
Real-Time Programming Lecture Notes (Waterloo CS452)

From: CS452 - Real-Time Programming - Spring 2012

Lecture 1 - Introduction

Pubilc Service Annoucements

 	Due date for assignment 0/1

 	Combination to trains lab

 	Ubuntu 10.10

 	How to compile and run your first
 program

Practical Details: pdf

Embedded Systems

Most of the mediation between the internal representations and the
real-world is done by embedded systems

 	invisible computing

 	sense and control

 	billions and billions sold

Development Model

Two box model

 	develop on one box

 	execute on a different box.

Development cycle

 	edit & compile on one box

 	download to second box

 	execute

Problem one

 	raw code that owns the hardware itself

 	hardware-specific libraries provide access to hardware

 	microcontroller/hopper example

Problem two

 	OS-like abstraction of hardware

 	looks like a bunch of libraries, plus a little more.

What is real-time programming?

Actually real-world programming, which means

 	World is measured in seconds, metres, etc.

 	Programs manipulate bits, bytes, words, which must be translated into
 into real-world measures.

 For example,

 	formatted output: translate from int, which computers manipulate,
 to decimal, which humans read

 	out in the open: i2a(), printf()

 	hidden: print, cout

 	Banking: int translates into, e.g., number of cents

 	program says dispense(10000), which means `put five twemties
 into the hopper'.

 	microcontrollers start

 	activating motors

 	sensing forces

 	reading digitized video

 	etc.

 	Train control: contents of messages map into change speed, switch
 turn-out, sensor triggered

What is important for real-time?

 	Throughput

 	e.g., number of frames per second in a game

 	e.g., frequency of sensor sampling in process control

 	no solution except

 	getting better hardware

 	getting better algorithms

 	restructuring the task

 	Response time

 	e.g., time from button press to gun firing in game

 	e.g., time from sensor reading to control code executing in provess
 control

 	several programming techniques exist

 	busy-wait

 	polling loop

 tension between flexibility and performance

In cs452 we take guaranteed response time as the defining quality of
real-time computation.

Serial I/O

Uses a device called a UART,

 	which is really just two shift registers

 	with a one byte buffer in front of each one

 	plus one bit in a control register for each. They mean

 	read: there's a byte you haven't read yet

 	write: the buffer is empty, you can write

Busy Waiting

This is used to synchronize with an external event, minimizing response
time.

#define FOREVER for(; ;)
FOREVER {
 while(!ready()) ;
 do-it();
}

or in another form

FOREVER {
 if (ready()) do-it();
}

Sometimes you only want to do the thing once, as you do when putting a
character on a serial line.

#define UART1_BASE 0x808c0000
#define UART_DATA_OFFSET 0x00 // low 8 bits
#define UART_FLAG_OFFSET 0x18 // low 8 bits
#define TXFF_MASK 0x20 // Transmit buffer full

 flags = (int *)(UART1_BASE + UART_FLAG_OFFSET);
 data = (int *)(UART1_BASE + UART_DATA_OFFSET);
 while((*flags & TXFF_MASK)) ;
 *data = c;

Worst case response time

From the time that the ready bit sets until the first instruction of do-it
is executed

 	execution time for
 while(!ready) ;
do-it;

 	Even a moderately optimizing compiler will produce good machine code.
 Something like
 ready:
 ldb r0, STATUS-ADDRESS
 and r0, r0, READY-BIT
 beq _ready
do-it:
 ldb r0, DATA-ADDRESS

 Here do-it is acquiring a single byte from interface hardware when the
 status register indicates that valid data is available in the dara
 register.

 	Worst case response time is the execution of and,
 beq, ldb, and and
 beq

 	Normally code like this would be inside a loop, acquiring one byte
 after another until no more are available.

The problem with busy-waiting

What if the CPU has to two things at once?

E.g.,

 	collect bytes coming in a serial port

 	maintain a clock

Unless the rate of bytes coming in and rate of clock ticks are
identical

you are guaranteed to lose something sooner or later.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 2 - Polling Loops

Pubilc Service Annoucements

 	Due date for assignment 0

 	Ubuntu 10.10

 	How to compile and run your first
 program

 	Caches, optimization, clock speed, FIFOs

 	Libraries: memcpy in particular

 	

Practical Details: pdf

What is real-time programming?

Actually real-world programming, which means

 	World is measured in seconds, metres, etc.

 	Programs manipulate bits, bytes, words, which must be translated into
 into real-world measures.

 For example,

 	formatted output: translate from int, which computers manipulate,
 to decimal, which humans read

 	out in the open: i2a(), printf()

 	hidden: print, cout

 	Banking: int translates into, e.g., number of cents

 	program says dispense(10000), which means `put five twenties
 into the hopper'.

 	microcontrollers start

 	activating motors

 	sensing forces

 	reading digitized video

 	etc.

 	Train control: contents of messages map, sometimes indirectly, into
 changes in speed of trains, state changes (turn-outs, train
 locations), sensor reports.

What is important for real-time?

 	Throughput

 	e.g., number of frames per second in a game

 	e.g., frequency of sensor sampling in process control

 	no solution except

 	getting better hardware

 	getting better algorithms

 	restructuring the task

 	Response time

 	e.g., time from button press to gun firing in game

 	e.g., time from sensor reading to control code executing in process
 control

 	several programming techniques exist

 	busy-wait

 	polling loop

 tension between flexibility and performance

In cs452 we take guaranteed response time as the defining quality of
real-time computation.

Timers

How does one keep time in a computer?

 	crystal oscillator in a phase-locked loop

 	interrupts from a timer

 	ntp

Polling Loops

Busy Waiting

This is used to synchronize with an external event, minimizing response
time.

#define FOREVER for(; ;)
FOREVER {
 while(!ready()) ;
 do-it();
}

or in another form

FOREVER {
 if (ready()) do-it();
}

Sometimes you only want to do the thing once, as you do when putting a
character on a serial line.

#define UART1_BASE 0x808c0000
#define UART_DATA_OFFSET 0x00 // low 8 bits
#define UART_FLAG_OFFSET 0x18 // low 8 bits
#define TXFF_MASK 0x20 // Transmit buffer full

 flags = (int *)(UART1_BASE + UART_FLAG_OFFSET);
 data = (int *)(UART1_BASE + UART_DATA_OFFSET);
 while((*flags & TXFF_MASK)) ;
 *data = c;

Note. The volatile keyword.

Worst case response time

From the time that the ready bit sets until the first instruction of do-it
is executed

 	execution time for
 while(!ready) ;
do-it;

 	Even a moderately optimizing compiler will produce good machine code.
 Something like
 ready:
 ldb r0, STATUS-ADDRESS
 and r0, r0, READY-BIT
 beq _ready
do-it:
 ldb r0, DATA-ADDRESS

 Here do-it is acquiring a single byte from interface hardware when the
 status register indicates that valid data is available in the dara
 register.

 	Worst case response time is the execution of and,
 beq, ldb, and and
 beq

 	Normally code like this would be inside a loop, acquiring one byte
 after another until no more are available.

The problem with busy-waiting

What if the CPU has to two things at once?

E.g.,

 	collect bytes coming in a serial port

 	maintain a clock

Unless the rate of bytes coming in and rate of clock ticks are
identical

 	you are guaranteed to lose something sooner or later.

Polling Loops

Polling loops allow you to manage more than one condition/activity pair at
the same time.

The basic polling loop

FOREVER {
 if(c1) a1;
 if(c2) a2;
 ...
 if(cN) aN;
}

Worst case response time

 	sum over n of {execution time of if(c<n>) +
 execution time of a<n>}

What you put into an action matters a lot.

Suppose you put busy-wait I/O to the train controller into an action

Will you catch it in your testing?

 	Probably not.

Testing more than once

Suppose you want a better response time for a1. Then try the loop

FOREVER {
 if(c1) a1;
 if(c2) a2;
 if(c1) a1;
 if(c3) a3;
 ...
 if(c1) a1;
 if(cN) aN;
}

Worst case response time for a1

 	execution time for if(c1) + maximum over n of execution
 time for if(cn) an

Breaking into pieces

Suppose the response time is still too long, because the execution of one
action, say a2, is too long. Then you can break a2 into two parts

FOREVER {
 if(c1) a1;
 if(c2) { a2.1; half-done = TRUE; }
 if(c1) a1;
 if(half-done) { a2.2; half-done = FALSE; }
 ...
}

This is strarting to get a little complicated and we haven't said anything
about inter-action communication

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 3 - Timers, I/O, Pitfalls

Pubilc Service Annoucements

 	Due date for assignment 0

 	Caches, optimization, clock speed, FIFOs

 	Libraries: memcpy in particular

 	Some clean-up needed in course account

The Hardware/Software Provided

Provided and maintained by CSCF

 	Linux systems

 	cross compiler: runs on 86_64, produces code for ARM

 	GNU toolchain: compiler, assembler, link editor

 	You will notice that my makefile separates

 	compilation to assembly code,

 	assembling the assembly code, and

 	link editing.

 	need to login explicitly to linux.student.cs

 	TFTP servers

 	need to type IP number explicitly

TS-7200

Specific documentation from Technologic

System on Chip (SoC)

EP9302, designed and manufactured by Cirrus semiconductor

Memory

Byte addressable, word size 32 bits

 	32 Mbytes of RAM, starting at 0x00000000

 	4 Mbytes of flash RAM, starting at 0x60000000

 	Contains RedBoot, which is loaded into RAM at startup

 	Special locations at low addresses

 	Special locations above 0x80000000

 Two types of special location

 	Supplied by Technologic: 0x80840000 to
 0x80840047

 	Suppied by Cirrus:

 	0x80010000 to 0x8081ffff

 	0x808a0000 to 0x80900023

Separate instruction and data caches

`COM' ports

Connected to UARTs

 	RS-232

 	Actual UART hardware is on the EP9302

Only really two

Ethernet port

Busy wait ethernet code in RedBoot

 	used by loader to execute TFTP protocol

 	used by RedBoot, which was customized by Technologic and installed in
 the Flash RAM

Reset switch

 	red, even though documentation says black

 	actually, some are black

EP-9302

Specific documentation from Cirrus

System on chip

 	ARM 920T core, implementing ARM v4T instruction set

 	Specific documentation from ARM

 	Two co-processors

 	System controller, MMU

 	ARM documentation

 	Maverick Crunch floating point unit

 	Cirrus documentation

 	Two interrupt controllers

 	Both ARM and Cirrus documentation

 	An ARM-designed part, the PL-190

 	Peripherals

 	UARTs

 	Timers

 	DIO

 	A/D

 	etc.

Software

Compiler

GNU tool chain

 	when you are getting started optimizing is usually a bad idea

 	software multiplication, division, floating point from libgcc.a

 	gcc uses a couple of functions like memcpy

 	Makefile

 	target.ld

RedBoot

Partial implementation

 	fconfig :: NOT

 	load (tftp)

 	examine, copy, fill memory

Returns when program terminates

Busy-wait IO

COM2 uses monitor; COM1 goes to train

 	initialization

 	output

 	input

Timers

How does one keep time in a computer?

 	crystal oscillator

 	interrupts from a timer

 	ntp

Timers normally count down

You interact with the timer through three registers

 	register to load the timer

 	register to read the timer

 	register to command the timer

Timers available in the EP9302.

 	Two sixteen bit

 	One thirty-two bit

 	One forty bit

 	One watch-dog

Polling Loops

Polling loops allow you to manage more than one condition/activity pair at
the same time.

The basic polling loop

FOREVER {
 if(c1) a1;
 if(c2) a2;
 ...
 if(cN) aN;
}

A Few Comments

Shallow computation

Worst case response time

 	sum over n of {execution time of if(c<n>) +
 execution time of a<n>}

What you put into an action matters a lot.

Suppose you put busy-wait I/O to the train controller into an action

Will you catch it in your testing?

 	Probably not.

When you Miss Deadlines

Testing more than once

Suppose you want a better response time for a1. Then try the loop

FOREVER {
 if(c1) a1;
 if(c2) a2;
 if(c1) a1;
 if(c3) a3;
 ...
 if(c1) a1;
 if(cN) aN;
}

Worst case response time for a1

 	execution time for if(c1) + maximum over n of execution
 time for if(cn) an

Breaking into pieces

Suppose the response time is still too long, because the execution of one
action, say a2, is too long. Then you can break a2 into two parts

FOREVER {
 if(c1) a1;
 if(c2) { a2.1; half-done = TRUE; }
 if(c1) a1;
 if(half-done) { a2.2; half-done = FALSE; }
 ...
}

This is strarting to get a little complicated and we haven't said anything
about inter-action communication

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 4 - Tasks & Kernels

Pubilc Service Annoucements

 	Due date for assignment 0

 	Some clean-up needed in course account, cleaned up course
 introduction.

 	RTS/CTS

 	The train controller asserts RTS when its UART is ready to receive
 a byte.

 	RTS is connected to the ARM UART's CTS bit.

 	You check the modem status register

 	You transmit a byte to the train controller only when CTS is
 asserted

 	You do not transmit when CTS is negated.

 	News group: uw.cs.cs452.

 	Course email account: cs452@cgl.uwaterloo.ca

 	Documentation expected for assignment 0

 	Partners

Kernel of a Real-time Operating System

Introduction

The base unit of a polling loop is

 	if (condition) action;

Think of action as the performance of a task, such as washing
dishes. Think of condition as a signal from outside that tells
you it's time to perform the task.

Actions are not independent of one another: washing dishes requires hot
water, dish soap, etc., which are provided by other actions. Communication is
needed.

Thus tasks need some support.

 	the ability to execute instructions

 	code with the pc pointing into it

 	state, in the form of memory

 	the ability to communicate with one another

 	pass data

 	synchronization

 	the ability to receive information from the real world

 	provide data

 	possibly nothing but symchronization

These basic needs are provided by the kernel of an operating system. The
kernel we create in cs452 is a microkernel, because it provides these
capabilities and nothing more.

We build the microkernel in four assignments

 	task creation and scheduling

 	inter-task communication

 	an interrupt primitive

 	complex servers

Microkernels

The real-time operating system we build consists of

 	an uninterruptible microkernel, plus

 	interruptible device-handling server tasks that run in user-space with
 permissions allowing them to access hardware.

What Does a Microkernel Provide?

Tasks

 	Program is conceived as a collection of co-operating tasks

 	Provide applications with modularity. Task structure as a method of
 program organization is discussed about the time you are finishing the
 OS.

 	Consist of

 	instructions, common to all tasks of the same kind,

 	global constants, such as strings used for
 formatting messages, and

 	local state, different state in different tasks of the same kind,
 which requires a separate block of memory for each instantiation of a
 task..

 	How tasks work together

 	synchronization

 	communication

 	combined into one mechanism: message passing

 	Why are tasks important?

 	Thinking about one thing at a time is easy.

 	Think about the options you expect to have after you
 graduate.

 	Thinking about more than one thing at a time is hard.

 	Keep on thinking, and at the same time listen to me talking
 about tasks

 	Parenthetical remark. While walking you may have been talking
 to somebody, or thinking about something. You did both
 effortlessly. How?

 	Thinking about more than one thing at a time, in real-time, is very
 hard

 	Think about turning the wheel, peddling and balancing while
 learning to ride a bicycle

 	How did you learn to coordinate all these activities in
 real-time?

 	Tasks allow a programmer to produce each component of a activity
 into a sequential set of instructions that includes communication
 with other tasks..

Communication

Communication has two aspects

 	sharing information, requesting service

 	synchronization

We use Send/Receive/Reply (SRR) to do both.

 	Send blocks

 	Receive blocks: is synchronous with the call to send

 	Reply doesn't block: is synchronous with the return from send

Synchronization

 	Between tasks

 	Coordination of execution in co-operating tasks

 	Uses SRR

 	With internal events

 	Real-time by synchronizing with a real-time clock: e.g. clock
 server

 	Ordering execution: e.g. name server, bounded buffer

 	Uses SRR

 	With external events

 	interrupts

Interrupts

Input from the outside world

 	Provide the information you polled for

 	ISR OS design, which is essentially a jump table, which separates
 testing from acting
 interrupt entry point:
 calculate action_entry_point;
 jump to act_entry_point;
entry_point1:
 action1;
entry_point2:
 action2;
...
entry_pointn:
 actionn;

 These are the same actions you implemented in your polling loop,

 	and the have all the same problems.

 	Somthing to think about

 	Polling loop was single-threaded

 	You were guaranteed not to be in the middle of a
 computation when you got the signal to start another one.

 	ISRs are not necessarily single-threaded

 	You could get back the polling loop by turning off
 interrupts during the action.

 	No hierarchy of importance among ISRs

 	Polling loop hierarchy was in the polling structure

 	Selective interrupt masking can reproduce the
 hierarchy,

 	But then you have to save state

Tasks

What is a task?

 	A set of instructions

 	Current state, which is changed by executing instructions, which
 includes

 	values of its variables, which are automatic variables maintained
 on the stack

 	contents of its registers

 	other processor state such as the PSR

 	processor mode

 	condition codes

 	etc.

 	its run state and other things maintained by the kernel

Two tasks can use the same set of instructions, but

 	every task has its own state

 	Therefore, no static variables

The kernel keeps track of every task's state

 	In essence, servicing a request amounts to changing the state of one or
 more tasks.

 	Kernel maintains a task descriptor (TD) for each created task.

 	That is, to create a task the kernel must allocate a TD and initialize
 it.

The TD normally contains

 	The task's stack pointer, which points to a private stack, in the
 memory of the task, containing

 	PC

 	other registers

 	local variables

 all ready to be reloaded whenever the task next runs.

 	Possibly the return value for when the task is next activated

 	The task's parent

 	The task's state

 	Links to queues on which the task is located

 	The kernel uses these to find the task when it is ervicing a
 request

Possible states of the task

 	Active: running or about to run

 	On a single processor system only one task can ever be active.

 	But we would like to generalize smoothly to more than one
 processor.

 	Ready: can run if scheduled

 	Need a queue used by the scheduler when deciding which task should
 be the next active task

 	Blocked: waiting for something to happen

 	Need several queues, one for each thing that could happen

Kernel Structure

The kernel is just a function like any other, but which runs forever.

kernel() {
 initialize(); // includes starting the first user task
 FOREVER {
 request = getNextRequest();
 handle(request);
 }
}

Where is the OS?

 	requests come from running user tasks

 	in essence system calls

 	one type of request creates a task

 	There needs to be a first task that gets everything going

All the interesting stuff inside done by the kernel is hidden inside
getNextRequest.

int getNextRequest() {
 return activate(schedule()); //the active task doesn't change
}

What's inside activate(active)?

 	transfer of control to the active task

 	execution to completion of the active task

 	`to completion' means until the active task sends a request to the
 kernel

 	transfer of control back to the kernel

 	getting the request

The hard part to get right is `transfer of control'

 	which we call a context switch

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 5 - Tasks & Kernels

Pubilc Service Annoucements

 	Due date for assignment 1

 	Partners

Kernel of a Real-time Operating System

Tasks

What is a task?

 	A set of instructions

 	Current state, which is changed by executing instructions, which
 includes

 	values of its variables, which are automatic variables maintained
 on the stack

 	contents of its registers

 	other processor state such as the PSR

 	processor mode

 	condition codes

 	etc.

 	its run state and other things maintained by the kernel

Two tasks can use the same set of instructions, but

 	every task has its own state

 	Therefore, no static variables

The kernel keeps track of every task's state

 	In essence, servicing a request amounts to changing the state of one or
 more tasks.

 	Kernel maintains a task descriptor (TD) for each created task.

 	That is, to create a task the kernel must allocate a TD and initialize
 it.

The TD normally contains

 	The task's stack pointer, which points to a private stack, in the
 memory of the task, containing

 	PC

 	other registers

 	local variables

 all ready to be reloaded whenever the task next runs.

 	Possibly the return value for when the task is next activated

 	Possibly something to support a Destroy primitive

 	The task's state

 	Links to queues on which the task is located

 	The kernel uses these to find the task when it is ervicing a
 request

Possible states of the task

 	Active: running or about to run

 	On a single processor system only one task can ever be active.

 	But we would like to generalize smoothly to more than one
 processor.

 	Ready: can run if scheduled

 	Need a queue used by the scheduler when deciding which task should
 be the next active task

 	Blocked: waiting for something to happen

 	Need several queues, one for each thing that could happen

 	Zombie

 	Undead, won't execute instructions, but retains its resources.

Kernel Structure

The kernel is just a function like any other, but which runs forever.

kernel() {
 initialize(); // includes starting the first user task
 FOREVER {
 request = getNextRequest();
 handle(request);
 }
}

Where is the OS?

 	requests come from running user tasks

 	in essence system calls

 	one type of request creates a task

 	There needs to be a first task that gets everything going

All the interesting stuff inside done by the kernel is hidden inside
getNextRequest.

int getNextRequest() {
 active = schedule(...);
 return activate(active);

What's inside activate(active)?

 	transfer of control to the active task

 	execution to completion of the active task

 	`to completion' means until the active task sends a request to the
 kernel

 	transfer of control back to the kernel

 	getting the request

The hard part to get right is `transfer of control'

 	which we call a context switch

 	Programming a context switch requires you to know the processor
 architecture

ARM 920T

What is it?

Two modes of labelling

 	By architecture (now up to v7)

 	Architecture
 	Instruction
 Set

 	Thumb
 Instructions?

 	Multiply
 Instruction

 	DSP
 Instructions

 	Comments

 	ARMv1
 	1
 	no
 	no
 	no
 	Obsolete

 	ARMv2
 	2
 	no
 	no
 	no
 	Obsolete

 	ARMv3
 	3
 	no
 	no
 	no
 	

 	ARMv3M
 	3
 	no
 	yes
 	no
 	

 	ARMv4
 	4
 	no
 	yes
 	no
 	

 	ARMv4T
 	4
 	yes
 	yes
 	no
 	This is the one in the box.

 	ARMv5
 	5
 	no
 	yes
 	no
 	Has CLZ

 	ARMv5T
 	5
 	yes
 	yes
 	no
 	

 	ARMv5TE
 	5
 	yes
 	yes
 	yes
 	

 Thumb instructions are 16 bit, and accelerated.

 	They use the full 32 bits of the registers

 	They improve code density (less memory needed).

 	They effectively double the size of the instruction cache (fewer
 time-consuming cache misses).

 	By processor core

 	Processor
 Core

 	ARM
 ISA

 	Thumb
 ISA

 	Comments

 	ARM7TDMI
 	v4T
 	v1
 	Most of the ARM7xx processors

 	ARM9TDMI
 	v4T
 	v1
 	ARM[920|922|940]T:

 920T is the one in the box.
 `T' means includes thumb instructions

 `DMI' means direct memory interface

 	StrongARM
 	v4
 	n/a
 	Intel SA-110. Found in Compaq versions of IPAQ.

 	ARM9E
 	v5TE
 	v2
 	

 	ARM10E
 	v5TE
 	v2
 	

 	XScale
 	v5TE
 	v2
 	Manufactured by Intel. HP versions of IPAQ.

Features

 	16 32-bit registers

 	r15, pc, special in the architecture

 	r14, lr, special in the architecture

 	r13, sp, special in the architecture

 	r12, ip, used by the compiler as a scratch register

 	r11, fp, used by the compiler as the frame pointer

 	r10, sl

 	r4 to r9

 	r0 to r3, used by the compiler as scratch registers, for function
 arguments and return value

 partially separate register sets different modes

 link register (lr), program counter (pc) are
 special, but not very special

 	Processor modes. In the table below `special' means that the mode has
 ia separate copy of the registers.

 	M[4:0]
 	Mode
 	Registers accessible

 	10000
 	User
 	r0-r15

 cpsr

 	10001
 	FIQ (Fast interrupt processing)
 	r0-r7, r15

 r8_fiq-r14_fiq
 cpsr, spsr_fiq

 	10010
 	IRQ (Interrupt processing)
 	r0-r12, r15

 r13_irq,r14_irq
 cpsr, spsr_irq

 	10011
 	Supervisor
 	r0-r12, r15

 r13_svc,r14_svc
 cpsr, sprs_svc

 	10111
 	Abort
 	r0-r12, r15

 r13_abt,r14_abt
 cpsr, spsr_abt

 	11011
 	Undefined
 	r0-r12, r15

 r13_und,r14_und
 cpsr, spsr_und

 	11111
 	System
 	r0-r15
 cpsr

 	Program status register, which you will find in two places CPSR and
 SPSR

 	Bit
 	Mnemonic
 	Meaning

 	31
 	N
 	Negative

 	30
 	Z
 	Zero

 	29
 	C
 	Carry

 	28
 	V
 	Overflow

 	8-27
 	DNM
 	Does not matter in v4

 	7
 	I
 	Interrupts disabled

 	6
 	F
 	Fast interrupts disabled

 	5
 	T
 	Thumb execution

 	4
 	M4
 	Five processor mode bits

 	3
 	M3
 	

 	2
 	M2
 	

 	1
 	M1
 	

 	0
 	M0
 	

 	Exceptions

 	Exception
 Type

 	Modes
 Called from

 	Mode at
 Completion

 	Instruction
 Address

 	Reset
 	hardware
 	supervisor
 	0x00

 	Undefined instruction
 	any
 	undefined
 	0x04

 	Software interrupt
 	any
 	supervisor
 	0x08

 	Prefetch abort
 	any
 	abort
 	0x0c

 	Data abort
 	any
 	abort
 	0x10

 	Ordinary interrupt
 	any
 	IRQ
 	0x18

 	Fast interrupt
 	any
 	FIQ
 	0x1c

 	You are concerned right now with Reset and Software Interrupt.

 	The first instruction executed by the CPU after reset is the one at
 location 0x00000000. Usually it is
 ldr pc, [pc, #0x18] ; 0xe590f018 is the binary encoding

 which you will normally find in addresses 0x00 to
 0x1c. Just executing an instruction, rather than having
 an address that is specially processed saves transistors, which is
 good.

 	RedBoot puts entry points of RedBoot into addresses
 0x20 to 0x3c.This makes it possible to jump
 to any location in the 32 bit address space.

 	Note endianness of RedBoot output when examining these
 locations.

 	Three data types

 	word: 32 bits, word-aligned

 	half-word: 16 bits, half-word-aligned

 	byte: 8 bits

General Comments

 	each instruction is exactly one word

 	load and store RISC architecture

 	rich set of addressing modes, based on barrel shifting

 	allows you to keep any partial computation it makes

Context Switch

Step-by-step

Function Call (gcc calling conventions)

; In calling code
 ; store values of r0-r3
 ; load arguments into r0-r3
 bl <entry point> ; this treats the pc and lr specially
 ; lr <- pc, pc <- <entry point>
 ; r0 has the return value
 ; r1-r3 have useless junk

; In called code
entry point:
 mov ip, sp
 stmdb sp!, {fp, ip, lr} ; and usually others,
 ; determined by the registers the function uses
 ...
 ldmia sp, {fp, sp, pc} ; and whatever others
 ; exact inverse of stmdb

Note the role of the index pointer (ip), link register (lr) and stack
pointer (sp).

The final instruction could be

 ldmia sp, {fp, sp, lr}
 mov pc, lr

The sequence

 bl junk
 .
 .
 .
junk:
 mov pc, lr

is a NOP.

Software Interrupt

The software interrupt instruction (SWI{cond} <immed_24>). What
happens when it is executed?

 	r14_svc <- address of the following instruction. This is where the
 kernel will return to.

 	SPSR_svc <- CPSR. This saves the mode, condition codes, etc.

 	CPSR[0:4] <- 0b10011. Supervisor mode.

 	CPSR[5] <- 0. ARM (not Thumb) state.

 	CPSR[7] <- 1. Normal interrupts disabled.

 	PC <- 0x08

The CPU ignores the 24-bit immediate value, which can be used by the
programmer as an argument identifying the system call, for example.

; In calling code
 ; Store r0-r3
 ; Put arguments into r0-r3
 ; 0x08 holds the kernel entry point
 swi n ; n identifies which system call you are calling
 ; retrieve return value from r0
 ; r1-r3 have even more useless junk

; In kernel
kernel entry:
; Change to system mode
; Save user state on user stack
; Return to supervisor mode
 ldr r4, [lr, #-4] ; gets the request type
 ; at this point you can get the arguments
 ; Where are they?
; Retrieve kernel state from kernel stack
; Do kernel work

The sequence

 swi n
 .
 .
 .
kernel entry:
 movs pc, lr

is a NOP.

Questions:

 	What is above kernel entry?

 	If you put swi in a wrapper or stub what happens before and after
 it?

 	If the request had arguments, how would you get them into the kernel?
 Hint. How does gcc pass arguments into a function?

 	It might be important that there are two link registers. Which two link
 registers? Why?

 	In practice it isn't important. Why not?

Suggestions:

 	Try this first on paper drawing the stack, registers, etc after each
 instruction

 	Try coding in baby steps, which is usually a good idea in assembly
 language.

Try reading this.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 6 - Context Switch

Pubilc Service Annoucements

 	Due date for assignment 1

 	Partners

Kernel Structure

The kernel is just a function like any other, but which runs forever.

kernel() {
 initialize(); // includes starting the first user task
 FOREVER {
 request = getNextRequest();
 handle(request);
 }
}

Where is the OS?

 	requests come from running user tasks

 	in essence system calls

 	one type of request creates a task

 	There needs to be a first task that gets everything going

All the interesting stuff inside done by the kernel is hidden inside
getNextRequest.

int getNextRequest() {
 active = schedule(...);
 return activate(active);

What's inside activate(active)?

 	transfer of control to the active task

 	execution to completion of the active task

 	`to completion' means until the active task sends a request to the
 kernel

 	transfer of control back to the kernel

 	getting the request

The hard part to get right is `transfer of control'

 	which we call a context switch

 	Programming a context switch requires you to know the processor
 architecture

ARM 920T

Features

 	16 32-bit registers

 	Processor modes. In the table below `special' means that the mode has
 ia separate copy of the registers.

 	M[4:0]
 	Mode
 	Registers accessible

 	10000
 	User
 	r0-r15

 cpsr

 	10001
 	FIQ (Fast interrupt processing)
 	r0-r7, r15

 r8_fiq-r14_fiq
 cpsr, spsr_fiq

 	10010
 	IRQ (Interrupt processing)
 	r0-r12, r15

 r13_irq,r14_irq
 cpsr, spsr_irq

 	10011
 	Supervisor
 	r0-r12, r15

 r13_svc,r14_svc
 cpsr, sprs_svc

 	10111
 	Abort
 	r0-r12, r15

 r13_abt,r14_abt
 cpsr, spsr_abt

 	11011
 	Undefined
 	r0-r12, r15

 r13_und,r14_und
 cpsr, spsr_und

 	11111
 	System
 	r0-r15
 cpsr

 	Program status register, PSR, which you will find in
 two places CPSR and SPSR

 	Bit
 	Mnemonic
 	Meaning

 	31
 	N
 	Negative

 	30
 	Z
 	Zero

 	29
 	C
 	Carry

 	28
 	V
 	Overflow

 	8-27
 	DNM
 	Does not matter in v4

 	7
 	I
 	Interrupts disabled

 	6
 	F
 	Fast interrupts disabled

 	5
 	T
 	Thumb execution

 	4
 	M4
 	Five processor mode bits

 	3
 	M3
 	

 	2
 	M2
 	

 	1
 	M1
 	

 	0
 	M0
 	

 	Exceptions

 	Exception
 Type

 	Modes
 Called from

 	Mode at
 Completion

 	Instruction
 Address

 	Reset
 	hardware
 	supervisor
 	0x00

 	Undefined instruction
 	any
 	undefined
 	0x04

 	Software interrupt
 	any
 	supervisor
 	0x08

 	Prefetch abort
 	any
 	abort
 	0x0c

 	Data abort
 	any
 	abort
 	0x10

 	Ordinary interrupt
 	any
 	IRQ
 	0x18

 	Fast interrupt
 	any
 	FIQ
 	0x1c

 	You are concerned right now with Reset and Software Interrupt.

 	The first instruction executed by the CPU after reset is the one at
 location 0x00000000. Usually it is
 ldr pc, [pc, #0x18] ; 0xe590f018 is the binary encoding

 which you will normally find in addresses 0x00 to
 0x1c. Just executing an instruction, rather than having
 an address that is specially processed saves transistors, which is
 good.

 The indirect jump allows the CPU to jump anywhere in the address
 space.

 	RedBoot puts entry points of RedBoot into addresses
 0x20 to 0x3c.

 	Note endianness of RedBoot output when examining these
 locations.

 	Three data types

 	word: 32 bits, word-aligned

 	half-word: 16 bits, half-word-aligned

 	byte: 8 bits

Context Switch

Function Call (gcc calling conventions)

; In calling code
 ; store values of r0-r3
 ; load arguments into r0-r3
 bl <entry point> ; this treats the pc and lr specially
 ; lr <- pc, pc <- <entry point>
 ; r0 has the return value
 ; r1-r3 have useless junk

; In called code
entry point:
 mov ip, sp
 stmdb sp!, {fp, ip, lr} ; and usually others,
 ; determined by the registers the function uses
 ...
 ldmia sp, {fp, sp, pc} ; and whatever others
 ; exact inverse of stmdb

Note the role of the index pointer (ip), link register (lr) and stack
pointer (sp).

The final instruction could be

 ldmia sp, {fp, sp, lr}
 mov pc, lr

The sequence

 bl junk
 .
 .
 .
junk:
 mov pc, lr

is a NOP.

Software Interrupt

The software interrupt instruction (SWI{cond} <immed_24>). What
happens when it is executed?

 	r14_svc <- address of the following instruction. This is where the
 kernel will return to.

 	SPSR_svc <- CPSR. This saves the mode, condition codes, etc.

 	CPSR[0:4] <- 0b10011. Supervisor mode.

 	CPSR[5] <- 0. ARM (not Thumb) state.

 	CPSR[7] <- 1. Normal interrupts disabled.

 	PC <- 0x08

The CPU ignores the 24-bit immediate value, which can be used by the
programmer as an argument identifying the system call, for example.

; In calling code
 ; Store r0-r3
 ; Put arguments into r0-r3
 ; 0x08 holds the kernel entry point
 swi n ; n identifies which system call you are calling
 ; retrieve return value from r0
 ; r1-r3 have even more useless junk

; In kernel
kernel entry:
; Change to system mode
; Save user state on user stack
; Return to supervisor mode
 ldr r4, [lr, #-4] ; gets the request type
; At this point you can get the arguments
; Where are they? Why couldn't you retrieve them earlier?
; Retrieve kernel state from kernel stack
; Do kernel work

The sequence

 swi n
 .
 .
 .
kernel entry:
 movs pc, lr

is a NOP.

This NOP depends on a bunch of things being correctly set up, especially
the low memory.

For Later in the course

Responding to SWI treats the scratch registers in a special way.

 	The calling code does not expect them to be preserved.

 	They are likely to contain arguments on entry, and the return value on
 exit.

In the third part of the kernel you will implement hardware interrupts.

 	You will go to IRQ mode, not SVC mode

 	You have to restore the scratch registers exactly as you restore all
 the other registers.

It seems desirable to have as much code as possible common to hardware and
software interrupts.

Questions:

 	What is above kernel entry?

 	If you put swi in a wrapper or stub what happens before and after
 it?

 	If the request had arguments, how would you get them into the kernel?
 Hint. How does gcc pass arguments into a function?

 	It might be important that there are two link registers. Which two link
 registers? Why?

 	In practice it is important only for hardware interrupts. Why?

Suggestions:

 	Try this first on paper drawing the stack, registers, etc after each
 instruction

 	Try coding in baby steps, which is usually a good idea in assembly
 language.

Try reading this.

After the Software Interrupt

In the kernel

The order matters

kernel entry:

 	State on entry

 	supervisor mode

 	interrupts off

 	spsr_svc = cpsr_usr

 	arguments in r0-r3

 	caller context in registers r4-r12

 	caller local variables indexed off fp

 	kernel stack pointer (sp_svc) in r13

 	address of instruction following swi in r14, i.e., lr_svc = return
 address = pc_usr

 	kernel entry in r15

 	Change to system state

 	Save the user state

 	on its stack

 	This might include scratch registers (arguments), which you may or
 may not need later.

 	Put sp_usr in a scratch register, say r2

 	Return to supervisor mode

 	Get the request into a scratch register
 ldr r3, [lr, #-4]

 	Retrieve the kernel state, which should not include the scratch
 registers

 	You now have the kernel frame pointer

 	You can use it to put stuff in kernel memory

 	Put what you need to in the active task's TD

 	active is indexed off the kernel's frame pointer

 	active is a pointer to the TD of the requester

 	Some where above you must have picked up the arguments

 	must be done after 5. Why?

 	must be done before 9. Why?

 	Return from getNextRequest(active) and get to work

 	Don't forget to store the return value when you're finished
 handling the request and before scheduling.

There is more than one way to do almost everything in this list, and I
have chosen this way of describing what is to be done because it's simplest
to describe, not because it's necessarily best!.

Before the Software Interrupt

After a while it's time to leave the kernel

 	Schedule the next task to run

 	i.e. get the value of active

 	Call GetNextRequest(active)

Inside GetNextRequest

 	From TD, or the user stack

 	get sp_usr

 	set spsr_svc = cpsr_usr

 	You should understand how this takes us back to user mode.

 	set lr_svc = pc for return to user mode

 	Save kernel state on kernel stack

 	Combined with 6, above this should be a NOP

 	Set return value by overwriting r0 on user stack

 	Switch to system mode

 	Load registers from user stack

 	Combined wi 3 above this should be a NOP

 	Return to supervisor mode

 	Let it go
 movs pc, lr

The instruction after this one is normally the kernel entry.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 7 - Create, Scheduling

Pubilc Service Annoucements

 	Due date for assignment 1

 	Partners

After the Software Interrupt

In the kernel

The order matters, except for the last two

 	Save the user state

 	Get the request

 	Retrieve the kernel state

There is more than one way to do almost everything in this list, and I
have chosen this way of describing what is to be done because it's simplest
to describe, not because it's necessarily best!.

At this point the kernel is ready to handle the request.

Handling the Request

What needs to be done

 	Check for errors

 	Manipulating TDs

 	Sometimes, copying bytes from one address space to another.

Saving up the return value

The task that made the request may not be the next one to run.

 	The kernel needs to save the request's return value until the next time
 the requester is scheduled.

 	One solution is to put it in the TD.

 	It's also possible to put it where it will be needed (such as r0)
 immediately.

Scheduling

There are two important issues for scheduling

 	When do we reschedule?

 	Who do we activate when we schedule

When to schedule

Every time we are in the kernel, so the issue is `When do we enter the
kernel?'

Three possibilities

 	Tasks run to completion, which means until they make a request for
 kernel services

 	Event-driven pre-emption, which means when hardware makes a request for
 service

 	Time-slicing

 	re-schedule only when the slice-timer times out

 	two problems with time slicing

 	slices are too big => bad response

 	slices are too small => kernel runs too much = bad
 response

 	What defines `too big' and `too small'?

 	desired response times

 	frequency of requests from hardware

 both of which vary widely

We do 1 & 2, but not 3, because our tasks co-operate. Time-slicing is
needed when tasks are adversarial.

Who to Schedule

Whoever is needed to meet all the deadlines

 	or to optimize something.

Because this is not an easy problem, we don't want to solve it within the
kernel. What the kernel does should be fast (=constant time) and not resource
constrained.

Inexpensive (=constant time)ways to schedule

Least expensive first

 	active task decides = co-routines

 	round robin

 	everybody gets the same chance

 	but usually long running time = unimportant

 	priorities

 	fixed at compile time

 	fixed when task is created

 	re-fixed every time task is scheduled

 	Do you have a good algorithm?

The number of priorities should be small, but not too small.

Tasks at the same priority should have the same precedence.

Scheduling algorithm

 	Find the highest priority non-empty ready queue.

 	Schedule the first task in the queue.
 The state of the most recently scheduled (running) task is ACTIVE, not
 READY.

 The kernel maintains a pointer to the TD of the active task so it
 knows which task is making the current request.

 	When a task is made ready it is put at the end of its ready queue.

Implementation

Array of ready queues, one for each priority.

Each ready queue is a list with a head pointer (for extraction)and a tail
pointer (for insertion).

Hint. The Art of Computer Programming (Donald Knuth) says that circular
queues are better. Why?

Implementation decisions

 	How many priorities

 	Which task should have which priority

 	What to do when there is no ready task

The queues of typical running system

 	Highest priority:

 	tasks waiting on interrupts

 	almost always blocked

 	do minimal processing, then release tasks blocked on them

 	Medium priority

 	receive blocked tasks

 	almost always blocked

 	provide service to application tasks

 	Low priority

 	send-blocked tasks

 	blocked more often than not

 	make decisions about what should be done next

 	Lowest priority

 	one task that runs without blocking

 	the idle task

 	uses power without doing anything

Before the Software Interrupt

After a while it's time to leave the kernel

 	Schedule the next task to run

 	i.e. get the value of active

 	Call GetNextRequest(active)

Inside GetNextRequest

 	From TD, or the user stack

 	get sp_usr

 	set spsr_svc = cpsr_usr

 	You should understand how this takes us back to user mode.

 	set lr_svc = pc for return to user mode

 	Save kernel state on kernel stack

 	Combined with 6, above this should be a NOP

 	Set return value by overwriting r0 on user stack

 	Switch to system mode

 	Load registers from user stack

 	Combined with 3 above this should be a NOP

 	Return to supervisor mode

 	Let it go
 movs pc, lr

The instruction after this one is normally the kernel entry.

Making the Stub that Wraps swi

For each kernel primitive there must be a function available in usr code:
the kernel's API.

 	e.g. int Create(int priority, void (*code) ());

What gcc does for you

Before calling Create

 	gcc saves the scratch registers to memory.

 	gcc puts the arguments into the scratch registers, and possibly on the
 stack.

While calling Create

 	bl to the entry point of Create

While executing Create

 	gcc saves the registers that it thinks will be altered
 during execution of the function.

 	gcc thinks wrong, because only the assembler knows that swi is in
 the instruction stream

 	your code gets executed

 	gcc restores the registers it saved, and only those registers.

Exiting from Create

 	mov pc, lr, or equivalent, is executed, returning the execution to the
 instruction following bl

After calling Create

 	gcc stores register r0, the return value, in the variable to which the
 result of Create is assigned.

What the code you write does

 	Moves the arguments from gcc's locations to whatever convention you
 choose for your kernel

 	Does swi n, where n is the code for Create.

 	Moves the return value from your kernel's conventional location to
 r0.

Creating a Task

In creating a task you have to do two things

 	Get and initialize resources needed by the task

 	TD

 	memory

 	Make the task look as if it had just entered the kernel

 	it's ready to execute when it's scheduled

Things you need to do

Get an unused TD and memory for its stack

 	memory could be associated with TD during initialization

 	actually a form of constant time memory allocation

 	unless you implement Destroy

Mostly filling in fields in the TD.

 	task id

 	stack pointer

 	SPSR

 	link register

 	parent tid

 	the active task

 	return value

 	dummy

 	different return value for the active task, which goes in its
 TD

 	state

 	READY

 	install in the ready queues

 	pointers in the TD

Must also initialize the stack

 	exactly as if the task had just done a kernel entry

 	look carefully at what your kernel exit code will do

 	At the end stack pointer must correspond to stack contents

 	I initialize the stack pointer to the top of allocated memory

 	my stacks grow down

 then change it as I push stuff onto the stack

 	imitating the context switch code

The Create Function

You also need a int Create(int priority, void (*code) ())
function to call from user tasks.

Although it's no more than a wrapper there are a few problems to solve.

 	Passing arguments

 	On entry the arguments are somewhere, usually r0 & r1

 	You have to put them where the kernel can find them.

 	gcc's function extry code immediately puts them on the stack.

 	In assembly you can find them using the frame pointer.

 	Jumping into the kernel

 	Getting the return value from the kernel and returning it.

 	You find it where the kernel put it

 	gcc's function exit code expects it to be indexed off the frame
 pointer

 	from where it does into r0

Other Primitives

These primitives exist mostly so that we, which includes you, can ensure
that task creation and scheduling are working when there is not much else
implemented.

Tid MyTid()

Self-explanatory

 	Doesn't block, but does reschedule.

A question, to which there is a correct answer, or more specifically, a
correct (answer, reason) pair.

 	Should the Tid be stored in user space?

Tid MyParentTid()

Self-explanatory

 	Doesn't block, but does reschedule.

Where is the parent Tid, and how does the kernel find it?

void Pass()

Doesn't block: task calling Pass() remains ready to
execute.

Does reschedule.

When is Pass() a NOP?

void Exit()

Calling task is removed from all queues, but its resources are not
reclaimed or reused.

That is, the task goes into a zombie state, in which it cannot be active
or ready, but continues to own all its resources.

How Should Execution Terminate?

Nicely.

When there are no tasks left on the ready queues, it goes back to
RedBoot.

 	This behaviour changes when hardware interrupts are implemented.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 8 - Create, Initialization

Pubilc Service Annoucements

 	Due date for assignment 1

 	Victoria Day holiday

Initializing the Kernel

Set up the Hardware

 	busy-wait io

 	low memory

 	Where is the kernel entry?

 	Turn off interrupts in the ICU

 	This should be unnecessary, but what if the previous kernel turned
 them on?

 	Later you will initialize the ICU differently.

Prepare the Kernel Data Structures

Where is the kernel's stack pointer, right now? What does the stack look
like?

 	Do you want it there? Would you rather have it somewhere else?

 	This is your last chance to change it. (If you decide to change it you
 might want to keep what you are replacing around. Why?)

The kernel data structures

 	an array of empty ready queues

 	a poimter to the TD of the active task

 	an array of TDs

 	a free list of pointers to free TDs

Prepare the Memory to be Used by Tasks

 	task memory

Create the First User Task

Can run with interrupts turned off for now (belt and braces) but will need
to be turned on later.

Reminder. The place where the kernel starts executing has the global name
main, which cannot be re-used.

Creating a Task

In creating a task you have to do two things

 	Get and initialize resources needed by the task

 	TD

 	memory

 	Make the task look as if it had just entered the kernel

 	it's ready to execute when it's scheduled

Things you need to do

Allocate resources

Get an unused TD and unused memory for its stack

 	actually a form of constant time memory allocation

Initialize resources

Mostly filling in fields in the TD. Here are the ones that ought to be in
the TD.

 	task id

 	priority

 	stack pointer

 	parent tid

 	the active task

 	state

 	READY

 	install in the ready queues

 	pointers in the TD

This looks like six words, which could be squeezed into fewer. (There will
be more later.)

 	If you are thinking about the cache, how can you make the array of task
 descriptors so that they are cache-aligned.

Here are the ones that could be in the TD, or could be on the stack.

 	SPSR

 	link register

 	return value

Initialize the stack

 	exactly as if the task had just done a kernel entry

 	look carefully at what your kernel exit code will do

 	At the end stack pointer must correspond to stack contents

 	I initialize the stack pointer to the top of allocated memory

 	my stacks grow down

 then change it as I push stuff onto the stack

 	imitating the context switch code

Here's something I always do.

 	Put distinctive values into registers to start off with, like 00000000,
 11111111, 22222222, etc.

 	This makes solving pointer misalignment problems easier

The Create Function

You also need a int Create(int priority, void (*code) ())
function to call from user tasks.

Although it's no more than a wrapper there are a few problems to solve.

 	Passing arguments

 	On entry the arguments are somewhere, usually r0 & r1

 	You have to put them where the kernel can find them.

 	gcc's function extry code immediately puts them on the stack.

 	In assembly you can find them using the frame pointer.

 	Jumping into the kernel

 	Getting the return value from the kernel and returning it.

 	You find it where the kernel put it

 	gcc's function exit code expects it to be indexed off the frame
 pointer

 	from where it does into r0

Other Primitives

These primitives exist mostly so that we, which includes you, can ensure
that task creation and scheduling are working when there is not much else
implemented.

Tid MyTid()

Self-explanatory

 	Doesn't block, but does reschedule.

A question, to which there is a correct answer, or more specifically, a
correct (answer, reason) pair.

 	Should the Tid be stored in user space?

Tid MyParentTid()

Self-explanatory

 	Doesn't block, but does reschedule.

Where is the parent Tid, and how does the kernel find it?

void Pass()

Doesn't block: task calling Pass() remains ready to
execute.

Does reschedule.

When is Pass() a NOP?

void Exit()

Calling task is removed from all queues, but its resources are not
reclaimed or reused.

That is, the task goes into a zombie state, in which it cannot be active
or ready, but continues to own all its resources.

How Should Execution Terminate?

Nicely.

When there are no tasks left on the ready queues, it goes back to
RedBoot.

 	This behaviour changes when hardware interrupts are implemented.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 9 - Send/Receive/Reply

Pubilc Service Annoucements

 	Due date for assignment 1

 	Next week's classes

 	Assignment 2

 	due date

 	what you do

Inter-task Communication

Overview

Message passing combines synchronization and communication in one set of
primitives.

 	Send, Receive, Reply

int Send(Tid tid, char *message, int mslen, char *reply, int rplen)

 	blocks until Reply occurs

int Receive(Tid *tid, char *message, int mslen)

 	blocks until message is available

 	Only one waiting sender is processed per Receive

 	Why?

 	Hint. There might be tasks that are higher priority than the
 Receiver.

int Reply(Tid tid, char *reply, int rplen)

 	does not block

 	unblocks task that called Send

Send and Reply become READY at the same time.

How are They Used?

The Producer/Consumer Problem

+--------------+ +--------------+
Producer	===>	Consumer
+--------------+ +--------------+

Producer Sends

 	producer sends and blocks (I have some XXX for you)

 	consumer receives (Give me some XXX)

 	consumer accepts XXX

 	consumer replies (I got the XXX)

 	producer & consumer are simultaneously READY

Note. 1 & 2 could be run in the opposite order

Consumer Sends

 	Consumer sends and blocks (`I am ready for some XXX.')

 	Producer receives (`I have some XXX.')

 	Producer replies (`Here is the XXX')

 	Consumer accepts XXX

 	Producer and consumer are simultaneously READY

Note. 1 & 2 could be run in the opposite order

Multiple Producers

Producers send; consumer receives in the order that producers send.

Notes.

 	Critical races can occur, which the application programmer must
 resolve.

 	There are two types of critical race

 	Ones internal to the application. For example, order of production
 changes in one producer because you add or remove a printf statement.
 These ones you can program out of existence by changing priorities,
 communication patterns, etc.

 	Ones external to the application. For example, one producer is
 forwarding bytes from the keyboard, the other from the train
 controller, and the order of production changes because the user
 types a little faster. These ones you cannot program out of
 existence, but must program so that the right thing happens
 regardless of the order of production.

Multiple Consumers

Consumers send; producer receives in the order that consumers send.

Note. Critical races can occur, which the application programmer must
resolve.

Multiple Consumers AND Multiple Producers

Consumers send and producers send: who receives?

 	A third task: you call it a FIFO or buffer; I call it a warehouse

+---------------+ +------------+ +---------------+
Producers	===>	Buffer	===>	Consumers
+---------------+ +------------+ +---------------+

Buffer receives two types of request

 	Producer: Here is some XXX
 Send(..., accept some XXX, ...)

 	Warehouse stores XXX, replies
 Reply(sender, got XXX,)

 	If warehouse is full of XXX two strategies are possible

 	Warehouse queues sender, who remains Reply_Blocked

 	Warehouse replies with refusal
 Reply(sender, won't take XXX,)

 	Consumer: I want some YYY
 Send(..., want some YYY, ...)

 	Warehouse provides YYY, replies
 Reply(sender, here is YYY,)

 	If warehouse is empty of YYY, two strategies are possible

 	Warehouse queues sender, who remains Reply_Blocked

 	Warehouse replies with refusal
 Reply(sender, all out of YYY,)

Only a receiver can accept two types of requests at once.

Sequence of States

Sender

 	Active -> Receive_Blocked

 	When Send is called

 	Receive_Blocked -> Reply_Blocked

 	May happen right away

 	When Receive is called with the Receiver's SendQ empty

 	Otherwise, when Receive is called

 	Reply_Blocked -> Ready

 	When Reply is called

Receiver

 	Active -> Send_Blocked

 	Send_Blocked -> Ready

 	May happen right away

 	if the sendQ is not empty

 	Ready -> Active

 	...

 	Active -> Ready

 	When Reply is called

There are two cases

Send before Receive

Send
 ...
 Receive
 ...
 Reply
... ...

Message copying occurs inside Receive and Reply.

Receive needs to have a list of current senders, the ReceiveQ

Receive before Send

 Receive
...
Send
 ...
 Reply
... ...

Message copying occurs inside Send and Reply.

Example of a Difficult Bug

 	You notice that a Receiver is never on a readyQ when it is
 Send_Blocked

 	You decide to use the next pointer in the TD for the head of the sendQ

 	probably to fit two TDs into a single cache line

 	You test and test and test and nothing ever goes wrong

 	One week before the demo, your kernel crashes under your
 application

 	What two things might have gone wrong?

 	You might have caught one while testing, not likely the other.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 10 - Name Server

Public Service Annoucements

 	Due date for assignment 1

 	Next week's classes

 	Assignment 2

 	due date

 	what you do

Send/Receive/Reply

Sequence of States

There are two cases

Send before Receive

 	Sender

 Action

 	Sender

 State

 	Receiver

 Action

 	Receiver

 State

 	Comments

 	
 	active
 	
 	
 	

 	Send
 	RCV_BL
 	
 	
 	sender added to receiver's sendQ

 	
 	
 	
 	active
 	

 	
 	RPL_BL
 	Receive
 	ready
 	request copied

 sender deleted from receiver's sendQ

 	
 	
 	
 	active
 	service performed

 	
 	ready
 	Reply
 	ready
 	reply copied

Receive before Send

 	Sender

 Action

 	Sender

 State

 	Receiver

 Action

 	Receiver

 State

 	Comments

 	
 	
 	
 	active
 	

 	
 	
 	Receive
 	SND_BL
 	receiver's sendQ empty

 	
 	active
 	
 	
 	

 	Send
 	RPL_BL
 	
 	ready
 	request copied

 	
 	
 	
 	active
 	service perfomed

 	
 	ready
 	Reply
 	ready
 	reply copied

Practical Details

 	Need to keep around request

 	For Send_Blocked receivers in the SendQ

 	The same as Receive_Blocked senders

 	For Reply_Blocked senders.

 	Messages

 	Task states

 	You can add extra return values beyond those specified

int Send(Tid tid, char *message, int mslen, char *reply, int rplen)

These are pretty self explanatory, except

 	The return value is the number of characters actually placed in the
 reply-buffer

 	including the terminal character (\000) if the contents of the
 reply buffer is a string

 	If something goes wrong, the return value is negative, coded to
 indicate what went wrong
 What can go wrong

 	Illegal tid

 	tid not an existing task

 It's up to Send to check that the reply-buffer was big
 enough by looking at its return value

 It's not an error if the task to which we Send never
 Receives

 	Should it be?

 	Hint. Finding out if a task "never Receives" is equivalent to what
 problem?

 	Parsing argument and reply-buffer is
 potentially costly and error-prone

 	A type system might be nice

 	But then you would feel compelled to implement run-time type
 checking

Implementing Send

What's in user space is just stubs.

 	checking arguments

 	putting arguments in the right place

 	Note that there are five arguments

What the kernel must do

 	Check arguments

 	tid is valid?

 	Change state of sender to RECEIVE_BLOCKED

 	Put sender on the end of the receiver's sendQ

 	If receiver is SEND_BLOCKED, do from #3 in
 Receive.

int Receive(Tid *tid, char *message, int msglen)

These are pretty self explanatory, except

 	How is the task id copied form kernel to receiver?

 	That is, where does the pointer point to?

 	What if the buffer wasn't big enough?

 	If several tasks have done Send, which one gets
 Received first?

 	return value is number of bytes in message, including terminal
 character (\000) if the message is really a string..

 	It seems as though the return value should be the tid. Something is
 not right.

 	If something goes wrong, the return value is negative, coded to
 indicate what went wrong
 What can go wrong?

 	Only part of the message was copied

 It's up to Receive to check that the message-buffer was
 big enough by looking at its return value

Implementing Receive

What the kernel must do

 	Check arguments

 	Change receiver's state to SEND_BLOCKED

 	Check the sendQ

 	If sendQ is empty

 	exit from kernel after scheduling

 [bookmark: sendQ]sendQ is not empty

 	extract head of the send queue, called the sender below

 	copy message from sender to receiver, after checking buffer
 sizes

 	change sender's state to REPLY_BLOCKED

 	change receiver's state to READY

 	put sender's tid into receiver's argument

 	put receiver on its readyQ

 	set up receiver's return value

 	exit from kernel after scheduling

int Reply(Tid tid, char *reply, int rplen)

These are pretty self explanatory, except

 	The Replyer need not be the Receiver, but must be in contact with the
 Receiver

 	Why?

 	When all goes well Reply leaves two tasks READY when it completes

Implementing Reply

 	Check arguments

 	sender (tid) must be REPLY_BLOCKED

 	Copy message from replier to sender, checking buffer sizes

 	Set up sender's return value

 	Change sender's state to READY

 	Put sender on readyQ

 	Set up replier's return value

 	Change replier's state to READY

 	Put replier on readyQ

 	Exit from kernel after scheduling

Servers

What is a server?

 	a task that provides service to a client task

 	tasks requesting service, clients, must know the Tid of the
 server

 	a task that owns a resource and provides synchronized access to it.

 	above,

 	`a task' owns the interface

 	other tasks may do the work

How are servers implemented?

 	Receive is the key

 	Receive a request

 	Reply the response

 	Sender (client, task that is making the request) blocks until the
 response is available. That is, sender, in effect, is running at the
 priority of the server between the request and its reponse

 	Server priority should be set according to the importance of the
 service it supplies.

 	But client priority should be considered by the server. For
 example,

 	One set of instructions for higher priority client

 	One set of instructions for lower priority client

Name Server

What is a name server?

 	There is a set of global execution-independent names

 	There is a set of execution-dependent tasks that provide services
 associated with the names

 	Name server maintains an up-to-date table mapping names to resources

 	Accepts requests to update the table

 	Accepts queries concerning the table

Why Do We Need a Name Server

 	Names
 	constant across applications & executions
 	interface
 	Associated with a set of services (an API)

 	Task Ids
 	vary across applications & executions
 	implementation
 	Associated with a particular set of instructions and data (an
 execution)

How do You Get the Task Id of the Name Server?

 	Make it a constant across executions

Name Server API

int RegisterAs(char *name);

 	One task can be registered under two names.

 	Each name is associated with a single task.

 	Name is \000 terminated.

int WhoIs(char *name);

 	Name is \000 terminated.

Name Server Semantics

RegisterAs

 	Errors

 	Not a legal name.

 	It's up to you to decide what you will accept as legal
 names

 	tid is not a task

 	tid is not the Name Server

 	Already somebody registered with that name

 	What does the caller do?

WhoIs

 	Errors

 	Not a legal name.

 	tid is not a task

 	tid is not the Name Server

 	No task registered under that name

 	What does the caller do?

Comments

 	RegisterAs overwrites.

 	Why? The rule is that the name -> task map is many to one.

 	A task may have many names

 	A name may have only one task

Name Server Implementation

User Code

E.g., RegisterAs

typedef struct {
 int type;
 char name[MaxNameSize];
 int tid;
} NSstruct;
int RegisterAs(char *name) {
 NSstruct *req, *result;
 bytes = Send(NSTid, (char *) req, sizeof(NSstruct), (char *) result, sizeof(NSstruct));
 if (bytes != sizeof(NSstruct)) {
 // Do something error-like
 } else return 0;
}

There are lots of possible variations.

Server Code

typedef struct {
 int type;
 char name[MaxNameSize];
 int tid;
} NSstruct;

NSstruct req;
// initialize tables
FOREVER {
 bytes = Receive(&tid, &req, sizeof(NSstruct));
 if (detectError(...)) {
 // Reply with error
 } else {
 switch(req.type) {
 case REGISTERAS:
 insert(req.name, tid);
 Reply(tid, SUCCESS, sizeof(NSstruct));
 break;
 case WHOIS:
 result.tid = lookup(name);
 Reply(tid, result, sizeof(NSstruct));
 break;
 default: // This should never happen
 Reply(tid, ERROR, sizeof(int));
 break;
 }
 }
}

Comments

 	How much will this code run?

 	When will it run?

 	How would you implement insert & lookup?

 	Figure out

 	What deadlines does Nameserver have?

 	How many names will be in NameServer?

 	How many RegisterAs? and when?

 	How many WhoIs? and when?

 	What should be allowable as a name?

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 11 - Hardware Interrupts

Public Service Annoucements

 	Next week's classes

 	context switch from programming to listening

 	Assignment 2

 	due date

 	performance:

 	there is a 40-bit clock that counts cycles

 	respect the exact CPU conditions

 	measure a few times and average

Servers

What is a server?

 	a task that provides service to a client task

 	tasks requesting service, clients, must know the Tid of the
 server

 	a task that owns a resource and provides synchronized access to it.

 	above,

 	`a task' owns the interface

 	other tasks may do the work

How are servers implemented?

 	Receive is the key

 	Receive a request

 	Reply the response

 	Sender (client, task that is making the request) blocks until the
 response is available. That is, sender, in effect, is running at the
 priority of the server between the request and its reponse

 	Server priority should be set according to the importance of the
 service it supplies.

 	But client priority should be considered by the server. For
 example,

 	One set of instructions for higher priority client

 	One set of instructions for lower priority client

Name Server

Why Do We Need a Name Server

 	Names
 	constant across applications & executions
 	interface
 	Associated with a set of services (an API)

 	Task Ids
 	vary across applications & executions
 	implementation
 	Associated with a particular set of instructions and data (an
 execution)

Possible to have multiple names per task, but

 	not possible to have several tasks per name.

Name Server Implementation

Choose whether to block or Reply.

Hardware Interrupts

What is a Hardware Interrupt?

In the CPU

 	Test interrupt signal before fetching the next instruction

 	actually AND of INT and the IRQ bit in the CPSR

 	If asserted, change mode to IRQ

 	Disable interrupt in CPSR

 	Execute instruction at 0x18

In the Interrupt Control Unit (ICU)

 	Several interrupts may be present when an interrupt occurs

 	One is chosen, by a priority mechanism

 	Put in a special place

 	Software can choose to ignore priority mechanism in ICU

 	Clearing one interrupt may just expose another one

In the Peripheral Hardware

 	Several interrupts may be present

 	ORed in peripheral hardware

 	ORed in glue hardware

 	Rare that there is a priority mechanism

 	Clearing one interrupt can expose another one

When two interrupts are present

May have been two present when interrupt processing started

 	in which case interrupt occurring now is known to be of lower
 priority

May have occurred since interrupt processing started

 	in which case interrupt occurring now may be of higher priority

What happens next?

 	Kernel executes with interrupts disabled

 	Context switch into user task turns on interrupts

 	Before fetching the first user task instruction test interrupt
 signal

 	If asserted, re-initiate interrupt processing

Context Switches for Interrupts

Difference from Software Interrupts

It is impossible to predict where they occur

 	You may have made some assumptions about when they occur

Assymmetry between User Task and Kernel

Scratch Registers must be saved

 	including the IP

Two Link Registers

 	One to return from interrupt

 	In the registers of the interrupt handling code

 	To return to the interrupted task in the right place

 	One to move to the caller's stack frame

 	In the registers of the interrupted task

 	To return to whatever started in interrupted task

Helpful Features of the ICU

 	Several places where you can read state

 	Several places where you can block interrupt flow

 	Trigger hardware interrupt from software

 	What makes interrupts hard is that you are doing two semi-hard
 things at once

 	Making the hardware produce the interrupt

 	Responding to the interrupt

 	This allows you to separate them in developing/debugging

The Hardware in the Trains Lab

32-bit Timer

Base address: 0x80810080

Three registers:

 	Offset
 	Function
 	R/W
 	Bits
 	Comments

 	0x0
 	Timer3Load
 	R/W
 	32: <Load/Reload Value>
 	

 	0x4
 	Timer3Value
 	R
 	32:<Current value>
 	Set when Load is written,

 even when counting

 	0x8
 	Timer3Control
 	R/W
 	3:xxx<CLKSEL>xx<MODE><ENABLE>
 	<CLKSEL>: 0, 2KHz clock; 1, 508KHz

 <MODE>: 1, count continuously; 0, count once

 <ENABLE>: Clock turned on

 	0xc
 	Timer3Clear
 	W
 	32:
 	Writing anything clears the interrupt

Interrupt Control Unit (ICU)

The actual device is the ARM PL190

The logic in this design is completely asynchronous, so it functions when
the CPU clock is turned off.

 	Important (= essential) for low power operation.

All input signals are

 	active high

 	level sensitive

Base addresses

 	VIC1: 0x800B0000

 	VIC2: 0x800C0000

Basic Operation

VIC powers up with

 	all vectored interrupts disabled.

 	all interrupts masked

 	all interrupts giving IRQ

Procedure

Initialization

 	leave protection off

 	enable in VICxIntEnable when you are ready to handle the interrupt

On an interrupt

 	Read VICxIRQStatus

 	Choose which interrupt you wish to handle

 	Clear the interrupt source in the device

For debugging

 	Use VICxSoftInt and VICxSoftIntClear to turn interrupt sources off and
 on in software

Hardware Definitions

 Registers for Basic Operation

 	Register Name
 	Offset
 	R/W
 	Description

 	VICxIRQStatus
 	0x00
 	RO
 	One bit for each interrupt source

 1 if interrupt is asserted and enabled

 	VICxFIQStatus
 	0x04
 	RO
 	As above for FIQ

 	VICxRawIntr
 	0x08
 	RO
 	As above but not masked

 	VICxIntSelect
 	0x0c
 	R/W
 	0: IRQ, 1: FIQ

 	VICxIntEnable
 	0x10
 	R/W
 	0: Masked, 1: Enabled

 	VICxIntEnClear
 	0x14
 	WO
 	Clears bits in VICxIntEnable

 	VICxSoftInt
 	0x18
 	R/W
 	Asserts interrupt from software

 	VICxSoftIntClear
 	0x1c
 	WO
 	Clears interrupt from software

 	VICxProtection
 	0x20
 	R/W
 	Bit 0 enables protection from user mode access

 	VICxVectAddr
 	0x30
 	R/W
 	Enables priority hardware

 See documentation.

Helpful Features of the ICU

 	Several places where you can read state

 	Several places where you can block interrupt flow

 	Trigger hardware interrupt from softwareonce

 	What makes interrupts hard is that you are doing two semi-hard
 things at once

 	Making the hardware produce the interrupt

 	Responding to the interrupt

 	Software interrupt generation allows you to separate them in
 developing/debugging

Non-vectored Operation

Initialization

 	Enable interrupt in device

 	Enable interrupt in ICU

 	Enable interrupt in CPU, usually by MOVS

Interrupt occurs

 	AND of IRQ and NOT(IRQ disabled) is checked before each instruction
 fetch.

 	If set IRQ exception is taken in place of next instruction fetch.

 	Possibly zero instructions of active task are executed.

 	Make sure that this case works

 	Context switch into kernel

 Context switch novelties

 Difference from Software Interrupts

 	It is impossible to predict where they occur

 	You may inadvertently have made some assumptions about when they
 occur

 	Scratch Registers must be saved

 	r0-3

 	IP -- used only very occasionally by gcc

 	Two Link Registers

 	One to return from interrupt

 	One to return from the interrupted task to whatever called
 it

 	Turn off interrupt in device

 	Should turn off interrupt in ICU

 	What about IRQ?

You are now ready to process the interrupt in the kernel

Vectored Operation

Procedure

Initialization

 	Write kernel entry point into VICxDefVectAddr

 	If desired write special entry point into VICxVectAddry

 	When ready to accept interrupts write source and enable into
 VICxVectCntl

When an interrupt occurs

 	Read VICxVectAddr to find address

 	Move result to PC

 	When service is complete write VICxVectAddr to rerun priority
 hardware

 	Register Name
 	Offset
 	R/W
 	Description

 	VICxVectAddr
 	0x030
 	R/W
 	Read: address of vector for highest priority interrupt

 Write: service complete, enable priority hardware

 	VICxDefVectAddr
 	0x034
 	R/W
 	Default vector address

 	VICxVectAddry
 	0x100+4y
 	R/W
 	Vector address for interrupt y

 	VICxVectCntly
 	0x200+4y
 	R/W
 	Control register for interrupt y

 Bit[0-4]: interrupt source for interrupt y

 Bit[5]: enable vectored interrupt y

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 12 - Hardware Interrupts

Public Service Annoucements

 	Wednesday's class

 	Do you need it?

 	Assignment 3

Hardware Interrupts

What is a Hardware Interrupt?

Context Switches for Interrupts

Difference from Software Interrupts

It is impossible to predict where they occur

 	You may have made some assumptions about when they occur

Assymmetry between User Task and Kernel

Scratch Registers must be saved

 	for the user task, not for the kernel

 	including the IP

Helpful Features of the ICU

 	Several places where you can read state

 	Several places where you can block interrupt flow

 	Trigger hardware interrupt from software

 	What makes interrupts hard is that you are doing two semi-hard
 things at once

 	Making the hardware produce the interrupt

 	Responding to the interrupt

 	This allows you to separate them in developing/debugging

The Hardware in the Trains Lab

32-bit Timer

Interrupt Control Unit (ICU)

The actual device is the ARM PL190

Hardware Definitions

 Registers for Basic Operation

 	Register Name
 	Offset
 	R/W
 	Description

 	VICxIRQStatus
 	0x00
 	RO
 	One bit for each interrupt source

 1 if interrupt is asserted and enabled

 	VICxFIQStatus
 	0x04
 	RO
 	As above for FIQ

 	VICxRawIntr
 	0x08
 	RO
 	As above but not masked

 	VICxIntSelect
 	0x0c
 	R/W
 	0: IRQ, 1: FIQ

 	VICxIntEnable
 	0x10
 	R/W
 	0: Masked, 1: Enabled

 	VICxIntEnClear
 	0x14
 	WO
 	Clears bits in VICxIntEnable

 	VICxSoftInt
 	0x18
 	R/W
 	Asserts interrupt from software

 	VICxSoftIntClear
 	0x1c
 	WO
 	Clears interrupt from software

 	VICxProtection
 	0x20
 	R/W
 	Bit 0 enables protection from user mode access

 	VICxVectAddr
 	0x30
 	R/W
 	Enables priority hardware

 See documentation.

Helpful Features of the ICU

 	Several places where you can read state

 	Several places where you can block interrupt flow

 	Trigger hardware interrupt from softwareonce

 	What makes interrupts hard is that you are doing two semi-hard
 things at once

 	Making the hardware produce the interrupt

 	Responding to the interrupt

 	Software interrupt generation allows you to separate them in
 developing/debugging

Non-vectored Operation

Initialization

 	Enable interrupt in device

 	Sometimes there is a spurious interrupt that comes in, sometimes
 not.

 	Enable interrupt in ICU

 	Enable interrupt in CPU, usually by MOVS

Interrupt occurs

 	AND of IRQ and NOT(IRQ disabled) is checked before each instruction
 fetch.

 	If set IRQ exception is taken in place of next instruction fetch.

 	Possibly zero instructions of active task are executed.

 	Make sure that this case works

 	Context switch into kernel

 Context switch novelties

 Difference from Software Interrupts

 	It is impossible to predict where they occur

 	You may inadvertently have made some assumptions about when they
 occur

 	Scratch Registers must be saved

 	r0-3

 	IP -- used only very occasionally by gcc

 	How do you differentiate between IRQ and SWI?

 	Two Link Registers

 	One to return from interrupt

 	One to return from the interrupted task to whatever called
 it

 	Locate source of interrupt

 	Collect volatile data

 	Turn off interrupt in device

 	Goes off automatically in the ICU

 	Turn off interrupt in device

 	Should turn off interrupt in ICU

 	What about IRQ?

You are now ready to process the interrupt in the kernel

Vectored Operation

General Idea

The standard way of programming the ICU requires the kernel to query the
ICU. Sometimes (!), this is unacceptably inefficient. Then, you have another
alternative, vectored interrupts.

Relevant registers:

 	there are 16 pairs that you write

 	Register Name
 	Offset
 	R/W
 	Description
 	Comments

 	VICxVectAddry
 	0x100+4y
 	R/W
 	Vector address for interrupt y
 	Entry point of ISR for interrupt y

 	VICxVectCntly
 	0x200+4y
 	R/W
 	Control register for interrupt y
 	Bit[0-4]: interrupt source for interrupt y

 Bit[5]: enable vectored interrupt y

 	There is one pair used by the program

 	Register Name
 	Offset
 	R/W
 	Description

 	VICxVectAddr
 	0x030
 	R/W
 	Read: address of vector for highest priority interrupt
 Write: service complete, enable priority hardware

 	VICxDefVectAddr
 	0x034
 	R/W
 	Default vector address

 	The first is the address (ISR entry point) of the highest priority
 interrupt. Write it during interrupt processing to get the current
 highest priority interrupt.

 	The second would normally be 0x34, the entry point of the
 kernel.

Procedure

Initialization

 	Write kernel entry point into VICxDefVectAddr

 	If desired write special entry point into VICxVectAddry

 	When ready to accept interrupts write source and enable into
 VICxVectCntly

When an interrupt occurs

 	Read VICxVectAddr to find address

 	Move result to PC
 ldr pc, #<VicVectAddr>

 (Note that this is similar to the instruction in 0x014. Could we do it
 all in one?)

 	Before interrupts are re-enabled write VICxVectAddr to start priority
 hardware

Answer to question.

Look carefully at what's in 0x18

 	Usually, ldr pc, [pc, #offset]
 Can you make [pc, #offset] calculate
 <VicVectAddr>?

 	How is the instruction encoded

 	31:28 - condition codes

 	27:20 - op code and flags, 0101<offset sign>001

 	19:16 - base register

 	15:12 - destination register

 	11:00 - 12-bit offset

 	With a 12 bit offset and pc=0x18 you can address

 	from 0x18 + 0x8 - 0xffc = -0xfdc
 =0xfffff020

 	to 0x18 + 0x8 + 0xffc = 0x1020

 	You could have the kernel entry point in

 	either 0x800b0030

 	or 0x800c0030

 	Both are out of range. What could you do?

 	Map the ICU into the range by placing it at, for example,
 0xfffff000.

Clock Server, Task Structure

A New Kernel Primitive: int AwaitEvent(int EventType)

How is AwaitEvent Used?

 	There should (almost) always be a task blocked on AwaitEvent for every
 interrupt type. Why?

 	A server cannot call AwaitEvent. Why?

 	We call the task that calls AwaitEvent a Notifier. Why?

 	Code for a typical Notifier
 main() {
 Tid server;
 int evtType, data;
 Receive(&server, &evtType, ...);
 // Other initialization
 Reply(server, ...);
 FOREVER {
 data = AwaitEvent(evtType);
 Send(server, &data, ...);
 }
}

 	Code for a typical server
 main() {
 notifier = Create(HIGHEST, ...);
 // other initialization
 Send(notifier, &evtType, ...);
 FOREVER {
 Receive(&requester, &request, ...);
 switch (request.type) {
 case NOTIFIER:
 Reply(notifier);
 data = request.data;
 break;
 case CLIENT:
 ...
 }
 }
}

More About AwaitEvent

Argument

 	Somewhere there is a list of event types

 	Application programmer knows the list

 	Kernel can respond to each event type on the list

 	This is not very portable

 	The list would normally be the union of all types occurring on all
 hardware

 	This is the Windows problem

Processing in the kernel

 	Initialization

 	Kernel initialization has IRQ masked

 	Kernel initializes ICU

 	For each device

 	Kernel initializes hardware

 	Kernel turns on interrupt(s) in the device

 	Kernel starts first user task

 	Eventually, Notifier is created

 	Notifier

 	initializes device

 	turns on interrupt(s) in the device

 	turns on interrupt(s) in the ICU

 	calls AwaitEvent

 	Procedure

 	Kernel

 	identifies interrupt source

 	identifies the correct Notifier

 	acquires volatile data

 	re-enables interrupt in the device

 	re-enables interrupt in the ICU

 	re-enables interrupt in the CPU during task activation (eg,
 movs)

 	puts volatile data into AwaitEvent's return value

 	Makes Notifier ready

 	Notifier

 	collects and packages data

 	sends to server

 	Eventually Server

 	Replies to Notifier

 	Advantage

 	Clean consistent user code

 	Disadvantage

 	Kernel has to know a lot about the hardware.

 	Hardware knowledge split between Notifier and kernel

HALT versus an Idle Task

What do you do when there are no tasks to run?

 	Idle task

 	lowest priority

 	diagnose system

 	search for ETI

 	HALT

 	turns off CPU clock

 	save power (battery)

 	provided two ways

 	through System Controller Co-processor

 	through the TS-7200 clock controller

 	IRQ path is asynchronous, so it works when the clock is off

Clock Server

Primitives

int Time()

 	Clock server starts at zero when it initializes

 	Unit of time is tick

int Delay(int ticks)

 	Note error returns

 	You might want to add an error for negative arguments

 	ticks is usually calculated, and a negative value is an early
 warning of falling behind.

int DelayUntil(int ticks)

 	Can be constructed from the above two primitives.

Implementation

main() {
 notifier = Create(HIGHEST, ...);
 time = 0
 Send(notifier, &evtType, ...);
 FOREVER {
 Receive(&requester, &request, ...);
 switch (request.type) {
 case NOTIFIER:
 Reply(notifier, ...)
 time++;
 break;
 case TIME_REQUEST:
 Reply(requester, time,...)
 break;
 case DELAY_REQUEST:
 Add requester to list of suspended tasks
 break;
 }
 Check list of suspended tasks and reply
 }
}

Comments:

 	You need a common request type, or possibly a union.

 	You should notice a typical server pattern.

 	Notifier updates data

 	Client who can be serviced now is serviced

 	Client who needs service in the future is suspended

 	List of suspended tasks is checked regularly

It's normal to sort the list of suspended tasks. Why?

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 13 - Hardware Interrupts

Public Service Annoucements

 	Assignment 3

Hardware Interrupts

Vectored Operation

General Idea

The standard way of programming the ICU requires the kernel to query the
ICU. Sometimes (!), this is unacceptably inefficient. Then, you have another
alternative, vectored interrupts.

Relevant registers:

 	there are 16 pairs that you write

 	Register Name
 	Offset
 	R/W
 	Description
 	Comments

 	VICxVectAddry
 	0x100+4y
 	R/W
 	Vector address for interrupt y
 	Entry point of ISR for interrupt y

 	VICxVectCntly
 	0x200+4y
 	R/W
 	Control register for interrupt y
 	Bit[0-4]: interrupt source for interrupt y

 Bit[5]: enable vectored interrupt y

 	There is one pair used by the program

 	Register Name
 	Offset
 	R/W
 	Description

 	VICxVectAddr
 	0x030
 	R/W
 	Read: address of vector for highest priority interrupt
 Write: service complete, enable priority hardware

 	VICxDefVectAddr
 	0x034
 	R/W
 	Default vector address

 	The first is the address (ISR entry point) of the highest priority
 interrupt. Write it during interrupt processing to get the current
 highest priority interrupt.

 	The second would normally be 0x34, the entry point of the
 kernel.

Procedure

Initialization

 	Write kernel entry point into VICxDefVectAddr

 	If desired write special entry point into VICxVectAddry

 	When ready to accept interrupts write source and enable into
 VICxVectCntly

When an interrupt occurs

 	Read VICxVectAddr to find address

 	Move result to PC
 ldr pc, #<VicVectAddr>

 (Note that this is similar to the instruction in 0x014. Could we do it
 all in one?)

 	Before interrupts are re-enabled write VICxVectAddr to start priority
 hardware

Answer to question.

Look carefully at what's in 0x18

 	Usually, ldr pc, [pc, #offset]
 Can you make [pc, #offset] calculate
 <VicVectAddr>?

 	How is the instruction encoded

 	31:28 - condition codes

 	27:20 - op code and flags, 0101<offset sign>001

 	19:16 - base register

 	15:12 - destination register

 	11:00 - 12-bit offset

 	With a 12 bit offset and pc=0x18 you can address

 	from 0x18 + 0x8 - 0xffc = -0xfdc
 =0xfffff020

 	to 0x18 + 0x8 + 0xffc = 0x1020

 	You could have the kernel entry point in

 	either 0x800b0030

 	or 0x800c0030

 	Both are out of range. What could you do?

 	Map the ICU into the range by placing it at, for example,
 0xfffff000.

Clock Server

Primitives

int Time()

 	Clock server starts at zero when it initializes

 	Unit of time is tick

int Delay(int ticks)

 	Note error returns

 	You might want to add an error for negative arguments

 	ticks is usually calculated, and a negative value is an early
 warning of falling behind.

int DelayUntil(int ticks)

 	Can be constructed from the above two primitives.

Implementation

main() {
 notifier = Create(HIGHEST, ...);
 time = 0
 Send(notifier, &evtType, ...);
 FOREVER {
 Receive(&requester, &request, ...);
 switch (request.type) {
 case NOTIFIER:
 Reply(notifier, ...)
 time++;
 break;
 case TIME_REQUEST:
 Reply(requester, time,...)
 break;
 case DELAY_REQUEST:
 Add requester to list of suspended tasks
 break;
 }
 Check list of suspended tasks and reply
 }
}

Comments:

 	You need a common request type, or possibly a union.

 	You should notice a typical server pattern.

 	Notifier updates data

 	Client who can be serviced now is serviced

 	Client who needs service in the future is suspended

 	List of suspended tasks is checked regularly

 	It's normal to sort the list of suspended tasks. Why?

HALT versus an Idle Task

What do you do when there are no tasks to run?

 	Idle task

 	lowest priority

 	diagnose system

 	Philosophical problem. It's easy to detect an error; but what
 do you do when you detect an error.

 	Extreme example: incomplete transaction versus
 explosion

 	Practical solution is to divide errors into two categories

 	Recover without stopping. Extreme example is Magellan
 spacecraft:

 	In behind Venus, silence; out from behind Venus,
 talking again

 	During orbit insertion: out from behind Venus,
 nothing

 	Wait six weeks, "I'm here."

 	Wait three weeks, nothing

 	Wait six weeks, "I'm here."

 	Wait three weeks, "I'm stabilized."

 	What was going on?

 	Stop, diagnose, re-program, re-run

 Extreme example is Magellan spacecraft:

 	In behind Venus, silence; out from behind Venus, talking
 again

 	During orbit insertion: out from behind Venus, nothing

 	Wait six weeks, "I'm here." Wait three weeks, nothing

 	Wait six weeks, "I'm here."

 	Wait three weeks, "I'm stabilized."

 	What was going on?

 	Now enter second category in the standard two box
 development model.

 	search for ETI

 	STANDBY/HALT

 	turns off CPU clock

 	save power (battery)

 	provided two ways

 	through System Controller Co-processor

 	Use MCR instruction, to access co-processor 15.

 	can only be executed in privileged modes

 	through EP9302

 	write location 0x80930008 (HALT) or
 0x8093000c (STANDBY)

 	bit must be set in 0x80930080

 	IRQ path is asynchronous, so it works when the clock is off

 	but interrupts must be enabled

 	therefore you want to be in user mode

 	See pdf for some details.

Serial I/O

See pdf.

FIFO

Why do FIFOs exist in UARTS?

The Big Blunder

To use the FIFO effectively you must be able to turn off the transmitter
& receiver independently.

But look at UARTE in UARTxCtrl

 	UART Enable.

 	If this bit is set to 1, the UART is enabled.

 	Data transmission and reception occurs for UART signals.

The Little Blunder

`It is assumed that various configuration registers for the UART are not
written more than once in quick succession, in order to insure proper
synchronization of configuration information across the implementation. Such
registers include UART1Ctrl and UART1LinCtrlHigh. ... In between the two
writes, at least two UARTCLK periods must occur. Under worst case conditions,
at least 55 HCLK periods must separate the two writes. The simplest way to
due [sic] this is separate the two writes by 55 NOPs.'

Why does this occur?

 	CPU clocked by CPU clock

 	System buses clocked by several different clocks

 	UART clocked by its own clock

 	The clocks were not suitably synchronized

Why doesn't anybody care?

 	UARTs are used at the beginning of the development process

 	Once other I/O (ethernet, USB, etc.) is working, UARTs are no longer
 used, except by the boot loader

Interrupts

Five interrupts in the device

These interrupts are separately enabled and disabled.

 	Transmit

 	FIFO enabled

 	Asserted when transmit FIFO is less than half full.

 	Cleared when transmit FIFO is more than half full.

 	FIFO disabled

 	Asserted when holding register is empty

 	Cleared on write to the holding register

 	Not conditioned by enable.

 	Receive

 	FIFO enabled

 	Asserted when receive FIFO is half full

 	Cleared when receive FIFO is read to less than half full.

 	FIFO disabled

 	Asserted when receive buffer is full

 	Cleared when receive buffer is read

 	Modem status

 	Asserted when hardware flow control bits change

 	Cleared when the modem status register is written

 	Receive timeout

 	Asserted when receive FIFO is not empty and 32 bit periods pass
 with no new data

 	Cleared when all data has been read from FIFO

 	Combined

 	OR of the four above interrupts

 	Asserted when at least one of the above interrupts is asserted

 	Cleared when all the above interrupts are not asserted.

Three inputs to the PIC

 	Transmit

 	Receive

 	Combined

Easy way to use interrupts

Enable only combined; read UART registers to decide what to do.

Think of the receive and transmit parts of the UART as separate state
machines

 	Base the state machine on bits in the status registers

 	Make a separate state machine for flow control

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 14 - Serial I/O, Debugging

Public Service Annoucements

 	Assignment 4

 	Performance measurements

Serial I/O

See pdf.

FIFO

Why do FIFOs exist in UARTS?

The Big Blunder

To use the FIFO effectively you must be able to turn off the transmitter
& receiver independently.

But look at UARTE in UARTxCtrl

 	UART Enable.

 	If this bit is set to 1, the UART is enabled.

 	Data transmission and reception occurs for UART signals.

The Little Blunder

`It is assumed that various configuration registers for the UART are not
written more than once in quick succession, in order to insure proper
synchronization of configuration information across the implementation. Such
registers include UART1Ctrl and UART1LinCtrlHigh. ... In between the two
writes, at least two UARTCLK periods must occur. Under worst case conditions,
at least 55 HCLK periods must separate the two writes. The simplest way to
due [sic] this is to separate the two writes by 55 NOPs.'

Why does this occur?

 	CPU clocked by CPU clock

 	System buses clocked by several different clocks

 	UART clocked by its own clock

 	The clocks were not suitably synchronized

Why doesn't anybody care?

 	UARTs are used at the beginning of the development process

 	Once other I/O (ethernet, USB, etc.) is working, UARTs are no longer
 used, except possibly by the boot loader

Interrupts

Five interrupts in the device

These interrupts are separately enabled and disabled.

 	Transmit

 	FIFO enabled

 	Asserted when transmit FIFO is less than half full.

 	Cleared when transmit FIFO is more than half full.

 	FIFO disabled

 	Asserted when holding register is empty

 	Cleared on write to the holding register

 	Not conditioned by enable.

 	Receive

 	FIFO enabled

 	Asserted when receive FIFO is half full

 	Cleared when receive FIFO is read to less than half full.

 	FIFO disabled

 	Asserted when receive buffer is full

 	Cleared when receive buffer is read

 	Modem status

 	Asserted when hardware flow control bits change

 	Cleared when the modem status register is written

 	Receive timeout

 	Asserted when receive FIFO is not empty and 32 bit periods pass
 with no new data

 	Cleared when all data has been read from FIFO

 	Combined

 	OR of the four above interrupts

 	Asserted when at least one of the above interrupts is asserted

 	Cleared when all the above interrupts are not asserted.

Three inputs to the ICU

 	Transmit

 	Receive

 	Combined

These are adequate for interacting with the terminal, but not for
interacting with the train controller.

Easy way to use interrupts

Enable only combined; read UART registers to decide what to do.

Think of the receive and transmit parts of the UART as separate state
machines

 	Base the state machine on bits in the status registers

 	Make a separate state machine for flow control

Practical Advice

Until now you have been using busy-wait I/O for getting debugging output.
You would like to continue to have debugging output while you are
implementing interrupt-mediated I/O.

 	There are two UART ports on the ARM board.

 	Connect each one to a different terminal window on the terminal.

 	Do busy-wait I/O to one for debugging while getting interrupt-mediated
 I/O working on the other.

 	Then do debugging I/O on the working serial server while you create and
 debig the other server.

Hint. The serial server for the terminal must be a lot
more complex than the esrial server for the train controller.

Debugging Real-time Programs

The most common set of debugging tools used by experienced programmers is
the oldest: printf, grep & stack trace.

 	The power of these tools is greatly enhanced by strong conventions in
 code formatting.

Debugging real-time programs, at its base, is just the same as any other
debugging, and just the same as empirical science.

 	Gather data.

 	Create a model that explains the data

 	Test the model

 	If the model is not correct, go to 1.

 	Remember that the model is ALWAYS provisional: data collected later may
 invalidate it, no matter how much data has confirmed it.

But real-time programs are harder to debug. Very few programs are entirely
free of critical races, which are the worst type of bug, lurking for weeks
months or years in seemingly correct code, then appearing when innocuous,
unconnected changes occur.

Critical Races

There is no known method for eliminating critical races.

 	Synchronizing everything, which seems to be an obvious solution, kills
 performance because it removes flexibility from the execution.

It is, in principle, impossible to test away critical races. Why?

 	When three trains run continuously for ten minutes, how many events
 occur in the real world?

 	How many possible orders are there for these events?

 	Re-ordering isn't even necessary for a critical race to occur, just
 getting too close in time.

RedBoot

The memory contents are not wiped by reset. Some of the most difficult
errors can be detected only by using the contents of memory after a reset.
Produce useful results by inserting

 str pc, <magic location>

many places in your code. Then, with the assistance of a load map, you can
find out where you were in which code when the problem occurred.

In RedBoot you can, in principle, trace any of the kernel

Stack Trace

In single-threaded programs this is often the most useful tool.

 	Anything that terminates execution abnormally prints the set of active
 stack frames

 	Minimal version

 	name of calling function

 	line number of call

 	Extreme version

 	values of arguments

 	values of local variables

What is the equivalent of a stack trace in a real-time multi-tasking
environment?

 	How would you implement it?
 Two basic questions to answer.

 	When is it produced?

 	What should be in it?

 	How would you make it readable?

Breakpoint

What does it do?

 	snapshot of the system

 	This means that computation, including respose to interrupts, must
 stop, or it isn't a snapshot.

 	provides interactive tools for examining kernel data structures, such
 as

 	task descriptors

 	lists and queues

 	stacks, including the program counter and local variables, of
 individual tasks

 	restart system immediately afterwards

 	If you want to continue where processing stopped you must make
 certain that all state is saved when you enter Beakpoint and restored
 when you leave it. What about pending interrupts? You can't stop the
 entire universe!

 	Otherwise you can re-enter RedBoot.

How do you get it started?

 	function call, which you insert in your code when compiling.

 	The easiest and fastest form to implement.

 	Having the call as part of ASSERT is common.

 	Has to exit to RedBoot. (Jump to x00.)

 	system call instead of function call, which respects the kernel/user
 distinction.

 	an exception triggered externally

 	at initialization

 	Set up the system so that the external event will generate an
 exception

 	E.g. attach a button to PDIO on the third connector, set up
 ICU.

 	at run-time

 	Trigger the interrupt

 	Switch to Breakpoint in the event handler

 	Either exit to RedBoot,

 	Or clean up pending interrupts and resume execution.

Breakpoint is a special case of a particular sort of tool that is very
common.

 	condition occurs => information is made available

 	breakpoint provides the information interactively (`interactively' =
 `on the time scale of the user')

 	it can stop the system completely. How?

 	but it has limited ability to stop the real world

 	i.e., it hides some bugs

Getting information closer to real-time.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 14 - Serial I/O, Debugging

Public Service Annoucements

 	Assignment 4

 	Performance measurements

Serial I/O

See pdf.

FIFO

Why do FIFOs exist in UARTS?

The Big Blunder

To use the FIFO effectively you must be able to turn off the transmitter
& receiver independently.

But look at UARTE in UARTxCtrl

 	UART Enable.

 	If this bit is set to 1, the UART is enabled.

 	Data transmission and reception occurs for UART signals.

The Little Blunder

`It is assumed that various configuration registers for the UART are not
written more than once in quick succession, in order to insure proper
synchronization of configuration information across the implementation. Such
registers include UART1Ctrl and UART1LinCtrlHigh. ... In between the two
writes, at least two UARTCLK periods must occur. Under worst case conditions,
at least 55 HCLK periods must separate the two writes. The simplest way to
due [sic] this is to separate the two writes by 55 NOPs.'

Why does this occur?

 	CPU clocked by CPU clock

 	System buses clocked by several different clocks

 	UART clocked by its own clock

 	The clocks were not suitably synchronized

Why doesn't anybody care?

 	UARTs are used at the beginning of the development process

 	Once other I/O (ethernet, USB, etc.) is working, UARTs are no longer
 used, except possibly by the boot loader

Interrupts

Five interrupts in the device

These interrupts are separately enabled and disabled.

 	Transmit

 	FIFO enabled

 	Asserted when transmit FIFO is less than half full.

 	Cleared when transmit FIFO is more than half full.

 	FIFO disabled

 	Asserted when holding register is empty

 	Cleared on write to the holding register

 	Not conditioned by enable.

 	Receive

 	FIFO enabled

 	Asserted when receive FIFO is half full

 	Cleared when receive FIFO is read to less than half full.

 	FIFO disabled

 	Asserted when receive buffer is full

 	Cleared when receive buffer is read

 	Modem status

 	Asserted when hardware flow control bits change

 	Cleared when the modem status register is written

 	Receive timeout

 	Asserted when receive FIFO is not empty and 32 bit periods pass
 with no new data

 	Cleared when all data has been read from FIFO

 	Combined

 	OR of the four above interrupts

 	Asserted when at least one of the above interrupts is asserted

 	Cleared when all the above interrupts are not asserted.

Three inputs to the ICU

 	Transmit

 	Receive

 	Combined

These are adequate for interacting with the terminal, but not for
interacting with the train controller.

Easy way to use interrupts

Enable only combined; read UART registers to decide what to do.

Think of the receive and transmit parts of the UART as separate state
machines

 	Base the state machine on bits in the status registers

 	Make a separate state machine for flow control

Practical Advice

Until now you have been using busy-wait I/O for getting debugging output.
You would like to continue to have debugging output while you are
implementing interrupt-mediated I/O.

 	There are two UART ports on the ARM board.

 	Connect each one to a different terminal window on the terminal.

 	Do busy-wait I/O to one for debugging while getting interrupt-mediated
 I/O working on the other.

 	Then do debugging I/O on the working serial server while you create and
 debig the other server.

Hint. The serial server for the terminal must be a lot
more complex than the esrial server for the train controller.

Debugging Real-time Programs

The most common set of debugging tools used by experienced programmers is
the oldest: printf, grep & stack trace.

 	The power of these tools is greatly enhanced by strong conventions in
 code formatting.

Debugging real-time programs, at its base, is just the same as any other
debugging, and just the same as empirical science.

 	Gather data.

 	Create a model that explains the data

 	Test the model

 	If the model is not correct, go to 1.

 	Remember that the model is ALWAYS provisional: data collected later may
 invalidate it, no matter how much data has confirmed it.

But real-time programs are harder to debug. Very few programs are entirely
free of critical races, which are the worst type of bug, lurking for weeks
months or years in seemingly correct code, then appearing when innocuous,
unconnected changes occur.

Critical Races

There is no known method for eliminating critical races.

 	Synchronizing everything, which seems to be an obvious solution, kills
 performance because it removes flexibility from the execution.

It is, in principle, impossible to test away critical races. Why?

 	When three trains run continuously for ten minutes, how many events
 occur in the real world?

 	How many possible orders are there for these events?

 	Re-ordering isn't even necessary for a critical race to occur, just
 getting too close in time.

RedBoot

The memory contents are not wiped by reset. Some of the most difficult
errors can be detected only by using the contents of memory after a reset.
Produce useful results by inserting

 str pc, <magic location>

many places in your code. Then, with the assistance of a load map, you can
find out where you were in which code when the problem occurred.

In RedBoot you can, in principle, trace any of the kernel

Stack Trace

In single-threaded programs this is often the most useful tool.

 	Anything that terminates execution abnormally prints the set of active
 stack frames

 	Minimal version

 	name of calling function

 	line number of call

 	Extreme version

 	values of arguments

 	values of local variables

What is the equivalent of a stack trace in a real-time multi-tasking
environment?

 	How would you implement it?
 Two basic questions to answer.

 	When is it produced?

 	What should be in it?

 	How would you make it readable?

Breakpoint

What does it do?

 	snapshot of the system

 	This means that computation, including respose to interrupts, must
 stop, or it isn't a snapshot.

 	provides interactive tools for examining kernel data structures, such
 as

 	task descriptors

 	lists and queues

 	stacks, including the program counter and local variables, of
 individual tasks

 	restart system immediately afterwards

 	If you want to continue where processing stopped you must make
 certain that all state is saved when you enter Beakpoint and restored
 when you leave it. What about pending interrupts? You can't stop the
 entire universe!

 	Otherwise you can re-enter RedBoot.

How do you get it started?

 	function call, which you insert in your code when compiling.

 	The easiest and fastest form to implement.

 	Having the call as part of ASSERT is common.

 	Has to exit to RedBoot. (Jump to x00.)

 	system call instead of function call, which respects the kernel/user
 distinction.

 	an exception triggered externally

 	at initialization

 	Set up the system so that the external event will generate an
 exception

 	E.g. attach a button to PDIO on the third connector, set up
 ICU.

 	at run-time

 	Trigger the interrupt

 	Switch to Breakpoint in the event handler

 	Either exit to RedBoot,

 	Or clean up pending interrupts and resume execution.

Breakpoint is a special case of a particular sort of tool that is very
common.

 	condition occurs => information is made available

 	breakpoint provides the information interactively (`interactively' =
 `on the time scale of the user')

 	it can stop the system completely. How?

 	but it has limited ability to stop the real world

 	i.e., it hides some bugs

Getting information closer to real-time.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 16 - Serial I/O Implementation

Public Service Annoucements

 	Assignment 4

 	Exam: 9.00, August 8

 	Performance measurements

 	Send First - Receive First: off,0--100,4,0,0 -- on,2--0,10,6,3

 	usec/byte -- off,0--4,4,8,1.4 -- on,2--0.1,0.1,0.2,0.0,0.0

 	off/on -- 16,9,9,10,30

 	0/2 -- 10%,10%,6%,3%

 	best -- 7,20,16,15,12

Debugging Real-time Programs

RedBoot

The memory contents are not wiped by reset. Some of the most difficult
errors can be detected only by using the contents of memory after a reset.
Produce more useful results by inserting

 str pc, <magic location>

and the like into your code and, with the assistance of a load map,
finding out where you were in whose code when the problem occurred.

Stack Trace

In single-threaded programs this is often the most useful tool.

 	Anything that terminates execution abnormally prints the set of active
 stack frames

 	Minimal version

 	name of calling function

 	line number of call

 	Extreme version

 	values of arguments

 	values of local variables

What is the equivalent of a stack trace in a real-time multi-tasking
environment?

 	How would you implement it?
 Two basic questions to answer.

 	When is it produced?

 	What should be in it?

 	How would you make it readable?

Breakpoint

What does it do?

 	snapshot of the system

 	This means that computation, including respose to interrupts, must
 stop, or it isn't a snapshot.

 	provides interactive tools for examining kernel data structures, such
 as

 	task descriptors

 	lists and queues

 	stacks, including the program counter and local variables, of
 individual tasks

 	restart system immediately afterwards

 	If you want to continue where processing stopped you must make
 certain that all state is saved when you enter Beakpoint and restored
 when you leave it. What about pending interrupts? You can't stop the
 entire universe!

 	Otherwise you can re-enter RedBoot.

How do you get it started?

 	function call, which you insert in your code when compiling.

 	The easiest and fastest form to implement.

 	Having the call as part of ASSERT is common.

 	Has to exit to RedBoot. (Jump to x00.)

 	system call instead of function call, which respects the kernel/user
 distinction.

 	an exception triggered externally

 	at initialization

 	Set up the system so that the external event will generate an
 exception

 	E.g. attach a button to PDIO on the third connector, set up
 ICU.

 	at run-time

 	Trigger the interrupt

 	Switch to Breakpoint in the event handler

 	Either exit to RedBoot,

 	Or clean up pending interrupts and resume execution.

Breakpoint is a special case of a particular sort of tool that is very
common.

 	condition occurs => information is made available

 	breakpoint provides the information interactively (`interactively'
 means `on the time scale of the user')

 	Breakpoint can stop the system completely. How?

 	but it has limited ability to stop the real world

 	i.e., it hides some bugs

Breakpoint operating on the corpse of an execution terminated by reset or
an ASSERT is called Autopsy.

Getting information closer to real-time.

Symptoms of bugs often occur a while after the bug itself. Thus we often
want to know what happened in the time immediately previous to the
observation of bug symptoms. (Most often 'bug symptom' is no more than a
fancy way of saying 'crash'.)

Use bits

Set aside a block of memory and assign each bit to an event that occurs
during execution of the program. Set the bit when the event occurs. Then you
can see what has, or has not occurred prior to the bug becoming visible.

Gossip

A special task maintains a circular buffer. Any task can send a message to
the task with a string that will be inserted in the circular buffer.

Execution Visualization

Most important is the necessity of accommodating the fast time scale of
the computer to the slow time scale of the human.

Train Properties

A locomotive travels on the track at a given speed following the path
created by directions of turn outs.

 	As it travels it triggers sensors that give you feedback as to where it
 is.

 	Actually, not quite where it is. There is a time lag.

 	Train triggers sensor at t: x(t) = Sn + 0 cm

 	Report of sensor is recorded (time-stamped) at t + dt. dt includes

 	interval between time of triggering and next sensor query

 	time for train controller to process query and return the
 result

 	time in your application between receiving bytes from train
 controller and packaging bytes into a time stamped event

 You should be able to estimate each of these time intervals

 	At t + dt: x(t + dt) = Sn + dx

 	dx = \int_t^(t+dt) v(t') dt' ~= v(t) dt

 	In the event time-stamped at t + dt the train appears to be at Sn,
 but it is actually at Sn + v(t) dt

 	Does this matter?

 	How fast do trains go? Estimate 20 cm/sec.

 	If dt is 100 msec you are off by 2 cm.

How do you know where the locomotive is?

 	intermittently, at a sensor

 	between sensors, dead reckoning, which means you need to know the
 train's velocity

Velocity is controlled by changing the train's speed, BUT, the mapping
between speed and velocity is complex.

 	Velocity changes are not instantaneous.

 	After the speed is changed the train speeds up and slows down
 gradually.

 	`Tricks' that make the train stop instantly are not acceptable
 because they wear out the trains.

 	The velocity decreases when travelling over turn outs or around curves.

 	The smaller the radius of curvature the slower the velocity.

 	Different locomotives travel at different velocities when set to the
 same speed.

 	Velocity of a given locomotive decreases over time

 	As the track gets dirty.

 	As the time since the locomotive's last lubrication increases

 	As the locomotive gradually wears out

Important. Some of these effects matter; some don't. It's
part of your task to find out which is which.

Furthermore, things can go wrong, such as

 	A turn-out switches while a locomotive is on top of it.

 	You need to estimate where the train will be when the turn-out
 switches in order to know if it is safe to execute a switch
 command

 	Locomotives run off the ends of sidings.

 	You need to know how far a train will travel between when you give
 the stop command and when the train stops.

 	Locomotives stall because they pass over difficult parts of the track
 too slowly.

 	Why? Friction increases when a train is on curved track.

 	Sensors fail to trigger, or trigger in the absence of a locomotive

 	You need to know when you expect the sensor to be triggered if you
 are to know that it has not been triggered.

Avoiding such failures, or responding sensibly to them, is possible only
if you have a `good enough' velocity calibration. (You get a perfect
calibration only in the limit t->infinity, and train you are calibrating
is dead long before that.) Failures like these also pollute your attempt to
acquire reliable data for your calibration.

Factors that might effect a calibration.

In general the velocity of a locomotive may be a function of many
variables

 	which locomotive it is

 	which speed is set

 	time since the last speed change

 	the velocity at which it was travelling before the last speed
 change

 	where it is on the track

 	possibly on what type of track it is on

 	how long since the track was cleaned

 	how long since the locomotive was lubricated

Important. Some of these effects are matter; some don't.
It's part of your task to find out which is which.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 17 - Calibration I

Public Service Annoucements

 	Convocation

 	Exam: 9.00, August 8

 	Flow control when communicating with the train controller.

 	Measurement is an activity that is not speeded up by being smart.

Calibration

Philosophy

You can't do anything until you know where the train is. You accomplish
this by

 	Knowing the train's location when it arrives at a landmark, and

 	Interpolating between landmarks by knowing the train's velocity all the
 time.

Measurement is costly, and you should squeeze every bit of information you
can out of every measurement you make.

 	By analogy with human information processing, I recommend that every
 time you get a sensor report you make a prediction

 	Which sensor do you expect to hit next?

 	When do you expect to hit it?

 	When you hit the next sensor you automatically have an estimate of how
 fast you travelled between the sensors.

 	This estimate is your most recent estimate of the train's velocity
 on that piece of train, at that speed.

 	Using it to improve the calibration tables is what we call
 dynamic calibration.

 	Display the difference between your prediction and your measurement on
 the terminal,

 	in time,

 	in distance,

 	in velocity

 This gives you an ongoing feeling for how your application is working,
 which is very important for setting effective tolerances.

1. Calibrating Stopping Distance

The simplest objective:

 	know where the train stops when you give it a command to stop

 	restrict the stop commands to just after the train passes a sensor

 	only one train moving

Sequence of events

 	Train triggers sensor at t

 	train at Sn + 0 cm

 	Application receives report at t + dt1

 	You give command at t + dt1 + dt2

 	Train receives and executes command at t + dt1 + dt2 + dt3

 	Train slows and stops at t + dt1 + dt2 + dt3 + dt4

 	train at Sn + y cm

 	(You measure y with a tape measure.)

Questions you need to answer

 	If you do this again, same sensor, same speed, will you get the same
 answer?

 	If you do this again, different sensor, same speed, will you get the
 same answer?

 	If you do this again, same sensor, different speed, will you get the
 same answer?

 	If you do this again, different sensor, different speed, will you get
 the same answer?

 	And all the other important ones in the list above.

Comments

 	The sequence of events above has a whole lot of small delays that get
 added together

 	Each one has a constant part and a random part. Try to use values
 that are diffferences of measurements to eliminate the constant
 parts.

 	Some delays can be eliminated a priori because they are extremely
 small compared to other delays. The more you figure this out in
 advance the less measurement you have to do.

 	Knowing where you stop is very important when running the train on
 routes that require reversing

 	Why are reversing routes important?

 	Clearly, knowing when you stop is equally important.

This is very time-consuming!

 	The only way to reduce the number of measurements is to eliminate
 factors that are unimportant.

 	The only way to know that a factor is always unimportant is to measure.
 Developing the ability to estimate quickly, and to find the worst case
 quickly is the main way of being smart in tasks like this one.

Now make a table

 	
 	Sensor 1
 	Sensor 2
 	...

 	Speed 6
 	
 	
 	

 	Speed 8
 	
 	
 	

 	...
 	
 	
 	

There are enough measurements in each cell of the table that you can
estimate the random error. (Check with other groups to make certain that your
error is not too big.)

Based on calibrations I have seen in previous terms you will find
substantial variation with speed setting and train, little variation with
sensor.

Group across cells that have the `same' value. Maybe all have the same
value.

Hint. Interacting with other groups is useful to confirm that you are on
track. Of course, simply using another group's calibration without saying so
is `academic dishonesty'.

2. Calibrating Constant Velocity

At this point there are a few places on the track where you can stop with
a precision of a trainlength or better. However, suppose you want to reverse
direction at a switch.

 	You want to be close to the switch, clear of the switch, and on the
 right side of the switch when you stop.

 	You want to know when the train has stopped because, until then you
 cannot give the command to start moving again.

Knowing the Current Velocity

An implicit assumption you are making is that the future will closely
resemble the past.

 	You measure the time interval between two adjacent sensor reports.

 	Knowing the distance between the sensors you calculate the velocity of
 the train

 	velocity = distance / time interval

 	measured in cm / sec.

 Note that on average the lag mentioned above -- waiting for sensor
 read, time in train controller, time in your system before time stamp --
 is unimportant.

 	Sensor1 actually hit at t1.

 	You record (S1, t1 + dt) as the first event.

 	Sensor2 actually hit at t2

 	You record (S2, t2 + dt) as the second event

 	You compute the velocity as (S2 - S1) / (t2 + dt - (t1 + dt)) = (S2
 - S1) / (t2 - t1), which is the correct answer.

 	But the variation in dt from measurement to measurement adds noise
 to the measurement.

 	After many measurements you build a table

 	Use the table to determine the current velocity

 	Use the time since the last sensor report to calculate the distance
 beyond the sensor

 	distance = velocity * time interval

Using Resources Effectively

The most scarce resources

 	Bandwidth to the train controller

 	Use of the train itself

The most plentiful resource

 	CPU

Any time you can use a plentiful resource to eliminate use of a scarce one
you have a win. For example

Practical Problems You Have to Solve

 	The table is too big.

 	You need a ton of measurements

 	The values you measure vary randomly.

 	You need to average and estimate error.

The values you measure vary systematically

 	For example, each time you measure the velocity estimate is slower,
 presumably because the train is moving towards needing oiling.

 	You need to make fewer measurements or use the measurement you make
 more effectively.

How Long does it Take to Stop?

Try the following exercise.

 	Choose a sensor.

 	Put the train on a course that will cross the sensor.

 	Run the train up to a constant speed.

 	Give the speed zero command at a location that stops the train with its
 contact on the sensor

 	Calculate the time between when you gave the command and when the
 sensor triggered.

 	Look for regularities.

How Long does it Take the Train to Get up to Speed?

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 18 - Calibration II

Public Service Annoucements

 	Convocation

 	Exam: 9.00, August 8

 	First milestone.

 	Route finding is part of this milestone only so that you can do
 things that show your calibration to be correct. For milestone 2 you
 will have to do route finding on track graphs with edges missing, so
 choose an approach to route finding that generalizes.

 	In the demo you can use your preferred train and your preferred
 track, but only if they are working, and either may not be working.
 In that case we expect you to run your demo using another train
 and/or another track. Be prepared!

Calibration

Constant Jerk

Third order curve for position, second order for velocity, linear
acceleration. We usually go one better, and try to minimize jerk over the
whole journey.

Minimize Jerk

Acceleration/Deceleration is continuous

The result is a fourth order curve in position, third order in velocity,
which is what you try to achieve when you drive.

Is it Worth Having an Explicit Function?

Benefits

 	You can calculate position explicitly without having to do numerical
 integration.

 	Euler integration is unstable because of accumulating error.

 	You can calculate the parameters of a function with less measurement.
 How?

 	Start at x = t = 0, which assumes that you get the same function
 regrardless of position on the track and time of day.

 	Check deceleration inverse of acceleration?

 	&c.

 The idea is that the person who programmed acceleration/deceleration
 into the train was lazy, so there's probably one basic function used over
 and over again

Drawbacks

 	You need to check that the functional form you have is the right one,
 or a right-enough one.

 	For practical purposes small look-up tables may be perfectly
 adequate.

Finding Parameters for an Explicit Function

We are trying x(t) as a fourth order polynomial in t.

 	The command to change speed occurs at t1. At t1

 	x(t1) = x1,

 	v(t1) = v1, and

 	a(t1) = 0.

 	The velocity change it complete at the unknown time t2. At t2

 	x(t2) is unknown,

 	v(t2) = v2, and

 	a(t2) = 0.

It is easiest to express the polynomial in terms of y = (t-t1)/(t2 -
t1). Why?

Then write

 	x(t) = (A/24) y^4 + (B/6) y^3 + (C/2) y^2 + D y + E

 	v(t) = [(A/6) y^3 + (B/2) y^2 +C y + D] / (t2 - t1)

 	a(t) = [(A/2) y^2 + B y + C] / (t2 - t1)^2

and use the equations above to solve for the five parameters in terms of
t1. Then, you need only measure t1 to know the relevant kinematic
functions.

We discussed how to measure t1 in the second step.

Testing the Measured Values

You test the measured values by

 	driving the train around the track,

 	predicting when it will arrive at a sensor,

 	measuring when it actually arrives at the sensor, and

 	calculating the disagreement.

When you have the disagreement which is, by definition non-zero, but which
may be measured as zero, you have to decide the cause:

 	random error,

 	incorrect measurement,

 	incorrect parameter estimation,

 	incorrect implementation of a correct function, or

 	incorrect function.

Have fun.

Anthropomorphic Programming

We all, even most programmers (!), have effective intuitions about human
relations

 	We use them to `understand' pets, which means attributing to them

 	goals

 	knowledge

 	capability

 	emotions

 	Why not programs?

 	apply them to intertask relationships

Tasks are independent entities

 	Understand them by thinking about them as if they have capabilities and
 goals.

 	When you are developing something like the train application you are
 defining roles and relationships

Servers and Attendant Tasks

Why do servers need attendant tasks?

 	What happens if a server calls AwaitEvent?

1. Proprietor with a Notifier

Proprietor `owns' a service, which usually means a resource.

 	Think of the owner at the counter of an old-fashioned store

 	`store' means where things are stored;

 	it's in the back and only the proprietor can access it.

 	Many clients come to the front and are processed one by one.

 	Comment. The modern `store' is considered by many to be the most
 important innovation of the 20th century. (Yes, including the
 transistor, the computer, quantum mechanics, antibiotics, etc.) A
 whole lot of work that was previously done by store personnel is now
 done by the client. This is possible only because extensive codes of
 conduct have been internalized by clients. (That is, a large
 collection of new behaviour norms have been created and
 propagated.)

 	Somebody has to sit out back waiting for the truck and bringing it to
 the proprietor

Kernel is handling hardware in this example

Notifier Code for a UART

 	Initialize
 Receive(&serverTid, eventId);
Reply(serverTid, ...);

 	Work
 FOREVER {
 data = AwaitEvent(eventid); // data includes event type and volatile data
 switch(data.event-type) {
 case RCV_INT:
 Send(serverTid, {NOT_RCV, data.byte}, ...);
 break;
 case XMT_INT:
 // test transmitter, turn interrupt off and on?
 Send(serverTid, {NOT_XMIT}, byte); // byte is to be transmitted
 store(UART..., byte)
 break;
 default:
 ASSERT("This never happens because our kernel is bug-free.");
}

Proprietor/Notifier Code for a UART

 	Initialize
 // queues & fifos
notifierPid = Create(notifier); //Should notifier code name be hard coded?
Send(notifierTid, MyTid(), ...); //On return notifier is known to be okay
RegisterAs(); //On return requests can begin.

 	Work
 FOREVER {
 requesterTid = Receive(request, {request-type, data});
 switch (request-type) {
 case NOT_RCV:
 Reply(requesterTid, ...);
 enqueue(rcvfifo, data);
 if (! empty(rcvQ)) Reply(dequeue(rcvQ), dequeue(rcvfifo));
 break;
 case NOT_XMIT:
 enqueue(xmitQ, requesterTid);
 if (! empty(xmitfifo)) Reply(dequeue(xmitQ), dequeue(xmitfifo));
 break;
 case CLIENT_RCV:
 enqueue(rcvQ, requesterTid);
 if (!empty(rcvfifo) Reply(dequeue(rcvQ), dequeue(rcvfifo));
 break;
 case CLIENT_XMIT:
 Reply(requesterTid, ...);
 enqueue (xmitfifo, data);
 if (! empty(xmitQ)) Reply(dequeue(xmitQ), dequeue(xmitfifo));
 break;
 default:
 ASSERT("Never executed because notifiers and clients are bug-free.")
 }
}

Notes

 	Notifier is usually of higher priority than server

 	Notice the early reply in the proprietor

 	When, and how, do interrupts get turned on and/or cleared?

 	Who coordinates hardware ownership?

 	We have made the code

 	exhibit duality explicitly

 	easy to break into parts

 	easy to extend

2. Using a Courier

Simplest is best

Transmit Notifier Code

 	Initialize
 Receive(&courierTid, ...);
Reply(courierTid, ...);

 	Work
 FOREVER {
 Receive(&courierTid, byte);
 load(UART..., byte)
 data = AwaitEvent(eventid);
 Reply(courierTid, NOT_XMIT,);
}

Transmit Courier Code

 	Initialize
 Receive(&serverTid, notifierTid);
Send(notifierTid, ...);
Reply(serverTid);

 	Work
 FOREVER {
 Send(notifierTid, {data});
 Send(serverTid, {req}, {data});
}

Transmit Proprietor Code

 	Initialize
 // queues & fifos
notifierTid = Create(notifier);
courierTid = Create(courier);
Send(courierTid, notifierTid, ...); // On return courier & notifier are known to be okay
RegisterAs(); //On return client requests will begin.

 	Work
 FOREVER {
 requesterTid = Receive(request, {request-type, data});
 switch (request-type) {
 case NOT_XMIT:
 enqueue(requesterTid, xmitQ)
 if (! empty(xmitFifo)) Reply(dequeue(xmitQ), dequeue(xmitFifo));
 break;
 case CLIENT_XMIT:
 Reply(requesterTid, ...);
 enqueue (xmitFifo, data);
 if (! empty(xmitQ)) Reply(dequeue(xmitQ), dequeue(xmitFifo));
 break;
 default:
 ASSERT("...");
 }
}

Notes

This gets you through a bottleneck where no more than two events come too
fast.

Remember that all the calls provide error returns. You can/should use them
for error recovery

 	static error recovery: debugging

 	dynamic error recovery: at run time

Another possible arrangement for task creation

 	Server creates the courier

 	Couier creates the notifier

Another possible arrangement for initialization

 	Server Receives

 	Courier sends to its parentTid

 	Notifier sends to its parentTid

Distributed gating

I am showing you collections of tasks implemented together because sets of
related tasks is a level of organization above the individual task.

E.g., the decision to add a courier requires revision of code within the
group, but not outside it.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 18 - Calibration II

Public Service Annoucements

 	Convocation

 	Exam: 9.00, August 8

 	First milestone.

 	Route finding is part of this milestone only so that you can do
 things that show your calibration to be correct. For milestone 2 you
 will have to do route finding on track graphs with edges missing, so
 choose an approach to route finding that generalizes.

 	In the demo you can use your preferred train and your preferred
 track, but only if they are working, and either may not be working.
 In that case we expect you to run your demo using another train
 and/or another track. Be prepared!

Calibration

Constant Jerk

Third order curve for position, second order for velocity, linear
acceleration. We usually go one better, and try to minimize jerk over the
whole journey.

Minimize Jerk

Acceleration/Deceleration is continuous

The result is a fourth order curve in position, third order in velocity,
which is what you try to achieve when you drive.

Is it Worth Having an Explicit Function?

Benefits

 	You can calculate position explicitly without having to do numerical
 integration.

 	Euler integration is unstable because of accumulating error.

 	You can calculate the parameters of a function with less measurement.
 How?

 	Start at x = t = 0, which assumes that you get the same function
 regrardless of position on the track and time of day.

 	Check deceleration inverse of acceleration?

 	&c.

 The idea is that the person who programmed acceleration/deceleration
 into the train was lazy, so there's probably one basic function used over
 and over again

Drawbacks

 	You need to check that the functional form you have is the right one,
 or a right-enough one.

 	For practical purposes small look-up tables may be perfectly
 adequate.

Finding Parameters for an Explicit Function

We are trying x(t) as a fourth order polynomial in t.

 	The command to change speed occurs at t1. At t1

 	x(t1) = x1,

 	v(t1) = v1, and

 	a(t1) = 0.

 	The velocity change it complete at the unknown time t2. At t2

 	x(t2) is unknown,

 	v(t2) = v2, and

 	a(t2) = 0.

It is easiest to express the polynomial in terms of y = (t-t1)/(t2 -
t1). Why?

Then write

 	x(t) = (A/24) y^4 + (B/6) y^3 + (C/2) y^2 + D y + E

 	v(t) = [(A/6) y^3 + (B/2) y^2 +C y + D] / (t2 - t1)

 	a(t) = [(A/2) y^2 + B y + C] / (t2 - t1)^2

and use the equations above to solve for the five parameters in terms of
t1. Then, you need only measure t1 to know the relevant kinematic
functions.

We discussed how to measure t1 in the second step.

Testing the Measured Values

You test the measured values by

 	driving the train around the track,

 	predicting when it will arrive at a sensor,

 	measuring when it actually arrives at the sensor, and

 	calculating the disagreement.

When you have the disagreement which is, by definition non-zero, but which
may be measured as zero, you have to decide the cause:

 	random error,

 	incorrect measurement,

 	incorrect parameter estimation,

 	incorrect implementation of a correct function, or

 	incorrect function.

Have fun.

Anthropomorphic Programming

We all, even most programmers (!), have effective intuitions about human
relations

 	We use them to `understand' pets, which means attributing to them

 	goals

 	knowledge

 	capability

 	emotions

 	Why not programs?

 	apply them to intertask relationships

Tasks are independent entities

 	Understand them by thinking about them as if they have capabilities and
 goals.

 	When you are developing something like the train application you are
 defining roles and relationships

Servers and Attendant Tasks

Why do servers need attendant tasks?

 	What happens if a server calls AwaitEvent?

1. Proprietor with a Notifier

Proprietor `owns' a service, which usually means a resource.

 	Think of the owner at the counter of an old-fashioned store

 	`store' means where things are stored;

 	it's in the back and only the proprietor can access it.

 	Many clients come to the front and are processed one by one.

 	Comment. The modern `store' is considered by many to be the most
 important innovation of the 20th century. (Yes, including the
 transistor, the computer, quantum mechanics, antibiotics, etc.) A
 whole lot of work that was previously done by store personnel is now
 done by the client. This is possible only because extensive codes of
 conduct have been internalized by clients. (That is, a large
 collection of new behaviour norms have been created and
 propagated.)

 	Somebody has to sit out back waiting for the truck and bringing it to
 the proprietor

Kernel is handling hardware in this example

Notifier Code for a UART

 	Initialize
 Receive(&serverTid, eventId);
Reply(serverTid, ...);

 	Work
 FOREVER {
 data = AwaitEvent(eventid); // data includes event type and volatile data
 switch(data.event-type) {
 case RCV_INT:
 Send(serverTid, {NOT_RCV, data.byte}, ...);
 break;
 case XMT_INT:
 // test transmitter, turn interrupt off and on?
 Send(serverTid, {NOT_XMIT}, byte); // byte is to be transmitted
 store(UART..., byte)
 break;
 default:
 ASSERT("This never happens because our kernel is bug-free.");
}

Proprietor/Notifier Code for a UART

 	Initialize
 // queues & fifos
notifierPid = Create(notifier); //Should notifier code name be hard coded?
Send(notifierTid, MyTid(), ...); //On return notifier is known to be okay
RegisterAs(); //On return requests can begin.

 	Work
 FOREVER {
 requesterTid = Receive(request, {request-type, data});
 switch (request-type) {
 case NOT_RCV:
 Reply(requesterTid, ...);
 enqueue(rcvfifo, data);
 if (! empty(rcvQ)) Reply(dequeue(rcvQ), dequeue(rcvfifo));
 break;
 case NOT_XMIT:
 enqueue(xmitQ, requesterTid);
 if (! empty(xmitfifo)) Reply(dequeue(xmitQ), dequeue(xmitfifo));
 break;
 case CLIENT_RCV:
 enqueue(rcvQ, requesterTid);
 if (!empty(rcvfifo) Reply(dequeue(rcvQ), dequeue(rcvfifo));
 break;
 case CLIENT_XMIT:
 Reply(requesterTid, ...);
 enqueue (xmitfifo, data);
 if (! empty(xmitQ)) Reply(dequeue(xmitQ), dequeue(xmitfifo));
 break;
 default:
 ASSERT("Never executed because notifiers and clients are bug-free.")
 }
}

Notes

 	Notifier is usually of higher priority than server

 	Notice the early reply in the proprietor

 	When, and how, do interrupts get turned on and/or cleared?

 	Who coordinates hardware ownership?

 	We have made the code

 	exhibit duality explicitly

 	easy to break into parts

 	easy to extend

2. Using a Courier

Simplest is best

Transmit Notifier Code

 	Initialize
 Receive(&courierTid, ...);
Reply(courierTid, ...);

 	Work
 FOREVER {
 Receive(&courierTid, byte);
 load(UART..., byte)
 data = AwaitEvent(eventid);
 Reply(courierTid, NOT_XMIT,);
}

Transmit Courier Code

 	Initialize
 Receive(&serverTid, notifierTid);
Send(notifierTid, ...);
Reply(serverTid);

 	Work
 FOREVER {
 Send(notifierTid, {data});
 Send(serverTid, {req}, {data});
}

Transmit Proprietor Code

 	Initialize
 // queues & fifos
notifierTid = Create(notifier);
courierTid = Create(courier);
Send(courierTid, notifierTid, ...); // On return courier & notifier are known to be okay
RegisterAs(); //On return client requests will begin.

 	Work
 FOREVER {
 requesterTid = Receive(request, {request-type, data});
 switch (request-type) {
 case NOT_XMIT:
 enqueue(requesterTid, xmitQ)
 if (! empty(xmitFifo)) Reply(dequeue(xmitQ), dequeue(xmitFifo));
 break;
 case CLIENT_XMIT:
 Reply(requesterTid, ...);
 enqueue (xmitFifo, data);
 if (! empty(xmitQ)) Reply(dequeue(xmitQ), dequeue(xmitFifo));
 break;
 default:
 ASSERT("...");
 }
}

Notes

This gets you through a bottleneck where no more than two events come too
fast.

Remember that all the calls provide error returns. You can/should use them
for error recovery

 	static error recovery: debugging

 	dynamic error recovery: at run time

Another possible arrangement for task creation

 	Server creates the courier

 	Couier creates the notifier

Another possible arrangement for initialization

 	Server Receives

 	Courier sends to its parentTid

 	Notifier sends to its parentTid

Distributed gating

I am showing you collections of tasks implemented together because sets of
related tasks is a level of organization above the individual task.

E.g., the decision to add a courier requires revision of code within the
group, but not outside it.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 18 - Projects, Calibration III, Projects

Public Service Annoucements

 	Exam: 9.00, August 8

 	First milestone.

 	Route finding is part of this milestone only so that you can do
 things that show your calibration to be correct. For milestone 2 you
 will have to do route finding on track graphs with edges missing, so
 choose an approach to route finding that generalizes.

 	In the demo you can use your preferred train and your preferred
 track, but only if they are working, and either may not be working.
 In that case we expect you to run your demo using another train
 and/or another track. Be prepared!

Projects

1. Train style

Give trains roles and objectives. For example,

 	Passenger train travels on a repetitive route meeting a schedule.

 	Freight train travels to random destinations as fast as possible.

 	Objective is to deliver as much freight as possible while keeping a
 passenger train on time.

Another example,

 	Trains are taxis.

 	When a load appears they race to see if they can get it.

Another example,

 	Trains are buses, which travel long routes from one place on the track
 to another.

 	At the end of the route is a scheduled trip to a different
 location.

 	When a bus is late arriving, the dispatcher must find another, unused
 bus to leave at the scheduled leaving time.

2. Game style: AI

The track is a graph.

 	Several different ways to choose vertices and edges

Many games are played on graphs

 	Checkers, snakes & ladders, maze games, etc.

 	Implement a graph game played on the track graph.

For example, watchmen and bandit.

 	One train is the bandit, which tries to move from one hide-out to
 another.

 	The other trains are watchmen, who try to prevent the bandit from
 getting to a hide-out once he is out in the open.

Another example, PAC man

 	One train tries to cover as much track as possible.

 	Other trains try to trap him so that he can't get reservations that
 would allow him to keep moving.

3. Game style: interactive

In the games you play for pleasure, the user normally controls one or more
of the game entities.

 	the bandit

 	the trapping trains

Students often want to make an interactive project. It has been done
successfully in the past, but constructing a usable interface is a real
challenge

Calibration

1. Calibrating Stopping Distance

Hint. Interacting with other groups is useful to confirm
that you are on track. Of course, simply using another group's calibration
without saying so is `academic dishonesty'.

2. Calibrating Constant Velocity

At this point there are a few places on the track where you can stop with
a precision of a trainlength or better. However, suppose you want to reverse
direction at a switch.

 	You want to be close to the switch, clear of the switch, and on the
 right side of the switch when you stop.

 	You want to know when the train has stopped because, until then you
 cannot give the command to start moving again.

How Much Time does it Take to Stop?

Try the following exercise.

 	Choose a sensor.

 	Put the train on a course that will cross the sensor.

 	Run the train up to a constant speed.

 	Give the speed zero command at a location that stops the train with its
 contact on the sensor. (You know the stopping distance.).

 	Calculate the time between when you gave the command and when the
 sensor triggered.

 	Look for regularities.

How Long does it Take the Train to Get up to Speed?

We call the time the train takes to get up to speed the acceleration
time. Finding the acceleration time is left as an exercise for the
reader.

Hint. The distance travelled from a standing start,
graphed as a function of time, is a straight line after the train reaches a
constant speed

Stage 3. Calibrating Acceleration and Deceleration

Thinking again about the problem of following a route that has
reverses.

 	Reverses always occur in order to go a different direction at a
 turn-out.

 	You want to move as little beyond the switch as possible.

 	Much of this manoeuvering is done at non-constant velocities.

Physics of Acceleration and Deceleration

Suppose a train is at x1=x(t1) with velocity v1=v(t1) at time t1, and we
want to get it go x2=x(t2) with velocity v2=v(t2) at time t2, and we want to
do it without exceeding any of the physical limits of the train.

At the core is a relation, (x, t), which is a space-time point. The
relation says that as time passes a train takes up successive positions x(t).
Velocity is deduced as the time derivative of x(t).

Our task is to create a physically possible path x(t) obeying such
constraints. To do so we must know how the train's velocity varies when its
speed is changed.

Our task is simplified because the velocity change function is
artificial,

 	created by programmers just like us, and

 	intended to imitate real trains.

We try to get into the programmer/designer's head and think their
thoughts

Teleportation

The simplest way of moving the train from one place to another.

 	At time t teleport the train to x=x2, v=0.

 	At time t2 increase the velocity to v2.

The first thing that we rule out is teleportation.

 	Why?

A train having infinite velocity is impossible in practice

 	Leave to the physicists whether or not it is possible for a train to
 have infinite velocity in theory.

No teleportation means that x(t) must be continuous.

Constant Velocity

Suppose you have a train at (x1, t1) and you have to get it to (x2,
t2).

Two questions:

 	Is it possible? If the maximum velocity is vmax, and vmax < (x2 -
 x1) / (t2 - t1), then it's impossible.

 	How do you do it? If vmax > (x2 - x1) / (t2 - t1) then you might try

 	Set v = (x2 - x1) / (t2 - t1) at t1

 	Use your velocity calibration for this!

 	Set v = 0 at t2.

 Doesn't quite work.

 	Because of acceleration you arrive at x2 after t2.

 	Because of deceleration you don't stop until the stopping distance
 beyond x2.

 You could

 	curse the inadequate train dynamics

 	constrain vmax to be very small

 	only accept requests for long in the future and be successful
 because the acceleration and deceleration times are negligible.

 But

 	It's against the rules.

 	You would be unsuccessful because of stalling on curves.

 	Your project would only be interesting to trees and other
 long-lived creatures.

More Fundamental

Infinite acceleration is impossible because the train would be crushed, if
not vaporized!

This is true both in theory and in practice.

Constant Acceleration/Deceleration

Intuitively a good idea to minimize acceleration

 	Accelerate at a from t1 to (t2 + t1) / 2

 	Velocity is a*(t-t1)
 Position is x1 + (1/2)*a*(t-t1)^2

 	Decelerate at -a from (t2 + t1) / 2 to t2

 	Velocity is a*(t2-t1) / 2 - a*(t - (t2+t1)/2)
 Position is ...

 	At t2

 	Velocity is 0

 	Position is x1 + (1/8)*a*(t2 - t1) ^2, which should be x2.

 	Therefore choose a = (8 * (x2 - x1)) / (t2 - t1)^2

But, what happens at t = t1, (t2 + t1) / 2, t2?

 	discontinuities in acceleration

 	experienced as jerk, in fact, infinite jerk

 	And you know from experience that when you jerk things hard enough they
 break. E.g.,

 	tooth

 	knuckle

Constant Jerk

Third order curve for position, second order for velocity, linear
acceleration. We usually go one better, and try to minimize jerk over the
whole journey.

Minimize Jerk

Acceleration/Deceleration is continuous

The result is a fourth order curve in position, third order in velocity,
which is what you try to achieve when you drive.

Is it Worth Having an Explicit Function?

Benefits

 	You can calculate position explicitly without having to do numerical
 integration.

 	Euler integration is unstable because of accumulating error.

 	You can calculate the parameters of a function with less measurement.
 How?

 	Start at x = t = 0, which assumes that you get the same function
 regrardless of position on the track and time of day.

 	Check deceleration inverse of acceleration?

 	&c.

 The idea is that the person who programmed acceleration/deceleration
 into the train was lazy, so there's probably one basic function used over
 and over again

Drawbacks

 	You need to check that the functional form you have is the right one,
 or a right-enough one.

 	For practical purposes small look-up tables may be perfectly
 adequate.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 21 - Anthropomorphic Programming

Public Service Annoucements

 	Exam: 9.00, August 8

 	I now have back my document creation tools. Assignments will start to
 be more uptodate.

Calibration

Constant Jerk

Third order curve for position, second order for velocity, linear
acceleration. We usually go one better, and try to minimize jerk over the
whole journey.

Minimize Jerk

Acceleration/Deceleration is continuous

The result is a fourth order curve in position, third order in velocity,
which is what you try to achieve when you drive.

Is it Worth Having an Explicit Function?

Benefits

 	You can calculate position explicitly without having to do numerical
 integration.

 	Euler integration is unstable because of accumulating error.

 	You can calculate the parameters of a function with less measurement.
 How?

 	Start at x = t = 0, which assumes that you get the same function
 regrardless of position on the track and time of day.

 	Check deceleration inverse of acceleration?

 	&c.

 The idea is that the person who programmed acceleration/deceleration
 into the train was lazy, so there's probably one basic function used over
 and over again

Drawbacks

 	You need to check that the functional form you have is the right one,
 or a right-enough one.

 	For practical purposes small look-up tables may be perfectly
 adequate.

Finding Parameters for an Explicit Function

We are trying x(t) as a fourth order polynomial in t.

 	The command to change speed occurs at t1. At t1

 	x(t1) = x1,

 	v(t1) = v1, and

 	a(t1) = 0.

 	The velocity change it complete at the unknown time t2. At t2

 	x(t2) is unknown,

 	v(t2) = v2, and

 	a(t2) = 0.

It is easiest to express the polynomial in terms of y = (t-t1)/(t2 -
t1). Why?

Then write

 	x(t) = (A/24) y^4 + (B/6) y^3 + (C/2) y^2 + D y + E

 	v(t) = [(A/6) y^3 + (B/2) y^2 +C y + D] / (t2 - t1)

 	a(t) = [(A/2) y^2 + B y + C] / (t2 - t1)^2

and use the equations above to solve for the five parameters in terms of
t1. Then, you need only measure t1 to know the relevant kinematic
functions.

We discussed how to measure t1 in the second step.

Testing the Measured Values

You test the measured values by

 	driving the train around the track,

 	predicting when it will arrive at a sensor,

 	measuring when it actually arrives at the sensor, and

 	calculating the disagreement.

When you have the disagreement which is, by definition non-zero, but which
may be measured as zero, you have to decide the cause:

 	random error,

 	incorrect measurement,

 	incorrect parameter estimation,

 	incorrect implementation of a correct function, or

 	incorrect function.

Have fun.

Anthropomorphic Programming

We all, even most programmers (!), have effective intuitions about human
relations

 	We use them to `understand' pets, which means attributing to them

 	goals

 	knowledge

 	capability

 	emotions

 	Why not programs?

 	apply them to intertask relationships

Tasks are independent entities

 	Understand them by thinking about them as if they have capabilities and
 goals.

 	When you are developing something like the train application you are
 defining roles and relationships

Servers and Attendant Tasks

Why do servers need attendant tasks?

 	What happens if a server calls AwaitEvent?

1. Proprietor with a Notifier

Proprietor `owns' a service, which usually means a resource.

 	Think of the owner at the counter of an old-fashioned store

 	`store' means where things are stored;

 	it's in the back and only the proprietor can access it.

 	Many clients come to the front and are processed one by one.

 	Comment. The modern `store' is considered by many to be the most
 important innovation of the 20th century. (Yes, including the
 transistor, the computer, quantum mechanics, antibiotics, etc.) A
 whole lot of work that was previously done by store personnel is now
 done by the client. This is possible only because extensive codes of
 conduct have been internalized by clients. (That is, a large
 collection of new behaviour norms have been created and
 propagated.)

 	Somebody has to sit out back waiting for the truck and bringing it to
 the proprietor

Kernel is handling hardware in this example

Notifier Code for a UART

 	Initialize
 Receive(&serverTid, eventId);
Reply(serverTid, ...);

 	Work
 FOREVER {
 data = AwaitEvent(eventid); // data includes event type and volatile data
 switch(data.event-type) {
 case RCV_INT:
 Send(serverTid, {NOT_RCV, data.byte}, ...);
 break;
 case XMT_INT:
 // test transmitter, turn interrupt off and on?
 Send(serverTid, {NOT_XMIT}, byte); // byte is to be transmitted
 store(UART..., byte)
 break;
 default:
 ASSERT("This never happens because our kernel is bug-free.");
}

Proprietor/Notifier Code for a UART

 	Initialize
 // queues & fifos
notifierPid = Create(notifier); //Should notifier code name be hard coded?
Send(notifierTid, MyTid(), ...); //On return notifier is known to be okay
RegisterAs(); //On return requests can begin.

 	Work
 FOREVER {
 requesterTid = Receive(request, {request-type, data});
 switch (request-type) {
 case NOT_RCV:
 Reply(requesterTid, ...);
 enqueue(rcvfifo, data);
 if (! empty(rcvQ)) Reply(dequeue(rcvQ), dequeue(rcvfifo));
 break;
 case NOT_XMIT:
 enqueue(xmitQ, requesterTid);
 if (! empty(xmitfifo)) Reply(dequeue(xmitQ), dequeue(xmitfifo));
 break;
 case CLIENT_RCV:
 enqueue(rcvQ, requesterTid);
 if (!empty(rcvfifo) Reply(dequeue(rcvQ), dequeue(rcvfifo));
 break;
 case CLIENT_XMIT:
 Reply(requesterTid, ...);
 enqueue (xmitfifo, data);
 if (! empty(xmitQ)) Reply(dequeue(xmitQ), dequeue(xmitfifo));
 break;
 default:
 ASSERT("Never executed because notifiers and clients are bug-free.")
 }
}

Notes

 	Notifier is usually of higher priority than server

 	Notice the early reply in the proprietor

 	When, and how, do interrupts get turned on and/or cleared?

 	Who coordinates hardware ownership?

 	We have made the code

 	exhibit duality explicitly

 	easy to break into parts

 	easy to extend

2. Using a Courier

Simplest is best

Transmit Notifier Code

 	Initialize
 Receive(&courierTid, ...);
Reply(courierTid, ...);

 	Work
 FOREVER {
 Receive(&courierTid, byte);
 load(UART..., byte)
 data = AwaitEvent(eventid);
 Reply(courierTid, NOT_XMIT,);
}

Transmit Courier Code

 	Initialize
 Receive(&serverTid, notifierTid);
Send(notifierTid, ...);
Reply(serverTid);

 	Work
 FOREVER {
 Send(notifierTid, {data});
 Send(serverTid, {req}, {data});
}

Transmit Proprietor Code

 	Initialize
 // queues & fifos
notifierTid = Create(notifier);
courierTid = Create(courier);
Send(courierTid, notifierTid, ...); // On return courier & notifier are known to be okay
RegisterAs(); //On return client requests will begin.

 	Work
 FOREVER {
 requesterTid = Receive(request, {request-type, data});
 switch (request-type) {
 case NOT_XMIT:
 enqueue(requesterTid, xmitQ)
 if (! empty(xmitFifo)) Reply(dequeue(xmitQ), dequeue(xmitFifo));
 break;
 case CLIENT_XMIT:
 Reply(requesterTid, ...);
 enqueue (xmitFifo, data);
 if (! empty(xmitQ)) Reply(dequeue(xmitQ), dequeue(xmitFifo));
 break;
 default:
 ASSERT("...");
 }
}

Notes

This gets you through a bottleneck where no more than two events come too
fast.

Remember that all the calls provide error returns. You can/should use them
for error recovery

 	static error recovery: debugging

 	dynamic error recovery: at run time

Another possible arrangement for task creation

 	Server creates the courier

 	Couier creates the notifier

Another possible arrangement for initialization

 	Server Receives

 	Courier sends to its parentTid

 	Notifier sends to its parentTid

Distributed gating

I am showing you collections of tasks implemented together because sets of
related tasks is a level of organization above the individual task.

E.g., the decision to add a courier requires revision of code within the
group, but not outside it.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 22 - Courier, Warehouse

Public Service Annoucements

 	Exam: 9.00, August 8 to 11.30, August 9.

 	What is the earliest that anybody is planning to start?

 	I now have back my document creation tools. Assignments will start to
 be more uptodate.

Anthropomorphic Programming

We all, even most programmers (!), have effective intuitions about human
relations

 	We use them to `understand' pets, which means attributing to them

 	goals

 	knowledge

 	capability

 	emotions

 	Why not programs?

 	apply them to intertask relationships

Tasks are independent entities

 	Understand them by thinking about them as if they have capabilities and
 goals.

 	When you are developing something like the train application you are
 defining roles and relationships

Servers and Attendant Tasks

Why do servers need attendant tasks?

 	What happens if a server calls AwaitEvent?

1. Proprietor with a Notifier

Proprietor `owns' a service, which usually means a resource.

 	Think of the owner at the counter of an old-fashioned store

 	`store' means where things are stored;

 	it's in the back and only the proprietor can access it.

 	Many clients come to the front and are processed one by one.

 	Comment. The modern `store' is considered by many to be the most
 important innovation of the 20th century. (Yes, including the
 transistor, the computer, quantum mechanics, antibiotics, etc.) A
 whole lot of work that was previously done by store personnel is now
 done by the client. This is possible only because extensive codes of
 conduct have been internalized by clients. (That is, a large
 collection of new behaviour norms have been created and
 propagated.)

 	Somebody has to sit out back waiting for the truck and bringing it to
 the proprietor

Kernel is handling hardware in this example

Notifier Code for a UART

 	Initialize
 Receive(&serverTid, eventId);
Reply(serverTid, ...);
notmsg.type = NOT_RCV

 	Work
 FOREVER {
 notmsg.data = AwaitEvent(eventid);
 Send(serverTid, notmsg, notmsg); // byte is to be transmitted
}

Proprietor Code for a UART

 	Initialize
 // queues & fifos
notifierPid = Create(notifier); //Should notifier code name be hard coded?
Send(notifierTid, MyTid(), ...); //On return notifier is known to be okay
RegisterAs(); //On return requests can begin.

 	Work
 FOREVER {
 requesterTid = Receive(request, notmsg);
 switch (notmsg.type) {
 case NOT_RCV:
 Reply(requesterTid, notmsg);
 enqueue(rcvfifo, notmsg);
 if (! empty(rcvQ)) Reply(dequeue(rcvQ), dequeue(rcvfifo));
 break;
 case NOT_XMIT:
 enqueue(xmitQ, requesterTid);
 if (! empty(xmitfifo)) Reply(dequeue(xmitQ), dequeue(xmitfifo));
 break;
 case CLIENT_RCV:
 enqueue(rcvQ, requesterTid);
 if (!empty(rcvfifo) Reply(dequeue(rcvQ), dequeue(rcvfifo));
 break;
 case CLIENT_XMIT:
 Reply(requesterTid, ...);
 enqueue (xmitfifo, data);
 if (! empty(xmitQ)) Reply(dequeue(xmitQ), dequeue(xmitfifo));
 break;
 default:
 ASSERT("Never executed because notifiers and clients are bug-free.")
 }
}

Notes

 	Notifier is usually of higher priority than server

 	Notice the early reply in the proprietor

 	When, and how, do interrupts get turned on and/or cleared?

 	Who coordinates hardware ownership?

 	We have made the code

 	exhibit duality explicitly

 	easy to break into parts

 	easy to extend

2. Using a Courier

Simplest is best

Transmit Notifier Code

 	Initialize
 Receive(&courierTid, ...);
Reply(courierTid, ...);

 	Work
 FOREVER {
 Receive(&courierTid, byte);
 load(UART..., byte)
 data = AwaitEvent(eventid);
 Reply(courierTid, NOT_XMIT,);
}

This omits flow control. Is it better to handle flow control in the
notifier or in the server?

 	That is, where should the fifo be?

Transmit Courier Code

 	Initialize
 Receive(&serverTid, notifierTid);
Send(notifierTid, ...);
Reply(serverTid);

 	Work
 FOREVER {
 Send(notifierTid, notmsg, ack);
 Send(serverTid, notmsg, ack);
}

Transmit Proprietor Code

 	Initialize
 // queues & fifos
notifierTid = Create(notifier);
courierTid = Create(courier);
Send(courierTid, notifierTid, ...); // On return courier & notifier are known to be okay
RegisterAs(); //On return client requests will begin.

 	Work
 FOREVER {
 requesterTid = Receive(request, {request-type, data});
 switch (request-type) {
 case NOT_XMIT:
 enqueue(requesterTid, xmitQ)
 if (! empty(xmitFifo)) Reply(dequeue(xmitQ), dequeue(xmitFifo));
 break;
 case CLIENT_XMIT:
 Reply(requesterTid, notmsg);
 enqueue (xmitFifo, notmsg);
 if (! empty(xmitQ)) Reply(dequeue(xmitQ), dequeue(xmitFifo));
 break;
 default:
 ASSERT("...");
 }
}

Notes

This gets you through a bottleneck where no more than two events come too
fast.

Remember that all the calls provide error returns. You can/should use them
for error recovery

 	static error recovery: debugging

 	dynamic error recovery: at run time

Another possible arrangement for task creation

 	Server creates the courier

 	Couier creates the notifier

Another possible arrangement for initialization

 	Server Receives

 	Courier sends to its parentTid

 	Notifier sends to its parentTid

Distributed gating

I am showing you collections of tasks implemented together because sets of
related tasks is a level of organization above the individual task.

E.g., the decision to add a courier requires revision of code within the
group, but not outside it.

3. Using a Warehouse

Add a warehouse between the courier and the notifier.

Notifier Code

 	Initialize
 Receive(&warhouseTid, ...);
Reply(warhouseTid, ...);
msg.type = NOT_RCV;

 	Work
 FOREVER {
 msg.data = AwaitEvent(eventid);
 Send(warehouseTid, msg, msg);
}

Warehouse Code

 	Initialize
 // data structures
Receive(&courierTid, notifierTid, ...);
Send(notifierTid, ...);
Reply(courierTid, ...);

 	Work
 FOREVER {
 Receive(&requester, msg);
 switch(msg.type) {
 case NOT_RCV:
 Reply(requester, msg);
 // insert data into package
 enqueue(pkgQ, package);
 if (!empty(courQ)) { dequeue(courQ), extract(pkgQ) };
 break;
 case COUR_RCV:
 enqueue(courQ, requester);
 if(!empty(pkgQ)) Reply(dequeue(courQ), dequeue(pkgQ));
 break;
 default:
 ASSERT("This didn't happen because my kernel is bug-free.");
 }
}

Transmit Courier Code

 	Initialize
 Receive(&serverTid, {notifierTid, warehouseTid} ...);
Send(warehouseTid, notifierTid, ...);
Reply(serverTid);

 	Work
 FOREVER {
 Send(warehouseTid, pkg);
 Send(serverTid, pkg);
}

Proprietor Code

 	Initialize
 // queues & fifos
notifierTid = Create(notifier);
warehouseTid = Create(warehouse);
courierTid = Create(courier);
Send(courierTid, notifierTid, ...); // On return courier, warehouse & notifier are known to be okay
RegisterAs(); // On return client requests can begin.

 	Work
 FOREVER {
 Receive(&requesterTid, pkg);
 switch (pkg.type) {
 case COUR_RCV:
 Reply(requesterTid, pkg);
 enqueue(pkgQ, pkg);
 if (!empty(clientQ)) Reply(dequeue(clientQ), dequeue(pkgQ));
 break;
 case CLIENT_RCV:
 enqueue(clientQ, requester);
 if (!empty(pkgQ)) Reply(dequeue(clientQ), dequeue(pkgQ));
 break;
 default:
 ASSERT("This didn't happen.");
 }
}

Note

This structure clears up most problems when a burst of requests to the
server would leave the notifier waiting in a long sendQ..

 	Warehouse and proprietor share the work.

 	Server's Tid is public; Warehouse's Tid is private.

 	This is far from the only way to share the work. For example,

 	The server could be guarded by a receptionist (assistant) who
 ensures that another client request occurs only when the previous
 request is complete. Then the warehouse is unnecessary.

Two issues:

 	Handles bottlenecks of all sizes.
 Give a precise and quantitative definition of `bottleneck'.

 	Server could be buffered on the other side
 Called a guard.

What this amounts to is that a server should be lean and hungry

 	do as little as possible

 	always be receive blocked

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 23 - Administrator, Detective

Public Service Annoucements

 	Exam: 9.00, August 8 to 11.30, August 9.

 	What is the earliest that anybody is planning to start?

 	I now have back my document creation tools. Assignments will start to
 be more uptodate.

5. Administrator, Worker

Administrator is a proprietor who does no work but only assigns work to
others

 	Tasks are given to workers

 	If Create is fast and you have a method for reclaiming resources you
 can Create and Destroy workers on demand.

 	Otherwise workers are created at initialization and the administrator
 maintains a pool of free workers

 	each free worker is a REPLY-BLOCKED task

Real administrators manage workers

 	Static organizations hire a workforce of employees who are assigned
 tasks as they come up.

 	And if they have run out of employees then you (the client) just
 have to wait.

 	If the worker is waiting for some data to be available, which is
 the most common case, then

 	a worker at the priority of the client does the waiting,

 	the administrator goes on to supply workers to other clients,

 	nobody loses

 	Dynamic organizations hire workers after the need for work appears, and
 fire them when the work is done. These are called contract workers or
 consultants.

 	You need Destroy to achieve a dynamic structure.

 	Helpers hired by the consultant fired with the consultant.

 	Semi-dynamic organizations are between static and dynamic.

 	New workers are hired (created),

 	but they are not fired.

 	If two dynamic administrators exist in a system you may have to
 regulate the system globally in order to resolve a creation race
 between them.

 	The type of independent agent system studied by Kate Larson handles
 such problems locally

Most workers prefer employee status to consultant status.

Worker code

 Send(administrator, nil, workOrder);
 FOREVER {
 Send(administrator, workResult, workOrder);
 workResult = doWork(workOrder);
 }

doWork might require further sends to servers or warehouses,
which is harmless in this context.

Administrator code

Initialization

Administrator() {
 for (i = 0; i < NUM_WORKERS; i++) worker[i] = Create(mypriority - 1, workerCode);

 FOREVER {
 Receive(requester, request);
 switch(request.type) {
 case CLIENT:
 enqueue(orderQ, {order = {client, request}});
 if (!empty(employeeQ)) Reply(dequeue(employeeQ)), dequeue(orderQ));
 break;
 case WORKER:
 enqueue(employeeQ, requester);
 if (!empty(orderQ)) Reply(dequeue(employeeQ), { dequeue(orderQ));
 if (request != nil) { Reply(request.client, request.request);
 break;
 }
}

Note: Tid of the client is included in the workorder to the administrator
does not have to maintain and search a list of jobs being done.
(Administrators are by nature lazy!)

Alternative Worker/Administrator Model

 	As above, Administrator includes Tid of the client in the order.

 	Worker replies to client with result and to administrator with request
 for another order to process.

Comments

 	The administrator can add a little more value.

 	Suppose that there is data required for processing each order.

 	The administrator could receive it from a notifier or courier.

 	It would be maintained internally and added to the appropriate
 order before the order is despatched to the worker.

 	Another model: the worker queries a detective.

8. The Detective

Simple Events

The notifier is a task that waits on events.

 	AwaitEvent is like Send
 It has two features

 	a simple, kernel-defined event that it waits on

 	hardware/kernel is like Receive/Reply

 	can only serve one master (`one' defined in terms of the kernel
 events)

 	The notifier needs to pass on that the event has happened

 	which it does using Send
 FOREVER {
 AwaitEvent(eventId);
 Send(server);
}

You could call a notifier a detective,

 	who looks around on your behalf,

 	and let's you know when something you care about happens,

 	but really it is a detective's worker, whom you employ directly.

Complex Events

In an application there is likely to be lots of waiting on combinations of
events.

 	form the combinations using Boolean operators

 	for example, Respond `okay' when this sensor is triggered or `time-out'
 when Delay returns.

We use the detective to discover that a complex event has occurred.

 	How does the detective work?

Conjunction

Code could be

FOREVER {
 Send(part1);
 Send(part2);
 ...
 Send(master);
}

Disjunction

Code above doesn't even pretend to work!

Try instead, something like

FOREVER {
 Receive(*requester, request);
 switch (request.type) {
 case CLIENT:
 case = {requester, request.event, request.delay});
 insert(caseDB, case);
 if (!empty(delayQ) && !empty(irregularQ)) {
 Reply(dequeue(delayQ), case);
 Reply(dequeue(irregularQ), case);
 }
 case DELAY:
 enqueue(delayQ, requester);
 if (case = pending(caseDB, nil) && !empty(irregularQ)) {
 Reply(dequeue(delayQ), case);
 Reply(dequeue(irregularQ), case);
 }
 case = extract(caseDB, request.requester);
 if (case != nil) Reply(case.requester, TIME_OUT);
 break;
 case CLUE:
 enqueue(irregularQ, requester);
 if ((case = pending(caseDB, nil)!=nil && !empty(delayQ)) {
 Reply(dequeue(delayQ), case);
 Reply(dequeue(irregularQ), case);
 }
 case = extract(caseDB, request.requester);
 if (case != nil) Reply(case.requester, EVENT);
 break;
 }
}

This is the code of a particular detective, one that notifies you which
occurs first, a time-out or an event.

Not

We can say that an event has not happened yet.

Only at the end of the universe can we say that an event simply has not
happened.

Time-outs are needed for NOT: how to do them is shown above.

Who is the client of the detective

 	Initiator of a normal action

 	Housekeeper of the system who will clean up pathologies
 (Idletask?))

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 24 - Reservations I

Public Service Annoucements

 	Slightly improved p1.pdf.

 	How to Give a Demo

 	Friday, 29 June, in class.

 	When you will give you demo

 	Tuesday, 3 July.

 	I will put a sign-up schedule in the lab with fifteen minute slots
 at different times on Tuesday morning. Choose which is the most
 convenient for you.

 	Route Finding

 	First demo

 	Afterwards

 	How to describe track locations

 	Landmark plus XX centimetres

 	Measurement procedures

 	A landmark's position needs strong conventions about its local
 origin.

Multi-Train Control

By the end of the week-end you should be able to drive one train on the
track, knowing exactly where it is.

 	'Exactly' means within a tolerance that you know.

By the following milestone you will be able to control two trains at the
same time. For each train

 	the train finds itself

 	you give it a destination: a destination is a location on the track

 	the train starts travelling toward the destination

 	it reaches the destination without colliding with the other train

 	both trains move at the same time

 	otherwise there is a trivial solution

 	it might be worth implementing the trivial solution as a start

Sensor Attribution

The first hard problem occurs when you receive a sensor report. Which
train triggered the sensor?

 	As long as the trains are sufficiently far apart this is not too
 hard.

 	What is the meaning of `sufficiently' in practice?

 	Sensor attribution must function correctly in the face of single
 failures,

 	of sensors, or

 	of turn-outs.

Collision Avoidance

This would not be too hard if the trains stopped instantaneously, but they
don't.

You must plan ahead,

 	at least as long as it takes the two trains to stop

It is usually your method of collision avoidance that limits the number of
trains that can run simultaneously.

 	N trains start running.

 	Then, after a while they get frozen and won't move.

 	Each is waiting for another to move.

 	If N is large freezing usually occurs because the route finder can't
 find a route for any train.

I like distributed solutions, where each train operates -- plans, drives,
make decisions, etc -- as though there are no other trains on the track. Why
do I like this?

 	The code is simple.

 	Each task has a well-defined role. E.g.

 	Track monitor knows the current state of the track.

 	Route planner uses track monitor input to provide a feasible
 route.

 	Train driver gets a route and follows it switching turn-outs ahead
 of itself as it drives.

 	Protocols for inter-task communication arise naturally from the
 roles.

 	The solutions usually scale well, as long as the track length grows at
 least linearly with the number of trains.

Reservations

Somebody has been doing something right for the last century. The answer
is reservations.

Two Level Train Control

The two levels are completely independent of one another.

 	On heavily used sections of track the lower level is done completely by
 hardware with no possibility (almost) of human intervention

Upper Level

 	Train asks despatcher for a route

 	Despatcher provides a route that he/she thinks to be conflict free

 	Train follows the route, reporting back to the despatcher as landmarks
 (sensors) are passed.

 	The despatcher gets two reports

 	One from the hardware

 	One from the engineer

 	It is up to the despatcher to make certain that they do not
 conflict.

 	What is to come on the route is communicated to the train driver by
 the lights along the track

Lower Level

The lower level is encoded in the coloured lights you see along the track.
In cases of conflict between the upper and lower levels, the lower level
wins.

 	Everything is rigidly enforced by hardware

 	The human enters the loop only in that the lights tell the engineer
 what he/she is allowed to do

 	The engineer loses his licence, FOREVER, if he/she ever goes
 through a red light.

 	If the system detects a violation of its rules or a state that should
 never occur it enters a failsafe mode

 	All lights go red.

Something Essential that You Must Do

Design your reservation system before coding it.

Before coding your reservation system work it out on paper and make sure
that it works for all the generic cases you can think of

 	One train following another

 	Two trains on a collision course

 	There are one or more switches in the path

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 25 - Demos, Reservations

Public Service Annoucements

 	When you will give you demo

 	Tuesday, 3 July.

 	I will put a sign-up schedule in the lab with fifteen minute slots
 at different times on Tuesday morning. Choose which is the most
 convenient for you.

Giving a Demo

The notes below assume particular roles: `we' are the prof and TAs, the
audience of the demo; `you' are the students giving the demo.

Remember these rules

You may choose

 	which track you wish to use,

 	which train you wish to use

but, if one or the other is not available

 	you should be able to run with a different locomotive or the other
 track.,

Demos are Important

We give two marks for each part of the project

 	one for the demo, which shows us what you project is doing in
 reality

 	one for the documentation, which shows us what your project is doing on
 paper

Stay in Control

Dead air

 	When there is nothing being said in a social situation people feel
 awkward.

 	They will talk to fill the empty space.

 	At a demo they will ask questions.

 	One question leads to another.

 	You reach the end of the demo with the best things not shown.

Think about how to get back in control

 	`Now we want to show you how we do X.'

 	It is okay to be quite direct, `It's getting late and we want you to
 see Y.'

If the train needs to run for a minute to refresh its calibration, spend
the time

 	telling us what you are going to show
 telling us where you succeeded

Know in Advance what You Want to Demo

Make a list, progress from easy things to harder ones

 	First the basic parts

 	Next the neat extra things you did

Make your plan really concrete

 	which locomotive you want to use

 	where it starts

 	where you will ask it to go

Tell us what was difficult to achieve in what you're showing

Make your demo easy to do

 	put the train on the tracks in places that are easy to reach

 	stop the train at places that are easy for us to measure

 	stop the train in a location that's good for starting the next
 part.

 	drive the train to where you need it instead of picking it up.

Write down the details so you don't forget.

Test Everything You Want to Demo

Have at least one older executable available

There are Two of You

Ways to take advantage of it

 	One at the terminal controlling the train, one explaining what is what
 is happening

 	One at the terminal readying the next part, the other at the train
 readying the train part and telling us what we will see next and why it's
 important

 	Switch roles to give the demo more variety

Be ready for questions

 	Explicitly asking us if we have questions to control when they get
 asked.

 	Put as much information as you can think of onto the terminal.

 	how much the idle task is running

 	where your calibration thinks the train is

 	keep track of this even after you have given the stop
 command

 	errors in your predictions

 	in time (milliseconds) and distance (cm)

Use Your Hands

For the most part we don't know where the things you're explaining are on
the track or the terminal.

 	point to them

Reservations

Somebody has been doing something right for the last century. The answer
is reservations.

Two Level Train Control

The two levels are completely independent of one another.

 	On heavily used sections of track the lower level is done completely by
 hardware with no possibility (almost) of human intervention

Upper Level

 	Train asks despatcher for a route

 	Despatcher provides a route that he/she thinks to be conflict free

 	Train follows the route, reporting back to the despatcher as landmarks
 (sensors) are passed.

 	The despatcher gets two reports

 	One from the hardware

 	One from the engineer

 	It is up to the despatcher to make certain that they do not
 conflict.

 	What is to come on the route is communicated to the train driver by
 the lights along the track

Lower Level

The lower level is encoded in the coloured lights you see along the track.
In cases of conflict between the upper and lower levels, the lower level
wins.

 	Everything is rigidly enforced by hardware

 	The human enters the loop only in that the lights tell the engineer
 what he/she is allowed to do

 	The engineer loses his licence, FOREVER, if he/she ever goes
 through a red light.

 	If the system detects a violation of its rules or a state that should
 never occur it enters a failsafe mode

 	All lights go red.

Something Essential that You Ought to Do

Design your reservation system before coding it.

Before coding your reservation system work it out on paper and make sure
that it works for all the generic cases you can think of

 	One train following another

 	Two trains on a collision course

 	There are one or more switches in the path

Stopping

A conservative train control system ensures that

 	At all times

 	every train is travelling slowly enough that

 	the next time there is an information update

 	it can give a stop command

 	and stop without running into another train

 	or off the end of the track.

For simplicity we assume that

 	all trains follow the same set of rules.

How much clear track does a train need?

 	The stopping distance? Not enough unless the train starts to stop
 immediately.

 	The stopping distance plus time for the command to arrive at the train?
 Not enough the stop request is given immediately.

You have, no doubt, defined stopping distance in a variety of different
ways. Here it is defined as the distance it takes the train to stop from the
point where the command is processed at the locomotive.

 	The stopping distance plus the time for the command to arrive at the
 train plus the amount of time until the train next decides whether or not
 to stop. This is enough if all other trains are stationary..

To be concrete, suppose the train decides what to do next each time it
arrives at a sensor. Then,

 	If it just passed sensor n,

 	the next time it will decide is when it arrives at sensor
 n+1,

 	the amount of clear track it needs is the stopping distance part sensor
 n+1.

What if other trains are moving?

Every train needs in front of it an amount of clear track calculated as
above.

Head on.

 	The train coming at me needs his amount of distance.

 	I need my amount of distance.

 	We must both start to stop when we are the sum of the distance
 apart.

Remember that the distance any train needs diminishes as it slows down.

Following

 	If a train and the train it is following, initiate stopping at the same
 time

 	the inter-train distance changes only by the difference in stopping
 distance, which ought to be small.

This suggests that one train can follow another train quite closely, but
it assumes that the leading train will not do something unexpected, such
as

 	stalling or

 	running into another train.

Is it possible to guarantee that such things won't ever happen?

 	Train safety, like everything else in the world, is a trade-off.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 26 - Demos, Reservations

Public Service Annoucements

 	Final exam date

 	Comments from yesterday's demo

 	We had a positive impression

 	It is normal for groups to be a different levels, because it is
 unpredictable when the 48 hou and 72-hour bugs will appear

 	Remember that this milestone had three discrete parts

 	Knowing the stopping distance

 	Knowing where the train is when travelling at a fixed speed

 	Knowing where the train is when accelerating and
 decelerating

 	There were a variety of ways for doing accel/decel

 	All the ones we saw will work

 	We don't know enough to assess how time-efficient different
 approaches are.

 	There is a workaround for acceleration/deceleration that works
 pretty well

 	Try using one dynamic parameter to tune all the other parameters

 	Normalized units are very helpful here

 	A good UI shows you a lot of information that is useful when
 something funny occurs

 	E.g. a turn-out switches under a traveling train

 	Was the train ahead of its calibration? Or was the switch
 command given too late?

 	Some groups had demos that seemed unsatisfactory because everything
 was 80% done

 	Two parts operating robustly is

 	more impressive and easier to judge for your audience

 	more encouraging to you

 	quicker to accomplish

 than three parts that are 80% complete

 	Some things we saw may give problems when you have more than one
 train on the tracks

 	Setting all the switches at once

 	Refinding the train as standard operating procedure

 	Not keeping track of train position as it is stopping

Sensor Attribution

Predictions work fine once you know where the trains are. How do you find
them at the beginning?

 	Easy when there is only one train on the track

 	Move it very slowly until you encounter a sensor, now you know
 where it is

 	Not a bad idea to get a second sensor to confirm direction.

 	Hard when there is more than one train on the track

 	To which train do you attribute the next sensor hit

 	Trains may collide before they are found

How might you do this for multiple trains?

 	One at a time.

Starting the next train

 	Stop the previous trains in convenient places

 	Start start this train slowly, you don't know where it is.

 	When it hits a sensor

 	make a prediction about the next sensor it will hit

 	get permission, probably a track reservation, to travel beyond the
 next sensor

 	Conclude that you know where the train is when it hits the predicted
 sensor.

A Typical Reservation System

A reservation system is not the only way to keep trains from hitting one
another.

The reservation system described below is not the only reservation system
that works. I created it to illustrate the problems you must solve when you
are keeping trains from colliding.

In past terms, students have succeeded using

 	systems similar to the one described below

 	systems that didn't break the track into blocks but gave out
 reservations of arbitrary size

 	systems that gave reservation that were areas covered by the track
 rather than lines the length of the track..

Reducing the need for communication with the train controller by doing
more computation on the CPU consistenly outperform.

Hard Conditions

Needed to avoid collisions

 	**Every train must have a reservation for the track it occupies.

 	**Every train must travel at a low enough velocity that it can stop
 before the end of the track it has reserved.

 	**Every train should reserve enough to handle single sensor or
 (exclusive) single switch errors.

 	**No piece of track should ever be reserved by more than one train.

Soft Conditions

Needed to keep the trains moving

 	Every train must release blocks it no longer occupies and will not
 occupy in the immediate future.

 	If a train is stopped it would normally have a reservation for only
 one block, but it might have a reservation for two blocks.

 	Every reservation held by a train should be contiguous

Who enforces these conditions?

 	Nobody does so explicitly.

 	There are several constraints

 	The reservation server always gives out reservations that are
 contiguous.

 	The reservation server never gives out an already reserved piece of
 track.

 	The reservation serve never revokes a reservation.

 	The train always travels slowly enough that it can stop within its
 current reservation if a request for extension is refused.

 	Responsibility for enforcement is distributed.

There is a situation in which these conditions cannot be enforced?

 	What is it?

Here's how it works in theory

 	Train gets a route from the route finder, and looks ahead along the
 route.

 	Train has a desired speed.

 	Train asks reservation system for several blocks of track along the
 route

 	Blocks usually end at switches and/or sensors

 	If you are ending blocks at switches you must know well enough how
 enough where the train is to be confident it is completely clear of
 the switch.

 	Reservation system grants the blocks if they are available

 	Grants include the condition that the train must travel so that it
 can come to a complete stop without leaving any reserved block.

Here's one way for it to work in practice

 	A train receives a reservation that will allow it to travel at its
 desired speed for one or more blocks.

 	The reservation includes enough track at the end of these blocks so
 that the train can stop before reaching the end of its
 reservation.

 	Each time the train leaves a block it frees the reservation it had for
 that block.

 	Before reaching the end of the blocks on which it can travel at speed,
 it requests an extention of its reservation.

 	If the request is granted it continues travelling at speed.
 Otherwise it starts slowing down so that it stops before the end of
 its reservation.

Reservation Implementation

You might grant reservations as follows:

Every time a train receives a sensor report it does its reservation procedure

 	Release the reservation I just vacated

 	If I give a stop signal at the next sensor can I stop within my
 reservation?

 	If yes, finished

 	If no, how much do I need beyond my current reservation?

 	Request what's needed, possibly more

 	Indicate the order in which you want the reservations
 (contiguity).

 	This depends on the direction in which you are travelling, which
 it's not necessary for the reservation server to know.

 	It could be deduced by the reservation server, but why bother.

 	Reservation server gives as much as it can

 	Train rechecks stopping condition using the complete reservation.

 	If yes, finished

 	If no, stop, or slow down so that the stopping condition is yes.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 27 - Demos, Reservations

Public Service Annoucements

 	Final exam date: 9.00 August 7 to 11.30 August 9

 	The gold standard for milestone 2 is

 	two trains on the track

 	each receiving a new, random destination each time it reaches its
 current destination

 	running for five minutes or so

A Typical Reservation System

A reservation system is not the only way to keep trains from hitting one
another.

The reservation system described below is not the only reservation system
that works. I created it to illustrate the type of problems you must solve in
order to keep trains from colliding.

In past terms, students have succeeded using

 	systems similar to the one described below

 	systems that didn't break the track into blocks but gave out
 reservations of arbitrary size

 	systems that gave reservation that were areas covered by the track
 rather than lines the length of the track..

Reducing the need for communication with the train controller by doing
more computation on the CPU consistenly outperform.

Hard Conditions

Needed to avoid collisions

 	**Every train must have a reservation for the track it occupies.

 	**Every train must travel at a low enough velocity that it can stop
 before the end of the track it has reserved.

 	**Every train should reserve enough to handle single sensor or
 (exclusive) single switch errors.

 	**No piece of track should ever be reserved by more than one train.

Soft Conditions

Needed to keep the trains moving

 	Every train must release blocks it no longer occupies and will not
 occupy in the immediate future.

 	Every reservation held by a train must be contiguous

 	Trains should release unneeded blocks in front of themselves if they
 slow down or stop.

 	A stopped train will hold either one or two blocks.

 	Your system will behave perfectly well with only two trains if you
 do not enforce this condition, but it will often spontaneously thaw
 when a freeze occurs.

Who enforces these conditions?

 	Nobody does so explicitly.

 	There are constraints derived from the conditions above, such as

 	The reservation server always gives out reservations that are
 contiguous.

 	The reservation server never gives out an already reserved piece of
 track.

 	The reservation server never revokes a reservation.

 	The train always travels slowly enough that it can stop within its
 current reservation if a request for extension is refused.

 	And so on.

 	Enforcement is provided by a protocol that every task obeys.

There is a situation in which the conditions cannot be enforced?

 	What is it?

Here's how it works in theory

 	Train gets a route from the route finder, and looks ahead along the
 route.

 	Train has a desired speed.

 	Train asks reservation system for several blocks of track along the
 route

 	Blocks usually end at switches and/or sensors

 	If you are ending blocks at switches you must know well enough
 where the train is to be confident it is completely clear of the
 switch.

 	Reservation system grants the blocks if they are available

 	Grants imply the condition that the train must travel so that it
 can come to a complete stop without leaving any reserved block.

 	Grants must be provided in the correct order

Here's one way for it to work in practice

 	A train receives a reservation that will allow it to travel at its
 desired speed for one or more blocks.

 	The reservation includes enough track at the end of these blocks so
 that the train can stop before reaching the end of its
 reservation.

 	Each time the train leaves a block it frees the reservation it had for
 that block.

 	Before reaching the end of the blocks on which it can travel at speed,
 it requests an extention of its reservation.

 	If the request is granted AND it can stop within the reservation, it
 continues travelling at speed.

 	Otherwise it stops
 Or slows down enough to stop before the end of its reservation.

Reservation Implementation

You might decide that reservation negotiation will take place every time
the train receives a sensor report.

 	Just requesting reservations whenever they're needed has a problem.

 	Train drivers are likely to poll

 	Polling is extremely priority-dependent.

 	Priority-dependent bugs are hard to find, harder to fix.

Every time a train receives a sensor report it does its reservation
procedure

 	Release the reservation just vacated

 	Test stopping within the reservation at the next request time (sensor
 report).

 	If okay, finished

 	If no, how much do I need beyond my current reservation?

 	Request what's needed, possibly more

 	Indicate the order in which you want the reservations
 (contiguity).

 	This depends on the direction in which you are travelling, which
 it's not necessary for the reservation server to know.

 	It could be deduced by the reservation server, but why bother.

 	Reservation server gives as much as it can

 	Train rechecks stopping condition using the complete reservation.

 	If okay, finished

 	If no, either

 	stop,

 or

 	slow down enough to satisfy the stopping condition

Comment. We like slowing down, which we consider to be a
more intelligent and aesthetic response to following a slow train than
stop-start driving.

Problems I Have Seen More than Once

Common Multi-train Tracking Problems

 	Two trains waiting on the same sensor report

 	Symptom: trains split and/or merge

 	One is bound to get inconsistent state

 	Should be solved by the reservation system

 	Spurious sensor reports that a train is actually expecting.

 	Most often for a secondary prediction,

 	because the temporal window for a secondary prediction can
 precede the time window for the primary one.

 	Tightening temporal windows helps this

 	but can't eliminate it

 	Could look further ahead so that secondary predictions alway lag
 behind primary ones

 	Recover from such an error by back-tracking

 	Permanently malfunctioning turn outs

 	Can't be switched or always derails

 	Alter track graph

 	Important to be able to alter the track graph from the
 prompt

 	Partly for testing, but don't disable it in your demo version
 because it can rescue a demo.

 	Permanently malfunctioning sensors

 	Usually fail on because of sticking

 	Unstick by hand

 	Alter track graph and mask reports

 	See above for track graph

 	Mask at as low a level as possible

Useful debugging aids

 	Alter the track graph from the prompt.

 	Simulate sensor-triggering from the prompt.

 	From a low level log events that change track state.

 	Are they consistent with the track state shown in your UI?

Common Reservation System Problems

 	System freezes

 	Reservations branch out ahead and cover a lot of the track

 	Trains give back unneeded reservations as they slow down

 	Reservations are not released.

 	Usually shows itself only when the project is well advanced

 	Looks as though there are phantom trains in the system

 	Usually most of a reservation is released, but not all.

 	Reservation leap-frogging

 	Two trains are approaching one another; each gets a reservation
 behind the other.

 	Has also been seen when one train is following another.

 	Ask for and/or give out reservations in the right order

Useful debugging aids

 	Insert/remove reservations by hand from the prompt

 	Query reservations (and who holds them) from the prompt

 	Track map showing reservations in real-time.

 	One partner watches the map while the other observes the trains

 	Trains can get sensor reports only for sensors with the reservations
 they hold.

 	This is often the earliest symptom of a train getting lost.
 (Editor's comment. It doesn't seem to me that `a train is getting
 lost', but that `a train is lost'.)

 	Enforce in the reservation server that all reservations must be
 contiguous.

 	Non-contiguous reservation requests are an early symptom of
 reservation system failure.

Common Route-Finding/Following Bugs

 	Train derails on turn-out after train changes direction

 	Improve acceleration/deceleration calibration

 	Switch turn-outs for both directions of travel

 	Train derails on turn-out as turn-out switches

 	Improve acceleration/deceleration calibration

 	Improve train tracking

 	Switch turn-outs too late

 	Treat command latencies systematically

 	Train collides with stationary train

 	Be certain that stationary trains have reservations

 	Insert/remove reservations by hand from the prompt

Useful debugging aids

All the above, plus

 	Add/subtract switches, sections of track from graph by hand from the
 prompt

 	By modifying the route-finder you can confine all routes to a subset of
 the tracks.

 	This allows you to solve the common problems without being affetced
 by uncommon ones.

Early Signs of Problems

Frequent train finding. (You should not be refinding trains every time
they stop.)

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 28 - Demos, Reservations

Public Service Annoucements

 	Final exam date: 9.00 August 7 to 11.30 August 9

Pathologies

As we go down this list both pathology detection and the length of the
edit-compile-test cycle grow without bound.

1. Deadlock

One or more tasks will never run again. For example

 	Task sends to itself (local: rest of system keeps running, task itself
 will never run)

 	Every task does Receive() (global: nothing is running)

 	Cycle of tasks sending around the cycle (local: other tasks keep
 running)

Kernel can detect such things

 	What does it do?

Potential deadlock can be detected at compile time

 	cycle in the send graph of all sends that could happen

 	remember implicit sends

 	doesn't necessarily occur at run-time

 	that is, it's a necessary but not sufficient condition.

 	It's worse,

 	It doesn't happen when tests are short

 	It appears near the end when tests run for longer

 	Changes in a critical race can make a potential deadlock reveal
 itself.

Solutions

 	Gating

 	Most common example is initialization, where the send/receive
 pattern may be different than FOREVER

 	Gate the end of initialization

 	Define four types of task

 	Administatrer (A), including servers of all kinds: only
 receives

 	Worker (W), including notifiers: only sends

 	Client (C): only sends

 	Notifier (N): only sends to its administrator

 	Two A tasks cannot communicate directly; two W/C tasks cannot
 communicate directly.

 	For W/C/N tasksSend appears in two flavours

 	C tasks
 FOREVER {
 Send(A, request, result)
 ...
}

 	W tasks
 FOREVER {
 Send(A, result, request)
 ...
}

 	N tasks
 FOREVER {
 Send(A, result, request)
 result.data = AwaitEvent(request.event)
 ...
}

 	The Receives corresponding to W, C & N tasks are normally
 the same.

 	N is effectively a W task

 	The important difference is that while W & C tasks
 are lower priority than the A task, N tasks are higher
 priority.

 	C, W & N requests and results must have compatible data
 types.

 	The request might be effectively a union

 	The payload is interpreted differently at run-time,

 	using different cases of the switch on message
 type.

 	A courier is W-type to one A-task, C-type to the other
 FOREVER {
 Send(A1, request, result)
 Send(A2, result, request)
}

 	Occasionally, but not often, two A-tasks, are synchronized in a
 way that makes it possible to communicate in two directions
 through one server.

 	Then two couriers are used

2. Livelock (Deadly Embrace)

Definition

Two or more tasks are READY. For each task, the state of the other tasks
prevents progress being made regardless of which task is ACTIVE.

A higher level of coordination is required.

Two types of livelock exist

 	Ones that are the result of bad coding

 	Find bug and remove it.

 	Ones that are inherent in the application definition

 	Detect livelock and work around it.

Looking for solutions we prefer ones that avoid a central planner. Why?

 	In the twentieth century there were a collection of political systems
 relying on central planners

 	Most no longer exist

Livelock usually occurs in the context of resource contention

Livelock that's Really Deadlock

 	client1 needs resource1 & resource2;

 	obtains resource1 from proprietor1;

 	asks proprietor2 for resource2

 	client2 needs resource1 & resource2;

 	obtains resource2 from proprietor2;

 	asks proprietor1 for resource1

 	possible code

 	Client 1
 Send(prop1, getres1, ...);
Send(prop2, getres2, ...);
// Use the resources and release them

 	Client 2
 Send(prop2, getres2, ...);
Send(prop1, getres1, ...);
// Use the resources and release them

 	Proprietor
 FOREVER {
 Receive(&clientTid, req, ...);
 switch (req-type) {
 case REQUEST:
 if(available) {
 Reply(clientTid, use-it, ...);
 available = false;
 }
 else enqueue(clientTid);
 case RELEASE:
 available = true;
 Reply(clientTid, "thanks", ...);
 if(!empty(Q)) {
 available = false;
 Reply(dequeue(), use-it, ...);
 }
 }
}

 	state:

 	client1, client2: REPLY-BLOCKED - can't release resources

 	proprietor1, proprietor2: SEND-BLOCKED - waiting for release

 	this is a true deadlock -- none of the four tasks will ever run
 again -- even though there are no cycles in the call graph.

 	The dependencies lie elsewhere. Where?

 	(You can find on the internet arguments about terminology just as
 intense as anything you will ever see in vi vs emacs or Apple vs
 Microsoft.)

Solutions

 	Make a single compound resourse, BUT

 	all clients may not need both

 	some resources simply cannot be compounded

 	Impose a global order on resource requests that all clients must
 follow.

 	unsafe against malicious or incompetent programmers

 	some resources don't admit strong enough ordering, e.g. pieces of
 track in the train set

 	Create a mega-server that handles all resource requests

 	clients request all at once, mega-server provides an optimal
 solution to resource use in the presence of hundreds of
 deadlines.

 	client might not know that A is needed until processing with B is
 well-advanced

Real Livelock

Proprietor1 & proprietor2 fail the requests

 	Proprietor
 FOREVER {
 Receive(&clientTid, req, ...);
 switch (req-type) {
 case REQUEST:
 if(available) {
 Reply(clientTid, use-it, ...);
 available = false;
 }
 else Reply(clientTid, "sorry", ...);
 case RELEASE:
 available = true;
 Reply(clientTid, "thanks", ...);
 }
}

 	Polling is the most likely result. Typical client code.
 while (Send(prop1, getr1, ...) != GotIt) ;
while (Send(prop2, getr2, ...) != GotIt) ;
// Use the resources

 	And the problem is that this code usually works as long as the tests
 are relatively short

Livelock that's Really a Critical Race

We could try to make the clients a little more considerate

While (no resources) {
 Send(prop1, getres1, result);
 while (result == "sorry") {
 if (result == "sorry") {
 Delay(...);
 Send(prop1, getres1, result);
 }
 Send(prop2, getres2, result);
 if (result == "sorry") {
 Send(prop1, relres1, ...);
 Delay(...);
 } else {
 break;
 }
}

Inherent Livelock

Remember the example where two trains come face to face, each waiting for
the other to move. They will wait facing each other until the demo is over,
probably polling.

What's hard about solving this problem?

 	Neither driver knows what the other driver is trying to do.

In real life,

 	the drivers would communicate, but

 	in your software that's neither easy

 	How many different `conversations' might need to be available?

 nor desirable

 	What is the effect on other trains of the two drivers' special
 arrangement?

What's most easy for you to do is to programme each driver with

 	detection, e.g.,

 	Delay a random time

 	Request again

 	If turned down, work around

 	work around, e.g.,

 	Recommence working on goal as though track is blocked.

3. Critical Races

Example

 	Two tasks, A & B, at the same priority

 	A is doing a lot of debugging IO

 	B always reserves a section of track before A, and all is fine.

 	Debugging IO is removed

 	A reserves the section before B can get it, and execution
 collapses.

 	Lower priority of A to the same level as C.

 	Now C executes faster and gets a resource before D .

 	You shuffle priorities forever, eventually reverting, to put back in
 the debugging IO.

Definition

The order in which computation is done is an important factor in
determining whether or not it is successful.

Critical races, like Livelock can be

 	internal to the program, like the one above, or

 	external to the program but inherent in the application domain

Symptoms

 	Small changes in priorities change execution unpredictably, and
 drastically.

 	Debugging output changes execution drastically.

 	Changes in train speeds change execution drastically.

 	Example from several terms ago

`Drastically' usually means chaos in both senses of the term

 	Sense one: a small change in the initial conditions produces an
 exponentially growing divergence in the execution.

 	Sense two: exercise for the reader.

Solutions

 	Explicit synchronization

 	but you then have to know the orders in which things are permitted
 to occur

 	e.g. Try listing all the orders in which events can occur in your
 system

 	and then notice that just arriving in the same order is often
 not enough

 	Gating is a technique of global synchronization

 	which can be provided by a detective/coordinator

4. Performance

Changes in performance of one task with respect to another often give rise
to critical races

The hardest problem to solve

 	You just don't know what is possible

 	Ask a question like:

 	Is my kernel code at the limit of what is possible in terms of
 performance?

 	We can compare the performance on message passing, etc., because
 two kernels are pretty much the same.

 	Compare a lot of kernels and you should be able to find a lower
 limit

 	Can't do the same thing for train applications

In practice, how do you know you have performance problems? Problems I
have seen

Priority

The hardest thing to get right

 	NP-hard for the human brain

 	Practical method starts with all priorities the same, then adjusts

 	symptoms of good priority assignment

 	The higher the priority, the more likely the ready queue is to be
 empty

 	The shorter the run time in practice the higher the priority

Problems with priority

 	Priority inversion

 	One resource, many clients

 	Tasks try to do too much

Congestion

 	Too many tasks

 	blocked tasks don't count,

 	lowest priority tasks almost don't count

Layered abstraction are costly

e.g. Notifier -> SerialServer -> InputAccumulater -> Parser ->
TrackServer

Output

 	Too much terminal output interferes with train controller communication

 	Don't redraw the entire screen

 	Requests to poll the sensors get backed up in the serial server, or
 whoever provides output buffering.

Hardware

 	Turn on optimization, but be careful

 	There are places where you have done register allocation by
 hand

 	Turn on caches

 	locking is possible

Size & align calibration tables by size & alignment of cache
lines

 	linker command script

 	I think that this is stretching it.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 29 - Pathologies II

Public Service Annoucements

 	Final exam date: 9.00 August 7 to 11.30 August 9

Pathologies

As we go down this list both pathology detection and the length of the
edit-compile-test cycle grow without bound.

1. Deadlock

2. Livelock (Deadly Embrace)

Definition

Two or more tasks are READY. For each task, the state of the other tasks
prevents progress being made regardless of which task is ACTIVE.

A higher level of coordination is required.

Two types of livelock exist

 	Ones that are the result of bad coding

 	Find bug and remove it.

 	Ones that are inherent in the application definition

 	Detect livelock and work around it.

Looking for solutions we prefer ones that avoid a central planner. Why?

 	In the twentieth century there were a collection of political systems
 relying on central planners

 	Most no longer exist

Livelock usually occurs in the context of resource contention

Livelock that's Really Deadlock

 	client1 needs resource1 & resource2;

 	obtains resource1 from proprietor1;

 	asks proprietor2 for resource2

 	client2 needs resource1 & resource2;

 	obtains resource2 from proprietor2;

 	asks proprietor1 for resource1

 	possible code

 	Client 1
 Send(prop1, req{ REQUEST, ...);
Send(prop2, getres2, ...);
// Use the resources and release them

 	Client 2
 Send(prop2, getres2, ...);
Send(prop1, getres1, ...);
// Use the resources and release them

 	Proprietor
 FOREVER {
 Receive(&clientTid, req, ...);
 switch (req.type) {
 case REQUEST:
 if(available) {
 Reply(clientTid, "use-it", ...);
 available = false;
 }
 else enqueue(clientTid);
 case RELEASE:
 available = true;
 Reply(clientTid, "thanks", ...);
 if(!empty(Q)) {
 available = false;
 Reply(dequeue(), "use-it", ...);
 }
 }
}

 	state:

 	client1, client2: REPLY-BLOCKED - can't release resources

 	proprietor1, proprietor2: SEND-BLOCKED - waiting for release

 	this is a true deadlock -- none of the four tasks will ever run
 again -- even though there are no cycles in the call graph.

 	The dependencies lie elsewhere. Where?

 	(You can find on the internet arguments about terminology just as
 intense as anything you will ever see in vi vs emacs or Apple vs
 Microsoft.)

Solutions

 	Make a single compound resourse, BUT

 	all clients may not need both

 	some resources simply cannot be compounded

 	Impose a global order on resource requests that all clients must
 follow.

 	unsafe against malicious or incompetent programmers

 	some resources don't admit strong enough ordering, e.g. pieces of
 track in the train set

 	Create a mega-server that handles all resource requests

 	clients request all at once, mega-server provides an optimal
 solution to resource use in the presence of hundreds of
 deadlines.

 	client might not know that A is needed until processing with B is
 well-advanced

Real Livelock

Proprietor1 & proprietor2 fail the requests

 	Proprietor
 FOREVER {
 Receive(&clientTid, req, ...);
 switch (req-type) {
 case REQUEST:
 if(available) {
 Reply(clientTid, "use-it", ...);
 available = false;
 }
 else Reply(clientTid, "sorry", ...);
 case RELEASE:
 available = true;
 Reply(clientTid, "thanks", ...);
 }
}

 	Polling is the most likely result. Typical client code.
 for (Send(prop1, get-res1, result1) && Send(prop2, get-res2, result2);
 !((result1 && result2) || time-out()) ;) {
 if (!result1) Send(prop1, get-res1, result1);
 if (!result2) Send(prop2, get-res2, result2);
}
// Use the resources

 	And the problem is that this code usually works as long as it runs for
 a relatively short time

Livelock that's Really a Critical Race

We could try to make the clients a little more considerate

 for (Send(prop1, get-res1, result1) && Send(prop2, get-res2, result2);
 !(result1 && result2) || !time-out();
 Send(prop1, get-res1, result1) && Send(prop2, get-res2, result2) {
 if (result2) Send(prop2, release-res2, ...);
 if (result1) Send(prop1, release-res1, ...);
 Delay (random());
 {

Inherent Livelock

Remember the example where two trains come face to face, each waiting for
the other to move. They will wait facing each other until the demo is over,
probably polling.

What's hard about solving this problem?

 	Neither driver knows what the other driver is trying to do.

In real life,

 	the drivers would communicate, but

 	in your software that's neither easy

 	How many different `conversations' might need to be available?

 nor desirable

 	What is the effect on other trains of the two drivers' special
 arrangement?

What's most easy for you to do is to programme each driver with

 	detection, e.g.,

 	Delay a random time

 	Request again

 	If turned down, work around

 	work around, e.g.,

 	Recommence working on goal as though track is blocked.

Notice that the solution above doesn't work for the train-driver because
he cannot release the track he is sitting on. His solution would be something
like

 for (Send(prop, get-res, result);
 !result && !time-out();
 Send(prop, get-res, result) Delay (random());
 }

3. Critical Races

Example

 	Two tasks, A & B, at the same priority

 	A is doing a lot of debugging IO

 	B always reserves a section of track before A, and all is fine.

 	Debugging IO is removed

 	A reserves the section before B can get it, and execution
 collapses.

 	Lower priority of A to the same level as C.

 	Now C executes faster and gets a resource before D .

 	You shuffle priorities forever, eventually reverting, to put back in
 the debugging IO.

Definition

The order in which computation is done is an important factor in
determining whether or not it is successful.

Critical races, like Livelock can be

 	internal to the program, like the one above, or

 	external to the program but inherent in the application domain

Symptoms

 	Small changes in priorities change execution unpredictably, and
 drastically.

 	Debugging output changes execution drastically.

 	Changes in train speeds change execution drastically.

 	Example from several terms ago

`Drastically' usually means chaos in both senses of the term

 	Sense one: a small change in the initial conditions produces an
 exponentially growing divergence in the execution.

 	Sense two: exercise for the reader.

Solutions

 	Explicit synchronization

 	but you then have to know the orders in which things are permitted
 to occur

 	e.g. Try listing all the orders in which events can occur in your
 system

 	and then notice that just arriving in the same order is often
 not enough

 	Gating is a technique of global synchronization

 	which can be provided by a detective/coordinator

These solutions are hard to find because

 	Scenario-oriented design is natural (possibly even inescapable) for
 humans

 	Too much synchronization can kill performance because it introduces
 extra dependencies. (Check to see how many tasks are delaying.)

4. Performance

Changes in performance of one task with respect to another often give rise
to critical races

The hardest problem to solve

 	You just don't know what is possible

 	Ask a question like:

 	Is my kernel code at the limit of what is possible in terms of
 performance?

 	We can compare the performance on message passing, etc., because
 two kernels are pretty much the same.

 	Compare a lot of kernels and you should be able to find a lower
 limit

 	Can't do the same thing for train applications

In practice, how do you know you have performance problems? Problems I
have seen

Priority

The hardest thing to get right

 	NP-hard for the human brain

 	Practical method starts with all priorities the same, then adjusts

 	symptoms of good priority assignment

 	The higher the priority, the more likely the ready queue is to be
 empty

 	The shorter the run time in practice the higher the priority

Problems with priority

 	Priority inversion

 	One resource, many clients

 	Tasks try to do too much

Congestion

 	Too many tasks

 	blocked tasks don't count,

 	lowest priority tasks almost don't count

Layered abstraction are costly

e.g. Notifier -> SerialServer -> InputAccumulater -> Parser ->
TrackServer

Output

 	Too much terminal output interferes with train controller communication

 	Don't redraw the entire screen

 	Requests to poll the sensors get backed up in the serial server, or
 whoever provides output buffering.

Hardware

 	Turn on optimization, but be careful

 	There are places where you have done register allocation by
 hand

 	Turn on caches

 	locking is possible

Size & align calibration tables by size & alignment of cache
lines

 	linker command script

 	I think that this is stretching it.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 30 - Power On

Public Service Annoucements

 	Final exam date: 9.00 August 7 to 11.30 August 9

Power On

When you turn on the power or press the reset button, what happens before
you see the RedBoot> prompt?

 	Power on asserts the reset input to the CPU

This is not determined by the instruction set architecture (ISA).

 	The ISA guarantees only that the CPU will (at some future time) set the
 pc to 0x00000000 and start executing instructions.

What happens before that, and what appears at 0x00000000 is determined by
the design of the system surrounding the CPU on the chip.

 	Cirrus provides this, not ARM.

 	What Cirrus provides is pretty generic: the steps are the same on
 others SoCs, but the details differ.

There are two pretty hard resets that can occur.

 	Turning on the power

 	Pressing the reset button

 	Power-on, but with memory refresh running continuously.

(Jumping to 0x00000000 is a much softer reset.)

Asserting the reset input of the SoC, asserts the reset output of the
SoC.

 	The output reset goes everywhere and resets everything with a power on
 reset.

Negating the reset input starts the boot sequence, with the SoC in its
reset state. Ten hardware inputs determine how the SoC boots

 	internal/external

 	pre-boot source

 	watchdog state

 	bus width of pre-boot and pre-pre-boot

These inputs allow the designer of the board hosting the SoC to determine
enough characteristics of the boot state that it can be used for many
applications

TS-7200 is set up for internal pre-boot with source from the flash on the
32-bit AHB

The AHB bus has all the important high-speed components

 	memory (program and graphics)

 	ethernet controller

 	USB controller, and

 	16Kbytes of mask-programmed ROM at 0x80090000

Initial state

ARM

The following things, which are contolled through the system control
co-processor, are determined by the CPU architecture. They must be
independent of the stuff added by Cirrus

 	MMU flat, but might be different on soft reset

 	Caches disabled

 	Slow bus clock

 	Interrupts disabled

 	Little-endian memory system

 	No access to MMU registers

 	Normal exception registers

Cirrus

The following things, which are described in the EP9302 documentation, are
properties of hardware Cirrus added. They are independent of how Technologic
configured the chip when they designed the TS7200.

 	DRAM controller(s) not initialized

 	Flash controller(s) not initialized

 	All I/O devices in reset state. (They receive hardware reset inputs
 from the CPU.)

 	Memory map in boot mode

Technologic

The following things, which are described in the Technologic
documentation, manual & circuit diagram, are properties of the TS7200

 	Boot control bits, set to normal boot, 32-bit bus width, sychronous
 boot device, internal, watchdog timer disabled.

 	Physical memory map

 	0x80000000 to 0x800fffff, used by Cirrus for on-chip components

 	SDRAM chips break memory into 4M blocks. Addresses of 4M blocks are

 	0x00000000 to 0x003fffff

 	0x00400000 to 0x007fffff

 	0x00800000 to 0x00bfffff

 	0x00c00000 to 0x00ffffff

 	0x01000000 to 0x013fffff

 	...

 	TS7200 uses 4-bit chip select to divide the memoery into 256 Mbyte
 blocks

 	0x00000000 to 0x0fffffff (first 256M) SDRAM, CS0, 32 bus
 cycles

 	0x10000000 to 0x1fffffff: CS1, 8 bit bus cycles

 	0x20000000 to 0x2fffffff: CS2, 16 bit bus cycles.

 	0x60000000 to 0x7fffffff: CS6/7, Flash

 	0x80000000 to 0x8fffffff: I/O registers including

 	0x80000000 to 0x807fffff: AHB mapped registers, including

 	DMA

 	Ethernet

 	USB

 	Memory controllers

 	Pre-pre-boot ROM

 	ICU registers

 	0x80800000 to 0x8fffffff: I/O registers

 SDRAM chips break memory into 4M blocks. Addresses of 4M blocks
 are

 	0x00000000 to 0x003fffff

 	0x00400000 to 0x007fffff

 	0x00800000 to 0x00bfffff

 	0x00c00000 to 0x00ffffff

 	0x01000000 to 0x013fffff

 	...

 	In the AHB registers is a 16K block of ROM from 0x80090000
 to 0x80093fff

 	Initially, it is mapped to the entire memory space at 16K
 intervals.

 	Chip select, and how addressing occurs.

 	Chip select of this block is 0x8009[00XXb]XXX

 	Chip select has two parts

 	I/O chip select: 0x8XXXXXXX

 	AHB chip select: 0xY00XXXXX

 	ROM chip select: 0xYYY9[00XXb]XXX

 	The first instruction executed is the one that you find at
 0x80090000

Pre-pre-boot Sequence

 	Jump to 0x80090018.

 	Turn on LEDs

 	Make the CPU completely vanilla. E.g.,

 	no caches, physical memory map,

 	Turn off watchdog timer

 	Acquire boot state

 	Configure external clocks (needed for serial boot)

 	Acquire boot state configuration inputs

 	These are input pins on the EP9302, the state of which is
 determined by the TS7200.

 	A couple are user-controllable via jumpers

 	They are the only thing the EP9302 knows about the outside
 world

 	Using boot state configure

 	flash memory controller

 	SDRAM memory controller

 These are configured with very conservative parameters

 	Clear boot mode `memory map'

 	Toggle LEDs

 	Switch

 	Serial boot on UART1

 	Output ">"

 	Read 2048 bytes starting with CRUS or SURC to the ethernet
 buffer

 	Jump to the start of the ethernet buffer

 	Boot from ROM outside SoC

 	Assert ROM chip selects looking for CRUS

 	When found read 2048 bytes from the ROM to ethernet buffer

 	Jump to the start of the ethernet buffer

 	Boot from flash

 	Look for CRUS at possible flash start locations

 	When found jump to start location plus 0x4 (account for
 CRUS)

 	If not found

 	load code into ethernet buffer

 	flash LEDs forever

 	In the first two cases the 2048 bytes contains a memory test followed
 by a loader.

Pre-boot Sequence

This code knows all about the EP9302, and all about the TS7200.

 	Sets up a stack in the ethernet buffer

 	Sets the CPSR to a vanilla state: no interrupts, svc mode

 	Copies 260 words of code from flash to the ethernet buffer

 	Initializes memory controllers for the memory it has

 	Configures GPIO.

 	Turns off the watchdog timer

 	Sets up the appropriate serial port for a monitor

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 31

 - Power On

Public Service Annoucements

 	Final exam date: 9.00 August 7 to 11.30 August 9

Power On

Initial state

ARM

Cirrus

Technologic

The following things, which are described in the Technologic
documentation, manual & circuit diagram, are properties of the TS7200

 	Boot control bits, set to normal boot, 32-bit bus width, sychronous
 boot device, internal, watchdog timer disabled.

 	Physical memory map

 	0x80000000 to 0x800fffff, used by Cirrus for on-chip components

 	SDRAM chips break memory into 4M blocks. Addresses of 4M blocks are

 	0x00000000 to 0x003fffff

 	0x00400000 to 0x007fffff

 	0x00800000 to 0x00bfffff

 	0x00c00000 to 0x00ffffff

 	0x01000000 to 0x013fffff

 	...

 	TS7200 uses 4-bit chip select to divide the memoery into 256 Mbyte
 blocks

 	0x00000000 to 0x0fffffff (first 256M) SDRAM, CS0, 32 bus
 cycles

 	0x10000000 to 0x1fffffff: CS1, 8 bit bus cycles

 	0x20000000 to 0x2fffffff: CS2, 16 bit bus cycles.

 	0x60000000 to 0x7fffffff: CS6/7, Flash

 	0x80000000 to 0x8fffffff: I/O registers including

 	0x80000000 to 0x807fffff: AHB mapped registers, including

 	DMA

 	Ethernet

 	USB

 	Memory controllers

 	Pre-pre-boot ROM

 	ICU registers

 	0x80800000 to 0x8fffffff: I/O registers

 SDRAM chips break memory into 4M blocks. Addresses of 4M blocks
 are

 	0x00000000 to 0x003fffff

 	0x00400000 to 0x007fffff

 	0x00800000 to 0x00bfffff

 	0x00c00000 to 0x00ffffff

 	0x01000000 to 0x013fffff

 	...

 	In the AHB registers is a 16K block of ROM from 0x80090000
 to 0x80093fff

 	Initially, it is mapped to the entire memory space at 16K
 intervals.

 	Chip select, and how addressing occurs.

 	Chip select of this block is 0x8009[00XXb]XXX

 	Chip select has two parts

 	I/O chip select: 0x8XXXXXXX

 	AHB chip select: 0xY00XXXXX

 	ROM chip select: 0xYYY9[00XXb]XXX

 	The first instruction executed is the one that you find at
 0x80090000

Pre-pre-boot Sequence

 	Jump to 0x80090018.

 	Turn on LEDs

 	Make the CPU completely vanilla. E.g.,

 	no caches, physical memory map,

 	Turn off watchdog timer

 	Configure external clocks (needed for serial boot)

 	Acquire boot state configuration inputs

 	These are input pins on the EP9302, the state of which is
 determined by the TS7200.

 	A couple are user-controllable via jumpers

 	They are the only thing the EP9302 knows about the outside
 world

 	Using boot state configure

 	flash memory controller

 	SDRAM memory controller

 These are configured with very conservative parameters

 	Clear boot mode `memory map'

 	Toggle LEDs

 	Switch

 	Serial boot on UART1

 	Output ">"

 	Read 2048 bytes starting with CRUS or SURC to the Mac FIFO

 	Jump to the start of the Mac FIFO

 	Boot from ROM outside SoC

 	Assert ROM chip selects looking for CRUS

 	When found read 2048 bytes from the ROM to Mac FIFO

 	Jump to the start of the Mac FIFO

 	Boot from flash

 	Look for CRUS at possible flash start locations

 	When found jump to start location plus 0x4 (account for
 CRUS)

 	If not found

 	if 0x0 writable destination is SDRAM else destination is Mac
 FIFO

 	load 20 words into destination

 	flash LEDs forever

 	In the first two cases the 2048 bytes contains a memory test followed
 by a loader.

 	The Mac FIFO code is used for premature death in the pre-boot also.

Pre-boot Sequence

This code knows all about the EP9302, and all about the TS7200.

 	Sets up a stack in the ethernet buffer

 	Sets the CPSR to a vanilla state: no interrupts, svc mode

 	Copies 80 words of code from flash to the ethernet buffer

 	Initializes memory controllers for the memory it has

 	Configures GPIO.

 	Turns off the watchdog timer

 	Sets up the appropriate serial port for a monitor

 	loads RedBoot

Can Message Passing be Made Type Safe?

Dynamically

Yes, even including type extension and polymorphism, but

 	What does the program do when it detects a type mismatch?

 	Well, it could send a more informative error message before it
 dies.

Statically

No,

 	Structured programming depends critically on well-defined scope.

 	While tasks are scoped internally, there is no inter-task scoping.

 	In fact, we are happy to be free of scoping, because it allows us to
 try out a wider variety of program structures.

CSP

To formal methods people CSP is a calculus for reasoning about the
correctness of multi-process/threaded/tasking (MPTT) systems. Active research
has been ongoing for forty years with several goals

 	translating other synchronization/communication semantics to and from
 CSP

 	finding new methods for reasoning about CSP

 	scaling everything to make CSP useful for production sized programs

 	During that time many a chicken has left its tracks on the pages of
 formal methods journals and conference proceedings!

For programmers the claim has been and is made that CSP provides a
superior method for structuring MPTT systems. (`Superior' in the sense of
`easier to design, implement and understand'.)

 	The claim was first made in the late 1970s/early 1980s.

 	It was made again in the early 1990s, this time with the weight of Bell
 Labs behind it.

 	And has been made yet again in the last few years, this time with the
 weight of Goggle behind it.

Primitives

In CSP there are two communication primitives. In the notation of occam
2/Go, they are

 	read
 keyboard ? ch
ch = <- keyboard

 	reads from an input channel called keyboard and
 assigns what it reads to the variable ch

 	the channel must have an associated type, and the type must match
 the type of the variable.

 	That is, the channel and the variable must be in the same
 scope.

 	read blocks until input is available on the channel

 	write
 keyboard ! duh
keyboard <- duh

 	writes the value of the variable duh into the channel
 keyboard

 	write does not block

 	Thus, a read/write pair guarantess that read in the reading process
 occurs simultaneously with or after the corresponding write in the
 writing process.

The communication primitives require something new, called a channel.

CHAN OF CHAR keyboard
keyboard chan char

 	A channel is a first in/first out silo.

 	Each channel has a protocol that states the type that messages it
 handles must have.

 	Knowing the name of a channel is essential for using it.

 	Applications control who can be on the other end of a channel,
 which is essential for security, by controlling who knows the name of
 the channel.

The Transputer

Use many co-operating, medium capability microCPUs to do a big job.

 	An idea whose time has now come.

 	Google

Problem is communication

 	Big granularity (thick client: MS, Google)

 	minimizes communication

 	maximizes replicated data

 	The Google approach:

 	an opportunity nobody thought about

 	a problem nobody thought about.

 	Small granularity

 	minimizes replicated data

 	maximizes communication

 	Your system, like threading solutions, relies on shared memory for
 communication

 	The return of the FORTRAN common block

 	How would you handle caching?

Communication requires either

 	a common bus, star topology

 	system bus (= shared memory)

 	LAN

 	a common channel, over which users pass messages in real-time

 	wasteful of bandwidth

 	analogue telephony

 	passing messages along

 	emphasizes the switches (bridges) that connect common buses

 	really more like a hybrid, which is classified differently based on
 the level of abstraction.

What about real-time?

 	lots of timer (countup) hardware

 	interaction of countdown and countup to make your clock server

 	Instances of timers are not guaranteed to be synchronized

 	How could two timers be synchronized?

The transputer was an early, now vanished, example of a real-time system
based on plentiful small granularity communication. Your kernel is another
example.

 	Your kernel: communication based on shared memory, which is easy to
 program, hard to make secure.

 	The transputer: communication based on switch mediated packets, which
 is hard to program, easy to make secure.

Transputer hardware

 	CPU, memory, switch on one chip

 	chips connected in an array

 	presumably a run-time system decides where tasks will go in order to

 	maximize CPU throughput

 	minimize communication overhead

Occam 2

Basic idea

 	processes (tasks)

 	may be named, take arguments and return values

 	may be combined

 	CSP channels

 	time

Combining processes

 	sequential

 	conditional

 	if/then

 	selection by case

 	looping

 	without test/break

 	with test/break

 	parallel

 	initiated when the keyword PAR occurs.

 	alternation

 	guarded alternatives

 	if more than one guard is true then select at random

 	can be prioritized

Time

 	timer returns time as channel input
 clock ? now

 	AFTER can be used to combine times, because there is a
 total order based on time
 IF now AFTER yesterday THEN

 	AFTER can make timer input blocking
 clock ? AFTER tomorrow

Can you Build a Server with Type-Checking?

Outer
Scope
|
| CHAN OF REQUEST request
|
| Server
| Scope
| |
| | REQUEST sreq
| | CHAN OF REPLY srep
| |
| | request ? sreq
| | srep := sreq.reply
| |
| | srep ! sresult
| |
| |
| |
| Client
| Scope
| |
| | REQUEST creq
| | CHAN OF REPLY crep
| |
| | creq.reply := crep
| | request ! creq
| |
| | crep ? cresult
| |

The Result

You can write a type-safe server, BUT

 	all possible clients must be in the same scope in order to get static
 type checking

 	with dynamic, structural type checking you only need to have the tasks
 written in languages having the same type system

BUT

with this structure excessive code in the client weakens synchronization,
which might not be what you want.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 32 - Communicating Sequential Processes (CSP)

Public Service Annoucements

 	Final exam date: 9.00 August 7 to 11.30 August 9

 	Final demos: 26 August & 27 August

 	25 August

 	Groups demoing on the 27th leave the lab at 13.00

 	26 August

 	Code freeze at 9.00

 	Demos start at 9.30

 	30 minutes in length

 	Demos end at 13.00, groups demoing on the 27th re-enter the
 lab

 	27 August

 	Code freeze at 9.00

 	Demos start at 9.30

 	30 minutes in length

 	Demos end at 13.00

 	Noticed at the Milestone 2 demos

 	Conservative reservations did best

 	They make corner cases not exist

 	But they inhibit performance: we saw system lock-up with two
 trains.

 	My impression:

 	every group had something close to staggering

 	a few groups had robust implementations, not necessarily
 complete

 	One robust implementation had many terminal-controllable
 parameters

 	Only one group -- of the ones we asked -- had a small idle task
 execution time fraction, ~ 50%, and they were having performance
 problems.

 	Following, first on a big loop, then on a small one, is a good test
 of reservations.

 	We liked ones that adjusted to go at the best speed.

 	This is a symptom of being ables to run more trains without
 lock-up

Can Message Passing be Made Type Safe?

Dynamically

Yes, even including type extension and polymorphism, but

 	What does the program do when it detects a type mismatch?

 	Well, it could send a more informative error message before it
 dies.

Statically

No,

 	Structured programming depends critically on well-defined scope.

 	While tasks are scoped internally, there is no inter-task scoping.

 	In fact, we are happy to be free of scoping, because it allows us to
 try out a wider variety of program structures.

CSP

To formal methods people CSP is a calculus for reasoning about the
correctness of multi-process/threaded/tasking (MPTT) systems. Active research
has been ongoing for forty years with several goals

 	translating other synchronization/communication semantics to and from
 CSP

 	finding new methods for reasoning about CSP

 	scaling everything to make CSP useful for production sized programs

 	During that time many a chicken has left its tracks on the pages of
 formal methods journals and conference proceedings!

For programmers the claim has been and is made that CSP provides a
superior method for structuring MPTT systems. (`Superior' in the sense of
`easier to design, implement and understand'.)

 	The claim was first made in the late 1970s/early 1980s.

 	It was made again in the early 1990s, this time with the weight of Bell
 Labs behind it.

 	And has been made yet again in the last few years, this time with the
 weight of Goggle behind it.

Primitives

In CSP there are two communication primitives. In the notation of occam
2/Go, they are

 	read
 keyboard ? ch
ch = <- keyboard

 	reads from an input channel called keyboard and
 assigns what it reads to the variable ch

 	the channel must have an associated type, and the type must match
 the type of the variable.

 	That is, the channel and the variable must be in the same
 scope.

 	read blocks until input is available on the channel

 	write
 keyboard ! duh
keyboard <- duh

 	writes the value of the variable duh into the channel
 keyboard

 	blocks until the

 	Thus, a read/write pair guarantess that read in the reading process
 occurs simultaneously with or after the corresponding write in the
 writing process.

There is also a creation primitive

 	occam -- PAR

 	no shared memory: costly

 	Go -- go

 	shared memory: cheap

The communication primitives require something new, called a channel.

CHAN OF CHAR keyboard
keyboard chan char

 	Each channel has a protocol that states the type that messages it
 handles must have.

 	Knowing the name of a channel is essential for using it.

 	Applications control who can be on the other end of a channel,
 which is essential for security, by controlling who knows the name of
 the channel.

The Grandfather -- the Transputer -- and the Grandson -- Go

Use many co-operating, medium capability microCPUs to do a big job.

 	An idea whose time has now come, again.

 	Google

Problem is communication

 	Big granularity (thick client: MS, Google)

 	minimizes communication

 	maximizes replicated data

 	The Google approach:

 	an opportunity nobody thought about

 	a problem nobody thought about.

 	Small granularity

 	minimizes replicated data

 	maximizes communication

 	Your system, like threading solutions, relies on shared memory for
 communication

 	How would you handle caching?

Transputer hardware

The transputer was an early, now vanished, example of a real-time system
based on plentiful small granularity communication. Your kernel is another
example.

 	Your kernel: communication based on memory that is universally
 accessible by the kernel, which is easy to program, hard to make
 secure.

 	The transputer: communication based on switch mediated packets, which
 is hard to program, easy to make secure.

The transputer itself

 	CPU, memory, switch on one chip

 	chips connected in an array

 	presumably a run-time system decides where tasks will go in order to

 	maximize CPU throughput

 	minimize communication overhead

 	can be, and usually was, taken over by the programmer.

What about real-time?

 	lots of timer (countup) hardware

 	interaction of countdown and countup to make your clock server

 	Instances of timers are not guaranteed to be synchronized

 	How could two timers be synchronized?

Google (data centre) hardware

Many single board (including disk) computers

 	Communicate by high speed ethernet

Software

Farmer with clients & worker

Occam2

FOREVER
 ALT
 from.client ? request && workerfree
 SEQ
 workerfree = false
 to.worker ! request
 from.worker ? result
 SEQ
 workerfree = true
 to.client ! result

Go

FOREVER {
 select {
 case request <- from.client && workerfree
 workerfree = false
 request.data -> to.worker
 case result <- from.worker
 result -> request.chan
 {
}
case result <- from.worker

Timing out

Occam2

PAR
 SEQ
 sleep(delay)
 timeout ! true
 ALT
 in.data ? data
 // respond to data
 timeout ? now
 // data timed out

Go

timeout := make(chan bool)
go func() {
 time.Sleep(delay)
 timeout <- true
}()
select {
case <- ch:
 // data available
case <- timeout:
 // read timed out
}

Basic idea

 	processes (tasks)

 	may be named, take arguments and return values

 	may be combined

 	CSP channels

 	time

Combining processes

 	sequential

 	conditional

 	if/then

 	selection by case

 	looping

 	without test/break

 	with test/break

 	parallel

 	initiated when the keyword PAR occurs.

 	alternation

 	guarded alternatives

 	if more than one guard is true then select at random

 	can be prioritized

Time

 	timer returns time as channel input
 clock ? now

 	AFTER can be used to combine times, because there is a
 total order based on time
 IF now AFTER yesterday THEN

 	AFTER can make timer input blocking
 clock ? AFTER tomorrow

Can you Build a Server with Type-Checking?

Outer
Scope
|
| CHAN OF REQUEST request
|
| Server
| Scope
| |
| | REQUEST sreq
| | CHAN OF REPLY srep
| |
| | request ? sreq
| | srep := sreq.reply
| |
| | srep ! sresult
| |
| |
| |
| Client
| Scope
| |
| | REQUEST creq
| | CHAN OF REPLY crep
| |
| | creq.reply := crep
| | request ! creq
| |
| | crep ? cresult
| |

The Result

You can write a type-safe server, BUT

 	all possible clients must be in the same scope in order to get static
 type checking

 	with dynamic, structural type checking you only need to have the tasks
 written in languages having the same type system

BUT

with this structure excessive code in the client weakens synchronization,
which might not be what you want.

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

Lecture 33 - Cyclic Execution

Public Service Annoucements

 	Final exam date: 9.00 August 7 to 11.30 August 9

 	Final demos: 26 August & 27 August

 	25 August

 	Groups demoing on the 27th leave the lab at 13.00

 	26 August

 	Code freeze at 9.00

 	Demos start at 9.30

 	30 minutes in length

 	Demos end at 14.00, groups demoing on the 27th re-enter the
 lab

 	27 August

 	Code freeze at 9.00

 	Demos start at 9.30

 	30 minutes in length

 	Demos end at 14.00

Software

Server with clients & a worker

Occam2

FOREVER
 ALT
 from.client ? request && workerfree
 SEQ
 workerfree = false
 to.worker ! request
 from.worker ? result
 SEQ
 workerfree = true
 to.client ! result

Go

FOREVER {
 select {
 case request <- from.client && workerfree
 workerfree = false
 request.data -> to.worker
 case result <- from.worker
 result -> request.chan
 {
}

Timing out

Occam2

PAR
 SEQ
 sleep(delay)
 timeout ! true
 ALT
 in.data ? data
 // respond to data
 timeout ? now
 // data timed out

Go

timeout := make(chan bool)
go func() {
 time.Sleep(delay)
 timeout <- true
}()
select {
case <- ch:
 // data available
case <- timeout:
 // read timed out
}

Cyclic Execution

Voyageur

In continuous operation for 34 years, 10 months, 7 days.

It was designed to have a three-year lifetime!

Computer

6000 word instruction and scratch data memory

62,500 Kbyte digital tape recorder for storage of sensor data

System Software

Cyclic executive

Cyclic Execution

 	Clock ticks

 	Starts executing, in priority order, programs that are ready to
 run.

 	At end of programs, wait until the clock ticks, then go to 2.

 	If clock ticks before end of programs, then report fault to earth and
 go to 2.

 	Cycle can be interrupted by receiving input from earth that tells it to
 jump to boot mode.

 	Checking for input from earth is one of the programs that is
 run.

 	Boot mode often entails loading a new program from earth. (At
 present loading takes many hours, and hours is getting close to days.
 Aren't you lucky!)

This is an abstract description: with so little memory it is essential to
squeeze out every word.

Most of the programs have the form

 	If input from X, then do A.

We are back at the beginning of the course, but we know much more now.

Real-time Scheduling

Much real-time computing operates in an environment like the space
shuttle

 	Groups of sensors that are polled with fixed periodicities, not
 necessarily

 	Sensor input triggers tasks which also run with the periodicity of the
 sensor

Typical example, a group of sensors that returns

 	the rotational speed of the wheels, and

 	the exhaust mixture, and

 	the torque, and

 	the state of the controls, and ...

and a set of tasks that

 	updates the engine parameters, such as combustion mixture, and

 	updates the transmission parameters, such as shift speeds, and

 	passes information to the instrument controller,

 	and ...

Each time a sensor returns a new datum a scheduler runs

 	makes ready any task that the data makes ready to run

 	decides which of the ready tasks to schedule, and

 	starts it running.

Your kernel can handle problems like this one pretty efficiently,

 	but you can do better.

Cyclic Execution

Let's make a finite schedule that repeats

 A A
 AC BA A C A A C A A B CA A C A AC B A A C A A C A B
 | | | |
 | | | | | | | |
__ time

If the times are integers the pattern repeats after a while.

 	The total amount of thinking you have to do is finite.

 	The thinking you do is inserting into the schedule the amount of
 processing that needs to be done

 	worst case

 	Work it all out so that nothing collides.

 	using heuristics, no doubt

Make it a little easier

 	Make the complete pattern short by making sensor periods multiples of
 one another. If you can control sensor periods.

 	Underlying clock.

 	sensor i is read once every ni ticks.

 	Master cycle is LCM(n1, n2, n3, ...) in length

 	Schedule the master cycle by hand (= by brain)

 	Standardize the processing at each point

 	Minimize the interaction between tasks

 	If the tasks won't fit in adjust the complete sensor/program
 system.

Make it easier yet

Prove some theorems, such as Liu
& Layland. The essence of the theorems is

 	The critical moment, which is guaranteed to exist,
 occurs when all three tasks are scheduled at once.

 	If you choose task priorities so that the most frequently scheduled
 task has the highest priority, then,

 	if there exists a schedule that meets all deadlines, then

 	your choice of task priorities meets all deadlines

Your project

If your project is correct, but resource limited, the critical instant for
the limiting resource is the place where your project fails. For example.

 	If your project is CPU limited, it's the point where the maximum
 computation must be done before the CPU can get back to do the most
 important new thing.

 	If you project is train communication bandwidth limited, then it's the
 point at which all curent users of bandwidth want to communicate at
 once.

Small form-factor computing

In 1977, when Voyageou was launched, computation was expensive, so the
action in computation was in big expensive things. Now computation is cheap,
and the action is in small inexpensive things. Think about how a mobile
telephone works.

 	It has housekeeping functions that must be done regularly, things like

 	telling the nearest ground station that it's ready to receive a
 call

 	updating the clock

 	refreshing the memory

 	When you are making a phone call, there are phone call functions that
 must be done regularly

 	collecting packets of audio from the antenna

 	doing signal conditioning on the digital audio they contain.

 	putting the digital audio into data buffers from which they will be
 send to the speaker.

 	analogous things that intervene between the microphone and the
 antenna.

When you want to play a game, consult your calendar, browse the internet,
etc you desire asynchronous response from the phone

 	It should slow down, not collapse, when you load it too heavily.

 	The easy way to do this.

 	Put all of the regular functions into a cyclic executive, carefully
 analysing the run-time of each to make certain that everything will
 always get done on time.

 	In almost every cycle there is some time left over. In this time
 run an asynchronous OS that supports non-critical but still real-time
 features such as

 	managing the UI

 	texting

 	game playing

 	internet browsing

 	whatever else you can find at the app store.

 This is the kind of thing that your kernel can do well.

 	The definition of `non-critical' depends on the capabilities of the
 user. For example,

 	if a UI slows a little the user easily slows his or her
 reactions to accomodate

 	but if the sound drops out for a second in the middle of a word
 the user cannot pause his hearing in order to put the two halves
 of the word together

This sounds easy. Why is it hard in practice?

 	It's necessary to share resources.

 	hardware, such as memory and I/O

 	software, such as data structures

 and battery life-time is what sells mobile phones

 	so resources are limited

 	In particular, from the asynchro9nous UI the user starts functions,
 like phone calls, that are synchronous.

 	Synchronous/asynchronous communication is hard to accomplish while
 meeting tight real-time constraints.

 	Code must cross a synchronous/asynchronous boundary

Even more tricky, you have to handle foreign code, like apps.

 	Deciding whether it's safe to include a new activity in the schedule,
 which is called admission control, requires knowing its
 performance characteristics.

 	You can comfortably put your own code into the schedule because you
 trust the performace characteristics you received with it.

 	Foreign code, which means code produced elsewhere, is not
 trustworthy.

 	How can you include it in the schedule?

Take advantage of real-time being defined in human terms.

 	If its reported performance characteristics are good enough install
 it.

 	If it violates its performance characteristics during the first 100
 milliseconds, then

 	it's probably incompetent. Reject it and tell the user why.

 	This looks real-time to the user.

 	If it violates its performance characteristics later,

 	it could be malicious

All you need is code that handles over-runs in the cyclic exective without
missing deadlines!

Return to:

 	Bill Cowan's lecture notes for CS452 in
 s12

 	Bill Cowan's Spring 2012 CS452 page

 	Bill Cowan's CS452 page

 	Bill Cowan's teaching page

 	Bill Cowan's home page

