
10.34 Numerical Methods Applied to Chemical Engineering

MATLAB Tutorial

Kenneth Beers

Department of Chemical Engineering

Massachusetts Institute of Technology

August 1, 2001

The Nature of Scientific Computing

This course focuses on the use of computers to solve problems in chemical engineering. We
will learn how to solve the partial differential equations that describe momentum, energy, and
mass transfer, integrate the ordinary differential equations that model a chemical reactor, and
simulate the dynamics and predict the minimum-energy structures of molecules. These
problems are expressed in terms of mathematical operations such as partial differentiation and
integration that computers do not understand. All that they know how to do is store numbers
at locations in their memory and perform simple operations on them like addition, subtraction,
multiplication, division, and exponentiation. Somehow, we need to translate our higher-level
mathematical description of these problems into a sequence of these basic operations.

It is logical to develop simulation algorithms that decompose each problem into sets of linear
equations of the following form.

a11* x1+ a12*x2 + ... + a1n*xn = b1

a21*x1 + a22*x2 + ... + a2n*xn = b2

.

.

.

an1*x1 + an2*x2 + ... + ann*xn = bn

A computer understands how to do the operations found in this system (multiplication and
addition), and we can represent this set of equations very generally by the matrix equation Ax
= b, where A={aij} is the matrix of coefficients on the left hand side, x is the solution vector,
and b is the vector of the coefficients on the right hand side. This general representation
allows us to pass along, in a consistent language, our system-specific linear equation sets to
pre written algorithms that have been optimized to solve them very efficiently. This saves us
the effort of coding a linear solver every time we write a new program. This method of
relegating repetitive tasks to re-usable, pre written subroutines makes the idea of using a
computer to solve complex technical problems feasible. It also allows us to take advantage of
the decades of applied mathematics research that have gone into developing efficient
numerical algorithms. Scientific programs typically involve problem-specific sections that
perform the parameter input and results output, phrase the problem into a series of linear
algebraic systems, and then the program spends most of its execution time solving these
linear systems. This course focuses primarily on understanding the theory and concepts
fundamental to scientific computing, but we also need to know how to translate these
concepts into working programs and to combine our problem-specific code with pre written
routines that efficiently perform the desired numerical operations.
So, how do we instruct the computer to solve our specific problem? At a basic level, all a
computer does is follow instructions that tell it to retrieve numbers from specified memory

locations, perform some simple algebraic operations on them, and store them in some
(possibly new) places in memory. Rather than force computer users to deal with details like
memory addresses or the passing of data from memory to the CPU, computer scientists
develop for each type of computer a program called a compiler that translates ãhuman-levelä
code into the set of detailed machine-level instructions (contained in an executable file) that
the computer will perform to accomplish the task. Using a compiler, it is easy to write code
that tells a computer to do the following :

1. Find a space in memory to store a real number x
2. Find a space in memory to store a real number y
3. Find a space in memory to store a real number z
4. Set the value of x to 2
5. Set the value of y to 4
6.	 Set the value stored at the location z to equal 2*x + 3*y, where the symbol * denotes

multiplication

In FORTRAN, the first modern scientific programming language that, in modified form -
commonly FORTRAN 77, is still in wide use today, you can accomplish these tasks by writing
the code :

REAL x, y, z

x = 2

y = 4

z = 2*x + 3*y

By itself, however, this code performs the desired task, but does not provide any means for
the user to view the results. A full FORTRAN program to perform the task and write the result
to the screen is :

IMPLICIT NONE

REAL x, y, z

x = 2

y = 4

z = 2*x + 3*y

PRINT *, 'z = ',z

END

When this code is compiled with a FORTRAN 77 compiler, the output to the screen from
running the executable is : z = 16.0000. Compiled programming languages allow only the
simple output of text, numbers, and binary data, so any graphing of results must be
performed by a separate program. In practice, this requirement of writing the code, storing
the output in a file with the appropriate format, and reading this file into a separate graphing
or analysis program leads one to use for small projects "canned" software such as EXCEL that
are ill-suited for technical computing; after all, EXCEL is intended for business spreadsheets!

Other compiled programming languages exist, most being more powerful than FORTRAN 77, a
legacy of the past that is retained mostly due to the existence of highly efficient numerical
routines written in the language. While FORTRAN 77 lacks the functionality of more modern
languages, in terms of execution speed it usually has the advantage. In the 80's and 90's, C
and C++ became highly popular within the broader computer science community because
they allow one to organize and structure data more conveniently and to write highly-modular
code for large programs. C and C++ have never gained the same level of popularity within
the scientific computing community, mainly because their implementation has been focused
more towards robustness and generality with less regard for execution speed. Many scientific
programs have comparatively simple structures so that execution speed is the primary
concern. This situation is changing somewhat today; however, the introduction of FORTRAN
90 and its update FORTRAN 95 have given the FORTRAN language a new lease on life.

FORTRAN 90/95 includes many of the data structuring capabilities of C/C++, but was written
with a technical audience in mind. It is the language of choice for parallel scientific
computing, in which tasks are parceled during execution to one or more CPU's. With the
growing popularity of dual processor workstations and BEOWOLF-type clusters, FORTRAN
90/95 and variants such as High Performance Fortran remain my personal compiled language
of choice for heavy-duty scientific computing.

Then why does this course use MATLAB instead of FORTRAN 90? FORTRAN 90 is my choice
among compiled languages; however, for ease of use, MATLAB, an interpreted language, is
better for small to medium jobs. In compiled languages, the "human-level" commands are
converted directly to machine instructions that are stored in an executable file. Run-time
execution of the commands does not take place until all of the compilation process has been
completed (run-time debugging not excepted). In a compiled language, one needs to learn
the commands for the input/output of data (from the keyboard, to the screen, to/from files)
and for naming variables and allocating space for them in memory (like the command real in
FORTRAN). Compiled languages are developed with the principle that the language should
have a minimum amount of commands and syntax, so that any task that may be
accomplished by a sequence of more basic instructions is not incorporated into the language
definition but is rather left to a subroutine. Subroutine libraries have been written by the
applied mathematics community to perform common numerical operations (e.g. BLAS and
LAPACK), but to access them you need to link your code to them through operating system-
specific commands. While not conceptually difficult, the overhead is not insignificant for small
projects.

In an interpreted language, the developers of the language have already written and compiled
a master program, in our case the program MATLAB, that will interpret our commands to the
computer ãon-the-flyä. When we run MATLAB, we are offered a window in which we can type
commands to perform mathematical calculations. This code is then interpreted line-by-line
(by machine-level instructions) into other machine-level instructions that actually carry out the
computations that we have requested. Because MATLAB has to interpret each command one-
by-one, we will require more machine-level instructions to perform a certain job that we would
with a compiled language. For demanding numerical simulations, where we need to use the
resources of a computer as efficiently as possible, compiled languages are therefore superior.

Using an interpreted language has the benefit; however, that we do not need to compile the
code before-hand. We can therefore type in our commands one-by-one and watch them be
performed (this is very helpful for finding errors). We do not need to link our code to
subroutine libraries, since MATLAB, being pre compiled, has all the machine-level instructions
it needs readily at-hand. FORTRAN 77/90/95, C, and C++ cannot make graphs, so if we want
to plot the results from our program, we need to write data to an output file that we use as
input to yet another graphics program. By contrast, the MATLAB programmers have already
provided graphics routines and compiled them along with the MATLAB code interpreter, so we
do not need this additional data transfer step. An interpreted language can provide efficient
and complex memory management utilities that, by operating behind a curtain, shield the
programmer from having to learn their complicated syntax of usage. New variables can
therefore be created with dynamic memory allocation without requiring the user to understand
pointers (variables that point to memory locations), as is required in most compiled
languages. Finally, since MATLAB was not developed with the principle of minimum command
syntax, it contains a rich collection of integrated numerical operations. Some of these routines
are designed to solve linear problems very efficiently. Others operate at a higher level, for
example taking as input a function f(x) and returning the point x0 that has f(x0)=0, or
integrating the ordinary differential equation dx/dt = f(x) starting from a value of x at t=0.

For these reasons, one can code more efficiently in interpreted languages than in compiled
languages (McConnell, Steve, Code Complete, Microsoft Press, 1993 and Jones, Capers,
Programming Productivity, McGraw-Hill, 1986), at the cost of slower execution due to the
extra interpreting step for each command. But, we have noted before that execution speed is
an important consideration in scientific computing, so is this acceptable? MATLAB has several
features to alleviate this situation. Whenever MATLAB first runs a subroutine, it saves the

results of the interpreting process so that successive calls do not have to repeat this work.
Additionally, one can reduce the interpretation overhead by minimizing the number of
command lines, a practice which incidentally leads to good programming style for FORTRAN
90/95. As an example, let us take the operation of multiplying a M by N matrix A with an N by
P matrix B to form a M by P matrix C. In FORTRAN 77 we would first have to declare and
allocate memory to store the A, B, and C matrices (as well as the counter integers i_row,
i_col, and i_mid), and then, perhaps in a subroutine, execute the code :

DO i_row = 1, M
DO i_col = 1, N

C(i_row,i_col) = 0.0
DO i_mid = 1, P

C(i_row,i_col) = C(i_row,i_col) + A(i_row,i_mid)*B(i_mid,i_col)
ENDDO

ENDDO
ENDDO

If we simply translated each line, one-by-one, from FORTRAN 77 to MATLAB, we would have
the code segment :

for i_row = 1:M
for i_col = 1:N

C(i_row,i_col) = 0;
for i_mid = 1:P

C(i_row,i_col) = C(i_row,i_col) + A(i_row,i_mid)*B(i_mid,i_col);
end

end
end

This code performs the task in exactly the same manner as FORTRAN 77, but now each line
must be interpreted one-by-one, adding a considerable overhead. It would seem that we
would be better off with FORTRAN 77; however, in MATLAB the language is extended to allow
matrix operations so that we could accomplish the same task with the single command : C =
A*B. We would not even have to pre allocate memory to store C, this would be automatically
handled by MATLAB. The MATLAB approach is greatly to be preferred, and not only because it
accomplishes the same task with less typing (and chance for error!). The FORTRAN 77 code,
relying on basic scalar addition and multiplication operations, is not very easy to parallelize. It
instructs the computer to perform the matrix multiplication with an exact order of events that
the computer is constrained to follow. The single command C = A*B requests the same task,
but leaves the computer free to decide how to accomplish it in the most efficient manner, for
example, by splitting the problem across multiple processors. One of the main advantages of
FORTRAN 90/95 over FORTRAN 77 is that it also allows these whole array operations (the
corresponding FORTRAN 90/95 code is C = MATMUL(A,B)), so that writing fast MATLAB code
rewards the same programming style as does FORTRAN 90/95 for producing code that is easy
to parallelize.

MATLAB also comes with an optional compiler that converts MATLAB code to C or C++ and
that can compile this code to produce a stand-alone executable. We therefore can enjoy the
ease of programming in an interpreted language, and then once the program development is
complete, we can take advantage of the efficient execution and portability offered by compiled
languages. Alternatively, given the tools of the compiler, we can combine MATLAB code and
numerical routines with FORTRAN or C/C++ code. Given these advantages, MATLAB seems a
strong choice of language for an introductory course in scientific computing.

MATLAB Tutorial Table of Contents

This tutorial is presented with a separate webpage for each chapter. The commands listed in
the tutorial are explained with comment lines starting with the percentage sign %. These

commands may either be typed or pasted one-by-one into an interactive MATLAB window.
Further information about a specific command can be obtained by typing help followed by the
name of the command. Typing helpwin brings up a general help utility, and helpdesk provides
links to extensive on-line documentation. For further details, consult the texts found in the
Recommended Reading section of the 10.34 homepage.

MATLAB Tutorial

Chapter 1. Basic MATLAB commands
1.1 Basic scalar operations

First, let's talk about how we add comments (such as this line) to a program. Comments are
lines of text that we want to add to explain what we are doing, so that if we or others read
this code later, it will be easier to figure out what the code is doing. In a MATLAB file, if a
percentage sign, , appears in a row of text, all of the text following the sign is a comment that
MATLAB does not try to interpret as a command. First, let us write a message to the screen to
say that we are beginning to run section 1.1.

The command disp('string') displays the text string to the screen.
disp('Beginning section 1.1 ...')

Next, we set a variable equal to one.
x=1

This command both allocates a space in memory for the variable x, if x has not already been

declared, and then stores the value of 1 in the memory location associated with this variable.

It also writes to the screen "x = 1". Usually, we do not want to clutter the screen with output

such as this, so we can make the command "invisible" by ending it with a semi-colon. As an

example, let us use the following commands to "invisibly" change the value of x to 2 and then

to write out the results to the screen. x=2; this changes the value of x but does not write to

the screen disp('We have changed the value of x.');

Then, we display the value of x by typing "x" without a semi-colon.

Now, let's see how to declare other variables.

y = 2*x; This initializes the value of y to twice that of x

x = x + 1; This increases the value of x by 1.

z = 2*x; This declares another variable z.

z does not equal y because the value of x changed between the

times when we declared each variable.

difference = z - y

Next, we want to see the list of variables that are stored in memory. To do this, we use the
command "who".
who;

We can get more information by using "whos".
whos;

These commands can be used also to get information about only certain variables.
whos z difference;

Let us say we want to get rid of the variable "difference".
We do this using the command "clear".
clear difference;
who;

Next, we want to get rid of the variables x and y.
Again, we use the command "clear".

x

clear x y;
who;

It is generally good programming style to write only one command per line; however, MATLAB
does let you put multiple commands on a line.
x = 5; y = 13; w = 2*x + y; who;

More commonly one wishes to continue a single command across multiple lines due to the
length of the syntax. This can be accomplished by using three dots.
z = 2*x + ...
y

Finally, when using clear we can get rid of all of the variables at once with the command "clear

all".

clear all;

who; It does not print out anything because there are no variables.

1.2. Basic vector operations

The simplest, but NOT RECOMMENDED, way to declare a variable is by entering the
components one-by-one.
x(1) = 1;

x(2) = 4;

x(3) = 6;

x display contents of x

It is generally better to declare a vector all at once, because then MATLAB knows how much
memory it needs to allocate from the start. For large vectors, this is much more efficient.
y = [1 4 6] does same job as code above

Note that this declares a row vector. To get a column vector, we can either use the transpose
(adjoint for complex x) operator xT = x'; takes the transpose of the real row vector x or, we
can make it a column vector right from the beginning
yT = [1; 4; 6];

To see the difference in the dimensions of a row vs. a column vector, use the command "size"
that returns the dimensions of a vector or matrix.
size(xT)
size(y)
size(yT)
The command length works on both row and column vectors.
length(x), length(xT)

Adding or subtracting two vectors is similar to scalars.
z = x + y
w = xT - yT

Multiplying a vector by a scalar is equally straight-forward.
v = 2*x
c = 4;
v2 = c*x

We can also use the . operator to tell MATLAB to perform a given operation on an element-by-
element basis. Let us say we want to set each value of y such that y(i) = 2*x(i) + z(i)^2 + 1.
We can do this using the code
y = 2.*x + z.^2 + 1

The dot and cross products of two vectors are calculated by
dot(x,y)
z=cross(x,y)

We can define a vector also using the notation [a : d : b]. This produces a vector a, a + d, a +
2*d, a + 3*d, ... until we get to an integer n where a + n*d > b. Look at the two examples.
v = [0 : 0.1: 0.5];
v2 = [0 : 0.1: 0.49];

If we want a vector with N evenly spaced points from a to b, we use the command
"linspace(a,b,N)".
v2 = linspace(0,1,5)

Sometimes, we will use a vector later in the program, but want to initialize it at the beginning
to zero and by so doing allocate a block of memory to store it. This is done by
v = linspace(0,0,100)'; allocate memory for column vectors of zero

Finally, we can use integer counting variables to access one or more elements of a matrix.
v2 = [0 : 0.01 : 100];
c=v2(49)
w = v2(65:70)

clear all

1.3. Basic matrix operations

We can declare a matrix and give it a value directly.
A = [1 2 3; 4 5 6; 7 8 9]
We can use commas to separate the elements on a line as well.
B = [1,2,3; 4,5,6; 7,8,9]

We can build a matrix from row vectors
row1 = [1 2 3]; row2 = [4 5 6]; row3 = [7 8 9];
C = [row1; row2; row3]

or from column vectors.
column1 = [1; 4; 7];

column2 = [2; 5; 8];

column3 = [3; 6; 9];

D = [column1 column2 column3]

Several matrices can be joined to create a larger one.
M = [A B; C D]

We can extract row or column vectors from a matrix.
row1 = C(1,:)
column2 = D(:,2)

Or, we make a vector or another matrix by extracting a subset of the elements.
v = M(1:4,1)
w = M(2,2:4)
C = M(1:4,2:5)

The transpose of a real matrix is obtained using the ' operator
D = A'
C, C'

For a complex matrix, ' returns the adjoint (transpose and conjugate. The conjugation
operation is removed by using the "transpose only" command .'
E = D;

E(1,2) = E(1,2) + 3*i;

E(2,1) = E(2,1) - 2*i;

E', E.'

The "who" command lists the matrices in addition to scalar and vector variables.
who

If in addition we want to see the dimensions of each variable, we use the "whos" command.
This tells use the size of each variable and the amount of memory storage that each requires.
whos

The command "size" tells us the size of a matrix.
M = [1 2 3 4; 5 6 7 8; 9 10 11 12];

size(M)

num_rows = size(M,1)

num_columns = size(M,2)

Adding, subtracting, and multiplying matrices is straight-forward.
D = A + B
D = A - B
D = A*B

We can declare matrices in a number of ways.

We can create a matrix with m rows and n columns, all containing zeros by
m=3; n=4;
C = zeros(m,n)

If we want to make an N by N square matrix, we only need to use one index.
C = zeros(n)

We create an Identity matrix, where all elements are zero except for those on the principle
diagonal, which are one.
D = eye(5)

Finally, we can use the . operator to perform element-by-element operations just as we did for
vectors. The following command creates a matrix C, such that C(i,j) = 2*A(i,j) + (B(i,j))^2.
C = 2.*A + B.^2

Matrices are cleared from memory along with all other variables.
clear A B
whos
clear all
who

In MATLAB, when we print out the results, we often want to explain the output with text. For
this, character strings are useful. In MATLAB, a character string is written with single
quotation marks on each end.
course_name = 'Numerical Methods Applied to Chemical Engineering'

To put an apostrophe inside a string, we repeat it twice to avoid confusing it with the '
operator ending the string.
phrase2 = 'Course''s name is : ';
disp(phrase2), disp(course_name)

We can also combine strings in a similar manner to working with vectors and matrices of
numbers.
word1 = 'Numerical'; word2 = 'Methods'; word3='Course';
phrase3 = [word1, word2, word3]

We see that this does not include spaces, so we use instead
phrase4 = [word1, ' ', word2, ' ', word3]

We can convert an integer to a string using the command "int2str".
icount = 1234;

phrase5 = ['Value of icount = ', int2str(icount)]

Likewise, we can convert a floating point number of a string of k digits using
"num2str(number,k)".
Temp = 29.34372820092983674;

phrase6 = ['Temperature = ',num2str(Temp,5)]

phrase7 = ['Temperature = ',num2str(Temp,10)]

clear all

1.5. Basic mathematical operations

EXPONENTIATION COMMANDS

We have already seen how to add, subtract, and multiply numbers. We have also used on

occasion the ^ operator where x^y raises x to the power y.

2^3, 2^3.3, 2.3^3.3, 2.3^(1/3.3), 2.3^(-1/3.3)

The square root operation is given its own name.
sqrt(27), sqrt(37.4)

Operators for use in analyzing the signs of numbers include

abs(2.3), abs(-2.3) returns absolute value of a number

sign(2.3), sign(-2.3), sign(0) returns sign of a number

The commands for taking exponents and logs are

a=exp(2.3) computes e^x

log(a) computer the natural log

log10(a) computes the base 10 log

TRIGONOMERTRY COMMANDS

The numerical value of pi can be invoked directly

pi, 2*pi

NOTE THAT MATLAB CALCULATES ANGLES IN RADIANS

1.4. Using character strings 1.4. Using character strings

1.4. Using character strings

The standard trigonometric functions are
sin(0), sin(pi/2), sin(pi), sin(3*pi/2)
cos(0), cos(pi/2), cos(pi), cos(3*pi/2)
tan(pi/4), cot(pi/4), sec(pi/4), csc(pi/4)

Their inverses are
asin(1),acos(1),atan(1),acot(1),asec(1),acsc(1)

The hyperbolic functions are
sinh(pi/4), cosh(pi/4), tanh(pi/4), coth(pi/4)
sech(pi/4), csch(pi/4)
with inverses
asinh(0.5), acosh(0.5), atanh(0.5), acoth(0.5)
asech(0.5), acsch(0.5)

These operators can be used with vectors in the following manner.
x=linspace(0,pi,6) create vector of x values between 0 and pi
y=sin(x) each y(i) = sin(x(i))

ROUNDING OPERATIONS

round(x) : returns integer closest to real number x
round(1.1), round(1.8)

fix(x) : returns integer closest to x in direction towards 0
fix(-3.1), fix(-2.9), fix(2.9), fix(3.1)

floor(x) : returns closest integer less than or equal to x
floor(-3.1), floor(-2.9), floor(2.9), floor(3.1)

ceil(x) : returns closest integer greater than or equal to x
ceil(-3.1), ceil(-2.9), ceil(2.9), ceil(3.1)

rem(x,y) : returns the remainder of the integer division x/y
rem(3,2), rem(898,37), rem(27,3)

mod(x,y) : calculates the modulus, the remainder from real division
mod(28.36,2.3)

COMPLEX NUMBERS

A complex number is declared using i (or j) for the square root of -1.

z = 3.1-4.3*i

conj(z) returns conjugate, conj(a+ib) = a - ib

real(z) returns real part of z, real(a+ib) = a

imag(z) returns imaginary part of z, imag(a+ib) = b

abs(z) returns absolute value (modulus), a^2+b^2

angle(z) returns phase angle theta with z = r*exp(i*theta)

abs(z)*exp(i*angle(z)) returns z

For complex matrices, the operator ' calculates the adjoint matrix, i.e. it transposes the matrix

and takes the conjugate of each element

A = [1+i, 2+2*i; 3+3*i, 4+4*i]

A' takes conjugate transpose (adjoint operation)

A.' takes transpose without conjugating elements

COORDINATE TRANSFORMATIONS

2-D polar coordinates (theta,r) are related to Cartesian coordinates by
x=1; y=1;

[theta,r] = cart2pol(x,y)

[x,y] = pol2cart(theta,r)

3-D spherical coordinates (alpha,theta,r) are obtained from Cartesian coordinates by
x=1; y=1; z=1;

[alpha,theta,r] = cart2sph(x,y,z)

[x,y,z] = sph2cart(alpha,theta,r)

clear all

MATLAB Tutorial

Chapter 2. Programming Structures
2.1. for loops

Programs for numerical simulation often involve repeating a set of commands many times. In

MATLAB, we instruct the computer to repeat a block of code by using a for loop. A simple

example of a for loop is for i=1:10 repeats code for i=1,2,...,10

i print out the value of the loop counter end This ends the section of code that is repeated.

The counter can be incremented by values other than +1.

for i=1:2:10
disp(i);
end

This example shows that the counter variables takes on the values 1, 3, 5, 7, 9. After 9, the
code next tries i=11, but as 11 is greater than 10 (is not less than or equal to 10) it does not
perform the code for this iteration, and instead exits the for loop.
for i=10:-1:1

disp(i);

end

As the value of the counter integer is changed from one iteration to the next, a common use

of for blocks is to perform a given set of operations on different elements of a vector or a

matrix. This use of for loops is demonstrated in the example below.

Complex structures can be made by nesting for loops within one another. The nested for loop

structure below multiplies an (m x p) matrix with a (p x n) matrix.

A = [1 2 3 4; 11 12 13 14; 21 22 23 24]; A is 3 x 4 matrix

B = [1 2 3; 11 12 13; 21 22 23; 31 32 33]; B is 4 x 3 matrix

im = size(A,1); m is number of rows of A

ip = size(A,2); p is number of columns of A

in = size(B,2); n is number of columns of B

C = zeros(im,in); allocate memory for m x n matrix containing 0's

now we multiply the matrices

for i=1:im iterate over each row of C

for j=1:in iterate over each element in row

for k=1:ip sum over elements to calculate C(i,j)

C(i,j) = C(i,j) + A(i,k)*B(k,j);

end

end

end

C print out results of code

A*B MATLAB's routine does the same thing

clear all

2.2. if, case structures and relational operators

In writing programs, we often need to make decisions based on the values of variables in
memory. This requires logical operators, for example to discern when two numbers are equal.
Common relational operators in MATLAB are : eq(a,b) returns 1 if a is equal to b, otherwise it
returns 0

eq(1,2), eq(1,1)
eq(8.7,8.7), eq(8.7,8.71)

When used with vectors or matrices, eq(a,b) returns an array of the same size as a and b with
elements of zero where a is not equal b and ones where a equals b. This usage is
demonstrated for the examples below.
u = [1 2 3]; w = [4 5 6]; v = [1 2 3]; z = [1 4 3];

eq(u,w), eq(u,v), eq(u,z)

A = [1 2 3; 4 5 6; 7 8 9]; B = [1 4 3; 5 5 6; 7 9 9];

eq(A,B)

this operation can also be called using ==
(1 == 2), (1 == 1), (8.7 == 8.7), (8.7 == 8.71)

ne(a,b) returns 1 if a is not equal to b, otherwise it returns 0
ne(1,2), ne(1,1)
ne(8.7,8.7), ne(8.7,8.71)
ne(u,w), ne(u,v), ne(u,z)
ne(A,B)
another way of calling this operation is to use ~=
(1 ~= 2), (1 ~= 1), (8.7 ~= 8.7), (8.7 ~= 8.71)

lt(a,b) returns 1 if a is less than b, otherwise it returns 0
lt(1,2), lt(2,1), lt(1,1)

lt(8.7,8.71), lt(8.71,8.7), lt(8.7,8.7)

another way of performing this operation is to use <
(1 < 2), (1 < 1), (2 < 1)

le(a,b) returns 1 if a is less than or equal to b, otherwise 0
le(1,2), le(2,1), le(1,1)

le(8.7,8.71), le(8.71,8.7), le(8.7,8.7)

this operation is also performed using <=
(1 <= 1), (1 <= 2), (2 <= 1)

gt(a,b) returns 1 if a is greater than b, otherwise 0
gt(1,2), gt(2,1), gt(1,1)

gt(8.7,8.71), gt(8.71,8.7), gt(8.7,8.7)

this operation is also performed using >
(1 > 2), (1 > 1), (2 > 1)

ge(a,b) returns 1 if a is greater than or equal to b, otherwise 0
ge(1,2), ge(2,1), ge(1,1)
ge(8.7,8.71), ge(8.71,8.7), ge(8.7,8.7)
this operation is also performed using >=
(1 >= 1), (1 >= 2), (2 >= 1)

These operations can be combined to perform more complex logical tests.

(logic1)&(logic2) returns 0 unless both logic1 and logic2 are not equal to zero
((1==1)&(8.7==8.7))

((1==2)&(8.7==8.7))

((1>2)&(8.71>8.7))

((1<2)&(8.7<8.71))

((1>2)&(8.7>8.71))

i1 = 1; i2 = 0; i3=-1;

(i1 & i1), (i1 & i2), (i2 & i1), (i2 & i2), (i1 & i3)

((1==1)&(8.7==8.7)&(1<2))

((1==1)&(8.7==8.7)&(1>2))

This operation can be extended to multiple operations more easily by using the command
all(vector1), that returns 1 if all of the elements of vector1 are nonzero, otherwise it returns 0
all([i1 i2 i3]), all([i1 i1 i3])

or(logic1,logic2) returns 1 if one of either logic1 or logic2 is not equal to zero or if they are
both unequal to zero.
or(i1,i2), or(i1,i3), or(i2,i2)
This operation can be extended to more than two logical variables using the command
any(vector1), that returns 1 if any of the elements of vector1 are nonzero, otherwise it returns
0.

any([i1 i2 i3]), any([i2 i2 i2]), any([i1 i2 i2 i2]),

Used less often in scientific computing is the exclusive or construction xor(logic1,logic2) that
returns 1 only if one of logic1 or logic2 is nonzero, but not both.
xor(i1,i1), xor(i2,i2), xor(i1,i2)

We use these relational operations to decide whether to perform a block of code using an if
structure that has the general form.
logictest1 = 0; logictest2 = 1; logictest3 = 0;

if(logictest1)

disp('Executing block 1');

elseif(logictest2)

disp('Executing block 2');

elseif(logictest3)

disp('Executing block 3');

else

disp('Execute end block');

end

The last block of code is executed if none of the ones before it has been performed.
logictest1 = 0; logictest2 = 0; logictest3 = 0;

if(logictest1)

disp('Executing block 1');

elseif(logictest2)

disp('Executing block 2');

elseif(logictest3)

disp('Executing block 3');

else

disp('Execute end block');

end

An if loop will not execute more than one block of code. If more than one logictest variable is
not equal to zero, then the first one it encounters is the one it performs.
logictest1 = 0; logictest2 = 1; logictest3 = 1;

if(logictest1)

disp('Executing block 1');

elseif(logictest2)

disp('Executing block 2');

elseif(logictest3)

disp('Executing block 3');

else

disp('Execute end block');

end

If structures are often used in conjunction with for loops. For example, the following routine
adds the components of a vector to the principal diagonal of a matrix that is the sum of two
matrices A and B.

A = [1 2 3; 4 5 6; 7 8 9];

B = [11 12 13; 14 15 16; 17 18 19];

u = [10 10 10];

C=zeros(3);

for i=1:3

for j=1:3

if(i==j)

C(i,j) = A(i,j) + B(i,j) + u(i);

else

C(i,j) = A(i,j) + B(i,j);

end

end

end

As an alternative to if blocks, case structures can be used to chose among various
alternatives.
for i=1:4

switch i;

case {1}

disp('i is one');

case {2}

disp('i is two');

case {3}

disp('i is three');

otherwise

disp('i is not one, two, or three');

end

end

clear all

2.3. while loops and control statements

A WHILE loops performs a block of code as long as the logical test expression returns a non-
zero value.
error = 283.4;

tol = 1;

factor = 0.9;

while (error > tol)

error = factor*error;

disp(error)

end

If factor >= 1, then the value of error will increase and the while loop will not terminate. A
better way, in general, to accomplish the job above is to use a for loop to place an upper limit
to the number of iterations that will be performed. A "break" command stops the iteration of
the most deeply nested for loop and is called when the condition (error < tol) is reached.
error = 283.4;

tol = 1;

factor = 0.9;

iter_max = 10000;

iflag = 0; signifies goal not reached

for iter=1:iter_max

if(error <= tol)

iflag = 1; signifies goal reached

break;

end

error = factor*error;

disp(error)

end

if(iflag==0) write message saying that goal not reached.

disp('Goal not reached');

disp(['error = ' num2str(error)]);

disp(['tol = ',num2str(tol)]);

end

clear all

2.4. screen input/output

In MATLAB, the basic command to write output to the screen is "disp".
disp('The disp command writes a character string to the screen.');

When writing integer or real numbers to the screen, the "int2str" and "num2str" commands
should be used (for more details see chapter 1 of the tutorial.
i = 2934;

x = 83.3847;

disp(['i = ' int2str(i)]);

disp(['x = ' num2str(i)]);

The standard command for allowing the user to input data from the keyboard is "input".
i = input('Input integer i : ');

x = input('Input real x : ');

v = input('Input vector v : '); try typing [1 2 3]

i, x, v

clear all

MATLAB Tutorial

Chapter 3. Basic graphing routines
3.1. 2-D plots

The basic command for making a 2-D plot is "plot". The following code makes a plot of the
function sin(x).
x = linspace(0,2*pi,200);

f1 = sin(x);

plot(x,f1)

we now add a title and labels for the x and y axes
title('Plot of f_1 = sin(x)');

xlabel('x');

ylabel('f_1');

Let us change the axes so that they only plot x from 0 to 2*pi.
axis([0 2*pi -1.1 1.1]); [xmin xmax ymin ymax]

Next, we make a new figure with cos(x)
f2 = cos(x);

figure; makes a new figure window

plot(x,f2);

title('Plot of f_2 = cos(x)');

xlabel('x');

ylabel('f_2');

axis([0 2*pi -1.1 1.1]);

Now, we make a single graph with both plots

figure; creates a new graph

plot(x,f1);

hold on; tells MATLAB not to overwrite current plot

What happens if you forget to type hold on? "hold off" removes the hold.

plot(x,f2,'r'); plots with red curve

title('Plots of f_1 = sin(x), f_2 = cos(x)');

xlabel('x');

ylabel('f_1, f_2');

axis([0 2*pi -1.1 1.1]);

Now we add a legend.
legend('f_1', 'f_2');

If we want to move the legend, we can go to the "Tools" menu of the figure window and turn
on "enable plot editing" and then drag the legend to where we want it.

Finally, we use the command "gtext" to add a line of text that we then position on the graph
using our cursor.
gtext('f_1=f_2 at two places');

The command "help plot" tells how to make a graph using various types of points instead of
lines and how to select different colors.

clear all

3.2. 3-D plots

First, we generate a grid containing the x and y values of

each point.

x = 0:0.2:2*pi; create vector of points on x-axis

y = 0:0.2:2*pi; create vector of points on y-axis

Now if n=length(x) and m=length(y), the grid will contain N=n*m grid points. XX and YY are n

by m matrices containing the x and y values for each grid point respectively.

[XX,YY] = meshgrid(x,y);

The convention in numbering the points is apparent from the following lines.
x2 = 1:5; y2 = 11:15;
[XX2,YY2] = meshgrid(x2,y2);
XX2, YY2

This shows that XX2(i,j) contains the jth component of the x vector and YY2(i,j) contains the
ith component of the y vector.

Now, we generate a function to save as a separate z-axis value for each (x,y) 2-D grid point.
Z1 = sin(XX).*sin(YY); calculate value of function to be plotted

create a colored mesh plot
figure; mesh(XX,YY,Z1);

xlabel('x'); ylabel('y'); zlabel('z'); title('sin(x)*sin(y)');

create a colored surface plot
figure; surf(XX,YY,Z1);

xlabel('x'); ylabel('y'); zlabel('z'); title('sin(x)*sin(y)');

create a contour plot
figure; contour(XX,YY,Z1);

xlabel('x'); ylabel('y'); zlabel('z'); title('sin(x)*sin(y)');

create a filled contour plot with bar to show function values
figure; contourf(XX,YY,Z1); colorbar;

xlabel('x'); ylabel('y'); zlabel('z'); title('sin(x)*sin(y)');

create a 3-D contour plot
figure; contour3(XX,YY,Z1);

xlabel('x'); ylabel('y'); zlabel('z'); title('sin(x)*sin(y)');

clear all

3.3. Making complex figures

Using the subplot command, one can combine multiple plots into a single figure. We want to

make a master figure that contains nrow # of rows of figures and ncol # of figures per row.

subplot(nrow,ncolumn,i) makes a new figure window within the master plot, where i is a

number denoting the position within the master plot according to the following order :

1 2 3 ... ncol

ncol+1 ncol+2 ncol+3 ... 2*ncol

First, generate the data to be plotted.

x = 0:0.2:2*pi;

y = 0:0.2:2*pi;

f1 = sin(x);

f2 = cos(y);

[XX,YY] = meshgrid(x,y);

Z1=sin(XX).*cos(YY);

The following code creates a figure with four subplots.
figure; create a new figure

subplot(2,2,1); create 1st subplot window

plot(x,f1); title('sin(x)');

xlabel('x'); ylabel('sin(x)'); axis([0 2*pi -1.1 1.1]);

subplot(2,2,2); create 2nd subplot window

plot(y,f2); title('cos(y)');

xlabel('y'); ylabel('cos(y)'); axis([0 2*pi -1.1 1.1]);

subplot(2,2,3); create 3rd subplot window

surf(XX,YY,Z1); title('sin(x)*cos(y)');

xlabel('x'); ylabel('y'); zlabel('z');

subplot(2,2,4); create 4th subplot window

contourf(XX,YY,Z1); colorbar; title('sin(x)*cos(y)');

zlabel('x'); ylabel('y');

clear all

MATLAB Tutorial

Chapter 4. Advanced matrix operations
4.1. Sparse matrices

SPARSE MATRICES

To show the efficiency gained by using sparse matrices, we will solve a PDE using finite

differences twice. First, we will use the matrix commands that use the full matrix that we have

learned so far. Second, we will use new commands that take advantage of the fact that most

of the elements are zero to greatly reduce both the memory requirements and the number of

floating point operations required to solve the PDE.

clear all; remove all existing variables from memory

num_pts = 100; number of grid points in simulation

CALCULATION WITH FULL MATRIX FORMAT

The following matrix is obtained from using central finite differences to discretize the Laplacian

operator in 1-D.

x = 1:num_pts; grid of x-values

Set the matrix from discretizing the PDE with a 1-D grid containing num_pts points with a

spacing of 1 between points.

Afull=zeros(100,100);

Afull(1,1) = 1;

Afull(num_pts,num_pts) = 1;

for i=2:(num_pts-1) sum over interior points

Afull(i,i) = 2;

Afull(i,i-1) = -1;

Afull(i,i+1) = -1;

end

Dirichlet boundary conditions at x=1 and x=num_pts are set.

BC1 = -10; value of f at x(1);

BC2 = 10; value of f at x(num_pts);

For the interior points, we have a source term.

b_RHS = linspace(0,0,num_pts)'; create column vector of zeros

b_RHS(1) = BC1;

b_RHS(num_pts) = BC2;

b_RHS(2:(num_pts-1)) = 0.05; for interior, b_RHS is source term

We now use the standard MATLAB solver to obtain the solution of the PDE at the grid points.
f = Afull\b_RHS;

figure; plot(x,f);

title('PDE solution from FD-CDS method (full matrix)');

xlabel('x'); ylabel('f(x)');

Let us now take a closer look at Afull. The command spy(A) makes a plot of the matrix A by
writing a point wherever an element of A has a non-zero value.
figure;

spy(Afull); title('Structure of Afull');

The number nz at the bottom is the number of non-zero elements. We see that only a small
fraction of the matrix elements are non-zero. Since we numbered the grid points in a regular
manner with the neighbors of each grid point stored in adjacent locations, the non-zero
elements in this matrix are on the principal diagonal and the two diagonals immediately above
and below. Even if we numbered the grid points irregularly, we would still have this small
number of non-zero points. It is often the case, as it is here, that the matrices we encounter in
the numerical simulation of PDE's are sparse; that is, only a small fraction of their points are
non-zero. For this matrix, the total number of elements is
num_elements = num_pts*num_pts;
nzA = nnz(Afull); returns # of non-zero elements in Afull
fraction_filled = nzA/num_elements

This means that Afull is mostly empty space and we are wasting a lot of memory to store
values we know are zero.

Remove all variables from memory except Afull.
clear x f b_RHS BC1 BC2 i num_elements nzA fraction_filled;

SPARSE MATRIX

We can convert a matrix to sparse format using the command "sparse".
Asparse = sparse(Afull)

MATLAB stores a sparse matrix as an NZ by 3 array where NZ is the number of non-zero
elements. The first column is the row number and the second the column number of the non-
zero element. The third column is the actual value of the non-zero element. The total memory
usage is far smaller than with the full matrix format.
whos Afull Asparse;

clear Asparse; get rid of sparse matrix

NOW WE WILL SOLVE USING SPARSE MATRIX FORMAT

Next, we set the grid point values
x = 1:num_pts; grid of x-values

Now we declare the matrix A to have sparse matrix structure from the start. First, we calculate
the number of non-zero elements (or an upper bound to this number). We see that for each
row corresponding to an interior point, we have 3 values, whereas for the first and last row we
only have one value. Therefore, the number of non-zero elements is
nzA = 3*(num_pts-2) + 2;

We now use "spalloc(m,n,nz)" that allocates memory for a m by n dimensioned sparse matrix
with no more than nz non-zero elements.
A = spalloc(num_pts,num_pts,nzA);

We now set the values of the A matrix.
A(1,1) = 1;

A(num_pts,num_pts) = 1;

for i=2:(num_pts-1)

A(i,i) = 2;

A(i,i-1) = -1;

A(i,i+1) = -1;

end

Dirichlet boundary conditions at x=1 and x=num_pts are set.

BC1 = -10; value of f at x(1);

BC2 = 10; value of f at x(num_pts);

For the interior points, we have a source term.

b_RHS = linspace(0,0,num_pts)'; create column vector of zeros

b_RHS(1) = BC1;

b_RHS(num_pts) = BC2;

b_RHS(2:(num_pts-1)) = 0.05; for interior, b_RHS is source term

Now, when we call the MATLAB standard solver, it automatically identifies that A is a sparse
matrix, and uses solver algorithms that take advantage of this fact.
f = A\b_RHS;

figure; plot(x,f);

title('PDE solution from FD-CDS method (sparse matrix)');

xlabel('x'); ylabel('f(x)');

whos A Afull;

From the lines for A and Afull, we can see that the sparse matrix format requires far less
memory that the full matrix format. Also, if N is the number of grid points, we see that the
size of the full matrix is N^2; whereas, the size in memory of the sparse matrix is only
approximately 3*N. Therefore, as N increases, the sparse matrix format becomes far more
efficient than the full matrix format. For complex simulations with thousands of grid points,
one cannot hope to solve these problems without taking advantage of sparsity. To see the
increase in execution speed that can be obtained by using sparse matrices, examine the
following two algorithms for multiplying two matrices.

FULL MATRIX ALGORITHM FOR MATRIX MULTIPLICATION

Bfull = 2*Afull;

Cfull = 0*Afull; declare memory for C=A*B

num_flops = 0;

for i=1:num_pts

for j=1:num_pts

for k=1:num_pts

Cfull(i,j) = Cfull(i,j) + Afull(i,k)*Bfull(k,j);

num_flops = num_flops + 1;

end

end

end

disp(['# FLOPS with full matrix format = ', int2str(num_flops)]);

SPARSE MATRIX ALGORITHM FOR MATRIX MULTIPLICATION

B = 2*A;

nzB = nnz(B); # of non-zero elements of B

nzC_max = round(1.2*(nzA+nzB)); guess how much memory we'll need for C

C = spalloc(num_pts,num_pts,nzC_max);

[iA,jA] = find(A); find (i,j) elements that are non-zero in A

[iB,jB] = find(B); find (i,j) elements that are non-zero in B

num_flops = 0;

for ielA = 1:nzA iterate over A non-zero elements

for ielB = 1:nzB iterate over B non-zero elements

if(iB(ielB)==jA(ielA)) the pair contributes to C

i = iA(ielA);

k = jA(ielA);

j = jB(ielB);

C(i,j) = C(i,j) + A(i,k)*B(k,j);

num_flops = num_flops + 1;

end

end

end

disp(['# FLOPS for sparse matrix format = ', int2str(num_flops)]);

D = Cfull - C; check to see both algorithms give same result

disp(['# of elements where Cfull ~= C : ' int2str(nnz(D))]);

Finally, we note that taking the inverse of a sparse matrix
usually destroys much of the sparsity.
figure;

subplot(1,2,1); spy(A); title('Structure of A');

subplot(1,2,2); spy(inv(A)); title('Structure of inv(A)');

Therefore, if we have the values of A and of C = A*B and want to calculate the matrix B, we
do NOT use inv(A)*C. Rather, we use the "left matrix division" operator A\C. This returns a
matrix equivalent to inv(A)*C, but uses the MATLAB solver that takes advantage of the
sparsity.
B2 = A\C;

figure; spy(B2); title('Structure of B2');

We see that the error from the elimination method has introduced very small non-zero values
into elements off of the central three diagonals. We can remove these by retaining only the
elements that are greater than a tolerance value.
tol = 1e-10;

Nel = nnz(B2);

[iB2,jB2] = find(B2); return positions of non-zero elements

for iel=1:Nel

if(abs(B2(iB2(iel),jB2(iel))) < tol) set to zero

B2(iB2(iel),jB2(iel)) = 0;

end

end

B2 = sparse(B2); reduce memory storage

figure; spy(B2); title('Structure of "cleaned" B2');

Since we do not want to go through intermediate steps where we have to store a matrix with
many non-zero elements, we usually do not calculate matrices in this manner. Rather we limit
ourselves to solving linear systems of the form A*x = b, where x and b are vectors and A is a
sparse matrix whose value we input directly. We therefore avoid the memory problems
associated with generating many non-zero elements from round-off errors.

clear all

4.2. Common matrix operations/eigenvalues

The determinant of a aquare matrix is calculated using "det".

A = rand(4); creates a random 4x4 matrix

det(A) calculate determinant of A

Other common functions of matrices are

rank(A) rank of A

trace(A) trace of A

norm(A) matrix norm of A

cond(A) condition number of A

A_inv=inv(A) calculates inverse of A
A*A_inv

The eigenvalues of a matrix are computed with the command "eig"
eig(A)

If the eigenvectors are also required, the syntax is
[V,D] = eig(A)

Here V is a matrix containing the eigenvectors as column vectors, and D is a diagonal matrix
containing the eigenvalues.
for i=1:4

eig_val = D(i,i);

eig_vect = V(:,i);

A*eig_vect - eig_val*eig_vect

end

The command "eigs(A,k)" calculates the k leading eigenvalues of A; that is, the k eigenvalues

with the largest moduli.

eigs(A,1) estimate leading eigenvalue of A

Similarly, the eigenvectors of the leading eigenvalues can also be calculated with eigs.

[V2,D2] = eigs(A,1);

eig_vect = V2; eig_val = D2;

A*eig_vect - eig_val*eig_vect

With sparse matrices, only the command "eigs" can be used.

clear all

4.3. LU decomposition

The linear system Ax=b can be solved with multiple b vectors using LU decomposition. Here,

we perform the decomposition P*A = L*U, where P is a permutation matrix (hence inv(P)=P'),

L is a lower triangular matrix, and U is an upper triangular matrix. P is an identity matrix when

no pivoting is done during the factorization (which is essentially Gaussian elimination). Once

the LU factorization is complete, a problem Ax=b is solved using the following linear algebra

steps.

A*x = b

P*A*x = P*b

L*U*x = P*b

This gives the following two linear problems invloving triangular matrices that may be solved

by substitution.

L*y = P*b

U*x = y

The MATLAB command for performing an LU factorization is "lu" We use a random, non-

singular matrix to demonstrate the algorithm. Non-singularity is ensured by adding a factor of

an identity matrix.

A = rand(10) + 5*eye(10);

Perform LU factorization.

[L,U,P] = lu(A);

max(P*P'-eye(10)) demonstrates that P is orthogonal matrix

max(P*A - L*U) shows largest result of round-off error

Compare the structures of the matrices involved
figure;

subplot(2,2,1); spy(A); title('Structure of A');

subplot(2,2,2); spy(P); title('Structure of P');

subplot(2,2,3); spy(L); title('Structure of L');

subplot(2,2,4); spy(U); title('Structure of U');

LU factorization can be called in exactly the same way for sparse matrices; however, in
general the factored matrices L and U are not as sparse as is A, so by using LU factorization,
some efficiency is lost. This becomes more of a problem the the greater the bandwidth of the
matrix, i.e. the farther away from the principal diagonal that non-zero values are found.

Sometimes we only want an approximate factorization B=L*U where B is close enough to A
such that C = inv(B)*A is not too much different from an identity matrix, i.e. the ratio
between the largest and smallest eigenvalues of C is less than that for A. In this case, B is
called a preconditioner, and is used in methods for optimization and solving certain classes of
linear systems. When we perform an incomplete LU factorization, we only calculate the
elements of L and U that correspond to non-zero elements in A, or with different options, we
neglect elements whose absolute values are less than a specified value.

The following code demonstrates the use of incomplete LU factorization.

make B=A, except set certain elements equal to zero.
B=A;

set some elements far-away from diagonal equal to zero.
for i=1:10

B(i+5:10,i) = 0;

B(1:i-5,i) = 0;

end

B=sparse(B);

[Linc,Uinc,Pinc] = luinc(B,'0');

figure;

subplot(2,2,1); spy(B); title('Structure of B');

subplot(2,2,2); spy(Pinc); title('Structure of Pinc');

subplot(2,2,3); spy(Linc); title('Structure of Linc');

subplot(2,2,4); spy(Uinc); title('Structure of Uinc');

D1 = P*A - L*U;

D2 = Pinc*B - Linc*Uinc;

tol = 1e-10; set tolerance for saying element is zero

for i=1:10

for j=1:10

if(D1(i,j)<tol)

D1(i,j) = 0;

end

if(D2(i,j)<tol)

D2(i,j) = 0;

end

end

end

figure;

subplot(1,2,1); spy(D1); title('(P*A - L*U)');

subplot(1,2,2); spy(D2); title('(Pinc*B - Linc*Uinc)');

But, look at the eigenvalues of the B and of the approximate factorization.

Bapprox = Pinc'*Linc*Uinc;

eigs(B) eigenvalues of B matrix

C = Bapprox\B; inv(Bapprox)*B (don't use "inv" for sparse matrices)

eigs(C)

clear all

4.4. QR decomposition

The factorization A*P = Q*R, where P is a permutation matrix, Q is a orthogonal matrix, and R
is upper triangular is performed by invoking the command "qr".
A = rand(6);
[Q,R,P] = qr(A);

Q*Q' shows Q is orthogonal
A*P - Q*R

figure;

subplot(2,2,1); spy(A); title('Structure of A');

subplot(2,2,2); spy(P); title('Structure of P');

subplot(2,2,3); spy(Q); title('Structure of Q');

subplot(2,2,4); spy(R); title('Structure of R');

If the decomposition A=QR is desired (i.e. with P=1), the
command is :
[Q,R] = qr(A);

figure;

subplot(2,2,1); spy(A); title('Structure of A');

subplot(2,2,2); spy(Q); title('Structure of Q');

subplot(2,2,3); spy(R); title('Structure of R');

A - Q*R

clear all

4.5. Cholesky decomposition

If A is a Hermetian matrix (i.e. A=A') then we know that all eigenvalues are real. If in
addition, all the eigenvalues are greater than zero, then x'*A*x > 0 for all vectors x and we
say that A is positive-definite. In this case, it is possible to perform a Cholesky decomposition,
i.e. A = R'*R, where R is upper triangular. This is equivalent to writing A = L*L', where L is
lower triangular.

First, we use the following positive-definite matrix.
Ndim=10;

Afull=zeros(Ndim,Ndim);

for i=1:Ndim sum over interior points

Afull(i,i) = 2;

if(i>1)

Afull(i,i-1) = -1;

end

if(i<Ndim)

Afull(i,i+1) = -1;

end

end

Rfull = chol(Afull);

D = Afull - Rfull'*Rfull; eig(D)

figure;

subplot(1,2,1); spy(Afull); title('Structure of Afull');

subplot(1,2,2); spy(Rfull); title('Structure of Rfull');

For sparse matrices, we can perform an incomplete Cholesky decomposition that gives an
approximate factorization with no loss of sparsity that can be used as a preconditioner. In this
particular case, with a highly structured matrix, the incomplete factorization is the same as
the complete one.
Asparse = sparse(Afull);

Rsparse = cholinc(Asparse,'0');

D2 = Asparse - Rsparse'*Rsparse; eig(D2)

figure;

subplot(1,2,1); spy(Asparse); title('Structure of Asparse');

subplot(1,2,2); spy(Rsparse); title('Structure of Rsparse');

clear all

4.6. Singular value decomposition

Eigenvalues and eigenvectors are only defined for square matrices. The generalization of the
concept of eigenvalues to non-square matrices is often useful. A singular value decomposition
(SVD) of the (m x n) matrix A is defined as A = U*D*V', where D is a (m x n) diagonal matrix
containing the singular values, U is a (m x m) matrix containing the right eigenvectors and V'
is the adjoint (transpose and conjugate) of the (n x n) matrix of left eigenvectors.

In MATLAB, a singular value decomposition is peformed using "svd"
A = [1 2 3 4; 11 12 13 14; 21 22 23 24];

[U,D,V] = svd(A);

D, U, V

U*D*V' show that decomposition works

clear all

MATLAB Tutorial

Chapter 5. File input/output

5.1. Saving/reading binary files and making calls to the operating system

When using MATLAB, either when running a m-file or performing calculations interactively,
there is a master memory structure that MATLAB uses to keep track of the values of all of the
variables. This memory space can be written in a binary format to a file for storing the results
of your calculations for later use. This is often useful when you have to interrupt a MATLAB
session. The following commands demonstrate how to use this storage option to make binary
.mat files.

First, let us define some variables that we want to save.
num_pts =10;

Afull=zeros(num_pts,num_pts);

Afull(1,1) = 1;

Afull(num_pts,num_pts) = 1;

for i=2:(num_pts-1) sum over interior points

Afull(i,i) = 2;

Afull(i,i-1) = -1;

Afull(i,i+1) = -1;

end

b = linspace(0,1,num_pts)';

x = Afull\b;

whos; display contents of memory

The "save" command saves the data in the memory space to the named binary file.
save mem_store1.mat;

clear all;

whos; no variables are stored in memory

ls *.mat display all .mat files in directory

The "load" command loads the data stored in the named binary file into memory.

load mem_store1.mat;

whos; we see that the data has been loaded again

If we want to get rid of this file, we can use the "delete" command.

delete mem_store1.mat;
ls *.mat

In the commands above, I have used path names to specify the directory. We can view our

current default directory using the command "pwd".

pwd displays the current directory

We can then change to another directory using the "cd" command.

cd .. move up one directory

pwd

ls list files in directory

cd MATLAB_tutorial; directory name may differ for you

pwd; ls

We can also use the "save" command to save only selected variables to a binary file.
save mem_store2.mat Afull;

clear all
whos

load mem_store2.mat
whos

delete mem_store2.mat

clear all

5.2. Input/output of data to/from an ASCII file

First, let use define some variables that we want to save.
num_pts =10;

Afull=zeros(num_pts,num_pts);

Afull(1,1) = 1;

Afull(num_pts,num_pts) = 1;

for i=2:(num_pts-1) sum over interior points

Afull(i,i) = 2;

Afull(i,i-1) = -1;

Afull(i,i+1) = -1;

end

b = linspace(0,1,num_pts)';

x = Afull\b;

whos; display contents of memory

Now, let us write out the contents of Afull into a file that we can read.

One option is to use the "save" command with the option -ascii, that writes to a file using the
ASCII format.
save store1.dat Afull -ascii;
type store1.dat view contents of file

We can also load a file in this manner. The contents of the ASCII file filename.dat are stored in
the MATLAB variable filename. This is a good way to import data from experiments or other
programs into MATLAB.
load store1.dat;

If we add the option -double, the data is printed out with double the amount of digits for
higher precision.
delete store1.dat;

save store1.dat Afull -ascii -double;

type store1.dat

We can use this command with multiple variables, but we see that no spaces are added.
delete store1.dat;
save store1.dat Afull b x -ascii;
type store1.dat view contents of file
delete store1.dat get rid of file

MATLAB also allows more complex formatted file input/output of data using commands that
are similar to those in C.

First, we list all of the files in the directory.
ls

Next, we see create the output file and assign a label to it

with the "fopen" command that has the syntax

FID = fopen(FILENAME,PERMISSION)

where PERMISSION is usually one of :

'r' = read only

'w' = write (create if needed)

'a' = append (create if needed)

'r+' = read and write (do not create)

'w+' = create for read and write

'a+' = read and append (create if needed)

FID_out = fopen('test_io.dat','w');
ls

Now, we print the b vector to the output file as a column vector using the "fprintf" command.
In the FORMAT string '\n' signifies a carriage return, and 10.5f specifies a floating point
decimal output with 5 numbers after the decimal point and a total field width of 10.
for i=1:length(b)
fprintf(FID_out,'10.5f \n',b(i));
end

We now close the file and show the results.
fclose(FID_out);

disp('Contents of test_io.dat : ');

type test_io.dat;

MATLAB's "fprintf" can also be loaded to avoid the need of
using a for loop
FID_out = fopen('test_io.dat','a');
fprintf(FID_out,'\n');
fprintf(FID_out,'10.5f \n',x);
fclose(FID_out);

disp('Contents of test_io.dat : ');
type test_io.dat;

We can also use "fprintf" to print out a matrix.
C = [1 2 3; 4 5 6; 7 8 9; 10 11 12];

FID_out = fopen('test_io.dat','a');

fprintf(FID_out,'\n');

for i = 1:size(C,1)

fprintf(FID_out,'5.0f 5.0f 5.0f \n',C(i,:));

end

fclose(FID_out);

disp('Contents of test_io.dat : ');

type test_io.dat;

We can read in the data from the formatted file using
"fscanf", which works similarly to "fprintf".

First, we open the file for read-only.
FID_in = fopen('test_io.dat');

We now read the b vector into the variable b_new. First, we allocate space for the vector, and
then we read in the values one by one.
b_new = linspace(0,0,num_pts)';

for i=1:num_pts

b_new(i) = fscanf(FID_in,'f',1);

end

b_new

Now read in x to x_new, using the overloading possible in MATLAB.
x_new = linspace(0,0,num_pts)';
x_new = fscanf(FID_in,'f',num_pts);
x_new

Finally, we read in the matrix C to C_new.
C_new = zeros(4,3);

for i=1:size(C,1)

for j=1:size(C,2)

C_new(i,j) = fscanf(FID_in,'f',1);

end

end

C_new

fclose(FID_in);

clear all

MATLAB Tutorial

Chapter 6. Writing and calling functions

In this chapter we discuss how to structure a program with multiple source code files. First, an
explanation of how code files work in MATLAB is presented. In compiled languages such as
FORTRAN, C, or C++, code can be stored in one or more source files that are linked together
to form a single executable at the time of compilation. MATLAB, being an interpreted
language, deals with multiple source files in a more open-ended manner. MATLAB code is
organized into ASCII files carrying the extension .m (also known as m-files). MATLAB 6 has an
integrated word processing and debugging utility that is the preferred mode of editing m-files,
although other ASCII editors such as vi or emacs may also be used.
There are two different kinds of m-files. The simplest, a script file, is merely a collection of
MATLAB commands. When the script file is executed by typing its name at the interactive
prompt, MATLAB reads and executes the commands within the m-file just as if one were
entering them manually. It is as if one were cutting and pasting the m-file contents into the
MATLAB command window. The use of this type of m-file is outlined in section 6.1.

The second kind of m-file, discussed in section 6.2, contains a single function that has the
same name as that of the m-file. This m-file contains an independent section of code with a
clearly defined input/output interface; that is, it can be invoked by passing to it a list of
dummy arguments arg1, arg2, ... and it returns as output the values out1, out2, The first
non-commented line of a function m-file contains the function header, which is of the form :
function [out1,out2,...] = filename(arg1,arg2,...);
The m-file ends with the command return, which returns the program execution to the place
where the function was called. The function code is executed whenever, either at the
interactive command prompt or within another m-file, it is invoked with the command :
[outvar1,outvar2,...] = filename(var1,var2,...)
with the mapping of input to dummy arguments : arg1 = var1, arg2 = var2, etc. Within the
function body, output values are assigned to the variables out1, out2, etc. When return is
encountered, the current values of out1, out2, ... are mapped to the variables outvar1,
outvar2, ... at the point where the function was called. MATLAB allows much latitude in writing
functions with variable length argument and output variable lists. For example, the function
could also be invoked by the command :
outvar1 = filename(var1,var2,...)
in which case only a single output variable is returned, containing on exit the value of the
function variable out1. The input and output arguments may be strings, scalar numbers,
vectors, matrices, or more advanced data structures.

Why use functions? As is well known from every computer science course, splitting a large
program into multiple procedures that perform each a single well defined and commented
task, results in programs that are easier to read, easier to modify, and that are more resistant
to error. In MATLAB, one writes first a master file for the program, either a script file or better
yet a function m-file that returns a single integer (that might return 1 for program success, 0
for incomplete program execution, or a negative value to indicate a run-time error), that is the
point of entry to the program. This program file then calls upon code in other m-files by
invoking them as functions. But if there is no compilation process to link all of the source code
files together, how does MATLAB know where to look for a function when it is called?

MATLAB's program memory contains a search path list, the contents of which can be viewed
with the command path, that stores the names of the directories it has been told contain
function m-files. Initially, the path lists only the directories that hold the built-in MATLAB
functions such as sin(), exp(), etc.. As demonstrated in section 6.2, one uses the command
addpath to add to this list the name of each directory that contains a m-file for the present
project. Then, when the MATLAB code interpreter encounters a function, say with the name
filename, it starts at the top of the path list and works its way down searching in each
directory for a file filename.m. When it finds it, it executes the file's code in the manner

described above. For this reason, it is imperative that the names of the m-file and of the
function agree; in fact it is only the filename that counts.

6.1. Writing and running m-files

While MATLAB can be run interactively from the command line, you can write a MATLAB
program by composing a text file that contains the commands you want MATLAB to perform in
the order in which they appear in the file. The standard file suffix for a text file containing a
MATLAB program is .m. In the MATLAB command window, selecting the pull-down menu File -
> New -> M-file opens the integrated MATLAB text editor for writing a m-file. This utility is
very similar to word processors, so the use of writing and saving m-files is not explained in
detail here.

As an example, use this secion as a file "MATLAB_tutorial_c6s1.m" that has only the following
executable commands.
file_name = 'MATLAB_tutorial_c6s1.m';

disp(['Starting ' file_name]);

j = 5;

for i=1:5

j = j - 1;

disp([int2str(i) ' ' int2str(j)]);

end

disp(['Finished ' file_name]);

We can run this m-file from the prompt by typing its name
>> MATLAB_tutorial_c6s1

If we type "whos" now, we see that the variables that are in the memory at the end of the
program also remain in memory after the m-file is done running. This is because we have
written the m-file as a script file where we have simply collected together several commands
in a file, and then the code executes them one-by-one when the script is run, as if we were
merely typing them into the interactive session window. A more common use for m-files is to
isolate a series of commands in an independent function, as explained in the following section.

6.2. Structured programming with functions
Unstructured programming approach

File unstructured.m

In this section, let us demonstrate the use of subroutines to write structured, well-organized
programs. We do so for a particularly simple and familiar case, the simple 1-D PDE problem
that we encounted in section 4.1. First, in this m-file, we solve the problem with a program
the combines all of the commands into a single file. This "unstructured" approach is fine for
very small programs, but rapidly becomes confusion as the size of the program grows.

num_pts = 100; # of grid points
x = 1:num_pts; grid of x-values

We now set the values for the matrix discretizing the PDE with Dirichlet boundary conditions.
nzA = 3*(num_pts-2) + 2; # of non-zero elements
A = spalloc(num_pts,num_pts,nzA); allocate memory

set values
A(1,1) = 1;
A(num_pts,num_pts) = 1;

for i=2:(num_pts-1)

A(i,i) = 2;

A(i,i-1) = -1;

A(i,i+1) = -1;

end

Next, we set the values of the function at each boundary.

BC1 = -10; value of f at x(1);

BC2 = 10; value of f at x(num_pts);

We now create the vector for the right hand side of the problem.

b_RHS = linspace(0,0,num_pts)'; create column vector of zeros

b_RHS(1) = BC1;

b_RHS(num_pts) = BC2;

b_RHS(2:(num_pts-1)) = 0.05; for interior, b_RHS is source term

Now, we call the standard MATLAB solver.

f = A\b_RHS;

Then, we make a plot of the results.
figure; plot(x,f);

title('PDE solution from FD-CDS method (sparse matrix)');

xlabel('x'); ylabel('f(x)');

While this approach of putting all of the commands together works for this small program, it
becomes very unwieldy for large programs.

clear all

Structured programming approach

File structured.m

NOTE: BEFORE RUNNING THIS FILE, THE OTHER M-FILES CONTAINING THE SUBROUTINES

MUST ALREADY EXIST.

First, we define the number of points

num_pts = 100;

We now create a vector containing the grid points.
x = 1:num_pts;

In MATLAB, each function is stored in a separate m-file of the same name. When you call the
function at the interactive session prompt or in another script or funtcion m-file, MATLAB
searches through a list of directories that it has been told contain functions until it finds an m-
file with the appropriate name. Then, it executes the MATLAB code contained within that m-
file. When we write m-files that contain a functions, before we can use them we have to tell
MATLAB where they are; that is, we have to add the name of their directory to the search
path.

We can check the current contents of the search path with the command "path".
path

The command "pwd" returns the current directory.
pwd

We use the command "addpath" to add the directory with our subroutines to this search list.
We can remove a directory from the path using "rmpath".
addpath(pwd);
path

The following function calculates the A matrix. A function call has the following syntax :
[out1,out2,...] = func_name(in1,in2,...), where the input arguments are the variables
in1,in2,... and the output from the function is stored in out1,out2,... In our case, the input is
the dimension of the matrix A, num_pts, and the output variables are A and iflag, an integer
that tells us if the code was performed sucessfully.
[A,iflag] = c6s2_get_A(num_pts);

if(iflag ~= 1) then error

disp(['c6s2_get_A returned error flag : ' int2str(iflag)]);

end

We also see from the code below that the existence of a local variable in the function named i
does nothing to alter the value of i at the point of calling.
i = 1234;

[A,iflag] = c6s2_get_A(num_pts);

Next, we ask the user to input the function values at the boundaries.
BC1 = input('Input the function value at x = 1 : ');

BC2 = input('Input the function value at x = num_pts : ');

source = input('Input the value of the source term : ');

We now call upon another subroutine that calculates the vector for the RHS.
[b_RHS,iflag] = c6s2_get_b_RHS(num_pts,BC1,BC2,source);

We now solve the system.
f = A\b_RHS;

Then, we make plots of the output.
figure; plot(x,f);

phrase1 = ['PDE solution with source = ' num2str(source)];

phrase1 = [phrase1 ', BC1 = ' num2str(BC1)];

phrase1 = [phrase1 ', BC2 = ' num2str(BC2)];

title(phrase1); xlabel('x'); ylabel('f(x)');

Then, to clean up, we clear the memory

clear all

File c6s2_get_A.m

The first executable line of the m-file declares the name and input/output structure of the
subroutine using the "function" command.

function [A,iflag] = c6s2_get_A(Ndim);

iflag = 0; signifies job not complete

If Ndim < 1, then we have an error, since we can't have a matrix with a dimension less than
1.

if(Ndim<1) signify error

i

A=-1;
iflag = -1;
we return control to the m-file that called this subroutine without executing the rest of the
code.
return;

end

First, we declare A using sparse matrix format.

nzA = 3*(Ndim-2) + 2; # of non-zero elements

A = spalloc(Ndim,Ndim,nzA); allocate memory

A(1,1) = 1;

A(Ndim,Ndim) = 1;

for i=2:(Ndim-1)

A(i,i) = 2;

A(i,i-1) = -1;

A(i,i+1) = -1;

end

iflag = 1; signify job complete and successful

return; return control to the m-file that called this routine

File c6s2_get_b_RHS.m

function [b_RHS,iflag] = c6s2_get_b_RHS(num_pts,BC1,BC2,source);

iflag = 0; declares job not completed

if(num_pts < 3) not enough points

iflag = -1;

b_RHS = -1;

return;

end

We allocate space for b_RHS and initialize to zeros.
b_RHS = linspace(0,0,num_pts)';

Now, we specify the first and last components from the boundary conditions.
b_RHS(1) = BC1;
b_RHS(num_pts) = BC2;

Next, we specify the interior points.
for i=2:(num_pts-1)
b_RHS(i) = source;
end

iflag=1; signifies successful completion

return;

6.3. Inline functions

Sometimes, we do not want to go through the bother of writing a separate m-file to define a

function. For these times, we can define an inline function. Let us say that we want to define

the function

f1(x) = 2*x + 3*x^2

We can define this function using
f1 = inline('2*x + 3*x^2');

Then, we can call this function directly
f1(1), f1(23)

We can also define functions using vectors and matrices as input.
invariant2 = inline('(trace(A)*trace(A) - trace(A*A))/2');

A = rand(3);

invariant2(A)

We can check the definition of the function by typing its name
invariant2

While this is convenient, the execution of inline functions is rather slow.

clear all;

try

invariant2

catch

disp('We see that inline functions are cleared also');

end

6.4. Functions as function arguments

The function, trig_func_1, listed below,

returns the value of

f(x) = a*sin(x) + b*cos(x)

for given values of a, b, and x.

The function, plot_trig_1, listed below, plots a function on the domain 0 to 2*pi.

The following code asks the user to input values of a and b, and then uses plot_trig to plot

trig_func_1 by

including the function name as an argument in the list.

disp('Plotting a*sin(x) + b*cos(x) ...');

a = input('Input a : ');

b = input('Input b : ');

func_name = 'trig_func_1';

make sure current direction is in the path
addpath(pwd)

plot_trig_1(func_name,a,b);

clear all

File trig_func_1.m

function f_val = trig_func_1(x,a,b);

f_val = a*sin(x) + b*cos(x);

return;

File plot_trig_1.m

function iflag = plot_trig_1(func_name,a,b);

iflag = 0; signifies no completion

First, create an x vector from 0 to 2*pi
num_pts = 100;
x = linspace(0,2*pi,num_pts);

Next, make a vector of the function values. We evaluate the argument function indirectly
using the "feval" command.
f = linspace(0,0,num_pts);
for i=1:num_pts
f(i) = feval(func_name,x(i),a,b);
end

Then, we make the plot.
figure;

plot(x,f);

xlabel('Angle (radians)');

ylabel('Function value');

return;

MATLAB Tutorial

Chapter 7. Data structures and input assertion
7.1. User-defined data structures

Vectors and matrices are not the only means that MATLAB offers for grouping data into a
single entity. User defined data structures are also available that enable the programmer to
create variable types that mix numbers, strings, and arrays. As an example, let us create a
data structure that contains the information for a single student.

We will store the name, status (year and department), the homework and exam grades, and
the final class grade.

First, we can define a NameData structure to contain the name. Here, the "." operator, used in
the case of Structure.Field tells MATLAB to access the field named "Field" in the structure
"Structure".
NameData.First = 'John';
NameData.MI = 'J';
NameData.Last = 'Doe';

We now create a StudentData structure with a name field.
StudentData.Name = NameData;

We now initialize the rest of the structure.
StudentData.Status = 'ChE grad 1';

StudentData.HW = 10;

StudentData.Exam = linspace(100,100,3);

We can now view the contents of the structure
StudentData
StudentData.Name
StudentData.Exam

We can operate on the elements of a structure.
StudentData.Exam(3) = 0;
StudentData.Exam
StudentData.Name.First = 'Jane';
StudentData.Name

We can also create arrays of structures
num_students = 5;

for i=1:num_students

ClassData(i) = StudentData;

end

ClassData

ClassData(2)

Structures can be passed as arguments to functions in the same manner as scalars, vectors,
and matrices. In this case, we use the function pass_or_fail listed below.

message = pass_or_fail(ClassData(2));
message

File pass_or_fail.m

function message = pass_or_fail(StudentData)

Exam_avg = mean(StudentData.Exam);

if(Exam_avg >= 70)

message = 'You pass!';

else

message = 'You fail!';

end

return;

7.2. Input assertion routines

Good programming style dictates the practice of defensive programming, that is, anticipating
and detecting possible errors before they cause a run-time error that results in a halt to the
program execution or a crash. This allows one to save the current data to the disk or take
corrective action to avoid a catastrophic failure. One common source of errors can be avoided
by having each subroutine make sure that the data that it has been fed through its argument
list is of the approriate type, e.g. argument 1 should be a real, positive, scalar integer and
argument 2 should be a real, non-negative column vector of length N. The following m-files
are useful for automating this checking process, and a scalar input function is provided to
allow the robust entry of data from the keyboard.

assert_scalar.m

function [iflag_assert,message] = assert_scalar(...

i_error,value,name,func_name, ...

check_real,check_sign,check_int,i_error);

This m-file contains logical checks to assert than an input value is a type of scalar number.

This function is passed the value and name of the variable, the name of the function making

the assertion, and four integer flags that have the following usage :

i_error : controls what to do if test fails

if i_error is non-zero, then use error()

MATLAB command to stop execution, otherwise just return the appropriate negative number.

if i_error > 1, then dump current state to dump_error.mat before calling error().

check_real : check to examine whether input number is real or not. See table after function

header for set values of these case flags

check_real = i_real (make sure that input is real)

check_real = i_imag (make sure that input is purely imaginary)

any other value of check_real (esp. 0) results in no check

check_real

i_real = 1;

i_imag = -1;

check_sign : check to examine sign of input value see table after function header for set

values

of these case flags

check_sign = i_pos (make sure input is positive)

check_sign = i_nonneg (make sure input is non-negative)

check_sign = i_neg (make sure input is negative)

check_sign = i_nonpos (make sure input is non-positive)

check_sign = i_nonzero (make sure input is non-zero)

check_sign = i_zero (make sure input is zero)

any other value of check_sign (esp. 0) results in no check

check_sign

i_pos = 1;

i_nonneg = 2;

i_neg = -1;

i_nonpos = -2;

i_nonzero = 3;

i_zero = -3;

check_int : check to see if input is an integer

if = 1, then check to make sure input is an integer

any other value, perform no check

Kenneth Beers

Massachusetts Institute of Technology

Department of Chemical Engineering

7/2/2001

Version as of 7/21/2001

function [iflag_assert,message] = assert_scalar(...
i_error,value,name,func_name, ...
check_real,check_sign,check_int);

iflag_assert = 0;
message = 'false';

First, set case values of check integer flags.
check_real
i_real = 1;
i_imag = -1;
check_sign
i_pos = 1;
i_nonneg = 2;
i_neg = -1;
i_nonpos = -2;
i_nonzero = 3;
i_zero = -3;

Check to make sure input is numerical and not a string.
if(~isnumeric(value))

message = [func_name, ': ', ...

name, ' is not numeric'];

iflag_assert = -1;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

Check to see if it is a scalar.
if(max(size(value)) ~= 1)

message = [func_name, ': ', ...

name, ' is not scalar'];

iflag_assert = -2;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

Then, check to see if it is real.
switch check_real;

case {i_real}

if(~isreal(value))

message = [func_name, ': ', ...

name, ' is not real'];

iflag_assert = -3;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

case {i_imag}

if(real(value))

message = [func_name, ': ', ...

name, ' is not imaginary'];

iflag_assert = -3;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

end

Next, check sign.
switch check_sign;

case {i_pos}

if(value <= 0)

message = [func_name, ': ', ...

name, ' is not positive'];

iflag_assert = -4;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

case {i_nonneg}

if(value < 0)

message = [func_name, ': ', ...

name, ' is not non-negative'];

iflag_assert = -4;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

case {i_neg}

if(value >= 0)

message = [func_name, ': ', ...

name, ' is not negative'];

iflag_assert = -4;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

case {i_nonpos}

if(value > 0)

message = [func_name, ': ', ...

name, ' is not non-positive'];

iflag_assert = -4;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

case {i_nonzero}

if(value == 0)

message = [func_name, ': ', ...

name, ' is not non-zero'];

iflag_assert = -4;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

case {i_zero}

if(value ~= 0)

message = [func_name, ': ', ...

name, ' is not zero'];

iflag_assert = -4;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

end

Finally, check to make sure it is an integer.
if(check_int == 1)

if(round(value) ~= value)

message = [func_name, ': ', ...

name, ' is not an integer'];

iflag_assert = -5;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

end

set flag for succesful passing of all checks

iflag_assert = 1;
message = 'true';

return;

assert_vector.m

function [iflag_assert, message] = ...
assert_vector(...
i_error,value,name,func_name,num_dim, ...

check_real,check_sign,check_int,check_column);

This m-file contains logical checks to assert than an input value is a vector of a given type.

This function is passed the value and name of the variable, the name of the function making

the

assertion, the dimension that the vector is supposed to be, and five integer flags that have the

following usage :

i_error : controls what to do if test fails

if i_error is non-zero, then use error()

MATLAB command to stop execution, otherwise

just return the appropriate negative number.

if i_error > 1, create file dump_error.mat

before calling error()

check_real : check to examine whether input is real

see table after function header for set

values of these case flags

check_real = i_real (make sure that input is real)

check_real = i_imag (make sure that input

is purely imaginary)

any other value of check_real (esp. 0)

results in no check

check_real

i_real = 1;

i_imag = -1;

check_sign : check to examine sign of input see table after function header for set

values of these case flags

check_sign = i_pos (make sure input is positive)

check_sign = i_nonneg (make sure input is non-negative)

check_sign = i_neg (make sure input is negative)

check_sign = i_nonpos (make sure input is non-positive)

check_sign = i_nonzero (make sure input is non-zero)

check_sign = i_zero (make sure input is zero)

any other value of check_sign (esp. 0)

results in no check

check_sign

i_pos = 1;

i_nonneg = 2;

i_neg = -1;

i_nonpos = -2;

i_nonzero = 3;

i_zero = -3;

check_int : check to see if input is an integer

if = 1, then check to make sure input is an integer

any other value, perform no check

check_column : check to see if input is a column or row vector

check_column = i_column (make sure input is

column vector)

check_column = i_row (make sure input is row vector)

any other value, perform no check

check_column

i_column = 1;

i_row = -1;

if the dimension num_dim is set to zero, no check as to the dimension of the vector is made.

Kenneth Beers

Massachusetts Institute of Technology

Department of Chemical Engineering

7/2/2001

Version as of 7/21/2001

function [iflag_assert,message] = ...
assert_vector(...
i_error,value,name,func_name,num_dim, ...
check_real,check_sign,check_int,check_column);

First, set case values of check integer flags.
check_real
i_real = 1;
i_imag = -1;
check_sign
i_pos = 1;
i_nonneg = 2;
i_neg = -1;
i_nonpos = -2;
i_nonzero = 3;
i_zero = -3;
check_column
i_column = 1;
i_row = -1;

iflag_assert = 0;
message = 'false';

Check to make sure input is numerical and not a string.
if(~isnumeric(value))

message = [func_name, ': ', ...

name, 'is not numeric'];

iflag_assert = -1;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

Check to see if it is a vector of the proper length.
num_rows = size(value,1);
num_columns = size(value,2);
if it is a multidimensional array
if(length(size(value)) > 2)
message = [func_name, ': ', ...
name, 'has too many subscripts'];

iflag_assert = -2;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

if both the number of rows and number of columns are not equal to 1, then value is a matrix
instead of a vector.
if(and((num_rows ~= 1),(num_columns ~= 1)))

message = [func_name, ': ', ...

name, 'is not a vector'];

iflag_assert = -2;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

if the dimension of the vector is incorrect
if(num_dim ~= 0)

if(length(value) ~= num_dim)

message = [func_name, ': ', ...

name, 'is not of the proper length'];

iflag_assert = -2;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

end

check to make sure that the vector is of the correct type (e.g. column)
switch check_column;

case {i_column}
check to make sure that it is a column vector
if(num_columns > 1)

message = [func_name, ': ', ...

name, 'is not a column vector'];

iflag_assert = -2;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

case {i_row}

if(num_rows > 1)

message = [func_name, ': ', ...

name, 'is not a row vector'];

iflag_assert = -2;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

end

Then, check to see if all elements are of the proper complex type.
switch check_real;

case {i_real}
if any element of value is not real
if(any(~isreal(value)))

message = [func_name, ': ', ...

name, ' is not real'];

iflag_assert = -3;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

case {i_imag}

if any element of value is not purely imaginary
if(any(real(value)))

message = [func_name, ': ', ...

name, ' is not imaginary'];

iflag_assert = -3;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

end

Next, check sign.
switch check_sign;

case {i_pos}
if any element of value is not positive
if(any(value <= 0))

message = [func_name, ': ', ...

name, ' is not positive'];

iflag_assert = -4;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

case {i_nonneg}

if any element of value is negative
if(any(value < 0))

message = [func_name, ': ', ...

name, ' is not non-negative'];

iflag_assert = -4;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

case {i_neg}

if any element of value is not negative
if(any(value >= 0))

message = [func_name, ': ', ...

name, ' is not negative'];

iflag_assert = -4;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

case {i_nonpos}

if any element of value is positive
if(any(value > 0))

message = [func_name, ': ', ...

name, ' is not non-positive'];

iflag_assert = -4;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

case {i_nonzero}

if any element of value is zero
if(any(value == 0))

message = [func_name, ': ', ...

name, 'is not non-zero'];

iflag_assert = -4;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

case {i_zero}

if any element of value is non-zero
if(any(value ~= 0))

message = [func_name, ': ', ...

name, ' is not zero'];

iflag_assert = -4;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

end

Finally, check to make sure it is an integer.
if(check_int == 1)

if(any(round(value) ~= value))

message = [func_name, ': ', ...

name, ' is not an integer'];

iflag_assert = -5;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

end

set flag for succesful passing of all checks

iflag_assert = 1;
message = 'true';

return;

assert_matrix.m

function [iflag_assert,message] = assert_matrix(...

i_error,value,name,func_name, ...

num_rows,num_columns, ...

check_real,check_sign,check_int);

This m-file contains logical checks to assert than an input value is a matrix of a given type.

This function is passed the value and name of the variable, the name of the function making

the assertion, the dimension that the matrix is supposed to be, and four integer flags that

have the following usage :

i_error : controls what to do if test fails

if i_error is non-zero, then use error()

MATLAB command to stop execution, otherwise just return the appropriate negative number.

if i_error > 1, create file dump_error.mat

before calling error()

check_real : check to examine whether input is real see table after function header for set

values of these case flags

check_real = i_real (make sure that input is real)

check_real = i_imag (make sure that input is

purely imaginary)

any other value of check_real (esp. 0)

results in no check

check_real

i_real = 1;

i_imag = -1;

check_sign : check to examine sign of input

see table after function header for set

values of these case flags

check_sign = i_pos (make sure input is positive)

check_sign = i_nonneg (make sure input is non-negative)

check_sign = i_neg (make sure input is negative)

check_sign = i_nonpos (make sure input is non-positive)

check_sign = i_nonzero (make sure input is non-zero)

check_sign = i_zero (make sure input is zero)

any other value of check_sign (esp. 0)

results in no check

check_sign

i_pos = 1;

i_nonneg = 2;

i_neg = -1;

i_nonpos = -2;

i_nonzero = 3;

i_zero = -3;

check_int : check to see if input value is an integer

if = 1, then check to make sure input is an integer

any other value, perform no check

if the dimensions num_rows or num_columns

are set to zero, no check as to that dimension of the matrix is made.

Kenneth Beers

Massachusetts Institute of Technology

Department of Chemical Engineering

7/2/2001

Version as of 7/21/2001

function [iflag_assert,message] = assert_matrix(...
i_error,value,name,func_name, ...
num_rows,num_columns, ...
check_real,check_sign,check_int);

First, set case values of check integer flags.
check_real
i_real = 1;
i_imag = -1;
check_sign
i_pos = 1;
i_nonneg = 2;
i_neg = -1;
i_nonpos = -2;
i_nonzero = 3;
i_zero = -3;

iflag_assert = 0;
message = 'false';

Check to make sure input is numerical and not a string.
if(~isnumeric(value))

message = [func_name, ': ', ...

name, ' is not numeric'];

iflag_assert = -1;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

Check to see if it is a matrix of the proper length.
if it is a multidimensional array
if(length(size(value)) > 2)

message = [func_name, ': ', ...

name, ' has too many subscripts'];

iflag_assert = -2;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

check that value has the proper number of rows
if(num_rows ~= 0)

if(size(value,1) ~= num_rows)

message = [func_name, ': ', ...

name, ' has the wrong number of rows'];

iflag_assert = -2;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

end

check that value has the proper number of columns
if(num_columns ~= 0)

if(size(value,2) ~= num_columns)

message = [func_name, ': ', ...

name, ' has the wrong number of columns'];

iflag_assert = -2;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

end

Then, check to see if all elements are of the proper complex type.
switch check_real;

case {i_real}
if any element of value is not real
if(any(~isreal(value)))

message = [func_name, ': ', ...

name, ' is not real'];

iflag_assert = -3;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end
end

case {i_imag}
if any element of value is not purely imaginary
if(any(real(value)))

message = [func_name, ': ', ...

name, ' is not imaginary'];

iflag_assert = -3;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

end

Next, check sign.
switch check_sign;

case {i_pos}
if any element of value is not positive
if(any(value <= 0))

message = [func_name, ': ', ...

name, ' is not positive'];

iflag_assert = -4;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

case {i_nonneg}

if any element of value is negative
if(any(value < 0))

message = [func_name, ': ', ...

name, ' is not non-negative'];

iflag_assert = -4;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

case {i_neg}

if any element of value is not negative

if(any(value >= 0))

message = [func_name, ': ', ...

name, ' is not negative'];

iflag_assert = -4;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

case {i_nonpos}

if any element of value is positive
if(any(value > 0))

message = [func_name, ': ', ...

name, ' is not non-positive'];

iflag_assert = -4;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

case {i_nonzero}

if any element of value is zero
if(any(value == 0))

message = [func_name, ': ', ...

name, 'is not non-zero'];

iflag_assert = -4;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

case {i_zero}

if any element of value is non-zero
if(any(value ~= 0))

message = [func_name, ': ', ...

name, ' is not zero'];

iflag_assert = -4;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;
end
end
end

Finally, check to make sure it is an integer.
if(check_int == 1)

if(any(round(value) ~= value))

message = [func_name, ': ', ...

name, ' is not an integer'];

iflag_assert = -5;

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

end

set flag for succesful passing of all checks

iflag_assert = 1;
message = 'true';

return;

assert_structure.m

function [iflag_assert,message] = assert_structure(...

i_error,Struct,struct_name,func_name,StructType);

This MATLAB m-file performs assertions on a data structure. It makes use of assert_scalar,

assert_vector, and assert_matrix for the fields.

INPUT :

=======

i_error controls what to do if test fails

if i_error is non-zero, then use error()

MATLAB command to stop execution, otherwise just return the appropriate negative number.

if i_error > 1, then dump current state to dump_error.mat before calling error().

Struct This is the structure to be checked

struct_name the name of the structure

func_name the name of the function making the assertion

StructType this is a structure that contains the typing data for each field.

.num_fields is the total number of fields

Then, for i = 1,2, ..., StructType.num_fields, we have :

.field(i).name the name of the field

.field(i).is_numeric if non-zero, then field is numeric

.field(i).num_rows # of rows in field

.field(i).num_columns # of columns in field

.field(i).check_real value of check_real passed to assertion

.field(i).check_sign value of check_sign passed to assertion

.field(i).check_int value of check_int passed to assertion

OUTPUT :

=======

iflag_assert an integer flag telling of outcome message a message passed that describes the

result of making the assertion

Kenneth Beers

Massachusetts Institute of Technology

Department of Chemical Engineering

7/2/2001

Version as of 7/25/2001

function [iflag_assert,message] = assert_structure(...
i_error,Struct,struct_name,func_name,StructType);

iflag_assert = 0;
message = 'false';

first, check to make sure Struct is a structure
if(~isstruct(Struct))

iflag_assert = -1;

message = [func_name, ': ', struct_name, ...

' is not a structure'];

if(i_error ~= 0)

if(i_error > 1);

save dump_error.mat;

end

error(message);

else

return;

end

end

Now, for each field, perform the required assertion.
for ifield = 1:StructType.num_fields

set shortcut to current field type
FieldType = StructType.field(ifield);

check if it exists in Struct
if(~isfield(Struct,FieldType.name))

iflag_assert = -2;

message = [func_name, ': ', struct_name, ...

' does not contain ', FieldType.name];

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

extract value of field
value = getfield(Struct,FieldType.name);

if the field is supposed to be numeric
if(FieldType.is_numeric ~= 0)

check to make sure field is numeric
if(~isnumeric(value))

iflag_assert = -3;

message = [func_name, ': ', ...

struct_name, '.', FieldType.name, ...

' is not numeric'];

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

end

decide which assertion statement to use based on array dimension of field value
If both num_rows and num_columns are set equal to zero, then no check of the dimension of
this field is made.
if(and((FieldType.num_rows == 0), ...

(FieldType.num_columns == 0)))

message = [func_name, ': ', ...

struct_name,'.',FieldType.name, ...

' is not checked for dimension'];

if(i_error ~= 0)

disp(message);

end

else, peform check of dimension to make sure it is a scalar, vector, or matrix (i.e. a two
dimensional array).
else

check that is is not a multidimensional array
if(length(size(value)) > 2)

iflag_assert = -4;

message = [func_name, ': ', ...

struct_name,'.',FieldType.name, ...

' is multidimensional array'];

if(i_error ~= 0)

if(i_error > 1)

save dump_error.mat;

end

error(message);

else

return;

end

else if scalar
elseif(and((FieldType.num_rows == 1), ...
(FieldType.num_columns == 1)))
assert_scalar(i_error,value, ...
[struct_name,'.',FieldType.name], ...

func_name,FieldType.check_real, ...
FieldType.check_sign,FieldType.check_int);

else if a column vector
elseif (and((FieldType.num_rows > 1), ...

(FieldType.num_columns == 1)))

dim = FieldType.num_rows;

check_column = 1;

assert_vector(i_error,value, ...

[struct_name,'.',FieldType.name], ...

func_name,dim,FieldType.check_real, ...

FieldType.check_sign,FieldType.check_int, ...

check_column);

else if a row vector
elseif (and((FieldType.num_rows == 1), ...
(FieldType.num_columns > 1)))
dim = FieldType.num_columns;
check_column = -1;
assert_vector(i_error,value, ...
[struct_name,'.',FieldType.name], ...
func_name,dim,FieldType.check_real, ...
FieldType.check_sign,FieldType.check_int, ...
check_column);

otherwise, a matrix
else

assert_matrix(i_error,value, ...

[struct_name,'.',FieldType.name], ...

func_name, ...

FieldType.num_rows,FieldType.num_columns, ...

FieldType.check_real,FieldType.check_sign, ...

FieldType.check_int);

end selection of assertion routine
end if perform check of dimension
end if (FieldType.is_numeric ~= 0)
end for loop over fields

set return results for succesful assertion

iflag_assert = 1;
message = 'true';

return;

get_input_scalar.m

function value = get_input_scalar(prompt, ...

check_real,check_sign,check_int);

This MATLAB m-file gets from the user an input scalar value of the appropriate type. It asks

for input over and over again until a correctly typed input value is entered.

Department of Chemical Engineering

7/2/2001

Version as of 7/25/2001

function value = get_input_scalar(prompt, ...

check_real,check_sign,check_int);

func_name = 'get_input_scalar';

name = 'trial_value';

input_OK = 0;

while (input_OK ~= 1)

trial_value = input(prompt);

[iflag_assert,message] = ...

assert_scalar(0,trial_value, ...

name,func_name, ...

check_real,check_sign,check_int);

if(iflag_assert == 1)

input_OK = 1;

value = trial_value;

else

disp(message);

end

end

return;

Kenneth Beers

Massachusetts Institute of Technology

MATLAB Tutorial

Chapter 8. MATLAB compiler

The previous chapters have discussed programming within the MATLAB environment. It has
been noted that MATLAB is an interpreted language, meaning that each command is converted
to machine-level instructions one-by-one during execution. While this allows one to program in
both interactive and batch mode, the extra overhead required to convert the commands at
run-time is not desired. Also, any programs written in MATLAB can only be run on computers
that have a copy of MATLAB, so portability is limited. MATLAB includes an optional compiler to
circumvent these problems by converting m-files to C or C++ code, and optionally linking this
code with its mathematics and graphics libraries to produce a stand-alone executable that may
be run, without the interpretation overhead, on any machine with a compatible operating
system platform. In this section, we demonstrate the MATLAB compiler to produce a stand-
alone executable from the simple example of section 6.4. Note that the program containing
the main program has been rewritten from the previous script file version since the MATLAB
compiler only works with function m-files. The first file, a script file called make_file.m, is
executed from the interactive prompt to perform the compilation; alternatively, the command
mcc ... can be entered manually.

make_file.m

This MATLAB script m-file calls the compiler to convert the MATLAB source code files for

make_plot_trig to C, link the object files with the MATLAB graphics library, and then produce a

stand-alone executable.

Kenneth Beers

Massachusetts Institute of Technology

Department of Chemical Engineering

7/31/2001

mcc -B sgl ...
make_plot_trig ...
plot_trig_1 ...
trig_func_1 ...
get_input_scalar ...
assert_scalar

make_plot_trig.m (main program file)

make_plot_trig.m

This MATLAB m-file makes a plot of the general function

f(x) = a*sin(x) + b*cos(x)

for user-selected values of a and b.

Kenneth Beers

Massachusetts Institute of Technology

Department of Chemical Engineering

7/31/2001

function iflag_main = make_plot_trig();

iflag_main = 0; signifies no completion

disp('RUNNING make_plot_trig ...');

disp(' ');

disp('This program produces a plot in [0,2*pi]');

disp('of the function : ');

disp('f(x) = a*sin(x) + b*cos(x)');

disp('for user-input values of the real scalars a and b');

disp(' ');

The following code asks the user to input values of a and b, and then uses plot_trig to plot
trig_func_1 by including the function name as an argument in the list.

prompt = 'Input a : ';

check_real=1; check_sign=0; check_int=0;

a = get_input_scalar(prompt, ...

check_real,check_sign,check_int);

prompt = 'Input b : ';

check_real=1; check_sign=0; check_int=0;

b = get_input_scalar(prompt, ...

check_real,check_sign,check_int);

We now call the routine that produces the plot.
func_name = 'trig_func_1';
plot_trig_1(func_name,a,b);

We now require the user to strike a key before exiting the program.
pause

iflag_main = 1;

return;

plot_trig_1.m

function iflag = plot_trig_1(func_name,a,b);

iflag = 0; signifies no completion

First, create an x vector from 0 to 2*pi
num_pts = 100;
x = linspace(0,2*pi,num_pts);

Next, make a vector of the function values. We evaluate the argument function indirectly
using the "feval" command.
f = linspace(0,0,num_pts);
for i=1:num_pts
f(i) = feval(func_name,x(i),a,b);
end

Then, we make the plot.
figure;

plot(x,f);

xlabel('Angle (radians)');

ylabel('Function value');

return;

trig_func_1.m

function f_val = trig_func_1(x,a,b);
f_val = a*sin(x) + b*cos(x);

return;

	MATLAB Tutorial
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8

