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Chapter 1

Introduction

1.1 Course Mission

• Generation of ultrashort pulses: Nano-, Pico-, Femto-, Attosecond
Pulses

• Propagation of ultrashort pulses

• Linear and nonlinear effects.

• Applications in high precision measurements, nonlinear optics, optical
signal processing, optical communications, x-ray generation,....

1.2 Pulse Characteristics

Most often, there is not an isolated pulse, but rather a pulse train.

Figure 1.1: Periodic pulse train

1



2 CHAPTER 1. INTRODUCTION

TR: pulse repetition time
W : pulse energy
Pave =W/TR : average power
τFWHM is the Full Width at Half Maximum of the intensity envelope of the
pulse in the time domain.
The peak power is given by

Pp =
W

τFWHM
= Pave

TR
τFWHM

, (1.1)

and the peak electric field is given by

Ep =

r
2ZF0

Pp

Aeff
. (1.2)

Aeff is the beam cross-section and ZF0 = 377Ω is the free space impedance.

Time scales:

1 ns ∼ 30 cm (high-speed electronics, GHz)
1 ps ∼ 300µm
1 fs ∼ 300 nm

1 as = 10−18 s ∼ 0.3 nm = 3 Å (typ-lattice constant in metal)

The shortest pulses generated to date are about 4 − 5 fs at 800 nm (λ/c =
2.7 fs), less than two optical cycles and 250 as at 25 nm. For few-cycle pulses,
the electric field becomes important, not only the intensity!

Figure 1.2: Electric field waveform of a 5 fs pulse at a center wavelength of
800 nm. The electric field depends on the carrier-envelope phase.
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average power:

Pave ∼ 1W, up to 100 W in progress.

kW possible, not yet pulsed

repetition rates:
T−1R = fR = mHz− 100GHz

pulse energy:
W = 1pJ− 1kJ

pulse width:

τFWHM =
5 fs− 50 ps, modelocked
30 ps− 100 ns, Q− switched

peak power:

Pp =
1kJ

1ps
∼ 1PW,

obtained with Nd:glass (LLNL - USA, [1][2][3]).
For a typical lab pulse, the peak power is

Pp =
10nJ

10 fs
∼ 1MW

peak field of typical lab pulse:

Ep =

s
2× 377× 10

6 × 1012
π × (1.5)2

V

m
≈ 1010 V

m
=
10V

nm

1.3 Applications

• High time resolution: Ultrafast Spectroscopy, tracing of ultrafast phys-
ical processes in condensed matter (see Fig. 1.3), chemical reactions,
physical and biological processes, influence chemical reactions with fem-
tosecond pulses: Femto-Chemistry (Noble Prize, 2000 to A. Zewail),
high speed electric circuit testing and sampling of electrical signals, see
Fig. 1.4.
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Figure 1.3: Pump-probe setup to extract time constants relevant for the
carrier dynamics in semiconductors.

Figure 1.4: High speed A/D conversion with a high repetition rate pico- or
femtosecond laser.
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• High spatial resolution: cτFWHM; optical imaging, e.g. optical coher-
ence tomography, see Figs. 1.5-1.8).

Figure 1.5: Setup for optical coherence tomography.

Figure 1.6: Cross section through the human eye.

Courtesy of James Fujimoto. Used with permission.

Courtesy of James Fujimoto. Used with permission.
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Figure 1.7: Comparison of retinal images taken with a superluminescence
diode (top) versus a broadband Ti:sapphire laser (below).

• Imagaing through strongly scattering media:

Figure 1.8: Imaging of the directly transmitted photons results in an un-
blurred picture. Substitution for x-ray imaging; however, transmission is
very low.

• High bandwidth: massive WDM - optical communications, many chan-
nels from one source or massive TDM, high bit-rate stream of short
pulses.

Courtesy of James Fujimoto. Used with permission.

Figure by MIT OCW.
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• High intensities: Large intensities at low average power ⇒ Nonlinear
frequency conversion, laser material processing, surgery, high intensity
physics: x-ray generation, particle acceleration, ...

1.4 Review of Laser Essentials

Linear and ring cavities:

Figure 1.9: Possible cavity configurations. (a) Schematic of a linear cavity
laser. (b) Schematic of a ring laser. [1]

Steady-state operation: Electric field must repeat itself after one roundtrip.
Consider a monochromatic, linearly polarized field

E(z, t) = <©E0ej(ωt−kz)ª , (1.3)

Figure by MIT OCW.
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where

k =
ω

c
n (1.4)

is the propagation constant in a medium with refractive index n.
Consider linear resonator in Fig. 1.9a. Propagation from (1) to (2) is

determined by n = n0+jn00 (complex refractive index), with the electric field
given by

E = <
n
E0e

ω
c
n00g cgejωte−j

ω
c
(n0gcg+ca)

o
, (1.5)

where ng is the complex refractive index of the gain medium (outside the
gain medium n = 1 is assumed), cg is the length of the gain medium, ca is
the outside gain medium, and c = ngcg + ca is the optical path length in the
resonator.
Propagation back to (1), i.e. one full roundtrip results in

E = <
n
r1r2e

2ω
c
n00g cgE0e

jωt−j2ω
c
c
o
⇒ r1r2e

2ω
c
n00g cg = 1, (1.6)

i.e. the gain equals the loss, and furthermore, we obtain the phase condition

2ωc

c
= 2mπ. (1.7)

The phase condition determines the resonance frequencies, i.e.

ωm =
mπc

c
(1.8)

and

fm =
mc

2c
. (1.9)

The mode spacing of the longitudinal modes is

∆f = fm − fm−1 =
c

2c
(1.10)

(only true if there is no dispersion, i.e. n 6= n(ω)). Assume frequency
independent cavity loss and bell shaped gain (see Fig. 1.10).
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Figure 1.10: Laser gain and cavity loss spectra, longitudinal mode location,
and laser output for multimode laser operation.

Figure 1.11: Gain and loss spectra, longitudinal mode locations, and laser
output for single mode laser operation.

To assure single frequency operation use filter (etalon); distinguish be-
tween homogeneously and inhomogeneously broadened gain media, effects of
spectral hole burning! Distinguish between small signal gain g0 per roundtrip,

Figure by MIT OCW.

Figure by MIT OCW.
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i.e. gain for laser intensity I → 0, and large signal gain, most often given by

g =
g0

1 + I
Isat

, (1.11)

where Isat is the saturation intensity. Gain saturation is responsible for the
steady state gain (see Fig. 1.11), and homogeneously broadened gain is
assumed.
To generate short pulses, i.e. shorter than the cavity roundtrip time,

we wish to have many longitudinal modes runing in steady state. For a
multimode laser the laser field is given by

E(z, t) = <
"X

m

Ême
j(ωmt−kmz+φm)

#
, (1.12a)

ωm = ω0 +m∆ω = ω0 +
mπc

c
, (1.12b)

km =
ωm

c
, (1.12c)

where the symbol ˆdenotesa frequency domain quantity. Equation (1.12a)
can be rewritten as

E(z, t) = <
(
ejω0(t−z/c)

X
m

Ême
j(m∆ω(t−z/c)+φm)

)
(1.13a)

= < £A(t− z/c)ejω0(t−z/c)
¤

(1.13b)

with the complex envelope

A
³
t− z

c

´
=
X
m

Eme
j(m∆ω(t−z/c)+φm) = complex envelope (slowly varying).

(1.14)
ejω0(t−z/c) is the carrier wave (fast oscillation). Both carrier and envelope
travel with the same speed (no dispersion assumed). The envelope function
is periodic with period

T =
2π

∆ω
=
2c

c
=

L

c
. (1.15)

L is the roundtrip length (optical)!

Examples:
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We assume N modes with equal amplitudes Em = E0 and equal phases
φm = 0, and thus the envelope is given by

A(z, t) = E0

(N−1)/2X
m=−(N−1)/2

ej(m∆ω(t−z/c)). (1.16)

With
q−1X
m=0

am =
1− aq

1− a
, (1.17)

we obtain

A(z, t) = E0
sin
£
N∆ω
2

¡
t− z

c

¢¤
sin
£
∆ω
2

¡
t− z

c

¢¤ . (1.18)

The laser intensity I is proportional to E(z, t)2, averaged over one optical
cycle: I ∼ |A(z, t)|2. At z = 0, we obtain

I(t) ∼ |E0|2
sin2

¡
N∆ωt
2

¢
sin2

¡
∆ωt
2

¢ . (1.19)

Figure 1.12: (a) mode-locked laser output with constant mode phase. (b)
Laser output with randomly phased modes.

Figure by MIT OCW.
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(a) Periodic pulses given by Eq. (1.19), period T = 1/∆f = L/c

• pulse duration
∆t =

2π

N∆ω
=

1

N∆f
(1.20)

• peak intensity ∼ N2|E0|2
• average intensity ∼ N |E0|2 ⇒ peak intensity is enhanced by a
factor N .

(b) If phases of modes are not locked, i.e. φm random sequence

• Intensity fluctuates randomly about average value (∼ N |E0|2),
same as modelocked case

• correlation time is ∆tc ≈ 1
N ·∆f

• Fluctuations are still periodic with period T = 1/∆f .

In a usual multimode laser, φm varies over t.

1.5 History

1960: First laser, ruby, Maiman [4].

1961: Proposal for Q-switching, Hellwarth [5].

1963: First indications of mode locking in ruby lasers, Guers and
Mueller [6],[7], Statz and Tang [8]. on He-Ne lasers.

1964: Activemodelocking (HeNe, Ar, etc.), DiDomenico [9], [10] and
Yariv [11].

1966: Passive modelocking with saturable dye absorber in ruby by A.
J. Dellaria, Mocker and Collins [12].

1966: Dye laser, F. P. Schäfer, et al. [13].

1968: mode-locking (Q-Switching) of dye-lasers, Schmidt, Schäfer [14].

1972: cw-passive modelocking of dye laser, Ippen, Shank, Dienes [15].
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1972: Analytic theories on active modelocking [21, 22].

1974: Sub-ps-pulses, Shank, Ippen [16].

1975: Theories for passive modelocking with slow [1], [24] and fast
saturable absorbers [25] predicted hyperbolic secant pulse.

1981: Colliding-pulse mode-locked laser (CPM), [17].

1982: Pulse compression [20].

1984: Soliton Laser, Mollenauer, [26].

1985: Chirped pulse amplification, Strickland and Morou, [27].

1986: Ti:sapphire (solid-state laser), P. F. Moulton [28].

1987: 6 fs at 600 nm, external compression, Fork et al. [18, 19].

1988: Additive Pulse Modelocking (APM),[29, 30, 31].

1991: Kerr-lens modelocking, Spence et al. [32, 33, 34, 35, 36].

1993: Streched pulse laser, Tamura et al [37].

1994: Chirped mirrors, Szipoecs et al. [38, 39]

1997: Double-chirped mirrors, Kaertner et al.[40]

2001: 5 fs, sub-two cycle pulses, octave spanning, Ell at. al.[42]

2001: 250 as by High-Harmonic Generation, Krausz et al.[43]
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Figure 1.13: Pulse width of different laser systems by year.
Courtesy of Erich Ippen. Used with permission.
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Figure 1.14: Pulse width of Ti:sapphire lasers by year.

1.6 Laser Materials
Laser
Material

Absorption
Wavelength

Average
Emission λ

Band
Width

Pulse
Width

Nd:YAG 808 nm 1064 nm 0.45 nm ∼ 6 ps
Nd:YLF 797 nm 1047 nm 1.3 nm ∼ 3 ps
Nd:LSB 808 nm 1062 nm 4 nm ∼ 1.6 ps
Nd:YVO4 808 nm 1064 nm 2 nm ∼ 4.6 ps
Nd:fiber 804 nm 1053 nm 22-28 nm ∼ 33 fs
Nd:glass 804 nm 1053 nm 22-28 nm ∼ 60 fs
Yb:YAG 940, 968 nm 1030 nm 6 nm ∼ 300 fs
Yb:glass 975 nm 1030 nm 30 nm ∼ 90 fs
Ti:Al2O3 480-540 nm 796 nm 200 nm ∼ 5 fs
Cr4+:Mg2SiO4: 900-1100 nm 1260 nm 200 nm ∼ 14 fs
Cr4+:YAG 900-1100 nm 1430 nm 180 nm ∼ 19 fs

Transition metals: (Cr3+, Ti3+, Ni2+, CO2+, etc.) (outer 3d-electrons)
→ broadband

Rare earth: (Nd3+, Tm3+, Ho3+, Er3+, etc.) (shielded 4f -electrons)
→ narrow band.



16 CHAPTER 1. INTRODUCTION



Bibliography

[1] M. D. Perry and G. Mourou, "Terawatt to Petawatt Subpicosecond Lasers,"
Science, Vol. 264 (1994), p. 917.

[2] M. D. Perry et al., "Petawatt Laser Pulses," Optics Letters, Vol. 24
(1999), p. 160.

[3] T. Tajima and G. Mourou, Phys. Rev. Spec.
Topics-Accelerators and Beams 5(031301) 1 (2002).
See also wwwapr.apr.jaeri.go.jp/aprc/e/index_e.html,
www.eecs.umich.edu/CUOS/HERCULES/index, www.clf.rl.ac.uk

[4] T. H. Maimann, "Stimulated optical radiation in ruby", Nature 187,
493-494, (1960).

[5] R. W. Hellwarth, Ed., Advances in Quantum Electronics, Columbia
Press, NY (1961).

[6] K. Gürs, R. Müller: "Breitband-modulation durch Steuerung der emis-
sion eines optischen masers (Auskoppel-modulation)", Phys. Lett. 5,
179-181 (1963).

[7] K. Gürs (Ed.): "Beats and modulation in optical ruby laser," in Quan-
tum Electronics III (Columbia University Press, New York 1964).

[8] H. Statez, C.L. Tang (Eds.): "Zeeman effect and nonlinear interac-
tions between oscillationg laser modes", in Quantum Electronics III
(Columbia University Press, New York 1964).

[9] M. DiDomenico: "Small-signal analysis of internal (coupling type) mod-
ulation of lasers," J. Appl. Phys. 35, 2870-2876 (1964).

17



18 BIBLIOGRAPHY

[10] L.E. Hargrove, R.L. Fork, M.A. Pollack: "Locking of He-Ne laser modes
induced by synchronous intracavity modulation," Appl. Phys. Lett. 5,
4-5 (1964).

[11] A. Yariv: "Internal modulation in multimode laser oscillators," J. Appl.
Phys. 36, 388-391 (1965).

[12] H.W. Mocker, R.J. Collins: "Mode competition and self-locking effects
in a Q-switched ruby laser," Appl. Phys. Lett. 7, 270-273 (1965).

[13] F. P. Schäfer, F. P. W. Schmidt, J. Volze: "Organic Dye Solution Laser,"
Appl. Phys. Lett. 9, 306− 308 (1966).

[14] F. P. W. Schmidt, F. P. Schäfer: "Self-mode-locking of dye-lasers with
saturable absorbers," Phys. Lett. 26A, 258-259 (1968).

[15] E.P. Ippen, C.V. Shank, A. Dienes: "Passive mode locking of the cw
dye laser," Appl. Phys. Lett. 21, 348-350 (1972)·

[16] C.V. Shank, E.P. Ippen: "Sub-picosecond kilowatt pulses from a mode-
locked cw dye laser," Appl. Phys. Lett. 24, 373-375 (1974).

[17] R.L. Fork, B.I. Greene, C.V. Shank: "Generation of optical pulses
shorter than 0.1 psec by colliding pulse mode-locking," Appl. Phys. Lett.
38, 617-619 (1981).

[18] W.H. Knox, R.L. Fork, M.C. Downer, R.H. Stolen, C.V. Shank, J.A.
Valdmanis: "Optical pulse compression to 8 fs at a 5-kHz repetition
rate," Appl. Phys. Lett. 46, 1120-1122 (1985).

[19] R.L. Fork, C.H.B. Cruz, P.C. Becker, C.V. Shank: "Compression of
optical pulses to six femtoseconds by using cubic phase compensation,"
Opt. Lett. 12, 483-485 (1987).

[20] D. Grischowsky, A. C. Balant: TITLE, Appl. Phys. Lett. 41, pp. (1982).

[21] J. Kuizenga, A. E. Siegman: "FM und AM mode locking of the homo-
geneous laser - Part I: Theory, IEEE J. Quantum Electron. 6, 694-708
(1970).



BIBLIOGRAPHY 19

[22] J. Kuizenga, A. E. Siegman: "FM und AMmode locking of the homoge-
neous laser - Part II: Experimental results, IEEE J. Quantum Electron.
6, 709-715 (1970).

[23] G.H.C. New: Pulse evolution in mode-locked quasicontinuous lasers,
IEEE J. Quantum Electron. 10, 115-124 (1974).

[24] H.A. Haus: Theory of mode locking with a slow saturable absorber,
IEEE J. Quantum Electron. QE 11, 736-746 (1975).

[25] H.A. Haus, C.V. Shank, E.P. Ippen: Shape of passively mode-locked
laser pulses, Opt. Commun. 15, 29-31 (1975).

[26] L.F. Mollenauer, R.H. Stolen: The soliton laser, Opt. Lett. 9, 13-15
(1984).

[27] D. Strickland and G. Morou: "Chirped pulse amplification," Opt.
Comm. 56,229-221,(1985).

[28] P. F. Moulton: "Spectroscopic and laser characteristics of Ti:Al2O3",
JOSA B 3, 125-132 (1986).

[29] K. J. Blow and D. Wood: "Modelocked Lasers with nonlinear external
cavity," J. Opt. Soc. Am. B 5, 629-632 (1988).

[30] J. Mark, L.Y. Liu, K.L. Hall, H.A. Haus, E.P. Ippen: Femtosecond pulse
generation in a laser with a nonlinear external resonator, Opt. Lett. 14,
48-50 (1989)·

[31] E.P. Ippen, H.A. Haus, L.Y. Liu: Additive pulse modelocking, J. Opt.
Soc. Am. B 6, 1736-1745 (1989).

[32] D.E. Spence, P.N. Kean, W. Sibbett: 60-fsec pulse generation from a
self-mode-locked Ti:Sapphire laser, Opt. Lett. 16, 42-44 (1991).

[33] D.K. Negus, L. Spinelli, N. Goldblatt, G. Feugnet: TITLE, in Advanced
Solid-State Lasers G. Dubé, L. Chase (Eds.) (Optical Society of Amer-
ica, Washington, D.C., 1991) pp. 120-124.

[34] F. Salin, J. Squier, M. Piché: Mode locking of Ti:Al2O3 lasers and self-
focusing: A Gaussian approximation, Opt. Lett. 16, 1674-1676 (1991).



20 BIBLIOGRAPHY

[35] M. Piché: Beam reshaping and self-mode-locking in nonlinear laser res-
onators, Opt. Commun. 86, 156-160 (1991)

[36] U. Keller, G.W. ’tHooft, W.H. Knox, J.E. Cunningham: TITLE, Opt.
Lett. 16, 1022-1024 (1991).

[37] K. Tamura, E.P. Ippen, H.A. Haus, L.E. Nelson: 77-fs pulse generation
from a stretched-pulse mode-locked all-fiber ring laser, Opt. Lett. 18,
1080-1082 (1993)

[38] A. Stingl, C. Spielmann, F. Krausz: "Generation of 11-fs pulses from
a Ti:sapphire laser without the use of prism," Opt. Lett. 19, 204-206
(1994)

[39] R. Szipöcs, K. Ferencz, C. Spielmann, F. Krausz: Chirped multilayer
coatings for broadband dispersion control in femtosecond lasers, Opt.
Lett. 19, 201-203 (1994)

[40] F.X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H.A. Haus, C. Heine,
R. Morf, V. Scheuer, M. Tilsch, T. Tschudi: Design and fabrication of
double-chirped mirrors, Opt. Lett. 22, 831-833 (1997)

[41] Y. Chen, F.X. Kärtner, U. Morgner, S.H. Cho, H.A. Haus, J.G. Fuji-
moto, E.P. Ippen: Dispersion-managed mode locking, J. Opt. Soc. Am.
B 16, 1999-2004 (1999)

[42] R. Ell, U. Morgner, F.X. Kärtner, J.G. Fujimoto, E.P. Ippen, V. Scheuer,
G. Angelow, T. Tschudi: Generation of 5-fs pulses and octave-spanning
spectra directly from a Ti:Sappire laser, Opt. Lett. 26, 373-375 (2001)

[43] H. Hentschel, R. Kienberger, Ch. Spielmann, G. A. Reider, N. Milo-
sevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz:
"Attosecond Metrology," Nature 414, 509-513 (2001).



Chapter 2

Maxwell-Bloch Equations

2.1 Maxwell’s Equations

Maxwell’s equations are given by

�∇× �H = �j +
∂ �D

∂t
, (2.1a)

�∇× �E = −∂
�B

∂t
, (2.1b)

�∇ · �D = ρ, (2.1c)
�∇ · �B = 0. (2.1d)

The material equations accompanying Maxwell’s equations are:

�D = �0 �E + �P , (2.2a)
�B = µ0 �H + �M. (2.2b)

Here, �E and �H are the electric and magnetic field, �D the dielectric flux, �B
the magnetic flux, �j the current density of free carriers, ρ is the free charge
density, �P is the polarization, and �M the magnetization. By taking the curl
of Eq. (2.1b) and considering �∇×

³
�∇×�E

´
= �∇

³
�∇ �E

´
−∆�E, we obtain

∆�E − µ0
∂

∂t

Ã
�j + �0

∂ �E

∂t
+

∂ �P

∂t

!
=

∂

∂t
�∇× �M+�∇

³
�∇ · �E

´
(2.3)
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and henceµ
∆− 1

c20

∂2

∂t2

¶
�E = µ0

Ã
∂�j

∂t
+

∂2

∂t2
�P

!
+

∂

∂t
�∇× �M+�∇

³
�∇ · �E

´
. (2.4)

The vacuum velocity of light is

c0 =

s
1

µ0�0
. (2.5)

2.2 Linear Pulse Propagation in IsotropicMe-
dia

For dielectric non magnetic media, with no free charges and currents due
to free charges, there is �M = �0, �j = �0, ρ = 0. We obtain with �D =
� (�r) �E=�0�r (�r) �E

�∇ · (� (�r) �E) = 0. (2.6)

In addition for homogeneous media, we obtain �∇ · �E = 0 and the wave
equation (2.4) greatly simplifiesµ

∆− 1

c20

∂2

∂t2

¶
�E = µ0

∂2

∂t2
�P . (2.7)

This is the wave equation driven by the polarization in the medium. If
the medium is linear and has only an induced polarization described by the
susceptibility χ(ω) = �r(ω)− 1, we obtain in the frequency domainb�P (ω) = �0χ(ω) �̂E(ω). (2.8)

Substituted in (2.7)µ
∆+

ω2

c20

¶
�̂E(ω) = −ω2µ0�0χ(ω) �̂E(ω), (2.9)

where b�D = �0�r(ω) �̂E(ω), and thusµ
∆+

ω2

c20
(1 + χ(ω)

¶
�̂E(ω) = 0, (2.10)
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with the refractive index n and 1 + χ(ω) = n2µ
∆+

ω2

c2

¶
�̂E(ω) = 0, (2.11)

where c = c0/n is the velocity of light in the medium.

2.2.1 Plane-Wave Solutions (TEM-Waves)

The complex plane-wave solution of Eq. (2.11) is given by

�̂E(+)(ω,�r) = �̂E(+)(ω)e−j
�k·�r = E0e

−j�k·�r · �e (2.12)

with

|�k|2 = ω2

c2
= k2. (2.13)

Thus, the dispersion relation is given by

k(ω) =
ω

c0
n(ω). (2.14)

From �∇ · �E = 0, we see that �k ⊥ �e. In time domain, we obtain

�E(+)(�r, t) = E0�e · ejωt−j�k·�r (2.15)

with
k = 2π/λ, (2.16)

where λ is the wavelength, ω the angular frequency, �k the wave vector, �e the
polarization vector, and f = ω/2π the frequency. From Eq. (2.1b), we get
for the magnetic field

−j�k ×E0�ee
j(ωt−�k�r) = −jµ0ω �H(+), (2.17)

or
�H(+) =

E0
µ0ω

ej(ωt−
�k�r)�k × �e = H0

�hej(ωt−
�k�r) (2.18)

with

�h =
�k

|k| × �e (2.19)
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and

H0 =
|k|
µ0ω

E0 =
1

ZF
E0. (2.20)

The natural impedance is

ZF = µ0c =

r
µ0
�0�r

=
1

n
ZF0 (2.21)

with the free space impedance

ZF0 =

r
µ0
�0
= 377Ω. (2.22)

For a backward propagating wave with �E(+)(�r, t) = E0�e · ejωt+j�k·�r there is
�H(+) = H0

�hej(ωt−
�k�r) with

H0 = − |k|
µ0ω

E0. (2.23)

Note that the vectors �e, �h and �k form an orthogonal trihedral,

�e ⊥ �h, �k ⊥ �e, �k ⊥ �h. (2.24)

2.2.2 Complex Notations

Physical �E, �H fields are real:

�E(�r, t) =
1

2

³
�E(+)(�r, t) + �E(−)(�r, t)

´
(2.25)

with �E(−)(�r, t) = �E(+)(�r, t)∗. A general temporal shape can be obtained by
adding different spectral components,

�E(+)(�r, t) =

Z ∞

0

dω

2π
b�E(+)

(ω)ej(ωt−
�k·�r). (2.26)

Correspondingly, the magnetic field is given by

�H(�r, t) =
1

2

³
�H(+)(�r, t) + �H(−)(�r, t)

´
(2.27)

with �H(−)(�r, t) = �H(+)(�r, t)∗. The general solution is given by

�H(+)(�r, t) =

Z ∞

0

dω

2π
b�H(+)

(ω)ej(ωt−
�k·�r) (2.28)

with b�H(+)

(ω) =
E0
ZF

�h. (2.29)
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2.2.3 Poynting Vectors, Energy Density and Intensity
for Plane Wave Fields

Quantity Real fields Complex fields hit

Energy density w = 1
2

³
�0�r �E

2 + µ0µr �H
2
´

w = 1
4

⎛⎝ �0�r

¯̄̄
�E(+)

¯̄̄2
+µ0µr

¯̄̄
�H(+)

¯̄̄2
⎞⎠

Poynting vector �S = �E× �H �T = 1
2
�E(+)×

³
�H(+)

´∗
Intensity I =

¯̄̄
�S
¯̄̄
= cw I =

¯̄̄
�T
¯̄̄
= cw

Energy Cons. ∂w
∂t
+ �∇�S = 0 ∂w

∂t
+ �∇�T = 0

For �E(+)(�r, t) = E0�exe
j(ωt−kz) we obtain the energy density

w =
1

2
�r�0|E0|2, (2.30)

the poynting vector
�T =

1

2ZF
|E0|2�ez (2.31)

and the intensity

I =
1

2ZF
|E0|2 = 1

2
ZF |H0|2. (2.32)

2.2.4 Dielectric Susceptibility

The polarization is given by

�P (+)(ω) =
dipole moment

volume
= N · h�p(+)(ω)i = �0χ(ω) �E

(+)(ω), (2.33)

where N is density of elementary units and h�pi is the average dipole moment
of unit (atom, molecule, ...).

Classical harmonic oscillator model

The damped harmonic oscillator driven by an electric force in one dimension,
x, is described by the differential equation

m
d2x

dt2
+ 2

ω0
Q
m
dx

dt
+mω20x = e0E(t), (2.34)



26 CHAPTER 2. MAXWELL-BLOCH EQUATIONS

where E(t) = Êejωt. By using the ansatz x (t) = x̂ejωt, we obtain for the
complex amplitude of the dipole moment p = e0x(t) = p̂ejωt

p̂ =
e20
m

(ω20 − ω2) + 2jω0
Q
ω
Ê. (2.35)

For the susceptibility, we get

χ(ω) =
N

e20
m
1
�0

(ω20 − ω2) + 2jωω0
Q

(2.36)

and thus

χ(ω) =
ω2p

(ω20 − ω2) + 2jωω0
Q

, (2.37)

with the plasma frequency ωp, determined by ω2p = Ne20/m�0. Figure 2.1
shows the real part and imaginary part of the classical susceptiblity (2.37).

1.0

0.5

0.0

χ '
' (ω

)  *
2/Q

2.01.51.00.50.0
ω / ω 0

0.6

0.4

0.2

0.0

-0.2

-0.4

χ'( ω)  *2/Q

2
Q

Q=10

Figure 2.1: Real part and imaginary part of the susceptibility of the classical
oscillator model for the electric polarizability.

Note, there is a small resonance shift due to the loss. Off resonance,
the imaginary part approaches very quickly zero. Not so the real part, it
approaches a constant value ω2p/ω

2
0 below resonance, and approaches zero for

above resonance, but slower than the real part, i.e. off resonance there is still
a contribution to the index but practically no loss.
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2.3 Bloch Equations

Atoms in low concentration show line spectra as found in gas-, dye- and some
solid-state laser media. Usually, there are infinitely many energy eigenstates
in an atomic, molecular or solid-state medium and the spectral lines are
associated with allowed transitions between two of these energy eigenstates.
For many physical considerations it is already sufficient to take only two of
the possible energy eigenstates into account, for example those which are
related to the laser transition. The pumping of the laser can be described
by phenomenological relaxation processes into the upper laser level and out
of the lower laser level. The resulting simple model is often called a two-
level atom, which is mathematically also equivalent to a spin 1/2 particle
in an external magnetic field, because the spin can only be parallel or anti-
parallel to the field, i.e. it has two energy levels and energy eigenstates. The
interaction of the two-level atom or the spin with the electric or magnetic
field is described by the Bloch equations.

2.3.1 The Two-Level Model

An atom having only two energy eigenvalues is described by a two-dimensional
state space spanned by the two energy eigenstates |e > and |g >. The two
states constitute a complete orthonormal system. The corresponding energy
eigenvalues are Ee and Eg (Fig. 2.2).

Figure 2.2: Two-level atom

In the position-, i.e. x-representation, these states correspond to the wave
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functions
ψe(x) =< x|e >, and ψg(x) =< x|g > . (2.38)

The Hamiltonian of the atom is given by

HA = Ee|e >< e|+Eg|g >< g|. (2.39)

In this two-dimensional state space only 2×2 = 4 linearly independent linear
operators are possible. A possible choice for an operator base in this space is

1 = |e >< e|+ |g >< g|, (2.40)

σz = |e >< e|− |g >< g|, (2.41)

σ+ = |e >< g|, (2.42)

σ− = |g >< e|. (2.43)

The non-Hermitian operators σ± could be replaced by the Hermitian oper-
ators σx,y

σx = σ+ + σ−, (2.44)

σy = −jσ+ + jσ−. (2.45)

The physical meaning of these operators becomes obvious, if we look at the
action when applied to an arbitrary state

|ψ >= cg|g > + ce|e > . (2.46)

We obtain

σ+|ψ > = cg|e >, (2.47)

σ−|ψ > = ce|g >, (2.48)

σz|ψ > = ce|e > −cg|g > . (2.49)

The operator σ+ generates a transition from the ground to the excited state,
and σ− does the opposite. In contrast to σ+ and σ−, σz is a Hermitian
operator, and its expectation value is an observable physical quantity with
expectation value

< ψ|σz|ψ >= |ce|2 − |cg|2 = w, (2.50)

the inversion w of the atom, since |ce|2 and |cg|2 are the probabilities for
finding the atom in state |e > or |g > upon a corresponding measurement.
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If we consider an ensemble of N atoms the total inversion would be σ =
N < ψ|σz|ψ >. If we separate from the Hamiltonian (2.38) the term (Ee +
Eg)/2 ·1, where 1 denotes the unity matrix, we rescale the energy values
correspondingly and obtain for the Hamiltonian of the two-level system

HA =
1

2
~ωegσz, (2.51)

with the transition frequency

ωeg =
1

~
(Ee − Eg). (2.52)

This form of the Hamiltonian is favorable. There are the following commu-
tator relations between operators (2.41) to (2.43)

[σ+,σ−] = σz, (2.53)

[σ+,σz] = −2σ+, (2.54)

[σ−,σz] = 2σ−, (2.55)

and anti-commutator relations, respectively

[σ+,σ−]+ = 1, (2.56)

[σ+,σz]+ = 0, (2.57)

[σ−,σz]+ = 0, (2.58)

[σ−,σ−]+ = [σ+, σ+]+ = 0. (2.59)

The operators σx, σy, σz fulfill the angular momentum commutator relations

[σx,σy] = 2jσz, (2.60)

[σy,σz] = 2jσx, (2.61)

[σz,σx] = 2jσy. (2.62)

The two-dimensional state space can be represented as vectors in C2 accord-
ing to the rule:

|ψ >= ce|e > + cg|g > →
µ

ce
cg

¶
. (2.63)
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The operators are then represented by matrices

σ+ →
µ
0 1
0 0

¶
, (2.64)

σ− →
µ
0 0
1 0

¶
, (2.65)

σz →
µ
1 0
0 −1

¶
, (2.66)

1 →
µ
1 0
0 1

¶
. (2.67)

2.3.2 The Atom-Field Interaction In Dipole Approxi-
mation

The dipole moment of an atom p̃ is essentially determined by the position
operator �x via

�p = −e0 �x. (2.68)

Then the expectation value for the dipole moment of an atom in state (2.46)
is

< ψ|�p|ψ > = −e0(|ce|2 < e|�x|e > +cec∗g < g|�x|e > (2.69)

+ cgc
∗
e < e|�x|g > +|cg|2 < g|�x|g >).

For simplicity, we may assume that that the medium is an atomic gas. The
atoms posses inversion symmetry, therefore, energy eigenstates must be sym-
metric or anti-symmetric, i.e. < e|�x|e >=< g|�x|g >= 0. We obtain

< ψ|�p|ψ >= −e0 (cec∗g < g|�x|e > +cgc∗e < g|�x|e >∗). (2.70)

(Note, this means, there is no permanent dipole moment in an atom, which
is in an energy eigenstate. Note, this might not be the case in a solid. The
atoms consituting the solid are oriented in a lattice, which may break the
symmetry. If so, there are permanent dipole moments and consequently the
matrix elements < e|�x|e > and < g|�x|g > would not vanish. If so, there
are also crystal fields, which then imply level shifts, via the linear Stark
effect.) Thus an atom does only exhibit a dipole moment in the average, if
the product cec∗g 6= 0, i.e. the state of the atom is in a superposition of states
|e > and |g >.
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With the dipole matrix elements

�M = e0 < g|�x|e > (2.71)

the expectation value for the dipole moment can be written as

< ψ|�p|ψ >= −(cec∗g �M + cgc
∗
e
�M∗) = − < ψ|(σ+ �M∗ + σ− �M)|ψ > . (2.72)

Since this is true for an arbitrary state, the dipole operator (2.68) is repre-
sented by

�p = �p+ + �p− = − �M∗σ+ − �Mσ−. (2.73)

Therefore, the operators σ+ and σ− are proportional to the complex dipole
moment operators �p+ and �p−, respectively.
The energy of an electric dipole in an electric field is

HA−F = −�p · �E(�xA, t). (2.74)

The electric field at the position of the atom, �xA, can be written as

�E(�xA, t) =
1

2

³
�E(t)(+) + �E(t)(−)

´
=
1

2

³
�̂E(t)(+)ejωt + �̂E(t)(−)e−jωt

´
, (2.75)

where �̂E(t)(+) denotes the slowly varying complex field envelope with ω ≈
ωeg. In the Rotating-Wave Approximation (RWA), we only keep the slowly
varying components in the interaction Hamiltonian. As we will see later, if
there is no field the operator σ+ evolves like σ+(t) = σ+(0)ejωegt, thus we
obtain in RWA

HA−F = −�p · �E(�xA, t) ≈ (2.76)

≈ HRWA
A−F =

1

2
�M∗ �E(t)(−)σ+ + h.c.. (2.77)

The Schrödinger Equation for the two-level atom in a classical field is then
given by

j~
d

dt
|ψ > = (HA +HA−F )|ψ > (2.78)

≈ (HA +H
RWA
A−F )|ψ > . (2.79)
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Written in the energy representation, we obtain

d

dt
ce = −jωeg

2
ce − jΩre

−jωtcg, (2.80)

d

dt
cg = +j

ωeg

2
cg − jΩre

+jωtce, (2.81)

with the Rabi-frequency defined as

Ωr =
�M∗ �̂E

2~
. (2.82)

For the time being, we assume that the the Rabi-frequency is real. If this is
not the case, a transformation including a phase shift in the amplitudes ca,b
would be necessary to eliminate this phase. As expected the field couples the
energy eigenstates.

2.3.3 Rabi-Oscillations

If the incident light has a constant field amplitude �̂E Eqs. (2.80) and (2.81)
can be solved and we observe an oscillation in the population difference, the
Rabi-oscillation [1]. To show this we introduce the detuning between field
and atomic resonance

∆ =
ωab − ω

2
(2.83)

and the new probability amplitudes

Ce = cee
jω
2
t, (2.84)

Cg = cge
−jω

2
t. (2.85)

This leads to the new system of equations with constant coefficients

d

dt
Ce = −j∆Ce − jΩrCg, (2.86)

d

dt
Cg = +j∆Cg − jΩrCe. (2.87)

Note, these are coupling of mode equations in time. Now, the modes are
electronic ones instead of photonic modes. But otherwise everything is the
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same. For the case of vanishing detuning it is especially easy to eliminate
one of the variables and we arrive at

d2

dt2
Ce = −Ω2rCe (2.88)

d2

dt2
Cg = −Ω2rCg. (2.89)

The solution to this set of equations are the oscillations we are looking for. If
the atom is at time t = 0 in the ground-state, i.e. Cg(0) = 1 and Ce(0) = 0,
respectively, we arrive at

Cg(t) = cos (Ωrt) (2.90)

Ce(t) = −j sin (Ωrt) . (2.91)

Then, the probabilities for finding the atom in the ground or excited state
are

|cb(t)|2 = cos2 (Ωrt) (2.92)

|ca(t)|2 = sin2 (Ωrt) , (2.93)

as shown in Fig. 2.3. For the expectation value of the dipole operator under
the assumption of a real dipole matrix element �M = �M∗ we obtain

< �p > = − �Mcec
∗
g + c.c. (2.94)

= − �M sin (2Ωrt) sin (ωegt) . (2.95)
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Figure 2.3: Evolution of occupation probabilities of ground and excited state
and the average dipole moment of a two-level atom in resonant interaction
with a coherent classical field.

The coherent external field drives the population of the atomic system
between the two available states with a period Tr = π/Ωr. Applying the field
only over half of this period leads to a complete inversion of the population.
These Rabi-oscillations have been observed in various systems ranging from
gases to semiconductors. Interestingly, the light emitted from the coherently
driven two-level atom is not identical in frequency to the driving field. If
we look at the Fourier spectrum of the polarization according to Eq.(2.95),
we obtain lines at frequencies ω± = ωeg ± 2Ωr. This is clearly a nonlinear
output and the sidebands are called Mollow-sidebands [2] . Most important
for the existence of these oscillations is the coherence of the atomic system
over at least one Rabi-oscillation. If this coherence is destroyed fast enough,
the Rabi-oscillations cannot happen and it is then impossible to generate
inversion in a two-level system by interaction with light. This is the case for
a large class of situations in light-matter interaction. So we are interested
what happens in the case of loss of coherence due to additional interaction



2.3. BLOCH EQUATIONS 35

of the atoms with a heat bath.

2.3.4 The Density Operator

To study incoherent or dissipative processes it is useful to switch to a sta-
tistical description using the density operator instead of deterministic wave
functions similar to classical statistical mechanics, where the deterministic
trajectories of particles are replaced by probability distributions.
The density operator of a pure state is defined by the dyadic product of

the state with itself
ρ = |ψ >< ψ| (2.96)

or in coordinate representation by a 2× 2−matrix

ρ =

µ
ρee ρeg
ρge ρgg

¶
. (2.97)

In case of a pure state (2.46) this is

ρ =

µ
cec

∗
e cec

∗
g

cgc
∗
e cgc

∗
g

¶
. (2.98)

It is obvious, that, for the rather simple case of a two-level system, each ele-
ment of the density matrix corresponds to a physical quantity. The main di-
agonal contains the population probabilities for the levels and the off-diagonal
element is the expectation value of the positive or negative frequency compo-
nent of the dipole moment of the atom, i.e. its contribution to the medium
polarization.
The expectation value of an arbitrary operator A can be computed using

the trace formula

< A >= Tr{ρA } =< ψ|A|ψ > . (2.99)

The advantage of the density operator is, that mixtures of pure states can
also be treated in a statistical sense. For example, if the atom is in state |e >
with probability pe and in state |g > with probability pg a density operator

ρ = pe|e >< e|+ pg|g >< g| (2.100)

is defined, which can be used to compute the average values of observables
in the proper statistical sense

< A >= Tr{ρA} = pe < e|A|e > +pg < g|A|g > . (2.101)
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Since the matrices (2.64) to (2.67) build a complete base in the space of
2× 2−matrices, we can express the density matrix as

ρ = ρee
1

2
(1+ σz) + ρgg

1

2
(1− σz) + ρegσ

+ + ρgeσ
− (2.102)

=
1

2
1+

1

2
(ρee − ρgg)σz + ρegσ

+ + ρgeσ
−, (2.103)

since the trace of the density matrix is always one (normalization). Choosing
the new base 1,σx,σy,σz, we obtain

ρ =
1

2
1+

1

2
(ρee − ρgg)σz + dxσx + dyσy, (2.104)

with

dx =
1

2

¡
ρeg + ρge

¢
= <{< σ(+) >}, (2.105)

dy =
j

2

¡
ρeg − ρge

¢
= ={< σ(+) >}. (2.106)

The expectation value of the dipole operator is given by (2.73)

< �p >= Tr{ρ�p} = − �M∗Tr{ρσ+}+ c.c. = − �M∗ρge + c.c. (2.107)

From the Schrödinger equation for the wave function |ψ > we can eas-
ily derive the equation of motion for the density operator, called the von
Neumann equation

ρ̇ =
d

dt
|ψ >< ψ|+ h.c. =

1

j~
H|ψ >< ψ|− 1

j~
|ψ >< ψ|H (2.108)

=
1

j~
[H,ρ] .

Due to the linear nature of the equation, this is also the correct equation
for a density operator describing an arbitrary mixture of states. In case of a
two-level atom, the von Neumann equation is

ρ̇ =
1

j~
[HA,ρ] = −jω∈g

2
[σz,ρ]. (2.109)
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Using the commutator relations (2.53) - (2.55), the result is

ρ̇∈e = 0, (2.110)

ρ̇gg = 0, (2.111)

ρ̇eg = −jωegρeg → ρeg(t) = e−jωegtρeg(0), (2.112)

ρ̇ge = jωegρge → ρge(t) = ejωegtρge(0). (2.113)

Again the isolated two-level atom has a rather simple dynamics, the popu-
lations are constant, only the dipole moment oscillates with the transition
frequency ω∈g, if there has been a dipole moment induced at t = 0, i.e. the
system is in a superposition state.

2.3.5 Energy- and Phase-Relaxation

In reality, there is no isolated atom. Indeed in our case we are interested with
a radiating atom, i.e. it has a dipole interaction with the field. The coupling
with the infinitely many modes of the free field leads already to spontaneous
emission, an irreversible process. We could treat this process by using the
Hamiltonian

H = HA +HF +HA−F . (2.114)

Here, HA is the Hamiltonian of the atom, HF of the free field and HA−F
describes the interaction between them. A complete treatment along these
lines is beyond the scope of this class and is usually done in classes on Quan-
tum Mechanics. But the result of this calculation is simple and leads in the
von Neumann equation of the reduced density matrix, i.e. the density ma-
trix of the atom. With the spontaneous emission rate 1/τ sp,i.e. the inverse
spontaneous life time τ sp, the populations change according to

d

dt
|ce(t)|2 = d

dt
ρee = −Γeρee + Γaρgg (2.115)

with the abbreviations

Γe =
1

τ sp
(nth + 1), (2.116)

Γa =
1

τ sp
nth. (2.117)

Here, nth is the number of thermally excited photons in the modes of the free
field with frequency ωeg, nth = 1/(exp(~ωeg/kT )− 1), at temperature T .
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The total probability of being in excited or ground state has to be main-
tained, that is

d

dt
ρgg = −

d

dt
ρee = Γeρee − Γaρgg. (2.118)

If the populations decay, so does the polarization too, since ρge = c∗ecg, i.e.

d

dt
ρge = jωegρeg −

Γe + Γa
2

ρge. (2.119)

Thus absorption as well as emission processes are also destructive to the
phase, therefore, the corresponding rates add up in the phase decay rate.
Taking the coherent (??-2.113) and incoherent processes (2.118-2.119)

into account results in the following equations for the normalized average
dipole moment d = dx + jdy and the inversion w

ḋ = ρ̇ge = (jωeg − 1

T2
)d, (2.120)

ẇ = ρ̇ee − ρ̇gg = −
w − w0
T1

, (2.121)

with the time constants

1

T1
=
2

T2
= Γe + Γa =

2nth + 1

τ sp
(2.122)

and equilibrium inversion w0, due to the thermal excitation of the atom by
the thermal field

w0 =
Γa − Γe
Γa + Γe

=
−1

1 + 2nth
= − tanh

µ
~ωeg

2kT

¶
. (2.123)

The time constant T1 denotes the energy relaxation in the two-level system
and T2 the phase relaxation. T2 is the correlation time between amplitudes
ce and cg. This coherence is destroyed by the interaction of the two -level
system with the environment. In this model the energy relaxation is half the
phase relaxation rate or

T2 = 2T1. (2.124)

The atoms in a laser medium do not only interact with the electromagnetic
field, but in addition also with phonons of the host lattice, they might col-
lide with each other in a gas laser and so on. All these processes must be
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considered when determining the energy and phase relaxation rates. Some
of these processes are only destroying the phase, but do actually not lead to
an energy loss in the system. Therefore, these processes reduce T2 but have
no influence on T1. In real systems the phase relaxation time is most often
much shorter than twice the energy relaxation time,

T2 ≤ 2T1. (2.125)

If the inversion deviates from its equilibrium value w0 it relaxes back into
equilibrium with a time constant T1. Eq. (2.123) shows that for all tem-
peratures T > 0 the inversion is negative, i.e. the lower level is stronger
populated than the upper level. Thus with incoherent thermal light inver-
sion in a two-level system cannot be achieved. Inversion can only be achieved
by pumping with incoherent light, if there are more levels and subsequent
relaxation processes into the upper laser level. Due to these relaxation pro-
cesses the rate Γa deviates from the equilibrium expression (2.117), and it
has to be replaced by the pump rate Λ. If the pump rate Λ exceeds Γe, the
inversion corresponding to Eq. (2.123) becomes positive,

w0 =
Λ− Γe
Λ+ Γe

. (2.126)

If we allow for artificial negative temperatures, we obtain with T < 0 for the
ratio of relaxation rates

Γe
Γa
=
1 + n̄

n̄
= e

~ωeg
kT < 1. (2.127)

Thus the pumping of the two-level system drives the system far away from
thermal equilibrium, which has to be expected.

2.3.6 The Two-Level Atom with a Coherent Classical
External Field

If there is in addition to the coupling to an external heat bath, which models
the spontaneous decay, pumping, and other incoherent processes, a coherent
external field, the Hamiltonian has to be extended by the dipole interaction
with that field,

HE = −�p �E(�xA, t). (2.128)
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Again we use the interaction Hamiltonian in RWA

HE =
1

2
�M∗ �E(t)(−)σ+ + h.c.. (2.129)

This leads in the von Neumann equation to the additional term

ρ̇|E =
1

j~
[HE,ρ] (2.130)

=
1

2j~
�M∗ �E(t)(−)[σ+,ρ] + h.c. (2.131)

or

ρ̇ee|E =
1

2j~
�M∗ �E(−)ρge + c.c., (2.132)

ρ̇ge|E =
1

2j~
�M �E(+)(ρee − ρgg), (2.133)

ρ̇gg|E = − 1

2j~
�M∗ �E(−)ρge + c.c.. (2.134)

The evolution of the dipole moment and the inversion is changed by

ḋ|E = ρ̇ge|E =
1

2j~
�M �E(+)w, (2.135)

ẇ|E = ρ̇ee|E − ρ̇gg|E =
1

j~
( �M∗ �E(−)d∗ − �M �E(+)d). (2.136)

Thus, the total dynamics of the two-level system including the pumping and
dephasing processes from Eqs.(2.120) and (2.121) is given by

ḋ = −( 1
T2
− jωeg)d+

1

2j~
�M �E(+)w, (2.137)

ẇ = −w − w0
T1

+
1

j~
( �M∗ �E(−)d− �M �E(+)d∗). (2.138)

These equations are called Bloch-equations. They describe the dynamics of
an atom interacting with a classical electric field. Together with Eq. (2.7)
they build the Maxwell-Bloch equations.
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2.4 Dielectric Susceptibility

If the incident field is monofrequent, i.e.

�E(t)(+) = �̂Eejωt, (2.139)

and assuming that the inversion w of the atom will be well represented by
its time average ws, then the dipole moment will oscillate with the same
frequency in the stationary state

d = d̂ejωt, (2.140)

and the inversion will adjust to a new stationary value ws. With ansatz
(2.139) and (2.140) in Eqs. (2.137) and (2.138), we obtain

d̂ =
−j
2~

ws

1/T2 + j(ω − ωeg)
�M �̂E, (2.141)

ws =
w0

1 + T1
~2

1/T2 | �M �̂E|2
(1/T2)2+(ωeg−ω)2

. (2.142)

We introduce the normalized lineshape function, which is in this case a
Lorentzian,

L(ω) =
(1/T2)

2

(1/T2)2 + (ωeg − ω)2
, (2.143)

and connect the square of the field | �̂E|2 to the intensity I of a propagating

plane wave, according to Eq. (2.32), I = 1
2ZF
| �̂E|2,

ws =
w0

1 + I
Is
L(ω)

. (2.144)

Thus the stationary inversion depends on the intensity of the incident light,
therefore, w0 can be called the unsaturated inversion, ws the saturated in-
version and Is,with

Is =

⎡⎢⎣2T1T2ZF

~2

¯̄̄
�M �̂E

¯̄̄2
¯̄̄
�̂E
¯̄̄2
⎤⎥⎦
−1

, (2.145)

is the saturation intensity. The expectation value of the dipole operator is
then given by

< �p >= −( �M∗d + �Md∗). (2.146)
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Multiplication with the number of atoms per unit volumeN relates the dipole

moment of the atom to the complex polarization �̂P+ of the medium, and
therefore to the susceptibility according to

�̂P (+) = −2N �M∗d̂, (2.147)

�̂P (+) = �0χ(ω) �̂E. (2.148)

From the definitions (2.147), (2.148) and Eq. (2.141) we obtain for the linear
susceptibility of the medium

χ(ω) = �M∗ �MT jN

~�0
ws

1/T2 + j(ω − ωeg)
, (2.149)

which is a tensor. In the following we assume that the direction of the
atom is random, i.e. the alignment of the atomic dipole moment �M and the
electric field is random. Therefore, we have to average over the angle enclosed
between the electric field of the wave and the atomic dipole moment, which
results in⎛⎝ MxMx MxMy MxMz

MyMx MyMy MyMz

MzMx MzMy MzMz

⎞⎠ =

⎛⎝ M2
x 0 0

0 M2
y 0

0 0 M2
z

⎞⎠ =
1

3
| �M |2 1. (2.150)

Thus, for homogeneous and isotropic media the susceptibility tensor shrinks
to a scalar

χ(ω) =
1

3
| �M |2 jN

~�0
ws

1/T2 + j(ω − ωeg)
. (2.151)

Real and imaginary part of the susceptibility

χ(ω) = χ0(ω) + jχ00(ω) (2.152)

are then given by

χ0(ω) = − |
�M |2NwsT

2
2 (ωeg − ω)

3~�0
L(ω), (2.153)

χ00(ω) =
| �M |2NwsT2

3~�0
L(ω). (2.154)
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If the incident radiation is weak enough, i.e.

T1T2
| �M∗ �̂E|2
~2

L(ω)¿ 1 (2.155)

we obtain ws ≈ w0. Since w0 < 0, and especially for optical transitions
w0 = −1, real and imaginary part of the susceptibility are shown in Fig. 2.4.
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Figure 2.4: Real and imaginary part of the complex susceptibility.

The susceptibility computed quantum mechanically compares well with
the classical susceptibility derived from the harmonic oscillator model close
to the transistion frequency for a transition with reasonably high Q = T2ωab.
Note, there is an appreciable deviation far away from resonance. Far off
resonance the rotating wave approximation should not be used.
The physical meaning of the real and imaginary part of the susceptibility

becomes obvious, when the propagation of a plane electro-magnetic wave
through this medium is considered,

�E(z, t) = <
n
�̂Eej(ωt−kz)

o
, (2.156)

which is propagating in the positive z-direction. The propagation constant
k is related to the susceptibility by

k = ω
p
µ0�0(1 + χ(ω)) ≈ k0

µ
1 +

1

2
χ(ω)

¶
, with k0 = ω

√
µ0�0 (2.157)
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for |χ| ¿ 1. Under this assumption we obtain

k = k0(1 +
χ0

2
) + jk0

χ00

2
. (2.158)

The real part of the susceptibility contributes to the refractive index n =
1 + χ0/2. In case of χ00 < 0, the imaginary part leads to an exponential
damping of the wave. For χ00 > 0 amplification takes place. Amplification of
the wave is possible for w0 > 0, i.e. an inverted medium.
The phase relaxation rate 1/T2 of the dipole moment determines the width

of the absorption line or the bandwidth of the amplifier.

2.5 Rate Equations

With the wave equation Eq.(2.7) and the expression for the polarization in-
duced by the electric field of the wave, we end up with the complete Maxwell-
Bloch equations describing an electromagnetic field interacting with a statis-
tical ensemble of atoms that are located at postions ziµ

∆− 1

c20

∂2

∂t2

¶
�E(+)(z, t) = µ0

∂2

∂t2
�P (+)(z, t), (2.159)

�P (+)(z, t) = −2N �M∗d(z, t) (2.160)

ḋ(z, t) = −( 1
T2
− jωeg)d+

1

2j~
�M �E(+)w, (2.161)

ẇ(z, t) = −w − w0
T1

+
1

j~
( �M∗ �E(−)d− �M �E(+)d∗)(2.162)

In the following we consider a electromagnetic wave with polarization
vector �e, frequency ωeg and wave number k0 = ωeg/c0 with a slowly varying
envelope propagating to the right

�E(z, t)(+) =
p
2ZF0A(z, t)e

j(ωegt−k0z)�e, (2.163)

with ¯̄̄̄
∂A(z, t)

∂t

¯̄̄̄
,

¯̄̄̄
c
∂A(z, t)

∂z

¯̄̄̄
¿ |ωegA(z, t)| . (2.164)

Note, we normalized the complex amplitude A(t) such that its magnitude
square is proportional to the intensity of the wave. This will also excite a
wave of dipole moments in the atomic medium according to

d(z, t) = d̂(z, t)ej(ωegt−k0z), (2.165)
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that is also slowly varying. In that case, we obtain from Eq.(2.159-d) in
leading orderµ

∂

∂z
+
1

c0

∂

∂t

¶
A(z, t) = jN�eT �M∗

r
ZF0

2
d̂ (z, t) , (2.166)

∂

∂t
d(z, t) = − 1

T2
d̂+

p
2ZF0

2j~

³
�M�e
´
A(t)w (2.167)

∂

∂t
w(z, t) = −w − w0

T1
+

p
2ZF0

j~
(
³
�M∗�e∗

´
A∗(t)d̂−

³
�M�e
´
A(t)d̂∗)(2.168)

Furthermore, in the limit, where the dephasing time T2 is much faster than
the variation in the envelope of the electric field, one can adiabatically elim-
inate the rapidly decaying dipole moment, i.e.

d̂ = T2

p
2ZF0

2j~

³
�M�e
´
A(t)w, (2.169)

ẇ = −w − w0
T1

+
|A(t)|2
Es

w, (2.170)

where Es = IsT1, is called the saturation fluence, [J/cm2] , of the medium.
Note, now we don’t have to care anymore about the dipole moment and

we are left over with a rate equation for the population difference of the
medium and the complex field amplitude of the wave.µ

∂

∂z
+
1

c0

∂

∂t

¶
A(z, t) =

N~
4T2Es

w (z, t)A(z, t), (2.171)

ẇ = −w − w0
T1

+
|A(z, t)|2

Es
w(z, t) (2.172)

Equation (2.171) clearly shows that we obtain gain for an inverted medium
and that the gain saturates with the electromagnetic power density flowing
through the medium.

2.6 Pulse Propagation with Dispersion and
Gain

In many cases, mode locking of lasers can be most easily studied in the time
domain. Then mode locking becomes a nonlinear, dissipative wave propaga-
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tion problem. In this chapter, we discuss the basic elements of pulse propa-
gation in linear and nonlinear media, as far as it is necessary for the following
chapters. A comprehensive discussion of nonlinear pulse propagation can be
found in [6].

We consider the electric field of a monochromatic electromagnetic wave
with frequency Ω, which propagates along the z-axis, and is polarized along
the x-axis, (Fig. 2.5).

Figure 2.5: Transverse electro—magnetic wave.

In a linear, isotropic, homogeneous, and lossless medium the electric field
of that electromagnetic wave is given by

�E(z, t) = �exE(z, t),

E(z, t) = <
n
Ẽ(Ω)ej(Ωt−Kz)

o
= |Ẽ| cos(Ωt−Kz + ϕ), (2.173)

where Ẽ = |Ẽ|ejϕ is the complex wave amplitude of the electromagnetic wave
at frequency Ω and wave numberK = Ω/c = nΩ/c0. Here, n is the refractive
index, c the velocity of light in the medium and c0 the velocity of light in
vacuum, respectively. The planes of constant phase propagate with the phase
velocity c of the wave. Usually, we have a superposition of many frequencies
with spectrum shown in Fig. 2.6

Figure by MIT OCW.
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Figure 2.6: Electric field and pulse envelope in frequency domain.

In general, the refractive index is a function of frequency and one is
interested in the propagation of a pulse, that is produced by a superposition
of monochromatic waves grouped around a certain carrier frequency ω0 (Fig.
2.6)

E(z, t) = <
½
1

2π

Z ∞

0

Ẽ(Ω)ej(Ωt−K(Ω)z)dΩ

¾
. (2.174)

We can always separate the complex electric field in Eq. (2.174) into a
carrier wave and an envelope A(z, t)

E(z, t) = <©A(z, t)ej(ω0t−K(ω0)z)ª . (2.175)

The envelope is given by

A(z, t) =
1

2π

Z ∞

−ω0→−∞
Ã(ω)ej(ωt−k(ω)z)dω, (2.176)

where we introduced the offset frequency, offset wave vector and spectrum of
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the envelope

ω = Ω− ω0, (2.177)

k(ω) = K(ω0 + ω)−K(ω0), (2.178)

Ã(ω) = Ẽ(Ω = ω0 + ω), (2.179)

(see Fig. 2.8).
Depending on the dispersion relation, the pulse will be reshaped during

propagation.

Figure 2.7: Electric field and pulse envelope in time domain.

2.6.1 Dispersion

If the spectral width of the pulse is small compared to the carrier frequency,
the envelope is only slowly varying with time. Additionally, if the dispersion
relation k(ω) is only slowly varying over the pulse spectrum, it is useful to
represent the dispersion relation, K(Ω),see Fig. 2.8, by its Taylor expansion

k(ω) = k0ω +
k00

2
ω2 +

k(3)

6
ω3 +O(ω4). (2.180)

If the refractive index depends on frequency, the dispersion relation is no
longer linear with respect to frequency, see Fig. 2.8.
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Figure 2.8: Taylor expansion of dispersion relation.

For the moment, we keep only the first term, the linear term, in Eq.(2.180).
Then we obtain for the pulse envelope from (2.176) by definition of the group
velocity vg = 1/k0

A(z, t) = A(0, t− z/vg). (2.181)

Thus the derivative of the dispersion relation at the carrier frequency deter-
mines the velocity of the corresponding wave packet. We introduce the local
time t0 = t−z/vg. With respect to this local time the pulse shape is invariant
during propagation

A(z, t0) = A(0, t0). (2.182)

If the spectrum of the pulse becomes broad enough, so that the second or-
der term in (2.180) becomes important, wave packets with different carrier
frequencies propagate with different group velocities and the pulse spreads.
When keeping in the dispersion relation terms up to second order it follows
from (2.176)

∂A(z, t0)

∂z
= −jk

00

2

∂2A(z, t0)

∂t02
. (2.183)

This is equivalent to the Schrödinger equation for a nonrelativistic free parti-
cle. Like in Quantum Mechanics, it describes the spreading of a wave packet.
Here, the spreading is due to the first nontrivial term in the dispersion rela-
tion, which describes spreading of an electromagnetic wave packet via group
velocity dispersion (GVD). Of course, we can keep all terms in the dispersion
relation, which would lead to higher order derivatives in the equation for the
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envelope

∂A(z, t0)

∂z
= j

∞X
n=2

k(n)

n!

µ
j
∂

∂t0

¶n

A(z, t0). (2.184)

Therefore, one usually calls the first term dispersion and the higher order
terms higher order dispersion. In the following, we always work in the local
time frame to get rid of the trivial motion of the pulse. Therefore, we drop the
prime to simplify notation. Figure 2.9 shows the evolution of a Gaussian wave
packet during propagation in a medium which has no higher order dispersion
and k00 = 2 is given in normalized units. The pulse spreads continuously.
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Figure 2.9: Amplitude of the envelope of a Gaussian pulse, |A(z, t0)| , in a
dispersive medium.
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Figure 2.10: (a) Phase and (b) instantaneous frequency of a Gaussian pulse
during propagation through a medium with positive or negative dispersion.

As shown in Fig. 2.10(a), during propagation in the dispersive medium,
the pulse acquires a linear chirp, i.e. its phase becomes parabolic. The
derivative of the phase with respect to time is the instantaneous frequency
Fig. 2.10(b). It indicates, that the low frequencies are in the front of the
pulse, whereas the high frequencies are in the back of the pulse. This is due
to the positive dispersion k00 > 0, which causes, that wave packets with lower
frequencies travel faster than wave packets with higher frequencies.
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2.6.2 Loss and Gain

If the medium considered has loss, we can incorporate this loss into a complex
refractive index

n(Ω) = nr(Ω) + jni(Ω). (2.185)

The refractive index is determined by the linear response, χ(Ω), of the po-
larization in the medium onto the electric field induced in the medium

n(Ω) =
p
1 + χ(Ω). (2.186)

For an optically thin medium, i.e. |χ(Ω)| ¿ 1 we obtain approximately

n(Ω) ≈ 1 + χ(Ω)

2
. (2.187)

For a two level atom with an electric dipole transition, the susceptibility
is given, in the rotating wave approximation, by the complex Lorentzian
lineshape

χ(Ω) =
2jα

1− jΩ−Ω0
∆Ω

, (2.188)

where α will turn out to be the peak absorption or gain of the transition,
which is proportional to the density of the atomic inversion, Ω0 is the center
frequency of the optical transition and ∆Ω is the HWHM linewidth of the
transition. Figure 2.11 shows the normalized real and imaginary part of the
complex Lorentzian

χr(Ω) =
−2α (Ω−Ω0)

∆Ω

1 +
¡
Ω−Ω0
∆Ω

¢2 , (2.189)

χi(Ω) =
2α

1 +
¡
Ω−Ω0
∆Ω

¢2 , (2.190)

which are the real- and imaginary part of the complex susceptibility for
a noninverted optical transition, i.e. loss.
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Figure 2.11: Normalized real and imaginary part of the complex Lorentzian.

The real part of the transition modifies the real part of the refractive
index of the medium, whereas the imaginary part leads to loss in the case of
a noninverted medium.
In the derivation of the wave equation for the pulse envelope (2.184) in

section 2.6.1, there was no restriction to a real refractive index. Therefore,
the wave equation (2.184) also treats the case of a complex refractive index.
If we assume a medium with the complex refractive index (2.187), then the
wave number is given by

K(Ω) =
Ω

c0

µ
1 +

1

2
(χr(Ω) + jχi(Ω))

¶
. (2.191)

Since we introduced a complex wave number, we have to redefine the group
velocity as the inverse derivative of the real part of the wave number with
respect to frequency. At line center, we obtain

v−1g =
∂Kr(Ω)

∂Ω

¯̄̄̄
Ω0

=
1

c0

µ
1− α

Ω0
∆Ω

¶
. (2.192)

Thus, for a narrow absorption line, α > 0 and Ω0
∆Ω

À 1, the absolute value
of the group velocity can become much larger than the velocity of light in
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vacuum. The opposite is true for an inverted, and therefore, amplifying
transition, α < 0. There is nothing wrong with it, since the group velocity
only describes the motion of the peak of a Gaussian wave packet, which is
not a causal wave packet. A causal wave packet is identical to zero for some
earlier time t < t0, in some region of space. A Gaussian wave packet fills the
whole space at any time and can be reconstructed by a Taylor expansion at
any time. Therefore, the tachionic motion of the peak of such a signal does
not contradict special relativity.
The imaginary part in the wave vector (2.191), due to gain and loss, has

to be completely treated in the envelope equation (2.184). In the frequency
domain this leads for a wave packet with a carrier frequency at line center,
ω0 = Ω0 and Kr(Ω0) = k0, to the term

∂Ã(z, ω)

∂z

¯̄̄̄
¯
(loss)

=
−αk0

1 +
¡

ω
∆Ω

¢2 Ã(z, ω). (2.193)

In the time domain, we obtain up to second order in the inverse linewidth

∂A(z, t)

∂z

¯̄̄̄
(loss)

= −αk0
µ
1 +

1

∆Ω2
∂2

∂t2

¶
A(z, t), (2.194)

which corresponds to a parabolic approximation of the Lorentzian line shape
at line center, (Fig. 2.11). For an inverted optical transition, we obtain a
similar equation, we only have to replace the loss by gain

∂A(z, t)

∂z

¯̄̄̄
(gain)

= g

µ
1 +

1

Ω2g

∂2

∂t2

¶
A(z, t), (2.195)

where g = −αk0 is the peak gain at line center per unit length and Ωg is
the HWHM linewidth of the gain transition. The gain is proportional to the
inversion in the atomic system, see Eq.(2.149), which also depends on the
field strength or intensity according to the rate equation (2.172)

∂g(z, t)

∂t
= −g − g0

τL
− g

|A(z, t)|2
EL

. (2.196)

Here, EL is the saturation fluence of the gain medium and τL the life time
of the inversion, i.e. the upper-state life time of the gain medium.
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Fused Quartz Sapphire
a1 0.6961663 1.023798
a2 0.4079426 1.058364
a3 0.8974794 5.280792
λ21 4.679148·10−3 3.77588·10−3
λ22 1.3512063·10−2 1.22544·10−2
λ23 0.9793400·102 3.213616·102

Table 2.1: Table with Sellmeier coefficients for fused quartz and sapphire.

2.7 Kramers-Kroenig Relations

The linear susceptibility is the frequency response of a linear system to an
applied electric field, which is causal, and therefore real and imaginary parts
obey Kramers-Kroenig Relations

χr(Ω) =
2

π

∞Z
0

ωχi(ω)

ω2 − Ω2
dω = n2(Ω)− 1, (2.197)

χi(Ω) = −2
π

∞Z
0

Ωχr(ω)

ω2 − Ω2
dω. (2.198)

In transparent media one is operating far away from resonances. Then
the absorption or imaginary part of the susceptibility can be approximated
by

χi(Ω) =
X
i

Aiδ (ω − ωi) (2.199)

and the Kramers-Kroenig relation results in a Sellmeier Equation for the
refractive index

n2(Ω) = 1 +
X
i

Ai
ωi

ω2i − Ω2
(2.200)

= 1 +
X
i

ai
λ

λ2 − λ2i
. (2.201)

For an example Table 2.1 shows the sellmeier coefficients for fused quartz
and sapphire.
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A typical situation for a material having resonances in the UV and IR,
such as glass, is shown in Fig. 2.12

Figure 2.12: Typcial distribution of absorption lines in a medium transparent
in the visible.

The regions where the refractive index is decreasing with wavelength is
usually called normal dispersion range and the opposite behavior anormal
dispersion

dn

dλ
< 0 : normal dispersion (blue refracts more than red)

dn

dλ
> 0 : abnormal dispersion

Fig.2.13 shows the transparency range of some often used media.

Figure by MIT OCW.
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Figure 2.13: Transparency range of some materials.

2.8 Pulse Shapes and Time-Bandwidth Prod-
ucts

The following table 2.2 shows pulse shape, spectrum and time bandwidth
products of some often used pulse forms.

Figure by MIT OCW.

0,1 0,2 0,3 0,4 0,5 0,7 1,0

Wavelength (µm)

2 3 4 5 7 10 20

Magnesium Fluoride MgF2

Calcium Fluoride CaF2

Barium Fluoride BaF2

Quarz SiO2

UV Fused Silicia SiO2

IR Fused Silicia SiO2

Glass (BK-7)

Silicon Si

Germanium Ge

Zinc Sulfide ZnS

Gallium Arsenide GaAs

Zinc Selenide ZnSe

Cadmium Telluride CdTe
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a(t) â(ω) =
R∞
−∞ a(t)e−jωtdt ∆t ∆t ·∆f

Gauss: e−
t2

tτ2
√
2πτe−

1
t
τ2ω2 2

√
ln 2τ 0.441

Hyperbolicsecant:
sech( t

τ
)

τ
2
sech

¡
π
2
τω
¢

1.7627 τ 0.315

Rect-function:

=

½
1, |t| ≤ τ/2
0, |t| > τ/2

τ sin(τω/2)
τω/2

τ 0.886

Lorentzian: 1
1+(t/τ)2

2πτe−|τω| 1.287 τ 0.142

Double-Exponential: e−| tτ | τ
1+(ωτ)2

ln2 τ 0.142

Table 2.2: Pulse shapes, corresponding spectra and time bandwidth prod-
ucts.

Figure 2.14: Fourier relationship to table above.
Figure by MIT OCW.
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Figure 2.15: Fourier relationships to table above.

Figure by MIT OCW.
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Chapter 3

Nonlinear Pulse Propagation

There are many nonlinear pulse propagation problems worthwhile of being
considered in detail, such as pulse propagation through a two-level medium
in the coherent regime, which leads to self-induced transparency and solitons
governed by the Sinus-Gordon-Equation. The basic model for the medium is
the two-level atom discussed before with infinitely long relaxation times T1,2,
i.e. assuming that the pulses are much shorter than the dephasing time in the
medium. In such a medium pulses exist, where the first half of the pulse fully
inverts the medium and the second half of the pulse extracts the energy from
the medium. The integral over the Rabi-frequency as defined in Eq.(2.39) is
than a mutiple of 2π. The interested reader is refered to the book of Allen
and Eberly [1]. Here, we are interested in the nonlinear dynamics due to
the Kerr-effect which is most important for understanding pulse propagation
problems in optical communications and short pulse generation.

3.1 The Optical Kerr-effect

In an isotropic and homogeneous medium, the refractive index can not de-
pend on the direction of the electric field. Therefore, to lowest order, the
refractive index of such a medium can only depend quadratically on the
field, i.e. on the intensity [22]

n = n(ω, |A|2) ≈ n0(ω) + n2,L|A|2. (3.1)

Here, we assume, that the pulse envelope A is normalized such that |A|2 is
the intensity of the pulse. This is the optical Kerr effect and n2,L is called

63
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Material Refractive index n n2,L[cm
2/W ]

Sapphire (Al2O3) 1.76 @ 850 nm 3·10−16
Fused Quarz 1.45 @ 1064 nm 2.46·10−16
Glass (LG-760) 1.5 @ 1064 nm 2.9·10−16
YAG (Y3Al5O12) 1.82 @ 1064 nm 6.2·10−16
YLF (LiYF4), ne 1.47 @ 1047 nm 1.72·10−16
Si 3.3 @ 1550 nm 4·10−14

Table 3.1: Nonlinear refractive index coefficients for different materials. In
the literature most often the electro-statitic unit system is in use. The con-
version is n2,L[cm2/W ] = 4.19 · 10−3n2,L[esu]/n0

the intensity dependent refractive index coefficient. Note, the nonlinear in-
dex depends on the polarization of the field and without going further into
details, we assume that we treat a linearily polarized electric field. For most
transparent materials the intensity dependent refractive index is positive.

3.2 Self-Phase Modulation (SPM)

In a purely one dimensional propagation problem, the intensity dependent
refractive index imposes an additional self-phase shift on the pulse envelope
during propagation, which is proportional to the instantaneous intensity of
the pulse

∂A(z, t)

∂z
= −jk0n2,L|A(z, t)|2A(z, t) = −jδ|A(z, t)|2A(z, t). (3.2)

where δ = k0n2,L is the self-phase modulation coefficient. Self-phase modu-
lation (SPM) leads only to a phase shift in the time domain. Therefore, the
intensity profile of the pulse does not change only the spectrum of the pulse
changes, as discussed in the class on nonlinear optics. Figure (3.1) shows
the spectrum of a Gaussian pulse subject to SPM during propagation (for
δ = 2 and normalized units). New frequency components are generated by
the nonlinear process via four wave mixing (FWM). If we look at the phase of
the pulse during propagation due to self-phase modulation, see Fig. 3.2 (a),
we find, that the pulse redistributes its energy, such that the low frequency
contributions are in the front of the pulse and the high frequencies in the
back of the pulse, similar to the case of positive dispersion.



3.2. SELF-PHASE MODULATION (SPM) 65

0

1

2

3 -1.5
-1

-0.5
0

0.5
1

1.5

20

40

60

80

100

S
pe

ct
ru

m

Distance z

Frequency

Figure 3.1: Spectrum |Â(z, ω = 2πf)|2 of a Gaussian pulse subject to self-
phase modulation.
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(a)

Time  t

Intensity

Front Back

Time  t
Phase(b)

(c) Instantaneous
Frequency

Time  tTime  t

Figure 3.2: (a) Intensity, (b) phase and (c) instantaneous frequency of a
Gaussian pulse during propagation through a medium with positive self-
phase modulation.
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3.3 The Nonlinear Schrödinger Equation

If both effects, dispersion and self-phase modulation, act simultaneously on
the pulse, the field envelope obeys the equation

j
∂A(z, t)

∂z
= −D2

∂2A

∂t2
+ δ|A|2A, (3.3)

This equation is called the Nonlinear Schrödinger Equation (NSE) - if we
put the imaginary unit on the left hand side -, since it has the form of a
Schrödinger Equation. Its called nonlinear, because the potential energy
is derived from the square of the wave function itself. As we have seen
from the discussion in the last sections, positive dispersion and positive self-
phase modulation lead to a similar redistribution of the spectral components.
This enhances the pulse spreading in time. However, if we have negative
dispersion, i.e. a wave packet with high carrier frequency travels faster than
a wave packet with a low carrier frequency, then, the high frequency wave
packets generated by self-phase modulation in the front of the pulse have
a chance to catch up with the pulse itself due to the negative dispersion.
The opposite is the case for the low frequencies. This arrangement results
in pulses that do not disperse any more, i.e. solitary waves. That negative
dispersion is necessary to compensate the positive Kerr effect is also obvious
from the NSE (3.3). Because, for a positive Kerr effect, the potential energy
in the NSE is always negative. There are only bound solutions, i.e. bright
solitary waves, if the kinetic energy term, i.e. the dispersion, has a negative
sign, D2 < 0.

3.3.1 The Solitons of the NSE

In the following, we study different solutions of the NSE for the case of
negative dispersion and positive self-phase modulation. We do not intend
to give a full overview over the solution manyfold of the NSE in its full
mathematical depth here, because it is not necessary for the following. This
can be found in detail elsewhere [4, 5, 6, 7].
Without loss of generality, by normalization of the field amplitude A =

Á
τ

q
2D2

δ
, the propagation distance z = ź · τ 2/D2, and the time t = t́ · τ ,

the NSE (3.3) with negative dispersion can always be transformed into the
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normalized form

j
∂Á(ź, t)

∂ź
=

∂2Á

∂t́2
+ 2|Á|2Á (3.4)

This is equivalent to set D2 = −1 and δ = 2. For the numerical simulations,
which are shown in the next chapters, we simulate the normalized eq.(3.4)
and the axes are in normalized units of position and time.

3.3.2 The Fundamental Soliton

We look for a stationary wave function of the NSE (3.3), such that its absolute
square is a self-consistent potential. A potential of that kind is well known
from Quantum Mechanics, the sech2-Potential [8], and therefore the shape of
the solitary pulse is a sech

As(z, t) = A0sech
µ
t

τ

¶
e−jθ, (3.5)

where θ is the nonlinear phase shift of the soliton

θ =
1

2
δA20z (3.6)

The soltion phase shift is constant over the pulse with respect to time in
contrast to the case of self-phase modulation only, where the phase shift is
proportional to the instantaneous power. The balance between the nonlinear
effects and the linear effects requires that the nonlinear phase shift is equal
to the dispersive spreading of the pulse

θ =
|D2|
τ 2

z. (3.7)

Since the field amplitude A(z, t) is normalized, such that the absolute square
is the intensity, the soliton energy fluence is given by

w =

Z ∞

−∞
|As(z, t)|2dt = 2A20τ . (3.8)

From eqs.(3.6) to (3.8), we obtain for constant pulse energy fluence, that the
width of the soliton is proportional to the amount of negative dispersion

τ =
4|D2|
δw

. (3.9)
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Note, the pulse area for a fundamental soliton is only determined by the
dispersion and the self-phase modulation coefficient

Pulse Area =
Z ∞

−∞
|As(z, t)|dt = πA0τ = π

r
|D2|
2δ

. (3.10)

Thus, an initial pulse with a different area can not just develope into a pure
soliton.
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Figure 3.3: Propagation of a fundamental soliton.

Fig. 3.3 shows the numerical solution of the NSE for the fundamental
soliton pulse. The distance, after which the soliton aquires a phase shift of
π/4, is called the soliton period, for reasons, which will become clear in the
next section.
Since the dispersion is constant over the frequency, i.e. the NSE has

no higher order dispersion, the center frequency of the soliton can be chosen
arbitrarily. However, due to the dispersion, the group velocities of the solitons
with different carrier frequencies will be different. One easily finds by a
Gallilei tranformation to a moving frame, that the NSE posseses the following
general fundamental soliton solution

As(z, t) = A0sech(x(z, t))e−jθ(z,t), (3.11)
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with

x =
1

τ
(t− 2|D2|p0z − t0), (3.12)

and a nonlinear phase shift

θ = p0(t− t0) + |D2|
µ
1

τ 2
− p20

¶
z + θ0. (3.13)

Thus, the energy fluence w or amplitude A0, the carrier frequency p0, the
phase θ0 and the origin t0, i.e. the timing of the fundamental soliton are
not yet determined. Only the soliton area is fixed. The energy fluence and
width are determined if one of them is specified, given a certain dispersion
and SPM-coefficient.

3.3.3 Higher Order Solitons

The NSE has constant dispersion, in our case negative dispersion. That
means the group velocity depends linearly on frequency. We assume, that
two fundamental soltions are far apart from each other, so that they do not
interact. Then this linear superpositon is for all practical purposes another
solution of the NSE. If we choose the carrier frequency of the soliton, starting
at a later time, higher than the one of the soliton in front, the later soliton
will catch up with the leading soliton due to the negative dispersion and the
pulses will collide.
Figure 3.4 shows this situation. Obviously, the two pulses recover com-

pletely from the collision, i.e. the NSE has true soliton solutions. The solitons
have particle like properties. A solution, composed of several fundamental
solitons, is called a higher order soliton. If we look closer to figure 3.4, we
recognize, that the soliton at rest in the local time frame, and which follows
the t = 0 line without the collision, is somewhat pushed forward due to the
collision. A detailed analysis of the collision would also show, that the phases
of the solitons have changed [4]. The phase changes due to soliton collisions
are used to built all optical switches [10], using backfolded Mach-Zehnder in-
terferometers, which can be realized in a self-stabilized way by Sagnac fiber
loops.
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Figure 3.4: A soliton with high carrier frequency collides with a soliton of
lower carrier frequency. After the collison both pulses recover completely.
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The NSE also shows higher order soliton solutions, that travel at the same
speed, i.e. they posses the same carrier frequency, the so called breather
solutions. Figures 3.5(a) and (b) show the amplitude and spectrum of such
a higher order soliton solution, which has twice the area of the fundamental
soliton. The simulation starts with a sech-pulse, that has twice the area of
the fundamental soliton, shown in figure 3.3. Due to the interaction of the
two solitons, the temporal shape and the spectrum exhibits a complicated but
periodic behaviour. This period is the soliton period z = π/4, as mentioned
above. As can be seen from Figures 3.5(a) and 3.5(b), the higher order
soliton dynamics leads to an enormous pulse shortening after half of the
soliton period. This process has been used by Mollenauer, to build his soliton
laser [11]. In the soliton laser, the pulse compression, that occures for a
higher order soliton as shown in Fig. 3.5(a), is exploited for modelocking.
Mollenauer pioneered soliton propagation in optical fibers, as proposed by
Hasegawa and Tappert [3], with the soliton laser, which produced the first
picosecond pulses at 1.55 µm. A detailed account on the soliton laser is given
by Haus [12].

So far, we have discussed the pure soliton solutions of the NSE. But,
what happens if one starts propagation with an input pulse that does not
correspond to a fundamental or higher order soliton?

3.3.4 Inverse Scattering Theory

Obviously, the NSE has solutions, which are composed of fundamental soli-
tons. Thus, the solutions obey a certain superposition principle which is
absolutely surprising for a nonlinear system. Of course, not arbitrary super-
positions are possible as in a linear system. The deeper reason for the solution
manyfold of the NSE can be found by studying its physical and mathemat-
ical properties. The mathematical basis for an analytic formulation of the
solutions to the NSE is the inverse scattering theory [13, 14, 4, 15]. It is a
spectral tranform method for solving integrable, nonlinear wave equations,
similar to the Fourier transform for the solution of linear wave equations [16].
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Figure 3.6: Fourier transformmethod for the solution of linear, time invariant
partial differential equations.

Figure 3.7: Schematic representation of the inverse scattering theory for the
solution of integrable nonlinear partial differential equations.

Let’s remember briefly, how to solve an initial value problem for a linear
partial differential equation (p.d.e.), like eq.(2.184), that treats the case of
a purely dispersive pulse propagation. The method is sketched in Fig. 3.6.
We Fourier tranform the initial pulse into the spectral domain, because, the
exponential functions are eigensolutions of the differential operators with
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constant coefficients. The right side of (2.184) is only composed of powers of
the differntial operator, therefore the exponentials are eigenfunctions of the
complete right side. Thus, after Fourier transformation, the p.d.e. becomes
a set of ordinary differential equations (o.d.e.), one for each partial wave.
The excitation of each wave is given by the spectrum of the initial wave.
The eigenvalues of the differential operator, that constitutes the right side
of (2.184), is given by the dispersion relation, k(ω), up to the imaginary
unit. The solution of the remaining o.d.e is then a simple exponential of the
dispersion relation. Now, we have the spectrum of the propagated wave and
by inverse Fourier transformation, i.e. we sum over all partial waves, we find
the new temporal shape of the propagated pulse.
As in the case of the Fourier transform method for the solution of linear

wave equations, the inverse scattering theory is again based on a spectral
transform, (Fig.3.7). However, this transform depends now on the details
of the wave equation and the initial conditions. This dependence leads to
a modified superposition principle. As is shown in [7], one can formulate
for many integrable nonlinear wave equations a related scattering problem
like one does in Quantum Theory for the scattering of a particle at a poten-
tial well. However, the potential well is now determined by the solution of
the wave equation. Thus, the initial potential is already given by the ini-
tial conditions. The stationary states of the scattering problem, which are
the eigensolutions of the corresponding Hamiltonian, are the analog to the
monochromatic complex oscillations, which are the eigenfunctions of the dif-
ferential operator. The eigenvalues are the analog to the dispersion relation,
and as in the case of the linear p.d.e’s, the eigensolutions obey simple linear
o.d.e’s.
A given potential will have a certain number of bound states, that cor-

respond to the discrete spectrum and a continuum of scattering states. The
characteristic of the continuous eigenvalue spectrum is the reflection coef-
ficient for waves scatterd upon reflection at the potential. Thus, a certain
potential, i.e. a certain initial condition, has a certain discrete spectrum and
continuum with a corresponding reflection coefficient. From inverse scatter-
ing theory for quantum mechanical and electromagnetic scattering problems,
we know, that the potenial can be reconstructed from the scattering data,
i.e. the reflection coefficient and the data for the discrete spectrum [?]. This
is true for a very general class of scattering potentials. As one can almost
guess now, the discrete eigenstates of the initial conditions will lead to soliton
solutions. We have already studied the dynamics of some of these soliton so-
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lutions above. The continuous spectrum will lead to a dispersive wave which
is called the continuum. Thus, the most general solution of the NSE, for
given arbitrary initial conditions, is a superposition of a soliton, maybe a
higher order soliton, and a continuum contribution.
The continuum will disperse during propagation, so that only the soliton

is recognized after a while. Thus, the continuum becomes an asympthotically
small contribution to the solution of the NSE. Therefore, the dynamics of
the continuum is completely discribed by the linear dispersion relation of the
wave equation.
The back transformation from the spectral to the time domain is not as

simple as in the case of the Fourier transform for linear p.d.e’s. One has to
solve a linear integral equation, the Marchenko equation [17]. Nevertheless,
the solution of a nonlinear equation has been reduced to the solution of two
linear problems, which is a tremendous success.
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Figure 3.8: Solution of the NSE for an unchirped and rectangular shaped
initial pulse.
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To appreciate these properties of the solutions of the NSE, we solve the
NSE for a rectangular shaped initial pulse. The result is shown in Fig. 3.8.
The scattering problem, that has to be solved for this initial condition,

is the same as for a nonrelativistic particle in a rectangular potential box
[32]. The depth of the potential is chosen small enough, so that it has only
one bound state. Thus, we start with a wave composed of a fundamental
soliton and continuum. It is easy to recognize the continuum contribution,
i.e. the dispersive wave, that separates from the soliton during propagation.
This solution illustrates, that soliton pulse shaping due to the presence of
dispersion and self-phase modulation may have a strong impact on pulse
generation [18]. When the dispersion and self-phase modulation are properly
adjusted, soliton formation can lead to very clean, stable, and extremly short
pulses in a modelocked laser.

3.4 Universality of the NSE

Above, we derived the NSE in detail for the case of disperison and self-phase
modulation. The input for the NSE is surprisingly low, we only have to
admitt the first nontrivial dispersive effect and the lowest order nonlinear
effect that is possible in an isotropic and homogeneous medium like glass,
gas or plasmas. Therefore, the NSE and its properties are important for
many other effects like self-focusing [19], Langmuir waves in plasma physics,
and waves in proteine molecules [20]. Self-focusing will be treated in more
detail later, because it is the basis for Kerr-Lens Mode Locking.

3.5 Soliton Perturbation Theory

From the previous discussion, we have full knowledge about the possible
solutions of the NSE that describes a special Hamiltonian system. However,
the NSE hardly describes a real physical system such as, for example, a real
optical fiber in all its aspects [21, 22]. Indeed the NSE itself, as we have
seen during the derivation in the previous sections, is only an approximation
to the complete wave equation. We approximated the dispersion relation
by a parabola at the assumed carrier frequency of the soliton. Also the
instantaneous Kerr effect described by an intensity dependent refractive index
is only an approximation to the real χ(3)-nonlinearity of a Kerr-medium [23,
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24]. Therefore, it is most important to study what happens to a soliton
solution of the NSE due to perturbing effects like higher order dispersion,
finite response times of the nonlinearites, gain and the finite gain bandwidth
of amplifiers, that compensate for the inevitable loss in a real system.
The investigation of solitons under perturbations is as old as the solitons

itself. Many authors treat the perturbing effects in the scattering domain
[25, 26]. Only recently, a perturbation theory on the basis of the linearized
NSE has been developed, which is much more illustrative then a formulation
in the scattering amplitudes. This was first used by Haus [27] and rigorously
formulated by Kaup [28]. In this section, we will present this approach as
far as it is indispensible for the following.
A system, where the most important physical processes are dispersion

and self-phase modulation, is described by the NSE complimented with some
perturbation term F

∂A(z, t)

∂z
= −j

∙
|D2|∂

2A

∂t2
+ δ|A|2A

¸
+ F (A,A∗, z). (3.14)

In the following, we are interested what happens to a solution of the full
equation (3.14) which is very close to a fundamental soliton, i.e.

A(z, t) =

∙
a(

t

τ
) +∆A(z, t)

¸
e−jksz. (3.15)

Here, a(x) is the fundamental soliton according to eq.(3.5)

a(
t

τ
) = A0 sech(

t

τ
), (3.16)

and
ks =

1

2
δA20 (3.17)

is the phase shift of the soliton per unit length, i.e. the soltion wave vector.
A deviation from the ideal soliton can arise either due to the additional

driving term F on the right side or due to a deviation already present in
the initial condition. We use the form (3.15) as an ansatz to solve the NSE
to first order in the perturbation ∆A, i.e. we linearize the NSE around the
fundamental soliton and obtain for the perturbation

∂∆A

∂z
= −jks

∙µ
∂2

∂x2
− 1
¶
∆A+ 2sech2(x) (2∆A+∆A∗)

¸
+F (A,A∗, z)ejksz, (3.18)



3.5. SOLITON PERTURBATION THEORY 79

where x = t/τ . Due to the nonlinearity, the field is coupled to its complex
conjugate. Thus, eq.(3.18) corresponds actually to two equations, one for the
amplitude and one for its complex conjugate. Therefore, we introduce the
vector notation

∆A =

µ
∆A
∆A∗

¶
. (3.19)

We further introduce the normalized propagation distance z0 = ksz and the
normalized time x = t/τ . The linearized perturbed NSE is then given by

∂

∂z0
∆A = L∆A+

1

ks
F(A,A∗, z)ejz

0
(3.20)

Here, L is the operator which arises from the linearization of the NSE

L = −jσ3
∙
(
∂2

∂x2
− 1) + 2 sech2(x)(2 + σ1)

¸
, (3.21)

where σi, i = 1, 2, 3 are the Pauli matrices. For a solution of the inhomoge-
neous equation (3.20), we need the eigenfunctions and the spectrum of the
differential operator L. We found in section 3.3.2, that the fundamental soli-
ton has four degrees of freedom, four free parameters. This gives already four
known eigensolutions and mainsolutions of the linearized NSE, respectively.
They are determined by the derivatives of the general fundamental soliton
solutions according to eqs.(3.11) to (3.13) with respect to free parameters.
These eigenfunctions are

fw(x) =
1

w
(1− x tanhx)a(x)

µ
1
1

¶
, (3.22)

fθ(x) = −ja(x)
µ

1
−1

¶
, (3.23)

fp(x) = −j xτa(x)
µ

1
−1

¶
, (3.24)

ft(x) =
1

τ
tanh(x) a(x)

µ
1
1

¶
, (3.25)

and they describe perturbations of the soliton energy, phase, carrier frequency
and timing. One component of each of these vector functions is shown in Fig.
3.9.
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Figure 3.9: Perturabations in soliton amplitude (a), phase (b), frequency (c),
and timing (d). 

The action of the evolution operator of the linearized NSE on these soliton
perturbations is

Lfw =
1

w
fθ, (3.26)

Lfθ = 0, (3.27)

Lfp = −2τ 2ft, (3.28)

Lft = 0. (3.29)
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Equations (3.26) and (3.28) indicate, that perturbations in energy and
carrier frequency are converted to additional phase and timing fluctuations
of the pulse due to SPM and GVD. This is the base for soliton squeezing in
optical fibers [27]. The timing and phase perturbations can increase without
bounds, because the system is autonomous, the origin for the Gordon-Haus
effect, [29] and there is no phase reference in the system. The full continuous
spectrum of the linearized NSE has been studied by Kaup [28] and is given
by

Lfk = λkfk, (3.30)

λk = j(k2 + 1), (3.31)

fk(x) = e−jkx
µ
(k − jtanhx)2

sech2x

¶
, (3.32)

and

Lf̄k = λ̄k f̄k, (3.33)

λ̄k = −j(k2 + 1), (3.34)

f̄k = σ1fk. (3.35)

Our definition of the eigenfunctions is slightly different from Kaup [28], be-
cause we also define the inner product in the complex space as

< u|v >=
1

2

Z +∞

−∞
u+(x)v(x)dx. (3.36)

Adopting this definition, the inner product of a vector with itself in the
subspace where the second component is the complex conjugate of the first
component is the energy of the signal, a physical quantity.
The operator L is not self-adjoint with respect to this inner product. The

physical origin for this mathematical property is, that the linearized system
does not conserve energy due to the parametric pumping by the soliton.
However, from (3.21) and (3.36), we can easily see that the adjoint operator
is given by

L+ = −σ3Lσ3, (3.37)

and therefore, we obtain for the spectrum of the adjoint operator

L+f
(+)
k = λ

(+)
k f

(+)
k , (3.38)

λ
(+)
k = −j (k2 + 1), (3.39)

f
(+)
k =

1

π(k2 + 1)2
σ3fk, (3.40)
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and

L+f̄
(+)
k = λ̄

(+)
k f̄

(+)
k , (3.41)

λ̄
(+)
k = j(k2 + 1), (3.42)

f̄
(+)
k =

1

π(k2 + 1)2
σ3f̄k. (3.43)

The eigenfunctions to L and its adjoint are mutually orthogonal to each
other, and they are already properly normalized

< f
(+)
k |fk0 > = δ(k − k0), < f̄

(+)
k |̄fk0 >= δ(k − k0)

< f̄
(+)
k |fk0 > = < f

(+)
k |̄fk0 >= 0.

This system, which describes the continuum excitations, is made complete
by taking also into account the perturbations of the four degrees of freedom
of the soliton (3.22) - (3.25) and their adjoints

f (+)w (x) = j2τσ3fθ(x) = 2τa(x)

µ
1
1

¶
, (3.44)

f
(+)
θ (x) = −2jτσ3fw(x)

=
−2jτ
w

(1− x tanhx)a(x)

µ
1
−1

¶
, (3.45)

f (+)p (x) = −2jτ
w

σ3ft(x) =
2i

w
tanhxa(x)

µ
1
−1

¶
, (3.46)

f
(+)
t (x) =

2jτ

w
σ3fp(x) =

2τ 2

w
xa(x)

µ
1
1

¶
.. (3.47)

Now, the unity can be decomposed into two projections, one onto the con-
tinuum and one onto the perturbation of the soliton variables [28]

δ(x− x0) =

Z ∞

−∞
dk
h
|fk >< f (+)k |+ |f̄k >< f̄ (+)k |

i
+ |fw >< f (+)w |+ |fθ >< f (+)θ | (3.48)

+ |fp >< f (+)p |+ |ft >< f (+)t |.
Any deviation∆A can be decomposed into a contribution that leads to a soli-
ton with a shift in the four soliton paramters and a continuum contribution
ac

∆A(z0) = ∆w(z0)fw +∆θ(z0)fθ +∆p(z0)fp +∆t(z0)ft + ac(z
0). (3.49)
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Further, the continuum can be written as

ac =

Z ∞

−∞
dk
£
g(k)fk(x) + ḡ(k)f̄k(x)

¤
. (3.50)

If we put the decomposition (3.49) into (3.20) we obtain

∂∆w

∂z0
fw +

∂∆θ

∂z0
fθ +

∂∆p

∂z0
fp +

∂∆t

∂z0
ft +

∂

∂z0
ac =

L (∆w(z0)fw +∆p(z0)fp + a(z
0)c) +

1

ks
F(A,A∗, z0)e−iz

0
. (3.51)

By building the scalar products (3.36) of this equation with the eigensolutions
of the adjoint evolution operator (3.38) to (3.43) and using the eigenvalues
(3.26) to (3.35), we find

∂

∂z0
∆w =

1

ks
< f (+)w |Fejz0 >, (3.52)

∂

∂z0
∆θ =

∆W

W
+
1

ks
f
(+)
θ |Fejz0 >, (3.53)

∂

∂z0
∆p =

1

ks
< f (+)p |Fejz0 >, (3.54)

∂

∂z0
∆t = 2τ∆p+

1

ks
< f

(+)
t |Fejz0 >, (3.55)

∂

∂z0
g(k) = j(1 + k2)g(k) +

1

ks
< f

(+)
k F(A,A∗, z0)ejz

0
> . (3.56)

Note, that the continuum ac has to be in the subspace defined by

σ1ac = a
∗
c . (3.57)

The spectra of the continuum g(k) and ḡ(k) are related by

ḡ(k) = g(−k)∗. (3.58)

Then, we can directly compute the continuum from its spectrum using (3.32),
(3.50) and (3.57)

ac = −∂
2G(x)

∂x2
+ 2 tanh(x)

∂G(x)

∂x
− tanh2(x)G(x) +G∗(x)sech2(x), (3.59)
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where G(x) is, up to the phase factor eiz
0
, Gordon’s associated function [33].

It is the inverse Fourier transform of the spectrum

G(x) =

Z ∞

−∞
g(k) eikxdk. (3.60)

Since g(k) obeys eq.(3.56), Gordon’s associated function obeys a pure dis-
persive equation in the absence of a driving term F

∂G(z0, x)

∂z0
= −j

µ
1 +

∂2

∂x2

¶
G(z0, x). (3.61)

It is instructive to look at the spectrum of the continuum when only one
continuum mode with normalized frequency k0 is present, i.e. g(k) = δ(k −
k0). Then according to eqs. (3.59) and (3.60) we have

ac,k(x) =
£
k20 − 2jk0 tanh(x)− 1

¤
e−jk0x + 2sech2(x) cos(x). (3.62)

The spectrum of this continuum contribution is

ãc,k(ω) = 2π(k20 − 1)δ(ω − k0) + 2k0 P.V.

Ã
2

ω − k0
+

π

sinh
¡
π
2
(ω − k0)

¢!
+ π

ω − k0

sinh
¡
π
2
(ω − k0)

¢ + π
ω + k0

sinh
¡
π
2
(ω + k0)

¢ . (3.63)

3.6 Soliton Instabilities by Periodic Pertur-
bations

Periodic perturbations of solitons are important for understanding ultrashort
pulse lasers as well as ong distance optical communication systems [30, 31].
Along a long distance transmission system, the pulses have to be periodi-
cally amplified. In a mode-locked laser system, most often the nonlinearity,
dispersion and gain occur in a lumped manner. The solitons propagating in
these systems are only average solitons, which propagate through discrete
components in a periodic fashion, as we will see later.
The effect of this periodic perturbations can be modelled by an additional

term F in the perturbed NSE according to Eq.(3.14)

F (A,A∗, z) = jξ
∞X

n=−∞
δ(z − nzA)A(z, t). (3.64)
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The periodic kicking of the soliton leads to shedding of energy into continuum
modes according to Eq.(3.56)

∂

∂z
g(k) = jks(1 + k2)g(k)+ < f

(+)
k F(A,A∗, z)ejksz > . (3.65)

< f
(+)
k F(A,A∗, z)ejksz >= jξ

∞X
n=−∞

δ(z − nzA)
1

2
· (3.66)Z +∞

−∞

1

π(k2 + 1)2
ejkx

µ
(k + jtanhx)2

−sech2x
¶
·
µ
1
1

¶
A0 sechx dx

= jξ
∞X

n=−∞
δ(z − nzA) · (3.67)Z +∞

−∞

A0
2π(k2 + 1)2

ejkx
¡
k2 + 2jk tanhx− 1¢ ·sechx dx

Note, d
dx
sechx = −sechx tanhx, and therefore

< f
(+)
k F(A,A∗, z)ejz >= −jξ

∞X
n=−∞

δ(z − nzA) ·Z +∞

−∞

A0
2π(k2 + 1)

ejkx·sechxdx

= −jξ
∞X

n=−∞
δ(z − nzA)

A0
4(k2 + 1)

sech
µ
πk

2

¶
. (3.68)

Using
P∞

n=−∞ δ(z − nzA) =
1
zA

P∞
m=−∞ e

jm 2π
zA

z we obtain

∂

∂z
g(k) = jks(1 + k2)g(k)− j

ξ

zA

∞X
m=−∞

e
jm 2π

zA
z A0
4(k2 + 1)

sech
µ
πk

2

¶
. (3.69)

Eq.(3.69) is a linear differential equation with constant coefficients for the
continuum amplitudes g(k), which can be solved by variation of constants
with the ansatz

g(k, z) = C(k, z)ejks(1+k
2)z, (3.70)
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and initial conditions C(z = 0) = 0, we obtain

∂

∂z
C(k, z) = −j ξ

zA

∞X
m=−∞

A0
4(k2 + 1)

sech
µ
πk

2

¶
e
−j
³
ks(1+k2)−m 2π

zA
z
´
, (3.71)

or

C(k, z) = −j ξ

zA

A0
4(k2 + 1)

sech
µ
πk

2

¶
·

∞X
m=−∞

Z z

0

e
j(−ks(1+k2)+m 2π

zA
)z
dz

= −j ξ

zA

A0
4(k2 + 1)

sech
µ
πk

2

¶
· (3.72)

∞X
m=−∞

e
j(−ks(1+k2)+m 2π

zA
)z − 1

m 2π
zA
− ks(1 + k2)

.

There is a resonant denominator, which blows up at certain normalized fre-
quencies km for z →∞ Those frequencies are given by

m
2π

zA
− ks(1 + k2m) = 0 (3.73)

or km = ±
s

m 2π
zA

ks
− 1. (3.74)

Removing the normalization by setting k = ωτ, ks = |D2| /τ 2 and introducing
the nonlinear phase shift of the soliton acquired over one periode of the
perturbation φ0 = kszA, we obtain a handy formula for the location of the
resonant sidebands

ωm = ±1
τ

s
2mπ

φ0
− 1, (3.75)

and the coefficients

C(ω, z) = −j ξ

zA

A0

4((ωτ)2 + 1)
sech

³πωτ
2

´
(3.76)

·
∞X

m=−∞
zA

e
j(−ks(1+(ωτ)2)+m 2π

zA
)z − 1

2πm− φ0(1 + (ωτ)
2)

.

The coefficients stay bounded for frequencies not equal to the resonant condi-
tion and they grow linearly with zA, at resonance, which leads to a destruc-
tion of the pulse. To stabilize the soliton against this growth of resonant
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Figure 3.10: Phasematching between soliton and continuum due to periodic
perturbations leads to resonant sideband generation. The case shown is for
φ0 = π/2.

sidebands, the resonant frequencies have to stay outside the spectrum of the
soliton, see Fig. 3.10, which feeds the continuum, i.e. ωm À 1

τ
. This con-

dition is only fulfilled if φ0 ¿ π/4. This condition requires that the soliton
period is much longer than the periode of the perturbation. As an example
Fig. 3.10 shows the resonant sidebands observed in a fiber laser. For optical
communication systems this condition requires that the soliton energy has
to be kept small enough, so that the soliton periode is much longer than the
distance between amplifiers, which constitute periodic perturbations to the
soliton.These sidebands are often called Kelly-Sidebands, according to the
person who first described its origin properly [30].
To illustrate its importance we discuss the spectrum observed from the

longcavity Ti:sapphire laser system illustrated in Figure 3.11 and described
in full detail in [37]. Due to the low repetitionrate, a rather large pulse
energy builts up in the cavity, which leads to a large nonlinear phase shift
per roundtrip.Figure 3.12 shows the spectrum of the output from the laser.
The Kelly sidebands are clearly visible. It is this kind of instability, which
limits further increase in pulse energy from these systems operating in the
soliton pulse shaping regime. Energy is drained from the main pulse into
the sidebands, which grow at the expense of the pulse. At some point the
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Figure 3.11: Schematic layout of a high pulse energy laser cavity. All shaded
mirrors are (Double-chirped mirrors) DCMs. The standard 100 MHz cavity
with arms of 45 cm and 95 cm extends from the OC to M6 for the short
and long arms respectively. The multiple pass cavity (MPC) is enclosed in
the dotted box. The pump source is a frequency doubled Nd:Vanadate that
produces up to 10W at 532 nm [37].

pulse shaping becomes unstable because of conditions to be discussed in later
chapters.

Figure 3.12: Measured modelocked spectrumwith a 16.5 nmFWHMcentered
at 788 nm

Kowalewicz, A. M., et al. "Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens modelocked
Ti:Al2O3 oscillator." Optics Letters 28 (2003): 1507-09. 

Kowalewicz, A. M., et al. "Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens modelocked
Ti:Al2O3 oscillator." Optics Letters 28 (2003): 1507-09. 
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3.7 Pulse Compression

So far we have discussed propagation of a pulse in negative dispersive media
and positive self-phase modulation. Then at large enough pulse energy a
soliton can form, because the low and high frequency components generated
by SPM in the front and the back of the pulse are slow and fast and therefore
catch up with the pulse and stay together. What happens if the dispersion
is positive? Clearly, the low and high frequency components generated by
SPM in the front and back of the pulse are fast and slow and move away from
the pulse in a continuous fashion. This leads to highly but linearly chirped
pulse, which can be compressed after the nonlinear propagation by sending
it through a linear negative dispersive medium or prism pair or grating pair.
In that way, pulses can be compressed by large factors of 3 to 20. This pulse
compression process can be formulated in a more general way.

3.7.1 General Pulse Compression Scheme

The general scheme for pulse compression of optical pulses was independently
proposed by Gires and Tournois in 1964 [38] and Giordmaine et al. in 1968
[39]. The input pulse is first spectrally broadened by a phase modulator. The
phase over the generated spectrum is hopefully in a form that can be con-
veniently removed afterwards, i.e. all spectral components can be rephased
to generate a short as possible pulse in the time domain. To compress fem-
tosecond pulses an ultrafast phase modulator has to be used, that is the pulse
has to modulate its phase itself by self-phase modulation. In 1969 Fisher et
al. [40] proposed that picosecond pulses can be compressed to femtosecond
duration using the large positive chirp produced around the peak of a short
pulse by SPM in an optical Kerr liquid. In the same year Laubereau [41] used
several cells containing CS2 and a pair of diffraction gratings to compress, by
approximately ten times, 20-ps pulses generated by a mode-locked Nd:glass
laser.
As discussed in section 3.2, the optical Kerr effect in a medium gives

rise to an intensity dependent change of the refractive index ∆n = n2,LI(t),
where n2,L is the nonlinear-index coefficient and I(t) is the optical inten-
sity. The self-induced intensity-dependent nonlinear phase shift experienced
by an optical field during its propagation in a Kerr medium of length c is
given by ∆φ(t) = −(ω0/c)n2I(t)c where ω0 is the carrier frequency of the
pulse. The induced frequency sweep over the pulse can be calculated from
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Figure 3.13: Intensity profile, spectrum, instantaneous frequency, optimum
quadratic compression and ideal compression for two cases: top row for a
short fiber, i.e. high nonlinearity and low dispersion; bottom row optimum
nonlinearity and dispersion.[42]

∆ω = d∆φ/dt, see Figure 3.13. Around the central part of the pulse, where
most of the energy is concentrated, the phase is parabolic, leading to an
approximately linear chirp in frequency. The region with linear chirp can
be enlarged in the presence of positive dispersion in a Kerr medium of the
same sign [42]. To compress the spectrally broadened and chirped pulse,
a dispersive delay line can be used, characterized by a nearly linear group
delay Tg(ω). Or if the chirp generated over the newly generated spectrum
is nonlinear this chirp needs to be removed by a correspondingly nonlinear
group delay Tg(ω). Figure 3.13 shows that in the case SPM and positive
GDD a smoother spectrum with more linear chirp is created and therefore
the final compressed pulse is of higher quality, i.e. a higher percentage of the
total pulse energy is really concentrated in the short pulse and not in a large
uncompressed pulse pedestal.

For a beam propagating in a homogenous medium,unfortunately the non-
linear refractive index does not only lead to a temporal phase modulation but
also to a spatial phase modulation, which leads to self-focusing or defocus-
ing and small-scale instabilities [43]. Therefore, a fundamental requirement

Nakatsuka, H., D. Grischkowsky, and A. C. Balant. "Nonlinear picosecond-pulse propagation through 
optical fibers with positive group velocity dispersion." Physics Review Letters 47 (1981): 910-913. 
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for pulse compression is that the Kerr effect is provided by a guiding non-
linear medium so that a spatially uniform spectral broadening is obtained.
In 1974 Ippen et al. reported the first measurement of SPM in the absence
of self-trapping and self-focusing by using a guiding multimode optical fiber
filled with liquid CS2 [44]. In 1978 Stolen and Lin reported measurements of
SPM in single-mode silica core fibers [45]. The important advantage of the
single-mode fiber is that the phase modulation can be imposed over the entire
transverse profile of the beam, thus removing the problem of unmodulated
light in the wings of the beam [44]. In 1981 Nakatsuka et al. [42] performed
the first pulse compression experiment using fibers as a Kerr medium in the
positive dispersion region.

3.7.2 Spectral Broadening with Guided Modes

The electric field of a guided mode can be written as [52]:

E(r, ω) = A(z, ω)F (x, y) exp[iβ(ω)z] (3.77)

whereA(z, ω) is the mode-amplitude for a given frequency component, F (x, y)
is the mode-transverse field distribution and β(ω) is the mode-propagation
constant. The propagation equation for the guided field splits into two equa-
tions for amplitude A(z, ω) and field pattern F (x, y). In first order pertur-
bation theory a perturbation ∆n = n̄2|E|2 of the refractive index, which is
much smaller than the index step that defines the mode, does not change the
modal distribution F (x, y), while the mode propagation constant β̄(ω) can
be written as β̄(ω) = β(ω) +∆β , where the perturbation ∆β is given by

∆β =
(ω0/c)

R R
∆n|F (x, y)|2dxdyR R |F (x, y)|2dxdy . (3.78)

As shown by Eq.(3.78), the perturbation ∆β, which includes the effect due
to the fiber nonlinearity, is related to a spatial average on the fiber trans-
verse section of the perturbation ∆n. In this way, spatially uniform SPM is
realized.
Using regular single mode fibers and prism-grating compressors, pulses as

short as 6 fs at 620 nm were obtained in 1987 from 50-fs pulses generated by
a colliding-pulse mode-locking dye laser [46] see Figure 3.14. More recently,
13-fs pulses from a cavity-dumped Ti:sapphire laser were compressed to 4.5
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Figure 3.14: Fiber-grating pulse compressor to generate femtosecond pulses
[53]

fs with the same technique using a compressor consisting of a quartz 45◦-
prism pair, broadband chirped mirrors and thin-film Gires-Tournois dielectric
interferometers [47, 54]. The use of a single-mode optical fiber limits the pulse
energy to a few nanojoule.
In 1996, using a phase modulator consisting of a hollow fiber (leaky

waveguide) filled with noble gas, a powerful pulse compression technique
has been introduced, which handles high-energy pulses [48]. The implemen-
tation of the hollow-fiber compression technique using 20-fs seed pulses from
a Ti:sapphire system and chirped-mirrors that form a dispersive delay line
has led to the generation of pulses with duration down to 4.5 fs [49] and en-
ergy up to 0.55 mJ [50]. This technique presents the advantages of a guiding
element with a large-diameter mode and of a fast nonlinear medium with
high damage threshold.
The possibility to take advantage of the ultrabroadband spectrum which

can be generated by the phase modulation process, is strictly related to the
development of dispersive delay lines capable of controlling the frequency-
dependent group delay over such bandwidth.

3.7.3 Dispersion Compensation Techniques

The pulse frequency sweep (chirp) imposed by the phase modulation is ap-
proximately linear near the peak of the pulse, where most of the energy is
concentrated. In the presence of dispersion in the phase modulator the chirp
becomes linear over almost the whole pulse. Therefore, optimum temporal
compression requires a group delay, Tg,comp(ω) = ∂φ/∂ω, characterized by a

Figure by MIT OCW.
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nearly linear dependence on frequency in the dispersive delay line. Since in
the case of SPM the nonlinear index n2 is generally positive far from reso-
nance, a negative group delay dispersion (GDD = ∂Tg/∂ω) is required in
the compressor. In order to generate the shortest pulses, the pulse group de-
lay after the phase modulator and the compressor must be nearly frequency
independent. Tg(ω) can be expanded into a Taylor series around the central
frequency ω0:

Tg(ω) = φ0(ω0) + φ00(ω0)∆ω +
1

2
φ000(ω0)∆ω2 +

1

3!
φ0000(ω0)∆ω3 + · · · (3.79)

where ∆ω = ω − ω0, and φ00(ω0), φ
000(ω0), and φ0000(ω0) are the second-, the

third-, and the fourth-order-dispersion terms, respectively. Critical values of
these dispersion terms above which dispersion causes a significant change of
the pulse are given by a simple scaling expression: φ(n) = τnp , where φ

(n) is
the nth-order dispersion term and τ p is the pulse duration. For example,
a second order dispersion with φ00 = τ 2p results in a pulse broadening by
more than a factor of two. Therefore dispersion-induced pulse broadening
and distortion become increasingly important for decreasing pulse durations.
Equation (3.79) shows that to compress a pulse to near the transform limit
one should eliminate these high order dispersion terms. For instance, assum-
ing a transform-limited input pulse to the phase modulator, the condition
for third-order-dispersion-compensated compression is the following:

φ00(ω0) = φ00modulator + φ00compresssor = 0 (3.80)

φ000(ω0) = φ000modulator + φ000compresssor = 0 (3.81)

Several compressor schemes have been developed so far that included such
components as: diffraction gratings, Brewster-cut prism pairs, combination
of gratings and prisms, thin prisms and chirped mirrors, and chirped mirrors
only, etc. In the following we will briefly outline the main characteristics of
these compressor schemes.

Grating and Prism Pairs

In 1968 Treacy demonstrated for the first time the use of a pair of diffraction
gratings to achieve negative GDD [55]. In 1984 Fork et al. obtained negative
GDDwith pairs of Brewster-angled prisms [56]. Prism pairs have been widely
used for dispersion control inside laser oscillators since they can be very low
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Figure 3.15: Optical path difference in a two-element dispersive delay line
[107]

loss in contrast to grating pairs. In both optical systems the origin of the
adjustable dispersion is the angular dispersion that arises from diffraction
and refraction, respectively. The dispersion introduced by these systems can
be easily calculated, by calculating the phase accumulated between the input
and output reference planes [78]. To understand the main properties of these
systems, we will refer to Fig. 3.15. The first element scatters the input beam
with wave vector kin and input path vector l into the direction kout. The
beam passes between the first and the second element and is scattered back
into its original direction. The phase difference by the scattered beam and
the reference beam without the grating is: φ(ω) = kout(ω) · l. Considering
free-space propagation between the two elements, we have |kout| = ω/c, and
the accumulated phase can be written as

φ(ω) =
ω

c
|l| cos[γ − α(ω)] =

ω

c

D

cos(γ)
cos[γ − α(ω)] (3.82)

where: γ is the angle between the incident wave vector and the normal
to the first element; α is the angle of the outgoing wave vector, which is
a function of frequency; D is the spacing between the scattering elements
along a direction parallel to their normal. In the case of a grating pair the
frequency dependence of the diffraction angle α is governed by the grating

Figure by MIT OCW.
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law, that in the case of first-order diffraction is given by:

2πc

ω
= d[sinα(ω)− sin γ] (3.83)

where d is the groove spacing of the grating. Using Eq.(3.82) and Eq.(3.83),
it is possible to obtain analytic expressions for the GDD and the higher-order
dispersion terms (for single pass):

φ00(ω) = − 4π2cD

ω3d2 cos3 α(ω)
(3.84)

φ000(ω) =
12π2cD

ω4d2 cos3 α(ω)

µ
1 +

2πc sinα(ω)

ωd cos2 α(ω)

¶
(3.85)

It is evident from Eq.(3.84) that grating pairs give negative dispersion. D
is the distance between the gratings. A disadvantage of the grating pair is
the diffraction loss. For a double-pass configuration the loss is typically 75%.
Also the bandwidth for efficient diffraction is limited.
In the case of a Brewster-angled prism pair Eq.(3.82) reduces to the

following expression (for single pass) [56]:

φ(ω) =
ω

c
cp cosβ(ω) (3.86)

where cp is the distance between prism apices and β(ω) is the angle between
the refracted ray at frequency ω and the line joining the two apices. The
second and third order dispersion can be expressed in terms of the optical
path P (λ) = cp cosβ(λ):

φ00(ω) =
λ3

2πc2
d2P

dλ2
(3.87)

φ000(ω) = − λ4

4π2c3

µ
3
d2P

dλ2
+ λ

d3P

dλ3

¶
(3.88)

with the following derivatives of the optical path with respect to wavelength
evaluated at Brewster’s angle:

d2P

dλ2
= 2[n00 + (2n− n−3)(n0)2]cp sinβ − 4(n0)2cp cosβ (3.89)

d3P

dλ3
= [6(n0)3(n−6 + n−4 − 2n−2 + 4n2) + 12n0n00(2n− n−3)+(3.90)

+2n000]cp sinβ + 12[(n
−3 − 2n)(n0)3 − n0n00]cp cos β (3.91)
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Figure 3.16: Prism pair for dispersion compensation. The blue wavelengths
have less material in the light path then the red wavelengths. Therefore, blue
wavelengths are less delayed than red wavelength

where n is the refractive index of the prism material; n0, n00 and n000 are
respectively, the first-, second- and third-order derivatives of n, with respect
to wavelength. The prism-compressor has the advantage of reduced losses.
Using only fused silica prisms for dispersion compensation, sub-10-fs light
pulses have been generated directly from an oscillator in 1994 [79]. In 1996,
pulses with tens of microjoules energy, spectrally broadened in a gas-filled
hollow fiber were compressed down to 10 fs using a prism compressor [48].
Both in the case of grating and prism pairs, negative GDD is associated with
a significant amount of higher-order dispersion, which cannot be lowered or
adjusted independently of the desired GDD, thus limiting the bandwidth
over which correct dispersion control can be obtained. This drawback has
been only partially overcome by combining prism and grating pairs with
third-order dispersion of opposite sign. In this way pulses as short as 6 fs
have been generated in 1987 [46], and less than 5 fs in 1997 [47], by external
compression. This combination cannot be used for few-optical-cycle pulse
generation either in laser oscillators, due to the high diffraction losses of the
gratings, or in external compressors at high power level, due to the onset of

Figure by MIT OCW.
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unwanted nonlinearities in the prisms.

3.7.4 Dispersion Compensating Mirrors

Chirped mirrors are used for the compression of high energy pulses, because
they provide high dispersion with little material in the beam path, thus
avoiding nonlinear effects in the compressor.
Grating and prism compressors suffer from higher order dispersion. In

1993 Robert Szipoecs and Ferenc Krausz [80] came up with a new idea,
so called chirped mirrors. Laser mirrors are dielectric mirrors composed of
alternating high and low index quarter wavelenth thick layers resulting in
strong Bragg-reflection. In chirped mirrors the Bragg wavelength is chirped
so that different wavelength penetrate different depth into the mirror upon
reflection giving rise to a wavelength dependent group delay. It turns out
that the generation of few-cycle pulses via external compression [95] as well
as direct generation from Kerr lens mode-locked lasers [58] relies heavily on
the existence of chirped mirrors [57, 83, 59] for dispersion compensation.
There are two reasons to employ chirped mirrors . First the high-reflectivity
bandwidth, ∆f, of a standard dielectric Bragg-mirror is determined by the
Fresnel reflectivity rB of the high, nH , and low, nL, index materials used for
the dielectric mirror

rB =
∆f

fc
=

nH − nL
nH + nL

(3.92)

where fc is again the center frequency of the mirror. Metal mirrors are
in general too lossy, especially when used as intracavity laser mirrors. For
material systems typically used for broadband optical coatings such as Silicon
Dioxide and Titanium Dioxide with nSiO2 = 1.48 and nTiO2 = 2.4, (these
indexes might vary depending on the deposition technique used), a fractional
bandwidth ∆f/fc = 0.23 can be covered. This fractional bandwidth is only
about a third of an octave spanning mirror ∆f/fc = 2/3. Furthermore, the
variation in group delay of a Bragg-mirror impacts already pulses that fill
half the spectral range ∆f = 0.23fc. A way out of this dilemma was found
by introducing chirped mirrors [57], the equivalent of chirped fiber Bragg
gratings, which at that time were already well developed components in fiber
optics [60]. When the Bragg wavelength of the mirror stack is varied slowly
enough and no limitation on the number of layer pairs exists, an arbitrary
high reflectivity range of the mirror can be engineered. The second reason
for using chirped mirrors is based on their dispersive properties due to the
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wavelength dependent penetration depth of the light reflected from different
positions inside the chirped multilayer structure. Mirrors are filters, and in
the design of any filter, the control of group delay and group delay dispersion
is difficult. This problem is further increased when the design has to operate
over wavelength ranges up to an octave or more.

The matching problem Several designs for ultra broadband dispersion
compensating mirrors have been developed over the last years. For disper-
sion compensating mirrors which do not extend the high reflectivity range
far beyond what a Bragg-mirror employing the same materials can already
achieve, a multi-cavity filter design can be used to approximate the desired
phase and amplitude properties [61, 62]. For dispersion compensating mir-
rors covering a high reflectivity range of up to ∆f/fc = 0.4 the concept of
double-chirped mirrors (DCMs) has been developed [83][81]. It is based on
the following observations. A simple chirped mirror provides high-reflectivity
over an arbitrary wavelength range and, within certain limits, a custom des-
ignable average group delay via its wavelength dependent penetration depth
[73] (see Figure 3.17 (a) and (b) ). However, the group delay as a function
of frequency shows periodic variations due to the impedance mismatch be-
tween the ambient medium and the mirror stack, as well as within the stack
(see Figure 3.17 b and Figure 3.18). A structure that mitigates these mis-
matches and gives better control of the group delay dispersion (GDD) is the
double-chirped mirror (DCM) (Figure 3.17 c), in a way similar to that of an
apodized fiber Bragg grating [64].
Figure 3.18 shows the reflectivity and group delay of several Bragg and

chirped mirrors composed of 25 index steps, with nH = 2.5 and nL = 1.5,
similar to the refractive indices of TiO2 and SiO2, which result in a Fresnel
reflectivity of rB = 0.25. The Bragg-mirror can be decomposed in symmetric
index steps [83]. The Bragg wavenumber is defined as kB = π/(nLdL +
nHdH), where dL and dH are the thicknesses of the low and high index layer,
respectively. The Bragg wavenumber describes the center wavenumber of
a Bragg mirror composed of equal index steps. In the first case, (Figure
3.18, dash-dotted line) only the Bragg wave number is linearly chirped from
6.8µm−1 < kB < 11µm−1 over the first 20 index steps and held constant over
the last 5 index steps. The reflectivity of the structure is computed assuming
the structure imbedded in the low index medium. The large oscillations
in the group delay are caused by the different impedances of the chirped
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Figure 3.17: a) Standard Bragg mirror; (b) Simple chirped mirror, (c)
Double-chirped mirror with matching sections to avoid residual reflections
causing undesired oscillations in the GD and GDD of the mirror.

grating and the surrounding low index material causing a strong reflection at
the interface of the low index material and the grating stack. By adiabatic
matching of the grating impedance to the low index material this reflection
can be avoided. This is demonstrated in Fig. 3.18 by the dashed and solid
curves, corresponding to an additional chirping of the high index layer over
the first 12 steps according to the law dH = (m/12)αλB,12/(4nH) with α = 1,
and 2, for linear and quadratic adiabatic matching. The argument m denotes
the m-th index step and λB,12 = 0.740µm. The strong reduction of the
oscillations in the group delay by the double-chirp technique is clearly visible.
Quadratic tapering of the high index layer, and therefore, of the grating
already eliminates the oscillations in the group delay completely, which can
also be shown analytically by coupled mode analysis [81]. Because of the
double chirp a high transmission window at the short wavelength end of the
mirror opens up which is ideally suited for the pumping of Ti:sapphire lasers.
So far, the double-chirped mirror is only matched to the low index material
of the mirror. Ideally, the matching can be extended to any other ambient
medium by a properly designed AR-coating. However, this AR-coating has
to be of very high quality, i.e. very low residual reflectivity ideally a power
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Figure 3.18: Comparison of the reflectivity and group delay of chirpedmirrors
with 25 layer pairs and refractive indices nH = 2.5, and nL = 1.5.The upper
portion shows the enlarged top one percent of the reflectivity. The dotted
curves show the result for a simple chirped mirror. The dashed and solid
curves show the result for double-chirped mirrors where in addition to the
chirp in the Bragg wave number kB the thickness of the high-index layers is
also chirped over the first 12 layer pairs from zero to its maximum value for a
linear chirp, i.e. α = 1, (dashed curves) and for a quadratic chirp, i.e. α = 2
(solid curves). [83].

Kaertner, F. X., et al. "Design and fabrication of double-chirped mirrors." Optics Letters 15 (1990): 326-328.
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Figure 3.19: Schematic structure of proposed broadband dispersion compen-
sating mirror system avoiding the matching to air: (a) tilted-front-interface
mirror; (b) back-side coated mirror and (c) Brewster-angle mirror.

reflectivity of 10−4, i.e. an amplitude reflectivity of r = 10−2 is required.
The quality of the AR-coating can be relaxed, if the residual reflection is
directed out of the beam path. This is achieved in so called tilted front-side
or back-side coated mirrors [65], [66], (Fig. 3.19 (a) and (b)). In the back-
side coated mirror the ideal DCM structure, which is matched to the low
index material of the mirror is deposited on the back of a substrate made
of the same or at least very similar low index material. The AR-coating is
deposited on the front of the slightly wedged substrate, so that the residual
reflection is directed out of the beam and does not affect the dispersion
properties. Thus the task of the AR-coating is only to reduce the Fresnel
losses of the mirror at the air-substrate interface, and therefore, it is good
enough for some applications, if the residual reflection at this interface is of
the order of 0.5%. However, the substrate has to be very thin in order to
keep the overall mirror dispersion negative, typically on the order of 200-500
µm. Laser grade quality optics are hard to make on such thin substrates
and the stress induced by the coating leads to undesired deformation of
the substrates. The front-side coated mirror overcomes this shortcoming

Figure by MIT OCW.
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by depositing the ideal DCM-structure matched to the index of the wedge
material on a regular laser grade substrate. A 100-200 µm thin wedge is
bonded on top of the mirror and the AR-coating is then deposited on this
wedge. This results in stable and octave spanning mirrors, which have been
successfully used in external compression experiments [69]. Both structures
come with limitations. First, they introduce a wedge into the beam, which
leads to an undesired angular dispersion of the beam. This can partially
be compensated by using these mirrors in pairs with oppositely oriented
wedges. The second drawback is that it seems to be impossible to make high
quality AR-coatings over one or more than one octave of bandwidth, which
have less than 0.5% residual reflectivity [68], i.e. on one reflection such a
mirror has at least 1% of loss, and, therefore, such mirrors cause high losses
inside a laser. For external compression these losses are acceptable. A third
possibility for overcoming the AR-coating problem is given by using the ideal
DCM under Brewster-angle incidence, (Figure 3.19) [67]. In that case, the
low index layer is automatically matched to the ambient air. However, under
p-polarized incidence the index contrast or Fresnel reflectivity of a layer pair
is reduced and more layer pairs are necessary to achieve high reflectivity.
Also the penetration depth into the mirror increased, so that scattering and
other losses in the layers become more pronounced. On the other hand, such a
mirror can generate more dispersion per bounce due to the higher penetration
depth. For external compression such mirrors might have advantages because
they can cover bandwidths much wider than one octave. This concept is
difficult to apply to the fabrication of curved mirrors. There is also a spatial
chirp of the reflected beam, which may become sizeable for large penetration
depth and has to be removed by back reflection or an additional bounce on
another Brewster-angle mirror, that recombines the beam. For intracavity
mirrors a way out of this dilemma is found by mirror pairs, which cancel the
spurious reflections due to an imperfect AR-coating and matching structure
in the chirped mirror [76]. Also this design has its drawbacks and limitations.
It requires a high precision in fabrication and depending on the bandwidth
of the mirrors it may be only possible to use them for a restricted range of
angles of incidence.

Double-chirped mirror pairs

There have been several proposals to increase the bandwidth of laser mirrors
by mutual compensation of GDD oscillations [70, 71, 72] using computer
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Figure 3.20: DCM-Pair M1 (a) and M2 (b). The DCM M1 can be decom-
posed in a double-chirped back-mirror MB matched to a medium with the
index of the top most layer. In M2 a layer with a quarter wave thickness
at the center frequency of the mirror and an index equivalent to the top
most layer of the back-mirror MB is inserted between the back-mirror and
the AR-coating. The new back-mirror comprising the quarter wave layer can
be reoptimized to achieve the same phase as MB with an additional π-phase
shift over the whole octave of bandwidth.

optimization. These early investigations resulted in a rather low reflectivity
of less than 95% over almost half of the bandwidth considered. The ideas
leading to the DCMs help us to show analytically that a design of DCM-
pairs covering one octave of bandwidth, i.e. 600 nm to 1200 nm, with high
reflectivity and improved dispersion characteristics is indeed possible [76].
Use of these mirror pairs in a Ti:sapphire laser system resulted in 5 fs pulses
with octave spanning spectra directly from the laser [58]. Yet, the potential
of these pairs is by no means fully exploited.

A DCM-Pair, see Fig. 3.20, consists of a mirror M1 and M2. Each is
composed of an AR-coating and a low-index matched double-chirped back-
mirror MB with given wavelength dependent penetration depth. The high
reflectivity range of the back-mirror can be easily extended to one octave by
simply chirping slowly enough and using a sufficient number of layer pairs.

Figure by MIT OCW.
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Figure 3.21: Decomposition of a DCM into a double-chirped backmirror MB
and an AR-coating.

However, the smoothness of the resulting GDD strongly depends on the qual-
ity of matching provided by the AR-coating and the double-chirped section.
Fig. 3.21 indicates the influence of the AR-coating on the GDD of the total
DCM-structure. The AR-coating is represented as a two - port with two in-
coming waves a1, b2 and two outgoing waves a2, b1. The connection between
the waves at the left port and the right port is described by the transfer
matrix µ

a1
b1

¶
= Tar

µ
a2
b2

¶
with Tar =

µ
1
t

r∗

t∗
r
t

1
t∗

¶
(3.93)

where we assumed that the multilayer AR-coating is lossless. Here, r and t
are the complex coefficients for reflection and transmission at port 1 assuming
reflection free termination of port 2. The back-mirror MB, is assumed to be
perfectly matched to the first layer in the AR-coating, has full reflection over
the total bandwidth under consideration. Thus its complex reflectivity in the
range of interest is given by

ρb = ejφb(ω) (3.94)

The phase φb(ω) is determined by the desired group delay dispersion

GDDb = −d2φb(ω)/dω2 (3.95)

up to an undetermined constant phase and group delay at the center fre-
quency of the mirror, ωc. All higher order derivatives of the phase are
determined by the desired dispersion of the mirror. Analytic formulas for
the design of DCMs, showing custom designed dispersion properties without
considering the matching problem to the ambient air, can be found in [73].

Figure by MIT OCW.
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The resulting total mirror reflectivity including the AR-coating follows from
(3.93)

ρtot =
t

t∗
ρb
1− r∗/ρb
1− rρb

(3.96)

For the special case of a perfectly reflecting back-mirror according to Eq.
(3.94) we obtain

ρtot =
t

t∗
ejφb(ω)

1− z∗

1− z
, with z = rejφb(ω) (3.97)

The new reflectivity is again unity but new contributions in the phase of the
resulting reflectivity appear due to the imperfect transmission properties of
the AR-coating. With the transmission coefficient of the AR-coating

t = |t|ejφt, (3.98)

The total phase of the reflection coefficient becomes

φtot = 2φt + φb(ω) + φGTI (3.99)

with

φGTI = 2arctan

∙
Im{z}

1 +Re{z}
¸

(3.100)

Here, φt is the phase of the transmission coefficient and φGTI is the phase due
to the Gire-Tournois interferometer created by the non-perfect AR-coating,
i.e. r 6= 0, and the back-mirror MB, (Figure 3.21). The phase φt of a
good AR-coating, i.e. |r| < 0.1, is linear and, therefore, does not introduce
undesired oscillations into the GD and GDD. However, the phase φGTI is
rapidly varying since φb(ω) varies over several 2π over the frequency range
of interest due to the monotonic group delay of the back-mirror. The size
of these oscillations scale with the quality of the AR-coating, i.e. with |r|.
Thus, the GDD oscillations are reduced with smaller residual reflectivity of
the AR-coating. Assuming, that the reflectivity r is real and smaller or equal
to 0.1, the oscillations in the group delay and group delay dispersion are easily
estimated by

Tg,GTI =
dφGTI
dω

≈ −rTgb(ω) cos[φb(ω)] (3.101)

with

Tgb(ω) = −dφb(ω)/dω,
GDDGTI = d2φGTI

dω2≈ r
¡
T 2gb(ω) sin[φb(ω)]−GDDb cos[φb(ω)]

¢ (3.102)
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The GTI-reflections add up coherently when multiple reflections on chirped
mirrors occur inside the laser over one round-trip, leading to pre- and post
pulses if the mode-locking mechanism is not strong enough to suppress them
sufficiently. Experimental results indicate that a residual reflection in the
AR-coating of r < 0.01 and smaller, depending on the number of reflections
per round-trip, is required so that the pre- and post pulses are sufficiently
suppressed. This corresponds to an AR-coating with less than 10−4 residual
power reflectivity, which can only be achieved over a very limited range, as
discussed above.
Over a limited wavelength range of 350 nm centered around 800 nm low

residual power reflectivities as small as 10−4 have been achieved effectively
after reoptimization of the AR-coating section and the double-chirped section
to form a combined matching section of higher matching quality. For even
larger bandwidth, approaching an octave, a residual power reflectivity of
10−4 is no longer possible [68]. A way out of this limitation is offered by the
observation, that a coherent subtraction of the pre- and post-pulses to first
order in r is possible by reflections on a mirror pair M1 and M2, see Figure
3.20 (a) and (b). A series of two reflections on a mirror with reflectivity
(3.97) and on a similar mirror with an additional phase shift of π between
the AR-coating and the back-mirror, having a reflectivity (3.97) where z is
replaced by −z, leads to a coherent subtraction of the first order GTI-effects.
The resulting total reflectivity of the two reflections is given by the product
of the individual complex reflectivities assuming the same AR-coating

ρtot,2 = −
µ
t

t∗

¶2
ei2φb(ω)

1− z∗2

1− z2
(3.103)

Now, the GTI-effects scale like the power reflectivity of the AR-coating r2

instead of the amplitude reflectivity r, which constitutes a tremendous im-
provement, since it is possible to design AR-coatings to the low index material
Si02 of the mirror with a residual power reflectivity between 0.001 and 0.01
while covering one octave of bandwidth [68]. However, there does not exist
a single physical layer which generates a phase shift of π/2 during one pas-
sage for all frequency components contained in an octave. Still, a layer with
a quarter wave thickness at the center frequency is a good starting design.
Then the back-mirror MB in the Mirror M2 can be reoptimized to take care
of the deviation from a quarter wave thickness further away from the center
frequency, because the back-mirror acts as a highly dispersive medium where
the phase or group delay can be designed at will.
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Figure 3.22: Reflectivity of the mirror with pumpwindow shown as thick solid
line with scale to the left. The group delay design goal for perfect dispersion
compensation of a prismless Ti:sapphire laser is shown as thick dash-dotted
line with scale to the right. The individual group delay of the designed
mirrors is shown as thin line and its average as a dashed line, which is almost
identical with the design goal over the wavelength range form 650-1200 nm.
The measured group delay, using white light interferometry, is shown as the
thick solid line from 600-1100 nm. Beyond 1100nm the sensitivity of Si-
detector used prevented further measurements.
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Figure 3.23 shows in the top graph the designed reflectivity of both mir-
rors of the pair in high resolution taking into account the absorption in the
layers. The graph below shows the reflectivity of the mirror, which has in ad-
dition high transmission between 510-550 nm for pumping of the Ti:sapphire
crystal. Each mirror consists of 40 layer pairs of SiO2 and TiO2 fabricated
using ion-beam sputtering [74, 75]. Both mirror reflectivities cover more than
one octave of bandwidth from 580 nm to 1200 nm or 250 to 517 THz, with
an average reflectivity of about 99.9% including the absorption in the layers.
In addition, the mirror dispersion corrects for the second and higher order
dispersion of all intracavity elements such as the Ti:sapphire crystal and the
thin, small angle, BaF2 wedges, for fine adjustment of the dispersion from 650
nm to 1200 nm within the 12 bounces occurring in one roundtrip. The choice
for the lower wavelength boundary in dispersion compensation is determined
and limited by the pump window of Ti:sapphire. The dispersion measure-
ment was performed using white light interferometry [77], up to about 1100
nm because of the silicon detector roll-off. The oscillations in the group delay
of each mirror are about 10 times larger than those of high quality DCMs
covering 350 nm of bandwidth [?]. However, in the average group delay of
both mirrors the oscillations are ideally suppressed due to cancellation by
more than a factor of ten. Therefore, the effective residual reflectivity of the
mirror pair covering one octave, r2, is even smaller than that of conventional
DCMs.

Methods for active dispersion compensation

Various schemes for active pulse compression have been developed based
on the use of liquid-crystal modulators (LCM), acousto-optic modulators
(AOM), and mechanically deformable mirrors.

Dispersion compensation using liquid crystal modulators A pulse
shaping technique [84] based on the use of a LCM for pulse compression offers
the advantage of a large bandwidth (300-1500 nm) and in situ adaptive phase
control, see Figure3.23. In 1997 Yelin et al. [85] demonstrated an adaptive
method for femtosecond pulse compression based on LCM. Strongly chirped
80-fs pulses generated by an oscillator were sent in a 4-f pulse shaper com-
posed of a pair of thin holographic transmission gratings. A programmable
one-dimensional LCM, placed in the Fourier plane of the shaper, was used
as an updatable filter for pulse spectral manipulation. Pulses as short as
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Figure 3.23: Grating Pair and LCM pulse shaper according to Weiner and
Heritage [88]. To shape amplitude and phase two pulse shapers with an
amplitude and phase mask each are necessary.

11 fs (transform-limited duration: 9 fs) have been obtained, employing an
optimization algorithm for adaptive compression based on a search in the
two-dimensional space of second- and third-order dispersion coefficients. In
2001, Karasawa et al. [86] demonstrated pulse compression, down to 5 fs, of
broadband pulses from an argon-filled hollow fiber, using only a LCM for
phase compensation. More recently [51], pulses as short as 3.8 fs have been
achieved through a closed-loop combination of a liquid-crystal spatial light
modulator for adaptive pulse compression and spectral-phase interferome-
try for direct electric-field reconstruction (SPIDER) [87] measurements as
feedback signal.
One problem of the method is pixelization in the Fourier plane owing

to the technology of the liquid-crystal active matrix. Diffraction on pixel
edges and absorption by the black matrix introduce parasitic effects. The re-
quirement that the actual spectral modulation should approximate a smooth
function despite the fixed, finite size of the individual modulator elements,
limits the temporal range over which pulse compression can be achieved [88].
Other problems are related to the optical damage of the LCM, which limits
the maximum pulse energy, and to the high losses introduced by the device.
Various nonpixelated devices have been proposed: Dorrer et al. have re-

ported on an optically addressed LCM (liquid crystal light valve) [89]. The
light valve consists of two continuous transparent electrodes and continuous

Figure by MIT OCW.
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layers of a nematic twisted liquid crystal and of photoconductive Bi12SiO20
(BSO). A local variation of illumination of the BSO layer (in the blue green
spectral region) induces a change in conductivity. When a voltage is applied
between the two electrodes, the variation of the BSO conductivity results
in a change in the voltage drop across the liquid crystal layer. As the bire-
fringence of the liquid crystal is voltage dependent, a local variation of the
refractive index is created, which translates into a variation of the optical
phase of the local spectral component. The light valve is addressed by using
a display device. Pixelation effects are avoided because the light valve itself
is a continuous device. The control of the light valve is more complicated
than for the electrically addressed LCM. Moreover, due to its limited spatial
frequency response, the spectral resolution is limited.

Dispersion compensation using acousto-optic modulators

In 1997 Tournois proposed an acousto-optic programmable dispersive filter
(AOPDF), to provide large dispersion-compensation ranges[91]. The device
is based on a collinear acousto-optic interaction in a birefringent uniaxial
crystal, see Figure 3.24. The acoustic frequency is a variable function of time
and provides control over the group delay of the diffracted optical pulse. At
the same time, the spectral amplitude of the diffracted pulse is driven by
the intensity of the acoustic signal. As demonstrated in Ref. [91], the optical
output Eout(t) of the AOPDF is proportional to the convolution of the optical
input, Ein(t), and the scaled acoustic signal:

Eout(t) ∝ Ein(t)⊗ S(t/α) (3.104)

where the scaling factor α = ∆n(V/c) is the ratio of the speed of sound
to the speed of light times the index difference between the ordinary and
the extraordinary waves. Therefore, by generating the proper function S(t),
it is possible to generate any arbitrary convolution with a temporal reso-
lution given by the inverse of the filter bandwidth. Such device have been
used in kilohertz chirped-pulse amplification laser chains compensating for
gain narrowing and residual phase errors with the AOPDF, resulting in the
generation of 17-fs transform-limited pulses [92]. The total throughput is 10-
50%, depending on the bandwidth of the device. Devices approaching one
octave in bandwidth are possible.
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Figure 3.24: Acousto-optic programable pulse shaper. One element can shape
amplitude and phase of the pulse.

Dispersion compensation using deformable mirrors

Mechanically deformable mirrors can be used for active dispersion control,
as proposed by Heritage et al. [93]. More recently, pulse compression has
been achieved using an electrostatically deformable, gold-coated, silicon ni-
tride membrane mirror, placed in the Fourier plane of a 4f zero-dispersion
stretcher [94]. The membrane was suspended over an array of 39 actuator
electrodes. The potential applied to each actuator generates an electrostatic
attraction between the membrane and the electrode, thus inducing a defor-
mation of the mirror surface, which translates into a modulation of the phase
of the spectral components of the input pulse. The total phase difference is
φ = 2(2π)∆z/λ, where ∆z is the deflection of the mirror. The minimum
radius of curvature of the mirror membrane is given by R = T/P , where T
is the membrane tension and P is the maximum electrostatic pressure. This
limitation of the membrane curvature restricts the possibility of the mir-
ror correction of higher-order phases. The main advantages of this method
are the following: the phase modulation is smoothly varying; reduced losses
due to the high reflectivity (97%) of the mirror; relatively high actuator den-
sity. Experiments have been performed with a mode-locked Ti:sapphire laser,
where the deformable mirror recompressed a 15 fs pulse, previously stretched
to 90 fs by dispersion in glass, back to approximately the bandwidth limit
[94].

Image removed due to copyright restrictions. 
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Recently, dispersion control over a bandwidth of ∼ 220 THz has been
demonstrated by A. Baltuška et al. [95] using a compressor consisting of
a pair of chirped mirrors and a grating dispersion line with a computer-
controlled flexible mirror positioned in the focal plane. The total throughput
of the pulse shaper was less than 12% because of the low diffraction efficiency
of the grating. Using this compressor, the visible-near-IR pulses, generated
by optical parametric amplification, were compressed to a 4-fs duration.

3.7.5 Hollow Fiber Compression Technique

Single mode fiber only allows compression of low energy pulses. In 1996
the group of DeSilvestri in Milan [48] developed a technique that enables
the generation of few-cycle light pulses with energies in the millijoule range.
The technique is based on propagation of laser pulses in a hollow fiber filled
with noble gases (hollow fiber compression technique), see Figure 3.25.The
modes of the hollow fiber are leaky modes, i.e. they experience radiation loss.
However, there is one mode, the EH11mode, which has considerably less loss
than the higher order modes. This mode is used for pulse compression. The
nonlinear index in the fiber can be controlled with the gas pressure. Typical
fiber diameters are 100-500 µm and typical gas pressures are in the range of
0.1-3bar. As in the case of fiber compression it is important to consider the
optimization of nonlinear interaction and dispersion. Both the medium and
waveguide dispersion has to be taken into account. For more detail see ref.
[107].

Figure 3.25: Hollow fiber compression technique [48]
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For the time being, the hollow fiber compression technique is the only
way to generate sub-10fs millijoule pulses. This will change soon with the
advent of parametric chirped pulse amplification.

3.8 Appendix: Sech-Algebra

The hyperbolic secant is defined as

sech(x) =
1

cosh(x)
(3.105)

See Figure 3.26

Figure 3.26: Hyperbolic functions

cosh2(x)− sinh2(x) = 1 (3.106)

sech2(x) = 1− tanh2(x) (3.107)

d

dx
sech(x) = −tanh(x)sech(x) (3.108)

d2

dx2
sech(x) = sech(x)

£
1− 2sech2(x)¤ (3.109)

Figure by MIT OCW.
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−∞
sech(x)dx = π (3.110)Z +∞

−∞
sech2(x)dx = 2 (3.111)Z +∞

−∞
x2sech2(x)dx =

π2

6
(3.112)
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3.9 Summary

We found, that the lowest order reversible linear effect, GVD, together with
the lowest order reversible nonlinear effect in a homogeneous and isotropic
medium, SPM, leads to the Nonlinear Schrödinger Equation for the envelope
of the wave. This equation describes a Hamiltonian system. The equation
is integrable, i.e., it does possess an infinite number of conserved quantities.
The equation has soliton solutions, which show complicated but persistent os-
cillatory behavior. Especially, the fundamental soliton, a sech-shaped pulse,
shows no dispersion which makes them ideal for long distance optical commu-
nication. Due to the universality of the NSE, this dynamics is also extremely
important for modelocked lasers once the pulses become so short that the
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spectra experience the dispersion and the peak powers are high enough that
nonlinear effects become important. In general, this is the case for sub-
picosecond pulses. Further, we found a perturbation theory, which enables
us to decompose a solution of the NSE close to a fundamental soliton as a
fundamental soliton and continuum radiation. We showed that periodic per-
turbations of the soliton may lead to side-band generation, if the nonlinear
phase shift of the soliton within a period of the perturbation becomes com-
parable to π/4. Soliton perturbation theory will also give the frame work for
studying noise in mode-locked lasers later.
A medium with positive dispersion and self-phase modulation with the

same sign can be used for pulse compression. The major problem in pulse
compression is to find a compressor that can that exactly inverts the group
delay caused by spectral broadening. Depending on bandwith this can be
achieved by grating, prism, chirped mirrors, puls shapers, AOPDFs or a
combination thereof.
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Chapter 4

Laser Dynamics (single-mode)

Before we start to look into the dynamics of a multi-mode laser, we should
recall the technically important regimes of operation of a ”single-mode” laser.
The term ”single-mode” is set in apostrophes, since it doesn’t have to be
really single-mode. There can be several modes running, for example due to
spatial holeburning, but in an incoherent fashion, so that only the average
power of the beam matters. For a more detailed account on single-mode
laser dynamics and Q-Switching the following references are recommended
[1][3][16][4][5].

4.1 Rate Equations

In section 2.5, we derived for the interaction of a two-level atom with a laser
field propagating to the right the equations of motion (2.171) and (2.172),
which are given here again:

µ
∂

∂z
+
1

vg

∂

∂t

¶
A(z, t) =

N~
4T2Es

w (z, t)A(z, t), (4.1)

ẇ = −w − w0
T1

+
|A(z, t)|2

Es
w(z, t) (4.2)

where T1 is the energy relaxation rate, vg the group velocity in the host
material where the two level atoms are embedded, Es = IsT1, the saturation
fluence [J/cm2] , of the medium.and Is the saturation intensity according to
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Eq.(2.145)

Is =

⎡⎢⎣2T1T2ZF

~2

¯̄̄
�M �̂E

¯̄̄2
¯̄̄
�̂E
¯̄̄2
⎤⎥⎦
−1

,

which relates the saturation intensity to the microscopic parameters of the
transition like longitudinal and transversal relaxation rates as well as the
dipole moment of the transition.

Figure 4.1: Rate equations for the two-level atom

In many cases it is more convenient to normalize (4.1) and (4.2) to the
populations in level e and g or 2 and 1, respectively, N2 and N1, and the
density of photons, nL, in the mode interacting with the atoms and traveling
at the corresponding group velocity, vg, see Fig. 4.1. The intensity I in a
mode propagating at group velocity vg with a mode volume V is related to
the number of photons NL stored in the mode with volume V by

I = hfL
NL

2∗V
vg =

1

2∗
hfLnLvg, (4.3)

where hfL is the photon energy. 2∗ = 2 for a linear laser resonator (then
only half of the photons are going in one direction), and 2∗ = 1 for a ring
laser. In this first treatment we consider the case of space-independent rate
equations, i.e. we assume that the laser is oscillating on a single mode and
pumping and mode energy densities are uniform within the laser material.
With the interaction cross section σ defined as

σ =
hfL
2∗IsT1

, (4.4)
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and multiplying Eq. (??) with the number of atoms in the mode, we obtain

d

dt
(N2 −N1) = −(N2 −N1)

T1
− σ (N2 −N1) vgnL +Rp (4.5)

Note, vgnL is the photon flux, thus σ is the stimulated emission cross section
between the atoms and the photons. Rp is the pumping rate into the upper
laser level. A similar rate equation can be derived for the photon density

d

dt
nL = −nL

τ p
+

lg
L

σvg
Vg
[N2 (nL + 1)−N1nL] . (4.6)

Here, τ p is the photon lifetime in the cavity or cavity decay time and the
one in Eq.(4.6) accounts for spontaneous emission which is equivalent to
stimulated emission by one photon occupying the mode. Vg is the volume of
the active gain medium. For a laser cavity with a semi-transparent mirror
with transmission T , producing a small power loss 2l = − ln(1−T ) ≈ T (for
small T ) per round-trip in the cavity, the cavity decay time is τ p = 2l/TR ,
if TR = 2∗L/c0 is the roundtrip-time in linear cavity with optical length 2L
or a ring cavity with optical length L. The optical length L is the sum of the
optical length in the gain medium ngroupg lg and the remaining free space cavity
length la. Internal losses can be treated in a similar way and contribute to
the cavity decay time. Note, the decay rate for the inversion in the absence
of a field, 1/T1, is not only due to spontaneous emission, but is also a result of
non radiative decay processes. See for example the four level system shown
in Fig. 4.2. In the limit, where the populations in the third and first level
are zero, because of fast relaxation rates, i.e. T32, T10 → 0, we obtain

d

dt
N2 = −N2

τL
− σvgN2nL +Rp (4.7)

d

dt
nL = −nL

τ p
+

lg
L

σvg
Vg

N2 (nL + 1) . (4.8)

where τL = T21 is the lifetime of the upper laser level. Experimentally, the
photon number and the inversion in a laser resonator are not
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Figure 4.2: Vier-Niveau-Laser

very convenient quantities, therefore, we normalize both equations to the
round-trip amplitude gain g = lg

L
σvg
2Vg

N2TR experienced by the light and the
circulating intracavity power P = I ·Aeff

d

dt
g = −g − g0

τL
− gP

Esat
(4.9)

d

dt
P = − 1

τ p
P +

2g

TR
(P + Pvac) , (4.10)

with

Es = IsAeffτL =
hfL
2∗σ

(4.11)

Psat = Esat/τL (4.12)

Pvac = hfLvg/2
∗L = hfL/TR (4.13)

g0 =
2∗vgRp

2Aeffc0
στL, (4.14)

the small signal round-trip gain of the laser. Note, the factor of two in front
of gain and loss is due to the fact, the g and l are gain and loss with respect to
amplitude. Eq.(4.14) elucidates that the figure of merit that characterizes the
small signal gain achievable with a certain laser material is the στL-product.
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Laser Medium
Wave-
length
λ0(nm)

Cross
Section
σ (cm2)

Upper-St.
Lifetime
τL (µs)

Linewidth
∆fFWHM =
2
T2
(THz)

Typ
Refr.
index
n

Nd3+:YAG 1,064 4.1 · 10−19 1,200 0.210 H 1.82
Nd3+:LSB 1,062 1.3 · 10−19 87 1.2 H 1.47 (ne)
Nd3+:YLF 1,047 1.8 · 10−19 450 0.390 H 1.82 (ne)
Nd3+:YVO4 1,064 2.5 · 10−19 50 0.300 H 2.19 (ne)
Nd3+:glass 1,054 4 · 10−20 350 3 H/I 1.5
Er3+:glass 1,55 6 · 10−21 10,000 4 H/I 1.46
Ruby 694.3 2 · 10−20 1,000 0.06 H 1.76
Ti3+:Al2O3 660-1180 3 · 10−19 3 100 H 1.76
Cr3+:LiSAF 760-960 4.8 · 10−20 67 80 H 1.4
Cr3+:LiCAF 710-840 1.3 · 10−20 170 65 H 1.4
Cr3+:LiSGAF 740-930 3.3 · 10−20 88 80 H 1.4
He-Ne 632.8 1 · 10−13 0.7 0.0015 I ∼1
Ar+ 515 3 · 10−12 0.07 0.0035 I ∼1
CO2 10,600 3 · 10−18 2,900,000 0.000060 H ∼1
Rhodamin-6G 560-640 3 · 10−16 0.0033 5 H 1.33
semiconductors 450-30,000 ∼ 10−14 ∼ 0.002 25 H/I 3 - 4

Table 4.1: Wavelength range, cross-section for stimulated emission, upper-
state lifetime, linewidth, typ of lineshape (H=homogeneously broadened,
I=inhomogeneously broadened) and index for some often used solid-state
laser materials, and in comparison with semiconductor and dye lasers.
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The larger this product the larger is the small signal gain g0 achievable with
a certain laser material. Table 4.1
From Eq.(2.145) and (4.4) we find the following relationship between the

interaction cross section of a transition and its microscopic parameters like
linewidth, dipole moment and energy relaxation rate

σ =
hfL
IsatT1

=
2T2
~2ZF

| �M �̂E|2

|ˆ̃E |
2 .

This equation tells us that broadband laser materials naturally do show
smaller gain cross sections, if the dipole moment is the same.

4.2 Built-up of Laser Oscillation and Contin-
uous Wave Operation

If Pvac ¿ P ¿ Psat = Esat/τL, than g = g0 and we obtain from Eq.(4.10),
neglecting Pvac

dP

P
= 2 (g0 − l)

dt

TR
(4.15)

or
P (t) = P (0)e

2(g0−l) t
TR . (4.16)

The laser power builts up from vaccum fluctuations until it reaches the sat-
uration power, when saturation of the gain sets in within the built-up time

TB =
TR

2 (g0 − l)
ln

Psat

Pvac
=

TR
2 (g0 − l)

ln
AeffTR
στL

. (4.17)

Some time after the built-up phase the laser reaches steady state, with the
saturated gain and steady state power resulting from Eqs.(4.9-4.10), neglect-
ing in the following the spontaneous emission, and for d

dt
= 0 :

gs =
g0

1 + Ps
Psat

= l (4.18)

Ps = Psat

³g0
l
− 1
´
, (4.19)
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Figure 4.3: Built-up of laser power from spontaneous emission noise.

4.3 Stability and Relaxation Oscillations

How does the laser reach steady state, once a perturbation has occured?

g = gs +∆g (4.20)

P = Ps +∆P (4.21)

Substitution into Eqs.(4.9-4.10) and linearization leads to

d∆P

dt
= +2

Ps

TR
∆g (4.22)

d∆g

dt
= − gs

Esat
∆P − 1

τ stim
∆g (4.23)

where 1
τstim

= 1
τL

¡
1 + Ps

Psat

¢
is the stimulated lifetime. The perturbations

decay or grow like µ
∆P
∆g

¶
=

µ
∆P0
∆g0

¶
est. (4.24)

which leads to the system of equations (using gs = l)

A

µ
∆P0
∆g0

¶
=

Ã
−s 2 Ps

TR

− TR
Esat2τp

− 1
τstim

− s

!µ
∆P0
∆g0

¶
= 0. (4.25)
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There is only a solution, if the determinante of the coefficient matrix vanishes,
i.e.

s

µ
1

τ stim
+ s

¶
+

Ps

Esatτ p
= 0, (4.26)

which determines the relaxation rates or eigen frequencies of the linearized
system

s1/2 = − 1

2τ stim
±
sµ

1

2τ stim

¶2
− Ps

Esatτ p
. (4.27)

Introducing the pump parameter r = 1 + Ps
Psat

, which tells us how often we
pump the laser over threshold, the eigen frequencies can be rewritten as

s1/2 = − 1

2τ stim

Ã
1± j

s
4 (r − 1)

r

τ stim
τ p
− 1
!
, (4.28)

= − r

2τL
± j

s
(r − 1)
τLτ p

−
µ

r

2τL

¶2
(4.29)

There are several conclusions to draw:

• (i): The stationary state (0, g0) for g0 < l and (Ps, gs) for g0 > l are
always stable, i.e. Re{si} < 0.

• (ii): For lasers pumped above threshold, r > 1, the relaxation rate
becomes complex, i.e. there are relaxation oscillations

s1/2 = − 1

2τ stim
± j

s
1

τ stimτ p
. (4.30)

with frequency ωR equal to the geometric mean of inverse stimulated
lifetime and photon life time

ωR =

s
1

τ stimτ p
. (4.31)

There is definitely a parameter range of pump powers for laser with
long upper state lifetimes, i.e. r

4τL
< 1

τp
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• If the laser can be pumped strong enough, i.e. r can be made large
enough so that the stimulated lifetime becomes as short as the cavity
decay time, relaxation oscillations vanish.

The physical reason for relaxation oscillations and later instabilities is,
that the gain reacts to slow on the light field, i.e. the stimulated lifetime is
long in comparison with the cavity decay time.

Example: diode-pumped Nd:YAG-Laser

λ0 = 1064 nm, σ = 4 · 10−20cm2, Aeff = π (100µm× 150µm) , r = 50
τL = 1.2 ms, l = 1%, TR = 10ns

From Eq.(4.4) we obtain:

Isat =
hfL
στL

= 3.9
kW

cm2
, Psat = IsatAeff = 1.8 W, Ps = 91.5W

τ stim =
τL
r
= 24µs, τ p = 1µs, ωR =

s
1

τ stimτ p
= 2 · 105s−1.

Figure 4.4 shows the typically observed fluctuations of the output of a solid-
state laser with long upperstate life time of several 100 µs in the time and
frequency domain.
One can also define a quality factor for the relaxation oscillations by the

ratio of imaginary to real part of the complex eigen frequencies 4.29

Q =

s
4τL
τ p

(r − 1)
r2

,

which can be as large a several thousand for solid-state lasers with long
upper-state lifetimes in the millisecond range.
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Figure 4.4: Typically observed relaxation oscillations in time and frequency
domain.

4.4 Q-Switching

The energy stored in the laser medium can be released suddenly by increasing
the Q-value of the cavity so that the laser reaches threshold. This can be
done actively, for example by quickly moving one of the resonator mirrors in
place or passively by placing a saturable absorber in the resonator [1, 16].
Hellwarth was first to suggest this method only one year after the invention of

Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 
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Figure 4.5: Gain and loss dynamics of an actively Q-switched laser.

the laser. As a rough orientation for a solid-state laser, the following relation
for the relevant time scales is generally valid

τL À TR À τ p. (4.32)

4.4.1 Active Q-Switching

Fig. 4.5 shows the principle dynamics of an actively Q-switched laser. The
laser is pumped by a pump pulse with a length on the order of the upper-
state lifetime, while the intracavity losses are kept high enough, so that
the laser can not reach threshold. Therefore, the laser medium acts as an
energy storage. The energy only relaxes by spontenous and nonradiative
transitions. Then suddenly the intracavity loss is reduced, for example by
a rotating cavity mirror. The laser is pumped way above threshold and the
light field builts up exponentially with the net gain until the pulse energy
comes close to the saturation energy of the gain medium. The gain saturates
and is extracted, so that the laser is shut off by the pulse itself.

Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
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A typical actively Q-switched pulse is asymmetric: The rise time is pro-
portional to the net gain after the Q-value of the cavity is actively switched
to a high value. The light intensity growths proportional to 2g0/TR. When
the gain is depleted, the fall time mostly depends on the cavity decay time
τ p. For short Q-switched pulses a short cavity length, high gain and a large
change in the cavity Q is necessary. If the Q-switch is not fast, the pulse
width may be limited by the speed of the switch. Typical electro-optical and
acousto-optical switches are 10 ns and 50 ns, respectively

Figure 4.6: Asymmetric actively Q-switched pulse.

For example, with a diode-pumped Nd:YAG microchip laser [6] using an
electro-optical switch based on LiTaO3 Q-switched pulses as short as 270 ps
at repetition rates of 5 kHz, peak powers of 25 kW at an average power of
34 mW, and pulse energy of 6.8 µJ have been generated (Figure 4.7).
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Figure 4.7: Q-switched microchip laser using an electro-optic switch. The
pulse is measured with a sampling scope [8]

Similar results were achieved with Nd:YLF [7] and the corresponding
setup is shown in Fig. 4.8.

focussing
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HR - laser l
HT - diode l

partially
reflective
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laser
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diode
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A/O Q-switch
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Figure 4.8: Set-up of an actively Q-switched laser.
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4.4.2 Single-Frequency Q-Switched Pulses

Q-switched lasers only deliver stable output if they oscillate single frequency.
Usually this is not automatically achieved. One method to achieve this is by
seeding with a single-frequency laser during Q-switched operation, so that
there is already a population in one of the longitudinal modes before the
pulse is building up. This mode will extract all the energy before the other
modes can do, see Figure 4.9

Figure 4.9: Output intenisity of a Q-switched laser without a) and with
seeding b).

Another possibility to achieve single-mode output is either using an etalon
in the cavity or making the cavity so short, that only one longitudinal mode
is within the gain bandwidth (Figure 4.10). This is usually only the case if
the cavity length is on the order of a view millimeters or below.The microchip
laser [6][11][10] can be combined with an electro-optic modulator to achieve

Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 
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very compact high peak power lasers with sub-nanosecond pulsewidth (Figure
4.7).

Figure 4.10: In a microchip laser the resonator can be so short, that there is
only one longitudinal mode within the gain bandwidth.
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4.4.3 Theory of Active Q-Switching

We want to get some insight into the pulse built-up and decay of the actively
Q-switched pulse. We consider the ideal situation, where the loss of the laser
cavity can be instantaneously switched from a high value to a low value, i.e.
the quality factor is switched from a low value to a high value, respectively
(Figure: 4.11)

Figure 4.11: Acitve Q-Switching dynamics assuming an instantaneous
switching [16].

Pumping Interval:

During pumping with a constant pump rate Rp, proportional to the small
signal gain g0, the inversion is built up. Since there is no field present, the
gain follows the simple equation:

d

dt
g = −g − g0

τL
, (4.33)

or

g(t) = g0(1− e−t/τL), (4.34)

Figure by MIT OCW.

Pumping Interval

Cavity Loss

Q-switch

t

Laser output
 pulse

g(t) ∝ N(t) I ∝ Nth(t)

nL(t) ∝ P(t)
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Ni

Pulse Output
 Interval
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Pulse Built-up-Phase:

Assuming an instantaneous switching of the cavity losses we look for an
approximate solution to the rate equations starting of with the initial gain
or inversion gi = hfLN2i/(2Esat) = hfLNi/(2Esat), we can savely leave the
index away since there is only an upper state population. We further assume
that during pulse built-up the stimulated emission rate is the dominate term
changing the inversion. Then the rate equations simplify toτ

d

dt
g = − gP

Esat p

(4.35)

d

dt
P =

2(g − l)

TR
P, (4.36)

resulting in

dP

dg
=
2Esat

TR

µ
l

g
− 1
¶
. (4.37)

We use the following inital conditions for the intracavity power P (t = 0) = 0
and initial gain g(t = 0) = gi = r · l. Note, r means how many times the laser
is pumped above threshold after the Q-switch is operated and the intracavity
losses have been reduced to l. Then 4.37 can be directly solved and we obtain

P (t) =
2Esat

TR

µ
gi − g(t) + l ln

g(t)

gi

¶
. (4.38)

From this equation we can deduce the maximum power of the pulse, since
the growth of the intracavity power will stop when the gain is reduced to the
losses, g(t)=l, (Figure 4.11)

Pmax =
2lEsat

TR
(r − 1− ln r) (4.39)

=
Esat

τ p
(r − 1− ln r) . (4.40)

This is the first important quantity of the generated pulse and is shown
normalized in Figure 4.12.
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Figure 4.12: Peak power of emitted pulse as function of pump parameter.

Next, we can find the final gain gf , that is reached once the pulse emission
is completed, i.e. that is when the right side of (4.38) vanishesµ

gi − gf + l ln

µ
gf
gi

¶¶
= 0 (4.41)

Using the pump parameter r = gi/l, this gives as an expression for the ratio
between final and initial gain or between final and initial inversion

1− gf
gi
+
1

r
ln

µ
gf
gi

¶
= 0, (4.42)

1− Nf

Ni
+
1

r
ln

µ
Nf

Ni

¶
= 0, (4.43)

which depends only on the pump parameter. Assuming further, that there
are no internal losses, then we can estimate the pulse energy generated by

EP = (Ni −Nf)hfL. (4.44)

This is also equal to the output coupled pulse energy since no internal losses
are assumed. Thus, if the final inversion gets small all the energy stored in
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Figure 4.13: Energy extraction efficiency as a function of pump power.

the gain medium can be extracted. We define the energy extraction efficiency
η

η =
Ni −Nf

Ni
, (4.45)

that tells us how much of the initially stored energy can be extracted using
eq.(4.43)

η +
1

r
ln (1− η) = 0. (4.46)

This efficiency is plotted in Figure 4.13.
Note, the energy extraction efficiency only depends on the pump param-

eter r. Now, the emitted pulse energy can be written as

EP = η(r)NihfL. (4.47)

and we can estimate the pulse width of the emitted pulse by the ratio between
pulse energy and peak power using (4.40) and (4.47)

τPulse =
EP

2lPpeak
= τ p

η(r)

(r − 1− ln r)
NihfL
2lEsat

= τ p
η(r)

(r − 1− ln r)
gi
l

τ p
η(r) · r

(r − 1− ln r) . (4.48)
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Figure 4.14: Normalized pulse width as a function of pump parameter.

The pulse width normalized to the cavity decay time τ p is shown in Figure
4.14.

4.4.4 Passive Q-Switching

In the case of passive Q-switching the intracavity loss modulation is per-
formed by a saturable absorber, which introduces large losses for low inten-
sities of light and small losses for high intensity.

Relaxation oscillations are due to a periodic exchange of energy stored in
the laser medium by the inversion and the light field. Without the saturable
absorber these oscillations are damped. If for some reason there is two much
gain in the system, the light field can build up quickly. Especially for a low
gain cross section the backaction of the growing laser field on the inversion is
weak and it can grow further. This growth is favored in the presence of loss
that saturates with the intensity of the light. The laser becomes unstabile,
the field intensity growth as long as the gain does not saturate below the net
loss, see Fig.4.15.
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Loss

Pulse

Gain

Figure 4.15: Gain and loss dynamics of a passively Q-switched laser

Now, we want to show that the saturable absorber leads to a destabiliza-
tion of the relaxation oscillations resulting in the giant pulse laser.
We extend our laser model by a saturable absorber as shown in Fig. 4.16

T       =2lout

τ   , E  LL τ   , E  A A
A eff,L A eff,A

g q

P-

P+ P+ P  - P--

Figure 4.16: Simple laser model described by rate equations. We assume
small output coupling so that the laser power within one roundtrip can be
considered position independent. Neglecting standing wave effects in the
cavity, the field density is related to twice the circulating power P+ or P−.

Rate equations for a passively Q-switched laser

We make the following assumptions: First, the transverse relaxation times
of the equivalent two level models for the laser gain medium and for the
saturable absorber are much faster than any other dynamics in our system,
so that we can use rate equations to describe the laser dynamics. Second, we
assume that the changes in the laser intensity, gain and saturable absorption
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are small on a time scale on the order of the round-trip time TR in the cavity,
(i.e. less than 20%). Then, we can use the rate equations of the laser as
derived above plus a corresponding equation for the saturable loss q similar
to the equation for the gain.

TR
dP

dt
= 2(g − l − q)P (4.49)

TR
dg

dt
= −g − g0

TL
− gTRP

EL
(4.50)

TR
dq

dt
= −q − q0

TA
− qTRP

EA
(4.51)

where P denotes the laser power, g the amplitude gain per roundtrip, l the
linear amplitude losses per roundtrip, g0 the small signal gain per roundtrip
and q0 the unsaturated but saturable losses per roundtrip. The quanti-
ties TL = τL/TR and TA = τA/TR are the normalized upper-state life-
time of the gain medium and the absorber recovery time, normalized to
the round-trip time of the cavity. The energies EL = hνAeff,L/2

∗σL and
EA = hνAeff,A/2

∗σA are the saturation energies of the gain and the ab-
sorber, respectively. .
For solid state lasers with gain relaxation times on the order of τL ≈ 100

µs or more, and cavity round-trip times TR ≈ 10 ns, we obtain TL ≈ 104.
Furthermore, we assume absorbers with recovery times much shorter than
the round-trip time of the cavity, i.e. τA ≈ 1 − 100 ps, so that typically
TA ≈ 10−4 to 10−2. This is achievable in semiconductors and can be en-
gineered at will by low temperature growth of the semiconductor material
[20, 30]. As long as the laser is running cw and single mode, the absorber will
follow the instantaneous laser power. Then, the saturable absorption can be
adiabatically eliminated, by using eq.(4.51)

q =
q0

1 + P/PA
with PA =

EA

τA
, (4.52)

and back substitution into eq.(4.49). Here, PA is the saturation power of
the absorber. At a certain amount of saturable absorption, the relaxation
oscillations become unstable and Q-switching occurs. To find the stability
criterion, we linearize the system

TR
dP

dt
= (g − l − q(P ))P (4.53)

TR
dg

dt
= −g − g0

TL
− gTRP

EL
. (4.54)
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Stationary solution

As in the case for the cw-running laser the stationary operation point of the
laser is determined by the point of zero net gain

gs = l + qs
g0

1 + Ps/PL
= l +

q0
1 + Ps/PA

. (4.55)

The graphical solution of this equation is shown in Fig. 4.17

g

l+q

l

P

g  =l+q  

o

o

sg

l+qs

s s

Figure 4.17: Graphical solution of the stationary operating point.

Stability of stationary operating point or the condition for Q-
switching

For the linearized system, the coefficient matrix corresponding to Eq.(4.25)
changes only by the saturable absorber [23]:

TR
d

dt

µ
∆P0
∆g0

¶
= A

µ
∆P0
∆g0

¶
, with A =

µ −2 dq
dP

¯̄
cw
Ps 2Ps

−gsTR
EL

− TR
τstim

¶
(4.56)

The coefficient matrix A does have eigenvalues with negative real part, if and
only if its trace is negative and the determinante is positive which results in
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two conditions

−2P dq

dP

¯̄̄̄
cw

<
r

TL
with r = 1 +

PA

PL
and PL =

EL

τL
, (4.57)

and

dq

dP

¯̄̄̄
cw

r

TL
+ 2gs

r − 1
TL

> 0. (4.58)

After cancelation of TL we end up with

¯̄̄̄
dq

dP

¯̄̄̄
cw

¯̄̄̄
<

¯̄̄̄
dgs
dP

¯̄̄̄
cw

¯̄̄̄
. (4.59)

For a laser which starts oscillating on its own, relation 4.59 is automatically
fulfilled since the small signal gain is larger than the total losses, see Fig.
4.17. Inequality (4.57) has a simple physical explanation. The right hand
side of (4.57) is the relaxation time of the gain towards equilibrium, at a
given pump power and constant laser power. The left hand side is the decay
time of a power fluctuation of the laser at fixed gain. If the gain can not
react fast enough to fluctuations of the laser power, relaxation oscillations
grow and result in passive Q-switching of the laser.

As can be seen from Eq.(4.55) and Eq.(4.57), we obtain

−2TLP dq

dP

¯̄̄̄
cw

= 2TLq0

P
χPL³

1 + P
χPL

´2
¯̄̄̄
¯̄̄
cw

< rs with χ =
PA

PL
, (4.60)

where χ is an effective ”stiffness” of the absorber against cw saturation. The
stability relation (4.60) is visualized in Fig. 4.18.
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Figure 4.18: Graphical representation of cw-Q-switching stability relation for
different products 2q0TL. The cw-stiffness used for the the plots is χ = 100.

The tendency for a laser to Q-switch increases with the product q0TL and
decreases if the saturable absorber is hard to saturate, i.e. χÀ 1. As can be
inferred from Fig. 4.18 and eq.(4.60), the laser can never Q-switch, i.e. the
left side of eq.(4.60) is always smaller than the right side, if the quantity

MDF =
2q0TL
χ

< 1 (4.61)

is less than 1. The abbreviation MDF stands for mode locking driving force,
despite the fact that the expression (4.61) governs the Q-switching instabil-
ity. We will see, in the next section, the connection of this parameter with
mode locking. For solid-state lasers with long upper state life times, already
very small amounts of saturable absorption, even a fraction of a percent,
may lead to a large enough mode locking driving force to drive the laser into
Q-switching. Figure 4.19 shows the regions in the χ − P/PL - plane where
Q-switching can occur for fixed MDF according to relation (4.60). The area
above the corresponding MDF-value is the Q-switching region. For MDF <
1, cw-Q-switching can not occur. Thus, if a cw-Q-switched laser has to be
designed, one has to choose an absorber with a MDF >1. The further the op-
eration point is located in the cw-Q-switching domain the more pronounced
the cw-Q-switching will be. To understand the nature of the instability we
look at the eigen solution and eigenvalues of the linearized equations of mo-

Kaertner, Franz, et al. "Control of solid state laser dynamics by semiconductor devices." Optical Engineering
34, no. 7 (July 1995): 2024-2036. 
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Figure 4.19: For a given value of the MDF, cw-Q-switching occurs in the area
above the corresponding curve. For a MDF-value less than 1 cw-Qswitching
can not occur.

tion 4.56
d

dt

µ
∆P0(t)
∆g0(t)

¶
= s

µ
∆P0(t)
∆g0(t)

¶
(4.62)

which results in the eigenvalues

sTR =
A11 +A22

2
± j

s
A11A22 −A12A21 −

µ
A11 +A22

2

¶2
. (4.63)

With the matrix elements according to eq.(4.56) we get

s =
− 2

TR

dq
dP

¯̄
cw
Ps − 1

τstim

2
± jωQ (4.64)

ωQ =

vuut− 2

TR

dq

dP

¯̄̄̄
cw

Ps
r

τL
+

r − 1
τ pτL

−
Ã− 2

TR

dq
dP

¯̄
cw
Ps − 1

τstim

2

!2
.(4.65)

where the pump parameter is now defined as the ratio between small signal
gain the total losses in steady state, i.e. r = g0/(l + qs). This somewhat
lengthy expression clearly shows, that when the system becomes unstable,

Kaertner, Franz, et al. "Control of solid state laser dynamics by semiconductor devices." Optical Engineering
34, no. 7 (July 1995): 2024-2036. 
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−2 dq
dP

¯̄
cw
Ps >

TR
τstim

, with τL À τ p, there is a growing oscillation with fre-
quency

ωQ ≈
s

r − 1
τ pτL

≈
s

1

τ pτ stim
. (4.66)

That is, passive Q-switching can be understood as a destabilization of the
relaxation oscillations of the laser. If the system is only slightly in the instable
regime, the frequency of the Q-switching oscillation is close to the relaxation
oscillation frequency. If we define the growth rate γQ, introduced by the
saturable absorber as a prameter, the eigen values can be written as

s =
1

2

µ
γQ −

1

τ stim

¶
± j

vuutγQ
r

τL
+

r − 1
τ pτL

−
Ã
γQ − 1

τstim

2

!2
. (4.67)

Figure 4.20 shows the root locus plot for a system with and without a sat-
urable absorber. The saturable absorber destabilizes the relaxation oscilla-
tions. The type of bifurcation is called a Hopf bifurcation and results in an
oscillation.

Figure 4.20: Root locus plot for the linearized rate equations. a) Without
saturable absorber as a function of the pump parameter r; b) With saturable
absorber as a function of γQ .
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As an example, we consider a laser with the following parameters: τL =
250µs, TR = 4ns, 2l0 = 0.1, 2q0 = 0.005, 2g0 = 2, PL/PA = 100. The rate
equations are solved numberically and shown in Figures4.21 and 4.22.

Figure 4.21: Phase space plot of the rate equations. It takes several oscilla-
tions, until the steady state limit cycle is reached.

Figure 4.22: Solution for gain and output power as a function of time.
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4.5 Example: Single Mode CW-Q-Switched
Microchip Lasers

Q-switched microchip lasers are compact and simple solid-state lasers, which
can provide a high peak power with a diffraction limited output beam. Due to
the extremely short cavity length, typically less than 1 mm, single-frequency
Q-switched operation with pulse widths well below a ns can be achieved.
Pulse durations of 337 ps and 218 ps have been demonstrated with a passively
Q-switched microchip laser consisting of a Nd:YAG crystal bonded to a thin
piece of Cr4+:YAG [8, 9]. Semiconductor saturable absorbers were used to
passively Q-switch a monolithic Nd:YAG laser producing 100 ns pulses [38].

4.5.1 Set-up of the Passively Q-Switched Microchip
Laser

Figure 4.23(a) shows the experimental set-up of the passively Q-switched
microchip laser and Fig. 4.23(b) the structure of the semiconductor sat-
urable absorber [12, 13]. The saturable absorber structure is a so called
anti-resonant Fabry-Perot saturable absorber (A-FPSA), because in a mi-
crochip laser the beam size is fixed by the thermal lens that builds up in
the laser crystal, when pumped with the diode laser. Thus, one can use the
top reflector of the A-FPSA to scale the effective saturation intensity of the
absorber with respect to the intracavity power. The 200 or 220 µm thick
Nd:YVO4 or Nd:LaSc3(BO3)4, (Nd:LSB) laser crystal [39] is sandwiched be-
tween a 10% output coupler and the A-FPSA. The latter is coated for high
reflection at the pump wavelength of 808 nm and a predesigned reflectivity
at the laser wavelength of 1.062 µ m, respectively. The laser crystals are
pumped by a semiconductor diode laser at 808 nm through a dichroic beam-
splitter, that transmits the pump light and reflects the output beam at 1.064
µm for the Nd:YVO4 or 1.062 µm for the Nd:LSB laser. To obtain short Q-
switched pulses, the cavity has to be as short as possible. The highly doped
laser crystals with a short absorption length of only about 100µm lead to a
short but still efficient microchip laser [13]. The saturable absorber consists
of a dielectric top mirror and 18 pairs of GaAs/InGaAs MQW’s grown on a
GaAs/AlAs Bragg-mirror. The total optical thickness of the absorber is on
the order of 1 µm. Therefore, the increase of the cavity length due to the
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Figure 4.23: /a) Experimental set-up of the cw-passively Q-switched
Nd:YVO4 microchip-laser. (b) Structure of the anti-resonant Fabry-Perot
semiconductor saturable absorber [37].
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Figure 4.24: Single-Mode Q-switched pulse achieved with Nd:YVO4 mi-
crochip laser.

absorber is neglegible. For more details see [12, 13]. Pulses as short as 56 ps,
Fig. (4.24), have been achieved with Nd:LSB-crystals.

4.5.2 Dynamics of a Q-Switched Microchip Laser

The passively Q-switched microchip laser, shown in Fig. 4.23(a), is perfectly
modelled by the rate equations (4.49) to (4.51). To understand the basic
dependence of the cw-Q-switching dynamics on the absorber parameters, we
performed numerical simulations of the Nd:LSB microchip laser, as shown
in Fig. 4.23. The parameter set used, is given in Table 4.2. For these pa-
rameters, we obtain according to eq.(4.55) a mode locking driving force of
MDF = 685. This laser operates clearly in the cw-Q-switching regime as
soon as the laser is pumped above threshold. Note, the Q-switching condi-
tion (4.61) has only limited validity for the microchip laser considered here,
because, the cavity length is much shorter than the absorber recovery time.
Thus the adiabatic elimination of the absorber dynamics is actually not any
longer justified. Figures 4.25 and 4.26 show the numerical solution of the set
of rate equations (4.49) to (4.51) on a microsecond timescale and a picosecond
timescale close to one of the pulse emission events.
No analytic solution to the set of rate equations is known. Therefore,

optimization of Q-switched lasers has a long history [4, 5], which in general
results in complex design criteria [5], if the most general solution to the rate
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parameter value
2 g0 0.7
2 q0 0.03
2 l 0.14
TR 2.7 ps
τL 87 µs
τA 24 ps
EL 20 µJ
EA 7.7 nJ

Table 4.2: Parameter set used for the simulation of the dynamics of the
Q-switched microchip laser.
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Figure 4.25: Dynamics of the Q-switched microchip laser by numerical solu-
tion of the rate equatioins on a microsecond timescale.
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Figure 4.26: Dynamics of the Q-switched microchip laser by numerical solu-
tion of the rate equatioins on a picosecond timescale.

equations is considered. However, a careful look at the simulation results
leads to a set of very simple design criteria, as we show in the following.
As seen from Fig. 4.25, the pulse repetition time Trep is many orders of
magnitude longer than the width of a Q-switched pulse. Thus, between two
pulse emissions, the gain increases due to pumping until the laser reaches
threshold. This is described by eq.(4.50), where the stimulated emission
term can be neglected. Therfore, the pulse repetition rate is determined by
the relation that the gain has to be pumped to threshold again gth = l + q0,
if it is saturated to the value gf after pulse emission. In good approximation,
gf = l− q0, as long as it is a positive quantity. If Trep < τL, one can linearize
the exponential and we obtain

gth − gf = g0
Trep
τL

(4.68)

Trep = τL
gth − gf

g0
= τL

2q0
g0

. (4.69)

Figure 4.26 shows, that the power increases, because, the absorber saturates
faster than the gain. To obtain a fast raise of the pulse, we assume an
absorber which saturates much easier than the gain, i.e. EA ¿ EL, and the
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recovery times of gain and absorption shall be much longer than the pulse
width τ pulse, τA À τ pulse. Since, we assume a slow gain and a slow absorber,
we can neglect the relaxation terms in eqs.(4.50) and (4.51) during growth
and decay of the pulse. Then the equations for gain and loss as a function
of the unknown Q-switched pulse shape fQ(t)

P (t) = EPfQ(t) (4.70)

can be solved. The pulse shape fQ(t) is again normalized, such that its
integral over time is one and EP is, therefore, the pulse energy. Analogous to
the derivation for the Q-switched mode locking threshold in eqs.(4.84) and
(4.85), we obtain

q(t) = q0 exp

∙
−EP

EA

Z t

−∞
fQ(t

0)dt0
¸
, (4.71)

g(t) = gth exp

∙
−EP

EL

Z t

−∞
fQ(t

0)dt0
¸
. (4.72)

Substitution of these expressions into the eq.(4.49) for the laser power, and
integration over the pulse width, determines the extracted pulse energy. The
result is a balance between the total losses and the gain.

l + qP (EP ) = gP (EP ) (4.73)

with

qP (EP ) = q0
1− exp

h
−EP

EA

i
EP
EA

, (4.74)

gP (EP ) = gth
1− exp

h
−EP

EL

i
EP
EL

. (4.75)

Because, we assumed that the absorber is completely saturated, we can
set qP (EP ) ≈ 0. Figure 4.27 shows the solution of eq.(4.73), which is the
pulse energy as a function of the ratio between saturable and nonsaturable
losses s = q0/l. Also approximate solutions for small and large s are shown
as the dashed curves. Thus, the larger the ratio between saturable and
nonsaturable losses is, the larger is the intracavity pulse energy, which is not
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surprising. Note, the extracted pulse energy is proportional to the output
coupling, which is 2l if no other losses are present. If we assume, s << 1,
then, we can use approximately the low energy approximation

EP = 2EL
q0

l + q0
. (4.76)

The externally emitted pulse energy is then given by

Eex
P = 2lEP = EL

4lq0
l + q0

. (4.77)

Thus, the total extracted pulse energy is completely symmetric in the sat-
urable and non saturable losses. For a given amount of saturable absorption,
the extracted pulse energy is maximum for an output coupling as large as
possible. Of course threshold must still be reached, i.e. l + q0 < g0. Thus,
in the following, we assume l > q0 as in Fig. 4.26. The absorber is immedi-
atelly bleached, after the laser reaches threshold. The light field growth and
extracts some energy stored in the gain medium, until the gain is saturated
to the low loss value l. Then the light field decays again, because the gain
is below the loss. During decay the field can saturate the gain by a similar
amount as during build-up, as long as the saturable losses are smaller than
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the constant output coupler losses l, which we shall assume in the following.
Then the pulse shape is almost symmetric as can be seen from Fig. 4.26(b)
and is well approximated by a secant hyperbolicus square for reasons that
will become obvious in a moment. Thus, we assume

fQ(t) =
1

2τP
sech2

µ
t

τ p

¶
. (4.78)

With the assumption of an explicite pulse form, we can compute the pulse
width by substitution of this ansatz into eq.(4.49) and using (4.71), (4.72)

−2TR
τP

tanh

µ
t

τ p

¶
= gth exp

∙
− EP

2EL

µ
1 + tanh

µ
t

τ p

¶¶¸
− l. (4.79)

Again, we neglect the saturated absorption. If we expand this equation up
to first order in EP/EL and compare coefficients, we find from the constant
term the energy (4.77), and from the tanh-term we obtain the following
simple expression for the pulse width

τP = 2
TR
q0

. (4.80)

For the FWHM pulse width of the resulting sech2-pulse we obtain

τP,FWHM = 3.5
TR
q0

. (4.81)

Thus, for optimium operation of a Q-switched microchip laser, with respect
to minimum pulse width and maximum extracted energy in the limits consid-
ered here, we obtain a very simple design criterium. If we have a maximum
small signal round-trip gain g0, we should design an absorber with q0 some-
what smaller than g0/2 and an output coupler with q0 < l < g0− q0, so that
the laser still fullfills the cw-Q-switching condition. It is this simple opti-
mization, that allowed us to reach the shortest pulses every generated from a
cw-Q-switched solid-state laser. Note, for a maximum saturable absorption
of 2 q0 = 13%, a cavity roundtip time of TR = 2.6 ps for the Nd:YVO4 laser,
one expects from (4.81) a pulse width of about τP = 70ps, which is close to
what we observed in the experiment above. We achieved pulses between 56
and 90 ps [13]. The typical extracted pulse energies were on the order of EP

= 0.1 - 0.2 µJ for pulses of about 60ps [13]. Using a saturation energy of
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Figure 4.28: Laser output power as a function of time, when operating in the
Q-switched mode-locked regime.

about EL = 30 µJ and an output coupler loss of 2l = 0.1, we expect, accord-
ing to (4.77), a maximum extracted pulse energy of Eex

P = 2 µJ. Thus, we
have a deviation of one order of magnitude, which clearly indicates that the
absorber still introduces too much of nonsaturable intracavity losses. Low-
ering of these losses should lead to µJ - 50 ps pulses from this type of a
very simple and cheap laser, when compared with any other pulse generation
technique.

4.6 Q-Switched Mode Locking

To understand the regime of Q-switched mode locking, we reconsider the rate
equations (4.49) to (4.51). Fig. 4.28 shows, that we can describe the laser
power on two time scales. One is on the order of the Q-switching envelope
and occurs on multiple round-trips in the laser cavity, T = mTR. Therefore,
it is on the order of microseconds. The other time scale t is a short time scale
on the order of the pulse width, i.e. picoseconds. Assuming a normalized
pulse shape fn(t) for the n-th pulse such thatZ TR/2

−TR/2
fn(t− nTR)dt = 1, (4.82)
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we can make the following ansatz for the laser power

P (T, t) = EP (T )
∞X

n=−∞
fn(t− nTR). (4.83)

Here, EP (T = mTR) is the pulse energy of the m-th pulse, which only changes
appreciably over many round-trips in the cavity. The shape of the m-th pulse,
fm(t), is not yet of further interest. For simplicity, we assume that the mode-
locked pulses are much shorter than the recovery time of the absorber. In this
case, the relaxation term of the absorber in Eq.(4.52) can be neglected during
the duration of the mode-locked pulses. Since the absorber recovery time is
assumed to be much shorter than the cavity round-trip time, the absorber
is unsaturated before the arrival of a pulse. Thus, for the saturation of the
absorber during one pulse, we obtain

q(T = mTR, t) = q0 exp

∙
−EP (T )

EA

Z t

−TR/2
fm(t

0)dt0
¸
. (4.84)

Then, the loss in pulse energy per roundtrip can be written as

qP (T ) =

Z TR/2

−TR/2
fm(t)q(T = mTR, t)dt = q0

1− exp
h
−EP (T )

EA

i
EP (T )
EA

. (4.85)

Eq. (4.85) shows that the saturable absorber saturates with the pulse energy
and not with the average intensity of the laser, as in the case of cw-Q-
switching (4.52). Therefore, the absorber is much more strongly bleached
at the same average power. After averaging Eqs.(4.49) and (4.50) over one
round-trip, we obtain the following two equations for the dynamics of the
pulse energy and the gain on a coarse grained time scale T :

TR
dEP

dT
= 2(g − l − qP (EP ))EP , (4.86)

TR
dg

dT
= −g − g0

TL
− gEP

EL
. (4.87)

This averaging is allowed, because the saturation of the gain medium within
one pulse is negligible, due to the small interaction cross section of the
solid-state laser material. Comparing Eqs.(4.49), (4.50) and (4.52) with
(4.84), (4.86) and (4.87), it becomes obvious that the stability criterion (4.53)
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also applies to Q-switched mode locking if we replace the formula for cw-
saturation of the absorber (4.52) by the formula for pulsed saturation (4.85).
Then, stability against Q-switched mode locking requires

−2EP
dqP
dEP

¯̄̄̄
cw−mod

<
r

TL

¯̄̄̄
cw−mod

, (4.88)

with

−2EP
dqP
dEP

¯̄̄̄
cw−mod

= 2q0
1− exp

h
−EP

EA

i³
1 + EP

EA

´
EP
EA

. (4.89)

When expressed in terms of the average power P = EP/TR, similar to
Eq.(4.60), we obtain

−2TLEP
dqP
dEP

¯̄̄̄
cw−mod

= 2TLq0
1− exp

h
− P

χPPL

i³
1 + P

χPPL

´
P

χPPL

, (4.90)

where χP = χTA describes an effective stiffness of the absorber compared
with the gain when the laser is cw-mode-locked at the same average power
as the cw laser. Thus, similar to the case of cw-Q-switching and mode locking
it is useful to introduce the driving force for Q-switched mode locking

QMDF =
2q0TL
χP

. (4.91)

Figure 4.29 shows the relation (4.88) for different absorber strength. In
going from Fig. 4.18 to Fig. 4.29, we used TA = 0.1. We see, that the
short normalized recovery time essentially leads to a scaling of the abscissa,
when going from Fig. 4.18 to Fig. 4.29 while keeping all other parameters
constant. Comparing Eqs.(4.61) with (4.91), it follows that, in the case of
cw-mode locking, the absorber is more strongly saturated by a factor of
1/TA, which can easily be as large as 1000. Therefore, the Q-switched mode
locking driving force is much larger than the mode locking driving force,
MDF, Accordingly, the tendency for Q-switched mode locking is significantly
higher than for cw Q-switching. However, now, it is much easier to saturate
the absorber with an average power well below the damage threshold of the
absorber (Fig. 4.29). Therefore, one is able to leave the regime of Q-switched
mode locking at a large enough intracavity power.
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Figure 4.29: Visualization of the stability relations for Q-switched mode lock-
ing for different products 2q0TL. The assumed stiffness for pulsed operation
is χP = 10, which corresponds to TA = 0.1. The functional form of the
relations for cw Q-switching and Q-switched mode locking is very similar.
The change in the stiffness, when going from cw to pulsed saturation, thus
essentially rescales the x-axis. For low-temperature grown absorbers, TA can
be as small as 10−6

Figure 4.30: Self-Starting of mode locking and stability against Q-switched
mode locking

Kaertner, Franz, et al. "Control of solid state laser dynamics by semiconductor devices." Optical Engineering
34, no. 7 (July 1995): 2024-2036. 
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We summarize our results for Q-switched mode locking in Fig. 4.30.
It shows the stability boundary for Q-switched mode locking according to
eq.(4.88), for different strengths of the saturable absorber, i.e. different values
2q0TL. One may also derive minimum critical mode locking driving force for
self-starting modelocking of the laser MDFc due to various processes in the
laser [24][25][27][28]. Or, with the definition of the pulsed stiffness, we obtain

χp,c ≤
2q0TL
MDFc

TA. (4.92)

Thus, for a self-starting laser which shows pure cw-mode locking, we have to
design the absorber such that its MDF is greater than this critical value. Or
expressed differently, the pulsed stiffness has to be smaller than the critical
value χp,c, at a fixed value for the absorber strength q0. There is always
a trade-off: On one hand, the mode locking driving force has to be large
enough for self-starting. On the other hand the saturable absorption has to
be small enough, so that the laser can be operated in a parameter regime
where it is stable against Q-switching mode locking, see Fig. (4.30).

4.7 Summary

Starting from a simple two level laser and absorber model, we characterized
the dynamics of solid-state lasers mode-locked and Q-switched by a saturable
absorber. The unique properties of solid-state laser materials, i.e. their long
upper-state life time and their small cross sections for stimulated emission,
allow for a separation of the laser dynamics on at least two time scales.
One process is the energy build-up and decay, which occurs typically on a
time scale of the upper state lifetime or cavity decay time of the laser. The
other process is the pulse shaping, which occurs within several roundtrips
in the cavity. Separating these processes, we can distinguish between the
different laser dynamics called cw-Q-switching, Q-switched mode locking and
cw-mode locking. We found the stability boundaries of the different regimes,
which give us guidelines for the design of absorbers for a given solid state
laser to favour one of these regimes. Semiconductor absorbers are a good
choice for saturable absorbers to modelock lasers, since the carrier lifetime
can be engineered by low temperature growth [20]. When the pulses become
short enough, the laser pulse saturates the absorber much more efficiently,
which stabilizes the laser against undesired Q-switched mode locking. It has
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been demonstrated experimentally, that this technique can control the laser
dynamics of a large variety of solid-state lasers, such as Nd:YAG, Nd:YLF,
Nd:YV04, [18] in the picosecond regime.
With semiconductor devices and soliton formation due to negative GVD

and SPM, we can use similar semiconductor absorbers to modelock the lasers
in the femtosecond regime [35]. The stability criteria derived here can be ap-
plied to both picosecond and femtosecond lasers. However, the characteristics
of the absorber dynamics may change drastically when going from picosecond
to femtosecond pulses [36]. Especially, the saturation energy may depend not
only on excitation wavelength, but also on the pulsewidth. In addition there
may be additional loss mechanismes for the pulse, for example due to soliton
formation there are additional filter losses of the pulse which couple to the
energy of the pulse via the area theorem. This has to be taken into account,
before applying the theory to fs-laser systems, which will be discussed in
more detail later.
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Chapter 5

Active Mode Locking

For simplicity, we assume, that the laser operates in the transverse fundamen-
tal modes and, therefore, we only have to treat the longitudinal modes of the
laser similar to a simple plane parallel Fabry-Perot resonator (Figure: 5.1).
We consider one polarization of the field only, however, as we will say later
for some mode-locked laser polarization dynamics will become important.

The task of mode-locking is to get as many of the longitudinal modes
lasing in a phase synchronous fashion, such that the superposition of all
modes represents a pulse with a spatial extent much shorter than the cavity.
The pulse will then propagate at the group velocity corresponding to the
center frequency of the pulse.

Figure 5.1: Fabry-Perot resonator
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5.1 The Master Equation of Mode Locking

Lets consider for the moment the cold cavity (i.e. there is only a simple
linear medium in the cavity no lasing). The most general solution for the
intracavity field is a superpositon of left- and rightward running waves

E(left)(z, t) = Re

( ∞X
n=0

Êne
j(Ωnt+Knz)

)
, (5.1)

and

E(right)(z, t) = Re

( ∞X
n=0

Êne
j(Ωnt−Knz)

)
. (5.2)

The possible values for the wavenumbers are Kn = nπ/L, resulting from the
boundary conditions on metallic mirrors or periodicity after one roundtrip in
the cavity. If the mirrors are perfectly reflecting, the leftward and rightward
moving waves Eqs.(5.1) and (5.2) contain the same information and it is
sufficient to treat only one of them. Usually one of the cavity mirrors is
not perfectly reflecting in order to couple out light, however, this can be
considered a perturbation to the ideal mode structure.
We consider the modes in Eq.(5.2) as a continuum and replace the sum

by an integral

E(right)(z, t) =
1

2π
Re

½Z ∞

K=0

Ê(K)ej(Ω(K)t−Kz)dK

¾
(5.3)

with
Ê(Km) = Êm2L. (5.4)

Eq.(5.3) is similar to the pulse propagation discussed in chapter 2 and de-
scribes the pulse propagation in the resonator. However, here it is rather
an initial value problem, rather than a boundary value problem. Note, the
wavenumbers of the modes are fixed, not the frequencies. To emphasize this
even more, we introduce a new time variable T = t and a local time frame
t0 = t− z/υg,0, instead of the propagation distance z, where υg,0 is the group
velocity at the central wave number Kn0 of the pulse

υg,0 =
∂ω

∂k

¯̄̄̄
k=0

=

µ
∂k

∂ω

¶−1 ¯̄̄̄¯
ω=0

. (5.5)
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For introduction of a slowly varying envelope, we shift the frequency and
wavenumber by the center frequency ω0 = Ωn0 and center wave number
k0 = Kn0

k = K −Kn0, (5.6)

ω(k) = Ω(Kn0 + k)− Ωn0, (5.7)

Ê(k) = Ê(Kn0 + k), (5.8)

The temporal evolution of the pulse is than determined by

E(right)(z, t) =
1

2π
Re

(Z ∞

−Kn0→−∞
Ê(k)ej(ω(k)t−kz)dk

)
ej(ω0t−k0z). (5.9)

Analogous to chapter 2, we define a slowly varying field envelope, that is
already normalized to the total power flow in the beam

A(z, t) =

r
Aeff

2Z0

1

2π

Z ∞

−∞
Ê(k)ej(ω(k)t−kz)dk. (5.10)

With the retarded time t0 and time T , we obtain analogous to Eq. (2.184).

A(T, t0) =

r
Aeff

2Z0

1

2π

Z ∞

−∞
Ê(k)ej((ω(k)−υg,0k)T+kυg,0t

0
dk. (5.11)

which can be written as

TR
∂A(T, t0)

∂T

¯̄̄̄
(GDD)

= j
∞X
n=2

Dn

µ
−j ∂

n

∂t0

¶n

A(T, t0), (5.12)

with the dispersion coefficients per resonator round-trip TR =
2L
υg,0

Dn =
2L

n!υn+1g,0

∂n−1υg(k)

∂kn−1

¯̄̄̄
¯
k=0

. (5.13)

The dispersion coefficients (5.13) look somewhat suspicious, however, it is
not difficult to show, that they are equivalent to derivatives of the roundtrip
phase φR(Ω) =

Ω
c
n(Ω)2L in the resonator at the center frequency

Dn = − 1
n!

∂nφ
(n)
R (Ω)

∂Ωn

¯̄̄̄
¯
Ω=ω0

, (5.14)
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Sofar, only the lossless resonator is treated. The gain and loss can be mod-
elled by adding a term like

TR
∂A(T, t0)

∂T

¯̄̄̄
(loss)

= −lA(T, t0) (5.15)

where l is the amplitude loss per round-trip. In an analogous manner we can
write for the gain

TR
∂A(T, t0)

∂T

¯̄̄̄
(gain)

=

µ
g(T ) +Dg

∂2

∂t02

¶
A(T, t0), (5.16)

where g(T ) is the gain and and Dg is the curvature of the gain at the maxi-
mum of the Lorentzian lineshape.

Dg =
g(T )

Ω2g
(5.17)

Dg is the gain dispersion. g(T ) is an average gain, which can be computed
from the rate equation valid for each unit cell in the resonator. The dis-
tributed gain obeys the equation

∂g(z, t)

∂t
= −g − g0

τL
− g

|A(z, t)|2
EL

, (5.18)

where EL is the saturation energy EL =
hνL
2∗σL

Aeff , τL the upper state lifetime
and σL the gain cross section. For typical solid-state lasers, the intracavity
pulse energy is much smaller than the saturation energy. Therefore, the gain
changes within one roundtrip are small. Furthermore, we assume that the
gain saturates spatially homogeneous, g(z, t0) = g(t0). Then, the equation for
the average gain g(T ) can be found by averageing (5.18) over one round-trip
and we obtain

∂g(T )

∂T
= −g − g0

τL
− g

W (T )

ELTR
, (5.19)

where W (T ) is the intracavity pulse energy at time t = T

W (T ) =

Z TR/2

t0=−TR/2
|A(T, t0)|2dt0 ≈

Z ∞

−∞
|A(T, t0)|2dt0. (5.20)
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Figure 5.2: Actively modelocked laser with an amplitude modulator
(Acousto-Optic-Modulator).

Taking all effects into account, the linear ones: loss, dispersion, gain and
gain dispersion, as well as the nonlinear ones like saturable absorption and
self-phase modulation, we end up with the master equation of modelocking

TR
∂A(T, t0)

∂T
= −lA(T, t0) + j

∞X
n=2

Dn

µ
j
∂n

∂t

¶n

A(T, t0)

+ g(T )

µ
1 +

1

Ω2g

∂2

∂t02

¶
A(T, t0) (5.21)

− q(T, t0)A(T, t0)− jδ|A(T, t0)|2A(T, t0).
To keep notation simple, we replace t0 by t again. This equation was first
derived by Haus [4] under the assumption of small changes in pulse shape
per round-trip and per element passed within one round-trip.

5.2 Active Mode Locking by Loss Modula-
tion

Active mode locking was first investigated in 1970 by Kuizenga and Siegman
using a gaussian pulse analyses, which we want to delegate to the exercises
[3]. Later in 1975 Haus [4] introduced the master equation approach (5.21).
We follow the approach of Haus, because it also shows the stability of the
solution.
We introduce a loss modulator into the cavity, for example an acousto-

optic modulator, which periodically varias the intracavity loss according to
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Figure 5.3: Schematic representation of the master equation for an actively
mode-locked laser.

q(t) =M (1− cos(ωMt)). The modulation frequency has to be very precisely
tuned to the resonator round-trip time, ωM = 2π/TR, see Fig.5.2. The
modelocking process is then described by the master equation

TR
∂A

∂T
=

∙
g(T ) +Dg

∂2

∂t2
− l −M (1− cos(ωMt))

¸
A. (5.22)

neglecting GDD and SPM. The equation can be interpreted as the total pulse
shaping due to gain, loss and modulator, see Fig.5.3.
If we fix the gain in Eq. (5.22) at its stationary value, what ever it might

be, Eq.(5.22) is a linear p.d.e, which can be solved by separation of variables.
The pulses, we expect, will have a width much shorter than the round-trip
time TR. They will be located in the minimum of the loss modulation where
the cosine-function can be approximated by a parabola and we obtain

TR
∂A

∂T
=

∙
g − l +Dg

∂2

∂t2
−Mst

2

¸
A. (5.23)

Ms is the modulation strength, and corresponds to the curvature of the loss
modulation in the time domain at the minimum loss point

Dg =
g

Ω2g
, (5.24)

Ms =
Mω2M
2

. (5.25)
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The differential operator on the right side of (5.23) corresponds to the Schrödinger-
Operator of the harmonic oscillator problem. Therefore, the eigen functions
of this operator are the Hermite-Gaussians

An(T, t) = An(t)e
λnT/TR , (5.26)

An(t) =

s
Wn

2n
√
πn!τa

Hn(t/τa)e
− t2

2τ2a , (5.27)

where τa defines the width of the Gaussian. The width is given by the fourth
root of the ratio between gain dispersion and modulator strength

τa =
4

q
Dg/Ms. (5.28)

Note, from Eq. (5.26) we can follow, that the gain per round-trip of each
eigenmode is given by λn (or in general the real part of λn), which are given
by

λn = gn − l − 2Msτ
2
a(n+

1

2
). (5.29)

The corresponding saturated gain for each eigen solution is given by

gn =
1

1 + Wn

PLTR

, (5.30)

where Wn is the energy of the corresponding solution and PL = EL/τL the
saturation power of the gain. Eq. (5.29) shows that for given g the eigen
solution with n = 0, the ground mode, has the largest gain per roundtrip.
Thus, if there is initially a field distribution which is a superpostion of all
eigen solutions, the ground mode will grow fastest and will saturate the gain
to a value

gs = l +Msτ
2
a. (5.31)

such that λ0 = 0 and consequently all other modes will decay since λn < 0 for
n ≥ 1. This also proves the stability of the ground mode solution [4]. Thus
active modelocking without detuning between resonator round-trip time and
modulator period leads to Gaussian steady state pulses with a FWHM pulse
width

∆tFWHM = 2 ln 2τa = 1.66τa. (5.32)
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The spectrum of the Gaussian pulse is given by

Ã0(ω) =

Z ∞

−∞
A0(t)e

iωtdt (5.33)

=

q√
πWnτae

− (ωτa)
2

2 , (5.34)

and its FWHM is

∆fFWHM =
1.66

2πτa
. (5.35)

Therfore, the time-bandwidth product of the Gaussian is

∆tFWHM ·∆fFWHM = 0.44. (5.36)

The stationary pulse shape of the modelocked laser is due to the parabolic
loss modulation (pulse shortening) in the time domain and the parabolic
filtering (pulse stretching) due to the gain in the frequency domain, see Figs.
5.4 and 5.5. The stationary pulse is achieved when both effects balance.
Since external modulation is limited to electronic speed and the pulse width
does only scale with the inverse square root of the gain bandwidth actively
modelocking typically only results in pulse width in the range of 10-100ps.

Figure 5.4: (a) Loss modulation gives pulse shortening in each roundtrip
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Figure 5.5: (b) the finite gain bandwidth gives pulse broadening in each
roundtrip. For a certain pulse width there is balance between the two pro-
cesses.

For example: Nd:YAG; 2l = 2g = 10%, Ωg = π∆fFWHM = 0.65 THz,
M = 0.2, fm = 100 MHz,Dg = 0.24 ps2,Ms = 4 · 1016s−1, τ p ≈ 99 ps.
With the pulse width (5.28), Eq.(5.31) can be rewritten in several ways

gs = l +Msτ
2
a = l +

Dg

τ 2a
= l +

1

2
Msτ

2
a +

1

2

Dg

τ 2a
, (5.37)

which means that in steady state the saturated gain is lifted above the loss
level l, so that many modes in the laser are maintained above threshold.
There is additional gain necessary to overcome the loss of the modulator due
to the finite temporal width of the pulse and the gain filter due to the finite
bandwidth of the pulse. Usually

gs − l

l
=

Msτ
2
a

l
¿ 1, (5.38)

since the pulses are much shorter than the round-trip time and the stationary
pulse energy can therefore be computed from

gs =
1

1 + Ws

PLTR

= l. (5.39)
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Figure 5.6: Modelocking in the frequency domain: The modulator transvers
energy from each mode to its neighboring mode, thereby redistributing en-
ergy from the center to the wings of the spectrum. This process seeds and
injection locks neighboring modes.

The name modelocking originates from studying this pulse formation process
in the frequency domain. Note, the term

−M [1− cos(ωMt)]A

does generate sidebands on each cavity mode present according to

−M [1− cos(ωMt)] exp(jωn0t)

= −M
∙
exp(jωn0t)−

1

2
exp(j(ωn0t− ωMt))− 1

2
exp(j(ωn0t+ ωMt))

¸
= M

∙
− exp(jωn0t) +

1

2
exp(jωn0−1t) +

1

2
exp(jωn0+1t)

¸
if the modulation frequency is the same as the cavity round-trip frequency.
The sidebands generated from each running mode is injected into the neigh-
boring modes which leads to synchronisation and locking of neighboring
modes, i.e. mode-locking, see Fig.5.6

5.3 Active Mode-Locking by Phase Modula-
tion

Side bands can also be generated by a phase modulator instead of an am-
plitude modulator. However, the generated sidebands are out of phase with
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the carrier, which leads to a chirp on the steady state pulse. We can again
use the master equation to study this type of modelocking. All that changes
is that the modulation becomes imaginary, i.e. we have to replace M by jM
in Eq.(5.22)

TR
∂A

∂T
=

∙
g(T ) +Dg

∂2

∂t2
− l − jM (1− cos(ωMt))

¸
A. (5.40)

The imaginary unit can be pulled through much of the calculation and we
arrive at the same Hermite Gaussian eigen solutions (5.26,5.27), however, the
parameter τa becomes τ 0a and is now complex and not quite the pulse width

τ 0a =
4
p
−j 4

q
Dg/Ms. (5.41)

The ground mode or stationary solution is given by

A0(t) =

s
Ws

2n
√
πn!τ 0a

e
− t2

2τ2a

1√
2
(1+j)

, (5.42)

with τa =
4
p
Dg/Ms as before. We end up with chirped pulses. How does

the pulse shortening actually work, because the modulator just puts a chirp
on the pulse, it does actually not shorten it? One can easily show, that if a
Gaussian pulse with chirp parameter β

A0(t) ∼ e
− t2

2τ2a

1√
2
(1+jβ)

, (5.43)

has a chirp β > 1, subsequent filtering is actually shortening the pulse.

5.4 ActiveMode Locking with Additional SPM

Due to the strong focussing of the pulse in the gain medium also additional
self-phase modulation can become important. Lets consider the case of an
actively mode-locked laser with additional SPM, see Fig. 5.7. One can write
down the corresponding master equation

TR
∂A

∂T
=

∙
g(T ) +Dg

∂2

∂t2
− l −Mst

2 − jδ|A|2
¸
A. (5.44)

Unfortunately, there is no analytic solution to this equation. But it is not
difficult to guess what will happen in this case. As long as the SPM is not
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Figure 5.7: Active mode-locking with SPM

excessive, the pulses will experience additional self-phase modulation, which
creates a chirp on the pulse. Thus one can make an ansatz with a chirped
Gaussian similar to (5.43) for the steady state solution of the master equation
(5.44)

A0(t) = Ae
− t2

2τ2a
(1+jβ)+jΨT/TR (5.45)

Note, we allow for an additional phase shift per roundtrip Ψ, because the
added SPM does not leave the phase invariant after one round-trip. This is
still a steady state solution for the intensity envelope. Substitution into the
master equation using the intermediate result

∂2

∂t2
A0(t) =

½
t2

τ 4a
(1 + jβ)2 − 1

τ 2a
(1 + jβ)

¾
A0(t). (5.46)

leads to

jΨA0(t) =

½
g − l +Dg

∙
t2

τ 4a
(1 + jβ)2 − 1

τ 2a
(1 + jβ)

¸
(5.47)

−Mst
2 − jδ |A|2 e−

t2

τ2a

¾
A0(t).
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To find an approximate solution we expand the Gaussian in the bracket,
which is a consequency of the SPM to first order in the exponent.

jΨ = g − l +Dg

∙
t2

τ 4a
(1 + jβ)2 − 1

τ 2a
(1 + jβ)

¸
−Mst

2 − jδ |A|2
µ
1− t2

τ 2a

¶
.

(5.48)
This has to be fulfilled for all times, so we can compare coefficients in front
of the constant terms and the quadratic terms, which leads to two complex
conditions. This leads to four equations for the unknown pulsewidth τa,
chirp β, round-trip phase Ψ and the necessary excess gain g − l. With the
nonlinear peak phase shift due to SPM, φ0 = δ |A|2 . Real and Imaginary
parts of the quadratic terms lead to

0 =
Dg

τ 4a

¡
1− β2

¢−Ms, (5.49)

0 = 2β
Dg

τ 4a
+

φ0
τ 2a
, (5.50)

and the constant terms give the excess gain and the additional round-trip
phase.

g − l =
Dg

τ 2a
, (5.51)

Ψ = Dg

∙
− 1
τ 2a
β

¸
− φ0. (5.52)

The first two equations directly give the chirp and pulse width.

β = −φ0τ
2
a

2Dg
(5.53)

τ 4a =
Dg

Ms +
φ20
4Dg

. (5.54)

However, one has to note, that this simple analysis does not give any hint
on the stability of these approximate solution. Indeed computer simulations
show, that after an additional pulse shorting of about a factor of 2 by SPM
beyond the pulse width already achieved by pure active mode-locking on its
own, the SPM drives the pulses unstable [5]. This is one of the reasons,
why very broadband laser media, like Ti:sapphire, can not simply generate
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Figure 5.8: Acitve mode-locking with additional soliton formation

femtosecond pulses via active modelocking. The SPM occuring in the gain
medium for very short pulses drives the modelocking unstable. Additional
stabilization measures have to be adopted. For example the addition of
negative group delay dispersion might lead to stable soliton formation in the
presence of the active modelocker.

5.5 Active Mode Locking with Soliton For-
mation

Experimental results with fiber lasers [8, 9, 11] and solid state lasers [10]
indicated that soliton shaping in the negative GDD regime leads to pulse
stabilization and considerable pulse shorting. With sufficient negative dis-
persion and self-phase modulation in the system and picosecond or even
femtosecond pulses, it is possible that the pulse shaping due to GDD and
SPM is much stronger than due to modulation and gain filtering, see Fig.
5.8. The resulting master equation for this case is

TR
∂A

∂T
=

∙
g + (Dg − j |D|) ∂2

∂t2
− l −M (1− cos(ωMt))− jδ|A|2

¸
A. (5.55)
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For the case, that soliton formation takes over, the steady state solution a
soliton plus a continuum contribution

A(T, t) =
¡
a(x)ejpt + ac(T, t)

¢
e−jθ (5.56)

with

a(x) = A sech(x), and x =
1

τ
(t+ 2D

Z T

0

p(T 0)dT 0 − t0) (5.57)

where ac is the continuum contribution. The phase is determined by

θ(T ) = θ0(T )− D

TR

Z T

0

µ
1

τ(T 0)2
− p(T 0)2

¶
dT 0, (5.58)

whereby we always assume that the relation between the soliton energy and
soliton width is maintained (3.9)

|D|
τ(T )2

=
δA(T )2

2
. (5.59)

We also allow for a continuous change in the soliton amplitude A or energy
W = 2A2τ and the soliton variables phase θ0, carrier frequency p and timing
t0. φ0 is the soliton phase shift per roundtrip

φ0 =
|D|
τ 2

. (5.60)

However, we assume that the changes in carrier frequency, timing and
phase stay small. Introducing (5.56) into (5.55) we obtain according to the
soliton perturbation theory developed in chapter 3.5

TR

∙
∂ac
∂T

+
∂W

∂T
fw +

∂∆θ

∂T
fθ +

∂∆p

∂T
fp +

∂∆t

∂T
ft

¸
= φ0L (ac +∆pfp) +R(a+∆pfp + ac) (5.61)

−MωM sin(ωMτx)∆ta(x)

The last term arises because the active modelocker breaks the time invariance
of the system and leads to a restoring force pushing the soliton back to its
equilibrium position. L, R are the operators of the linearized NSE and of
the active mode locking scheme, respectively

R = g

µ
1 +

1

Ω2gτ
2

∂2

∂x2

¶
− l −M (1− cos(ωMτx)) , (5.62)

The vectors fw, fθ, fp and ft describe the change in the soliton when the soliton
energy, phase, carrier frequency and timing varies.
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5.5.1 Stability Condition

We want to show, that a stable soliton can exist in the presence of the
modelocker and gain dispersion if the ratio between the negative GDD and
gain dispersion is sufficiently large. From (5.61) we obtain the equations of
motion for the soliton parameters and the continuum by carrying out the
scalar product with the corresponding adjoint functions. Specifically, for the
soliton energy we get

TR
∂W

∂T
= 2

µ
g − l − g

3Ω2gτ
2
− π2

24
Mω2Mτ 2

¶
W (5.63)

+ < f (+)w |Rac > .

We see that gain saturation does not lead to a coupling between the soliton
and the continuum to first order in the perturbation, because they are or-
thogonal to each other in the sense of the scalar product (3.36). This also
means that to first order the total field energy is contained in the soliton.

Thus to zero order the stationary soliton energyW0 = 2A
2
0τ is determined

by the condition that the saturated gain is equal to the total loss due to the
linear loss l, gain filtering and modulator loss

g − l =
π2

24
Mω2Mτ 2 +

g

3Ω2gτ
2

(5.64)

with the saturated gain

g =
g0

1 +W0/EL
. (5.65)

Linearization around this stationary value gives for the soliton perturbations
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TR
∂∆W

∂T
= 2

Ã
− g

(1 +W0/EL)

µ
W0

EL
+

1

3Ω2gτ
2

¶

+
π2

12
Mω2Mτ2

!
∆W+ < f (+)w |Rac > (5.66)

TR
∂∆θ

∂T
= < f

(+)
θ |Rac > (5.67)

TR
∂∆p

∂T
= − 4g

3Ω2gτ
2
∆p+ < f (+)p |Rac > (5.68)

TR
∂∆t

∂T
= −π

2

6
Mω2Mτ 2∆t+ 2|D|∆p

+ < f
(+)
t |Rac > (5.69)

and for the continuum we obtain

TR
∂g(k)

∂T
= jΦ0(k

2 + 1)g(k)+ < f
(+)
k |Rac >

+ < f
(+)
k |R (a0(x) +∆w fw +∆p fp) >

− < f
(+)
k |MωM sin(ωMτx)a0(x) > .∆t (5.70)

Thus the action of the active modelocker and gain dispersion has several
effects. First, the modelocker leads to a restoring force in the timing of the
soliton (5.69). Second, the gain dispersion and the active modelocker lead to
coupling between the perturbed soliton and the continuum which results in
a steady excitation of the continuum.
However, as we will see later, the pulse width of the soliton, which can be

stabilized by the modelocker, is not too far from the Gaussian pulse width
by only active mode locking. Then relation

ωMτ ¿ 1¿ Ωgτ (5.71)

is fulfilled. The weak gain dispersion and the weak active modelocker only
couples the soliton to the continuum, but to first order the continuum does
not couple back to the soliton. Neglecting higher order terms in the matrix
elements of eq.(5.70) [6] results in a decoupling of the soliton perturbations
from the continuum in (5.66) to (5.70). For a laser far above threshold, i.e.
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W0/EL >> 1, gain saturation always stabilizes the amplitude perturbation
and eqs.(5.67) to (5.69) indicate for phase, frequency and timing fluctuations.
This is in contrast to the situation in a soliton storage ring where the laser
amplifier compensating for the loss in the ring is below threshold [14].
By inverse Fourier transformation of (5.70) and weak coupling, we obtain

for the associated function of the continuum

TR
∂G

∂T
=

∙
g − l + jΦ0 +

g

Ω2g
(1− jDn)

∂2

∂t2

−M (1− cos(ωMt))

¸
G+F−1

½
< f

(+)
k |Ra0(x) > (5.72)

− < f
(+)
k |MωM sin(ωMτx)a0(x) > ∆t

¾
where Dn is the dispersion normalized to the gain dispersion

Dn = |D|Ω2g/g. (5.73)

Note, that the homogeneous part of the equation of motion for the continuum,
which governs the decay of the continuum, is the same as the homogeneous
part of the equation for the noise in a soliton storage ring at the position
where no soliton or bit is present [14]. Thus the decay of the continuum is
not affected by the nonlinearity, but there is a continuous excitation of the
continuum by the soliton when the perturbing elements are passed by the
soliton. Thus under the above approximations the question of stability of
the soliton solution is completely governed by the stability of the continuum
(5.72). As we can see from (5.72) the evolution of the continuum obeys
the active mode locking equation with GVD but with a value for the gain
determined by (5.64). In the parabolic approximation of the cosine, we obtain
again the Hermite Gaussians as the eigensolutions for the evolution operator
but the width of these eigensolutions is now given by

τ c = τa
4
p
(1− jDn) (5.74)

and the associated eigenvalues are

λm = jΦ0 + g − l −Mω2Mτ 2a
p
(1− jDn)(m+

1

2
). (5.75)
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The gain is clamped to the steady state value given by condition (5.64) and
we obtain

λm = +jΦ0 +
1

3

p
DgMs

"³τa
τ

´2
+

π2

4

³τa
τ

´−2
(5.76)

−6
p
(1− jDn)(m+

1

2
)

#
.

Stability is achieved when all continuum modes see a net loss per roundtrip,
Re{λm} < 0 for m ≥ 0, i.e. we get from (5.76)

³τa
τ

´2
+

π2

4

µ
τ

τa

¶2
< 3Re{

p
(1− jDn)}. (5.77)

Relation (5.77) establishes a quadratic inequality for the pulse width reduc-
tion ratio ξ = (τa/τ)2, which is a measure for the pulse width reduction due
to soliton formation

ξ2 − 3Re{
p
(1− jDn)}ξ + π2

4
< 0. (5.78)

As has to be expected, this inequality can only be satisfied if we have a
minimum amount of negative normalized dispersion so that a soliton can be
formed at all

Dn,crit = 0.652. (5.79)

Therefore our perturbation ansatz gives only meaningful results beyond this
critical amount of negative dispersion. Since ξ compares the width of a
Gaussian with that of a secant hyperbolic it is more relevant to compare the
full width half maximum of the intensity profiles [?] of the corresponding
pulses which is given by

R =
1.66

1.76

p
ξ. (5.80)
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Figure 5.9: Pulsewidth reduction as a function of normalized dispersion.
Below Dn,crit = 0.652 no stable soliton can be formed.

Figure 5.9 shows the maximum pulse width reduction R allowed by the
stability criterion (5.78) as a function of the normalized dispersion. The crit-
ical value for the pulse width reduction is Rcrit ≈ 1.2. For large normalized
dispersion Fig. 1 shows that the soliton can be kept stable at a pulse width
reduced by up to a factor of 5 when the normalized dispersion can reach a
value of 200. Even at a moderate negative dispersion of Dn = 5, we can
achieve a pulsewidth reduction by a factor of 2. For large normalized disper-
sion the stability criterion (5.78) approaches asymptotically the behavior

ξ <

r
9Dn

2
or R <

1.66

1.76
4

r
9Dn

2
. (5.81)

Thus, the possible pulse-width reduction scales with the fourth root of the
normalized dispersion indicating the need of an excessive amount of disper-
sion necessary to maintain a stable soliton while suppressing the continuum.
The physical reason for this is that gain filtering and the active modelocker
continuously shed energy from the soliton into the continuum. For the soli-
ton the action of GVD and SPM is always in balance and maintains the
pulse shape. However, as can be seen from (5.72), the continuum, which can
be viewed as a weak background pulse, does not experience SPM once it is
generated and therefore gets spread by GVD. This is also the reason why
the eigenstates of the continuum consist of long chirped pulses that scale
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also with the fourth root of the dispersion (5.74). Then, the long continuum
pulses suffer a much higher loss in the active modulator in contrast to the
short soliton which suffers reduced gain when passing the gain medium due
to its broader spectrum. The soliton is stable as long as the continuum sees
less roundtrip gain than the soliton.
In principle by introducing a large amount of negative dispersion the

theory would predict arbitrarily short pulses. However, the master equation
(5.55) only describes the laser system properly when the nonlinear changes of
the pulse per pass are small. This gives an upper limit to the nonlinear phase
shift Φ0 that the soliton can undergo during one roundtrip. A conservative
estimation of this upper limit is given with Φ0 = 0.1. Then the action of
the individual operators in (5.55) can still be considered as continuous. Even
if one considers larger values for the maximum phase shift allowed, since in
fiber lasers the action of GVD and SPM occurs simultaneously and therefore
eq.(5.55) may describe the laser properly even for large nonlinear phase shifts
per roundtrip, one will run into intrinsic soliton and sideband instabilities for
Φ0 approaching 2π [30, 31]. Under the condition of a limited phase shift per
roundtrip we obtain

τ 2 =
|D|
Φ0

. (5.82)

Thus from (5.32), the definition of ξ, (5.81) and (5.82) we obtain for the
maximum possible reduction in pulsewidth

Rmax =
1.66

1.76
12

s
(9Φ0/2)2

DgMs
(5.83)

and therefore for the minimum pulsewidth

τmin =
6

s
2D2

g

9Φ0Ms
. (5.84)

The necessary amount of normalized negative GVD is then given by

Dn =
2

9
3

s
(9Φ0/2)2

Dg Ms
. (5.85)

Eqs.(5.83) to (5.85) constitute the main results of this paper, because they
allow us to compute the possible pulse width reduction and the necessary
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Table 5.1: Maximum pulsewidth reduction and necessary normalized GVD
for different laser systems. In all cases we used for the saturated gain g = 0.1
and the soliton phase shift per roundtrip Φ0 = 0.1. For the broadband gain
materials the last column indicates rather long transient times which calls
for regenerative mode locking.
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negative GVD for a given laser system. Table (5.1) shows the evaluation of
these formulas for several gain media and typical laser parameters.
Table 5.1 shows that soliton formation in actively mode-locked lasers may

lead to considerable pulse shortening, up to a factor of 10 in Ti:sapphire. Due
to the 12th root in (5.83) the shortening depends mostly on the bandwidth
of the gain material which can change by several orders of magnitude for the
different laser materials. The amount of negative dispersion for achieving this
additional pulse shortening is in a range which can be achieved by gratings,
Gires-Tournois interferometers, or prisms.
Of course, in the experiment one has to stay away from these limits

to suppress the continuum sufficiently. However, as numerical simulations
show, the transition from stable to instable behaviour is remarkably sharp.
The reason for this can be understood from the structure of the eigenvalues
for the continuum (5.76). The time scale for the decay of transients is given
by the inverse of the real part of the fundamental continuum mode which
diverges at the transition to instability. Nevertheless, a good estimate for
this transient time is given by the leading term of the real part of (5.76)

τ trans
TR

=
1

Re{λ0} ≈
3p

DgMsR2
(5.86)

This transient time is also shown in Table (5.1) for different laser systems.
Thus these transients decay, if not too close to the instability border, on time
scales from approximately 1,000 up to some 100,000 roundtrips, depending
strongly on the gain bandwidth and modulation strength. Consequently, to
first order the eigenvalues of the continuum modes, which are excited by the
right hand side of (5.72), are purely imaginary and independent of the mode
number, i.e. λn ≈ jΦ0. Therefore, as long as the continuum is stable, the
solution to (5.72) is given by

G(x) =
−j
Φ0
F−1

½
< f

(+)
k |Ra0(x) >

− Msτ
2 < f

(+)
k |xa0(x) > ∆t

τ

¾
. (5.87)

Thus, in steady state the continuum is on the order of

|G(x)| ≈ A0
Φ0

Dg

τ 2
=

A0
Dn

. (5.88)



196 CHAPTER 5. ACTIVE MODE LOCKING

which demonstrates again the spreading of the continuum by the dispersion.
Equation (5.88) shows that the nonlinear phase shift of the solitary pulse
per round trip has to be chosen as large as possible. This also maximizes
the normalized dispersion, so that the radiation shed from the soliton into
the continuum changes the phase rapidly enough such that the continuum
in steady state stays small. Note that the size of the generated continuum
according to (5.88) is rather independent of the real part of the lowest eigen-
value of the continuum mode. Therefore, the border to instability is very
sharply defined. However, the time scale of the transients at the transition
to instability can become arbitrarily long. Therefore, numerical simulations
are only trustworthy if the time scales for transients in the system are known
from theoretical considerations as those derived above in (5.86). The simu-
lation time for a given laser should be at least of the order of 10 times τ trans
or even longer, if operated close to the instability point, as we will see in the
next section.

5.5.2 Numerical simulations

Table 5.1 shows that soliton formation in actively mode-locked lasers may
lead to considerable pulse shortening, up to a factor of 10 in Ti:sapphire. We
want to illustrate that at the example of a Nd:YAG laser, which is chosen
due to its moderate gain bandwidth, and therefore, its large gain dispersion.
This will limit the pulsewidth reduction possible to about 3, but the decay
time of the continuum (5.86) (see also Table 5.1) is then in a range of 700
roundtrips so that the steady state of the mode-locked laser can be reached
with moderate computer time, while the approximations involved are still
satisfied. The system parameters used for the simulation are shown in table
5.2. For the simulation of eq.(5.55) we use the standard split-step Fourier
transform method. Here the discrete action of SPM and GDD per roundtrip
is included by choosing the integration step size for the T integration to be
the roundtrip time TR. We used a discretisation of 1024 points over the
bandwidth of 1THz, which corresponds to a resolution in the time domain
of 1ps. The following figures, show only one tenth of the simulated window
in time and frequency.
Figure 5.10 shows the result of the simulation starting with a 68-ps-long

Gaussian pulse with a pulse energy of W = 40 nJ for Dn = 24, i.e. D = -17
ps2. For the given SPM coefficient this should lead to stable pulse shortening
by a factor of R = 2.8. Thus after at least a few thousand roundtrips the
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parameter value
l 0.1
g0 1
PL 1W
Ωg 2π · 60GHz
ωM 2π · 0.25GHz
TR 4ns
M 0.2
δ 1.4 · 10−4W−1

D −17ps2 / − 10ps2

Table 5.2: Parameters used for numerical simulations

Figure 5.10: Time evolution of the pulse intensity in a Nd:YAG laser for the
parameters in Table 5.2, D = −17ps2, for the first 1,000 roundtrips in the
laser cavity, starting with a 68ps long Gaussian pulse.

Kaertner, F., D. Kopf, and U. Keller. "Solitary-pulse stabilization and shortening in actively mode-locked lasers." 
Journal of the Optical Society of America B 12, no. 3 (March 1995): 486. 

Image removed due to copyright restrictions.
 
Please see: 



198 CHAPTER 5. ACTIVE MODE LOCKING

laser should be in steady state again with a FWHM pulsewidth of 24 ps.
Fig. 5.10 shows the pulse evolution over the first thousand round-trips, i.e.
4µs real time. The long Gaussian pulse at the start contains an appreciable
amount of continuum. The continuum part of the solution does not experi-
ence the nonlinear phase shift due to SPM in contrast to the soliton. Thus
the soliton interferes with the continuum periodically with the soliton period
of Tsoliton/TR = 2π/φ0 = 20π. This is the reason for the oscillations of the
pulse amplitude seen in Fig. 5.10 which vanish with the decay of the con-
tinuum. Note also that the solitary pulse is rapidly formed, due to the large
nonlinear phase shift per roundtrip. Figure 5.11 shows the simulation in time
and frequency domain over 10,000 roundtrips. The laser reaches steady state
after about 4,000 roundtrips which corresponds to 6 × τ trans and the final
pulsewidth is 24 ps in exact agreement with the predictions of the analytic
formulas derived above.
Lower normalized dispersion of Dn = 15 or D = -10 ps2 only allows for

a reduction in pulsewidth by R = 2.68. However, using the same amount of
SPM as before we leave the range of stable soliton generation.
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Figure 5.11: Time evolution of the intensity (a) and spectrum (b) for the
same parameters as Fig. 2 over 10,000 roundtrips. The laser reaches steady
state after about 4,000 rountrips.
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Figure 5.12: (a) Time evolution of the intensity in a Nd:YAG laser for the
parameters in Table 5.2 over the first 1,000 round-trips. The amount of
negative dispersion is reduced to D = −10ps2, starting again from a 68ps
long pulse. The continuum in this case does not decay as in Fig. 5.2 and 5.3
due to the insufficient dispersion. (b) Same simulation over 50,000 round-
trips.
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Figure 5.12(a) shows similar to Fig. 5.10 the first 1, 000 roundtrips in
that case. Again the solitary pulse is rapidly formed out of the long Gaussian
initial pulse. But in contrast to the situation in Fig. 5.10, the continuum does
not any longer decay on this time scale. The dispersion is too low to spread
the continuum rapidly enough. The continuum then accumulates over many
roundtrips as can be seen from Fig. 5.12(b). After about 10,000 roundtrips
the continuum has grown so much that it extracts an appreciable amount of
energy from the soliton. But surprisingly the continuum modes stop growing
after about 30,000 roundtrips and a new quasi stationary state is reached.

5.5.3 Experimental Verification

The theory above explains very well the ps Ti:saphire experiments [10] in
the regime where the pulses are stabilized by the active modelocker alone.
Gires-Tournois interferometers were used to obtain large amounts of negative
GDD to operate the laser in the stable soliton regime derived above. Here
we want to discuss in more detail the experimental results obtained recently
with a regeneratively, actively mode-locked Nd:glass laser [7], resulting in 310
fs. If SPM and GVD could be neglected, the weak modelocker would produce
Gaussian pulses with a FWHM of τa,FWHM = 10 ps. However, the strong
SPM prevents stable pulse formation. The negative dispersion available in
the experiment is too low to achieve stable soliton formation, because the
pulse width of the soliton at this power level is given by τ = 4|D|/(δW ) =
464 fs, for the example discussed. The normalized dispersion is not large
enough to allow for such a large pulse width reduction. Providing enough
negative dispersion results in a 310 fs perfectly sech-shaped soliton-like pulse
as shown in Fig. 5.13. A numerical simulation of this case would need millions
of roundtrips through the cavity until a stationary state is reached. That
means milliseconds of real time, but would necessitate days of computer
time. Also the transition to instable behaviour has been observed, which is
the characteristic occurence of a short solitary fs-pulse together with a long
ps-pulse due to the instable continuum as we have found in the numerical
simulation for the case of a Nd:YAG laser (see Fig. 5.12(b)). Figure 5.14
shows the signal of a fast detector diode on the sampling oscilloscope. The
detector has an overall bandwidth of 25GHz and therefore can not resolve
the fs-pulse, but can resolve the width of the following roughly 100ps long
pulse.
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Figure 5.13: Autocorrelation of the actively mode-locked pulse (solid line)
and corresponding sech2 fit (dashed line) with additional soliton formation.

Figure 5.14: Sampling signal of fast detector when the mode-locked laser
operates at the transition to instability. The short fs pulse can not be resolved
by the detector and therefore results in a sharp spike corresponding to the
detector response time. In advance of the fs-pulse travels a roughly 100ps
long pulse.
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5.6 Summary

The main result of this section is, that pure active mode-locking with an
amplitude modulator leads to Gaussian pulses. The width is inverse propor-
tional to the square root of the gain bandwdith. A phase modulator leads
to chirped Gaussian pulses. A soliton much shorter than the Gaussian pulse
due to pure active mode locking can be stabilized by an active modelocker.
This finding also has an important consequence for passive mode locking. It
implies that a slow saturable absorber, i.e. an absorber with a recovery time
much longer than the width of the soliton, is enough to stabilize the pulse,
i.e. to modelock the laser.
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5.7 Active Modelocking with Detuning

So far, we only considered the case of perfect synchronism between the round-
trip of the pulse in the cavity and the external modulator. Technically,
such perfect synchronism is not easy to achieve. One way would be to do
regenerative mode locking, i.e. a part of the output signal of the modelocked
laser is detected, the beatnote at the round-trip frequency is filtered out from
the detector, and sent to an amplifier, which drives the modulator. This
procedure enforces synchronism if the cavity length undergoes fluctuations
due to acoustic vibrations and thermal expansion.
Nevertheless, it is interesting to know how sensitive the system is against

detuning between the modulator and the resonator. It turns out that this
is a physically and mathematically rich situation, which applies to many
other phenomena occuring in externally driven systems, such as the transi-
tion from laminar to turbulent flow in hydrodynamics. This transition has
puzzled physicists for more than a hundred years [1]. During the last 5 to
10 years, a scenario for the transition to turbulence has been put forward
by Trefethen and others [2]. This model gives not only a quantitative de-
scription of the kind of instability that leads to a transition from laminar,
i.e. highly ordered dynamics, to turbulent flow, i.e. chaotic motion, but also
an intuitive physical picture why turbulence is occuring. Such a picture is
the basis for many laser instabilities especially in synchronized laser systems.
According to this theory, turbulence is due to strong transient growth of
deviations from a stable stationary point of the system together with a non-
linear feedback mechanism. The nonlinear feedback mechanism couples part
of the amplified perturbation back into the initial perturbation. Therefore,
the perturbation experiences strong growth repeatedly. Once the transient
growth is large enough, a slight perturbation from the stable stationary point
renders the system into turbulence. Small perturbations are always present
in real systems in the form of system intrinsic noise or environmental noise
and, in computer simulations, due to the finite precision. The predictions
of the linearized stability analysis become meaningless in such cases. The
detuned actively modelocked laser is an excellent example of such a system,
which in addition can be studied analytically. The detuned case has been
only studied experimentally [3][4] or numerically [5] so far. Here, we con-
sider an analytical approach. Note, that this type of instability can not be
detected by a linear stability analysis which is widely used in laser theories
and which we use in this course very often to prove stable pulse formation.



208 BIBLIOGRAPHY

One has to be aware that such situations may arise, where the results of a
linearized stability analysis have only very limited validity.
The equation of motion for the pulse envelope in an actively modelocked

laser with detuning can be writen as

TM
∂A(T, t)

∂T
=

∙
g(T )− l +Df

∂2

∂t2
(5.89)

−M (1− cos(ωMt)) + Td
∂

∂t

¸
A(T, t).

Here, A(T, t) is the pulse envelope as before. There is the time T which is
coarse grained on the time scale of the resonator round-trip time TR and
the time t, which resolves the resulting pulse shape. The saturated gain is
denoted by g(T ) and left dynamical, because we no longer assume that the
gain and field dynamics reaches a steady state eventually. The curvature of
the intracavity losses in the frequency domain, which limit the bandwidth of
the laser, is given by Df .and left fixed for simplicity. M is the depth of the
loss modulation introduced by the modulator with angular frequency ωM =
2π/TM , where TM is the modulator period. Note that Eq.(5.89) describes the
change in the pulse between one period of modulation. The detuning between
resonator round-trip time and the modulator period is Td = TM − TR.This
detuning means that the pulse hits the modulator with some temporal off-set
after one round-trip, which can be described by adding the term Td

∂
∂t
A in the

master equation.The saturated gain g obeys a separate ordinary differential
equation

∂g(T )

∂T
= −g(T )− g0

τL
− g

W (T )

PL
. (5.90)

As before, g0 is the small signal gain due to the pumping, PL the saturation
power of the gain medium, τL the gain relaxation time and W (T ) =

R
|A(T, t)|2 dt the total field energy stored in the cavity at time T .
As before, we expect pulses with a pulse width much shorter than the

round-trip time in the cavity and we assume that they still will be placed
in time near the position where the modulator introduces low loss (Figure
5.15), so that we can still approximate the cosine by a parabola

TM
∂A

∂T
=

∙
g − l +Df

∂2

∂t2
−Mst

2 + Td
∂

∂t

¸
A. (5.91)
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Figure 5.15: Drifting pulse dynamics in a detuned actively modelocked laser
for the situation, where the modulator period is larger than the cavity round-
trip time. The displacement A is caused by the mismatch between the cavity
round-trip time and the modulator period. The displacement B is due to
unequal losses experienced by the front and the back of the pulse in the
modulator. The gain saturates to a level where a possible stationary pulse
experiences no net gain or loss, which opens up a net gain window following
the pulse. Perturbations within that window get amplified while drifting
towards the stationary pulse.

Here, Ms =Mω2M/2 is the curvature of the loss modulation at the point
of minimum loss as before. The time t is now allowed to range from −∞ to
+∞, since the modulator losses make sure that only during the physically
allowed range −TR/2¿ t¿ TR/2 radiation can build up.
In the case of vanishing detuning, i.e. Td = 0, the differential operator

on the right side of (5.91), which generates the dynamics and is usually
called a evolution operator L̂, correspondes to the Schrödinger operator of
the harmonic oscillator. Therefore, it is useful to introduce the creation and
annihilation operators

â =
1√
2

µ
τa∂

∂t
+

t

τa

¶
, â† =

1√
2

µ
−τa∂

∂t
+

t

τa

¶
, (5.92)

Figure by MIT OCW.
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with τa =
4
p
Df/Ms. The evolution operator L̂ is then given by

L̂ = g − l − 2pDfMs

µ
â†â+

1

2

¶
(5.93)

and the evolution equation (5.91) can be written as

TM
∂A

∂T
= L̂A. (5.94)

Consequently, the eigensolutions of this evolution operator are the Hermite-
Gaussians, which we used already before

An(T, t) = un(t)e
λnT/TM (5.95)

un(t) =

s
Wn

2n
√
πn!τa

Hn(t/τa)e
− t2

2τ2a (5.96)

and τa is the pulsewidth of the Gaussian.(see Figure 5.16a)

Figure 5.16: Lower order eigenmodes of the linearized system for zero detun-
ing, ∆ = 0, (a) and for a detuning, ∆ = 0.32, in (b).

The eigenmodes are orthogonal to each other because the evolution op-
erator is hermitian in this case.
The round-trip gain of the eigenmode un(t) is given by its eigenvalue (or

in general by the real part of the eigenvalue) which is given by λn = gn −
l− 2pDfMs(n+0.5) where gn = g0

³
1 + Wn

PLTR

´−1
, with Wn =

R |un(t)|2 dt.

Figure by MIT OCW.
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The eigenvalues prove that, for a given pulse energy, the mode with n = 0,
which we call the ground mode, experiences the largest gain. Consequently,
the ground mode will saturate the gain to a value such that λ0 = 0 in steady
state and all other modes experience net loss, λn < 0 for n > 0, as discussed
before. This is a stable situation as can be shown rigorously by a linearized
stability analysis [6]. Thus active modelocking with perfect synchronization
produces Gaussian pulses with a 1/e—half width of the intensity profile given
by τa.
In the case of non zero detuning Td, the situation becomes more complex.

The evolution operator, (5.93), changes to

L̂D = g − l − 2pDfMs

∙¡
â† −∆

¢
(â+∆) + (

1

2
+∆2)

¸
(5.97)

with the normalized detuning

∆ =
1

2
p
2DfMs

Td
τa

. (5.98)

Introducing the shifted creation and annihilation operators, b̂† = â†+∆ and
b̂ = â+∆, respectively, we obtain

L̂D = ∆g − 2pDfMs

³
b̂†b̂− 2∆b̂

´
(5.99)

with the excess gain

∆g = g − l − 2pDfMs(
1

2
+∆2) (5.100)

due to the detuning. Note, that the resulting evolution operator is not any
longer hermitian and even not normal, i.e.

£
A,A†

¤ 6= 0, which causes the
eigenmodes to become nonnormal [8]. Nevertheless, it is an easy excercise to
compute the eigenvectors and eigenvalues of the new evolution operator in
terms of the eigenstates of b̂†b̂, |li , which are the Hermite Gaussians centered
around ∆. The eigenvectors |ϕni to L̂D are found by the ansatz

|ϕni =
nX
l=0

cnl |li , with cnl+1 =
n− l

2∆
√
l + 1

cnl . (5.101)

The new eigenvalues are λn = gn − l − 2pDfMs(∆
2 + n+ 0.5). By inspec-

tion, it is again easy to see, that the new eigenstates form a complete basis in
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L2(IR). However, the eigenvectors are no longer orthogonal to each other. The
eigensolutions as a function of time are given as a product of a Hermite Poly-
nomial and a shifted Gaussian un(t) = ht |ϕni ∼ Hn(t/τa) exp

h
− (t−

√
2∆τa)2

2τ2a

i
.

Again, a linearized stability analysis shows that the ground mode, i.e.|ϕ0i ,
a Gaussian, is a stable stationary solution. Surprisingly, the linearized anal-
ysis predicts stability of the ground mode for all values of the detuning in
the parabolic modulation and gain approximation. This result is even inde-
pendent from the dynamics of the gain, i.e. the upper state lifetime of the
active medium, as long as there is enough gain to support the pulse. Only
the position of the maximum of the ground mode,

√
2∆ · τa, depends on the

normalized detuning.
Figure 5.15 summarizes the results obtained so far. In the case of de-

tuning, the center of the stationary Gaussian pulse is shifted away from the
position of minimum loss of the modulator. Since the net gain and loss within
one round-trip in the laser cavity has to be zero for a stationary pulse, there
is a long net gain window following the pulse in the case of detuning due
to the necessary excess gain. Figure 2 shows a few of the resulting lowest
order eigenfunctions for the case of a normalized detuning ∆ = 0 in (a) and
∆ = 0.32 in (b). These eigenfunctions are not orthogonal as a result of the
nonnormal evolution operator

5.7.1 Dynamics of the Detuned Actively Mode-locked
Laser

To get insight into the dynamics of the system, we look at computer simu-
lations for a Nd:YLF Laser with the parameters shown in Table 5.3 Figures

EL = 366 µJ g0 = 0.79
τL = 450 µs Ms = 2.467 · 1017s−2
Ωg = 1.12 THz Dg = 2 · 10−26 s2
TR = 4 ns τa = 17 ps
l = 0.025 λ0 = 1.047 µm
M = 0.2

Table 5.3: Data used in the simulations of a Nd:YLF laser.

5.17 show the temporal evolution of the coefficient cn,when the master equa-
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tion is decomposed into Hermite Gaussians centered at t=0 according to
Eq.(5.96).

A(T, t) =
∞X
n=0

cn(T ) un(t)
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Figure 5.17: Coefficients of the envelope in a Hermite-Gaussian-Basis, as
a function of resonator round-trips. The normalized detuning is ∆ = 3.5.
The simulation starts from the steady state without detuning. The curve
starting at 1 is the ground mode. To describe a shifted pulse, many modes
are necessary.

Figure 5.18 and 5.19 shows the deviation from the steady state gain and
the pulse envelope in the time domain for a normalized detuning of ∆ = 3.5.
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Figure 5.18: Gain as a function of the number of roundtrips. It changes to a
higher level.
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Figure 5.19: Temporal evolution of the pusle envelope. The pulse shifts
slowly into the new equilibrium position at

√
2 ∆ = 4.9 in agreement with

the simulation.

Figures 5.20 to 5.22 show the same quantities for a slightly higher nor-
malized detuning of ∆ = 4.
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Figure 5.20: Temporal evolution of the coefficients in a Hermite-Gaussian
Basis at a normalized detuning of ∆ = 4. Almost peridoically short in-
terrupting events of the otherwise regular motion can be easily recognized
(Intermittent Behavior). Over an extended period time between such events
the laser approaches almost a steady state.
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Figure 5.22: Time evolution of pulse envelope.

0 5 10 15 20
-0.08
-0.06
-0.04
-0.02

0
0.02

ga
in

 (g
 - 

g ss
) /

 g
ss

resonator roundtrips / 10000

Figure 5.21: Temporal evolution of deviation from quasi steady state gain.

The pictures clearly show that the system does not approach a steady
state anymore, but rather stays turbulent, i.e. the dynamics is chaotic.

5.7.2 Nonnormal Systems and Transient Gain

To get insight into the dynamics of a nonnormal time evolution, we consider
the following two-dimensional nonnormal system

du

dt
= Au, u(0) = u0, u(t) = eAtu0 (5.102)
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Figure 5.23: Decomposition of an initial perturbation in the eigen basis.

with

A =

µ −1
2

a
2

0 −1
¶
⇒ A† =

µ −1
2

0
a
2
−1

¶
,
£
A,A†

¤
=

a

4

µ
a 1
1 a

¶
6= 0.
(5.103)

The parameter a scales the strength of the nonnormality, similar to the
detuning ∆ in the case of a modelocked laser or the Reynolds number in
hydrodynamics, where the linearized Navier-Stokes Equations constitute a
nonnormal system.
The eigenvalues and vectors of the linear system are

λ1 = −1
2
, v1 =

µ
1
0

¶
, λ2 = −1, v2 =

1√
1 + a2

µ
a
−1

¶
(5.104)

The eigenvectors build a complete system and every initial vector can be
decomposed in this basis. However, for large a, the two eigenvectors become
more and more parallel, so that a decomposition of a small initial vector
almost orthogonal to the basis vectors needs large components (Figure 5.23)
The solution is

u(t) = eAtu0 = c1e
−t/2 −→v 1 + c2 e

−t −→v 2.
Since the eigenvalues are negative, both contributions decay, and the

system is stable. However, one eigen component decays twice as fast than
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the other one. Of importance to us is the transient gain that the system is
showing due to the fact of near parallel eigen vectors. Both coefficients c1
and c2 are large. When one of the components decays, the other one is still
there and the resulting vector

u(t→ 2) ≈ c1e
−1 −→v 1.

can be much larger then the initial perturbation during this transient phase.
This is transient gain. It can become arbitrarily large for large a.

5.7.3 The Nonormal Behavior of the Detuned Laser

The nonnormality of the operator,
h
L̂D, L̂

†
D

i
∼ ∆, increases with detuning.

Figure 5.24 shows the normalized scalar products between the eigenmodes
for different values of the detuning

C(m,n) =

¯̄̄̄
¯ hϕm |ϕniphϕm |ϕmi hϕn |ϕni

¯̄̄̄
¯ . (5.105)

The eigenmodes are orthogonal for zero detuning. The orthogonality vanishes
with increased detuning. The recursion relation (5.101) tells us that the
overlap of the new eigenmodes with the ground mode increases for increasing
detuning. This corresponds to the parallelization of the eigenmodes of the
linearzed problem which leads to large transient gain,

°°°eL̂Dt°°°, in a nonnormal
situation [2]. Figure 5.24d shows the transient gain for an initial perturbation
from the stationary ground mode calculated by numerical simulations of the
linearized system using an expansion of the linearized system in terms of Fock
states to the operator b̂. A normalized detuning of ∆ = 3 already leads to
transient gains for perturbations of the order of 106 within 20, 000 round-trips
which lead to an enormous sensitivity of the system against perturbations.
An analytical solution of the linearized system neglecting the gain saturation
shows that the transient gain scales with the detuning according to exp(2∆2).
This strong super exponential growth with increasing detuning determines
the dynamics completely.
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Figure 5.24: Scalar products of eigenvectors as a function of the eigenvector
index for the cases ∆ = 0 shown in (a), ∆ = 1 in (b) and ∆ = 3 in (c). (d)
shows the transient gain as a funtion of time for these detunings computed
and for ∆ = 2, from the linearized system dynamics.

Figure 5.25: Critical detuning obtained from numerical simulations as a func-
tion of the normalized pumping rate and cavity decay time divided by the
upper-state lifetime. The crititcal detuning is almost independent of all laser
parameters shown. The mean critical detuning is ∆ ≈ 3.65.

Kaertner, F. X., et al. "Turbulence in Mode-locked Lasers".  Physical Review Letters 82, no. 22 
(May 1999): 4428-4431. 

Kaertner, F. X., et al. "Turbulence in Mode-locked Lasers".  Physical Review Letters 82, no. 22 
(May 1999): 4428-4431. 
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Figure 5.25 shows the surface of the transition to turbulence in the pa-
rameter space of a Nd:YLF laser, i.e. critical detuning ∆, the pumping rate
r = g0/l and the ratio between the cavity decay time Tcav = TR/l and the
upper state lifetime τL. In this model, we did not inlcude the spontaneous
emission.
The transition to turbulence always occurs at a normalized detuning of

about∆ ≈ 3.7 which gives a transient gain exp(2∆2) = 1012. This means that
already uncertainties of the numerical integration algorithm are amplified to
a perturbation as large as the stationary state itself.To prove that the system
dynamics becomes really chaotic, one has to compute the Liapunov coefficient
[9]. The Liapunov coefficient describes how fast the phase space trajectores
separate from each other, if they start in close proximity. It is formally
defined in the following way. Two trajectories y(t) and z(t) start in close
vicinity at t = t0

ky(t0)− z(t0)k = ε = 10−4. (5.106)

Then, the system is run for a certain time ∆t and the logarithmic growth
rate, i.e. Liapunov coefficient, of the distance between both trajectories is
evaluated using

λ0 = ln

µky(t0 +∆t)− z(t0 +∆t)k
ε

¶
(5.107)

For the next iteration the trajectory z(t) is rescaled along the distance be-
tween y(t0 +∆t) and z(t0 +∆t) according to

z(t1) = y(t0 +∆t) + ε
y(t0 +∆t)− z(t0 +∆t)

ky(t0 +∆t)− z(t0 +∆t)k . (5.108)

The new points of the trajectories z(t1+∆t) and y(t1+∆t) = y(t0+2∆t) are
calculated and a new estimate for the Liapunov coefficient λ1 is calculated
using Eq.(5.107) with new indices. This procedure is continued and the
Liapunov coefficient is defined as the average of all the approximations over
a long enough iteration, so that its changes are below a certain error bound
from iteration to iteration.

λ =
1

N

NX
n=0

λn (5.109)

Figure 5.26 shows the Liapunov coefficient of the Nd:YLF laser discussed
above, as a function of the normlized detuning. When the Liapunov coef-
ficient becomes positive, i.e. the system becomes exponentially sensitive to
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small changes in the initial conditions, the system is called chaotic. The
graph clearly indicates that the dynamics is chaotic above a critical detuning
of about ∆c ≈ 3.7.

Figure 5.26: Liapunov coefficient over normalized detuning.

In the turbulent regime, the system does not reach a steady state, because
it is nonperiodically interrupted by a new pulse created out of the net gain
window, see Figure 5.15, following the pulse for positive detuning. This pulse
saturates the gain and the nearly formed steady state pulse is destroyed and
finally replaced by a new one. The gain saturation provides the nonlinear
feedback mechanism, which strongly perturbs the system again, once a strong
perturbation grows up due to the transient linear amplification mechanism.
The critical detuning becomes smaller if additional noise sources, such as

the spontaneous emission noise of the laser amplifier and technical noise
sources are taken into account. However, due to the super exponential
growth, the critical detuning will not depend strongly on the strength of
the noise sources. If the spontaneous emission noise is included in the sim-
ulation, we obtain the same shape for the critical detuning as in Fig. 5.25,
however the critical detuning is lowered to about ∆c ≈ 2. Note that this crit-
ical detuning is very insensitive to any other changes in the parameters of the
system. Therefore, one can expect that actively mode-locked lasers without
regenerative feedback run unstable at a real detuning, see (5.98) given by

Td = 4
p
2DfMsτa (5.110)

Kaertner, F. X., et al. "Turbulence in Mode-locked Lasers".  Physical Review Letters 82, no. 22 
(May 1999): 4428-4431. 
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For the above Nd:YLF laser, using the values in Table 5.3 results in a relative
precision of the modulation frequency of

Td
TR

= 1.7 · 10−6.

The derived value for the frequency stability can easily be achieved and
maintained with modern microwave synthesizers. However, this requires that
the cavity length of Nd:YLF laser is also stable to this limit. Note that the
thermal expansion coefficient for steel is 1.6 · 10−5/K.
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Chapter 6

Passive Modelocking

As we have seen in chapter 5 the pulse width in an actively modelocked laser
is inverse proportional to the fourth root of the curvature in the loss modu-
lation. In active modelocking one is limited to the speed of electronic signal
generators. Therefore, this curvature can never be very strong. However, if
the pulse can modulate the absorption on its own, the curvature of the ab-
sorption modulationcan become large, or in other words the net gain window
generated by the pulse can be as short as the pulse itself. In this case, the
net gain window shortens with the pulse. Therefore, passively modelocked
lasers can generate much shorter pulses than actively modelocked lasers.
However, a suitable saturable absorber is required for passive modelock-

ing. Depending on the ratio between saturable absorber recovery time and fi-
nal pulse width, one may distinguish between the regimes of operation shown
in Figure 6.1, which depicts the final steady state pulse formation process.
In a solid state laser with intracavity pulse energies much lower than the sat-
uration energy of the gain medium, gain saturation can be neglected. Then
a fast saturable absorber must be present that opens and closes the net gain
window generated by the pulse immediately before and after the pulse. This
modelocking principle is called fast saturable absorber modelocking, see Fig-
ure 6.1 a).
In semiconductor and dye lasers usually the intracavity pulse energy ex-

ceeds the saturation energy of the gain medium and so the the gain medium
undergoes saturation. A short net gain window can still be created, almost
independent of the recovery time of the gain, if a similar but unpumped
medium is introduced into the cavity acting as an absorber with a somewhat
lower saturation energy then the gain medium. For example, this can be

225
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Figure 6.1: Pulse-shaping and stabilization mechanisms owing to gain and
loss dynamics in passively mode-locked lasers: (a) using only a fast saturable
absorber; (b) using a combination of gain and loss saturation; (c) using a
saturable absorber with a finite relaxation time and soliton formation.

arranged for by stronger focusing in the absorber medium than in the gain
medium. Then the absorber bleaches first and opens a net gain window,
that is closed by the pulse itself by bleaching the gain somewhat later, see
Figure 6.1 b). This principle of modelocking is called slow-saturable absorber
modelocking.

When modelocking of picosecond and femtosecond lasers with semicon-
ductor saturable absorbers has been developed it became obvious that even
with rather slow absorbers, showing recovery times of a few picoseconds, one
was able to generate sub-picosecond pulses resulting in a significant net gain
window after the pulse, see Figure 6.1 c). From our investigation of active
modelocking in the presence of soliton formation, we can expect that such a
situation may still be stable up to a certain limit in the presence of strong
soliton formation. This is the case and this modelocking regime is called
soliton modelocking, since solitary pulse formation due to SPM and GDD
shapes the pulse to a stable sech-shape despite the open net gain window
following the pulse.

Kartner, F. X., and U. Keller. "Stabilization of soliton-like pulses with a slow saturable absorber." 
Optics Letters 20 (1990): 16-19. 
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6.1 Slow Saturable Absorber Mode Locking

Due to the small cross section for stimulated emission in solid state lasers,
typical intracavity pulse energies are much smaller than the saturation energy
of the gain. Therefore, we neglected the effect of gain saturation due to one
pulse sofar, the gain only saturates with the average power. However, there
are gain media which have large gain cross sections like semiconductors and
dyes, see Table 4.1, and typical intracavity pulse energies may become large
enough to saturate the gain considerably in a single pass. In fact, it is this
effect, which made the mode-locked dye laser so sucessful. The model for the
slow saturable absorber mode locking has to take into account the change
of gain in the passage of one pulse [1, 2]. In the following, we consider a
modelocked laser, that experiences in one round-trip a saturable gain and a
slow saturable absorber. In the dye laser, both media are dyes with different
saturation intensities or with different focusing into the dye jets so that gain
and loss may show different saturation energies. The relaxation equation of
the gain, in the limit of a pulse short compared with its relaxation time, can
be approximated by

dg

dt
= −g |A(t)|

2

EL
(6.1)

The coefficient EL is the saturation energy of the gain. Integration of the
equation shows, that the gain saturates with the pulse energy E(t)

E(t) =

Z t

−TR/2
dt|A(t)|2 (6.2)

when passing the gain

g(t) = gi exp [−E(t)/EL] (6.3)

where gi is the initial small signal gain just before the arrival of the pulse. A
similar equation holds for the loss of the saturable absorber whose response
(loss) is represented by q(t)

q(t) = q0 exp [−E(t)/EA] (6.4)
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where EA is the saturation energy of the saturable absorber. If the back-
ground loss is denoted by l, the master equation of mode-locking becomes

1

TR

∂

∂T
A = [gi (exp (−E(t)/EL))A − lA−

q0 exp (−E(t)/EA)]A+
1
Ω2f

∂2

∂t2
A

(6.5)

Here, we have replaced the filtering action of the gain Dg =
1
Ω2f

as

produced by a separate fixed filter. An analytic solution to this integro-
differential equation can be obtained with one approximation: the exponen-
tials are expanded to second order. This is legitimate if the population deple-
tions of the gain and saturable absorber media are not excessive. Consider
one of these expansions:

q0 exp (−E(t)/EA) ≈ q0

∙
1− (E(t)/EA) +

1

2
(E(t)/EA)

2

¸
. (6.6)

We only consider the saturable gain and loss and the finite gain bandwidth.
Than the master equation is given by

TR
∂A(T, t)

∂T
=

∙
g(t)− q(t)− l +Df

∂2

∂t2

¸
A(T, t). (6.7)

The filter dispersion, Df = 1/Ω2f , effectively models the finite bandwidth
of the laser, that might not be only due to the finite gain bandwidth, but
includes all bandwidth limiting effects in a parabolic approximation. Sup-
pose the pulse is a symmetric function of time. Then the first power of the
integral gives an antisymmetric function of time, its square is symmetric.
An antisymmetric function acting on the pulse A(t) causes a displacement.
Hence, the steady state solution does not yield zero for the change per pass,
the derivative 1

TR

∂A
∂T
must be equated to a time shift ∆t of the pulse. When

this is done one can confirm easily that A(t) = Ao sech(t/τ) is a solution of
(6.6) with constraints on its coefficients. Thus we, are looking for a "steady
state" solution A(t, T ) = Ao sech(

t
τ
+ α T

TR
).Note, that α is the fraction of

the pulsewidth, the pulse is shifted in each round-trip due to the shaping by
loss and gain. The constraints on its coefficients can be easily found using
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the following relations for the sech-pulse

E(t) =

Z t

−TR/2
dt|A(t)|2 = W

2

µ
1 + tanh(

t

τ
+ α

T

TR
)

¶
(6.8)

E(t)2 =

µ
W

2

¶2µ
2 + 2tanh(

t

τ
+ α

T

TR
)− sech2( t

τ
+ α

T

TR
)

¶
(6.9)

TR
∂

∂T
A(t, T ) = −α tanh( t

τ
+ α

T

TR
)A(t, T ) (6.10)

1

Ω2f

∂2

∂t2
A(t, T ) =

1

Ω2fτ
2

µ
1− 2sech2( t

τ
+ α

T

TR
)

¶
A(t, T ), (6.11)

substituing them into the master equation (6.5) and collecting the coefficients
in front of the different temporal functions. The constant term gives the
necessary small signal gain

gi

"
1− W

2EL
+

µ
W

2EL

¶2#
= l + q0

"
1− W

2EA
+

µ
W

2EA

¶2#
− 1

Ω2fτ
2
. (6.12)

The constant in front of the odd tanh−function delivers the timing shift per
round-trip

α =
∆t

τ
= gi

"
W

2EL
−
µ

W

2EL

¶2#
− q0

"
W

2EA
−
µ

W

2EA

¶2#
. (6.13)

And finally the constant in front of the sech2-function determines the pulsewidth

1

τ 2
=

Ω2fW
2

8

µ
q0
E2
A

− gi
E2
L

¶
(6.14)

These equations have important implications. Consider first the equation for
the inverse pulsewidth, (6.14). In order to get a real solution, the right hand
side has to be positive. This implies that q0/E2

A > gi/E
2
L. The saturable

absorber must saturate more easily, and, therefore more strongly, than the
gain medium in order to open a net window of gain (Figure 6.2).
This was accomplished in a dye laser system by stronger focusing into

the saturable absorber-dye jet (Reducing the saturation energy for the sat-
urable absorber) than into the gain-dye jet (which was inverted, i.e. optically
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Figure 6.2: Dynamics of a laser mode-locked with a slow saturable absorber.

Figure by MIT OCW.
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pumped). Equation (6.12) makes a statement about the net gain before pas-
sage of the pulse. The net gain before passage of the pulse is

gi − q0 − l = − 1

Ω2fτ
2
+ gi

"
W

2EL
−
µ

W

2EL

¶2#

−q0
"

W

2EA
−
µ

W

2EA

¶2#
.

(6.15)

Using condition (6.14) this can be expressed as

gi − q0 − l = gi

∙
W

2EL

¸
− q0

∙
W

2EA

¸
+

1

Ω2fτ
2 . (6.16)

This gain is negative since the effect of the saturable absorber is larger than
that of the gain. Since the pulse has the same exponential tail after passage
as before, one concludes that the net gain after passage of the pulse is the
same as before passage and thus also negative. The pulse is stable against
noise build-up both in its front and its back. This principle works if the
ratio between the saturation energies for the saturable absorber and gain
χP = EA/EP is very small. Then the shortest pulsewidth achievable with a
given system is

τ =
4√
q0Ωf

EA

W
>

2√
q0Ωf

. (6.17)

The greater sign comes from the fact that our theory is based on the ex-
pansion of the exponentials, which is only true for W

2EA
< 1. If the filter

dispersion 1/Ω2f that determines the bandwidth of the system is again re-
placed by an average gain dispersion g/Ω2g and assuming g = q0. Note that
the modelocking principle of the dye laser is a very faszinating one due to
the fact that actually non of the elements in the system is fast. It is the in-
terplay between two media that opens a short window in time on the scale of
femtoseconds. The media themselves just have to be fast enough to recover
completely between one round trip, i.e. on a nanosecond timescale.
Over the last fifteen years, the dye laser has been largely replaced by

solid state lasers, which offer even more bandwidth than dyes and are on top
of that much easier to handle because they do not show degradation over
time. With it came the need for a different mode locking principle, since the
saturation energy of these broadband solid-state laser media are much higher
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than the typical intracavity pulse energies. The absorber has to open and
close the net gain window.

6.2 Fast Saturable Absorber Mode Locking

The dynamics of a laser modelocked with a fast saturable absorber is again
covered by the master equation (5.21) [3]. Now, the losses q react instantly
on the intensity or power P (t) = |A(t)|2 of the field

q(A) =
q0

1 + |A|2
PA

, (6.18)

where PA is the saturation power of the absorber. There is no analytic
solution of the master equation (5.21) with the absorber response (6.18).
Therefore, we make expansions on the absorber response to get analytic
insight. If the absorber is not saturated, we can expand the response (6.18)
for small intensities

q(A) = q0 − γ|A|2, (6.19)

with the saturable absorber modulation coefficient γ = q0/PA. The constant
nonsaturated loss q0 can be absorbed in the losses l0 = l + q0. The resulting
master equation is, see also Fig. 6.3

TR
∂A(T, t)

∂T
=

∙
g − l0 +Df

∂2

∂t2
+ γ|A|2 + jD2

∂2

∂t2
−j δ|A|2

¸
A(T, t). (6.20)
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Figure 6.3: Schematic representation of the master equation for a passively
modelocked laser with a fast saturable absorber.

Eq. (6.20) is a generalized Ginzburg-Landau equation well known from
superconductivity with a rather complex solution manifold.

6.2.1 Without GDD and SPM

We consider first the situation without SPM and GDD, i.e. D2=δ = 0

TR
∂A(T, t)

∂T
=

∙
g − l0 +Df

∂2

∂t2
+ γ|A|2

¸
A(T, t). (6.21)

Up to the imaginary unit, this equation is still very similar to the NSE. To
find the final pulse shape and width, we look for the stationary solution

TR
∂As(T, t)

∂T
= 0.

Since the equation is similar to the NSE, we try the following ansatz

As(T, t) = As(t) = A0sech
µ
t

τ

¶
. (6.22)

Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 

Image removed due to copyright restrictions.
 
Please see: 
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Note, there is

d

dx
sechx = − tanhx sechx, (6.23)

d2

dx2
sechx = tanh2 x sechx − sech3x,

=
¡
sechx− 2 sech3x¢ . (6.24)

Substitution of ansatz (6.22) into the master equation (6.21), assuming steady
state, results in

0 =

∙
(g − l0) +

Df

τ 2

∙
1− 2sech2

µ
t

τ

¶¸
+γ|A0|2sech2

µ
t

τ

¶¸
·A0sech

µ
t

τ

¶
. (6.25)

Comparison of the coefficients with the sech- and sech3-expressions results
in the conditions for the pulse peak intensity and pulse width τ and for the
saturated gain

Df

τ 2
=

1

2
γ|A0|2, (6.26)

g = l0 − Df

τ 2
. (6.27)

From Eq.(6.26) and with the pulse energy of a sech pulse, see Eq.(3.8), W =
2|A0|2τ ,

τ =
4Df

γW
. (6.28)

Eq. (6.28) is rather similar to the soliton width with the exception that
the conservative pulse shaping effects GDD and SPM are replaced by gain
dispersion and saturable absorption. The soliton phase shift per roundtrip is
replaced by the difference between the saturated gain and loss in Eq.(6.28).
It is interesting to have a closer look on how the difference between gain and
loss Df

τ2
per round-trip comes about. From the master equation (6.21) we can

derive an equation of motion for the pulse energy according to

TR
∂W (T )

∂T
= TR

∂

∂T

Z ∞

−∞
|A(T, t)|2 dt (6.29)

= TR

Z ∞

−∞

∙
A(T, t)∗

∂

∂T
A(T, t) + c.c.

¸
dt (6.30)

= 2G(gs,W )W, (6.31)
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where G is the net energy gain per roundtrip, which vanishes when steady
state is reached [3]. Substitution of the master equation into (6.30) withZ ∞

−∞

¡
sech2x

¢
dx = 2, (6.32)Z ∞

−∞

¡
sech4x

¢
dx =

4

3
, (6.33)

−
Z ∞

−∞
sechx

d2

dx2
(sechx) dx =

Z ∞

−∞

µ
d

dx
sechx

¶2
dx =

2

3
. (6.34)

results in

G(gs,W ) = gs − l0 − Df

3τ 2
+
2

3
γ|A0|2 (6.35)

= gs − l0 +
1

2
γ|A0|2 = gs − l0 +

Df

τ 2
= 0 (6.36)

with the saturated gain
gs(W ) =

g0

1 + W
PLTR

(6.37)

Equation (6.36) together with (6.28) determines the pulse energy

gs(W ) =
g0

1 + W
PLTR

= l0 − Df

τ 2

= l0 − (γW )
2

16Dg
(6.38)

Figure 6.4 shows the time dependent variation of gain and loss in a laser
modelocked with a fast saturable absorber on a normalized time scale Here,
we assumed that the absorber saturates linearly with intensity up to a max-
imum value q0 = γA20. If this maximum saturable absorption is completely
exploited see Figure 6.5.The minimum pulse width achievable with a given
saturable absorption q0 results from Eq.(6.26)

Df

τ 2
=

q0
2
, (6.39)

to be

τ =

r
2

q0

1

Ωf
. (6.40)
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Figure 6.4: Gain and loss in a passively modelocked laser using a fast sat-
urable absorber on a normalized time scale x = t/τ . The absorber is assumed

to saturate linearly with intensity according to q(A) = q0
³
1− |A|2

A20

´
.

Figure 6.5: Saturation characteristic of an ideal saturable absorber

Kartner, F. X., and U. Keller. "Stabilization of soliton-like pulses with a slow saturable absorber." 
Optics Letters 20 (1990): 16-19. 

Image removed due to copyright restrictions.
 
Please see: 



6.2. FAST SATURABLE ABSORBER MODE LOCKING 237

Note that in contrast to active modelocking, now the achievable pulse width
is scaling with the inverse gain bandwidth, which gives much shorter pulses.
Figure 6.4 can be interpreted as follows: In steady state, the saturated gain is
below loss, by about one half of the exploited saturable loss before and after
the pulse. This means, that there is net loss outside the pulse, which keeps
the pulse stable against growth of instabilities at the leading and trailing
edge of the pulse. If there is stable mode-locked operation, there must be
always net loss far away from the pulse, otherwise, a continuous wave signal
running at the peak of the gain would experience more gain than the pulse
and would break through. From Eq.(6.35) follows, that one third of the
exploited saturable loss is used up during saturation of the aborber and
actually only one sixth is used to overcome the filter losses due to the finite
gain bandwidth. Note, there is a limit to the mimium pulse width, which
comes about, because the saturated gain (6.27) is gs = l+ 1

2
q0 and, therefore,

from Eq.(6.40), if we assume that the finite bandwidth of the laser is set by
the gain, i.e. Df = Dg =

g
Ω2g
we obtain for q0 À l

τmin =
1

Ωg
(6.41)

for the linearly saturating absorber model. This corresponds to mode locking
over the full bandwidth of the gain medium, since for a sech-shaped pulse,
the time-bandwidth product is 0.315, and therefore,

∆fFWHM =
0.315

1.76 · τmin =
Ωg

1.76 · π . (6.42)

As an example, for Ti:sapphire this corresponds to Ωg = 270 THz, τmin = 3.7
fs, τFWHM = 6.5 fs.

6.2.2 With GDD and SPM

After understanding what happens without GDD and SPM, we look at the
solutions of the full master equation (6.20) with GDD and SPM. It turns out,
that there exist steady state solutions, which are chirped hyperbolic secant
functions [4]

As(T, t) = A0

µ
sech

µ
t

τ

¶¶(1+jβ)
ejψT/TR , (6.43)

= A0sech
µ
t

τ

¶
exp

∙
jβ ln sech

µ
t

τ

¶
+ jψT/TR

¸
. (6.44)
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Where ψ is the round-trip phase shift of the pulse, which we have to allow for.
Only the intensity of the pulse becomes stationary. There is still a phase-shift
per round-trip due to the difference between the group and phase velocity
(these effects have been already transformed away) and the nonlinear effects.
As in the last section, we can substitute this ansatz into the master equation
and compare coefficients. Using the following relations

d

dx

¡
f(x)b

¢
= bf(x)b−1

d

dx
f(x) (6.45)

d

dx
(sechx)(1+jβ) = − (1 + jβ) tanhx (sechx)(1+jβ) , (6.46)

d2

dx2
(sechx)(1+jβ) =

¡
(1 + jβ)2 − ¡2 + 3jβ − β2

¢
sech2x

¢
(6.47)

(sechx)(1+jβ) . (6.48)

in the master equation and comparing the coefficients to the same functions
leads to two complex equations

1

τ 2
(Df + jD2)

¡
2 + 3jβ − β2

¢
= (γ − jδ) |A0|2, (6.49)

l0 − (1 + jβ)2

τ 2
(Df + jD2) = g − jψ. (6.50)

These equations are extensions to Eqs.(6.26) and (6.27) and are equivalent
to four real equations for the phase-shift per round-trip ψ, the pulse width
τ , the chirp β and the peak power |A0|2 or pulse energy. The imaginary
part of Eq.(6.50) determines the phase-shift only, which is most often not of
importance. The real part of Eq.(6.50) gives the saturated gain

g = l0 − 1− β2

τ 2
Df +

2βD2

τ 2
. (6.51)

The real part and imaginary part of Eq.(6.49) give

1

τ 2
£
Df

¡
2− β2

¢− 3βD2

¤
= γ|A0|2, (6.52)

1

τ 2
£
D2

¡
2− β2

¢
+ 3βDf

¤
= −δ|A0|2. (6.53)

We introduce the normalized dispersion, Dn = D2/Df , and the pulse width
of the system without GDD and SPM, i.e. the width of the purely saturable
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absorber modelocked system, τ 0 = 4Df/(γW ). Deviding Eq.(6.53) by (6.52)
and introducing the normalized nonlinearity δn = δ/γ, we obtain a quadratic
equation for the chirp,

Dn

¡
2− β2

¢
+ 3β¡

2− β2
¢− 3βDn

= −δn,

or after some reodering

3β

2− β2
=

δn +Dn

−1 + δnDn
≡ 1

χ
. (6.54)

Note that χ depends only on the system parameters. Therefore, the chirp is
given by

β = −3
2
χ±

sµ
3

2
χ

¶2
+ 2. (6.55)

Knowing the chirp, we obtain from Eq.(6.52) the pulsewidth

τ =
τ 0
2

¡
2− β2 − 3βDn

¢
, (6.56)

which, with Eq.(6.54), can also be written as

τ =
3τ 0
2
β (χ−Dn) (6.57)

In order to be physically meaning full the pulse width has to be a positive
number, i.e. the product β (χ−Dn) has always to be greater than 0, which
determines the root in Eq.(6.55)

β =

⎧⎨⎩ −32χ+
q¡

3
2
χ
¢2
+ 2, for χ > Dn

−3
2
χ−

q¡
3
2
χ
¢2
+ 2, for χ < Dn

. (6.58)

Figure 6.6(a,b and d) shows the resulting chirp, pulse width and nonlinear
round-trip phase shift with regard to the system parameters [4][5]. A neces-
sary but not sufficient criterion for the stability of the pulses is, that there
must be net loss leading and following the pulse. From Eq.(6.51), we obtain

gs − l0 = −1− β2

τ 2
Df +

2βD2

τ 2
< 0. (6.59)
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If we define the stability parameter S

S = 1− β2 − 2βDn > 0, (6.60)

S has to be greater than zero, as shown in Figure 6.6 (d).

Figure 6.6: (a) Pulsewidth, (b) Chirp parameter, (c) Net gain following the
pulse, which is related to stability. (d) Phase shift per pass. [4]

Figure 6.6 (a-d) indicate that there are essentially three operating regimes.
First, without GDD and SPM, the pulses are always stable. Second, if there
is strong soliton-like pulse shaping, i.e. δn À 1 and −Dn À 1 the chirp is
always much smaller than for positive dispersion and the pulses are soliton-
like. At last, the pulses are even chirp free, if the condition δn = −Dn is
fulfilled. Then the solution is

As(T, t) = A0

µ
sech

µ
t

τ

¶¶
ejψT/TR , for δn = −Dn. (6.61)

Haus, H. A., J. G. Fujimoto, E. P. Ippen. "Structure for additive pulse modelocking." Journal of Optical 
Society of Americas B 8 (1991): 208.
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Note, for this discussion we always assumed a positive SPM-coefficient. In
this regime we also obtain the shortest pulses directly from the system, which
can be a factor 2-3 shorter than by pure saturable absorber modelocking.
Note that Figure 6.6 indicates even arbitrarily shorter pulses if the nonlinear
index, i.e. δn is further increased. However, this is only an artificat of
the linear approximation of the saturable absorber, which can now become
arbitrarily large, compare (6.18) and (6.19). As we have found from the
analysis of the fast saturable absorber model, Figure 6.4, only one sixth of
the saturable absorption is used for overcoming the gain filtering. This is so,
because the saturable absorber has to shape and stabilize the pulse against
breakthrough of cw-radiation. With SPM and GDD this is relaxed. The
pulse shaping can be done by SPM and GDD alone, i.e. soliton formation
and the absorber only has to stabilize the pulse. But then all of the saturable
absorption can be used up for stability, i.e. six times as much, which allows
for additional pulse shorteing by a factor of about

√
6 = 2.5 in a parbolic

filter situation. Note, that for an experimentalist a factor of three is a large
number. This tells us that the 6.5 fs limit for Ti:sapphire derived above from
the saturable absorber model can be reduced to 2.6 fs including GDD and
SPM, which is about one optical cycle of 2.7 fs at a center wavelength of
800nm. At that point all approximations, we have mode so far break down.
If the amount of negative dispersion is reduced too much, i.e. the pulses
become to short, the absorber cannot keep them stable anymore.

If there is strong positive dispersion, the pulses again become stable and
long, but highly chirped. The pulse can then be compressed externally, how-
ever not completely to their transform limit, because these are nonlinearly
chirped pulses, see Eq.(6.43).

In the case of strong solitonlike pulse shaping, the absorber doesn’t have
to be really fast, because the pulse is shaped by GDD and SPM and the
absorber has only to stabilize the soliton against the continuum. This regime
has been called Soliton mode locking.

6.3 Soliton Mode Locking

If strong soliton formation is present in the system, the saturable absorber
doesn’t have to be fast [6][7][8], see Figure 6.7. The master equation descibing
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the mode locking process is given by

TR
∂A(T, t)

∂T
=

∙
g − l + (Df + jD)

∂2

∂t2
− jδ|A(T, t)|2 − q(T, t)

¸
A(T, t).

(6.62)
The saturable absorber obeys a separate differential equation that describes
the absorber response to the pulse in each round trip

∂q(T, t)

∂t
= −q − q0

τA
− |A(T, t)|

2

EA
. (6.63)

Where τA is the absorber recovery time and EA the saturation energy. If the
soliton shaping effects are much larger than the pulse

Figure 6.7: Response of a slow saturable absorber to a soliton-like pulse.
The pulse experiences loss during saturation of the absorber and filter losses.
The saturated gain is equal to these losses. The loss experienced by the
continuum, lc must be higher than the losses of the soliton to keep the soliton
stable.

Kartner, F. X., and U. Keller. "Stabilization of soliton-like pulses with a slow saturable absorber." 
Optics Letters 20 (1990): 16-19. 
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Figure 6.8: The continuum, that might grow in the opten net gain window
following the pulse is spread by dispersion into the regions of high absorption.

shaping due to the filter and the saturable absorber, the steady state
pulse will be a soliton and continuum contribution similar to the case of
active mode locking with strong soliton formation as discussed in section 5.5

A(T, t) =

µ
A sech(

t

τ
) + ac(T, t)

¶
e
−jφ0 T

TR (6.64)

Figure 6.9: Normalized gain, soliton and continuum. The continuum is a
long pulse exploiting the peak of the gain

Kartner, F. X., and U. Keller. "Stabilization of soliton-like pulses with a slow saturable absorber." 
Optics Letters 20 (1990): 16-19. 
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The continuum can be viewed as a long pulse competing with the soliton
for the available gain. In the frequency domain, see Figure 6.9, the soliton
has a broad spectrum compared to the continuum. Therefore, the continuum
experiences the peak of the gain, whereas the soliton spectrum on average
experiences less gain. This advantage in gain of the continuum has to be
compensated for in the time domain by the saturable absorber response, see
Figure 6.8. Whereas for the soliton, there is a balance of the nonlinearity
and the dispersion, this is not so for the continuum. Therefore, the contin-
uum is spread by the dispersion into the regions of high absorption. This
mechanism has to clean up the gain window following the soliton and caused
by the slow recovery of the absorber. As in the case of active modelocking,
once the soliton is too short, i.e. a too long net-gain window arises, the loss
of the continuum may be lower than the loss of the soliton, see Figure 6.7
and the continuum may break through and destroy the single pulse soliton
solution. As a rule of thumb the absorber recovery time can be about 10
times longer than the soliton width. This modelocking principle is especially
important for modelocking of lasers with semiconductor saturable absorbers,
which show typical absorber recovery times that may range from 100fs-100
ps. Pulses as short as 13fs have been generated with semiconductor saturable
absorbers [11]. Figure 6.10 shows the measured spectra from a Ti:sapphire
laser modelocked with a saturable absorber for different values for the intra-
cavity dispersion. Lowering the dispersion, increases the bandwidth of the
soliton and therefore its loss, while lowering at the same time the loss for the
continuum. At some value of the dispersion the laser has to become unstabile
by break through of the continuum. In the example shown, this occurs at
a dispersion value of about D = −500fs2. The continuum break-through is
clearly visible by the additional spectral components showing up at the cen-
ter of the spectrum. Reducing the dispersion even further might lead again
to more stable but complicated spectra related to the formation of higher
order solitons. Note the spectra shown are time averaged spectra.
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Figure 6.10: Measured (–) and simulated (- - -) spectra from a semiconduc-
tor saturable absorber modelocked Ti:sapphire laser for various values of the
net intracavity dispersion.

Figure 6.11: Measured (–-) and simulated (- - -) autocorrelations corre-
sponding to the spectra shown in Figure 6.10.

Figure by MIT OCW.

Figure by MIT OCW.
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relation of the emitted pulse, see Figure 6.11. The details of the spectra and
autocorrelation may strongly depend on the detailed absorber response.

6.4 Dispersion Managed Soliton Formation

The nonlinear Schrödinger equation describes pulse propagation in a medium
with continuously distributed dispersion and self-phase-modulation. For
lasers generating pulses as short as 10 fs and below, it was first pointed out by
Spielmann et al. that large changes in the pulse occur within one roundtrip
and that the ordering of the pulse-shaping elements within the cavity has a
major effect on the pulse formation [9]. The discrete action of linear disper-
sion in the arms of the laser resonator and the discrete, but simultaneous,
action of positive SPM and positive GDD in the laser crystal cannot any
longer be neglected. The importance of strong dispersion variations for the
laser dynamics was first discovered in a fiber laser and called stretched pulse
modelocking [11]. The positive dispersion in the Er-doped fiber section of a
fiber ring laser was balanced by a negative dispersive passive fiber. The pulse
circulating in the ring was stretched and compressed by as much as a factor
of 20 in one roundtrip. One consequence of this behavior was a dramatic
decrease of the nonlinearity and thus increased stability against the SPM
induced instabilities. The sidebands, due to periodic perturbations of the
soliton, as discussed in section 3.6, are no longer observed (see Fig. 6.12).

Figure 6.12: Spectra of mode-locked Er-doped fiber lasers operating in the
conventional soliton regime, i.e. net negative dispersion and in the stretched
pulse mode of operation at almost zero average dispersion [11].

Tamura, K., E. P. Ippen, H. A. Haus, and L. E. Nelson. "77-fs pulse generation from a stretched-pulse 
mode-locked all-fiber ring laser." Optics Letters 18 (1993): 1080-1082. 

The continuum leads to a background pedestal in the intensity autocor-

Image removed due to copyright restrictions.
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The energy of the output pulses could be increased 100 fold. The mini-
mum pulsewidth was 63 fs, with a bandwdith much broader than the erbium
gain bandwidth [12]. Figure 6.12 also shows the spectral enhancement of the
fiber laser in the dispersion managed regime. The generation of ultrashort
pulses from solid state lasers like Ti:sapphire has progressed over the past
decade and led to the generation of pulses as short as 5 fs directly from the
laser. At such short pulse lengths the pulse is streched up to a factor of ten
when propagating through the laser crystal creating a dispersion managed
soliton [10]. The spectra generated with these lasers are not of simple shape
for many reasons. Here, we want to consider the impact on the spectral
shape and laser dynamcis due to dispersion managed soliton formation.

Figure 6.13: (a) Schematic of a Kerr-lens mode-locked Ti:sapphire laser:
P’s, prisms; L, lens; DCM’s, double-chirped mirror; TiSa, Ti:sapphire. (b)
Correspondence with dispersion-managed fiber transmission.

A mode-locked laser producing ultrashort pulses consists at least of a gain

Figure by MIT OCW.
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medium (Ti:sapphire crystal) and dispersion balancing components (mirrors,
prism pairs), see Fig. 6.13 a. The system can be decomposed into the res-
onator arms and the crystal, see Fig. 6.13 b. To achieve ultrashort pulses,
the dispersion-balancing components should produce near-zero net dispersion
while the dispersion element(s) individually produce significant group delay
over the broad bandwidth of the laser pulse. This fact suggests an analogy
with dispersion-managed pulse propagation along a dispersion-managed fiber
transmission link [14]. A system with sufficient variation of dispersion can
support solitary waves. One can show that the Kerr nonlinearity produces
a self-consistent nonlinear scattering potential that permits formation of a
perodic solution with a simple phase factor in a system with zero net dis-
persion. The pulses are analogous to solitons in that they are self-consistent
solutions of the Hamiltonian (lossless) problem as the conventional solitons
discussed above. But they are not secant hyperbolic in shape. Figure 6.14
shows a numerical simulation of a self-consistent solution of the Hamiltonian
pulse-propagation problem in a linear medium of negative dispersion and
subsequent propagation in a nonlinear medium of positive dispersion and
positive self-phase modulation, following the equation

∂

∂z
A(z, t) = jD(z)

∂2

∂t2
A(z, t)− jδ(z)|A|2A(z, t) (6.65)

In Fig. 6.15 the steady state intensity profiles are shown at the center of
the negative dispersion segment over 1000 roundtrips. It is clear that the solu-
tion repeats itself from period to period, i.e. there is a new solitary wave that
solves the piecewise nonlinear Schroedinger equation 6.65, dispersion man-
aged soliton. In contrast to the conventional soliton the dispersion mangaged
soliton of equation 6.65 (with no SAM and no filtering) resemble Gaussian
pulses down to about −10 dB from the peak, but then show rather compli-
cated structure, see Fig. 6.15.The dispersion map D(z) used is shown as an
inset in Figure 6.14. One can additionally include saturable gain, Lorentzian
gain filtering, and a fast saturable absorber. Figure 6.14 shows the behavior
in one period (one round trip through the resonator) including these effects.
The response of the absorber is q(A) = qo/(1+ |A|2/PA), with qo = 0.01/mm
and PA = 1 MW. The bandwidth-limited gain is modeled by the Lorentzian
profile with gain bandwidth 2π×43 THz. The filtering and saturable absorp-
tion reduce the spectral and temporal side lobes of the Hamiltonian problem.
As can be inferred from Fig. 6.14, the steady state pulse formation can be
understood in the following way. By symmetry the pulses are chirp free in
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Figure 6.14: Pulse shaping in one round trip. The negative segment has no
nonlinearity.

the middle of the dispersion cells. A chirp free pulse starting in the center of
the gain crystal, i.e. nonlinear segment is spectrally broadened by the SPM
and disperses in time due to the GVD, which generates a rather linear chirp
over the pulse. After the pulse is leaving the crystal it experiences negative
GVD during propagation through the left or right resonator arm, which is
compressing the positively chirped pulse to its transform limit at the end of
the arm, where an output coupler can be placed. Back propagation towards
the crystal imposes a negative chirp, generating the time reversed solution of
the nonliner Schrödinger equation (6.65). Therefore, subsequent propagation
in the nonlinear crystal is compressing the pulse spectrally and temporally
to its initial shape in the center of the crystal. The spectrum is narrower in
the crystal than in the negative-dispersion sections, because it is negatively
prechirped before it enters the SPM section and spectral spreading occurs
again only after the pulse has been compressed. This result further explains
that in a laser with a linear cavity, for which the negative dispersion is lo-
cated in only one arm of the laser resonator (i.e. in the prism pair and no
use of chirped mirrors) the spectrum is widest in the arm that contains the
negative dispersion . In a laser with a linear cavity, for which the negative
dispersion is equally distributed in both arms of the cavity, the pulse runs

Chen, Y., et al. "Dispersion managed mode-locking." Journal of Optical Society of Americas B 16 (1999): 1999-2004.
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through the dispersion map twice per roundtrip. The pulse is short at each
end of the cavity and, most importantly, the pulses are identical in each pass
through the crystal, which exploits the saturable absorber action (Kerr-Lens
Modelocking in this case, as will be discussed in the next chapter) twice
per roundtrip, in contrast to an asymmetric dispersion distribution in the
resonator arms. Thus a symmetric dispersion distribution leads to an effec-
tive saturable absorption that is twice as strong as an asymmetric dispersion
distribution resulting in substantially shorter pulses. Furthermore, the dis-
persion swing between the negative and positive dispersion sections is only
half, which allows for shorter dispersion-managed solitons operating at the
same average power level.

Figure 6.15: Simulation of the Hamiltonian problem. Intensity profiles at
the center of the negatively dispersive segment are shown for successive
roundtrips. The total extent in 1000 roundtrips. D = D(±) = ±60 fs2/mm,
segment of crystal length L = 2 mm, τFWHM = 5.5 fs, δ = 0 for D < 0, δ = 1
(MW mm)−1 for D > 0. [10]

Chen, Y., et al. "Dispersion managed mode-locking." Journal of Optical Society of Americas B 16 (1999): 1999-2004.
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To further illustrate the efficiency of the dispersion managed soliton for-
mation, we present a series of simulations that start with a linear segment
of negative dispersion and a nonlinear segment of positive dispersion of the
same magnitude, saturable absorber action, and filtering.

Figure 6.16: Sequence of pulse profiles in the center of the negatively dis-
persive segment for three magnitudes of SPM. to = 3 fs, with solid curves
(5.5 fs) for δ = 1 (MW mm)−1, dashed-dotted curve (7 fs) for δ = 0.5 (MW
mm)−1, and dashed cuves for no SPM of δ = 0. The dispersion map is of
Fig. 6.14. The output coupler loss is 3%.[10]

The dashed curve in Figure 6.16 shows the pulse shape for gain, loss,
saturable absorption and gain filtering only. We obtained the other traces
by increasing the SPM while keeping the energy fixed through adjustment
of the gain. As one can see, increasing the SPM permits shorter pulses.
The shortest pulse can be approximately three times shorter than the pulse
without SPM. The parameters chosen for the simulations are listed in the
figure caption. In this respect, the behavior is similar to the fast saturable
absorber case with conventional soliton formation as discussed in the last
section.
A major difference in the dispersion managed soliton case is illustrated in

Fig. 6.17. The figure shows the parameter ranges for a dispersion-managed
soliton system (no gain, no loss, no filtering) that is unbalanced such as to
result in the net dispersion that serves as the abscissa of the figure. Each
curve gives the locus of energy versus net cavity dispersion for a stretching

Chen, Y., et al. "Dispersion managed mode-locking." Journal of Optical Society of Americas B 16 (1999): 1999-2004.
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ratio S = LD/τ 2FWHM (or pulse width with fixed crystal length L). One can
see that for pulse width longer than 8 fs with crystal length L = 2 mm,
no solution of finite energy exists in the dispersion managed system for zero
or positive net dispersion. Pulses of durations longer than 8 fs require net
negative dispersion. Hence one can reach the ultrashort dispersion managed
soliton operation at zero net dispersion only by first providing the system
with negative dispersion. At the same energy, one can form a shorter pulse
by reducing the net dispersion, provided that the 8 fs threshold has been
passed. For a fixed dispersion swing ±D, the stretching increases quadrat-
ically with the spectral width or the inverse pulse width. Long pulses with
no stretching have a sech shape. For stretching ratios of 3-10 the pulses are
Gaussian shaped. For even larger stretching ratios the pulse spectra become
increasingly more flat topped, as shown in Fig. 6.16.

Figure 6.17: Energy of the pulse in the lossless dispersion-managed system
with stretching S = LD/τ 2FWHM or for a fixed crystal length L and pulsewidth
as parameters; D = 60 fs2/mm for Ti:sapphire at 800 nm [10].

To gain insight into the laser dynamics and later on in their noise and
tuning behavior, it is advantageous to formulate also a master equation ap-
proach for the dispersion managed soliton case [16]. Care has to be taken of
the fact that the Kerr-phase shift is produced by a pulse of varying amplitude
and width as it circulates around the ring. The Kerr-phase shift for a pulse

Chen, Y., et al. "Dispersion managed mode-locking." Journal of Optical Society of Americas B 16 (1999): 1999-2004.
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of constant width, δ|a|2 had to be replaced by a phase profile that mimics
the average shape of the pulse, weighted by its intensity. Therefore, the SPM
action is replaced by

δ|A|2 = δo|Ao|2
µ
1− µ

t2

τ 2

¶
(6.66)

where Ao is the pulse amplitude at the position of minimum width. The
Kerr-phase profile is expanded to second order in t. The coefficient δo and
µ are evaluated variationally. The saturable absorber action is similarly
expanded. Finally, the net intracavity dispersion acting on average on the
pulse is replaced by the effective dispersion Dnet in the resonator within one
roundtrip. The master equation becomes

TR
∂

∂T
A = (g − l)A+

Ã
1

Ω2f
+ jDnet

!
∂2

∂t2
A

+(γo − jδo)|Ao|2
µ
1− µ

t2

τ 2

¶
A

(6.67)

This equation has Gaussian-pulse solutions. The master equation (6.67)
is a patchwork, it is not an ordinary differential equation. The coefficients in
the equation depend on the pulse solution and eventually have to be found
iteratively. Nevertheless, the equation accounts for the pulse shaping in the
system in an analytic fashion. It will allow us to extend the conventional
soliton perturbation theory to the case of dispersion managed solitons.
There is one more interesting property of the stretched pulse operation

that needs to be emphasized. Dispersion managed solitons may form even
when the net dispersion as seen by a linearly propagating pulse is zero or
slightly positive. This is a surprising result which was discovered in the
study of dispersion managed soliton propagation [14]. It turns out that the
stretched pulse changes its spectrum during propagation through the two
segments of fiber with opposite dispersion or in the case of a Ti:Sapphire
laser in the nonlinear crystal. The spectrum in the segment with normal
(positive) dispersion is narrower, than in the segment of anomalous (nega-
tive) dispersion, see Figure 6.14. The pulse sees an effective net negative
dispersion, provided that the positive Dnet is not too large. In (6.67) the
Dnet is to be replaced by Deff which can be computed variationally. Thus,
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dispersion managed soliton-like solutions can exist even when Dnet is zero.
However, they exist only if the stretching factor is large, see Figure 6.17.
A remarkable property of the dispersion managed solitons is that they do

not radiate (generate continuum) even though they propagate in a medium
with abrupt dispersion changes. This can be understood by the fact, that the
dispersion mangaged soliton is a solution of the underlaying dynamics incor-
porating already the periodic dispersion variations including the Kerr-effect.
This is in contrast to the soliton in a continuously distributed dispersive en-
vironment, where periodic variations in dispersion and nonlinearity leads to
radiation.
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Chapter 7

Kerr-Lens and Additive Pulse
Mode Locking

There are many ways to generate saturable absorber action. One can use
real saturable absorbers, such as semiconductors or dyes and solid-state laser
media. One can also exploit artificial saturable absorbers. The two most
prominent artificial saturable absorber modelocking techniques are called
Kerr-Lens Mode Locking (KLM) and Additive Pulse Mode Locking (APM).
APM is sometimes also called Coupled-Cavity Mode Locking (CCM). KLM
was invented in the early 90’s [1][2][3][4][5][6][7], but was already predicted
to occur much earlier [8][9][10]·

7.1 Kerr-Lens Mode Locking (KLM)

The general principle behind Kerr-Lens Mode Locking is sketched in Fig. 7.1.
A pulse that builds up in a laser cavity containing a gain medium and a Kerr
medium experiences not only self-phase modulation but also self focussing,
that is nonlinear lensing of the laser beam, due to the nonlinear refractive in-
dex of the Kerr medium. A spatio-temporal laser pulse propagating through
the Kerr medium has a time dependent mode size as higher intensities ac-
quire stronger focussing. If a hard aperture is placed at the right position
in the cavity, it strips of the wings of the pulse, leading to a shortening of
the pulse. Such combined mechanism has the same effect as a saturable ab-
sorber. If the electronic Kerr effect with response time of a few femtoseconds
or less is used, a fast saturable absorber has been created. Instead of a sep-
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artifical fast 
saturable 
absorber

   Kerr 
Mediumgain

intensity

   hard aperture

beam 
waist

self - 
focusing

   soft aperture

Figure 7.1: Principle mechanism of KLM. The hard aperture can be also
replaced by the soft aperture due to the spatial variation of the gain in the
laser crystal.

arate Kerr medium and a hard aperture, the gain medium can act both as a
Kerr medium and as a soft aperture (i.e. increased gain instead of saturable
absorption). The sensitivity of the laser mode size on additional nonlinear
lensing is drastically enhanced if the cavity is operated close to the stability
boundary of the cavity. Therefore, it is of prime importance to understand
the stability ranges of laser resonators. Laser resonators are best understood
in terms of paraxial optics [11][12][14][13][15].

7.1.1 Review of Paraxial Optics and Laser Resonator
Design

The solutions to the paraxial wave equation, which keep their form during
propagation, are the Hermite-Gaussian beams. Since we consider only the
fundamental transverse modes, we are dealing with the Gaussian beam

U(r, z) =
Uo

q(z)
exp

∙
−jk r2

2q(z)

¸
, (7.1)
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with the complex q-parameter q = a+ jb or its inverse

1

q(z)
=

1

R(z)
− j

λ

πw2(z)
. (7.2)

The Gaussian beam intensity I(z, r) = |U(r, z)|2 expressed in terms of the
power P carried by the beam is given by

I(r, z) =
2P

πw2(z)
exp

∙
− 2r2

w2(z)

¸
. (7.3)

The use of the q-parameter simplifies the description of Gaussian beam prop-
agation. In free space propagation from z1 to z2, the variation of the beam
parameter q is simply governed by

q2 = q1 + z2 − z1, (7.4)

where q2 and q1 are the beam parameters at z1 and z2. If the beam waist,
at which the beam has a minimum spot size w0 and a planar wavefront
(R = ∞), is located at z = 0, the variations of the beam spot size and the
radius of curvature are explicitly expressed as

w(z) = wo

"
1 +

µ
λz

πw2o

¶2#1/2
, (7.5)

and

R(z) = z

"
1 +

µ
πw2o
λz

¶2#
. (7.6)

The angular divergence of the beam is inversely proportional to the beam
waist. In the far field, the half angle divergence is given by,

θ =
λ

πwo
, (7.7)

as illustrated in Figure 7.2.
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Figure 7.2: Gaussian beam and its characteristics.

Due to diffraction, the smaller the spot size at the beam waist, the larger
the divergence. The Rayleigh range is defined as the distance from the waist
over which the beam area doubles and can be expressed as

zR =
πw2o
λ

. (7.8)

The confocal parameter of the Gaussian beam is defined as twice the Rayleigh
range

b = 2zR =
2πw2o
λ

, (7.9)

and corresponds to the length over which the beam is focused. The propa-
gation of Hermite-Gaussian beams through paraxial optical systems can be
efficiently evaluated using the ABCD-law [11]

q2 =
Aq1 +B

Cq1 +D
(7.10)

where q1 and q2 are the beam parameters at the input and the output planes
of the optical system or component. The ABCD matrices of some optical
elements are summarized in Table 7.1. If a Gaussian beam with a waist w01
is focused by a thin lens a distance z1 away from the waist, there will be a

-1

Planes of 
constant phase

z/zR

0 1 2 3 4

L=R
Beam Waist

w(z)
2W0

θ =πw0

λ

Figure by MIT OCW.
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new focus at a distance

z2 = f +
(z1 − f)f2

(z1 − f)2 +
³
πw201
λ

´2 , (7.11)

and a waist w02

1

w202
=

1

w201

µ
1− z1

f

¶2
+
1

f2

³πw01
λ

´2
(7.12)

Figure 7.3: Focusing of a Gaussian beam by a lens.
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Optical Element ABCD-Matrix

Free Space Distance L
µ
1 L
0 1

¶
Thin Lens with
focal length f

µ
1 0
−1/f 1

¶
Mirror under Angle
θ to Axis and Radius R
Sagittal Plane

µ
1 0

−2 cos θ
R

1

¶
Mirror under Angle
θ to Axis and Radius R
Tangential Plane

µ
1 0
−2

R cos θ
1

¶
Brewster Plate under
Angle θ to Axis and Thickness
d, Sagittal Plane

µ
1 d

n

0 1

¶
Brewster Plate under
Angle θ to Axis and Thickness
d, Tangential Plane

µ
1 d

n3

0 1

¶

Table 7.1: ABCD matrices for commonly used optical elements.

Figure 7.4: Two-Mirror Resonator with curvedmirrors with radii of curvature
R1 and R2.

The resonator can be unfolded for an ABCD-matrix analysis, see Figure
7.5.

7.1.2 Two-Mirror Resonators

We consider the two mirror resonator shown in Figure 7.4.
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Figure 7.5: Two-mirror resonator unfolded. Note, only one half of the fo-
cusing strength of mirror 1 belongs to a fundamental period describing one
resonator roundtrip.

The product of ABCD matrices describing one roundtrip according to
Figure 7.5 are then given by

M =

µ
1 0
−1
2f1

1

¶µ
1 L
0 1

¶µ
1 0
−1
f2

1

¶µ
1 L
0 1

¶µ
1 0
−1
2f1

1

¶
(7.13)

where f1 = R1/2, and f2 = R2/2. To carry out this product and to formulate
the cavity stability criteria, it is convenient to use the cavity parameters
gi = 1−L/Ri, i = 1, 2. The resulting cavity roundtrip ABCD-matrix can be
written in the form

M =

µ
(2g1g2 − 1) 2g2L

2g1 (g1g2 − 1) /L (2g1g2 − 1)
¶
=

µ
A B
C D

¶
. (7.14)

Resonator Stability

The ABCD matrices describe the dynamics of rays propagating inside the

resonator. An optical ray is characterized by the vector r=
µ

r
r0

¶
, where r

is the distance from the optical axis and r0 the slope of the ray to the optical
axis. The resonator is stable if no ray escapes after many round-trips, which
is the case when the eigenvalues of the matrix M are less than one. Since
we have a lossless resonator, i.e. det|M | = 1, the product of the eigenvalues
has to be 1 and, therefore, the stable resonator corresponds to the case of a
complex conjugate pair of eigenvalues with a magnitude of 1. The eigenvalue
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equation to M is given by

det |M − λ · 1| = det
¯̄̄̄µ

(2g1g2 − 1)− λ 2g2L
2g1 (g1g2 − 1) /L (2g1g2 − 1)− λ

¶¯̄̄̄
= 0, (7.15)

λ2 − 2 (2g1g2 − 1)λ+ 1 = 0. (7.16)

The eigenvalues are

λ1/2 = (2g1g2 − 1)±
q
(2g1g2 − 1)2 − 1, (7.17)

=

½
exp (±θ) , cosh θ = 2g1g2 − 1, for |2g1g2 − 1| > 1
exp (±jψ) , cosψ = 2g1g2 − 1, for |2g1g2 − 1| ≤ 1 .(7.18)

The case of a complex conjugate pair with a unit magnitude corresponds to
a stable resontor. Therfore, the stability criterion for a stable two mirror
resontor is

|2g1g2 − 1| ≤ 1. (7.19)

The stable and unstable parameter ranges are given by

stable : 0 ≤ g1 · g2 = S ≤ 1 (7.20)

unstable : g1g2 ≤ 0; or g1g2 ≥ 1. (7.21)

where S = g1 · g2, is the stability parameter of the cavity. The stabil-
ity criterion can be easily interpreted geometrically. Of importance are
the distances between the mirror mid-points Mi and cavity end points, i.e.
gi = (Ri − L)/Ri = −Si/Ri, as shown in Figure 7.6.

Figure 7.6: The stability criterion involves distances between the mirror mid-
points Mi and cavity end points. i.e. gi = (Ri − L)/Ri = −Si/Ri.
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The following rules for a stable resonator can be derived from Figure 7.6
using the stability criterion expressed in terms of the distances Si. Note, that
the distances and radii can be positive and negative

stable : 0 ≤ S1S2
R1R2

≤ 1. (7.22)

The rules are:

• A resonator is stable, if the mirror radii, laid out along the optical axis,
overlap.

• A resonator is unstable, if the radii do not overlap or one lies within
the other.

Figure 7.7 shows stable and unstable resonator configurations.

Figure 7.7: Illustration of stable and unstable resonator configurations.

For a two-mirror resonator with concave mirrors and R1 ≤ R2, we obtain
the general stability diagram as shown in Figure 7.8. There are two ranges
for the mirror distance L, within which the cavity is stable, 0 ≤ L ≤ R1 and

STABLE UNSTABLE

R1

R1

R1

R1
R2 R2

R2

R2

R2

R2

Figure by MIT OCW.
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Figure 7.8: Stabile regions (black) for the two-mirror resonator.

R2 ≤ L ≤ R1+R2. It is interesting to investigate the spot size at the mirrors
and the minimum spot size in the cavity as a function of the mirror distance
L.

Resonator Mode Characteristics

The stable modes of the resonator reproduce themselves after one round-trip,
i.e. from Eq.(7.10) we find

q1 =
Aq1 +B

Cq1 +D
(7.23)

The inverse q-parameter, which is directly related to the phase front curva-
ture and the spot size of the beam, is determined byµ

1

q

¶2
+

A−D

B

µ
1

q

¶
+
1−AD

B2
= 0. (7.24)

The solution is µ
1

q

¶
1/2

= −A−D

2B
± j

2 |B|
q
(A+D)2 − 1 (7.25)

If we apply this formula to (7.15), we find the spot size on mirror 1µ
1

q

¶
1/2

= − j

2 |B|
q
(A+D)2 − 1 = −j λ

πw21
. (7.26)

or

w41 =

µ
2λL

π

¶2
g2
g1

1

1− g1g2
(7.27)

=

µ
λR1
π

¶2
R2 − L

R1 − L

µ
L

R1 +R2 − L

¶
. (7.28)
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By symmetry, we find the spot size on mirror 3 via switching index 1 and 2:

w42 =

µ
2λL

π

¶2
g1
g2

1

1− g1g2
(7.29)

=

µ
λR2
π

¶2
R1 − L

R2 − L

µ
L

R1 +R2 − L

¶
. (7.30)

The intracavity focus can be found by transforming the focused Gaussian
beam with the propagation matrix

M =

µ
1 z1
0 1

¶µ
1 0
−1
2f1

1

¶
=

µ
1− z1

2f1
z1

−1
2f1

1

¶
, (7.31)

to its new focus by properly choosing z1, see Figure 7.9.

Figure 7.9: Two-mirror resonator

A short calculation results in

z1 = L
g2 (g1 − 1)

2g1g2 − g1 − g2
(7.32)

=
L(L−R2)

2L−R1 −R2
, (7.33)

and, again, by symmetry

z2 = L
g1 (g2 − 1)

2g1g2 − g1 − g2
(7.34)

=
L(L−R1)

2L−R1 −R2
= L− z1. (7.35)

R1

R2

0

Wo

z2
z-z1

L

Figure by MIT OCW.
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The spot size in the intracavity focus is

w4o =

µ
λL

π

¶2
g1g2 (1− g1g2)

(2g1g2 − g1 − g2)2
(7.36)

=

µ
λ

π

¶2
L(R1 − L)(R2 − L)(R1 +R2 − L)

(R1 +R2 − 2L)2 . (7.37)

All these quantities for the two-mirror resonator are shown in Figure 7.11.
Note, that all resonators and the Gaussian beam are related to the confocal
resonator as shown in Figure 7.10.

Figure 7.10: Two-mirror resonator and its relationship with the confocal
resonator.

R1 R2

R

L

General Resonator

Confocal Resonator

Figure by MIT OCW.
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7.1.3 Four-Mirror Resonators

More complex resonators, like the four-mirror resonator depicted in Figure
7.12 a) can be transformed to an equivalent two-mirror resonator as shown
in Figure 7.4 b) and c)

Figure 7.12: a) Four-mirror resonator with gain medium of refractive index
n, and thickness t. Folding angles have to be adjusted for astigmatism com-
pensation. b) Equivalent lens cavity. Note that the new focal length do not
yet account for the different equivalent radii of curvature due to nonnormal
incidence on the mirrors. c) Equivalent two-mirror cavity with imaged end
mirrors.

Each of the resonator arms (end mirror,L1, R1) or (end mirror, L2, R2) is
equivalent to a new mirror with a new radius of curvature R01/2 positioned a
distance d1/2 away from the old reference plane [12]. This follows simply from
the fact that each symmetric optical system is equivalent to a lens positioned
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at a distance d from the old reference plane

M =

µ
A B
C A

¶
=

µ
1 d
0 1

¶µ
1 0
−1
f

1

¶µ
1 d
0 1

¶
(7.38)

=

Ã
1− d

f
d
³
2− d

f

´
−1
f

1− d
f

!
with

d =
A− 1
C

(7.39)

−1
f

= C

The matrix of the resonator arm 1 is given by

M =

µ
1 0
−2
R1

1

¶µ
1 2L1
0 1

¶µ
1 0
−2
R1

1

¶
=

Ã
1− 4L1

R1
2L1

−4
R1

³
1− 2L1

R1

´
1− 4L1

R1

!
(7.40)

from which we obtain

d1 = −R1
2

1

1−R1/(2L1)
, (7.41)

R01 = −
µ
R1
2

¶2
1

L1 [1−R1/(2L1)]
. (7.42)

For arm lengths L1/2 much larger than the radius of curvature, the new radius
of curvature is roughly by a factor of R1

4L1
smaller. Typical values are R1 = 10

cm and L1 = 50 cm. Then the new radius of curvature is R01 = 5 mm. The
analogous equations apply to the other resonator arm

d2 = −R2
2

1

1−R2/(2L2)
, (7.43)

R02 = −
µ
R2
2

¶2
1

L2 [1−R2/(2L2)]
. (7.44)

Note that the new mirror radii are negative for Ri/Li < 1. The new distance
L0 between the equivalent mirrors is then also negative over the region where
the resonator is stable, see Fig.7.8. We obtain

L0 = L+ d1 + d2 = L− R1 +R2
2

− δ (7.45)
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δ =
R1
2

∙
1

1−R1/(2L1)
− 1
¸
+

R2
2

∙
1

1−R2/(2L2)
− 1
¸

(7.46)

= −(R01 +R02) (7.47)

or

L =
R1 +R2
2

− (R01 +R02) + L0 (7.48)

From the discussion in section 7.1.2, we see that the stability ranges
cover at most a distance δ. Figure 7.13 shows the resonator characteristics as
a function of the cavity length L for the following parameters R1 = R2 = 10
cm and L1 = 100 cm and L2 = 75 cm, which lead to

d1 = −5.26 cm
R01 = −0.26 cm , (7.49)

d2 = −5.36 cm
R02 = −0.36 cm , (7.50)

L0 = L− 10.62 cm (7.51)

Note, that the formulas (7.27) to (7.37) can be used with all quantities re-
placed by the corresponding primed quantities in Eq.(7.49) - (7.51). The
result is shown in Fig. 7.13. The transformation from L to L0

0
transforms

the stability ranges according to Fig. 7.14. The confocal parameter of the
laser mode is approximately equal to the stability range.

Astigmatism Compensation

So far, we have considered the curved mirrors under normal incidence. In a
real cavity this is not the case and one has to analyze the cavity performance
for the tangential and sagittal beam separately. The gain medium, usually a
thin plate with a refractive index n and a thickness t, generates astigmatism.
Astigmatism means that the beam foci for sagittal and tangential plane are
not at the same position. Also, the stablity regions of the cavity are different
for the different planes and the output beam is elliptical. This is so, because
a beam entering a plate under an angle refracts differently in both planes, as
described by different ABCD matricies for tangential and sagittal plane, see
Table 7.1.Fortunately, one can balance the astigmatism of the beam due to
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Figure 7.13: From top to bottom: Cavity parameters, g1, g2, S, w0, w1, w2,
z1 and z2 for the four-mirror resonator with R1 = R2 = 10 cm, L1 = 100 cm
and L2 = 75 cm.
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Figure 7.14: Transformed stability range for the four mirror resonator with
R = (R1 +R2)/2.

the plate by the astigmatism introduced by the curved mirrors at a specific
incidence angle θ on the mirrors [12]. The focal length of the curved mirrors
under an angle are given by

fs = f/ cos θ

ft = f · cos θ
(7.52)

The propagation distance in a plate with thickness t under Brewster’s angle is
given by t

√
n2 + 1/n. Thus, the equivalent traversing distances in the sagittal

and the tangential planes are (Table 7.1),

ds = t
√
n2 + 1/n2

df = t
√
n2 + 1/n4

(7.53)

The different distances have to compensate for the different focal lengths in
the sagittal and tangential planes. Assuming two idential mirrors R = R1 =
R2, leads to the condition

ds − 2fs = dt − 2ft. (7.54)

With f = R/2 we find

R sin θ tan θ = Nt, where N =
√
n2 + 1

n2 − 1
n4

(7.55)

Note, that t is the thickness of the plate as opposed to the path length of the
beam in the plate. The equation gives a quadratic equation for cosθ

cos2 θ +
Nt

R
cos θ − 1 = 0 (7.56)



7.1. KERR-LENS MODE LOCKING (KLM) 275

cos θ1/2 = −Nt

2R
±
s
1 +

µ
Nt

2R

¶2
(7.57)

Since the angle is positive, the only solution is

θ = arccos

⎡⎣s1 +µNt

2R

¶2
− Nt

2R

⎤⎦ . (7.58)

This concludes the design and analysis of the linear resonator.

7.1.4 The Kerr Lensing Effects

At high intensities, the refractive index in the gain medium becomes intensity
dependent

n = n0 + n2I. (7.59)

The Gaussian intensity profile of the beam creates an intensity dependent
index profile

I(r) =
2P

πw2
exp

h
−2( r

w
)2
i
. (7.60)

In the center of the beam the index can be appoximated by a parabola

n(r) = n00

µ
1−1
2
γ2r2

¶
, where (7.61)

n00 = n0 + n2
2P

πw2
, γ =

1

w2

s
8n2P

n00π
. (7.62)

A thin slice of a parabolic index medium is equivalent to a thin lens. If the
parabolic index medium has a thickness t, then the ABCD matrix describing
the ray propagation through the medium at normal incidence is [16]

MK =

µ
cos γt 1

n00γ
sin γt

−n00γ sin γt cos γt

¶
. (7.63)

Note that, for small t, we recover the thin lens formula (t→ 0, but n00γ
2t =

1/f =const.). If the Kerr medium is placed under Brewster’s angle, we again
have to differentiate between the sagittal and tangential planes. For the
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sagittal plane, the beam size entering the medium remains the same, but for
the tangential plane, it opens up by a factor n00

ws = w (7.64)

wt = w · n00
The spotsize propotional to w2 has to be replaced by w2 =wswt.Therefore,
under Brewster angle incidence, the two planes start to interact during prop-
agation as the gamma parameters are coupled together by

γs =
1

wswt

s
8n2P

n00π
(7.65)

γt =
1

wswt

s
8n2P

n00π
(7.66)

Without proof (see [12]), we obtain the matrices listed in Table 7.2. For low

Optical Element ABCD-Matrix

Kerr Medium
Normal Incidence

MK =

µ
cos γt 1

n00γ
sin γt

−n00γ sin γt cos γt

¶
Kerr Medium
Sagittal Plane

MKs =

µ
cos γst

1
n00γs

sin γst

−n00γs sin γst cos γst

¶
Kerr Medium
Tangential Plane

MKt =

µ
cos γtt

1
n030 γt

sin γtt

−n030 γt sin γtt cos γtt

¶

Table 7.2: ABCD matrices for Kerr media, modelled with a parabolic index
profile n(r) = n00

¡
1−1

2
γ2r2

¢
.

peak power P , the Kerr lensing effect can be neglected and the matrices in
Table 7.2 converge towards those for linear propagation. When the laser is
mode-locked, the peak power P rises by many orders of magnitude, roughly
the ratio of cavity round-trip time to the final pulse width, assuming a con-
stant pulse energy. For a 100 MHz, 10 fs laser, this is a factor of 106. With
the help of the matrix formulation of the Kerr effect, one can iteratively find
the steady state beam waists in the laser. Starting with the values for the
linear cavity, one can obtain a new resonator mode, which gives improved
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values for the beam waists by calculating a new cavity round-trip propaga-
tion matrix based on a given peak power P. This scheme can be iterated
until there is only a negligible change from iteration to iteration. Using such
a simulation, one can find the change in beam waist at a certain position in
the resonator between cw-operation and mode-locked operation, which can
be expressed in terms of the delta parameter

δs,t =
1

p

ws,t(P, z)− ws,t(P = 0, z)

ws,t(P = 0, z)
(7.67)

where p is the ratio between the peak power and the critical power for self-
focusing

p = P/Pcrit, with Pcrit = λ2L/
¡
2πn2n

2
0

¢
. (7.68)

To gain insight into the sensitivity of a certain cavity configuration for KLM,
it is interesting to compute the normalized beam size variations δs,t as a
function of the most critical cavity parameters. For the four-mirror cavity,
the natural parameters to choose are the distance between the crystal and the
pump mirror position, x, and the mirror distance L, see Figure 7.12. Figure
7.15 shows such a plot for the following cavity parameters R1 = R2 = 10 cm,
L1 = 104 cm, L2 = 86 cm, t = 2 mm, n = 1.76 and P = 200 kW.
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Figure 7.15: Beam narrowing ratio δs, for cavity parameters R1 = R2 = 10
cm, L1 = 104 cm, L2 = 86 cm, t = 2 mm, n = 1.76 and P = 200 kW

Courtesy of Onur Kuzucu. Used with permission.
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The Kerr lensing effect can be exploited in different ways to achieve mode
locking.

Soft-Aperture KLM

In the case of soft-aperture KLM, the cavity is tuned in such a way that
the Kerr lensing effect leads to a shrinkage of the laser mode when mode-
locked. The non-saturated gain in a laser depends on the overlap of the pump
mode and the laser mode. From the rate equations for the radial photon
distribution N(r) and the inversion NP (r) of a laser, which are proportional
to the intensities of the pump beam and the laser beam, we obtain a gain,
that is proportional to the product of N(r) and NP (r).If we assume that the
focus of the laser mode and the pump mode are at the same position and
neglect the variation of both beams as a function of distance, we obtain

g ∼
Z ∞

0

N(r) ∗NP (r)rdr

∼
Z ∞

0

2PP

πw2P
exp

∙
−2r

2

w2P

¸
2

πw2L
exp

∙
−2r

2

w2L

¸
rdr

With the beam cross sections of the pump and the laser beam in the gain
medium, AP = πw2P and AL = πw2L ,we obtain

g ∼ 1

AP +AL
.

If the pump beam is much stronger focused in the gain medium than the laser
beam, a shrinkage of the laser mode cross section in the gain medium leads
to an increased gain. When the laser operates in steady state, the change
in saturated gain would have to be used for the investigation. However, the
general argument carries through even for this case. Figure 7.16 shows the
variation of the laser mode size in and close to the crystal in a soft-aperture
KLM laser due to self-focusing.
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Figure 7.16: Variation of laser mode size in and close to the crystal in a soft
aperture KLM laser due to self-focussing.

Hard-Aperture KLM

In a hard-aperture KLM-Laser, one of the resonator arms contains (usually
close to the end mirrors) an aperture such that it cuts the beam slightly.
When Kerr lensing occurs and leads to a shrinkage of the beam at this posi-
tion, the losses of the beam are reduced. Note, that depending on whether
the aperture is positioned in the long or short arm of the resontor, the operat-
ing point of the cavity at which Kerr lensing favours or opposes mode-locking
may be quite different (see Figure 7.13).
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Figure 7.17: Principle mechanism of APM.

7.2 Additive Pulse Mode Locking

Like Kerr-Lens Mode Locking also Additive Pulse Mode Locking (APM) is an
artificial saturable absorber effect [17][18][19][20][21][22]. Figure 7.17 shows
the general principle at work. A small fraction of the light emitted from the
main laser cavity is injected externally into a nonlinear fiber. In the fiber
strong SPM occurs and introduces a significant phase shift between the peak
and the wings of the pulse. In the case shown the phase shift is π

A part of the modified and heavily distorted pulse is reinjected into the
cavity in an interferometrically stable way, such that the injected pulse inter-
feres constructively with the next cavity pulse in the center and destructively
in the wings. This superposition leads to a shorter intracavity pulse and the
pulse shaping generated by this process is identical to the one obtained from
a fast saturable absorber. Again, an artificial saturable absorber action is
generated.
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Figure 7.18: Schematic of nonlinear Mach-Zehnder interferometer.

Figure 7.18 shows a simple nonlinear interferometer. In practice, such
an interferometer can be realized in a self-stabilized way by the use of both
polarizations in an isotropic Kerr medium with polarizer and analyzer as
shown in Figure 7.19.

Figure 7.19: Nonlinear Mach-Zehnder interferometer using nonlinear polar-
ization rotation in a fiber [25].

The Kerr effect rotates the polarization ellipse and thus transforms phase
modulation into amplitude modulation. The operation is in one-to-one cor-
respondence with that of the nonlinear Mach-Zehnder interferometer of Fig.
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7.18. The system of Figure 7.18 can be analyzed rather simply and thus it
is worthwhile to look at the derivation and the implicit assumptions. The
couplers are described by the scattering matrices

S =

∙
r

√
1− r2√

1− r2 −r
¸
. (7.69)

The outputs of the interferometer are then

b1 =
£
r2e−jφ1 + (1− r2)e−jφ2

¤
a, (7.70)

b2 = 2r
√
1− r2 exp

∙
−j φ1 + φ2

2

¸
sin

∙
φ2 − φ1
2

¸
a, (7.71)

φ1 and φ2 are the phase shifts in the two arms composed of both linear "bias"
contributions φbi and the Kerr phase shifts φKi

φi = φbi + φKi, (i = 1, 2), (7.72)

φKi = κi |a|2 , (i = 1, 2). (7.73)

The power in output port two is related to the linear and nonlinear losses

|b2|2 = 2r2
¡
1− r2

¢
(1− cos [φ2 − φ1]) |a|2

= 2r2
¡
1− r2

¢ {(1− cos [φb2 − φb1])+ (7.74)

+ sin [φb2 − φb1] (φK2 − φK1)} |a|2

Depending on the bias phase φb = φb2 − φb1, the amplitude loss is

l = r2
¡
1− r2

¢
(1− cosφb) |a|2 , (7.75)

and the γ−parameter of the equivalent fast saturable absorber is
γ = (κ1 − κ2) r

2
¡
1− r2

¢
sinφb. (7.76)

If the interferometer forms part of a resonant system, the frequency of the
system is affected by the phase shift of the interferometer and in turn affects
the phase.
When the resonant frequencies of the linear system (γ = δ = 0) without

the interferometer should remain the resonant frequencies with the interfer-
ometer, the net phase shift of the interferometer has to be chosen to be zero.
Since a small loss has been assumed and hence r2 À 1− r2

Im
£
r2e−jφb1 +

¡
1− r2

¢
e−jφb2

¤
= Im

£
r2(1− jφb1) +

¡
1− r2

¢
e−jφb2

¤
= 0
(7.77)
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or

φb1 =
− (1− r2)

r2
sinφb2. (7.78)

and cosφb1 = 1. With this adjustment, the response of the interferometer
becomes

b1 ≈ a+∆a = a− (1− r2) (1− cosφ) a

−(1− r2) (φK2 − φK1) sinφ a (7.79)

−jr2φK1 − j(1− r2)φK2 cosφ a,

where we have set φ = φb2. This gives for the parameters of the master
equation l, γ and δ

l = (1− r2) (1− cosφ) , (7.80)

γ = (κ1 − κ2)
¡
1− r2

¢
sinφ, (7.81)

δ = κ1r
2 + κ2(1− r2) cosφ. (7.82)

Due to the special choice of the bias phase there is no contribution of the
nonlinear interferometer to the linear phase. This agrees with expressions
(7.75) and (7.76). The Kerr coefficients are

κ1 = r2
µ
2π

λ

¶
n2
Aeff

LKerr, (7.83)

κ2 =
¡
1− r2

¢µ2π
λ

¶
n2
Aeff

LKerr. (7.84)

Here, λ is the free space wavelength of the optical field, Aeff is the effective
area of the mode, n2 the intensity dependent refractive index, and LKerr is the
length of the Kerr medium. Figure 7.20 is the saturable absorber coefficient
γ normalized to the loss and Kerr effect (note that γ goes to zero when the
loss goes to zero) as a function of r2.
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Figure 7.20: Normalized saturable absorber coefficient γ/
h¡

2π
λ

¢
n2

Aeff
LKerr l

i
as a function of r2 with loss l as parameter [25].

Large saturable absorber coefficients can be achieved at moderate loss
values.
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Chapter 8

Semiconductor Saturable
Absorbers

Sofar we only considered artificial saturable absorbers, but there is of course
the possibility to use real absorbers for modelocking. A prominent candidate
for a saturable absorber is semiconductor material, which was pioneered by
Islam, Knox and Keller [1][2][3] The great advantage of using semiconductor
materials is that the wavelength range over which these absorbers operate
can be chosen by material composition and bandstructure engineering, if
semiconductor heterostructures are used (see Figure 8.1). Even though, the
basic physics of carrier dynamics in these structures is to a large extent well
understood [4], the actual development of semiconductor saturable absorbers
for mode locking is still very much ongoing.
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Figure 8.1: Energy Gap, corresponding wavelength and lattice constant for
various compound semiconductors. The dashed lines indicate indirect tran-
sitions.

Figure 8.2: Typical semiconductor saturable absorber structure. A semicon-
ductor heterostruture (here AlAs/GaAs) is grown on a GaAs-Wafer (20-40
pairs). The layer thicknesses are chosen to be quarter wave at the center
wavelength at which the laser operates. This structures acts as quarter-wave
Braggmirror. On top of the Bragg mirror a half-wave thick layer of the low
index material (here AlAs) is grown, which has a field-maximum in its center.
At the field maximum either a bulk layer of GaAlAs or a single-or multiple
Quantum Well (MQW) structure is embedded, which acts as saturable ab-
sorber for the operating wavelength of the laser.

Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. Used with permission.
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A typical semiconductor saturable absorber structure is shown in Figure
8.2. A semiconductor heterostruture (here AlAs/GaAs) is grown on a GaAs-
Wafer (20-40 pairs). The layer thicknesses are chosen to be quarter wave
at the center wavelength at which the laser operates. These structures act
as quarter-wave Bragg mirror. On top of the Bragg mirror, a half-wave
thick layer of the low index material (here AlAs) is grown, which has a
field-maximum in its center. At the field maximum, either a bulk layer of
a compound semiconductor or a single-or multiple Quantum Well (MQW)
structure is embedded, which acts as a saturable absorber for the operating
wavelength of the laser. The absorber mirror serves as one of the endmirrors
in the laser (see Figure 8.3).

Figure 8.3: The semiconductor saturable absorber, mounted on a heat sink,
is used as one of the cavity end mirrors. A curved mirror determines the
spot-size of the laser beam on the saturable absorber and, therefore, scales
the energy fluence on the absorber at a given intracavity energy.

8.1 Carrier Dynamics and Saturation Prop-
erties

There is a rich ultrafast carrier dynamics in these materials, which can be
favorably exploited for saturable absorber design. The carrier dynamics in
bulk semiconductors occurs on three major time scales (see Figure 8.4 [5]).
When electron-hole pairs are generated, this excitation can be considered
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as an equivalent two-level system if the interaction between the carriers is
neglected, which is a very rough assumption.

Figure 8.4: Carrier dynamics in a bulk semiconducotr material. Three time
scales can be distinguished. I. Coherent carrier dynamics, which at room tem-
perature may last between 10-50 fs depending on excitation density. II. Ther-
malization between the carriers due to carrier-carrier scattering and cooling
to the lattice temperature by LO-Phonon emission. III. Carrier-trapping or
recombination [5].

There is a coherent regime (I) with a duration of 10-50 fs depending on
conditions and material. Then in phase (II), carrier-carrier scattering sets
in and leads to destruction of coherence and thermalization of the electron
and hole gas at a high temperature due to the excitation of the carriers high
in the conduction or valence band. This usually happens on a 60 - 100 fs
time scale. On a 300fs - 1ps time scale, the hot carrier gas interacts with
the lattice mainly by emitting LO-phonons (37 meV in GaAs). The carrier
gas cools down to lattice temperature. After the thermalization and cooling
processes, the carriers are at the bottom of the conduction and valence band,

Eg
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Figure by MIT OCW.
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respectively. The carriers vanish (III) either by getting trapped in impurity
states, which can happen on a 100 fs - 100 ps time scale, or recombine over
recombination centers or by radiation on a nanosecond time-scale. Carrier-
lifetimes in III-VI semiconductors can reach several tens of nanoseconds and
in indirect semiconductors like silicon or germanium lifetimes can be in the
millisecond range. The carrier lifetime can be engineered over a large range
of values from 100 fs - 30ns, depending on the growth conditions and purity
of the material. Special low-temperature growth that leads to the formation
or trapping and recombination centers as well as ion-bombardment can result
in very short lifetimes [9]. Figure 8.5 shows a typical pump probe response
of a semiconductor saturable absorber when excited with a 100 fs long pulse.
The typical bi-temporal behavior stems from the fast thermalization (spectral
hole-burning)[7] and carrier cooling and the slow trapping and recombination
processes.

Figure 8.5: Pump probe response of a semiconductor saturable absorber
mirror with a multiple-quantum well InGaAs saturable absorber grown at
low temperature [3].

With the formula for the saturation intensity of a two-level system Eq.
(2.145), we can estimate a typical value for the saturation fluence Fs (satu-
ration energy density) of a semiconductor absorber for interband transitions.
The saturation fluence FA, also related to the absorption cross-section σA, is
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then given by

FA =
hf

σA
= IAτA =

~2

2T2ZF

¯̄̄
�M
¯̄̄2 (8.1)

=
~2n0

2T2ZF0

¯̄̄
�M
¯̄̄2 (8.2)

The value for the dipole moment for interband transitions in III-V semicon-
ductors is about d = 0.5 nm with little variation for the different materials.
Together with the a dephasing time on the order of T2 = 20 fs and a linear
refractive index n0 = 3, we obtain

FA =
~2n0

2T2ZF0

¯̄̄
�M
¯̄̄2 = 35 µJcm2

(8.3)

Figure 8.6 shows the saturation fluence measurement and pump probe trace
with 10 fs excitation pulses at 800 nm on a broadband GaAs semiconductor
saturable absorber based on a metal mirror shown in Figure 8.7 [11]. The
pump probe trace shows a 50 fs thermalization time and long time bleach-
ing of the absorption recovering on a 50 ps time scale due to trapping and
recombination.

Figure 8.6: Saturation fluence and pump probe measurements with 10 fs
pulses on a broadband metal mirror based GaAs saturable absorber. The
dots are measured values and the solid line is the fit to a two-level saturation
characteristic [11].

Jung, I. D., et al. "Semiconductor saturable absorber mirrors supporting sub-10 fs pulses." 
Applied Physics B 65 (1997): 137-150. 

Image removed due to copyright restrictions.
 
Please see: 
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A typical value for the fluence at wich damage is observed on an absorber
is on the order of a few mJ/cm2. Saturating an absorber by a factor of 10
without damaging it is still possible . The damage threshold is strongly
dependent on the growth, design, fabrication and mounting (heat sinking) of
the absorber.

Figure 8.7: GaAs saturable absorber grown an GaAs wafer and transfered
onto a metal mirror by post growth processing [10].

8.2 High Fluence Effects

To avoid Q-switched mode-locking caused by a semiconductor saturable ab-
sorber, the absorber very often is operated far above the saturation fluence
or enters this regime during Q-switched operation. Therefore it is also im-
portant to understand the nonlinear optical processes occuring at high exci-
tation levels [13]. Figure 8.8 shows differential pump probe measurements on
a semiconductor saturable absorber mirror similar to Figure 8.2 but adapted
to the 1.55 µm range for the developement of pulsed laser sources for optical

Fluck, R., et al. "Broadband saturable absorber for 10 fs pulse generation." Optics Letters 
21 (1996): 743-745. 

Image removed due to copyright restrictions.
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communication. The structure is a GaAs/AlAs-Bragg-mirror with an InP
half-wave layer and an embedded InGaAsP quantum well absorber with a
band edge at 1.530 µm. The mirror is matched to air with an Al203 single-
layer Ar-coating. At low fluence (5.6 µJ) the bleaching dynamics of the
QWs are dominant. At higher fluences, two-photon absorption (TPA) and
free carrier absorption (FCA) in the InP half-wave layer develop and enven-
tually dominate [13].

Figure 8.8: Differential reflectivity measurements of a semiconductor sat-
urable absorber mirror (GaAs/AlAs-Bragg-mirror and InP half-wave layer
with embedded InGaAsP quantum well absorber for the 1.55 µm range. The
mirror is matched to air with an Al203single-layer ar-coating). At low fluence
the bleaching dynamics of the QWs are dominant. At higher fluences, TPA
and FCA develop and enventually dominate [13].

The assumption that TPA and FCA are responsible for this behaviour has
been verified experimentally. Figure 8.9 shows differential reflectivity mea-
surements under high fluence excitation at 1.56 µm for a saturable absorber
mirror structure in which absorption bleaching is negligible (solid curve). The
quantum well was placed close to a null of the field. A strong TPA peak is
followed by induced FCA with a single ∼ 5ps decay for FCA. Both of these
dynamics do not significantly depend on the wavelength of the excitation,
as long as the excitation remains below the band gap. The ∼ 5ps decay is

Langlois, P. et al. "High fluence ultrafast dynamics of semiconductor saturable absorber mirrors." 
Applied Physics Letters 75 (1999): 3841-3483. Used with permission.
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attributed to carrier diffusion across the InP half-wave layer [13] The dashed
curve shows the differential absorption of a ∼ 350 µm thick InP substrate in
which a standing-wave pattern is not formed and the ∼ 5ps decay is absent.
The inset in Figure 8.9 shows the power dependence of TPA and FCA. As
expected, TPA and FCA vary linearly and quadratically, respectively, with
pump power.The pump-induced absorption of the probe (TPA) is linearly
dependent on the pump power. Since FCA is produced by carriers that are
generated by the pump alone via TPA, FCA scales with the square of the
pump power.

Figure 8.9: Differential reflectivity measurements under high fluence excita-
tion at 1.56 µm for a saturable absorber mirror structure in which absorption
bleaching is negligible (solid cuve). The ∼ 5 ps decay for FCA is attributed
to carrier diffusion across the InP half-wave layer. The dahed curve shows
the differential absorption of a ∼ 350 µm thick InP substrate in which a
standing-wave pattern is not formed. (Inset) Linear and quadratic fluence
dependence of the TPA and FCA components, respectively.

These high fluence effects lead to strong modifications of the saturation
characteristics of a saturable absorber. The importance of the high fluence
effects was first recognized in resonant absorbers (see Figure 8.10). The field
inside the absorber is enhanced by adding a top reflector and a proper spacer
layer. This leads to an effective lower saturation fluence when viewed with

Langlois, P. et al. "High fluence ultrafast dynamics of semiconductor saturable absorber mirrors." 
Applied Physics Letters 75 (1999): 3841-3483. Used with permission.
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respect to the intracavity fluence or intensity. Therefore, high fluenece effects
are already reached at low intracavity intensities (see Figure 8.9).

Figure 8.10: A top reflector is added to the semiconductor saturable absorber
such that the field in the quantum well is resonantely enhanced by about a
factor of 10 in comparison to the non resonant case.

Theon, E. R., et al. "Two-photon absorption in semiconductor saturable absorber mirrors." 
Applied Physics Letters 74 (1999): 3927-3929. Used with permission.
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Figure 8.11: Saturation fluence measurement (dots) of the resonant absorber
shown in Figure 8.10 with 150 fs pulses at 1.53 µm. Fits are shown using
a fast or slow saturable absorber and TPA. Also the scaled saturation char-
acteristics of the absorber are shown when used in a laser with longer pulse
durations.

The roll-over of the saturation characteristics has positive and negative
consequences for mode locking. First, if the roll-over can be reached with the
available intracavity pulse energy, Q-switching can be suppressed. Second if
the roll-over occurs too early, the pulses break up into multiple pulses to
optimize the net gain for the overall pulse stream.

8.3 Break-up into Multiple Pulses

In the treatment of mode locking with fast and slow saturable absorbers we
only concentrated on stability against energy fluctuations (Q-switched mode
locking) and against break through of cw-radiation or continuum. Another
often observed instability is the break-up into multiple pulses. The existience
of such a mechanism is obvious if soliton pulse shaping processes are present.
If we assume that the pulse is completely shaped by the solitonlike pulse
shaping processes, the FWHM pulse width is given by

τFWHM = 1.76
4 |D2|
δW

. (8.4)

Theon, E. R., et al. "Two-photon absorption in semiconductor saturable absorber mirrors." 
Applied Physics Letters 74 (1999): 3927-3929. Used with permission.
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whereW denotes the pulse energy. D2 the negative disperison and δ the self-
phase modulation coefficient. With increasing pulse energy, of course the
absorber becomes more strongly saturated, which leads to shorter pulses ac-
cording to the saturable absorber and the soliton formula. At a certain point,
the absorber will saturate and can not provide any further pulse stabiliza-
tion. However, the Kerr nonlinearity may not yet saturate and, therefore,
the soliton formula dictates an ever decreasing pulse width for increasing
pulse energy. Such a process continues, until either the continuum breaks
through, because the soliton loss becomes larger than the continuum loss, or
the pulse breaks up into two pulses. The pulses will have reduced energy
per pulse and each one will be longer and experiences a reduced loss due
to the finite gain bandwidth. Due to the reduced pulse energy, each of the
pulses will suffer increased losses in the absorber, since it is not any longer
as strongly saturated as before. However, once the absorber is already over
saturated by the single pulse solution, it will also be strongly saturated for
the double-pulse solution. The filter loss due to the finite gain bandwidth
is heavily reduced for the double-pulse solution. As a result, the pulse will
break up into double-pulses. To find the transition point where the break-up
into multiple pulses occurs, we write down the round-trip loss due to the gain
and filter losses and the saturable absorber according to 6.35

lm =
Df

3τ 2m
+ qs(Wm), (8.5)

where, qs(Wm) is the saturation loss experienced by the pulse when it prop-
agates through the saturable absorber. This saturation loss is given by

qs(W ) =
1

W

+∞Z
−∞

q(T, t)|As(t)|2dt. (8.6)

This expression can be easily evaluated for the case of a sech-shaped steady
state pulse in the fast saturable absorber model with

qfast(t) =
q0

1 + |A(t)|2
PA

, where PA =
EA

τA
. (8.7)

and the slow saturable absorber model, where the relaxation term can be
neglected because of τA À τ .

qslow(t) = q0 exp

∙
− 1

EA

Z t

−∞
|As(t

0)|2dt0
¸
. (8.8)
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For the slow absorber 8.8 the absorber losses (8.6) can be evaluated indepen-
dent of pulse shape to be

qs.slow(W ) = q0
1− exp

h
− W

EA

i
W
EA

. (8.9)

Thus for a slow absorber the losses depend only on pulse energy. In contrast,
for a fast absorber, the pulse shape must be taken into account and, for a
sech-shaped pulse, one obtaines [14]

qs,fast(W ) = q0

s
1

α (1 + α)
tanh−1

∙r
α

1 + α

¸
, with α =

W

2PAτ
, (8.10)

and the pulse energy of one pulse of the multiple pulse solution. The energy
is determined from the total gain loss balance

g0

1 + mWm

PLTR

= l + lm. (8.11)

Most often, the saturable absorber losses are much smaller than the losses
due to the output coupler. In that case the total losses are fixed independent
of the absorber saturation and the filter losses. Then the average power does
not depend on the number of pulses in the cavity. If this is the case, one
pulse of the double pulse solution has about half of the energy of the single
pulse solution, and, therefore, the width of the double pulse is twice as large
as that of the single pulse according to (8.4). Then the filter and absorber
losses for the single and double pulse solution are given by

l1 =
Df

3τ 21
+ qs(W1), (8.12)

l2 =
Df

12τ 21
+ qs(

W1

2
). (8.13)

The single pulse solution is stable against break-up into double pulses as long
as

l1 ≤ l2 (8.14)

is fulfilled. This is the case, if the difference in the filter losses between the
single and double pulse solution is smaller than the difference in the saturable
absorber losses

Df

4τ 21
< ∆qs(W ) = qs(

W

2
)− qs(W ). (8.15)
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Figure 8.12 shows the difference in the saturable absorption for a single
pulse and a double pulse solution as a function of the ratio between the
single pulse peak power and saturation power for a fast absorber and as a
function of the ratio between the single pulse energy and saturation energy
for a slow absorber. Thus, for both cases the optimum saturation ratio, at
which the largest discrimination between single and double pulses occurs and,
therefore, the shortest pulse before break-up into multiple pulses occurs, is
about 3. Note, that to arrive at this absolute number, we assumed that the
amount of saturable absoption is neglegible in comparison with the other
intracavity losses, so that the saturated gain level and the gain and filter
dispersion are fixed.

Figure 8.12: Difference in loss experienced by a sech-shaped pulse in a slow
(- - -) and a fast (____) saturable absorber for a given pulse energy or peak
power , respectively.

At this optimum operation point, the discrimination against multiple
break-up of a fast absorber is about 50% larger than the value of the slow ab-
sorber. Since the minimum pulsewidth scales with the square root of∆qs(W ),
see Eq. (8.15), the minimum pulsewidth of the slow absorber is only about
22% longer than with an equally strong fast saturable absorber. Figure 8.12
also predicts that a laser modelocked by a fast saturable absorber is much
more stable against multiple pulse break-up than a slow saturable absorber if
it is oversaturated . This is due to the fact that a fast saturable absorber sat-
urates with the peak power of the pulse in comparison with a slow saturable
absorber, which saturates with the pulse energy. When the pulse breaks up
into a pulse twice as long with half energy in each, the peak power of the

Kartner, F. X., J. A. d. Au, and U. Keller. "Mode-Locking with Slow and Fast Saturable Absorbers--
What's the Difference." Selected Topics in Quantum Electronics 4 (1998): 159.

Image removed due to copyright restrictions. 
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individual pulses changes by a factor of four. Therefore, the discrimination
between long and short pulses is larger in the case of a fast saturable ab-
sorber, especially for strong saturation. Note that Fig. 8.12 is based on the
simple saturation formulas for fast and slow saturable absorbers Eqs. (8.9)
and (8.10). We compare these predictions with numerical simulations and
experimental observations made wiht a Nd:glass laser [15][16].
The Nd:glass laser described in ref. [15] was modelocked by a saturable

absorber which showed a fast recovery time of τA = 200 fs, a modulation
depth of q0 = 0.005 and a saturation energy of EA = 17 nJ . The other laser
parameters can be found in [16]. Without the solitonlike pulse formation
(GDD and SPM is switched off), the laser is predicted to produce about
200 fs short pulses with a single pulse per round-trip, very similar to what
was discussed in the fast saturable absorber mode locking in Chapter 6. The
dynamics becomes very much different if the negative GDD and positive SPM
are included in the simulation, (see Figure 8.13)

Figure 8.13: Each trace shows the pulse intensity profile obtained after 20,000
cavity round-trips in a diode-pumped Nd:glass laser according to [15]. When
the laser reaches the double-pulse regime the multipel pulses are in constant
motion with respect to each other. The resulting pulse train is not any longer
stationary in any sense.
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With increasing small signal gain, i. e. increasing pulse energy, the soliton
shortens to 80 fs due to the solitonlike pulse shaping, (Figure 8.13).

Figure 8.14: Steady state pulse width ( R°) and time-bandwidth product (o)
for a Nd:glass laser modelocked by a saturable absorber with a 200 fs recovery
time with GDD and SPM included, shown as a function of the intracavity
pulse energy. The time-bandwidth product is only meaningful in the single
pulse regime, where it is shown. The pulses are almost transform limited
sech-pulses. The pulse width in the multiple pulseing regime is only unique
in the parameter region where multiple pulses of similar height and width
are achieved. The pulses break up into multiple pulses when the absorber is
about three times saturated.

The pulse width follows nicely the soliton relation (8.4), (dash-dotted
line). The pulses become shorter, by about a factor of 2.5, than without
GDD and SPM before the pulse breaks up into longer double-pulses. The
pulse break-up into double-pulses occurs when the absorber is about two
times saturated, close to the point where the shortest pulse can be expected
according to the discussion above. Figures 8.13 shows, that the break-up
point for the double pulses is also very close to the instability for continuum
break-through. Indeed the first pulse train after break-up at a small signal
gain of g0 = 0.09 shows the coexistance of a longer and a shorter pulse,
which indicates continuum break-through. But the following five traces are
double pulses of equal height and energy. For even stronger saturation of the
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absorber the double-pulses break-up into triple pulses and so on. Then the
dynamics becomes even more complex. This behavior has been observed in
detail in a Nd:glass laser [15], (see Figure 8.15), as well as in Cr4+:YAG lasers
[17]. The simulations just discussed match the parameters of the Nd:glass
experiments.

Figure 8.15: Pulsewidth in a Nd:glass laser [15] as a function of intracavity
stored energy, i.e. pulse energy for a single pulse per round-trip. Dots mea-
sured values and solid line fits for a single and double-pulse solitonlike pulse
stream.

Figure 8.15 clearly shows the scaling of the observed pulse width according
to the soliton formula until the pulses break up at a saturation ratio of about
2. Notice, that the absorber recovery time of 200 fs is not much shorter than
the pulse width achieved. Nevertheless, the optimum saturation ratio is close
to the expected one of about 3. The break-up into pure double and triple
pulses can be observed more clearly if the absorber recovery time is chosen to
be shorter, so that continuum break-through is avoided. Figure 8.16 shows
the final simulation results obtained after 20,000 round-trips in the cavity, if
we reduce the absorber recovery time from 200 fs to 100 fs, again for different
small signal gain, e.g. intracavity power levels and pulse energies. Now, we
observe a clean break-up of the single-pulse solution into double-pulses and
at even higher intracavity power levels the break-up into triple pulses without
continuum generation in between. Note that the spacing between the pulses
is very much different from what has been observed for the 200 fs response
time. This spacing will depend on the details of the absorber and may also
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be influenced by the dynamic gain saturation even if it is only a very small
effect in this case [17].

Figure 8.16: Each trace shows the pulse intensity profile obtained after 20,000
cavity round-trips for an absorber with a response time τA = 100 fs for
different values of the small-signal gain. The simulations are always started
with a 1 ps initial pulse shown as the first trace. Note that only the single
pulse solutions are stationary.

8.4 Summary

Real absorbers do have the advantage of providing direct amplitude modula-
tion and do not exploit additional cavities or operation of the resonator close
to its stability boundary to achieve effective phase to amplitude conversion.
Especially in compact resonator designs, as necessary for high-repitition rate
lasers in the GHz range, semiconductor saturable absorbers with their low
saturation energies and compactness offer unique solutions to this important
technological challenge.
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Chapter 9

Noise and Frequency Control

So far we only considered the deterministic steady state pulse formation in
ultrashort pulse laser systems due to the most important pulse shaping mech-
anisms prevailing in todays femtosecond lasers. Due to the recent interest
in using modelocked lasers for frequency metrology and high-resolution laser
spectroscopy as well as phase sensitive nonlinear optics the noise and tuning
properties of mode combs emitted by modelocked lasers is of much current
interest. Soliton-perturbation theory is well suited to successfully predict
the noise behavior of many solid-state and fiber laser systems [1] as well as
changes in group- and phase velocity in modelocked lasers due to intracavity
nonlinear effects [5]. We start off by reconsidering the derivation of the mas-
ter equation for describing the pulse shaping effects in a mode-locked laser.
We assume that in steady-state the laser generates at some position z (for
example at the point of the output coupler) inside the laser a sequence of
pulses with the envelope a(T = mTr, t). These envelopes are the solutions
of the corresponding master equation, where the dynamics per roundtrip is
described on a slow time scale T = mTR. Then the pulse train emitted from
the laser including the carrier is

A(T, t) =
+∞X

m=−∞
a(T = mTr, t)e

j
h
ωc
³
(t−mTR+

³
1
vg
− 1
vp

´
2mL

´i
. (9.1)

with repetition rate fR = 1/TR and center frequency ωc. Both are in general
subject to slow drifts due to mirror vibrations, changes in intracavity pulse
energy that might be further converted into phase and group velocity changes.
Note, the center frequency and repetition rate are only defined for times long
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compared to the roundtrip time in the laser. Usually, they only change on
a time scale three orders of magnitude longer than the expectation value of
the repetition rate.

9.1 The Mode Comb

Lets suppose the pulse envelope, repetition rate, and center frequency do not
change any more. Then the corresponding time domain signal is sketched in
Figure 9.1.

Figure 9.1: Pulse train emitted from a noise free mode-locked laser. The
pulses can have chirp. The intensity envelope repeats itself with repetition
rate fR. The electric field is only periodic with the rate fCE if it is related to
the repetion rate by a rational number.

The pulse a(T = mTr, t) is the steady state solution of the master equa-
tion describing the laser system, as studied in chapter 6. Let’s assume that
the steady state solution is a purturbed soliton according to equation (6.64).

a(t, T ) =

µ
A0 sech(

t− t0
τ

) + ac(T, t)

¶
e
−jφ0 T

TR (9.2)

with the soliton phase shift

φ0 =
1

2
δA20 =

|D|
τ 2

(9.3)
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Thus, there is a carrier envelope phase shift ∆φCE from pulse to pulse given
by

∆φCE =

µ
1

vg
− 1

vp

¶¯̄̄̄
ωc

2L− φ0 +mod(2π) (9.4)

= ωcTR

µ
1− vg

vp

¶
− φ0 +mod(2π)

The Fourier transform of the unperturbed pulse train is

Â(ω) = â(ω − ωc)
+∞X

m=−∞
ej(∆φCE−(ω−ωc)TR)m

= â(ω − ωc)
+∞X

n=−∞
e
jmTR

³
∆φCE
TR

−ω
´

= â(ω − ωc)
+∞X

n=−∞
TRδ

µ
ω −

µ
∆φCE
TR

+ nωR

¶¶
(9.5)

which is shown in Figure 9.2. Each comb line is shifted by the carrier-envelope
offset frequency fCE =

∆φCE
2πTR

from the origin

Figure 9.2: Opitcal mode comb of a mode-locked laser output.

To obtain self-consistent equations for the repetition rate, center fre-
quency and the other pulse parameters we employ soliton-perturbation the-
ory. This is justified for the case, where the steady state pulse is close to a
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soliton, i.e. for the fast saturable absorber case, this is the chirp free solution,
occuring when the ratio of gain filtering to dispersion is equal to the ratio
of SAM action to self-phase modulation, see Eq. (6.61). Then the pulse
solution in the m−th roundtrip is a solution of the nonlinear Schrödinger
Equation stabilized by the irreversible dynamics and subject to additional
perturbations

TR
∂

∂T
A = jD

∂2

∂t2
A− jδ|A|2A

+(g − l)A+Df
∂2

∂t2
A+ γ|A|2A+ Lpert

(9.6)

Due to the irreversible processes and the perturbations the solution to (9.6)
is a soliton like pulse with perturbations in amplitude, phase, frequency and
timing plus some continuum

A(t, T ) = [(Ao +∆Ao ) sech[(t−∆t)/τ ] + ac(T, t)]

e−jφoT/TRej∆p(T )te−jθ0
(9.7)

with pulse energy w0 = 2A2oτ .
The perturbations cause fluctuations in amplitude, phase, center fre-

quency and timing of the soliton and generate background radiation, i.e.
continuum

∆A(T, t) = ∆w(T )fw(t) +∆θ(T )fθ(t) +∆p(T )fp(t)

+∆t(T )ft(t) + ac(T, t).
(9.8)

where, we rewrote the amplitude perturbation as an energy perturbation.
The dynamics of the pulse parameters due to the perturbed Nonlinear Schrödinger
Equation (9.6) can be projected out from the perturbation using the adjoint
basis and the orthogonality relation, see Chapter 3.5. Note, that the fi cor-
respond to the first component of the vector in Eqs.(3.22) - (3.25). The dy-
namics of the pulse parameters due to the perturbed Nonlinear Schrödinger
Equation (9.6) can be projected out from the perturbation using the adjoint
basis f̄∗i corresponding to the first component of the vector in Eqs.(3.44) -
(3.47) and the new orthogonality relation

Re

½Z +∞

−∞
f̄∗i (t)fj(t)dt

¾
= δi,j. (9.9)
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We obtain

∂

∂T
∆w = − 1

τw
∆w +

1

TR
Re

½Z +∞

−∞
f̄∗w(t)Lpert(T, t)dt

¾
(9.10)

∂

∂T
∆θ(T ) =

2φo
TR

∆w

wo
+
1

TR
Re

½Z +∞

−∞
f̄∗θ (t)Lpert(T, t)dt

¾
(9.11)

∂

∂T
∆p(T ) = − 1

τ p
∆p+

1

TR
Re

½Z +∞

−∞
f̄∗p (t)Lpert(T, t)dt

¾
(9.12)

∂

∂T
∆t =

−2|D|
TR

∆ω +
1

TR
Re

½Z +∞

−∞
f̄∗t (t)Lpert(T, t)dt

¾
(9.13)

Note, that the irreversible dynamics does couple back the generated con-
tinuum to the soliton parameters. Here, we assume that this coupling is
small and neglect it in the following, see [1]. Due to gain saturation and the
parabolic filter pulse energy and center frequency fluctuations are damped
with normalized decay constants

1

τw
= (2gd − 2γA2o) (9.14)

1

τ p
=
4

3

gs
Ω2gτ

2

1

TR
(9.15)

Here, gs is the saturated gain and gd is related to the differential gain by

gs =
go

1 + wo
PLTR

(9.16)

gd =
dgs
dwo

· wo (9.17)

Note, in this model we assumed that the gain instantaneously follows the
intracavity average power or pulse energy, which is not true in general. How-
ever, it is straight forward to include the relaxation of the gain by adding a
dynamical gain model to the perturbation equations. For simplicity we shall
neglect this here. Since the system is autonomous, there is no retiming and
rephasing in the free running system.
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9.2 Noise in Mode-locked Lasers

Within this framework the response of the laser to noise can be easily in-
cluded. The spontaneous emission noise due to the amplifying medium with
saturated gain gs and excess noise factor Θ leads to additive white noise in
the perturbed master equation (9.6) with Lpert = ξ(t, T ), where ξ is a white
Gaussian noise source with autocorrelation function

hξ(t0, T 0)ξ(t, T )i = T 2RPnδ(t− t0)δ(T − T 0) (9.18)

where the spontaneous emission noise energy Pn · TR with

Pn = Θ
2gs
TR
~ωc = Θ

~ωc

τ p
(9.19)

is added to the pulse within each roundtrip in the laser. τ p is the cavity decay
time or photon lifetime in the cavity. Note, that the noise is approximated
by white noise, i.e. uncorrelated noise on both time scales t, T . The noise
between different round-trips is certainly uncorrelated. However, white noise
on the fast time scale t, assumes a flat gain, which is an approximation.
By projecting out the equations of motion for the pulse parameters in the
presence of this noise according to (9.8)—(9.13), we obtain the additional
noise sources which are driving the energy, center frequency, timing and
phase fluctuations in the mode-locked laser

∂

∂T
∆w = − 1

τw
∆w + Sw(T ), (9.20)

∂

∂T
∆θ(T ) =

2φo
TR

∆w

wo
+ Sθ(T ), (9.21)

∂

∂T
∆p(T ) = − 1

τ p
∆p+ Sp(T ), (9.22)

∂

∂T
∆t =

−2|D|
TR

∆p+ St(T ), (9.23)
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with

Sw(T ) =
1

TR
Re

½Z +∞

−∞
f̄∗w(t)ξ(T, t)dt

¾
, (9.24)

Sθ(T ) =
1

TR
Re

½Z +∞

−∞
f̄∗θ (t)ξ(T, t)dt

¾
, (9.25)

Sp(T ) =
1

TR
Re

½Z +∞

−∞
f̄∗p (t)ξ(T, t)dt

¾
, (9.26)

St(T ) =
1

TR
Re

½Z +∞

−∞
f̄∗t (t)ξ(T, t)dt

¾
. (9.27)

The new reduced noise sources obey the correlation functions

hSw(T 0)Sw(T )i =
Pn

4w0
δ(T − T 0), (9.28)

hSθ(T 0)Sθ(T )i =
4

3

µ
1 +

π2

12

¶
Pn

wo
δ(T − T 0), (9.29)

hSp(T 0)Sp(T )i =
4

3

Pn

wo
δ(T − T 0), (9.30)

hSt(T 0)St(T )i =
π2

3

Pn

wo
δ(T − T 0), (9.31)

hSi(T 0)Sj(T )i = 0 for i 6= j. (9.32)

The power spectra of amplitude, phase, frequency and timing fluctuations
are defined via the Fourier transforms of the autocorrelation functions

|∆ŵ(Ω)|2 =
Z +∞

−∞
h∆ŵ(T + τ)∆ŵ(T )ie−jΩτdτ, etc. (9.33)

After a short calculation, the power spectra due to amplifier noise are¯̄̄̄
∆ŵ(Ω)

wo

¯̄̄̄2
=

4

1/τ 2w + Ω2
Pn

wo
, (9.34)

|∆θ̂(Ω)|2 =
1

Ω2

∙
4

3

µ
1 +

π2

12

¶
Pn

wo
+

16

(1/τ 2p + Ω2)

φ2o
T 2R

Pn

wo

¸
, (9.35)

|∆p̂(Ω)τ |2 =
1

1/τ 2p + Ω2
4

3

Pn

wo
, (9.36)¯̄̄̄

∆t̂(Ω)

τ

¯̄̄̄2
=

1

Ω2

∙
π2

3

Pn

wo
+

1

(1/τ 2ω + Ω2)

4

3

4|D|2
T 2Rτ

4

Pn

wo

¸
. (9.37)
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These equations indicate, that energy and center frequency fluctuations be-
come stationary with mean square fluctuations*µ

∆w

wo

¶2+
= 2

Pnτw
wo

(9.38)

h(∆ωτ)2i = 2

3

Pnτ
2
p

wo
(9.39)

whereas the phase and timing undergo a random walk with variances

σθ(T ) = h(∆θ(T )−∆θ(0))2i = 4

3

µ
1 +

π2

12

¶
Pn

wo
|T | (9.40)

+16
φ2o
T 2R

Pn

wo
τ 3p

µ
exp

∙
− |T |
τ p

¸
− 1 + |T |

τw

¶

σt(T ) =

*µ
∆t(T )−∆t(0)

τ

¶2+
=

π2

3

Pn

wo
|T | (9.41)

+
4

3

4|D|2
T 2Rτ

4

Pn

wo
τ 3ω

µ
exp

∙
− |T |
τ p

¸
− 1 + |T |

τ p

¶
The phase noise causes the fundamental finite width of every line of the
mode-locked comb in the optical domain. The timing jitter leads to a fi-
nite linewidth of the detected microwave signal, which is equivalent to the
lasers fundamental fluctuations in repetition rate. In the strict sense, phase
and timing in a free running mode-locked laser (or autonomous oscillator)
are not anymore stationary processes. Nevertheless, since we know these
are Gaussian distributed variables, we can compute the amplitude spectra of
phasors undergoing phase diffusion processes rather easily. The phase differ-
ence ϕ = ∆θ(T )−∆θ(0) is a Gaussian distributed variable with variance σ
and propability distribution

p(ϕ) =
1√
2πσ

e−
ϕ2

2σ , with σ =
­
ϕ2
®
. (9.42)

Therefore, the expectation value of a phasor with phase ϕ is­
ejϕ
®
=

1√
2πσ

Z +∞

−∞
e−

ϕ2

2σ ejϕdϕ (9.43)

= e−
1
2
σ.
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9.2.1 The Optical Spectrum

a(t, T ) =

µ
A0 sech(

t− t0
τ

) + ac(T, t)

¶
e
−jφ0 T

TR (9.44)

In the presence of noise the laser output changes from eq.(9.1) to a random
process. Neglecting the background continuum we obtain:

A(t, T = mTR) =
+∞X

m=−∞
(A0 +∆A(mTR)) sech

µ
t−mTR −∆t(mTR)

τ

¶
(9.45)

ej∆φCE ·mej(ωc+∆p(mTR))te−j∆θ(mTR)

For simplicity, we will neglect in the following amplitude and carrier fre-
quency fluctuations in Eq.(9.45), because they are bounded and become only
important at large offsets from the comb. However, we keep them in the ex-
pressions for the phase and timing jitter Eqs.(9.34) and (9.36). We assume
a stationary process, so that the optical power spectrum can be computed
from

S(ω) = lim
T=2NTR→∞

1

T
hÂ∗T (ω)ÂT (ω)i (9.46)

with the spectra related to a finite time interval

ÂT (ω) =
R T
−T A(t)e

−jωtdt = â0(ω − ωc)
PN

m=−N e
jmTR

³
∆φCE
TR

−ω
´

e−j[(ω−ωc)∆t(mTR)+∆θ(mTR)]

(9.47)

where â0(ω) is the Fourier transform of the pulse shape. In this case

â0(ω) =

Z ∞

−∞
A0 sech

µ
t

τ

¶
e−jωtdt = A0πτ sech

³π
2
ωτ
´

(9.48)

With (9.46) the optical spectrum of the laser is given by

S(ω) = limN→∞ |â0(ω − ωc)|2 1
2NTR

PN
m0=−N

PM
m=−N e

jTR

³
φCE
TR

−ω
´
(m−m0)

he+j[2π(f−fc)(∆t(mTR)−∆t(m0TR))−(θ(mTR)−θ(m0TR))]i
(9.49)
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Note, that the difference between the phases and the timing only depends on
the difference k = m−m0. In the current model phase and timing fluctuations
are uncorrelated. Therefore, for N →∞ we obtain

S(ω) = |â0(ω − ωc)|2 1
TR

P∞
k0=−∞ e

jTR

³
∆φCE
TR

−ω
´
k

he+j[2π(ω−ω0)(∆t((m+k)TR)−∆t(mTR))]i ­e−j(θ((m+k)TR)−θ(mTR))
®
.
(9.50)

The expectation values are exactly of the type calculated in (9.43), which
leads to

S(ω) =
|â0(ω − ωc)|2

TR

∞X
k0=−∞

e
jTR

³
φCE
TR

−ω
´
k
e−

1
2
σθ(kTR) (9.51)

e−
1
2 [((ω−ωc)τ)

2σt(kTR)]

Most often we are interested in the noise very close to the lines at frequency
offsets much smaller than the inverse energy and frequency relaxation times
τw and τ p. This is determined by the long term behavior of the variances,
which grow linearly in |T |

σθ(T ) =
4

3

µ
1 +

π2

12
+16

τ 2w
T 2R

φ2o

¶
Pn

wo
|T | = 2∆ωφ|T |, (9.52)

σt(T ) =
1

3

Ã
π2 +

τ 2p
T 2R

µ
D

τ 2

¶2!
Pn

wo
|T | = 4∆ωt|T |. (9.53)

with the rates

∆ωφ =
2

3

µ
1 +

π2

12
+16

τ 2w
T 2R

φ2o

¶
Pn

wo
, (9.54)

∆ωt =
1

6

Ã
π2 +

τ 2p
T 2R

µ
D

τ 2

¶2!
Pn

wo
. (9.55)

From the Poisson formula

+∞X
k=−∞

h[k]e−jkx =
+∞X

n=−∞
G(x+ 2nπ) (9.56)
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where

G(x) =

Z +∞

−∞
h[k]e−jkxdk, (9.57)

and Eqs.(9.51) to (9.55) we finally arrive at the optical line spectrum of the
mode-locked laser

S(ω) =
|â0(ω − ωc)|2

T 2R

+∞X
n=−∞

2∆ωn

(ω − ωn)2 +∆ω2n
(9.58)

which are Lorentzian lines at the mode comb positions

ωn = ωc + nωR − ∆φCE
TR

, (9.59)

=
∆φCE
TR

+ n0Rω, (9.60)

with a half width at half maximum of

∆ωn = ∆ωφ + [τ(ωn − ωc)]
2∆ωt. (9.61)

Estimating the number of modes M included in the comb by

M =
TR
τ
, (9.62)

we see that the contribution of the timing fluctuations to the linewidth of
the comb lines in the center of the comb is negligible. Thus the linewidth of
the comb in the center is given by 9.54

∆ωφ =
2

3

µ
1 +

π2

12
+16

τ 2w
T 2R

φ2o

¶
Θ2gs
N0TR

(9.63)

=
2

3

µ
1 +

π2

12
+16

τ 2w
T 2R

φ2o

¶
Θ

N0τ p
(9.64)

whereN0 =
wo
~ωc is the number of photons in the cavity and τ p = TR/(2l) is the

photon lifetime in the cavity. Note that this result for the mode-locked laser
is closely related to the Schawlow-Towns linewidth of a continuous wave laser
which is∆fφ =

Θ
2πN0τp

. For a solid-state laser at around 1µm wavelength with
a typical intracavity pulse energy of 50 nJ corresponding to N0 = 2.5 · 1011
photons and 100 MHz repetition rate with a 10% output coupler and an
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excess noise figure of Θ = 2, we obtain ∆fφ˜
Θ

3πN0τp
= 8µHz without the am-

plitude to phase conversion term depending on the nonlinear phase shift φo.
These intrinsic linewidths are due to fluctuations happening on a time scale
faster than the round-trip time and, therefore, can not be compensated by
external servo control mechanisms. For sub-10 fs lasers, the spectra fill up
the full gain bandwidth and the KLM is rather strong, so that the ampli-
tude and center frequency relaxation times are on the order of 10-100 cavity
roundtrips. In very short pulse Ti:sapphire lasers nonlinear phase shifts are
on the order of 1 rad per roundtrip. Then most of the fluctuations are due to
amplitude fluctuations converted into phase jitter. This contributions can in-
crease the linewidth by a factor of 100-10000, which may bring the linewidth
to the mHz and Hz level.

9.2.2 The Microwave Spectrum

Not only the optical spectrum is of interest als the spectrum of the photo
detected output of the laser is of intrest. Simple photo detection can convert
the low jitter optical pulse stream into a comb of extremely low phase noise
microwave signals. The photo detector current is proportional to the output
power of the laser. From Eq.(9.45) we find

I(t) = η
e

hωc
|A(T, t)|2 = η

e

hωcτ
× (9.65)

+∞X
m=−∞

(w0 +∆w(mTR))
1

2
sech2

µ
t−mTR −∆t(mTR)

τ

¶
,

where η is the quantum efficiency. For simplicity we neglect again the ampli-
tude noise and consider only the consequences due to the timing jitter. Then
we obtain for the Fourier Transform of the photo current

ÎT (ω) = η
ew0
hω0τ

|a0|2 (ω)
+NX

m=−N
e−jω(mTR+∆t(mTR)), (9.66)

|a0|2 (ω) =

Z ∞

−∞

1

2
sech2 (x) e−jωτxdx (9.67)

=
πωτ

sinh(π
2
ωτ)

, (9.68)
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and its power spectrum according to Eq.(9.46)

SI(ω) =
(ηeN0)

2

TR

¯̄|a0|2 (ω)¯̄2 +∞X
k=−∞

e−jωkTR
­
e−jω(∆t(kTR)−∆t(0))

®
,

=
(ηeN0)

2

TR

¯̄|a0|2 (ω)¯̄2 +∞X
k=−∞

e−jωkTRe−
1
2 [(ωτ)

2σt(kTR)] (9.69)

Using the Poisson formula again results in

SI(ω) =
(ηeN0)

2

TR

¯̄|a0|2 (ω)¯̄2 +∞X
k=−∞

e−jωkTRe−jω(∆t(kTR)−∆t(0)),

=
(ηeN0)

2

T 2R

¯̄|a0|2 (ω)¯̄2 +∞X
n=−∞

2∆ωI,n

(ω − nωR)2 +∆ω2I,n
(9.70)

with the linewidth ∆ωI,n of the n-th harmonic

∆ωI,n =

µ
2πn

τ

TR

¶2
∆ωt

=

µ
2πn

M

¶2
∆ωt. (9.71)

The fundamental line (n = 1) of the microwave spectrum has a width which
is M2−times smaller than the optical linewidth. For a 10-fs laser with 100
MHz repetition rate, the number of modes M is about a million.

9.2.3 Example: Yb-fiber laser:

Figure 9.3 shows the schematic of a streched pulse modelocked laser operating
close to zero dispersion. Therefore, the contribution of the Gordon-Haus
jitter should be minimized. Infact, it has been shown and discussed that
these types of lasers reach minimum jitter levels [2][3][4].
The timing jitter of the streched pulse laser shown in Figure is computed

in table 9.1.
The theoretical results above are derived with soliton perturbation the-

ory. The stretched pulse modelocked laser in Figure 9.3 is actually far from
being a soliton laser, see [3][4]. The pulse is breathing considerably during
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Figure 9.3: Schematic of a streched pulse modelocked laser.

Gain Half-Width Half Maximum Ωg = 2π · 0.3µm/fs(1.µm)2
0.02µm= 38THz

Saturated gain gs = 1.2
Pulse width τFWHM = 50fs, τ = τFWHM/1.76 = 30fs
Pulse repetition time TR = 12ns

Decay time for
center freq. fluctuations

1
τp
= 4

3
gs

Ω2gτ
2TR

= 4
3
1
TR

Intracavity power P = 100mW
Intra cavity pulse energy

/ photon number
wo = 1.2nJ, N0 = 0.6 · 1010

Noise power spectral density Pn = Θ2gs
TR
~ωo

Amplifier excess noise factor Θ = 10

ASE noise Pn
wo
= Θ 2gs

TRN0
= 1

3
Hz

Dispersion 5000fs2

Frequency-to-timing conv. 4
π2
4|D|2
τ4

τ2p
T2R
=
¡
2
π
3
4
3·10000
1000

¢2
= (3.7)2

Timing jitter density
¯̄̄
∆t̂(Ω)
τ

¯̄̄2
= 1

Ω2
π2

3
Pn
wo

³
1 + 4

π2
4|D|2
τ4

1
(T 2R/τ

2
p+T

2
RΩ

2)

´
Timing jitter [fmin, fmax] for

fmin << 1/τ p,
fmin = 10kHz, D = 5000fs2

∆t = τ

r
1

12·fmin
Pn
wo

³
1 + 4

π2
4|D|2
τ4

τ2p
T 2R

´
= 0.2fs

Table 9.1: Parameters for the streched pulse modelocked laser of Figure 9.3.
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Figure 9.4: Timing jitter measurement of the output from the streched pulse
modelocked laser measured with a HP 5504 signal analyzer.

passage through the cavity up to a factor of 10. Therefore, the theory should
take that into account by assuming an average pulse width when the noise
is added in the cavity. For more details see [3][4]. In reality, these quantum
limited (ASE) and rather small optical and microwave linewidths are diffi-
cult to observe, because they are most often swamped by technical noise such
as fluctuations in pump power, which may case gain fluctuations, or mirror
vibrations, air-density fluctuations or thermal drifts, which directly cause
changes in the lasers repetition rate. Figure 9.4 shows the single-sideband
phase noise spectrum L(f) of the N=32nd harmonic of the fundamental repe-
tition rate, i.e 1.3 GHz, in the photo current spectrum 9.70. The phase of the
N=32nd harmonic of the photocurrent 9.65 is directly related to the timing
jitter by

∆ϕ(T ) = 2πNfR∆t(T ) (9.72)

The single-sideband phase noise is the power spectral density of these phase
fluctuations defined in the same way as the power spectral density of the



324 CHAPTER 9. NOISE AND FREQUENCY CONTROL

photocurrent itself, i.e.
L(f) = 2πS∆ϕ(ω) (9.73)

The phase fluctuations in a certain frequency intervall can then be easily
evaluated by

∆ϕ2 = 2

Z f max

f min

L(f)df. (9.74)

And the timing jitter is then

∆t =
1

2πNfR

s
2

Z f max

f min

L(f)df. (9.75)

For the measurements shown in Figure 9.4 we obtain for the integrated tim-
ing jitter from 10kHz to 20 MHz of 50 fs. This is about 200 times larger than
the limits derived in table 9.1. This discrepancy comes from several effects,
most notable amplitude to phase conversion in the photodetector during pho-
todetection, an effect not yet well understood as well as other noise sources
we might not have modelled, such as noise from the pump laser. However,
these noise sources can be eliminated in principle by careful design and feed-
back loops. Therefore, it is important to understand the dependence of the
group and phase velocity on the intracavity power or pulse energy at least
within the current basic model. Additional linear and nonlinear effects due to
higher order linear dispersion or nonlinearities may cause additional changes
in group and phase velocity, which might also create unusual dependencies
of group and phase velocity on intracavity pulse energy. Here we discuss as
an example the impact of the instantaneous Kerr effect on group and phase
velocity of a soliton like pulse.

9.3 Group- and Phase Velocity of Solitons

The Kerr-effect leads to a change of phase velocity of the pulse, resulting in
the self-phase shift of the soliton, φo, per round-trip. A change in group ve-
locity does not appear explicitly in the solution of the NLSE. Self-steepening
which becomes important for ultrashort pulses leads to an additional term in
the NLSE and therefore to an additional term in the master equation (9.6)

Lpert = − δ

ωc

∂

∂t
(|a(T, t)|2a(T, t)). (9.76)
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The impact of this term is expected to be small of the order of 1/(ωoτ) and
therefore only important for few-cycle pulses. However, it turns out that this
term alters the phase and group velocity of the soliton like pulse as much
as the nonlinear phase shift itself. We take his term into account in form of
a perturbation. This perturbation term is odd and real and therefore only
leads to a timing shift, when substituted into Eq.(9.6).

TR
∂∆t(T )

∂T

¯̄̄̄
sst

= − δ

ωc
A
3

0

Re

½Z +∞

−∞
f̄∗t (t)

∂

∂t

µ
sech3

µ
t

τ

¶¶
dt

¾
(9.77)

=
δ

ωc
A
2

0

=
2φ0
ωc

. (9.78)

This timing shift or group delay per round-trip, together with the nonlin-
ear phase shift leads to a phase change between carrier and envelope per
roundtrip given by

∆φCE = −φ0 + ωo TR
∂

∂T
∆t(T )

¯̄̄̄
selfsteep

= −1
2
δA20 + δA20 =

1

2
δA20. (9.79)

The compound effect of this phase delay per round-trip in the carrier versus
envelope leads to a carrier-envelope frequency

fCE =
∆φCE
2π

fR =
φ0
2π

fR. (9.80)

The group delay also changes the optical cavity length of the laser and there-
fore alters the repetition rate according to

∆fR = −f2R∆t(T )
¯̄
selfsteep

= −2φ0
fR
ωo

fR = − 2

m0
fCE, (9.81)

where m0 is the mode number of the carrier wave. Eqs.(9.80) and (9.81)
together determine the shift of the m-th line of the optical comb fm = fCE+
mfR due to an intracavity pulse energy modulation and a change in cavity
length by

∆fm = ∆fCE +m∆fR = fCE

µ
1− 2m

m0

¶
∆w

w0
−mfR

∆L

L0
. (9.82)

Specifically, Eq. (9.82) predicts, that the mode with number m = m0/2,
i.e. the mode at half the center frequency, does not change its frequency
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as a function of intracavity pulse energy. Of course, one has to remember,
that this model is so far based on self-phase modulation and self-steepening
as the cause of a power dependent carrier-envelope offset frequency. There
may be other mechanisms that cause a power dependent carrier envelope
offset frequency. One such effect is the group delay caused by the laser gain
medium another one is the carrier-envelope change due to a change in carrier
frequency, which gives most likely a very strong additional dependence on
pump power. Nevertheless, the formula 9.82 can be used for the control of
the optical frequency comb of a femtosecond laser by controlling the cavity
length and the intracavity pulse energy, via the pump power.

9.4 Femtosecond Laser Frequency Combs

Nevertheless, the formula (9.82) can be used for the control of the optical
frequency comb of a femtosecond laser by controlling the cavity length and
the intracavity pulse energy, via the pump power. According to Fig. 9.2
every line of the optical comb determined by

fm = fCE +mfR. (9.83)

Note, if the femtosecond laser emits a spectrum covering more than one
octave, then one can frequency double part of the comb at low frequencies
and beat it with the corresponding high frequency part of the comb on a
photo detector, see Fig. 9.5 The result is a photodector beat signal that
consists of discrete lines at the beat frequencies

fk = kfR ± fCE (9.84)

This method for determining the carrier-envelope offset frequency is called
f-to-2f interferometry.The carrier-envelope offset frequency can be extracted
with filters and synchronized to a local oscillator or to a fraction of the
repetition rate of the laser, for example fR/4.
Figure 9.6 shows the setup of an octave spanning 200 MHz Ti:sapphire

laser where the carrier envelope offset frequency fCE is locked to a local
oscillator at 36 MHz using the f-to-2f self-referencing method [6]
The spectral output of this laser is shown in Figure 9.7 The spectral com-

ponents at 1140 are properly delayed in a chirped mirror delay line against
the spectral components at 570 nm. The 1140 nm range is frequency dou-
bled in a 1mm BBO crystal and the frequency doubled light together with
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Figure 9.5: f-to-2f interferometry to determine the carrier-envelope offset
frequency.

Figure 9.6: Carrier-envelope phase stabilized 200 MHz octave-spanning
Ti:sapphire laser. The femtosecond laser itself is located inside the grey
area. AOM, acousto-optical modulator; S, silver end mirror; OC, output
coupling mirror; PBS, polarizing beam splitter cube; PMT, photomultiplier
tube; PD, digital phase detector; LF, loop filter; VSA, vector signal analyzer.
The carrier-envelope frequency is phase locked to 36 MHz.

Mucke, Oliver, et al. "Self-Referenced 200 MHz Octave-Spanning Ti: Sapphire Laser with 50 Attosecond 
Carrier-Envelope Phase Jitter." Optics Express 13, no. 13 (June 2005): 5163-5169. 

Image removed due to copyright restrictions.
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Figure 9.7: Output spectrum of the Ti:sapphire laser on a linear (black curve)
and on a logarithmic scale (grey curve). The wavelengths 570 and 1140 nm
used for self-referencing are indicated by two dashed lines.

the fundamental at 570 nm is projected into the same polarization via a po-
larizing beam splitter. The signal is then filtered through a 10nm wide filter
and detected with a photomultiplier tube (PMT). A typical signal from the
PMT is shown in Figure 9.8.Phase locking is achieved by a phase-locked loop
(PLL) by feeding the error signal from the digital phase detector to an AOM
placed in the pump beam (see Fig. 9.6) which modulates the pump power
and thus changes the carrier-envelope frequency via Eq.(9.82). A bandpass
filter is used to select the carrier-envelope beat signal at 170 MHz. This
signal is amplified, divided by 16 in frequency, and compared with a refer-
ence frequency fLO supplied by a signal generator (Agilent 33250A) using
a digital phase detector. The carrier-envelope beat signal is divided by 16
to enhance the locking range of the PLL. The phase detector acts as a fre-
quency discriminator when the loop is open, the output is thus the difference
frequency between the carrier-envelope frequency and the designated locking
frequency. The output signal is amplified in the loop filter, which in our case
is a proportional and integral controller, and fed back to the AOM, closing
the loop. The output of the phase detector is proportional to the remaining
jitter between the carrier-envelope phase evolution and the local oscillator
reduced by the division ratio 16. The power spectral density (PSD) of the
carrier-envelope phase fluctuations are measured with a vector signal ana-
lyzer (VSA) at the output of the phase detector. After proper rescaling by
the division factor the phase error PSD is shown in Fig. 9.9. The measure-

Mucke, Oliver, et al. "Self-Referenced 200 MHz Octave-Spanning Ti: Sapphire Laser with 50 Attosecond 
Carrier-Envelope Phase Jitter." Optics Express 13, no. 13 (June 2005): 5163-5169. Used with permission.

Image removed due to copyright restrictions.
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Figure 9.8: Radio-frequency power spectrum measured with a 100 kHz reso-
lution bandwidth (RBW). The peak at the carrier-envelope frequency offset
frequency exhibits a signal-to-noise ratio of ~35 dB.

ment was taken in steps with an equal amount of points per decade. The
PSD of the carrier-envelope phase fluctuations can be integrated to obtain
the total phase error. In the range above 1 MHz (see Fig. 9.9), the accu-
racy of this measurement is limited by the noise floor of the vector signal
analyzer. We obtain an integrated carrier-envelope phase jitter of about 0.1
radian over the measured frequency range. The major contribution to the
phase noise comes from low frequency fluctuations <10 kHz. If in addition to
the carrier-envelope frequency also the repetition rate of the laser is locked to
a frequency standard, such as for example a Cesium clock, the femtosecond
laser frequency comb in the optical domain is completely determined with
microwave precision and can be used for optical frequency measurements [6].

Mucke, Oliver, et al. "Self-Referenced 200 MHz Octave-Spanning Ti: Sapphire Laser with 50 Attosecond 
Carrier-Envelope Phase Jitter." Optics Express 13, no. 13 (June 2005): 5163-5169. 

Image removed due to copyright restrictions.
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Figure 9.9: Carrier-envelope phase noise power spectral density (left) and
integrated phase jitter (right) resulting in only 45 as accumulated carrier-
envelope timing jitter.

Mucke, Oliver, et al. "Self-Referenced 200 MHz Octave-Spanning Ti: Sapphire Laser with 50 Attosecond 
Carrier-Envelope Phase Jitter." Optics Express 13, no. 13 (June 2005): 5163-5169. 
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Chapter 10

Pulse Characterization

Characterization of ultrashort laser pulses with pulse widths greater than
20ps can be directly performed electronically using high speed photo detec-
tors and sampling scopes. Photo detectors with bandwidth of 100 GHz are
available. For shorter pulses usually some type of autocorrelation or cross-
correlation in the optical domain using nonlinear optical effects has to be
performed, i.e. the pulse itself has to be used to measure its width, because
there are no other controllable events available on such short time scales.

10.1 Intensity Autocorrelation

Pulse duration measurements using second-harmonic intensity autocorrela-
tion is a standard method for pulse characterisation. Figure 10.1 shows the
setup for a background free intensity autocorrelation. The input pulse is split
in two, and one of the pulses is delayed by τ . The two pulses are focussed
into a nonliner optical crystal in a non-colinear fashion. The nonlinear opti-
cal crystal is designed for efficient second harmonic generation over the full
bandwidth of the pulse, i.e. it has a large second order nonlinear optical
suszeptibility and is phase matched for the specific wavelength range. We
do not consider the z—dependence of the electric field and phase—matching
effects. To simplify notation, we omit normalization factors. The induced
nonlinear polarization is expressed as a convolution of two interfering electric—
fields E1(t), E2(t) with the nonlinear response function of the medium, the

333
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second order nonlinear susceptibility χ(2).

P (2)(t) ∝
ZZ ∞

−∞
χ(2)(t− t1, t− t2) ·E1(t1) · E2(t2)dt1dt2

Figure 10.1: Setup for a background free intensity autocorrelation. To avoid
dispersion and pulse distortions in the autocorrelator reflective optics can be
and a thin crystal has to be used for measureing very short, typically sub-100
fs pulses.

We assume the material response is instantaneous and replace χ(2)(t −
t1, t− t2) by a Dirac delta—function χ(2) · δ(t− t1) · δ(t− t2) which leads to

P (2)(t) ∝ E1(t) · E2(t) (10.1)

Due to momentum conservation, see Figure 10.1, we mayseparate the product
E(t) ·E(t− τ) geometrically and supress a possible background coming from
simple SHG of the individual pulses alone. The signal is zero if the pulses
don’t overlap.

P (2)(t) ∝ E(t) · E(t− τ). (10.2)

Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
ETH Hönggerberg—HPT, CH-8093 Zurich, Switzerland. 
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Table 10.1: Pulse shapes and its deconvolution factors

relating FWHM, τ p, of the pulse to FWHM, τA, of the

intensity autocorrelationfunction.

The electric field of the second harmonic radiation is directly proportional to
the polarization, assuming a nondepleted fundamental radiation and the use
of thin crystals. Due to momentum conservation, see Figure 10.1, we find

IAC(τ) ∝
Z ∞

−∞

¯̄̄
A(t)A(t− τ)

¯̄̄2
dt . (10.3)

∝
Z ∞

−∞
I(t)I(t− τ) dt, (10.4)

Keller, U., Ultrafast Laser Physics, Institute of Quantum Electronics, Swiss Federal Institute of Technology, 
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with the complex envelopeA(t) and intensity I(t) = |A(t)|2 of the input pulse.
The photo detector integrates because its response is usually much slower
than the pulsewidth. Note, that the intenisty autocorrelation is symmetric
by construction

IAC(τ) = IAC(−τ). (10.5)

It is obvious from Eq.(10.3) that the intensity autocorrelation does not con-
tain full information about the electric field of the pulse, since the phase of
the pulse in the time domain is completely lost. However, if the pulse shape
is known the pulse width can be extracted by deconvolution of the correla-
tion function. Table 10.1 gives the deconvolution factors for some often used
pulse shapes.

10.2 Interferometric Autocorrelation (IAC)

A pulse characterization method, that also reveals the phase of the pulse
is the interferometric autocorrelation introduced by J. C. Diels [2], (Figure
10.2 a). The input beam is again split into two and one of them is delayed.
However, now the two pulses are sent colinearly into the nonlinear crystal.
Only the SHG component is detected after the filter.

Figure 10.2: (a) Setup for an interferometric autocorrelation. (b) Delay
stage, so that both beams are reflected from the same air/medium interface
imposing the same phase shifts on both pulses.
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The total field E(t, τ) after the Michelson-Interferometer is given by the
two identical pulses delayed by τ with respect to each other

E(t, τ) = E(t+ τ) +E(t) (10.6)

= A(t+ τ)ejω⊂(t+τ)ejφCE +A(t)ejωctejφCE . (10.7)

A(t) is the complex amplitude, the term eiω0t describes the oscillation with
the carrier frequency ω0 and φCE is the carrier-envelope phase. Eq. (10.1)
writes

P (2)(t, τ) ∝ ¡A(t+ τ)ejωc(t+τ)ejφCE +A(t)ejωctejφCE
¢2

(10.8)

This is only idealy the case if the paths for both beams are identical. If
for example dielectric or metal beamsplitters are used, there are different
reflections involved in the Michelson-Interferometer shown in Fig. 10.2 (a)
leading to a differential phase shift between the two pulses. This can be
avoided by an exactly symmetric delay stage as shown in Fig. 10.1 (b).
Again, the radiated second harmonic electric field is proportional to the

polarization

E(t, τ) ∝ ¡A(t+ τ)ejωc(t+τ)ejφCE +A(t)ejωc(t)ejφCE
¢2
. (10.9)

The photo—detector (or photomultiplier) integrates over the envelope of each
individual pulse

I(τ) ∝
Z ∞

−∞

¯̄̄ ¡
A(t+ τ)ejωc(t+τ) +A(t)ejωct

¢2 ¯̄̄2
dt .

∝
Z ∞

−∞

¯̄̄
A2(t+ τ)ej2ωc(t+τ)

+2A(t+ τ)A(t)ejωc(t+τ)ejωct

+A2(t)ej2ωct
¯̄̄2
. (10.10)

Evaluation of the absolute square leads to the following expression

I(τ) ∝
Z ∞

−∞

h
|A(t+ τ)|4 + 4|A(t+ τ)|2|A(t)|2 + |A(t)|4

+2A(t+ τ)|A(t)|2A∗(t)ejωcτ + c.c.
+2A(t)|A(t+ τ)|2A∗(t+ τ)e−jωcτ + c.c.

+A2(t+ τ)(A∗(t))2ej2ωcτ + c.c.
i
dt . (10.11)
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The carrier—envelope phase φCE drops out since it is identical to both pulses.
The interferometric autocorrelation function is composed of the following
terms

I(τ) = Iback + Iint(τ) + Iω(τ) + I2ω(τ) . (10.12)

Background signal Iback:

Iback =

Z ∞

−∞

¡|A(t+ τ)|4 + |A(t)|4¢ dt = 2

Z ∞

−∞
I2(t) dt (10.13)

Intensity autocorrelation Iint(τ):

Iint(τ) = 4

Z ∞

−∞
|A(t+ τ)|2|A(t)|2 dt = 4

Z ∞

−∞
I(t+ τ) · I(t) dt (10.14)

Coherence term oscillating with ωc: Iω(τ):

Iω(τ) = 4

Z ∞

−∞
Re
hµ

I(t) + I(t+ τ)

¶
A∗(t)A(t+ τ)ejωτ

i
dt (10.15)

Coherence term oscillating with 2ωc: I2ω(τ):

Iω(τ) = 2

Z ∞

−∞
Re
h
A2(t)(A∗(t+ τ))2ej2ωτ

i
dt (10.16)

Eq. (10.12) is often normalized relative to the background intensity Iback
resulting in the interferometric autocorrelation trace

IIAC(τ) = 1 +
Iint(τ)

Iback
+

Iω(τ)

Iback
+

I2ω(τ)

Iback
. (10.17)

Eq. (10.17) is the final equation for the normalized interferometric auto-
correlation. The term Iint(τ) is the intensity autocorrelation, measured by
non—colinear second harmonic generation as discussed before. Therefore, the
averaged interferometric autocorrelation results in the intensity autocorrela-
tion sitting on a background of 1.
Fig. 10.3 shows a calculated and measured IAC for a sech-shaped pulse.
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Figure 10.3: Computed and measured interferometric autocorrelation traces
for a 10 fs long sech-shaped pulse.

As with the intensity autorcorrelation, by construction the interferometric
autocorrelation has to be also symmetric:

IIAC(τ) = IIAC(−τ) (10.18)

This is only true if the beam path between the two replicas in the setup
are completely identical, i.e. there is not even a phase shift between the
two pulses. A phase shift would lead to a shift in the fringe pattern, which
shows up very strongly in few-cycle long pulses. To avoid such a symmetry
breaking, one has to arrange the delay line as shown in Figure 10.2 b so
that each pulse travels through the same amount of substrate material and
undergoes the same reflections.
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At τ = 0, all integrals are identical

Iback ≡ 2
Z
|A(t)|4dt

Iint(τ = 0) ≡ 2
Z
|A2(t)|2dt = 2

Z
|A(t)|4dt = Iback

Iω(τ = 0) ≡ 2
Z
|A(t)|2A(t)A∗(t)dt = 2

Z
|A(t)|4dt = Iback

I2ω(τ = 0) ≡ 2
Z

A2(t)(A2(t)∗dt = 2

Z
|A(t)|4dt = Iback

(10.19)

Then, we obtain for the interferometric autocorrelation at zero time delay

IIAC(τ)|max = IIAC(0) = 8

IIAC(τ → ±∞) = 1

IIAC(τ)|min = 0

(10.20)

This is the important 1:8 ratio between the wings and the pick of the IAC,
which is a good guide for proper alignment of an interferometric autocorre-
lator. For a chirped pulse the envelope is not any longer real. A chirp in the
pulse results in nodes in the IAC. Figure 10.4 shows the IAC of a chirped
sech-pulse

A(t) =

µ
sech

µ
t

τ p

¶¶(1+jβ)

for different chirps.
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Figure 10.4: Influence of increasing chirp on the IAC.

10.2.1 Interferometric Autocorrelation of an Unchirped
Sech-Pulse

Envelope of an unchirped sech-pulse

A(t) = sech(t/τ p) (10.21)

Interferometric autocorrelation of a sech-pulse

IIAC(τ) = 1 + {2 + cos (2ωcτ)}
3
³³

τ
τp

´
cosh

³
τ
τp

´
− sinh

³
τ
τp

´´
sinh3

³
τ
τp

´ (10.22)

+
3
³
sinh

³
2τ
τp

´
−
³
2τ
τp

´´
sinh3

³
τ
τp

´ cos(ωcτ)
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10.2.2 Interferometric Autocorrelation of a Chirped
Gaussian Pulse

Complex envelope of a Gaussian pulse

A(t) = exp

∙
−1
2

µ
t

tp

¶
(1 + jβ)

¸
. (10.23)

Interferometric autocorrelation of a Gaussian pulse

IIAC(τ) = 1 +

½
2 + e

−β2

2

³
τ
τp

´2
cos(2ωcτ)

¾
e
−1
2

³
τ
τp

´2
(10.24)

+4e
− 3+β2

8

³
τ
τp

´2
cos

Ã
β

4

µ
τ

τ p

¶2!
cos (ωcτ) .

10.2.3 Second Order Dispersion

It is fairly simple to compute in the Fourier domain what happens in the
presence of dispersion.

E(t) = A(t)ejωct
F−→ Ẽ(ω) (10.25)

After propagation through a dispersive medium we obtain in the Fourier
domain.

Ẽ0(ω) = Ẽ(ω)e−iΦ(ω)

and

E0(t) = A0(t)ejωct

Figure 10.5 shows the pulse amplitude before and after propagation through
a medium with second order dispersion. The pulse broadens due to the dis-
persion. If the dispersion is further increased the broadening increases and
the interferometric autocorrelation traces shown in Figure 10.5 develope a
characteristic pedestal due to the term Iint. The width of the interferomet-
rically sensitive part remains the same and is more related to the coherence
time in the pulse, that is proportional to the inverse spectral width and does
not change.



10.2. INTERFEROMETRIC AUTOCORRELATION (IAC) 343

Figure 10.5: Effect of various amounts of second order dispersion on a trans-
form limited 10 fs Sech-pulse.

10.2.4 Third Order Dispersion

We expect, that third order dispersion affects the pulse significantly for

D3

τ 3
> 1

which is for a 10fs sech-pulse D3 >
¡
10 fs
1.76

¢3
˜183 fs3. Figure 10.6 and 10.7

show the impact on pulse shape and interferometric autocorrelation. The
odd dispersion term generates asymmetry in the pulse. The interferometric
autocorrelation developes characteristic nodes in the wings.
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Figure 10.6: Impact of 200 fs3 third order dispersion on a 10 fs pulse at a
center wavelength of 800 nm.and its interferometric autocorrelation.

Figure 10.7: Changes due to increasing third order Dispersion from 100-1000
fs3on a 10 fs pulse at a center wavelength of 800 nm.
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10.2.5 Self-Phase Modulation

Self-phase modulation without compensation by proper negative dispersion
generates a phase over the pulse in the time domain. This phase is invisible
in the intensity autocorrelation, however it shows up clearly in the IAC, see
Figure 10.8 for a Gaussian pulse with a peak nonlinear phase shift φ0 =
δA20 = 2 and Figure 10.8 for a nonlinear phase shift φ0 = 3.

Figure 10.8: Change in pulse shape and interferometric autocorrelation in
a 10 fs pulse at 800 nm subject to pure self-phase modulation leading to a
nonlinear phase shift of φ0 = 2.
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Figure 10.9: Change in pulse shape and interferometric autocorrelation in
a 10 fs pulse at 800 nm subject to pure self-phase modulation leading to a
nonlinear phase shift of φ0 = 3.

From the expierence gained by looking at the above IAC-traces for pulses
undergoing second and third order dispersions as well as self-phase modula-
tion we conclude that it is in general impossible to predict purely by looking
at the IAC what phase perturbations a pulse might have. Therefore, it was
always a wish to reconstruct uniquely the electrical field with respect to am-
plitude and phase from the measured data. In fact one can show rigorously,
that amplitude and phase of a pulse can be derived uniquely from the IAC
and the measured spectrum up to a time reversal ambiguityn [1]. Further-
more, it has been shown that a cross-correlation of the pulse with a replica
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chirped in a known medium and the pulse spectrum is enough to reconstruct
the pulse [3]. Since the spectrum of the pulse is already given only the phase
has to be determined. If a certain phase is assumed, the electric field and
the measured cross-correlation or IAC can be computed. Minimization of
the error between the measured cross-correlation or IAC will give the de-
sired spectral phase. This procedure has been dubbed PICASO (Phase and
Intenisty from Cross Correlation and Spectrum Only).

Note, also instead of measuring the autocorrelation and interferometric
autocorrelation with SHG one can also use two-photon absorption or higher
order absorption in a semiconductor material (Laser or LED) [4].

However today, the two widely used pulse chracterization techniques are
Frequency Resolved Optical Gating (FROG) and Spectral Phase Interferom-
etry for Direct Electric Field Reconstruction (SPIDER)

10.3 Frequency Resolved Optical Gating (FROG)

We follow closely the bock of the FROG inventor Rich Trebino. In frequency
resolved optical gating, the pulse to be characterized is gated by another
ultrashort pulse [5]. The gating is no simple linear sampling technique, but
the pulses are crossed in a medium with an instantaneous nonlinearity (χ(2)

or χ(3)) in the same way as in an autocorrelation measurement (Figures 10.1
and 10.10). The FROG—signal is a convolution of the unknown electric—field
E(t) with the gating—field g(t) (often a copy of the unknown pulse itself).
However, after the interaction of the pulse to be measured and the gate
pulse, the emitted nonlinear optical radiation is not put into a simple photo
detector, but is instead spectrally resolved detected. The general form of the
frequency—resolved intensity, or Spectrogram SF (τ , ω) is given by

SF (τ , ω) ∝
¯̄̄̄Z ∞

−∞
E(t) · g(t− τ)e−jω tdt

¯̄̄̄2
. (10.26)
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Figure 10.10: The spectrogram of a waveform E(t) tells the intensity and
frequency in a given time interval [5].

Representations of signals, or waveforms in general, by time-frequency
distributions has a long history. Most notabley musical scores are a temporal
sequence of tones giving its frequency and volume, see Fig. 10.11.

Figure 10.11: A musical score is a time-frequency representation of the signal
to be played.

Time-frequency representations are well known in the radar community,
signal processing and quantummechanics [9] (Spectrogram, Wigner-Distribution,
Husimi-Distribution, ...), Figure 10.12 shows the spectrogram of differently
chirped pulses. Like a mucical score, the spectrogram visually displays the
frequency vs. time.

Image removed due to copyright considerations.
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Figure 10.12: Like a musical score, the spectrogram visually displays the
frequency vs. time [5].

Note, that the gate pulse in the FROG measurement technique does not
to be very short. In fact if we have

g(t) ≡ δ(t) (10.27)

then

SF (τ , ω) = |E(τ)|2 (10.28)

and the phase information is completely lost. There is no need for short
gate pulses. A gate length of the order of the pulse length is sufficient. It
temporally resolves the slow components and spectrally the fast components.

10.3.1 Polarization Gate FROG

Figure 10.13 shows the setup [6][7]. FROG is based on the generation of
a well defined gate pulse, eventually not yet known. This can be achieved
by using the pulse to be measured and an ultrafast nonlinear interaction.
For example the electronic Kerr effect can be used to induce an ultrafast
polarization modulation, that can gate the pulse with a copy of the same
pulse.

Image removed due to copyright considerations.
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Figure 10.13: Polarization Gate FROG setup. The instantaneous Kerr-effect
is used to rotate the polarization of the signal pulse E(t) during the presence
of the gate pulse E(t− τ) proportional to the intensity of the gate pulse [5].

The signal analyzed in the FROG trace is, see Figure 10.14,

Esig(t, τ) = E(t) |E(t− τ)|2 (10.29)

Figure 10.14: The signal pulse reflects the color of the gated pulse at the
time 2τ/3 [5]

Image removed due to copyright considerations.
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The FROG traces generated from a PG-FROG for chirped pulses is iden-
tical to Fig. 10.12. Figure 10.15 shows FROG traces of more complicated
pulses

Figure 10.15: FROG traces of more complicated pulses.

10.3.2 FROG Inversion Algorithm

Spectrogram inversion algorithms need to know the gate function g(t − τ),
which in the given case is related to the yet unknown pulse. So how do we
get from the FROG trace to the pulse shape with respect to amplitude and
phase? If there is such an algorithm, which produces solutions, the question
of uniquness of this solution arises. To get insight into these issues, we realize,
that the FROG trace can be written as

IFROG(τ , ω) ∝
¯̄̄̄Z ∞

−∞
Esig(t, τ)e

−jω tdt

¯̄̄̄2
(10.30)

Writing the signal field as a Fourier transform in the time variable, i.e.

Esig(t, τ) =

Z ∞

−∞
Êsig(t,Ω)e

−jΩ τdΩ (10.31)

Image removed due to copyright considerations.
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yields

IFROG(τ , ω) ∝
¯̄̄̄Z ∞

−∞

Z ∞

−∞
Êsig(t,Ω)e

−jω t−jΩ τdtdΩ

¯̄̄̄2
. (10.32)

This equation shows that the FROG-trace is the magnitude square of a two-
dimensional Fourier transform related to the signal field Esig(t, τ). The in-
version of Eq.(10.32) is known as the 2D-phase retrival problem. Fortunately
algorithms for this inversion exist [8] and it is known that the magnitude (or
magnitude square) of a 2D-Fourier transform (FT) essentially uniquely de-
termines also its phase, if additional conditions, such as finite support or the
relationship (10.29) is given. Essentially unique means, that there are ambi-
guities but they are not dense in the function space of possible 2D-transforms,
i.e. they have probability zero to occur.
Furthermore, the unknown pulse E(t) can be easily obtained from the

modified signal field Êsig(t,Ω) because

Êsig(t,Ω) =

Z ∞

−∞
Esig(t, τ)e

jΩ τdτ (10.33)

=

Z ∞

−∞
E(t)g(t− τ)e−jΩ τdτ (10.34)

= E(t)G∗(Ω)e−jΩ t (10.35)

with

G(Ω) =

Z ∞

−∞
g(τ)e−jΩ τdτ. (10.36)

Thus there is

E(t) ∝ Êsig(t, 0). (10.37)

The only condition is that the gate function should be chosen such that
G(Ω) 6= 0. This is very powerful.

Fourier Transform Algorithm

The Fourier transform algorithm also commonly used in other phase retrieval
problems is schematically shown in Fig. 10.16
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Figure 10.16: Fourier transform algorithm for FROG trace inversion. The
blue operations indicate the constraints due to the gating technique used and
the FROG data [5]

Generalized Projections

The signal field Esig(t, τ) has to fulfill two constraints, which define sets see
Fig. 10.17. The intersection between both sets results in yields E(t). Moving
to the closest point in one constraint set and then the other yields conver-
gence to the solution, if the two sets or convex. Unfortunately, the FROG
constraints are not convex. Nevertheless the algorithm works surprisingly
well. For more information consult with reference [5].

Figure 10.17: Generalized Projections applied to FROG [5].
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10.3.3 Second Harmonic FROG

So far we only discussed PG-FROG. However, if we choose a χ(2) nonlinearity,
e.g. SHG, and set the gating—field equal to a copy of the pulse g(t) ≡ E(t),
we are measuring in eq.(10.26) the spectrally resolved autocorrelation signal.
The marginals of the measured FROG-trace do have the following propertiesZ ∞

−∞
SF (τ , ω) dω ∝

Z ∞

−∞
|E(t)|2 · |g(t− τ)|2 dt = IAC(τ). (10.38)

Z ∞

−∞
SF (τ , ω) dτ ∝

¯̄̄̄Z ∞

−∞
Ê(ω) · Ĝ(ω − ω0)2dω0

¯̄̄̄
=
¯̄̄
Ê2ω(ω)

¯̄̄2
. (10.39)

For the case, where g(t) ≡ E(t),we obtainZ ∞

−∞
SF (τ , ω) dω ∝ IAC(τ). (10.40)

Z ∞

−∞
SF (τ , ω) dτ ∝

¯̄̄
Ê2ω(ω)

¯̄̄2
. (10.41)

The setup to measure the Frog-trace is identical with the setup to measure
the intensity autocorrelation function (Figure 10.1) only the photodector for
the second harmonic is replaced by a spectrometer (Figure 10.18).

Figure 10.18: SHG-FROG setup.
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Since the intensity autocorrelation function and the integrated spectrum
can be measured simultaneously, this gives redundancy to check the correct-
ness of all measurements via the marginals (10.38, 10.39). Figure 10.19 shows
the SHG-FROG trace of the shortest pulses measured sofar with FROG.

Figure 10.19: FROG measurement of a 4.5 fs laser pulse.
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Figure 10.20: FROG geometries and their pros and cons.
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10.3.4 FROG Geometries

The Frog-signal Esig.can also be generated by a nonlinear interaction different
from SHG or PG, see table 10.20[5].
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10.4 Spectral Interferometry and SPIDER

Spectral Phase Interferometry for Direct Electric—Field Reconstruction (SPI-
DER) avoids iterative reconstruction of the phase profile. Iterative Fourier
transform algorithms do have the disadvantage of sometimes being rather
time consuming, preventing real—time pulse characterization. In addition,
for “pathological" pulse forms, reconstruction is difficult or even impossible.
It is mathematically not proven that the retrieval algorithms are unambigu-
ous especially in the presence of noise.
Spectral shearing interferometry provides an elegant method to overcome

these disadvantages. This technique has been first introduced by C. Iaconis
and I.A. Walmsley in 1999 [11] and called spectral phase interferometry for
direct electric—field reconstruction — SPIDER. Before we discuss SPIDER lets
look at spectral interferometry in general

10.4.1 Spectral Interferometry

The spectrum of a pulse can easily be measured with a spectrometer. The
pulse would be completely know, if we could determine the phase across
the spectrum. To determine this unknown phase spectral interferometry for
pulse measurement has been proposed early on by Froehly and others [12].
If we would have a well referenced pulse with field ER(t), superimpose the
unknown electric field ES(t) delayed with the reference pulse and interfere
them in a spectrometer, see Figure 10.21, we obtain for the spectrometer
output

EI(t) = ER(t) +ES(t− τ) (10.42)

Ŝ(ω) =

¯̄̄̄Z +∞

−∞
EI(t)e

−jωtdt

¯̄̄̄2
=
¯̄̄
ÊR(ω) + ÊS(ω)

−jωτ
¯̄̄2

(10.43)

= ŜDC(ω) + Ŝ(−)(ω)ejωτ + Ŝ(+)(ω)e−jωτ (10.44)

with

Ŝ(+)(ω) = Ê∗R(ω)ÊS(ω) (10.45)

Ŝ(−)(ω) = Ŝ(+)∗(ω) (10.46)

Where (+) and (-) indicate as before, well separted positive and negative
"frequency" signals, where "frequency" is now related to τ rather than ω.
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Figure 10.21: Spectral Interferometery of a signal pulse with a reference
pulse.

If τ is chosen large enough, the inverse Fourier transformed spectrum
S(t) = F−1{Ŝ(ω)} results in well separated signals, see Figure 10.22.

S(t) = SDC(t) + S(−)(t+ τ) + Ŝ(+)(t− τ) (10.47)

Figure 10.22: Decomposition of SPIDER signal.

We can isolate either the positive or negative frequency term with a filter
in the time domain. Back transformation of the corresponding term to the
frequency domain and computation of the spectral phase of one of the terms
results in the spectral phase of the signal up to the known phase of the
reference pulse and a linear phase contribution from the delay.

Φ(+)(ω) = arg{Ŝ(+)(ω)ejωτ} = ϕS(ω)− ϕR(ω) + ωτ (10.48)

Spectrometer

Frequency

ER(t)

ES(t-τ)

1/τ

-τ τ0

S(-)(t) S(+)(t)

SDC(t)

S(
t)

t

Figure by MIT OCW.

Figure by MIT OCW.
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Figure 10.23: The principle of operation of SPIDER. 

Adapted from F. X. Kaertner. Few-Cycle Laser Pulse Generation and its Applications. 
New York, NY: Springer-Verlag, 2004..

10.4.2 SPIDER

What can we do if we don’t have a well characterized reference pulse? C.
Iaconis and I.A. Walmsley [?] came up with the idea of generating two up-
converted spectra slightly shifted in frequency and to investigate the spectral
interference of these two copies, see Figure 10.23. We use

ER(t) = E(t)ejωSt (10.49)

ES(t) = E(t− τ)ej(ωS+Ω)t (10.50)

EI(t) = ER(t) +ES(t) (10.51)

where ωs and ωs + Ω are the two frequencies used for upconversion and Ω
is called the spectral shear between the two pulses. E(t) is the unknown
electric field with spectrum

Ê(ω) =
¯̄̄
Ê(ω)

¯̄̄
ejϕ(ω) (10.52)

Spectral interferometry using these specially constructed signal and reference
pulses results in

Ŝ(ω) =

¯̄̄̄Z +∞

−∞
EI(t)e

−jωtdt

¯̄̄̄2
= ŜDC(ω)+Ŝ

(−)(ω)ejωτ+Ŝ(+)(ω)e−jωτ (10.53)
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Ŝ(+)(ω) = Ê∗R(ω)ÊS(ω) = Ê∗(ω − ωs)Ê(ω − ωs − Ω) (10.54)

Ŝ(−)(ω) = Ŝ(+)∗(ω) (10.55)

The phase ψ(ω) = arg[Ŝ(+)(ω)e−jωτ ] derived from the isolated positive spec-
tral component is

ψ(ω) = ϕ(ω − ωs − Ω)− ϕ(ω − ωs)− ωτ. (10.56)

The linear phase ωτ can be substracted off after independent determination
of the time delay τ . It is obvious that the spectral shear Ω has to be small
compared to the spectral bandwdith ∆ω of the pulse, see Fig. 10.23. Then
the phase difference in Eq.(10.56) is proportional to the group delay in the
pulse, i.e.

−Ωdϕ

dω
= ψ(ω), (10.57)

or

ϕ(ω) = − 1
Ω

Z ω

0

ψ(ω0)dω0. (10.58)

Note, an error ∆τ in the calibration of the time delay τ results in an error
in the chirp of the pulse

∆ϕ(ω) = −ω2

2Ω
∆τ . (10.59)

Thus it is important to chose a spectral shear Ω that is not too small. How
small does it need to be? We essentially sample the phase with a sample
spacing Ω. The Nyquist theorem states that we can uniquely resolve a pulse
in the time domain if it is only nonzero over a length [−T, T ], where T = π/Ω.
On the other side the shear Ω has to be large enough so that the fringes in
the spectrum can be resolved with the available spectrometer.
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Figure 10.24: SPIDER setup; SF10: 65mm glass block (GDD/z ≈
160 fs2/mm), BS: metallic beam splitters (≈ 200µm, Cr—Ni coating 100nm),
τ : adjustable delay between the unchirped replica, τSHG: delay between
unchirped pulses and strongly chirp pulse, RO: reflective objective (Ealing—
Coherent, x35, NA=0.5, f=5.4mm), TO: refractive objective , L: lens, spec-
trometer: Lot-Oriel MS260i, grating: 400 l/mm, Blaze—angle 350nm, CCD:
Andor DU420 CCI 010, 1024 x 255 pixels, 26µm/pixel [13].

Generation of two replica without additional chirp:

A Michelson—type interferometer generates two unchirped replicas. The
beam—splitters BS have to be broadband, not to distort the pulses. The
delay τ between the two replica has to be properly chosen, i.e. in the setup
shown it was about 400-500 fs corresponding to 120-150 µm distance in space.

Courtesy of Richard Ell. Used with permission.

SPIDER Setup

We follow the work of Gallmann et al. [?] that can be used for characteri-
zation of pulses only a few optical cycles in duration. The setup is shown in
Figure 10.24.
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Spectral shearing:

The spectrally sheared copies of the pulse are generated by sum-frequency
generation (SFG) with quasi-monochromatic beams at frequencies ωs and
ωs + Ω. These quasi monochromatic signals are generated by strong chirp-
ing of a third replica (cf. Fig. 10.24) of the signal pulse that propagates
through a strongly dispersive glass slab. For the current setup we estimate
for the broadening of a Gaussian pulse due to the glass dispersion from 5 fs
to approximately 6ps. Such a stretching of more than a factor of thou-
sand assures that SFG occurs within an optical bandwidth less than 1nm, a
quasi—monochromatic signal. Adjustment of the temporal overlap τSHG with
the two unchirped replica is possible by a second delay line. The streched
pulse can be computed by propagation of the signal pulse E(t) through the
strongly dispersive medium with transfer characteristic

Hglass(ω) = e−jDglass(ω−ωc)2/2 (10.60)

neglecting linear group delay and higher order dispersion terms. We otain for
the analytic part of the electric field of the streched pulse leaving the glass
block by convolution with the transfer characteristic

Estretch(t) =

+∞Z
−∞

Ê(ω)e−jDglass(ω−ωc)2/2ejωtdω = (10.61)

= ejt
2/(2Dglass)ejωct

+∞Z
−∞

Ê(ω)e−jDglass((ω−ωc)−t/Dglass
2)/2dω(10.62)

If the spectrum of the pulse is smooth enough, the stationary phase method
can be applied for evaluation of the integral and we obtain

Estretch(t) ∝ ejωc(t+t
2/(2Dglass)Ê(ω = ωc + t/Dglass) (10.63)

Thus the field strength at the position where the instantaneous frequency is

ωinst =
d

dt
ωc(t+ t2/(2Dglass) = ωc + t/Dglass (10.64)

is given by the spectral amplitude at that frequency, Ê(ω = ωc + t/Dglass).
For large stretching, i.e.

|τ p/Dglass| ¿ |Ω| (10.65)

the up-conversion can be assumed to be quasi monochromatic.
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SFG:

A BBO crystal (wedged 10—50µm) is used for type I phase—matched SFG.
Type II phase—matching would allow for higher acceptance bandwidths. The
pulses are focused into the BBO—crystal by a reflective objective composed of
curved mirrors. The signal is collimated by another objective. Due to SFG
with the chirped pulse the spectral shear is related to the delay between both
pulses, τ , determined by Eq.(10.64) to be

Ω = −τ/Dglass. (10.66)

Note, that conditions (10.65) and (10.66) are consistent with the fact that
the delay between the two pulses should be much larger than the pulse width
τ p which also enables the separation of the spectra in Fig.10.22 to determine
the spectral phase using the Fourier transform method. For characterization
of sub-10fs pulses a crystal thickness around 30µm is a good compromise.
Efficiency is still high enough for common cooled CCD—cameras, dispersion
is already sufficiently low and the phase matching bandwidth large enough.

Signal detection and phase reconstruction:

An additional lens focuses the SPIDER signal into a spectrometer with a
CCD camera at the exit plane. Data registration and analysis is performed
with a computer. The initial search for a SPIDER signal is performed by
chopping and Lock—In detection.The chopper wheel is placed in a way that
the unchirped pulses are modulated by the external part of the wheel and the
chirped pulse by the inner part of the wheel. Outer and inner part have dif-
ferent slit frequencies. A SPIDER signal is then modulated by the difference
(and sum) frequency which is discriminated by the Lock—In amplifier. Once
a signal is measured, further optimization can be obtained by improving the
spatial and temporal overlap of the beams in the BBO—crystal.
One of the advantages of SPIDER is that only the missing phase informa-

tion is extracted from the measured data. Due to the limited phase—matching
bandwidth of the nonlinear crystal and the spectral response of grating and
CCD, the fundamental spectrum is not imaged in its original form but rather
with reduced intensity in the spectral wings. But as long as the interference
fringes are visible any damping in the spectral wings and deformation of
the spectrum does not impact the phase reconstruction process the SPIDER
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technique delivers the correct information. The SPIDER trace is then gen-
erated by detecting the spectral interference of the pulses

ER(t) = E(t)Ê(ωs)e
jωSt (10.67)

ES(t) = E(t− τ)Ê(ωs + Ω)ej(ωS+Ω)t (10.68)

EI(t) = ER(t) +ES(t) (10.69)

The positive and negative frequency components of the SIDER trace are then
according to Eqs.(??,10.55)

Ŝ(+)(ω) = Ê∗R(ω)ÊS(ω) = Ê∗(ω − ωs)Ê(ω − ωs − Ω)Ê∗(ωs)Ê(ωs − Ω)(10.70)

Ŝ(−)(ω) = Ŝ(+)∗(ω) (10.71)

and the phase ψ(ω) = arg[Ŝ(+)(ω)e−jωτ ] derived from the isolated positive
spectral component substraction already the linear phase off is

ψ(ω) = ϕ(ω−ωs−Ω)−ϕ(ω−ωs)−ϕ(ω−ωs−Ω)+ϕ(ωs−Ω)−ϕ(ωs). (10.72)

Thus up to an additional constant it delivers the group delay within the pulse
to be characterized. A constant group delay is of no physical significance.

SPIDER—Calibration

This is the most critical part of the SPIDER measurement. There are three
quantities to be determined with high accuracy and reproducibility:

• delay τ
• shift ωs

• shear Ω

Delay τ :
The delay τ is the temporal shift between the unchirped pulses. It appears
as a frequency dependent phase term in the SPIDER phase, Eqs. (10.56)
and leads to an error in the pulse chirp if not properly substracted out, see
Eq.(10.59).
A determination of τ should preferentially be done with the pulses de-

tected by the spectrometer but without the spectral shear so that the ob-
served fringes are all exactly spaced by 1/τ . Such an interferogram may
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be obtained by blocking the chirped pulse and overlapping of the individual
SHG signals from the two unchirped pulses. A Fourier transform of the inter-
ferogram delivers the desired delay τ .In practice, this technique might be dif-
ficult to use. Experiment and simulation show that already minor changes of
τ (±1 fs) significantly alter the reconstructed pulse duration (≈ ± 1− 10%).
Another way for determination of τ is the following. As already men-

tioned, τ is accessible by a differentiation of the SPIDER phase with respect
to ω. The delay τ therefore represents a constant GDD. An improper de-
termination of τ is thus equivalent to a false GDD measurement. The real
physical GDD of the pulse can be minimized by a simultaneous IAC mea-
surement. Maximum signal level, respectively shortest IAC trace means an
average GDD of zero. The pulse duration is then only limited by higher
order dispersion not depending on τ . After the IAC measurement, the delay
τ is chosen such that the SPIDER measurement provides the shortest pulse
duration. This is justified because through the IAC we know that the pulse
duration is only limited by higher order dispersion and not by the GDD ∝ τ .
The disadvantage of this method is that an additional IAC setup is needed.
Shift ωs:
The SFG process shifts the original spectrum by a frequency ωs ≈ 300THz
towards higher frequencies equivalent to about 450nm when Ti:sapphire
pulses are characterized. If the SPIDER setup is well adjusted, the square of
the SPIDER interferogrammeasured by the CCD is similar to the fundamen-
tal spectrum. A determination of the shift can be done by correlating both
spectra with each other. Determination of ωs only influences the frequency
too which we assign a give phase value, which is not as critical.
Shear Ω:
The spectral shear is uncritical and can be estimated by the glass dispersion
and the delay τ .

10.4.3 Characterization of Sub-Two-Cycle Ti:sapphire
Laser Pulses

The setup and the data registration and processing can be optimized such
that the SPIDER interferogram and the reconstructed phase, GDD and in-
tensity envelope are displayed on a screen with update rates in the range of
0.5-1s.
Real—time SPIDER measurements enabled the optimization of external



366 CHAPTER 10. PULSE CHARACTERIZATION

dispersion compensation leading to 4.8 fs pulses directly from a laser [13], see
Figure 10.25.

Figure 10.25: SPIDER measurement of a 4.8 fs Ti:sapphire laser pulse. (a)
SPIDER interferogram on a logarithmic scale. (b) Spectral power density and
spectral phase of the pulse. (c) Calculated GDD of the pulse. (d) Intensity
envelope and temporal phase curve [13].

Figure 10.25(a) shows the SPIDER interferogram as detected by the CCD
camera. The interferogram is modulated up to 90%, the resolutions limit in
the displayed graphic can not resolve this. The large number of interfer-
ence fringes assures reliable phase calculation. Figure (b) displays the laser
spectrum registered by the optical spectrum analyzer on a logarithmic scale.
The calculated spectral phase curve is added in this plot. The small slope
of the phase curve corresponds to a constant GD which is an unimportant
time shift. Fig. 10.25 (c) depicts the GDD obtained from the phase by two
derivatives with respect to the angular frequency ω. The last Figure (d)

Courtesy of Richard Ell. Used with permission.
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shows the intensity envelope with a FWHM pulse duration of 4.8 fs together
with the temporal phase curve.

10.4.4 Pros and Cons of SPIDER
Advantages Disadvantages
direct analytical phase extraction complex experimental setup

no moving mirrors or other components precise delay calibration necessary

possible real—time characterization “compact" spectrum necessary
(no zero-intensity intervals)

simple 1—D data acquisition need for expensive CCD—camera

minor dependence on spectral response
of nonlinear crystal and spectrometer
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Chapter 11

Ultrafast Measurement
Techniques

11.1 Pump Probe Measurements

11.1.1 Non-Colinear Pump-Probe Measurement:

translation stage

1 fs <=> 0.15 µm 

Beam splitter

  S(t) 
Slow
detector

Time delay between
pump and probe pulse

t
Computer
screen

Pump pulse

Probe pulse

Lens

Test device
Chopper

Lock-In
Amplifier

  S(t)

t

Mode-locked Laser

Figure 11.1: Non-colinear pump-probe setup with co-polarized pump-probe
beams. 
Adapted from U. Keller.

Figure 11.1 shows a non-colinear pump-probe measurement setup. To sup-
press background light and low frequency noise of the probe beam the pump

371
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beam is chopped. Typical chopper frequencies of regular mechanical chop-
pers are fch = 100Hz− 2kHz . Mechanical choppers up to 20kHz have been
built. With acousto-optic modulators or electro-optic modulators chopper
freuqencies up to several hundred MHz are possible.

Lets denote Sin = S0 + δS as the probe pulse energy, where S0 is the
average value and δs a low frequency noise of the pulse source and S(t)
is the probe signal transmitted through the test device. Then the detected
signal transmitted through the test device can be written as

S(t) = T (P (t))Sin (11.1)

= T0Sin +
dT

dP
(P0m(t))

where T0 is the transmission without pump pulse, P0 is the pump pulse energy
and m(t) the chopper modulation function. It is obvious that if the noise of
the probe laser δS is of low freuqency, then the signal can be shifted away
from this noise floor by chosing an appropriately large chopper frequency in
m(t). Ideally, the chopper frequency is chosen large enough to enable shot
noise limited detection.

Sometimes the test devices or samples have a rough surface and pump
light scattered from the surface might hit the detector. This can be partially
suppressed by orthogonal pump and probe polarization

This is a standard technique to understand relaxation dynamics in con-
densed matter, such as carrier relaxation processes in semiconductors for
example.

11.1.2 Colinear Pump-Probe Measurement:

Sometimes pump and probe pulses have to be collinear, for example when
pump probe measurements of waveguide devices have to be performed. Then
pump and probe pulse, which might both be at the same center wavelength
have to be made separable. This can be achieved by using orthogonal pump
and probe polarization as shown in Figure 11.2 or by chopping pump and
probe at different frequencies and detecting at the difference frequency, see
Figure 11.3.
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Mode-Locked Laser

Figure 11.2: Colinear pump-probe with orthogonally polarized pump and
probe beams. 
Adapted from U. Keller.
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Figure 11.3: Colinear pump probe with chopping of pump and probe and
lock-in detection at the difference frequency.
Adapted from U. Keller.
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11.1.3 Heterodyne Pump Probe

The lock-in detection is greatly improved if the difference frequency at which
the detection occurs can be chosen higher and the signal can be filtered much
better using a heterodyne receiver. This is shown in Figure 11.4, where
AOM’s are used to prepare a probe and reference pulse shiftet by 39 and 40
MHz respectively. The pump beam is chopped at 1kHz. After the test device
the probe and reference pulse are overlayed with each other by delaying the
reference pulse in a Michelson-Interferometer. The beat note at 1MHz is
downconverted to base band with a receiver.

Chopper

t

Pump pulse

Probe pulse
Test device

  S(t) 
Slow
detector

  S(t)

t

Lock-In
Amplifier
 

AOM

AOM+39 Mhz
    Probe +40 MHz Reference

MLL

T>>t

Reference

 1 MHz Receiver

Figure 11.4: Colinear pump probe measurement with parallel polarization
and large difference frequency.
Adapted from U. Keller.

If a AM or FM receiver is used and the interferometers generating the
reference and probe pulse are interferometerically stable, both amplitude and
phase nonlinearities can be detected with high signal to noise.
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     AM or FM

PZT

Figure 11.5: Heterodyne pump probe using AM and FM receiver to detect
amplitude and phase nonlinearities.
Adapted from U. Keller.



376 CHAPTER 11. ULTRAFAST MEASUREMENT TECHNIQUES

11.2 Electro-Optic Sampling:

Electro-Optic Sampling was invented by Valdmanis and Mourou in the early
1980’s [8][5]. Its is based on polarization rotation of a short laser pulse
when propagating in a medium showing a linear electro-optic effect. The
polarization rotation is due to an applied electric filed, i.e. the optical pulse
samples the instantaneous electric field, see Fig.11.6

Figure 11.6: Electro-optic sampling scheme according ot J. Whitaker, Univ.
of Michigan, Ann Arbor. 

In Fig. 11.6 a electic transient is generated with a photo-conductive
switch activated by a femtosecond laser pulse. A delayed pulse samples the
transient electronic pulse with an electro-optic probe as shown in Fig. 11.7.

Switch Bias

Semiconductor Substrate

Electro-Optic 
Probe Crystal

Probe 
Beam Out

Excitation pulses
(arrive at time t)

Probe beam in
(arrive at delayed times

of t+n.∆t)

External Electro-Optic Sampling Scheme

Figure by MIT OCW.
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Figure 11.7: LiTaO3−Electro-Otpic Probe according to J. Whitaker, Univ.
Michigan.

Fig. 11.8 shows an overal version of an electro-optic sampling system
according to J. Whitaker, Univ. of Michigan [6]

Figure 11.8: Electro-Otpic Sampling System according to J. Whitaker, Univ.
Michigan.
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Figure by MIT OCW.

Figure by MIT OCW.
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11.3 THz Spectroscopy and Imaging

Photo-conductive switches activated by sub-100 fs pulses or optical rectifica-
tion with sub-100 fs pulses leads to the generation of THz electro-magnetic
impulses, that can be received with similar photo-conductive receivers or by
electro-optic sampling [8][9]. This technique was pioneered by Ch. Fattinger
and D. Grischkowsky [7].

Figure 11.9: THz Time Domain Spectroscopy according to [8]
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Figure by MIT OCW.
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Figure 11.10: THz Time Domain Spectroscopy using optical rectification in
GaAs [9].

Figure 11.11: Terahertz waveforms modified by passage through (a) a 10mm
block of stycast and (b) a chinese fortune cookie. The dashed lines show the
shape of the input waveform multiplied by 0.5 in (a) and by 0.1 in 9b). In *a(
the transmitted plse exhibits a strong "chirp" due to frequency-dependent
index, while in (b), pulse broadening indicates preferential absorption of high
frequencies [8].

Figure 11.11 shows typical generated THz waveforms and distortions due
to propagation through materials.
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Figure by MIT OCW.
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11.4 Four-Wave Mixing

A more advanced ultrafast spectroscopy technique than pump-probe is four-
wave mixing (FWM). It enables to investigate not only energy relaxation
processes, as is the case in pump-probe measurements, but also dephasing
processes in homogenous as well as inhomogenously broadened materials.
The typical set-up is shown in Fig. 11.12

t1223t

Sample

Pulse 1

Pulse 3

Pulse 2 k1

k2

k3

k1k2k3 (        )+ -

Detector

Figure 11.12: Typical Four-Wave-Mixing (FWM) beam geometry.

Lets assume these pulses interact resonantely with a two-level system
modelled by the Bloch Equations derived in chapter 2 (2.1592.162).µ

∆− 1

c20

∂2

∂t2

¶
�E(+)(z, t) = µ0

∂2

∂t2
�P (+)(z, t), (11.2)

�P (+)(z, t) = −2N �M∗d(z, t) (11.3)

ḋ(z, t) = −( 1
T2
− jωeg)d+

1

2j~
�M �E(+)w, (11.4)

ẇ(z, t) = −w − w0
T1

+
1

j~
( �M∗ �E(−)d− �M �E(+)d∗)(11.5)

The two-level system, located at z = 0, will be in the ground state, i.e.
d(t = 0) = 0 and w(t = 0) = −1, before arrival of the first pulses. That
is, no polarization is yet present. Lets assume the pulse interacting with the
two-level system are weak and we can apply perturbation theory. Then the
arrival of the first pulse with the complex field

�E(+)(�x, t) = �E
(+)
0 δ(t)ej(ωegt−j

�k1�x) (11.6)
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will generate a polarization wave according to the Bloch-equations

d(�x, t) = −
�M �E

(+)
0

2j~
ej(ωeg−1/T2)te−j

�k1�xδ(z), (11.7)

which will decay with time. Once a polarization is created the second pulse
will change the population and induce a weak population grating

∆w(�x, t) =

¯̄̄
�M �E

(+)
0

¯̄̄2
~2

e−t12/T2e−j(
�k1−�k2)�xe−(t−t2)/T1δ(z) + c.c., (11.8)

When the third pulse comes, it will scatter of from this population grating,
i.e. it will induce a polarization, that radiates a wave into the direction
�k3 + �k2 − �k1 according to

d(�x, t) =
�M �E

(+)
0

2j~

¯̄̄
�M �E

(+)
0

¯̄̄2
~2

e−t12/T2e−t32/T1e−j(
�k3+�k2−�k1)�xδ(z) (11.9)

Thus the signal detected in this direction, see Fig. 11.12, which is propor-
tional to the square of the radiating dipole layer

S(t) ∼ |d(�x, t)|2 ∼ e−2t12/T2e−2t32/T1 (11.10)

will decay on two time scales. If the time delay between pulses 1 and 2, t12,
is only varied it will decay with the dephasing time T2/2. If the time delay
between pulses 2 and 3 is varied, t32, the signal strength will decay with the
energy relaxation time T1/2
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Chapter 12

Pulse Amplification

We use a presentation mostly developed by

Francois Salin
Center for Intense Lasers
and Applications (CELIA)
Université Bordeaux I, FRANCE
www.celia.u-bordeaux.fr

and extended by Rick Trebino.

The slides can be downloaded from Rick Trebinos web pages and his
Ultrafast Optics Course:

http://www.physics.gatech.edu/gcuo/UltrafastOptics/
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