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Lecture 1 - Introduction


Pubilc Service Annoucements


  	Due date for assignment 0/1

  	Combination to trains lab

  	Ubuntu 10.10

  	How to compile and run your first
  program






Practical Details: pdf







Embedded Systems


Most of the mediation between the internal representations and the
real-world is done by embedded systems


  	invisible computing

  	sense and control

  	billions and billions sold




Development Model


Two box model


  	develop on one box

  	execute on a different box.




Development cycle


  	edit & compile on one box

  	download to second box

  	execute




Problem one


  	raw code that owns the hardware itself

  	hardware-specific libraries provide access to hardware 
    
      	microcontroller/hopper example

    

  




Problem two


  	OS-like abstraction of hardware

  	looks like a bunch of libraries, plus a little more.









What is real-time programming?


Actually real-world programming, which means


  	World is measured in seconds, metres, etc.

  	Programs manipulate bits, bytes, words, which must be translated into
    into real-world measures.

    For example, 
    
      	formatted output: translate from int, which computers manipulate,
        to decimal, which humans read 
        
          	out in the open: i2a( ), printf( )

          	hidden: print, cout

        

      

      	Banking: int translates into, e.g., number of cents 
        
          	program says dispense( 10000 ), which means `put five twemties
            into the hopper'.

          	microcontrollers start 
            
              	activating motors

              	sensing forces

              	reading digitized video

              	etc.

            

          

        

      

      	Train control: contents of messages map into change speed, switch
        turn-out, sensor triggered

    

  




What is important for real-time?


  	Throughput 
    
      	e.g., number of frames per second in a game

      	e.g., frequency of sensor sampling in process control

      	no solution except 
        
          	getting better hardware

          	getting better algorithms

          	restructuring the task

        

      

    

  

  	Response time 
    
      	e.g., time from button press to gun firing in game

      	e.g., time from sensor reading to control code executing in provess
        control

      	several programming techniques exist 
        
          	busy-wait

          	polling loop

        

        tension between flexibility and performance

      

    

  




In cs452 we take guaranteed response time as the defining quality of
real-time computation.




Serial I/O


Uses a device called a UART,


  	which is really just two shift registers

  	with a one byte buffer in front of each one

  	plus one bit in a control register for each. They mean 
    
      	read: there's a byte you haven't read yet

      	write: the buffer is empty, you can write

    

  






Busy Waiting


This is used to synchronize with an external event, minimizing response
time.

#define FOREVER for( ; ; )
FOREVER {
   while( !ready( ) ) ;
   do-it( );
}


or in another form

FOREVER {
   if ( ready( ) ) do-it( );
}


Sometimes you only want to do the thing once, as you do when putting a
character on a serial line.

#define UART1_BASE        0x808c0000
#define UART_DATA_OFFSET        0x00    // low 8 bits
#define UART_FLAG_OFFSET        0x18    // low 8 bits
#define TXFF_MASK               0x20    // Transmit buffer full

        flags = (int *)( UART1_BASE + UART_FLAG_OFFSET );
        data = (int *)( UART1_BASE + UART_DATA_OFFSET );
        while( ( *flags & TXFF_MASK ) ) ;
        *data = c;


Worst case response time


From the time that the ready bit sets until the first instruction of do-it
is executed


  	execution time for 
    while( !ready ) ;
do-it;

  

  	Even a moderately optimizing compiler will produce good machine code.
    Something like 
    ready:
  ldb  r0, STATUS-ADDRESS
  and  r0, r0, READY-BIT
  beq  _ready
do-it:
  ldb r0, DATA-ADDRESS
    

    Here do-it is acquiring a single byte from interface hardware when the
    status register indicates that valid data is available in the dara
    register.

  

  	Worst case response time is the execution of and,
    beq, ldb, and and
  beq

  	Normally code like this would be inside a loop, acquiring one byte
    after another until no more are available.




The problem with busy-waiting


What if the CPU has to two things at once?


E.g.,


  	collect bytes coming in a serial port

  	maintain a clock




Unless the rate of bytes coming in and rate of clock ticks are
identical


you are guaranteed to lose something sooner or later.




Return to:


  	Bill Cowan's lecture notes for CS452 in
  s12

  	Bill Cowan's Spring 2012 CS452 page

  	Bill Cowan's CS452 page

  	Bill Cowan's teaching page

  	Bill Cowan's home page







Lecture 2 - Polling Loops


Pubilc Service Annoucements


  	Due date for assignment 0

  	Ubuntu 10.10

  	How to compile and run your first
  program

  	Caches, optimization, clock speed, FIFOs

  	Libraries: memcpy in particular

  	






Practical Details: pdf


What is real-time programming?


Actually real-world programming, which means


  	World is measured in seconds, metres, etc.

  	Programs manipulate bits, bytes, words, which must be translated into
    into real-world measures.

    For example, 
    
      	formatted output: translate from int, which computers manipulate,
        to decimal, which humans read 
        
          	out in the open: i2a( ), printf( )

          	hidden: print, cout

        

      

      	Banking: int translates into, e.g., number of cents 
        
          	program says dispense( 10000 ), which means `put five twenties
            into the hopper'.

          	microcontrollers start 
            
              	activating motors

              	sensing forces

              	reading digitized video

              	etc.

            

          

        

      

      	Train control: contents of messages map, sometimes indirectly, into
        changes in speed of trains, state changes (turn-outs, train
        locations), sensor reports.

    

  




What is important for real-time?


  	Throughput 
    
      	e.g., number of frames per second in a game

      	e.g., frequency of sensor sampling in process control

      	no solution except 
        
          	getting better hardware

          	getting better algorithms

          	restructuring the task

        

      

    

  

  	Response time 
    
      	e.g., time from button press to gun firing in game

      	e.g., time from sensor reading to control code executing in process
        control

      	several programming techniques exist 
        
          	busy-wait

          	polling loop

        

        tension between flexibility and performance

      

    

  




In cs452 we take guaranteed response time as the defining quality of
real-time computation.




Timers


How does one keep time in a computer?


  	crystal oscillator in a phase-locked loop

  	interrupts from a timer

  	ntp




Polling Loops


Busy Waiting


This is used to synchronize with an external event, minimizing response
time.

#define FOREVER for( ; ; )
FOREVER {
   while( !ready( ) ) ;
   do-it( );
}


or in another form

FOREVER {
   if ( ready( ) ) do-it( );
}


Sometimes you only want to do the thing once, as you do when putting a
character on a serial line.

#define UART1_BASE        0x808c0000
#define UART_DATA_OFFSET        0x00    // low 8 bits
#define UART_FLAG_OFFSET        0x18    // low 8 bits
#define TXFF_MASK               0x20    // Transmit buffer full

        flags = (int *)( UART1_BASE + UART_FLAG_OFFSET );
        data = (int *)( UART1_BASE + UART_DATA_OFFSET );
        while( ( *flags & TXFF_MASK ) ) ;
        *data = c;


Note. The volatile keyword.


Worst case response time


From the time that the ready bit sets until the first instruction of do-it
is executed


  	execution time for 
    while( !ready ) ;
do-it;

  

  	Even a moderately optimizing compiler will produce good machine code.
    Something like 
    ready:
  ldb  r0, STATUS-ADDRESS
  and  r0, r0, READY-BIT
  beq  _ready
do-it:
  ldb r0, DATA-ADDRESS
    

    Here do-it is acquiring a single byte from interface hardware when the
    status register indicates that valid data is available in the dara
    register.

  

  	Worst case response time is the execution of and,
    beq, ldb, and and
  beq

  	Normally code like this would be inside a loop, acquiring one byte
    after another until no more are available.




The problem with busy-waiting


What if the CPU has to two things at once?


E.g.,


  	collect bytes coming in a serial port

  	maintain a clock




Unless the rate of bytes coming in and rate of clock ticks are
identical


  	you are guaranteed to lose something sooner or later.




Polling Loops


Polling loops allow you to manage more than one condition/activity pair at
the same time.


The basic polling loop

FOREVER {
  if( c1 ) a1;
  if( c2 ) a2;
  ...
  if( cN ) aN;
}


Worst case response time


  	sum over n of {execution time of if( c<n> ) +
    execution time of a<n>}




What you put into an action matters a lot.


Suppose you put busy-wait I/O to the train controller into an action


Will you catch it in your testing?


  	Probably not.




Testing more than once


Suppose you want a better response time for a1. Then try the loop

FOREVER {
  if( c1 ) a1;
  if( c2 ) a2;
  if( c1 ) a1;
  if( c3 ) a3;
  ...
  if( c1 ) a1;
  if( cN ) aN;
}


Worst case response time for a1


  	execution time for if( c1 ) + maximum over n of execution
    time for if( cn ) an




Breaking into pieces


Suppose the response time is still too long, because the execution of one
action, say a2, is too long. Then you can break a2 into two parts

FOREVER {
  if( c1 ) a1;
  if( c2 ) { a2.1; half-done = TRUE; }
  if( c1 ) a1;
  if( half-done ) { a2.2; half-done = FALSE; }
  ...
}


This is strarting to get a little complicated and we haven't said anything
about inter-action communication




Return to:


  	Bill Cowan's lecture notes for CS452 in
  s12

  	Bill Cowan's Spring 2012 CS452 page

  	Bill Cowan's CS452 page

  	Bill Cowan's teaching page

  	Bill Cowan's home page







Lecture 3 - Timers, I/O, Pitfalls


Pubilc Service Annoucements


  	Due date for assignment 0

  	Caches, optimization, clock speed, FIFOs

  	Libraries: memcpy in particular

  	Some clean-up needed in course account






The Hardware/Software Provided


Provided and maintained by CSCF


  	Linux systems 
    
      	cross compiler: runs on 86_64, produces code for ARM

      	GNU toolchain: compiler, assembler, link editor 
        
          	You will notice that my makefile separates 
            
              	compilation to assembly code,

              	assembling the assembly code, and

              	link editing.

            

          

        

      

      	need to login explicitly to linux.student.cs

    

  

  	TFTP servers 
    
      	need to type IP number explicitly

    

  




TS-7200


Specific documentation from Technologic


System on Chip (SoC)


EP9302, designed and manufactured by Cirrus semiconductor


Memory


Byte addressable, word size 32 bits


  	32 Mbytes of RAM, starting at 0x00000000

  	4 Mbytes of flash RAM, starting at 0x60000000 
    
      	Contains RedBoot, which is loaded into RAM at startup

    

  

  	Special locations at low addresses

  	Special locations above 0x80000000

    Two types of special location
    
      	Supplied by Technologic: 0x80840000 to
        0x80840047

      	Suppied by Cirrus:
        
          	0x80010000 to 0x8081ffff

          	0x808a0000 to 0x80900023

        

      

    

  




Separate instruction and data caches


`COM' ports


Connected to UARTs


  	RS-232

  	Actual UART hardware is on the EP9302




Only really two


Ethernet port


Busy wait ethernet code in RedBoot


  	used by loader to execute TFTP protocol

  	used by RedBoot, which was customized by Technologic and installed in
    the Flash RAM




Reset switch


  	red, even though documentation says black

  	actually, some are black




EP-9302


Specific documentation from Cirrus


System on chip


  	ARM 920T core, implementing ARM v4T instruction set
    
      	Specific documentation from ARM

    

  

  	Two co-processors 
    
      	System controller, MMU
        
          	ARM documentation

        

      

      	Maverick Crunch floating point unit
        
          	Cirrus documentation

        

      

    

  

  	Two interrupt controllers
    
      	Both ARM and Cirrus documentation

      	An ARM-designed part, the PL-190

    

  

  	Peripherals 
    
      	UARTs

      	Timers

      	DIO

      	A/D

      	etc.

    

  




Software


Compiler


GNU tool chain


  	when you are getting started optimizing is usually a bad idea

  	software multiplication, division, floating point from libgcc.a

  	gcc uses a couple of functions like memcpy

  	Makefile

  	target.ld




RedBoot


Partial implementation


  	fconfig :: NOT

  	load (tftp)

  	examine, copy, fill memory




Returns when program terminates


Busy-wait IO


COM2 uses monitor; COM1 goes to train


  	initialization

  	output

  	input






Timers


How does one keep time in a computer?


  	crystal oscillator

  	interrupts from a timer

  	ntp




Timers normally count down


You interact with the timer through three registers


  	register to load the timer

  	register to read the timer

  	register to command the timer




Timers available in the EP9302.


  	Two sixteen bit

  	One thirty-two bit

  	One forty bit

  	One watch-dog






Polling Loops


Polling loops allow you to manage more than one condition/activity pair at
the same time.


The basic polling loop

FOREVER {
  if( c1 ) a1;
  if( c2 ) a2;
  ...
  if( cN ) aN;
}


A Few Comments


Shallow computation





Worst case response time


  	sum over n of {execution time of if( c<n> ) +
    execution time of a<n>}




What you put into an action matters a lot.


Suppose you put busy-wait I/O to the train controller into an action


Will you catch it in your testing?


  	Probably not.




When you Miss Deadlines


Testing more than once


Suppose you want a better response time for a1. Then try the loop

FOREVER {
  if( c1 ) a1;
  if( c2 ) a2;
  if( c1 ) a1;
  if( c3 ) a3;
  ...
  if( c1 ) a1;
  if( cN ) aN;
}


Worst case response time for a1


  	execution time for if( c1 ) + maximum over n of execution
    time for if( cn ) an




Breaking into pieces


Suppose the response time is still too long, because the execution of one
action, say a2, is too long. Then you can break a2 into two parts

FOREVER {
  if( c1 ) a1;
  if( c2 ) { a2.1; half-done = TRUE; }
  if( c1 ) a1;
  if( half-done ) { a2.2; half-done = FALSE; }
  ...
}


This is strarting to get a little complicated and we haven't said anything
about inter-action communication




Return to:


  	Bill Cowan's lecture notes for CS452 in
  s12

  	Bill Cowan's Spring 2012 CS452 page

  	Bill Cowan's CS452 page

  	Bill Cowan's teaching page

  	Bill Cowan's home page







Lecture 4 - Tasks & Kernels


Pubilc Service Annoucements


  	Due date for assignment 0

  	Some clean-up needed in course account, cleaned up course
  introduction.

  	RTS/CTS
    
      	The train controller asserts RTS when its UART is ready to receive
        a byte.

      	RTS is connected to the ARM UART's CTS bit.

      	You check the modem status register

      	You transmit a byte to the train controller only when CTS is
        asserted

      	You do not transmit when CTS is negated.

    

  

  	News group: uw.cs.cs452.

  	Course email account: cs452@cgl.uwaterloo.ca

  	Documentation expected for assignment 0

  	Partners






Kernel of a Real-time Operating System


Introduction


The base unit of a polling loop is


  	if ( condition ) action;

  




Think of action as the performance of a task, such as washing
dishes. Think of condition as a signal from outside that tells
you it's time to perform the task.


Actions are not independent of one another: washing dishes requires hot
water, dish soap, etc., which are provided by other actions. Communication is
needed.


Thus tasks need some support.


  	the ability to execute instructions
    
      	code with the pc pointing into it

      	state, in the form of memory

    

  

  	the ability to communicate with one another
    
      	pass data

      	synchronization

    

  

  	the ability to receive information from the real world
    
      	provide data

      	possibly nothing but symchronization

    

  




These basic needs are provided by the kernel of an operating system. The
kernel we create in cs452 is a microkernel, because it provides these
capabilities and nothing more.


We build the microkernel in four assignments


  	task creation and scheduling

  	inter-task communication

  	an interrupt primitive

  	complex servers






Microkernels


The real-time operating system we build consists of


  	an uninterruptible microkernel, plus

  	interruptible device-handling server tasks that run in user-space with
    permissions allowing them to access hardware.




What Does a Microkernel Provide?


Tasks


  	Program is conceived as a collection of co-operating tasks

  	Provide applications with modularity. Task structure as a method of
    program organization is discussed about the time you are finishing the
  OS.

  	Consist of 
    
      	instructions, common to all tasks of the same kind,

      	global constants, such as strings used for
        formatting messages, and

      	local state, different state in different tasks of the same kind,
        which requires a separate block of memory for each instantiation of a
        task..

    

  

  	How tasks work together 
    
      	synchronization

      	communication

      	combined into one mechanism: message passing

    

  

  	Why are tasks important? 
    
      	Thinking about one thing at a time is easy. 
        
          	Think about the options you expect to have after you
          graduate.

        

      

      	Thinking about more than one thing at a time is hard. 
        
          	Keep on thinking, and at the same time listen to me talking
            about tasks

          	Parenthetical remark. While walking you may have been talking
            to somebody, or thinking about something. You did both
            effortlessly. How?

        

      

      	Thinking about more than one thing at a time, in real-time, is very
        hard 
        
          	Think about turning the wheel, peddling and balancing while
            learning to ride a bicycle

          	How did you learn to coordinate all these activities in
            real-time?

        

      

      	Tasks allow a programmer to produce each component of a activity
        into a sequential set of instructions that includes communication
        with other tasks..

    

  




Communication


Communication has two aspects


  	sharing information, requesting service

  	synchronization




We use Send/Receive/Reply (SRR) to do both.


  	Send blocks

  	Receive blocks: is synchronous with the call to send

  	Reply doesn't block: is synchronous with the return from send




Synchronization


  	Between tasks 
    
      	Coordination of execution in co-operating tasks

      	Uses SRR

    

  

  	With internal events 
    
      	Real-time by synchronizing with a real-time clock: e.g. clock
      server

      	Ordering execution: e.g. name server, bounded buffer

      	Uses SRR

    

  

  	With external events 
    
      	interrupts

    

  




Interrupts


Input from the outside world


  	Provide the information you polled for

  	ISR OS design, which is essentially a jump table, which separates
    testing from acting 
    interrupt entry point:
    calculate action_entry_point;
    jump to act_entry_point;
entry_point1:
    action1;
entry_point2:
    action2;
...
entry_pointn:
    actionn;

    These are the same actions you implemented in your polling loop,

    
      	and the have all the same problems.

      	Somthing to think about 
        
          	Polling loop was single-threaded 
            
              	You were guaranteed not to be in the middle of a
                computation when you got the signal to start another one.

              	ISRs are not necessarily single-threaded

              	You could get back the polling loop by turning off
                interrupts during the action.

            

          

          	No hierarchy of importance among ISRs 
            
              	Polling loop hierarchy was in the polling structure

              	Selective interrupt masking can reproduce the
              hierarchy,

              	But then you have to save state

            

          

        

      

    

  






Tasks


What is a task?


  	A set of instructions

  	Current state, which is changed by executing instructions, which
    includes 
    
      	values of its variables, which are automatic variables maintained
        on the stack

      	contents of its registers

      	other processor state such as the PSR 
        
          	processor mode

          	condition codes

          	etc.

        

      

      	its run state and other things maintained by the kernel

    

  




Two tasks can use the same set of instructions, but


  	every task has its own state

  	Therefore, no static variables




The kernel keeps track of every task's state


  	In essence, servicing a request amounts to changing the state of one or
    more tasks.

  	Kernel maintains a task descriptor (TD) for each created task.

  	That is, to create a task the kernel must allocate a TD and initialize
    it.




The TD normally contains


  	The task's stack pointer, which points to a private stack, in the
    memory of the task, containing 
    
      	PC

      	other registers

      	local variables

    

    all ready to be reloaded whenever the task next runs.

  

  	Possibly the return value for when the task is next activated

  	The task's parent

  	The task's state

  	Links to queues on which the task is located 
    
      	The kernel uses these to find the task when it is ervicing a
      request

    

  




Possible states of the task


  	Active: running or about to run 
    
      	On a single processor system only one task can ever be active.

      	But we would like to generalize smoothly to more than one
      processor.

    

  

  	Ready: can run if scheduled 
    
      	Need a queue used by the scheduler when deciding which task should
        be the next active task

    

  

  	Blocked: waiting for something to happen 
    
      	Need several queues, one for each thing that could happen

    

  






Kernel Structure


The kernel is just a function like any other, but which runs forever.

kernel( ) {
  initialize( );  // includes starting the first user task
  FOREVER {
    request = getNextRequest( );
    handle( request );
  }
}


Where is the OS?


  	requests come from running user tasks 
    
      	in essence system calls

    

  

  	one type of request creates a task 
    
      	There needs to be a first task that gets everything going

    

  









All the interesting stuff inside done by the kernel is hidden inside
getNextRequest.

int getNextRequest( ) {
  return activate( schedule( ) ); //the active task doesn't change
}


What's inside activate( active )?


  	transfer of control to the active task

  	execution to completion of the active task 
    
      	`to completion' means until the active task sends a request to the
        kernel

    

  

  	transfer of control back to the kernel

  	getting the request




The hard part to get right is `transfer of control'


  	which we call a context switch






Return to:


  	Bill Cowan's lecture notes for CS452 in
  s12

  	Bill Cowan's Spring 2012 CS452 page

  	Bill Cowan's CS452 page

  	Bill Cowan's teaching page

  	Bill Cowan's home page







Lecture 5 - Tasks & Kernels


Pubilc Service Annoucements


  	Due date for assignment 1

  	Partners






Kernel of a Real-time Operating System


Tasks


What is a task?


  	A set of instructions

  	Current state, which is changed by executing instructions, which
    includes 
    
      	values of its variables, which are automatic variables maintained
        on the stack

      	contents of its registers

      	other processor state such as the PSR 
        
          	processor mode

          	condition codes

          	etc.

        

      

      	its run state and other things maintained by the kernel

    

  




Two tasks can use the same set of instructions, but


  	every task has its own state

  	Therefore, no static variables




The kernel keeps track of every task's state


  	In essence, servicing a request amounts to changing the state of one or
    more tasks.

  	Kernel maintains a task descriptor (TD) for each created task.

  	That is, to create a task the kernel must allocate a TD and initialize
    it.




The TD normally contains


  	The task's stack pointer, which points to a private stack, in the
    memory of the task, containing 
    
      	PC

      	other registers

      	local variables

    

    all ready to be reloaded whenever the task next runs.

  

  	Possibly the return value for when the task is next activated

  	Possibly something to support a Destroy primitive

  	The task's state

  	Links to queues on which the task is located 
    
      	The kernel uses these to find the task when it is ervicing a
      request

    

  




Possible states of the task


  	Active: running or about to run 
    
      	On a single processor system only one task can ever be active.

      	But we would like to generalize smoothly to more than one
      processor.

    

  

  	Ready: can run if scheduled 
    
      	Need a queue used by the scheduler when deciding which task should
        be the next active task

    

  

  	Blocked: waiting for something to happen 
    
      	Need several queues, one for each thing that could happen

    

  

  	Zombie 
    
      	Undead, won't execute instructions, but retains its resources.

    

  






Kernel Structure


The kernel is just a function like any other, but which runs forever.

kernel( ) {
  initialize( );  // includes starting the first user task
  FOREVER {
    request = getNextRequest( );
    handle( request );
  }
}


Where is the OS?


  	requests come from running user tasks 
    
      	in essence system calls

    

  

  	one type of request creates a task 
    
      	There needs to be a first task that gets everything going

    

  









All the interesting stuff inside done by the kernel is hidden inside
getNextRequest.

int getNextRequest( ) {
  active = schedule( ... );
  return activate( active );


What's inside activate( active )?


  	transfer of control to the active task

  	execution to completion of the active task 
    
      	`to completion' means until the active task sends a request to the
        kernel

    

  

  	transfer of control back to the kernel

  	getting the request




The hard part to get right is `transfer of control'


  	which we call a context switch

  	Programming a context switch requires you to know the processor
    architecture






ARM 920T


What is it?


Two modes of labelling


  	By architecture (now up to v7) 

    
      
        
          	Architecture
          	Instruction 
            Set

          
          	Thumb 
            Instructions?

          
          	Multiply 
            Instruction

          
          	DSP 
            Instructions

          
          	Comments
        

        
          	ARMv1
          	1
          	no
          	no
          	no
          	Obsolete
        

        
          	ARMv2
          	2
          	no
          	no
          	no
          	Obsolete
        

        
          	ARMv3
          	3
          	no
          	no
          	no
          	
        

        
          	ARMv3M
          	3
          	no
          	yes
          	no
          	
        

        
          	ARMv4
          	4
          	no
          	yes
          	no
          	
        

        
          	ARMv4T
          	4
          	yes
          	yes
          	no
          	This is the one in the box.
        

        
          	ARMv5
          	5
          	no
          	yes
          	no
          	Has CLZ
        

        
          	ARMv5T
          	5
          	yes
          	yes
          	no
          	
        

        
          	ARMv5TE
          	5
          	yes
          	yes
          	yes
          	
        

      
    

    

    Thumb instructions are 16 bit, and accelerated.

    
      	They use the full 32 bits of the registers

      	They improve code density (less memory needed).

      	They effectively double the size of the instruction cache (fewer
        time-consuming cache misses).

    

  

  	By processor core 

    
      
      
        
          	Processor 
            Core

          
          	ARM 
            ISA

          
          	Thumb 
            ISA

          
          	Comments
        

        
          	ARM7TDMI
          	v4T
          	v1
          	Most of the ARM7xx processors
        

        
          	ARM9TDMI
          	v4T
          	v1
          	ARM[920|922|940]T: 

            920T is the one in the box. 
            `T' means includes thumb instructions

            `DMI' means direct memory interface

          
        

        
          	StrongARM
          	v4
          	n/a
          	Intel SA-110. Found in Compaq versions of IPAQ.
        

        
          	ARM9E
          	v5TE
          	v2
          	
        

        
          	ARM10E
          	v5TE
          	v2
          	
        

        
          	XScale
          	v5TE
          	v2
          	Manufactured by Intel. HP versions of IPAQ.
        

      
    

  







Features


  	16 32-bit registers 
    
      	r15, pc, special in the architecture

      	r14, lr, special in the architecture

      	r13, sp, special in the architecture

      	r12, ip, used by the compiler as a scratch register

      	r11, fp, used by the compiler as the frame pointer

      	r10, sl

      	r4 to r9

      	r0 to r3, used by the compiler as scratch registers, for function
        arguments and return value

    

    partially separate register sets different modes

    link register (lr), program counter (pc) are
    special, but not very special

  

  	Processor modes. In the table below `special' means that the mode has
    ia separate copy of the registers. 

    
      
      
        
          	M[4:0]
          	Mode
          	Registers accessible
        

        
          	10000
          	User
          	r0-r15

            cpsr
        

        
          	10001
          	FIQ (Fast interrupt processing)
          	r0-r7, r15

            r8_fiq-r14_fiq 
            cpsr, spsr_fiq

          
        

        
          	10010
          	IRQ (Interrupt processing)
          	r0-r12, r15

            r13_irq,r14_irq 
            cpsr, spsr_irq

          
        

        
          	10011
          	Supervisor
          	r0-r12, r15

            r13_svc,r14_svc 
            cpsr, sprs_svc

          
        

        
          	10111
          	Abort
          	r0-r12, r15

            r13_abt,r14_abt 
            cpsr, spsr_abt

          
        

        
          	11011
          	Undefined
          	r0-r12, r15

            r13_und,r14_und 
            cpsr, spsr_und

          
        

        
          	11111
          	System
          	r0-r15 
            cpsr

          
        

      
    

    

  

  	Program status register, which you will find in two places CPSR and
    SPSR 

    
      
      
        
          	Bit
          	Mnemonic
          	Meaning
        

        
          	31
          	N
          	Negative
        

        
          	30
          	Z
          	Zero
        

        
          	29
          	C
          	Carry
        

        
          	28
          	V
          	Overflow
        

        
          	8-27
          	DNM
          	Does not matter in v4
        

        
          	7
          	I
          	Interrupts disabled
        

        
          	6
          	F
          	Fast interrupts disabled
        

        
          	5
          	T
          	Thumb execution
        

        
          	4
          	M4
          	Five processor mode bits
        

        
          	3
          	M3
          	
        

        
          	2
          	M2
          	
        

        
          	1
          	M1
          	
        

        
          	0
          	M0
          	
        

      
    

    

  

  	Exceptions 

    
      
        
          	Exception 
            Type

          
          	Modes 
            Called from

          
          	Mode at 
            Completion

          
          	Instruction 
            Address

          
        

        
          	Reset
          	hardware
          	supervisor
          	0x00
        

        
          	Undefined instruction
          	any
          	undefined
          	0x04
        

        
          	Software interrupt
          	any
          	supervisor
          	0x08
        

        
          	Prefetch abort
          	any
          	abort
          	0x0c
        

        
          	Data abort
          	any
          	abort
          	0x10
        

        
          	Ordinary interrupt
          	any
          	IRQ
          	0x18
        

        
          	Fast interrupt
          	any
          	FIQ
          	0x1c
        

      
    

    

    
      	You are concerned right now with Reset and Software Interrupt.

      	The first instruction executed by the CPU after reset is the one at
        location 0x00000000. Usually it is 
            ldr  pc, [pc, #0x18] ; 0xe590f018 is the binary encoding

        which you will normally find in addresses 0x00 to
        0x1c. Just executing an instruction, rather than having
        an address that is specially processed saves transistors, which is
        good.

      

      	RedBoot puts entry points of RedBoot into addresses
        0x20 to 0x3c.This makes it possible to jump
        to any location in the 32 bit address space.

      	Note endianness of RedBoot output when examining these
      locations.

    

  

  	Three data types 
    
      	word: 32 bits, word-aligned

      	half-word: 16 bits, half-word-aligned

      	byte: 8 bits

    

  




General Comments


  	each instruction is exactly one word

  	load and store RISC architecture

  	rich set of addressing modes, based on barrel shifting

  	allows you to keep any partial computation it makes




Context Switch


Step-by-step


Function Call (gcc calling conventions)

; In calling code
                      ; store values of r0-r3
                      ; load arguments into r0-r3
   bl  <entry point>  ; this treats the pc and lr specially
                      ; lr <- pc, pc <- <entry point>
                      ; r0 has the return value
                      ; r1-r3 have useless junk

; In called code
entry point:
   mov     ip, sp
   stmdb   sp!, {fp, ip, lr} ; and usually others, 
                             ; determined by the registers the function uses
   ...
   ldmia   sp, {fp, sp, pc} ; and whatever others
                            ; exact inverse of stmdb


Note the role of the index pointer (ip), link register (lr) and stack
pointer (sp).


The final instruction could be

   ldmia   sp, {fp, sp, lr}
   mov     pc, lr


The sequence

   bl   junk
   .
   .
   .
junk:
   mov   pc, lr


is a NOP.


Software Interrupt


The software interrupt instruction ( SWI{cond} <immed_24> ). What
happens when it is executed?


  	r14_svc <- address of the following instruction. This is where the
    kernel will return to.

  	SPSR_svc <- CPSR. This saves the mode, condition codes, etc.

  	CPSR[0:4] <- 0b10011. Supervisor mode.

  	CPSR[5] <- 0. ARM (not Thumb) state.

  	CPSR[7] <- 1. Normal interrupts disabled.

  	PC <- 0x08




The CPU ignores the 24-bit immediate value, which can be used by the
programmer as an argument identifying the system call, for example.

; In calling code
                          ; Store r0-r3
                          ; Put arguments into r0-r3
                          ; 0x08 holds the kernel entry point
   swi  n                 ; n identifies which system call you are calling
                          ; retrieve return value from r0
                          ; r1-r3 have even more useless junk

; In kernel
kernel entry:
; Change to system mode
; Save user state on user stack
; Return to supervisor mode
   ldr    r4, [lr, #-4]    ; gets the request type
                           ; at this point you can get the arguments
                           ; Where are they?
; Retrieve kernel state from kernel stack
; Do kernel work


The sequence

   swi   n
   .
   .
   .
kernel entry:
   movs   pc, lr


is a NOP.


Questions:


  	What is above kernel entry?

  	If you put swi in a wrapper or stub what happens before and after
  it?

  	If the request had arguments, how would you get them into the kernel? 
    Hint. How does gcc pass arguments into a function?

  

  	It might be important that there are two link registers. Which two link
    registers? Why?

  	In practice it isn't important. Why not?




Suggestions:


  	Try this first on paper drawing the stack, registers, etc after each
    instruction

  	Try coding in baby steps, which is usually a good idea in assembly
    language.




Try reading this.




Return to:


  	Bill Cowan's lecture notes for CS452 in
  s12

  	Bill Cowan's Spring 2012 CS452 page

  	Bill Cowan's CS452 page

  	Bill Cowan's teaching page

  	Bill Cowan's home page







Lecture 6 - Context Switch


Pubilc Service Annoucements


  	Due date for assignment 1

  	Partners






Kernel Structure


The kernel is just a function like any other, but which runs forever.

kernel( ) {
  initialize( );  // includes starting the first user task
  FOREVER {
    request = getNextRequest( );
    handle( request );
  }
}


Where is the OS?


  	requests come from running user tasks 
    
      	in essence system calls

    

  

  	one type of request creates a task 
    
      	There needs to be a first task that gets everything going

    

  









All the interesting stuff inside done by the kernel is hidden inside
getNextRequest.

int getNextRequest( ) {
  active = schedule( ... );
  return activate( active );


What's inside activate( active )?


  	transfer of control to the active task

  	execution to completion of the active task 
    
      	`to completion' means until the active task sends a request to the
        kernel

    

  

  	transfer of control back to the kernel

  	getting the request




The hard part to get right is `transfer of control'


  	which we call a context switch

  	Programming a context switch requires you to know the processor
    architecture






ARM 920T


Features


  	16 32-bit registers 

  	Processor modes. In the table below `special' means that the mode has
    ia separate copy of the registers. 

    
      
      
        
          	M[4:0]
          	Mode
          	Registers accessible
        

        
          	10000
          	User
          	r0-r15

            cpsr
        

        
          	10001
          	FIQ (Fast interrupt processing)
          	r0-r7, r15

            r8_fiq-r14_fiq 
            cpsr, spsr_fiq

          
        

        
          	10010
          	IRQ (Interrupt processing)
          	r0-r12, r15

            r13_irq,r14_irq 
            cpsr, spsr_irq

          
        

        
          	10011
          	Supervisor
          	r0-r12, r15

            r13_svc,r14_svc 
            cpsr, sprs_svc

          
        

        
          	10111
          	Abort
          	r0-r12, r15

            r13_abt,r14_abt 
            cpsr, spsr_abt

          
        

        
          	11011
          	Undefined
          	r0-r12, r15

            r13_und,r14_und 
            cpsr, spsr_und

          
        

        
          	11111
          	System
          	r0-r15 
            cpsr

          
        

      
    

    

  

  	Program status register, PSR, which you will find in
    two places CPSR and SPSR 

    
      
      
        
          	Bit
          	Mnemonic
          	Meaning
        

        
          	31
          	N
          	Negative
        

        
          	30
          	Z
          	Zero
        

        
          	29
          	C
          	Carry
        

        
          	28
          	V
          	Overflow
        

        
          	8-27
          	DNM
          	Does not matter in v4
        

        
          	7
          	I
          	Interrupts disabled
        

        
          	6
          	F
          	Fast interrupts disabled
        

        
          	5
          	T
          	Thumb execution
        

        
          	4
          	M4
          	Five processor mode bits
        

        
          	3
          	M3
          	
        

        
          	2
          	M2
          	
        

        
          	1
          	M1
          	
        

        
          	0
          	M0
          	
        

      
    

    

  

  	Exceptions 

    
      
        
          	Exception 
            Type

          
          	Modes 
            Called from

          
          	Mode at 
            Completion

          
          	Instruction 
            Address

          
        

        
          	Reset
          	hardware
          	supervisor
          	0x00
        

        
          	Undefined instruction
          	any
          	undefined
          	0x04
        

        
          	Software interrupt
          	any
          	supervisor
          	0x08
        

        
          	Prefetch abort
          	any
          	abort
          	0x0c
        

        
          	Data abort
          	any
          	abort
          	0x10
        

        
          	Ordinary interrupt
          	any
          	IRQ
          	0x18
        

        
          	Fast interrupt
          	any
          	FIQ
          	0x1c
        

      
    

    

    
      	You are concerned right now with Reset and Software Interrupt.

      	The first instruction executed by the CPU after reset is the one at
        location 0x00000000. Usually it is 
            ldr  pc, [pc, #0x18] ; 0xe590f018 is the binary encoding

        which you will normally find in addresses 0x00 to
        0x1c. Just executing an instruction, rather than having
        an address that is specially processed saves transistors, which is
        good.

        The indirect jump allows the CPU to jump anywhere in the address
        space.

      

      	RedBoot puts entry points of RedBoot into addresses
        0x20 to 0x3c.

      	Note endianness of RedBoot output when examining these
      locations.

    

  

  	Three data types 
    
      	word: 32 bits, word-aligned

      	half-word: 16 bits, half-word-aligned

      	byte: 8 bits

    

  




Context Switch


Function Call (gcc calling conventions)

; In calling code
                      ; store values of r0-r3
                      ; load arguments into r0-r3
   bl  <entry point>  ; this treats the pc and lr specially
                      ; lr <- pc, pc <- <entry point>
                      ; r0 has the return value
                      ; r1-r3 have useless junk

; In called code
entry point:
   mov     ip, sp
   stmdb   sp!, {fp, ip, lr} ; and usually others, 
                             ; determined by the registers the function uses
   ...
   ldmia   sp, {fp, sp, pc} ; and whatever others
                            ; exact inverse of stmdb


Note the role of the index pointer (ip), link register (lr) and stack
pointer (sp).


The final instruction could be

   ldmia   sp, {fp, sp, lr}
   mov     pc, lr


The sequence

   bl   junk
   .
   .
   .
junk:
   mov   pc, lr


is a NOP.


Software Interrupt


The software interrupt instruction ( SWI{cond} <immed_24> ). What
happens when it is executed?


  	r14_svc <- address of the following instruction. This is where the
    kernel will return to.

  	SPSR_svc <- CPSR. This saves the mode, condition codes, etc.

  	CPSR[0:4] <- 0b10011. Supervisor mode.

  	CPSR[5] <- 0. ARM (not Thumb) state.

  	CPSR[7] <- 1. Normal interrupts disabled.

  	PC <- 0x08




The CPU ignores the 24-bit immediate value, which can be used by the
programmer as an argument identifying the system call, for example.

; In calling code
                          ; Store r0-r3
                          ; Put arguments into r0-r3
                          ; 0x08 holds the kernel entry point
   swi  n                 ; n identifies which system call you are calling
                          ; retrieve return value from r0
                          ; r1-r3 have even more useless junk

; In kernel
kernel entry:
; Change to system mode
; Save user state on user stack
; Return to supervisor mode
   ldr    r4, [lr, #-4]    ; gets the request type
; At this point you can get the arguments
; Where are they? Why couldn't you retrieve them earlier?
; Retrieve kernel state from kernel stack
; Do kernel work


The sequence

   swi   n
   .
   .
   .
kernel entry:
   movs   pc, lr


is a NOP.


This NOP depends on a bunch of things being correctly set up, especially
the low memory.


For Later in the course


Responding to SWI treats the scratch registers in a special way.


  	The calling code does not expect them to be preserved.

  	They are likely to contain arguments on entry, and the return value on
    exit.




In the third part of the kernel you will implement hardware interrupts.


  	You will go to IRQ mode, not SVC mode

  	You have to restore the scratch registers exactly as you restore all
    the other registers.




It seems desirable to have as much code as possible common to hardware and
software interrupts.


Questions:


  	What is above kernel entry?

  	If you put swi in a wrapper or stub what happens before and after
  it?

  	If the request had arguments, how would you get them into the kernel? 
    Hint. How does gcc pass arguments into a function?

  

  	It might be important that there are two link registers. Which two link
    registers? Why?

  	In practice it is important only for hardware interrupts. Why?




Suggestions:


  	Try this first on paper drawing the stack, registers, etc after each
    instruction

  	Try coding in baby steps, which is usually a good idea in assembly
    language.




Try reading this.




After the Software Interrupt


In the kernel


The order matters

kernel entry:


  	State on entry 
    
      	supervisor mode

      	interrupts off

      	spsr_svc = cpsr_usr

      	arguments in r0-r3

      	caller context in registers r4-r12

      	caller local variables indexed off fp

      	kernel stack pointer (sp_svc) in r13

      	address of instruction following swi in r14, i.e., lr_svc = return
        address = pc_usr

      	kernel entry in r15

    

  

  	Change to system state

  	Save the user state 
    
      	on its stack

      	This might include scratch registers (arguments), which you may or
        may not need later.

      	Put sp_usr in a scratch register, say r2

    

  

  	Return to supervisor mode

  	Get the request into a scratch register 
    ldr r3, [lr, #-4]

  

  	Retrieve the kernel state, which should not include the scratch
    registers 
    
      	You now have the kernel frame pointer

      	You can use it to put stuff in kernel memory

    

  

  	Put what you need to in the active task's TD 
    
      	active is indexed off the kernel's frame pointer

      	active is a pointer to the TD of the requester

    

  

  	Some where above you must have picked up the arguments 
    
      	must be done after 5. Why?

      	must be done before 9. Why?

    

  

  	Return from getNextRequest( active ) and get to work 
    
      	Don't forget to store the return value when you're finished
        handling the request and before scheduling.

    

  




There is more than one way to do almost everything in this list, and I
have chosen this way of describing what is to be done because it's simplest
to describe, not because it's necessarily best!.




Before the Software Interrupt


After a while it's time to leave the kernel


  	Schedule the next task to run 
    
      	i.e. get the value of active

    

  

  	Call GetNextRequest( active )




Inside GetNextRequest


  	From TD, or the user stack
    
      	get sp_usr

      	set spsr_svc = cpsr_usr
        
          	You should understand how this takes us back to user mode.

        

      

      	set lr_svc = pc for return to user mode

    

  

  	Save kernel state on kernel stack
    
      	Combined with 6, above this should be a NOP

    

  

  	Set return value by overwriting r0 on user stack

  	Switch to system mode

  	Load registers from user stack
    
      	Combined wi 3 above this should be a NOP

    

  

  	Return to supervisor mode

  	Let it go 
    movs   pc, lr

  




The instruction after this one is normally the kernel entry.




Return to:


  	Bill Cowan's lecture notes for CS452 in
  s12

  	Bill Cowan's Spring 2012 CS452 page

  	Bill Cowan's CS452 page

  	Bill Cowan's teaching page

  	Bill Cowan's home page







Lecture 7 - Create, Scheduling


Pubilc Service Annoucements


  	Due date for assignment 1

  	Partners






After the Software Interrupt


In the kernel


The order matters, except for the last two


  	Save the user state 

  	Get the request

  	Retrieve the kernel state




There is more than one way to do almost everything in this list, and I
have chosen this way of describing what is to be done because it's simplest
to describe, not because it's necessarily best!.


At this point the kernel is ready to handle the request.




Handling the Request


What needs to be done


  	Check for errors

  	Manipulating TDs

  	Sometimes, copying bytes from one address space to another.




Saving up the return value


The task that made the request may not be the next one to run.


  	The kernel needs to save the request's return value until the next time
    the requester is scheduled.

  	One solution is to put it in the TD.

  	It's also possible to put it where it will be needed (such as r0)
    immediately.






Scheduling


There are two important issues for scheduling


  	When do we reschedule?

  	Who do we activate when we schedule




When to schedule


Every time we are in the kernel, so the issue is `When do we enter the
kernel?'


Three possibilities


  	Tasks run to completion, which means until they make a request for
    kernel services

  	Event-driven pre-emption, which means when hardware makes a request for
    service

  	Time-slicing 
    
      	re-schedule only when the slice-timer times out

      	two problems with time slicing 
        
          	slices are too big => bad response

          	slices are too small => kernel runs too much = bad
          response

        

      

      	What defines `too big' and `too small'? 
        
          	desired response times

          	frequency of requests from hardware

        

        both of which vary widely

      

    

  




We do 1 & 2, but not 3, because our tasks co-operate. Time-slicing is
needed when tasks are adversarial.


Who to Schedule


Whoever is needed to meet all the deadlines


  	or to optimize something.




Because this is not an easy problem, we don't want to solve it within the
kernel. What the kernel does should be fast (=constant time) and not resource
constrained.


Inexpensive (=constant time)ways to schedule


Least expensive first


  	active task decides = co-routines

  	round robin 
    
      	everybody gets the same chance

      	but usually long running time = unimportant

    

  

  	priorities 
    
      	fixed at compile time

      	fixed when task is created

      	re-fixed every time task is scheduled 
        
          	Do you have a good algorithm?

        

      

    

  




The number of priorities should be small, but not too small.


Tasks at the same priority should have the same precedence.


Scheduling algorithm


  	Find the highest priority non-empty ready queue.

  	Schedule the first task in the queue. 
    The state of the most recently scheduled (running) task is ACTIVE, not
    READY.

    The kernel maintains a pointer to the TD of the active task so it
    knows which task is making the current request.

  

  	When a task is made ready it is put at the end of its ready queue.




Implementation


Array of ready queues, one for each priority.


Each ready queue is a list with a head pointer (for extraction)and a tail
pointer (for insertion).


Hint. The Art of Computer Programming (Donald Knuth) says that circular
queues are better. Why?


Implementation decisions


  	How many priorities

  	Which task should have which priority

  	What to do when there is no ready task




The queues of typical running system


  	Highest priority:
    
      	tasks waiting on interrupts

      	almost always blocked

      	do minimal processing, then release tasks blocked on them

    

  

  	Medium priority
    
      	receive blocked tasks

      	almost always blocked

      	provide service to application tasks

    

  

  	Low priority
    
      	send-blocked tasks

      	blocked more often than not

      	make decisions about what should be done next

    

  

  	Lowest priority
    
      	one task that runs without blocking

      	the idle task

      	uses power without doing anything

    

  






Before the Software Interrupt


After a while it's time to leave the kernel


  	Schedule the next task to run 
    
      	i.e. get the value of active

    

  

  	Call GetNextRequest( active )




Inside GetNextRequest


  	From TD, or the user stack
    
      	get sp_usr

      	set spsr_svc = cpsr_usr
        
          	You should understand how this takes us back to user mode.

        

      

      	set lr_svc = pc for return to user mode

    

  

  	Save kernel state on kernel stack
    
      	Combined with 6, above this should be a NOP

    

  

  	Set return value by overwriting r0 on user stack

  	Switch to system mode

  	Load registers from user stack
    
      	Combined with 3 above this should be a NOP

    

  

  	Return to supervisor mode

  	Let it go 
    movs   pc, lr

  




The instruction after this one is normally the kernel entry.




Making the Stub that Wraps swi


For each kernel primitive there must be a function available in usr code:
the kernel's API.


  	e.g. int Create( int priority, void ( *code ) ( ) );




What gcc does for you


Before calling Create


  	gcc saves the scratch registers to memory.

  	gcc puts the arguments into the scratch registers, and possibly on the
    stack.




While calling Create


  	bl to the entry point of Create




While executing Create


  	gcc saves the registers that it thinks will be altered
    during execution of the function. 
    
      	gcc thinks wrong, because only the assembler knows that swi is in
        the instruction stream

    

  

  	your code gets executed

  	gcc restores the registers it saved, and only those registers.




Exiting from Create


  	mov pc, lr, or equivalent, is executed, returning the execution to the
    instruction following bl




After calling Create


  	gcc stores register r0, the return value, in the variable to which the
    result of Create is assigned.




What the code you write does


  	Moves the arguments from gcc's locations to whatever convention you
    choose for your kernel

  	Does swi n, where n is the code for Create.

  	Moves the return value from your kernel's conventional location to
  r0.






Creating a Task


In creating a task you have to do two things


  	Get and initialize resources needed by the task 
    
      	TD

      	memory

    

  

  	Make the task look as if it had just entered the kernel 
    
      	it's ready to execute when it's scheduled

    

  




Things you need to do


Get an unused TD and memory for its stack


  	memory could be associated with TD during initialization

  	actually a form of constant time memory allocation

  	unless you implement Destroy




Mostly filling in fields in the TD.


  	task id

  	stack pointer

  	SPSR

  	link register

  	parent tid 
    
      	the active task

    

  

  	return value 
    
      	dummy

      	different return value for the active task, which goes in its
      TD

    

  

  	state 
    
      	READY

    

  

  	install in the ready queues 
    
      	pointers in the TD

    

  




Must also initialize the stack


  	exactly as if the task had just done a kernel entry

  	look carefully at what your kernel exit code will do

  	At the end stack pointer must correspond to stack contents

  	I initialize the stack pointer to the top of allocated memory 
    
      	my stacks grow down

    

    then change it as I push stuff onto the stack

    
      	imitating the context switch code

    

  






The Create Function


You also need a int Create( int priority, void (*code) ( ) )
function to call from user tasks.


Although it's no more than a wrapper there are a few problems to solve.


  	Passing arguments 
    
      	On entry the arguments are somewhere, usually r0 & r1

      	You have to put them where the kernel can find them.

      	gcc's function extry code immediately puts them on the stack.

      	In assembly you can find them using the frame pointer.

    

  

  	Jumping into the kernel

  	Getting the return value from the kernel and returning it. 
    
      	You find it where the kernel put it

      	gcc's function exit code expects it to be indexed off the frame
        pointer 
        
          	from where it does into r0

        

      

    

  






Other Primitives


These primitives exist mostly so that we, which includes you, can ensure
that task creation and scheduling are working when there is not much else
implemented.


Tid MyTid( )


Self-explanatory


  	Doesn't block, but does reschedule.




A question, to which there is a correct answer, or more specifically, a
correct (answer, reason) pair.


  	Should the Tid be stored in user space?




Tid MyParentTid( )


Self-explanatory


  	Doesn't block, but does reschedule.




Where is the parent Tid, and how does the kernel find it?


void Pass( )


Doesn't block: task calling Pass( ) remains ready to
execute.


Does reschedule.


When is Pass( ) a NOP?


void Exit( )


Calling task is removed from all queues, but its resources are not
reclaimed or reused.


That is, the task goes into a zombie state, in which it cannot be active
or ready, but continues to own all its resources.


How Should Execution Terminate?


Nicely.


When there are no tasks left on the ready queues, it goes back to
RedBoot.


  	This behaviour changes when hardware interrupts are implemented.
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Lecture 8 - Create, Initialization


Pubilc Service Annoucements


  	Due date for assignment 1

  	Victoria Day holiday






Initializing the Kernel


Set up the Hardware


  	busy-wait io

  	low memory
    
      	Where is the kernel entry?

    

  

  	Turn off interrupts in the ICU
    
      	This should be unnecessary, but what if the previous kernel turned
        them on?

      	Later you will initialize the ICU differently.

    

  




Prepare the Kernel Data Structures


Where is the kernel's stack pointer, right now? What does the stack look
like?


  	Do you want it there? Would you rather have it somewhere else?

  	This is your last chance to change it. (If you decide to change it you
    might want to keep what you are replacing around. Why?)




The kernel data structures


  	an array of empty ready queues

  	a poimter to the TD of the active task

  	an array of TDs

  	a free list of pointers to free TDs




Prepare the Memory to be Used by Tasks


  	task memory




Create the First User Task


Can run with interrupts turned off for now (belt and braces) but will need
to be turned on later.


Reminder. The place where the kernel starts executing has the global name
main, which cannot be re-used.




Creating a Task


In creating a task you have to do two things


  	Get and initialize resources needed by the task 
    
      	TD

      	memory

    

  

  	Make the task look as if it had just entered the kernel 
    
      	it's ready to execute when it's scheduled

    

  




Things you need to do


Allocate resources


Get an unused TD and unused memory for its stack


  	actually a form of constant time memory allocation




Initialize resources


Mostly filling in fields in the TD. Here are the ones that ought to be in
the TD.


  	task id

  	priority

  	stack pointer

  	parent tid 
    
      	the active task

    

  

  	state 
    
      	READY

    

  

  	install in the ready queues 
    
      	pointers in the TD

    

  




This looks like six words, which could be squeezed into fewer. (There will
be more later.)


  	If you are thinking about the cache, how can you make the array of task
    descriptors so that they are cache-aligned.




Here are the ones that could be in the TD, or could be on the stack.


  	SPSR

  	link register

  	return value 




Initialize the stack


  	exactly as if the task had just done a kernel entry

  	look carefully at what your kernel exit code will do

  	At the end stack pointer must correspond to stack contents

  	I initialize the stack pointer to the top of allocated memory 
    
      	my stacks grow down

    

    then change it as I push stuff onto the stack

    
      	imitating the context switch code

    

  




Here's something I always do.


  	Put distinctive values into registers to start off with, like 00000000,
    11111111, 22222222, etc.

  	This makes solving pointer misalignment problems easier






The Create Function


You also need a int Create( int priority, void (*code) ( ) )
function to call from user tasks.


Although it's no more than a wrapper there are a few problems to solve.


  	Passing arguments 
    
      	On entry the arguments are somewhere, usually r0 & r1

      	You have to put them where the kernel can find them.

      	gcc's function extry code immediately puts them on the stack.

      	In assembly you can find them using the frame pointer.

    

  

  	Jumping into the kernel

  	Getting the return value from the kernel and returning it. 
    
      	You find it where the kernel put it

      	gcc's function exit code expects it to be indexed off the frame
        pointer 
        
          	from where it does into r0

        

      

    

  






Other Primitives


These primitives exist mostly so that we, which includes you, can ensure
that task creation and scheduling are working when there is not much else
implemented.


Tid MyTid( )


Self-explanatory


  	Doesn't block, but does reschedule.




A question, to which there is a correct answer, or more specifically, a
correct (answer, reason) pair.


  	Should the Tid be stored in user space?




Tid MyParentTid( )


Self-explanatory


  	Doesn't block, but does reschedule.




Where is the parent Tid, and how does the kernel find it?


void Pass( )


Doesn't block: task calling Pass( ) remains ready to
execute.


Does reschedule.


When is Pass( ) a NOP?


void Exit( )


Calling task is removed from all queues, but its resources are not
reclaimed or reused.


That is, the task goes into a zombie state, in which it cannot be active
or ready, but continues to own all its resources.


How Should Execution Terminate?


Nicely.


When there are no tasks left on the ready queues, it goes back to
RedBoot.


  	This behaviour changes when hardware interrupts are implemented.
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Lecture 9 - Send/Receive/Reply


Pubilc Service Annoucements


  	Due date for assignment 1

  	Next week's classes

  	Assignment 2 
    
      	due date

      	what you do

    

  






Inter-task Communication


Overview


Message passing combines synchronization and communication in one set of
primitives.


  	Send, Receive, Reply




int Send( Tid tid, char *message, int mslen, char *reply, int rplen )


  	blocks until Reply occurs




int Receive( Tid *tid, char *message, int mslen )


  	blocks until message is available

  	Only one waiting sender is processed per Receive 
    
      	Why?

      	Hint. There might be tasks that are higher priority than the
        Receiver.

    

  




int Reply( Tid tid, char *reply, int rplen )


  	does not block

  	unblocks task that called Send




Send and Reply become READY at the same time.




How are They Used?


The Producer/Consumer Problem

+--------------+          +--------------+
|              |          |              |
|   Producer   |   ===>   |   Consumer   |
|              |          |              |
+--------------+          +--------------+


Producer Sends


  	producer sends and blocks (I have some XXX for you)

  	consumer receives (Give me some XXX)

  	consumer accepts XXX

  	consumer replies (I got the XXX)

  	producer & consumer are simultaneously READY




Note. 1 & 2 could be run in the opposite order


Consumer Sends


  	Consumer sends and blocks (`I am ready for some XXX.')

  	Producer receives (`I have some XXX.')

  	Producer replies (`Here is the XXX')

  	Consumer accepts XXX

  	Producer and consumer are simultaneously READY




Note. 1 & 2 could be run in the opposite order


Multiple Producers


Producers send; consumer receives in the order that producers send.


Notes.


  	Critical races can occur, which the application programmer must
  resolve.

  	There are two types of critical race 
    
      	Ones internal to the application. For example, order of production
        changes in one producer because you add or remove a printf statement.
        These ones you can program out of existence by changing priorities,
        communication patterns, etc.

      	Ones external to the application. For example, one producer is
        forwarding bytes from the keyboard, the other from the train
        controller, and the order of production changes because the user
        types a little faster. These ones you cannot program out of
        existence, but must program so that the right thing happens
        regardless of the order of production.

    

  




Multiple Consumers


Consumers send; producer receives in the order that consumers send.


Note. Critical races can occur, which the application programmer must
resolve.


Multiple Consumers AND Multiple Producers


Consumers send and producers send: who receives?


  	A third task: you call it a FIFO or buffer; I call it a warehouse



+---------------+          +------------+          +---------------+
|               |          |            |          |               |
|   Producers   |   ===>   |   Buffer   |   ===>   |   Consumers   |
|               |          |            |          |               |
+---------------+          +------------+          +---------------+


Buffer receives two types of request


  	Producer: Here is some XXX 
    Send( ..., accept some XXX, ... )

    
      	Warehouse stores XXX, replies 
        Reply( sender, got XXX, )

      

      	If warehouse is full of XXX two strategies are possible 
        
          	Warehouse queues sender, who remains Reply_Blocked

          	Warehouse replies with refusal 
            Reply( sender, won't take XXX, )

          

        

      

    

  

  	Consumer: I want some YYY 
    Send( ..., want some YYY, ... )

    
      	Warehouse provides YYY, replies 
        Reply( sender, here is YYY, )

      

      	If warehouse is empty of YYY, two strategies are possible 
        
          	Warehouse queues sender, who remains Reply_Blocked

          	Warehouse replies with refusal 
            Reply( sender, all out of YYY, )

          

        

      

    

  




Only a receiver can accept two types of requests at once.




Sequence of States


Sender


  	Active -> Receive_Blocked 
    
      	When Send is called

    

  

  	Receive_Blocked -> Reply_Blocked 
    
      	May happen right away 
        
          	When Receive is called with the Receiver's SendQ empty

        

      

      	Otherwise, when Receive is called

    

  

  	Reply_Blocked -> Ready 
    
      	When Reply is called

    

  




Receiver


  	Active -> Send_Blocked

  	Send_Blocked -> Ready 
    
      	May happen right away 
        
          	if the sendQ is not empty

        

      

    

  

  	Ready -> Active

  	...

  	Active -> Ready 
    
      	When Reply is called

    

  




There are two cases


Send before Receive

Send
           ...
           Receive
           ...
           Reply
...        ...


Message copying occurs inside Receive and Reply.


Receive needs to have a list of current senders, the ReceiveQ


Receive before Send

            Receive
...
Send
            ...
            Reply
...         ...


Message copying occurs inside Send and Reply.




Example of a Difficult Bug


  	You notice that a Receiver is never on a readyQ when it is
  Send_Blocked

  	You decide to use the next pointer in the TD for the head of the sendQ 
    
      	probably to fit two TDs into a single cache line

    

  

  	You test and test and test and nothing ever goes wrong

  	One week before the demo, your kernel crashes under your
  application

  	What two things might have gone wrong? 
    
      	You might have caught one while testing, not likely the other.
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Lecture 10 - Name Server


Public Service Annoucements


  	Due date for assignment 1

  	Next week's classes

  	Assignment 2 
    
      	due date

      	what you do

    

  






Send/Receive/Reply


Sequence of States


There are two cases


Send before Receive



  
  
    
      	Sender

        Action

      
      	Sender

        State

      
      	Receiver

        Action

      
      	Receiver

        State

      
      	Comments
    

    
      	
      	active
      	
      	
      	
    

    
      	Send
      	RCV_BL
      	
      	
      	sender added to receiver's sendQ
    

    
      	
      	
      	
      	active
      	
    

    
      	
      	RPL_BL
      	Receive
      	ready
      	request copied

        sender deleted from receiver's sendQ

      
    

    
      	
      	
      	
      	active
      	service performed
    

    
      	
      	ready
      	Reply
      	ready
      	reply copied
    

  



Receive before Send



  
  
    
      	Sender

        Action

      
      	Sender

        State

      
      	Receiver

        Action

      
      	Receiver

        State

      
      	Comments
    

    
      	
      	
      	
      	active
      	
    

    
      	
      	
      	Receive
      	SND_BL
      	receiver's sendQ empty
    

    
      	
      	active
      	
      	
      	
    

    
      	Send
      	RPL_BL
      	
      	ready
      	request copied
    

    
      	
      	
      	
      	active
      	service perfomed
    

    
      	
      	ready
      	Reply
      	ready
      	reply copied
    

  








Practical Details


  	Need to keep around request 
    
      	For Send_Blocked receivers in the SendQ 
        
          	The same as Receive_Blocked senders

        

      

      	For Reply_Blocked senders.

    

  

  	Messages 

  	Task states 

  	You can add extra return values beyond those specified






int Send( Tid tid, char *message, int mslen, char *reply, int rplen )


These are pretty self explanatory, except


  	The return value is the number of characters actually placed in the
    reply-buffer 
    
      	including the terminal character ( \000 ) if the contents of the
        reply buffer is a string

    

  

  	If something goes wrong, the return value is negative, coded to
    indicate what went wrong 
    What can go wrong

    
      	Illegal tid

      	tid not an existing task

    

    It's up to Send to check that the reply-buffer was big
    enough by looking at its return value

    It's not an error if the task to which we Send never
    Receives

    
      	Should it be?

      	Hint. Finding out if a task "never Receives" is equivalent to what
        problem?

    

  

  	Parsing argument and reply-buffer is
    potentially costly and error-prone 
    
      	A type system might be nice

      	But then you would feel compelled to implement run-time type
        checking

    

  




Implementing Send


What's in user space is just stubs.


  	checking arguments

  	putting arguments in the right place 
    
      	Note that there are five arguments

    

  




What the kernel must do


  	Check arguments 
    
      	tid is valid?

    

  

  	Change state of sender to RECEIVE_BLOCKED

  	Put sender on the end of the receiver's sendQ

  	If receiver is SEND_BLOCKED, do from #3 in
    Receive.






int Receive( Tid *tid, char *message, int msglen )


These are pretty self explanatory, except


  	How is the task id copied form kernel to receiver? 
    
      	That is, where does the pointer point to?

    

  

  	What if the buffer wasn't big enough?

  	If several tasks have done Send, which one gets
    Received first?

  	return value is number of bytes in message, including terminal
    character (\000) if the message is really a string.. 
    
      	It seems as though the return value should be the tid. Something is
        not right.

    

  

  	If something goes wrong, the return value is negative, coded to
    indicate what went wrong 
    What can go wrong?

    
      	Only part of the message was copied

    

    It's up to Receive to check that the message-buffer was
    big enough by looking at its return value

  




Implementing Receive


What the kernel must do


  	Check arguments

  	Change receiver's state to SEND_BLOCKED

  	Check the sendQ

  	If sendQ is empty 
    
      	exit from kernel after scheduling

    

    [bookmark: sendQ]sendQ is not empty

    
      	extract head of the send queue, called the sender below

      	copy message from sender to receiver, after checking buffer
      sizes

      	change sender's state to REPLY_BLOCKED

      	change receiver's state to READY

      	put sender's tid into receiver's argument

      	put receiver on its readyQ

      	set up receiver's return value

      	exit from kernel after scheduling

    

  






int Reply( Tid tid, char *reply, int rplen )


These are pretty self explanatory, except


  	The Replyer need not be the Receiver, but must be in contact with the
    Receiver 
    
      	Why?

    

  

  	When all goes well Reply leaves two tasks READY when it completes




Implementing Reply


  	Check arguments 
    
      	sender (tid) must be REPLY_BLOCKED

    

  

  	Copy message from replier to sender, checking buffer sizes

  	Set up sender's return value

  	Change sender's state to READY

  	Put sender on readyQ

  	Set up replier's return value

  	Change replier's state to READY

  	Put replier on readyQ

  	Exit from kernel after scheduling






Servers


What is a server?


  	a task that provides service to a client task 
    
      	tasks requesting service, clients, must know the Tid of the
      server

    

  

  	a task that owns a resource and provides synchronized access to it.

  	above, 
    
      	`a task' owns the interface

      	other tasks may do the work

    

  




How are servers implemented?


  	Receive is the key 
    
      	Receive a request

      	Reply the response

    

  

  	Sender (client, task that is making the request) blocks until the
    response is available. That is, sender, in effect, is running at the
    priority of the server between the request and its reponse 
    
      	Server priority should be set according to the importance of the
        service it supplies.

      	But client priority should be considered by the server. For
        example, 
        
          	One set of instructions for higher priority client

          	One set of instructions for lower priority client

        

      

    

  






Name Server


What is a name server?


  	There is a set of global execution-independent names

  	There is a set of execution-dependent tasks that provide services
    associated with the names

  	Name server maintains an up-to-date table mapping names to resources 
    
      	Accepts requests to update the table

      	Accepts queries concerning the table

    

  




Why Do We Need a Name Server






  
    
      	Names
      	constant across applications & executions
      	interface
      	Associated with a set of services (an API)
    

    
      	Task Ids
      	vary across applications & executions
      	implementation
      	Associated with a particular set of instructions and data (an
        execution)
    

  






How do You Get the Task Id of the Name Server?


  	Make it a constant across executions







Name Server API

int RegisterAs( char *name );


  	One task can be registered under two names.

  	Each name is associated with a single task.

  	Name is \000 terminated.



int WhoIs( char *name );


  	Name is \000 terminated.




Name Server Semantics


RegisterAs


  	Errors 
    
      	Not a legal name. 
        
          	It's up to you to decide what you will accept as legal
          names

        

      

      	tid is not a task

      	tid is not the Name Server

      	Already somebody registered with that name 
        
          	What does the caller do?

        

      

    

  




WhoIs


  	Errors 
    
      	Not a legal name.

      	tid is not a task

      	tid is not the Name Server

      	No task registered under that name 
        
          	What does the caller do?

        

      

    

  




Comments


  	RegisterAs overwrites.

  	Why? The rule is that the name -> task map is many to one. 
    
      	A task may have many names

      	A name may have only one task

    

  







Name Server Implementation


User Code


E.g., RegisterAs

typedef struct {
    int type;
    char name[MaxNameSize];
    int tid;
} NSstruct;
int RegisterAs( char *name ) {
    NSstruct *req, *result;
    bytes = Send( NSTid, (char *) req, sizeof(NSstruct), (char *) result, sizeof(NSstruct) );
    if ( bytes != sizeof(NSstruct) ) {
        // Do something error-like
    } else return 0;
}


There are lots of possible variations.


Server Code

typedef struct {
    int type;
    char name[MaxNameSize];
    int tid;
} NSstruct;

NSstruct req;
// initialize tables
FOREVER {
    bytes = Receive( &tid, &req, sizeof(NSstruct) );
    if ( detectError( ... ) ) {
        // Reply with error
    } else {
        switch( req.type ) {
        case REGISTERAS:
            insert( req.name, tid );
            Reply( tid, SUCCESS, sizeof(NSstruct) );
            break;
        case WHOIS:
            result.tid = lookup( name );
            Reply( tid, result, sizeof(NSstruct) );
            break;
        default:  // This should never happen
            Reply( tid, ERROR, sizeof(int) );
            break;
        }
    }
}


Comments


  	How much will this code run? 
    
      	When will it run?

    

  

  	How would you implement insert & lookup? 
    
      	Figure out 
        
          	What deadlines does Nameserver have?

          	How many names will be in NameServer?

          	How many RegisterAs? and when?

          	How many WhoIs? and when?

        

      

      	What should be allowable as a name?
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Lecture 11 - Hardware Interrupts


Public Service Annoucements


  	Next week's classes
    
      	context switch from programming to listening

    

  

  	Assignment 2 
    
      	due date

      	performance: 
        
          	there is a 40-bit clock that counts cycles

          	respect the exact CPU conditions

          	measure a few times and average

        

      

    

  






Servers


What is a server?


  	a task that provides service to a client task 
    
      	tasks requesting service, clients, must know the Tid of the
      server

    

  

  	a task that owns a resource and provides synchronized access to it.

  	above, 
    
      	`a task' owns the interface

      	other tasks may do the work

    

  




How are servers implemented?


  	Receive is the key 
    
      	Receive a request

      	Reply the response

    

  

  	Sender (client, task that is making the request) blocks until the
    response is available. That is, sender, in effect, is running at the
    priority of the server between the request and its reponse 
    
      	Server priority should be set according to the importance of the
        service it supplies.

      	But client priority should be considered by the server. For
        example, 
        
          	One set of instructions for higher priority client

          	One set of instructions for lower priority client

        

      

    

  






Name Server


Why Do We Need a Name Server






  
    
      	Names
      	constant across applications & executions
      	interface
      	Associated with a set of services (an API)
    

    
      	Task Ids
      	vary across applications & executions
      	implementation
      	Associated with a particular set of instructions and data (an
        execution)
    

  






Possible to have multiple names per task, but


  	not possible to have several tasks per name.




Name Server Implementation


Choose whether to block or Reply.




Hardware Interrupts


What is a Hardware Interrupt?


In the CPU


  	Test interrupt signal before fetching the next instruction 
    
      	actually AND of INT and the IRQ bit in the CPSR

    

  

  	If asserted, change mode to IRQ

  	Disable interrupt in CPSR

  	Execute instruction at 0x18




In the Interrupt Control Unit (ICU)


  	Several interrupts may be present when an interrupt occurs 
    
      	One is chosen, by a priority mechanism

      	Put in a special place

      	Software can choose to ignore priority mechanism in ICU

    

  

  	Clearing one interrupt may just expose another one




In the Peripheral Hardware


  	Several interrupts may be present 
    
      	ORed in peripheral hardware

      	ORed in glue hardware

      	Rare that there is a priority mechanism

    

  

  	Clearing one interrupt can expose another one




When two interrupts are present


May have been two present when interrupt processing started


  	in which case interrupt occurring now is known to be of lower
  priority




May have occurred since interrupt processing started


  	in which case interrupt occurring now may be of higher priority




What happens next?


  	Kernel executes with interrupts disabled

  	Context switch into user task turns on interrupts

  	Before fetching the first user task instruction test interrupt
  signal

  	If asserted, re-initiate interrupt processing






Context Switches for Interrupts


Difference from Software Interrupts


It is impossible to predict where they occur


  	You may have made some assumptions about when they occur




Assymmetry between User Task and Kernel


Scratch Registers must be saved


  	including the IP




Two Link Registers


  	One to return from interrupt 
    
      	In the registers of the interrupt handling code

      	To return to the interrupted task in the right place

    

  

  	One to move to the caller's stack frame 
    
      	In the registers of the interrupted task

      	To return to whatever started in interrupted task

    

  




Helpful Features of the ICU


  	Several places where you can read state

  	Several places where you can block interrupt flow

  	Trigger hardware interrupt from software 
    
      	What makes interrupts hard is that you are doing two semi-hard
        things at once 
        
          	Making the hardware produce the interrupt

          	Responding to the interrupt

        

      

      	This allows you to separate them in developing/debugging

    

  






The Hardware in the Trains Lab


32-bit Timer


Base address: 0x80810080


Three registers:



  
  
    
      	Offset
      	Function
      	R/W
      	Bits
      	Comments
    

    
      	0x0
      	Timer3Load
      	R/W
      	32: <Load/Reload Value>
      	
    

    
      	0x4
      	Timer3Value
      	R
      	32:<Current value>
      	Set when Load is written,

        even when counting
    

    
      	0x8
      	Timer3Control
      	R/W
      	3:xxx<CLKSEL>xx<MODE><ENABLE>
      	<CLKSEL>: 0, 2KHz clock; 1, 508KHz

        <MODE>: 1, count continuously; 0, count once 

        <ENABLE>: Clock turned on

      
    

    
      	0xc
      	Timer3Clear
      	W
      	32:
      	Writing anything clears the interrupt
    

  






Interrupt Control Unit (ICU)


The actual device is the ARM PL190


The logic in this design is completely asynchronous, so it functions when
the CPU clock is turned off.


  	Important (= essential) for low power operation.




All input signals are


  	active high

  	level sensitive




Base addresses


  	VIC1: 0x800B0000

  	VIC2: 0x800C0000




Basic Operation


VIC powers up with


  	all vectored interrupts disabled.

  	all interrupts masked

  	all interrupts giving IRQ




Procedure


Initialization


  	leave protection off

  	enable in VICxIntEnable when you are ready to handle the interrupt




On an interrupt


  	Read VICxIRQStatus

  	Choose which interrupt you wish to handle

  	Clear the interrupt source in the device




For debugging


  	Use VICxSoftInt and VICxSoftIntClear to turn interrupt sources off and
    on in software




Hardware Definitions



  Registers for Basic Operation
  
    
      	Register Name
      	Offset
      	R/W
      	Description
    

    
      	VICxIRQStatus
      	0x00
      	RO
      	One bit for each interrupt source 

        1 if interrupt is asserted and enabled

      
    

    
      	VICxFIQStatus
      	0x04
      	RO
      	As above for FIQ
    

    
      	VICxRawIntr
      	0x08
      	RO
      	As above but not masked
    

    
      	VICxIntSelect
      	0x0c
      	R/W
      	0: IRQ, 1: FIQ
    

    
      	VICxIntEnable
      	0x10
      	R/W
      	0: Masked, 1: Enabled
    

    
      	VICxIntEnClear
      	0x14
      	WO
      	Clears bits in VICxIntEnable
    

    
      	VICxSoftInt
      	0x18
      	R/W
      	Asserts interrupt from software
    

    
      	VICxSoftIntClear
      	0x1c
      	WO
      	Clears interrupt from software
    

    
      	VICxProtection
      	0x20
      	R/W
      	Bit 0 enables protection from user mode access
    

    
      	VICxVectAddr
      	0x30
      	R/W
      	Enables priority hardware 

        See documentation.

      
    

  



Helpful Features of the ICU


  	Several places where you can read state

  	Several places where you can block interrupt flow

  	Trigger hardware interrupt from softwareonce 
    
      	What makes interrupts hard is that you are doing two semi-hard
        things at once
        
          	Making the hardware produce the interrupt

          	Responding to the interrupt

        

      

      	Software interrupt generation allows you to separate them in
        developing/debugging

    

  









Non-vectored Operation


Initialization


  	Enable interrupt in device

  	Enable interrupt in ICU

  	Enable interrupt in CPU, usually by MOVS




Interrupt occurs


  	AND of IRQ and NOT( IRQ disabled ) is checked before each instruction
    fetch.

  	If set IRQ exception is taken in place of next instruction fetch. 
    
      	Possibly zero instructions of active task are executed.

      	Make sure that this case works

    

  

  	Context switch into kernel 
    

    


    Context switch novelties

    Difference from Software Interrupts

    
      	It is impossible to predict where they occur

      	You may inadvertently have  made some assumptions about when they
        occur

      	Scratch Registers must be saved 
        
          	r0-3

          	IP -- used only very occasionally by gcc

        

      

      	Two Link Registers 
        
          	One to return from interrupt

          	One to return from the interrupted task to whatever called
          it

        

      

    

    

  

  	Turn off interrupt in device 
    
      	Should turn off interrupt in ICU

      	What about IRQ?

    

  




You are now ready to process the interrupt in the kernel


Vectored Operation


Procedure


Initialization


  	Write kernel entry point into VICxDefVectAddr

  	If desired write special entry point into VICxVectAddry

  	When ready to accept interrupts write source and enable into
    VICxVectCntl




When an interrupt occurs


  	Read VICxVectAddr to find address

  	Move result to PC

  	When service is complete write VICxVectAddr to rerun priority
  hardware





  
  
    
      	Register Name
      	Offset
      	R/W
      	Description
    

    
      	VICxVectAddr
      	0x030
      	R/W
      	Read: address of vector for highest priority interrupt 

        Write: service complete, enable priority hardware

      
    

    
      	VICxDefVectAddr
      	0x034
      	R/W
      	Default vector address
    

    
      	VICxVectAddry
      	0x100+4y
      	R/W
      	Vector address for interrupt y
    

    
      	VICxVectCntly
      	0x200+4y
      	R/W
      	Control register for interrupt y 

        Bit[0-4]: interrupt source for interrupt y


        Bit[5]: enable vectored interrupt y
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Lecture 12 - Hardware Interrupts


Public Service Annoucements


  	Wednesday's class
    
      	Do you need it?

    

  

  	Assignment 3 






Hardware Interrupts


What is a Hardware Interrupt?


Context Switches for Interrupts


Difference from Software Interrupts


It is impossible to predict where they occur


  	You may have made some assumptions about when they occur




Assymmetry between User Task and Kernel


Scratch Registers must be saved


  	for the user task, not for the kernel

  	including the IP




Helpful Features of the ICU


  	Several places where you can read state

  	Several places where you can block interrupt flow

  	Trigger hardware interrupt from software 
    
      	What makes interrupts hard is that you are doing two semi-hard
        things at once 
        
          	Making the hardware produce the interrupt

          	Responding to the interrupt

        

      

      	This allows you to separate them in developing/debugging

    

  






The Hardware in the Trains Lab


32-bit Timer


Interrupt Control Unit (ICU)


The actual device is the ARM PL190


Hardware Definitions



  Registers for Basic Operation
  
    
      	Register Name
      	Offset
      	R/W
      	Description
    

    
      	VICxIRQStatus
      	0x00
      	RO
      	One bit for each interrupt source 

        1 if interrupt is asserted and enabled

      
    

    
      	VICxFIQStatus
      	0x04
      	RO
      	As above for FIQ
    

    
      	VICxRawIntr
      	0x08
      	RO
      	As above but not masked
    

    
      	VICxIntSelect
      	0x0c
      	R/W
      	0: IRQ, 1: FIQ
    

    
      	VICxIntEnable
      	0x10
      	R/W
      	0: Masked, 1: Enabled
    

    
      	VICxIntEnClear
      	0x14
      	WO
      	Clears bits in VICxIntEnable
    

    
      	VICxSoftInt
      	0x18
      	R/W
      	Asserts interrupt from software
    

    
      	VICxSoftIntClear
      	0x1c
      	WO
      	Clears interrupt from software
    

    
      	VICxProtection
      	0x20
      	R/W
      	Bit 0 enables protection from user mode access
    

    
      	VICxVectAddr
      	0x30
      	R/W
      	Enables priority hardware 

        See documentation.

      
    

  



Helpful Features of the ICU


  	Several places where you can read state

  	Several places where you can block interrupt flow

  	Trigger hardware interrupt from softwareonce 
    
      	What makes interrupts hard is that you are doing two semi-hard
        things at once
        
          	Making the hardware produce the interrupt

          	Responding to the interrupt

        

      

      	Software interrupt generation allows you to separate them in
        developing/debugging

    

  









Non-vectored Operation


Initialization


  	Enable interrupt in device
    
      	Sometimes there is a spurious interrupt that comes in, sometimes
        not.

    

  

  	Enable interrupt in ICU

  	Enable interrupt in CPU, usually by MOVS




Interrupt occurs


  	AND of IRQ and NOT( IRQ disabled ) is checked before each instruction
    fetch.

  	If set IRQ exception is taken in place of next instruction fetch. 
    
      	Possibly zero instructions of active task are executed.

      	Make sure that this case works

    

  

  	Context switch into kernel 
    

    


    Context switch novelties

    Difference from Software Interrupts

    
      	It is impossible to predict where they occur

      	You may inadvertently have  made some assumptions about when they
        occur

      	Scratch Registers must be saved 
        
          	r0-3

          	IP -- used only very occasionally by gcc

        

      

      	How do you differentiate between IRQ and SWI?

      	Two Link Registers 
        
          	One to return from interrupt

          	One to return from the interrupted task to whatever called
          it

        

      

    

    

  

  	Locate source of interrupt

  	Collect volatile data

  	Turn off interrupt in device
    
      	Goes off automatically in the ICU

    

  

  	Turn off interrupt in device 
    
      	Should turn off interrupt in ICU

      	What about IRQ?

    

  




You are now ready to process the interrupt in the kernel




Vectored Operation


General Idea


The standard way of programming the ICU requires the kernel to query the
ICU. Sometimes (!), this is unacceptably inefficient. Then, you have another
alternative, vectored interrupts.


Relevant registers:


  	there are 16 pairs that you write 

    
      
      
        
          	Register Name
          	Offset
          	R/W
          	Description
          	Comments
        

        
          	VICxVectAddry
          	0x100+4y
          	R/W
          	Vector address for interrupt y
          	Entry point of ISR for interrupt y
        

        
          	VICxVectCntly
          	0x200+4y
          	R/W
          	Control register for interrupt y
          	Bit[0-4]: interrupt source for interrupt y

            Bit[5]: enable vectored interrupt y
        

      
    

    

  

  	There is one pair used by the program 

    
      
      
        
          	Register Name
          	Offset
          	R/W
          	Description
        

        
          	VICxVectAddr
          	0x030
          	R/W
          	Read: address of vector for highest priority interrupt 
            Write: service complete, enable priority hardware

          
        

        
          	VICxDefVectAddr
          	0x034
          	R/W
          	Default vector address
        

      
    

    
      	The first is the address (ISR entry point) of the highest priority
        interrupt. Write it during interrupt processing to get the current
        highest priority interrupt.

      	The second would normally be 0x34, the entry point of the
      kernel.

    

  




Procedure


Initialization


  	Write kernel entry point into VICxDefVectAddr

  	If desired write special entry point into VICxVectAddry

  	When ready to accept interrupts write source and enable into
    VICxVectCntly




When an interrupt occurs


  	Read VICxVectAddr to find address

  	Move result to PC 
        ldr   pc, #<VicVectAddr>

    (Note that this is similar to the instruction in 0x014. Could we do it
    all in one?)

  

  	Before interrupts are re-enabled write VICxVectAddr to start priority
    hardware




Answer to question.


Look carefully at what's in 0x18


  	Usually, ldr pc, [pc, #offset] 
    Can you make [pc, #offset] calculate
    <VicVectAddr>?

  

  	How is the instruction encoded 
    
      	31:28 - condition codes

      	27:20 - op code and flags, 0101<offset sign>001

      	19:16 - base register

      	15:12 - destination register

      	11:00 - 12-bit offset

    

  

  	With a 12 bit offset and pc=0x18 you can address 
    
      	from 0x18 + 0x8 - 0xffc = -0xfdc
        =0xfffff020

      	to 0x18 + 0x8 + 0xffc = 0x1020

    

  

  	You could have the kernel entry point in 
    
      	either 0x800b0030

      	or 0x800c0030

    

  

  	Both are out of range. What could you do? 
    
      	Map the ICU into the range by placing it at, for example,
        0xfffff000.

    

  









Clock Server, Task Structure


A New Kernel Primitive: int AwaitEvent( int EventType )


How is AwaitEvent Used?


  	There should (almost) always be a task blocked on AwaitEvent for every
    interrupt type. Why?

  	A server cannot call AwaitEvent. Why?

  	We call the task that calls AwaitEvent a Notifier. Why?

  	Code for a typical Notifier 
    main( ) {
    Tid server;
    int evtType, data;
    Receive( &server, &evtType, ... );
    // Other initialization
    Reply( server, ... );
    FOREVER {
        data = AwaitEvent( evtType );
        Send( server, &data, ... );
    }
}

  

  	Code for a typical server 
    main( ) {
    notifier = Create( HIGHEST, ... );
    // other initialization
    Send( notifier, &evtType, ... );
    FOREVER {
        Receive( &requester, &request, ... );
        switch ( request.type ) {
        case NOTIFIER:
            Reply( notifier );
            data = request.data;
            break;
        case CLIENT:
            ...
        }
    }
}

  




More About AwaitEvent


Argument


  	Somewhere there is a list of event types 
    
      	Application programmer knows the list

      	Kernel can respond to each event type on the list

    

  

  	This is not very portable 
    
      	The list would normally be the union of all types occurring on all
        hardware

      	This is the Windows problem

    

  




Processing in the kernel


  	Initialization 
    
      	Kernel initialization has IRQ masked

      	Kernel initializes ICU

      	For each device 
        
          	Kernel initializes hardware

          	Kernel turns on interrupt(s) in the device

        

      

      	Kernel starts first user task

      	Eventually, Notifier is created

      	Notifier 
        
          	initializes device

          	turns on interrupt(s) in the device

          	turns on interrupt(s) in the ICU

          	calls AwaitEvent

        

      

    

  

  	Procedure 
    
      	Kernel 
        
          	identifies interrupt source

          	identifies the correct Notifier

          	acquires volatile data

          	re-enables interrupt in the device

          	re-enables interrupt in the ICU

          	re-enables interrupt in the CPU during task activation (eg,
            movs)

          	puts volatile data into AwaitEvent's return value

          	Makes Notifier ready

        

      

      	Notifier 
        
          	collects and packages data

          	sends to server

        

      

      	Eventually Server 
        
          	Replies to Notifier

        

      

    

  

  	Advantage 
    
      	Clean consistent user code

    

  

  	Disadvantage 
    
      	Kernel has to know a lot about the hardware.

      	Hardware knowledge split between Notifier and kernel

    

  




HALT versus an Idle Task


What do you do when there are no tasks to run?


  	Idle task 
    
      	lowest priority

      	diagnose system

      	search for ETI

    

  

  	HALT 
    
      	turns off CPU clock

      	save power (battery)

      	provided two ways 
        
          	through System Controller Co-processor

          	through the TS-7200 clock controller

        

      

      	IRQ path is asynchronous, so it works when the clock is off

    

  






Clock Server


Primitives

int Time( )


  	Clock server starts at zero when it initializes

  	Unit of time is tick



int Delay( int ticks )


  	Note error returns

  	You might want to add an error for negative arguments 
    
      	ticks is usually calculated, and a negative value is an early
        warning of falling behind.

    

  



int DelayUntil( int ticks )


  	Can be constructed from the above two primitives.




Implementation

main( ) {
    notifier = Create( HIGHEST, ... );
    time = 0
    Send( notifier, &evtType, ... );
    FOREVER {
        Receive( &requester, &request, ... );
        switch ( request.type ) {
        case NOTIFIER:
            Reply( notifier, ... )
            time++;
            break;
        case TIME_REQUEST:
            Reply( requester, time,... )
            break;
        case DELAY_REQUEST: 
            Add requester to list of suspended tasks
            break;
        }
        Check list of suspended tasks and reply
    }
}


Comments:


  	You need a common request type, or possibly a union.

  	You should notice a typical server pattern. 
    
      	Notifier updates data

      	Client who can be serviced now is serviced

      	Client who needs service in the future is suspended

      	List of suspended tasks is checked regularly

    

  




It's normal to sort the list of suspended tasks. Why?




Return to:


  	Bill Cowan's lecture notes for CS452 in
  s12

  	Bill Cowan's Spring 2012 CS452 page

  	Bill Cowan's CS452 page

  	Bill Cowan's teaching page

  	Bill Cowan's home page







Lecture 13 - Hardware Interrupts


Public Service Annoucements


  	Assignment 3 






Hardware Interrupts


Vectored Operation


General Idea


The standard way of programming the ICU requires the kernel to query the
ICU. Sometimes (!), this is unacceptably inefficient. Then, you have another
alternative, vectored interrupts.


Relevant registers:


  	there are 16 pairs that you write 

    
      
      
        
          	Register Name
          	Offset
          	R/W
          	Description
          	Comments
        

        
          	VICxVectAddry
          	0x100+4y
          	R/W
          	Vector address for interrupt y
          	Entry point of ISR for interrupt y
        

        
          	VICxVectCntly
          	0x200+4y
          	R/W
          	Control register for interrupt y
          	Bit[0-4]: interrupt source for interrupt y

            Bit[5]: enable vectored interrupt y
        

      
    

    

  

  	There is one pair used by the program 

    
      
      
        
          	Register Name
          	Offset
          	R/W
          	Description
        

        
          	VICxVectAddr
          	0x030
          	R/W
          	Read: address of vector for highest priority interrupt 
            Write: service complete, enable priority hardware

          
        

        
          	VICxDefVectAddr
          	0x034
          	R/W
          	Default vector address
        

      
    

    
      	The first is the address (ISR entry point) of the highest priority
        interrupt. Write it during interrupt processing to get the current
        highest priority interrupt.

      	The second would normally be 0x34, the entry point of the
      kernel.

    

  




Procedure


Initialization


  	Write kernel entry point into VICxDefVectAddr

  	If desired write special entry point into VICxVectAddry

  	When ready to accept interrupts write source and enable into
    VICxVectCntly




When an interrupt occurs


  	Read VICxVectAddr to find address

  	Move result to PC 
        ldr   pc, #<VicVectAddr>

    (Note that this is similar to the instruction in 0x014. Could we do it
    all in one?)

  

  	Before interrupts are re-enabled write VICxVectAddr to start priority
    hardware




Answer to question.


Look carefully at what's in 0x18


  	Usually, ldr pc, [pc, #offset] 
    Can you make [pc, #offset] calculate
    <VicVectAddr>?

  

  	How is the instruction encoded 
    
      	31:28 - condition codes

      	27:20 - op code and flags, 0101<offset sign>001

      	19:16 - base register

      	15:12 - destination register

      	11:00 - 12-bit offset

    

  

  	With a 12 bit offset and pc=0x18 you can address 
    
      	from 0x18 + 0x8 - 0xffc = -0xfdc
        =0xfffff020

      	to 0x18 + 0x8 + 0xffc = 0x1020

    

  

  	You could have the kernel entry point in 
    
      	either 0x800b0030

      	or 0x800c0030

    

  

  	Both are out of range. What could you do? 
    
      	Map the ICU into the range by placing it at, for example,
        0xfffff000.

    

  









Clock Server


Primitives

int Time( )


  	Clock server starts at zero when it initializes

  	Unit of time is tick



int Delay( int ticks )


  	Note error returns

  	You might want to add an error for negative arguments 
    
      	ticks is usually calculated, and a negative value is an early
        warning of falling behind.

    

  



int DelayUntil( int ticks )


  	Can be constructed from the above two primitives.




Implementation

main( ) {
    notifier = Create( HIGHEST, ... );
    time = 0
    Send( notifier, &evtType, ... );
    FOREVER {
        Receive( &requester, &request, ... );
        switch ( request.type ) {
        case NOTIFIER:
            Reply( notifier, ... )
            time++;
            break;
        case TIME_REQUEST:
            Reply( requester, time,... )
            break;
        case DELAY_REQUEST: 
            Add requester to list of suspended tasks
            break;
        }
        Check list of suspended tasks and reply
    }
}


Comments:


  	You need a common request type, or possibly a union.

  	You should notice a typical server pattern. 
    
      	Notifier updates data

      	Client who can be serviced now is serviced

      	Client who needs service in the future is suspended

      	List of suspended tasks is checked regularly

    

  

  	It's normal to sort the list of suspended tasks. Why?






HALT versus an Idle Task


What do you do when there are no tasks to run?


  	Idle task 
    
      	lowest priority

      	diagnose system 
        
          	Philosophical problem. It's easy to detect an error; but what
            do you do when you detect an error. 
            
              	Extreme example: incomplete transaction versus
              explosion

            

          

          	Practical solution is to divide errors into two categories 
            
              	Recover without stopping. Extreme example is Magellan
                spacecraft: 
                
                  	In behind Venus, silence; out from behind Venus,
                    talking again

                  	During orbit insertion: out from behind Venus,
                  nothing

                  	Wait six weeks, "I'm here."

                  	Wait three weeks, nothing

                  	Wait six weeks, "I'm here."

                  	Wait three weeks, "I'm stabilized."

                  	What was going on?

                

              

              	Stop, diagnose, re-program, re-run

            

            Extreme example is Magellan spacecraft:

            
              	In behind Venus, silence; out from behind Venus, talking
                again

              	During orbit insertion: out from behind Venus, nothing

              	Wait six weeks, "I'm here." Wait three weeks, nothing

              	Wait six weeks, "I'm here."

              	Wait three weeks, "I'm stabilized."

              	What was going on?

              	Now enter second category in the standard two box
                development model.

            

          

        

      

      	search for ETI

    

  

  	STANDBY/HALT 
    
      	turns off CPU clock

      	save power (battery)

      	provided two ways 
        
          	through System Controller Co-processor 
            
              	Use MCR instruction, to access co-processor 15.

              	can only be executed in privileged modes

            

          

          	through EP9302 
            
              	write location 0x80930008 (HALT) or
                0x8093000c (STANDBY)

              	bit must be set in 0x80930080

            

          

        

      

      	IRQ path is asynchronous, so it works when the clock is off 
        
          	but interrupts must be enabled

          	therefore you want to be in user mode

        

      

      	See pdf for some details.

    

  






Serial I/O


See pdf.


FIFO


Why do FIFOs exist in UARTS?


The Big Blunder


To use the FIFO effectively you must be able to turn off the transmitter
& receiver independently.


But look at UARTE in UARTxCtrl


  	UART Enable.

  	If this bit is set to 1, the UART is enabled.

  	Data transmission and reception occurs for UART signals.




The Little Blunder


`It is assumed that various configuration registers for the UART are not
written more than once in quick succession, in order to insure proper
synchronization of configuration information across the implementation. Such
registers include UART1Ctrl and UART1LinCtrlHigh. ... In between the two
writes, at least two UARTCLK periods must occur. Under worst case conditions,
at least 55 HCLK periods must separate the two writes. The simplest way to
due [sic] this is separate the two writes by 55 NOPs.'


Why does this occur?


  	CPU clocked by CPU clock

  	System buses clocked by several different clocks

  	UART clocked by its own clock

  	The clocks were not suitably synchronized




Why doesn't anybody care?


  	UARTs are used at the beginning of the development process

  	Once other I/O (ethernet, USB, etc.) is working, UARTs are no longer
    used, except by the boot loader




Interrupts


Five interrupts in the device


These interrupts are separately enabled and disabled.


  	Transmit 
    
      	FIFO enabled 
        
          	Asserted when transmit FIFO is less than half full.

          	Cleared when transmit FIFO is more than half full.

        

      

      	FIFO disabled 
        
          	Asserted when holding register is empty

          	Cleared on write to the holding register

        

      

      	Not conditioned by enable.

    

  

  	Receive 
    
      	FIFO enabled 
        
          	Asserted when receive FIFO is half full

          	Cleared when receive FIFO is read to less than half full.

        

      

      	FIFO disabled 
        
          	Asserted when receive buffer is full

          	Cleared when receive buffer is read

        

      

    

  

  	Modem status 
    
      	Asserted when hardware flow control bits change

      	Cleared when the modem status register is written

    

  

  	Receive timeout 
    
      	Asserted when receive FIFO is not empty and 32 bit periods pass
        with no new data

      	Cleared when all data has been read from FIFO

    

  

  	Combined 
    
      	OR of the four above interrupts

      	Asserted when at least one of the above interrupts is asserted

      	Cleared when all the above interrupts are not asserted.

    

  




Three inputs to the PIC


  	Transmit

  	Receive

  	Combined




Easy way to use interrupts


Enable only combined; read UART registers to decide what to do.


Think of the receive and transmit parts of the UART as separate state
machines


  	Base the state machine on bits in the status registers

  	Make a separate state machine for flow control






Return to:


  	Bill Cowan's lecture notes for CS452 in
  s12

  	Bill Cowan's Spring 2012 CS452 page

  	Bill Cowan's CS452 page

  	Bill Cowan's teaching page

  	Bill Cowan's home page







Lecture 14 - Serial I/O, Debugging


Public Service Annoucements


  	Assignment 4

  	Performance measurements






Serial I/O


See pdf.


FIFO


Why do FIFOs exist in UARTS?


The Big Blunder


To use the FIFO effectively you must be able to turn off the transmitter
& receiver independently.


But look at UARTE in UARTxCtrl


  	UART Enable.

  	If this bit is set to 1, the UART is enabled.

  	Data transmission and reception occurs for UART signals.




The Little Blunder


`It is assumed that various configuration registers for the UART are not
written more than once in quick succession, in order to insure proper
synchronization of configuration information across the implementation. Such
registers include UART1Ctrl and UART1LinCtrlHigh. ... In between the two
writes, at least two UARTCLK periods must occur. Under worst case conditions,
at least 55 HCLK periods must separate the two writes. The simplest way to
due [sic] this is to separate the two writes by 55 NOPs.'


Why does this occur?


  	CPU clocked by CPU clock

  	System buses clocked by several different clocks

  	UART clocked by its own clock

  	The clocks were not suitably synchronized




Why doesn't anybody care?


  	UARTs are used at the beginning of the development process

  	Once other I/O (ethernet, USB, etc.) is working, UARTs are no longer
    used, except possibly by the boot loader




Interrupts


Five interrupts in the device


These interrupts are separately enabled and disabled.


  	Transmit 
    
      	FIFO enabled 
        
          	Asserted when transmit FIFO is less than half full.

          	Cleared when transmit FIFO is more than half full.

        

      

      	FIFO disabled 
        
          	Asserted when holding register is empty

          	Cleared on write to the holding register

        

      

      	Not conditioned by enable.

    

  

  	Receive 
    
      	FIFO enabled 
        
          	Asserted when receive FIFO is half full

          	Cleared when receive FIFO is read to less than half full.

        

      

      	FIFO disabled 
        
          	Asserted when receive buffer is full

          	Cleared when receive buffer is read

        

      

    

  

  	Modem status 
    
      	Asserted when hardware flow control bits change

      	Cleared when the modem status register is written

    

  

  	Receive timeout 
    
      	Asserted when receive FIFO is not empty and 32 bit periods pass
        with no new data

      	Cleared when all data has been read from FIFO

    

  

  	Combined 
    
      	OR of the four above interrupts

      	Asserted when at least one of the above interrupts is asserted

      	Cleared when all the above interrupts are not asserted.

    

  




Three inputs to the ICU


  	Transmit

  	Receive

  	Combined




These are adequate for interacting with the terminal, but not for
interacting with the train controller.


Easy way to use interrupts


Enable only combined; read UART registers to decide what to do.


Think of the receive and transmit parts of the UART as separate state
machines


  	Base the state machine on bits in the status registers

  	Make a separate state machine for flow control







Practical Advice


Until now you have been using busy-wait I/O for getting debugging output.
You would like to continue to have debugging output while you are
implementing interrupt-mediated I/O.


  	There are two UART ports on the ARM board.

  	Connect each one to a different terminal window on the terminal.

  	Do busy-wait I/O to one for debugging while getting interrupt-mediated
    I/O working on the other.

  	Then do debugging I/O on the working serial server while you create and
    debig the other server.




Hint. The serial server for the terminal must be a lot
more complex than the esrial server for the train controller.




Debugging Real-time Programs


The most common set of debugging tools used by experienced programmers is
the oldest: printf, grep & stack trace.


  	The power of these tools is greatly enhanced by strong conventions in
    code formatting.




Debugging real-time programs, at its base, is just the same as any other
debugging, and just the same as empirical science.


  	Gather data.

  	Create a model that explains the data

  	Test the model

  	If the model is not correct, go to 1.

  	Remember that the model is ALWAYS provisional: data collected later may
    invalidate it, no matter how much data has confirmed it.




But real-time programs are harder to debug. Very few programs are entirely
free of critical races, which are the worst type of bug, lurking for weeks
months or years in seemingly correct code, then appearing when innocuous,
unconnected changes occur.


Critical Races


There is no known method for eliminating critical races.


  	Synchronizing everything, which seems to be an obvious solution, kills
    performance because it removes flexibility from the execution.




It is, in principle, impossible to test away critical races. Why?


  	When three trains run continuously for ten minutes, how many events
    occur in the real world?

  	How many possible orders are there for these events?

  	Re-ordering isn't even necessary for a critical race to occur, just
    getting too close in time.




RedBoot


The memory contents are not wiped by reset. Some of the most difficult
errors can be detected only by using the contents of memory after a reset.
Produce useful results by inserting

    str   pc, <magic location>


many places in your code. Then, with the assistance of a load map, you can
find out where you were in which code when the problem occurred.


In RedBoot you can, in principle, trace any of the kernel


Stack Trace


In single-threaded programs this is often the most useful tool.


  	Anything that terminates execution abnormally prints the set of active
    stack frames

  	Minimal version 
    
      	name of calling function

      	line number of call

    

  

  	Extreme version 
    
      	values of arguments

      	values of local variables

    

  




What is the equivalent of a stack trace in a real-time multi-tasking
environment?


  	How would you implement it? 
    Two basic questions to answer.

    
      	When is it produced?

      	What should be in it?

    

  

  	How would you make it readable?




Breakpoint


What does it do?


  	snapshot of the system 
    
      	This means that computation, including respose to interrupts, must
        stop, or it isn't a snapshot.

    

  

  	provides interactive tools for examining kernel data structures, such
    as 
    
      	task descriptors

      	lists and queues

      	stacks, including the program counter and local variables, of
        individual tasks

    

  

  	restart system immediately afterwards 
    
      	If you want to continue where processing stopped you must make
        certain that all state is saved when you enter Beakpoint and restored
        when you leave it. What about pending interrupts? You can't stop the
        entire universe!

      	Otherwise you can re-enter RedBoot.

    

  




How do you get it started?


  	function call, which you insert in your code when compiling. 
    
      	The easiest and fastest form to implement.

      	Having the call as part of ASSERT is common.

      	Has to exit to RedBoot. (Jump to x00.)

    

  

  	system call instead of function call, which respects the kernel/user
    distinction.

  	an exception triggered externally 
    
      	at initialization 
        
          	Set up the system so that the external event will generate an
            exception

          	E.g. attach a button to PDIO on the third connector, set up
          ICU.

        

      

      	at run-time 
        
          	Trigger the interrupt

          	Switch to Breakpoint in the event handler

          	Either exit to RedBoot,

          	Or clean up pending interrupts and resume execution.

        

      

    

  




Breakpoint is a special case of a particular sort of tool that is very
common.


  	condition occurs => information is made available

  	breakpoint provides the information interactively (`interactively' =
    `on the time scale of the user') 
    
      	it can stop the system completely. How?

      	but it has limited ability to stop the real world 
        
          	i.e., it hides some bugs

        

      

    

  




Getting information closer to real-time.
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Lecture 14 - Serial I/O, Debugging


Public Service Annoucements


  	Assignment 4

  	Performance measurements






Serial I/O


See pdf.


FIFO


Why do FIFOs exist in UARTS?


The Big Blunder


To use the FIFO effectively you must be able to turn off the transmitter
& receiver independently.


But look at UARTE in UARTxCtrl


  	UART Enable.

  	If this bit is set to 1, the UART is enabled.

  	Data transmission and reception occurs for UART signals.




The Little Blunder


`It is assumed that various configuration registers for the UART are not
written more than once in quick succession, in order to insure proper
synchronization of configuration information across the implementation. Such
registers include UART1Ctrl and UART1LinCtrlHigh. ... In between the two
writes, at least two UARTCLK periods must occur. Under worst case conditions,
at least 55 HCLK periods must separate the two writes. The simplest way to
due [sic] this is to separate the two writes by 55 NOPs.'


Why does this occur?


  	CPU clocked by CPU clock

  	System buses clocked by several different clocks

  	UART clocked by its own clock

  	The clocks were not suitably synchronized




Why doesn't anybody care?


  	UARTs are used at the beginning of the development process

  	Once other I/O (ethernet, USB, etc.) is working, UARTs are no longer
    used, except possibly by the boot loader




Interrupts


Five interrupts in the device


These interrupts are separately enabled and disabled.


  	Transmit 
    
      	FIFO enabled 
        
          	Asserted when transmit FIFO is less than half full.

          	Cleared when transmit FIFO is more than half full.

        

      

      	FIFO disabled 
        
          	Asserted when holding register is empty

          	Cleared on write to the holding register

        

      

      	Not conditioned by enable.

    

  

  	Receive 
    
      	FIFO enabled 
        
          	Asserted when receive FIFO is half full

          	Cleared when receive FIFO is read to less than half full.

        

      

      	FIFO disabled 
        
          	Asserted when receive buffer is full

          	Cleared when receive buffer is read

        

      

    

  

  	Modem status 
    
      	Asserted when hardware flow control bits change

      	Cleared when the modem status register is written

    

  

  	Receive timeout 
    
      	Asserted when receive FIFO is not empty and 32 bit periods pass
        with no new data

      	Cleared when all data has been read from FIFO

    

  

  	Combined 
    
      	OR of the four above interrupts

      	Asserted when at least one of the above interrupts is asserted

      	Cleared when all the above interrupts are not asserted.

    

  




Three inputs to the ICU


  	Transmit

  	Receive

  	Combined




These are adequate for interacting with the terminal, but not for
interacting with the train controller.


Easy way to use interrupts


Enable only combined; read UART registers to decide what to do.


Think of the receive and transmit parts of the UART as separate state
machines


  	Base the state machine on bits in the status registers

  	Make a separate state machine for flow control







Practical Advice


Until now you have been using busy-wait I/O for getting debugging output.
You would like to continue to have debugging output while you are
implementing interrupt-mediated I/O.


  	There are two UART ports on the ARM board.

  	Connect each one to a different terminal window on the terminal.

  	Do busy-wait I/O to one for debugging while getting interrupt-mediated
    I/O working on the other.

  	Then do debugging I/O on the working serial server while you create and
    debig the other server.




Hint. The serial server for the terminal must be a lot
more complex than the esrial server for the train controller.




Debugging Real-time Programs


The most common set of debugging tools used by experienced programmers is
the oldest: printf, grep & stack trace.


  	The power of these tools is greatly enhanced by strong conventions in
    code formatting.




Debugging real-time programs, at its base, is just the same as any other
debugging, and just the same as empirical science.


  	Gather data.

  	Create a model that explains the data

  	Test the model

  	If the model is not correct, go to 1.

  	Remember that the model is ALWAYS provisional: data collected later may
    invalidate it, no matter how much data has confirmed it.




But real-time programs are harder to debug. Very few programs are entirely
free of critical races, which are the worst type of bug, lurking for weeks
months or years in seemingly correct code, then appearing when innocuous,
unconnected changes occur.


Critical Races


There is no known method for eliminating critical races.


  	Synchronizing everything, which seems to be an obvious solution, kills
    performance because it removes flexibility from the execution.




It is, in principle, impossible to test away critical races. Why?


  	When three trains run continuously for ten minutes, how many events
    occur in the real world?

  	How many possible orders are there for these events?

  	Re-ordering isn't even necessary for a critical race to occur, just
    getting too close in time.




RedBoot


The memory contents are not wiped by reset. Some of the most difficult
errors can be detected only by using the contents of memory after a reset.
Produce useful results by inserting

    str   pc, <magic location>


many places in your code. Then, with the assistance of a load map, you can
find out where you were in which code when the problem occurred.


In RedBoot you can, in principle, trace any of the kernel


Stack Trace


In single-threaded programs this is often the most useful tool.


  	Anything that terminates execution abnormally prints the set of active
    stack frames

  	Minimal version 
    
      	name of calling function

      	line number of call

    

  

  	Extreme version 
    
      	values of arguments

      	values of local variables

    

  




What is the equivalent of a stack trace in a real-time multi-tasking
environment?


  	How would you implement it? 
    Two basic questions to answer.

    
      	When is it produced?

      	What should be in it?

    

  

  	How would you make it readable?




Breakpoint


What does it do?


  	snapshot of the system 
    
      	This means that computation, including respose to interrupts, must
        stop, or it isn't a snapshot.

    

  

  	provides interactive tools for examining kernel data structures, such
    as 
    
      	task descriptors

      	lists and queues

      	stacks, including the program counter and local variables, of
        individual tasks

    

  

  	restart system immediately afterwards 
    
      	If you want to continue where processing stopped you must make
        certain that all state is saved when you enter Beakpoint and restored
        when you leave it. What about pending interrupts? You can't stop the
        entire universe!

      	Otherwise you can re-enter RedBoot.

    

  




How do you get it started?


  	function call, which you insert in your code when compiling. 
    
      	The easiest and fastest form to implement.

      	Having the call as part of ASSERT is common.

      	Has to exit to RedBoot. (Jump to x00.)

    

  

  	system call instead of function call, which respects the kernel/user
    distinction.

  	an exception triggered externally 
    
      	at initialization 
        
          	Set up the system so that the external event will generate an
            exception

          	E.g. attach a button to PDIO on the third connector, set up
          ICU.

        

      

      	at run-time 
        
          	Trigger the interrupt

          	Switch to Breakpoint in the event handler

          	Either exit to RedBoot,

          	Or clean up pending interrupts and resume execution.

        

      

    

  




Breakpoint is a special case of a particular sort of tool that is very
common.


  	condition occurs => information is made available

  	breakpoint provides the information interactively (`interactively' =
    `on the time scale of the user') 
    
      	it can stop the system completely. How?

      	but it has limited ability to stop the real world 
        
          	i.e., it hides some bugs

        

      

    

  




Getting information closer to real-time.
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Lecture 16 - Serial I/O Implementation


Public Service Annoucements


  	Assignment 4

  	Exam: 9.00, August 8

  	Performance measurements 
    
      	Send First - Receive First: off,0--100,4,0,0 --  on,2--0,10,6,3

      	usec/byte -- off,0--4,4,8,1.4 -- on,2--0.1,0.1,0.2,0.0,0.0

      	off/on -- 16,9,9,10,30

      	0/2 -- 10%,10%,6%,3%

      	best -- 7,20,16,15,12

    

  






Debugging Real-time Programs


RedBoot


The memory contents are not wiped by reset. Some of the most difficult
errors can be detected only by using the contents of memory after a reset.
Produce more useful results by inserting

    str   pc, <magic location>


and the like into your code and, with the assistance of a load map,
finding out where you were in whose code when the problem occurred.


Stack Trace


In single-threaded programs this is often the most useful tool.


  	Anything that terminates execution abnormally prints the set of active
    stack frames

  	Minimal version 
    
      	name of calling function

      	line number of call

    

  

  	Extreme version 
    
      	values of arguments

      	values of local variables

    

  




What is the equivalent of a stack trace in a real-time multi-tasking
environment?


  	How would you implement it? 
    Two basic questions to answer.

    
      	When is it produced?

      	What should be in it?

    

  

  	How would you make it readable?




Breakpoint


What does it do?


  	snapshot of the system 
    
      	This means that computation, including respose to interrupts, must
        stop, or it isn't a snapshot.

    

  

  	provides interactive tools for examining kernel data structures, such
    as 
    
      	task descriptors

      	lists and queues

      	stacks, including the program counter and local variables, of
        individual tasks

    

  

  	restart system immediately afterwards 
    
      	If you want to continue where processing stopped you must make
        certain that all state is saved when you enter Beakpoint and restored
        when you leave it. What about pending interrupts? You can't stop the
        entire universe!

      	Otherwise you can re-enter RedBoot.

    

  




How do you get it started?


  	function call, which you insert in your code when compiling. 
    
      	The easiest and fastest form to implement.

      	Having the call as part of ASSERT is common.

      	Has to exit to RedBoot. (Jump to x00.)

    

  

  	system call instead of function call, which respects the kernel/user
    distinction.

  	an exception triggered externally 
    
      	at initialization 
        
          	Set up the system so that the external event will generate an
            exception

          	E.g. attach a button to PDIO on the third connector, set up
          ICU.

        

      

      	at run-time 
        
          	Trigger the interrupt

          	Switch to Breakpoint in the event handler

          	Either exit to RedBoot,

          	Or clean up pending interrupts and resume execution.

        

      

    

  




Breakpoint is a special case of a particular sort of tool that is very
common.


  	condition occurs => information is made available

  	breakpoint provides the information interactively (`interactively'
    means `on the time scale of the user') 
    
      	Breakpoint can stop the system completely. How?

      	but it has limited ability to stop the real world 
        
          	i.e., it hides some bugs

        

      

    

  




Breakpoint operating on the corpse of an execution terminated by reset or
an ASSERT is called Autopsy.


Getting information closer to real-time.


Symptoms of bugs often occur a while after the bug itself. Thus we often
want to know what happened in the time immediately previous to the
observation of bug symptoms. (Most often 'bug symptom' is no more than a
fancy way of saying 'crash'.)


Use bits


Set aside a block of memory and assign each bit to an event that occurs
during execution of the program. Set the bit when the event occurs. Then you
can see what has, or has not occurred prior to the bug becoming visible.


Gossip


A special task maintains a circular buffer. Any task can send a message to
the task with a string that will be inserted in the circular buffer.


Execution Visualization


Most important is the necessity of accommodating the fast time scale of
the computer to the slow time scale of the human.




Train Properties


A locomotive travels on the track at a given speed following the path
created by directions of turn outs.


  	As it travels it triggers sensors that give you feedback as to where it
    is.

  	Actually, not quite where it is. There is a time lag. 
    
      	Train triggers sensor at t: x(t) = Sn + 0 cm

      	Report of sensor is recorded (time-stamped) at t + dt. dt includes 
        
          	interval between time of triggering and next sensor query

          	time for train controller to process query and return the
          result

          	time in your application between receiving bytes from train
            controller and packaging bytes into a time stamped event

        

        You should be able to estimate each of these time intervals

      

      	At t + dt: x(t + dt) = Sn + dx

      	dx = \int_t^(t+dt) v(t') dt' ~= v(t) dt

      	In the event time-stamped at t + dt the train appears to be at Sn,
        but it is actually at Sn + v(t) dt

      	Does this matter? 
        
          	How fast do trains go? Estimate 20 cm/sec.

          	If dt is 100 msec you are off by 2 cm.

        

      

    

  




How do you know where the locomotive is?


  	intermittently, at a sensor

  	between sensors, dead reckoning, which means you need to know the
    train's velocity




Velocity is controlled by changing the train's speed, BUT, the mapping
between speed and velocity is complex.


  	Velocity changes are not instantaneous. 
    
      	After the speed is changed the train speeds up and slows down
        gradually.

      	`Tricks' that make the train stop instantly are not acceptable
        because they wear out the trains.

    

  

  	The velocity decreases when travelling over turn outs or around curves. 
    
      	The smaller the radius of curvature the slower the velocity.

    

  

  	Different locomotives travel at different velocities when set to the
    same speed.

  	Velocity of a given locomotive decreases over time 
    
      	As the track gets dirty.

      	As the time since the locomotive's last lubrication increases

      	As the locomotive gradually wears out

    

  




Important. Some of these effects matter; some don't. It's
part of your task to find out which is which.


Furthermore, things can go wrong, such as


  	A turn-out switches while a locomotive is on top of it. 
    
      	You need to estimate where the train will be when the turn-out
        switches in order to know if it is safe to execute a switch
      command

    

  

  	Locomotives run off the ends of sidings. 
    
      	You need to know how far a train will travel between when you give
        the stop command and when the train stops.

    

  

  	Locomotives stall because they pass over difficult parts of the track
    too slowly. 
    
      	Why? Friction increases when a train is on curved track.

    

  

  	Sensors fail to trigger, or trigger in the absence of a locomotive 
    
      	You need to know when you expect the sensor to be triggered if you
        are to know that it has not been triggered.

    

  




Avoiding such failures, or responding sensibly to them, is possible only
if you have a `good enough' velocity calibration. (You get a perfect
calibration only in the limit t->infinity, and train you are calibrating
is dead long before that.) Failures like these also pollute your attempt to
acquire reliable data for your calibration.


Factors that might effect a calibration.


In general the velocity of a locomotive may be a function of many
variables


  	which locomotive it is

  	which speed is set

  	time since the last speed change

  	the velocity at which it was travelling before the last speed
  change

  	where it is on the track 
    
      	possibly on what type of track it is on

    

  

  	how long since the track was cleaned

  	how long since the locomotive was lubricated




Important. Some of these effects are matter; some don't.
It's part of your task to find out which is which.
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Lecture 17 - Calibration I


Public Service Annoucements


  	Convocation 

  	Exam: 9.00, August 8

  	Flow control when communicating with the train controller.

  	Measurement is an activity that is not speeded up by being smart.






Calibration


Philosophy


You can't do anything until you know where the train is. You accomplish
this by


  	Knowing the train's location when it arrives at a landmark, and

  	Interpolating between landmarks by knowing the train's velocity all the
    time.




Measurement is costly, and you should squeeze every bit of information you
can out of every measurement you make.


  	By analogy with human information processing, I recommend that every
    time you get a sensor report you make a prediction
    
      	Which sensor do you expect to hit next?

      	When do you expect to hit it?

    

  

  	When you hit the next sensor you automatically have an estimate of how
    fast you travelled between the sensors.
    
      	This estimate is your most recent estimate of the train's velocity
        on that piece of train, at that speed.

      	Using it to improve the calibration tables is what we call
        dynamic calibration.

    

  

  	Display the difference between your prediction and your measurement on
    the terminal,
    
      	in time,

      	in distance,

      	in velocity

    

    This gives you an ongoing feeling for how your application is working,
    which is very important for setting effective tolerances.

  




1. Calibrating Stopping Distance


The simplest objective:


  	know where the train stops when you give it a command to stop

  	restrict the stop commands to just after the train passes a sensor

  	only one train moving




Sequence of events


  	Train triggers sensor at t 
    
      	train at Sn + 0 cm

    

  

  	Application receives report at t + dt1

  	You give command at t + dt1 + dt2

  	Train receives and executes command at t + dt1 + dt2 + dt3

  	Train slows and stops at t + dt1 + dt2 + dt3 + dt4 
    
      	train at Sn + y cm

      	(You measure y with a tape measure.)

    

  




Questions you need to answer


  	If you do this again, same sensor, same speed, will you get the same
    answer?

  	If you do this again, different sensor, same speed, will you get the
    same answer?

  	If you do this again, same sensor, different speed, will you get the
    same answer?

  	If you do this again, different sensor, different speed, will you get
    the same answer?

  	And all the other important ones in the list above.




Comments


  	The sequence of events above has a whole lot of small delays that get
    added together 
    
      	Each one has a constant part and a random part. Try to use values
        that are diffferences of measurements to eliminate the constant
      parts.

      	Some delays can be eliminated a priori because they are extremely
        small compared to other delays. The more you figure this out in
        advance the less measurement you have to do.

    

  

  	Knowing where you stop is very important when running the train on
    routes that require reversing 
    
      	Why are reversing routes important?

    

  

  	Clearly, knowing when you stop is equally important.




This is very time-consuming!


  	The only way to reduce the number of measurements is to eliminate
    factors that are unimportant.

  	The only way to know that a factor is always unimportant is to measure.
    Developing the ability to estimate quickly, and to find the worst case
    quickly is the main way of being smart in tasks like this one.




Now make a table



  
    
      	
      	Sensor 1
      	Sensor 2
      	...
    

    
      	Speed 6
      	
      	
      	
    

    
      	Speed 8
      	
      	
      	
    

    
      	...
      	
      	
      	
    

  



There are enough measurements in each cell of the table that you can
estimate the random error. (Check with other groups to make certain that your
error is not too big.)


Based on calibrations I have seen in previous terms you will find
substantial variation with speed setting and train, little variation with
sensor.


Group across cells that have the `same' value. Maybe all have the same
value.


Hint. Interacting with other groups is useful to confirm that you are on
track. Of course, simply using another group's calibration without saying so
is `academic dishonesty'.




2. Calibrating Constant Velocity


At this point there are a few places on the track where you can stop with
a precision of a trainlength or better. However, suppose you want to reverse
direction at a switch. 


  	You want to be close to the switch, clear of the switch, and on the
    right side of the switch when you stop.

  	You want to know when the train has stopped because, until then you
    cannot give the command to start moving again.




Knowing the Current Velocity


An implicit assumption you are making is that the future will closely
resemble the past.


  	You measure the time interval between two adjacent sensor reports.

  	Knowing the distance between the sensors you calculate the velocity of
    the train 
    
      	velocity = distance / time interval

      	measured in cm / sec.

    

    Note that on average the lag mentioned above -- waiting for sensor
    read, time in train controller, time in your system before time stamp --
    is unimportant.

    
      	Sensor1 actually hit at t1.

      	You record (S1, t1 + dt) as the first event.

      	Sensor2 actually hit at t2

      	You record (S2, t2 + dt) as the second event

      	You compute the velocity as (S2 - S1) / (t2 + dt - (t1 + dt)) = (S2
        - S1) / (t2 - t1), which is the correct answer.

      	But the variation in dt from measurement to measurement adds noise
        to the measurement.

    

  

  	After many measurements you build a table 
    
      	Use the table to determine the current velocity

      	Use the time since the last sensor report to calculate the distance
        beyond the sensor

      	distance = velocity * time interval

    

  




Using Resources Effectively


The most scarce resources


  	Bandwidth to the train controller

  	Use of the train itself




The most plentiful resource


  	CPU




Any time you can use a plentiful resource to eliminate use of a scarce one
you have a win. For example


Practical Problems You Have to Solve


  	The table is too big. 
    
      	You need a ton of measurements

    

  

  	The values you measure vary randomly. 
    
      	You need to average and estimate error.

    

  




The values you measure vary systematically


  	For example, each time you measure the velocity estimate is slower,
    presumably because the train is moving towards needing oiling.

  	You need to make fewer measurements or use the measurement you make
    more effectively.




How Long does it Take to Stop?


Try the following exercise.


  	Choose a sensor.

  	Put the train on a course that will cross the sensor.

  	Run the train up to a constant speed.

  	Give the speed zero command at a location that stops the train with its
    contact  on the sensor

  	Calculate the time between when you gave the command and when the
    sensor triggered.

  	Look for regularities.




How Long does it Take the Train to Get up to Speed?
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Lecture 18 - Calibration II


Public Service Annoucements


  	Convocation

  	Exam: 9.00, August 8

  	First milestone. 
    
      	Route finding is part of this milestone only so that you can do
        things that show your calibration to be correct. For milestone 2 you
        will have to do route finding on track graphs with edges missing, so
        choose an approach to route finding that generalizes.

      	In the demo you can use your preferred train and your preferred
        track, but only if they are working, and either may not be working.
        In that case we expect you to run your demo using another train
        and/or another track. Be prepared!

    

  






Calibration


Constant Jerk


Third order curve for position, second order for velocity, linear
acceleration. We usually go one better, and try to minimize jerk over the
whole journey.


Minimize Jerk


Acceleration/Deceleration is continuous


The result is a fourth order curve in position, third order in velocity,
which is what you try to achieve when you drive.




Is it Worth Having an Explicit Function?


Benefits


  	You can calculate position explicitly without having to do numerical
    integration. 
    
      	Euler integration is unstable because of accumulating error.

    

  

  	You can calculate the parameters of a function with less measurement.
    How? 
    
      	Start at x = t = 0, which assumes that you get the same function
        regrardless of position on the track and time of day.

      	Check deceleration inverse of acceleration?

      	&c.

    

    The idea is that the person who programmed acceleration/deceleration
    into the train was lazy, so there's probably one basic function used over
    and over again

  




Drawbacks


  	You need to check that the functional form you have is the right one,
    or a right-enough one.

  	For practical purposes small look-up tables may be perfectly
  adequate.




Finding Parameters for an Explicit Function


We are trying x(t) as a fourth order polynomial in t. 


  	The command to change speed occurs at t1. At t1
    
      	x(t1) = x1,

      	v(t1) = v1, and

      	a(t1) = 0.

    

  

  	The velocity change it complete at the unknown time t2. At t2
    
      	x(t2) is unknown,

      	v(t2) = v2, and

      	a(t2) = 0.

    

  




It is easiest to express the polynomial in terms of y = ( t-t1 )/(t2 -
t1). Why?


Then write


  	x(t) = (A/24) y^4 + (B/6) y^3 + (C/2) y^2 + D y + E

  	v(t) = [ (A/6) y^3 + (B/2) y^2 +C y + D ] / (t2 - t1)

  	a(t) = [ (A/2) y^2 + B y + C ] / (t2 - t1)^2




and use the equations above to solve for the five parameters in terms of
t1. Then, you need only measure t1 to know the relevant kinematic
functions.


We discussed how to measure t1 in the second step.


Testing the Measured Values


You test the measured values by 


  	driving the train around the track, 

  	predicting when it will arrive at a sensor,

  	measuring when it actually arrives at the sensor, and

  	calculating the disagreement.




When you have the disagreement which is, by definition non-zero, but which
may be measured as zero, you have to decide the cause:


  	random error,

  	incorrect measurement,

  	incorrect parameter estimation,

  	incorrect implementation of a correct function, or

  	incorrect function.




Have fun.




Anthropomorphic Programming


We all, even most programmers (!), have effective intuitions about human
relations


  	We use them to `understand' pets, which means attributing to them 
    
      	goals

      	knowledge

      	capability

      	emotions

    

  

  	Why not programs? 
    
      	apply them to intertask relationships

    

  




Tasks are independent entities


  	Understand them by thinking about them as if they have capabilities and
    goals.

  	When you are developing something like the train application you are
    defining roles and relationships






Servers and Attendant Tasks


Why do servers need attendant tasks?


  	What happens if a server calls AwaitEvent?




1. Proprietor with a Notifier


Proprietor `owns' a service, which usually means a resource.


  	Think of the owner at the counter of an old-fashioned store 
    
      	`store' means where things are stored;

      	it's in the back and only the proprietor can access it.

      	Many clients come to the front and are processed one by one.

      	Comment. The modern `store' is considered by many to be the most
        important innovation of the 20th century. (Yes, including the
        transistor, the computer, quantum mechanics, antibiotics, etc.) A
        whole lot of work that was previously done by store personnel is now
        done by the client. This is possible only because extensive codes of
        conduct have been internalized by clients. (That is, a large
        collection of new behaviour norms have been created and
      propagated.)

    

  

  	Somebody has to sit out back waiting for the truck and bringing it to
    the proprietor




Kernel is handling hardware in this example


Notifier Code for a UART


  	Initialize 
    Receive( &serverTid, eventId );
Reply( serverTid, ... );
    

  

  	Work 
    FOREVER {
  data = AwaitEvent( eventid );  // data includes event type and volatile data
  switch( data.event-type ) {
  case RCV_INT:
    Send( serverTid, {NOT_RCV, data.byte}, ... );
    break;
  case XMT_INT:
    // test transmitter, turn interrupt off and on?
    Send( serverTid, {NOT_XMIT}, byte );  // byte is to be transmitted
    store( UART..., byte )
    break;
  default:
    ASSERT( "This never happens because our kernel is bug-free." );
}

  




Proprietor/Notifier Code for a UART


  	Initialize 
    // queues & fifos
notifierPid = Create( notifier );     //Should notifier code name be hard coded?
Send( notifierTid, MyTid( ), ... );   //On return notifier is known to be okay
RegisterAs( );                        //On return requests can begin.
        

  

  	Work 
    FOREVER {
  requesterTid = Receive( request, {request-type, data} );
  switch ( request-type ) {
  case NOT_RCV:
    Reply( requesterTid, ... );
    enqueue( rcvfifo, data );
    if ( ! empty( rcvQ ) ) Reply( dequeue( rcvQ ), dequeue( rcvfifo ) );
    break;
  case NOT_XMIT:
    enqueue( xmitQ, requesterTid );
    if ( ! empty( xmitfifo ) ) Reply( dequeue( xmitQ ), dequeue( xmitfifo ) );
    break;
  case CLIENT_RCV:
    enqueue( rcvQ, requesterTid );
    if ( !empty( rcvfifo ) Reply( dequeue( rcvQ ), dequeue( rcvfifo ) );
    break;
  case CLIENT_XMIT:
    Reply( requesterTid, ... );
    enqueue ( xmitfifo, data );
    if ( ! empty( xmitQ ) ) Reply( dequeue( xmitQ ), dequeue( xmitfifo ) );
    break;
  default:
    ASSERT( "Never executed because notifiers and clients are bug-free." )
  }
}

  




Notes


  	Notifier is usually of higher priority than server 
    
      	Notice the early reply in the proprietor

    

  

  	When, and how, do interrupts get turned on and/or cleared?

  	Who coordinates hardware ownership?

  	We have made the code 
    
      	exhibit duality explicitly

      	easy to break into parts

      	easy to extend

    

  






2. Using a Courier


Simplest is best


Transmit Notifier Code


  	Initialize 
    Receive( &courierTid, ... );
Reply( courierTid, ... );
    

  

  	Work 
    FOREVER {
  Receive( &courierTid, byte );
  load( UART..., byte )
  data = AwaitEvent( eventid );
  Reply( courierTid, NOT_XMIT,  );
}

  




Transmit Courier Code


  	Initialize 
    Receive( &serverTid, notifierTid );
Send( notifierTid, ... );
Reply( serverTid );

  

  	Work 
    FOREVER {
  Send( notifierTid, {data} );
  Send( serverTid, {req}, {data} );
}

    

  




Transmit Proprietor Code


  	Initialize 
    // queues & fifos
notifierTid = Create( notifier );
courierTid = Create( courier );
Send( courierTid, notifierTid, ... ); // On return courier & notifier are known to be okay
RegisterAs( );                        //On return client requests will begin.
        

  

  	Work 
    FOREVER {
  requesterTid = Receive( request, {request-type, data} );
  switch ( request-type ) {
  case NOT_XMIT:
    enqueue( requesterTid, xmitQ )
    if ( ! empty( xmitFifo ) ) Reply( dequeue( xmitQ ), dequeue( xmitFifo ) );
    break;
  case CLIENT_XMIT:
    Reply( requesterTid, ... );
    enqueue ( xmitFifo, data );
    if ( ! empty( xmitQ ) ) Reply( dequeue( xmitQ ), dequeue( xmitFifo ) );
    break;
  default:
    ASSERT( "..." );
  }
}

  




Notes


This gets you through a bottleneck where no more than two events come too
fast.


Remember that all the calls provide error returns. You can/should use them
for error recovery


  	static error recovery: debugging

  	dynamic error recovery: at run time




Another possible arrangement for task creation


  	Server creates the courier

  	Couier creates the notifier




Another possible arrangement for initialization


  	Server Receives

  	Courier sends to its parentTid

  	Notifier sends to its parentTid




Distributed gating


I am showing you collections of tasks implemented together because sets of
related tasks is a level of organization above the individual task.


E.g., the decision to add a courier requires revision of code within the
group, but not outside it.




Return to:


  	Bill Cowan's lecture notes for CS452 in
  s12

  	Bill Cowan's Spring 2012 CS452 page

  	Bill Cowan's CS452 page

  	Bill Cowan's teaching page

  	Bill Cowan's home page







Lecture 18 - Calibration II


Public Service Annoucements


  	Convocation

  	Exam: 9.00, August 8

  	First milestone. 
    
      	Route finding is part of this milestone only so that you can do
        things that show your calibration to be correct. For milestone 2 you
        will have to do route finding on track graphs with edges missing, so
        choose an approach to route finding that generalizes.

      	In the demo you can use your preferred train and your preferred
        track, but only if they are working, and either may not be working.
        In that case we expect you to run your demo using another train
        and/or another track. Be prepared!

    

  






Calibration


Constant Jerk


Third order curve for position, second order for velocity, linear
acceleration. We usually go one better, and try to minimize jerk over the
whole journey.


Minimize Jerk


Acceleration/Deceleration is continuous


The result is a fourth order curve in position, third order in velocity,
which is what you try to achieve when you drive.




Is it Worth Having an Explicit Function?


Benefits


  	You can calculate position explicitly without having to do numerical
    integration. 
    
      	Euler integration is unstable because of accumulating error.

    

  

  	You can calculate the parameters of a function with less measurement.
    How? 
    
      	Start at x = t = 0, which assumes that you get the same function
        regrardless of position on the track and time of day.

      	Check deceleration inverse of acceleration?

      	&c.

    

    The idea is that the person who programmed acceleration/deceleration
    into the train was lazy, so there's probably one basic function used over
    and over again

  




Drawbacks


  	You need to check that the functional form you have is the right one,
    or a right-enough one.

  	For practical purposes small look-up tables may be perfectly
  adequate.




Finding Parameters for an Explicit Function


We are trying x(t) as a fourth order polynomial in t. 


  	The command to change speed occurs at t1. At t1
    
      	x(t1) = x1,

      	v(t1) = v1, and

      	a(t1) = 0.

    

  

  	The velocity change it complete at the unknown time t2. At t2
    
      	x(t2) is unknown,

      	v(t2) = v2, and

      	a(t2) = 0.

    

  




It is easiest to express the polynomial in terms of y = ( t-t1 )/(t2 -
t1). Why?


Then write


  	x(t) = (A/24) y^4 + (B/6) y^3 + (C/2) y^2 + D y + E

  	v(t) = [ (A/6) y^3 + (B/2) y^2 +C y + D ] / (t2 - t1)

  	a(t) = [ (A/2) y^2 + B y + C ] / (t2 - t1)^2




and use the equations above to solve for the five parameters in terms of
t1. Then, you need only measure t1 to know the relevant kinematic
functions.


We discussed how to measure t1 in the second step.


Testing the Measured Values


You test the measured values by 


  	driving the train around the track, 

  	predicting when it will arrive at a sensor,

  	measuring when it actually arrives at the sensor, and

  	calculating the disagreement.




When you have the disagreement which is, by definition non-zero, but which
may be measured as zero, you have to decide the cause:


  	random error,

  	incorrect measurement,

  	incorrect parameter estimation,

  	incorrect implementation of a correct function, or

  	incorrect function.




Have fun.




Anthropomorphic Programming


We all, even most programmers (!), have effective intuitions about human
relations


  	We use them to `understand' pets, which means attributing to them 
    
      	goals

      	knowledge

      	capability

      	emotions

    

  

  	Why not programs? 
    
      	apply them to intertask relationships

    

  




Tasks are independent entities


  	Understand them by thinking about them as if they have capabilities and
    goals.

  	When you are developing something like the train application you are
    defining roles and relationships






Servers and Attendant Tasks


Why do servers need attendant tasks?


  	What happens if a server calls AwaitEvent?




1. Proprietor with a Notifier


Proprietor `owns' a service, which usually means a resource.


  	Think of the owner at the counter of an old-fashioned store 
    
      	`store' means where things are stored;

      	it's in the back and only the proprietor can access it.

      	Many clients come to the front and are processed one by one.

      	Comment. The modern `store' is considered by many to be the most
        important innovation of the 20th century. (Yes, including the
        transistor, the computer, quantum mechanics, antibiotics, etc.) A
        whole lot of work that was previously done by store personnel is now
        done by the client. This is possible only because extensive codes of
        conduct have been internalized by clients. (That is, a large
        collection of new behaviour norms have been created and
      propagated.)

    

  

  	Somebody has to sit out back waiting for the truck and bringing it to
    the proprietor




Kernel is handling hardware in this example


Notifier Code for a UART


  	Initialize 
    Receive( &serverTid, eventId );
Reply( serverTid, ... );
    

  

  	Work 
    FOREVER {
  data = AwaitEvent( eventid );  // data includes event type and volatile data
  switch( data.event-type ) {
  case RCV_INT:
    Send( serverTid, {NOT_RCV, data.byte}, ... );
    break;
  case XMT_INT:
    // test transmitter, turn interrupt off and on?
    Send( serverTid, {NOT_XMIT}, byte );  // byte is to be transmitted
    store( UART..., byte )
    break;
  default:
    ASSERT( "This never happens because our kernel is bug-free." );
}

  




Proprietor/Notifier Code for a UART


  	Initialize 
    // queues & fifos
notifierPid = Create( notifier );     //Should notifier code name be hard coded?
Send( notifierTid, MyTid( ), ... );   //On return notifier is known to be okay
RegisterAs( );                        //On return requests can begin.
        

  

  	Work 
    FOREVER {
  requesterTid = Receive( request, {request-type, data} );
  switch ( request-type ) {
  case NOT_RCV:
    Reply( requesterTid, ... );
    enqueue( rcvfifo, data );
    if ( ! empty( rcvQ ) ) Reply( dequeue( rcvQ ), dequeue( rcvfifo ) );
    break;
  case NOT_XMIT:
    enqueue( xmitQ, requesterTid );
    if ( ! empty( xmitfifo ) ) Reply( dequeue( xmitQ ), dequeue( xmitfifo ) );
    break;
  case CLIENT_RCV:
    enqueue( rcvQ, requesterTid );
    if ( !empty( rcvfifo ) Reply( dequeue( rcvQ ), dequeue( rcvfifo ) );
    break;
  case CLIENT_XMIT:
    Reply( requesterTid, ... );
    enqueue ( xmitfifo, data );
    if ( ! empty( xmitQ ) ) Reply( dequeue( xmitQ ), dequeue( xmitfifo ) );
    break;
  default:
    ASSERT( "Never executed because notifiers and clients are bug-free." )
  }
}

  




Notes


  	Notifier is usually of higher priority than server 
    
      	Notice the early reply in the proprietor

    

  

  	When, and how, do interrupts get turned on and/or cleared?

  	Who coordinates hardware ownership?

  	We have made the code 
    
      	exhibit duality explicitly

      	easy to break into parts

      	easy to extend

    

  






2. Using a Courier


Simplest is best


Transmit Notifier Code


  	Initialize 
    Receive( &courierTid, ... );
Reply( courierTid, ... );
    

  

  	Work 
    FOREVER {
  Receive( &courierTid, byte );
  load( UART..., byte )
  data = AwaitEvent( eventid );
  Reply( courierTid, NOT_XMIT,  );
}

  




Transmit Courier Code


  	Initialize 
    Receive( &serverTid, notifierTid );
Send( notifierTid, ... );
Reply( serverTid );

  

  	Work 
    FOREVER {
  Send( notifierTid, {data} );
  Send( serverTid, {req}, {data} );
}

    

  




Transmit Proprietor Code


  	Initialize 
    // queues & fifos
notifierTid = Create( notifier );
courierTid = Create( courier );
Send( courierTid, notifierTid, ... ); // On return courier & notifier are known to be okay
RegisterAs( );                        //On return client requests will begin.
        

  

  	Work 
    FOREVER {
  requesterTid = Receive( request, {request-type, data} );
  switch ( request-type ) {
  case NOT_XMIT:
    enqueue( requesterTid, xmitQ )
    if ( ! empty( xmitFifo ) ) Reply( dequeue( xmitQ ), dequeue( xmitFifo ) );
    break;
  case CLIENT_XMIT:
    Reply( requesterTid, ... );
    enqueue ( xmitFifo, data );
    if ( ! empty( xmitQ ) ) Reply( dequeue( xmitQ ), dequeue( xmitFifo ) );
    break;
  default:
    ASSERT( "..." );
  }
}

  




Notes


This gets you through a bottleneck where no more than two events come too
fast.


Remember that all the calls provide error returns. You can/should use them
for error recovery


  	static error recovery: debugging

  	dynamic error recovery: at run time




Another possible arrangement for task creation


  	Server creates the courier

  	Couier creates the notifier




Another possible arrangement for initialization


  	Server Receives

  	Courier sends to its parentTid

  	Notifier sends to its parentTid




Distributed gating


I am showing you collections of tasks implemented together because sets of
related tasks is a level of organization above the individual task.


E.g., the decision to add a courier requires revision of code within the
group, but not outside it.




Return to:


  	Bill Cowan's lecture notes for CS452 in
  s12

  	Bill Cowan's Spring 2012 CS452 page

  	Bill Cowan's CS452 page

  	Bill Cowan's teaching page

  	Bill Cowan's home page







Lecture 18 - Projects, Calibration III, Projects


Public Service Annoucements


  	Exam: 9.00, August 8

  	First milestone. 
    
      	Route finding is part of this milestone only so that you can do
        things that show your calibration to be correct. For milestone 2 you
        will have to do route finding on track graphs with edges missing, so
        choose an approach to route finding that generalizes.

      	In the demo you can use your preferred train and your preferred
        track, but only if they are working, and either may not be working.
        In that case we expect you to run your demo using another train
        and/or another track. Be prepared!

    

  






Projects


1. Train style


Give trains roles and objectives. For example,


  	Passenger train travels on a repetitive route meeting a schedule.

  	Freight train travels to random destinations as fast as possible.

  	Objective is to deliver as much freight as possible while keeping a
    passenger train on time.




Another example,


  	Trains are taxis.

  	When a load appears they race to see if they can get it.




Another example,


  	Trains are buses, which travel long routes from one place on the track
    to another.

  	At the end of the route is a scheduled trip to a different
  location.

  	When a bus is late arriving, the dispatcher must find another, unused
    bus to leave at the scheduled leaving time.




2. Game style: AI


The track is a graph.


  	Several different ways to choose vertices and edges




Many games are played on graphs


  	Checkers, snakes & ladders, maze games, etc.

  	Implement a graph game played on the track graph.




For example, watchmen and bandit.


  	One train is the bandit, which tries to move from one hide-out to
    another.

  	The other trains are watchmen, who try to prevent the bandit from
    getting to a hide-out once he is out in the open.




Another example, PAC man


  	One train tries to cover as much track as possible.

  	Other trains try to trap him so that he can't get reservations that
    would allow him to keep moving.




3. Game style: interactive


In the games you play for pleasure, the user normally controls one or more
of the game entities.


  	the bandit

  	the trapping trains




Students often want to make an interactive project. It has been done
successfully in the past, but constructing a usable interface is a real
challenge




Calibration


1. Calibrating Stopping Distance


Hint. Interacting with other groups is useful to confirm
that you are on track. Of course, simply using another group's calibration
without saying so is `academic dishonesty'.




2. Calibrating Constant Velocity


At this point there are a few places on the track where you can stop with
a precision of a trainlength or better. However, suppose you want to reverse
direction at a switch.


  	You want to be close to the switch, clear of the switch, and on the
    right side of the switch when you stop.

  	You want to know when the train has stopped because, until then you
    cannot give the command to start moving again.




How Much Time does it Take to Stop?


Try the following exercise.


  	Choose a sensor.

  	Put the train on a course that will cross the sensor.

  	Run the train up to a constant speed.

  	Give the speed zero command at a location that stops the train with its
    contact on the sensor. (You know the stopping distance.).

  	Calculate the time between when you gave the command and when the
    sensor triggered.

  	Look for regularities.




How Long does it Take the Train to Get up to Speed?


We call the time the train takes to get up to speed the acceleration
time. Finding the acceleration time is left as an exercise for the
reader.


Hint. The distance travelled from a standing start,
graphed as a function of time, is a straight line after the train reaches a
constant speed




Stage 3. Calibrating Acceleration and Deceleration


Thinking again about the problem of following a route that has
reverses.


  	Reverses always occur in order to go a different direction at a
    turn-out.

  	You want to move as little beyond the switch as possible.

  	Much of this manoeuvering is done at non-constant velocities.




Physics of Acceleration and Deceleration


Suppose a train is at x1=x(t1) with velocity v1=v(t1) at time t1, and we
want to get it go x2=x(t2) with velocity v2=v(t2) at time t2, and we want to
do it without exceeding any of the physical limits of the train.


At the core is a relation, (x, t), which is a space-time point. The
relation says that as time passes a train takes up successive positions x(t).
Velocity is deduced as the time derivative of x(t). 


Our task is to create a physically possible path x(t) obeying such
constraints. To do so we must know how the train's velocity varies when its
speed is changed.


Our task is simplified because the velocity change function is
artificial,


  	created by programmers just like us, and

  	intended to imitate real trains.




We try to get into the programmer/designer's head and think their
thoughts


Teleportation


The simplest way of moving the train from one place to another.


  	At time t teleport the train to x=x2, v=0.

  	At time t2 increase the velocity to v2. 




The first thing that we rule out is teleportation.


  	Why?




A train having infinite velocity is impossible in practice


  	Leave to the physicists whether or not it is possible for a train to
    have infinite velocity in theory.




No teleportation means that x(t) must be continuous.


Constant Velocity


Suppose you have a train at (x1, t1) and you have to get it to (x2,
t2).


Two questions:


  	Is it possible? If the maximum velocity is vmax, and vmax < (x2 -
    x1) / (t2 - t1), then it's impossible.

  	How do you do it? If vmax > (x2 - x1) / (t2 - t1) then you might try 
    
      	Set v = (x2 - x1) / (t2 - t1) at t1 
        
          	Use your velocity calibration for this!

        

      

      	Set v = 0 at t2.

    

    Doesn't quite work.

    
      	Because of acceleration you arrive at x2 after t2.

      	Because of deceleration you don't stop until the stopping distance
        beyond x2.

    

    You could

    
      	curse the inadequate train dynamics

      	constrain vmax to be very small

      	only accept requests for long in the future and be successful
        because the acceleration and deceleration times are negligible.

    

    But

    
      	It's against the rules.

      	You would be unsuccessful because of stalling on curves.

      	Your project would only be interesting to trees and other
        long-lived creatures.

    

  




More Fundamental


Infinite acceleration is impossible because the train would be crushed, if
not vaporized!


This is true both in theory and in practice.


Constant Acceleration/Deceleration


Intuitively a good idea to minimize acceleration


  	Accelerate at a from t1 to (t2 + t1) / 2 
    
      	Velocity is a*(t-t1) 
        Position is x1 + (1/2)*a*(t-t1)^2

      

    

  

  	Decelerate at -a from (t2 + t1) / 2 to t2 
    
      	Velocity is a*(t2-t1) / 2 - a*(t - (t2+t1)/2 ) 
        Position is ...

      

    

  

  	At t2 
    
      	Velocity is 0

      	Position is x1 + (1/8)*a*(t2 - t1) ^2, which should be x2.

      	Therefore choose a = (8 * (x2 - x1)) / (t2 - t1)^2

    

  




But, what happens at t = t1, (t2 + t1) / 2, t2?


  	discontinuities in acceleration

  	experienced as jerk, in fact, infinite jerk

  	And you know from experience that when you jerk things hard enough they
    break. E.g., 
    
      	tooth

      	knuckle

    

  




Constant Jerk


Third order curve for position, second order for velocity, linear
acceleration. We usually go one better, and try to minimize jerk over the
whole journey.


Minimize Jerk


Acceleration/Deceleration is continuous


The result is a fourth order curve in position, third order in velocity,
which is what you try to achieve when you drive.




Is it Worth Having an Explicit Function?


Benefits


  	You can calculate position explicitly without having to do numerical
    integration. 
    
      	Euler integration is unstable because of accumulating error.

    

  

  	You can calculate the parameters of a function with less measurement.
    How? 
    
      	Start at x = t = 0, which assumes that you get the same function
        regrardless of position on the track and time of day.

      	Check deceleration inverse of acceleration?

      	&c.

    

    The idea is that the person who programmed acceleration/deceleration
    into the train was lazy, so there's probably one basic function used over
    and over again

  




Drawbacks


  	You need to check that the functional form you have is the right one,
    or a right-enough one.

  	For practical purposes small look-up tables may be perfectly
  adequate.






Return to:


  	Bill Cowan's lecture notes for CS452 in
  s12

  	Bill Cowan's Spring 2012 CS452 page

  	Bill Cowan's CS452 page

  	Bill Cowan's teaching page

  	Bill Cowan's home page







Lecture 21 - Anthropomorphic Programming


Public Service Annoucements


  	Exam: 9.00, August 8

  	I now have back my document creation tools. Assignments will start to
    be more uptodate.






Calibration


Constant Jerk


Third order curve for position, second order for velocity, linear
acceleration. We usually go one better, and try to minimize jerk over the
whole journey.


Minimize Jerk


Acceleration/Deceleration is continuous


The result is a fourth order curve in position, third order in velocity,
which is what you try to achieve when you drive.




Is it Worth Having an Explicit Function?


Benefits


  	You can calculate position explicitly without having to do numerical
    integration. 
    
      	Euler integration is unstable because of accumulating error.

    

  

  	You can calculate the parameters of a function with less measurement.
    How? 
    
      	Start at x = t = 0, which assumes that you get the same function
        regrardless of position on the track and time of day.

      	Check deceleration inverse of acceleration?

      	&c.

    

    The idea is that the person who programmed acceleration/deceleration
    into the train was lazy, so there's probably one basic function used over
    and over again

  




Drawbacks


  	You need to check that the functional form you have is the right one,
    or a right-enough one.

  	For practical purposes small look-up tables may be perfectly
  adequate.




Finding Parameters for an Explicit Function


We are trying x(t) as a fourth order polynomial in t. 


  	The command to change speed occurs at t1. At t1
    
      	x(t1) = x1,

      	v(t1) = v1, and

      	a(t1) = 0.

    

  

  	The velocity change it complete at the unknown time t2. At t2
    
      	x(t2) is unknown,

      	v(t2) = v2, and

      	a(t2) = 0.

    

  




It is easiest to express the polynomial in terms of y = ( t-t1 )/(t2 -
t1). Why?


Then write


  	x(t) = (A/24) y^4 + (B/6) y^3 + (C/2) y^2 + D y + E

  	v(t) = [ (A/6) y^3 + (B/2) y^2 +C y + D ] / (t2 - t1)

  	a(t) = [ (A/2) y^2 + B y + C ] / (t2 - t1)^2




and use the equations above to solve for the five parameters in terms of
t1. Then, you need only measure t1 to know the relevant kinematic
functions.


We discussed how to measure t1 in the second step.


Testing the Measured Values


You test the measured values by 


  	driving the train around the track, 

  	predicting when it will arrive at a sensor,

  	measuring when it actually arrives at the sensor, and

  	calculating the disagreement.




When you have the disagreement which is, by definition non-zero, but which
may be measured as zero, you have to decide the cause:


  	random error,

  	incorrect measurement,

  	incorrect parameter estimation,

  	incorrect implementation of a correct function, or

  	incorrect function.




Have fun.




Anthropomorphic Programming


We all, even most programmers (!), have effective intuitions about human
relations


  	We use them to `understand' pets, which means attributing to them 
    
      	goals

      	knowledge

      	capability

      	emotions

    

  

  	Why not programs? 
    
      	apply them to intertask relationships

    

  




Tasks are independent entities


  	Understand them by thinking about them as if they have capabilities and
    goals.

  	When you are developing something like the train application you are
    defining roles and relationships






Servers and Attendant Tasks


Why do servers need attendant tasks?


  	What happens if a server calls AwaitEvent?




1. Proprietor with a Notifier


Proprietor `owns' a service, which usually means a resource.


  	Think of the owner at the counter of an old-fashioned store 
    
      	`store' means where things are stored;

      	it's in the back and only the proprietor can access it.

      	Many clients come to the front and are processed one by one.

      	Comment. The modern `store' is considered by many to be the most
        important innovation of the 20th century. (Yes, including the
        transistor, the computer, quantum mechanics, antibiotics, etc.) A
        whole lot of work that was previously done by store personnel is now
        done by the client. This is possible only because extensive codes of
        conduct have been internalized by clients. (That is, a large
        collection of new behaviour norms have been created and
      propagated.)

    

  

  	Somebody has to sit out back waiting for the truck and bringing it to
    the proprietor




Kernel is handling hardware in this example


Notifier Code for a UART


  	Initialize 
    Receive( &serverTid, eventId );
Reply( serverTid, ... );
    

  

  	Work 
    FOREVER {
  data = AwaitEvent( eventid );  // data includes event type and volatile data
  switch( data.event-type ) {
  case RCV_INT:
    Send( serverTid, {NOT_RCV, data.byte}, ... );
    break;
  case XMT_INT:
    // test transmitter, turn interrupt off and on?
    Send( serverTid, {NOT_XMIT}, byte );  // byte is to be transmitted
    store( UART..., byte )
    break;
  default:
    ASSERT( "This never happens because our kernel is bug-free." );
}

  




Proprietor/Notifier Code for a UART


  	Initialize 
    // queues & fifos
notifierPid = Create( notifier );     //Should notifier code name be hard coded?
Send( notifierTid, MyTid( ), ... );   //On return notifier is known to be okay
RegisterAs( );                        //On return requests can begin.
        

  

  	Work 
    FOREVER {
  requesterTid = Receive( request, {request-type, data} );
  switch ( request-type ) {
  case NOT_RCV:
    Reply( requesterTid, ... );
    enqueue( rcvfifo, data );
    if ( ! empty( rcvQ ) ) Reply( dequeue( rcvQ ), dequeue( rcvfifo ) );
    break;
  case NOT_XMIT:
    enqueue( xmitQ, requesterTid );
    if ( ! empty( xmitfifo ) ) Reply( dequeue( xmitQ ), dequeue( xmitfifo ) );
    break;
  case CLIENT_RCV:
    enqueue( rcvQ, requesterTid );
    if ( !empty( rcvfifo ) Reply( dequeue( rcvQ ), dequeue( rcvfifo ) );
    break;
  case CLIENT_XMIT:
    Reply( requesterTid, ... );
    enqueue ( xmitfifo, data );
    if ( ! empty( xmitQ ) ) Reply( dequeue( xmitQ ), dequeue( xmitfifo ) );
    break;
  default:
    ASSERT( "Never executed because notifiers and clients are bug-free." )
  }
}

  




Notes


  	Notifier is usually of higher priority than server 
    
      	Notice the early reply in the proprietor

    

  

  	When, and how, do interrupts get turned on and/or cleared?

  	Who coordinates hardware ownership?

  	We have made the code 
    
      	exhibit duality explicitly

      	easy to break into parts

      	easy to extend

    

  






2. Using a Courier


Simplest is best


Transmit Notifier Code


  	Initialize 
    Receive( &courierTid, ... );
Reply( courierTid, ... );
    

  

  	Work 
    FOREVER {
  Receive( &courierTid, byte );
  load( UART..., byte )
  data = AwaitEvent( eventid );
  Reply( courierTid, NOT_XMIT,  );
}

  




Transmit Courier Code


  	Initialize 
    Receive( &serverTid, notifierTid );
Send( notifierTid, ... );
Reply( serverTid );

  

  	Work 
    FOREVER {
  Send( notifierTid, {data} );
  Send( serverTid, {req}, {data} );
}

    

  




Transmit Proprietor Code


  	Initialize 
    // queues & fifos
notifierTid = Create( notifier );
courierTid = Create( courier );
Send( courierTid, notifierTid, ... ); // On return courier & notifier are known to be okay
RegisterAs( );                        //On return client requests will begin.
        

  

  	Work 
    FOREVER {
  requesterTid = Receive( request, {request-type, data} );
  switch ( request-type ) {
  case NOT_XMIT:
    enqueue( requesterTid, xmitQ )
    if ( ! empty( xmitFifo ) ) Reply( dequeue( xmitQ ), dequeue( xmitFifo ) );
    break;
  case CLIENT_XMIT:
    Reply( requesterTid, ... );
    enqueue ( xmitFifo, data );
    if ( ! empty( xmitQ ) ) Reply( dequeue( xmitQ ), dequeue( xmitFifo ) );
    break;
  default:
    ASSERT( "..." );
  }
}

  




Notes


This gets you through a bottleneck where no more than two events come too
fast.


Remember that all the calls provide error returns. You can/should use them
for error recovery


  	static error recovery: debugging

  	dynamic error recovery: at run time




Another possible arrangement for task creation


  	Server creates the courier

  	Couier creates the notifier




Another possible arrangement for initialization


  	Server Receives

  	Courier sends to its parentTid

  	Notifier sends to its parentTid




Distributed gating


I am showing you collections of tasks implemented together because sets of
related tasks is a level of organization above the individual task.


E.g., the decision to add a courier requires revision of code within the
group, but not outside it.
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Lecture 22 - Courier, Warehouse


Public Service Annoucements


  	Exam: 9.00, August 8 to 11.30, August 9.
    
      	What is the earliest that anybody is planning to start?

    

  

  	I now have back my document creation tools. Assignments will start to
    be more uptodate.






Anthropomorphic Programming


We all, even most programmers (!), have effective intuitions about human
relations


  	We use them to `understand' pets, which means attributing to them 
    
      	goals

      	knowledge

      	capability

      	emotions

    

  

  	Why not programs? 
    
      	apply them to intertask relationships

    

  




Tasks are independent entities


  	Understand them by thinking about them as if they have capabilities and
    goals.

  	When you are developing something like the train application you are
    defining roles and relationships






Servers and Attendant Tasks


Why do servers need attendant tasks?


  	What happens if a server calls AwaitEvent?




1. Proprietor with a Notifier


Proprietor `owns' a service, which usually means a resource.


  	Think of the owner at the counter of an old-fashioned store 
    
      	`store' means where things are stored;

      	it's in the back and only the proprietor can access it.

      	Many clients come to the front and are processed one by one.

      	Comment. The modern `store' is considered by many to be the most
        important innovation of the 20th century. (Yes, including the
        transistor, the computer, quantum mechanics, antibiotics, etc.) A
        whole lot of work that was previously done by store personnel is now
        done by the client. This is possible only because extensive codes of
        conduct have been internalized by clients. (That is, a large
        collection of new behaviour norms have been created and
      propagated.)

    

  

  	Somebody has to sit out back waiting for the truck and bringing it to
    the proprietor




Kernel is handling hardware in this example


Notifier Code for a UART


  	Initialize 
    Receive( &serverTid, eventId );
Reply( serverTid, ... );
notmsg.type = NOT_RCV
    

  

  	Work 
    FOREVER {
  notmsg.data = AwaitEvent( eventid );
  Send( serverTid, notmsg, notmsg );  // byte is to be transmitted
}

  




Proprietor Code for a UART


  	Initialize 
    // queues & fifos
notifierPid = Create( notifier );     //Should notifier code name be hard coded?
Send( notifierTid, MyTid( ), ... );   //On return notifier is known to be okay
RegisterAs( );                        //On return requests can begin.
        

  

  	Work 
    FOREVER {
  requesterTid = Receive( request, notmsg );
  switch ( notmsg.type ) {
  case NOT_RCV:
    Reply( requesterTid, notmsg );
    enqueue( rcvfifo, notmsg );
    if ( ! empty( rcvQ ) ) Reply( dequeue( rcvQ ), dequeue( rcvfifo ) );
    break;
  case NOT_XMIT:
    enqueue( xmitQ, requesterTid );
    if ( ! empty( xmitfifo ) ) Reply( dequeue( xmitQ ), dequeue( xmitfifo ) );
    break;
  case CLIENT_RCV:
    enqueue( rcvQ, requesterTid );
    if ( !empty( rcvfifo ) Reply( dequeue( rcvQ ), dequeue( rcvfifo ) );
    break;
  case CLIENT_XMIT:
    Reply( requesterTid, ... );
    enqueue ( xmitfifo, data );
    if ( ! empty( xmitQ ) ) Reply( dequeue( xmitQ ), dequeue( xmitfifo ) );
    break;
  default:
    ASSERT( "Never executed because notifiers and clients are bug-free." )
  }
}

  




Notes


  	Notifier is usually of higher priority than server 
    
      	Notice the early reply in the proprietor

    

  

  	When, and how, do interrupts get turned on and/or cleared?

  	Who coordinates hardware ownership?

  	We have made the code 
    
      	exhibit duality explicitly

      	easy to break into parts

      	easy to extend

    

  






2. Using a Courier


Simplest is best


Transmit Notifier Code


  	Initialize 
    Receive( &courierTid, ... );
Reply( courierTid, ... );
    

  

  	Work 
    FOREVER {
  Receive( &courierTid, byte );
  load( UART..., byte )
  data = AwaitEvent( eventid );
  Reply( courierTid, NOT_XMIT,  );
}

  




This omits flow control. Is it better to handle flow control in the
notifier or in the server?


  	That is, where should the fifo be?




Transmit Courier Code


  	Initialize 
    Receive( &serverTid, notifierTid );
Send( notifierTid, ... );
Reply( serverTid );

  

  	Work 
    FOREVER {
  Send( notifierTid, notmsg, ack );
  Send( serverTid, notmsg, ack );
}

    

  




Transmit Proprietor Code


  	Initialize 
    // queues & fifos
notifierTid = Create( notifier );
courierTid = Create( courier );
Send( courierTid, notifierTid, ... ); // On return courier & notifier are known to be okay
RegisterAs( );                        //On return client requests will begin.
        

  

  	Work 
    FOREVER {
  requesterTid = Receive( request, {request-type, data} );
  switch ( request-type ) {
  case NOT_XMIT:
    enqueue( requesterTid, xmitQ )
    if ( ! empty( xmitFifo ) ) Reply( dequeue( xmitQ ), dequeue( xmitFifo ) );
    break;
  case CLIENT_XMIT:
    Reply( requesterTid, notmsg );
    enqueue ( xmitFifo, notmsg );
    if ( ! empty( xmitQ ) ) Reply( dequeue( xmitQ ), dequeue( xmitFifo ) );
    break;
  default:
    ASSERT( "..." );
  }
}

  




Notes


This gets you through a bottleneck where no more than two events come too
fast.


Remember that all the calls provide error returns. You can/should use them
for error recovery


  	static error recovery: debugging

  	dynamic error recovery: at run time




Another possible arrangement for task creation


  	Server creates the courier

  	Couier creates the notifier




Another possible arrangement for initialization


  	Server Receives

  	Courier sends to its parentTid

  	Notifier sends to its parentTid




Distributed gating


I am showing you collections of tasks implemented together because sets of
related tasks is a level of organization above the individual task.


E.g., the decision to add a courier requires revision of code within the
group, but not outside it.





3. Using a Warehouse


Add a warehouse between the courier and the notifier.


Notifier Code


  	Initialize 
    Receive( &warhouseTid, ... );
Reply( warhouseTid, ... );
msg.type = NOT_RCV;
    

  

  	Work 
    FOREVER {
  msg.data = AwaitEvent( eventid );
  Send( warehouseTid, msg, msg );
}

  




Warehouse Code


  	Initialize 
    // data structures
Receive( &courierTid, notifierTid, ... );
Send( notifierTid, ... );
Reply( courierTid, ... );

  

  	Work 
    FOREVER {
   Receive( &requester, msg );
   switch( msg.type ) {
   case NOT_RCV:
      Reply( requester, msg );
      // insert data into package
      enqueue( pkgQ, package );
      if ( !empty( courQ ) ) { dequeue( courQ ), extract( pkgQ ) };
      break;
   case COUR_RCV:
      enqueue( courQ, requester );
      if( !empty( pkgQ ) ) Reply( dequeue( courQ ), dequeue( pkgQ ) );
      break;
   default:
     ASSERT( "This didn't happen because my kernel is bug-free." );
   }
}

  




Transmit Courier Code


  	Initialize 
    Receive( &serverTid, {notifierTid, warehouseTid} ... );
Send( warehouseTid, notifierTid, ... );
Reply( serverTid );

  

  	Work 
    FOREVER {
  Send( warehouseTid, pkg );
  Send( serverTid, pkg );
}

    

  




Proprietor Code


  	Initialize 
    // queues & fifos
notifierTid = Create( notifier );
warehouseTid = Create( warehouse );
courierTid = Create( courier );
Send( courierTid, notifierTid, ... ); // On return courier, warehouse & notifier are known to be okay
RegisterAs( );                        // On return client requests can begin.
        

  

  	Work 
    FOREVER {
  Receive( &requesterTid, pkg );
  switch ( pkg.type ) {
  case COUR_RCV:
    Reply( requesterTid, pkg );
    enqueue( pkgQ, pkg );
    if ( !empty( clientQ ) ) Reply( dequeue( clientQ ), dequeue( pkgQ ) );
    break;
  case CLIENT_RCV:
    enqueue( clientQ, requester );
    if ( !empty( pkgQ ) ) Reply( dequeue( clientQ ), dequeue( pkgQ ) );
    break;
  default:
    ASSERT( "This didn't happen." );
  }
}

  




Note


This structure clears up most problems when a burst of requests to the
server would leave the notifier waiting in a long sendQ..


  	Warehouse and proprietor share the work. 
    
      	Server's Tid is public; Warehouse's Tid is private.

    

  

  	This is far from the only way to share the work. For example, 
    
      	The server could be guarded by a receptionist (assistant) who
        ensures that another client request occurs only when the previous
        request is complete. Then the warehouse is unnecessary.

    

  




Two issues:


  	Handles bottlenecks of all sizes. 
    Give a precise and quantitative definition of `bottleneck'.

  

  	Server could be buffered on the other side 
    Called a guard.

  




What this amounts to is that a server should be lean and hungry


  	do as little as possible

  	always be receive blocked
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Lecture 23 - Administrator, Detective


Public Service Annoucements


  	Exam: 9.00, August 8 to 11.30, August 9.
    
      	What is the earliest that anybody is planning to start?

    

  

  	I now have back my document creation tools. Assignments will start to
    be more uptodate.






5. Administrator, Worker


Administrator is a proprietor who does no work but only assigns work to
others


  	Tasks are given to workers

  	If Create is fast and you have a method for reclaiming resources you
    can Create and Destroy workers on demand.

  	Otherwise workers are created at initialization and the administrator
    maintains a pool of free workers

  	each free worker is a REPLY-BLOCKED task




Real administrators manage workers


  	Static organizations hire a workforce of employees who are assigned
    tasks as they come up. 
    
      	And if they have run out of employees then you (the client) just
        have to wait. 

      	If the worker is waiting for some data to be available, which is
        the most common case, then
        
          	a worker at the priority of the client does the waiting, 

          	the administrator goes on to supply workers to other clients,
          

          	nobody loses

        

      

    

  

  	Dynamic organizations hire workers after the need for work appears, and
    fire them when the work is done. These are called contract workers or
    consultants.
    
      	You need Destroy to achieve a dynamic structure.

      	Helpers hired by the consultant fired with the consultant.

    

  

  	Semi-dynamic organizations are between static and dynamic.
    
      	New workers are hired (created),

      	but they are not fired.

      	If two dynamic administrators exist in a system you may have to
        regulate the system globally in order to resolve a creation race
        between them.

      	The type of independent agent system studied by Kate Larson handles
        such problems locally

    

  




Most workers prefer employee status to consultant status.


Worker code

  Send( administrator, nil, workOrder );
  FOREVER {
    Send( administrator, workResult, workOrder );
    workResult = doWork( workOrder );
  }


doWork might require further sends to servers or warehouses,
which is harmless in this context.


Administrator code


Initialization

Administrator( ) {
  for ( i = 0; i < NUM_WORKERS; i++ ) worker[i] = Create( mypriority - 1, workerCode );
    
  FOREVER {
    Receive( requester, request );
    switch( request.type ) {
    case CLIENT:
      enqueue( orderQ, {order = {client, request}} );
      if ( !empty( employeeQ ) ) Reply( dequeue( employeeQ ) ), dequeue( orderQ ) ); 
      break;
    case WORKER:
      enqueue( employeeQ, requester);
      if ( !empty( orderQ ) ) Reply( dequeue( employeeQ ), { dequeue( orderQ ) );
      if ( request != nil ) { Reply( request.client, request.request );
      break;
    }
}


Note: Tid of the client is included in the workorder to the administrator
does not have to maintain and search a list of jobs being done.
(Administrators are by nature lazy!)


Alternative Worker/Administrator Model


  	As above, Administrator includes Tid of the client in the order.

  	Worker replies to client with result and to administrator with request
    for another order to process.




Comments


  	The administrator can add a little more value. 
    
      	Suppose that there is data required for processing each order.

      	The administrator could receive it from a notifier or courier.

      	It would be maintained internally and added to the appropriate
        order before the order is despatched to the worker.

      	Another model: the worker queries a detective.

    

  






8. The Detective


Simple Events


The notifier is a task that waits on events.


  	AwaitEvent is like Send 
    It has two features

    
      	a simple, kernel-defined event that it waits on

      	hardware/kernel is like Receive/Reply

      	can only serve one master (`one' defined in terms of the kernel
        events)

    

  

  	The notifier needs to pass on that the event has happened 
    
      	which it does using Send 
        FOREVER {
  AwaitEvent( eventId );
  Send( server );
}

      

    

  




You could call a notifier a detective,


  	who looks around on your behalf,

  	and let's you know when something you care about happens,

  	but really it is a detective's worker, whom you employ directly.




Complex Events


In an application there is likely to be lots of waiting on combinations of
events.


  	form the combinations using Boolean operators

  	for example, Respond `okay' when this sensor is triggered or `time-out'
    when Delay returns.




We use the detective to discover that a complex event has occurred.


  	How does the detective work?




Conjunction


Code could be

FOREVER {
  Send( part1 );
  Send( part2 );
  ...
  Send( master );
}


Disjunction


Code above doesn't even pretend to work!


Try instead, something like

FOREVER {
  Receive( *requester, request );
  switch ( request.type ) {
  case CLIENT:
    case = {requester, request.event, request.delay} );
    insert( caseDB, case );
    if ( !empty( delayQ ) && !empty( irregularQ ) ) {
      Reply( dequeue( delayQ ), case );
      Reply( dequeue( irregularQ ), case );
    }
  case DELAY:
    enqueue( delayQ, requester );
    if ( case = pending( caseDB, nil ) && !empty( irregularQ ) ) {
      Reply( dequeue( delayQ ), case );
      Reply( dequeue( irregularQ ), case );
    } 
    case = extract( caseDB, request.requester );
    if ( case != nil ) Reply( case.requester, TIME_OUT );
    break;
  case CLUE:
    enqueue( irregularQ, requester );
    if ( ( case = pending( caseDB, nil )!=nil && !empty( delayQ ) ) {
      Reply( dequeue( delayQ ), case );
      Reply( dequeue( irregularQ ), case );
    } 
    case = extract( caseDB, request.requester );
    if ( case != nil ) Reply( case.requester, EVENT );
    break;
  }
}


This is the code of a particular detective, one that notifies you which
occurs first, a time-out or an event.


Not


We can say that an event has not happened yet.


Only at the end of the universe can we say that an event simply has not
happened.


Time-outs are needed for NOT: how to do them is shown above.


Who is the client of the detective


  	Initiator of a normal action

  	Housekeeper of the system who will clean up pathologies
  (Idletask?))
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Lecture 24 - Reservations I


Public Service Annoucements


  	Slightly improved p1.pdf.

  	How to Give a Demo
    
      	Friday, 29 June, in class.

    

  

  	When you will give you demo
    
      	Tuesday, 3 July.

      	I will put a sign-up schedule in the lab with fifteen minute slots
        at different times on Tuesday morning. Choose which is the most
        convenient for you.

    

  

  	Route Finding
    
      	First demo

      	Afterwards

    

  

  	How to describe track locations
    
      	Landmark plus XX centimetres

    

  

  	Measurement procedures
    
      	A landmark's position needs strong conventions about its local
        origin.

    

  






Multi-Train Control


By the end of the week-end you should be able to drive one train on the
track, knowing exactly where it is.


  	'Exactly' means within a tolerance that you know.




By the following milestone you will be able to control two trains at the
same time. For each train


  	the train finds itself

  	you give it a destination: a destination is a location on the track

  	the train starts travelling toward the destination

  	it reaches the destination without colliding with the other train

  	both trains move at the same time
    
      	otherwise there is a trivial solution

      	it might be worth implementing the trivial solution as a start

    

  




Sensor Attribution


The first hard problem occurs when you receive a sensor report. Which
train triggered the sensor? 


  	As long as the trains are sufficiently far apart this is not too
  hard.

  	What is the meaning of `sufficiently' in practice?

  	Sensor attribution must function correctly in the face of single
    failures,
    
      	of sensors, or

      	of turn-outs.

    

  




Collision Avoidance


This would not be too hard if the trains stopped instantaneously, but they
don't.


You must plan ahead,


  	at least as long as it takes the two trains to stop




It is usually your method of collision avoidance that limits the number of
trains that can run simultaneously.


  	N trains start running.

  	Then, after a while they get frozen and won't move.

  	Each is waiting for another to move.

  	If N is large freezing usually occurs because the route finder can't
    find a route for any train.




I like distributed solutions, where each train operates -- plans, drives,
make decisions, etc -- as though there are no other trains on the track. Why
do I like this?


  	The code is simple.

  	Each task has a well-defined role. E.g.
    
      	Track monitor knows the current state of the track.

      	Route planner uses track monitor input to provide a feasible
      route.

      	Train driver gets a route and follows it switching turn-outs ahead
        of itself as it drives.

    

  

  	Protocols for inter-task communication arise naturally from the
  roles.

  	The solutions usually scale well, as long as the track length grows at
    least linearly with the number of trains.






Reservations


Somebody has been doing something right for the last century. The answer
is reservations.


Two Level Train Control


The two levels are completely independent of one another.


  	On heavily used sections of track the lower level is done completely by
    hardware with no possibility (almost) of human intervention




Upper Level


  	Train asks despatcher for a route

  	Despatcher provides a route that he/she thinks to be conflict free

  	Train follows the route, reporting back to the despatcher as landmarks
    (sensors) are passed. 
    
      	The despatcher gets two reports 
        
          	One from the hardware

          	One from the engineer

        

      

      	It is up to the despatcher to make certain that they do not
        conflict.

      	What is to come on the route is communicated to the train driver by
        the lights along the track

    

  




Lower Level


The lower level is encoded in the coloured lights you see along the track.
In cases of conflict between the upper and lower levels, the lower level
wins. 


  	Everything is rigidly enforced by hardware

  	The human enters the loop only in that the lights tell the engineer
    what he/she is allowed to do 
    
      	The engineer loses his licence, FOREVER, if he/she ever goes
        through a red light.

    

  

  	If the system detects a violation of its rules or a state that should
    never occur it enters a failsafe mode 
    
      	All lights go red.

    

  




Something Essential that You Must Do


Design your reservation system before coding it.


Before coding your reservation system work it out on paper and make sure
that it works for all the generic cases you can think of


  	One train following another

  	Two trains on a collision course

  	There are one or more switches in the path
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Lecture 25 - Demos, Reservations


Public Service Annoucements


  	When you will give you demo 
    
      	Tuesday, 3 July.

      	I will put a sign-up schedule in the lab with fifteen minute slots
        at different times on Tuesday morning. Choose which is the most
        convenient for you.

    

  






Giving a Demo


The notes below assume particular roles: `we' are the prof and TAs, the
audience of the demo; `you' are the students giving the demo.


Remember these rules


You may choose


  	which track you wish to use,

  	which train you wish to use




but, if one or the other is not available


  	you should be able to run with a different locomotive or the other
    track.,




Demos are Important


We give two marks for each part of the project


  	one for the demo, which shows us what you project is doing in
  reality

  	one for the documentation, which shows us what your project is doing on
    paper




Stay in Control


Dead air


  	When there is nothing being said in a social situation people feel
    awkward.

  	They will talk to fill the empty space.

  	At a demo they will ask questions.

  	One question leads to another.

  	You reach the end of the demo with the best things not shown.




Think about how to get back in control


  	`Now we want to show you how we do X.'

  	It is okay to be quite direct, `It's getting late and we want you to
    see Y.'




If the train needs to run for a minute to refresh its calibration, spend
the time


  	telling us what you are going to show 
    telling us where you succeeded

  




Know in Advance what You Want to Demo


Make a list, progress from easy things to harder ones


  	First the basic parts

  	Next the neat extra things you did




Make your plan really concrete


  	which locomotive you want to use

  	where it starts

  	where you will ask it to go




Tell us what was difficult to achieve in what you're showing


Make your demo easy to do


  	put the train on the tracks in places that are easy to reach

  	stop the train at places that are easy for us to measure

  	stop the train in a location that's good for starting the next
  part.

  	drive the train to where you need it instead of picking it up.




Write down the details so you don't forget.


Test Everything You Want to Demo


Have at least one older executable available


There are Two of You


Ways to take advantage of it


  	One at the terminal controlling the train, one explaining what is what
    is happening

  	One at the terminal readying the next part, the other at the train
    readying the train part and telling us what we will see next and why it's
    important

  	Switch roles to give the demo more variety




Be ready for questions


  	Explicitly asking us if we have questions to control when they get
    asked.

  	Put as much information as you can think of onto the terminal. 
    
      	how much the idle task is running

      	where your calibration thinks the train is 
        
          	keep track of this even after you have given the stop
          command

        

      

      	errors in your predictions 
        
          	in time (milliseconds) and distance (cm)

        

      

    

  




Use Your Hands


For the most part we don't know where the things you're explaining are on
the track or the terminal.


  	point to them






Reservations


Somebody has been doing something right for the last century. The answer
is reservations.


Two Level Train Control


The two levels are completely independent of one another.


  	On heavily used sections of track the lower level is done completely by
    hardware with no possibility (almost) of human intervention




Upper Level


  	Train asks despatcher for a route

  	Despatcher provides a route that he/she thinks to be conflict free

  	Train follows the route, reporting back to the despatcher as landmarks
    (sensors) are passed. 
    
      	The despatcher gets two reports 
        
          	One from the hardware

          	One from the engineer

        

      

      	It is up to the despatcher to make certain that they do not
        conflict.

      	What is to come on the route is communicated to the train driver by
        the lights along the track

    

  




Lower Level


The lower level is encoded in the coloured lights you see along the track.
In cases of conflict between the upper and lower levels, the lower level
wins.


  	Everything is rigidly enforced by hardware

  	The human enters the loop only in that the lights tell the engineer
    what he/she is allowed to do 
    
      	The engineer loses his licence, FOREVER, if he/she ever goes
        through a red light.

    

  

  	If the system detects a violation of its rules or a state that should
    never occur it enters a failsafe mode 
    
      	All lights go red.

    

  




Something Essential that You Ought to Do


Design your reservation system before coding it.


Before coding your reservation system work it out on paper and make sure
that it works for all the generic cases you can think of


  	One train following another

  	Two trains on a collision course

  	There are one or more switches in the path




Stopping


A conservative train control system ensures that


  	At all times

  	every train is travelling slowly enough that

  	the next time there is an information update

  	it can give a stop command

  	and stop without running into another train

  	or off the end of the track.




For simplicity we assume that


  	all trains follow the same set of rules.




How much clear track does a train need?


  	The stopping distance? Not enough unless the train starts to stop
    immediately.

  	The stopping distance plus time for the command to arrive at the train?
    Not enough the stop request is given immediately.




You have, no doubt, defined stopping distance in a variety of different
ways. Here it is defined as the distance it takes the train to stop from the
point where the command is processed at the locomotive.


  	The stopping distance plus the time for the command to arrive at the
    train plus the amount of time until the train next decides whether or not
    to stop. This is enough if all other trains are stationary..




To be concrete, suppose the train decides what to do next each time it
arrives at a sensor. Then,


  	If it just passed sensor n,

  	the next time it will decide is when it arrives at sensor
  n+1,

  	the amount of clear track it needs is the stopping distance part sensor
    n+1.




What if other trains are moving?


Every train needs in front of it an amount of clear track calculated as
above.


Head on.


  	The train coming at me needs his amount of distance.

  	I need my amount of distance.

  	We must both start to stop when we are the sum of the distance
  apart.




Remember that the distance any train needs diminishes as it slows down.


Following


  	If a train and the train it is following, initiate stopping at the same
    time

  	the inter-train distance changes only by the difference in stopping
    distance, which ought to be small.




This suggests that one train can follow another train quite closely, but
it assumes that the leading train will not do something unexpected, such
as


  	stalling or

  	running into another train.




Is it possible to guarantee that such things won't ever happen?


  	Train safety, like everything else in the world, is a trade-off. 
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Lecture 26 - Demos, Reservations


Public Service Annoucements


  	Final exam date

  	Comments from yesterday's demo 
    
      	We had a positive impression 
        
          	It is normal for groups to be a different levels, because it is
            unpredictable when the 48 hou and 72-hour bugs will appear

        

      

      	Remember that this milestone had three discrete parts 
        
          	Knowing the stopping distance

          	Knowing where the train is when travelling at a fixed speed

          	Knowing where the train is when accelerating and
          decelerating

        

      

      	There were a variety of ways for doing accel/decel 
        
          	All the ones we saw will work

          	We don't know enough to assess how time-efficient different
            approaches are.

          	There is a workaround for acceleration/deceleration that works
            pretty well

        

      

      	Try using one dynamic parameter to tune all the other parameters 
        
          	Normalized units are very helpful here

        

      

      	A good UI shows you a lot of information that is useful when
        something funny occurs 
        
          	E.g. a turn-out switches under a traveling train

          	Was the train ahead of its calibration? Or was the switch
            command given too late?

        

      

      	Some groups had demos that seemed unsatisfactory because everything
        was 80% done 
        
          	Two parts operating robustly is 
            
              	more impressive and easier to judge for your audience

              	more encouraging to you

              	quicker to accomplish

            

            than three parts that are 80% complete

          

        

      

      	Some things we saw may give problems when you have more than one
        train on the tracks 
        
          	Setting all the switches at once

          	Refinding the train as standard operating procedure

          	Not keeping track of train position as it is stopping

        

      

    

  






Sensor Attribution


Predictions work fine once you know where the trains are. How do you find
them at the beginning?


  	Easy when there is only one train on the track 
    
      	Move it very slowly until you encounter a sensor, now you know
        where it is

      	Not a bad idea to get a second sensor to confirm direction.

    

  

  	Hard when there is more than one train on the track 
    
      	To which train do you attribute the next sensor hit

      	Trains may collide before they are found

    

  




How might you do this for multiple trains?


  	One at a time.




Starting the next train


  	Stop the previous trains in convenient places

  	Start start this train slowly, you don't know where it is.

  	When it hits a sensor 
    
      	make a prediction about the next sensor it will hit

      	get permission, probably a track reservation, to travel beyond the
        next sensor

    

  

  	Conclude that you know where the train is when it hits the predicted
    sensor.






A Typical Reservation System


A reservation system is not the only way to keep trains from hitting one
another.


The reservation system described below is not the only reservation system
that works. I created it to illustrate the problems you must solve when you
are keeping trains from colliding.


In past terms, students have succeeded using


  	systems similar to the one described below

  	systems that didn't break the track into blocks but gave out
    reservations of arbitrary size

  	systems that gave reservation that were areas covered by the track
    rather than lines the length of the track..




Reducing the need for communication with the train controller by doing
more computation on the CPU consistenly outperform.


Hard Conditions


Needed to avoid collisions


  	**Every train must have a reservation for the track it occupies.

  	**Every train must travel at a low enough velocity that it can stop
    before the end of the track it has reserved.

  	**Every train should reserve enough to handle single sensor or
    (exclusive) single switch errors.

  	**No piece of track should ever be reserved by more than one train.




Soft Conditions


Needed to keep the trains moving


  	Every train must release blocks it no longer occupies and will not
    occupy in the immediate future. 
    
      	If a train is stopped it would normally have a reservation for only
        one block, but it might have a reservation for two blocks.

    

  

  	Every reservation held by a train should be contiguous




Who enforces these conditions?


  	Nobody does so explicitly.

  	There are several constraints 
    
      	The reservation server always gives out reservations that are
        contiguous.

      	The reservation server never gives out an already reserved piece of
        track.

      	The reservation serve never revokes a reservation.

      	The train always travels slowly enough that it can stop within its
        current reservation if a request for extension is refused.

    

  

  	Responsibility for enforcement is distributed.




There is a situation in which these conditions cannot be enforced?


  	What is it?




Here's how it works in theory


  	Train gets a route from the route finder, and looks ahead along the
    route. 
    
      	Train has a desired speed.

    

  

  	Train asks reservation system for several blocks of track along the
    route 
    
      	Blocks usually end at switches and/or sensors

      	If you are ending blocks at switches you must know well enough how
        enough where the train is to be confident it is completely clear of
        the switch.

    

  

  	Reservation system grants the blocks if they are available 
    
      	Grants include the condition that the train must travel so that it
        can come to a complete stop without leaving any reserved block.

    

  




Here's one way for it to work in practice


  	A train receives a reservation that will allow it to travel at its
    desired speed for one or more blocks. 
    
      	The reservation includes enough track at the end of these blocks so
        that the train can stop before reaching the end of its
      reservation.

    

  

  	Each time the train leaves a block it frees the reservation it had for
    that block.

  	Before reaching the end of the blocks on which it can travel at speed,
    it requests an extention of its reservation.

  	If the request is granted it continues travelling at speed. 
    Otherwise it starts slowing down so that it stops before the end of
    its reservation.

  




Reservation Implementation


You might grant reservations as follows:





















Every time a train receives a sensor report it does its reservation procedure 

  	Release the reservation I just vacated

  	If I give a stop signal at the next sensor can I stop within my
    reservation?

  	If yes, finished

  	If no, how much do I need beyond my current reservation?

  	Request what's needed, possibly more
    
      	Indicate the order in which you want the reservations
      (contiguity).

      	This depends on the direction in which you are travelling, which
        it's not necessary for the reservation server to know.

      	It could be deduced by the reservation server, but why bother.

    

  

  	Reservation server gives as much as it can

  	Train rechecks stopping condition using the complete reservation.

  	If yes, finished

  	If no, stop, or slow down so that the stopping condition is yes.
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Lecture 27 - Demos, Reservations


Public Service Annoucements


  	Final exam date: 9.00 August 7 to 11.30 August 9

  	The gold standard for milestone 2 is 
    
      	two trains on the track

      	each receiving a new, random destination each time it reaches its
        current destination

      	running for five minutes or so

    

  






A Typical Reservation System


A reservation system is not the only way to keep trains from hitting one
another.


The reservation system described below is not the only reservation system
that works. I created it to illustrate the type of problems you must solve in
order to keep trains from colliding.


In past terms, students have succeeded using


  	systems similar to the one described below

  	systems that didn't break the track into blocks but gave out
    reservations of arbitrary size

  	systems that gave reservation that were areas covered by the track
    rather than lines the length of the track..




Reducing the need for communication with the train controller by doing
more computation on the CPU consistenly outperform.


Hard Conditions


Needed to avoid collisions


  	**Every train must have a reservation for the track it occupies.

  	**Every train must travel at a low enough velocity that it can stop
    before the end of the track it has reserved.

  	**Every train should reserve enough to handle single sensor or
    (exclusive) single switch errors.

  	**No piece of track should ever be reserved by more than one train.




Soft Conditions


Needed to keep the trains moving


  	Every train must release blocks it no longer occupies and will not
    occupy in the immediate future. 

  	Every reservation held by a train must be contiguous

  	Trains should release unneeded blocks in front of themselves if they
    slow down or stop. 
    
      	A stopped train will hold either one or two blocks.

      	Your system will behave perfectly well with only two trains if you
        do not enforce this condition, but it will often spontaneously thaw
        when a freeze occurs.

    

  




Who enforces these conditions?


  	Nobody does so explicitly.

  	There are constraints derived from the conditions above, such as
    
      	The reservation server always gives out reservations that are
        contiguous.

      	The reservation server never gives out an already reserved piece of
        track.

      	The reservation server never revokes a reservation.

      	The train always travels slowly enough that it can stop within its
        current reservation if a request for extension is refused.

      	And so on.

    

  

  	Enforcement is provided by a protocol that every task obeys.




There is a situation in which the conditions cannot be enforced?


  	What is it?




Here's how it works in theory


  	Train gets a route from the route finder, and looks ahead along the
    route. 
    
      	Train has a desired speed.

    

  

  	Train asks reservation system for several blocks of track along the
    route 
    
      	Blocks usually end at switches and/or sensors

      	If you are ending blocks at switches you must know well enough
        where the train is to be confident it is completely clear of the
        switch.

    

  

  	Reservation system grants the blocks if they are available 
    
      	Grants imply the condition that the train must travel so that it
        can come to a complete stop without leaving any reserved block.

      	Grants must be provided in the correct order

    

  




Here's one way for it to work in practice


  	A train receives a reservation that will allow it to travel at its
    desired speed for one or more blocks. 
    
      	The reservation includes enough track at the end of these blocks so
        that the train can stop before reaching the end of its
      reservation.

    

  

  	Each time the train leaves a block it frees the reservation it had for
    that block.

  	Before reaching the end of the blocks on which it can travel at speed,
    it requests an extention of its reservation.

  	If the request is granted AND it can stop within the reservation, it
    continues travelling at speed. 
    
      	Otherwise it stops
        Or slows down enough to stop before the end of its reservation.

      

    

  




Reservation Implementation


You might decide that reservation negotiation will take place every time
the train receives a sensor report.


  	Just requesting reservations whenever they're needed has a problem.

  	Train drivers are likely to poll

  	Polling is extremely priority-dependent.

  	Priority-dependent bugs are hard to find, harder to fix.




Every time a train receives a sensor report it does its reservation
procedure


  	Release the reservation just vacated

  	Test stopping within the reservation at the next request time (sensor
    report).

  	If okay, finished

  	If no, how much do I need beyond my current reservation?

  	Request what's needed, possibly more 
    
      	Indicate the order in which you want the reservations
      (contiguity).

      	This depends on the direction in which you are travelling, which
        it's not necessary for the reservation server to know.

      	It could be deduced by the reservation server, but why bother.

    

  

  	Reservation server gives as much as it can

  	Train rechecks stopping condition using the complete reservation.

  	If okay, finished

  	If no, either 
    
      	stop,

    

    or

    
      	slow down enough to satisfy the stopping condition

    

  




Comment. We like slowing down, which we consider to be a
more intelligent and aesthetic response to following a slow train than
stop-start driving.




Problems I Have Seen More than Once


Common Multi-train Tracking Problems


  	Two trains waiting on the same sensor report 
    
      	Symptom: trains split and/or merge

      	One is bound to get inconsistent state

      	Should be solved by the reservation system

    

  

  	Spurious sensor reports that a train is actually expecting. 
    
      	Most often for a secondary prediction, 
        
          	because the temporal window for a secondary prediction can
            precede the time window for the primary one.

        

      

      	Tightening temporal windows helps this 
        
          	but can't eliminate it

        

      

      	Could look further ahead so that secondary predictions alway lag
        behind primary ones

      	Recover from such an error by back-tracking

    

  

  	Permanently malfunctioning turn outs 
    
      	Can't be switched or always derails

      	Alter track graph 
        
          	Important to be able to alter the track graph from the
          prompt

          	Partly for testing, but don't disable it in your demo version
            because it can rescue a demo.

        

      

    

  

  	Permanently malfunctioning sensors 
    
      	Usually fail on because of sticking

      	Unstick by hand

      	Alter track graph and mask reports 
        
          	See above for track graph

          	Mask at as low a level as possible

        

      

    

  




Useful debugging aids


  	Alter the track graph from the prompt.

  	Simulate sensor-triggering from the prompt.

  	From a low level log events that change track state.
    
      	Are they consistent with the track state shown in your UI?

    

  




Common Reservation System Problems


  	System freezes 
    
      	Reservations branch out ahead and cover a lot of the track

      	Trains give back unneeded reservations as they slow down

    

  

  	Reservations are not released. 
    
      	Usually shows itself only when the project is well advanced

      	Looks as though there are phantom trains in the system

      	Usually most of a reservation is released, but not all.

    

  

  	Reservation leap-frogging 
    
      	Two trains are approaching one another; each gets a reservation
        behind the other. 
        
          	Has also been seen when one train is following another.

        

      

      	Ask for and/or give out reservations in the right order

    

  




Useful debugging aids


  	Insert/remove reservations by hand from the prompt

  	Query reservations (and who holds them) from the prompt

  	Track map showing reservations in real-time. 
    
      	One partner watches the map while the other observes the trains

    

  

  	Trains can get sensor reports only for sensors with the reservations
    they hold. 
    
      	This is often the earliest symptom of a train getting lost.
        (Editor's comment. It doesn't seem to me that `a train is getting
        lost', but that `a train is lost'.)

    

  

  	Enforce in the reservation server that all reservations must be
    contiguous. 
    
      	Non-contiguous reservation requests are an early symptom of
        reservation system failure.

    

  




Common Route-Finding/Following Bugs


  	Train derails on turn-out after train changes direction 
    
      	Improve acceleration/deceleration calibration

      	Switch turn-outs for both directions of travel

    

  

  	Train derails on turn-out as turn-out switches
    
      	Improve acceleration/deceleration calibration

      	Improve train tracking

    

  

  	Switch turn-outs too late 
    
      	Treat command latencies systematically

    

  

  	Train collides with stationary train 
    
      	Be certain that stationary trains have reservations

      	Insert/remove reservations by hand from the prompt

    

  




Useful debugging aids


All the above, plus


  	Add/subtract switches, sections of track from graph by hand from the
    prompt

  	By modifying the route-finder you can confine all routes to a subset of
    the tracks.
    
      	This allows you to solve the common problems without being affetced
        by uncommon ones.

    

  




Early Signs of Problems


Frequent train finding. (You should not be refinding trains every time
they stop.)
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Lecture 28 - Demos, Reservations


Public Service Annoucements


  	Final exam date: 9.00 August 7 to 11.30 August 9






Pathologies


As we go down this list both pathology detection and the length of the
edit-compile-test cycle grow without bound.


1. Deadlock


One or more tasks will never run again. For example


  	Task sends to itself (local: rest of system keeps running, task itself
    will never run)

  	Every task does Receive( ) (global: nothing is running)

  	Cycle of tasks sending around the cycle (local: other tasks keep
    running)




Kernel can detect such things


  	What does it do?




Potential deadlock can be detected at compile time


  	cycle in the send graph of all sends that could happen 
    
      	remember implicit sends

    

  

  	doesn't necessarily occur at run-time 
    
      	that is, it's a necessary but not sufficient condition.

    

  

  	It's worse, 
    
      	It doesn't happen when tests are short

      	It appears near the end when tests run for longer

      	Changes in a critical race can make a potential deadlock reveal
        itself.

    

  




Solutions


  	Gating 
    
      	Most common example is initialization, where the send/receive
        pattern may be different than FOREVER

      	Gate the end of initialization

    

  

  	Define four types of task 
    
      	Administatrer (A), including servers of all kinds: only
      receives

      	Worker (W), including notifiers: only sends

      	Client (C): only sends

      	Notifier (N): only sends to its administrator

      	Two A tasks cannot communicate directly; two W/C tasks cannot
        communicate directly.

      	For W/C/N tasksSend appears in two flavours 
        
          	C tasks 
            FOREVER {
    Send( A, request, result )
    ...
}

          

          	W tasks 
            FOREVER {
    Send( A, result, request )
    ...
}

          

          	N tasks 
            FOREVER {
    Send( A, result, request )
    result.data = AwaitEvent( request.event )
    ...
}

          

          	The Receives corresponding to W, C & N tasks are normally
            the same. 
            
              	N is effectively a W task
                
                  	The important difference is that while W & C tasks
                    are lower priority than the A task, N tasks are higher
                    priority.

                

              

              	C, W & N requests and results must have compatible data
                types.

              	The request might be effectively a union 
                
                  	The payload is interpreted differently at run-time,

                  	using different cases of the switch on message
                  type.

                

              

            

          

          	A courier is W-type to one A-task, C-type to the other 
            FOREVER {
    Send( A1, request, result )
    Send( A2, result, request )
}

          

          	Occasionally, but not often, two A-tasks, are synchronized in a
            way that makes it possible to communicate in two directions
            through one server.
            
              	Then two couriers are used

            

          

        

        

      

    

  




2. Livelock (Deadly Embrace)


Definition


Two or more tasks are READY. For each task, the state of the other tasks
prevents progress being made regardless of which task is ACTIVE.


A higher level of coordination is required.


Two types of livelock exist


  	Ones that are the result of bad coding 
    
      	Find bug and remove it.

    

  

  	Ones that are inherent in the application definition 
    
      	Detect livelock and work around it.

    

  




Looking for solutions we prefer ones that avoid a central planner. Why?


  	In the twentieth century there were a collection of political systems
    relying on central planners 
    
      	Most no longer exist

    

  




Livelock usually occurs in the context of resource contention


Livelock that's Really Deadlock


  	client1 needs resource1 & resource2; 
    
      	obtains resource1 from proprietor1;

      	asks proprietor2 for resource2

    

  

  	client2 needs resource1 & resource2; 
    
      	obtains resource2 from proprietor2;

      	asks proprietor1 for resource1

    

  

  	possible code 
    
      	Client 1 
        Send( prop1, getres1, ... );
Send( prop2, getres2, ... );
// Use the resources and release them

      

      	Client 2 
        Send( prop2, getres2, ... );
Send( prop1, getres1, ... );
// Use the resources and release them

      

      	Proprietor 
        FOREVER {
   Receive( &clientTid, req, ... );
   switch ( req-type ) {
   case REQUEST:
      if( available ) { 
         Reply( clientTid, use-it, ... );
         available = false;
      }
      else enqueue( clientTid );
   case RELEASE:
      available = true;
      Reply( clientTid, "thanks", ... );
      if( !empty( Q ) ) {
         available = false;
         Reply( dequeue( ), use-it, ... );
      }
   }
}

        

      

    

  

  	state: 
    
      	client1, client2: REPLY-BLOCKED - can't release resources

      	proprietor1, proprietor2: SEND-BLOCKED - waiting for release

      	this is a true deadlock -- none of the four tasks will ever run
        again -- even though there are no cycles in the call graph.

      	The dependencies lie elsewhere. Where?

      	(You can find on the internet arguments about terminology just as
        intense as anything you will ever see in vi vs emacs or Apple vs
        Microsoft.)

    

  




Solutions


  	Make a single compound resourse, BUT 
    
      	all clients may not need both

      	some resources simply cannot be compounded

    

  

  	Impose a global order on resource requests that all clients must
    follow. 
    
      	unsafe against malicious or incompetent programmers

      	some resources don't admit strong enough ordering, e.g. pieces of
        track in the train set

    

  

  	Create a mega-server that handles all resource requests 
    
      	clients request all at once, mega-server provides an optimal
        solution to resource use in the presence of hundreds of
      deadlines.

      	client might not know that A is needed until processing with B is
        well-advanced

    

  




Real Livelock


Proprietor1 & proprietor2 fail the requests


  	Proprietor 
    FOREVER {
   Receive( &clientTid, req, ... );
   switch ( req-type ) {
   case REQUEST:
      if( available ) { 
         Reply( clientTid, use-it, ... );
         available = false;
      }
      else Reply( clientTid, "sorry", ...);
   case RELEASE:
      available = true;
      Reply( clientTid, "thanks", ... );
   }
}

  

  	Polling is the most likely result. Typical client code. 
    while ( Send( prop1, getr1, ... ) != GotIt ) ; 
while ( Send( prop2, getr2, ... ) != GotIt ) ; 
// Use the resources

  

  	And the problem is that this code usually works as long as the tests
    are relatively short




Livelock that's Really a Critical Race


We could try to make the clients a little more considerate

While ( no resources ) {
   Send( prop1, getres1, result );
   while ( result == "sorry" ) {
   if ( result == "sorry" ) {
      Delay( ... );
      Send( prop1, getres1, result );
   }
   Send( prop2, getres2, result );
   if ( result == "sorry" ) {
      Send( prop1, relres1, ... );
      Delay( ... );
   } else {
      break; 
   }
}


Inherent Livelock


Remember the example where two trains come face to face, each waiting for
the other to move. They will wait facing each other until the demo is over,
probably polling.


What's hard about solving this problem?


  	Neither driver knows what the other driver is trying to do.




In real life,


  	the drivers would communicate, but

  	in your software that's neither easy 
    
      	How many different `conversations' might need to be available?

    

    nor desirable

    
      	What is the effect on other trains of the two drivers' special
        arrangement?

    

  




What's most easy for you to do is to programme each driver with


  	detection, e.g., 
    
      	Delay a random time

      	Request again

      	If turned down, work around

    

  

  	work around, e.g., 
    
      	Recommence working on goal as though track is blocked.

    

  




3. Critical Races


Example


  	Two tasks, A & B, at the same priority

  	A is doing a lot of debugging IO

  	B always reserves a section of track before A, and all is fine.

  	Debugging IO is removed

  	A reserves the section before B can get it, and execution
  collapses.

  	Lower priority of A to the same level as C.

  	Now C executes faster and gets a resource before D .

  	You shuffle priorities forever, eventually reverting, to put back in
    the debugging IO.




Definition


The order in which computation is done is an important factor in
determining whether or not it is successful.


Critical races, like Livelock can be


  	internal to the program, like the one above, or

  	external to the program but inherent in the application domain




Symptoms


  	Small changes in priorities change execution unpredictably, and
    drastically.

  	Debugging output changes execution drastically.

  	Changes in train speeds change execution drastically. 
    
      	Example from several terms ago

    

  




`Drastically' usually means chaos in both senses of the term


  	Sense one: a small change in the initial conditions produces an
    exponentially growing divergence in the execution.

  	Sense two: exercise for the reader.




Solutions


  	Explicit synchronization 
    
      	but you then have to know the orders in which things are permitted
        to occur

      	e.g. Try listing all the orders in which events can occur in your
        system 
        
          	and then notice that just arriving in the same order is often
            not enough

        

      

    

  

  	Gating is a technique of global synchronization 
    
      	which can be provided by a detective/coordinator

    

  




4. Performance


Changes in performance of one task with respect to another often give rise
to critical races


The hardest problem to solve


  	You just don't know what is possible

  	Ask a question like: 
    
      	Is my kernel code at the limit of what is possible in terms of
        performance?

      	We can compare the performance on message passing, etc., because
        two kernels are pretty much the same. 
        
          	Compare a lot of kernels and you should be able to find a lower
            limit

        

      

      	Can't do the same thing for train applications

    

  




In practice, how do you know you have performance problems? Problems I
have seen


Priority


The hardest thing to get right


  	NP-hard for the human brain

  	Practical method starts with all priorities the same, then adjusts

  	symptoms of good priority assignment 
    
      	The higher the priority, the more likely the ready queue is to be
        empty

      	The shorter the run time in practice the higher the priority

    

  




Problems with priority


  	Priority inversion

  	One resource, many clients

  	Tasks try to do too much




Congestion


  	Too many tasks 
    
      	blocked tasks don't count,

      	lowest priority tasks almost don't count

    

  




Layered abstraction are costly


e.g. Notifier -> SerialServer -> InputAccumulater -> Parser ->
TrackServer


Output


  	Too much terminal output interferes with train controller communication 
    
      	Don't redraw the entire screen

    

  

  	Requests to poll the sensors get backed up in the serial server, or
    whoever provides output buffering.




Hardware


  	Turn on optimization, but be careful 
    
      	There are places where you have done register allocation by
      hand

    

  

  	Turn on caches 
    
      	locking is possible

    

  




Size & align calibration tables by size & alignment of cache
lines


  	linker command script

  	I think that this is stretching it.
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Pathologies


As we go down this list both pathology detection and the length of the
edit-compile-test cycle grow without bound.


1. Deadlock


2. Livelock (Deadly Embrace)


Definition


Two or more tasks are READY. For each task, the state of the other tasks
prevents progress being made regardless of which task is ACTIVE.


A higher level of coordination is required.


Two types of livelock exist


  	Ones that are the result of bad coding 
    
      	Find bug and remove it.

    

  

  	Ones that are inherent in the application definition 
    
      	Detect livelock and work around it.

    

  




Looking for solutions we prefer ones that avoid a central planner. Why?


  	In the twentieth century there were a collection of political systems
    relying on central planners 
    
      	Most no longer exist

    

  




Livelock usually occurs in the context of resource contention


Livelock that's Really Deadlock


  	client1 needs resource1 & resource2; 
    
      	obtains resource1 from proprietor1;

      	asks proprietor2 for resource2

    

  

  	client2 needs resource1 & resource2; 
    
      	obtains resource2 from proprietor2;

      	asks proprietor1 for resource1

    

  

  	possible code 
    
      	Client 1 
        Send( prop1, req{ REQUEST, ... );
Send( prop2, getres2, ... );
// Use the resources and release them

      

      	Client 2 
        Send( prop2, getres2, ... );
Send( prop1, getres1, ... );
// Use the resources and release them

      

      	Proprietor 
        FOREVER {
   Receive( &clientTid, req, ... );
   switch ( req.type ) {
   case REQUEST:
      if( available ) { 
         Reply( clientTid, "use-it", ... );
         available = false;
      }
      else enqueue( clientTid );
   case RELEASE:
      available = true;
      Reply( clientTid, "thanks", ... );
      if( !empty( Q ) ) {
         available = false;
         Reply( dequeue( ), "use-it", ... );
      }
   }
}

        

      

    

  

  	state: 
    
      	client1, client2: REPLY-BLOCKED - can't release resources

      	proprietor1, proprietor2: SEND-BLOCKED - waiting for release

      	this is a true deadlock -- none of the four tasks will ever run
        again -- even though there are no cycles in the call graph.

      	The dependencies lie elsewhere. Where?

      	(You can find on the internet arguments about terminology just as
        intense as anything you will ever see in vi vs emacs or Apple vs
        Microsoft.)

    

  




Solutions


  	Make a single compound resourse, BUT 
    
      	all clients may not need both

      	some resources simply cannot be compounded

    

  

  	Impose a global order on resource requests that all clients must
    follow. 
    
      	unsafe against malicious or incompetent programmers

      	some resources don't admit strong enough ordering, e.g. pieces of
        track in the train set

    

  

  	Create a mega-server that handles all resource requests 
    
      	clients request all at once, mega-server provides an optimal
        solution to resource use in the presence of hundreds of
      deadlines.

      	client might not know that A is needed until processing with B is
        well-advanced

    

  




Real Livelock


Proprietor1 & proprietor2 fail the requests


  	Proprietor 
    FOREVER {
   Receive( &clientTid, req, ... );
   switch ( req-type ) {
   case REQUEST:
      if( available ) { 
         Reply( clientTid, "use-it", ... );
         available = false;
      }
      else Reply( clientTid, "sorry", ...);
   case RELEASE:
      available = true;
      Reply( clientTid, "thanks", ... );
   }
}

  

  	Polling is the most likely result. Typical client code. 
    for ( Send( prop1, get-res1, result1 ) && Send( prop2, get-res2, result2 );
      !((result1 && result2) || time-out( )) ; ) {
   if ( !result1 ) Send( prop1, get-res1, result1 );
   if ( !result2 ) Send( prop2, get-res2, result2 );
}
// Use the resources

  

  	And the problem is that this code usually works as long as it runs for
    a relatively short time




Livelock that's Really a Critical Race


We could try to make the clients a little more considerate

   for ( Send( prop1, get-res1, result1 ) && Send( prop2, get-res2, result2 );
         !(result1 && result2) || !time-out( ); 
         Send( prop1, get-res1, result1 ) && Send( prop2, get-res2, result2 ) {
      if ( result2 ) Send( prop2, release-res2, ... );
      if ( result1 ) Send( prop1, release-res1, ... );
      Delay ( random( ) );
   {


Inherent Livelock


Remember the example where two trains come face to face, each waiting for
the other to move. They will wait facing each other until the demo is over,
probably polling.


What's hard about solving this problem?


  	Neither driver knows what the other driver is trying to do.




In real life,


  	the drivers would communicate, but

  	in your software that's neither easy 
    
      	How many different `conversations' might need to be available?

    

    nor desirable

    
      	What is the effect on other trains of the two drivers' special
        arrangement?

    

  




What's most easy for you to do is to programme each driver with


  	detection, e.g., 
    
      	Delay a random time

      	Request again

      	If turned down, work around

    

  

  	work around, e.g., 
    
      	Recommence working on goal as though track is blocked.

    

  




Notice that the solution above doesn't work for the train-driver because
he cannot release the track he is sitting on. His solution would be something
like

   for ( Send( prop, get-res, result );
         !result && !time-out( ); 
         Send( prop, get-res, result ) Delay ( random( ) );
   }


3. Critical Races


Example


  	Two tasks, A & B, at the same priority

  	A is doing a lot of debugging IO

  	B always reserves a section of track before A, and all is fine.

  	Debugging IO is removed

  	A reserves the section before B can get it, and execution
  collapses.

  	Lower priority of A to the same level as C.

  	Now C executes faster and gets a resource before D .

  	You shuffle priorities forever, eventually reverting, to put back in
    the debugging IO.




Definition


The order in which computation is done is an important factor in
determining whether or not it is successful.


Critical races, like Livelock can be


  	internal to the program, like the one above, or

  	external to the program but inherent in the application domain




Symptoms


  	Small changes in priorities change execution unpredictably, and
    drastically.

  	Debugging output changes execution drastically.

  	Changes in train speeds change execution drastically. 
    
      	Example from several terms ago

    

  




`Drastically' usually means chaos in both senses of the term


  	Sense one: a small change in the initial conditions produces an
    exponentially growing divergence in the execution.

  	Sense two: exercise for the reader.




Solutions


  	Explicit synchronization 
    
      	but you then have to know the orders in which things are permitted
        to occur

      	e.g. Try listing all the orders in which events can occur in your
        system 
        
          	and then notice that just arriving in the same order is often
            not enough

        

      

    

  

  	Gating is a technique of global synchronization 
    
      	which can be provided by a detective/coordinator

    

  




These solutions are hard to find because


  	Scenario-oriented design is natural (possibly even inescapable) for
    humans

  	Too much synchronization can kill performance because it introduces
    extra dependencies. (Check to see how many tasks are delaying.)




4. Performance


Changes in performance of one task with respect to another often give rise
to critical races


The hardest problem to solve


  	You just don't know what is possible

  	Ask a question like: 
    
      	Is my kernel code at the limit of what is possible in terms of
        performance?

      	We can compare the performance on message passing, etc., because
        two kernels are pretty much the same. 
        
          	Compare a lot of kernels and you should be able to find a lower
            limit

        

      

      	Can't do the same thing for train applications

    

  




In practice, how do you know you have performance problems? Problems I
have seen


Priority


The hardest thing to get right


  	NP-hard for the human brain

  	Practical method starts with all priorities the same, then adjusts

  	symptoms of good priority assignment 
    
      	The higher the priority, the more likely the ready queue is to be
        empty

      	The shorter the run time in practice the higher the priority

    

  




Problems with priority


  	Priority inversion

  	One resource, many clients

  	Tasks try to do too much




Congestion


  	Too many tasks 
    
      	blocked tasks don't count,

      	lowest priority tasks almost don't count

    

  




Layered abstraction are costly


e.g. Notifier -> SerialServer -> InputAccumulater -> Parser ->
TrackServer


Output


  	Too much terminal output interferes with train controller communication 
    
      	Don't redraw the entire screen

    

  

  	Requests to poll the sensors get backed up in the serial server, or
    whoever provides output buffering.




Hardware


  	Turn on optimization, but be careful 
    
      	There are places where you have done register allocation by
      hand

    

  

  	Turn on caches 
    
      	locking is possible

    

  




Size & align calibration tables by size & alignment of cache
lines


  	linker command script

  	I think that this is stretching it.
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Power On


When you turn on the power or press the reset button, what happens before
you see the RedBoot> prompt?


  	Power on asserts the reset input to the CPU




This is not determined by the instruction set architecture (ISA).


  	The ISA guarantees only that the CPU will (at some future time) set the
    pc to 0x00000000 and start executing instructions.




What happens before that, and what appears at 0x00000000 is determined by
the design of the system surrounding the CPU on the chip.


  	Cirrus provides this, not ARM.

  	What Cirrus provides is pretty generic: the steps are the same on
    others SoCs, but the details differ.




There are two pretty hard resets that can occur.


  	Turning on the power

  	Pressing the reset button 
    
      	Power-on, but with memory refresh running continuously.

    

  




(Jumping to 0x00000000 is a much softer reset.)


Asserting the reset input of the SoC, asserts the reset output of the
SoC.


  	The output reset goes everywhere and resets everything with a power on
    reset.




Negating the reset input starts the boot sequence, with the SoC in its
reset state. Ten hardware inputs determine how the SoC boots


  	internal/external

  	pre-boot source

  	watchdog state

  	bus width of pre-boot and pre-pre-boot




These inputs allow the designer of the board hosting the SoC to determine
enough characteristics of the boot state that it can be used for many
applications


TS-7200 is set up for internal pre-boot with source from the flash on the
32-bit AHB


The AHB bus has all the important high-speed components


  	memory (program and graphics)

  	ethernet controller

  	USB controller, and

  	16Kbytes of mask-programmed ROM at 0x80090000




Initial state


ARM


The following things, which are contolled through the system control
co-processor, are determined by the CPU architecture. They must be
independent of the stuff added by Cirrus


  	MMU flat, but might be different on soft reset

  	Caches disabled

  	Slow bus clock

  	Interrupts disabled

  	Little-endian memory system

  	No access to MMU registers

  	Normal exception registers




Cirrus


The following things, which are described in the EP9302 documentation, are
properties of hardware Cirrus added. They are independent of how Technologic
configured the chip when they designed the TS7200.


  	DRAM controller(s) not initialized

  	Flash controller(s) not initialized

  	All I/O devices in reset state. (They receive hardware reset inputs
    from the CPU.)

  	Memory map in boot mode




Technologic


The following things, which are described in the Technologic
documentation, manual & circuit diagram, are properties of the TS7200


  	Boot control bits, set to normal boot, 32-bit bus width, sychronous
    boot device, internal, watchdog timer disabled.

  	Physical memory map 
    
      	0x80000000 to 0x800fffff, used by Cirrus for on-chip components

      	SDRAM chips break memory into 4M blocks. Addresses of 4M blocks are 
        
          	0x00000000 to 0x003fffff

          	0x00400000 to 0x007fffff

          	0x00800000 to 0x00bfffff

          	0x00c00000 to 0x00ffffff

          	0x01000000 to 0x013fffff

          	...

        

      

      	TS7200 uses 4-bit chip select to divide the memoery into 256 Mbyte
        blocks 
        
          	0x00000000 to 0x0fffffff (first 256M) SDRAM, CS0, 32 bus
          cycles

          	0x10000000 to 0x1fffffff: CS1, 8 bit bus cycles

          	0x20000000 to 0x2fffffff: CS2, 16 bit bus cycles.

          	0x60000000 to 0x7fffffff: CS6/7, Flash

          	0x80000000 to 0x8fffffff: I/O registers including 
            
              	0x80000000 to 0x807fffff: AHB mapped registers, including 
                
                  	DMA

                  	Ethernet

                  	USB

                  	Memory controllers

                  	Pre-pre-boot ROM

                  	ICU registers

                

              

              	0x80800000 to 0x8fffffff: I/O registers

            

          

        

        SDRAM chips break memory into 4M blocks. Addresses of 4M blocks
        are

      

      	0x00000000 to 0x003fffff

      	0x00400000 to 0x007fffff

      	0x00800000 to 0x00bfffff

      	0x00c00000 to 0x00ffffff

      	0x01000000 to 0x013fffff

      	...

    

  

  	In the AHB registers is a 16K block of ROM from 0x80090000
    to 0x80093fff 
    
      	Initially, it is mapped to the entire memory space at 16K
        intervals. 

      	Chip select, and how addressing occurs. 
        
          	Chip select of this block is 0x8009[00XXb]XXX 

          	Chip select has two parts 
            
              	I/O chip select: 0x8XXXXXXX

              	AHB chip select: 0xY00XXXXX

              	ROM chip select: 0xYYY9[00XXb]XXX

            

          

        

      

      	The first instruction executed is the one that you find at
        0x80090000

    

  




Pre-pre-boot Sequence


  	Jump to 0x80090018.

  	Turn on LEDs

  	Make the CPU completely vanilla. E.g., 
    
      	no caches, physical memory map,

    

  

  	Turn off watchdog timer

  	Acquire boot state

  	Configure external clocks (needed for serial boot)

  	Acquire boot state configuration inputs 
    
      	These are input pins on the EP9302, the state of which is
        determined by the TS7200. 

      	A couple are user-controllable via jumpers 

      	They are the only thing the EP9302 knows about the outside
      world

    

  

  	Using boot state configure 
    
      	flash memory controller

      	SDRAM memory controller

    

    These are configured with very conservative parameters

  

  	Clear boot mode `memory map'

  	Toggle LEDs

  	Switch 
    
      	Serial boot on UART1 
        
          	Output ">"

          	Read 2048 bytes starting with CRUS or SURC to the ethernet
            buffer

          	Jump to the start of the ethernet buffer

        

      

      	Boot from ROM outside SoC 
        
          	Assert ROM chip selects looking for CRUS

          	When found read 2048 bytes from the ROM to ethernet buffer

          	Jump to the start of the ethernet buffer

        

      

      	Boot from flash 
        
          	Look for CRUS at possible flash start locations

          	When found jump to start location plus 0x4 (account for
            CRUS)

          	If not found
            
              	load code into ethernet buffer

              	flash LEDs forever

            

          

        

      

    

  

  	In the first two cases the 2048 bytes contains a memory test followed
    by a loader.




Pre-boot Sequence


This code knows all about the EP9302, and all about the TS7200.


  	Sets up a stack in the ethernet buffer

  	Sets the CPSR to a vanilla state: no interrupts, svc mode

  	Copies 260 words of code from flash to the ethernet buffer

  	Initializes memory controllers for the memory it has

  	Configures GPIO.

  	Turns off the watchdog timer

  	Sets up the appropriate serial port for a monitor
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Power On


Initial state


ARM


Cirrus


Technologic


The following things, which are described in the Technologic
documentation, manual & circuit diagram, are properties of the TS7200


  	Boot control bits, set to normal boot, 32-bit bus width, sychronous
    boot device, internal, watchdog timer disabled.

  	Physical memory map 
    
      	0x80000000 to 0x800fffff, used by Cirrus for on-chip components

      	SDRAM chips break memory into 4M blocks. Addresses of 4M blocks are 
        
          	0x00000000 to 0x003fffff

          	0x00400000 to 0x007fffff

          	0x00800000 to 0x00bfffff

          	0x00c00000 to 0x00ffffff

          	0x01000000 to 0x013fffff

          	...

        

      

      	TS7200 uses 4-bit chip select to divide the memoery into 256 Mbyte
        blocks 
        
          	0x00000000 to 0x0fffffff (first 256M) SDRAM, CS0, 32 bus
          cycles

          	0x10000000 to 0x1fffffff: CS1, 8 bit bus cycles

          	0x20000000 to 0x2fffffff: CS2, 16 bit bus cycles.

          	0x60000000 to 0x7fffffff: CS6/7, Flash

          	0x80000000 to 0x8fffffff: I/O registers including 
            
              	0x80000000 to 0x807fffff: AHB mapped registers, including 
                
                  	DMA

                  	Ethernet

                  	USB

                  	Memory controllers

                  	Pre-pre-boot ROM

                  	ICU registers

                

              

              	0x80800000 to 0x8fffffff: I/O registers

            

          

        

        SDRAM chips break memory into 4M blocks. Addresses of 4M blocks
        are

      

      	0x00000000 to 0x003fffff

      	0x00400000 to 0x007fffff

      	0x00800000 to 0x00bfffff

      	0x00c00000 to 0x00ffffff

      	0x01000000 to 0x013fffff

      	...

    

  

  	In the AHB registers is a 16K block of ROM from 0x80090000
    to 0x80093fff 
    
      	Initially, it is mapped to the entire memory space at 16K
        intervals. 

      	Chip select, and how addressing occurs. 
        
          	Chip select of this block is 0x8009[00XXb]XXX 

          	Chip select has two parts 
            
              	I/O chip select: 0x8XXXXXXX

              	AHB chip select: 0xY00XXXXX

              	ROM chip select: 0xYYY9[00XXb]XXX

            

          

        

      

      	The first instruction executed is the one that you find at
        0x80090000

    

  




Pre-pre-boot Sequence


  	Jump to 0x80090018.

  	Turn on LEDs

  	Make the CPU completely vanilla. E.g., 
    
      	no caches, physical memory map,

    

  

  	Turn off watchdog timer

  	Configure external clocks (needed for serial boot)

  	Acquire boot state configuration inputs 
    
      	These are input pins on the EP9302, the state of which is
        determined by the TS7200. 

      	A couple are user-controllable via jumpers 

      	They are the only thing the EP9302 knows about the outside
      world

    

  

  	Using boot state configure 
    
      	flash memory controller

      	SDRAM memory controller

    

    These are configured with very conservative parameters

  

  	Clear boot mode `memory map'

  	Toggle LEDs

  	Switch 
    
      	Serial boot on UART1 
        
          	Output ">"

          	Read 2048 bytes starting with CRUS or SURC to the Mac FIFO

          	Jump to the start of the Mac FIFO

        

      

      	Boot from ROM outside SoC 
        
          	Assert ROM chip selects looking for CRUS

          	When found read 2048 bytes from the ROM to Mac FIFO

          	Jump to the start of the Mac FIFO

        

      

      	Boot from flash 
        
          	Look for CRUS at possible flash start locations

          	When found jump to start location plus 0x4 (account for
            CRUS)

        

      

      	If not found
        
          	if 0x0 writable destination is SDRAM else destination is Mac
            FIFO

          	load 20 words into destination

          	flash LEDs forever

        

      

    

  

  	In the first two cases the 2048 bytes contains a memory test followed
    by a loader.

  	The Mac FIFO code is used for premature death in the pre-boot also.




Pre-boot Sequence


This code knows all about the EP9302, and all about the TS7200.


  	Sets up a stack in the ethernet buffer

  	Sets the CPSR to a vanilla state: no interrupts, svc mode

  	Copies 80 words of code from flash to the ethernet buffer

  	Initializes memory controllers for the memory it has

  	Configures GPIO.

  	Turns off the watchdog timer

  	Sets up the appropriate serial port for a monitor

  	loads RedBoot






Can Message Passing be Made Type Safe?


Dynamically


Yes, even including type extension and polymorphism, but


  	What does the program do when it detects a type mismatch?

  	Well, it could send a more informative error message before it
  dies.




Statically


No,


  	Structured programming depends critically on well-defined scope.

  	While tasks are scoped internally, there is no inter-task scoping.

  	In fact, we are happy to be free of scoping, because it allows us to
    try out a wider variety of program structures.




CSP


To formal methods people CSP is a calculus for reasoning about the
correctness of multi-process/threaded/tasking (MPTT) systems. Active research
has been ongoing for forty years with several goals


  	translating other synchronization/communication semantics to and from
    CSP

  	finding new methods for reasoning about CSP

  	scaling everything to make CSP useful for production sized programs

  	During that time many a chicken has left its tracks on the pages of
    formal methods journals and conference proceedings!




For programmers the claim has been and is made that CSP provides a
superior method for structuring MPTT systems. (`Superior' in the sense of
`easier to design, implement and understand'.)


  	The claim was first made in the late 1970s/early 1980s.

  	It was made again in the early 1990s, this time with the weight of Bell
    Labs behind it.

  	And has been made yet again in the last few years, this time with the
    weight of Goggle behind it.




Primitives


In CSP there are two communication primitives. In the notation of occam
2/Go, they are


  	read 
    keyboard ? ch
ch = <- keyboard

    
      	reads from an input channel called keyboard and
        assigns what it reads to the variable ch

      	the channel must have an associated type, and the type must match
        the type of the variable.

      	That is, the channel and the variable must be in the same
      scope.

      	read blocks until input is available on the channel

    

  

  	write 
    keyboard ! duh
keyboard <- duh

    
      	writes the value of the variable duh into the channel
        keyboard

      	write does not block

      	Thus, a read/write pair guarantess that read in the reading process
        occurs simultaneously with or after the corresponding write in the
        writing process.

    

  




The communication primitives require something new, called a channel.

CHAN OF CHAR keyboard
keyboard chan char


  	A channel is a first in/first out silo.

  	Each channel has a protocol that states the type that messages it
    handles must have.

  	Knowing the name of a channel is essential for using it. 
    
      	Applications control who can be on the other end of a channel,
        which is essential for security, by controlling who knows the name of
        the channel.

    

  




The Transputer


Use many co-operating, medium capability microCPUs to do a big job.


  	An idea whose time has now come.

  	Google




Problem is communication


  	Big granularity (thick client: MS, Google) 
    
      	minimizes communication

      	maximizes replicated data

      	The Google approach: 
        
          	an opportunity nobody thought about

          	a problem nobody thought about.

        

      

    

  

  	Small granularity 
    
      	minimizes replicated data

      	maximizes communication

      	Your system, like threading solutions, relies on shared memory for
        communication 
        
          	The return of the FORTRAN common block

          	How would you handle caching?

        

      

    

  




Communication requires either


  	a common bus, star topology 
    
      	system bus (= shared memory)

      	LAN

    

  

  	a common channel, over which users pass messages in real-time 
    
      	wasteful of bandwidth

      	analogue telephony

    

  

  	passing messages along 
    
      	emphasizes the switches (bridges) that connect common buses

      	really more like a hybrid, which is classified differently based on
        the level of abstraction.

    

  




What about real-time?


  	lots of timer (countup) hardware 
    
      	interaction of countdown and countup to make your clock server

    

  

  	Instances of timers are not guaranteed to be synchronized 
    
      	How could two timers be synchronized?

    

  




The transputer was an early, now vanished, example of a real-time system
based on plentiful small granularity communication. Your kernel is another
example.


  	Your kernel: communication based on shared memory, which is easy to
    program, hard to make secure.

  	The transputer: communication based on switch mediated packets, which
    is hard to program, easy to make secure.




Transputer hardware


  	CPU, memory, switch on one chip

  	chips connected in an array

  	presumably a run-time system decides where tasks will go in order to 
    
      	maximize CPU throughput

      	minimize communication overhead

    

  




Occam 2


Basic idea


  	processes (tasks) 
    
      	may be named, take arguments and return values

      	may be combined

    

  

  	CSP channels

  	time




Combining processes


  	sequential

  	conditional 
    
      	if/then

      	selection by case

    

  

  	looping 
    
      	without test/break

      	with test/break

    

  

  	parallel 
    
      	initiated when the keyword PAR occurs.

    

  

  	alternation 
    
      	guarded alternatives

      	if more than one guard is true then select at random 
        
          	can be prioritized

        

      

    

  




Time


  	timer returns time as channel input 
    clock ? now

  

  	AFTER can be used to combine times, because there is a
    total order based on time 
    IF now AFTER yesterday THEN

  

  	AFTER can make timer input blocking 
    clock ? AFTER tomorrow

  




Can you Build a Server with Type-Checking?

Outer
Scope
|
| CHAN OF REQUEST request
|
| Server 
| Scope
| |
| | REQUEST sreq
| | CHAN OF REPLY srep
| |
| | request ? sreq
| | srep := sreq.reply
| |
| | srep ! sresult
| |
| |
| |
| Client
| Scope
| |
| | REQUEST creq
| | CHAN OF REPLY crep
| |
| | creq.reply := crep
| | request ! creq
| |
| | crep ? cresult
| |
 


The Result


You can write a type-safe server, BUT


  	all possible clients must be in the same scope in order to get static
    type checking

  	with dynamic, structural type checking you only need to have the tasks
    written in languages having the same type system




BUT


with this structure excessive code in the client weakens synchronization,
which might not be what you want.
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Lecture 32 - Communicating Sequential Processes (CSP)


Public Service Annoucements


  	Final exam date: 9.00 August 7 to 11.30 August 9

  	Final demos: 26 August & 27 August
    
      	25 August
        
          	Groups demoing on the 27th leave the lab at 13.00

        

      

      	26 August
        
          	Code freeze at 9.00

          	Demos start at 9.30
            
              	30 minutes in length

            

          

          	Demos end at 13.00, groups demoing on the 27th re-enter the
          lab

        

      

      	27 August
        
          	Code freeze at 9.00

          	Demos start at 9.30
            
              	30 minutes in length

            

          

          	Demos end at 13.00

        

      

    

  

  	Noticed at the Milestone 2 demos
    
      	Conservative reservations did best
        
          	They make corner cases not exist

          	But they inhibit performance: we saw system lock-up with two
            trains.

        

      

      	My impression: 
        
          	every group had something close to staggering

          	a few groups had robust implementations, not necessarily
            complete

        

      

      	One robust implementation had many terminal-controllable
      parameters

      	Only one group -- of the ones we asked -- had a small idle task
        execution time fraction, ~ 50%, and they were having performance
        problems.

      	Following, first on a big loop, then on a small one, is a good test
        of reservations.
        
          	We liked ones that adjusted to go at the best speed.

          	This is a symptom of being ables to run more trains without
            lock-up

        

      

    

  






Can Message Passing be Made Type Safe?


Dynamically


Yes, even including type extension and polymorphism, but


  	What does the program do when it detects a type mismatch?

  	Well, it could send a more informative error message before it
  dies.




Statically


No,


  	Structured programming depends critically on well-defined scope.

  	While tasks are scoped internally, there is no inter-task scoping.

  	In fact, we are happy to be free of scoping, because it allows us to
    try out a wider variety of program structures.




CSP


To formal methods people CSP is a calculus for reasoning about the
correctness of multi-process/threaded/tasking (MPTT) systems. Active research
has been ongoing for forty years with several goals


  	translating other synchronization/communication semantics to and from
    CSP

  	finding new methods for reasoning about CSP

  	scaling everything to make CSP useful for production sized programs

  	During that time many a chicken has left its tracks on the pages of
    formal methods journals and conference proceedings!




For programmers the claim has been and is made that CSP provides a
superior method for structuring MPTT systems. (`Superior' in the sense of
`easier to design, implement and understand'.)


  	The claim was first made in the late 1970s/early 1980s.

  	It was made again in the early 1990s, this time with the weight of Bell
    Labs behind it.

  	And has been made yet again in the last few years, this time with the
    weight of Goggle behind it.




Primitives


In CSP there are two communication primitives. In the notation of occam
2/Go, they are


  	read 
    keyboard ? ch
ch = <- keyboard

    
      	reads from an input channel called keyboard and
        assigns what it reads to the variable ch

      	the channel must have an associated type, and the type must match
        the type of the variable.

      	That is, the channel and the variable must be in the same
      scope.

      	read blocks until input is available on the channel

    

  

  	write 
    keyboard ! duh
keyboard <- duh

    
      	writes the value of the variable duh into the channel
        keyboard

      	blocks until the

      	Thus, a read/write pair guarantess that read in the reading process
        occurs simultaneously with or after the corresponding write in the
        writing process.

    

  




There is also a creation primitive


  	occam -- PAR
    
      	no shared memory: costly

    

  

  	Go -- go
    
      	shared memory: cheap

    

  




The communication primitives require something new, called a channel.

CHAN OF CHAR keyboard
keyboard chan char


  	Each channel has a protocol that states the type that messages it
    handles must have.

  	Knowing the name of a channel is essential for using it. 
    
      	Applications control who can be on the other end of a channel,
        which is essential for security, by controlling who knows the name of
        the channel.

    

  




The Grandfather -- the Transputer -- and the Grandson -- Go


Use many co-operating, medium capability microCPUs to do a big job.


  	An idea whose time has now come, again.

  	Google




Problem is communication


  	Big granularity (thick client: MS, Google) 
    
      	minimizes communication

      	maximizes replicated data

      	The Google approach: 
        
          	an opportunity nobody thought about

          	a problem nobody thought about.

        

      

    

  

  	Small granularity 
    
      	minimizes replicated data

      	maximizes communication

      	Your system, like threading solutions, relies on shared memory for
        communication 
        
          	How would you handle caching?

        

      

    

  




Transputer hardware


The transputer was an early, now vanished, example of a real-time system
based on plentiful small granularity communication. Your kernel is another
example.


  	Your kernel: communication based on memory that is universally
    accessible by the kernel, which is easy to program, hard to make
  secure.

  	The transputer: communication based on switch mediated packets, which
    is hard to program, easy to make secure.




The transputer itself


  	CPU, memory, switch on one chip

  	chips connected in an array

  	presumably a run-time system decides where tasks will go in order to 
    
      	maximize CPU throughput

      	minimize communication overhead

      	can be, and usually was, taken over by the programmer.

    

  




What about real-time?


  	lots of timer (countup) hardware 
    
      	interaction of countdown and countup to make your clock server

    

  

  	Instances of timers are not guaranteed to be synchronized 
    
      	How could two timers be synchronized?

    

  




Google (data centre) hardware


Many single board (including disk) computers


  	Communicate by high speed ethernet




Software


Farmer with clients & worker


Occam2

FOREVER
  ALT
    from.client ? request && workerfree
      SEQ
        workerfree = false
        to.worker ! request
    from.worker ? result
      SEQ
        workerfree = true
        to.client ! result


Go

FOREVER {
    select {
    case request <- from.client && workerfree
        workerfree = false
        request.data -> to.worker
    case result <- from.worker
        result -> request.chan
    {
}
case result <- from.worker


Timing out


Occam2

PAR
  SEQ
    sleep( delay )
    timeout ! true
  ALT
    in.data ? data
      // respond to data
    timeout ? now
      // data timed out


Go

timeout := make( chan bool )
go func( ) {
  time.Sleep( delay )
  timeout <- true
}( )
select {
case <- ch:
  // data available
case <- timeout:
  // read timed out
}


Basic idea


  	processes (tasks) 
    
      	may be named, take arguments and return values

      	may be combined

    

  

  	CSP channels

  	time




Combining processes


  	sequential

  	conditional 
    
      	if/then

      	selection by case

    

  

  	looping 
    
      	without test/break

      	with test/break

    

  

  	parallel 
    
      	initiated when the keyword PAR occurs.

    

  

  	alternation 
    
      	guarded alternatives

      	if more than one guard is true then select at random 
        
          	can be prioritized

        

      

    

  




Time


  	timer returns time as channel input 
    clock ? now

  

  	AFTER can be used to combine times, because there is a
    total order based on time 
    IF now AFTER yesterday THEN

  

  	AFTER can make timer input blocking 
    clock ? AFTER tomorrow

  




Can you Build a Server with Type-Checking?

Outer
Scope
|
| CHAN OF REQUEST request
|
| Server 
| Scope
| |
| | REQUEST sreq
| | CHAN OF REPLY srep
| |
| | request ? sreq
| | srep := sreq.reply
| |
| | srep ! sresult
| |
| |
| |
| Client
| Scope
| |
| | REQUEST creq
| | CHAN OF REPLY crep
| |
| | creq.reply := crep
| | request ! creq
| |
| | crep ? cresult
| |
 


The Result


You can write a type-safe server, BUT


  	all possible clients must be in the same scope in order to get static
    type checking

  	with dynamic, structural type checking you only need to have the tasks
    written in languages having the same type system




BUT


with this structure excessive code in the client weakens synchronization,
which might not be what you want.
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Lecture 33 - Cyclic Execution


Public Service Annoucements


  	Final exam date: 9.00 August 7 to 11.30 August 9

  	Final demos: 26 August & 27 August 
    
      	25 August 
        
          	Groups demoing on the 27th leave the lab at 13.00

        

      

      	26 August 
        
          	Code freeze at 9.00

          	Demos start at 9.30 
            
              	30 minutes in length

            

          

          	Demos end at 14.00, groups demoing on the 27th re-enter the
          lab

        

      

      	27 August 
        
          	Code freeze at 9.00

          	Demos start at 9.30 
            
              	30 minutes in length

            

          

          	Demos end at 14.00

        

      

    

  






Software


Server with clients & a worker


Occam2

FOREVER
  ALT
    from.client ? request && workerfree
      SEQ
        workerfree = false
        to.worker ! request
    from.worker ? result
      SEQ
        workerfree = true
        to.client ! result


Go

FOREVER {
    select {
    case request <- from.client && workerfree
        workerfree = false
        request.data -> to.worker
    case result <- from.worker
        result -> request.chan
    {
}


Timing out


Occam2

PAR
  SEQ
    sleep( delay )
    timeout ! true
  ALT
    in.data ? data
      // respond to data
    timeout ? now
      // data timed out


Go

timeout := make( chan bool )
go func( ) {
  time.Sleep( delay )
  timeout <- true
}( )
select {
case <- ch:
  // data available
case <- timeout:
  // read timed out
}




Cyclic Execution


Voyageur


In continuous operation for 34 years, 10 months, 7 days.


It was designed to have a three-year lifetime!


Computer


6000 word instruction and scratch data memory


62,500 Kbyte digital tape recorder for storage of sensor data


System Software


Cyclic executive


Cyclic Execution


  	Clock ticks

  	Starts executing, in priority order, programs that are ready to
  run.

  	At end of programs, wait until the clock ticks, then go to 2.

  	If clock ticks before end of programs, then report fault to earth and
    go to 2.

  	Cycle can be interrupted by receiving input from earth that tells it to
    jump to boot mode. 
    
      	Checking for input from earth is one of the programs that is
      run.

      	Boot mode often entails loading a new program from earth. (At
        present loading takes many hours, and hours is getting close to days.
        Aren't you lucky!)

    

  




This is an abstract description: with so little memory it is essential to
squeeze out every word.


Most of the programs have the form


  	If input from X, then do A.




We are back at the beginning of the course, but we know much more now.


Real-time Scheduling


Much real-time computing operates in an environment like the space
shuttle


  	Groups of sensors that are polled with fixed periodicities, not
    necessarily

  	Sensor input triggers tasks which also run with the periodicity of the
    sensor




Typical example, a group of sensors that returns


  	the rotational speed of the wheels, and

  	the exhaust mixture, and

  	the torque, and

  	the state of the controls, and ...




and a set of tasks that


  	updates the engine parameters, such as combustion mixture, and

  	updates the transmission parameters, such as shift speeds, and

  	passes information to the instrument controller,

  	and ...




Each time a sensor returns a new datum a scheduler runs


  	makes ready any task that the data makes ready to run

  	decides which of the ready tasks to schedule, and

  	starts it running.




Your kernel can handle problems like this one pretty efficiently,


  	but you can do better.




Cyclic Execution


Let's make a finite schedule that repeats

                                               A                                       A
  AC  BA    A C  A    A  C A    A B CA    A    C    A    AC B A    A C  A    A  C A    B
  |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
      |                           |                         |                          |
   |          |          |          |          |          |          |          |
________________________________________________________________________________________________________ time


If the times are integers the pattern repeats after a while.


  	The total amount of thinking you have to do is finite.

  	The thinking you do is inserting into the schedule the amount of
    processing that needs to be done 
    
      	worst case

    

  

  	Work it all out so that nothing collides. 
    
      	using heuristics, no doubt

    

  




Make it a little easier


  	Make the complete pattern short by making sensor periods multiples of
    one another. If you can control sensor periods. 
    
      	Underlying clock.

      	sensor i is read once every ni ticks.

      	Master cycle is LCM( n1, n2, n3, ... ) in length

      	Schedule the master cycle by hand (= by brain)

    

  

  	Standardize the processing at each point

  	Minimize the interaction between tasks

  	If the tasks won't fit in adjust the complete sensor/program
  system.




Make it easier yet


Prove some theorems, such as Liu
& Layland. The essence of the theorems is


  	The critical moment, which is guaranteed to exist,
    occurs when all three tasks are scheduled at once.

  	If you choose task priorities so that the most frequently scheduled
    task has the highest priority, then, 
    
      	if there exists a schedule that meets all deadlines, then

      	your choice of task priorities meets all deadlines

    

  




Your project


If your project is correct, but resource limited, the critical instant for
the limiting resource is the place where your project fails. For example.


  	If your project is CPU limited, it's the point where the maximum
    computation must be done before the CPU can get back to do the most
    important new thing.

  	If you project is train communication bandwidth limited, then it's the
    point at which all curent users of bandwidth want to communicate at
  once.




Small form-factor computing


In 1977, when Voyageou was launched, computation was expensive, so the
action in computation was in big expensive things. Now computation is cheap,
and the action is in small inexpensive things. Think about how a mobile
telephone works.


  	It has housekeeping functions that must be done regularly, things like 
    
      	telling the nearest ground station that it's ready to receive a
      call

      	updating the clock

      	refreshing the memory

    

  

  	When you are making a phone call, there are phone call functions that
    must be done regularly 
    
      	collecting packets of audio from the antenna

      	doing signal conditioning on the digital audio they contain.

      	putting the digital audio into data buffers from which they will be
        send to the speaker.

      	analogous things that intervene between the microphone and the
        antenna.

    

  




When you want to play a game, consult your calendar, browse the internet,
etc you desire asynchronous response from the phone


  	It should slow down, not collapse, when you load it too heavily.

  	The easy way to do this. 
    
      	Put all of the regular functions into a cyclic executive, carefully
        analysing the run-time of each to make certain that everything will
        always get done on time.

      	In almost every cycle there is some time left over. In this time
        run an asynchronous OS that supports non-critical but still real-time
        features such as 
        
          	managing the UI

          	texting

          	game playing

          	internet browsing

          	whatever else you can find at the app store.

        

        This is the kind of thing that your kernel can do well.

      

      	The definition of `non-critical' depends on the capabilities of the
        user. For example, 
        
          	if a UI slows a little the user easily slows his or her
            reactions to accomodate

          	but if the sound drops out for a second in the middle of a word
            the user cannot pause his hearing in order to put the two halves
            of the word together

        

      

    

  




This sounds easy. Why is it hard in practice?


  	It's necessary to share resources. 
    
      	hardware, such as memory and I/O

      	software, such as data structures

    

    and battery life-time is what sells mobile phones

    
      	so resources are limited

    

  

  	In particular, from the asynchro9nous UI the user starts functions,
    like phone calls, that are synchronous. 
    
      	Synchronous/asynchronous communication is hard to accomplish while
        meeting tight real-time constraints.

      	Code must cross a synchronous/asynchronous boundary

    

  




Even more tricky, you have to handle foreign code, like apps.


  	Deciding whether it's safe to include a new activity in the schedule,
    which is called admission control, requires knowing its
    performance characteristics.

  	You can comfortably put your own code into the schedule because you
    trust the performace characteristics you received with it.

  	Foreign code, which means code produced elsewhere, is not
  trustworthy.

  	How can you include it in the schedule?




Take advantage of real-time being defined in human terms.


  	If its reported performance characteristics are good enough install
  it.

  	If it violates its performance characteristics during the first 100
    milliseconds, then 
    
      	it's probably incompetent. Reject it and tell the user why.

      	This looks real-time to the user.

    

  

  	If it violates its performance characteristics later, 
    
      	it could be malicious

    

  




All you need is code that handles over-runs in the cyclic exective without
missing deadlines!
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