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	Evolution of operating systems, phase 1:
  	Hardware expensive, humans cheap
  

	One user at a time, working directly at console
  



  	First "operating system": I/O subroutine libraries shared
    by users
  

	Simple batch monitor: get user away from the computer.
    OS = program to load and run user jobs, take dumps.
  

	Data channels, interrupts, overlap of I/O and computation.
  

	Memory protection and relocation enable multitasking:
    several users share the system
  

	OS must manage interactions, concurrency
  

	By mid-1960's operating systems had become large, complicated.
  

	OS field emerges as important discipline with
    principles
  







	Evolution of operating systems, phase 2:
  	Hardware cheap, humans expensive
  



  	Interactive timesharing
    	Fancy file systems
    

	Issues of response time, thrashing
    



  

	Personal computers: computers are cheap, so put one in
    each terminal.
  

	Networking: allow sharing and communication between
    machines.
  

	Embedded devices: put computers in cell phones, stereo players,
    TVs, light switches
  

	Are all the fancy features developed for timesharing still
    needed?
  







	The future of OSes:
  	Very small (devices)
  

	Very large (datacenters, cloud)
  







	Characteristics of current OSes:
  	Enormous: millions of lines of code, 100-1000 engineer-years
  

	Complex: asynchronous, hardware idiosyncrasies, performance
    is crucial.
  

	Poorly understood
  







	Most of an operating system's functions fall in the category of
  coordination: allowing several things to work together efficiently
  and fairly:
  	Concurrency: allow several different tasks to be underway at
    the same time, as if each had a private machine. To keep
    track of everything, processes and threads were invented.
  

	I/O devices.  Don't want CPU to sit idle while an I/O
    device is working.
  

	Memory: how can a single memory be shared among several processes?
  

	Files: allow many files, for many different users, to
    share space on the same physical disk.
  

	Networks: allow groups of computers to work together.
  

	Security: how to allow interactions while protecting each
    participant from abuse by the others?
  












    Threads, Processes, and Dispatching
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	Readings for this topic from Operating Systems: Principles and Practice:
  Chapter 4.




Threads and Processes



	Thread: a sequential execution stream
  	Executes a series of instructions in order (only one
    thing happens at a time).
  







	Process: one or more threads, along with their execution state.
  	Execution state: everything that can affect, or be affected by,
    a thread:
    	Code, data, registers, call stack, open files,
      network connections, time of day, etc.
    



  



  	Part of the process state is private to a thread
  

	Part is shared among all threads in the process
  







	Evolution of operating system process model:
  	Early operating systems supported a single process with a
    single thread at a time (single tasking). They ran batch
    jobs (one user at a time).
  

	Some early personal computer operating systems used
    single-tasking (e.g. MS-DOS), but these systems are almost
    unheard of today.
  

	By late 1970's most operating systems were multitasking
    systems: they supported multiple processes, but each process
    had only a single thread.
  

	In the 1990's most systems converted to multithreading:
    multiple threads within each process.
  







	Is a process the same as a program?




Dispatching



	Almost all computers today can execute multiple threads simultaneously:
  	Each processor chip typically contains multiple cores
  

	Each core contains a complete CPU capable of executing threads
  

	Many modern processors support hyperthreading: each physical
    core behaves as if it is actually two cores, so it can run two threads
    simultaneously (e.g. execute one thread while the other
    is waiting on a cache miss).
  

	For example, a server might contain 2 Intel Xeon E5-2670 processors,
    each with 8 cores that supports 2-way hyperthreading. Overall, this
    computer can run 32 threads simultaneously.
  



  	May have more threads than cores
  

	At any given time, most threads do not need to execute (they are
    waiting for something).
  









	OS uses a process control block to keep track
  of each process:
  	Execution state for each thread (saved registers, etc.)
  

	Scheduling information
  

	Information about memory used by this process
  

	Information about open files
  

	Accounting and other miscellaneous information
  





	At any given time a thread is in one of 3 states:
  	Running
  

	Blocked: waiting for an event (disk I/O, incoming
    network packet, etc.)
  

	Ready: waiting for CPU time
  







	Dispatcher: innermost portion of the OS that runs
  on each core:
  	Run a thread for a while
  

	Save its state
  

	Load state of another thread
  

	Run it ...
  





	Context switch: changing the thread currently running
  on a core by first saving the state of the old process, then
  loading the state of the new thread.


	Note: the dispatcher is not itself a thread!




	Core can only do one thing at a time. If a thread is
  executing, dispatcher isn't:  OS has lost control.  How does
  OS regain control of core?




	Traps (events occurring in current thread that cause a
  change of control into the operating system):
  	System call.
  

	Error (illegal instruction, addressing violation, etc.).
  

	Page fault.
  







	Interrupts (events occurring outside the current thread
  that cause a state switch into the operating system):
  	Character typed at keyboard.
  

	Completion of disk operation.
  

	Timer:  to make sure OS eventually gets control.
  







	How does dispatcher decide which thread to run next?
  	Plan 0: search process table from front, run first ready
    thread.
  

	Plan 1: link together the ready threads into a queue.
    Dispatcher grabs first thread from the queue.  When
    threads become ready, insert at back of queue.
  

	Plan 2: give each thread a priority, organize the queue
    according to priority.  Or, perhaps have multiple queues,
    one for each priority class.
  







Process Creation

	How the operating system creates a process:
  	Load code and data into memory.
  

	Create and initialize process control block.
  

	Create first thread with call stack.
  

	Provide initial values for "saved state"
    for the thread
  

	Make thread known to dispatcher; dispatcher "resumes"
    to start of new program.
  







	System calls for process creation in UNIX:
  	fork makes copy of current process, with one
    thread.
  

	exec replaces memory with code and data from a
    given executable file.  Doesn't return ("returns"
    to starting point of new program).
  

	waitpid waits for a given process to exit.
  

	Example:
    int pid = fork();
if (pid == 0) {
    /* Child process  */
    exec("foo");
} else {
    /* Parent process */
    waitpid(pid, &status, options);
}




  

	Advantage: can modify process state before calling
    exec (e.g. change environment, open files).
  

	Disadvantage: wasted work (most of forked state gets
    thrown away).
  







	System calls for process creation in Windows:
  	CreateProcess combines fork and exec
    BOOL CreateProcess(
    LPCTSTR lpApplicationName,
    LPTSTR lpCommandLine,
    LPSECURITY_ATTRIBUTES lpProcessAttributes,
    LPSECURITY_ATTRIBUTES lpThreadAttributes,
    BOOL bInheritHandles,
    DWORD dwCreationFlags,
    PVOID lpEnvironment,
    LPCTSTR lpCurrentDirectory,
    LPSTARTUPINFO lpStartupInfo,
    LPPROCESS_INFORMATION lpProcessInformation
);




  

	Must pass arguments for any state changes between parent
    and child.
  







	Process creation in Pintos: exec combines UNIX
  fork and exec.









    Concurrency
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	Readings for this topic from Operating Systems: Principles and Practice:
  Chapter 5 up through Section 5.1.




Independent and Cooperating Threads



	Independent thread:  one that can't affect or be affected by
  the rest of the universe.
  	Its state isn't shared in any way by any other thread.
  

	Deterministic:  input state alone determines results.
  

	Reproducible.
  

	Can stop and continue with no bad effects (only time varies).
  







	There are many different ways in which a collection of independent
  threads might be executed on a computer:
  	Single-tasking: each thread runs to completion before the next
    one starts.
  

	Multitasking with one core that is shared among several
    threads. Does the order of dispatching affect the behavior?
  

	Multitasking with several cores (multiprocessing):  run threads
    in parallel on separate cores.
    	A given thread runs on only one core at a time.
    

	A thread may run on different core at different times
      (move state, assume processors are identical).
    

	From the standpoint of a thread, can't tell the difference
      between one core and many cores.
    



  









	Cooperating threads: those that share state.
  	Behavior is nondeterministic: depends on relative
    execution sequence and cannot be predicted in advance.
  

	Behavior may be irreproducible.
  







	Example:  one thread writes "ABC" to a console window,
  another writes "CBA" concurrently.






	Why permit threads to cooperate?




	Basic assumption for cooperating threads is that
  the order of some operations is irrelevant;  certain operations
  are independent of certain other operations.
  Examples:
  	Thread 1: A = 1;

    Thread 2: B = 2;
  

	Thread 1: A = B+1;

    Thread 2: B = 2*B;
  







Atomic Operations

	Before we can say ANYTHING about cooperating threads, we must
  know that some operation is atomic: it either
  happens in its entirety without interruption, or not at all.
  Cannot be interrupted in the middle.
  	References and assignments are atomic in almost all systems.
    A=B will always read a clean value for B and
    set a clean value for A (but not necessarily true for arrays
    or records).
  

	In uniprocessor systems, anything between interrupts
    is atomic.
  

	If you don't have an atomic operation, you can't make one.
    Fortunately, hardware designers give us atomic ops.
  

	If you have any atomic operation, you can use it to
    generate higher-level constructs and make parallel programs
    work correctly.  This is the approach we'll take in this class.
  







The "Too Much Milk" Problem 



	The basic problem:
            Person A                       Person B
3:00      Look in fridge: no milk
3:05      Leave for store
3:10      Arrive at store                Look in fridge: no milk
3:15      Leave store                    Leave home
3:20      Arrive home, put milk away     Arrive at store
3:25                                     Leave store
3:30                                     Arrive home: too much milk!








	What is the correct behavior?




	More definitions:
  	Synchronization: using atomic operations to ensure
    correct operation of cooperating threads.
  

	Critical section: a section of code, or collection
    of operations, in which only one thread may be executing
    at a given time.  E.g. shopping.
  

	Mutual exclusion: mechanisms used to create critical
    sections.
  





	Typically, mutual exclusion achieved with a locking
  mechanism: prevent others from doing something. For example,
  before shopping, leave a note on the refrigerator: don't
  shop if there is a note.




	First attempt at computerized milk buying
  (assume atomic reads and writes):
  1 if (milk == 0) {
2   if (note == 0) {
3     note = 1;
4     buy_milk();
5     note = 0;
6   }
7 }








	Second attempt: change meaning of note. A buys if no note,
  B buys if there is a note.
  Thread A
1 if (note == 0) {
2   if (milk == 0) {
3     buy_milk();
4   }
5   note = 1;
6 }

Thread B
1 if (note == 1) {
2   if (milk == 0) {
3     buy_milk();
4   }
5   note = 0;
6 }








	Third attempt: use separate notes for A and B.
  Thread A
1 noteA = 1;
2 if (noteB == 0) {
3   if (milk == 0) {
4     buy_milk();
5   }
6 }
7 noteA = 0;

Thread B
1 noteB = 1;
2 if (noteA == 0) {
3   if (milk == 0) {
4     buy_milk();
5   }
6 }
7 noteB = 0;








	Fourth attempt: just need a way to decide who will
  buy milk when both leave notes (somebody has to hang
  around to make sure that the job gets done):
  Thread B
1 noteB = 1;
2 while (noteA == 1) {
3   // do nothing;
4 }
5 if (milk == 0) {
6 	buy_milk();
7 }
8 noteB = 0;




  	This solution works but has two disadvantages:
    	Asymmetric (and complex) code.
    

	While B is waiting it is consuming resources
      (busy-waiting ).
    



  

	For a symmetric solution without busy-waiting, see
    Peterson's Algorithm.
  












    Demand Paging
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	Readings for this topic from Operating Systems: Principles and Practice:
  Chapter 9.






	Demand paging: not all of a process's virtual
  address space needs to be loaded in main memory at any
  given time.  Each page can be either:
  	In memory (physical page frame)
  

	On disk (backing store)
  







Page Faults

	What happens when a process references a page that is
  in the backing store?
  	For pages in the backing store, the present
    bit is cleared in the page table entries.
  

	If present is not set, then a reference to the page
    causes a trap to the operating system.
  

	These traps are called page faults.
  

	To handle a page fault, the operating system
    	Finds a free page frame in memory
    

	Reads the page in from backing store to the page frame
    

	Updates the page table entry, setting present
    

	Resumes execution of the thread
    



  







	How does the OS figure out which page generated the fault?
  	x86: hardware saves the virtual address that caused the fault
    (CR2 register)
  

	On earlier machines OS got only address of faulting instruction,
    must simulate the instruction and try every address to find the
    one that generated the fault
  







	Restarting process execution after a page fault is tricky, since
  the fault may have occurred in the middle of an instruction.
  	If instructions are idempotent, just restart the
    faulting instruction (hardware saves instruction address
    during page fault).
  

	Non-idempotent instructions are more difficult to restart:
    MOV +(SP), R2




  

	Without hardware support it may be impossible to resume
    a process safely after a page fault. Hardware must keep
    track of side effects:
    	Undo all side effects during a page fault?
    

	Save info about side effects, use it to restart
      instruction "in the middle"
    



  







Page Fetching

	Once the basic page fault mechanism is working, the OS has
  two scheduling decisions to make:
  	Page fetching: when to bring pages into memory.
  

	Page replacement: which pages to throw out of memory.
  







	Overall goal: make physical memory look larger than it is.
  	Locality: most programs spend most of their time
    using a small fraction of their code and data.
  

	Keep in memory the information that is being used.
  

	Keep unused information on disk in paging file
    (also called backing store, or swap space)
  

	Ideally: paging produces a memory system with the performance
    of main memory and the cost/capacity of disk!
  







	Most modern OSes use demand fetching:
  	Start process with no pages loaded, don't load a page into
    memory until it is referenced.
  

	The pages for a process divide into three groups:
    	Read-only code pages: read from the executable file
      when needed.
    

	Initialized data pages: on first access, read from
      executable file.  Once loaded, save to the
      paging file since contents may have changed.
    

	Uninitialized data pages: on first access, just clear
      memory to all zeros. When paging out, save to the
      paging file.
    



  







	Prefetching: try to predict when pages will be needed
  and load them ahead of time to avoid page faults.
    	Requires predicting the future, so hard to do.
    

	One approach: when taking a page fault, read many
        pages instead of just one (wins if program accesses
        memory sequentially).
    







Page Replacement

	Once all of memory is in use, will need to throw out one
  page each time there is a page fault.


	Random: pick any page at random (works surprisingly well!)


	FIFO: throw out the page that has been in memory longest.


	MIN: The optimal algorithm requires us to predict the
  future.


	Least Recently Used (LRU): use the past to predict the
  future.






	Implementing LRU:  need hardware support to keep track of
  which pages have been used recently.
  	Perfect LRU?
    	Keep a hardware register for each page, store system clock
      into that register on each memory reference.
    

	To choose page for placement, scan through all pages
      to find the one with the oldest clock.
    

	Hardware costs prohibitive in the early days of
      paging; also, expensive to scan all pages during
      replacement.
    

	No machines have actually implemented this.
    



  

	Current computers settle for an approximation that is efficient.
    Just find an old page, not necessarily the oldest.
  







	Clock algorithm (also called second chance algorithm):
  keep reference bit for each page frame,
  hardware sets the reference bit whenever a page is read or written.
  To choose page for placement:
  	Cycle through pages in order (circularly).
  

	If the next page has been referenced, then don't replace it;
    just clear the reference bit and continue to the next page.
  

	If the page has not been referenced since the last time we
    checked it, then replace that page.
  







	Dirty bit: one bit for each page frame, set by
  hardware whenever the page is modified. If a dirty page
  is replaced, it must be written to disk before its
  page frame is reused.




	The clock algorithm typically gives additional preference
  to dirty pages.  For example, if the reference bit for a
  page is clear, but the dirty bit is set, don't replace this
  page now, but clear the dirty bit and start writing the
  page to disk.




	Free page pool: many systems keep a small list of clean pages
  that are available immediately for replacement.
  	During replacement, take the page that has been in the
    free pool the longest, then run the replacement algorithm
    to add a new page to the free pool.
  

	Pages in the free pool have their present bit off,
    so any references to those pages cause a page fault
  

	If a page fault occurs for a page in the free pool,
    remove it from the free pool and put it back in service;
    much faster than reading from disk.
  

	Provides an extra opportunity for recovery if we
    make a poor page replacement decision.
  







	How to implement page replacement when there are multiple
  processes running in the system?
  	Global replacement:  all pages from all processes
    are lumped into a single replacement pool.  Each process
    competes with all the other processes for page frames.
  



 	Per-process replacement:  each process has a
   separate pool of pages.  A page fault in one process can
   only replace one of that process's frames.  This eliminates
   interference from other processes.
 

	Unfortunately, per-process replacement creates a new
   scheduling dilemma: how many page frames to allocate to each
   process?  If this decision is made incorrectly, it can result
   in inefficient memory usage.
 

	Most systems use global replacement.
 












    Thrashing and Working Sets
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	Readings for this topic from Operating Systems: Principles and Practice:
  Section 9.7.




	Normally, if a thread takes a page fault and must wait for
  the page to be read from disk, the operating system runs
  a different thread while the I/O is occurring.
  Thus page faults are "free"?




	What happens if memory gets overcommitted?
  	Suppose the pages being actively used by the current
    threads don't all fit in physical memory.
  

	Each page fault causes one of the active pages to be
    moved to disk, so another page fault will occur soon.
  

	The system will spend all its time reading and writing
    pages, and won't get much work done.
  



  	This situation is called thrashing; it was a
    serious problem in early demand paging systems.
  









	How to deal with thrashing?
  	If a single process is too large for memory, there is
    nothing the OS can do.  That process will simply thrash.
  

	If the problem arises because of the sum of several
    processes:
    	Figure out how much memory each process needs to prevent
      thrashing. This is called its working set.
    

	Only allow a few processes to execute at a time, such that
      their working sets fit in memory.
    



  







	Page fault frequency: one technique for computing working sets
  	At any given time, each process is allocated a fixed
    number of physical page frames (assumes per-process
    replacement).
  

	Monitor the rate at which page faults are occurring
    for each process.
  

	If the rate gets too high for a process, assume that
    its memory is overcommitted; increase the size of its
    memory pool.
  

	If the rate gets too low for a process, assume that
    its memory pool can be reduced in size.
  







	Scheduling with working sets
  	If the sum of all working sets of all processes
    exceeds the size of memory, then stop running some
    of the processes for a while.
  

	Divide processes into two groups: active and
    inactive:
    	When a process is active its entire working set
      must always be in memory: never execute a thread
      whose working set is not resident.
    

	When a process becomes inactive, its working set
      can migrate to disk.
    

	Threads from inactive processes are never scheduled
      for execution.
    

	The collection of active processes is called the
      balance set.
    

	The system must have a mechanism for gradually moving
      processes into and out of the balance set.
    



    	As working sets change, the balance set must be adjusted.
    



  







	None of these solutions is very good:
  	Once a process becomes inactive, it has to stay inactive
    for a long time (many seconds), which results in poor response
    for the user.
  

	Scheduling the balance set is tricky.
  







	In practice, today's operating systems don't worry much
  about thrashing:
  	With personal computers, users can notice thrashing and
    handle it themselves:
    	Typically, just buy more memory
    

	Or, manage balance set by hand
    



  

	Memory is cheap enough that there's no point in operating a
    machine in in a range where memory is even slightly overcommitted;
    better to just buy more memory.
  

	Thrashing was a bigger issue for timesharing machines
    with dozens or hundreds of users:
    	Why should I stop my processes just so you can make
      progress?
    

	System had to handle thrashing automatically.
    



  












    Storage Devices
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	Readings for this topic from Operating Systems: Principles and Practice:
  Section 12.1.




Magnetic Disk (Hard Drive)

	Basic geometry:
  	1-5 platters, magnetically coated on each surface
  

	Platters spin at 5000-15000 RPM
  

	Actuator arm positions heads, which can
    read and write data on the magnetic surfaces.
  

	Overall size of disk package: 1-8 inches.
  







	Organization of disk data:
  	Circular tracks corresponding to a particular
    position of the actuator arm.
  

	Typical density today: 200,000 tracks per radial inch.
  

	Tracks divided into 512-byte sectors.  Typical
    tracks contain a few thousand sectors.
  

	Typical total drive capacities: 100GB-2TB
    	100GB ~ 50M double-spaced pages of text.
    



  

	Disk technology is one of the most rapidly advancing
    technologies: capacities increasing faster
    than Moore's Law.
  







	Reading and writing:
  	Seek: move actuator arm to position heads over
    desired track.  Typical seek time: 2-10ms.
  

	Select a particular head.
  

	Rotational latency: wait for desired sector
    to pass under the head.  One-half disk rotation on
    average (4ms @ 7500RPM)
  

	Transfer: read or write one or more sectors as they pass under the head.
    Typical transfer rates: 100-150 MBytes/sec.
  

	Latency refers to the sum of seek time plus rotational
    latency; typically 5-10ms.
  







	API for disks:
  read(startSector, sectorCount, physAddr)
write(startSector, sectorCount, physAddr)






	In the old days the track and surface structure of the disk was
  visible to software:
  read(track, sector, surface, sectorCount, physAddr)






	Nowadays the track structure is hidden inside the disk:
  	Inner tracks have fewer sectors than outer tracks
  

	If some sectors are bad, disk software automatically
    remaps them to spare sectors.
  







Reel-to-Reel Magnetic Tape

	Old technology, popular in the 1960s and 1970s.


	Magnetic tape:
  	9 tracks across tape (one byte plus parity),
  

	1/2" wide by 2400 feet long
  

	Variable-length records (20-30000 bytes); read or
    write blocks, but cannot write in middle
  

	Recording density up to 6250 bytes/inch (180 MBytes
    max for a tape)
  

	Tape moves at 20-200 inches/sec. (up to a few Mbytes/sec.)
  

	Interesting physical design, such as vacuum columns
    to buffer tape during fast start and stop.
  







Communicating with I/O Devices

	Device registers:
  	Each device appears in the physical address space
    of the machine as a few words, called device registers.
  

	The operating system reads and writes device registers
    to control the device.
  

	Bits in device registers serve 3 purposes:
    	Parameters provided by CPU to device (e.g. number
      of first sector to read)
    

	Status bits provided by device to CPU (e.g. "operation
      complete" or "error occurred").
    

	Control bits set by CPU (e.g. "start disk read") to
      initiate operations.
    



  

	Device registers don't behave like ordinary memory
    locations:
    	"Start operation" bit may always read as 0.
    

	Bits may change without being written by CPU
      (e.g. "operation complete" bit).
    



  







	Programmed I/O: all communication with I/O device
  occurs through the device registers.
  	CPU writes device registers to start operation
    (e.g., read)
  

	CPU polls ready bit in device register
  

	When operation is finished, device sets ready
  

	CPU reads data from one or more device registers,
    writes data to memory.
  

	Problems with this approach:
    	CPU wastes time waiting for data to become ready;
      can only keep one device busy at a time.
    

	Expensive for CPU to mediate all data transfers;
      with some fast devices CPU can't keep up with device.
    



  







	Interrupts: allow CPU to do other work while devices
  are operating.
  	CPU starts I/O operation, then works on other things.
  

	When device needs attention (operation completes) it
    interrupts the CPU:
    	A forced procedure call to a particular address in
      the kernel.
    



  

	Operating system figures out which device interrupted,
    services that device.
  

	Operating system returns from the interrupt back to
    whatever it was working on.
  

	Interrupts make the operating system much more efficient;
    for example, can keep many devices busy at the same time,
    while also running user code.
  







	Direct Memory Access (DMA):
  	Device can copy data to and from memory, without
    help from the CPU.
  

	CPU loads buffer address into a device register
    before starting operation (e.g., where to copy data
    read from disk).
  

	Device moves data directly to/from memory.
  

	When transfer complete, device issues an interrupt
    to the system.
  

	Today DMA is the norm for I/O devices (controller
    hardware is cheap).  












    Locks and Condition Variables
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	Readings for this topic from Operating Systems: Principles and Practice:
  Sections 5.2-5.4.






	Needed: higher-level synchronization mechanism that provides
  	Mutual exclusion: easy to create critical sections
  

	Scheduling: block thread until some desired event occurs
  







Locks

	Lock: an object that can only be owned by a single thread
  at any given time. Basic operations on a lock:
  	acquire: mark the lock as owned by the current thread;
    if some other thread already owns the lock then first wait until
    the lock is free.  Lock typically includes a queue to keep track
    of multiple waiting threads.
  

	release: mark the lock as free (it must currently
    be owned by the calling thread).
  









	Too much milk solution with locks (using Pintos APIs):
  struct lock l;
...
lock_acquire(&l);
if (milk == 0) {
  buy_milk();
}
lock_release(&l);








	A more complex example: producer/consumer.
  	Producers add characters to a buffer
  

	Consumers remove characters from the buffer
  

	Characters will be removed in the same order added
  

	Version 1:
    char buffer[SIZE];
int count = 0, putIndex = 0, getIndex = 0;
struct lock l;
lock_init(&l);

void put(char c) {
    lock_acquire(&l);
    count++;
    buffer[putIndex] = c;
    putIndex++;
    if (putIndex == SIZE) {
        putIndex = 0;
    }
    lock_release(&l);
}

char get() {
    char c;
    lock_acquire(&l);
    count--;
    c = buffer[getIndex];
    getIndex++;
    if (getIndex == SIZE) {
        getIndex = 0;
    }
    lock_release(&l);
    return c;
}




  



  	Version 2 (handle empty/full cases):
    char buffer[SIZE];
int count = 0, putIndex = 0, getIndex = 0;
struct lock l;
lock_init(&l);

void put(char c) {
    lock_acquire(&l);
    while (count == SIZE) {
        lock_release(&l);
        lock_acquire(&l);
    }
    count++;
    buffer[putIndex] = c;
    putIndex++;
    if (putIndex == SIZE) {
        putIndex = 0;
    }
    lock_release(&l);
}

char get() {
    char c;
    lock_acquire(&l);
    while (count == 0) {
        lock_release(&l);
        lock_acquire(&l);
    }
    count--;
    c = buffer[getIndex];
    getIndex++;
    if (getIndex == SIZE) {
        getIndex = 0;
    }
    lock_release(&l);
    return c;
}




  







Condition Variables

	Synchronization mechanisms need more than just mutual
  exclusion; also need a way to wait for another thread
  to do something (e.g., wait for a character to be
  added to the buffer)




	Condition variables: used to wait for a particular
  condition to become true (e.g. characters in buffer).
  	wait(condition, lock):  release lock,
    put thread to sleep until condition is signaled;
    when thread wakes up again, re-acquire lock before
    returning.
  

	signal(condition, lock): if any threads
    are waiting on condition, wake up one of them.
    Caller must hold lock, which must be the same as the
    lock used in the wait call.
  

	broadcast(condition, lock): same as
    signal, except wake up all waiting
    threads.
  

	Note: after signal, signaling thread keeps lock,
    waking thread goes on the queue waiting for the lock.
  

	Warning: when a thread wakes up after cond_wait there
    is no guarantee that the desired condition still exists:
    another thread might have snuck in.
  







	Producer/Consumer, version 3 (with condition variables):
  char buffer[SIZE];
int count = 0, putIndex = 0, getIndex = 0;
struct lock l;
struct condition dataAvailable;
struct condition spaceAvailable;

lock_init(&l);
cond_init(&dataAvailable);
cond_init(&spaceAvailable);

void put(char c) {
    lock_acquire(&l);
    while (count == SIZE) {
        cond_wait(&spaceAvailable, &l);
    }
    count++;
    buffer[putIndex] = c;
    putIndex++;
    if (putIndex == SIZE) {
        putIndex = 0;
    }
    cond_signal(&dataAvailable, &l);
    lock_release(&l);
}

char get() {
    char c;
    lock_acquire(&l);
    while (count == 0) {
        cond_wait(&dataAvailable, &l);
    }
    count--;
    c = buffer[getIndex];
    getIndex++;
    if (getIndex == SIZE) {
        getIndex = 0;
    }
    cond_signal(&spaceAvailable, &l);
    lock_release(&l);
    return c;
}








Monitors

	When locks and condition variables are used together like this,
  the result is called a monitor :
  	A collection of procedures manipulating a shared data
    structure.
  

	One lock that must be held whenever accessing the shared data
    (typically each procedure acquires the lock at the very
    beginning and releases the lock before returning).
  

	One or more condition variables used for waiting.
  









	There are other synchronization mechanisms besides locks
  and condition variables. Be sure to read about semaphores
  in the book or in the Pintos documentation.
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	Readings for this topic from Operating Systems: Principles and Practice:
  Chapter 7 up through Section 7.2.






	Resources fall into two classes:
  	Non-preemptible:  once given, it can't be reused until
    thread gives it back.  Examples are file space, terminal,
    and maybe memory.
  

	Preemptible:  processor or I/O channel.  Can take resource
    away, use it for something else, then give it back later.
  







	OS makes two related kinds of decisions about resources:
  	Allocation: who gets what.  Given a set of requests for
    resources, which processes should be given which
    resources in order to make most efficient use of the
    resources?
  

	Scheduling: how long can they keep it.  When more
    resources are requested than can be granted immediately,
    in which order should the requests be serviced?
    Examples are processor scheduling (one processor, many
    threads), memory scheduling in virtual memory systems.
  









	Reminder of thread states for dispatching/scheduling:
  	Running
  

	Ready: waiting for a core to become available
  

	Blocked: waiting for some other event (disk I/O, incoming
    network packet, etc.)
  







Simple Scheduling Algorithms



	First-come-first-served (FCFS) scheduling (also called FIFO
  or non-preemptive):
  	Keep all of the ready threads in a single list called
    the ready queue.
  

	When a thread becomes ready, add it to the back of
    the ready queue.
  

	Run the first thread on the queue until it exits or
    blocks.
  

	Problem: one thread can monopolize a core.
  







	Solution: limit maximum amount of time that a thread can
  run without a context switch.  This time is called a
  time slice.




	Round robin scheduling:  run thread for one time slice,
  then return to back of ready queue.  Each thread gets
  equal share of the cores.  Most systems use some variant
  of this.
  	Typical time slice values: 10-100ms
  

	The length of a time slice is also called
    the time quantum.
  







	How do we decide whether a scheduling algorithm is good?
  	Make users happy (minimize response time).
  

	Use resources efficiently:
    	Full utilization: keep cores and disks busy
    

	Low overhead: minimize context switches
    



  

	Fairness (distribute CPU cycles equitably)
  







	Is round-robin better than FCFS?




	Optimal scheduling: STCF (Shortest Time to Completion First);
  also called SJF (Shortest Job First)
  	Run the thread that will finish most quickly, run it without
    interruptions.
  

	Another advantage of STCF: improves overall resource
    utilization.
    	Suppose some jobs CPU-bound, some I/O-bound.
    

	STCF will give priority to I/O-bound jobs,
      which keeps the disks/network as busy as possible.
    



  







	Key idea: can use past performance to predict future
  performance.
  	Behavior tends to be consistent
  

	If a process has been executing for a long time without
    blocking, it's likely to continue executing.
  







Priority-Based Scheduling

	Priorities: most real schedulers support a priority for each
  thread:
  	Always run the thread with highest priority.
  

	In case of tie, use round-robin among highest priority threads
  

	Use priorities to implement various scheduling policies
    (e.g. approximate STCF)
  







	Exponential Queues (or Multi-Level Feedback Queues):
  attacks both efficiency and response time problems.
  	One ready queue for each priority level.
  

	Lower-priority queues have larger time slices
    (time slice doubles with each reduction in priority)
  

	Newly runnable thread starts in highest priority queue
  

	If it reaches the end of its time slice without blocking
    it moves to the next lower queue.
  

	Result: I/O-bound threads stay in the highest-priority
    queues, CPU-bound threads migrate to lower-priority queues
  

	What are the problems with this approach?
  







	4.4 BSD Scheduler (for first project):
  	Keep information about recent CPU usage for each thread
  

	Give highest priority to thread that has used the least
    CPU time recently.
  

	Interactive and I/O-bound threads will use little CPU time and
    remain at high priority.
  

	CPU-bound threads will eventually get lower
    priority as they accumulate CPU time.
  







Multiprocessor Scheduling

	Multiprocessor scheduling is mostly the same as
  uniprocessor scheduling:
  	Share the scheduling data structures among all of
    the cores.
  

	Run the k highest-priority threads on the k cores.
  

	When a thread becomes runnable, see if its priority
    is higher than the lowest-priority thread currently
    running. If so, preempt that thread.
  

	However, a single ready queue can result in contention
    problems if there are lots of cores.
  







	2 special issues for multiprocessors:
  	Processor affinity:
    	Once a thread has been running on a particular core
      it is expensive to move it to a different core
      (hardware caches will have to be reloaded).
    

	Multiprocessor schedulers typically try to keep a
      thread on the same core as much as possible to
      minimize these overheads.
    



  

	Gang scheduling:
    	If the threads within a process are communicating frequently,
      it won't make sense to run one thread without the others:
      it will just block immediately on communication with
      another thread.
    

	Solution: run all of the threads of a process simultaneously
      on different cores, so they can communicate more
      efficiently.
    

	This is called gang scheduling.
    

	Even if a thread blocks, it may make sense to leave it
      loaded on its core, on the assumption that it will
      unblock in the near future.
    



  







Conclusion

	Scheduling algorithms should not affect the behavior of
  the system (same results regardless of schedule).


	However, the algorithms do impact the system's
  efficiency and response time.


	The best schemes are adaptive.  To be optimal, we'd have
  to predict the future.









    File Systems


  Lecture Notes for CS 140

  Spring 2014

  John Ousterhout




	Readings for this topic from Operating Systems: Principles and Practice:
  Chapter 11,  Section 13.3 (up through page 561).




	Problems addressed by modern file systems:
  	Disk Management:
    	Fast access to files (minimize seeks)
    

	Sharing space between users
    

	Efficient use of disk space
    



  

	Naming:  how do users select files?
  

	Protection:  isolation between users, controlled sharing.
  

	Reliability:  information must survive OS crashes and hardware failures.
  







	File:  a named collection of bytes stored on durable storage such as disk.




	File access patterns:
  	Sequential:  information is processed in order, one byte
    after another.
  

	Random Access:  can address any byte in the file directly
    without passing through its predecessors.  E.g. the data set
    for demand paging, also databases.
  

	Keyed (or indexed):  search for blocks with particular contents,
    e.g. hash table, associative database, dictionary.
    Usually provided by databases, not operating system.
  







	Issues to consider:
  	Most files are small (a few kilobytes or less), so per-file
    overheads must be low.
  

	Most of the disk space is in large files.
  

	Many of the I/O operations are for large files, so performance
    must be good for large files.
  

	Files may grow unpredictably over time.
  







File Descriptors

	Operating system data structure with information about a file
  (called inode in Linux)
  	Stored on disk along with file data.
  

	Kept in memory when file is open.
  





	Info in file descriptor:
  	Sectors occupied by file
  

	File size
  

	Access times (last read, last write)
  

	Protection information (owner id, group id, etc.)
  







	How should disk sectors be used to represent the bytes
  of a file?




	Contiguous allocation (also called "extent-based"):
  allocate files like segmented memory (contiguous run of sectors).  Keep
  a free list of unused areas of the disk.  When creating a file,
  make the user specify its length, allocate all the space at once.
  Descriptor contains location and size.
  	Advantages:
    	Easy access, both sequential and random
    

	Simple
    

	Few seeks
    



  

	Drawbacks:
    	Fragmentation will make it hard to use disk space
      efficiently; large files may be impossible
    

	Hard to predict needs at file creation time
    



  



  Example:  IBM OS/360.




	Linked files: 
  	Divide disk into fixed-sized blocks (512 bytes?)
  

	Keep a linked list of all free blocks.
  

	In file descriptor, just keep pointer to first block.
  

	Each block of file contains pointer to next block.
  

	Advantages?
  

	Drawbacks?
  



  Examples (more or less):  TOPS-10, Xerox Alto.




	Windows FAT:
  	Like linked allocation, except don't keep the links in
    the blocks themselves.
  

	Keep the links for all files in a single table called
    the File Allocation Table
    	Table is memory resident during normal operation
    

	Each FAT entry is disk sector number of next block in file
    

	Special values for "last block in file", "free block"
    

	File descriptor stores number of first block in file, size
    



  

	Originally, each FAT entry was 16 bits.
  

	FAT32 supports larger disks:
    	Each entry has 28 bits of sector number
    

	Disk addresses refer to clusters: groups of adjacent
      sectors.
    

	Cluster sizes 2 - 32 KBytes; fixed for any particular
      disk partition.
    



  

	Advantages?
  

	Disadvantages?
  







	Indexed files:  keep an array of block pointers
  for each file.
  	Maximum length must be declared for file when
    it is created.
  

	Allocate array to hold pointers to all the blocks, but
    don't allocate the blocks.
  

	Fill in the pointers dynamically as file is written.
  

	Advantages?
  

	Drawbacks?
  







	Multi-level indexes (4.3 BSD Unix):
  	Blocks are 4 Kbytes.
  

	File descriptor = 14 block pointers, initially 0 ("no block").
  

	First 12 point to data blocks (direct blocks).
  

	Next entry points to an indirect block (contains 1024
    4-byte block pointers).
  

	Last entry points to a doubly-indirect block.
  

	Maximum file length is fixed, but large.
  

	Indirect blocks aren't allocated until needed.
  



  	Advantages?
  







Block Cache

	Use part of main memory to retain recently-accessed disk
  blocks.


	LRU replacement.


	Blocks that are referenced frequently (e.g., indirect
  blocks for large files) are usually in the cache.


	This solves the problem of slow access to large files.


	Originally, block caches were fixed size.


	As memories have gotten larger, so have block caches.


	Many systems now unify the block cache and the VM
  page pool: any page can be used for either, based on
  LRU access.


	What happens when a block in the cache is modified?
  	Synchronous writes: immediately write through
    to disk.
    	Safe: data won't be lost if the machine crashes
    

	Slow: process can't continue until disk I/O completes
    

	May be unnecessary:
      	Many small writes to the same block
      

	Some files are deleted quickly (e.g., temporary files)
      



    



  

	Delayed writes: don't immediately write to
    disk: 
    	Wait a while (30 seconds?) in case there are more writes
      to a block or the block is deleted
    

	Fast: writes return immediately
    

	Dangerous: may lose data after a system crash
    



  







Free Space Management

	Managing disk free space: many early systems just used a
  linked list of free blocks.
  	Each block holds many pointers to free blocks, plus a
    pointer to the next block of pointers.
  

	At the beginning, free list is sorted, so blocks in a
    file are allocated contiguously.
  

	Free list quickly becomes scrambled, so files are spread
    all over disk.
  







	4.3 BSD approach to free space: bit map:
  	Keep an array of bits, one per block.
  

	1 means block is free, 0 means block in use
  



  	During allocation, search bit map for a block that's
    close to the previous block of the file.
  

	If disk isn't full, this usually works pretty well.
  

	If disk is nearly full this becomes very expensive
    and doesn't produce much locality.
  

	Solution: don't let the disk fill up!
    	Pretend disk has 10% less capacity than it really has
    

	If disk is 90% full, tell users it's full
      and don't allow any more data to be written.
    



  







Block Sizes

	Many early file systems (e.g. Unix) used a block size of 512 bytes
  (one sector).
  	Inefficient I/O: more distinct transfers, hence more seeks. 
  

	Bulkier file descriptors: only 128 pointers in an indirect
    block (pointers will occupy 1% of disk space).
  







	Increase block size (e.g. 2KB clusters in FAT32)?




	4.3BSD solution: multiple block sizes
  	Large blocks are 4 KBytes; most blocks are large
  

	Fragments are multiples of 512 bytes, fitting
    within a single large block
  

	The last block in a file can be a fragment.
  

	One large block can hold fragments from multiple files.
  

	Bit map for free blocks is based on fragments.
  







Disk Scheduling

	If there are several disk I/O's waiting to be executed,
  what is the best order in which to execute them?
  	Goal is to minimize seek time.
  







	First come first served (FCFS, FIFO): simple,
  but does nothing to optimize seeks.




	Shortest seek time first (SSTF):
  	Choose next request that is as close as possible to
    the previous one.
  

	Good for minimizing seeks, but can result in
    starvation for some requests.
  







	Scan ("elevator algorithm").
  	Same as SSTF except heads keep moving in one direction
    across disk.
  

	Once the edge of the disk has been reached, seek to
    the farthest block away and start again.
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	Readings for this topic from Operating Systems: Principles and Practice:
  Sections 13.1-13.2.




	Naming:  how do users refer to their files?  How does OS
  find file, given name?




	First step: file descriptor has to be stored on
  disk, so it will persist across system reboots.


	Early UNIX versions: all descriptors stored in a fixed-
  size array on disk.


	Originally entire descriptor array was at the outer
  edge of the disk. Result: long seeks between descriptors
  and file data.


	Later improvements:
 	Place descriptor array mid-way across disk.
 

	Many small descriptor arrays spread across disk, so
   descriptors can be near to file data.
 





	Space for descriptors is fixed when the disk is
  initialized, and can't be changed.


	UNIX/Linux/Pintos terms:
  	File descriptor is called an i-node
  

	Index of i-node in the descriptor array: i-number.
    Internally the OS uses the i-number as an identifier
    for the file.
  





	When a file is open, its descriptor is kept in main
  memory.  When the file is closed, the descriptor is
  stored back to disk.




	File naming: users want to use text names to refer to files.
  Special disk structures called directories are used
  to map names to descriptor indexes.






	Early approaches to directory management:
  	A single directory for the entire disk:
    	If one user uses a particular name, no-one else can.
    

	Many early personal computers worked this way.
    



  

	A single directory for each user (e.g. TOPS-10):
    	Avoids problems between users, but still makes it
      hard to organize information.
    



  







	Modern systems support hierarchical directory structures.
  UNIX/Linux approach:
  	Directories are stored on disk just like regular files (i.e.
    file descriptor with 14 pointers, etc.) except file descriptor
    has special flag bit set to indicate that it's a directory.
  

	Each directory contains <name, i-number> pairs in no
    particular order.
  

	The file pointed to by the i-number may be another directory.
    Hence, get hierarchical tree structure.  Names have
    slashes separating the levels of the tree.
  

	There is one special directory, called the root.  This
    directory has no name; it has i-number 2 (i-numbers 0 and 1
    have other special purposes).
  



  	On some systems user programs can read directories just like
    regular files.
  

	Only the operating system can write directories.
  







Working directories 

	Cumbersome constantly to have to specify the full path name
  for all files.


	Have OS remember one distinguished directory per process,
  called the working directory.


	If a file name doesn't start with "/" then it is looked up
  starting in the working directory.


	Names starting with "/" are looked up starting in the root
  directory.




Links

	UNIX hard links:
  	It is possible for more than one directory entry to
    refer to a single file.
  

	UNIX uses reference counts in file descriptors to
    keep track of hard links referring to a file.
  

	Files are deleted when the last directory entry
    goes away.
  

	Must prevent circularities.
  





	Symbolic links:
  	A file whose contents are another file name.
  

	Stored on disk like regular files, but with special
    flag set in descriptor.
  

	If a symbolic link is encountered during file lookup,
    switch to target named in symbolic link, continue
    lookup from there.
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	Readings for this topic from Operating Systems: Principles and Practice:
  Section 5.5.




	How to implement locks and condition variables (inside the operating
  system)?




	Uniprocessor solution: just disable interrupts.
  struct lock {
    int locked;
    struct queue q;
};

void lock_acquire(struct lock *l) {
    intr_disable();
    if (!l->locked) {
        l->locked = 1;
    } else {
        queue_add(&l->q, thread_current());
        thread_block();
    }
    intr_enable();
}

void lock_release(struct lock *l) {
    intr_disable();
    if (queue_empty(&l->q) {
        l->locked = 0;
    } else {
        thread_unblock(queue_remove(&l->q));
    }
    intr_enable();
}








	Implementing locks on a multiprocessor: turning off
  interrupts isn't enough.
  	Hardware provides some sort of atomic  read-modify-write
    instruction, which can be used to build higher-level
    synchronization operations such as locks.
  

	Example: swap: atomically read memory value and
    replace it with a given value: returns old value.
  







	Attempt #1:
  struct lock {
    int locked;
};

void lock_acquire(struct lock *l) {
    while (swap(&l->locked, 1)) {
        /* Do nothing */
    }
}

void lock_release(struct lock *l) {
    l->locked = 0;
}








	Attempt #2:
  struct lock {
    int locked;
    struct queue q;
};

void lock_acquire(struct lock *l) {
    if (swap(&l->locked, 1) != 0) {
        queue_add(&l->q, thread_current());
        thread_block();
    }
}

void lock_release(struct lock *l) {
    if (queue_empty(&l->q) {
       l->locked = 0;
    } else {
        thread_unblock(queue_remove(&l->q));
    }
}








	Attempt #3:
  struct lock {
    int locked;
    struct queue q;
    int sync;         /* Normally 0. */
};

void lock_acquire(struct lock *l) {
    while (swap(&l->sync, 1) != 0) {
        /* Do nothing */
    }
    if (!l->locked) {
        l->locked = 1;
        l->sync = 0;
    } else {
        queue_add(&l->q, thread_current());
        l->sync = 0;
        thread_block();
    }
}

void lock_release(struct lock *l) {
    while (swap(&l->sync, 1) != 0) {
        /* Do nothing */
    }
    if (queue_empty(&l->q) {
        l->locked = 0;
    } else {
        thread_unblock(queue_remove(&l->q));
    }
    l->sync = 0;
}








	Attempt #4:
  struct lock {
    int locked;
    struct queue q;
    int sync;         /* Normally 0. */
};

void lock_acquire(struct lock *l) {
    while (swap(&l->sync, 1) != 0) {
        /* Do nothing */
    }
    if (!l->locked) {
        l->locked = 1;
        l->sync = 0;
    } else {
        queue_add(&l->q, thread_current());
        thread_block(&l->sync);
    }
}

void lock_release(struct lock *l) {
    while (swap(&l->sync, 1) != 0) {
        /* Do nothing */
    }
    if (queue_empty(&l->q) {
        l->locked = 0;
    } else {
        thread_unblock(queue_remove(&l->q));
    }
    l->sync = 0;
}








	Final solution:
  struct lock {
    int locked;
    struct queue q;
    int sync;         /* Normally 0. */
};

void lock_acquire(struct lock *l) {
    intr_disable();
    while (swap(&l->sync, 1) != 0) {
        /* Do nothing */
    }
    if (!l->locked) {
        l->locked = 1;
        l->sync = 0;
    } else {
        queue_add(&l->q, thread_current());
        thread_block(&l->sync);
    }
    intr_enable();
}

void lock_release(struct lock *l) {
    intr_disable();
    while (swap(&l->sync, 1) != 0) {
        /* Do nothing */
    }
    if (queue_empty(&l->q) {
        l->locked = 0;
    } else {
        thread_unblock(queue_remove(&l->q));
    }
    l->sync = 0;
    intr_enable();
}













    Deadlock
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	Readings for this topic from Operating Systems: Principles and Practice:
  Sections 6.1-6.2.




	The deadlock problem:
  	Threads often need to hold multiple locks at the
    same time.
  

	Simple example:
    Thread A               Thread B
lock_acquire(l1);      lock_acquire(l2);
lock_acquire(l2);      lock_acquire(l1);
...                    ...
lock_release(l2);      lock_release(l1);
lock_release(l1);      lock_release(l2);




  

	Deadlock definition:
    	A collection of threads are all blocked.
    

	Each thread is waiting for a resource owned
      by one of the other threads.
    

	Since all threads are blocked, none can release
      their resources.
    



  







	Four conditions for deadlock:
  	Limited access: resources cannot be shared.
  

	No preemption.  Once given, a resource cannot be taken away.
  

	Multiple independent requests:  threads don't ask
    for resources all at once (hold resources while waiting).
  

	A circularity in the graph of requests and ownership.
  







	Complexities:
  	Deadlock can occur over anything that causes waiting:
    	Locks
    

	Network messages
    

	Disk drive
    

	Memory space exhausted
    



  

	Deadlock can occur over distinct resources (e.g. locks)
    or pieces of a single resource (pages of memory).
  

	In general, don't know in advance which resources a
    thread will need.
  







	Solution #1: deadlock detection
  	Determine when system is deadlocked
  

	Break the deadlock by terminating one of the threads
  

	Usually not practical in operating systems, but
    often used in database systems where a transaction
    can be retried
  







	Solution #2: deadlock prevention: eliminate one of the
  necessary conditions for deadlock
  	Don't allow exclusive access? Not reasonable for most
    applications.
  

	Create enough resources so that they never run out?
    May work for things like disk space, but locks for
    synchronization are intentionally limited in number.
  

	Allow preemption? Works for some resources but not others
    (e.g., can't preempt a lock).
  

	Require threads to request all resources at the same time;
    either get them all or wait for them all.
    	Tricky to implement: must wait for several things
      without locking any of them.
    

	Inconvenient for thread: hard to predict needs in advance.
      May require thread to over-allocate just to be safe.
    



  

	Break the circularity: all threads request resources in the
    same order (e.g., always lock l1 before l2).
    This is the most common approach used in operating systems.
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	Readings for this topic from Operating Systems: Principles and Practice:
  none.






	When a process is running, what does its memory look like?
  A collection of regions called sections.
  Basic memory layout for Linux and other Unix systems:
  	Code (or "text" in Unix terminology): starts at location 0
  

	Data: starts immediately above code, grows upward
  

	Stack: starts at highest address, grows downward
  









	System components that take part in managing a process's
  memory:
  	Compiler and assembler:
    	Generate one object file for each source code file
      containing information for that source file.
    

	Information is incomplete, since each source file generally
      references some things defined in other source files.
    



  

	Linker:
    	Combines all of the object files for one program into
      a single object file.
    

	Linker output is complete and self-sufficient.
    



  

	Operating system:
    	Loads object files into memory.
    

	Allows several different processes to share memory at
      once.
    

	Provides facilities for processes to get more memory after
      they've started running.
    



  

	Run-time library:
    	Works together with OS to provide dynamic allocation routines,
      such as malloc and free in C.
    



  







	Linkers (or Linkage Editors, ld in Unix,
  LINK on Windows):  combine
  many separate pieces of a program, re-organize storage
  allocation.  Typically invoked invisibly by compilers.




	Three functions of a linker:
  	Combine all the pieces of a program.
  

	Figure out a new memory organization so that all the
    pieces fit together (combine like sections).
  

	Touch up addresses so that the program can run
    under the new memory organization.
  





	Result: a runnable program stored in a new object file
  called an executable.






	Problems linker must solve:
  	Assembler doesn't know addresses of external objects when assembling
    files separately.  E.g. where is printf routine?
    	Assembler just puts zero in the object file for each unknown address
    



  

	Assembler doesn't know where the things it's assembling will
    go in memory
    	Assume that things start at address zero, let linker re-arrange.
    



  







	Each object file consists of:
  	Sections, each holding a distinct kind of information.
    	Typical sections: code ("text") and data.
    

	For each section, object file contains size and current location
      of the section, plus initial contents, if any
    



  

	Symbol table: name and current location of variable or procedure
    that can be referenced in other object files.
  

	Relocation records : information about addresses referenced
    in this object file that the linker must adjust once it knows the
    final memory allocation.
  

	Additional information for debugging (e.g. map from line numbers
    in the source file to location in the code section).
  









	Linker executes in three passes:
  	Pass 1: read in section sizes, compute final memory layout.
  

	Pass 2: read in all symbols, create complete symbol table in memory.
  

	Pass 3: read in section and relocation information, update
    addresses, write out new file.
  







Dynamic Linking

	Originally all programs were linked statically, as described
  above:
  	All external references fully resolved
  

	Each program complete
  





	Since late 1980's most systems have supported shared libraries
  and dynamic linking:
  	For common library packages, only keep a single copy in memory,
    shared by all processes.
  

	Don't know where library is loaded until runtime; must resolve
    references dynamically, when program runs.
  





	One way of implementing dynamic linking: jump table.
  	If any of the files being linked are shared libraries, the linker
    doesn't actually include the shared library code in the final
    program. Instead, it includes two things that implement dynamic
    linking:
    	Jump table: an array in which each entry is a single machine
      instruction containing an unconditional branch (jump).
      	For each function in a shared library used by the program, there
        is one entry in the jump table that will jump to the beginning of
        that function.
      



    

	Dynamic loader: library package invoked at startup to fill in the
      jump table.
    



  

	For relocation records referring to functions in the shared library,
    the linker substitutes the address of the jump table entry: when
    the function is invoked, the caller will "call" the jump table entry,
    which redirects the call to the real function.
  

	Initially, all jump table entries jump to zero (unresolved).
  

	When the program starts up, the dynamic load library is invoked:
    	It invokes the OS mmap functions to load each shared library into
      memory.
    

	It fills in the jump table with the correct address for each
      function in a shared library.
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	Readings for this topic from Operating Systems: Principles and Practice:
  Chapter 14 up through Section 14.1.






	The problem: crashes can happen anywhere, even in the middle
  of critical sections:
  	Lost data: information cached in main memory may not
    have been written to disk yet.
    	E.g. original Unix: up to 30 seconds worth of changes
    



  

	Inconsistency:
    	If a modification affects multiple blocks, a crash
      could occur when some of the blocks have been written
      to disk but not the others.
    

	Examples:
      	Adding block to file: free list was updated to indicate
        block in use, but file descriptor wasn't yet written to point to
        block.
      

	Creating link to a file: new directory entry refers to
        file descriptor, but reference count wasn't updated in file descriptor.
      



    



  

	Ideally, we'd like something like an atomic operation where multi-block
    operations happen either in their entirety or not at all.
  







Approach #1: check consistency during reboot, repair problems

	Example: Unix fsck ("file system check")
  	During every system boot fsck is executed.
  

	Checks to see if disk was shut down cleanly; if so, no more
    work to do.
  

	If disk didn't shut down cleanly (e.g., system crash,
    power failure, etc.), then scan disk contents, identify
    inconsistencies, repair them.
  

	Example: block in file and also in free list
  

	Example: reference count for a file descriptor doesn't match
    the number of links in directories
  

	Example: block in two different files
  

	Example: file descriptor has a reference count > 0 but is not
    referenced in any directory.
  







	Limitations of fsck:
  	Restores disk to consistency, but doesn't prevent loss
    of information; system could end up unusable.
  

	Security issues: a block could migrate from the password
    file to some other random file.
  

	Can take a long time: 1.5 hours to read every block in a
    medium-size disk today.  Can't restart system until
    fsck completes. As disks get larger, recovery
    time increases.
  







Approach #2: ordered writes

	Prevent certain kinds of inconsistencies by making updates
  in a particular order.
  	For example, when adding a block to a file, first write
    back the free list so that it no longer contains the
    file's new block.
  

	Then write the file descriptor, referring to the new block.
  

	What can we say about the system state after a crash?
  

	In general:
    	Never write a pointer before initializing the block
      it points to (e.g., indirect block).
    

	Never reuse a resource (inode, disk block, etc.) before
      nullifying all existing pointers to it.
    

	Never clear last pointer to a live resource before
      setting new pointer (e.g. mv).
    



  





	Result: no need to wait for fsck when rebooting


	Problems:
  	Can leak resources (run fsck in background to reclaim
    leaked resources).
  

	Requires lots of synchronous metadata writes, which
    slows down file operations.
  





	Improvement:
  	Don't actually write the blocks synchronously, but record
    dependencies in the buffer cache.
  

	For example, after adding a block to a file add
    dependency between file descriptor block and free list block.
    	When it's time to write the file descriptor back to disk, make
      sure that the free list block has been written first.
    



  

	Tricky to get right: potentially end up with
    circular dependencies between blocks.
  







Approach #3: write-ahead logging

	Also called journaling file systems


	Implemented in Linux ext3 and NTFS (Windows).


	Similar in function to logs in database systems; allows
  inconsistencies to be corrected quickly during reboots
  	Before performing an operation, record information about
    the operation in a special append-only log file; flush this
    info to disk before modifying any other blocks.
  

	Example: adding a block to a file
    	Log entry: "I'm about to add block 99421 to file descriptor 862 at block
      index 93"
    



  

	Then the actual block updates can be carried out later.
  

	If a crash occurs, replay the log to make sure all updates
    are completed on disk.
  

	Guarantees that once an operation is started, it will eventually complete.
  

	Problem: log grows over time, so recovery could be slow.
  

	Solution: checkpoint
    	Occasionally stop and flush all dirty blocks to disk.
    

	Once this is done, the log can be cleared.
    



  

	Typically the log is used only for metadata (free list, file descriptors,
    indirect blocks), not for actual file data.
  







	Logging advantages:
  	Recovery much faster.
  

	Eliminate inconsistencies such as blocks confused between files.
  

	Log can be localized in one area of disk, so writes are faster
    (no seeks).
  

	Metadata writes can be delayed a long time, for better performance.
  







	Logging disadvantages:
  	Synchronous disk write before every metadata operation.
  







Remaining problems

	Can still lose recently-written data after crash
  	Solution: apps can use fsync to force data to disk.
  





	Disks fail
  	One of the greatest causes of problems in large datacenters
  

	Solution: replication or backup copies (e.g., on tape)
  





	Disk writes are not atomic:
  	If a block is being written at the time of the crash,
    it may be left in inconsistent state (neither old contents
    nor new).
  

	At the level of sectors, inconsistencies are detectable;
    after crash, sector will be either
    	Old contents
    

	New contents
    

	Unreadable trash
    



  

	But, blocks are typically multiple sectors.  After crash:
    	Sectors 0-5 of block may have new contents.
    

	Sectors 6-7 of block may have old contents.
    



  

	Example: appending to log
    	If adding new log entries to an existing log block,
      crash could cause old info in the block to be lost.
    



  

	Solution:
    	Replicated log writes (if crash corrupts one of the logs,
      the other will still be safe).
    

	Add checksums and/or versions to detect incomplete writes.
    



  







	Conclusions:
  	To get highest performance, must give up some crash recovery
    capability.
  

	Must decide what kinds of failures you want to recover from.
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	Readings for this topic from Operating Systems: Principles and Practice:
  none.




	Protection: mechanisms that prevent accidental or intentional
  misuse of a system.
  	Accidents: generally easier to solve (make them unlikely)
  

	Malicious abuse: much more difficult to eliminate (can't
    leave any loopholes, can't use probabilities).
  







	Three aspects to a protection mechanism:
  	Authentication: identify a responsible party (principal)
    behind each action.
  

	Authorization: determine which principals are allowed to
    perform which actions.
  

	Access enforcement: combine authentication and authorization
    to control access.
  



  A tiny flaw in any of these areas can compromise the entire
  protection mechanism.




Authentication

	Typically done with passwords:
  	A secret piece of information used to establish
    identity of a user.
  

	Passwords should be relatively long and obscure (only useful
    if hard to guess).
  

	The password database is a vulnerability and must be carefully
    protected; for example, don't store passwords in a directly-readable
    form (use one-way transformations).
  







	Alternate form of authentication: badge or key.
  	Does not have to be kept secret.
  

	Can be stolen, but owner will know if it is.
  

	Should not be forgable or copyable.
  







	Paradox: key must be cheap to make, hard to duplicate.




	Once authentication is complete, the identity of the
  principal must be protected from tampering, since other
  parts of the system will rely on it.




	After you log in, your user id is associated with every
  process executed under that login: each process inherits
  the user id from its parent.




Authorization

	Goal: determine which principals can perform which
  operations on which objects.


	Logically, authorization information represented as an
  access matrix:
  	One row per principal.
  

	One column per object.
  

	Each entry indicates what that principle can do to
    that object.
  





	In practice a full access matrix would be too bulky, so
  it gets stored in one of two compressed ways:
  access control lists or capabilities.




	Access Control Lists (ACLs): organize by columns.
  	With each object, store information
    about which users are allowed to perform which operations.
  

	Most general form: list of <user, privilege> pairs.
  

	For simplicity, users can be organized into groups, with
    a single ACL entry for an entire group.
  

	ACLs can be very general (Windows) or simplified (Unix).
  

	UNIX: 9 bits per file:
    	owner, group, anyone
    

	read, write, execute permissions for each of the above
    

	In addition, user "root" has all permissions for
      everything
    



  



  	ACLs are simple and are used in almost all file systems.
  







	Capabilities: organize by rows.
  	With each user, indicate which objects may be accessed,
    and in what ways.
  

	Store a list of <object, privilege> pairs with each user.
    This is called a capability list.
  

	Typically, capabilities also act as names for objects:
    can't even name objects not referred to in your capability
    list.
  







	Systems based on ACLs encourage visibility of objects:
  shared public namespace.


	Capability systems discourage visibility; namespaces are
  private by default.


	Capabilities have been used in experimental systems attempting
  to be secure. However, they have proven to be clumsy to
  use (painful to share things), so they have mostly fallen out
  of favor for managing objects such as files.




Access Enforcement

	Some part of the system must be responsible for enforcing
  access controls and protecting authentication and authorization
  info.


	This portion of the system has total power, so it should be as
  small and simple as possible.  Example: the portion of the system
  that sets up page tables.


	One possible approach: Security kernel
  	An inner layer of the operating system that enforces security;
    only this layer has total power.
  

	Most operating systems have no security kernel: the entire
    OS has unlimited power.
  







Miscellaneous Issues

	Rights amplification
  	A mechanism that causes a callee to acquire more privileges
    (or different privileges) than its caller.
  

	Simple example: kernel call
  

	Another example: Unix set user id  (setuid):
    	Each file has one extra protection bit "s" (for setuid).
    

	Normally, each process runs with the same user id as the
      process that created it.
    

	If an executable is invoked with setuid set, the effective
      user id for that process changes to the owner of the
      executable file.
    

	Typical use: setuid to root to perform protected operations
      in a safe and controlled fashion.
    



  







	It is extremely difficult to make all of these mechanisms work with
  no loopholes that can be exploited by evil-doers.  Take CS 155 to
  learn more.
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	Readings for this topic from Operating Systems: Principles and Practice:
  Chapter 8.




	How can one memory be shared among several concurrent
  processes?




	Single-tasking (no sharing):
  	Highest memory holds OS.
  

	Process is allocated memory starting at 0, up to the OS area.
  

	Examples:  early batch monitors where only one job
    ran at a time.  It could corrupt the OS,
    which would be rebooted by an operator.  Some early
    personal computers were similar.
  







	Goals for sharing memory:
  	Multitasking: allow multiple processes to be
    memory-resident at once.
  

	Transparency: no process should need to be aware of the fact that
    memory is shared.  Each must run regardless of the number
    and/or locations of processes.
  

	Isolation: processes mustn't be able to corrupt each other.
  

	Efficiency (both of CPU and memory) shouldn't be
    degraded badly by sharing.
  







	Load-time relocation:
  	Highest memory holds OS.
  

	First process loaded at 0; others fill empty spaces.
  



  	When a process is loaded, relocate it so that it can run
    in its allocated memory area, similar to linking:
    	Linker outputs relocation records in executable files
    

	Similar to information in object files: indicates which
      locations contain memory addresses
    

	OS modifies addresses when it loads process (add base address)
    



  

	What are the problems with this approach?
  







Dynamic Memory Relocation

	Instead of relocating a
  program statically when it is loaded, add hardware (memory
  management unit) that changes
  addresses dynamically during every memory reference.




	Each address generated by a process (called a
  virtual address) is translated in hardware to a
  physical address.  This happens during every
  memory reference.


	Results in two views of memory, called address spaces:
  	Virtual address space is what the program sees
  

	Physical address space is the actual allocation of memory
  







Base and Bound Relocation

	Two hardware registers:
  	Base: physical address corresponding to virtual address 0.
  

	Bound: highest allowable virtual address.
  





	On each memory reference, virtual address is compared
  to the bound register, then added to the base register to
  produce a physical address.  A bound violation results
  in a trap to the operating system.


	Each process appears to have a completely private memory
  whose size is determined by the bound register.


	Processes are isolated from each other and OS.


	No address relocation is necessary when a process is loaded.


	Each process has its own base and bound values, which are
  saved in the process control block.






	OS runs with relocation turned off, so it can access all
  of memory (a bit in the processor status word controls
  relocation).
  	Must prevent users from turning off relocation or
    modifying the base and bound registers (another bit
    in PSW for user/kernel mode).
  





	Problem: how does OS regain control once it has given it up?




	Base & bound is cheap (only 2 hardware registers) and
  fast: the add and compare can be done in parallel.






	What's wrong with base and bound relocation?




Multiple segments

	Each process is split among several variable-size areas
  of memory, called segments.
  	E.g. one segment for code, one segment for heap, one
    segment for stack.
  





	Segment table holds the bases and bounds for all
  the segments of a process, plus protection bit for each
  segment: read-write versus read-only.


	Memory mapping procedure consists of table lookup + add +
  compare.


	Each memory reference must indicate a segment number
  and offset:
  	Top bits of address select segment, low bits the offset.
  

	Example:  PDP-10 with high and low segments selected by
    high-order address bit.
  

	Or, segment can be selected implicitly by the instruction
    (e.g. code vs. data, stack vs. data, or 8086 prefixes).
  









	Advantage of segmentation: flexibility
  	Manage each segment separately:
    	Grow and shrink independently
    

	Swap to disk
    



  

	Can share segments between processes (e.g., shared code).
  

	Can move segments to compact memory and eliminate
    fragmentation.
  







	What's wrong with segmentation?




Paging

	Divide virtual and physical memory into fixed-sized chunks
  called pages. The most common size is 4 Kbytes.


	For each process, a page table defines the base
  address of each of that process' pages along with
  read-only and "present" bits.


	Page table stored in contiguous memory (with base
  register in hardware).


	Translation process:  page number always comes
  directly from the address.  Since page size is a power
  of two, no comparison or addition is necessary.  Just
  do table lookup and bit substitution.


	Easy to allocate:  keep a free list of available pages
  and grab the first one.  Easy to swap since everything
  is the same size, which is usually the same size as disk
  blocks.




	Problem: for modern machines, page tables can be very
  large:
  	Consider x86-64 addressing architecture: 64-bit
    addresses, 4096-byte pages.
  



  	Ideally, each page table should fit in a page.
  

	Most processes are small, so most page table entries
    are unused.
  

	Even large processes use their address space sparsely
    (e.g., code at the bottom, stack at the top)
  







	Solution: multi-level page tables.  Intel x86-64
  addressing architecture:
  	64-bit virtual addresses, but only the lower 48 bits
    are actually used.
  

	4 Kbyte pages: low-order 12 bits of virtual address
    hold off set within page.
  

	4 levels of page table, each indexed with 9 bits of virtual
    address.
  

	Each page table fits in one page (page table entries are 8 bytes).
  

	Can omit empty page tables.
  









	Next problem: page tables are too large to load into fast
  memory in the relocation unit.
  	Page tables kept in main memory
  

	Relocation unit holds base address for top-level page table
  

	With x86-64 architecture, must make 4 memory references
    to translate a virtual address!
  







Translation Lookaside Buffers (TLBs)

	Solution to page translation overhead: create a small hardware
  cache of recent translations.
  	Each cache entry stores the page number portion of a virtual
    address (36 bits for x86-64) and the corresponding physical
    page number (40 bits for x86-64).
  

	Typical TLB sizes: 64-2048 entries.
  

	On each memory reference, compare the page number from the
    virtual address with the virtual page numbers in every
    TLB entry (in parallel).
  

	If there is a match, use the corresponding physical page
    number.
  

	If no match, perform the full address translation and save
    the information in the TLB (replace one of the existing
    entries).
  

	TLB "hit rates" typically 95% or more.
  







	TLB complications:
  	When context switching, must invalidate all of the entries
    in the TLB (mappings will be different for the next process).
    Chip hardware does this automatically when the page table
    base register is changed.
  

	If virtual memory mappings change for the current process
    (e.g. page moved), must invalidate some TLB entries.  Special
    hardware instruction
    for this.
  







Miscellaneous Topics

	How does the operating system get information from user
  memory?  E.g. I/O buffers, parameter blocks.  Note that the user
  passes the OS a virtual address.
  	In some systems the OS just runs unmapped.
    	In this case it reads page the tables and translates user
      addresses in software.
    

	Addresses that are contiguous in the virtual address space
      may not be contiguous physically.  Thus I/O operations may
      have to be split up into multiple blocks.
    



  

	Most newer systems include kernel and user memory in same
    virtual address space (but kernel memory not accessible
    in user mode).
    This makes life easier for the kernel, although it doesn't
    solve the I/O problem.
  







	Another issue with paging: internal fragmentation.
  	Can't allocate partial pages, so for small chunks of
    information only part of the page will be used
  

	Result: wasted space at the ends of some pages
  



  	Not much of a problem in today's systems:
    	The objects (such as code or stack) tend to be
      much larger than a page.
    

	Percentage wasted space from fragmentation is small.
    



  

	What happens if page sizes grow?
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	Readings for this topic from Operating Systems: Principles and Practice:
  none.




	Static memory allocation is simple and convenient, but
  it's not sufficient for everything.




	Two basic operations in dynamic storage management:
  	Allocate a given number of bytes
  

	Free a previously allocated block
  







	Two general approaches to dynamic storage allocation:
  	Stack allocation (hierarchical): restricted, but simple
    and efficient.
  

	Heap allocation: more general, but more difficult to implement,
    less efficient.
  







Stack Allocation

	A stack can be used when memory allocation and freeing are
  partially predictable: memory is freed in opposite order from
  allocation.


	Example:  procedure call.  X calls Y calls Y again.


	Stacks are also useful for lots of other things:  tree traversal,
  expression evaluation, top-down recursive descent parsers, etc.


	A stack-based organization keeps all the free space together
  in one place.




Heap Allocation

	Heap allocation must be used when allocation and release are unpredictable


	Memory consists of allocated areas and free areas (or holes).
  Inevitably end up with lots of holes.


	Goal:  reuse the space in holes to keep the number of holes
  small, keep their size large.


	Fragmentation:  inefficient use of memory because of
  lots of small holes.  Stack allocation is perfect:
  all free space is in one large hole.


	Heap allocators must keep track of the storage that
  is not in use: free list.


	Best fit:  keep linked list of free blocks, search the
  whole list on each allocation, choose block that comes closest
  to matching the needs of the allocation, save the excess for
  later.  During release operations, merge adjacent free blocks.


	First fit:  just scan list for the first hole that is
  large enough.  Free excess.  Also merge on releases.  Most
  first fit implementations are rotating first fit.


	Problem: over time, holes tend to fragment, approaching the
  size of the smallest objects allocated


	Bit map: alternate representation of the free list,
  useful if storage comes in fixed-size chunks (e.g. disk blocks).
  	Keep a large array of bits, one for each chunk.
  

	If bit is 0 it means chunk is in use, if bit is 1 it
    means chunk is free.
  





	Pools:  keep a separate linked list for each popular size.
  	Allocation is fast, no fragmentation.
  

	What's wrong with this?
  







Storage Reclamation

	How do we know when dynamically-allocated memory can be freed?
  	Easy when a chunk is only used in one place.
  

	Reclamation is hard when information is shared:  it can't
    be recycled until all of the users are finished.
  

	Usage is indicated by the presence of pointers to the data.
    Without a pointer, can't access (can't find it).
  







	Two problems in reclamation:
  	Dangling pointers:  better not recycle storage while it's still
    being used.
  

	Memory leaks: storage gets "lost" because no one freed it even 
    though it can't ever be used again.
  







	Reference counts:  keep count of the number of outstanding
  pointers to each chunk of memory.  When this becomes zero,
  free the memory.  Example: Smalltalk, file descriptors in Unix.




	Garbage collection:  storage isn't freed explicitly (using
  free operation), but rather implicitly:  just delete pointers.
  	When the system needs storage, it searches through all of the
    pointers (must be able to find them all!) and collects things
    that aren't used.
  

	If structures are circular then this is
    the only way to reclaim space.
  

	Garbage collectors typically compact memory, moving
    objects to coalesce all free space.
  







	One way to implement garbage collection: mark and copy:
  	Must be able to find all objects.
  

	Must be able to find all pointers to objects.
  

	Pass 1:  mark.  Go through all statically-allocated and
    procedure-local variables, looking for pointers (roots).
    Mark each object pointed to, and recursively mark all objects it
    points to.  The compiler has to cooperate by saving information
    about where the pointers are within structures.
  

	Pass 2:  copy and compact.  Go through all objects, copy live
    Objects into contiguous memory; then free any remaining space.
  







	Garbage collection is often expensive:
  	10-20% of all CPU time in systems that use it.
  

	Uses memory inefficiently: 2-5x overallocation.
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	Readings for this topic from Operating Systems: Principles and Practice:
  Section 12.2.






	Solid state (semiconductor) storage, replacing disks in many
  applications (e.g. phones and other devices).  Primary advantages:
  	Nonvolatile (unlike DRAM): values persist even if
    device is powered off
  

	Better than disk:
    	No moving parts, so more reliable
    

	Faster access
    

	More shock-resistant
    



  

	5-10x more expensive than disk
  

	5-10x cheaper than DRAM
  







	Two styles, NAND and NOR; NAND is most popular today:
  	Total chip capacity up to 8 Gbytes today
  

	Storage divided into erase units (typically 256 Kbytes),
    which are subdivided into pages (typically 512 bytes or 4 Kbytes)
  

	Storage is read in units of pages
  

	Two kinds of writes:
    	Erase: sets all of the bits in an erase unit to 1's.
    

	Write: modifies an individual page, can only clear bits
      to 0 (writing 1's has no effect).
    

	Can write repeatedly to clear more bits.
    



  

	Wear-out: once a page has been erased many times (typically
    around 100,000, as low as 10,000 in some new devices) it no longer
    stores information reliably.
  







	Typical flash memory performance:
  	Read performance: 20-100 microsconds latency,
    100-500 MBytes/sec.   
  

	Erasure time: 2 ms
  

	Write performance: 200 microseconds latency,
    100-200 MBytes/sec.
  







	In practice, most flash memory devices are packaged with
  a flash translation layer (FTL):
  	Software that manages the flash device
  

	Typically provides an interface like that for a disk
    (read and write blocks)
  

	Use with existing file system software
  







	FTLs are interesting pieces of software, but most FTLs today aren't
  very good:
  	Sacrifice performance
  

	Waste capacity
  







	One possible approach for FTLs: direct mapped (e.g., some cheap
  flash sticks)
  	Virtual block i is stored on page i of the flash device
  

	Reads are simple
  

	To write virtual block i:
    	Read erase unit containing page i
    

	Erase the entire unit
    

	Rewrite erase unit with modified page
    



  

	What's wrong with this approach?
  







	To avoid these problems, must separate virtual block number from physical
  location in flash memory, so a given virtual block can occupy different
  pages in flash memory over time.




	Keep a block map that maps from virtual blocks to physical pages
  	Reads must first lookup the physical location in the block map
  

	For writes:
    	Find a free and erased page
    

	Write virtual block to that page
    

	Update block map with new location
    

	Mark previous page for virtual block as free
    



  

	This introduces additional issues
    	How to manage map (is it stored on the flash device?)
    

	How to manage free space (e.g. wear leveling)
    



  







	One approach: keep block map in memory, rebuild on startup:
  	Don't store block map on flash device
  

	Each page on flash contains an additional header:
    	Virtual block number
    

	Free/used bit (1 => free)
    

	Prevalid/valid bit (1 => prevalid)
    

	valid/Obsolete bit (1 => valid)
    



  

	F-P-O bits track lifecycle of page:
    	Just erased: 1-1-1
    

	About to write data: 0-1-1
    

	Block successfully written: 0-0-1
    

	Block deleted (new copy written elsewhere): 0-0-0
    

	Why is 0-1-1 state needed?
    



  



  	On startup, read entire contents of flash memory to rebuild
    block map (32 seconds for 8GB, 512 seconds for 128GB).
  









	To reduce memory utilization for block map, store block map in
  flash, cache parts of it in memory
  	Header for each flash page indicates whether that page is a
    data page or a map page
  

	Keep locations of map pages in memory (map-map)
  

	Scan flash on startup to re-create map-map
  

	During writes, must write new map page plus new data page
  

	Some reads may require 2 flash operations
  







	Obsolete blocks accumulate in erase units, which reduces
  effective capacity.


	Solution: garbage collection
  	Find erase units with many free pages
  

	Copy live pages to a clean erase unit (update block map)
  

	Erase and reuse old erase unit
  

	Note: must always keep at least one clean erase unit to use for
    garbage collection!
  









	Wear-leveling:
  	Want all erase units to be erased at about the same rate
  

	Use garbage collection to move data between "hot" and "cold"
    pages.
  









	Hard to achieve good performance, good utilization, and longevity
  all the same time:
  	If the flash device is 90% utilized, write cost increases by
    10x:
    	To get space for one new page, must garbage collect 10 old
      pages
    

	9 will still be valid and must be copied
    

	1 new page gets written
    

	Total: 9 reads, 10 writes to write 1 new page!
    

	This is called write amplification
    



  

	Lower utilization makes writes cheaper, but wastes space.
  

	Frequent garbage collection (e.g. because of high utilization)
    also wears out the device faster
  

	Ideal situation: hot and cold data
    	Some erase units contain only data that is never modified ("cold"),
      so they are always full and never need to be garbage collected.
    

	Other erase units contain data that is quickly
      overwritten; we can just wait until all of the pages have been
      overwritten, then garbage collect the erase unit for free.
    

	There are ways to encourage such a bimodal distribution.
    



  







	Incorporating flash memory as a disk-like device with FTL is inefficient:
  	Duplication:
    	OS already keeps various index structures for files:
    

	These are equivalent to the block map
    

	If OS could manage the flash directly, it could combine
      the block map with file indexes
    



  

	Lack of information:
    	FTL doesn't know when OS has freed a block; only finds out when
      block is overwritten
    

	Thus FTL may rewrite dead blocks during garbage collection!
    

	Newer flash devices offer trim command that allows OS to
      indicate deletion (but must modify OS file systems).
    



  







	Better long-term solution: new file systems designed just for flash memory
  	Lots of interesting issues and design alternatives
  

	Has been explored by research teams, but no widely-used
    implementations
  

	Need ability to bypass the FTL
  

	Interesting opportunity
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	Readings for this topic from Operating Systems: Principles and Practice:
  Section 10.2.




	What is the abstraction provided by an OS to a process?
  	(Virtual) memory
  

	A subset of the instruction set of the underlying machine
  

	Most (but not all) of the hardware registers
  

	A set of kernel calls with particular arguments for file I/O, etc.
  

	Overall: a subset of the facilities of the underlying machine,
    augmented with extra mechanisms implemented by the operating
    system.
  







	What if we implemented a different abstraction for a process,
  which looks exactly like the underlying hardware:
  	The complete instruction set of the underlying machine
  

	Physical memory
  

	Memory management unit (page tables, etc.)
  

	I/O devices
  

	Traps and interrupts
  

	No predefined system calls
  







	This abstraction is called a virtual machine:
  	To a "process", it appears that it has its own private
    machine.
  

	Multiple "processes" can share a single machine, each
    thinking it's running on its own private machine.
  

	The operating system for this is called a
    virtual machine monitor.
  

	Can run a complete operating system inside a virtual
    machine: called a guest operating system.
  

	Each virtual machine can run a different guest operating
    system.
  







Implementing virtual machine monitors

	One approach: simulation
  	Write program that simulates instruction execution, like
    Bochs.
  

	Simulate memory, I/O devices also.
  

	Examples:
    	Use one large file to hold contents of a "disk"
    

	Simulate kernel/user bit, interrupt vectors, etc.
    



  

	Problem: too slow
    	100x slowdown for CPU/memory
    

	2x slowdown for I/O
    



  







	Better approach: use CPU to simulate itself.
  	Run virtual machine guest OS like a user process (in
    unprivileged mode).
  

	Most instructions executed at the full speed of
    the CPU.
  

	Anything "unusual" causes a trap into the virtual
    machine monitor, which simulates the appropriate
    behavior.
  







	Special cases:
  	Privileged instructions (e.g. HALT):
    	Since virtual machine runs in user mode, these
      cause "illegal instruction" traps into VMM.
    

	VMM catches these traps, simulates appropriate
      behavior.
    



  

	Kernel calls in guest OS:
    	User program running under guest OS issues kernel
      call instruction.
    

	Traps always go to VMM (not guest OS).
    

	VMM analyzes trapping instruction, simulates
      system call to guest OS:
      	Move trap info from VMM stack to stack
        of guest OS
      

	Find interrupt vector in memory of guest OS
      

	Switch simulated mode to "privileged"
      

	Return out of VMM to interrupt handler in guest OS.
      



    

	When guest OS returns from system call, this traps
      to VMM also (illegal instruction in user mode);
      VMM simulates return to guest user level.
    



  

	I/O devices:
    	Guest OS writes to I/O device register
    

	VMM has arranged for the containing page to fault
    

	VMM takes page fault, recognizes address as I/O device
      register
    

	VMM simulates instruction and its impact on the
      simulated I/O device
    

	When actual I/O operation completes, VMM simulates
      interrupt into the guest OS
    

	For better performance, write new device drivers that
      call directly into the VMM (using system calls).
    



  

	Virtual memory: VMM uses page tables to simulate virtual
    memory mapping in guest OS.
    	Three levels of memory:
      	Guest virtual address space
      

	Guest physical address space
      

	VMM physical memory
      



    

	Guest OS creates page tables, but these aren't used
      by actual hardware.
    

	VMM manages the real page tables, one set per virtual machine.
      These are called shadow page tables.
    

	VMM manages physical memory
    

	Initially all (shadow) page table entries have present 0.
    

	When page fault occurs, VMM finds physical page and corresponding
      guest page table entry.  Two possibilities:
      	present is 0 in the guest page table entry:  this fault
        must be reflected to the guest OS:
        	Simulate page fault for guest OS (similar to kernel call).
        

	Guest OS invokes I/O to load page into guest physical
          memory.
        

	Guest OS sets present to 1 in guest page table entry.
        

	Guest OS returns from page fault, which traps into VMM again
          (like returning from kernel call).
        

	VMM sees that present is 1 in guest page table entry,
          finds corresponding physical page, creates entry in shadow
          page table.
        

	VMM returns from the original page fault, causing guest application
          to retry the reference.
        



      

	present is 1 in the guest page table entry: guest OS thinks
        page is present in guest physical memory (but VMM may have swapped it out
        anyway).
        	VMM locates the corresponding physical page, loading it in memory
          if needed.
        

	VMM creates entry in shadow page table.
        

	VMM returns from the original page fault, causing guest application
          to retry the reference.
        

	In this situation the page fault is invisible to the guest OS.
        



      



    

	If guest OS modifies its page tables, causes page fault,
      VMM updates shadow page tables to match.
    



  







	Potential problem:
  	VMM must trap any behavior that requires simulation.
    	Special memory locations? Use page faults.
    

	Special instructions? Must trap
    



  

	Pathological case:
    	Instruction that is valid in both user mode and
      kernel mode
    

	But, behaves differently in user mode
    

	Example: "read processor status" (where kernel/user
      mode bit is in the status word)
    



  

	Virtualizable: a machine with no such special
    cases
  

	Until recently, very few machines were completely
    virtualizable (e.g. x86 wasn't until recently)
  







	Dynamic binary translation: solution for machines
  that are not virtualizable:
  	VMM analyzes all code executed in virtual machine
  

	Replaces non-virtualizable instructions with traps
  

	Very tricky: how to find all code?
  







	In practice, how much overhead do VMMs add?
  	CPU-bound applications: < 5%
  

	I/O-bound applications: ~30%
  







History/usage of virtual machines

	Invented by IBM in late 1960's


	Original usage:
  	One VM per user
  

	Each user ran a different guest OS
  

	Single shared hardware platform
  





	Interest died out in the 1980's and 1990's:
  	Each user has a private machine
  







	Reinvented, made practical by Mendel Rosenblum and graduate
  students at Stanford, formed VMware.




	Software development:
  	Need to test software on different OS versions:
  

	Keep one VM for each OS version.
  

	Use a single machine to test all versions.
  







	Datacenters:
  	Problem: many machines, each running a single application
    	Need separate machines for isolation:
      application crash could bring down the entire machine
    

	Most applications only need a fraction of machine's
      resources.
    



  

	Solution: datacenter consolidation
    	One VM per application
    

	Run several VM's on a single machine
    

	Reduce # of machines
    



  







	Encapsulation:
  	VMM can encapsulate entire state of a VM in a file.
  

	Can save, continue, restore old state.
  

	Datacenter example:
    	Can migrate VM's between machines to balance load
    



  

	Software development:
    	Tests may corrupt the state of the machine
    

	Solution:
      	Run tests in a VM
      

	Always start tests from a saved VM configuration
      

	Discard VM state after tests
      

	Results: reproducible tests
      



    



  







	Many other uses:
  	Run MacOS and Windows on the same machine
  

	Security: can monitor all communication into and out
    of VM.  












    Technology and Operating Systems


  Lecture Notes for CS 140

  Spring 2014

  John Ousterhout




	Many of the basic ideas in operating systems were developed
  30-40 years ago, when technology was very different.  Are these
  ideas still relevant today and in the future?




	Technology changes over the last 25 years:
  	CPU speeds: 15 MHz -> 2.5 GHz (167x)
  

	Memory size: 8 MBytes -> 4 GBytes (500x)
  

	Disk capacity: 30 MBytes -> 500 GBytes (16667x)
  

	Disk transfer rate: 2 MBytes/sec -> 100 MBytes/sec (50x)
  

	Network speed: 10 Mbits/sec -> 1 Gbit/sec (100x)
  







	The role of paging:
  	When originally proposed (1960's):
    	Disk speed: 80ms latency, 250 KBytes/sec transfer
    

	Memory size: 256 KBytes (64 pages)
    

	Time to replace all of memory:
      	6.4 sec (random access)
      

	1 sec (sequential)
      



    



  

	Today:
    	Disk speed: 10ms latency, 100 MBytes/sec transfer
    

	Memory size: 4 GB (1,000,000 pages)
    

	Time to replace all of memory:
      	10,000 sec (3 hours) (random access)
      

	40 sec (sequential)
      



    



  

	Can't afford to page something out unless it's going
    to be idle for a long time.
  

	Does paging make sense anymore?
    	Mechanism for incremental loading of processes?
      	Why not just read the entire binary at once?
      

	10 MB of binary takes .1 sec.
      



    

	Safety valve for temporary emergencies?
      	Perhaps, but not much space between "system not
        paging at all" and "system totally unusable".
      



    



  

	Virtual memory still quite useful:
    	Simplifies physical memory management
    

	Allows controlled sharing
    

	Memory-mapped files
    

	Virtual machines
    



  

	Page size is way too small:
    	Random accesses for replacement too expensive.
    

	Not enough TLB coverage.
    



  







	Disks:
  	Capacity has increased faster than access time.
  

	Can't actually access all the information you can store
    on disk!
  

	Frequently accessed information must move elsewhere
  







	TLBs:
  	Haven't kept up with memory sizes
  

	64 entries -> 256 KBytes coverage
  

	In mid-80's this was a substantial fraction of memory
    (8 Mbytes).
  

	Today TLBs can only cover a tiny fraction of memory
  

	Some TLBs support larger page sizes:
    	1 MByte
    

	1 GByte
    

	But, this complicates kernel memory management.
    



  







	Multi-cores
  	For many years, chip technology improvements allowed processor
    clock rates to improve rapidly.
  

	Unfortunately, faster clock rates mean more power dissipation;
    power limitations now limit improvements in clock rate.
  

	Chip designers are now using technology to put more processors
    (cores) on a chip.
  

	Consequences:
    	All OSes must now be multiprocessor OSes
    

	Not clear how to utilize all of these cores: app developers
      must now write parallel programs?
    

	Writing parallel programs is very hard
    



  







	Current hot areas for OS development:
  	Very small (devices)
    	Android, iPhone, etc.
    



  

	Very large (datacenters)
    	Coordinating thousands of machines working together
    



  












