354c3c40e9e0b4310.jpg

OEBPS/Images/aca465f7a22442d7e4c1ed53193e38de.jpg

OEBPS/Images/0e5de52fc55e3be21b3d332ba62a9ba9.jpg

OEBPS/Images/4d87cdd0b98d5f110195d521b292ff9d.jpg

OEBPS/Images/97a384ca26084f87d1b3e02d1b9051f8.jpg

OEBPS/Images/dba259bd7bdf0e51fe26e0ce0cb7e5fc.jpg

OEBPS/Images/b6b10ad5dad53695b546bc2b274f6573.jpg

OEBPS/Images/240171f9e1eb9df027f34bba0eab3c8d.jpg

OEBPS/Images/f1b7d98722df8dbb7623892de8f25ed4.jpg

OEBPS/Images/34eeda078480ce071cd178eaabee69d2.jpg

OEBPS/Images/2661480edc82974485e0402ec8e62c36.jpg

OEBPS/Images/58b97d62554bbe64ed6cfb423e9d4aa9.jpg

OEBPS/Images/c4dd8c7acfd1b889f53fc7cd00b76621.jpg

OEBPS/Images/206ba9ef3ed4d9f64a8f3851aacf93c1.jpg

OEBPS/Images/5469b36b6fffc84d1f298390a61d1b10.jpg

OEBPS/Images/89ab91cbb30eaee25ebe5c85d8e8620a.jpg

OEBPS/Images/1f39d0a6b6278f94dd8c716666f0b187.jpg

OEBPS/Images/4469ebdfd51d1fd0a742f99eb8a403e5.jpg

OEBPS/Images/6e1e9cfaefc1189511de3cb39c3cdb76.jpg

OEBPS/Images/a231dae3e855c8fd3026f198d01c7e15.jpg

OEBPS/Images/45d231d33a7008361f779b00656344db.jpg

OEBPS/Images/3fbcbc9d7a597ec2fc38bb6f90044200.jpg

OEBPS/Images/d22c1d49c61283dfbfabc1872300cd80.jpg
i
il

OEBPS/Images/68b59ea96fe1033693f439a534e1e58a.jpg

OEBPS/Images/4b309c677177ed9ab31a673bee6638eb.jpg

OEBPS/Images/8552a6f7b416fa6121ab0db0b4da74fc.jpg

OEBPS/Images/ba74d5ba720ede1cf514340381203653.jpg

OEBPS/Images/d16d608950fdcc8f69f6e45ae8885bf1.jpg

OEBPS/Images/1cc22b005cd8e7bee2940417de5fca3c.jpg

OEBPS/Images/9952bcf9896291c4f8b0dbcdb16e67ba.jpg

OEBPS/Images/d309fc7353e0d3e04534dcb6037571f4.jpg

OEBPS/Images/1caa8755a0ad56d2e0172aaa03902fba.jpg

OEBPS/Images/3f3ac774b5c56303cbe88b0ae4f72218.jpg

OEBPS/Images/9b08cfb566eb1f00efdf10239a602367.jpg

OEBPS/Images/d1a42c3d8c81e9a3b5f55ef52da7a1f3.jpg

OEBPS/Images/19261155a6d71baa86b0d7675a7758d2.jpg

OEBPS/Images/ecb5d6d6d42541ce6f9cd529c2a5973b.jpg

OEBPS/Images/1be6e31e2361ba25ee7102ef0360621b.jpg

OEBPS/Images/c35793514ec5d8bbeb86056093ad381f.jpg

OEBPS/Images/54834a9c8884d134064fa29de60e6711.jpg

OEBPS/Images/3a2f2779dcbe4d6b08899e8e89e735d1.jpg

OEBPS/Images/7e406105ba95bc9fd748e65a4a0ff8d9.jpg

OEBPS/Images/1f8a14059faf718621693b452c0860dc.jpg

OEBPS/Images/76b707811196a52d4379e39119a7dfaa.jpg

OEBPS/Images/306ee4a553c4c299b5e5522cb968c922.jpg

OEBPS/Images/4bbb5bf68881b2ac68941ea09d272017.jpg
Welcome fo
UNIVERSAL CITY

For the comfort & security,
of all of our guests,

‘we shrictly enforcs our
Code of Conduct.

OEBPS/Images/d0ecdf1255d115893a8467f5fe102a3b.jpg

OEBPS/Images/3598f2e8670917b09f206c747027750b.jpg

OEBPS/Images/f32c2ce2cf74df45d5794070d8110bff.jpg

OEBPS/Images/27f73bd7fa3383f6ef99cd42b80c0d5e.jpg

OEBPS/Images/47618fd6e9a16b03449b271513338be0.jpg

OEBPS/Images/8f0fa0189df1971d0c3350617cb8a5b5.jpg

OEBPS/Images/fbae292452a7fd3fdc9b271acd9bdc76.jpg

OEBPS/Images/1f0d0c6eee96f6a84f60d35d393c4191.jpg

OEBPS/Images/c81fd517eae17ed3d32975824febb5ca.jpg

OEBPS/Images/7f8c088dd0cbaa378937d5eea09c7de2.jpg

OEBPS/Images/6d8def4d9dc4d6cd678a33f24fe27297.jpg
d)}

OEBPS/Images/997c56feee4f0bd05b8b2eb03a2d95ab.jpg

OEBPS/Images/fefaa76c115bf696189c8a290638197d.jpg
EF

OEBPS/Images/d03dc8ab9854158ad15ab0c1410b2f9f.jpg

OEBPS/Images/775407c0aeb415013fcf9e6fda8f6ab3.jpg

OEBPS/Images/7f044a9d1d84560f4e5193335b07becb.jpg

OEBPS/Images/35250ea3dadd6adfc71233c91d9bb64c.jpg

OEBPS/Images/6cc283cf7205bc1de17df078ca486221.jpg

OEBPS/Images/ffb671b2bcfa9d3ca58771df1dba41c5.jpg

OEBPS/Images/b87ecea6de3f3d6f8363e2db5ce4a003.jpg

OEBPS/Images/e2f80568876b29658b71afc396e50d00.jpg

OEBPS/Images/493d3f69d2ebcc3623ce3eae7176e7d7.jpg

