
Programming Languages Lecture Notes (NEU CS4400)

From: Programming Languages

Intro to CS4400/CS5400Tuesday, January 10th

	
General plan for how the course will go.

	
Administrative stuff. (Most of the stuff from the web page.)

http://pl.barzilay.org/

Intro to Programming LanguagesTuesday, January 10th

PLAI §1

	
Why should we care about programming languages? (Any examples of big
projects without a little language?)

	
What defines a language?

	syntax

	semantics

	libraries

	idioms

	
How important is each of these?

	
libraries give you the run-time support, not an important part of
the language itself. (BTW, the line between “a library” and “part
of the language” is less obvious than it seems.)

	
idioms originate from both language design and culture. They are
often misleading. For example, JavaScript programmers will often
write:

function explorer_move() { doThis(); }function mozilla_move() { doThat(); }if (isExplorer) document.onmousemove = explorer_move;else document.onmousemove = mozilla_move;

or

if (isExplorer) document.onmousemove = function() { doThis(); };else document.onmousemove = function() { doThat(); };

or

document.onmousemove = isExplorer ? function() { ... } : function() { ... };

or

document.onmousemove = isExplorer ? () => { doThis(); } : () => { doThat(); };

or

document.onmousemove = isExplorer ? doThis : doThat;

How many JavaScript programmers will know what this does:

function foo(n) { return function(m) { return m+n; };}

or these:

n => m => m+n;(x,y) => s => s(x,y);

(Real example)

	
Compare:

	a[25]+5 (Java: exception)

	(+ (vector-ref a 25) 5) (Racket: exception)

	a[25]+5 (JavaScript: exception (or NaN))

	a[25]+5 (Python: exception)

	$a[25]+5 (Perl: 5)

	a[25]+5 (C: BOOM)

-> syntax is mostly in the cosmetics department; semantics is the
real thing.

	
How should we talk about semantics?

	
A few well-known formalisms for semantics.

	
We will use programs to explain semantics: the best explanation is
a program.

	
Ignore possible philosophical issues with circularity (but be aware
of them). (Actually, they are solved: Scheme has a formal
explanation that can be taken as a translation from Scheme to logic,
which means that things that we write can be translated to logic.)

	
We will use Racket for many reasons (syntax, functional, practical,
simple, formal, statically typed, environment).

Intro to RacketTuesday, January 10th

	
General layout of the parts of Racket:

	
The Racket language is (mostly) in the Scheme family, or more
generally in the Lisp family;

	
Racket: the core language implementation (language and runtime),
written in C;

	
The actual language(s) that are available in Racket have lots of
additional parts that are implemented in Racket itself;

	
GRacket: a portable Racket GUI extension, written in Racket too;

	
DrRacket: a GRacket application (also written in Racket);

	
Our language(s)…

	
Documentation: the Racket documentation is your friend (But beware
that some things are provided in different forms from different
places).

Side-note: “Goto Statement Considered Harmful”Tuesday, January 10th

A review of “Goto Statement Considered Harmful”, by E.W. DIJKSTRA

This paper tries to convince us that the well-known goto statement
should be eliminated from our programming languages or, at least
(since I don’t think that it will ever be eliminated), that
programmers should not use it. It is not clear what should replace
it. The paper doesn’t explain to us what would be the use of the if
statement without a goto to redirect the flow of execution: Should
all our postconditions consist of a single statement, or should we
only use the arithmetic if, which doesn’t contain the offensive
goto?

And how will one deal with the case in which, having reached the end
of an alternative, the program needs to continue the execution
somewhere else?

The author is a proponent of the so-called “structured programming”
style, in which, if I get it right, gotos are replaced by indentation.
Structured programming is a nice academic exercise, which works well
for small examples, but I doubt that any real-world program will ever
be written in such a style. More than 10 years of industrial
experience with Fortran have proved conclusively to everybody
concerned that, in the real world, the goto is useful and necessary:
its presence might cause some inconveniences in debugging, but it is a
de facto standard and we must live with it. It will take more than
the academic elucubrations of a purist to remove it from our
languages.

Publishing this would waste valuable paper: Should it be published, I
am as sure it will go uncited and unnoticed as I am confident that, 30
years from now, the goto will still be alive and well and used as
widely as it is today.

Confidential comments to the editor: The author should withdraw the
paper and submit it someplace where it will not be peer reviewed. A
letter to the editor would be a perfect choice: Nobody will notice it
there!

Quick Intro to RacketTuesday, January 10th

Racket syntax: similar to other Sexpr-based languages.

Reminder: the parens can be compared to C/etc function cal parens —
they always mean that some function is applied. This is the reason why
(+ (1) (2)) won’t work: if you use C syntax that is +(1(), 2()) but
1 isn’t a function so 1() is an error.

An important difference between syntax and semantics. A good way to
think about this is the difference between the string 42 stored in a
file somewhere (two ASCII values), and the number 42 stored in
memory (in some representation). You could also continue with the above
example: there is nothing wrong with “murder” — it’s just a word,
but murder is something you’ll go to jail for. The evaluation
function that Racket uses is actually a function that takes a piece of
syntax and returns (or executes) its semantics.

define expressions are used for creating new bindings, do not try to
use them to change values. For example, you should not try to write
something like (define x (+ x 1)) in an attempt to mimic x = x+1.
It will not work.

There are two boolean values built in to Racket: #t (true) and #f
(false). They can be used in if statements, for example:

(if (< 2 3) 10 20) --> 10

because (< 2 3) evaluates to #t. As a matter of fact, any value
except for #f is considered to be true, so:

(if 0 1 2) --> 1 ; all of these are "truthy"(if "false" 1 2) --> 1(if "" 1 2) --> 1(if null 1 2) --> 1(if #t 1 2) --> 1 ; including the true value(if #f 1 2) --> 2 ; the only false value(if #false 1 2) --> 2 ; another way to write it(if false 1 2) --> 2 ; also false since it's bound to #f

Note: Racket is a functional language — so everything has a value.

This means that the expression

(if test consequent)

has no meaning when test evaluates to #f. This is unlike Pascal/C
where statements do something (side effect) like printing or an
assignment — here an if statement with no alternate part will just
do nothing if the test is false… Racket, however, must return some
value — it could decide on simply returning #f (or some unspecified
value) as the value of

(if #f something)

as some implementations do, but Racket just declares it a syntax error.
(As we will see in the future, Racket has a more convenient when with
a clearer intention.)

Well, almost everything is a value…

There are certain things that are part of Racket’s syntax — for
example if and define are special forms, they do not have a value!
More about this shortly.

(Bottom line: much more things do have a value, compared with other
languages.)

cond is used for a if … else if … else if … else … sequence.
The problem is that nested ifs are inconvenient. For example,

(define (digit-num n) (if (<= n 9) 1 (if (<= n 99) 2 (if (<= n 999) 3 (if (<= n 9999) 4 "a lot")))))

In C/Java/Whatever, you’d write:

function digit_num(n) { if (n <= 9) return 1; else if (n <= 99) return 2; else if (n <= 999) return 3; else if (n <= 9999) return 4; else return "a lot";}

(Side question: why isn’t there a return statement in Racket?)

But trying to force Racket code to look similar:

(define (digit-num n) (if (<= n 9) 1 (if (<= n 99) 2 (if (<= n 999) 3 (if (<= n 9999) 4 "a lot")))))

is more than just bad taste — the indentation rules are there for a
reason, the main one is that you can see the structure of your program
at a quick glance, and this is no longer true in the above code. (Such
code will be penalized!)

So, instead of this, we can use Racket’s cond statement, like this:

(define (digit-num n) (cond [(<= n 9) 1] [(<= n 99) 2] [(<= n 999) 3] [(<= n 9999) 4] [else "a lot"]))

Note that else is a keyword that is used by the cond form — you
should always use an else clause (for similar reasons as an if, to
avoid an extra expression evaluation there, and we will need it when we
use a typed language). Also note that square brackets are read by
DrRacket like round parens, it will only make sure that the paren pairs
match. We use this to make code more readable — specifically, there
is a major difference between the above use of [] from the
conventional use of (). Can you see what it is?

The general structure of a cond:

(cond [test-1 expr-1] [test-2 expr-2] ... [test-n expr-n] [else else-expr])

Example for using an if expression, and a recursive function:

(define (fact n) (if (zero? n) 1 (* n (fact (- n 1)))))

Use this to show the different tools, especially:

	special objects that cannot be used

	syntax-checker

	stepper

	submission tool (installing, registering and submitting)

An example of converting it to tail recursive form:

(define (helper n acc) (if (zero? n) acc (helper (- n 1) (* acc n))))(define (fact n) (helper n 1))

Additional notes about homework submissions:

	
Begin every function with clear documentation: a purpose of statement
and its type.

	
Document the function when needed, and according to the guidelines
above and in the style guide.

	
After the function, always have a few test cases — they should cover
your complete code (make sure to include possible corner cases).
Later on, we will switch to testing the whole file through it’s
“public interface”, instead of testing each function.

Lists & RecursionTuesday, January 10th

Lists are a fundamental Racket data type.

A list is defined as either:

	
the empty list (null, empty, or '()),

	
a pair (cons cell) of anything and a list.

As simple as this may seem, it gives us precise formal rules to prove
that something is a list.

	Why is there a “the” in the first rule?

Examples:

null(cons 1 null)(cons 1 (cons 2 (cons 3 null)))(list 1 2 3) ; a more convenient function to get the above

List operations — predicates:

null? ; true only for the empty listpair? ; true for any cons celllist? ; this can be defined using the above

We can derive list? from the above rules:

(define (list? x) (if (null? x) #t (and (pair? x) (list? (rest x)))))(define (list? x) (or (null? x) (and (pair? x) (list? (rest x)))))

But why can’t we define list? more simply as

(define (list? x) (or (null? x) (pair? x)))

The difference between the above definition and the proper one can be
observed in the full Racket language, not in the student languages
(where there are no pairs with non-list values in their tails).

List operations — destructors for pairs (cons cells):

firstrest

Traditionally called car, cdr.

Also, any c<x>r combination for <x> that is made of up to four as
and/or ds — we will probably not use much more than cadr, caddr
etc.

Example for recursive function involving lists:

(define (list-length list) (if (null? list) 0 (+ 1 (list-length (rest list)))))

Use different tools, esp:

	syntax-checker

	stepper

How come we could use list as an argument — use the syntax checker

(define (list-length-helper list len) (if (null? list) len (list-length-helper (rest list) (+ len 1))))(define (list-length list) (list-length-helper list 0))

Main idea: lists are a recursive structure, so functions that operate on
lists should be recursive functions that follow the recursive definition
of lists.

Another example for list function — summing a list of numbers

(define (sum-list l) (if (null? l) 0 (+ (first l) (sum-list (rest l)))))

Also show how to implement rcons, using this guideline.

More examples:

Define reverse — solve the problem using rcons.

rcons can be generalized into something very useful: append.

	
How would we use append instead of rcons?

	
How much time will this take? Does it matter if we use append or
rcons?

Redefine reverse using tail recursion.

	Is the result more complex? (Yes, but not too bad because it collects
the elements in reverse.)

Some StyleTuesday, January 10th

When you have some common value that you need to use in several places,
it is bad to duplicate it. For example:

(define (how-many a b c) (cond [(> (* b b) (* 4 a c)) 2] [(= (* b b) (* 4 a c)) 1] [(< (* b b) (* 4 a c)) 0]))

What’s bad about it?

	
It’s longer than necessary, which will eventually make your code less
readable.

	
It’s slower — by the time you reach the last case, you have
evaluated the two sequences three times.

	
It’s more prone to bugs — the above code is short enough, but what
if it was longer so you don’t see the three occurrences on the same
page? Will you remember to fix all places when you debug the code
months after it was written?

In general, the ability to use names is probably the most fundamental
concept in computer science — the fact that makes computer programs
what they are.

We already have a facility to name values: function arguments. We could
split the above function into two like this:

(define (how-many-helper b^2 4ac) ; note: valid names! (cond [(> b^2 4ac) 2] [(= b^2 4ac) 1] [else 0]))(define (how-many a b c) (how-many-helper (* b b) (* 4 a c)))

But instead of the awkward solution of coming up with a new function
just for its names, we have a facility to bind local names — let.
In general, the syntax for a let special form is

(let ([id expr] ...) expr)

For example,

(let ([x 1] [y 2]) (+ x y))

But note that the bindings are done “in parallel”, for example, try
this:

(let ([x 1] [y 2]) (let ([x y] [y x]) (list x y)))

Using this for the above problem:

(define (how-many a b c) (let ([b^2 (* b b)] [4ac (* 4 a c)]) (cond [(> b^2 4ac) 2] [(= b^2 4ac) 1] [else 0])))

Some notes on writing code
(also see the style-guide in the handouts section)

Code quality will be graded to in this course!

	
Use abstractions whenever possible, as said above. This is bad:

(define (how-many a b c) (cond [(> (* b b) (* 4 a c)) 2] [(= (* b b) (* 4 a c)) 1] [(< (* b b) (* 4 a c)) 0]))(define (what-kind a b c) (cond [(= a 0) 'degenerate] [(> (* b b) (* 4 a c)) 'two] [(= (* b b) (* 4 a c)) 'one] [(< (* b b) (* 4 a c)) 'none]))

	
But don’t over abstract: (define one 1) or (define two "two")

	
Always do test cases (show coverage tool), you might want to comment
them, but you should always make sure your code works.

	
Do not under-document, but also don’t over-document.

	
INDENTATION! (Let DrRacket decide; get used to its rules)
–> This is part of the culture that was mentioned last time, but it’s
done this way for good reason: decades of programming experience
have shown this to be the most readable format. It’s also
extremely important to keep good indentation since programmers in
all Lisps don’t count parens — they look at the structure.

	
As a general rule, if should be either all on one line, or the
condition on the first and each consequent on a separate line.
Similarly for define — either all on one line or a newline after
the object that is being define (either an identifier or a an
identifier with arguments).

	
Another general rule: you should never have white space after an
open-paren, or before a close paren (white space includes newlines).
Also, before an open paren there should be either another open paren
or white space, and the same goes for after a closing paren.

	
Use the tools that are available to you: for example, use cond
instead of nested ifs (definitely do not force the indentation to
make a nested if look like its C counterpart — remember to let
DrRacket indent for you).

Another example — do not use (+ 1 (+ 2 3)) instead of (+ 1 2 3)
(this might be needed in extremely rare situations, only when you
know your calculus and have extensive knowledge about round-off
errors).

Another example — do not use (cons 1 (cons 2 (cons 3 null)))
instead of (list 1 2 3).

Also — don’t write things like:

(if (< x 100) #t #f)

since it’s the same as just

(< x 100)

A few more of these:

(if x #t y) --same-as--> (or x y)(if x y #f) --same-as--> (and x y)(if x #f #t) --same-as--> (not x)

(Actually the first two are almost the same, for example, (and 1 2)
will return 2, not #t.)

	
Use these as examples for many of these issues:

(define (interest x) (* x (cond [(and (> x 0) (<= x 1000)) 0.04] [(and (> x 1000) (<= x 5000)) 0.045] [else 0.05])))(define (how-many a b c) (cond ((> (* b b) (* (* 4 a) c)) 2) ((< (* b b) (* (* 4 a) c)) 0) (else 1)))(define (what-kind a b c) (if (equal? a 0) 'degenerate (if (equal? (how-many a b c) 0) 'zero (if (equal? (how-many a b c) 1) 'one 'two))))(define (interest deposit) (cond [(< deposit 0) "invalid deposit"] [(and (>= deposit 0) (<= deposit 1000)) (* deposit 1.04)] [(and (> deposit 1000) (<= deposit 5000)) (* deposit 1.045)] [(> deposit 5000) (* deposit 1.05)]))(define (interest deposit) (if (< deposit 1001) (* 0.04 deposit) (if (< deposit 5001) (* 0.045 deposit) (* 0.05 deposit))))(define (what-kind a b c) (cond ((= 0 a) 'degenerate) (else (cond ((> (* b b)(*(* 4 a) c)) 'two) (else (cond ((= (* b b)(*(* 4 a) c)) 'one) (else 'none)))))));

Some Style (contd.)Tuesday, January 17th

The fact that in Racket we can use functions as values is very useful
— for example, map, foldl & foldr, many more.

Example:

;; every? : (A -> Boolean) (Listof A) -> Boolean;; Returns false if any element of lst fails;; the given pred, true if all pass pred.(define (every? pred lst) (or (null? lst) (and (pred (first lst)) (every? pred (rest lst)))))

Tail callsTuesday, January 17th

You should generally know what tail calls are, but here’s a quick review
of the subject. A function call is said to be in tail position if there
is no context to “remember” when you’re calling it. Very roughly, this
means that function calls that are not nested in argument expressions of
another call are tail calls. This definition is something that depends
on a context, for example, in an expression like

(if (huh?) (foo (add1 (* x 3))) (foo (/ x 2)))

both calls to foo are tail calls, but they’re tail calls of this
expression and therefore apply to this context. It might be that this
code is inside another call, as in

(blah (if (huh?) (foo (add1 (* x 3))) (foo (/ x 2))) something-else)

and the foo calls are now not in tail position. The main feature of
all Scheme implementations including Racket wrt tail calls is that calls
that are in tail position of a function are said to be “eliminated”.
That means that if we’re in an f function, and we’re about to call g
in tail position and therefore whatever g returns would be the result
of f too, then when Racket does the call to g it doesn’t bother
keeping the f context — it won’t remember that it needs to “return”
to f and will instead return straight to its caller. In other words,
when you think about a conventional implementation of function calls as
frames on a stack, Racket will get rid of a stack frame when it can.

Another way to see this is to use DrRacket’s stepper to step through a
function call. The stepper is generally an alternative debugger, where
instead of visualizing stack frames it assembles an expression that
represents these frames. Now, in the case of tail calls, there is no
room in such a representation to keep the call — and the thing is that
in Racket that’s perfectly fine since these calls are not kept on the
call stack.

Note that there are several names for this feature:

	
“Tail recursion”. This is a common way to refer to the more limited
optimization of only tail-recursive functions into loops. In
languages that have tail calls as a feature, this is too limited,
since they also optimize cases of mutual recursion, or any case of a
tail call.

	
“Tail call optimization”. In some languages, or more specifically in
some compilers, you’ll hear this term. This is fine when tail calls
are considered only an “optimization” — but in Racket’s case (as
well as Scheme), it’s more than just an optimization: it’s a language
feature that you can rely on. For example, a tail-recursive function
like (define (loop) (loop)) must run as an infinite loop, not just
optimized to one when the compiler feels like it.

	
“Tail call elimination”. This is the so far the most common proper
name for the feature: it’s not just recursion, and it’s not an
optimization.

When should you use tail calls?

Often, people who are aware of tail calls will try to use them always.
That’s not always a good idea. You should generally be aware of the
tradeoffs when you consider what style to use. The main thing to
remember is that tail-call elimination is a property that helps reducing
space use (stack space) — often reducing it from linear space to
constant space. This can obviously make things faster, but usually the
speedup is just a constant factor since you need to do the same number
of iterations anyway, so you just reduce the time spent on space
allocation.

Here is one such example that we’ve seen:

(define (list-length-1 list) (if (null? list) 0 (+ 1 (list-length-1 (rest list)))));; versus(define (list-length-helper list len) (if (null? list) len (list-length-helper (rest list) (+ len 1))))(define (list-length-2 list) (list-length-helper list 0))

In this case the first (recursive) version version consumes space linear
to the length of the list, whereas the second version needs only
constant space. But if you consider only the asymptotic runtime, they
are both O(length(l)).

A second example is a simple implementation of map:

(define (map-1 f l) (if (null? l) l (cons (f (first l)) (map-1 f (rest l)))));; versus(define (map-helper f l acc) (if (null? l) (reverse acc) (map-helper f (rest l) (cons (f (first l)) acc))))(define (map-2 f l) (map-helper f l '()))

In this case, both the asymptotic space and the runtime consumption are
the same. In the recursive case we have a constant factor for the stack
space, and in the iterative one (the tail-call version) we also have a
similar factor for accumulating the reversed list. In this case, it is
probably better to keep the first version since the code is simpler. In
fact, Racket’s stack space management can make the first version run
faster than the second — so optimizing it into the second version is
useless.

Note on TypesTuesday, January 17th

Types can become interesting when dealing with higher-order functions.
For example, map receives a function and a list of some type, and
applies the function over this list to accumulate its output, so its
type is:

;; map : (A -> B) (Listof A) -> (Listof B)

Actually, map can use more than a single list, it will apply the
function on the first element in all lists, then the second and so on.
So the type of map with two lists can be described as:

;; map : (A B -> C) (Listof A) (Listof B) -> (Listof C)

Here’s a hairy example — what is the type of this function:

(define (foo x y) (map map x y))

Begin by what we know — both maps, call them map1 and map2, have
the double- and single-list types of map respectively, here they are,
with different names for types:

;; the first `map', consumes a function and two listsmap1 : (A B -> C) (Listof A) (Listof B) -> (Listof C);; the second `map', consumes a function and one listmap2 : (X -> Y) (Listof X) -> (Listof Y)

Now, we know that map2 is the first argument to map1, so the type of
map1s first argument should be the type of map2:

(A B -> C) = (X -> Y) (Listof X) -> (Listof Y)

From here we can conclude that

A = (X -> Y)B = (Listof X)C = (Listof Y)

If we use these equations in map1’s type, we get:

map1 : ((X -> Y) (Listof X) -> (Listof Y)) (Listof (X -> Y)) (Listof (Listof X)) -> (Listof (Listof Y))

Now, foo’s two arguments are the 2nd and 3rd arguments of map1, and
its result is map1s result, so we can now write the type of foo:

;; foo : (Listof (X -> Y));; (Listof (Listof X));; -> (Listof (Listof Y))(define (foo x y) (map map x y))

This should help you understand why, for example, this will cause a type
error:

(foo (list add1 sub1 add1) (list 1 2 3))

and why this is valid:

(foo (list add1 sub1 add1) (map list (list 1 2 3)))

Side-note: Names are importantTuesday, January 17th

An important “discovery” in computer science is that we don’t need
names for every intermediate sub-expression — for example, in almost
any language we can write the equivalent of:

s = (-b + sqrt(b^2 - 4*a*c)) / (2*a)

instead of

x = b * by = 4 * ay = y * cx = x - yx = sqrt(x)y = -bx = y + xy = 2 * as = x / y

Such languages are put in contrast to assembly languages, and were all
put under the generic label of “high level languages”.

(Here’s an interesting idea — why not do the same for function
values?)

BNF, Grammars, the AE LanguageTuesday, January 17th

Getting back to the theme of the course: we want to investigate
programming languages, and we want to do that using a programming
language.

The first thing when we design a language is to specify the language.
For this we use BNF (Backus-Naur Form). For example, here is the
definition of a simple arithmetic language:

<AE> ::= <num> | <AE> + <AE> | <AE> - <AE>

Explain the different parts. Specifically, this is a mixture of
low-level (concrete) syntax definition with parsing.

We use this to derive expressions in some language. We start with
<AE>, which should be one of these:

	a number <num>

	an <AE>, the text “+”, and another <AE>

	the same but with “-”

<num> is a terminal: when we reach it in the derivation, we’re done.
<AE> is a non-terminal: when we reach it, we have to continue with one
of the options. It should be clear that the “+” and the “-” are
things we expect to find in the input — because they are not wrapped
in <>s.

We could specify what <num> is (turning it into a <NUM>
non-terminal):

<AE> ::= <NUM> | <AE> + <AE> | <AE> - <AE><NUM> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | <NUM> <NUM>

But we don’t — why? Because in Racket we have numbers as primitives
and we want to use Racket to implement our languages. This makes life a
lot easier, and we get free stuff like floats, rationals etc.

To use a BNF formally, for example, to prove that 1-2+3 is a valid
<AE> expression, we first label the rules:

<AE> ::= <num> (1) | <AE> + <AE> (2) | <AE> - <AE> (3)

and then we can use them as formal justifications for each derivation
step:

<AE><AE> + <AE> ; (2)<AE> + <num> ; (1)<AE> - <AE> + <num> ; (3)<AE> - <AE> + 3 ; (num)<num> - <AE> + 3 ; (1)<num> - <num> + 3 ; (1)1 - <num> + 3 ; (num)1 - 2 + 3 ; (num)

This would be one way of doing this. Alternatively, we can can
visualize the derivation using a tree, with the rules used at the nodes.

These specifications suffer from being ambiguous: an expression can be
derived in multiple ways. Even the little syntax for a number is
ambiguous — a number like 123 can be derived in two ways that result
in trees that look different. This ambiguity is not a “real” problem
now, but it will become one very soon. We want to get rid of this
ambiguity, so that there is a single (= deterministic) way to derive all
expressions.

There is a standard way to resolve that — we add another non-terminal
to the definition, and make it so that each rule can continue to exactly
one of its alternatives. For example, this is what we can do with
numbers:

<NUM> ::= <DIGIT> | <DIGIT> <NUM><DIGIT> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Similar solutions can be applied to the <AE> BNF — we either
restrict the way derivations can happen or we come up with new
non-terminals to force a deterministic derivation trees.

As an example of restricting derivations, we look at the current
grammar:

<AE> ::= <num> | <AE> + <AE> | <AE> - <AE>

and instead of allowing an <AE> on both sides of the operation, we
force one to be a number:

<AE> ::= <num> | <num> + <AE> | <num> - <AE>

Now there is a single way to derive any expression, and it is always
associating operations to the right: an expression like 1+2+3 can only
be derived as 1+(2+3). To change this to left-association, we would
use this:

<AE> ::= <num> | <AE> + <num> | <AE> - <num>

But what if we want to force precedence? Say that our AE syntax has
addition and multiplication:

<AE> ::= <num> | <AE> + <AE> | <AE> * <AE>

We can do that same thing as above and add new non-terminals — say one
for “factors”:

<AE> ::= <num> | <AE> + <AE> | <PROD><PROD> ::= <num> | <PROD> * <PROD>

Now we must parse any AE expression as additions of multiplications (or
numbers). First, note that if <AE> goes to <PROD> and that goes to
<num>, then there is no need for an <AE> to go to a <num>, so this
is the same syntax:

<AE> ::= <AE> + <AE> | <PROD><PROD> ::= <num> | <PROD> * <PROD>

Now, if we want to still be able to multiply additions, we can force
them to appear in parentheses:

<AE> ::= <AE> + <AE> | <PROD><PROD> ::= <num> | <PROD> * <PROD> | (<AE>)

Next, note that <AE> is still ambiguous about additions, which can be
fixed by forcing the left hand side of an addition to be a factor:

<AE> ::= <PROD> + <AE> | <PROD><PROD> ::= <num> | <PROD> * <PROD> | (<AE>)

We still have an ambiguity for multiplications, so we do the same thing
and add another non-terminal for “atoms”:

<AE> ::= <PROD> + <AE> | <PROD><PROD> ::= <ATOM> * <PROD> | <ATOM><ATOM> ::= <num> | (<AE>)

And you can try to derive several expressions to be convinced that
derivation is always deterministic now.

But as you can see, this is exactly the cosmetics that we want to avoid
— it will lead us to things that might be interesting, but unrelated
to the principles behind programming languages. It will also become
much much worse when we have a real language rather such a tiny one.

Is there a good solution? — It is right in our face: do what Racket
does — always use fully parenthesized expressions:

<AE> ::= <num> | (<AE> + <AE>) | (<AE> - <AE>)

To prevent confusing Racket code with code in our language(s), we also
change the parentheses to curly ones:

<AE> ::= <num> | { <AE> + <AE> } | { <AE> - <AE> }

But in Racket everything has a value — including those +s and
-s, which makes this extremely convenient with future operations that
might have either more or less arguments than 2 as well as treating
these arithmetic operators as plain functions. In our toy language we
will not do this initially (that is, + and - are second order
operators: they cannot be used as values). But since we will get to it
later, we’ll adopt the Racket solution and use a fully-parenthesized
prefix notation:

<AE> ::= <num> | { + <AE> <AE> } | { - <AE> <AE> }

(Remember that in a sense, Racket code is written in a form of
already-parsed syntax…)

Simple ParsingTuesday, January 17th

On to an implementation of a “parser”:

Unrelated to what the syntax actually looks like, we want to parse it as
soon as possible — converting the concrete syntax to an abstract
syntax tree.

No matter how we write our syntax:

	3+4 (infix),

	3 4 + (postfix),

	+(3,4) (prefix with args in parens),

	(+ 3 4) (parenthesized prefix),

we always mean the same abstract thing — adding the number 3 and the
number 4. The essence of this is basically a tree structure with an
addition operation as the root and two leaves holding the two numerals.

With the right data definition, we can describe this in Racket as the
expression (Add (Num 3) (Num 4)) where Add and Num are
constructors of a tree type for syntax, or in a C-like language, it
could be something like Add(Num(3),Num(4)).

Similarly, the expression (3-4)+7 will be described in Racket as the
expression:

(Add (Sub (Num 3) (Num 4)) (Num 7))

Important note: “expression” was used in two different ways in the
above — each way corresponds to a different language, and the result
of evaluating the second “expression” is a Racket value that
represents the first expression.

To define the data type and the necessary constructors we will use this:

(define-type AE [Num Number] [Add AE AE] [Sub AE AE])

	
Note — Racket follows the tradition of Lisp which makes syntax
issues almost negligible — the language we use is almost as if we
are using the parse tree directly. Actually, it is a very simple
syntax for parse trees, one that makes parsing extremely easy.

[This has an interesting historical reason… Some Lisp history —
M-expressions vs. S-expressions, and the fact that we write code
that is isomorphic to an AST. Later we will see some of the
advantages that we get by doing this. See also “The Evolution of
Lisp”, section 3.5.1 (especially the last sentence).]

To make things very simple, we will use the above fact through a
double-level approach:

	
we first “parse” our language into an intermediate representation —
a Racket list — this is mostly done by a modified version of
Racket’s read function that uses curly {} braces instead of round
() parens,

	
then we write our own parse function that will parse the resulting
list into an instance of the AE type — an abstract syntax tree
(AST).

This is achieved by the following simple recursive function:

(: parse-sexpr : Sexpr -> AE);; parses s-expressions into AEs(define (parse-sexpr sexpr) (cond [(number? sexpr) (Num sexpr)] [(and (list? sexpr) (= 3 (length sexpr))) (let ([make-node (match (first sexpr) ['+ Add] ['- Sub] [else (error 'parse-sexpr "unknown op: ~s" (first sexpr))]) #| the above is the same as: (cond [(equal? '+ (first sexpr)) Add] [(equal? '- (first sexpr)) Sub] [else (error 'parse-sexpr "unknown op: ~s" (first sexpr))]) |#]) (make-node (parse-sexpr (second sexpr)) (parse-sexpr (third sexpr))))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))

This function is pretty simple, but as our languages grow, they will
become more verbose and more difficult to write. So, instead, we use a
new special form: match, which is matching a value and binds new
identifiers to different parts (try it with “Check Syntax”). Re-writing
the above code using match:

(: parse-sexpr : Sexpr -> AE);; parses s-expressions into AEs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(list '+ left right) (Add (parse-sexpr left) (parse-sexpr right))] [(list '- left right) (Sub (parse-sexpr left) (parse-sexpr right))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))

And finally, to make it more uniform, we will combine this with the
function that parses a string into a sexpr so we can use strings to
represent our programs:

(: parse : String -> AE);; parses a string containing an AE expression to an AE(define (parse str) (parse-sexpr (string->sexpr str)))

The match FormTuesday, January 17th

The syntax for match is

(match value [pattern result-expr] ...)

The value is matched against each pattern, possibly binding names in the
process, and if a pattern matches it evaluates the result expression.
The simplest form of a pattern is simply an identifier — it always
matches and binds that identifier to the value:

(match (list 1 2 3) [x x]) ; evaluates to the list

Another simple pattern is a quoted symbol, which matches that symbol.
For example:

(match foo ['x "yes"] [else "no"])

will evaluate to "yes" if foo is the symbol x, and to "no"
otherwise. Note that else is not a keyword here — it happens to be
a pattern that always succeeds, so it behaves like an else clause except
that it binds else to the unmatched-so-far value.

Many patterns look like function application — but don’t confuse them
with applications. A (list x y z) pattern matches a list of exactly
three items and binds the three identifiers; or if the “arguments” are
themselves patterns, match will descend into the values and match them
too. More specifically, this means that patterns can be nested:

(match (list 1 2 3) [(list x y z) (+ x y z)]) ; evaluates to 6(match '((1) (2) 3) [(list (list x) (list y) z) (+ x y z)]) ; also 6

There is also a cons pattern that matches a non-empty list and then
matches the first part against the head for the list and the second part
against the tail of the list.

In a list pattern, you can use ... to specify that the previous
pattern is repeated zero or more times, and bound names get bound to the
list of respective matching. One simple consequent is that the
(list hd tl ...) pattern is exactly the same as (cons hd tl), but
being able to repeat an arbitrary pattern is very useful:

(match '((1 2) (3 4) (5 6) (7 8)) [(list (list x y) ...) (append x y)]); evaluates to (1 3 5 7 2 4 6 8)

A few more useful patterns:

id -- matches anything, binds `id' to it_ -- matches anything, but does not bind(number: n) -- matches any number and binds it to `n'(symbol: s) -- same for symbols(string: s) -- strings(sexpr: s) -- S-expressions (needed sometimes for Typed Racket)(and pat1 pat2) -- matches both patterns(or pat1 pat2) -- matches either pattern (careful with bindings)

The patterns are tried one by one in-order, and if no pattern matches
the value, an error is raised.

Note that ... in a list pattern can follow any pattern, including
all of the above, and including nested list patterns.

Here are a few examples — you can try them out with #lang pl untyped
at the top of the definitions window. This:

(match x [(list (symbol: syms) ...) syms])

matches x against a pattern that accepts only a list of symbols, and
binds syms to those symbols. And here’s an example that matches a
list of any number of lists, where each of the sub-lists begins with a
symbol and then has any number of numbers. Note how the n and s
bindings get values for a list of all symbols and a list of lists of the
numbers:

> (define (foo x) (match x [(list (list (symbol: s) (number: n) ...) ...) (list 'symbols: s 'numbers: n)]))> (foo (list (list 'x 1 2 3) (list 'y 4 5)))'(symbols: (x y) numbers: ((1 2 3) (4 5)))

Here is a quick example for how or is used with two literal
alternatives, how and is used to name a specific piece of data, and
how or is used with a binding:

> (define (foo x) (match x [(list (or 1 2 3)) 'single] [(list (and x (list 1 _)) 2) x] [(or (list 1 x) (list 2 x)) x]))> (foo (list 3))'single> (foo (list (list 1 99) 2))'(1 99)> (foo (list 1 10))10> (foo (list 2 10))10

Semantics (= Evaluation)Tuesday, January 17th

PLAI §2

Back to BNF — now, meaning.

An important feature of these BNF specifications: we can use the
derivations to specify meaning (and meaning in our context is
“running” a program (or “interpreting”, “compiling”, but we will use
“evaluating”)). For example:

<AE> ::= <num> ; <AE> evaluates to the number | <AE1> + <AE2> ; <AE> evaluates to the sum of evaluating ; <AE1> and <AE2> | <AE1> - <AE2> ; ... the subtraction of <AE2> from <AE1> (... roughly!)

To do this a little more formally:

a. eval(<num>) = <num> ;*** special rule: translate syntax to valueb. eval(<AE1> + <AE2>) = eval(<AE1>) + eval(<AE2>)c. eval(<AE1> - <AE2>) = eval(<AE1>) - eval(<AE2>)

Note the completely different roles of the two +s and -s. In fact,
it might have been more correct to write:

a. eval("<num>") = <num>b. eval("<AE1> + <AE2>") = eval("<AE1>") + eval("<AE2>")c. eval("<AE1> - <AE2>") = eval("<AE1>") - eval("<AE2>")

or even using a marker to denote meta-holes in these strings:

a. eval("$<num>") = <num>b. eval("$<AE1> + $<AE2>") = eval("$<AE1>") + eval("$<AE2>")c. eval("$<AE1> - $<AE2>") = eval("$<AE1>") - eval("$<AE2>")

but we will avoid pretending that we’re doing that kind of string
manipulation. (For example, it will require specifying what does it
mean to return <num> for $<num> (involves string->number), and the
fragments on the right side mean that we need to specify these as
substring operations.)

Note that there’s a similar kind of informality in our BNF
specifications, where we assume that <foo> refers to some terminal or
non-terminal. In texts that require more formal specifications (for
example, in RFC specifications), each literal part of the BNF is usually
double-quoted, so we’d get

<AE> ::= <num> | <AE1> "+" <AE2> | <AE1> "-" <AE2>

An alternative popular notation for eval(X) is [[X]]:

a. [[<num>]] = <num>b. [[<AE1> + <AE2>]] = [[<AE1>]] + [[<AE2>]]c. [[<AE1> - <AE2>]] = [[<AE1>]] - [[<AE2>]]

Is there a problem with this definition? Ambiguity:

eval(1 - 2 + 3) = ?

Depending on the way the expression is parsed, we can get either a
result of 2 or -4:

eval(1 - 2 + 3) = eval(1 - 2) + eval(3) [b] = eval(1) - eval(2) + eval(3) [c] = 1 - 2 + 3 [a,a,a] = 2eval(1 - 2 + 3) = eval(1) - eval(2 + 3) [c] = eval(1) - (eval(2) + eval(3)) [a] = 1 - (2 + 3) [a,a,a] = -4

Again, be very aware of confusing subtleties which are extremely
important: We need parens around a sub-expression only in one side, why?
— When we write:

eval(1 - 2 + 3) = ... = 1 - 2 + 3

we have two expressions, but one stands for an input syntax, and one
stands for a real mathematical expression.

In a case of a computer implementation, the syntax on the left is (as
always) an AE syntax, and the real expression on the right is an
expression in whatever language we use to implement our AE language.

Like we said earlier, ambiguity is not a real problem until the actual
parse tree matters. With eval it definitely matters, so we must not
make it possible to derive any syntax in multiple ways or our evaluation
will be non-deterministic.

Quick exercise:

We can define a meaning for <digit>s and then <num>s in a similar
way:

<NUM> ::= <digit> | <digit> <NUM>eval(0) = 0eval(1) = 1eval(2) = 2...eval(9) = 9eval(<digit>) = <digit>eval(<digit> <NUM>) = 10*eval(<digit>) + eval(<NUM>)

Is this exactly what we want? — Depends on what we actually want…

	
First, there’s a bug in this code — having a BNF derivation like

<NUM> ::= <digit> | <digit> <NUM>

is unambiguous, but makes it hard to parse a number. We get:

 eval(123) = 10*eval(1) + eval(23) = 10*1 + 10*eval(2) + eval(3) = 10*1 + 10*2 + 3 = 33

Changing the order of the last rule works much better:

<NUM> ::= <digit> | <NUM> <digit>

and then:

eval(<NUM> <digit>) = 10*eval(<NUM>) + eval(<digit>)

	
As a concrete example see how you would make it work with 107, which
demonstrates why compositionality is important.

	
Example for free stuff that looks trivial: if we were to define the
meaning of numbers this way, would it always work? Think an average
language that does not give you bignums, making the above rules fail
when the numbers are too big. In Racket, we happen to be using an
integer representation for the syntax of integers, and both are
unlimited. But what if we wanted to write a Racket compiler in C or a
C compiler in Racket? What about a C compiler in C, where the
compiler runs on a 64 bit machine, and the result needs to run on a 32
bit machine?

Side-note: CompositionalityTuesday, January 17th

The example of

<NUM> ::= <digit> | <NUM> <digit>

being a language that is easier to to write an evaluator for leads us to
an important concept — compositionality. This definition is easier to
write an evaluator for, since the resulting language is compositional:
the meaning of an expression — for example 123 — is composed out
of the meaning of its two parts, which in this BNF are 12 and 3.
Specifically, the evaluation of <NUM> <digit> is 10 * the evaluation
of the first, plus the evaluation of the second. In the <digit> <NUM>
case this is more difficult — the meaning of such a number depends not
only on the meaning of the two parts, but also on the <NUM>
syntax:

eval(<digit> <NUM>) = eval(<digit>) * 10^length(<NUM>) + eval(<NUM>)

This this case this can be tolerable, since the meaning of the
expression is still made out of its parts — but imperative programming
(when you use side effects) is much more problematic since it is not
compositional (at least not in the obvious sense). This is compared to
functional programming, where the meaning of an expression is a
combination of the meanings of its subexpressions. For example, every
sub-expression in a functional program has some known meaning, and these
all make up the meaning of the expression that contains them — but in
an imperative program we can have a part of the code be x++ — and
that doesn’t have a meaning by itself, at least not one that contributes
to the meaning of the whole program in a direct way.

(Actually, we can have a well-defined meaning for such an expression:
the meaning is going from a world where x is a container of some value
N, to a world where the same container has a different value N+1. You
can probably see now how this can make things more complicated. On an
intuitive level — if we look at a random part of a functional program
we can tell its meaning, so building up the meaning of the whole code is
easy, but in an imperative program, the meaning of a random part is
pretty much useless.)

Implementing an EvaluatorTuesday, January 17th

Now continue to implement the semantics of our syntax — we express
that through an eval function that evaluates an expression.

We use a basic programming principle — splitting the code into two
layers, one for parsing the input, and one for doing the evaluation.
Doing this avoids the mess we’d get into otherwise, for example:

(define (eval sexpr) (match sexpr [(number: n) n] [(list '+ left right) (+ (eval left) (eval right))] [(list '- left right) (- (eval left) (eval right))] [else (error 'eval "bad syntax in ~s" sexpr)]))

This is messy because it combines two very different things — syntax
and semantics — into a single lump of code. For this particular kind
of evaluator it looks simple enough, but this is only because it’s
simple enough that all we do is replace constructors by arithmetic
operations. Later on things will get more complex, and bundling the
evaluator with the parser will be more problematic. (Note: the fact
that we can replace constructors with the run-time operators mean that
we have a very simple, calculator-like language, and that we can, in
fact, “compile” all programs down to a number.)

If we split the code, we can easily include decisions like making

{+ 1 {- 3 "a"}}

syntactically invalid. (Which is not, BTW, what Racket does…) (Also,
this is like the distinction between XML syntax and well-formed XML
syntax.)

An additional advantage is that by using two separate components, it is
simple to replace each one, making it possible to change the input
syntax, and the semantics independently — we only need to keep the
same interface data (the AST) and things will work fine.

Our parse function converts an input syntax to an abstract syntax tree
(AST). It is abstract exactly because it is independent of any actual
concrete syntax that you type in, print out etc.

Implementing The AE LanguageTuesday, January 17th

Back to our eval — this will be its (obvious) type:

(: eval : AE -> Number);; consumes an AE and computes the corresponding number

which leads to some obvious test cases:

(equal? 3 (eval (parse "3")))(equal? 7 (eval (parse "{+ 3 4}")))(equal? 6 (eval (parse "{+ {- 3 4} 7}")))

which from now on we will write using the new test form that the
#lang pl language provides:

(test (eval (parse "3")) => 3)(test (eval (parse "{+ 3 4}")) => 7)(test (eval (parse "{+ {- 3 4} 7}")) => 6)

Note that we’re testing only at the interface level — only running
whole functions. For example, you could think about a test like:

(test (parse "{+ {- 3 4} 7}") => (Add (Sub (Num 3) (Num 4)) (Num 7)))

but the details of parsing and of the constructor names are things that
nobody outside of our evaluator cares about — so we’re not testing
them. In fact, we shouldn’t even mention parse in these tests, since
it is not part of the public interface of our users; they only care
about using it as a compiler-like black box. (This is sometimes called
“integration tests”.) We’ll address this shortly.

Like everything else, the structure of the recursive eval code follows
the recursive structure of its input. In HtDP terms, our template is:

(: eval : AE -> Number)(define (eval expr) (cases expr [(Num n) ... n ...] [(Add l r) ... (eval l) ... (eval r) ...] [(Sub l r) ... (eval l) ... (eval r) ...]))

In this case, filling in the gaps is very simple

(: eval : AE -> Number)(define (eval expr) (cases expr [(Num n) n] [(Add l r) (+ (eval l) (eval r))] [(Sub l r) (- (eval l) (eval r))]))

We now further combine eval and parse into a single run function
that evaluates an AE string.

(: run : String -> Number);; evaluate an AE program contained in a string(define (run str) (eval (parse str)))

This function becomes the single public entry point into our code, and
the only thing that should be used in tests that verify our interface:

(test (run "3") => 3)(test (run "{+ 3 4}") => 7)(test (run "{+ {- 3 4} 7}") => 6)

The resulting full code is:

[bookmark: ae.rkt]▶#lang pl#| BNF for the AE language: <AE> ::= <num> | { + <AE> <AE> } | { - <AE> <AE> } | { * <AE> <AE> } | { / <AE> <AE> }|#;; AE abstract syntax trees(define-type AE [Num Number] [Add AE AE] [Sub AE AE] [Mul AE AE] [Div AE AE])(: parse-sexpr : Sexpr -> AE);; parses s-expressions into AEs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(list '+ lhs rhs) (Add (parse-sexpr lhs) (parse-sexpr rhs))] [(list '- lhs rhs) (Sub (parse-sexpr lhs) (parse-sexpr rhs))] [(list '* lhs rhs) (Mul (parse-sexpr lhs) (parse-sexpr rhs))] [(list '/ lhs rhs) (Div (parse-sexpr lhs) (parse-sexpr rhs))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))(: parse : String -> AE);; parses a string containing an AE expression to an AE AST(define (parse str) (parse-sexpr (string->sexpr str)))(: eval : AE -> Number);; consumes an AE and computes the corresponding number(define (eval expr) (cases expr [(Num n) n] [(Add l r) (+ (eval l) (eval r))] [(Sub l r) (- (eval l) (eval r))] [(Mul l r) (* (eval l) (eval r))] [(Div l r) (/ (eval l) (eval r))]))(: run : String -> Number);; evaluate an AE program contained in a string(define (run str) (eval (parse str)));; tests(test (run "3") => 3)(test (run "{+ 3 4}") => 7)(test (run "{+ {- 3 4} 7}") => 6)

(Note that the tests are done with a test form, which we mentioned
above.)

For anyone who thinks that Racket is a bad choice, this is a good point
to think how much code would be needed in some other language to do the
same as above.

Intro to Typed RacketTuesday, January 17th

The plan:

	
Why Types?

	
Why Typed Racket?

	
What’s Different about Typed Racket?

	
Some Examples of Typed Racket for Course Programs

Types

	
Who has used a (statically) typed language?

	
Who has used a typed language that’s not Java?

Typed Racket will be both similar to and very different from anything
you’ve seen before.

Why types?

	
Types help structure programs.

	
Types provide enforced and mandatory documentation.

	
Types help catch errors.

–> They will help you. A lot.

Structuring programs

	
Data definitions

;; An AE is one of: ; \;; (make-Num Number) ; > HtDP;; (make-Add AE AE) ; /(define-type AE ; \ [Num number?] ; > Predicates =~= contracts (PLAI) [Add AE? AE?]) ; / (has names of defined types too)(define-type AE ; \ [Num Number] ; > Typed Racket (our PL) [Add AE AE]) ; /

	
Data-first

The structure of your program is derived from the structure of your
data.

You have seen this in Fundamentals with the design recipe and with
templates. In this class, we will see it extensively with type
definitions and the (cases …) form. Types make this pervasive —
we have to think about our data before our code.

	
A language for describing data

Instead of having an informal language for describing types in
contract lines, and a more formal description of predicates in a
define-type form, we will have a single, unified language for both
of these. Having such a language means that we get to be more precise
and more expressive (since the typed language covers cases that you
would otherwise dismiss with some hand waving, like “a function”).

Why Typed Racket?

Racket is the language we all know, and it has the benefits that we
discussed earlier. Mainly, it is an excellent language for
experimenting with programming languages.

	
Typed Racket allows us to take our Racket programs and typecheck them,
so we get the benefits of a statically typed language.

	
Types are an important programming language feature; Typed Racket will
help us understand them.

[Also: the development of Typed Racket is happening here in
Northeastern, and will benefit from your feedback.]

How is Typed Racket different from Racket

	
Typed Racket will reject your program if there are type errors!
This means that it does that at compile-time, before any code gets
to run.

	
Typed Racket files start like this:

#lang typed/racket;; Program goes here.

but we will use a variant of the Typed Racket language, which has a
few additional constructs:

#lang pl;; Program goes here.

	
Typed Racket requires you to write the contracts on your functions.

Racket:

;; f : Number -> Number(define (f x) (* x (+ x 1)))

Typed Racket:

#lang pl(: f : Number -> Number)(define (f x) (* x (+ x 1)))

[In the real Typed Racket you can also have the type annotations
appear inside the definition:

#lang typed/racket(define (f [x : Number]) : Number (* x (+ x 1)))

but we will not use this form.]

	
As we’ve seen, Typed Racket uses types, not predicates, in
define-type.

(define-type AE [Num Number] [Add AE AE])

versus

(define-type AE [Num number?] [Add AE? AE?])

	
There are other differences, but these will suffice for now.

Examples

(: digit-num : Number -> (U Number String))(define (digit-num n) (cond [(<= n 9) 1] [(<= n 99) 2] [(<= n 999) 3] [(<= n 9999) 4] [else "a lot"]))(: fact : Number -> Number)(define (fact n) (if (zero? n) 1 (* n (fact (- n 1)))))(: helper : Number Number -> Number)(define (helper n acc) (if (zero? n) acc (helper (- n 1) (* acc n))))(: fact : Number -> Number)(define (fact n) (helper n 1))(: fact : Number -> Number)(define (fact n) (: helper : Number Number -> Number) (define (helper n acc) (if (zero? n) acc (helper (- n 1) (* acc n)))) (helper n 1))(: every? : (All (A) (A -> Boolean) (Listof A) -> Boolean));; Returns false if any element of lst fails the given pred,;; true if all pass pred.(define (every? pred lst) (or (null? lst) (and (pred (first lst)) (every? pred (rest lst)))))(define-type AE [Num Number] [Add AE AE] [Sub AE AE]);; the only difference in the following definition is;; using (: <name> : <type>) instead of ";; <name> : <type>"(: parse-sexpr : Sexpr -> AE);; parses s-expressions into AEs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(list '+ left right) (Add (parse-sexpr left) (parse-sexpr right))] [(list '- left right) (Sub (parse-sexpr left) (parse-sexpr right))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))

More interesting examples

	
Typed Racket is designed to be a language that is friendly to the kind
of programs that people write in Racket. For example, it has unions:

(: foo : (U String Number) -> Number)(define (foo x) (if (string? x) (string-length x) ;; at this point it knows that `x' is not a ;; string, therefore it must be a number (+ 1 x)))

This is not common in statically typed languages, which are usually
limited to only disjoint unions. For example, in OCaml you’d write
this definition:

type string_or_number = Str of string | Int of int ;;let foo x = match x with Str s -> String.length s | Int i -> i+1 ;;

And use it with an explicit constructor:

foo (Str "bar") ;;foo (Int 3) ;;

	
Note that in the Typed Racket case, the language keeps track of
information that is gathered via predicates — which is why it knows
that one x is a String, and the other is a Number.

	
Typed Racket has a concept of subtypes — which is also something
that most statically typed languages lack. In fact, the fact that it
has (arbitrary) unions means that it must have subtypes too, since a
type is always a subtype of a union that contains this type.

	
Another result of this feature is that there is an Any type that is
the union of all other types. Note that you can always use this type
since everything is in it — but it gives you the least information
about a value. In other words, Typed Racket gives you a choice: you
decide which type to use, one that is very restricted but has a lot of
information about its values to a type that is very permissive but has
almost no useful information. This is in contrast to other type
system (HM systems) where there is always exactly one correct type.

To demonstrate, consider the identity function:

(define (id x) x)

You could use a type of (: id : Integer -> Integer) which is very
restricted, but you know that the function always returns an integer
value.

Or you can make it very permissive with a (: id : Any -> Any), but
then you know nothing about the result — in fact, (+ 1 (id 2))
will throw a type error. It does return 2, as expected, but the
type checker doesn’t know the type of that 2. If you wanted to use
this type, you’d need to check that the result is a number, eg:

(let ([x (id 123)]) (if (number? x) (+ x 10) 999))

This means that for this particular function there is no good specific
type that we can choose — but we can still create a polymorphic
type:

(: id : (All (A) A -> A))

which allows any input type, and its output would be the same,
preserving the same level of information that you had on its input.

	
Another interesting thing to look at is the type of error: it’s a
function that returns a type of Nothing — a type that is the same
as an empty union: (U). It’s a type that has no values in it —
it fits error because it is a function that doesn’t return any
value, in fact, it doesn’t return at all. In addition, it means that
an error expression can be used anywhere you want because it is a
subtype of anything at all.

	
An else clause in a cond expression is almost always needed, for
example:

(: digit-num : Number -> (U Number String))(define (digit-num n) (cond [(<= n 9) 1] [(<= n 99) 2] [(<= n 999) 3] [(<= n 9999) 4] [(> n 9999) "a lot"]))

(and if you think that the type checker should know what this is
doing, then how about

(> (* n 10) (/ (* (- 10000 1) 20) 2))

or

(>= n 10000)

for the last test?)

	
In some rare cases you will run into one limitation of Typed Racket:
it is difficult (that is: a generic solution is not known at the
moment) to do the right inference when polymorphic functions are
passed around to higher-order functions. For example:

(: call : (All (A B) (A -> B) A -> B))(define (call f x) (f x))(call rest (list 4))

In such cases, we can use inst to instantiate a function with a
polymorphic type to a given type — in this case, we can use it to
make it treat rest as a function that is specific for numeric lists:

(call (inst rest Number) (list 4))

In other rare cases, Typed Racket will infer a type that is not
suitable for us — there is another form, ann, that allows us to
specify a certain type. Using this in the call example is more
verbose:

(call (ann rest : ((Listof Number) -> (Listof Number))) (list 4))

However, these are going to be rare and will be mentioned explicitly
whenever they’re needed.

Bindings & SubstitutionTuesday, January 24th

We now get to an important concept: substitution.

Even in our simple language, we encounter repeated expressions. For
example, if we want to compute the square of some expression:

{* {+ 4 2} {+ 4 2}}

Why would we want to get rid of the repeated sub-expression?

	
It introduces a redundant computation. In this example, we want to
avoid computing the same sub-expression a second time.

	
It makes the computation more complicated than it could be without the
repetition. Compare the above with:

with x = {+ 4 2}, {* x x}

	
This is related to a basic fact in programming that we have already
discussed: duplicating information is always a bad thing. Among other
bad consequences, it can even lead to bugs that could not happen if we
wouldn’t duplicate code. A toy example is “fixing” one of the numbers
in one expression and forgetting to fix the corresponding one:

{* {+ 4 2} {+ 4 1}}

Real world examples involve much more code, which make such bugs very
difficult to find, but they still follow the same principle.

	
This gives us more expressive power — we don’t just say that we want
to multiply two expressions that both happen to be {+ 4 2}, we say
that we multiply the {+ 4 2} expression by itself. It allows us
to express identity of two values as well as using two values that
happen to be the same.

So, the normal way to avoid redundancy is to introduce an identifier.
Even when we speak, we might say: “let x be 4 plus 2, multiply x by x”.

(These are often called “variables”, but we will try to avoid this name:
what if the identifier does not change (vary)?)

To get this, we introduce a new form into our language:

{with {x {+ 4 2}} {* x x}}

We expect to be able to reduce this to:

{* 6 6}

by substituting 6 for x in the body sub-expression of with.

A little more complicated example:

{with {x {+ 4 2}} {with {y {* x x}} {+ y y}}}[add] = {with {x 6} {with {y {* x x}} {+ y y}}}[subst]= {with {y {* 6 6}} {+ y y}}[mul] = {with {y 36} {+ y y}}[subst]= {+ 36 36}[add] = 72

WAE: Adding Bindings to AETuesday, January 24th

PLAI §3

To add this to our language, we start with the BNF. We now call our
language “WAE” (With+AE):

<WAE> ::= <num> | { + <WAE> <WAE> } | { - <WAE> <WAE> } | { * <WAE> <WAE> } | { / <WAE> <WAE> } | { with { <id> <WAE> } <WAE> } | <id>

Note that we had to introduce two new rules: one for introducing an
identifier, and one for using it. This is common in many language
specifications, for example define-type introduces a new type, and it
comes with cases that allows us to destruct its instances.

For <id> we need to use some form of identifiers, the natural choice
in Racket is to use symbols. We can therefore write the corresponding
type definition:

(define-type WAE [Num Number] [Add WAE WAE] [Sub WAE WAE] [Mul WAE WAE] [Div WAE WAE] [Id Symbol] [With Symbol WAE WAE])

The parser is easily extended to produce these syntax objects:

(: parse-sexpr : Sexpr -> WAE);; parses s-expressions into WAEs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(symbol: name) (Id name)] [(list 'with (list (symbol: name) named) body) (With name (parse-sexpr named) (parse-sexpr body))] [(list '+ lhs rhs) (Add (parse-sexpr lhs) (parse-sexpr rhs))] [(list '- lhs rhs) (Sub (parse-sexpr lhs) (parse-sexpr rhs))] [(list '* lhs rhs) (Mul (parse-sexpr lhs) (parse-sexpr rhs))] [(list '/ lhs rhs) (Div (parse-sexpr lhs) (parse-sexpr rhs))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))

But note that this parser is inconvenient — if any of these
expressions:

{* 1 2 3}{foo 5 6}{with x 5 {* x 8}}{with {5 x} {* x 8}}

would result in a “bad syntax” error, which is not very helpful. To
make things better, we can add another case for with expressions that
are malformed, and give a more specific message in that case:

(: parse-sexpr : Sexpr -> WAE);; parses s-expressions into WAEs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(symbol: name) (Id name)] [(list 'with (list (symbol: name) named) body) (With name (parse-sexpr named) (parse-sexpr body))] [(cons 'with more) (error 'parse-sexpr "bad `with' syntax in ~s" sexpr)] [(list '+ lhs rhs) (Add (parse-sexpr lhs) (parse-sexpr rhs))] [(list '- lhs rhs) (Sub (parse-sexpr lhs) (parse-sexpr rhs))] [(list '* lhs rhs) (Mul (parse-sexpr lhs) (parse-sexpr rhs))] [(list '/ lhs rhs) (Div (parse-sexpr lhs) (parse-sexpr rhs))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))

and finally, to group all of the parsing code that deals with with
expressions (both valid and invalid ones), we can use a single case for
both of them:

(: parse-sexpr : Sexpr -> WAE);; parses s-expressions into WAEs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(symbol: name) (Id name)] [(cons 'with more) ;; go in here for all sexpr that begin with a 'with (match sexpr [(list 'with (list (symbol: name) named) body) (With name (parse-sexpr named) (parse-sexpr body))] [else (error 'parse-sexpr "bad `with' syntax in ~s" sexpr)])] [(list '+ lhs rhs) (Add (parse-sexpr lhs) (parse-sexpr rhs))] [(list '- lhs rhs) (Sub (parse-sexpr lhs) (parse-sexpr rhs))] [(list '* lhs rhs) (Mul (parse-sexpr lhs) (parse-sexpr rhs))] [(list '/ lhs rhs) (Div (parse-sexpr lhs) (parse-sexpr rhs))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))

And now we’re done with the syntactic part of the with extension.

Quick note — why would we indent With like a normal function in
code like this

(With 'x (Num 2) (Add (Id 'x) (Num 4)))

instead of an indentation that looks like a let

(With 'x (Num 2) (Add (Id 'x) (Num 4)))

?

The reason for this is that the second indentation looks like a
binding construct (eg, the indentation used in a let expression),
but With is not a binding form — it’s a plain function because
it’s at the Racket level. You should therefore keep in mind the huge
difference between that With and the with that appears in WAE
programs:

{with {x 2} {+ x 4}}

Another way to look at it: imagine that we intend for the language to
be used by Spanish or Chinese speakers. In this case we would
translate “with”:

{con {x 2} {+ x 4}}{ha {x 2} {+ x 4}}

but we will not do the same for With if we (the language
implementors) are English speakers.

Evaluation of withTuesday, January 24th

Now, to make this work, we will need to do some substitutions.

We basically want to say that to evaluate:

{with {id WAE1} WAE2}

we need to evaluate WAE2 with id substituted by WAE1. Formally:

eval({with {id WAE1} WAE2}) = eval(subst(WAE2,id,WAE1))

There is a more common syntax for substitution (quick: what do I mean by
this use of “syntax”?):

eval({with {id WAE1} WAE2}) = eval(WAE2[WAE1/id])

Side-note: this syntax originates with logicians who used [x/v]e,
and later there was a convention that mimicked the more natural order
of arguments to a function with e[x->v], and eventually both of
these got combined into e[v/x] which is a little confusing in that
the left-to-right order of the arguments is not the same as for the
subst function.

Now all we need is an exact definition of substitution.

Note that substitution is not the same as evaluation, it’s only a part
of the evaluation process. In the previous examples, when we
evaluated the expression we did substitutions as well as the usual
arithmetic operations that were already part of the AE evaluator. In
this last definition there is still a missing evaluation step, see if
you can find it.

So let us try to define substitution now:

Substitution (take 1): e[v/i]

To substitute an identifier i in an expression e with an
expression v, replace all identifiers in e that have the same
name i by the expression v.

This seems to work with simple expressions, for example:

{with {x 5} {+ x x}} --> {+ 5 5}{with {x 5} {+ 10 4}} --> {+ 10 4}

however, we crash with an invalid syntax if we try:

{with {x 5} {+ x {with {x 3} 10}}} --> {+ 5 {with {5 3} 10}} ???

— we got to an invalid expression.

To fix this, we need to distinguish normal occurrences of identifiers,
and ones that are used as new bindings. We need a few new terms for
this:

	
Binding Instance: a binding instance of an identifier is one that is
used to name it in a new binding. In our <WAE> syntax, binding
instances are only the <id> position of the with form.

	
Scope: the scope of a binding instance is the region of program text
in which instances of the identifier refer to the value bound in the
binding instance. (Note that this definition actually relies on a
definition of substitution, because that is what is used to specify
how identifiers refer to values.)

	
Bound Instance (or Bound Occurrence): an instance of an identifier is
bound if it is contained within the scope of a binding instance of
its name.

	
Free Instance (or Free Occurrence): An identifier that is not
contained in any binding instance of its name is said to be free.

Using this we can say that the problem with the previous definition of
substitution is that it failed to distinguish between bound instances
(which should be substituted) and binding instances (which should not).
So we try to fix this:

Substitution (take 2): e[v/i]

To substitute an identifier i in an expression e with an
expression v, replace all instances of i that are not
themselves binding instances with the expression v.

First of all, check the previous examples:

{with {x 5} {+ x x}} --> {+ 5 5}{with {x 5} {+ 10 4}} --> {+ 10 4}

still work, and

{with {x 5} {+ x {with {x 3} 10}}} --> {+ 5 {with {x 3} 10}} --> {+ 5 10}

also works. However, if we try this:

{with {x 5} {+ x {with {x 3} x}}}

we get:

--> {+ 5 {with {x 3} 5}}--> {+ 5 5}--> 10

but we want that to be 8: the inner x should be bound by the closest
with that binds it.

The problem is that the new definition of substitution that we have
respects binding instances, but it fails to deal with their scope. In
the above example, we want the inner with to shadow the outer
with’s binding for x.

Substitution (take 3): e[v/i]

To substitute an identifier i in an expression e with an
expression v, replace all instances of i that are not
themselves binding instances, and that are not in any nested scope,
with the expression v.

This avoids bad substitution above, but it is now doing things too
carefully:

{with {x 5} {+ x {with {y 3} x}}}

becomes

--> {+ 5 {with {y 3} x}}--> {+ 5 x}

which is an error because x is unbound (and there is reasonable no
rule that we can specify to evaluate it).

The problem is that our substitution halts at every new scope, in this
case, it stopped at the new y scope, but it shouldn’t have because it
uses a different name. In fact, that last definition of substitution
cannot handle any nested scope.

Revise again:

Substitution (take 4): e[v/i]

To substitute an identifier i in an expression e with an
expression v, replace all instances of i that are not
themselves binding instances, and that are not in any nested scope
of i, with the expression v.

which, finally, is a good definition. This is just a little too
mechanical. Notice that we actually refer to all instances of i that
are not in a scope of a binding instance of i, which simply means all
free occurrences of i — free in e (why? — remember the
definition of “free”?):

Substitution (take 4b): e[v/i]

To substitute an identifier i in an expression e with an
expression v, replace all instances of i that are free in e
with the expression v.

Based on this we can finally write the code for it:

(: subst : WAE Symbol WAE -> WAE);; substitutes the second argument with the third argument in the;; first argument, as per the rules of substitution; the resulting;; expression contains no free instances of the second argument(define (subst expr from to) ; returns expr[to/from] (cases expr [(Num n) expr] [(Add l r) (Add (subst l from to) (subst r from to))] [(Sub l r) (Sub (subst l from to) (subst r from to))] [(Mul l r) (Mul (subst l from to) (subst r from to))] [(Div l r) (Div (subst l from to) (subst r from to))] [(Id name) (if (eq? name from) to expr)] [(With bound-id named-expr bound-body) (if (eq? bound-id from) expr ;*** don't go in! (With bound-id named-expr (subst bound-body from to)))]))

… and this is just the same as writing a formal “paper version” of the
substitution rule.

We still have bugs: but we’ll need some more work to get to them.

Before we find the bugs, we need to see when and how substitution is
used in the evaluation process.

To modify our evaluator, we will need rules to deal with the new syntax
pieces — with expressions and identifiers.

When we see an expression that looks like:

{with {x E1} E2}

we continue by evaluating E1 to get a value V1, we then substitute
the identifier x with the expression V1 in E2, and continue by
evaluating this new expression. In other words, we have the following
evaluation rule:

eval({with {x E1} E2}) = eval(E2[eval(E1)/x])

So we know what to do with with expressions. How about identifiers?
The main feature of subst, as said in the purpose statement, is that
it leaves no free instances of the substituted variable around. This
means that if the initial expression is valid (did not contain any free
variables), then when we go from

{with {x E1} E2}

to

E2[E1/x]

the result is an expression that has no free instances of x. So we
don’t need to handle identifiers in the evaluator — substitutions make
them all go away.

We can now extend the formal definition of AE to that of WAE:

eval(...) = ... same as the AE rules ...eval({with {x E1} E2}) = eval(E2[eval(E1)/x])eval(id) = error!

If you’re paying close attention, you might catch a potential problem in
this definition: we’re substituting eval(E1) for x in E2 — an
operation that requires a WAE expression, but eval(E1) is a number.
(Look at the type of the eval definition we had for AE, then look at
the above definition of subst.) This seems like being overly
pedantic, but we it will require some resolution when we get to the
code. The above rules are easily coded as follows:

(: eval : WAE -> Number);; evaluates WAE expressions by reducing them to numbers(define (eval expr) (cases expr [(Num n) n] [(Add l r) (+ (eval l) (eval r))] [(Sub l r) (- (eval l) (eval r))] [(Mul l r) (* (eval l) (eval r))] [(Div l r) (/ (eval l) (eval r))] [(With bound-id named-expr bound-body) (eval (subst bound-body bound-id (Num (eval named-expr))))] ;*** [(Id name) (error 'eval "free identifier: ~s" name)]))

Note the Num expression in the marked line: evaluating the named
expression gives us back a number — we need to convert this number
into a syntax to be able to use it with subst. The solution is to use
Num to convert the resulting number into a numeral (the syntax of a
number). It’s not an elegant solution, but it will do for now.

Finally, here are a few test cases. We use a new test special form
which is part of the course plugin. The way to use test is with two
expressions and an => arrow — DrRacket evaluates both, and nothing
will happen if the results are equal. If the results are different, you
will get a warning line, but evaluation will continue so you can try
additional tests. You can also use an =error> arrow to test an error
message — use it with some text from the expected error, ? stands
for any single character, and * is a sequence of zero or more
characters. (When you use test in your homework, the handin server
will abort when tests fail.) We expect these tests to succeed (make
sure that you understand why they should succeed).

;; tests(test (run "5") => 5)(test (run "{+ 5 5}") => 10)(test (run "{with {x {+ 5 5}} {+ x x}}") => 20)(test (run "{with {x 5} {+ x x}}") => 10)(test (run "{with {x {+ 5 5}} {with {y {- x 3}} {+ y y}}}") => 14)(test (run "{with {x 5} {with {y {- x 3}} {+ y y}}}") => 4)(test (run "{with {x 5} {+ x {with {x 3} 10}}}") => 15)(test (run "{with {x 5} {+ x {with {x 3} x}}}") => 8)(test (run "{with {x 5} {+ x {with {y 3} x}}}") => 10)(test (run "{with {x 5} {with {y x} y}}") => 5)(test (run "{with {x 5} {with {x x} x}}") => 5)(test (run "{with {x 1} y}") =error> "free identifier")

Putting this all together, we get the following code; trying to run this
code will raise an unexpected error…

#lang pl#| BNF for the WAE language: <WAE> ::= <num> | { + <WAE> <WAE> } | { - <WAE> <WAE> } | { * <WAE> <WAE> } | { / <WAE> <WAE> } | { with { <id> <WAE> } <WAE> } | <id>|#;; WAE abstract syntax trees(define-type WAE [Num Number] [Add WAE WAE] [Sub WAE WAE] [Mul WAE WAE] [Div WAE WAE] [Id Symbol] [With Symbol WAE WAE])(: parse-sexpr : Sexpr -> WAE);; parses s-expressions into WAEs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(symbol: name) (Id name)] [(cons 'with more) (match sexpr [(list 'with (list (symbol: name) named) body) (With name (parse-sexpr named) (parse-sexpr body))] [else (error 'parse-sexpr "bad `with' syntax in ~s" sexpr)])] [(list '+ lhs rhs) (Add (parse-sexpr lhs) (parse-sexpr rhs))] [(list '- lhs rhs) (Sub (parse-sexpr lhs) (parse-sexpr rhs))] [(list '* lhs rhs) (Mul (parse-sexpr lhs) (parse-sexpr rhs))] [(list '/ lhs rhs) (Div (parse-sexpr lhs) (parse-sexpr rhs))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))(: parse : String -> WAE);; parses a string containing a WAE expression to a WAE AST(define (parse str) (parse-sexpr (string->sexpr str)))(: subst : WAE Symbol WAE -> WAE);; substitutes the second argument with the third argument in the;; first argument, as per the rules of substitution; the resulting;; expression contains no free instances of the second argument(define (subst expr from to) (cases expr [(Num n) expr] [(Add l r) (Add (subst l from to) (subst r from to))] [(Sub l r) (Sub (subst l from to) (subst r from to))] [(Mul l r) (Mul (subst l from to) (subst r from to))] [(Div l r) (Div (subst l from to) (subst r from to))] [(Id name) (if (eq? name from) to expr)] [(With bound-id named-expr bound-body) (if (eq? bound-id from) expr (With bound-id named-expr (subst bound-body from to)))]))(: eval : WAE -> Number);; evaluates WAE expressions by reducing them to numbers(define (eval expr) (cases expr [(Num n) n] [(Add l r) (+ (eval l) (eval r))] [(Sub l r) (- (eval l) (eval r))] [(Mul l r) (* (eval l) (eval r))] [(Div l r) (/ (eval l) (eval r))] [(With bound-id named-expr bound-body) (eval (subst bound-body bound-id (Num (eval named-expr))))] [(Id name) (error 'eval "free identifier: ~s" name)]))(: run : String -> Number);; evaluate a WAE program contained in a string(define (run str) (eval (parse str)));; tests(test (run "5") => 5)(test (run "{+ 5 5}") => 10)(test (run "{with {x {+ 5 5}} {+ x x}}") => 20)(test (run "{with {x 5} {+ x x}}") => 10)(test (run "{with {x {+ 5 5}} {with {y {- x 3}} {+ y y}}}") => 14)(test (run "{with {x 5} {with {y {- x 3}} {+ y y}}}") => 4)(test (run "{with {x 5} {+ x {with {x 3} 10}}}") => 15)(test (run "{with {x 5} {+ x {with {x 3} x}}}") => 8)(test (run "{with {x 5} {+ x {with {y 3} x}}}") => 10)(test (run "{with {x 5} {with {y x} y}}") => 5)(test (run "{with {x 5} {with {x x} x}}") => 5)(test (run "{with {x 1} y}") =error> "free identifier")

Oops, this program still has problems that were caught by the tests —
we encounter unexpected free identifier errors. What’s the problem now?
In expressions like:

{with {x 5} {with {y x} y}}

we forgot to substitute x in the expression that y is bound to. We
need to the recursive substitute in both the with’s body expression as
well as its named expression:

(: subst : WAE Symbol WAE -> WAE);; substitutes the second argument with the third argument in the;; first argument, as per the rules of substitution; the resulting;; expression contains no free instances of the second argument(define (subst expr from to) (cases expr [(Num n) expr] [(Add l r) (Add (subst l from to) (subst r from to))] [(Sub l r) (Sub (subst l from to) (subst r from to))] [(Mul l r) (Mul (subst l from to) (subst r from to))] [(Div l r) (Div (subst l from to) (subst r from to))] [(Id name) (if (eq? name from) to expr)] [(With bound-id named-expr bound-body) (if (eq? bound-id from) expr (With bound-id (subst named-expr from to) ;*** new (subst bound-body from to)))]))

And still we have a problem… Now it’s

{with {x 5} {with {x x} x}}

that halts with an error, but we want it to evaluate to 5! Carefully
trying out our substitution code reveals the problem: when we substitute
5 for the outer x, we don’t go inside the inner with because it
has the same name — but we do need to go into its named expression.
We need to substitute in the named expression even if the identifier is
the same one we’re substituting:

(: subst : WAE Symbol WAE -> WAE);; substitutes the second argument with the third argument in the;; first argument, as per the rules of substitution; the resulting;; expression contains no free instances of the second argument(define (subst expr from to) (cases expr [(Num n) expr] [(Add l r) (Add (subst l from to) (subst r from to))] [(Sub l r) (Sub (subst l from to) (subst r from to))] [(Mul l r) (Mul (subst l from to) (subst r from to))] [(Div l r) (Div (subst l from to) (subst r from to))] [(Id name) (if (eq? name from) to expr)] [(With bound-id named-expr bound-body) (With bound-id (subst named-expr from to) (if (eq? bound-id from) bound-body (subst bound-body from to)))]))

The complete (and, finally, correct) version of the code is now:

[bookmark: wae.rkt]▶#lang pl#| BNF for the WAE language: <WAE> ::= <num> | { + <WAE> <WAE> } | { - <WAE> <WAE> } | { * <WAE> <WAE> } | { / <WAE> <WAE> } | { with { <id> <WAE> } <WAE> } | <id>|#;; WAE abstract syntax trees(define-type WAE [Num Number] [Add WAE WAE] [Sub WAE WAE] [Mul WAE WAE] [Div WAE WAE] [Id Symbol] [With Symbol WAE WAE])(: parse-sexpr : Sexpr -> WAE);; parses s-expressions into WAEs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(symbol: name) (Id name)] [(cons 'with more) (match sexpr [(list 'with (list (symbol: name) named) body) (With name (parse-sexpr named) (parse-sexpr body))] [else (error 'parse-sexpr "bad `with' syntax in ~s" sexpr)])] [(list '+ lhs rhs) (Add (parse-sexpr lhs) (parse-sexpr rhs))] [(list '- lhs rhs) (Sub (parse-sexpr lhs) (parse-sexpr rhs))] [(list '* lhs rhs) (Mul (parse-sexpr lhs) (parse-sexpr rhs))] [(list '/ lhs rhs) (Div (parse-sexpr lhs) (parse-sexpr rhs))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))(: parse : String -> WAE);; parses a string containing a WAE expression to a WAE AST(define (parse str) (parse-sexpr (string->sexpr str)))#| Formal specs for `subst': (`N' is a <num>, `E1', `E2' are <WAE>s, `x' is some <id>, `y' is a *different* <id>) N[v/x] = N {+ E1 E2}[v/x] = {+ E1[v/x] E2[v/x]} {- E1 E2}[v/x] = {- E1[v/x] E2[v/x]} {* E1 E2}[v/x] = {* E1[v/x] E2[v/x]} {/ E1 E2}[v/x] = {/ E1[v/x] E2[v/x]} y[v/x] = y x[v/x] = v {with {y E1} E2}[v/x] = {with {y E1[v/x]} E2[v/x]} {with {x E1} E2}[v/x] = {with {x E1[v/x]} E2}|#(: subst : WAE Symbol WAE -> WAE);; substitutes the second argument with the third argument in the;; first argument, as per the rules of substitution; the resulting;; expression contains no free instances of the second argument(define (subst expr from to) (cases expr [(Num n) expr] [(Add l r) (Add (subst l from to) (subst r from to))] [(Sub l r) (Sub (subst l from to) (subst r from to))] [(Mul l r) (Mul (subst l from to) (subst r from to))] [(Div l r) (Div (subst l from to) (subst r from to))] [(Id name) (if (eq? name from) to expr)] [(With bound-id named-expr bound-body) (With bound-id (subst named-expr from to) (if (eq? bound-id from) bound-body (subst bound-body from to)))]))#| Formal specs for `eval': eval(N) = N eval({+ E1 E2}) = eval(E1) + eval(E2) eval({- E1 E2}) = eval(E1) - eval(E2) eval({* E1 E2}) = eval(E1) * eval(E2) eval({/ E1 E2}) = eval(E1) / eval(E2) eval(id) = error! eval({with {x E1} E2}) = eval(E2[eval(E1)/x])|#(: eval : WAE -> Number);; evaluates WAE expressions by reducing them to numbers(define (eval expr) (cases expr [(Num n) n] [(Add l r) (+ (eval l) (eval r))] [(Sub l r) (- (eval l) (eval r))] [(Mul l r) (* (eval l) (eval r))] [(Div l r) (/ (eval l) (eval r))] [(With bound-id named-expr bound-body) (eval (subst bound-body bound-id (Num (eval named-expr))))] [(Id name) (error 'eval "free identifier: ~s" name)]))(: run : String -> Number);; evaluate a WAE program contained in a string(define (run str) (eval (parse str)));; tests(test (run "5") => 5)(test (run "{+ 5 5}") => 10)(test (run "{with {x {+ 5 5}} {+ x x}}") => 20)(test (run "{with {x 5} {+ x x}}") => 10)(test (run "{with {x {+ 5 5}} {with {y {- x 3}} {+ y y}}}") => 14)(test (run "{with {x 5} {with {y {- x 3}} {+ y y}}}") => 4)(test (run "{with {x 5} {+ x {with {x 3} 10}}}") => 15)(test (run "{with {x 5} {+ x {with {x 3} x}}}") => 8)(test (run "{with {x 5} {+ x {with {y 3} x}}}") => 10)(test (run "{with {x 5} {with {y x} y}}") => 5)(test (run "{with {x 5} {with {x x} x}}") => 5)(test (run "{with {x 1} y}") =error> "free identifier")

Reminder:

	
We started doing substitution, with a let-like form: with.

	
Reasons for using bindings:

	Avoid writing expressions twice.

	More expressive language (can express identity).

	Duplicating is bad! (“DRY”: Don’t Repeat Yourself.)

	Avoids static redundancy.

	Avoid redundant computations.

	More than just an optimization when it avoids exponential
resources.

	Avoids dynamic redundancy.

	
BNF:

<WAE> ::= <num> | { + <WAE> <WAE> } | { - <WAE> <WAE> } | { * <WAE> <WAE> } | { / <WAE> <WAE> } | { with { <id> <WAE> } <WAE> } | <id>

Note that we had to introduce two new rules: one for introducing an
identifier, and one for using it.

	
Type definition:

(define-type WAE [Num Number] [Add WAE WAE] [Sub WAE WAE] [Mul WAE WAE] [Div WAE WAE] [Id Symbol] [With Symbol WAE WAE])

	
Parser:

(: parse-sexpr : Sexpr -> WAE);; parses s-expressions into WAEs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(symbol: name) (Id name)] [(cons 'with more) (match sexpr [(list 'with (list (symbol: name) named) body) (With name (parse-sexpr named) (parse-sexpr body))] [else (error 'parse-sexpr "bad `with' syntax in ~s" sexpr)])] [(list '+ lhs rhs) (Add (parse-sexpr lhs) (parse-sexpr rhs))] [(list '- lhs rhs) (Sub (parse-sexpr lhs) (parse-sexpr rhs))] [(list '* lhs rhs) (Mul (parse-sexpr lhs) (parse-sexpr rhs))] [(list '/ lhs rhs) (Mul (parse-sexpr lhs) (parse-sexpr rhs))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))

	
We need to define substitution. Terms:

	Binding Instance.

	Scope.

	Bound Instance.

	Free Instance.

	
After lots of attempts:

e[v/i] — To substitute an identifier i in an expression e
with an expression v, replace all instances of i that are free
in e with the expression v.

	
Implemented the code, and again, needed to fix a few bugs:

(: subst : WAE Symbol WAE -> WAE);; substitutes the second argument with the third argument in the;; first argument, as per the rules of substitution; the resulting;; expression contains no free instances of the second argument(define (subst expr from to) (cases expr [(Num n) expr] [(Add l r) (Add (subst l from to) (subst r from to))] [(Sub l r) (Sub (subst l from to) (subst r from to))] [(Mul l r) (Mul (subst l from to) (subst r from to))] [(Div l r) (Div (subst l from to) (subst r from to))] [(Id name) (if (eq? name from) to expr)] [(With bound-id named-expr bound-body) (With bound-id (subst named-expr from to) (if (eq? bound-id from) bound-body (subst bound-body from to)))]))

(Note that the bugs that we fixed clarify the exact way that our
scopes work: in {with {x 2} {with {x {+ x 2}} x}}, the scope of the
first x is the {+ x 2} expression.)

	
We then extended the AE evaluation rules:

eval(...) = ... same as the AE rules ...eval({with {x E1} E2}) = eval(E2[eval(E1)/x])eval(id) = error!

and noted the possible type problem.

	
The above translated into a Racket definition for an eval function
(with a hack to avoid the type issue):

(: eval : WAE -> Number);; evaluates WAE expressions by reducing them to numbers(define (eval expr) (cases expr [(Num n) n] [(Add l r) (+ (eval l) (eval r))] [(Sub l r) (- (eval l) (eval r))] [(Mul l r) (* (eval l) (eval r))] [(Div l r) (/ (eval l) (eval r))] [(With bound-id named-expr bound-body) (eval (subst bound-body bound-id (Num (eval named-expr))))] [(Id name) (error 'eval "free identifier: ~s" name)]))

Formal SpecsTuesday, January 24th

Note the formal definitions that were included in the WAE code. They
are ways of describing pieces of our language that are more formal than
plain English, but still not as formal (and as verbose) as the actual
code.

A formal definition of subst:

(N is a <num>, E1, E2 are <WAE>s, x is some <id>, y is a
different <id>)

N[v/x] = N{+ E1 E2}[v/x] = {+ E1[v/x] E2[v/x]}{- E1 E2}[v/x] = {- E1[v/x] E2[v/x]}{* E1 E2}[v/x] = {* E1[v/x] E2[v/x]}{/ E1 E2}[v/x] = {/ E1[v/x] E2[v/x]}y[v/x] = yx[v/x] = v{with {y E1} E2}[v/x] = {with {y E1[v/x]} E2[v/x]}{with {x E1} E2}[v/x] = {with {x E1[v/x]} E2}

And a formal definition of eval:

eval(N) = Neval({+ E1 E2}) = eval(E1) + eval(E2)eval({- E1 E2}) = eval(E1) - eval(E2)eval({* E1 E2}) = eval(E1) * eval(E2)eval({/ E1 E2}) = eval(E1) / eval(E2)eval(id) = error!eval({with {x E1} E2}) = eval(E2[eval(E1)/x])

Lazy vs Eager EvaluationTuesday, January 24th

As we have previously seen, there are two basic approaches for
evaluation: either eager or lazy. In lazy evaluation, bindings are used
for sort of textual references — it is only for avoiding writing an
expression twice, but the associated computation is done twice anyway.
In eager evaluation, we eliminate not only the textual redundancy, but
also the computation.

Which evaluation method did our evaluator use? The relevant piece of
formalism is the treatment of with:

eval({with {x E1} E2}) = eval(E2[eval(E1)/x])

And the matching piece of code is:

[(With bound-id named-expr bound-body) (eval (subst bound-body bound-id (Num (eval named-expr))))]

How do we make this lazy?

In the formal equation:

eval({with {x E1} E2}) = eval(E2[E1/x])

and in the code:

(: eval : WAE -> Number);; evaluates WAE expressions by reducing them to numbers(define (eval expr) (cases expr [(Num n) n] [(Add l r) (+ (eval l) (eval r))] [(Sub l r) (- (eval l) (eval r))] [(Mul l r) (* (eval l) (eval r))] [(With bound-id named-expr bound-body) (eval (subst bound-body bound-id named-expr))] ;*** no eval and no Num wrapping [(Id name) (error 'eval "free identifier: ~s" name)]))

We can verify the way this works by tracing eval (compare the trace
you get for the two versions):

> (trace eval) ; (put this in the definitions window)> (run "{with {x {+ 1 2}} {* x x}}")

Ignoring the traces for now, the modified WAE interpreter works as
before, specifically, all tests pass. So the question is whether the
language we get is actually different than the one we had before. One
difference is in execution speed, but we can’t really notice a
difference, and we care more about meaning. Is there any program that
will run differently in the two languages?

The main feature of the lazy evaluator is that it is not evaluating the
named expression until it is actually needed. As we have seen, this
leads to duplicating computations if the bound identifier is used more
than once — meaning that it does not eliminate the dynamic redundancy.
But what if the bound identifier is not used at all? In that case the
named expression simply evaporates. This is a good hint at an
expression that behaves differently in the two languages — if we add
division to both languages, we get a different result when we try
running:

{with {x {/ 8 0}} 7}

The eager evaluator stops with an error when it tries evaluating the
division — and the lazy evaluator simply ignores it.

Even without division, we get a similar behavior for

{with {x y} 7}

but it is questionable whether the fact that this evaluates to 7 is
correct behavior — we really want to forbid program that use free
variable.

Furthermore, there is an issue with name capturing — we don’t want to
substitute an expression into a context that captures some of its free
variables. But our substitution allows just that, which is usually not
a problem because by the time we do the substitution, the named
expression should not have free variables that need to be replaced.
However, consider evaluating this program:

{with {y x} {with {x 2} {+ x y}}}

under the two evaluation regimens: the eager version stops with an
error, and the lazy version succeed. This points at a bug in our
substitution, or rather not dealing with an issue that we do not
encounter.

So the summary is: as long as the initial program is correct, both
evaluation regimens produce the same results. If a program contains
free variables, they might get captured in a naive lazy evaluator
implementation (but this is a bug that should be fixed). Also, there
are some cases where eager evaluation runs into a run-time problem which
does not happen in a lazy evaluator because the expression is not used.
It is possible to prove that when you evaluate an expression, if there
is an error that can be avoided, lazy evaluation will always avoid it,
whereas an eager evaluator will always run into it. On the other hand,
lazy evaluators are usually slower than eager evaluator, so it’s a speed
vs. robustness trade-off.

Note that with lazy evaluation we say that an identifier is bound to an
expression rather than a value. (Again, this is why the eager version
needed to wrap eval‘s result in a Num and this one doesn’t.)

(It is possible to change things and get a more well behaved
substitution, we basically will need to find if a capture might happen,
and rename things to avoid it. For example,

{with {y E1} E2}[v/x] if `x' and `y' are equal = {with {y E1[v/x]} E2} = {with {x E1[v/x]} E2} if `y' has a free occurrence in `v' = {with {y1 E1[v/x]} E2[y1/y][v/x]} ; `y1' is "fresh" otherwise = {with {x E1[v/x]} E2[v/x]}

But you can see that this is much more complicated (more code: requires
a free-in predicate, being able to invent new fresh names, etc).
And it’s not even the end of that story…)

de Bruijn IndexesTuesday, January 24th

This whole story revolves around names, specifically, name capture is a
problem that should always be avoided (it is one major source of PL
headaches).

But are names the only way we can use bindings?

There is a least one alternative way: note that the only thing we used
names for are for references. We don’t really care what the name is,
which is pretty obvious when we consider the two WAE expressions:

{with {x 5} {+ x x}}{with {y 5} {+ y y}}

or the two Racket function definitions:

(define (foo x) (list x x))(define (foo y) (list y y))

Both of these show a pair of expressions that we should consider as
equal in some sense (this is called “alpha-equality”). The only thing
we care about is what variable points where: the binding structure is
the only thing that matters. In other words, as long as DrRacket
produces the same arrows when we use Check Syntax, we consider the
program to be the same, regardless of name choices (for argument names
and local names, not for global names like foo in the above).

The alternative idea uses this principle: if all we care about is where
the arrows go, then simply get rid of the names… Instead of
referencing a binding through its name, just specify which of the
surrounding scopes we want to refer to. For example, instead of:

{with {x 5} {with {y 6} {+ x y}}}

we can use a new “reference” syntax — [N] — and use this instead
of the above:

{with 5 {with 6 {+ [1] [0]}}}

So the rules for [N] are — [0] is the value bound in the current
scope, [1] is the value from the next one up etc.

Of course, to do this translation, we have to know the precise scope
rules. Two more complicated examples:

{with {x 5} {+ x {with {y 6} {+ x y}}}}

is translated to:

{with 5 {+ [0] {with 6 {+ [1] [0]}}}}

(note how x appears as a different reference based on where it
appeared in the original code.) Even more subtle:

{with {x 5} {with {y {+ x 1}} {+ x y}}}

is translated to:

{with 5 {with {+ [0] 1} {+ [1] [0]}}}

because the inner with does not have its own named expression in its
scope, so the named expression is immediately in the scope of the outer
with.

This is called “de Bruijn Indexes”: instead of referencing identifiers
by their name, we use an index into the surrounding binding context.
The major disadvantage, as can be seen in the above examples, is that it
is not convenient for humans to work with. Specifically, the same
identifier is referenced using different numbers, which makes it hard to
understand what some code is doing.

However, practically all compilers use this for compiled code (think
about stack pointers). For example, GCC compiles this code:

{ int x = 5; { int y = x + 1; return x + y; }}

to:

subl $8, %espmovl $5, -4(%ebp) ; int x = 5movl -4(%ebp), %eaxincl %eaxmovl %eax, -8(%ebp) ; int y = %eaxmovl -8(%ebp), %eaxaddl -4(%ebp), %eax

Functions & Function ValuesTuesday, January 24th

PLAI §4

Now that we have a form for local bindings, which forced us to deal with
proper substitutions and everything that is related, we can get to
functions. The concept of a function is itself very close to
substitution, and to our with form. For example, when we write:

{with {x 5} {* x x}}

then the {* x x} body is itself parametrized over some value for x.
If we take this expression and take out the 5, we’re left with
something that has all of the necessary ingredients of a function — a
bunch of code that is parameterized over some input identifier:

{with {x} {* x x}}

We only need to replace with and use a proper name that indicates that
it’s a function:

{fun {x} {* x x}}

Now we have a new form in our language, one that should have a function
as its meaning. As we have seen in the case of with expressions, we
also need a new form to use these functions. We will use call for
this, so that

{call {fun {x} {* x x}} 5}

will be the same as the original with expression that we started with
— the fun expression is like the with expression with no value,
and applying it on 5 is providing that value back:

{with {x 5} {* x x}}

Of course, this does not help much — all we get is a way to use local
bindings that is more verbose from what we started with. What we’re
really missing is a way to name these functions. If we get the right
evaluation rules, we can evaluate a fun expression to some value —
which will allow us to bind it to a variable using with. Something
like this:

{with {sqr {fun {x} {* x x}}} {+ {call sqr 5} {call sqr 6}}}

In this expression, we say that x is the formal parameter (or
argument), and the 5 and 6 are actual parameters (sometimes
abbreviated as formals and actuals). Note that naming functions often
helps, but many times there are small functions that are fine to specify
without a name — for example, consider a two-stage addition function,
where there is no apparent good name for the returned function:

{with {add {fun {x} {fun {y} {+ x y}}}} {call {call add 8} 9}}

Implementing First Class FunctionsTuesday, January 24th

PLAI §6 (uses some stuff from PLAI §5, which we do later)

This is a simple plan, but it is directly related to how functions are
going to be used in our language. We know that {call {fun {x} E1} E2}
is equivalent to a with expression, but the new thing here is that we
do allow writing just the {fun ...} expression by itself, and
therefore we need to have some meaning for it. The meaning, or the
value of this expression, should roughly be “an expression that needs a
value to be plugged in for x”. In other words, our language will have
these new kinds of values that contain an expression to be evaluated
later on.

There are three basic approaches that classify programming languages in
relation to how the deal with functions:

	
First order: functions are not real values. They cannot be used or
returned as values by other functions. This means that they cannot
be stored in data structures. This is what most “conventional”
languages used to have in the past. (You will be implementing such a
language in homework 4.)

An example of such a language is the Beginner Student language that
is used in HtDP, where the language is intentionally first-order to
help students write correct code (at the early stages where using a
function as a value is usually an error). It’s hard to find
practical modern languages that fall in this category.

	
Higher order: functions can receive and return other functions as
values. This is what you get with C and modern Fortran.

	
First class: functions are values with all the rights of other
values. In particular, they can be supplied to other functions,
returned from functions, stored in data structures, and new functions
can be created at run-time. (And most modern languages have first
class functions.)

The last category is the most interesting one. Back in the old days,
complex expressions were not first-class in that they could not be
freely composed. This is still the case in machine-code: as we’ve seen
earlier, to compute an expression such as

(-b + sqrt(b^2 - 4*a*c)) / 2a

you have to do something like this:

x = b * by = 4 * ay = y * cx = x - yx = sqrt(x)y = -bx = y + xy = 2 * as = x / y

In other words, every intermediate value needs to have its own name.
But with proper (“high-level”) programming languages (at least most of
them…) you can just write the original expression, with no names for
these values.

With first-class functions something similar happens — it is possible
to have complex expressions that consume and return functions, and they
do not need to be named.

What we get with our fun expression (if we can make it work) is
exactly this: it generates a function, and you can choose to either bind
it to a name, or not. The important thing is that the value exists
independently of a name.

This has a major effect on the “personality” of a programming language
as we will see. In fact, just adding this feature will make our
language much more advanced than languages with just higher-order or
first-order functions.

Implementing First Class Functions (contd.)Tuesday, January 31st

Quick Example: the following is working JavaScript code, that uses first
class functions.

function foo(x) { function bar(y) { return x + y; } return bar;}function main() { var f = foo(1); var g = foo(10); return [f(2), g(2)];}

Note that the above definition of foo does not use an anonymous
“lambda expression” — in Racket terms, it’s translated to

(define (foo x) (define (bar y) (+ x y)) bar)

The returned function is not anonymous, but it’s not really named
either: the bar name is bound only inside the body of foo, and
outside of it that name no longer exists since it’s not its scope. It
gets used in the printed form if the function value is displayed, but
this is merely a debugging aid. The anonymous lambda version that is
common in Racket can be used in JavaScript too:

function foo(x) { return function(y) { return x + y; }}

Side-note: GCC includes extensions that allow internal function
definitions, but it still does not have first class functions —
trying to do the above is broken:

#include <stdio.h>typedef int(*int2int)(int);int2int foo(int x) { int bar(int y) { return x + y; } return bar;}int main() { int2int f = foo(1); int2int g = foo(10); printf(">> %d, %d\n", f(2), g(2));}

The FLANG LanguageTuesday, January 31st

Now for the implementation — we call this new language FLANG.

First, the BNF:

<FLANG> ::= <num> | { + <FLANG> <FLANG> } | { - <FLANG> <FLANG> } | { * <FLANG> <FLANG> } | { / <FLANG> <FLANG> } | { with { <id> <FLANG> } <FLANG> } | <id> | { fun { <id> } <FLANG> } | { call <FLANG> <FLANG> }

And the matching type definition:

(define-type FLANG [Num Number] [Add FLANG FLANG] [Sub FLANG FLANG] [Mul FLANG FLANG] [Div FLANG FLANG] [Id Symbol] [With Symbol FLANG FLANG] [Fun Symbol FLANG] ; No named-expression [Call FLANG FLANG])

The parser for this grammar is, as usual, straightforward:

(: parse-sexpr : Sexpr -> FLANG);; parses s-expressions into FLANGs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(symbol: name) (Id name)] [(cons 'with more) (match sexpr [(list 'with (list (symbol: name) named) body) (With name (parse-sexpr named) (parse-sexpr body))] [else (error 'parse-sexpr "bad `with' syntax in ~s" sexpr)])] [(cons 'fun more) (match sexpr [(list 'fun (list (symbol: name)) body) (Fun name (parse-sexpr body))] [else (error 'parse-sexpr "bad `fun' syntax in ~s" sexpr)])] [(list '+ lhs rhs) (Add (parse-sexpr lhs) (parse-sexpr rhs))] [(list '- lhs rhs) (Sub (parse-sexpr lhs) (parse-sexpr rhs))] [(list '* lhs rhs) (Mul (parse-sexpr lhs) (parse-sexpr rhs))] [(list '/ lhs rhs) (Div (parse-sexpr lhs) (parse-sexpr rhs))] [(list 'call fun arg) (Call (parse-sexpr fun) (parse-sexpr arg))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))

We also need to patch up the substitution function to deal with these
things. The scoping rule for the new function form is, unsurprisingly,
similar to the rule of with, except that there is no extra expression
now, and the scoping rule for call is the same as for the arithmetic
operators:

N[v/x] = N{+ E1 E2}[v/x] = {+ E1[v/x] E2[v/x]}{- E1 E2}[v/x] = {- E1[v/x] E2[v/x]}{* E1 E2}[v/x] = {* E1[v/x] E2[v/x]}{/ E1 E2}[v/x] = {/ E1[v/x] E2[v/x]}y[v/x] = yx[v/x] = v{with {y E1} E2}[v/x] = {with {y E1[v/x]} E2[v/x]}{with {x E1} E2}[v/x] = {with {x E1[v/x]} E2}{call E1 E2}[v/x] = {call E1[v/x] E2[v/x]}{fun {y} E}[v/x] = {fun {y} E[v/x]}{fun {x} E}[v/x] = {fun {x} E}

And the matching code:

(: subst : FLANG Symbol FLANG -> FLANG);; substitutes the second argument with the third argument in the;; first argument, as per the rules of substitution; the resulting;; expression contains no free instances of the second argument(define (subst expr from to) (cases expr [(Num n) expr] [(Add l r) (Add (subst l from to) (subst r from to))] [(Sub l r) (Sub (subst l from to) (subst r from to))] [(Mul l r) (Mul (subst l from to) (subst r from to))] [(Div l r) (Div (subst l from to) (subst r from to))] [(Id name) (if (eq? name from) to expr)] [(With bound-id named-expr bound-body) (With bound-id (subst named-expr from to) (if (eq? bound-id from) bound-body (subst bound-body from to)))] [(Call l r) (Call (subst l from to) (subst r from to))] [(Fun bound-id bound-body) (if (eq? bound-id from) expr (Fun bound-id (subst bound-body from to)))]))

Now, before we start working on an evaluator, we need to decide on what
exactly do we use to represent values of this language. Before we had
functions, we had only number values and we used Racket numbers to
represent them. Now we have two kinds of values — numbers and
functions. It seems easy enough to continue using Racket numbers to
represent numbers, but what about functions? What should be the result
of evaluating

{fun {x} {+ x 1}}

? Well, this is the new toy we have: it should be a function value,
which is something that can be used just like numbers, but instead of
arithmetic operations, we can call these things. What we need is a
way to avoid evaluating the body expression of the function — delay
it — and instead use some value that will contain this delayed
expression in a way that can be used later.

To accommodate this, we will change our implementation strategy a
little: we will use our syntax objects for numbers ((Num n) instead of
just n), which will be a little inconvenient when we do the arithmetic
operations, but it will simplify life by making it possible to evaluate
functions in a similar way: simply return their own syntax object as
their values. The syntax object has what we need: the body expression
that needs to be evaluated later when the function is called, and it
also has the identifier name that should be replaced with the actual
input to the function call. This means that evaluating:

(Add (Num 1) (Num 2))

now yields

(Num 3)

and a number (Num 5) evaluates to (Num 5).

In a similar way, (Fun 'x (Num 2)) evaluates to (Fun 'x (Num 2)).

Why would this work? Well, because call will be very similar to
with — the only difference is that its arguments are ordered a
little differently, being retrieved from the function that is applied
and the argument.

The formal evaluation rules are therefore treating functions like
numbers, and use the syntax object to represent both values:

eval(N) = Neval({+ E1 E2}) = eval(E1) + eval(E2)eval({- E1 E2}) = eval(E1) - eval(E2)eval({* E1 E2}) = eval(E1) * eval(E2)eval({/ E1 E2}) = eval(E1) / eval(E2)eval(id) = error!eval({with {x E1} E2}) = eval(E2[eval(E1)/x])eval(FUN) = FUN ; assuming FUN is a function expressioneval({call E1 E2}) = eval(Ef[eval(E2)/x]) if eval(E1) = {fun {x} Ef} = error! otherwise

Note that the last rule could be written using a translation to a with
expression:

eval({call E1 E2}) = eval({with {x E2} Ef}) if eval(E1) = {fun {x} Ef} = error! otherwise

And alternatively, we could specify with using call and fun:

eval({with {x E1} E2}) = eval({call {fun {x} E2} E1})

There is a small problem in these rules which is intuitively seen by the
fact that the evaluation rule for a call is expected to be very
similar to the one for arithmetic operations. We now have two kinds of
values, so we need to check the arithmetic operation’s arguments too:

eval({+ E1 E2}) = N1 + N2 if eval(E1), eval(E2) evaluate to numbers N1, N2 otherwise error!...

The corresponding code is:

(: eval : FLANG -> FLANG) ;*** note return type;; evaluates FLANG expressions by reducing them to *expressions*(define (eval expr) (cases expr [(Num n) expr] ;*** change here [(Add l r) (arith-op + (eval l) (eval r))] [(Sub l r) (arith-op - (eval l) (eval r))] [(Mul l r) (arith-op * (eval l) (eval r))] [(Div l r) (arith-op / (eval l) (eval r))] [(With bound-id named-expr bound-body) (eval (subst bound-body bound-id (eval named-expr)))] ;*** no `(Num ...)' [(Id name) (error 'eval "free identifier: ~s" name)] [(Fun bound-id bound-body) expr] ;*** similar to `Num' [(Call (Fun bound-id bound-body) arg-expr) ;*** nested pattern (eval (subst bound-body ;*** just like `with' bound-id (eval arg-expr)))] [(Call something arg-expr) (error 'eval "`call' expects a function, got: ~s" something)]))

Note that the Call case is doing the same thing we do in the With
case. In fact, we could have just generated a With expression and
evaluate that instead:

 ... [(Call (Fun bound-id bound-body) arg-expr) (eval (With bound-id arg-expr bound-body))] ...

The arith-op function is in charge of checking that the input values
are numbers (represented as FLANG numbers), translating them to plain
numbers, performing the Racket operation, then re-wrapping the result in
a Num. Note how its type indicates that it is a higher-order
function.

(: arith-op : (Number Number -> Number) FLANG FLANG -> FLANG);; gets a Racket numeric binary operator, and uses it within a FLANG;; `Num' wrapper (note the H.O type)(define (arith-op op expr1 expr2) (Num (op (Num->number expr1) (Num->number expr2))))

It uses the following function to convert FLANG numbers to Racket
numbers. (Note that else is almost always a bad idea since it can
prevent the compiler from showing you places to edit code — but this
case is an exception since we never want to deal with anything other
than Nums.) The reason that this function is relatively trivial is
that we chose the easy way and represented numbers using Racket numbers,
but we could have used strings or anything else.

(: Num->number : FLANG -> Number);; convert a FLANG number to a Racket one(define (Num->number e) (cases e [(Num n) n] [else (error 'arith-op "expected a number, got: ~s" e)]))

We can also make things a little easier to use if we make run convert
the result to a number:

(: run : String -> Number);; evaluate a FLANG program contained in a string(define (run str) (let ([result (eval (parse str))]) (cases result [(Num n) n] [else (error 'run "evaluation returned a non-number: ~s" result)])))

Adding few simple tests we get:

;; The Flang interpreter#lang pl#|The grammar: <FLANG> ::= <num> | { + <FLANG> <FLANG> } | { - <FLANG> <FLANG> } | { * <FLANG> <FLANG> } | { / <FLANG> <FLANG> } | { with { <id> <FLANG> } <FLANG> } | <id> | { fun { <id> } <FLANG> } | { call <FLANG> <FLANG> }Evaluation rules: subst: N[v/x] = N {+ E1 E2}[v/x] = {+ E1[v/x] E2[v/x]} {- E1 E2}[v/x] = {- E1[v/x] E2[v/x]} {* E1 E2}[v/x] = {* E1[v/x] E2[v/x]} {/ E1 E2}[v/x] = {/ E1[v/x] E2[v/x]} y[v/x] = y x[v/x] = v {with {y E1} E2}[v/x] = {with {y E1[v/x]} E2[v/x]} ; if y =/= x {with {x E1} E2}[v/x] = {with {x E1[v/x]} E2} {call E1 E2}[v/x] = {call E1[v/x] E2[v/x]} {fun {y} E}[v/x] = {fun {y} E[v/x]} ; if y =/= x {fun {x} E}[v/x] = {fun {x} E} eval: eval(N) = N eval({+ E1 E2}) = eval(E1) + eval(E2) \ if both E1 and E2 eval({- E1 E2}) = eval(E1) - eval(E2) \ evaluate to numbers eval({* E1 E2}) = eval(E1) * eval(E2) / otherwise error! eval({/ E1 E2}) = eval(E1) / eval(E2) / eval(id) = error! eval({with {x E1} E2}) = eval(E2[eval(E1)/x]) eval(FUN) = FUN ; assuming FUN is a function expression eval({call E1 E2}) = eval(Ef[eval(E2)/x]) if eval(E1)={fun {x} Ef}, otherwise error!|#(define-type FLANG [Num Number] [Add FLANG FLANG] [Sub FLANG FLANG] [Mul FLANG FLANG] [Div FLANG FLANG] [Id Symbol] [With Symbol FLANG FLANG] [Fun Symbol FLANG] [Call FLANG FLANG])(: parse-sexpr : Sexpr -> FLANG);; parses s-expressions into FLANGs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(symbol: name) (Id name)] [(cons 'with more) (match sexpr [(list 'with (list (symbol: name) named) body) (With name (parse-sexpr named) (parse-sexpr body))] [else (error 'parse-sexpr "bad `with' syntax in ~s" sexpr)])] [(cons 'fun more) (match sexpr [(list 'fun (list (symbol: name)) body) (Fun name (parse-sexpr body))] [else (error 'parse-sexpr "bad `fun' syntax in ~s" sexpr)])] [(list '+ lhs rhs) (Add (parse-sexpr lhs) (parse-sexpr rhs))] [(list '- lhs rhs) (Sub (parse-sexpr lhs) (parse-sexpr rhs))] [(list '* lhs rhs) (Mul (parse-sexpr lhs) (parse-sexpr rhs))] [(list '/ lhs rhs) (Div (parse-sexpr lhs) (parse-sexpr rhs))] [(list 'call fun arg) (Call (parse-sexpr fun) (parse-sexpr arg))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))(: parse : String -> FLANG);; parses a string containing a FLANG expression to a FLANG AST(define (parse str) (parse-sexpr (string->sexpr str)))(: subst : FLANG Symbol FLANG -> FLANG);; substitutes the second argument with the third argument in the;; first argument, as per the rules of substitution; the resulting;; expression contains no free instances of the second argument(define (subst expr from to) (cases expr [(Num n) expr] [(Add l r) (Add (subst l from to) (subst r from to))] [(Sub l r) (Sub (subst l from to) (subst r from to))] [(Mul l r) (Mul (subst l from to) (subst r from to))] [(Div l r) (Div (subst l from to) (subst r from to))] [(Id name) (if (eq? name from) to expr)] [(With bound-id named-expr bound-body) (With bound-id (subst named-expr from to) (if (eq? bound-id from) bound-body (subst bound-body from to)))] [(Call l r) (Call (subst l from to) (subst r from to))] [(Fun bound-id bound-body) (if (eq? bound-id from) expr (Fun bound-id (subst bound-body from to)))]))(: Num->number : FLANG -> Number);; convert a FLANG number to a Racket one(define (Num->number e) (cases e [(Num n) n] [else (error 'arith-op "expected a number, got: ~s" e)]))(: arith-op : (Number Number -> Number) FLANG FLANG -> FLANG);; gets a Racket numeric binary operator, and uses it within a FLANG;; `Num' wrapper(define (arith-op op expr1 expr2) (Num (op (Num->number expr1) (Num->number expr2))))(: eval : FLANG -> FLANG);; evaluates FLANG expressions by reducing them to *expressions*(define (eval expr) (cases expr [(Num n) expr] [(Add l r) (arith-op + (eval l) (eval r))] [(Sub l r) (arith-op - (eval l) (eval r))] [(Mul l r) (arith-op * (eval l) (eval r))] [(Div l r) (arith-op / (eval l) (eval r))] [(With bound-id named-expr bound-body) (eval (subst bound-body bound-id (eval named-expr)))] [(Id name) (error 'eval "free identifier: ~s" name)] [(Fun bound-id bound-body) expr] [(Call (Fun bound-id bound-body) arg-expr) (eval (subst bound-body bound-id (eval arg-expr)))] [(Call something arg-expr) (error 'eval "`call' expects a function, got: ~s" something)]))(: run : String -> Number);; evaluate a FLANG program contained in a string(define (run str) (let ([result (eval (parse str))]) (cases result [(Num n) n] [else (error 'run "evaluation returned a non-number: ~s" result)])));; tests(test (run "{call {fun {x} {+ x 1}} 4}") => 5)(test (run "{with {add3 {fun {x} {+ x 3}}} {call add3 1}}") => 4)(test (run "{with {add3 {fun {x} {+ x 3}}} {with {add1 {fun {x} {+ x 1}}} {with {x 3} {call add1 {call add3 x}}}}}") => 7)

There is still a problem with this version. First a question — if
call is similar to arithmetic operations (and to with in what it
actually does), then how come the code is different enough that it
doesn’t even need an auxiliary function?

Second question: what should happen if we evaluate these code
snippets:

(run "{with {add {fun {x} {fun {y} {+ x y}}}} {call {call add 8} 9}}")(run "{with {identity {fun {x} x}} {with {foo {fun {x} {+ x 1}}} {call {call identity foo} 123}}}")(run "{call {call {fun {x} {call x 1}} {fun {x} {fun {y} {+ x y}}}} 123}")

Third question, what will happen if we do the above?

What we’re missing is an evaluation of the function expression, in case
it’s not a literal fun form. The following fixes this:

(: eval : FLANG -> FLANG);; evaluates FLANG expressions by reducing them to *expressions*(define (eval expr) (cases expr [(Num n) expr] [(Add l r) (arith-op + (eval l) (eval r))] [(Sub l r) (arith-op - (eval l) (eval r))] [(Mul l r) (arith-op * (eval l) (eval r))] [(Div l r) (arith-op / (eval l) (eval r))] [(With bound-id named-expr bound-body) (eval (subst bound-body bound-id (eval named-expr)))] [(Id name) (error 'eval "free identifier: ~s" name)] [(Fun bound-id bound-body) expr] [(Call fun-expr arg-expr) (let ([fval (eval fun-expr)]) ;*** need to evaluate this! (cases fval [(Fun bound-id bound-body) (eval (subst bound-body bound-id (eval arg-expr)))] [else (error 'eval "`call' expects a function, got: ~s" fval)]))]))

The complete code is:

[bookmark: flang.rkt]▶;; The Flang interpreter#lang pl#|The grammar: <FLANG> ::= <num> | { + <FLANG> <FLANG> } | { - <FLANG> <FLANG> } | { * <FLANG> <FLANG> } | { / <FLANG> <FLANG> } | { with { <id> <FLANG> } <FLANG> } | <id> | { fun { <id> } <FLANG> } | { call <FLANG> <FLANG> }Evaluation rules: subst: N[v/x] = N {+ E1 E2}[v/x] = {+ E1[v/x] E2[v/x]} {- E1 E2}[v/x] = {- E1[v/x] E2[v/x]} {* E1 E2}[v/x] = {* E1[v/x] E2[v/x]} {/ E1 E2}[v/x] = {/ E1[v/x] E2[v/x]} y[v/x] = y x[v/x] = v {with {y E1} E2}[v/x] = {with {y E1[v/x]} E2[v/x]} ; if y =/= x {with {x E1} E2}[v/x] = {with {x E1[v/x]} E2} {call E1 E2}[v/x] = {call E1[v/x] E2[v/x]} {fun {y} E}[v/x] = {fun {y} E[v/x]} ; if y =/= x {fun {x} E}[v/x] = {fun {x} E} eval: eval(N) = N eval({+ E1 E2}) = eval(E1) + eval(E2) \ if both E1 and E2 eval({- E1 E2}) = eval(E1) - eval(E2) \ evaluate to numbers eval({* E1 E2}) = eval(E1) * eval(E2) / otherwise error! eval({/ E1 E2}) = eval(E1) / eval(E2) / eval(id) = error! eval({with {x E1} E2}) = eval(E2[eval(E1)/x]) eval(FUN) = FUN ; assuming FUN is a function expression eval({call E1 E2}) = eval(Ef[eval(E2)/x]) if eval(E1)={fun {x} Ef}, otherwise error!|#(define-type FLANG [Num Number] [Add FLANG FLANG] [Sub FLANG FLANG] [Mul FLANG FLANG] [Div FLANG FLANG] [Id Symbol] [With Symbol FLANG FLANG] [Fun Symbol FLANG] [Call FLANG FLANG])(: parse-sexpr : Sexpr -> FLANG);; parses s-expressions into FLANGs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(symbol: name) (Id name)] [(cons 'with more) (match sexpr [(list 'with (list (symbol: name) named) body) (With name (parse-sexpr named) (parse-sexpr body))] [else (error 'parse-sexpr "bad `with' syntax in ~s" sexpr)])] [(cons 'fun more) (match sexpr [(list 'fun (list (symbol: name)) body) (Fun name (parse-sexpr body))] [else (error 'parse-sexpr "bad `fun' syntax in ~s" sexpr)])] [(list '+ lhs rhs) (Add (parse-sexpr lhs) (parse-sexpr rhs))] [(list '- lhs rhs) (Sub (parse-sexpr lhs) (parse-sexpr rhs))] [(list '* lhs rhs) (Mul (parse-sexpr lhs) (parse-sexpr rhs))] [(list '/ lhs rhs) (Div (parse-sexpr lhs) (parse-sexpr rhs))] [(list 'call fun arg) (Call (parse-sexpr fun) (parse-sexpr arg))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))(: parse : String -> FLANG);; parses a string containing a FLANG expression to a FLANG AST(define (parse str) (parse-sexpr (string->sexpr str)))(: subst : FLANG Symbol FLANG -> FLANG);; substitutes the second argument with the third argument in the;; first argument, as per the rules of substitution; the resulting;; expression contains no free instances of the second argument(define (subst expr from to) (cases expr [(Num n) expr] [(Add l r) (Add (subst l from to) (subst r from to))] [(Sub l r) (Sub (subst l from to) (subst r from to))] [(Mul l r) (Mul (subst l from to) (subst r from to))] [(Div l r) (Div (subst l from to) (subst r from to))] [(Id name) (if (eq? name from) to expr)] [(With bound-id named-expr bound-body) (With bound-id (subst named-expr from to) (if (eq? bound-id from) bound-body (subst bound-body from to)))] [(Call l r) (Call (subst l from to) (subst r from to))] [(Fun bound-id bound-body) (if (eq? bound-id from) expr (Fun bound-id (subst bound-body from to)))]))(: Num->number : FLANG -> Number);; convert a FLANG number to a Racket one(define (Num->number e) (cases e [(Num n) n] [else (error 'arith-op "expected a number, got: ~s" e)]))(: arith-op : (Number Number -> Number) FLANG FLANG -> FLANG);; gets a Racket numeric binary operator, and uses it within a FLANG;; `Num' wrapper(define (arith-op op expr1 expr2) (Num (op (Num->number expr1) (Num->number expr2))))(: eval : FLANG -> FLANG);; evaluates FLANG expressions by reducing them to *expressions*(define (eval expr) (cases expr [(Num n) expr] [(Add l r) (arith-op + (eval l) (eval r))] [(Sub l r) (arith-op - (eval l) (eval r))] [(Mul l r) (arith-op * (eval l) (eval r))] [(Div l r) (arith-op / (eval l) (eval r))] [(With bound-id named-expr bound-body) (eval (subst bound-body bound-id (eval named-expr)))] [(Id name) (error 'eval "free identifier: ~s" name)] [(Fun bound-id bound-body) expr] [(Call fun-expr arg-expr) (let ([fval (eval fun-expr)]) (cases fval [(Fun bound-id bound-body) (eval (subst bound-body bound-id (eval arg-expr)))] [else (error 'eval "`call' expects a function, got: ~s" fval)]))]))(: run : String -> Number);; evaluate a FLANG program contained in a string(define (run str) (let ([result (eval (parse str))]) (cases result [(Num n) n] [else (error 'run "evaluation returned a non-number: ~s" result)])));; tests(test (run "{call {fun {x} {+ x 1}} 4}") => 5)(test (run "{with {add3 {fun {x} {+ x 3}}} {call add3 1}}") => 4)(test (run "{with {add3 {fun {x} {+ x 3}}} {with {add1 {fun {x} {+ x 1}}} {with {x 3} {call add1 {call add3 x}}}}}") => 7)(test (run "{with {add {fun {x} {fun {y} {+ x y}}}} {call {call add 8} 9}}") => 17)(test (run "{with {identity {fun {x} x}} {with {foo {fun {x} {+ x 1}}} {call {call identity foo} 123}}}") => 124)(test (run "{call {call {fun {x} {call x 1}} {fun {x} {fun {y} {+ x y}}}} 123}") => 124)

Introducing Racket’s lambdaTuesday, January 31st

fun & lambda
difference between lambda and simple values
not being able to do recursive functions with let
let* as a derived form
let with lambda in Racket –> can be a derived form
how if can be used to implement and and or as derived forms

Newtonian syntax vs. a lambda expression.

Don’t be fooled into making a bogus connection between Racket’s syntax,
and its unique powers… The fact is that it is not the only language
that has this capability. For example, this:

(define (f g) (g 2 3))(f +) ==> 5(f *) ==> 6(f (lambda (x y) (+ (square x) (square y)))) ==> 13

Can be written in JavaScript like this:

function f(g) { return g(2,3); }function square(x) { return x*x; }console.log(f(function (x,y) { return square(x) + square(y); }));

In Perl:

sub f { my ($g) = @_; return $g->(2,3); }sub square { my ($x) = @_; return $x * $x; }print f(sub { my ($x, $y) = @_; return square($x) + square($y); });

In Ruby:

def f(g) g.call(2,3) enddef square(x) x*x endputs f(lambda{|x,y| square(x) + square(y)})

etc. Even Java has lambda expressions, and recently
C++ added them too.

Using Functions as ObjectsTuesday, January 31st

A very important aspect of Racket — using “higher order” functions —
functions that get and return functions. Here is a very simple example:

(define (f x) (lambda () x))(define a (f 2))(a) --> 2(define b (f 3))(b) --> 3

Note: what we get is actually an object that remembers (by the
substitution we’re doing) a number. How about:

(define aa (f a))(aa) --> #<procedure> (this is a)((aa)) --> 2

Take this idea to the next level:

(define (kons x y) (lambda (b) (if b x y)))(define (kar p) (p #t))(define (kdr p) (p #f))(define a (kons 1 2))(define b (kons 3 4))(list (kar a) (kdr a))(list (kar b) (kdr b))

Or, with types:

(: kons : (All (A B) A B -> (Boolean -> (U A B))))(define (kons x y) (lambda (b) (if b x y)))(: kar : (All (T) (Boolean -> T) -> T))(define (kar p) (p #t))(: kdr : (All (T) (Boolean -> T) -> T))(define (kdr p) (p #f))(define a (kons 1 2))(define b (kons 3 4))(list (kar a) (kdr a))(list (kar b) (kdr b))

Even more — why should the internal function expect a boolean and
choose what to return? We can simply expect a function that will take
the two values and return one:

(define (kons x y) (lambda (s) (s x y)))(define (kar p) (p (lambda (x y) x)))(define (kdr p) (p (lambda (x y) y)))(define a (kons 1 2))(define b (kons 3 4))(list (kar a) (kdr a))(list (kar b) (kdr b))

And a typed version, using our own constructor to make it a little less
painful:

(define-type (Kons A B) = ((A B -> (U A B)) -> (U A B)))(: kons : (All (A B) A B -> (Kons A B)))(define (kons x y) (lambda (s) (s x y)))(: kar : (All (A B) (Kons A B) -> (U A B)))(define (kar p) (p (lambda (x y) x)))(: kdr : (All (A B) (Kons A B) -> (U A B)))(define (kdr p) (p (lambda (x y) y)))(define a (kons 1 2))(define b (kons 3 4))(list (kar a) (kdr a))(list (kar b) (kdr b))

Note that the Kons type definition is the same as:

(define-type Kons = (All (A B) (A B -> (U A B)) -> (U A B)))

so All is to polymorphic type definitions what lambda is for
function definitions.

Finally in JavaScript:

function kons(x,y) { return function(s) { return s(x, y); } }function kar(p) { return p(function(x,y){ return x; }); }function kdr(p) { return p(function(x,y){ return y; }); }a = kons(1,2);b = kons(3,4);console.log('a = <' + kar(a) + ',' + kdr(a) + '>');console.log('b = <' + kar(b) + ',' + kdr(b) + '>');

Or with ES6 arrow functions, the function definitionss become:

var kons = (x,y) => s => s(x,y);var kar = p => p((x,y) => x);var kdr = p => p((x,y) => y);

CurryingTuesday, January 31st

A curried function is a function that, instead of accepting two (or
more) arguments, accepts only one and returns a function that accepts
the rest. For example:

(: plus : Number -> (Number -> Number))(define (plus x) (lambda (y) (+ x y)))

It’s easy to write functions for translating between normal and curried
versions.

(define (currify f) (lambda (x) (lambda (y) (f x y))))

Typed version of that, with examples:

(: currify : (All (A B C) (A B -> C) -> (A -> (B -> C))));; convert a double-argument function to a curried one(define (currify f) (lambda (x) (lambda (y) (f x y))))(: add : Number Number -> Number)(define (add x y) (+ x y))(: plus : Number -> (Number -> Number))(define plus (currify add))(test ((plus 1) 2) => 3)(test (((currify add) 1) 2) => 3)(test (map (plus 1) '(1 2 3)) => '(2 3 4))(test (map ((currify add) 1) '(1 2 3)) => '(2 3 4))(test (map ((currify +) 1) '(1 2 3)) => '(2 3 4))

Usages — common with H.O. functions like map, where we want to fix
one argument.

When dealing with such higher-order code, the types are very helpful,
since every arrow corresponds to a function:

(: currify : (All (A B C) (A B -> C) -> (A -> (B -> C))))

It is common to make the -> function type associate to the right, so
you can find this type written as:

currify : (A B -> C) -> (A -> B -> C)

or even as

currify : (A B -> C) -> A -> B -> C

but that can be a little confusing…

Using Higher-Order & Anonymous FunctionsTuesday, January 31st

Say that we have a function for estimating derivatives of a function at
a specific point:

(define dx 0.01)(: deriv : (Number -> Number) Number -> Number);; compute the derivative of `f' at the given point `x'(define (deriv f x) (/ (- (f (+ x dx)) (f x)) dx))(: integrate : (Number -> Number) Number -> Number);; compute an integral of `f' at the given point `x'(define (integrate f x) (: loop : Number Number -> Number) (define (loop y acc) (if (> y x) (/ acc dx) (loop (+ y dx) (+ acc (f y))))) (loop 0 0))

And say that we want to try out various functions given some plot
function that draws graphs of numeric functions, for example:

(plot sin)

The problem is that plot expects a single (Number -> Number)
function — if we want to try it with a derivative, we can do this:

(: sin-deriv : Number -> Number);; the derivative of sin(define sin-deriv (lambda (x) (deriv sin x)))(plot sin-deriv)

But this will get very tedious very fast — it is much simpler to use
an anonymous function:

(plot (lambda (x) (deriv sin x)))

we can even verify that our derivative is correct by comparing a known
function to its derivative

(plot (lambda (x) (- (deriv sin x) (cos x))))

But it’s still not completely natural to do these things — you need to
explicitly combine functions, which is not too convenient. Instead of
doing this, we can write H.O. functions that will work with functional
inputs and outputs. For example, we can write a function to subtract
functions:

(: fsub : (Number -> Number) (Number -> Number) -> (Number -> Number));; subtracts two numeric 1-argument functions(define (fsub f g) (lambda (x) (- (f x) (g x))))

and the same for the derivative:

(: fderiv : (Number -> Number) -> (Number -> Number));; compute the derivative function of `f'(define (fderiv f) (lambda (x) (deriv f x)))

Now we can try the same in a much easier way:

(plot (fsub (fderiv sin) cos))

More than that — our fderiv could be created from deriv
automatically:

(: currify : (All (A B C) (A B -> C) -> (A -> B -> C)));; convert a double-argument function to a curried one(define (currify f) (lambda (x) (lambda (y) (f x y))))(: fderiv : (Number -> Number) -> (Number -> Number));; compute the derivative function of `f'(define fderiv (currify deriv))

Same principle with fsub: we can write a function that converts a
binary arithmetical function into a function that operates on unary
numeric function. But to make things more readable we can define new
types for unary and binary numeric functions:

(define-type UnaryFun = (Number -> Number))(define-type BinaryFun = (Number Number -> Number))(: binop->fbinop : BinaryFun -> (UnaryFun UnaryFun -> UnaryFun));; turns an arithmetic binary operator to a function operator(define (binop->fbinop op) (lambda (f g) (lambda (x) (op (f x) (g x)))))(: fsub : UnaryFun UnaryFun -> UnaryFun);; functional pointwise subtraction(define fsub (binop->fbinop -))

We can do this with anything — developing a rich library of functions
and functionals (functions over functions) is extremely easy… Here’s
a pretty extensive yet very short library of functions:

#lang pl untyped(define (currify f) (lambda (x) (lambda (y) (f x y))))(define (binop->fbinop op) (lambda (f g) (lambda (x) (op (f x) (g x)))))(define (compose f g) (lambda (x) (f (g x))))(define dx 0.01)(define (deriv f x) (/ (- (f (+ x dx)) (f x)) dx))(define (integrate f x) (define over (if (< x 0) < >)) (define step (if (< x 0) - +)) (define add (if (< x 0) - +)) (define (loop y acc) (if (over y x) (* acc dx) (loop (step y dx) (add acc (f y))))) (loop 0 0))(define fadd (binop->fbinop +))(define fsub (binop->fbinop -))(define fmul (binop->fbinop *))(define fdiv (binop->fbinop /))(define fderiv (currify deriv))(define fintegrate (currify integrate));; ...

This is written in the “untyped dialect” of the class language, but it
should be easy now to add the types.

Examples:

;; want to verify that `integrate' is the opposite of `deriv':;; take a function, subtract it from its derivative's integral(plot (fsub sin (fintegrate (fderiv sin))));; want to magnify the errors? -- here's how you magnify:(plot (compose ((currify *) 5) sin));; so:(plot (compose ((currify *) 20) (fsub sin (fintegrate (fderiv sin)))))

Side-note: “Point-Free” combinatorsTuesday, January 31st

Forming functions without using lambda (or an implicit lambda
using a define syntactic sugar) is called point-free style. It’s
especially popular in Haskell, where it is easier to form functions
this way because of implicit currying and a large number of higher
level function combinators. If used too much, it can easily lead to
obfuscated code.

All of this is similar to run-time code generation, but not really. The
only thing that fderiv does is take a function and store it somewhere
in the returned function, then when that function receives a number, it
uses the stored function and send it to deriv with the number. We could
simply write deriv as what fderiv is — which is the real
derivative function:

(define (deriv f) (lambda (x) (/ (- (f (+ x dx)) (f x)) dx)))

but again, this is not faster or slower than the plain deriv.
However, there are some situations where we can do some of the
computation on the first-stage argument, saving work from the second
stage. Here is a cooked-to-exaggeration example — we want a function
that receives two inputs x, y and returns fib(x)*y, but we must
use a stupid fib:

(define (fib n) (if (<= n 1) n (+ (fib (- n 1)) (fib (- n 2)))))

The function we want is:

(define (bogus x y) (* (fib x) y))

If we currify it as usual (or just use currify), we get:

(define (bogus x) (lambda (y) (* (fib x) y)))

And try this several times:

(define bogus24 (bogus 24))(map bogus24 '(1 2 3 4 5))

But in the definition of bogus, notice that (fib x) does not depend
on y — so we can rewrite it a little differently:

(define (bogus x) (let ([fibx (fib x)]) (lambda (y) (* fibx y))))

and trying the above again is much faster now:

(define bogus24 (bogus 24))(map bogus24 '(1 2 3 4 5))

Substitution CachesTuesday, January 31st

PLAI §5 (called “deferred substitutions” there)

Evaluating using substitutions is very inefficient — at each scope, we
copy a piece of the program AST. This includes all function calls which
implies an impractical cost (function calls should be cheap!).

To get over this, we want to use a cache of substitutions.

Basic idea: we begin evaluating with no cached substitutions, then
collect them as we encounter bindings.

Implies another change for our evaluator: we don’t really substitute
cache at that
point.

Implementation of Cache FunctionalityTuesday, January 31st

First, we need a type for a substitution cache. For this we will use a
list of lists of two elements each — a name and its value FLANG:

;; a type for substitution caches:(define-type SubstCache = (Listof (List Symbol FLANG)))

We need to have an empty substitution cache, a way to extend it, and a
way to look things up:

(: empty-subst : SubstCache)(define empty-subst null)(: extend : Symbol FLANG SubstCache -> SubstCache);; extend a given substitution cache with a new mapping(define (extend id expr sc) (cons (list id expr) sc))(: lookup : Symbol SubstCache -> FLANG);; lookup a symbol in a substitution cache, return the value it is;; bound to (or throw an error if it isn't bound)(define (lookup name sc) (cond [(null? sc) (error 'lookup "no binding for ~s" name)] [(eq? name (first (first sc))) (second (first sc))] [else (lookup name (rest sc))]))

Actually, the reason to use such list of lists is that Racket has a
built-in function called assq that will do this kind of search (assq
is a search in an association list using eq? for the key comparison).
This is a version of lookup that uses assq:

(define (lookup name sc) (let ([cell (assq name sc)]) (if cell (second cell) (error 'lookup "no binding for ~s" name))))

Formal Rules for Cached SubstitutionsTuesday, January 31st

The formal evaluation rules are now different. Evaluation carries along
a substitution cache that begins its life as empty: so eval needs an
extra argument. We begin by writing the rules that deal with the cache,
and use the above function names for simplicity — the behavior of the
three definitions can be summed up in a single rule for lookup:

lookup(x,empty-subst) = error!lookup(x,extend(x,E,sc)) = Elookup(x,extend(y,E,sc)) = lookup(x,sc) if `x' is not `y'

And now we can write the new rules for eval

eval(N,sc) = Neval({+ E1 E2},sc) = eval(E1,sc) + eval(E2,sc)eval({- E1 E2},sc) = eval(E1,sc) - eval(E2,sc)eval({* E1 E2},sc) = eval(E1,sc) * eval(E2,sc)eval({/ E1 E2},sc) = eval(E1,sc) / eval(E2,sc)eval(x,sc) = lookup(x,sc)eval({with {x E1} E2},sc) = eval(E2,extend(x,eval(E1,sc),sc))eval({fun {x} E},sc) = {fun {x} E}eval({call E1 E2},sc) = eval(Ef,extend(x,eval(E2,sc),sc)) if eval(E1,sc) = {fun {x} Ef} = error! otherwise

Note that there is no mention of subst — the whole point is that we
don’t really do substitution, but use the cache instead. The lookup
rules, and the places where extend is used replaces subst, and
therefore specifies our scoping rules.

Also note that the rule for call is still very similar to the rule for
with, but it looks like we have lost something — the interesting bit
with substituting into fun expressions.

Evaluating with Substitution CachesTuesday, February 7th

Implementing the new eval is easy now — it is extended in the same
way that the formal eval rule is extended:

(: eval : FLANG SubstCache -> FLANG);; evaluates FLANG expressions by reducing them to expressions(define (eval expr sc) (cases expr [(Num n) expr] [(Add l r) (arith-op + (eval l sc) (eval r sc))] [(Sub l r) (arith-op - (eval l sc) (eval r sc))] [(Mul l r) (arith-op * (eval l sc) (eval r sc))] [(Div l r) (arith-op / (eval l sc) (eval r sc))] [(With bound-id named-expr bound-body) (eval bound-body (extend bound-id (eval named-expr sc) sc))] [(Id name) (lookup name sc)] [(Fun bound-id bound-body) expr] [(Call fun-expr arg-expr) (let ([fval (eval fun-expr sc)]) (cases fval [(Fun bound-id bound-body) (eval bound-body (extend bound-id (eval arg-expr sc) sc))] [else (error 'eval "`call' expects a function, got: ~s" fval)]))]))

Again, note that we don’t need subst anymore, but the rest of the code
(the data type definition, parsing, and arith-op) is exactly the same.

Finally, we need to make sure that eval is initially called with an
empty cache. This is easy to change in our main run entry point:

(: run : String -> Number);; evaluate a FLANG program contained in a string(define (run str) (let ([result (eval (parse str) empty-subst)]) (cases result [(Num n) n] [else (error 'run "evaluation returned a non-number: ~s" result)])))

The full code (including the same tests, but not including formal rules
for now) follows. Note that one test does not pass.

#lang pl(define-type FLANG [Num Number] [Add FLANG FLANG] [Sub FLANG FLANG] [Mul FLANG FLANG] [Div FLANG FLANG] [Id Symbol] [With Symbol FLANG FLANG] [Fun Symbol FLANG] [Call FLANG FLANG])(: parse-sexpr : Sexpr -> FLANG);; parses s-expressions into FLANGs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(symbol: name) (Id name)] [(cons 'with more) (match sexpr [(list 'with (list (symbol: name) named) body) (With name (parse-sexpr named) (parse-sexpr body))] [else (error 'parse-sexpr "bad `with' syntax in ~s" sexpr)])] [(cons 'fun more) (match sexpr [(list 'fun (list (symbol: name)) body) (Fun name (parse-sexpr body))] [else (error 'parse-sexpr "bad `fun' syntax in ~s" sexpr)])] [(list '+ lhs rhs) (Add (parse-sexpr lhs) (parse-sexpr rhs))] [(list '- lhs rhs) (Sub (parse-sexpr lhs) (parse-sexpr rhs))] [(list '* lhs rhs) (Mul (parse-sexpr lhs) (parse-sexpr rhs))] [(list '/ lhs rhs) (Div (parse-sexpr lhs) (parse-sexpr rhs))] [(list 'call fun arg) (Call (parse-sexpr fun) (parse-sexpr arg))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))(: parse : String -> FLANG);; parses a string containing a FLANG expression to a FLANG AST(define (parse str) (parse-sexpr (string->sexpr str)));; a type for substitution caches:(define-type SubstCache = (Listof (List Symbol FLANG)))(: empty-subst : SubstCache)(define empty-subst null)(: extend : Symbol FLANG SubstCache -> SubstCache);; extend a given substitution cache with a new mapping(define (extend name val sc) (cons (list name val) sc))(: lookup : Symbol SubstCache -> FLANG);; lookup a symbol in a substitution cache, return the value it is;; bound to (or throw an error if it isn't bound)(define (lookup name sc) (let ([cell (assq name sc)]) (if cell (second cell) (error 'lookup "no binding for ~s" name))))(: Num->number : FLANG -> Number);; convert a FLANG number to a Racket one(define (Num->number e) (cases e [(Num n) n] [else (error 'arith-op "expected a number, got: ~s" e)]))(: arith-op : (Number Number -> Number) FLANG FLANG -> FLANG);; gets a Racket numeric binary operator, and uses it within a FLANG;; `Num' wrapper(define (arith-op op expr1 expr2) (Num (op (Num->number expr1) (Num->number expr2))))(: eval : FLANG SubstCache -> FLANG);; evaluates FLANG expressions by reducing them to expressions(define (eval expr sc) (cases expr [(Num n) expr] [(Add l r) (arith-op + (eval l sc) (eval r sc))] [(Sub l r) (arith-op - (eval l sc) (eval r sc))] [(Mul l r) (arith-op * (eval l sc) (eval r sc))] [(Div l r) (arith-op / (eval l sc) (eval r sc))] [(With bound-id named-expr bound-body) (eval bound-body (extend bound-id (eval named-expr sc) sc))] [(Id name) (lookup name sc)] [(Fun bound-id bound-body) expr] [(Call fun-expr arg-expr) (let ([fval (eval fun-expr sc)]) (cases fval [(Fun bound-id bound-body) (eval bound-body (extend bound-id (eval arg-expr sc) sc))] [else (error 'eval "`call' expects a function, got: ~s" fval)]))]))(: run : String -> Number);; evaluate a FLANG program contained in a string(define (run str) (let ([result (eval (parse str) empty-subst)]) (cases result [(Num n) n] [else (error 'run "evaluation returned a non-number: ~s" result)])));; tests(test (run "{call {fun {x} {+ x 1}} 4}") => 5)(test (run "{with {add3 {fun {x} {+ x 3}}} {call add3 1}}") => 4)(test (run "{with {add3 {fun {x} {+ x 3}}} {with {add1 {fun {x} {+ x 1}}} {with {x 3} {call add1 {call add3 x}}}}}") => 7)(test (run "{with {identity {fun {x} x}} {with {foo {fun {x} {+ x 1}}} {call {call identity foo} 123}}}") => 124)(test (run "{call {with {x 3} {fun {y} {+ x y}}} 4}") => 7)(test (run "{with {x 3} {with {f {fun {y} {+ x y}}} {with {x 5} {call f 4}}}}") => "???")(test (run "{call {call {fun {x} {call x 1}} {fun {x} {fun {y} {+ x y}}}} 123}") => 124)

Dynamic and Lexical ScopesTuesday, February 7th

This seems like it should work, and it even worked on a few examples,
except for one which was hard to follow. Seems like we have a bug…

Now we get to a tricky issue that managed to be a problem for lots of
language implementors, including the first version of Lisp. Lets try to
run the following expression — try to figure out what it will evaluate
to:

(run "{with {x 3} {with {f {fun {y} {+ x y}}} {with {x 5} {call f 4}}}}")

We expect it to return 7 (at least I do!), but we get 9 instead…
The question is — should it return 9?

What we have arrived to is called dynamic scope. Scope is determined
by the dynamic run-time environment (which is represented by our
substitution cache). This is almost always undesirable, as I hope to
convince you.

Before we start, we define two options for a programming language:

	
Static Scope (also called Lexical Scope): In a language with static
scope, each identifier gets its value from the scope of its
definition, not its use.

	
Dynamic Scope: In a language with dynamic scope, each identifier gets
its value from the scope of its use, not its definition.

Racket uses lexical scope, our new evaluator uses dynamic, the old
substitution-based evaluator was static etc.

As a side-remark, Lisp began its life as a dynamically-scoped language.
The artifacts of this were (sort-of) dismissed as an implementation bug.
When Scheme was introduced, it was the first Lisp dialect that used
strictly lexical scoping, and Racket is obviously doing the same. (Some
Lisp implementations used dynamic scope for interpreted code and lexical
scope for compiled code!) In fact, Emacs Lisp is the only live
dialects of Lisp that is still dynamically scoped by default. Too see
this, compare a version of the above code in Racket:

(let ((x 3)) (let ((f (lambda (y) (+ x y)))) (let ((x 5)) (f 4))))

and the Emacs Lisp version (which looks almost the same):

(let ((x 3)) (let ((f (lambda (y) (+ x y)))) (let ((x 5)) (funcall f 4))))

which also happens when we use another function on the way:

(defun blah (func val) (funcall func val))(let ((x 3)) (let ((f (lambda (y) (+ x y)))) (let ((x 5)) (blah f 4))))

and note that renaming identifiers can lead to different code — change
that val to x:

(defun blah (func x) (funcall func x))(let ((x 3)) (let ((f (lambda (y) (+ x y)))) (let ((x 5)) (blah f 4))))

and you get 8 because the argument name changed the x that the
internal function sees!

Consider also this Emacs Lisp function:

(defun return-x () x)

which has no meaning by itself (x is unbound),

(return-x)

but can be given a dynamic meaning using a let:

(let ((x 5)) (return-x))

or a function application:

(defun foo (x) (return-x))(foo 5)

There is also a dynamically-scoped language in the course languages:

#lang pl dynamic(define x 123)(define (getx) x)(define (bar1 x) (getx))(define (bar2 y) (getx))(test (getx) => 123)(test (let ([x 456]) (getx)) => 456)(test (getx) => 123)(test (bar1 999) => 999)(test (bar2 999) => 123)(define (foo x) (define (helper) (+ x 1)) helper)(test ((foo 0)) => 124);; and *much* worse:(define (add x y) (+ x y))(test (let ([+ *]) (add 6 7)) => 42)

Note how bad the last example gets: you basically cannot call any
function and know in advance what it will do.

There are some cases where dynamic scope can be useful in that it allows
you to “remotely” customize any piece of code. A good example of where
this is taken to an extreme is Emacs: originally, it was based on an
ancient Lisp dialect that was still dynamically scoped, but it retained
this feature even when practically all Lisp dialects moved on to having
lexical scope by default. The reason for this is that the danger of
dynamic scope is also a way to make a very open system where almost
anything can be customized by changing it “remotely”. Here’s a concrete
example for a similar kind of dynamic scope usage that makes a very
hackable and open system:

#lang pl dynamic(define tax% 6.5)(define (with-tax n) (+ n (* n (/ tax% 100))))(with-tax 10) ; how much do we pay?(let ([tax% 18.0]) (with-tax 10)) ; how much would we pay in Israel?;; make that into a function(define il-tax% 18.0)(define (us-over-il-saving n) (- (let ([tax% il-tax%]) (with-tax n)) (with-tax n)))(us-over-il-saving 10);; can even control that: how much would we save if;; the tax in israel went down one percent?(let ([il-tax% (- il-tax% 1)]) (us-over-il-saving 10))

Obviously, this power to customize everything is also the main source of
problems with getting no guarantees for code. A common way to get the
best of both worlds is to have controllable dynamic scope. For
example, Common Lisp also has lexical scope everywhere by default, but
some variables can be declared as special, which means that they are
dynamically scoped. The main problem with that is that you can’t tell
when a variable is special by just looking at the code that uses it, so
a more popular approach is the one that is used in Racket: all bindings
are always lexically scoped, but there are parameters which are a kind
of dynamically scoped value containers — but they are bound to plain
(lexically scoped) identifiers. Here’s the same code as above,
translated to Racket with parameters:

#lang racket(define tax% (make-parameter 6.5)) ; create the dynamic container(define (with-tax n) (+ n (* n (/ (tax%) 100)))) ; note how its value is accessed(with-tax 10) ; how much do we pay?(parameterize ([tax% 18.0]) (with-tax 10)) ; not a `let';; make that into a function(define il-tax% (make-parameter 18.0))(define (us-over-il-saving n) (- (parameterize ([tax% (il-tax%)]) (with-tax n)) (with-tax n)))(us-over-il-saving 10)(parameterize ([il-tax% (- (il-tax%) 1)]) (us-over-il-saving 10))

The main point here is that the points where a dynamically scoped value
is used are under the programmer’s control — you cannot “customize”
what - is doing, for example. This gives us back the guarantees that
we like to have (= that code works), but of course these points are
pre-determined, unlike an environment where everything can be customized
including things that are unexpectedly useful.

As a side-note, after many decades of debating this, Emacs has finally
added lexical scope in its core language, but this is still determined
by a flag — a global lexical-binding variable.

Dynamic versus Lexical ScopeTuesday, February 7th

And back to the discussion of whether we should use dynamic or lexical
scope:

	
The most important fact is that we want to view programs as executed
by the normal substituting evaluator. Our original motivation was to
optimize evaluation only — not to change the semantics! It
follows that we want the result of this optimization to behave in the
same way. All we need is to evaluate:

(run "{with {x 3} {with {f {fun {y} {+ x y}}} {with {x 5} {call f 4}}}}")

in the original evaluator to get convinced that 7 should be the
correct result (note also that the same code, when translated into
Racket, evaluates to 7).

(Yet, this is a very important optimization, which without it lots of
programs become too slow to be feasible, so you might claim that
you’re fine with the modified semantics…)

	
It does not allow using functions as objects, for example, we have
seen that we have a functional representation for pairs:

(define (kons x y) (lambda (n) (match n ['first x] ['second y] [else (error ...)])))(define my-pair (kons 1 2))

If this is evaluated in a dynamically-scoped language, we do get a
function as a result, but the values bound to x and y are now
gone! Using the substitution model we substituted these values in,
but now they were only held in a cache which no has no entries for
them…

In the same way, currying would not work, our nice deriv function
would not work etc etc etc.

	
Makes reasoning impossible, because any piece of code behaves in a way
that cannot be predicted until run-time. For example, if dynamic
scoping was used in Racket, then you wouldn’t be able to know what
this function is doing:

(define (foo) x)

As it is, it will cause a run-time error, but if you call it like
this:

(let ([x 1]) (foo))

then it will return 1, and if you later do this:

(define (bar x) (foo))(let ([x 1]) (bar 2))

then you would get 2!

These problems can be demonstrated in Emacs Lisp too, but Racket goes
one step further — it uses the same rule for evaluating a function
as well as its values (Lisp uses a different name-space for
functions). Because of this, you cannot even rely on the following
function:

(define (add x y) (+ x y))

to always add x and y! — A similar example to the above:

(let ([+ -]) (add 1 2))

would return -1!

	
Many so-called “scripting” languages begin their lives with dynamic
scoping. The main reason, as we’ve seen, is that implementing it is
extremely simple (no, nobody does substitution in the real world!
(Well, almost nobody…)).

Another reason is that these problems make life impossible if you want
to use functions as object like you do in Racket, so you notice them
very fast — but in a normal language without first-class
functions, problems are not as obvious.

	
For example, bash has local variables, but they have dynamic scope:

x="the global x"print_x() { echo "The current value of x is \"$x\""; }foo() { local x="x from foo"; print_x; }print_x; foo; print_x

Perl began its life with dynamic scope for variables that are declared
local:

$x="the global x";sub print_x { print "The current value of x is \"$x\"\n"; }sub foo { local($x); $x="x from foo"; print_x; }print_x; foo; print_x;

When faced with this problem, “the Perl way” was, obviously, not to
remove or fix features, but to pile them up — so local still
behaves in this way, and now there is a my declaration which
achieves proper lexical scope (and every serious Perl programmer knows
that you should always use my)…

There are other examples of languages that changed, and languages that
want to change (e.g, nobody likes dynamic scope in Emacs Lisp, but
there’s just too much code now).

	
This is still a tricky issue, like any other issue with bindings. For
example, googling got me quickly to a Python blog post which is
confused about what “dynamic scoping” is… It claims that Python
uses dynamic scope (Search for “Python uses dynamic as opposed to
lexical scoping”), yet python always used lexical scope rules, as can
be seen by translating their code to Racket (ignore side-effects in
this computation):

(define (orange-juice) (* x 2))(define x 3)(define y (orange-juice)) ; y is now 6(define x 1)(define y (orange-juice)) ; y is now 2

or by trying this in Python:

def orange_juice(): return x*2def foo(x): return orange_juice()foo(2)

The real problem of python (pre 2.1, and pre 2.2 without the funny

from __future__ import nested_scope

line) is that it didn’t create closures, which we will talk about
shortly.

	
Another example, which is an indicator of how easy it is to mess up
your scope is the following Ruby bug — running in irb:

% irbirb(main):001:0> x = 0=> 0irb(main):002:0> lambda{|x| x}.call(5)=> 5irb(main):003:0> x=> 5

(This is a bug due to weird scoping rules for variables, which was
fixed in newer versions of Ruby. See this Ruby rant for details, or
read about Ruby and the principle of unwelcome surprise for
additional gems.

	
Another thing to consider is the fact that compilation is something
that you do based only on the lexical structure of programs, since
compilers never actually run code. This means that dynamic scope
makes compilation close to impossible.

	
There are some advantages for dynamic scope too. Two notable ones
are:

	
Dynamic scope makes it easy to have a “configuration variable”
easily change for the extend of a calling piece of code (this is
used extensively in Emacs, for example). The thing is that usually
we want to control which variables are “configurable” in this way,
statically scoped languages like Racket often choose a separate
facility for these. To rephrase the problem of dynamic scoping,
it’s that all variables are modifiable.

The same can be said about functions: it is sometimes desirable to
change a function dynamically (for example, see “Aspect Oriented
Programming”), but if there is no control and all functions can
change, we get a world where no code can every be reliable.

	
It makes recursion immediately available — for example,

{with {f {fun {x} {call f x}}} {call f 0}}

is an infinite loop with a dynamically scoped language. But in a
lexically scoped language we will need to do some more work to get
recursion going.

Implementing Lexical Scope: Closures and EnvironmentsTuesday, February 7th

So how do we fix this?

Lets go back to the root of the problem: the new evaluator does not
behave in the same way as the substituting evaluator. In the old
evaluator, it was easy to see how functions can behave as objects that
remember values. For example, when we do this:

{with {x 1} {fun {y} {+ x y}}}

the result was a function value, which actually was the syntax object
for this:

{fun {y} {+ 1 y}}

Now if we call this function from someplace else like:

{with {f {with {x 1} {fun {y} {+ x y}}}} {with {x 2} {call f 3}}}

it is clear what the result will be: f is bound to a function that adds
1 to its input, so in the above the later binding for x has no effect
at all.

But with the caching evaluator, the value of

{with {x 1} {fun {y} {+ x y}}}

is simply:

{fun {y} {+ x y}}

and there is no place where we save the 1 — that’s the root of our
problem. (That’s also what makes people suspect that using lambda in
Racket and any other functional language involves some inefficient
code-recompiling magic.) In fact, we can verify that by inspecting the
returned value, and see that it does contain a free identifier.

Clearly, we need to create an object that contains the body and the
argument list, like the function syntax object — but we don’t do any
substitution, so in addition to the body an argument name(s) we need to
remember that we still need to substitute x by 1 . This means that
the pieces of information we need to know are:

- formal argument(s): {y}- body: {+ x y}- pending substitutions: [1/x]

and that last bit has the missing 1. The resulting object is called a
closure because it closes the function body over the substitutions
that are still pending (its environment).

So, the first change is in the value of functions which now need all
these pieces, unlike the Fun case for the syntax object.

A second place that needs changing is the when functions are called.
When we’re done evaluating the call arguments (the function value and
the argument value) but before we apply the function we have two
values — there is no more use for the current substitution cache at
this point: we have finished dealing with all substitutions that were
necessary over the current expression — we now continue with
evaluating the body of the function, with the new substitutions for the
formal arguments and actual values given. But the body itself is the
same one we had before — which is the previous body with its suspended
substitutions that we still did not do.

Rewrite the evaluation rules — all are the same except for evaluating
a fun form and a call form:

eval(N,sc) = Neval({+ E1 E2},sc) = eval(E1,sc) + eval(E2,sc)eval({- E1 E2},sc) = eval(E1,sc) - eval(E2,sc)eval({* E1 E2},sc) = eval(E1,sc) * eval(E2,sc)eval({/ E1 E2},sc) = eval(E1,sc) / eval(E2,sc)eval(x,sc) = lookup(x,sc)eval({with {x E1} E2},sc) = eval(E2,extend(x,eval(E1,sc),sc))eval({fun {x} E},sc) = <{fun {x} E}, sc>eval({call E1 E2},sc1) = eval(Ef,extend(x,eval(E2,sc1),sc2)) if eval(E1,sc1) = <{fun {x} Ef}, sc2> = error! otherwise

As a side note, these substitution caches are a little more than “just a
cache” now — they actually hold an environment of substitutions in
which expression should be evaluated. So we will switch to the common
environment name now.:

eval(N,env) = Neval({+ E1 E2},env) = eval(E1,env) + eval(E2,env)eval({- E1 E2},env) = eval(E1,env) - eval(E2,env)eval({* E1 E2},env) = eval(E1,env) * eval(E2,env)eval({/ E1 E2},env) = eval(E1,env) / eval(E2,env)eval(x,env) = lookup(x,env)eval({with {x E1} E2},env) = eval(E2,extend(x,eval(E1,env),env))eval({fun {x} E},env) = <{fun {x} E}, env>eval({call E1 E2},env1) = eval(Ef,extend(x,eval(E2, env1),env2)) if eval(E1,env1) = <{fun {x} Ef}, env2> = error! otherwise

In case you find this easier to follow, the “flat algorithm” for
evaluating a call is:

1. f := evaluate E1 in env12. if f is not a <{fun ...},...> closure then error!3. x := evaluate E2 in env14. new_env := extend env_of(f) by mapping arg_of(f) to x5. evaluate (and return) body_of(f) in new_env

Note how the scoping rules that are implied by this definition match the
scoping rules that were implied by the substitution-based rules. (It
should be possible to prove that they are the same.)

The changes to the code are almost trivial, except that we need a way to
represent <{fun {x} Ef}, env> pairs.

The implication of this change is that we now cannot use the same type
for function syntax and function values since function values have more
than just syntax. There is a simple solution to this — we never do
any substitutions now, so we don’t need to translate values into
expressions — we can come up with a new type for values, separate from
the type of abstract syntax trees.

When we do this, we will also fix our hack of using FLANG as the type of
values: this was merely a convenience since the AST type had cases for
all kinds of values that we needed. (In fact, you should have noticed
that Racket does this too: numbers, strings, booleans, etc are all used
by both programs and syntax representation (s-expressions) — but note
that function values are not used in syntax.) We will now implement a
separate VAL type for runtime values.

First, we need now a type for such environments — we can use Listof
for this:

;; a type for environments:(define-type ENV = (Listof (List Symbol VAL)))

but we can just as well define a new type for environment values:

(define-type ENV [EmptyEnv] [Extend Symbol VAL ENV])

Reimplementing lookup is now simple:

(: lookup : Symbol ENV -> VAL);; lookup a symbol in an environment, return its value or throw an;; error if it isn't bound(define (lookup name env) (cases env [(EmptyEnv) (error 'lookup "no binding for ~s" name)] [(Extend id val rest-env) (if (eq? id name) val (lookup name rest-env))]))

… we don’t need extend because we get Extend from the type
definition, and we also get (EmptyEnv) instead of empty-subst.

We now use this with the new type for values — two variants of these:

(define-type VAL [NumV Number] [FunV Symbol FLANG ENV]) ; arg-name, body, scope

And now the new implementation of eval which uses the new type and
implements lexical scope:

(: eval : FLANG ENV -> VAL);; evaluates FLANG expressions by reducing them to values(define (eval expr env) (cases expr [(Num n) (NumV n)] [(Add l r) (arith-op + (eval l env) (eval r env))] [(Sub l r) (arith-op - (eval l env) (eval r env))] [(Mul l r) (arith-op * (eval l env) (eval r env))] [(Div l r) (arith-op / (eval l env) (eval r env))] [(With bound-id named-expr bound-body) (eval bound-body (Extend bound-id (eval named-expr env) env))] [(Id name) (lookup name env)] [(Fun bound-id bound-body) (FunV bound-id bound-body env)] [(Call fun-expr arg-expr) (let ([fval (eval fun-expr env)]) (cases fval [(FunV bound-id bound-body f-env) (eval bound-body (Extend bound-id (eval arg-expr env) f-env))] [else (error 'eval "`call' expects a function, got: ~s" fval)]))]))

We also need to update arith-op to use VAL objects. The full code
follows — it now passes all tests, including the example that we used
to find the problem.

[bookmark: flang-env.rkt]▶;; The Flang interpreter, using environments#lang pl#|The grammar: <FLANG> ::= <num> | { + <FLANG> <FLANG> } | { - <FLANG> <FLANG> } | { * <FLANG> <FLANG> } | { / <FLANG> <FLANG> } | { with { <id> <FLANG> } <FLANG> } | <id> | { fun { <id> } <FLANG> } | { call <FLANG> <FLANG> }Evaluation rules: eval(N,env) = N eval({+ E1 E2},env) = eval(E1,env) + eval(E2,env) eval({- E1 E2},env) = eval(E1,env) - eval(E2,env) eval({* E1 E2},env) = eval(E1,env) * eval(E2,env) eval({/ E1 E2},env) = eval(E1,env) / eval(E2,env) eval(x,env) = lookup(x,env) eval({with {x E1} E2},env) = eval(E2,extend(x,eval(E1,env),env)) eval({fun {x} E},env) = <{fun {x} E}, env> eval({call E1 E2},env1) = eval(Ef,extend(x,eval(E2,env1),env2)) if eval(E1,env1) = <{fun {x} Ef}, env2> = error! otherwise|#(define-type FLANG [Num Number] [Add FLANG FLANG] [Sub FLANG FLANG] [Mul FLANG FLANG] [Div FLANG FLANG] [Id Symbol] [With Symbol FLANG FLANG] [Fun Symbol FLANG] [Call FLANG FLANG])(: parse-sexpr : Sexpr -> FLANG);; parses s-expressions into FLANGs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(symbol: name) (Id name)] [(cons 'with more) (match sexpr [(list 'with (list (symbol: name) named) body) (With name (parse-sexpr named) (parse-sexpr body))] [else (error 'parse-sexpr "bad `with' syntax in ~s" sexpr)])] [(cons 'fun more) (match sexpr [(list 'fun (list (symbol: name)) body) (Fun name (parse-sexpr body))] [else (error 'parse-sexpr "bad `fun' syntax in ~s" sexpr)])] [(list '+ lhs rhs) (Add (parse-sexpr lhs) (parse-sexpr rhs))] [(list '- lhs rhs) (Sub (parse-sexpr lhs) (parse-sexpr rhs))] [(list '* lhs rhs) (Mul (parse-sexpr lhs) (parse-sexpr rhs))] [(list '/ lhs rhs) (Div (parse-sexpr lhs) (parse-sexpr rhs))] [(list 'call fun arg) (Call (parse-sexpr fun) (parse-sexpr arg))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))(: parse : String -> FLANG);; parses a string containing a FLANG expression to a FLANG AST(define (parse str) (parse-sexpr (string->sexpr str)));; Types for environments, values, and a lookup function(define-type ENV [EmptyEnv] [Extend Symbol VAL ENV])(define-type VAL [NumV Number] [FunV Symbol FLANG ENV])(: lookup : Symbol ENV -> VAL);; lookup a symbol in an environment, return its value or throw an;; error if it isn't bound(define (lookup name env) (cases env [(EmptyEnv) (error 'lookup "no binding for ~s" name)] [(Extend id val rest-env) (if (eq? id name) val (lookup name rest-env))]))(: NumV->number : VAL -> Number);; convert a FLANG runtime numeric value to a Racket one(define (NumV->number val) (cases val [(NumV n) n] [else (error 'arith-op "expected a number, got: ~s" val)]))(: arith-op : (Number Number -> Number) VAL VAL -> VAL);; gets a Racket numeric binary operator, and uses it within a NumV;; wrapper(define (arith-op op val1 val2) (NumV (op (NumV->number val1) (NumV->number val2))))(: eval : FLANG ENV -> VAL);; evaluates FLANG expressions by reducing them to values(define (eval expr env) (cases expr [(Num n) (NumV n)] [(Add l r) (arith-op + (eval l env) (eval r env))] [(Sub l r) (arith-op - (eval l env) (eval r env))] [(Mul l r) (arith-op * (eval l env) (eval r env))] [(Div l r) (arith-op / (eval l env) (eval r env))] [(With bound-id named-expr bound-body) (eval bound-body (Extend bound-id (eval named-expr env) env))] [(Id name) (lookup name env)] [(Fun bound-id bound-body) (FunV bound-id bound-body env)] [(Call fun-expr arg-expr) (let ([fval (eval fun-expr env)]) (cases fval [(FunV bound-id bound-body f-env) (eval bound-body (Extend bound-id (eval arg-expr env) f-env))] [else (error 'eval "`call' expects a function, got: ~s" fval)]))]))(: run : String -> Number);; evaluate a FLANG program contained in a string(define (run str) (let ([result (eval (parse str) (EmptyEnv))]) (cases result [(NumV n) n] [else (error 'run "evaluation returned a non-number: ~s" result)])));; tests(test (run "{call {fun {x} {+ x 1}} 4}") => 5)(test (run "{with {add3 {fun {x} {+ x 3}}} {call add3 1}}") => 4)(test (run "{with {add3 {fun {x} {+ x 3}}} {with {add1 {fun {x} {+ x 1}}} {with {x 3} {call add1 {call add3 x}}}}}") => 7)(test (run "{with {identity {fun {x} x}} {with {foo {fun {x} {+ x 1}}} {call {call identity foo} 123}}}") => 124)(test (run "{with {x 3} {with {f {fun {y} {+ x y}}} {with {x 5} {call f 4}}}}") => 7)(test (run "{call {with {x 3} {fun {y} {+ x y}}} 4}") => 7)(test (run "{call {call {fun {x} {call x 1}} {fun {x} {fun {y} {+ x y}}}} 123}") => 124)

Fixing an Overlooked BugTuesday, February 7th

Incidentally, this version fixes a bug we had previously in the
substitution version of FLANG:

(run "{with {f {fun {y} {+ x y}}} {with {x 7} {call f 1}}}")

This bug was due to our naive subst, which doesn’t avoid capturing
renames. But note that since that version of the evaluator makes its
way from the outside in, there is no difference in semantics for valid
programs — ones that don’t have free identifiers.

(Reminder: This was not a dynamically scoped language, just a bug that
happened when x wasn’t substituted away before f was replaced with
something that refers to x.)

Lexical Scope using Racket ClosuresTuesday, February 7th

PLAI §11 (without the last part about recursion)

An alternative representation for an environment.

We’ve already seen how first-class functions can be used to implement
“objects” that contain some information. We can use the same idea to
represent an environment. The basic intuition is — an environment is
a mapping (a function) between an identifier and some value. For
example, we can represent the environment that maps 'a to 1 and 'b
to 2 (using just numbers for simplicity) using this function:

(: my-map : Symbol -> Number)(define (my-map id) (cond [(eq? 'a id) 1] [(eq? 'b id) 2] [else (error ...)]))

An empty mapping that is implemented in this way has the same type:

(: empty-mapping : Symbol -> Number)(define (empty-mapping id) (error ...))

We can use this idea to implement our environments: we only need to
define three things — EmptyEnv, Extend, and lookup. If we
manage to keep the contract to these functions intact, we will be able
to simply plug it into the same evaluator code with no other changes.
It will also be more convenient to define ENV as the appropriate
function type for use in the VAL type definition instead of using the
actual type:

;; Define a type for functional environments(define-type ENV = Symbol -> VAL)

Now we get to EmptyEnv — this is expected to be a function that
expects no arguments and creates an empty environment, one that behaves
like the empty-mapping function defined above. We could define it
like this (changing the empty-mapping type to return a VAL):

(define (EmptyEnv) empty-mapping)

but we can skip the need for an extra definition and simply return an
empty mapping function:

(: EmptyEnv : -> ENV)(define (EmptyEnv) (lambda (id) (error ...)))

(The un-Rackety name is to avoid replacing previous code that used the
EmptyEnv name for the constructor that was created by the type
definition.)

The next thing we tackle is lookup. The previous definition that was
used is:

(: lookup : Symbol ENV -> VAL)(define (lookup name env) (cases env [(EmptyEnv) (error 'lookup "no binding for ~s" name)] [(Extend id val rest-env) (if (eq? id name) val (lookup name rest-env))]))

How should it be modified now? Easy — an environment is a mapping: a
Racket function that will do the searching job itself. We don’t need to
modify the contract since we’re still using ENV, except a different
implementation for it. The new definition is:

(: lookup : Symbol ENV -> VAL)(define (lookup name env) (env name))

Note that lookup does almost nothing — it simply delegates the real
work to the env argument. This is a good hint for the error message
that empty mappings should throw —

(: EmptyEnv : -> ENV)(define (EmptyEnv) (lambda (id) (error 'lookup "no binding for ~s" id)))

Finally, Extend — this was previously created by the variant case of
the ENV type definition:

[Extend Symbol VAL ENV]

keeping the same type that is implied by this variant means that the new
Extend should look like this:

(: Extend : Symbol VAL ENV -> ENV)(define (Extend id val rest-env) ...)

The question is — how do we extend a given environment? Well, first,
we know that the result should be mapping — a symbol -> VAL function
that expects an identifier to look for:

(: Extend : Symbol VAL ENV -> ENV)(define (Extend id val rest-env) (lambda (name) ...))

Next, we know that in the generated mapping, if we look for id then
the result should be val:

(: Extend : Symbol VAL ENV -> ENV)(define (Extend id val rest-env) (lambda (name) (if (eq? name id) val ...)))

If the name that we’re looking for is not the same as id, then we
need to search through the previous environment, eg: (lookup name rest).
But we know what lookup does — it simply delegates back to the
mapping function (which is our rest argument), so we can take a direct
route:

(: Extend : Symbol VAL ENV -> ENV)(define (Extend id val rest-env) (lambda (name) (if (eq? name id) val (rest-env name))))

(Note that the last line is simply (lookup name rest-env), but we know
that we have a functional implementation.)

To see how all this works, try out extending an empty environment a few
times and examine the result. For example, the environment that we
began with:

(define (my-map id) (cond [(eq? 'a id) 1] [(eq? 'b id) 2] [else (error ...)]))

behaves in the same way (if the type of values is numbers) as

(Extend 'a 1 (Extend 'b 2 (EmptyEnv)))

The new code is now the same, except for the environment code:

#lang pl#|The grammar: <FLANG> ::= <num> | { + <FLANG> <FLANG> } | { - <FLANG> <FLANG> } | { * <FLANG> <FLANG> } | { / <FLANG> <FLANG> } | { with { <id> <FLANG> } <FLANG> } | <id> | { fun { <id> } <FLANG> } | { call <FLANG> <FLANG> }Evaluation rules: eval(N,env) = N eval({+ E1 E2},env) = eval(E1,env) + eval(E2,env) eval({- E1 E2},env) = eval(E1,env) - eval(E2,env) eval({* E1 E2},env) = eval(E1,env) * eval(E2,env) eval({/ E1 E2},env) = eval(E1,env) / eval(E2,env) eval(x,env) = lookup(x,env) eval({with {x E1} E2},env) = eval(E2,extend(x,eval(E1,env),env)) eval({fun {x} E},env) = <{fun {x} E}, env> eval({call E1 E2},env1) = eval(Ef,extend(x,eval(E2,env1),env2)) if eval(E1,env1) = <{fun {x} Ef}, env2> = error! otherwise|#(define-type FLANG [Num Number] [Add FLANG FLANG] [Sub FLANG FLANG] [Mul FLANG FLANG] [Div FLANG FLANG] [Id Symbol] [With Symbol FLANG FLANG] [Fun Symbol FLANG] [Call FLANG FLANG])(: parse-sexpr : Sexpr -> FLANG);; parses s-expressions into FLANGs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(symbol: name) (Id name)] [(cons 'with more) (match sexpr [(list 'with (list (symbol: name) named) body) (With name (parse-sexpr named) (parse-sexpr body))] [else (error 'parse-sexpr "bad `with' syntax in ~s" sexpr)])] [(cons 'fun more) (match sexpr [(list 'fun (list (symbol: name)) body) (Fun name (parse-sexpr body))] [else (error 'parse-sexpr "bad `fun' syntax in ~s" sexpr)])] [(list '+ lhs rhs) (Add (parse-sexpr lhs) (parse-sexpr rhs))] [(list '- lhs rhs) (Sub (parse-sexpr lhs) (parse-sexpr rhs))] [(list '* lhs rhs) (Mul (parse-sexpr lhs) (parse-sexpr rhs))] [(list '/ lhs rhs) (Div (parse-sexpr lhs) (parse-sexpr rhs))] [(list 'call fun arg) (Call (parse-sexpr fun) (parse-sexpr arg))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))(: parse : String -> FLANG);; parses a string containing a FLANG expression to a FLANG AST(define (parse str) (parse-sexpr (string->sexpr str)));; Types for environments, values, and a lookup function(define-type VAL [NumV Number] [FunV Symbol FLANG ENV]);; Define a type for functional environments(define-type ENV = Symbol -> VAL)(: EmptyEnv : -> ENV)(define (EmptyEnv) (lambda (id) (error 'lookup "no binding for ~s" id)))(: Extend : Symbol VAL ENV -> ENV);; extend a given environment cache with a new binding(define (Extend id val rest-env) (lambda (name) (if (eq? name id) val (rest-env name))))(: lookup : Symbol ENV -> VAL);; lookup a symbol in an environment, return its value or throw an;; error if it isn't bound(define (lookup name env) (env name))(: NumV->number : VAL -> Number);; convert a FLANG runtime numeric value to a Racket one(define (NumV->number val) (cases val [(NumV n) n] [else (error 'arith-op "expected a number, got: ~s" val)]))(: arith-op : (Number Number -> Number) VAL VAL -> VAL);; gets a Racket numeric binary operator, and uses it within a NumV;; wrapper(define (arith-op op val1 val2) (NumV (op (NumV->number val1) (NumV->number val2))))(: eval : FLANG ENV -> VAL);; evaluates FLANG expressions by reducing them to values(define (eval expr env) (cases expr [(Num n) (NumV n)] [(Add l r) (arith-op + (eval l env) (eval r env))] [(Sub l r) (arith-op - (eval l env) (eval r env))] [(Mul l r) (arith-op * (eval l env) (eval r env))] [(Div l r) (arith-op / (eval l env) (eval r env))] [(With bound-id named-expr bound-body) (eval bound-body (Extend bound-id (eval named-expr env) env))] [(Id name) (lookup name env)] [(Fun bound-id bound-body) (FunV bound-id bound-body env)] [(Call fun-expr arg-expr) (let ([fval (eval fun-expr env)]) (cases fval [(FunV bound-id bound-body f-env) (eval bound-body (Extend bound-id (eval arg-expr env) f-env))] [else (error 'eval "`call' expects a function, got: ~s" fval)]))]))(: run : String -> Number);; evaluate a FLANG program contained in a string(define (run str) (let ([result (eval (parse str) (EmptyEnv))]) (cases result [(NumV n) n] [else (error 'run "evaluation returned a non-number: ~s" result)])));; tests(test (run "{call {fun {x} {+ x 1}} 4}") => 5)(test (run "{with {add3 {fun {x} {+ x 3}}} {call add3 1}}") => 4)(test (run "{with {add3 {fun {x} {+ x 3}}} {with {add1 {fun {x} {+ x 1}}} {with {x 3} {call add1 {call add3 x}}}}}") => 7)(test (run "{with {identity {fun {x} x}} {with {foo {fun {x} {+ x 1}}} {call {call identity foo} 123}}}") => 124)(test (run "{with {x 3} {with {f {fun {y} {+ x y}}} {with {x 5} {call f 4}}}}") => 7)(test (run "{call {with {x 3} {fun {y} {+ x y}}} 4}") => 7)(test (run "{call {call {fun {x} {call x 1}} {fun {x} {fun {y} {+ x y}}}} 123}") => 124)

More Closures (on both levels)Tuesday, February 7th

Racket closures (= functions) can be used in other places too, and as we
have seen, they can do more than encapsulate various values — they can
also hold the behavior that is expected of these values.

To demonstrate this we will deal with closures in our language. We
currently use a variant that holds the three pieces of relevant
information:

[FunV Symbol FLANG ENV]

We can replace this by a functional object, which will hold the three
values. First, change the VAL type to hold functions for FunV
values:

(define-type VAL [NumV Number] [FunV (? -> ?)])

And note that the function should somehow encapsulate the same
information that was there previously, the question is how this
information is going to be done, and this will determine the actual
type. This information plays a role in two places in our evaluator —
generating a closure in the Fun case, and using it in the Call case:

[(Fun bound-id bound-body) (FunV bound-id bound-body env)][(Call fun-expr arg-expr) (let ([fval (eval fun-expr env)]) (cases fval [(FunV bound-id bound-body f-env) (eval bound-body ;*** (Extend bound-id ;*** (eval arg-expr env) ;*** f-env))] ;*** [else (error 'eval "`call' expects a function, got: ~s" fval)]))]

we can simply fold the marked functionality bit of Call into a Racket
function that will be stored in a FunV object — this piece of
functionality takes an argument value, extends the closure’s environment
with its value and the function’s name, and continues to evaluate the
function body. Folding all of this into a function gives us:

(lambda (arg-val) (eval bound-body (Extend bound-id arg-val env)))

where the values of bound-body, bound-id, and val are known at the
time that the FunV is constructed. Doing this gives us the
following code for the two cases:

[(Fun bound-id bound-body) (FunV (lambda (arg-val) (eval bound-body (Extend bound-id arg-val env))))][(Call fun-expr arg-expr) (let ([fval (eval fun-expr env)]) (cases fval [(FunV proc) (proc (eval arg-expr env))] [else (error 'eval "`call' expects a function, got: ~s" fval)]))]

And now the type of the function is clear:

(define-type VAL [NumV Number] [FunV (VAL -> VAL)])

And again, the rest of the code is unmodified:

#lang pl(define-type FLANG [Num Number] [Add FLANG FLANG] [Sub FLANG FLANG] [Mul FLANG FLANG] [Div FLANG FLANG] [Id Symbol] [With Symbol FLANG FLANG] [Fun Symbol FLANG] [Call FLANG FLANG])(: parse-sexpr : Sexpr -> FLANG);; parses s-expressions into FLANGs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(symbol: name) (Id name)] [(cons 'with more) (match sexpr [(list 'with (list (symbol: name) named) body) (With name (parse-sexpr named) (parse-sexpr body))] [else (error 'parse-sexpr "bad `with' syntax in ~s" sexpr)])] [(cons 'fun more) (match sexpr [(list 'fun (list (symbol: name)) body) (Fun name (parse-sexpr body))] [else (error 'parse-sexpr "bad `fun' syntax in ~s" sexpr)])] [(list '+ lhs rhs) (Add (parse-sexpr lhs) (parse-sexpr rhs))] [(list '- lhs rhs) (Sub (parse-sexpr lhs) (parse-sexpr rhs))] [(list '* lhs rhs) (Mul (parse-sexpr lhs) (parse-sexpr rhs))] [(list '/ lhs rhs) (Div (parse-sexpr lhs) (parse-sexpr rhs))] [(list 'call fun arg) (Call (parse-sexpr fun) (parse-sexpr arg))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))(: parse : String -> FLANG);; parses a string containing a FLANG expression to a FLANG AST(define (parse str) (parse-sexpr (string->sexpr str)));; Types for environments, values, and a lookup function(define-type VAL [NumV Number] [FunV (VAL -> VAL)]);; Define a type for functional environments(define-type ENV = Symbol -> VAL)(: EmptyEnv : -> ENV)(define (EmptyEnv) (lambda (id) (error 'lookup "no binding for ~s" id)))(: Extend : Symbol VAL ENV -> ENV);; extend a given environment cache with a new binding(define (Extend id val rest-env) (lambda (name) (if (eq? name id) val (rest-env name))))(: lookup : Symbol ENV -> VAL);; lookup a symbol in an environment, return its value or throw an;; error if it isn't bound(define (lookup name env) (env name))(: NumV->number : VAL -> Number);; convert a FLANG runtime numeric value to a Racket one(define (NumV->number val) (cases val [(NumV n) n] [else (error 'arith-op "expected a number, got: ~s" val)]))(: arith-op : (Number Number -> Number) VAL VAL -> VAL);; gets a Racket numeric binary operator, and uses it within a NumV;; wrapper(define (arith-op op val1 val2) (NumV (op (NumV->number val1) (NumV->number val2))))(: eval : FLANG ENV -> VAL);; evaluates FLANG expressions by reducing them to values(define (eval expr env) (cases expr [(Num n) (NumV n)] [(Add l r) (arith-op + (eval l env) (eval r env))] [(Sub l r) (arith-op - (eval l env) (eval r env))] [(Mul l r) (arith-op * (eval l env) (eval r env))] [(Div l r) (arith-op / (eval l env) (eval r env))] [(With bound-id named-expr bound-body) (eval bound-body (Extend bound-id (eval named-expr env) env))] [(Id name) (lookup name env)] [(Fun bound-id bound-body) (FunV (lambda (arg-val) (eval bound-body (Extend bound-id arg-val env))))] [(Call fun-expr arg-expr) (let ([fval (eval fun-expr env)]) (cases fval [(FunV proc) (proc (eval arg-expr env))] [else (error 'eval "`call' expects a function, got: ~s" fval)]))]))(: run : String -> Number);; evaluate a FLANG program contained in a string(define (run str) (let ([result (eval (parse str) (EmptyEnv))]) (cases result [(NumV n) n] [else (error 'run "evaluation returned a non-number: ~s" result)])));; tests(test (run "{call {fun {x} {+ x 1}} 4}") => 5)(test (run "{with {add3 {fun {x} {+ x 3}}} {call add3 1}}") => 4)(test (run "{with {add3 {fun {x} {+ x 3}}} {with {add1 {fun {x} {+ x 1}}} {with {x 3} {call add1 {call add3 x}}}}}") => 7)(test (run "{with {identity {fun {x} x}} {with {foo {fun {x} {+ x 1}}} {call {call identity foo} 123}}}") => 124)(test (run "{with {x 3} {with {f {fun {y} {+ x y}}} {with {x 5} {call f 4}}}}") => 7)(test (run "{call {with {x 3} {fun {y} {+ x y}}} 4}") => 7)(test (run "{call {call {fun {x} {call x 1}} {fun {x} {fun {y} {+ x y}}}} 123}") => 124)

Types of EvaluatorsTuesday, February 14th

What we did just now is implement lexical environments and closures in
the language we implement using lexical environments and closures in our
own language (Racket)!

This is another example of embedding a feature of the host language in
the implemented language, an issue that we have already discussed.

There are many examples of this, even when the two languages involved
are different. For example, if we have this bit in the C implementation
of Racket:

// Disclaimer: not real Racket codeRacket_Object *eval_and(int argc, Racket_Object *argv[]){ Racket_Object *tmp; if (argc != 2) signal_racket_error("bad number of arguments"); else if (racket_eval(argv[0]) != racket_false && (tmp = racket_eval(argv[1])) != racket_false) return tmp; else return racket_false;}

then the special semantics of evaluating a Racket and form is being
inherited from C’s special treatment of &&. You can see this by the
fact that if there is a bug in the C compiler, then it will propagate to
the resulting Racket implementation too. A different solution is to not
use && at all:

// Disclaimer: not real Racket codeRacket_Object *eval_and(int argc, Racket_Object *argv[]){ Racket_Object *tmp; if (argc != 2) signal_racket_error("bad number of arguments"); else if (racket_eval(argv[0]) != racket_false) return racket_eval(argv[1]); else return racket_false;}

and we can say that this is even better since it evaluates the second
expression in tail position. But in this case we don’t really get that
benefit, since C itself is not doing tail-call optimization as a
standard feature (though some compilers do so under some circumstances).

We have seen a few different implementations of evaluators that are
quite different in flavor. They suggest the following taxonomy.

	
A syntactic evaluator is one that uses its own language to
represent only expressions of the evaluated language, implementing all
the corresponding behavior explicitly.

	
A meta evaluator is an evaluator that uses language features of
its own language to directly implement behavior of the evaluated
language.

While our substitution-based FLANG evaluator was close to being a
syntactic evaluator, we haven’t written any purely syntactic evaluators
so far: we still relied on things like Racket arithmetics etc. The most
recent evaluator that we have studied, is distinctly a meta evaluator.

With a good match between the evaluated language and the implementation
language, writing a meta evaluator can be very easy. With a bad match,
though, it can be very hard. With a syntactic evaluator, implementing
each semantic feature will be somewhat hard, but in return you don’t
have to worry as much about how well the implementation and the
evaluated languages match up. In particular, if there is a particularly
strong mismatch between the implementation and the evaluated language,
it may take less effort to write a syntactic evaluator than a meta
evaluator. As an exercise, we can build upon our latest evaluator to
remove the encapsulation of the evaluator’s response in the VAL type.
The resulting evaluator is shown below. This is a true meta evaluator:
it uses Racket closures to implement FLANG closures, Racket function
application for FLANG function application, Racket numbers for FLANG
numbers, and Racket arithmetic for FLANG arithmetic. In fact, ignoring
some small syntactic differences between Racket and FLANG, this latest
evaluator can be classified as something more specific than a meta
evaluator:

	A meta-circular evaluator is a meta evaluator in which the
implementation and the evaluated languages are the same.

(Put differently, the trivial nature of the evaluator clues us in to the
deep connection between the two languages, whatever their syntactic
differences may be.)

Feature EmbeddingTuesday, February 14th

We saw that the difference between lazy evaluation and eager evaluation
is in the evaluation rules for with forms, function applications, etc:

eval({with {x E1} E2}) = eval(E2[eval(E1)/x])

is eager, and

eval({with {x E1} E2}) = eval(E2[E1/x])

is lazy. But is the first rule really eager? The fact is that the
only thing that makes it eager is the fact that our understanding of the
mathematical notation is eager — if we were to take math as lazy, then
the description of the rule becomes a description of lazy evaluation.

Another way to look at this is — take the piece of code that
implements this evaluation:

(: eval : FLANG -> Number);; evaluates FLANG expressions by reducing them to numbers(define (eval expr) (cases expr ... [(With bound-id named-expr bound-body) (eval (subst bound-body bound-id (Num (eval named-expr))))] ...))

and the same question applies: is this really implementing eager
evaluation? We know that this is indeed eager — we can simply try it
and check that it is, but it is only eager because we are using an eager
language for the implementation! If our own language was lazy, then the
evaluator’s implementation would run lazily, which means that the above
applications of the the eval and the subst functions would also be
lazy, making our evaluator lazy as well.

This is a general phenomena where some of the semantic features of the
language we use (math in the formal description, Racket in our code)
gets embedded into the language we implement.

Here’s another example — consider the code that implements
arithmetics:

(: eval : FLANG -> Number);; evaluates FLANG expressions by reducing them to numbers(define (eval expr) (cases expr [(Num n) n] [(Add l r) (+ (eval l) (eval r))] ...))

what if it was written like this:

FLANG eval(FLANG expr) { if (is_Num(expr)) return num_of_Num(expr); else if (is_Add(expr)) return eval(lhs_of_Add(expr)) + eval(rhs_of_Add(expr)); else if}

Would it still implement unlimited integers and exact fractions? That
depends on the language that was used to implement it: the above syntax
suggests C, C++, Java, or some other relative, which usually come with
limited integers and no exact fractions. But this really depends on the
language — even our own code has unlimited integers and exact
rationals only because Racket has them. If we were using a language
that didn’t have such features (there are such Scheme implementations),
then our implemented language would absorb these (lack of) features too,
and its own numbers would be limited in just the same way. (And this
includes the syntax for numbers, which we embedded intentionally, like
the syntax for identifiers).

The bottom line is that we should be aware of such issues, and be very
careful when we talk about semantics. Even the language that we use to
communicate (semi-formal logic) can mean different things.

Aside: read “Reflections on Trusting Trust” by Ken Thompson
(You can skip to the “Stage II” part to get to the interesting stuff.)

(And when you’re done, look for “XcodeGhost” to see a relevant example,
and don’t miss the leaked document on the wikipedia page…)

Here is yet another variation of our evaluator that is even closer to a
meta-circular evaluator. It uses Racket values directly to implement
values, so arithmetic operations become straightforward. Note
especially how the case for function application is similar to
arithmetics: a FLANG function application translates to a Racket
function application. In both cases (applications and arithmetics) we
don’t even check the objects since they are simple Racket objects — if
our language happens to have some meaning for arithmetics with
functions, or for applying numbers, then we will inherit the same
semantics in our language. This means that we now specify less behavior
and fall back more often on what Racket does.

We use Racket values with this type definition:

(define-type VAL = (U Number (VAL -> VAL)))

And the evaluation function can now be:

(: eval : FLANG ENV -> VAL);; evaluates FLANG expressions by reducing them to values(define (eval expr env) (cases expr [(Num n) n] ;*** return the actual number [(Add l r) (+ (eval l env) (eval r env))] [(Sub l r) (- (eval l env) (eval r env))] [(Mul l r) (* (eval l env) (eval r env))] [(Div l r) (/ (eval l env) (eval r env))] [(With bound-id named-expr bound-body) (eval bound-body (Extend bound-id (eval named-expr env) env))] [(Id name) (lookup name env)] [(Fun bound-id bound-body) (lambda ([arg-val : VAL]) ;*** return the racket function ;; note that this requires input type specifications since ;; typed racket can't guess the right one (eval bound-body (Extend bound-id arg-val env)))] [(Call fun-expr arg-expr) ((eval fun-expr env) ;*** trivial like the arithmetics! (eval arg-expr env))]))

Note how the arithmetics implementation is simple — it’s a direct
translation of the FLANG syntax to Racket operations, and since we don’t
check the inputs to the Racket operations, we let Racket throw type
errors for us. Note also how function application is just like the
arithmetic operations: a FLANG application is directly translated to a
Racket application.

However, this does not work quite as simply in Typed Racket. The whole
point of typechecking is that we never run into type errors — so we
cannot throw back on Racket errors since code that might produce them is
forbidden! A way around this is to perform explicit checks that
guarantee that Racket cannot run into type errors. We do this with the
following two helpers that are defined inside eval:

 (: evalN : FLANG -> Number) (define (evalN e) (let ([n (eval e env)]) (if (number? n) n (error 'eval "got a non-number: ~s" n)))) (: evalF : FLANG -> (VAL -> VAL)) (define (evalF e) (let ([f (eval e env)]) (if (function? f) f (error 'eval "got a non-function: ~s" f))))

Note that Typed Racket is “smart enough” to figure out that in evalF
the result of the recursive evaluation has to be either Number or
(VAL -> VAL); and since the if throws out on numbers, we’re left
with (VAL -> VAL) functions, not just any function.

#lang pl(define-type FLANG [Num Number] [Add FLANG FLANG] [Sub FLANG FLANG] [Mul FLANG FLANG] [Div FLANG FLANG] [Id Symbol] [With Symbol FLANG FLANG] [Fun Symbol FLANG] [Call FLANG FLANG])(: parse-sexpr : Sexpr -> FLANG);; parses s-expressions into FLANGs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(symbol: name) (Id name)] [(cons 'with more) (match sexpr [(list 'with (list (symbol: name) named) body) (With name (parse-sexpr named) (parse-sexpr body))] [else (error 'parse-sexpr "bad `with' syntax in ~s" sexpr)])] [(cons 'fun more) (match sexpr [(list 'fun (list (symbol: name)) body) (Fun name (parse-sexpr body))] [else (error 'parse-sexpr "bad `fun' syntax in ~s" sexpr)])] [(list '+ lhs rhs) (Add (parse-sexpr lhs) (parse-sexpr rhs))] [(list '- lhs rhs) (Sub (parse-sexpr lhs) (parse-sexpr rhs))] [(list '* lhs rhs) (Mul (parse-sexpr lhs) (parse-sexpr rhs))] [(list '/ lhs rhs) (Div (parse-sexpr lhs) (parse-sexpr rhs))] [(list 'call fun arg) (Call (parse-sexpr fun) (parse-sexpr arg))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))(: parse : String -> FLANG);; parses a string containing a FLANG expression to a FLANG AST(define (parse str) (parse-sexpr (string->sexpr str)));; Types for environments, values, and a lookup function;; Values are plain Racket values, no new VAL wrapper;;; (but note that this is a recursive definition)(define-type VAL = (U Number (VAL -> VAL)));; Define a type for functional environments(define-type ENV = (Symbol -> VAL))(: EmptyEnv : -> ENV)(define (EmptyEnv) (lambda (id) (error 'lookup "no binding for ~s" id)))(: Extend : Symbol VAL ENV -> ENV);; extend a given environment cache with a new binding(define (Extend id val rest-env) (lambda (name) (if (eq? name id) val (rest-env name))))(: lookup : Symbol ENV -> VAL);; lookup a symbol in an environment, return its value or throw an;; error if it isn't bound(define (lookup name env) (env name))(: eval : FLANG ENV -> VAL);; evaluates FLANG expressions by reducing them to values(define (eval expr env) (: evalN : FLANG -> Number) (define (evalN e) (let ([n (eval e env)]) (if (number? n) n (error 'eval "got a non-number: ~s" n)))) (: evalF : FLANG -> (VAL -> VAL)) (define (evalF e) (let ([f (eval e env)]) (if (function? f) f (error 'eval "got a non-function: ~s" f)))) (cases expr [(Num n) n] [(Add l r) (+ (evalN l) (evalN r))] [(Sub l r) (- (evalN l) (evalN r))] [(Mul l r) (* (evalN l) (evalN r))] [(Div l r) (/ (evalN l) (evalN r))] [(With bound-id named-expr bound-body) (eval bound-body (Extend bound-id (eval named-expr env) env))] [(Id name) (lookup name env)] [(Fun bound-id bound-body) (lambda ([arg-val : VAL]) (eval bound-body (Extend bound-id arg-val env)))] [(Call fun-expr arg-expr) ((evalF fun-expr) (eval arg-expr env))]))(: run : String -> VAL) ; no need to convert VALs to numbers;; evaluate a FLANG program contained in a string(define (run str) (eval (parse str) (EmptyEnv)));; tests(test (run "{call {fun {x} {+ x 1}} 4}") => 5)(test (run "{with {add3 {fun {x} {+ x 3}}} {call add3 1}}") => 4)(test (run "{with {add3 {fun {x} {+ x 3}}} {with {add1 {fun {x} {+ x 1}}} {with {x 3} {call add1 {call add3 x}}}}}") => 7)(test (run "{with {identity {fun {x} x}} {with {foo {fun {x} {+ x 1}}} {call {call identity foo} 123}}}") => 124)(test (run "{with {x 3} {with {f {fun {y} {+ x y}}} {with {x 5} {call f 4}}}}") => 7)(test (run "{call {with {x 3} {fun {y} {+ x y}}} 4}") => 7)(test (run "{call {call {fun {x} {call x 1}} {fun {x} {fun {y} {+ x y}}}} 123}") => 124)

Recursion, Recursion, RecursionTuesday, February 14th

PLAI §9

There is one major feature that is still missing from our language: we
have no way to perform recursion (therefore no kind of loops). So far,
we could only use recursion when we had names. In FLANG, the only way
we can have names is through with which not good enough for recursion.

To discuss the issue of recursion, we switch to a “broken” version of
(untyped) Racket — one where a define has a different scoping rules:
the scope of the defined name does not cover the defined expression.
Specifically, in this language, this doesn’t work:

#lang pl broken(define (fact n) (if (zero? n) 1 (* n (fact (- n 1)))))(fact 5)

In our language, this translation would also not work (assuming we have
if etc):

{with {fact {fun {n} {if {= n 0} 1 {* n {call fact {- n 1}}}}}} {call fact 5}}

And similarly, in plain Racket this won’t work if let is the only tool
you use to create bindings:

(let ([fact (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))]) (fact 5))

In the broken-scope language, the define form is more similar to a
mathematical definition. For example, when we write:

(define (F x) x)(define (G y) (F y))(G F)

it is actually shorthand for

(define F (lambda (x) x))(define G (lambda (y) (F y)))(G F)

we can then replace defined names with their definitions:

(define F (lambda (x) x))(define G (lambda (y) (F y)))((lambda (y) (F y)) (lambda (x) x))

and this can go on, until we get to the actual code that we wrote:

((lambda (y) ((lambda (x) x) y)) (lambda (x) x))

This means that the above fact definition is similar to writing:

fact := (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))(fact 5)

which is not a well-formed definition — it is meaningless (this is a
formal use of the word “meaningless”). What we’d really want, is to
take the equation (using = instead of :=)

fact = (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))

and find a solution which will be a value for fact that makes this
true.

If you look at the Racket evaluation rules handout on the web page, you
will see that this problem is related to the way that we introduced the
Racket define: there is a hand-wavy explanation that talks about
knowing things.

The big question is: can we define recursive functions without Racket’s
magical define form?

Note: This question is a little different than the question of
implementing recursion in our language — in the Racket case we have
no control over the implementation of the language. As it will
eventually turn out, implementing recursion in our own language will
be quite easy when we use mutation in a specific way. So the question
that we’re now facing can be phrased as either “can we get recursion
in Racket without Racket’s magical definition forms?” or “can we get
recursion in our interpreter without mutation?”.

Recursion without the MagicTuesday, February 14th

PLAI §22.4 (we go much deeper)

Note: This explanation is similar to the one you can find in “The Why
of Y”, by Richard Gabriel.

To implement recursion without the define magic, we first make an
observation: this problem does not come up in a dynamically-scoped
language. Consider the let-version of the problem:

#lang pl dynamic(let ([fact (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))]) (fact 5))

This works fine — because by the time we get to evaluate the body of
the function, fact is already bound to itself in the current dynamic
scope. (This is another reason why dynamic scope is perceived as a
convenient approach in new languages.)

Regardless, the problem that we have with lexical scope is still there,
but the way things work in a dynamic scope suggest a solution that we
can use now. Just like in the dynamic scope case, when fact is
called, it does have a value — the only problem is that this value is
inaccessible in the lexical scope of its body.

Instead of trying to get the value in via lexical scope, we can imitate
what happens in the dynamically scoped language by passing the fact
value to itself so it can call itself (going back to the original code
in the broken-scope language):

(define (fact self n) ;*** (if (zero? n) 1 (* n (self (- n 1)))))(fact fact 5) ;***

except that now the recursive call should still send itself along:

(define (fact self n) (if (zero? n) 1 (* n (self self (- n 1))))) ;***(fact fact 5)

The problem is that this required rewriting calls to fact — both
outside and recursive calls inside. To make this an acceptable
solution, calls from both places should not change. Eventually, we
should be able to get a working fact definition that uses just

(lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))

The first step in resolving this problem is to curry the fact
definition.

(define (fact self) ;*** (lambda (n) ;*** (if (zero? n) 1 (* n ((self self) (- n 1)))))) ;***((fact fact) 5) ;***

Now fact is no longer our factorial function — it’s a function that
constructs it. So call it make-fact, and bind fact to the actual
factorial function.

(define (make-fact self) ;*** (lambda (n) (if (zero? n) 1 (* n ((self self) (- n 1))))))(define fact (make-fact make-fact)) ;***(fact 5) ;***

We can try to do the same thing in the body of the factorial function:
instead of calling (self self), just bind fact to it:

(define (make-fact self) (lambda (n) (let ([fact (self self)]) ;*** (if (zero? n) 1 (* n (fact (- n 1))))))) ;***(define fact (make-fact make-fact))(fact 5)

This works fine, but if we consider our original goal, we need to get
that local fact binding outside of the (lambda (n) ...) — so we’re
left with a definition that uses the factorial expression as is. So,
swap the two lines:

(define (make-fact self) (let ([fact (self self)]) ;*** (lambda (n) ;*** (if (zero? n) 1 (* n (fact (- n 1)))))))(define fact (make-fact make-fact))(fact 5)

But the problem is that this gets us into an infinite loop because we’re
trying to evaluate (self self) too early. In fact, if we ignore the
body of the let and other details, we basically do this:

(define (make-fact self) (self self)) (make-fact make-fact)--reduce-sugar-->(define make-fact (lambda (self) (self self))) (make-fact make-fact)--replace-definition-->((lambda (self) (self self)) (lambda (self) (self self)))--rename-identifiers-->((lambda (x) (x x)) (lambda (x) (x x)))

And this expression has an interesting property: it reduces to itself,
so evaluating it gets stuck in an infinite loop.

So how do we solve this? Well, we know that (self self) should be
the same value that is the factorial function itself — so it must be a
one-argument function. If it’s such a function, we can use a value that
is equivalent, except that it will not get evaluated until it is needed,
when the function is called. The trick here is the observation that
(lambda (n) (add1 n)) is really the same function as add1, except
that the add1 part doesn’t get evaluated until the function is called.
Applying this trick to our code produces a version that does not get
stuck in the same infinite loop:

(define (make-fact self) (let ([fact (lambda (n) ((self self) n))]) ;*** (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))))(define fact (make-fact make-fact))(fact 5)

Continuing from here — we know that

(let ([x v]) e) is the same as ((lambda (x) e) v)

(remember how we derived fun from a with), so we can turn that let
into the equivalent function application form:

(define (make-fact self) ((lambda (fact) ;*** (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))) (lambda (n) ((self self) n)))) ;***(define fact (make-fact make-fact))(fact 5)

And note now that the (lambda (fact) …) expression is everything that
we need for a recursive definition of fact — it has the proper
factorial body with a plain recursive call. It’s almost like the usual
value that we’d want to define fact as, except that we still have to
abstract on the recursive value itself. So lets move this code into a
separate definition for fact-core:

(define fact-core ;*** (lambda (fact) (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))))(define (make-fact self) (fact-core ;*** (lambda (n) ((self self) n))))(define fact (make-fact make-fact))(fact 5)

We can now proceed by moving the (make-fact make-fact) self
application into its own function which is what creates the real
factorial:

(define fact-core (lambda (fact) (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))))(define (make-fact self) (fact-core (lambda (n) ((self self) n))))(define (make-real-fact) (make-fact make-fact)) ;***(define fact (make-real-fact)) ;***(fact 5)

Rewrite the make-fact definition using an explicit lambda:

(define fact-core (lambda (fact) (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))))(define make-fact ;*** (lambda (self) ;*** (fact-core (lambda (n) ((self self) n)))))(define (make-real-fact) (make-fact make-fact))(define fact (make-real-fact))(fact 5)

and fold the functionality of make-fact and make-real-fact into a
single make-fact function by just using the value of make-fact
explicitly instead of through a definition:

(define fact-core (lambda (fact) (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))))(define (make-real-fact) (let ([make (lambda (self) ;*** (fact-core ;*** (lambda (n) ((self self) n))))]) ;*** (make make)))(define fact (make-real-fact))(fact 5)

We can now observe that make-real-fact has nothing that is specific to
factorial — we can make it take a “core function” as an argument:

(define fact-core (lambda (fact) (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))))(define (make-real-fact core) ;*** (let ([make (lambda (self) (core ;*** (lambda (n) ((self self) n))))]) (make make)))(define fact (make-real-fact fact-core)) ;***(fact 5)

and call it make-recursive:

(define fact-core (lambda (fact) (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))))(define (make-recursive core) ;*** (let ([make (lambda (self) (core (lambda (n) ((self self) n))))]) (make make)))(define fact (make-recursive fact-core)) ;***(fact 5)

We’re almost done now — there’s no real need for a separate
fact-core definition, just use the value for the definition of fact:

(define (make-recursive core) (let ([make (lambda (self) (core (lambda (n) ((self self) n))))]) (make make)))(define fact (make-recursive (lambda (fact) ;*** (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))))) ;***(fact 5)

turn the let into a function form:

(define (make-recursive core) ((lambda (make) (make make)) ;*** (lambda (self) ;*** (core (lambda (n) ((self self) n)))))) ;***(define fact (make-recursive (lambda (fact) (lambda (n) (if (zero? n) 1 (* n (fact (- n 1))))))))(fact 5)

do some renamings to make things simpler — make and self turn to
x, and core to f:

(define (make-recursive f) ;*** ((lambda (x) (x x)) ;*** (lambda (x) (f (lambda (n) ((x x) n)))))) ;***(define fact (make-recursive (lambda (fact) (lambda (n) (if (zero? n) 1 (* n (fact (- n 1))))))))(fact 5)

or we can manually expand that first (lambda (x) (x x)) application to
make the symmetry more obvious (not really surprising because it started
with a let whose purpose was to do a self-application):

(define (make-recursive f) ((lambda (x) (f (lambda (n) ((x x) n)))) ;*** (lambda (x) (f (lambda (n) ((x x) n)))))) ;***(define fact (make-recursive (lambda (fact) (lambda (n) (if (zero? n) 1 (* n (fact (- n 1))))))))(fact 5)

And we finally got what we were looking for: a general way to define
any recursive function without any magical define tricks. This also
work for other recursive functions:

#lang pl broken(define (make-recursive f) ((lambda (x) (f (lambda (n) ((x x) n)))) (lambda (x) (f (lambda (n) ((x x) n))))))(define fact (make-recursive (lambda (fact) (lambda (n) (if (zero? n) 1 (* n (fact (- n 1))))))))(fact 5)(define fib (make-recursive (lambda (fib) (lambda (n) (if (<= n 1) n (+ (fib (- n 1)) (fib (- n 2))))))))(fib 8)(define length (make-recursive (lambda (length) (lambda (l) (if (null? l) 0 (+ (length (rest l)) 1))))))(length '(x y z))

A convenient tool that people often use on paper is to perform a kind of
a syntactic abstraction: “assume that whenever I write (twice foo) I
really meant to write (foo foo)”. This can often be done as plain
abstractions (that is, using functions), but in some cases — for
example, if we want to abstract over definitions — we just want such a
rewrite rule. (More on this towards the end of the course.) The
broken-scope language does provide such a tool — rewrite extends the
language with a rewrite rule. Using this, and our make-recursive, we
can make up a recursive definition form:

(rewrite (define/rec (f x) E) => (define f (make-recursive (lambda (f) (lambda (x) E)))))

In other words, we’ve created our own “magical definition” form. The
above code can now be written in almost the same way it is written in
plain Racket:

#lang pl broken(define (make-recursive f) ((lambda (x) (f (lambda (n) ((x x) n)))) (lambda (x) (f (lambda (n) ((x x) n))))))(rewrite (define/rec (f x) E) => (define f (make-recursive (lambda (f) (lambda (x) E)))));; examples(define/rec (fact n) (if (zero? n) 1 (* n (fact (- n 1)))))(fact 5)(define/rec (fib n) (if (<= n 1) n (+ (fib (- n 1)) (fib (- n 2)))))(fib 8)(define/rec (length l) (if (null? l) 0 (+ (length (rest l)) 1)))(length '(x y z))

Finally, note that make-recursive is limited to 1-argument functions
only because of the protection from eager evaluation. In any case, it
can be used in any way you want, for example,

(make-recursive (lambda (f) (lambda (x) f)))

is a function that returns itself rather than calling itself. Using
the rewrite rule, this would be:

(define/rec (f x) f)

which is the same as:

(define (f x) f)

in plain Racket.

The Core of make-recursiveTuesday, February 14th

As in Racket, being able to express recursive functions is a fundamental
property of the language. It means that we can have loops in our
language, and that’s the essence of making a language powerful enough to
be TM-equivalent — able to express undecidable problems, where we
don’t know whether there is an answer or not.

The core of what makes this possible is the expression that we have seen
in our derivation:

((lambda (x) (x x)) (lambda (x) (x x)))

which reduces to itself, and therefore has no value: trying to evaluate
it gets stuck in an infinite loop. (This expression is often called
“Omega”.)

This is the key for creating a loop — we use it to make recursion
possible. Looking at our final make-recursive definition and ignoring
for a moment the “protection” that we need against being stuck
prematurely in an infinite loop:

(define (make-recursive f) ((lambda (x) (x x)) (lambda (x) (f (x x)))))

we can see that this is almost the same as the Omega expression — the
only difference is that application of f. Indeed, this expression
(the result of (make-recursive F) for some F) reduces in a similar way
to Omega:

((lambda (x) (x x)) (lambda (x) (F (x x))))((lambda (x) (F (x x))) (lambda (x) (F (x x))))(F ((lambda (x) (F (x x))) (lambda (x) (F (x x)))))(F (F ((lambda (x) (F (x x))) (lambda (x) (F (x x))))))(F (F (F ((lambda (x) (F (x x))) (lambda (x) (F (x x)))))))...

which means that the actual value of this expression is:

(F (F (F ...forever...)))

This definition would be sufficient if we had a lazy language, but to
get things working in a strict one we need to bring back the protection.
This makes things a little different — if we use (protect f) to be a
shorthand for the protection trick,

(rewrite (protect f) => (lambda (x) (f x)))

then we have:

(define (make-recursive f) ((lambda (x) (x x)) (lambda (x) (f (protect (x x))))))

which makes the (make-recursive F) evaluation reduce to

(F (protect (F (protect (F (protect (...forever...)))))))

and this is still the same result (as long as F is a single-argument
function).

(Note that protect cannot be implemented as a plain function!)

Denotational Explanation of RecursionTuesday, February 14th

Note: This explanation is similar to the one you can find in “The
Little Schemer” called “(Y Y) Works!”, by Dan Friedman and Matthias
Felleisen.

The explanation that we have now for how to derive the make-recursive
definition is fine — after all, we did manage to get it working. But
this explanation was done from a kind of an operational point of view:
we knew a certain trick that can make things work and we pushed things
around until we got it working like we wanted. Instead of doing this,
we can re-approach the problem from a more declarative point of view.

So, start again from the same broken code that we had (using the
broken-scope language):

(define fact (lambda (n) (if (zero? n) 1 (* n (fact (- n 1))))))

This is as broken as it was when we started: the occurrence of fact in
the body of the function is free, which means that this code is
meaningless. To avoid the compilation error that we get when we run
this code, we can substitute anything for that fact — it’s even
better to use a replacement that will lead to a runtime error:

(define fact (lambda (n) (if (zero? n) 1 (* n (777 (- n 1)))))) ;***

This function will not work in a similar way to the original one — but
there is one case where it does work: when the input value is 0
(since then we do not reach the bogus application). We note this by
calling this function fact0:

(define fact0 ;*** (lambda (n) (if (zero? n) 1 (* n (777 (- n 1))))))

Now that we have this function defined, we can use it to write fact1
which is the factorial function for arguments of 0 or 1:

(define fact0 (lambda (n) (if (zero? n) 1 (* n (777 (- n 1))))))(define fact1 (lambda (n) (if (zero? n) 1 (* n (fact0 (- n 1))))))

And remember that this is actually just shorthand for:

(define fact1 (lambda (n) (if (zero? n) 1 (* n ((lambda (n) (if (zero? n) 1 (* n (777 (- n 1))))) (- n 1))))))

We can continue in this way and write fact2 that will work for n<=2:

(define fact2 (lambda (n) (if (zero? n) 1 (* n (fact1 (- n 1))))))

or, in full form:

(define fact2 (lambda (n) (if (zero? n) 1 (* n ((lambda (n) (if (zero? n) 1 (* n ((lambda (n) (if (zero? n) 1 (* n (777 (- n 1))))) (- n 1))))) (- n 1))))))

If we continue this way, we will get the true factorial function, but
the problem is that to handle any possible integer argument, it will
have to be an infinite definition! Here is what it is supposed to look
like:

(define fact0 (lambda (n) (if (zero? n) 1 (* n (777 (- n 1))))))(define fact1 (lambda (n) (if (zero? n) 1 (* n (fact0 (- n 1))))))(define fact2 (lambda (n) (if (zero? n) 1 (* n (fact1 (- n 1))))))(define fact3 (lambda (n) (if (zero? n) 1 (* n (fact2 (- n 1))))))...

The true factorial function is fact-infinity, with an infinite size.
So, we’re back at the original problem…

To help make things more concise, we can observe the repeated pattern in
the above, and extract a function that abstracts this pattern. This
function is the same as the fact-core that we have seen previously:

(define fact-core (lambda (fact) (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))))(define fact0 (fact-core 777))(define fact1 (fact-core fact0))(define fact2 (fact-core fact1))(define fact3 (fact-core fact2))...

which is actually:

(define fact-core (lambda (fact) (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))))(define fact0 (fact-core 777))(define fact1 (fact-core (fact-core 777)))(define fact2 (fact-core (fact-core (fact-core 777))))...(define fact (fact-core (fact-core (fact-core (... (fact-core 777) ...)))))

Do this a little differently — rewrite fact0 as:

(define fact0 ((lambda (mk) (mk 777)) fact-core))

Similarly, fact1 is written as:

(define fact1 ((lambda (mk) (mk (mk 777))) fact-core))

and so on, until the real factorial, which is still infinite at this
stage:

(define fact ((lambda (mk) (mk (mk (... (mk 777) ...)))) fact-core))

Now, look at that (lambda (mk) ...) — it is an infinite expression,
but for every actual application of the resulting factorial function we
only need a finite number of mk applications. We can guess how many,
and as soon as we hit an application of 777 we know that our guess is
too small. So instead of 777, we can try to use the maker function to
create and use the next.

To make things more explicit, here is the expression that is our
fact0, without the definition form:

((lambda (mk) (mk 777)) fact-core)

This function has a very low guess — it works for 0, but with 1 it
will run into the 777 application. At this point, we want to somehow
invoke mk again to get the next level — and since 777 does get
applied, we can just replace it with mk:

((lambda (mk) (mk mk)) fact-core)

The resulting function works just the same for an input of 0 because
it does not attempt a recursive call — but if we give it 1, then
instead of running into the error of applying 777:

(* n (777 (- n 1)))

we get to apply fact-core there:

(* n (fact-core (- n 1)))

and this is still wrong, because fact-core expects a function as an
input. To see what happens more clearly, write fact-core explicitly:

((lambda (mk) (mk mk)) (lambda (fact) (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))))

The problem is in what we’re going to pass into fact-core — its
fact argument will not be the factorial function, but the mk
function constructor. Renaming the fact argument as mk will make
this more obvious (but not change the meaning):

((lambda (mk) (mk mk)) (lambda (mk) (lambda (n) (if (zero? n) 1 (* n (mk (- n 1)))))))

It should now be obvious that this application of mk will not work,
instead, we need to apply it on some function and then apply the
result on (- n 1). To get what we had before, we can use 777 as a
bogus function:

((lambda (mk) (mk mk)) (lambda (mk) (lambda (n) (if (zero? n) 1 (* n ((mk 777) (- n 1)))))))

This will allow one recursive call — so the definition works for both
inputs of 0 and 1 — but not more. But that 777 is used as a
maker function now, so instead, we can just use mk itself again:

((lambda (mk) (mk mk)) (lambda (mk) (lambda (n) (if (zero? n) 1 (* n ((mk mk) (- n 1)))))))

And this is a working version of the real factorial function, so make
it into a (non-magical) definition:

(define fact ((lambda (mk) (mk mk)) (lambda (mk) (lambda (n) (if (zero? n) 1 (* n ((mk mk) (- n 1))))))))

But we’re not done — we “broke” into the factorial code to insert that
(mk mk) application — that’s why we dragged in the actual value of
fact-core. We now need to fix this. The expression on that last line

(lambda (n) (if (zero? n) 1 (* n ((mk mk) (- n 1)))))

is close enough — it is (fact-core (mk mk)). So we can now try to
rewrite our fact as:

(define fact-core (lambda (fact) (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))))(define fact ((lambda (mk) (mk mk)) (lambda (mk) (fact-core (mk mk)))))

… and would fail in a familiar way! If it’s not familiar enough, just
rename all those mks as xs:

(define fact-core (lambda (fact) (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))))(define fact ((lambda (x) (x x)) (lambda (x) (fact-core (x x)))))

We’ve run into the eagerness of our language again, as we did before.
The solution is the same — the (x x) is the factorial function, so
protect it as we did before, and we have a working version:

(define fact-core (lambda (fact) (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))))(define fact ((lambda (x) (x x)) (lambda (x) (fact-core (lambda (n) ((x x) n))))))

The rest should not be surprising now… Abstract the recursive making
bit in a new make-recursive function:

(define fact-core (lambda (fact) (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))))(define (make-recursive f) ((lambda (x) (x x)) (lambda (x) (f (lambda (n) ((x x) n))))))(define fact (make-recursive fact-core))

and now we can do the first reduction inside make-recursive and write
the fact-core expression explicitly:

#lang pl broken(define (make-recursive f) ((lambda (x) (f (lambda (n) ((x x) n)))) (lambda (x) (f (lambda (n) ((x x) n))))))(define fact (make-recursive (lambda (fact) (lambda (n) (if (zero? n) 1 (* n (fact (- n 1))))))))

and this is the same code we had before.

The Y CombinatorTuesday, February 14th

Our make-recursive function is usually called the fixpoint operator
or the Y combinator.

It looks really simple when using the lazy version (remember: our
version is the eager one):

(define Y (lambda (f) ((lambda (x) (f (x x))) (lambda (x) (f (x x))))))

Note that if we do allow a recursive definition for Y itself, then
the definition can follow the definition that we’ve seen:

(define (Y f) (f (Y f)))

And this all comes from the loop generated by:

((lambda (x) (x x)) (lambda (x) (x x)))

This expression, which is also called Omega (the (lambda (x) (x x))
part by itself is usually called omega and then (omega omega) is
Omega), is also the idea behind many deep mathematical facts. As an
example for what it does, follow the next rule:

I will say the next sentence twice: "I will say the next sentence twice".

(Note the usage of colon for the first and quotes for the second —
what is the equivalent of that in the lambda expression?)

By itself, this just gets you stuck in an infinite loop, as Omega does,
and the Y combinator adds F to that to get an infinite chain of
applications — which is similar to:

I will say the next sentence twice: "I will hop on one foot and then say the next sentence twice".

The main property of YTuesday, February 14th

fact-core is a function that given any limited factorial, will
generate a factorial that is good for one more integer input. Start
with 777, which is a factorial that is good for nothing (because it’s
not a function), and you can get fact0 as

fact0 == (fact-core 777)

and that’s a good factorial function only for an input of 0. Use that
with fact-core again, and you get

fact1 == (fact-core fact0) == (fact-core (fact-core 777))

which is the factorial function when you only look at input values of
0 or 1. In a similar way

fact2 == (fact-core fact1)

is good for 0…2 — and we can continue as much as we want, except
that we need to have an infinite number of applications — in the
general case, we have:

fact-n == (fact-core (fact-core (fact-core ... 777)))

which is good for 0…n. The real factorial would be the result
of running fact-core on itself infinitely, it is fact-infinity.
In other words (here fact is the real factorial):

fact = fact-infinity == (fact-core (fact-core ...infinitely...))

but note that since this is really infinity, then

fact = (fact-core (fact-core ...infinitely...)) = (fact-core fact)

so we get an equation:

fact = (fact-core fact)

and a solution for this is going to be the real factorial. The solution
is the fixed-point of the fact-core function, in the same sense that
0 is the fixed point of the sin function because

0 = (sin 0)

And the Y combinator does just that — it has this property:

(make-recursive f) = (f (make-recursive f))

or, using the more common name:

(Y f) = (f (Y f))

This property encapsulates the real magical power of Y. You can see how
it works: since (Y f) = (f (Y f)), we can add an f application to
both sides, giving us (f (Y f)) = (f (f (Y f))), so we get:

(Y f) = (f (Y f)) = (f (f (Y f))) = (f (f (f (Y f)))) = ... = (f (f (f ...)))

and we can conclude that

(Y fact-core) = (fact-core (fact-core ...infinitely...)) = fact

Typing the Y CombinatorTuesday, February 14th

Typing the Y combinator is a tricky issue. For example, in standard ML
you must write a new type definition to do this:

datatype 'a t = T of 'a t -> 'aval y = fn f => (fn (T x) => (f (fn a => x (T x) a))) (T (fn (T x) => (f (fn a => x (T x) a))))

Can you find a pattern in the places where T is used?
— Roughly speaking, that type definition is

;; `t' is the type name, `T' is the constructor (aka the variant)(define-type (RecType a) ; we don't really have polymorphic types [T ((RecType a) -> a)])

First note that the two fn a => ... parts are the same as our
protection, so ignoring that we get:

val y = fn f => (fn (T x) => (f (x (T x)))) (T (fn (T x) => (f (x (T x)))))

if you now replace T with Quote, things make more sense:

val y = fn f => (fn (Quote x) => (f (x (Quote x)))) (Quote (fn (Quote x) => (f (x (Quote x)))))

and with our syntax, this would be:

(define (Y f) ((lambda (qx) (cases qx [(Quote x) (f (x (Quote x)))])) (Quote (lambda (qx) (cases qx [(Quote x) (f (x (Quote x)))])))))

it’s not really quotation — but the analogy should help: it uses
Quote to distinguish functions as values that are applied (the xs)
from functions that are passed as arguments.

In OCaml, this looks a little different:

type 'a t = T of ('a t -> 'a) ;;type 'a t = T of ('a t -> 'a)# let y f = (fun (T x) -> x (T x)) (T (fun (T x) -> fun z -> f (x (T x)) z)) ;;val y : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b = <fun># let fact = y (fun fact n -> if n<1 then 1 else n* fact(n-1)) ;;val fact : int -> int = <fun># fact 5 ;;- : int = 120

but OCaml has also a -rectypes command line argument, which will make
it infer the type by itself:

let y f = (fun x -> x x) (fun x -> fun z -> f (x x) z) ;;val y : (('a -> 'b) -> 'a -> 'b) -> 'a -> 'b = <fun># let fact = y (fun fact n -> if n<1 then 1 else n* fact(n-1)) ;;val fact : int -> int = <fun># fact 5 ;;- : int = 120

It is also possible to write this expression in Typed Racket, but we
will need to write a proper type definition. First of all, the type of
Y should be straightforward: it is a fixpoint operation, so it takes a
T -> T function and produces its fixpoint. The fixpoint itself is
some T (such that applying the function on it results in itself). So
this gives us:

(: make-recursive : (T -> T) -> T)

However, in our case make-recursive computes a functional fixpoint,
for unary S -> T functions, so we should narrow down the type

(: make-recursive : ((S -> T) -> (S -> T)) -> (S -> T))

Now, in the body of make-recursive we need to add a type for the x
argument which is behaving in a weird way: it is used both as a function
and as its own argument. (Remember — I will say the next sentence
twice: “I will say the next sentence twice”.) We need a recursive type
definition for that:

(define-type (Tau S T) = (Rec this (this -> (S -> T))))

This type is tailored for our use of x: given a type T, x is a
function that will consume itself (hence the Rec) and spit out the
value that the f argument consumes — an S -> T function.

The resulting full version of the code:

(: make-recursive : (All (S T) ((S -> T) -> (S -> T)) -> (S -> T)))(define-type (Tau S T) = (Rec this (this -> (S -> T))))(define (make-recursive f) ((lambda ([x : (Tau S T)]) (f (lambda (z) ((x x) z)))) (lambda ([x : (Tau S T)]) (f (lambda (z) ((x x) z))))))(: fact : Number -> Number)(define fact (make-recursive (lambda ([fact : (Number -> Number)]) (lambda ([n : Number]) (if (zero? n) 1 (* n (fact (- n 1))))))))(fact 5)

Lambda Calculus — SchlacTuesday, February 14th

PLAI §22 (we do much more)

We know that many constructs that are usually thought of as primitives
are not really needed — we can implement them ourselves given enough
tools. The question is how far can we go?

The answer: as far as we want. For example:

(define foo((lambda(f)((lambda(x)(x x))(lambda(x)(f(x x)))))(lambda(f)(lambda(x)(((x(lambda(x)(lambda(x y)y))(lambda(x y)x))(x(lambda(x)(lambda(x y)y))(lambda(x y)x))(((x(lambda (p)(lambda(s)(s(p(lambda(xy)y))(lambda(f x)(f((p(lambda(x y)y))f x))))))(lambda(s) (s(lambda(fx)x)(lambda(f x)x))))(lambda(x y)x))(lambda(x)(lambda(x y)y))(lambda(x y)x)))(lambda(f x)(f x))((f((x(lambda(p)(lambda(s)(s(p(lambda(x y)y))(lambda(f x)(f((p(lambda(x y)y))f x))))))(lambda(y s)(s(lambda(fx)x)(lambda(f x)x))))(lambda(x y)x)))(lambda(n)(lambda(f x)(f(n f x))))(f((((x(lambda(p)(lambda(s)(s(p (lambda(x y)y))(lambda(f x)(f((p(lambda(x y)y))f x))))))(lambda(s)(s(lambda(f x) x)(lambda(f x)x))))(lambda(x y)x))(lambda(p)(lambda(s)(s(p(lambda(x y)y))(lambda(f x)(f((p(lambda(x y)y))f x))))))(lambda(s)(s(lambda(f x)x)(lambda(f x)x))))(lambda(x y)x)))))))))

We begin with a very minimal language, which is based on the Lambda
Calculus. In this language we get a very minimal set of constructs and
values.

In DrRacket, this we will use the Schlac language level (stands for
“SchemeRacket as Lambda Calculus”). This language has a
Racket-like syntax, but don’t be confused — it is very different
from Racket. The only constructs that are available in this language
are: lambda expressions of at least one argument, function application
(again, at least one argument), and simple definition forms which are
similar to the ones in the “Broken define” language — definitions are
used as shorthand, and cannot be used for recursive function definition.
They’re also only allowed at the toplevel — no local helpers, and a
definition is not an expression that can appear anywhere. The BNF is
therefore:

<SCHLAC> ::= <SCHLAC-TOP> ...<SCHLAC-TOP> ::= <SCHLAC-EXPR> | (define <id> <SCHLAC-EXPR>)<SCHLAC-EXPR> ::= <id> | (lambda (<id> <id> ...) <SCHLAC-EXPR>) | (<SCHLAC-EXPR> <SCHLAC-EXPR> <SCHLAC-EXPR> ...)

Since this language has no primitive values (other than functions),
Racket numbers and booleans are also considered identifiers, and have no
built-in value that come with the language. In addition, all functions
and function calls are curried, so

(lambda (x y z) (z y x))

is actually shorthand for

(lambda (x) (lambda (y) (lambda (z) ((z y) x))))

The rules for evaluation are simple, there is one very important rule
for evaluation which is called “beta reduction”:

((lambda (x) E1) E2) --> E1[E2/x]

where substitution in this context requires being careful so you won’t
capture names. This requires you to be able to do another kind of
transformation which is called “alpha conversion”, which basically says
that you can rename identifiers as long as you keep the same binding
structure (eg, a valid renaming does not change the de-Bruijn form of
the expression). There is one more rule that can be used, eta
conversion which says that (lambda (x) (f x)) is the same as f (we
used this rule above when deriving the Y combinator).

One last difference between Schlac and Racket is that Schlac is a lazy
language. This will be important since we do not have any built-in
special forms like if.

Here is a Schlac definition for the identity function:

(define identity (lambda (x) x))

and there is not much that we can do with this now:

> identity#<procedure:identity>> (identity identity)#<procedure:identity>> (identity identity identity)#<procedure:identity>

(In the last expression, note that (id id id) is shorthand for ((id id) id), and since (id id) is the identity, applying that on id
returns it again.)

Church NumeralsTuesday, February 14th

So far, it seems like it is impossible to do anything useful in this
language, since all we have are functions and applications. We know how
to write the identity function, but what about other values? For
example, can you write code that evaluates to zero?

What’s zero? I only know how to write functions!

(Turing Machine programmer: “What’s a function?
— I only know how to write 0s and 1s!”)

The first thing we therefore need is to be able to encode numbers as
functions. For zero, we will use a function of two arguments that
simply returns its second value:

(define 0 (lambda (f) (lambda (x) x)))

or, more concisely

(define 0 (lambda (f x) x))

This is the first step in an encoding that is known as Church
Numerals: an encoding of natural numbers as functions. The number zero
is encoded as a function that takes in a function and a second value,
and applies the function zero times on the argument (which is really
what the above definition is doing). Following this view, the number
one is going to be a function of two arguments, that applies the first
on the second one time:

(define 1 (lambda (f x) (f x)))

and note that 1 is just like the identity function (as long as you
give it a function as its first input, but this is always the case in
Schlac). The next number on the list is two — which applies the first
argument on the second one twice:

(define 2 (lambda (f x) (f (f x))))

We can go on doing this, but what we really want is a way to perform
arbitrary arithmetic. The first requirement for that is an add1
function that increments its input (an encoded natural number) by one.
To do this, we write a function that expects an encoded number:

(define add1 (lambda (n) ...))

and this function is expected to return an encoded number, which is
always a function of f and x:

(define add1 (lambda (n) (lambda (f x) ...)))

Now, in the body, we need to apply f on x n+1 times — but remember
that n is a function that will do n applications of its first
argument on its second:

(define add1 (lambda (n) (lambda (f x) ... (n f x) ...)))

and all we have left to do now is to apply f one more time, yielding
this definition for add1:

(define add1 (lambda (n) (lambda (f x) (f (n f x)))))

Using this, we can define a few useful numbers:

(define 1 (add1 0))(define 2 (add1 1))(define 3 (add1 2))(define 4 (add1 3))(define 5 (add1 4))

This is all nice theoretically, but how can we make sure that it is
correct? Well, Schlac has a few additional special forms that translate
Church numerals into Racket numbers. To try our definitions we use the
->nat (read: to natural number):

(->nat 0)(->nat 5)(->nat (add1 (add1 5)))

You can now verify that the identity function is really the same as the
number 1:

(->nat identity)

We can even write a test case, since Schlac contains the test special
form, but we have to be careful in that — first of all, we cannot test
whether functions are equal (why?) so we must use ->nat, but

(test (->nat (add1 (add1 5))) => 7)

will not work since 7 is undefined. To overcome this, Schlac has a
back-door for primitive Racket values — just use a quote:

(test (->nat (add1 (add1 5))) => '7)

Church Numerals (contd.)Tuesday, February 21st

We can now define natural number addition — one simple idea is to get
two encoded numbers m and n, then start with x, apply f on it
n times by using it as a function, then apply f m more times on
the result in the same way:

(define + (lambda (m n) (lambda (f x) (m f (n f x)))))

or equivalently:

(define + (lambda (m n f x) (m f (n f x))))

Another idea is to use add1 and increment n by m using add1:

(define + (lambda (m n) (m add1 n)))(->nat (+ 4 5))

We can also define multiplication of m and n quite easily — begin
with addition — (lambda (x) (+ n x)) is a function that expects an
x and returns (+ x n) — it’s an increment-by-n function. But
since all functions and applications are curried, this is actually the
same as (lambda (x) ((+ n) x)) which is the same as (+ n). Now,
what we want to do is repeat this operation m times over zero, which
will add n to zero m times, resulting in m * n. The definition
is therefore:

(define * (lambda (m n) (m (+ n) 0)))(->nat (* 4 5))(->nat (+ 4 (* (+ 2 5) 5)))

An alternative approach is to consider

(lambda (x) (n f x))

for some encoded number n and a function f — this function is like
f^n (f composed n times with itself). But remember that this is
shorthand for

(lambda (x) ((n f) x))

and we know that (lambda (x) (foo x)) is just like foo (if it is a
function), so this is equivalent to just

(n f)

So (n f) is f^n, and in the same way (m g) is g^m — if we
use (n f) for g, we get (m (n f)) which is n self-compositions of
f, self-composed m times. In other words, (m (n f)) is a function
that is like m*n applications of f, so we can define
multiplication as:

(define * (lambda (m n) (lambda (f) (m (n f)))))

which is the same as

(define * (lambda (m n f) (m (n f))))

The same principle can be used to define exponentiation (but now we have
to be careful with the order since exponentiation is not commutative):

(define ^ (lambda (m n) (n (* m) 1)))(->nat (^ 3 4))

And there is a similar alternative here too —

	
a Church numeral m is the m-self-composition function,

	
and (1 m) is just like m^1 which is the same as m
(1=identity)

	
and (2 m) is just like m^2 — it takes a function f, self
composes it m times, and self composes the result m times — for
a total of f^(m*m)

	
and (3 m) is similarly f^(m*m*m)

	
so (n m) is f^(m^n) (note that the first ^ is
self-compositions, and the second one is a mathematical exponent)

	
so (n m) is a function that returns m^n self-compositions of an
input function,
Which means that (n m) is the Church numeral for m^n, so we get:

(define ^ (lambda (m n) (n m)))

which basically says that any number encoding n is also the ?^n
operation.

All of this is was not too complicated — but all so far all we did is
write functions that increment their inputs in various ways. What about
sub1? For that, we need to do some more work — we will need to
encode booleans.

More EncodingsTuesday, February 21st

Our choice of encoding numbers makes sense — the idea is that the main
feature of a natural number is repeating something a number of times.
For booleans, the main property we’re looking for is choosing between
two values. So we can encode true and false by functions of two
arguments that return either the first or the second argument:

(define #t (lambda (x y) x))(define #f (lambda (x y) y))

Note that this encoding of #f is really the same as the encoding of
0, so we have to know what type to expect an use the proper operations
(this is similar to C, where everything is just integers). Now that we
have these two, we can define if:

(define if (lambda (c t e) (c t e)))

it expects a boolean which is a function of two arguments, and passes it
the two expressions. The #t boolean will simply return the first, and
the #f boolean will return the second. Strictly speaking, we don’t
really need this definition, since instead of writing (if c t e), we
can simply write (c t e). In any case, we need the language to be
lazy for this to work. To demonstrate this, we’ll intentionally use the
quote back-door to use a non-functional value, using this will normally
result in an error:

(+ '1 '2)

But testing our if definition, things work just fine:

(if #t (+ 4 5) (+ 1 2))

and we see that DrRacket leaves the second addition expression in red,
which indicates that it was not executed. We can also make sure that
even when it is defined as a function, it is still working fine because
the language is lazy:

(if #f ((lambda (x) (x x)) (lambda (x) (x x))) 3)

How about and and or? Simple, or takes two arguments, and returns
either true or false if one of the inputs is true:

(define or (lambda (a b) (if a #t (if b #t #f))))

but (if b #t #f) is really the same as just b because it’s a
boolean:

(define or (lambda (a b) (if a #t b)))

also, if a is true, we want to return #t, but that is exactly the
value of a, so:

(define or (lambda (a b) (if a a b)))

and finally, we can get rid of the if (which is actually breaking the
if abstraction, if we encode booleans in some other way):

(define or (lambda (a b) (a a b)))

Similarly, convince yourself that the definition of and is:

(define and (lambda (a b) (a b a)))

Schlac has to-Racket conversion forms for booleans too:

(->bool (or #f #f))(->bool (or #f #t))(->bool (or #t #f))(->bool (or #t #t))

and

(->bool (and #f #f))(->bool (and #f #t))(->bool (and #t #f))(->bool (and #t #t))

A not function is quite simple — one alternative is to choose from
true and false in the usual way:

(define not (lambda (a) (a #f #t)))

and another is to return a function that switches the inputs to an input
boolean:

(define not (lambda (a) (lambda (x y) (a y x))))

which is the same as

(define not (lambda (a x y) (a y x)))

We can now put numbers and booleans together: we define a zero?
function.

(define zero? (lambda (n) (n (lambda (x) #f) #t)))(test (->bool (and (zero? 0) (not (zero? 3)))) => '#t)

(Good question: is this fast?)

(Note that it is better to test that the value is explicitly #t, if we
just use (test (->bool ...)) then the test will work even if the
expression in question evaluated to some bogus value.)

The idea is simple — if n is the encoding of zero, it will return
it’s second argument which is #t:

(zero? 0) --> ((lambda (f n) n) (lambda (x) #f) #t) -> #t

if n is an encoding of a bigger number, then it is a self-composition,
and the function that we give it is one that always returns #f, no
matter how many times it is self-composed. Try 2 for example:

(zero? 2) --> ((lambda (f n) (f (f n))) (lambda (x) #f) #t) --> ((lambda (x) #f) ((lambda (x) #f) #t)) --> #f

Now, how about an encoding for compound values? A minimal approach is
what we use in Racket — a way to generate pairs (cons), and encode
lists as chains of pairs with a special value at the end (null).
There is a natural encoding for pairs that we have previously seen — a
pair is a function that expects a selector, and will apply that on the
two values:

(define cons (lambda (x y) (lambda (s) (s x y))))

Or, equivalently:

(define cons (lambda (x y s) (s x y)))

To extract the two values from a pair, we need to pass a selector that
consumes two values and returns one of them. In our framework, this is
exactly what the two boolean values do, so we get:

(define car (lambda (x) (x #t)))(define cdr (lambda (x) (x #f)))(->nat (+ (car (cons 2 3)) (cdr (cons 2 3))))

We can even do this:

(define 1st car)(define 2nd (lambda (l) (car (cdr l))))(define 3rd (lambda (l) (car (cdr (cdr l)))))(define 4th (lambda (l) (car (cdr (cdr (cdr l))))))(define 5th (lambda (l) (car (cdr (cdr (cdr (cdr l)))))))

or write a list-ref function:

(define list-ref (lambda (l n) (car (n cdr l))))

Note that we don’t need a recursive function for this: our encoding of
natural numbers makes it easy to “iterate N times”. What we get with
this encoding is essentially free natural-number recursion.

We now need a special null value to mark list ends. This value should
have the same number of arguments as a cons value (one: a
selector/boolean function), and it should be possible to distinguish it
from other values. We choose

(define null (lambda (s) #t))

Testing the list encoding:

(define l123 (cons 1 (cons 2 (cons 3 null))))(->nat (2nd l123))

And as with natural numbers and booleans, Schlac has built-in facility
to convert encoded lists to Racket values, except that this requires
specifying the type of values in a list so it’s a higher-order function:

((->listof ->nat) l123)

which (“as usual”) can be written as

(->listof ->nat l123)

We can even do this:

(->listof (->listof ->nat) (cons l123 (cons l123 null)))

Defining null? is now relatively easy (and it’s actually already used
by the above ->listof conversion). The following definition

(define null? (lambda (x) (x (lambda (x y) #f))))

works because if x is null, then it simply ignores its argument and
returns #t, and if it’s a pair, then it uses the input selector, which
always returns #f in its turn. Using some arbitrary A and B:

(null? (cons A B)) --> ((lambda (x) (x (lambda (x y) #f))) (lambda (s) (s A B))) --> ((lambda (s) (s A B)) (lambda (x y) #f)) --> ((lambda (x y) #f) A B) --> #f(null? null) --> ((lambda (x) (x (lambda (x y) #f))) (lambda (s) #t)) --> ((lambda (s) #t) (lambda (x y) #f)) --> #t

We can use the Y combinator to create recursive functions — we can
even use the rewrite rules facility that Schlac contains (the same one
that we have previously seen):

(define Y (lambda (f) ((lambda (x) (x x)) (lambda (x) (f (x x))))))(rewrite (define/rec f E) => (define f (Y (lambda (f) E))))

and using it:

(define/rec length (lambda (l) (if (null? l) 0 (add1 (length (cdr l))))))(->nat (length l123))

And to complete this, um, journey — we’re still missing subtraction.
There are many ways to solve the problem of subtraction, and for a
challenge try to come up with a solution yourself. One of the clearer
solutions uses a simple idea — begin with a pair of two zeroes
<0,0>, and repeat this transformation n times: <a,b> -> <b,b+1>.
After n steps, we will have <n-1,n> — so we get:

(define inccons (lambda (p) (cons (cdr p) (add1 (cdr p)))))(define sub1 (lambda (n) (car (n inccons (cons 0 0)))))(->nat (sub1 5))

And from this the road is short to general subtraction, m-n is
simply n applications of sub1 on m:

(define - (lambda (m n) (n sub1 m)))(test (->nat (- 3 2)) => '1)(test (->nat (- (* 4 (* 5 5)) 5)) => '95)

We now have a normal-looking language, and we’re ready to do anything we
want. Here are two popular examples:

(define/rec fact (lambda (x) (if (zero? x) 1 (* x (fact (sub1 x))))))(test (->nat (fact 5)) => '120)(define/rec fib (lambda (x) (if (or (zero? x) (zero? (sub1 x))) 1 (+ (fib (- x 1)) (fib (- x 2))))))(test (->nat (fib (* 5 2))) => '89)

To get generalized arithmetic capability, Schlac has yet another
built-in facility for translating Racket natural numbers into Church
numerals:

(->nat (fib (nat-> '10)))

… and to get to that frightening expression in the beginning, all you
need to do is replace all definitions in the fib definition over and
over again until you’re left with nothing but lambda expressions and
applications, then reformat the result into some cute shape. For extra
fun, you can look for immediate applications of lambda expressions and
reduce them manually.

All of this is in the following code:

[bookmark: church.rkt]▶;; Making Schlac into a practical language (not an interpreter)#lang pl schlac(define identity (lambda (x) x));; Natural numbers(define 0 (lambda (f x) x))(define add1 (lambda (n) (lambda (f x) (f (n f x)))));; same as:;; (define add1 (lambda (n) (lambda (f x) (n f (f x)))))(define 1 (add1 0))(define 2 (add1 1))(define 3 (add1 2))(define 4 (add1 3))(define 5 (add1 4))(test (->nat (add1 (add1 5))) => '7)(define + (lambda (m n) (m add1 n)))(test (->nat (+ 4 5)) => '9);; (define * (lambda (m n) (m (+ n) 0)))(define * (lambda (m n f) (m (n f))))(test (->nat (* 4 5)) => '20)(test (->nat (+ 4 (* (+ 2 5) 5))) => '39);; (define ^ (lambda (m n) (n (* m) 1)))(define ^ (lambda (m n) (n m)))(test (->nat (^ 3 4)) => '81);; Booleans(define #t (lambda (x y) x))(define #f (lambda (x y) y))(define if (lambda (c t e) (c t e))) ; not really needed(test (->nat (if #t 1 2)) => '1)(test (->nat (if #t (+ 4 5) (+ '1 '2))) => '9)(define and (lambda (a b) (a b a)))(define or (lambda (a b) (a a b)));; (define not (lambda (a) (a #f #t)))(define not (lambda (a x y) (a y x)))(test (->bool (and #f #f)) => '#f)(test (->bool (and #t #f)) => '#f)(test (->bool (and #f #t)) => '#f)(test (->bool (and #t #t)) => '#t)(test (->bool (or #f #f)) => '#f)(test (->bool (or #t #f)) => '#t)(test (->bool (or #f #t)) => '#t)(test (->bool (or #t #t)) => '#t)(test (->bool (not #f)) => '#t)(test (->bool (not #t)) => '#f)(define zero? (lambda (n) (n (lambda (x) #f) #t)))(test (->bool (and (zero? 0) (not (zero? 3)))) => '#t);; Lists(define cons (lambda (x y s) (s x y)))(define car (lambda (x) (x #t)))(define cdr (lambda (x) (x #f)))(test (->nat (+ (car (cons 2 3)) (cdr (cons 2 3)))) => '5)(define 1st car)(define 2nd (lambda (l) (car (cdr l))))(define 3rd (lambda (l) (car (cdr (cdr l)))))(define 4th (lambda (l) (car (cdr (cdr (cdr l))))))(define 5th (lambda (l) (car (cdr (cdr (cdr (cdr l)))))))(define null (lambda (s) #t))(define null? (lambda (x) (x (lambda (x y) #f))))(define l123 (cons 1 (cons 2 (cons 3 null))));; Note that `->listof' is a H.O. converter(test ((->listof ->nat) l123) => '(1 2 3))(test (->listof ->nat l123) => '(1 2 3)) ; same as the above(test (->listof (->listof ->nat) (cons l123 (cons l123 null))) => '((1 2 3) (1 2 3)));; Subtraction is tricky(define inccons (lambda (p) (cons (cdr p) (add1 (cdr p)))))(define sub1 (lambda (n) (car (n inccons (cons 0 0)))))(test (->nat (sub1 5)) => '4)(define - (lambda (a b) (b sub1 a)))(test (->nat (- 3 2)) => '1)(test (->nat (- (* 4 (* 5 5)) 5)) => '95)(test (->nat (- 2 4)) => '0) ; this is "natural subtraction";; Recursive functions(define Y (lambda (f) ((lambda (x) (x x)) (lambda (x) (f (x x))))))(rewrite (define/rec f E) => (define f (Y (lambda (f) E))))(define/rec length (lambda (l) (if (null? l) 0 (add1 (length (cdr l))))))(test (->nat (length l123)) => '3)(define/rec fact (lambda (x) (if (zero? x) 1 (* x (fact (sub1 x))))))(test (->nat (fact 5)) => '120)(define/rec fib (lambda (x) (if (or (zero? x) (zero? (sub1 x))) 1 (+ (fib (sub1 x)) (fib (sub1 (sub1 x)))))))(test (->nat (fib (* 5 2))) => '89)#|;; Fully-expanded Fibonacci(define fib ((lambda (f) ((lambda (x) (x x)) (lambda (x) (f (x x))))) (lambda (f) (lambda (x) ((lambda (c t e) (c t e)) ((lambda (a b) (a a b)) ((lambda (n) (n (lambda (x) (lambda (x y) y)) (lambda (x y) x))) x) ((lambda (n) (n (lambda (x) (lambda (x y) y)) (lambda (x y) x))) ((lambda (n) ((lambda (x) (x (lambda (x y) x))) (n (lambda (p) ((lambda (x y s) (s x y)) ((lambda (x) (x (lambda (x y) y))) p) ((lambda (n) (lambda (f x) (f (n f x)))) ((lambda (x) (x (lambda (x y) y))) p)))) ((lambda (x y s) (s x y)) (lambda (f x) x) (lambda (f x) x))))) x))) ((lambda (n) (lambda (f x) (f (n f x)))) (lambda (f x) x)) ((lambda (x y) (x (lambda (n) (lambda (f x) (f (n f x)))) y)) (f ((lambda (n) ((lambda (x) (x (lambda (x y) x))) (n (lambda (p) ((lambda (x y s) (s x y)) ((lambda (x) (x (lambda (x y) y))) p) ((lambda (n) (lambda (f x) (f (n f x)))) ((lambda (x) (x (lambda (x y) y))) p)))) ((lambda (x y s) (s x y)) (lambda (f x) x) (lambda (f x) x))))) x)) (f ((lambda (n) ((lambda (x) (x (lambda (x y) x))) (n (lambda (p) ((lambda (x y s) (s x y)) ((lambda (x) (x (lambda (x y) y))) p) ((lambda (n) (lambda (f x) (f (n f x)))) ((lambda (x) (x (lambda (x y) y))) p)))) ((lambda (x y s) (s x y)) (lambda (f x) x) (lambda (f x) x))))) ((lambda (n) ((lambda (x) (x (lambda (x y) x))) (n (lambda (p) ((lambda (x y s) (s x y)) ((lambda (x) (x (lambda (x y) y))) p) ((lambda (n) (lambda (f x) (f (n f x)))) ((lambda (x) (x (lambda (x y) y))) p)))) ((lambda (x y s) (s x y)) (lambda (f x) x) (lambda (f x) x))))) x)))))))));; The same after reducing all immediate function applications(define fib ((lambda (f) ((lambda (x) (x x)) (lambda (x) (f (x x))))) (lambda (f) (lambda (x) (((x (lambda (x) (lambda (x y) y)) (lambda (x y) x)) (x (lambda (x) (lambda (x y) y)) (lambda (x y) x)) (((x (lambda (p) (lambda (s) (s (p (lambda (x y) y)) (lambda (f x) (f ((p (lambda (x y) y)) f x)))))) (lambda (s) (s (lambda (f x) x) (lambda (f x) x)))) (lambda (x y) x)) (lambda (x) (lambda (x y) y)) (lambda (x y) x))) (lambda (f x) (f x)) ((f ((x (lambda (p) (lambda (s) (s (p (lambda (x y) y)) (lambda (f x) (f ((p (lambda (x y) y)) f x)))))) (lambda (y s) (s (lambda (f x) x) (lambda (f x) x)))) (lambda (x y) x))) (lambda (n) (lambda (f x) (f (n f x)))) (f ((((x (lambda (p) (lambda (s) (s (p (lambda (x y) y)) (lambda (f x) (f ((p (lambda (x y) y)) f x)))))) (lambda (s) (s (lambda (f x) x) (lambda (f x) x)))) (lambda (x y) x)) (lambda (p) (lambda (s) (s (p (lambda (x y) y)) (lambda (f x) (f ((p (lambda (x y) y)) f x)))))) (lambda (s) (s (lambda (f x) x) (lambda (f x) x)))) (lambda (x y) x)))))))));; Cute reformatting of the above:(define fib((lambda(f)((lambda(x)(x x))(lambda(x)(f(x x)))))(lambda(f)(lambda(x)(((x(lambda(x)(lambda(x y)y))(lambda(x y)x))(x(lambda(x)(lambda(x y)y))(lambda(x y) x))(((x(lambda(p)(lambda(s)(s(p(lambda(xy)y))(lambda(f x)(f((p(lambda(x y)y))f x))))))(lambda(s) (s(lambda(fx)x)(lambda(f x)x))))(lambda(x y)x))(lambda(x)(lambda(x y)y))(lambda(x y)x)))(lambda(f x)(f x))((f((x(lambda(p)(lambda(s)(s(p(lambda(x y)y))(lambda(f x)(f((p(lambda(x y)y))f x))))))(lambda(y s)(s(lambda(fx)x)(lambda(f x)x))))(lambda(x y)x)))(lambda(n)(lambda(f x)(f(n f x))))(f((((x(lambda(p)(lambda(s)(s(p (lambda(x y)y))(lambda(f x)(f((p(lambda(x y) y))f x))))))(lambda(s)(s(lambda(f x)x)(lambda(f x)x))))(;; ^^;; `---------------(cons 0 0)---------------'lambda(x y)x))(lambda(p)(lambda(s)(s(p(lambda(x y)y))(lambda(f x)(f((p(lambda(x y)y))f x))))))(lambda(s)(s(lambda(f x)x)(lambda(f x)x))))(lambda(x y)x)))))))))And for extra fun: (λ(f)(λ (x)(((x(λ(x)(λ(x y)y))(λ(x y)x))(x(λ(x)(λ(x y) y))(λ(x y)x))(((x(λ(p)(λ(s)(s (p (λ(x y)y)) (λ(f x)(f((p(λ(x y) y))f x))))))(λ(s)(s(λ(f x)x) (λ(f x)x))))(λ(x y) x))(λ(x)(λ(x y)y)) (λ(x y) x)))(λ(f x)(f x))((f ((x(λ(p)(λ (s)(s(p(λ(x y) y))(λ (f x)(f((p (λ(x y)y))f x))))))(λ(y s)(s (λ (f x)x)(λ(f x)x))))(λ(x y)x)))(λ(n) (λ (f x)(f (n f x))))(f((((x(λ(p) (λ(s)(s (p(λ(x y)y))(λ(f x) (f((p(λ(x y)y)) f x))))))(λ(s)(s(λ(f x)x)(λ(f x)x)))) (λ (x y)x))(λ(p)(λ(s)(s(p(λ(x y)y))(λ (f x)(f((p(λ (x y)y)) f x)))))) (λ(s)(s(λ (f x)x)(λ (f x)x))))(λ(x y)x)))))))|#

Alternative Church EncodingTuesday, February 21st

Finally, note that this is just one way to encode things — other
encodings are possible. One alternative encoding is in the following
code — it uses a list of N falses as the encoding for N. This
encoding makes it easier to add1 (just cons another #f), and to
sub1 (simply cdr). The tradeoff is that some arithmetics operations
becomes more complicated, for example, the definition of + requires
the fixpoint combinator. (As expected, some people want to see what can
we do with a language without recursion, so they don’t like jumping to Y
too fast.)

[bookmark: church-alternative.rkt]▶;; An alternative "Church" encoding: use lists to encode numbers#lang pl schlac(define identity (lambda (x) x));; Booleans (same as before)(define #t (lambda (x y) x))(define #f (lambda (x y) y))(define if (lambda (c t e) (c t e))) ; not really needed(test (->bool (if #t #f #t)) => '#f)(test (->bool (if #f ((lambda (x) (x x)) (lambda (x) (x x))) #t)) => '#t)(define and (lambda (a b) (a b a)))(define or (lambda (a b) (a a b)))(define not (lambda (a x y) (a y x)))(test (->bool (and #f #f)) => '#f)(test (->bool (and #t #f)) => '#f)(test (->bool (and #f #t)) => '#f)(test (->bool (and #t #t)) => '#t)(test (->bool (or #f #f)) => '#f)(test (->bool (or #t #f)) => '#t)(test (->bool (or #f #t)) => '#t)(test (->bool (or #t #t)) => '#t)(test (->bool (not #f)) => '#t)(test (->bool (not #t)) => '#f);; Lists (same as before)(define cons (lambda (x y s) (s x y)))(define car (lambda (x) (x #t)))(define cdr (lambda (x) (x #f)))(define 1st car)(define 2nd (lambda (l) (car (cdr l))))(define 3rd (lambda (l) (car (cdr (cdr l)))))(define 4th (lambda (l) (car (cdr (cdr (cdr l))))))(define 5th (lambda (l) (car (cdr (cdr (cdr (cdr l)))))))(define null (lambda (s) #t))(define null? (lambda (x) (x (lambda (x y) #f))));; Natural numbers (alternate encoding)(define 0 identity)(define add1 (lambda (n) (cons #f n)))(define zero? car) ; tricky(define sub1 cdr) ; this becomes very simple;; Note that we could have used something more straightforward:;; (define 0 null);; (define add1 (lambda (n) (cons #t n))) ; cons anything;; (define zero? null?);; (define sub1 (lambda (l) (if (zero? l) l (cdr l))))(define 1 (add1 0))(define 2 (add1 1))(define 3 (add1 2))(define 4 (add1 3))(define 5 (add1 4))(test (->nat* (add1 (add1 5))) => '7)(test (->nat* (sub1 (sub1 (add1 (add1 5))))) => '5)(test (->bool (and (zero? 0) (not (zero? 3)))) => '#t)(test (->bool (zero? (sub1 (sub1 (sub1 3))))) => '#t);; list-of-numbers tests(define l123 (cons 1 (cons 2 (cons 3 null))))(test (->listof ->nat* l123) => '(1 2 3))(test (->listof (->listof ->nat*) (cons l123 (cons l123 null))) => '((1 2 3) (1 2 3)));; Recursive functions(define Y (lambda (f) ((lambda (x) (x x)) (lambda (x) (f (x x))))))(rewrite (define/rec f E) => (define f (Y (lambda (f) E))));; note that this example is doing something silly now(define/rec length (lambda (l) (if (null? l) 0 (add1 (length (cdr l))))))(test (->nat* (length l123)) => '3);; addition becomes hard since it requires a recursive definition;; (define/rec +;; (lambda (m n) (if (zero? n) m (+ (add1 m) (sub1 n)))));; (test (->nat* (+ 4 5)) => '9);; faster alternative:(define/rec + (lambda (m n) (if (zero? m) n (if (zero? n) m (add1 (add1 (+ (sub1 m) (sub1 n))))))))(test (->nat* (+ 4 5)) => '9);; subtraction is similar to addition;; (define/rec -;; (lambda (m n) (if (zero? n) m (- (sub1 m) (sub1 n)))));; (test (->nat* (- (+ 4 5) 4)) => '5);; but this is not "natural subtraction": doesn't work when n>m,;; because (sub1 0) does not return 0.;; a solution is like alternative form of +:(define/rec - (lambda (m n) (if (zero? m) 0 (if (zero? n) m (- (sub1 m) (sub1 n))))))(test (->nat* (- (+ 4 5) 4)) => '5)(test (->nat* (- 2 5)) => '0);; alternatively, could change sub1 above:;; (define sub1 (lambda (n) (if (zero? n) n (cdr n))));; we can do multiplication in a similar way(define/rec * (lambda (m n) (if (zero? m) 0 (+ n (* (sub1 m) n)))))(test (->nat* (* 4 5)) => '20)(test (->nat* (+ 4 (* (+ 2 5) 5))) => '39);; and the rest of the examples(define/rec fact (lambda (x) (if (zero? x) 1 (* x (fact (sub1 x))))))(test (->nat* (fact 5)) => '120)(define/rec fib (lambda (x) (if (or (zero? x) (zero? (sub1 x))) 1 (+ (fib (sub1 x)) (fib (sub1 (sub1 x)))))))(test (->nat* (fib (* 5 2))) => '89)#|;; Fully-expanded Fibonacci (note: much shorter than the previous;; encoding, but see how Y appears twice -- two "((lambda" pairs)(define fib((lambda(f)((lambda(x)(x x))(lambda(x)(f(x x)))))(lambda(f)(lambda(x)(((((x(lambda(x y)x))(x(lambda(x y)x)))((x(lambda(x y)y))(lambda(x y)x)))(lambda(s)(s(lambda(x y)y)(lambda(x)x))))((((lambda(f)((lambda(x)(x x))(lambda(x)(f(x x))))) (lambda(f)(lambda(m n)((m(lambda(x y)x))n (((n(lambda(x y)x)) m)(lambda(s)((s (lambda(x y)y))(lambda(s)((s (lambda(x y)y))((f(m(lambda(x y)y)))(n(lambda(x y)y))))))))))))(f(x(lambda(x y)y))))(f((x(lambda(x y)y))(lambda(x y)y)))))))))|#

Another interesting way to implement lists follows the pattern matching
approach, where both pairs and the null value are represented by a
function that serves as a kind of a match dispatcher. This function
takes in two inputs — if it is the representation of null then it will
return the first input, and if it is a pair, then it will apply the
second input on the two parts of the pair. This is implemented as
follows:

(define null (lambda (n p) n))(define cons (lambda (x y) (lambda (n p) (p x y))))

This might seem awkward, but it follows the intended use of pairs and
null as a match-like construct. Here is an example, with the equivalent
Racket code on the side:

;; Sums up a list of numbers(define (sum l) (l ; (match l 0 ; ['() 0] (lambda (x xs) ; [(cons x xs) (+ x (sum xs))))) ; (+ x (sum xs))])

In fact, it’s easy to implement our selectors and predicate using this:

(define null? (lambda (l) (l #t (lambda (x xs) #f))))(define car (lambda (l) (l #f (lambda (x y) x))))(define cdr (lambda (l) (l #f (lambda (x y) y))));; in the above `#f' is really any value, since it;; should be an error alternatively:(define car (lambda (l) (l ((lambda (x) (x x)) (lambda (x) (x x))) ; "error" (lambda (x y) x))))

The same approach can be used to define any kind of new data type in a
way that looks like our own define-type definitions. For example,
consider a much-simplified definition of the AE type we’ve seen early in
the semester, and a matching eval definition as an example for using
cases:

(define-type AE [Num Number] [Add AE AE])(: eval : AE -> Number)(define (eval expr) (cases expr [(Num n) n] [(Add l r) (+ (eval l) (eval r))]))

We can follow the above approach now to write Schlac code that more than
being equivalent, it’s also very similar in nature. Note that the type
definition is replaced by two definitions for the two constructors:

(define Num (lambda (n) (lambda (num add) (num n))))(define Add (lambda (l r) (lambda (num add) (add l r))))(define eval (lambda (expr) ; `expr` is always a (lambda (num add) ...), and it ; expects a unary `num` argument and a binary `add` (expr (lambda (n) n) (lambda (l r) (+ (eval l) (eval r))))))

Recursive EnvironmentsTuesday, February 21st

PLAI §11.5

What we really need for recursion, is a special kind of an environment,
one that can refer to itself. So instead of doing (note: calls
removed for readability):

{with {fact {fun {n} {if {zero? n} 1 {* n {fact {- n 1}}}}}} {fact 5}}

which does not work for the usual reasons, we want to use some

{rec {fact {fun {n} {if {zero? n} 1 {* n {fact {- n 1}}}}}} {fact 5}}

that will do the necessary magic.

One way to achieve this is using the Y combinator as we have seen — a
kind of a “constructor” for recursive functions. We can do that in a
similar way to the rewrite rule that we have seen in Schlac —
translate the above expression to:

{with {fact {make-rec {fun {fact} {fun {n} {if {zero? n} 1 {* n {fact {- n 1}}}}}}}} {fact 5}}

or even:

{with {fact {{fun {f} {{fun {x} {f {x x}}} {fun {x} {f {x x}}}}} {fun {fact} {fun {n} {if {zero? n} 1 {* n {fact {- n 1}}}}}}}} {fact 5}}

Now, we will see how it can be used in our code to implement a
recursive environment.

If we look at what with does in

{with {fact {fun {n} {if {zero? n} 1 {* n {call fact {- n 1}}}}}} {call fact 5}}

then we can say that to evaluate this expression, we evaluate the body
expression in an extended environment that contains fact, even if a
bogus one that is good for 0 only — the new environment is created
with something like this:

extend("fact", make-fact-closure(), env)

so we can take this whole thing as an operation over env

add-fact(env) := extend("fact", make-fact-closure(), env)

This gives us the first-level fact. But fact itself is still
undefined in env, so it cannot call itself. We can try this:

add-fact(add-fact(env))

but that still doesn’t work, and it will never work no matter how far we
go:

add-fact(add-fact(add-fact(add-fact(add-fact(...env...)))))

What we really want is infinity: a place where add-fact works and the
result is the same as what we’ve started with — we want to create a
“magical” environment that makes this possible:

let magic-env = ???such that: add-fact(magic-env) = magic-env

which basically gives us the illusion of being at the infinity point.
This magic-env thing is exactly the fixed-point of the add-fact
operation. We can use:

magic-env = rec(add-fact)

and following the main property of the Y combinator, we know that:

magic-env = rec(add-fact) ; def. of magic-env = add-fact(rec(add-fact)) ; Y(f) = f(Y(f)) = add-fact(magic-env) ; def. of magic-env

What does all this mean? It means that if we have a fixed-point
operator at the level of the implementation of our environments, then we
can use it to implement a recursive binder. In our case, this means
that a fixpoint in Racket can be used to implement a recursive language.
But we have that — Racket does have recursive functions, so we should
be able to use that to implement our recursive binder.

There are two ways that make it possible to write recursive functions in
Racket. One is to define a function, and use its name to do a recursive
call — using the Racket formal rules, we can see that we said that we
mark that we now know that a variable is bound to a value. This is
essentially a side-effect — we modify what we know, which corresponds
to modifying the global environment. The second way is a new form:
letrec. This form is similar to let, except that the scope that is
established includes the named expressions — it is exactly what we
want rec to do. A third way is using recursive local definitions, but
that is equivalent to using letrec, more on this soon.

Recursion: Racket’s letrecTuesday, February 21st

So we want to add recursion to our language, practically. We already
know that Racket makes it possible to write recursive functions, which
is possible because of the way it implements its “global environment”:
our evaluator can only extend an environment, while Racket modifies
its global environment. This means that whenever a function is defined
in the global environment, the resulting closure will have it as its
environment “pointer”, but the global environment was not extended —
it stays the same, and was just modified with one additional binding.

But Racket has another, a bit more organized way of using recursion:
there is a special local-binding construct that is similar to let, but
allows a function to refer to itself. It is called letrec:

(letrec ([fact (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))]) (fact 5))

Some people may remember that there was a third way for creating
recursive functions: using local definition in function bodies. For
example, we have seen things like:

(define (length list) (define (helper list len) (if (null? list) len (helper (rest list) (+ len 1)))) (helper list 0))

This looks like the same kind of environment magic that happens with a
global define — but actually, Racket defines the meaning of internal
definitions using letrec — so the above code is exactly the same as:

(define (length list) (letrec ([helper (lambda (list len) (if (null? list) len (helper (rest list) (+ len 1))))]) (helper list 0)))

The scoping rules for a letrec is that the scope of the bound name
covers both the body and the named expression. Furthermore, multiple
names can be bound to multiple expressions, and the scope of each name
covers all named expression as well as the body. This makes it easy to
define mutually recursive functions, such as:

(letrec ([even? (lambda (n) (if (zero? n) #t (odd? (- n 1))))] [odd? (lambda (n) (if (zero? n) #f (even? (- n 1))))]) (even? 99))

But it is not a required functionality — it could be done with a
single recursive binding that contains several functions:

(letrec ([even+odd (list (lambda (n) (if (zero? n) #t ((second even+odd) (- n 1)))) (lambda (n) (if (zero? n) #f ((first even+odd) (- n 1)))))]) ((first even+odd) 99))

This is basically the same problem we face if we want to use the Y
combinator for mutually recursive bindings. The above solution is
inconvenient, but it can be improved using more lets to have easier
name access. For example:

(letrec ([even+odd (list (lambda (n) (let ([even? (first even+odd)] [odd? (second even+odd)]) (if (zero? n) #t (odd? (- n 1))))) (lambda (n) (let ([even? (first even+odd)] [odd? (second even+odd)]) (if (zero? n) #f (even? (- n 1))))))]) (let ([even? (first even+odd)] [odd? (second even+odd)]) (even? 99)))

Implementing Recursion using letrecTuesday, February 21st

We will see how to add a similar construct to our language — for
simplicity, we will add a rec form that handles a single binding:

{rec {fact {fun {n} {if {= 0 n} 1 {* n {fact {- n 1}}}}}} {fact 5}}

Using this, things can get a little tricky. What should we get if we
do:

{rec {x x} x}

? Currently, it seems like there is no point in using any expression
except for a function expression in a rec expression, so we will
handle only these cases.

(BTW, under what circumstances would non-function values be useful in a
letrec?)

One way to achieve this is to use the same trick that we have recently
seen: instead of re-implementing language features, we can use existing
features in our own language, which hopefully has the right
functionality in a form that can be re-used to in our evaluator.

Previously, we have seen a way to implement environments using Racket
closures:

;; Define a type for functional environments(define-type ENV = Symbol -> VAL)(: EmptyEnv : -> ENV)(define (EmptyEnv) (lambda (id) (error 'lookup "no binding for ~s" id)))(: lookup : Symbol ENV -> VAL)(define (lookup name env) (env name))(: Extend : Symbol VAL ENV -> ENV)(define (Extend id val rest-env) (lambda (name) (if (eq? name id) val (rest-env name))))

We can use this implementation, and create circular environments using
Racket’s letrec. The code for handling a with expressions is:

[(With bound-id named-expr bound-body) (eval bound-body (Extend bound-id (eval named-expr env) env))]

It looks like we should be able to handle rec in a similar way (the
AST constructor name is WRec (“with-rec”) so it doesn’t collide with
TR’s Rec constructor for recursive types):

[(WRec bound-id named-expr bound-body) (eval bound-body (Extend bound-id (eval named-expr env) env))]

but this won’t work because the named expression is evaluated
prematurely, in the previous environment. Instead, we will move
everything that needs to be done, including evaluation, to a separate
extend-rec function:

[(WRec bound-id named-expr bound-body) (eval bound-body (extend-rec bound-id named-expr env))]

Now, the extend-rec function needs to provide the new, “magically
circular” environment. Following what we know about the arguments to
extend-rec, and the fact that it returns a new environment (= a lookup
function), we can sketch a rough definition:

(: extend-rec : Symbol FLANG ENV -> ENV) ; FLANG, not VAL!;; extend an environment with a new binding that is the result of;; evaluating an expression in the same environment as the extended;; result(define (extend-rec id expr rest-env) (lambda (name) (if (eq? name id) ... something that uses expr to get a value ... (rest-env name))))

What should the missing expression be? It can simply evaluate the
object given itself:

(define (extend-rec id expr rest-env) (lambda (name) (if (eq? name id) (eval expr ...this environment...) (rest-env name))))

But how do we get this environment, before it is defined? Well, the
environment is itself a Racket function, so we can use Racket’s
letrec to make the function refer to itself recursively:

(define (extend-rec id expr rest-env) (letrec ([rec-env (lambda (name) (if (eq? name id) (eval expr rec-env) (rest-env name)))]) rec-env))

It’s a little more convenient to use an internal definition, and add a
type for clarity:

(define (extend-rec id expr rest-env) (: rec-env : Symbol -> VAL) (define (rec-env name) (if (eq? name id) (eval expr rec-env) (rest-env name))) rec-env)

This works, but there are several problems:

	
First, we no longer do a simple lookup in the new environment.
Instead, we evaluate the expression on every such lookup. This
seems like a technical point, because we do not have side-effects in
our language (also because we said that we want to handle only
function expressions). Still, it wastes space since each evaluation
will allocate a new closure.

	
Second, a related problem — what happens if we try to run this:

{rec {x x} x}

? Well, we do that stuff to extend the current environment, then
evaluate the body in the new environment, this body is a single
variable reference:

(eval (Id 'x) the-new-env)

so we look up the value:

(lookup 'x the-new-env)

which is:

(the-new-env 'x)

which goes into the function which implements this environment, there
we see that name is the same as name1, so we return:

(eval expr rec-env)

but the expr here is the original named-expression which is itself
(Id 'x), and we’re in an infinite loop.

We can try to get over these problems using another binding. Racket
allows several bindings in a single letrec expression or multiple
internal function definitions, so we change extend-rec to use the
newly-created environment:

(define (extend-rec id expr rest-env) (: rec-env : Symbol -> VAL) (define (rec-env name) (if (eq? name id) val (rest-env name))) (: val : VAL) (define val (eval expr rec-env)) rec-env)

This runs into an interesting type error, which complains about possibly
getting some Undefined value. It does work if we switch to the
untyped language for now (using #lang pl untyped) — and it seems to
run fine too. But it raises more questions, beginning with: what is the
meaning of:

(letrec ([x ...] [y ...x...]) ...)

or equivalently, an internal block of

(define x ...)(define y ...x...)

? Well, DrRacket seems to do the “right thing” in this case, but what
about:

(letrec ([y ...x...] [x ...]) ...)

? As a hint, see what happens when we now try to evaluate the
problematic

{rec {x x} x}

expression, and compare that with the result that you’d get from Racket.
This also clarifies the type error that we received.

It should be clear now why we want to restrict usage to just binding
recursive functions. There are no problems with such definitions
because when we evaluate a fun expression, there is no evaluation of
the body, which is the only place where there are potential references
to the same function that is defined — a function’s body is delayed,
and executed only when the function is applied later.

But the biggest question that is still open: we just implemented a
circular environment using Racket’s own circular environment
implementation, and that does not explain how they are actually
implemented. The cycle of pointers that we’ve implemented depends on
the cycle of pointers that Racket uses, and that is a black box we want
to open up.

For reference, the complete code is below. Note that it doesn’t work
because of the type error — to try it, you need to switch to the
untyped language, or avoid the extra internal binding of val and stick
to the evaluate-when-referenced method.

#lang pl#|The grammar: <FLANG> ::= <num> | { + <FLANG> <FLANG> } | { - <FLANG> <FLANG> } | { * <FLANG> <FLANG> } | { / <FLANG> <FLANG> } | { with { <id> <FLANG> } <FLANG> } | { rec { <id> <FLANG> } <FLANG> } | <id> | { fun { <id> } <FLANG> } | { call <FLANG> <FLANG> }Evaluation rules: eval(N,env) = N eval({+ E1 E2},env) = eval(E1,env) + eval(E2,env) eval({- E1 E2},env) = eval(E1,env) - eval(E2,env) eval({* E1 E2},env) = eval(E1,env) * eval(E2,env) eval({/ E1 E2},env) = eval(E1,env) / eval(E2,env) eval(x,env) = lookup(x,env) eval({with {x E1} E2},env) = eval(E2,extend(x,eval(E1,env),env)) eval({rec {x E1} E2},env) = ??? eval({fun {x} E},env) = <{fun {x} E}, env> eval({call E1 E2},env1) = eval(Ef,extend(x,eval(E2,env1),env2)) if eval(E1,env1) = <{fun {x} Ef}, env2> = error! otherwise|#(define-type FLANG [Num Number] [Add FLANG FLANG] [Sub FLANG FLANG] [Mul FLANG FLANG] [Div FLANG FLANG] [Id Symbol] [With Symbol FLANG FLANG] [WRec Symbol FLANG FLANG] [Fun Symbol FLANG] [Call FLANG FLANG])(: parse-sexpr : Sexpr -> FLANG);; parses s-expressions into FLANGs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(symbol: name) (Id name)] [(cons 'with more) (match sexpr [(list 'with (list (symbol: name) named) body) (With name (parse-sexpr named) (parse-sexpr body))] [else (error 'parse-sexpr "bad `with' syntax in ~s" sexpr)])] [(cons 'rec more) (match sexpr [(list 'rec (list (symbol: name) named) body) (WRec name (parse-sexpr named) (parse-sexpr body))] [else (error 'parse-sexpr "bad `rec' syntax in ~s" sexpr)])] [(cons 'fun more) (match sexpr [(list 'fun (list (symbol: name)) body) (Fun name (parse-sexpr body))] [else (error 'parse-sexpr "bad `fun' syntax in ~s" sexpr)])] [(list '+ lhs rhs) (Add (parse-sexpr lhs) (parse-sexpr rhs))] [(list '- lhs rhs) (Sub (parse-sexpr lhs) (parse-sexpr rhs))] [(list '* lhs rhs) (Mul (parse-sexpr lhs) (parse-sexpr rhs))] [(list '/ lhs rhs) (Div (parse-sexpr lhs) (parse-sexpr rhs))] [(list 'call fun arg) (Call (parse-sexpr fun) (parse-sexpr arg))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))(: parse : String -> FLANG);; parses a string containing a FLANG expression to a FLANG AST(define (parse str) (parse-sexpr (string->sexpr str)));; Types for environments, values, and a lookup function(define-type VAL [NumV Number] [FunV Symbol FLANG ENV]);; Define a type for functional environments(define-type ENV = Symbol -> VAL)(: EmptyEnv : -> ENV)(define (EmptyEnv) (lambda (id) (error 'lookup "no binding for ~s" id)))(: lookup : Symbol ENV -> VAL);; lookup a symbol in an environment, return its value or throw an;; error if it isn't bound(define (lookup name env) (env name))(: Extend : Symbol VAL ENV -> ENV);; extend a given environment cache with a new binding(define (Extend id val rest-env) (lambda (name) (if (eq? name id) val (rest-env name))))(: extend-rec : Symbol FLANG ENV -> ENV);; extend an environment with a new binding that is the result of;; evaluating an expression in the same environment as the extended;; result(define (extend-rec id expr rest-env) (: rec-env : Symbol -> VAL) (define (rec-env name) (if (eq? name id) val (rest-env name))) (: val : VAL) (define val (eval expr rec-env)) rec-env)(: NumV->number : VAL -> Number);; convert a FLANG runtime numeric value to a Racket one(define (NumV->number val) (cases val [(NumV n) n] [else (error 'arith-op "expected a number, got: ~s" val)]))(: arith-op : (Number Number -> Number) VAL VAL -> VAL);; gets a Racket numeric binary operator, and uses it within a NumV;; wrapper(define (arith-op op val1 val2) (NumV (op (NumV->number val1) (NumV->number val2))))(: eval : FLANG ENV -> VAL);; evaluates FLANG expressions by reducing them to values(define (eval expr env) (cases expr [(Num n) (NumV n)] [(Add l r) (arith-op + (eval l env) (eval r env))] [(Sub l r) (arith-op - (eval l env) (eval r env))] [(Mul l r) (arith-op * (eval l env) (eval r env))] [(Div l r) (arith-op / (eval l env) (eval r env))] [(With bound-id named-expr bound-body) (eval bound-body (Extend bound-id (eval named-expr env) env))] [(WRec bound-id named-expr bound-body) (eval bound-body (extend-rec bound-id named-expr env))] [(Id name) (lookup name env)] [(Fun bound-id bound-body) (FunV bound-id bound-body env)] [(Call fun-expr arg-expr) (let ([fval (eval fun-expr env)]) (cases fval [(FunV bound-id bound-body f-env) (eval bound-body (Extend bound-id (eval arg-expr env) f-env))] [else (error 'eval "`call' expects a function, got: ~s" fval)]))]))(: run : String -> Number);; evaluate a FLANG program contained in a string(define (run str) (let ([result (eval (parse str) (EmptyEnv))]) (cases result [(NumV n) n] [else (error 'run "evaluation returned a non-number: ~s" result)])));; tests(test (run "{call {fun {x} {+ x 1}} 4}") => 5)(test (run "{with {add3 {fun {x} {+ x 3}}} {call add3 1}}") => 4)(test (run "{with {add3 {fun {x} {+ x 3}}} {with {add1 {fun {x} {+ x 1}}} {with {x 3} {call add1 {call add3 x}}}}}") => 7)(test (run "{with {identity {fun {x} x}} {with {foo {fun {x} {+ x 1}}} {call {call identity foo} 123}}}") => 124)(test (run "{with {x 3} {with {f {fun {y} {+ x y}}} {with {x 5} {call f 4}}}}") => 7)(test (run "{call {with {x 3} {fun {y} {+ x y}}} 4}") => 7)(test (run "{call {call {fun {x} {call x 1}} {fun {x} {fun {y} {+ x y}}}} 123}") => 124)

Implementing rec Using Cyclic StructuresTuesday, February 21st

PLAI §10

Looking at the arrows in the environment diagrams, what we’re really
looking for is a closure that has an environment pointer which is the
same environment in which it was defined. This will make it possible
for fact to be bound to a closure that can refer to itself since its
environment is the same one in which it is defined. However, so far we
have no tools that makes it possible to do this.

What we need is to create a “cycle of pointers”, and so far we do not
have a way of achieving that: when we create a closure, we begin with an
environment which is saved in the slot’s environment slot, but we want
that closure to be the value of a binding in that same environment.

Boxes and MutationTuesday, February 21st

To actually implement a circular structure, we will now use
side-effects, using a new kind of Racket value which supports
mutation: a box. A box value is built with the box constructor:

(define my-thing (box 7))

the value is retrieved with the `unbox’ function,

(* 6 (unbox my-thing))

and finally, the value can be changed with the set-box! function.

(set-box! my-thing 17)(* 6 (unbox my-thing))

An important thing to note is that set-box! is much like display
etc, it returns a value that is not printed in the Racket REPL, because
there is no point in using the result of a set-box!, it is called for
the side-effect it generates. (Languages like C blur this distinction
between returning a value and a side-effect with its assignment
statement.)

As a side note, we now have side effects of two kinds: mutation of
state, and I/O (at least the O part). (Actually, there is also infinite
looping that can be viewed as another form of a side effect.) This
means that we’re now in a completely different world, and lots of new
things can make sense now. A few things that you should know about:

	
We never used more than one expression in a function body because
there was no point in it, but now there is. To evaluate a sequence of
Racket expressions, you wrap them in a begin expression.

	
In most places you don’t actually need to use begin — these are
places that are said to have an implicit begin: the body of a
function (or any lambda expression), the body of a let (and
let-relatives), the consequence positions in cond, match, and
cases clauses and more. One of the common places where a begin is
used is in an if expression (and some people prefer using cond
instead when there is more than a single expression).

	
cond without an else in the end can make sense, if all you’re
using it it for is side-effects.

	
if could get a single expression which is executed when the
condition is true (and an unspecified value is used otherwise), but
our language (as well as the default Racket language) always forbids
this — there are convenient special forms for a one-sided ifs:
when & unless, and they can have any number of expressions (they
have an implicit begin). They have an advantage of saying “this
code does some side-effects here” more explicit.

	
There is a function called for-each which is just like map, except
that it doesn’t collect the list of results, it is used only for
performing side effects.

When any one of these things is used (in Racket or other languages), you
can tell that side-effects are involved, because there is no point in
any of them otherwise. In addition, any name that ends with a !
(“bang”) is used to mark a function that changes state (usually a
function that only changes state).

So how do we create a cycle? Simple, boxes can have any value, and they
can be put in other values like lists, so we can do this:

#lang pl untyped(define foo (list 1 (box 3)))(set-box! (second foo) foo)

and we get a circular value. (Note how it is printed.) And with types:

#lang pl(: foo : (List Number (Boxof Any)))(define foo (list 1 (box 3)))(set-box! (second foo) foo)

Types for BoxesTuesday, February 21st

Obviously, Any is not too great — it is the most generic type, so it
provides the least information. For example, notice that

(unbox (second foo))

returns the right list, which is equal to foo itself — but if we try
to grab some part of the resulting list:

(second (unbox (second foo)))

we get a type error, because the result of the unbox is Any, so
Typed Racket knows nothing about it, and won’t allow you to treat it as
a list. It is not too surprising that the type constructor that can
help in this case is Rec which we have already seen — it allows a
type that can refer to itself:

#lang pl(: foo : (Rec this (List Number (Boxof (U #f this)))))(define foo (list 1 (box #f)))(set-box! (second foo) foo)

Note that either foo or the value in the box are both printed with a
Rec type — the value in the box can’t just have a (U #f this)
type, since this doesn’t mean anything in there, so the whole type
needs to still be present.

There is another issue to be aware of with Boxof types. For most type
constructors (like Listof), if T1 is a subtype of T2, then we also
know that(Listof T1) is a subtype of (Listof T2). This makes the
following code typecheck:

#lang pl(: foo : (Listof Number) -> Number)(define (foo l) (first l))(: bar : Integer -> Number)(define (bar x) (foo (list x)))

Since the (Listof Integer) is a subtype of the (Listof Number) input
for foo, the application typechecks. But this is not the same for
the output type, for example — if we change the bar type to:

(: bar : Integer -> Integer)

we get a type error since Number is not a subtype of Integer. So
subtypes are required to “go up” on the input side and “down” on the
other. So, in a sense, the fact that boxes are mutable means that their
contents can be considered to be on the other side of the arrow, which
is why for such T1 subtype of T2, it is (Boxof T2) that is a
subtype of (Boxof T1), instead of the usual. For example, this
doesn’t work:

#lang pl(: foo : (Boxof Number) -> Number)(define (foo b) (unbox b))(: bar : Integer -> Number)(define (bar x) (: b : (Boxof Integer)) (define b (box x)) (foo b))

And you can see why this is the case — the marked line is fine given a
Number contents, so if the type checker allows passing in a box
holding an integer, then that expression would mutate the contents and
make it an invalid value.

However, boxes are not only mutable, they hold a value that can be read
too, which means that they’re on both sides of the arrow, and this
means that (Boxof T1) is a subtype of (Boxof T2) if T2 is a
subtype of T1 and T1 is a subtype of T2 — in other words, this
happens only when T1 and T2 are the same type. (See below for an
extended demonstration of all of this.)

Note also that this demonstration requires that extra b definition, if
it’s skipped:

(define (bar x) (foo (box x)))

then this will typecheck again — typed racket will just consider the
context that requires a box holding a Number, and it is still fine to
initialize such a box with an Integer value.

As a side comment, this didn’t always work. Earlier in its existence,
typed racket would always choose a specific type for values, which
would lead to confusing errors with boxes. For example, the above
would need to be written as

(define (bar x) (foo (box (ann x : Number))))

to prevent typed racket from inferring a specific type. This is no
longer the case, but there can still be some surprises. A similar
annotation was needed in the case of a list holding a self-referential
box, to avoid the initial #f from getting a specific-but-wrong type.

Boxof’s Lack of SubtypingTuesday, February 21st

The lack of any subtype relations between (Boxof T) and (Boxof S)
regardless of S and T can roughly be explained as follows.

First, a box is a container that you can pull a value out of — which
makes it similar to lists. In the case of lists, we have:

if: S subtype-of Tthen: (Listof S) subtype-of (Listof T)

This is true for all such containers that you can pull a value out of:
if you expect to pull a T but is given a container of a subtype S ,
then things are still fine. Such “containers” include functions that
produce a value — for example:

if: S subtype-of Tthen: Q -> S subtype-of Q -> T

However, functions also have the other side, where things are different
— instead of a side of some produced value, it’s the side of the
consumed value. We get the opposite rule there:

if: T subtype-of Sthen: S -> Q subtype-of T -> Q

To see why this is right, use Number and Integer for S and T:

if: Integer subtype-of Numberthen: Number -> Q subtype-of Integer -> Q

so — if you expect a function that takes a number is a subtype of
one that takes an integer; in other words, every function that takes a
number is also a function that takes an integer, but not the other way.

To summarize all of this, when you make the output type of a function
“smaller” (more constrained), the resulting type is smaller, but on the
input side things are flipped — a bigger input type means a more
constrained function.

Now, a (Boxof T) is a producer of T when you pull a value out of the
box, but it’s also a consumer of T when you put such a value in it.
This means that — using the above analogy — the T is on both sides
of the arrow. This means that

if: S subtype-of T *and* T subtype-of Sthen: (Boxof S) subtype-of (Boxof T)

which is actually:

if: S is-the-same-type-as Tthen: (Boxof S) is-the-same-type-as (Boxof T)

A different way to look at this conclusion is to consider the function
type of (A -> A): when is it a subtype of some other (B -> B)? Only
when A is a subtype of B and B is a subtype of A, which means
that this happens only when A and B are the same type.

(Side note: this is related to the fact that in logic, P => Q is
roughly equivalent to not(P) or Q — the left side, P, is inside a
negation. It also explains why in ((S -> T) -> Q) the S obeys the
first rule, as if it was on the right side — because it’s negated
twice.)

The following piece of code makes the analogy to function types more
formally. Boxes behave as if their contents is on both sides of a
function arrow — on the right because they’re readable, and on the
left because they’re writable, which the conclusion that a (Boxof A)
type is a subtype of itself and no other (Boxof B).

#lang pl;; a type for a "read-only" box(define-type (Boxof/R A) = (-> A));; Boxof/R constructor(: box/r : (All (A) A -> (Boxof/R A)))(define (box/r x) (lambda () x));; we can see that (Boxof/R T1) is a subtype of (Boxof/R T2);; if T1 is a subtype of T2 (this is not surprising, since;; these boxes are similar to any other container, like lists):(: foo1 : Integer -> (Boxof/R Integer))(define (foo1 b) (box/r b))(: bar1 : (Boxof/R Number) -> Number)(define (bar1 b) (b))(test (bar1 (foo1 123)) => 123);; a type for a "write-only" box(define-type (Boxof/W A) = (A -> Void));; Boxof/W constructor(: box/w : (All (A) A -> (Boxof/W A)))(define (box/w x) (lambda (new) (set! x new)));; in contrast to the above, (Boxof/W T1) is a subtype of;; (Boxof/W T2) if T2 is a subtype of T1, *not* the other way;; (and note how this is related to A being on the *left* side;; of the arrow in the `Boxof/W' type):(: foo2 : Number -> (Boxof/W Number))(define (foo2 b) (box/w b))(: bar2 : (Boxof/W Integer) Integer -> Void)(define (bar2 b new) (b new))(test (bar2 (foo2 123) 456));; combining the above two into a type for a "read/write" box(define-type (Boxof/RW A) = (A -> A));; Boxof/RW constructor(: box/rw : (All (A) A -> (Boxof/RW A)))(define (box/rw x) (lambda (new) (let ([old x]) (set! x new) old)));; this combines the above two: `A' appears on both sides of the;; arrow, so (Boxof/RW T1) is a subtype of (Boxof/RW T2) if T1;; is a subtype of T2 (because there's an A on the right) *and*;; if T2 is a subtype of T1 (because there's another A on the;; left) -- and that can happen only when T1 and T2 are the same;; type. So this is a type error:;; (: foo3 : Integer -> (Boxof/RW Integer));; (define (foo3 b) (box/rw b));; (: bar3 : (Boxof/RW Number) Number -> Number);; (define (bar3 b new) (b new));; (test (bar3 (foo3 123) 456) => 123);; ** Expected (Number -> Number), but got (Integer -> Integer);; And this a type error too:;; (: foo3 : Number -> (Boxof/RW Number));; (define (foo3 b) (box/rw b));; (: bar3 : (Boxof/RW Integer) Integer -> Integer);; (define (bar3 b new) (b new));; (test (bar3 (foo3 123) 456) => 123);; ** Expected (Integer -> Integer), but got (Number -> Number);; The two types must be the same for this to work:(: foo3 : Integer -> (Boxof/RW Integer))(define (foo3 b) (box/rw b))(: bar3 : (Boxof/RW Integer) Integer -> Integer)(define (bar3 b new) (b new))(test (bar3 (foo3 123) 456) => 123)

Implementing a Circular EnvironmentTuesday, February 21st

We now use this to implement rec in the following way:

	
Change environments so that instead of values they hold boxes of
values: (Boxof VAL) instead of VAL, and whenever lookup is
used, the resulting boxed value is unboxed,

	
In the WRec case, create the new environment with some temporary
binding for the identifier — any value will do since it should not
be used (when named expressions are always fun expressions),

	
Evaluate the expression in the new environment,

	
Change the binding of the identifier (the box) to the result of this
evaluation.

The resulting definition is:

(: extend-rec : Symbol FLANG ENV -> ENV);; extend an environment with a new binding that is the result of;; evaluating an expression in the same environment as the extended;; result(define (extend-rec id expr rest-env) (let ([new-cell (box (NumV 42))]) (let ([new-env (Extend id new-cell rest-env)]) (let ([value (eval expr new-env)]) (set-box! new-cell value) new-env))))

Racket has another let relative for such cases of multiple-nested
lets — let*. This form is a derived form — it is defined as a
shorthand for using nested lets. The above is therefore exactly the
same as this code:

(: extend-rec : Symbol FLANG ENV -> ENV);; extend an environment with a new binding that is the result of;; evaluating an expression in the same environment as the extended;; result(define (extend-rec id expr rest-env) (let* ([new-cell (box (NumV 42))] [new-env (Extend id new-cell rest-env)] [value (eval expr new-env)]) (set-box! new-cell value) new-env))

This let* form can be read almost as a C/Java-ish kind of code:

fun extend_rec(id, expr, rest_env) { new_cell = new NumV(42); new_env = Extend(id, new_cell, rest_env); value = eval(expr, new_env); *new_cell = value; return new_env;}

The code can be simpler if we fold the evaluation into the set-box!
(since value is used just there), and if use lookup to do the
mutation — since this way there is no need to hold onto the box. This
is a bit more expensive, but since the binding is guaranteed to be the
first one in the environment, the addition is just one quick step. The
only binding that we need is the one for the new environment, which we
can do as an internal definition, leaving us with:

(: extend-rec : Symbol FLANG ENV -> ENV)(define (extend-rec id expr rest-env) (define new-env (Extend id (box (NumV 42)) rest-env)) (set-box! (lookup id new-env) (eval expr new-env)) new-env)

A complete rehacked version of FLANG with a rec binding follows:

[bookmark: flang-box.rkt]▶#lang pl(define-type FLANG [Num Number] [Add FLANG FLANG] [Sub FLANG FLANG] [Mul FLANG FLANG] [Div FLANG FLANG] [Id Symbol] [With Symbol FLANG FLANG] [WRec Symbol FLANG FLANG] [Fun Symbol FLANG] [Call FLANG FLANG])(: parse-sexpr : Sexpr -> FLANG);; parses s-expressions into FLANGs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(symbol: name) (Id name)] [(cons (or 'with 'rec) more) (match sexpr [(list 'with (list (symbol: name) named) body) (With name (parse-sexpr named) (parse-sexpr body))] [(list 'rec (list (symbol: name) named) body) (WRec name (parse-sexpr named) (parse-sexpr body))] [(cons x more) (error 'parse-sexpr "bad `~s' syntax in ~s" x sexpr)])] [(cons 'fun more) (match sexpr [(list 'fun (list (symbol: name)) body) (Fun name (parse-sexpr body))] [else (error 'parse-sexpr "bad `fun' syntax in ~s" sexpr)])] [(list '+ lhs rhs) (Add (parse-sexpr lhs) (parse-sexpr rhs))] [(list '- lhs rhs) (Sub (parse-sexpr lhs) (parse-sexpr rhs))] [(list '* lhs rhs) (Mul (parse-sexpr lhs) (parse-sexpr rhs))] [(list '/ lhs rhs) (Div (parse-sexpr lhs) (parse-sexpr rhs))] [(list 'call fun arg) (Call (parse-sexpr fun) (parse-sexpr arg))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))(: parse : String -> FLANG);; parses a string containing a FLANG expression to a FLANG AST(define (parse str) (parse-sexpr (string->sexpr str)));; Types for environments, values, and a lookup function(define-type ENV [EmptyEnv] [Extend Symbol (Boxof VAL) ENV])(define-type VAL [NumV Number] [FunV Symbol FLANG ENV])(: lookup : Symbol ENV -> (Boxof VAL));; lookup a symbol in an environment, return its value or throw an;; error if it isn't bound(define (lookup name env) (cases env [(EmptyEnv) (error 'lookup "no binding for ~s" name)] [(Extend id boxed-val rest-env) (if (eq? id name) boxed-val (lookup name rest-env))]))(: extend-rec : Symbol FLANG ENV -> ENV);; extend an environment with a new binding that is the result of;; evaluating an expression in the same environment as the extended;; result(define (extend-rec id expr rest-env) (define new-env (Extend id (box (NumV 42)) rest-env)) (set-box! (lookup id new-env) (eval expr new-env)) new-env)(: NumV->number : VAL -> Number);; convert a FLANG runtime numeric value to a Racket one(define (NumV->number val) (cases val [(NumV n) n] [else (error 'arith-op "expected a number, got: ~s" val)]))(: arith-op : (Number Number -> Number) VAL VAL -> VAL);; gets a Racket numeric binary operator, and uses it within a NumV;; wrapper(define (arith-op op val1 val2) (NumV (op (NumV->number val1) (NumV->number val2))))(: eval : FLANG ENV -> VAL);; evaluates FLANG expressions by reducing them to values(define (eval expr env) (cases expr [(Num n) (NumV n)] [(Add l r) (arith-op + (eval l env) (eval r env))] [(Sub l r) (arith-op - (eval l env) (eval r env))] [(Mul l r) (arith-op * (eval l env) (eval r env))] [(Div l r) (arith-op / (eval l env) (eval r env))] [(With bound-id named-expr bound-body) (eval bound-body (Extend bound-id (box (eval named-expr env)) env))] [(WRec bound-id named-expr bound-body) (eval bound-body (extend-rec bound-id named-expr env))] [(Id name) (unbox (lookup name env))] [(Fun bound-id bound-body) (FunV bound-id bound-body env)] [(Call fun-expr arg-expr) (let ([fval (eval fun-expr env)]) (cases fval [(FunV bound-id bound-body f-env) (eval bound-body (Extend bound-id (box (eval arg-expr env)) f-env))] [else (error 'eval "`call' expects a function, got: ~s" fval)]))]))(: run : String -> Number);; evaluate a FLANG program contained in a string(define (run str) (let ([result (eval (parse str) (EmptyEnv))]) (cases result [(NumV n) n] [else (error 'run "evaluation returned a non-number: ~s" result)])));; tests(test (run "{call {fun {x} {+ x 1}} 4}") => 5)(test (run "{with {add3 {fun {x} {+ x 3}}} {call add3 1}}") => 4)(test (run "{with {add3 {fun {x} {+ x 3}}} {with {add1 {fun {x} {+ x 1}}} {with {x 3} {call add1 {call add3 x}}}}}") => 7)(test (run "{with {identity {fun {x} x}} {with {foo {fun {x} {+ x 1}}} {call {call identity foo} 123}}}") => 124)(test (run "{with {x 3} {with {f {fun {y} {+ x y}}} {with {x 5} {call f 4}}}}") => 7)(test (run "{call {with {x 3} {fun {y} {+ x y}}} 4}") => 7)(test (run "{call {call {fun {x} {call x 1}} {fun {x} {fun {y} {+ x y}}}} 123}") => 124)

Variable MutationTuesday, February 28th

PLAI §12 and PLAI §13 (different: adds boxes to the language)

PLAI §14 (that’s what we do)

The code that we now have implements recursion by changing bindings,
and to make that possible we made environments hold boxes for all
bindings, therefore bindings are all mutable now. We can use this to
add more functionality to our evaluator, by allowing changing any
variable — we can add a set! form:

{set! <id> <FLANG>}

to the evaluator that will modify the value of a variable. To implement
this functionality, all we need to do is to use lookup to retrieve
some box, then evaluate the expression and put the result in that box.
The actual implementation is left as a homework exercise.

One thing that should be considered here is — all of the expressions
in our language evaluate to some value, the question is what should be
the value of a set! expression? There are three obvious choices:

	
return some bogus value,

	
return the value that was assigned,

	
return the value that was previously in the box.

Each one of these has its own advantage — for example, C uses the
second option to chain assignments (eg, x = y = 0) and to allow side
effects where an expression is expected (eg, while (x = x-1) ...).

The third one is useful in cases where you might use the old value that
is overwritten — for example, if C had this behavior, you could pop
a value from a linked list using something like:

first(l = rest(l));

because the argument to first will be the old value of l, before it
changed to be its rest. You could also swap two variables in a single
expression: x = y = x.

(Note that the expression x = x + 1 has the meaning of C’s ++x when
option (2) is used, and x++ when option (3) is used.)

Racket chooses the first option, and we will do the same in our
language. The advantage here is that you get no discounts, therefore
you must be explicit about what values you want to return in situations
where there is no obvious choice. This leads to more robust programs
since you do not get other programmers that will rely on a feature of
your code that you did not plan on.

In any case, the modification that introduces mutation is small, but it
has a tremendous effect on our language: it was true for Racket, and it
is true for FLANG. We have seen how mutation affects the language
subset that we use, and in the extension of our FLANG the effect is even
stronger: since any variable can change (there is no need for an
explicit box value). In other words, a binding is not always the same
— in can change as a result of a set! expression. Of course, we
could extend our language with boxes (using Racket boxes to implement
FLANG boxes), but that will be a little more verbose.

Note that Racket does have a set! form, and in addition, fields in
structs can be made modifiable. However, we do not use any of these.
At least not for now.

State and EnvironmentsTuesday, February 28th

A quick example of how mutation can be used:

(define counter (let ([counter (box 0)]) (lambda () (set-box! counter (+ 1 (unbox counter))) (unbox counter))))

and compare that to:

(define (make-counter) (let ([counter (box 0)]) (lambda () (set-box! counter (+ 1 (unbox counter))) (unbox counter))))

It is a good idea if you follow the exact evaluation of

(define foo (make-counter))(define bar (make-counter))

and see how both bindings have separate environment so each one gets its
own private state. The equivalent code in the homework interpreter
extended with set! doesn’t need boxes:

{with {make-counter {fun {} {with {counter 0} {fun {} {set! counter {+ counter 1}} counter}}}} {with {foo {call make-counter}} {with {bar {call make-counter}} ...}}}

(To see multiple values from a single expression you can extend the
language with a list binding.) Note that we cannot describe this
behavior with substitution rules! We now use the environments to make
it possible to change bindings — so finally an environment is actually
an environment rather than a substitution cache.

When you look at the above, note that we still use lexical scope — in
fact, the local binding is actually a private state that nobody can
access. For example, if we write this:

(define counter (let ([counter (box 0)]) (lambda () (set-box! counter (+ 1 (unbox counter))) (if (zero? (modulo (unbox counter) 4)) 'tock 'tick))))

then the resulting function that us bound to counter keeps a local
integer state which no other code can access — you cannot modify it,
reset it, or even know if it is really an integer that is used in there.

Implementing Objects with StateTuesday, February 28th

We have already seen how several pieces of information can be
encapsulate in a Racket closure that keeps them all; now we can do a
little more — we can actually have mutable state, which leads to a
natural way to implement objects. For example:

(define (make-point x y) (let ([xb (box x)] [yb (box y)]) (lambda (msg) (match msg ['getx (unbox xb)] ['gety (unbox yb)] ['incx (set-box! xb (add1 (unbox xb)))]))))

implements a constructor for point objects which keep two values and
can move one of them. Note that the messages act as a form of methods,
and that the values themselves are hidden and are accessible only
through the interface that these messages make. For example, if these
points correspond to some graphic object on the screen, we can easily
incorporate a necessary screen update:

(define (make-point x y) (let ([xb (box x)] [yb (box y)]) (lambda (msg) (match msg ['getx (unbox xb)] ['gety (unbox yb)] ['incx (set-box! xb (add1 (unbox xb))) (update-screen)]))))

and be sure that this is always done when the value changes — since
there is no way to change the value except through this interface.

A more complete example would define functions that actually send these
messages — here is a better implementation of a point object and the
corresponding accessors and mutators:

(define (make-point x y) (let ([xb (box x)] [yb (box y)]) (lambda (msg) (match msg ['getx (unbox xb)] ['gety (unbox yb)] [(list 'setx newx) (set-box! xb newx) (update-screen)] [(list 'sety newy) (set-box! yb newy) (update-screen)]))))(define (point-x p) (p 'getx))(define (point-y p) (p 'gety))(define (set-point-x! p x) (p (list 'setx x)))(define (set-point-y! p y) (p (list 'sety y)))

And a quick imitation of inheritance can be achieved using delegation to
an instance of the super-class:

(define (make-colored-point x y color) (let ([p (make-point x y)]) (lambda (msg) (match msg ['getcolor color] [else (p msg)]))))

You can see how all of these could come from some preprocessing of a
more normal-looking class definition form, like:

(defclass point (x y) (public (getx) x) (public (gety) y) (public (setx new) (set! x newx)) (public (setx new) (set! x newx)))(defclass colored-point point (c) (public (getcolor) c))

The Toy LanguageTuesday, February 28th

Not in PLAI

A quick note: from now on, we will work with a variation of our language
— it will change the syntax to look a little more like Racket, and we
will use Racket values for values in our language and Racket functions
for built-ins in our language.

Main highlights:

	
There can be multiple bindings in function arguments and local bind
forms — the names are required to be distinct.

	
There are now a few keywords like bind that are parsed in a special
way. Other forms are taken as function application, which means that
there are no special parse rules (and AST entries) for arithmetic
functions. They’re now bindings in the global environment, and
treated in the same way as all bindings. For example, * is an
expression that evaluates to the primitive multiplication function,
and {bind {{+ *}} {+ 2 3}} evaluates to 6.

	
Since function applications are now the same for primitive functions
and user-bound functions, there is no need for a call keyword. Note
that the function call part of the parser must be last, since it
should apply only if the input is not some other known form.

	
Note the use of make-untyped-list-function: it’s a library function
(included in the course language) that can convert a few known Racket
functions to a function that consumes a list of any Racket values,
and returns the result of applying the given Racket function on these
values. For example:

(define add (make-untyped-list-function +))(add (list 1 2 3 4))

evaluates to 10.

	
Another important aspect of this is its type — the type of add in
the previous example is (List -> Any), so the resulting function can
consume any input values. If it gets a bad value, it will throw an
appropriate error. This is a hack: it basically means that the
resulting add function has a very generic type (requiring just a
list), so errors can be thrown at run-time. However, in this case, a
better solution is not going to make these run-time errors go away
because the language that we’re implementing is not statically typed.

	
The benefit of this is that we can avoid the hassle of more verbose
code by letting these functions dynamically check the input values, so
we can use a single RktV variant in VAL which wraps any Racket
value. (Otherwise we’d need different wrappers for different types,
and implement these dynamic checks.)

The following is the complete implementation.

[bookmark: toy.rkt]▶#lang pl;;; --;;; Syntax#| The BNF: <TOY> ::= <num> | <id> | { bind {{ <id> <TOY> } ... } <TOY> } | { fun { <id> ... } <TOY> } | { if <TOY> <TOY> <TOY> } | { <TOY> <TOY> ... }|#;; A matching abstract syntax tree datatype:(define-type TOY [Num Number] [Id Symbol] [Bind (Listof Symbol) (Listof TOY) TOY] [Fun (Listof Symbol) TOY] [Call TOY (Listof TOY)] [If TOY TOY TOY])(: unique-list? : (Listof Any) -> Boolean);; Tests whether a list is unique, guards Bind and Fun values.(define (unique-list? xs) (or (null? xs) (and (not (member (first xs) (rest xs))) (unique-list? (rest xs)))))(: parse-sexpr : Sexpr -> TOY);; parses s-expressions into TOYs(define (parse-sexpr sexpr) (match sexpr [(number: n) (Num n)] [(symbol: name) (Id name)] [(cons 'bind more) (match sexpr [(list 'bind (list (list (symbol: names) (sexpr: nameds)) ...) body) (if (unique-list? names) (Bind names (map parse-sexpr nameds) (parse-sexpr body)) (error 'parse-sexpr "duplicate `bind' names: ~s" names))] [else (error 'parse-sexpr "bad `bind' syntax in ~s" sexpr)])] [(cons 'fun more) (match sexpr [(list 'fun (list (symbol: names) ...) body) (if (unique-list? names) (Fun names (parse-sexpr body)) (error 'parse-sexpr "duplicate `fun' names: ~s" names))] [else (error 'parse-sexpr "bad `fun' syntax in ~s" sexpr)])] [(cons 'if more) (match sexpr [(list 'if cond then else) (If (parse-sexpr cond) (parse-sexpr then) (parse-sexpr else))] [else (error 'parse-sexpr "bad `if' syntax in ~s" sexpr)])] [(list fun args ...) ; other lists are applications (Call (parse-sexpr fun) (map parse-sexpr args))] [else (error 'parse-sexpr "bad syntax in ~s" sexpr)]))(: parse : String -> TOY);; Parses a string containing an TOY expression to a TOY AST.(define (parse str) (parse-sexpr (string->sexpr str)));;; --;;; Values and environments(define-type ENV [EmptyEnv] [FrameEnv FRAME ENV]);; a frame is an association list of names and values.(define-type FRAME = (Listof (List Symbol VAL)))(define-type VAL [RktV Any] [FunV (Listof Symbol) TOY ENV] [PrimV ((Listof VAL) -> VAL)])(: extend : (Listof Symbol) (Listof VAL) ENV -> ENV);; extends an environment with a new frame.(define (extend names values env) (if (= (length names) (length values)) (FrameEnv (map (lambda ([name : Symbol] [val : VAL]) (list name val)) names values) env) (error 'extend "arity mismatch for names: ~s" names)))(: lookup : Symbol ENV -> VAL);; lookup a symbol in an environment, frame by frame,;; return its value or throw an error if it isn't bound(define (lookup name env) (cases env [(EmptyEnv) (error 'lookup "no binding for ~s" name)] [(FrameEnv frame rest) (let ([cell (assq name frame)]) (if cell (second cell) (lookup name rest)))]))(: unwrap-rktv : VAL -> Any);; helper for `racket-func->prim-val': unwrap a RktV wrapper in;; preparation to be sent to the primitive function(define (unwrap-rktv x) (cases x [(RktV v) v] [else (error 'racket-func "bad input: ~s" x)]))(: racket-func->prim-val : Function -> VAL);; converts a racket function to a primitive evaluator function;; which is a PrimV holding a ((Listof VAL) -> VAL) function.;; (the resulting function will use the list function as is,;; and it is the list function's responsibility to throw an error;; if it's given a bad number of arguments or bad input types.)(define (racket-func->prim-val racket-func) (define list-func (make-untyped-list-function racket-func)) (PrimV (lambda (args) (RktV (list-func (map unwrap-rktv args))))));; The global environment has a few primitives:(: global-environment : ENV)(define global-environment (FrameEnv (list (list '+ (racket-func->prim-val +)) (list '- (racket-func->prim-val -)) (list '* (racket-func->prim-val *)) (list '/ (racket-func->prim-val /)) (list '< (racket-func->prim-val <)) (list '> (racket-func->prim-val >)) (list '= (racket-func->prim-val =)) ;; values (list 'true (RktV #t)) (list 'false (RktV #f))) (EmptyEnv)));;; --;;; Evaluation(: eval : TOY ENV -> VAL);; evaluates TOY expressions.(define (eval expr env) ;; convenient helper (: eval* : TOY -> VAL) (define (eval* expr) (eval expr env)) (cases expr [(Num n) (RktV n)] [(Id name) (lookup name env)] [(Bind names exprs bound-body) (eval bound-body (extend names (map eval* exprs) env))] [(Fun names bound-body) (FunV names bound-body env)] [(Call fun-expr arg-exprs) (let ([fval (eval* fun-expr)] [arg-vals (map eval* arg-exprs)]) (cases fval [(PrimV proc) (proc arg-vals)] [(FunV names body fun-env) (eval body (extend names arg-vals fun-env))] [else (error 'eval "function call with a non-function: ~s" fval)]))] [(If cond-expr then-expr else-expr) (eval* (if (cases (eval* cond-expr) [(RktV v) v] ; Racket value => use as boolean [else #t]) ; other values are always true then-expr else-expr))]))(: run : String -> Any);; evaluate a TOY program contained in a string(define (run str) (let ([result (eval (parse str) global-environment)]) (cases result [(RktV v) v] [else (error 'run "evaluation returned a bad value: ~s" result)])));;; --;;; Tests(test (run "{{fun {x} {+ x 1}} 4}") => 5)(test (run "{bind {{add3 {fun {x} {+ x 3}}}} {add3 1}}") => 4)(test (run "{bind {{add3 {fun {x} {+ x 3}}} {add1 {fun {x} {+ x 1}}}} {bind {{x 3}} {add1 {add3 x}}}}") => 7)(test (run "{bind {{identity {fun {x} x}} {foo {fun {x} {+ x 1}}}} {{identity foo} 123}}") => 124)(test (run "{bind {{x 3}} {bind {{f {fun {y} {+ x y}}}} {bind {{x 5}} {f 4}}}}") => 7)(test (run "{{{fun {x} {x 1}} {fun {x} {fun {y} {+ x y}}}} 123}") => 124);; More tests for complete coverage(test (run "{bind x 5 x}") =error> "bad `bind' syntax")(test (run "{fun x x}") =error> "bad `fun' syntax")(test (run "{if x}") =error> "bad `if' syntax")(test (run "{}") =error> "bad syntax")(test (run "{bind {{x 5} {x 5}} x}") =error> "duplicate*bind*names")(test (run "{fun {x x} x}") =error> "duplicate*fun*names")(test (run "{+ x 1}") =error> "no binding for")(test (run "{+ 1 {fun {x} x}}") =error> "bad input")(test (run "{+ 1 {fun {x} x}}") =error> "bad input")(test (run "{1 2}") =error> "with a non-function")(test (run "{{fun {x} x}}") =error> "arity mismatch")(test (run "{if {< 4 5} 6 7}") => 6)(test (run "{if {< 5 4} 6 7}") => 7)(test (run "{if + 6 7}") => 6)(test (run "{fun {x} x}") =error> "returned a bad value");;; --

Compilation and Partial EvaluationTuesday, February 28th

Instead of interpreting an expression, which is performing a full
evaluation, we can think about compiling it: translating it to a
different language which we can later run more easily, more efficiently,
on more platforms, etc. Another feature that is usually associated with
compilation is that a lot more work was done at the compilation stage,
making the actual running of the code faster.

For example, translating an AST into one that has de-Bruijn indexes
instead of identifier names is a form of compilation — not only is it
translating one language into another, it does the work involved in name
lookup before the program starts running.

This is something that we can experiment with now. An easy way to
achieve this is to start with our evaluation function:

(: eval : TOY ENV -> VAL);; evaluates TOY expressions.(define (eval expr env) ;; convenient helper (: eval* : TOY -> VAL) (define (eval* expr) (eval expr env)) (cases expr [(Num n) (RktV n)] [(Id name) (lookup name env)] [(Bind names exprs bound-body) (eval bound-body (extend names (map eval* exprs) env))] [(Fun names bound-body) (FunV names bound-body env)] [(Call fun-expr arg-exprs) (let ([fval (eval* fun-expr)] [arg-vals (map eval* arg-exprs)]) (cases fval [(PrimV proc) (proc arg-vals)] [(FunV names body fun-env) (eval body (extend names arg-vals fun-env))] [else (error 'eval "function call with a non-function: ~s" fval)]))] [(If cond-expr then-expr else-expr) (eval* (if (cases (eval* cond-expr) [(RktV v) v] ; Racket value => use as boolean [else #t]) ; other values are always true then-expr else-expr))]))

and change it so it compiles a given expression to a Racket function.
(This is, of course, just to demonstrate a conceptual point, it is only
the tip of what compilers actually do…) This means that we need to
turn it into a function that receives a TOY expression and compiles it.
In other words, eval no longer consumes and environment argument which
makes sense because the environment is a place to hold run-time values,
so it is a data structure that is not part of the compiler (it is
usually represented as the call stack).

So we split the two arguments into a compile-time and run-time, which
can be done by simply currying the eval function — here this is
done, and all calls to eval are also curried:

(: eval : TOY -> ENV -> VAL) ;*** note the curried type;; evaluates TOY expressions.(define (eval expr) (lambda (env) ;; convenient helper (: eval* : TOY -> VAL) (define (eval* expr) ((eval expr) env)) (cases expr [(Num n) (RktV n)] [(Id name) (lookup name env)] [(Bind names exprs bound-body) ((eval bound-body) (extend names (map eval* exprs) env))] [(Fun names bound-body) (FunV names bound-body env)] [(Call fun-expr arg-exprs) (let ([fval (eval* fun-expr)] [arg-vals (map eval* arg-exprs)]) (cases fval [(PrimV proc) (proc arg-vals)] [(FunV names body fun-env) ((eval body) (extend names arg-vals fun-env))] [else (error 'eval "function call with a non-function: ~s" fval)]))] [(If cond-expr then-expr else-expr) (eval* (if (cases (eval* cond-expr) [(RktV v) v] ; Racket value => use as boolean [else #t]) ; other values are always true then-expr else-expr))])))

We also need to change the eval call in the main run function:

(: run : String -> Any);; evaluate a TOY program contained in a string(define (run str) (let ([result ((eval (parse str)) global-environment)]) (cases result [(RktV v) v] [else (error 'run "evaluation returned a bad value: ~s" result)])))

Not much has changed so far.

Note that in the general case of a compiler we need to run a program
several times, so we’d want to avoid parsing it over and over again. We
can do that by keeping a single parsed AST of the input. Now we went
one step further by making it possible to do more work ahead and keep
the result of the first “stage” of eval around (except that “more work”
is really not saying much at the moment):

(: run : String -> Any);; evaluate a TOY program contained in a string(define (run str) (let* ([compiled (eval (parse str))] [result (compiled global-environment)]) (cases result [(RktV v) v] [else (error 'run "evaluation returned a bad value: ~s" result)])))

At this point, even though our “compiler” is not much more than a
slightly different representation of the same functionality, we rename
eval to compile which is a more appropriate description of what we
intend it to do (so we change the purpose statement too):

(: compile : TOY -> ENV -> VAL);; compiles TOY expressions to Racket functions.(define (compile expr) (lambda (env) (: compile* : TOY -> VAL) (define (compile* expr) ((compile expr) env)) (cases expr [(Num n) (RktV n)] [(Id name) (lookup name env)] [(Bind names exprs bound-body) ((compile bound-body) (extend names (map compile* exprs) env))] [(Fun names bound-body) (FunV names bound-body env)] [(Call fun-expr arg-exprs) (let ([fval (compile* fun-expr)] [arg-vals (map compile* arg-exprs)]) (cases fval [(PrimV proc) (proc arg-vals)] [(FunV names body fun-env) ((compile body) (extend names arg-vals fun-env))] [else (error 'call ; this is *not* a compilation error "function call with a non-function: ~s" fval)]))] [(If cond-expr then-expr else-expr) (compile* (if (cases (compile* cond-expr) [(RktV v) v] ; Racket value => use as boolean [else #t]) ; other values are always true then-expr else-expr))])))(: run : String -> Any);; evaluate a TOY program contained in a string(define (run str) (let* ([compiled (compile (parse str))] [result (compiled global-environment)]) (cases result [(RktV v) v] [else (error 'run "evaluation returned a bad value: ~s" result)])))

Not much changed, still. We curried the eval function and renamed it
to compile. But when we actually call compile almost nothing happens
— all it does is create a Racket closure which will do the rest of the
work. (And this closure closes over the given expression.)

Running this “compiled” code is going to be very much like the previous
usage of eval, except a little slower, because now every recursive
call involves calling compile to generate a closure, which is then
immediately used — so we just added some allocations at the recursive
call points! (Actually, the extra cost is minimal because the Racket
compiler will optimize away such immediate closure applications.)

Another way to see how this is not really a compiler yet is to consider
when compile gets called. A proper compiler is something that does
all of its work before running the code, which means that once it
spits out the compiled code it shouldn’t be used again (except for
compiling other code, of course). Our current code is not really a
compiler since it breaks this feature. (For example, if GCC behaved
this way, then it would “compile” files by producing code that invokes
GCC to compile the next step, which, when run, invokes GCC again, etc.)

However, the conceptual change is substantial — we now have a function
that does its work in two stages — the first part gets an expression
and can do some compile-time work, and the second part does the
run-time work, and includes anything inside the (lambda (env) …). The
thing is that so far, the code does nothing at the compilation stage
(remember: only creates a closure). But because we have two stages, we
can now shift work from the second stage (the run-time) to the first
(the compile-time).

For example, consider the following simple example:

#lang pl(: foo : Number Number -> Number)(define (foo x y) (* x y))(: bar : Number -> Number)(define (bar c) (: loop : Number Number -> Number) (define (loop n acc) (if (< 0 n) (loop (- n 1) (+ (foo c n) acc)) acc)) (loop 40000000 0))(time (bar 0))

We can do the same thing here — separate foo it into two stages
using currying, and modify bar appropriately:

#lang pl(: foo : Number -> Number -> Number)(define (foo x) (lambda (y) (* x y)))(: bar : Number -> Number)(define (bar c) (: loop : Number Number -> Number) (define (loop n acc) (if (< 0 n) (loop (- n 1) (+ ((foo c) n) acc)) acc)) (loop 40000000 0))(time (bar 0))

Now instead of a simple multiplication, lets expand it a little, for
example, do a case split on common cases where x is 0, 1, or 2:

(: foo : Number -> Number -> Number)(define (foo x) (lambda (y) (cond [(= x 0) 0] [(= x 1) y] [(= x 2) (+ y y)] ; assume that this is faster [else (* x y)])))

This is not much faster, since Racket already optimizes multiplication
in a similar way.

Now comes the real magic: deciding what branch of the cond to take
depends only on x, so we can push the lambda inside:

(: foo : Number -> Number -> Number)(define (foo x) (cond [(= x 0) (lambda (y) 0)] [(= x 1) (lambda (y) y)] [(= x 2) (lambda (y) (+ y y))] [else (lambda (y) (* x y))]))

We just made an improvement — the comparisons for the common cases are
now done as soon as (foo x) is called, they’re not delayed to when the
resulting function is used. Now go back to the way this is used in
bar and make it call foo once for the given c:

#lang pl(: foo : Number -> Number -> Number)(define (foo x) (cond [(= x 0) (lambda (y) 0)] [(= x 1) (lambda (y) y)] [(= x 2) (lambda (y) (+ y y))] [else (lambda (y) (* x y))]))(: bar : Number -> Number)(define (bar c) (define foo-c (foo c)) (: loop : Number Number -> Number) (define (loop n acc) (if (< 0 n) (loop (- n 1) (+ (fooc n) acc)) acc)) (loop 40000000 0))(time (bar 0))

Now foo-c is generated once, and if c happens to be one of the three
common cases (as in the last expression), we can avoid doing any
multiplication. (And if we hit the default case, then we’re doing the
same thing we did before.)

[However, the result runs a little slower! The reason is that dealing
with functions can have a higher cost when the compiler cannot “simplify
closures away” — and this is what happens in the last version. The
additional overhead is much higher than the multiplication we save (the
Racket compiler inlines multiplications, so their cost is close to just
executing a single machine-code instruction).]

Here is another useful example that demonstrates this:

(define (foo list) (map (lambda (n) (if ...something... E1 E2)) list))-->(define (foo list) (map (if ...something... (lambda (n) E1) (lambda (n) E2)) list))

(Question: when can you do that?)

This is not unique to Racket, it can happen in any language. Racket (or
any language with first class function values) only makes it easy to
create a local function that is specialized for the flag.

