
Operating Systems Lecture Notes (Stanford CS140)

From: CS 140: Operating Systems (Spring 2014)

 Introduction

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Evolution of operating systems, phase 1:
 	Hardware expensive, humans cheap

	One user at a time, working directly at console

 	First "operating system": I/O subroutine libraries shared
 by users

	Simple batch monitor: get user away from the computer.
 OS = program to load and run user jobs, take dumps.

	Data channels, interrupts, overlap of I/O and computation.

	Memory protection and relocation enable multitasking:
 several users share the system

	OS must manage interactions, concurrency

	By mid-1960's operating systems had become large, complicated.

	OS field emerges as important discipline with
 principles

	Evolution of operating systems, phase 2:
 	Hardware cheap, humans expensive

 	Interactive timesharing
 	Fancy file systems

	Issues of response time, thrashing

	Personal computers: computers are cheap, so put one in
 each terminal.

	Networking: allow sharing and communication between
 machines.

	Embedded devices: put computers in cell phones, stereo players,
 TVs, light switches

	Are all the fancy features developed for timesharing still
 needed?

	The future of OSes:
 	Very small (devices)

	Very large (datacenters, cloud)

	Characteristics of current OSes:
 	Enormous: millions of lines of code, 100-1000 engineer-years

	Complex: asynchronous, hardware idiosyncrasies, performance
 is crucial.

	Poorly understood

	Most of an operating system's functions fall in the category of
 coordination: allowing several things to work together efficiently
 and fairly:
 	Concurrency: allow several different tasks to be underway at
 the same time, as if each had a private machine. To keep
 track of everything, processes and threads were invented.

	I/O devices. Don't want CPU to sit idle while an I/O
 device is working.

	Memory: how can a single memory be shared among several processes?

	Files: allow many files, for many different users, to
 share space on the same physical disk.

	Networks: allow groups of computers to work together.

	Security: how to allow interactions while protecting each
 participant from abuse by the others?

 Threads, Processes, and Dispatching

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Readings for this topic from Operating Systems: Principles and Practice:
 Chapter 4.

Threads and Processes

	Thread: a sequential execution stream
 	Executes a series of instructions in order (only one
 thing happens at a time).

	Process: one or more threads, along with their execution state.
 	Execution state: everything that can affect, or be affected by,
 a thread:
 	Code, data, registers, call stack, open files,
 network connections, time of day, etc.

 	Part of the process state is private to a thread

	Part is shared among all threads in the process

	Evolution of operating system process model:
 	Early operating systems supported a single process with a
 single thread at a time (single tasking). They ran batch
 jobs (one user at a time).

	Some early personal computer operating systems used
 single-tasking (e.g. MS-DOS), but these systems are almost
 unheard of today.

	By late 1970's most operating systems were multitasking
 systems: they supported multiple processes, but each process
 had only a single thread.

	In the 1990's most systems converted to multithreading:
 multiple threads within each process.

	Is a process the same as a program?

Dispatching

	Almost all computers today can execute multiple threads simultaneously:
 	Each processor chip typically contains multiple cores

	Each core contains a complete CPU capable of executing threads

	Many modern processors support hyperthreading: each physical
 core behaves as if it is actually two cores, so it can run two threads
 simultaneously (e.g. execute one thread while the other
 is waiting on a cache miss).

	For example, a server might contain 2 Intel Xeon E5-2670 processors,
 each with 8 cores that supports 2-way hyperthreading. Overall, this
 computer can run 32 threads simultaneously.

 	May have more threads than cores

	At any given time, most threads do not need to execute (they are
 waiting for something).

	OS uses a process control block to keep track
 of each process:
 	Execution state for each thread (saved registers, etc.)

	Scheduling information

	Information about memory used by this process

	Information about open files

	Accounting and other miscellaneous information

	At any given time a thread is in one of 3 states:
 	Running

	Blocked: waiting for an event (disk I/O, incoming
 network packet, etc.)

	Ready: waiting for CPU time

	Dispatcher: innermost portion of the OS that runs
 on each core:
 	Run a thread for a while

	Save its state

	Load state of another thread

	Run it ...

	Context switch: changing the thread currently running
 on a core by first saving the state of the old process, then
 loading the state of the new thread.

	Note: the dispatcher is not itself a thread!

	Core can only do one thing at a time. If a thread is
 executing, dispatcher isn't: OS has lost control. How does
 OS regain control of core?

	Traps (events occurring in current thread that cause a
 change of control into the operating system):
 	System call.

	Error (illegal instruction, addressing violation, etc.).

	Page fault.

	Interrupts (events occurring outside the current thread
 that cause a state switch into the operating system):
 	Character typed at keyboard.

	Completion of disk operation.

	Timer: to make sure OS eventually gets control.

	How does dispatcher decide which thread to run next?
 	Plan 0: search process table from front, run first ready
 thread.

	Plan 1: link together the ready threads into a queue.
 Dispatcher grabs first thread from the queue. When
 threads become ready, insert at back of queue.

	Plan 2: give each thread a priority, organize the queue
 according to priority. Or, perhaps have multiple queues,
 one for each priority class.

Process Creation

	How the operating system creates a process:
 	Load code and data into memory.

	Create and initialize process control block.

	Create first thread with call stack.

	Provide initial values for "saved state"
 for the thread

	Make thread known to dispatcher; dispatcher "resumes"
 to start of new program.

	System calls for process creation in UNIX:
 	fork makes copy of current process, with one
 thread.

	exec replaces memory with code and data from a
 given executable file. Doesn't return ("returns"
 to starting point of new program).

	waitpid waits for a given process to exit.

	Example:
 int pid = fork();
if (pid == 0) {
 /* Child process */
 exec("foo");
} else {
 /* Parent process */
 waitpid(pid, &status, options);
}

	Advantage: can modify process state before calling
 exec (e.g. change environment, open files).

	Disadvantage: wasted work (most of forked state gets
 thrown away).

	System calls for process creation in Windows:
 	CreateProcess combines fork and exec
 BOOL CreateProcess(
 LPCTSTR lpApplicationName,
 LPTSTR lpCommandLine,
 LPSECURITY_ATTRIBUTES lpProcessAttributes,
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 BOOL bInheritHandles,
 DWORD dwCreationFlags,
 PVOID lpEnvironment,
 LPCTSTR lpCurrentDirectory,
 LPSTARTUPINFO lpStartupInfo,
 LPPROCESS_INFORMATION lpProcessInformation
);

	Must pass arguments for any state changes between parent
 and child.

	Process creation in Pintos: exec combines UNIX
 fork and exec.

 Concurrency

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Readings for this topic from Operating Systems: Principles and Practice:
 Chapter 5 up through Section 5.1.

Independent and Cooperating Threads

	Independent thread: one that can't affect or be affected by
 the rest of the universe.
 	Its state isn't shared in any way by any other thread.

	Deterministic: input state alone determines results.

	Reproducible.

	Can stop and continue with no bad effects (only time varies).

	There are many different ways in which a collection of independent
 threads might be executed on a computer:
 	Single-tasking: each thread runs to completion before the next
 one starts.

	Multitasking with one core that is shared among several
 threads. Does the order of dispatching affect the behavior?

	Multitasking with several cores (multiprocessing): run threads
 in parallel on separate cores.
 	A given thread runs on only one core at a time.

	A thread may run on different core at different times
 (move state, assume processors are identical).

	From the standpoint of a thread, can't tell the difference
 between one core and many cores.

	Cooperating threads: those that share state.
 	Behavior is nondeterministic: depends on relative
 execution sequence and cannot be predicted in advance.

	Behavior may be irreproducible.

	Example: one thread writes "ABC" to a console window,
 another writes "CBA" concurrently.

	Why permit threads to cooperate?

	Basic assumption for cooperating threads is that
 the order of some operations is irrelevant; certain operations
 are independent of certain other operations.
 Examples:
 	Thread 1: A = 1;

 Thread 2: B = 2;

	Thread 1: A = B+1;

 Thread 2: B = 2*B;

Atomic Operations

	Before we can say ANYTHING about cooperating threads, we must
 know that some operation is atomic: it either
 happens in its entirety without interruption, or not at all.
 Cannot be interrupted in the middle.
 	References and assignments are atomic in almost all systems.
 A=B will always read a clean value for B and
 set a clean value for A (but not necessarily true for arrays
 or records).

	In uniprocessor systems, anything between interrupts
 is atomic.

	If you don't have an atomic operation, you can't make one.
 Fortunately, hardware designers give us atomic ops.

	If you have any atomic operation, you can use it to
 generate higher-level constructs and make parallel programs
 work correctly. This is the approach we'll take in this class.

The "Too Much Milk" Problem

	The basic problem:
 Person A Person B
3:00 Look in fridge: no milk
3:05 Leave for store
3:10 Arrive at store Look in fridge: no milk
3:15 Leave store Leave home
3:20 Arrive home, put milk away Arrive at store
3:25 Leave store
3:30 Arrive home: too much milk!

	What is the correct behavior?

	More definitions:
 	Synchronization: using atomic operations to ensure
 correct operation of cooperating threads.

	Critical section: a section of code, or collection
 of operations, in which only one thread may be executing
 at a given time. E.g. shopping.

	Mutual exclusion: mechanisms used to create critical
 sections.

	Typically, mutual exclusion achieved with a locking
 mechanism: prevent others from doing something. For example,
 before shopping, leave a note on the refrigerator: don't
 shop if there is a note.

	First attempt at computerized milk buying
 (assume atomic reads and writes):
 1 if (milk == 0) {
2 if (note == 0) {
3 note = 1;
4 buy_milk();
5 note = 0;
6 }
7 }

	Second attempt: change meaning of note. A buys if no note,
 B buys if there is a note.
 Thread A
1 if (note == 0) {
2 if (milk == 0) {
3 buy_milk();
4 }
5 note = 1;
6 }

Thread B
1 if (note == 1) {
2 if (milk == 0) {
3 buy_milk();
4 }
5 note = 0;
6 }

	Third attempt: use separate notes for A and B.
 Thread A
1 noteA = 1;
2 if (noteB == 0) {
3 if (milk == 0) {
4 buy_milk();
5 }
6 }
7 noteA = 0;

Thread B
1 noteB = 1;
2 if (noteA == 0) {
3 if (milk == 0) {
4 buy_milk();
5 }
6 }
7 noteB = 0;

	Fourth attempt: just need a way to decide who will
 buy milk when both leave notes (somebody has to hang
 around to make sure that the job gets done):
 Thread B
1 noteB = 1;
2 while (noteA == 1) {
3 // do nothing;
4 }
5 if (milk == 0) {
6 	buy_milk();
7 }
8 noteB = 0;

 	This solution works but has two disadvantages:
 	Asymmetric (and complex) code.

	While B is waiting it is consuming resources
 (busy-waiting).

	For a symmetric solution without busy-waiting, see
 Peterson's Algorithm.

 Demand Paging

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Readings for this topic from Operating Systems: Principles and Practice:
 Chapter 9.

	Demand paging: not all of a process's virtual
 address space needs to be loaded in main memory at any
 given time. Each page can be either:
 	In memory (physical page frame)

	On disk (backing store)

Page Faults

	What happens when a process references a page that is
 in the backing store?
 	For pages in the backing store, the present
 bit is cleared in the page table entries.

	If present is not set, then a reference to the page
 causes a trap to the operating system.

	These traps are called page faults.

	To handle a page fault, the operating system
 	Finds a free page frame in memory

	Reads the page in from backing store to the page frame

	Updates the page table entry, setting present

	Resumes execution of the thread

	How does the OS figure out which page generated the fault?
 	x86: hardware saves the virtual address that caused the fault
 (CR2 register)

	On earlier machines OS got only address of faulting instruction,
 must simulate the instruction and try every address to find the
 one that generated the fault

	Restarting process execution after a page fault is tricky, since
 the fault may have occurred in the middle of an instruction.
 	If instructions are idempotent, just restart the
 faulting instruction (hardware saves instruction address
 during page fault).

	Non-idempotent instructions are more difficult to restart:
 MOV +(SP), R2

	Without hardware support it may be impossible to resume
 a process safely after a page fault. Hardware must keep
 track of side effects:
 	Undo all side effects during a page fault?

	Save info about side effects, use it to restart
 instruction "in the middle"

Page Fetching

	Once the basic page fault mechanism is working, the OS has
 two scheduling decisions to make:
 	Page fetching: when to bring pages into memory.

	Page replacement: which pages to throw out of memory.

	Overall goal: make physical memory look larger than it is.
 	Locality: most programs spend most of their time
 using a small fraction of their code and data.

	Keep in memory the information that is being used.

	Keep unused information on disk in paging file
 (also called backing store, or swap space)

	Ideally: paging produces a memory system with the performance
 of main memory and the cost/capacity of disk!

	Most modern OSes use demand fetching:
 	Start process with no pages loaded, don't load a page into
 memory until it is referenced.

	The pages for a process divide into three groups:
 	Read-only code pages: read from the executable file
 when needed.

	Initialized data pages: on first access, read from
 executable file. Once loaded, save to the
 paging file since contents may have changed.

	Uninitialized data pages: on first access, just clear
 memory to all zeros. When paging out, save to the
 paging file.

	Prefetching: try to predict when pages will be needed
 and load them ahead of time to avoid page faults.
 	Requires predicting the future, so hard to do.

	One approach: when taking a page fault, read many
 pages instead of just one (wins if program accesses
 memory sequentially).

Page Replacement

	Once all of memory is in use, will need to throw out one
 page each time there is a page fault.

	Random: pick any page at random (works surprisingly well!)

	FIFO: throw out the page that has been in memory longest.

	MIN: The optimal algorithm requires us to predict the
 future.

	Least Recently Used (LRU): use the past to predict the
 future.

	Implementing LRU: need hardware support to keep track of
 which pages have been used recently.
 	Perfect LRU?
 	Keep a hardware register for each page, store system clock
 into that register on each memory reference.

	To choose page for placement, scan through all pages
 to find the one with the oldest clock.

	Hardware costs prohibitive in the early days of
 paging; also, expensive to scan all pages during
 replacement.

	No machines have actually implemented this.

	Current computers settle for an approximation that is efficient.
 Just find an old page, not necessarily the oldest.

	Clock algorithm (also called second chance algorithm):
 keep reference bit for each page frame,
 hardware sets the reference bit whenever a page is read or written.
 To choose page for placement:
 	Cycle through pages in order (circularly).

	If the next page has been referenced, then don't replace it;
 just clear the reference bit and continue to the next page.

	If the page has not been referenced since the last time we
 checked it, then replace that page.

	Dirty bit: one bit for each page frame, set by
 hardware whenever the page is modified. If a dirty page
 is replaced, it must be written to disk before its
 page frame is reused.

	The clock algorithm typically gives additional preference
 to dirty pages. For example, if the reference bit for a
 page is clear, but the dirty bit is set, don't replace this
 page now, but clear the dirty bit and start writing the
 page to disk.

	Free page pool: many systems keep a small list of clean pages
 that are available immediately for replacement.
 	During replacement, take the page that has been in the
 free pool the longest, then run the replacement algorithm
 to add a new page to the free pool.

	Pages in the free pool have their present bit off,
 so any references to those pages cause a page fault

	If a page fault occurs for a page in the free pool,
 remove it from the free pool and put it back in service;
 much faster than reading from disk.

	Provides an extra opportunity for recovery if we
 make a poor page replacement decision.

	How to implement page replacement when there are multiple
 processes running in the system?
 	Global replacement: all pages from all processes
 are lumped into a single replacement pool. Each process
 competes with all the other processes for page frames.

 	Per-process replacement: each process has a
 separate pool of pages. A page fault in one process can
 only replace one of that process's frames. This eliminates
 interference from other processes.

	Unfortunately, per-process replacement creates a new
 scheduling dilemma: how many page frames to allocate to each
 process? If this decision is made incorrectly, it can result
 in inefficient memory usage.

	Most systems use global replacement.

 Thrashing and Working Sets

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Readings for this topic from Operating Systems: Principles and Practice:
 Section 9.7.

	Normally, if a thread takes a page fault and must wait for
 the page to be read from disk, the operating system runs
 a different thread while the I/O is occurring.
 Thus page faults are "free"?

	What happens if memory gets overcommitted?
 	Suppose the pages being actively used by the current
 threads don't all fit in physical memory.

	Each page fault causes one of the active pages to be
 moved to disk, so another page fault will occur soon.

	The system will spend all its time reading and writing
 pages, and won't get much work done.

 	This situation is called thrashing; it was a
 serious problem in early demand paging systems.

	How to deal with thrashing?
 	If a single process is too large for memory, there is
 nothing the OS can do. That process will simply thrash.

	If the problem arises because of the sum of several
 processes:
 	Figure out how much memory each process needs to prevent
 thrashing. This is called its working set.

	Only allow a few processes to execute at a time, such that
 their working sets fit in memory.

	Page fault frequency: one technique for computing working sets
 	At any given time, each process is allocated a fixed
 number of physical page frames (assumes per-process
 replacement).

	Monitor the rate at which page faults are occurring
 for each process.

	If the rate gets too high for a process, assume that
 its memory is overcommitted; increase the size of its
 memory pool.

	If the rate gets too low for a process, assume that
 its memory pool can be reduced in size.

	Scheduling with working sets
 	If the sum of all working sets of all processes
 exceeds the size of memory, then stop running some
 of the processes for a while.

	Divide processes into two groups: active and
 inactive:
 	When a process is active its entire working set
 must always be in memory: never execute a thread
 whose working set is not resident.

	When a process becomes inactive, its working set
 can migrate to disk.

	Threads from inactive processes are never scheduled
 for execution.

	The collection of active processes is called the
 balance set.

	The system must have a mechanism for gradually moving
 processes into and out of the balance set.

 	As working sets change, the balance set must be adjusted.

	None of these solutions is very good:
 	Once a process becomes inactive, it has to stay inactive
 for a long time (many seconds), which results in poor response
 for the user.

	Scheduling the balance set is tricky.

	In practice, today's operating systems don't worry much
 about thrashing:
 	With personal computers, users can notice thrashing and
 handle it themselves:
 	Typically, just buy more memory

	Or, manage balance set by hand

	Memory is cheap enough that there's no point in operating a
 machine in in a range where memory is even slightly overcommitted;
 better to just buy more memory.

	Thrashing was a bigger issue for timesharing machines
 with dozens or hundreds of users:
 	Why should I stop my processes just so you can make
 progress?

	System had to handle thrashing automatically.

 Storage Devices

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Readings for this topic from Operating Systems: Principles and Practice:
 Section 12.1.

Magnetic Disk (Hard Drive)

	Basic geometry:
 	1-5 platters, magnetically coated on each surface

	Platters spin at 5000-15000 RPM

	Actuator arm positions heads, which can
 read and write data on the magnetic surfaces.

	Overall size of disk package: 1-8 inches.

	Organization of disk data:
 	Circular tracks corresponding to a particular
 position of the actuator arm.

	Typical density today: 200,000 tracks per radial inch.

	Tracks divided into 512-byte sectors. Typical
 tracks contain a few thousand sectors.

	Typical total drive capacities: 100GB-2TB
 	100GB ~ 50M double-spaced pages of text.

	Disk technology is one of the most rapidly advancing
 technologies: capacities increasing faster
 than Moore's Law.

	Reading and writing:
 	Seek: move actuator arm to position heads over
 desired track. Typical seek time: 2-10ms.

	Select a particular head.

	Rotational latency: wait for desired sector
 to pass under the head. One-half disk rotation on
 average (4ms @ 7500RPM)

	Transfer: read or write one or more sectors as they pass under the head.
 Typical transfer rates: 100-150 MBytes/sec.

	Latency refers to the sum of seek time plus rotational
 latency; typically 5-10ms.

	API for disks:
 read(startSector, sectorCount, physAddr)
write(startSector, sectorCount, physAddr)

	In the old days the track and surface structure of the disk was
 visible to software:
 read(track, sector, surface, sectorCount, physAddr)

	Nowadays the track structure is hidden inside the disk:
 	Inner tracks have fewer sectors than outer tracks

	If some sectors are bad, disk software automatically
 remaps them to spare sectors.

Reel-to-Reel Magnetic Tape

	Old technology, popular in the 1960s and 1970s.

	Magnetic tape:
 	9 tracks across tape (one byte plus parity),

	1/2" wide by 2400 feet long

	Variable-length records (20-30000 bytes); read or
 write blocks, but cannot write in middle

	Recording density up to 6250 bytes/inch (180 MBytes
 max for a tape)

	Tape moves at 20-200 inches/sec. (up to a few Mbytes/sec.)

	Interesting physical design, such as vacuum columns
 to buffer tape during fast start and stop.

Communicating with I/O Devices

	Device registers:
 	Each device appears in the physical address space
 of the machine as a few words, called device registers.

	The operating system reads and writes device registers
 to control the device.

	Bits in device registers serve 3 purposes:
 	Parameters provided by CPU to device (e.g. number
 of first sector to read)

	Status bits provided by device to CPU (e.g. "operation
 complete" or "error occurred").

	Control bits set by CPU (e.g. "start disk read") to
 initiate operations.

	Device registers don't behave like ordinary memory
 locations:
 	"Start operation" bit may always read as 0.

	Bits may change without being written by CPU
 (e.g. "operation complete" bit).

	Programmed I/O: all communication with I/O device
 occurs through the device registers.
 	CPU writes device registers to start operation
 (e.g., read)

	CPU polls ready bit in device register

	When operation is finished, device sets ready

	CPU reads data from one or more device registers,
 writes data to memory.

	Problems with this approach:
 	CPU wastes time waiting for data to become ready;
 can only keep one device busy at a time.

	Expensive for CPU to mediate all data transfers;
 with some fast devices CPU can't keep up with device.

	Interrupts: allow CPU to do other work while devices
 are operating.
 	CPU starts I/O operation, then works on other things.

	When device needs attention (operation completes) it
 interrupts the CPU:
 	A forced procedure call to a particular address in
 the kernel.

	Operating system figures out which device interrupted,
 services that device.

	Operating system returns from the interrupt back to
 whatever it was working on.

	Interrupts make the operating system much more efficient;
 for example, can keep many devices busy at the same time,
 while also running user code.

	Direct Memory Access (DMA):
 	Device can copy data to and from memory, without
 help from the CPU.

	CPU loads buffer address into a device register
 before starting operation (e.g., where to copy data
 read from disk).

	Device moves data directly to/from memory.

	When transfer complete, device issues an interrupt
 to the system.

	Today DMA is the norm for I/O devices (controller
 hardware is cheap).

 Locks and Condition Variables

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Readings for this topic from Operating Systems: Principles and Practice:
 Sections 5.2-5.4.

	Needed: higher-level synchronization mechanism that provides
 	Mutual exclusion: easy to create critical sections

	Scheduling: block thread until some desired event occurs

Locks

	Lock: an object that can only be owned by a single thread
 at any given time. Basic operations on a lock:
 	acquire: mark the lock as owned by the current thread;
 if some other thread already owns the lock then first wait until
 the lock is free. Lock typically includes a queue to keep track
 of multiple waiting threads.

	release: mark the lock as free (it must currently
 be owned by the calling thread).

	Too much milk solution with locks (using Pintos APIs):
 struct lock l;
...
lock_acquire(&l);
if (milk == 0) {
 buy_milk();
}
lock_release(&l);

	A more complex example: producer/consumer.
 	Producers add characters to a buffer

	Consumers remove characters from the buffer

	Characters will be removed in the same order added

	Version 1:
 char buffer[SIZE];
int count = 0, putIndex = 0, getIndex = 0;
struct lock l;
lock_init(&l);

void put(char c) {
 lock_acquire(&l);
 count++;
 buffer[putIndex] = c;
 putIndex++;
 if (putIndex == SIZE) {
 putIndex = 0;
 }
 lock_release(&l);
}

char get() {
 char c;
 lock_acquire(&l);
 count--;
 c = buffer[getIndex];
 getIndex++;
 if (getIndex == SIZE) {
 getIndex = 0;
 }
 lock_release(&l);
 return c;
}

 	Version 2 (handle empty/full cases):
 char buffer[SIZE];
int count = 0, putIndex = 0, getIndex = 0;
struct lock l;
lock_init(&l);

void put(char c) {
 lock_acquire(&l);
 while (count == SIZE) {
 lock_release(&l);
 lock_acquire(&l);
 }
 count++;
 buffer[putIndex] = c;
 putIndex++;
 if (putIndex == SIZE) {
 putIndex = 0;
 }
 lock_release(&l);
}

char get() {
 char c;
 lock_acquire(&l);
 while (count == 0) {
 lock_release(&l);
 lock_acquire(&l);
 }
 count--;
 c = buffer[getIndex];
 getIndex++;
 if (getIndex == SIZE) {
 getIndex = 0;
 }
 lock_release(&l);
 return c;
}

Condition Variables

	Synchronization mechanisms need more than just mutual
 exclusion; also need a way to wait for another thread
 to do something (e.g., wait for a character to be
 added to the buffer)

	Condition variables: used to wait for a particular
 condition to become true (e.g. characters in buffer).
 	wait(condition, lock): release lock,
 put thread to sleep until condition is signaled;
 when thread wakes up again, re-acquire lock before
 returning.

	signal(condition, lock): if any threads
 are waiting on condition, wake up one of them.
 Caller must hold lock, which must be the same as the
 lock used in the wait call.

	broadcast(condition, lock): same as
 signal, except wake up all waiting
 threads.

	Note: after signal, signaling thread keeps lock,
 waking thread goes on the queue waiting for the lock.

	Warning: when a thread wakes up after cond_wait there
 is no guarantee that the desired condition still exists:
 another thread might have snuck in.

	Producer/Consumer, version 3 (with condition variables):
 char buffer[SIZE];
int count = 0, putIndex = 0, getIndex = 0;
struct lock l;
struct condition dataAvailable;
struct condition spaceAvailable;

lock_init(&l);
cond_init(&dataAvailable);
cond_init(&spaceAvailable);

void put(char c) {
 lock_acquire(&l);
 while (count == SIZE) {
 cond_wait(&spaceAvailable, &l);
 }
 count++;
 buffer[putIndex] = c;
 putIndex++;
 if (putIndex == SIZE) {
 putIndex = 0;
 }
 cond_signal(&dataAvailable, &l);
 lock_release(&l);
}

char get() {
 char c;
 lock_acquire(&l);
 while (count == 0) {
 cond_wait(&dataAvailable, &l);
 }
 count--;
 c = buffer[getIndex];
 getIndex++;
 if (getIndex == SIZE) {
 getIndex = 0;
 }
 cond_signal(&spaceAvailable, &l);
 lock_release(&l);
 return c;
}

Monitors

	When locks and condition variables are used together like this,
 the result is called a monitor :
 	A collection of procedures manipulating a shared data
 structure.

	One lock that must be held whenever accessing the shared data
 (typically each procedure acquires the lock at the very
 beginning and releases the lock before returning).

	One or more condition variables used for waiting.

	There are other synchronization mechanisms besides locks
 and condition variables. Be sure to read about semaphores
 in the book or in the Pintos documentation.

 Scheduling

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Readings for this topic from Operating Systems: Principles and Practice:
 Chapter 7 up through Section 7.2.

	Resources fall into two classes:
 	Non-preemptible: once given, it can't be reused until
 thread gives it back. Examples are file space, terminal,
 and maybe memory.

	Preemptible: processor or I/O channel. Can take resource
 away, use it for something else, then give it back later.

	OS makes two related kinds of decisions about resources:
 	Allocation: who gets what. Given a set of requests for
 resources, which processes should be given which
 resources in order to make most efficient use of the
 resources?

	Scheduling: how long can they keep it. When more
 resources are requested than can be granted immediately,
 in which order should the requests be serviced?
 Examples are processor scheduling (one processor, many
 threads), memory scheduling in virtual memory systems.

	Reminder of thread states for dispatching/scheduling:
 	Running

	Ready: waiting for a core to become available

	Blocked: waiting for some other event (disk I/O, incoming
 network packet, etc.)

Simple Scheduling Algorithms

	First-come-first-served (FCFS) scheduling (also called FIFO
 or non-preemptive):
 	Keep all of the ready threads in a single list called
 the ready queue.

	When a thread becomes ready, add it to the back of
 the ready queue.

	Run the first thread on the queue until it exits or
 blocks.

	Problem: one thread can monopolize a core.

	Solution: limit maximum amount of time that a thread can
 run without a context switch. This time is called a
 time slice.

	Round robin scheduling: run thread for one time slice,
 then return to back of ready queue. Each thread gets
 equal share of the cores. Most systems use some variant
 of this.
 	Typical time slice values: 10-100ms

	The length of a time slice is also called
 the time quantum.

	How do we decide whether a scheduling algorithm is good?
 	Make users happy (minimize response time).

	Use resources efficiently:
 	Full utilization: keep cores and disks busy

	Low overhead: minimize context switches

	Fairness (distribute CPU cycles equitably)

	Is round-robin better than FCFS?

	Optimal scheduling: STCF (Shortest Time to Completion First);
 also called SJF (Shortest Job First)
 	Run the thread that will finish most quickly, run it without
 interruptions.

	Another advantage of STCF: improves overall resource
 utilization.
 	Suppose some jobs CPU-bound, some I/O-bound.

	STCF will give priority to I/O-bound jobs,
 which keeps the disks/network as busy as possible.

	Key idea: can use past performance to predict future
 performance.
 	Behavior tends to be consistent

	If a process has been executing for a long time without
 blocking, it's likely to continue executing.

Priority-Based Scheduling

	Priorities: most real schedulers support a priority for each
 thread:
 	Always run the thread with highest priority.

	In case of tie, use round-robin among highest priority threads

	Use priorities to implement various scheduling policies
 (e.g. approximate STCF)

	Exponential Queues (or Multi-Level Feedback Queues):
 attacks both efficiency and response time problems.
 	One ready queue for each priority level.

	Lower-priority queues have larger time slices
 (time slice doubles with each reduction in priority)

	Newly runnable thread starts in highest priority queue

	If it reaches the end of its time slice without blocking
 it moves to the next lower queue.

	Result: I/O-bound threads stay in the highest-priority
 queues, CPU-bound threads migrate to lower-priority queues

	What are the problems with this approach?

	4.4 BSD Scheduler (for first project):
 	Keep information about recent CPU usage for each thread

	Give highest priority to thread that has used the least
 CPU time recently.

	Interactive and I/O-bound threads will use little CPU time and
 remain at high priority.

	CPU-bound threads will eventually get lower
 priority as they accumulate CPU time.

Multiprocessor Scheduling

	Multiprocessor scheduling is mostly the same as
 uniprocessor scheduling:
 	Share the scheduling data structures among all of
 the cores.

	Run the k highest-priority threads on the k cores.

	When a thread becomes runnable, see if its priority
 is higher than the lowest-priority thread currently
 running. If so, preempt that thread.

	However, a single ready queue can result in contention
 problems if there are lots of cores.

	2 special issues for multiprocessors:
 	Processor affinity:
 	Once a thread has been running on a particular core
 it is expensive to move it to a different core
 (hardware caches will have to be reloaded).

	Multiprocessor schedulers typically try to keep a
 thread on the same core as much as possible to
 minimize these overheads.

	Gang scheduling:
 	If the threads within a process are communicating frequently,
 it won't make sense to run one thread without the others:
 it will just block immediately on communication with
 another thread.

	Solution: run all of the threads of a process simultaneously
 on different cores, so they can communicate more
 efficiently.

	This is called gang scheduling.

	Even if a thread blocks, it may make sense to leave it
 loaded on its core, on the assumption that it will
 unblock in the near future.

Conclusion

	Scheduling algorithms should not affect the behavior of
 the system (same results regardless of schedule).

	However, the algorithms do impact the system's
 efficiency and response time.

	The best schemes are adaptive. To be optimal, we'd have
 to predict the future.

 File Systems

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Readings for this topic from Operating Systems: Principles and Practice:
 Chapter 11, Section 13.3 (up through page 561).

	Problems addressed by modern file systems:
 	Disk Management:
 	Fast access to files (minimize seeks)

	Sharing space between users

	Efficient use of disk space

	Naming: how do users select files?

	Protection: isolation between users, controlled sharing.

	Reliability: information must survive OS crashes and hardware failures.

	File: a named collection of bytes stored on durable storage such as disk.

	File access patterns:
 	Sequential: information is processed in order, one byte
 after another.

	Random Access: can address any byte in the file directly
 without passing through its predecessors. E.g. the data set
 for demand paging, also databases.

	Keyed (or indexed): search for blocks with particular contents,
 e.g. hash table, associative database, dictionary.
 Usually provided by databases, not operating system.

	Issues to consider:
 	Most files are small (a few kilobytes or less), so per-file
 overheads must be low.

	Most of the disk space is in large files.

	Many of the I/O operations are for large files, so performance
 must be good for large files.

	Files may grow unpredictably over time.

File Descriptors

	Operating system data structure with information about a file
 (called inode in Linux)
 	Stored on disk along with file data.

	Kept in memory when file is open.

	Info in file descriptor:
 	Sectors occupied by file

	File size

	Access times (last read, last write)

	Protection information (owner id, group id, etc.)

	How should disk sectors be used to represent the bytes
 of a file?

	Contiguous allocation (also called "extent-based"):
 allocate files like segmented memory (contiguous run of sectors). Keep
 a free list of unused areas of the disk. When creating a file,
 make the user specify its length, allocate all the space at once.
 Descriptor contains location and size.
 	Advantages:
 	Easy access, both sequential and random

	Simple

	Few seeks

	Drawbacks:
 	Fragmentation will make it hard to use disk space
 efficiently; large files may be impossible

	Hard to predict needs at file creation time

 Example: IBM OS/360.

	Linked files:
 	Divide disk into fixed-sized blocks (512 bytes?)

	Keep a linked list of all free blocks.

	In file descriptor, just keep pointer to first block.

	Each block of file contains pointer to next block.

	Advantages?

	Drawbacks?

 Examples (more or less): TOPS-10, Xerox Alto.

	Windows FAT:
 	Like linked allocation, except don't keep the links in
 the blocks themselves.

	Keep the links for all files in a single table called
 the File Allocation Table
 	Table is memory resident during normal operation

	Each FAT entry is disk sector number of next block in file

	Special values for "last block in file", "free block"

	File descriptor stores number of first block in file, size

	Originally, each FAT entry was 16 bits.

	FAT32 supports larger disks:
 	Each entry has 28 bits of sector number

	Disk addresses refer to clusters: groups of adjacent
 sectors.

	Cluster sizes 2 - 32 KBytes; fixed for any particular
 disk partition.

	Advantages?

	Disadvantages?

	Indexed files: keep an array of block pointers
 for each file.
 	Maximum length must be declared for file when
 it is created.

	Allocate array to hold pointers to all the blocks, but
 don't allocate the blocks.

	Fill in the pointers dynamically as file is written.

	Advantages?

	Drawbacks?

	Multi-level indexes (4.3 BSD Unix):
 	Blocks are 4 Kbytes.

	File descriptor = 14 block pointers, initially 0 ("no block").

	First 12 point to data blocks (direct blocks).

	Next entry points to an indirect block (contains 1024
 4-byte block pointers).

	Last entry points to a doubly-indirect block.

	Maximum file length is fixed, but large.

	Indirect blocks aren't allocated until needed.

 	Advantages?

Block Cache

	Use part of main memory to retain recently-accessed disk
 blocks.

	LRU replacement.

	Blocks that are referenced frequently (e.g., indirect
 blocks for large files) are usually in the cache.

	This solves the problem of slow access to large files.

	Originally, block caches were fixed size.

	As memories have gotten larger, so have block caches.

	Many systems now unify the block cache and the VM
 page pool: any page can be used for either, based on
 LRU access.

	What happens when a block in the cache is modified?
 	Synchronous writes: immediately write through
 to disk.
 	Safe: data won't be lost if the machine crashes

	Slow: process can't continue until disk I/O completes

	May be unnecessary:
 	Many small writes to the same block

	Some files are deleted quickly (e.g., temporary files)

	Delayed writes: don't immediately write to
 disk:
 	Wait a while (30 seconds?) in case there are more writes
 to a block or the block is deleted

	Fast: writes return immediately

	Dangerous: may lose data after a system crash

Free Space Management

	Managing disk free space: many early systems just used a
 linked list of free blocks.
 	Each block holds many pointers to free blocks, plus a
 pointer to the next block of pointers.

	At the beginning, free list is sorted, so blocks in a
 file are allocated contiguously.

	Free list quickly becomes scrambled, so files are spread
 all over disk.

	4.3 BSD approach to free space: bit map:
 	Keep an array of bits, one per block.

	1 means block is free, 0 means block in use

 	During allocation, search bit map for a block that's
 close to the previous block of the file.

	If disk isn't full, this usually works pretty well.

	If disk is nearly full this becomes very expensive
 and doesn't produce much locality.

	Solution: don't let the disk fill up!
 	Pretend disk has 10% less capacity than it really has

	If disk is 90% full, tell users it's full
 and don't allow any more data to be written.

Block Sizes

	Many early file systems (e.g. Unix) used a block size of 512 bytes
 (one sector).
 	Inefficient I/O: more distinct transfers, hence more seeks.

	Bulkier file descriptors: only 128 pointers in an indirect
 block (pointers will occupy 1% of disk space).

	Increase block size (e.g. 2KB clusters in FAT32)?

	4.3BSD solution: multiple block sizes
 	Large blocks are 4 KBytes; most blocks are large

	Fragments are multiples of 512 bytes, fitting
 within a single large block

	The last block in a file can be a fragment.

	One large block can hold fragments from multiple files.

	Bit map for free blocks is based on fragments.

Disk Scheduling

	If there are several disk I/O's waiting to be executed,
 what is the best order in which to execute them?
 	Goal is to minimize seek time.

	First come first served (FCFS, FIFO): simple,
 but does nothing to optimize seeks.

	Shortest seek time first (SSTF):
 	Choose next request that is as close as possible to
 the previous one.

	Good for minimizing seeks, but can result in
 starvation for some requests.

	Scan ("elevator algorithm").
 	Same as SSTF except heads keep moving in one direction
 across disk.

	Once the edge of the disk has been reached, seek to
 the farthest block away and start again.

 Directories and Links

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Readings for this topic from Operating Systems: Principles and Practice:
 Sections 13.1-13.2.

	Naming: how do users refer to their files? How does OS
 find file, given name?

	First step: file descriptor has to be stored on
 disk, so it will persist across system reboots.

	Early UNIX versions: all descriptors stored in a fixed-
 size array on disk.

	Originally entire descriptor array was at the outer
 edge of the disk. Result: long seeks between descriptors
 and file data.

	Later improvements:
 	Place descriptor array mid-way across disk.

	Many small descriptor arrays spread across disk, so
 descriptors can be near to file data.

	Space for descriptors is fixed when the disk is
 initialized, and can't be changed.

	UNIX/Linux/Pintos terms:
 	File descriptor is called an i-node

	Index of i-node in the descriptor array: i-number.
 Internally the OS uses the i-number as an identifier
 for the file.

	When a file is open, its descriptor is kept in main
 memory. When the file is closed, the descriptor is
 stored back to disk.

	File naming: users want to use text names to refer to files.
 Special disk structures called directories are used
 to map names to descriptor indexes.

	Early approaches to directory management:
 	A single directory for the entire disk:
 	If one user uses a particular name, no-one else can.

	Many early personal computers worked this way.

	A single directory for each user (e.g. TOPS-10):
 	Avoids problems between users, but still makes it
 hard to organize information.

	Modern systems support hierarchical directory structures.
 UNIX/Linux approach:
 	Directories are stored on disk just like regular files (i.e.
 file descriptor with 14 pointers, etc.) except file descriptor
 has special flag bit set to indicate that it's a directory.

	Each directory contains <name, i-number> pairs in no
 particular order.

	The file pointed to by the i-number may be another directory.
 Hence, get hierarchical tree structure. Names have
 slashes separating the levels of the tree.

	There is one special directory, called the root. This
 directory has no name; it has i-number 2 (i-numbers 0 and 1
 have other special purposes).

 	On some systems user programs can read directories just like
 regular files.

	Only the operating system can write directories.

Working directories

	Cumbersome constantly to have to specify the full path name
 for all files.

	Have OS remember one distinguished directory per process,
 called the working directory.

	If a file name doesn't start with "/" then it is looked up
 starting in the working directory.

	Names starting with "/" are looked up starting in the root
 directory.

Links

	UNIX hard links:
 	It is possible for more than one directory entry to
 refer to a single file.

	UNIX uses reference counts in file descriptors to
 keep track of hard links referring to a file.

	Files are deleted when the last directory entry
 goes away.

	Must prevent circularities.

	Symbolic links:
 	A file whose contents are another file name.

	Stored on disk like regular files, but with special
 flag set in descriptor.

	If a symbolic link is encountered during file lookup,
 switch to target named in symbolic link, continue
 lookup from there.

 Implementing Locks

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Readings for this topic from Operating Systems: Principles and Practice:
 Section 5.5.

	How to implement locks and condition variables (inside the operating
 system)?

	Uniprocessor solution: just disable interrupts.
 struct lock {
 int locked;
 struct queue q;
};

void lock_acquire(struct lock *l) {
 intr_disable();
 if (!l->locked) {
 l->locked = 1;
 } else {
 queue_add(&l->q, thread_current());
 thread_block();
 }
 intr_enable();
}

void lock_release(struct lock *l) {
 intr_disable();
 if (queue_empty(&l->q) {
 l->locked = 0;
 } else {
 thread_unblock(queue_remove(&l->q));
 }
 intr_enable();
}

	Implementing locks on a multiprocessor: turning off
 interrupts isn't enough.
 	Hardware provides some sort of atomic read-modify-write
 instruction, which can be used to build higher-level
 synchronization operations such as locks.

	Example: swap: atomically read memory value and
 replace it with a given value: returns old value.

	Attempt #1:
 struct lock {
 int locked;
};

void lock_acquire(struct lock *l) {
 while (swap(&l->locked, 1)) {
 /* Do nothing */
 }
}

void lock_release(struct lock *l) {
 l->locked = 0;
}

	Attempt #2:
 struct lock {
 int locked;
 struct queue q;
};

void lock_acquire(struct lock *l) {
 if (swap(&l->locked, 1) != 0) {
 queue_add(&l->q, thread_current());
 thread_block();
 }
}

void lock_release(struct lock *l) {
 if (queue_empty(&l->q) {
 l->locked = 0;
 } else {
 thread_unblock(queue_remove(&l->q));
 }
}

	Attempt #3:
 struct lock {
 int locked;
 struct queue q;
 int sync; /* Normally 0. */
};

void lock_acquire(struct lock *l) {
 while (swap(&l->sync, 1) != 0) {
 /* Do nothing */
 }
 if (!l->locked) {
 l->locked = 1;
 l->sync = 0;
 } else {
 queue_add(&l->q, thread_current());
 l->sync = 0;
 thread_block();
 }
}

void lock_release(struct lock *l) {
 while (swap(&l->sync, 1) != 0) {
 /* Do nothing */
 }
 if (queue_empty(&l->q) {
 l->locked = 0;
 } else {
 thread_unblock(queue_remove(&l->q));
 }
 l->sync = 0;
}

	Attempt #4:
 struct lock {
 int locked;
 struct queue q;
 int sync; /* Normally 0. */
};

void lock_acquire(struct lock *l) {
 while (swap(&l->sync, 1) != 0) {
 /* Do nothing */
 }
 if (!l->locked) {
 l->locked = 1;
 l->sync = 0;
 } else {
 queue_add(&l->q, thread_current());
 thread_block(&l->sync);
 }
}

void lock_release(struct lock *l) {
 while (swap(&l->sync, 1) != 0) {
 /* Do nothing */
 }
 if (queue_empty(&l->q) {
 l->locked = 0;
 } else {
 thread_unblock(queue_remove(&l->q));
 }
 l->sync = 0;
}

	Final solution:
 struct lock {
 int locked;
 struct queue q;
 int sync; /* Normally 0. */
};

void lock_acquire(struct lock *l) {
 intr_disable();
 while (swap(&l->sync, 1) != 0) {
 /* Do nothing */
 }
 if (!l->locked) {
 l->locked = 1;
 l->sync = 0;
 } else {
 queue_add(&l->q, thread_current());
 thread_block(&l->sync);
 }
 intr_enable();
}

void lock_release(struct lock *l) {
 intr_disable();
 while (swap(&l->sync, 1) != 0) {
 /* Do nothing */
 }
 if (queue_empty(&l->q) {
 l->locked = 0;
 } else {
 thread_unblock(queue_remove(&l->q));
 }
 l->sync = 0;
 intr_enable();
}

 Deadlock

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Readings for this topic from Operating Systems: Principles and Practice:
 Sections 6.1-6.2.

	The deadlock problem:
 	Threads often need to hold multiple locks at the
 same time.

	Simple example:
 Thread A Thread B
lock_acquire(l1); lock_acquire(l2);
lock_acquire(l2); lock_acquire(l1);
... ...
lock_release(l2); lock_release(l1);
lock_release(l1); lock_release(l2);

	Deadlock definition:
 	A collection of threads are all blocked.

	Each thread is waiting for a resource owned
 by one of the other threads.

	Since all threads are blocked, none can release
 their resources.

	Four conditions for deadlock:
 	Limited access: resources cannot be shared.

	No preemption. Once given, a resource cannot be taken away.

	Multiple independent requests: threads don't ask
 for resources all at once (hold resources while waiting).

	A circularity in the graph of requests and ownership.

	Complexities:
 	Deadlock can occur over anything that causes waiting:
 	Locks

	Network messages

	Disk drive

	Memory space exhausted

	Deadlock can occur over distinct resources (e.g. locks)
 or pieces of a single resource (pages of memory).

	In general, don't know in advance which resources a
 thread will need.

	Solution #1: deadlock detection
 	Determine when system is deadlocked

	Break the deadlock by terminating one of the threads

	Usually not practical in operating systems, but
 often used in database systems where a transaction
 can be retried

	Solution #2: deadlock prevention: eliminate one of the
 necessary conditions for deadlock
 	Don't allow exclusive access? Not reasonable for most
 applications.

	Create enough resources so that they never run out?
 May work for things like disk space, but locks for
 synchronization are intentionally limited in number.

	Allow preemption? Works for some resources but not others
 (e.g., can't preempt a lock).

	Require threads to request all resources at the same time;
 either get them all or wait for them all.
 	Tricky to implement: must wait for several things
 without locking any of them.

	Inconvenient for thread: hard to predict needs in advance.
 May require thread to over-allocate just to be safe.

	Break the circularity: all threads request resources in the
 same order (e.g., always lock l1 before l2).
 This is the most common approach used in operating systems.

 Linkers and Dynamic Linking

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Readings for this topic from Operating Systems: Principles and Practice:
 none.

	When a process is running, what does its memory look like?
 A collection of regions called sections.
 Basic memory layout for Linux and other Unix systems:
 	Code (or "text" in Unix terminology): starts at location 0

	Data: starts immediately above code, grows upward

	Stack: starts at highest address, grows downward

	System components that take part in managing a process's
 memory:
 	Compiler and assembler:
 	Generate one object file for each source code file
 containing information for that source file.

	Information is incomplete, since each source file generally
 references some things defined in other source files.

	Linker:
 	Combines all of the object files for one program into
 a single object file.

	Linker output is complete and self-sufficient.

	Operating system:
 	Loads object files into memory.

	Allows several different processes to share memory at
 once.

	Provides facilities for processes to get more memory after
 they've started running.

	Run-time library:
 	Works together with OS to provide dynamic allocation routines,
 such as malloc and free in C.

	Linkers (or Linkage Editors, ld in Unix,
 LINK on Windows): combine
 many separate pieces of a program, re-organize storage
 allocation. Typically invoked invisibly by compilers.

	Three functions of a linker:
 	Combine all the pieces of a program.

	Figure out a new memory organization so that all the
 pieces fit together (combine like sections).

	Touch up addresses so that the program can run
 under the new memory organization.

	Result: a runnable program stored in a new object file
 called an executable.

	Problems linker must solve:
 	Assembler doesn't know addresses of external objects when assembling
 files separately. E.g. where is printf routine?
 	Assembler just puts zero in the object file for each unknown address

	Assembler doesn't know where the things it's assembling will
 go in memory
 	Assume that things start at address zero, let linker re-arrange.

	Each object file consists of:
 	Sections, each holding a distinct kind of information.
 	Typical sections: code ("text") and data.

	For each section, object file contains size and current location
 of the section, plus initial contents, if any

	Symbol table: name and current location of variable or procedure
 that can be referenced in other object files.

	Relocation records : information about addresses referenced
 in this object file that the linker must adjust once it knows the
 final memory allocation.

	Additional information for debugging (e.g. map from line numbers
 in the source file to location in the code section).

	Linker executes in three passes:
 	Pass 1: read in section sizes, compute final memory layout.

	Pass 2: read in all symbols, create complete symbol table in memory.

	Pass 3: read in section and relocation information, update
 addresses, write out new file.

Dynamic Linking

	Originally all programs were linked statically, as described
 above:
 	All external references fully resolved

	Each program complete

	Since late 1980's most systems have supported shared libraries
 and dynamic linking:
 	For common library packages, only keep a single copy in memory,
 shared by all processes.

	Don't know where library is loaded until runtime; must resolve
 references dynamically, when program runs.

	One way of implementing dynamic linking: jump table.
 	If any of the files being linked are shared libraries, the linker
 doesn't actually include the shared library code in the final
 program. Instead, it includes two things that implement dynamic
 linking:
 	Jump table: an array in which each entry is a single machine
 instruction containing an unconditional branch (jump).
 	For each function in a shared library used by the program, there
 is one entry in the jump table that will jump to the beginning of
 that function.

	Dynamic loader: library package invoked at startup to fill in the
 jump table.

	For relocation records referring to functions in the shared library,
 the linker substitutes the address of the jump table entry: when
 the function is invoked, the caller will "call" the jump table entry,
 which redirects the call to the real function.

	Initially, all jump table entries jump to zero (unresolved).

	When the program starts up, the dynamic load library is invoked:
 	It invokes the OS mmap functions to load each shared library into
 memory.

	It fills in the jump table with the correct address for each
 function in a shared library.

 File System Crash Recovery

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Readings for this topic from Operating Systems: Principles and Practice:
 Chapter 14 up through Section 14.1.

	The problem: crashes can happen anywhere, even in the middle
 of critical sections:
 	Lost data: information cached in main memory may not
 have been written to disk yet.
 	E.g. original Unix: up to 30 seconds worth of changes

	Inconsistency:
 	If a modification affects multiple blocks, a crash
 could occur when some of the blocks have been written
 to disk but not the others.

	Examples:
 	Adding block to file: free list was updated to indicate
 block in use, but file descriptor wasn't yet written to point to
 block.

	Creating link to a file: new directory entry refers to
 file descriptor, but reference count wasn't updated in file descriptor.

	Ideally, we'd like something like an atomic operation where multi-block
 operations happen either in their entirety or not at all.

Approach #1: check consistency during reboot, repair problems

	Example: Unix fsck ("file system check")
 	During every system boot fsck is executed.

	Checks to see if disk was shut down cleanly; if so, no more
 work to do.

	If disk didn't shut down cleanly (e.g., system crash,
 power failure, etc.), then scan disk contents, identify
 inconsistencies, repair them.

	Example: block in file and also in free list

	Example: reference count for a file descriptor doesn't match
 the number of links in directories

	Example: block in two different files

	Example: file descriptor has a reference count > 0 but is not
 referenced in any directory.

	Limitations of fsck:
 	Restores disk to consistency, but doesn't prevent loss
 of information; system could end up unusable.

	Security issues: a block could migrate from the password
 file to some other random file.

	Can take a long time: 1.5 hours to read every block in a
 medium-size disk today. Can't restart system until
 fsck completes. As disks get larger, recovery
 time increases.

Approach #2: ordered writes

	Prevent certain kinds of inconsistencies by making updates
 in a particular order.
 	For example, when adding a block to a file, first write
 back the free list so that it no longer contains the
 file's new block.

	Then write the file descriptor, referring to the new block.

	What can we say about the system state after a crash?

	In general:
 	Never write a pointer before initializing the block
 it points to (e.g., indirect block).

	Never reuse a resource (inode, disk block, etc.) before
 nullifying all existing pointers to it.

	Never clear last pointer to a live resource before
 setting new pointer (e.g. mv).

	Result: no need to wait for fsck when rebooting

	Problems:
 	Can leak resources (run fsck in background to reclaim
 leaked resources).

	Requires lots of synchronous metadata writes, which
 slows down file operations.

	Improvement:
 	Don't actually write the blocks synchronously, but record
 dependencies in the buffer cache.

	For example, after adding a block to a file add
 dependency between file descriptor block and free list block.
 	When it's time to write the file descriptor back to disk, make
 sure that the free list block has been written first.

	Tricky to get right: potentially end up with
 circular dependencies between blocks.

Approach #3: write-ahead logging

	Also called journaling file systems

	Implemented in Linux ext3 and NTFS (Windows).

	Similar in function to logs in database systems; allows
 inconsistencies to be corrected quickly during reboots
 	Before performing an operation, record information about
 the operation in a special append-only log file; flush this
 info to disk before modifying any other blocks.

	Example: adding a block to a file
 	Log entry: "I'm about to add block 99421 to file descriptor 862 at block
 index 93"

	Then the actual block updates can be carried out later.

	If a crash occurs, replay the log to make sure all updates
 are completed on disk.

	Guarantees that once an operation is started, it will eventually complete.

	Problem: log grows over time, so recovery could be slow.

	Solution: checkpoint
 	Occasionally stop and flush all dirty blocks to disk.

	Once this is done, the log can be cleared.

	Typically the log is used only for metadata (free list, file descriptors,
 indirect blocks), not for actual file data.

	Logging advantages:
 	Recovery much faster.

	Eliminate inconsistencies such as blocks confused between files.

	Log can be localized in one area of disk, so writes are faster
 (no seeks).

	Metadata writes can be delayed a long time, for better performance.

	Logging disadvantages:
 	Synchronous disk write before every metadata operation.

Remaining problems

	Can still lose recently-written data after crash
 	Solution: apps can use fsync to force data to disk.

	Disks fail
 	One of the greatest causes of problems in large datacenters

	Solution: replication or backup copies (e.g., on tape)

	Disk writes are not atomic:
 	If a block is being written at the time of the crash,
 it may be left in inconsistent state (neither old contents
 nor new).

	At the level of sectors, inconsistencies are detectable;
 after crash, sector will be either
 	Old contents

	New contents

	Unreadable trash

	But, blocks are typically multiple sectors. After crash:
 	Sectors 0-5 of block may have new contents.

	Sectors 6-7 of block may have old contents.

	Example: appending to log
 	If adding new log entries to an existing log block,
 crash could cause old info in the block to be lost.

	Solution:
 	Replicated log writes (if crash corrupts one of the logs,
 the other will still be safe).

	Add checksums and/or versions to detect incomplete writes.

	Conclusions:
 	To get highest performance, must give up some crash recovery
 capability.

	Must decide what kinds of failures you want to recover from.

 Protection

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Readings for this topic from Operating Systems: Principles and Practice:
 none.

	Protection: mechanisms that prevent accidental or intentional
 misuse of a system.
 	Accidents: generally easier to solve (make them unlikely)

	Malicious abuse: much more difficult to eliminate (can't
 leave any loopholes, can't use probabilities).

	Three aspects to a protection mechanism:
 	Authentication: identify a responsible party (principal)
 behind each action.

	Authorization: determine which principals are allowed to
 perform which actions.

	Access enforcement: combine authentication and authorization
 to control access.

 A tiny flaw in any of these areas can compromise the entire
 protection mechanism.

Authentication

	Typically done with passwords:
 	A secret piece of information used to establish
 identity of a user.

	Passwords should be relatively long and obscure (only useful
 if hard to guess).

	The password database is a vulnerability and must be carefully
 protected; for example, don't store passwords in a directly-readable
 form (use one-way transformations).

	Alternate form of authentication: badge or key.
 	Does not have to be kept secret.

	Can be stolen, but owner will know if it is.

	Should not be forgable or copyable.

	Paradox: key must be cheap to make, hard to duplicate.

	Once authentication is complete, the identity of the
 principal must be protected from tampering, since other
 parts of the system will rely on it.

	After you log in, your user id is associated with every
 process executed under that login: each process inherits
 the user id from its parent.

Authorization

	Goal: determine which principals can perform which
 operations on which objects.

	Logically, authorization information represented as an
 access matrix:
 	One row per principal.

	One column per object.

	Each entry indicates what that principle can do to
 that object.

	In practice a full access matrix would be too bulky, so
 it gets stored in one of two compressed ways:
 access control lists or capabilities.

	Access Control Lists (ACLs): organize by columns.
 	With each object, store information
 about which users are allowed to perform which operations.

	Most general form: list of <user, privilege> pairs.

	For simplicity, users can be organized into groups, with
 a single ACL entry for an entire group.

	ACLs can be very general (Windows) or simplified (Unix).

	UNIX: 9 bits per file:
 	owner, group, anyone

	read, write, execute permissions for each of the above

	In addition, user "root" has all permissions for
 everything

 	ACLs are simple and are used in almost all file systems.

	Capabilities: organize by rows.
 	With each user, indicate which objects may be accessed,
 and in what ways.

	Store a list of <object, privilege> pairs with each user.
 This is called a capability list.

	Typically, capabilities also act as names for objects:
 can't even name objects not referred to in your capability
 list.

	Systems based on ACLs encourage visibility of objects:
 shared public namespace.

	Capability systems discourage visibility; namespaces are
 private by default.

	Capabilities have been used in experimental systems attempting
 to be secure. However, they have proven to be clumsy to
 use (painful to share things), so they have mostly fallen out
 of favor for managing objects such as files.

Access Enforcement

	Some part of the system must be responsible for enforcing
 access controls and protecting authentication and authorization
 info.

	This portion of the system has total power, so it should be as
 small and simple as possible. Example: the portion of the system
 that sets up page tables.

	One possible approach: Security kernel
 	An inner layer of the operating system that enforces security;
 only this layer has total power.

	Most operating systems have no security kernel: the entire
 OS has unlimited power.

Miscellaneous Issues

	Rights amplification
 	A mechanism that causes a callee to acquire more privileges
 (or different privileges) than its caller.

	Simple example: kernel call

	Another example: Unix set user id (setuid):
 	Each file has one extra protection bit "s" (for setuid).

	Normally, each process runs with the same user id as the
 process that created it.

	If an executable is invoked with setuid set, the effective
 user id for that process changes to the owner of the
 executable file.

	Typical use: setuid to root to perform protected operations
 in a safe and controlled fashion.

	It is extremely difficult to make all of these mechanisms work with
 no loopholes that can be exploited by evil-doers. Take CS 155 to
 learn more.

 Virtual Memory

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Readings for this topic from Operating Systems: Principles and Practice:
 Chapter 8.

	How can one memory be shared among several concurrent
 processes?

	Single-tasking (no sharing):
 	Highest memory holds OS.

	Process is allocated memory starting at 0, up to the OS area.

	Examples: early batch monitors where only one job
 ran at a time. It could corrupt the OS,
 which would be rebooted by an operator. Some early
 personal computers were similar.

	Goals for sharing memory:
 	Multitasking: allow multiple processes to be
 memory-resident at once.

	Transparency: no process should need to be aware of the fact that
 memory is shared. Each must run regardless of the number
 and/or locations of processes.

	Isolation: processes mustn't be able to corrupt each other.

	Efficiency (both of CPU and memory) shouldn't be
 degraded badly by sharing.

	Load-time relocation:
 	Highest memory holds OS.

	First process loaded at 0; others fill empty spaces.

 	When a process is loaded, relocate it so that it can run
 in its allocated memory area, similar to linking:
 	Linker outputs relocation records in executable files

	Similar to information in object files: indicates which
 locations contain memory addresses

	OS modifies addresses when it loads process (add base address)

	What are the problems with this approach?

Dynamic Memory Relocation

	Instead of relocating a
 program statically when it is loaded, add hardware (memory
 management unit) that changes
 addresses dynamically during every memory reference.

	Each address generated by a process (called a
 virtual address) is translated in hardware to a
 physical address. This happens during every
 memory reference.

	Results in two views of memory, called address spaces:
 	Virtual address space is what the program sees

	Physical address space is the actual allocation of memory

Base and Bound Relocation

	Two hardware registers:
 	Base: physical address corresponding to virtual address 0.

	Bound: highest allowable virtual address.

	On each memory reference, virtual address is compared
 to the bound register, then added to the base register to
 produce a physical address. A bound violation results
 in a trap to the operating system.

	Each process appears to have a completely private memory
 whose size is determined by the bound register.

	Processes are isolated from each other and OS.

	No address relocation is necessary when a process is loaded.

	Each process has its own base and bound values, which are
 saved in the process control block.

	OS runs with relocation turned off, so it can access all
 of memory (a bit in the processor status word controls
 relocation).
 	Must prevent users from turning off relocation or
 modifying the base and bound registers (another bit
 in PSW for user/kernel mode).

	Problem: how does OS regain control once it has given it up?

	Base & bound is cheap (only 2 hardware registers) and
 fast: the add and compare can be done in parallel.

	What's wrong with base and bound relocation?

Multiple segments

	Each process is split among several variable-size areas
 of memory, called segments.
 	E.g. one segment for code, one segment for heap, one
 segment for stack.

	Segment table holds the bases and bounds for all
 the segments of a process, plus protection bit for each
 segment: read-write versus read-only.

	Memory mapping procedure consists of table lookup + add +
 compare.

	Each memory reference must indicate a segment number
 and offset:
 	Top bits of address select segment, low bits the offset.

	Example: PDP-10 with high and low segments selected by
 high-order address bit.

	Or, segment can be selected implicitly by the instruction
 (e.g. code vs. data, stack vs. data, or 8086 prefixes).

	Advantage of segmentation: flexibility
 	Manage each segment separately:
 	Grow and shrink independently

	Swap to disk

	Can share segments between processes (e.g., shared code).

	Can move segments to compact memory and eliminate
 fragmentation.

	What's wrong with segmentation?

Paging

	Divide virtual and physical memory into fixed-sized chunks
 called pages. The most common size is 4 Kbytes.

	For each process, a page table defines the base
 address of each of that process' pages along with
 read-only and "present" bits.

	Page table stored in contiguous memory (with base
 register in hardware).

	Translation process: page number always comes
 directly from the address. Since page size is a power
 of two, no comparison or addition is necessary. Just
 do table lookup and bit substitution.

	Easy to allocate: keep a free list of available pages
 and grab the first one. Easy to swap since everything
 is the same size, which is usually the same size as disk
 blocks.

	Problem: for modern machines, page tables can be very
 large:
 	Consider x86-64 addressing architecture: 64-bit
 addresses, 4096-byte pages.

 	Ideally, each page table should fit in a page.

	Most processes are small, so most page table entries
 are unused.

	Even large processes use their address space sparsely
 (e.g., code at the bottom, stack at the top)

	Solution: multi-level page tables. Intel x86-64
 addressing architecture:
 	64-bit virtual addresses, but only the lower 48 bits
 are actually used.

	4 Kbyte pages: low-order 12 bits of virtual address
 hold off set within page.

	4 levels of page table, each indexed with 9 bits of virtual
 address.

	Each page table fits in one page (page table entries are 8 bytes).

	Can omit empty page tables.

	Next problem: page tables are too large to load into fast
 memory in the relocation unit.
 	Page tables kept in main memory

	Relocation unit holds base address for top-level page table

	With x86-64 architecture, must make 4 memory references
 to translate a virtual address!

Translation Lookaside Buffers (TLBs)

	Solution to page translation overhead: create a small hardware
 cache of recent translations.
 	Each cache entry stores the page number portion of a virtual
 address (36 bits for x86-64) and the corresponding physical
 page number (40 bits for x86-64).

	Typical TLB sizes: 64-2048 entries.

	On each memory reference, compare the page number from the
 virtual address with the virtual page numbers in every
 TLB entry (in parallel).

	If there is a match, use the corresponding physical page
 number.

	If no match, perform the full address translation and save
 the information in the TLB (replace one of the existing
 entries).

	TLB "hit rates" typically 95% or more.

	TLB complications:
 	When context switching, must invalidate all of the entries
 in the TLB (mappings will be different for the next process).
 Chip hardware does this automatically when the page table
 base register is changed.

	If virtual memory mappings change for the current process
 (e.g. page moved), must invalidate some TLB entries. Special
 hardware instruction
 for this.

Miscellaneous Topics

	How does the operating system get information from user
 memory? E.g. I/O buffers, parameter blocks. Note that the user
 passes the OS a virtual address.
 	In some systems the OS just runs unmapped.
 	In this case it reads page the tables and translates user
 addresses in software.

	Addresses that are contiguous in the virtual address space
 may not be contiguous physically. Thus I/O operations may
 have to be split up into multiple blocks.

	Most newer systems include kernel and user memory in same
 virtual address space (but kernel memory not accessible
 in user mode).
 This makes life easier for the kernel, although it doesn't
 solve the I/O problem.

	Another issue with paging: internal fragmentation.
 	Can't allocate partial pages, so for small chunks of
 information only part of the page will be used

	Result: wasted space at the ends of some pages

 	Not much of a problem in today's systems:
 	The objects (such as code or stack) tend to be
 much larger than a page.

	Percentage wasted space from fragmentation is small.

	What happens if page sizes grow?

 Dynamic Storage Management

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Readings for this topic from Operating Systems: Principles and Practice:
 none.

	Static memory allocation is simple and convenient, but
 it's not sufficient for everything.

	Two basic operations in dynamic storage management:
 	Allocate a given number of bytes

	Free a previously allocated block

	Two general approaches to dynamic storage allocation:
 	Stack allocation (hierarchical): restricted, but simple
 and efficient.

	Heap allocation: more general, but more difficult to implement,
 less efficient.

Stack Allocation

	A stack can be used when memory allocation and freeing are
 partially predictable: memory is freed in opposite order from
 allocation.

	Example: procedure call. X calls Y calls Y again.

	Stacks are also useful for lots of other things: tree traversal,
 expression evaluation, top-down recursive descent parsers, etc.

	A stack-based organization keeps all the free space together
 in one place.

Heap Allocation

	Heap allocation must be used when allocation and release are unpredictable

	Memory consists of allocated areas and free areas (or holes).
 Inevitably end up with lots of holes.

	Goal: reuse the space in holes to keep the number of holes
 small, keep their size large.

	Fragmentation: inefficient use of memory because of
 lots of small holes. Stack allocation is perfect:
 all free space is in one large hole.

	Heap allocators must keep track of the storage that
 is not in use: free list.

	Best fit: keep linked list of free blocks, search the
 whole list on each allocation, choose block that comes closest
 to matching the needs of the allocation, save the excess for
 later. During release operations, merge adjacent free blocks.

	First fit: just scan list for the first hole that is
 large enough. Free excess. Also merge on releases. Most
 first fit implementations are rotating first fit.

	Problem: over time, holes tend to fragment, approaching the
 size of the smallest objects allocated

	Bit map: alternate representation of the free list,
 useful if storage comes in fixed-size chunks (e.g. disk blocks).
 	Keep a large array of bits, one for each chunk.

	If bit is 0 it means chunk is in use, if bit is 1 it
 means chunk is free.

	Pools: keep a separate linked list for each popular size.
 	Allocation is fast, no fragmentation.

	What's wrong with this?

Storage Reclamation

	How do we know when dynamically-allocated memory can be freed?
 	Easy when a chunk is only used in one place.

	Reclamation is hard when information is shared: it can't
 be recycled until all of the users are finished.

	Usage is indicated by the presence of pointers to the data.
 Without a pointer, can't access (can't find it).

	Two problems in reclamation:
 	Dangling pointers: better not recycle storage while it's still
 being used.

	Memory leaks: storage gets "lost" because no one freed it even
 though it can't ever be used again.

	Reference counts: keep count of the number of outstanding
 pointers to each chunk of memory. When this becomes zero,
 free the memory. Example: Smalltalk, file descriptors in Unix.

	Garbage collection: storage isn't freed explicitly (using
 free operation), but rather implicitly: just delete pointers.
 	When the system needs storage, it searches through all of the
 pointers (must be able to find them all!) and collects things
 that aren't used.

	If structures are circular then this is
 the only way to reclaim space.

	Garbage collectors typically compact memory, moving
 objects to coalesce all free space.

	One way to implement garbage collection: mark and copy:
 	Must be able to find all objects.

	Must be able to find all pointers to objects.

	Pass 1: mark. Go through all statically-allocated and
 procedure-local variables, looking for pointers (roots).
 Mark each object pointed to, and recursively mark all objects it
 points to. The compiler has to cooperate by saving information
 about where the pointers are within structures.

	Pass 2: copy and compact. Go through all objects, copy live
 Objects into contiguous memory; then free any remaining space.

	Garbage collection is often expensive:
 	10-20% of all CPU time in systems that use it.

	Uses memory inefficiently: 2-5x overallocation.

 Managing Flash Memory

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Readings for this topic from Operating Systems: Principles and Practice:
 Section 12.2.

	Solid state (semiconductor) storage, replacing disks in many
 applications (e.g. phones and other devices). Primary advantages:
 	Nonvolatile (unlike DRAM): values persist even if
 device is powered off

	Better than disk:
 	No moving parts, so more reliable

	Faster access

	More shock-resistant

	5-10x more expensive than disk

	5-10x cheaper than DRAM

	Two styles, NAND and NOR; NAND is most popular today:
 	Total chip capacity up to 8 Gbytes today

	Storage divided into erase units (typically 256 Kbytes),
 which are subdivided into pages (typically 512 bytes or 4 Kbytes)

	Storage is read in units of pages

	Two kinds of writes:
 	Erase: sets all of the bits in an erase unit to 1's.

	Write: modifies an individual page, can only clear bits
 to 0 (writing 1's has no effect).

	Can write repeatedly to clear more bits.

	Wear-out: once a page has been erased many times (typically
 around 100,000, as low as 10,000 in some new devices) it no longer
 stores information reliably.

	Typical flash memory performance:
 	Read performance: 20-100 microsconds latency,
 100-500 MBytes/sec.

	Erasure time: 2 ms

	Write performance: 200 microseconds latency,
 100-200 MBytes/sec.

	In practice, most flash memory devices are packaged with
 a flash translation layer (FTL):
 	Software that manages the flash device

	Typically provides an interface like that for a disk
 (read and write blocks)

	Use with existing file system software

	FTLs are interesting pieces of software, but most FTLs today aren't
 very good:
 	Sacrifice performance

	Waste capacity

	One possible approach for FTLs: direct mapped (e.g., some cheap
 flash sticks)
 	Virtual block i is stored on page i of the flash device

	Reads are simple

	To write virtual block i:
 	Read erase unit containing page i

	Erase the entire unit

	Rewrite erase unit with modified page

	What's wrong with this approach?

	To avoid these problems, must separate virtual block number from physical
 location in flash memory, so a given virtual block can occupy different
 pages in flash memory over time.

	Keep a block map that maps from virtual blocks to physical pages
 	Reads must first lookup the physical location in the block map

	For writes:
 	Find a free and erased page

	Write virtual block to that page

	Update block map with new location

	Mark previous page for virtual block as free

	This introduces additional issues
 	How to manage map (is it stored on the flash device?)

	How to manage free space (e.g. wear leveling)

	One approach: keep block map in memory, rebuild on startup:
 	Don't store block map on flash device

	Each page on flash contains an additional header:
 	Virtual block number

	Free/used bit (1 => free)

	Prevalid/valid bit (1 => prevalid)

	valid/Obsolete bit (1 => valid)

	F-P-O bits track lifecycle of page:
 	Just erased: 1-1-1

	About to write data: 0-1-1

	Block successfully written: 0-0-1

	Block deleted (new copy written elsewhere): 0-0-0

	Why is 0-1-1 state needed?

 	On startup, read entire contents of flash memory to rebuild
 block map (32 seconds for 8GB, 512 seconds for 128GB).

	To reduce memory utilization for block map, store block map in
 flash, cache parts of it in memory
 	Header for each flash page indicates whether that page is a
 data page or a map page

	Keep locations of map pages in memory (map-map)

	Scan flash on startup to re-create map-map

	During writes, must write new map page plus new data page

	Some reads may require 2 flash operations

	Obsolete blocks accumulate in erase units, which reduces
 effective capacity.

	Solution: garbage collection
 	Find erase units with many free pages

	Copy live pages to a clean erase unit (update block map)

	Erase and reuse old erase unit

	Note: must always keep at least one clean erase unit to use for
 garbage collection!

	Wear-leveling:
 	Want all erase units to be erased at about the same rate

	Use garbage collection to move data between "hot" and "cold"
 pages.

	Hard to achieve good performance, good utilization, and longevity
 all the same time:
 	If the flash device is 90% utilized, write cost increases by
 10x:
 	To get space for one new page, must garbage collect 10 old
 pages

	9 will still be valid and must be copied

	1 new page gets written

	Total: 9 reads, 10 writes to write 1 new page!

	This is called write amplification

	Lower utilization makes writes cheaper, but wastes space.

	Frequent garbage collection (e.g. because of high utilization)
 also wears out the device faster

	Ideal situation: hot and cold data
 	Some erase units contain only data that is never modified ("cold"),
 so they are always full and never need to be garbage collected.

	Other erase units contain data that is quickly
 overwritten; we can just wait until all of the pages have been
 overwritten, then garbage collect the erase unit for free.

	There are ways to encourage such a bimodal distribution.

	Incorporating flash memory as a disk-like device with FTL is inefficient:
 	Duplication:
 	OS already keeps various index structures for files:

	These are equivalent to the block map

	If OS could manage the flash directly, it could combine
 the block map with file indexes

	Lack of information:
 	FTL doesn't know when OS has freed a block; only finds out when
 block is overwritten

	Thus FTL may rewrite dead blocks during garbage collection!

	Newer flash devices offer trim command that allows OS to
 indicate deletion (but must modify OS file systems).

	Better long-term solution: new file systems designed just for flash memory
 	Lots of interesting issues and design alternatives

	Has been explored by research teams, but no widely-used
 implementations

	Need ability to bypass the FTL

	Interesting opportunity

 Virtual Machine Monitors

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Readings for this topic from Operating Systems: Principles and Practice:
 Section 10.2.

	What is the abstraction provided by an OS to a process?
 	(Virtual) memory

	A subset of the instruction set of the underlying machine

	Most (but not all) of the hardware registers

	A set of kernel calls with particular arguments for file I/O, etc.

	Overall: a subset of the facilities of the underlying machine,
 augmented with extra mechanisms implemented by the operating
 system.

	What if we implemented a different abstraction for a process,
 which looks exactly like the underlying hardware:
 	The complete instruction set of the underlying machine

	Physical memory

	Memory management unit (page tables, etc.)

	I/O devices

	Traps and interrupts

	No predefined system calls

	This abstraction is called a virtual machine:
 	To a "process", it appears that it has its own private
 machine.

	Multiple "processes" can share a single machine, each
 thinking it's running on its own private machine.

	The operating system for this is called a
 virtual machine monitor.

	Can run a complete operating system inside a virtual
 machine: called a guest operating system.

	Each virtual machine can run a different guest operating
 system.

Implementing virtual machine monitors

	One approach: simulation
 	Write program that simulates instruction execution, like
 Bochs.

	Simulate memory, I/O devices also.

	Examples:
 	Use one large file to hold contents of a "disk"

	Simulate kernel/user bit, interrupt vectors, etc.

	Problem: too slow
 	100x slowdown for CPU/memory

	2x slowdown for I/O

	Better approach: use CPU to simulate itself.
 	Run virtual machine guest OS like a user process (in
 unprivileged mode).

	Most instructions executed at the full speed of
 the CPU.

	Anything "unusual" causes a trap into the virtual
 machine monitor, which simulates the appropriate
 behavior.

	Special cases:
 	Privileged instructions (e.g. HALT):
 	Since virtual machine runs in user mode, these
 cause "illegal instruction" traps into VMM.

	VMM catches these traps, simulates appropriate
 behavior.

	Kernel calls in guest OS:
 	User program running under guest OS issues kernel
 call instruction.

	Traps always go to VMM (not guest OS).

	VMM analyzes trapping instruction, simulates
 system call to guest OS:
 	Move trap info from VMM stack to stack
 of guest OS

	Find interrupt vector in memory of guest OS

	Switch simulated mode to "privileged"

	Return out of VMM to interrupt handler in guest OS.

	When guest OS returns from system call, this traps
 to VMM also (illegal instruction in user mode);
 VMM simulates return to guest user level.

	I/O devices:
 	Guest OS writes to I/O device register

	VMM has arranged for the containing page to fault

	VMM takes page fault, recognizes address as I/O device
 register

	VMM simulates instruction and its impact on the
 simulated I/O device

	When actual I/O operation completes, VMM simulates
 interrupt into the guest OS

	For better performance, write new device drivers that
 call directly into the VMM (using system calls).

	Virtual memory: VMM uses page tables to simulate virtual
 memory mapping in guest OS.
 	Three levels of memory:
 	Guest virtual address space

	Guest physical address space

	VMM physical memory

	Guest OS creates page tables, but these aren't used
 by actual hardware.

	VMM manages the real page tables, one set per virtual machine.
 These are called shadow page tables.

	VMM manages physical memory

	Initially all (shadow) page table entries have present 0.

	When page fault occurs, VMM finds physical page and corresponding
 guest page table entry. Two possibilities:
 	present is 0 in the guest page table entry: this fault
 must be reflected to the guest OS:
 	Simulate page fault for guest OS (similar to kernel call).

	Guest OS invokes I/O to load page into guest physical
 memory.

	Guest OS sets present to 1 in guest page table entry.

	Guest OS returns from page fault, which traps into VMM again
 (like returning from kernel call).

	VMM sees that present is 1 in guest page table entry,
 finds corresponding physical page, creates entry in shadow
 page table.

	VMM returns from the original page fault, causing guest application
 to retry the reference.

	present is 1 in the guest page table entry: guest OS thinks
 page is present in guest physical memory (but VMM may have swapped it out
 anyway).
 	VMM locates the corresponding physical page, loading it in memory
 if needed.

	VMM creates entry in shadow page table.

	VMM returns from the original page fault, causing guest application
 to retry the reference.

	In this situation the page fault is invisible to the guest OS.

	If guest OS modifies its page tables, causes page fault,
 VMM updates shadow page tables to match.

	Potential problem:
 	VMM must trap any behavior that requires simulation.
 	Special memory locations? Use page faults.

	Special instructions? Must trap

	Pathological case:
 	Instruction that is valid in both user mode and
 kernel mode

	But, behaves differently in user mode

	Example: "read processor status" (where kernel/user
 mode bit is in the status word)

	Virtualizable: a machine with no such special
 cases

	Until recently, very few machines were completely
 virtualizable (e.g. x86 wasn't until recently)

	Dynamic binary translation: solution for machines
 that are not virtualizable:
 	VMM analyzes all code executed in virtual machine

	Replaces non-virtualizable instructions with traps

	Very tricky: how to find all code?

	In practice, how much overhead do VMMs add?
 	CPU-bound applications: < 5%

	I/O-bound applications: ~30%

History/usage of virtual machines

	Invented by IBM in late 1960's

	Original usage:
 	One VM per user

	Each user ran a different guest OS

	Single shared hardware platform

	Interest died out in the 1980's and 1990's:
 	Each user has a private machine

	Reinvented, made practical by Mendel Rosenblum and graduate
 students at Stanford, formed VMware.

	Software development:
 	Need to test software on different OS versions:

	Keep one VM for each OS version.

	Use a single machine to test all versions.

	Datacenters:
 	Problem: many machines, each running a single application
 	Need separate machines for isolation:
 application crash could bring down the entire machine

	Most applications only need a fraction of machine's
 resources.

	Solution: datacenter consolidation
 	One VM per application

	Run several VM's on a single machine

	Reduce # of machines

	Encapsulation:
 	VMM can encapsulate entire state of a VM in a file.

	Can save, continue, restore old state.

	Datacenter example:
 	Can migrate VM's between machines to balance load

	Software development:
 	Tests may corrupt the state of the machine

	Solution:
 	Run tests in a VM

	Always start tests from a saved VM configuration

	Discard VM state after tests

	Results: reproducible tests

	Many other uses:
 	Run MacOS and Windows on the same machine

	Security: can monitor all communication into and out
 of VM.

 Technology and Operating Systems

 Lecture Notes for CS 140

 Spring 2014

 John Ousterhout

	Many of the basic ideas in operating systems were developed
 30-40 years ago, when technology was very different. Are these
 ideas still relevant today and in the future?

	Technology changes over the last 25 years:
 	CPU speeds: 15 MHz -> 2.5 GHz (167x)

	Memory size: 8 MBytes -> 4 GBytes (500x)

	Disk capacity: 30 MBytes -> 500 GBytes (16667x)

	Disk transfer rate: 2 MBytes/sec -> 100 MBytes/sec (50x)

	Network speed: 10 Mbits/sec -> 1 Gbit/sec (100x)

	The role of paging:
 	When originally proposed (1960's):
 	Disk speed: 80ms latency, 250 KBytes/sec transfer

	Memory size: 256 KBytes (64 pages)

	Time to replace all of memory:
 	6.4 sec (random access)

	1 sec (sequential)

	Today:
 	Disk speed: 10ms latency, 100 MBytes/sec transfer

	Memory size: 4 GB (1,000,000 pages)

	Time to replace all of memory:
 	10,000 sec (3 hours) (random access)

	40 sec (sequential)

	Can't afford to page something out unless it's going
 to be idle for a long time.

	Does paging make sense anymore?
 	Mechanism for incremental loading of processes?
 	Why not just read the entire binary at once?

	10 MB of binary takes .1 sec.

	Safety valve for temporary emergencies?
 	Perhaps, but not much space between "system not
 paging at all" and "system totally unusable".

	Virtual memory still quite useful:
 	Simplifies physical memory management

	Allows controlled sharing

	Memory-mapped files

	Virtual machines

	Page size is way too small:
 	Random accesses for replacement too expensive.

	Not enough TLB coverage.

	Disks:
 	Capacity has increased faster than access time.

	Can't actually access all the information you can store
 on disk!

	Frequently accessed information must move elsewhere

	TLBs:
 	Haven't kept up with memory sizes

	64 entries -> 256 KBytes coverage

	In mid-80's this was a substantial fraction of memory
 (8 Mbytes).

	Today TLBs can only cover a tiny fraction of memory

	Some TLBs support larger page sizes:
 	1 MByte

	1 GByte

	But, this complicates kernel memory management.

	Multi-cores
 	For many years, chip technology improvements allowed processor
 clock rates to improve rapidly.

	Unfortunately, faster clock rates mean more power dissipation;
 power limitations now limit improvements in clock rate.

	Chip designers are now using technology to put more processors
 (cores) on a chip.

	Consequences:
 	All OSes must now be multiprocessor OSes

	Not clear how to utilize all of these cores: app developers
 must now write parallel programs?

	Writing parallel programs is very hard

	Current hot areas for OS development:
 	Very small (devices)
 	Android, iPhone, etc.

	Very large (datacenters)
 	Coordinating thousands of machines working together

