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The Nature of Scientific Computing 

This course focuses on the use of computers to solve problems in chemical engineering.  We 
will learn how to solve the partial differential equations that describe momentum, energy, and 
mass transfer, integrate the ordinary differential equations that model a chemical reactor, and 
simulate the dynamics and predict the minimum-energy structures of molecules.  These 
problems are expressed in terms of mathematical operations such as partial differentiation and 
integration that computers do not understand.  All that they know how to do is store numbers 
at locations in their memory and perform simple operations on them like addition, subtraction, 
multiplication, division, and exponentiation.  Somehow, we need to translate our higher-level 
mathematical description of these problems into a sequence of these basic operations. 

It is logical to develop simulation algorithms that decompose each problem into sets of linear 
equations of the following form. 

a11* x1+ a12*x2 + ... + a1n*xn = b1 

a21*x1 + a22*x2 + ... + a2n*xn = b2 

. 

. 

. 

an1*x1 + an2*x2 + ... + ann*xn = bn 

A computer understands how to do the operations found in this system (multiplication and 
addition), and we can represent this set of equations very generally by the matrix equation Ax 
= b, where A={aij} is the matrix of coefficients on the left hand side, x is the solution vector, 
and b is the vector of the coefficients on the right hand side.  This general representation 
allows us to pass along, in a consistent language, our system-specific linear equation sets to 
pre written algorithms that have been optimized to solve them very efficiently.  This saves us 
the effort of coding a linear solver every time we write a new program.  This method of 
relegating repetitive tasks to re-usable, pre written subroutines makes the idea of using a 
computer to solve complex technical problems feasible.  It also allows us to take advantage of 
the decades of applied mathematics research that have gone into developing efficient 
numerical algorithms.  Scientific programs typically involve problem-specific sections that 
perform the parameter input and results output, phrase the problem into a series of linear 
algebraic systems, and then the program spends most of its execution time solving these 
linear systems.  This course focuses primarily on understanding the theory and concepts 
fundamental to scientific computing, but we also need to know how to translate these 
concepts into working programs and to combine our problem-specific code with pre written 
routines that efficiently perform the desired numerical operations. 
So, how do we instruct the computer to solve our specific problem?  At a basic level, all a 
computer does is follow instructions that tell it to retrieve numbers from specified memory 



locations, perform some simple algebraic operations on them, and store them in some 
(possibly new) places in memory.  Rather than force computer users to deal with details like 
memory addresses or the passing of data from memory to the CPU, computer scientists 
develop for each type of computer a program called a compiler that translates ãhuman-levelä 
code into the set of detailed machine-level instructions (contained in an executable file) that 
the computer will perform to accomplish the task.  Using a compiler, it is easy to write code 
that tells a computer to do the following : 

1. Find a space in memory to store a real number x 
2. Find a space in memory to store a real number y 
3. Find a space in memory to store a real number z 
4. Set the value of x to 2 
5. Set the value of y to 4 
6.	 Set the value stored at the location z to equal 2*x + 3*y, where the symbol * denotes 

multiplication 

In FORTRAN, the first modern scientific programming language that, in modified form -
commonly FORTRAN 77, is still in wide use today, you can accomplish these tasks by writing 
the code : 

REAL x, y, z

x = 2

y = 4

z = 2*x + 3*y


By itself, however, this code performs the desired task, but does not provide any means for 
the user to view the results.  A full FORTRAN program to perform the task and write the result 
to the screen is : 

IMPLICIT NONE

REAL x, y, z

x = 2

y = 4

z = 2*x + 3*y

PRINT *, 'z = ',z

END


When this code is compiled with a FORTRAN 77 compiler, the output to the screen from 
running the executable is : z = 16.0000.  Compiled programming languages allow only the 
simple output of text, numbers, and binary data, so any graphing of results must be 
performed by a separate program.  In practice, this requirement of writing the code, storing 
the output in a file with the appropriate format, and reading this file into a separate graphing 
or analysis program leads one to use for small projects "canned" software such as EXCEL that 
are ill-suited for technical computing; after all, EXCEL is intended for business spreadsheets! 

Other compiled programming languages exist, most being more powerful than FORTRAN 77, a 
legacy of the past that is retained mostly due to the existence of highly efficient numerical 
routines written in the language.  While FORTRAN 77 lacks the functionality of more modern 
languages, in terms of execution speed it usually has the advantage.  In the 80's and 90's, C 
and C++ became highly popular within the broader computer science community because 
they allow one to organize and structure data more conveniently and to write highly-modular 
code for large programs.  C and C++ have never gained the same level of popularity within 
the scientific computing community, mainly because their implementation has been focused 
more towards robustness and generality with less regard for execution speed.  Many scientific 
programs have comparatively simple structures so that execution speed is the primary 
concern.  This situation is changing somewhat today; however, the introduction of FORTRAN 
90 and its update FORTRAN 95 have given the FORTRAN language a new lease on life. 



FORTRAN 90/95 includes many of the data structuring capabilities of C/C++, but was written 
with a technical audience in mind.  It is the language of choice for parallel scientific 
computing, in which tasks are parceled during execution to one or more CPU's.  With the 
growing popularity of dual processor workstations and BEOWOLF-type clusters, FORTRAN 
90/95 and variants such as High Performance Fortran remain my personal compiled language 
of choice for heavy-duty scientific computing. 

Then why does this course use MATLAB instead of FORTRAN 90?  FORTRAN 90 is my choice 
among compiled languages; however, for ease of use, MATLAB, an interpreted language, is 
better for small to medium jobs.  In compiled languages, the "human-level" commands are 
converted directly to machine instructions that are stored in an executable file.  Run-time 
execution of the commands does not take place until all of the compilation process has been 
completed (run-time debugging not excepted).  In a compiled language, one needs to learn 
the commands for the input/output of data (from the keyboard, to the screen, to/from files) 
and for naming variables and allocating space for them in memory (like the command real in 
FORTRAN). Compiled languages are developed with the principle that the language should 
have a minimum amount of commands and syntax, so that any task that may be 
accomplished by a sequence of more basic instructions is not incorporated into the language 
definition but is rather left to a subroutine.  Subroutine libraries have been written by the 
applied mathematics community to perform common numerical operations (e.g. BLAS and 
LAPACK), but to access them you need to link your code to them through operating system-
specific commands.  While not conceptually difficult, the overhead is not insignificant for small 
projects. 

In an interpreted language, the developers of the language have already written and compiled 
a master program, in our case the program MATLAB, that will interpret our commands to the 
computer ãon-the-flyä.  When we run MATLAB, we are offered a window in which we can type 
commands to perform mathematical calculations.  This code is then interpreted line-by-line 
(by machine-level instructions) into other machine-level instructions that actually carry out the 
computations that we have requested.  Because MATLAB has to interpret each command one-
by-one, we will require more machine-level instructions to perform a certain job that we would 
with a compiled language.  For demanding numerical simulations, where we need to use the 
resources of a computer as efficiently as possible, compiled languages are therefore superior. 

Using an interpreted language has the benefit; however, that we do not need to compile the 
code before-hand.  We can therefore type in our commands one-by-one and watch them be 
performed (this is very helpful for finding errors).  We do not need to link our code to 
subroutine libraries, since MATLAB, being pre compiled, has all the machine-level instructions 
it needs readily at-hand.  FORTRAN 77/90/95, C, and C++ cannot make graphs, so if we want 
to plot the results from our program, we need to write data to an output file that we use as 
input to yet another graphics program.  By contrast, the MATLAB programmers have already 
provided graphics routines and compiled them along with the MATLAB code interpreter, so we 
do not need this additional data transfer step.  An interpreted language can provide efficient 
and complex memory management utilities that, by operating behind a curtain, shield the 
programmer from having to learn their complicated syntax of usage.  New variables can 
therefore be created with dynamic memory allocation without requiring the user to understand 
pointers (variables that point to memory locations), as is required in most compiled 
languages.  Finally, since MATLAB was not developed with the principle of minimum command 
syntax, it contains a rich collection of integrated numerical operations.  Some of these routines 
are designed to solve linear problems very efficiently.  Others operate at a higher level, for 
example taking as input a function f(x) and returning the point x0 that has f(x0)=0, or 
integrating the ordinary differential equation dx/dt = f(x) starting from a value of x at t=0. 

For these reasons, one can code more efficiently in interpreted languages than in compiled 
languages (McConnell, Steve, Code Complete, Microsoft Press, 1993 and Jones, Capers, 
Programming Productivity, McGraw-Hill, 1986), at the cost of slower execution due to the 
extra interpreting step for each command.  But, we have noted before that execution speed is 
an important consideration in scientific computing, so is this acceptable?  MATLAB has several 
features to alleviate this situation.  Whenever MATLAB first runs a subroutine, it saves the 



results of the interpreting process so that successive calls do not have to repeat this work. 
Additionally, one can reduce the interpretation overhead by minimizing the number of 
command lines, a practice which incidentally leads to good programming style for FORTRAN 
90/95.  As an example, let us take the operation of multiplying a M by N matrix A with an N by 
P matrix B to form a M by P matrix C.  In FORTRAN 77 we would first have to declare and 
allocate memory to store the A, B, and C matrices (as well as the counter integers i_row, 
i_col, and i_mid), and then, perhaps in a subroutine, execute the code : 

DO i_row = 1, M 
DO i_col = 1, N 

C(i_row,i_col) = 0.0 
DO i_mid = 1, P 

C(i_row,i_col) = C(i_row,i_col) + A(i_row,i_mid)*B(i_mid,i_col) 
ENDDO 

ENDDO 
ENDDO 

If we simply translated each line, one-by-one, from FORTRAN 77 to MATLAB, we would have 
the code segment : 

for i_row = 1:M 
for i_col = 1:N 

C(i_row,i_col) = 0; 
for i_mid = 1:P 

C(i_row,i_col) = C(i_row,i_col) + A(i_row,i_mid)*B(i_mid,i_col); 
end 

end 
end 

This code performs the task in exactly the same manner as FORTRAN 77, but now each line 
must be interpreted one-by-one, adding a considerable overhead.  It would seem that we 
would be better off with FORTRAN 77; however, in MATLAB the language is extended to allow 
matrix operations so that we could accomplish the same task with the single command : C = 
A*B.  We would not even have to pre allocate memory to store C, this would be automatically 
handled by MATLAB.  The MATLAB approach is greatly to be preferred, and not only because it 
accomplishes the same task with less typing (and chance for error!).  The FORTRAN 77 code, 
relying on basic scalar addition and multiplication operations, is not very easy to parallelize.  It 
instructs the computer to perform the matrix multiplication with an exact order of events that 
the computer is constrained to follow.  The single command C = A*B requests the same task, 
but leaves the computer free to decide how to accomplish it in the most efficient manner, for 
example, by splitting the problem across multiple processors.  One of the main advantages of 
FORTRAN 90/95 over FORTRAN 77 is that it also allows these whole array operations (the 
corresponding FORTRAN 90/95 code is C = MATMUL(A,B)), so that writing fast MATLAB code 
rewards the same programming style as does FORTRAN 90/95 for producing code that is easy 
to parallelize. 

MATLAB also comes with an optional compiler that converts MATLAB code to C or C++ and 
that can compile this code to produce a stand-alone executable.  We therefore can enjoy the 
ease of programming in an interpreted language, and then once the program development is 
complete, we can take advantage of the efficient execution and portability offered by compiled 
languages.  Alternatively, given the tools of the compiler, we can combine MATLAB code and 
numerical routines with FORTRAN or C/C++ code.  Given these advantages, MATLAB seems a 
strong choice of language for an introductory course in scientific computing. 

MATLAB Tutorial Table of Contents 

This tutorial is presented with a separate webpage for each chapter.  The commands listed in 
the tutorial are explained with comment lines starting with the percentage sign %.  These 



commands may either be typed or pasted one-by-one into an interactive MATLAB window. 
Further information about a specific command can be obtained by typing help followed by the 
name of the command.  Typing helpwin brings up a general help utility, and helpdesk provides 
links to extensive on-line documentation.  For further details, consult the texts found in the 
Recommended Reading section of the 10.34 homepage. 



MATLAB Tutorial 

Chapter 1. Basic MATLAB commands 
1.1 Basic scalar operations 

First, let's talk about how we add comments (such as this line) to a program. Comments are 
lines of text that we want to add to explain what we are doing, so that if we or others read 
this code later, it will be easier to figure out what the code is doing. In a MATLAB file, if a 
percentage sign, , appears in a row of text, all of the text following the sign is a comment that 
MATLAB does not try to interpret as a command. First, let us write a message to the screen to 
say that we are beginning to run section 1.1. 

The command disp('string') displays the text string to the screen. 
disp('Beginning section 1.1 ...') 

Next, we set a variable equal to one. 
x=1 

This command both allocates a space in memory for the variable x, if x has not already been 

declared, and then stores the value of 1 in the memory location associated with this variable. 

It also writes to the screen "x = 1". Usually, we do not want to clutter the screen with output 

such as this, so we can make the command "invisible" by ending it with a semi-colon. As an 

example, let us use the following commands to "invisibly" change the value of x to 2 and then 

to write out the results to the screen. x=2; this changes the value of x but does not write to 

the screen disp('We have changed the value of x.'); 


Then, we display the value of x by typing "x" without a semi-colon. 


Now, let's see how to declare other variables. 

y = 2*x; This initializes the value of y to twice that of x 

x = x + 1; This increases the value of x by 1. 

z = 2*x; This declares another variable z. 


z does not equal y because the value of x changed between the 

times when we declared each variable. 

difference = z - y 

Next, we want to see the list of variables that are stored in memory. To do this, we use the 
command "who". 
who; 

We can get more information by using "whos". 
whos; 

These commands can be used also to get information about only certain variables. 
whos z difference; 

Let us say we want to get rid of the variable "difference". 
We do this using the command "clear". 
clear difference; 
who; 

Next, we want to get rid of the variables x and y. 
Again, we use the command "clear". 

x 



clear x y; 
who; 

It is generally good programming style to write only one command per line; however, MATLAB 
does let you put multiple commands on a line. 
x = 5; y = 13; w = 2*x + y; who; 

More commonly one wishes to continue a single command across multiple lines due to the 
length of the syntax. This can be accomplished by using three dots. 
z = 2*x + ... 
y 

Finally, when using clear we can get rid of all of the variables at once with the command "clear 

all". 

clear all;

who; It does not print out anything because there are no variables. 


1.2. Basic vector operations 

The simplest, but NOT RECOMMENDED, way to declare a variable is by entering the 
components one-by-one. 
x(1) = 1; 

x(2) = 4; 

x(3) = 6; 

x display contents of x 


It is generally better to declare a vector all at once, because then MATLAB knows how much 
memory it needs to allocate from the start. For large vectors, this is much more efficient. 
y = [1 4 6] does same job as code above 

Note that this declares a row vector. To get a column vector, we can either use the transpose 
(adjoint for complex x) operator xT = x'; takes the transpose of the real row vector x or, we 
can make it a column vector right from the beginning 
yT = [1; 4; 6]; 

To see the difference in the dimensions of a row vs. a column vector, use the command "size" 
that returns the dimensions of a vector or matrix. 
size(xT) 
size(y) 
size(yT) 
The command length works on both row and column vectors. 
length(x), length(xT) 

Adding or subtracting two vectors is similar to scalars. 
z = x + y 
w = xT - yT 

Multiplying a vector by a scalar is equally straight-forward. 
v = 2*x 
c = 4; 
v2 = c*x 

We can also use the . operator to tell MATLAB to perform a given operation on an element-by-
element basis. Let us say we want to set each value of y such that y(i) = 2*x(i) + z(i)^2 + 1. 
We can do this using the code 
y = 2.*x + z.^2 + 1 



The dot and cross products of two vectors are calculated by 
dot(x,y) 
z=cross(x,y) 

We can define a vector also using the notation [a : d : b]. This produces a vector a, a + d, a + 
2*d, a + 3*d, ... until we get to an integer n where a + n*d > b. Look at the two examples. 
v = [0 : 0.1: 0.5]; 
v2 = [0 : 0.1: 0.49]; 

If we want a vector with N evenly spaced points from a to b, we use the command 
"linspace(a,b,N)". 
v2 = linspace(0,1,5) 

Sometimes, we will use a vector later in the program, but want to initialize it at the beginning 
to zero and by so doing allocate a block of memory to store it. This is done by 
v = linspace(0,0,100)'; allocate memory for column vectors of zero 

Finally, we can use integer counting variables to access one or more elements of a matrix. 
v2 = [0 : 0.01 : 100]; 
c=v2(49) 
w = v2(65:70) 

clear all 

1.3. Basic matrix operations 

We can declare a matrix and give it a value directly. 
A = [1 2 3; 4 5 6; 7 8 9] 
We can use commas to separate the elements on a line as well. 
B = [1,2,3; 4,5,6; 7,8,9] 

We can build a matrix from row vectors 
row1 = [1 2 3]; row2 = [4 5 6]; row3 = [7 8 9]; 
C = [row1; row2; row3] 

or from column vectors. 
column1 = [1; 4; 7]; 

column2 = [2; 5; 8]; 

column3 = [3; 6; 9]; 

D = [column1 column2 column3] 


Several matrices can be joined to create a larger one. 
M = [A B; C D] 

We can extract row or column vectors from a matrix. 
row1 = C(1,:) 
column2 = D(:,2) 

Or, we make a vector or another matrix by extracting a subset of the elements. 
v = M(1:4,1) 
w = M(2,2:4) 
C = M(1:4,2:5) 



The transpose of a real matrix is obtained using the ' operator 
D = A' 
C, C' 

For a complex matrix, ' returns the adjoint (transpose and conjugate. The conjugation 
operation is removed by using the "transpose only" command .' 
E = D; 

E(1,2) = E(1,2) + 3*i; 

E(2,1) = E(2,1) - 2*i; 

E', E.' 


The "who" command lists the matrices in addition to scalar and vector variables. 
who 

If in addition we want to see the dimensions of each variable, we use the "whos" command. 
This tells use the size of each variable and the amount of memory storage that each requires. 
whos 

The command "size" tells us the size of a matrix. 
M = [1 2 3 4; 5 6 7 8; 9 10 11 12]; 

size(M) 

num_rows = size(M,1) 

num_columns = size(M,2) 


Adding, subtracting, and multiplying matrices is straight-forward. 
D = A + B 
D = A - B 
D = A*B 

We can declare matrices in a number of ways. 

We can create a matrix with m rows and n columns, all containing zeros by 
m=3; n=4; 
C = zeros(m,n) 

If we want to make an N by N square matrix, we only need to use one index. 
C = zeros(n) 

We create an Identity matrix, where all elements are zero except for those on the principle 
diagonal, which are one. 
D = eye(5) 

Finally, we can use the . operator to perform element-by-element operations just as we did for 
vectors. The following command creates a matrix C, such that C(i,j) = 2*A(i,j) + (B(i,j))^2. 
C = 2.*A + B.^2 

Matrices are cleared from memory along with all other variables. 
clear A B 
whos 
clear all 
who 



In MATLAB, when we print out the results, we often want to explain the output with text. For 
this, character strings are useful. In MATLAB, a character string is written with single 
quotation marks on each end. 
course_name = 'Numerical Methods Applied to Chemical Engineering' 

To put an apostrophe inside a string, we repeat it twice to avoid confusing it with the ' 
operator ending the string. 
phrase2 = 'Course''s name is : '; 
disp(phrase2), disp(course_name) 

We can also combine strings in a similar manner to working with vectors and matrices of 
numbers. 
word1 = 'Numerical'; word2 = 'Methods'; word3='Course'; 
phrase3 = [word1, word2, word3] 

We see that this does not include spaces, so we use instead 
phrase4 = [word1, ' ', word2, ' ', word3] 

We can convert an integer to a string using the command "int2str". 
icount = 1234; 

phrase5 = ['Value of icount = ', int2str(icount)] 


Likewise, we can convert a floating point number of a string of k digits using 
"num2str(number,k)". 
Temp = 29.34372820092983674; 

phrase6 = ['Temperature = ',num2str(Temp,5)] 

phrase7 = ['Temperature = ',num2str(Temp,10)] 


clear all 


1.5. Basic mathematical operations 

EXPONENTIATION COMMANDS 

We have already seen how to add, subtract, and multiply numbers. We have also used on 

occasion the ^ operator where x^y raises x to the power y. 

2^3, 2^3.3, 2.3^3.3, 2.3^(1/3.3), 2.3^(-1/3.3) 

The square root operation is given its own name. 
sqrt(27), sqrt(37.4) 

Operators for use in analyzing the signs of numbers include 

abs(2.3), abs(-2.3) returns absolute value of a number 

sign(2.3), sign(-2.3), sign(0) returns sign of a number 


The commands for taking exponents and logs are 

a=exp(2.3) computes e^x 

log(a) computer the natural log 

log10(a) computes the base 10 log 


TRIGONOMERTRY COMMANDS 


The numerical value of pi can be invoked directly 

pi, 2*pi 

NOTE THAT MATLAB CALCULATES ANGLES IN RADIANS 

1.4. Using character strings 1.4. Using character strings 

1.4. Using character strings 



The standard trigonometric functions are 
sin(0), sin(pi/2), sin(pi), sin(3*pi/2) 
cos(0), cos(pi/2), cos(pi), cos(3*pi/2) 
tan(pi/4), cot(pi/4), sec(pi/4), csc(pi/4) 

Their inverses are 
asin(1),acos(1),atan(1),acot(1),asec(1),acsc(1) 

The hyperbolic functions are 
sinh(pi/4), cosh(pi/4), tanh(pi/4), coth(pi/4) 
sech(pi/4), csch(pi/4) 
with inverses 
asinh(0.5), acosh(0.5), atanh(0.5), acoth(0.5) 
asech(0.5), acsch(0.5) 

These operators can be used with vectors in the following manner. 
x=linspace(0,pi,6) create vector of x values between 0 and pi 
y=sin(x) each y(i) = sin(x(i)) 

ROUNDING OPERATIONS 

round(x) : returns integer closest to real number x 
round(1.1), round(1.8) 

fix(x) : returns integer closest to x in direction towards 0 
fix(-3.1), fix(-2.9), fix(2.9), fix(3.1) 

floor(x) : returns closest integer less than or equal to x 
floor(-3.1), floor(-2.9), floor(2.9), floor(3.1) 

ceil(x) : returns closest integer greater than or equal to x 
ceil(-3.1), ceil(-2.9), ceil(2.9), ceil(3.1) 

rem(x,y) : returns the remainder of the integer division x/y 
rem(3,2), rem(898,37), rem(27,3) 

mod(x,y) : calculates the modulus, the remainder from real division 
mod(28.36,2.3) 

COMPLEX NUMBERS 


A complex number is declared using i (or j) for the square root of -1. 

z = 3.1-4.3*i 

conj(z) returns conjugate, conj(a+ib) = a - ib 

real(z) returns real part of z, real(a+ib) = a 

imag(z) returns imaginary part of z, imag(a+ib) = b 

abs(z) returns absolute value (modulus), a^2+b^2 

angle(z) returns phase angle theta with z = r*exp(i*theta) 

abs(z)*exp(i*angle(z)) returns z 


For complex matrices, the operator ' calculates the adjoint matrix, i.e. it transposes the matrix 

and takes the conjugate of each element 

A = [1+i, 2+2*i; 3+3*i, 4+4*i] 

A' takes conjugate transpose (adjoint operation) 

A.' takes transpose without conjugating elements 




COORDINATE TRANSFORMATIONS 

2-D polar coordinates (theta,r) are related to Cartesian coordinates by 
x=1; y=1; 

[theta,r] = cart2pol(x,y) 

[x,y] = pol2cart(theta,r) 


3-D spherical coordinates (alpha,theta,r) are obtained from Cartesian coordinates by 
x=1; y=1; z=1;

[alpha,theta,r] = cart2sph(x,y,z) 

[x,y,z] = sph2cart(alpha,theta,r) 


clear all 




MATLAB Tutorial 

Chapter 2. Programming Structures 
2.1. for loops 

Programs for numerical simulation often involve repeating a set of commands many times. In 

MATLAB, we instruct the computer to repeat a block of code by using a for loop. A simple 

example of a for loop is for i=1:10 repeats code for i=1,2,...,10 

i print out the value of the loop counter end This ends the section of code that is repeated. 


The counter can be incremented by values other than +1. 

for i=1:2:10 
disp(i); 
end 

This example shows that the counter variables takes on the values 1, 3, 5, 7, 9. After 9, the 
code next tries i=11, but as 11 is greater than 10 (is not less than or equal to 10) it does not 
perform the code for this iteration, and instead exits the for loop. 
for i=10:-1:1 

disp(i); 

end 


As the value of the counter integer is changed from one iteration to the next, a common use 

of for blocks is to perform a given set of operations on different elements of a vector or a 

matrix. This use of for loops is demonstrated in the example below. 


Complex structures can be made by nesting for loops within one another. The nested for loop 

structure below multiplies an (m x p) matrix with a (p x n) matrix. 

A = [1 2 3 4; 11 12 13 14; 21 22 23 24]; A is 3 x 4 matrix 

B = [1 2 3; 11 12 13; 21 22 23; 31 32 33]; B is 4 x 3 matrix 

im = size(A,1); m is number of rows of A 

ip = size(A,2); p is number of columns of A 

in = size(B,2); n is number of columns of B 

C = zeros(im,in); allocate memory for m x n matrix containing 0's 


now we multiply the matrices 

for i=1:im iterate over each row of C 

for j=1:in iterate over each element in row 

for k=1:ip sum over elements to calculate C(i,j) 

C(i,j) = C(i,j) + A(i,k)*B(k,j); 

end 

end 

end 

C print out results of code 

A*B MATLAB's routine does the same thing 


clear all 

2.2. if, case structures and relational operators 

In writing programs, we often need to make decisions based on the values of variables in 
memory. This requires logical operators, for example to discern when two numbers are equal. 
Common relational operators in MATLAB are : eq(a,b) returns 1 if a is equal to b, otherwise it 
returns 0 



eq(1,2), eq(1,1) 
eq(8.7,8.7), eq(8.7,8.71) 

When used with vectors or matrices, eq(a,b) returns an array of the same size as a and b with 
elements of zero where a is not equal b and ones where a equals b. This usage is 
demonstrated for the examples below. 
u = [1 2 3]; w = [4 5 6]; v = [1 2 3]; z = [1 4 3]; 

eq(u,w), eq(u,v), eq(u,z) 

A = [1 2 3; 4 5 6; 7 8 9]; B = [1 4 3; 5 5 6; 7 9 9]; 

eq(A,B) 

this operation can also be called using == 
(1 == 2), (1 == 1), (8.7 == 8.7), (8.7 == 8.71) 

ne(a,b) returns 1 if a is not equal to b, otherwise it returns 0 
ne(1,2), ne(1,1) 
ne(8.7,8.7), ne(8.7,8.71) 
ne(u,w), ne(u,v), ne(u,z) 
ne(A,B) 
another way of calling this operation is to use ~= 
(1 ~= 2), (1 ~= 1), (8.7 ~= 8.7), (8.7 ~= 8.71) 

lt(a,b) returns 1 if a is less than b, otherwise it returns 0 
lt(1,2), lt(2,1), lt(1,1) 

lt(8.7,8.71), lt(8.71,8.7), lt(8.7,8.7) 

another way of performing this operation is to use < 
(1 < 2), (1 < 1), (2 < 1) 

le(a,b) returns 1 if a is less than or equal to b, otherwise 0 
le(1,2), le(2,1), le(1,1) 

le(8.7,8.71), le(8.71,8.7), le(8.7,8.7) 

this operation is also performed using <= 
(1 <= 1), (1 <= 2), (2 <= 1) 

gt(a,b) returns 1 if a is greater than b, otherwise 0 
gt(1,2), gt(2,1), gt(1,1) 

gt(8.7,8.71), gt(8.71,8.7), gt(8.7,8.7)

this operation is also performed using > 
(1 > 2), (1 > 1), (2 > 1) 

ge(a,b) returns 1 if a is greater than or equal to b, otherwise 0 
ge(1,2), ge(2,1), ge(1,1) 
ge(8.7,8.71), ge(8.71,8.7), ge(8.7,8.7) 
this operation is also performed using >= 
(1 >= 1), (1 >= 2), (2 >= 1) 

These operations can be combined to perform more complex logical tests. 

(logic1)&(logic2) returns 0 unless both logic1 and logic2 are not equal to zero 
((1==1)&(8.7==8.7)) 

((1==2)&(8.7==8.7)) 

((1>2)&(8.71>8.7)) 

((1<2)&(8.7<8.71)) 

((1>2)&(8.7>8.71)) 

i1 = 1; i2 = 0; i3=-1; 

(i1 & i1), (i1 & i2), (i2 & i1), (i2 & i2), (i1 & i3) 

((1==1)&(8.7==8.7)&(1<2)) 

((1==1)&(8.7==8.7)&(1>2)) 




This operation can be extended to multiple operations more easily by using the command 
all(vector1), that returns 1 if all of the elements of vector1 are nonzero, otherwise it returns 0 
all([i1 i2 i3]), all([i1 i1 i3]) 

or(logic1,logic2) returns 1 if one of either logic1 or logic2 is not equal to zero or if they are 
both unequal to zero. 
or(i1,i2), or(i1,i3), or(i2,i2) 
This operation can be extended to more than two logical variables using the command 
any(vector1), that returns 1 if any of the elements of vector1 are nonzero, otherwise it returns 
0. 

any([i1 i2 i3]), any([i2 i2 i2]), any([i1 i2 i2 i2]), 


Used less often in scientific computing is the exclusive or construction xor(logic1,logic2) that 
returns 1 only if one of logic1 or logic2 is nonzero, but not both. 
xor(i1,i1), xor(i2,i2), xor(i1,i2) 

We use these relational operations to decide whether to perform a block of code using an if 
structure that has the general form. 
logictest1 = 0; logictest2 = 1; logictest3 = 0; 

if(logictest1) 

disp('Executing block 1'); 

elseif(logictest2) 

disp('Executing block 2'); 

elseif(logictest3) 

disp('Executing block 3'); 

else 

disp('Execute end block');

end 


The last block of code is executed if none of the ones before it has been performed. 
logictest1 = 0; logictest2 = 0; logictest3 = 0; 

if(logictest1) 

disp('Executing block 1'); 

elseif(logictest2) 

disp('Executing block 2'); 

elseif(logictest3) 

disp('Executing block 3'); 

else 

disp('Execute end block'); 

end 


An if loop will not execute more than one block of code. If more than one logictest variable is 
not equal to zero, then the first one it encounters is the one it performs. 
logictest1 = 0; logictest2 = 1; logictest3 = 1; 

if(logictest1) 

disp('Executing block 1'); 

elseif(logictest2) 

disp('Executing block 2'); 

elseif(logictest3) 

disp('Executing block 3'); 

else 

disp('Execute end block'); 

end 


If structures are often used in conjunction with for loops. For example, the following routine 
adds the components of a vector to the principal diagonal of a matrix that is the sum of two 
matrices A and B. 



A = [1 2 3; 4 5 6; 7 8 9]; 

B = [11 12 13; 14 15 16; 17 18 19]; 

u = [10 10 10]; 

C=zeros(3); 

for i=1:3 

for j=1:3 

if(i==j) 

C(i,j) = A(i,j) + B(i,j) + u(i); 

else 

C(i,j) = A(i,j) + B(i,j); 

end 

end 

end 


As an alternative to if blocks, case structures can be used to chose among various 
alternatives. 
for i=1:4 

switch i; 

case {1} 

disp('i is one'); 

case {2} 

disp('i is two'); 

case {3} 

disp('i is three'); 

otherwise 

disp('i is not one, two, or three'); 

end 

end 


clear all 


2.3. while loops and control statements 

A WHILE loops performs a block of code as long as the logical test expression returns a non-
zero value. 
error = 283.4; 

tol = 1; 

factor = 0.9; 

while (error > tol) 

error = factor*error; 

disp(error) 

end


If factor >= 1, then the value of error will increase and the while loop will not terminate. A 
better way, in general, to accomplish the job above is to use a for loop to place an upper limit 
to the number of iterations that will be performed. A "break" command stops the iteration of 
the most deeply nested for loop and is called when the condition (error < tol) is reached. 
error = 283.4; 

tol = 1; 

factor = 0.9; 

iter_max = 10000; 

iflag = 0; signifies goal not reached 

for iter=1:iter_max 

if(error <= tol) 

iflag = 1; signifies goal reached 

break; 

end 




error = factor*error; 

disp(error) 

end 

if(iflag==0) write message saying that goal not reached. 

disp('Goal not reached'); 

disp(['error = ' num2str(error)]); 

disp(['tol = ',num2str(tol)]); 

end 


clear all 


2.4. screen input/output 

In MATLAB, the basic command to write output to the screen is "disp". 
disp('The disp command writes a character string to the screen.'); 

When writing integer or real numbers to the screen, the "int2str" and "num2str" commands 
should be used (for more details see chapter 1 of the tutorial. 
i = 2934; 

x = 83.3847; 

disp(['i = ' int2str(i)]); 

disp(['x = ' num2str(i)]); 


The standard command for allowing the user to input data from the keyboard is "input". 
i = input('Input integer i : '); 

x = input('Input real x : '); 

v = input('Input vector v : '); try typing [1 2 3] 

i, x, v 


clear all




MATLAB Tutorial 

Chapter 3. Basic graphing routines 
3.1. 2-D plots 

The basic command for making a 2-D plot is "plot". The following code makes a plot of the 
function sin(x). 
x = linspace(0,2*pi,200); 

f1 = sin(x); 

plot(x,f1) 


we now add a title and labels for the x and y axes 
title('Plot of f_1 = sin(x)'); 

xlabel('x'); 

ylabel('f_1'); 


Let us change the axes so that they only plot x from 0 to 2*pi. 
axis([0 2*pi -1.1 1.1]); [xmin xmax ymin ymax] 

Next, we make a new figure with cos(x) 
f2 = cos(x); 

figure; makes a new figure window 

plot(x,f2); 

title('Plot of f_2 = cos(x)'); 

xlabel('x'); 

ylabel('f_2'); 

axis([0 2*pi -1.1 1.1]); 


Now, we make a single graph with both plots 

figure; creates a new graph 

plot(x,f1); 

hold on; tells MATLAB not to overwrite current plot 


What happens if you forget to type hold on? "hold off" removes the hold. 

plot(x,f2,'r'); plots with red curve 

title('Plots of f_1 = sin(x), f_2 = cos(x)'); 

xlabel('x'); 

ylabel('f_1, f_2'); 

axis([0 2*pi -1.1 1.1]); 


Now we add a legend. 
legend('f_1', 'f_2'); 

If we want to move the legend, we can go to the "Tools" menu of the figure window and turn 
on "enable plot editing" and then drag the legend to where we want it. 

Finally, we use the command "gtext" to add a line of text that we then position on the graph 
using our cursor. 
gtext('f_1=f_2 at two places'); 

The command "help plot" tells how to make a graph using various types of points instead of 
lines and how to select different colors. 

clear all 



3.2. 3-D plots 

First, we generate a grid containing the x and y values of 

each point. 

x = 0:0.2:2*pi; create vector of points on x-axis 

y = 0:0.2:2*pi; create vector of points on y-axis 


Now if n=length(x) and m=length(y), the grid will contain N=n*m grid points. XX and YY are n 

by m matrices containing the x and y values for each grid point respectively. 

[XX,YY] = meshgrid(x,y); 

The convention in numbering the points is apparent from the following lines. 
x2 = 1:5; y2 = 11:15; 
[XX2,YY2] = meshgrid(x2,y2); 
XX2, YY2 

This shows that XX2(i,j) contains the jth component of the x vector and YY2(i,j) contains the 
ith component of the y vector. 

Now, we generate a function to save as a separate z-axis value for each (x,y) 2-D grid point. 
Z1 = sin(XX).*sin(YY); calculate value of function to be plotted 

create a colored mesh plot 
figure; mesh(XX,YY,Z1); 

xlabel('x'); ylabel('y'); zlabel('z'); title('sin(x)*sin(y)'); 


create a colored surface plot 
figure; surf(XX,YY,Z1); 

xlabel('x'); ylabel('y'); zlabel('z'); title('sin(x)*sin(y)'); 


create a contour plot 
figure; contour(XX,YY,Z1); 

xlabel('x'); ylabel('y'); zlabel('z'); title('sin(x)*sin(y)'); 


create a filled contour plot with bar to show function values 
figure; contourf(XX,YY,Z1); colorbar; 

xlabel('x'); ylabel('y'); zlabel('z'); title('sin(x)*sin(y)');


create a 3-D contour plot 
figure; contour3(XX,YY,Z1); 

xlabel('x'); ylabel('y'); zlabel('z'); title('sin(x)*sin(y)'); 


clear all 


3.3. Making complex figures 

Using the subplot command, one can combine multiple plots into a single figure. We want to 

make a master figure that contains nrow # of rows of figures and ncol # of figures per row. 

subplot(nrow,ncolumn,i) makes a new figure window within the master plot, where i is a 

number denoting the position within the master plot according to the following order : 

1 2 3 ... ncol 

ncol+1 ncol+2 ncol+3 ... 2*ncol 


First, generate the data to be plotted. 

x = 0:0.2:2*pi; 



y = 0:0.2:2*pi; 

f1 = sin(x); 

f2 = cos(y); 

[XX,YY] = meshgrid(x,y); 

Z1=sin(XX).*cos(YY); 


The following code creates a figure with four subplots. 
figure; create a new figure 

subplot(2,2,1); create 1st subplot window 

plot(x,f1); title('sin(x)'); 

xlabel('x'); ylabel('sin(x)'); axis([0 2*pi -1.1 1.1]); 


subplot(2,2,2); create 2nd subplot window 

plot(y,f2); title('cos(y)'); 

xlabel('y'); ylabel('cos(y)'); axis([0 2*pi -1.1 1.1]); 


subplot(2,2,3); create 3rd subplot window 

surf(XX,YY,Z1); title('sin(x)*cos(y)'); 

xlabel('x'); ylabel('y'); zlabel('z'); 


subplot(2,2,4); create 4th subplot window 

contourf(XX,YY,Z1); colorbar; title('sin(x)*cos(y)'); 

zlabel('x'); ylabel('y'); 


clear all




MATLAB Tutorial 

Chapter 4. Advanced matrix operations 
4.1. Sparse matrices 

SPARSE MATRICES 

To show the efficiency gained by using sparse matrices, we will solve a PDE using finite 

differences twice. First, we will use the matrix commands that use the full matrix that we have 

learned so far. Second, we will use new commands that take advantage of the fact that most 

of the elements are zero to greatly reduce both the memory requirements and the number of 

floating point operations required to solve the PDE. 


clear all; remove all existing variables from memory 


num_pts = 100; number of grid points in simulation 


CALCULATION WITH FULL MATRIX FORMAT 


The following matrix is obtained from using central finite differences to discretize the Laplacian 

operator in 1-D. 

x = 1:num_pts; grid of x-values 


Set the matrix from discretizing the PDE with a 1-D grid containing num_pts points with a 

spacing of 1 between points. 

Afull=zeros(100,100); 

Afull(1,1) = 1; 

Afull(num_pts,num_pts) = 1; 

for i=2:(num_pts-1) sum over interior points 

Afull(i,i) = 2; 

Afull(i,i-1) = -1; 

Afull(i,i+1) = -1; 

end 


Dirichlet boundary conditions at x=1 and x=num_pts are set. 

BC1 = -10; value of f at x(1); 

BC2 = 10; value of f at x(num_pts); 


For the interior points, we have a source term. 

b_RHS = linspace(0,0,num_pts)'; create column vector of zeros 

b_RHS(1) = BC1; 

b_RHS(num_pts) = BC2; 

b_RHS(2:(num_pts-1)) = 0.05; for interior, b_RHS is source term 


We now use the standard MATLAB solver to obtain the solution of the PDE at the grid points. 
f = Afull\b_RHS; 

figure; plot(x,f); 

title('PDE solution from FD-CDS method (full matrix)'); 

xlabel('x'); ylabel('f(x)'); 


Let us now take a closer look at Afull. The command spy(A) makes a plot of the matrix A by 
writing a point wherever an element of A has a non-zero value. 
figure; 

spy(Afull); title('Structure of Afull'); 




The number nz at the bottom is the number of non-zero elements. We see that only a small 
fraction of the matrix elements are non-zero. Since we numbered the grid points in a regular 
manner with the neighbors of each grid point stored in adjacent locations, the non-zero 
elements in this matrix are on the principal diagonal and the two diagonals immediately above 
and below. Even if we numbered the grid points irregularly, we would still have this small 
number of non-zero points. It is often the case, as it is here, that the matrices we encounter in 
the numerical simulation of PDE's are sparse; that is, only a small fraction of their points are 
non-zero. For this matrix, the total number of elements is 
num_elements = num_pts*num_pts; 
nzA = nnz(Afull); returns # of non-zero elements in Afull 
fraction_filled = nzA/num_elements 

This means that Afull is mostly empty space and we are wasting a lot of memory to store 
values we know are zero. 

Remove all variables from memory except Afull. 
clear x f b_RHS BC1 BC2 i num_elements nzA fraction_filled; 

SPARSE MATRIX 

We can convert a matrix to sparse format using the command "sparse". 
Asparse = sparse(Afull) 

MATLAB stores a sparse matrix as an NZ by 3 array where NZ is the number of non-zero 
elements. The first column is the row number and the second the column number of the non-
zero element. The third column is the actual value of the non-zero element. The total memory 
usage is far smaller than with the full matrix format. 
whos Afull Asparse; 

clear Asparse; get rid of sparse matrix 


NOW WE WILL SOLVE USING SPARSE MATRIX FORMAT 

Next, we set the grid point values 
x = 1:num_pts; grid of x-values 

Now we declare the matrix A to have sparse matrix structure from the start. First, we calculate 
the number of non-zero elements (or an upper bound to this number). We see that for each 
row corresponding to an interior point, we have 3 values, whereas for the first and last row we 
only have one value. Therefore, the number of non-zero elements is 
nzA = 3*(num_pts-2) + 2; 

We now use "spalloc(m,n,nz)" that allocates memory for a m by n dimensioned sparse matrix 
with no more than nz non-zero elements. 
A = spalloc(num_pts,num_pts,nzA); 

We now set the values of the A matrix. 
A(1,1) = 1; 

A(num_pts,num_pts) = 1; 

for i=2:(num_pts-1) 

A(i,i) = 2; 

A(i,i-1) = -1; 

A(i,i+1) = -1; 

end 




Dirichlet boundary conditions at x=1 and x=num_pts are set. 

BC1 = -10; value of f at x(1); 

BC2 = 10; value of f at x(num_pts); 


For the interior points, we have a source term. 

b_RHS = linspace(0,0,num_pts)'; create column vector of zeros 

b_RHS(1) = BC1; 

b_RHS(num_pts) = BC2; 

b_RHS(2:(num_pts-1)) = 0.05; for interior, b_RHS is source term 


Now, when we call the MATLAB standard solver, it automatically identifies that A is a sparse 
matrix, and uses solver algorithms that take advantage of this fact. 
f = A\b_RHS; 


figure; plot(x,f); 

title('PDE solution from FD-CDS method (sparse matrix)'); 

xlabel('x'); ylabel('f(x)'); 

whos A Afull; 


From the lines for A and Afull, we can see that the sparse matrix format requires far less 
memory that the full matrix format. Also, if N is the number of grid points, we see that the 
size of the full matrix is N^2; whereas, the size in memory of the sparse matrix is only 
approximately 3*N. Therefore, as N increases, the sparse matrix format becomes far more 
efficient than the full matrix format. For complex simulations with thousands of grid points, 
one cannot hope to solve these problems without taking advantage of sparsity. To see the 
increase in execution speed that can be obtained by using sparse matrices, examine the 
following two algorithms for multiplying two matrices. 

FULL MATRIX ALGORITHM FOR MATRIX MULTIPLICATION 

Bfull = 2*Afull; 

Cfull = 0*Afull; declare memory for C=A*B 

num_flops = 0; 

for i=1:num_pts 

for j=1:num_pts 

for k=1:num_pts 

Cfull(i,j) = Cfull(i,j) + Afull(i,k)*Bfull(k,j); 

num_flops = num_flops + 1; 

end 

end 

end 

disp(['# FLOPS with full matrix format = ', int2str(num_flops)]); 


SPARSE MATRIX ALGORITHM FOR MATRIX MULTIPLICATION 

B = 2*A; 

nzB = nnz(B); # of non-zero elements of B 

nzC_max = round(1.2*(nzA+nzB)); guess how much memory we'll need for C 

C = spalloc(num_pts,num_pts,nzC_max); 

[iA,jA] = find(A); find (i,j) elements that are non-zero in A 

[iB,jB] = find(B); find (i,j) elements that are non-zero in B 

num_flops = 0; 

for ielA = 1:nzA iterate over A non-zero elements 

for ielB = 1:nzB iterate over B non-zero elements 

if(iB(ielB)==jA(ielA)) the pair contributes to C 

i = iA(ielA); 

k = jA(ielA); 




j = jB(ielB); 

C(i,j) = C(i,j) + A(i,k)*B(k,j); 

num_flops = num_flops + 1; 

end 

end 

end 

disp(['# FLOPS for sparse matrix format = ', int2str(num_flops)]); 

D = Cfull - C; check to see both algorithms give same result 

disp(['# of elements where Cfull ~= C : ' int2str(nnz(D))]); 


Finally, we note that taking the inverse of a sparse matrix 
usually destroys much of the sparsity. 
figure; 

subplot(1,2,1); spy(A); title('Structure of A'); 

subplot(1,2,2); spy(inv(A)); title('Structure of inv(A)'); 


Therefore, if we have the values of A and of C = A*B and want to calculate the matrix B, we 
do NOT use inv(A)*C. Rather, we use the "left matrix division" operator A\C. This returns a 
matrix equivalent to inv(A)*C, but uses the MATLAB solver that takes advantage of the 
sparsity. 
B2 = A\C; 

figure; spy(B2); title('Structure of B2'); 


We see that the error from the elimination method has introduced very small non-zero values 
into elements off of the central three diagonals. We can remove these by retaining only the 
elements that are greater than a tolerance value. 
tol = 1e-10; 

Nel = nnz(B2); 

[iB2,jB2] = find(B2); return positions of non-zero elements 

for iel=1:Nel 

if(abs(B2(iB2(iel),jB2(iel))) < tol) set to zero 

B2(iB2(iel),jB2(iel)) = 0; 

end 

end 

B2 = sparse(B2); reduce memory storage 

figure; spy(B2); title('Structure of "cleaned" B2'); 


Since we do not want to go through intermediate steps where we have to store a matrix with 
many non-zero elements, we usually do not calculate matrices in this manner. Rather we limit 
ourselves to solving linear systems of the form A*x = b, where x and b are vectors and A is a 
sparse matrix whose value we input directly. We therefore avoid the memory problems 
associated with generating many non-zero elements from round-off errors. 

clear all 

4.2. Common matrix operations/eigenvalues 

The determinant of a aquare matrix is calculated using "det". 

A = rand(4); creates a random 4x4 matrix 

det(A) calculate determinant of A 


Other common functions of matrices are 

rank(A) rank of A 

trace(A) trace of A 

norm(A) matrix norm of A 

cond(A) condition number of A 




A_inv=inv(A) calculates inverse of A 
A*A_inv 

The eigenvalues of a matrix are computed with the command "eig" 
eig(A) 

If the eigenvectors are also required, the syntax is 
[V,D] = eig(A) 

Here V is a matrix containing the eigenvectors as column vectors, and D is a diagonal matrix 
containing the eigenvalues. 
for i=1:4 

eig_val = D(i,i); 

eig_vect = V(:,i); 

A*eig_vect - eig_val*eig_vect 

end 


The command "eigs(A,k)" calculates the k leading eigenvalues of A; that is, the k eigenvalues 

with the largest moduli. 

eigs(A,1) estimate leading eigenvalue of A 


Similarly, the eigenvectors of the leading eigenvalues can also be calculated with eigs. 

[V2,D2] = eigs(A,1); 

eig_vect = V2; eig_val = D2; 

A*eig_vect - eig_val*eig_vect 


With sparse matrices, only the command "eigs" can be used. 

clear all 

4.3. LU decomposition 

The linear system Ax=b can be solved with multiple b vectors using LU decomposition. Here, 

we perform the decomposition P*A = L*U, where P is a permutation matrix (hence inv(P)=P'), 

L is a lower triangular matrix, and U is an upper triangular matrix. P is an identity matrix when 

no pivoting is done during the factorization (which is essentially Gaussian elimination). Once 

the LU factorization is complete, a problem Ax=b is solved using the following linear algebra 

steps. 


A*x = b 

P*A*x = P*b 

L*U*x = P*b 


This gives the following two linear problems invloving triangular matrices that may be solved 

by substitution. 

L*y = P*b 

U*x = y 

The MATLAB command for performing an LU factorization is "lu" We use a random, non-

singular matrix to demonstrate the algorithm. Non-singularity is ensured by adding a factor of 

an identity matrix. 

A = rand(10) + 5*eye(10); 

Perform LU factorization. 

[L,U,P] = lu(A); 

max(P*P'-eye(10)) demonstrates that P is orthogonal matrix 

max(P*A - L*U) shows largest result of round-off error 




Compare the structures of the matrices involved 
figure; 

subplot(2,2,1); spy(A); title('Structure of A'); 

subplot(2,2,2); spy(P); title('Structure of P'); 

subplot(2,2,3); spy(L); title('Structure of L'); 

subplot(2,2,4); spy(U); title('Structure of U'); 


LU factorization can be called in exactly the same way for sparse matrices; however, in 
general the factored matrices L and U are not as sparse as is A, so by using LU factorization, 
some efficiency is lost. This becomes more of a problem the the greater the bandwidth of the 
matrix, i.e. the farther away from the principal diagonal that non-zero values are found. 

Sometimes we only want an approximate factorization B=L*U where B is close enough to A 
such that C = inv(B)*A is not too much different from an identity matrix, i.e. the ratio 
between the largest and smallest eigenvalues of C is less than that for A. In this case, B is 
called a preconditioner, and is used in methods for optimization and solving certain classes of 
linear systems. When we perform an incomplete LU factorization, we only calculate the 
elements of L and U that correspond to non-zero elements in A, or with different options, we 
neglect elements whose absolute values are less than a specified value. 

The following code demonstrates the use of incomplete LU factorization. 

make B=A, except set certain elements equal to zero. 
B=A; 

set some elements far-away from diagonal equal to zero. 
for i=1:10 

B(i+5:10,i) = 0; 

B(1:i-5,i) = 0; 

end 


B=sparse(B); 

[Linc,Uinc,Pinc] = luinc(B,'0'); 


figure; 

subplot(2,2,1); spy(B); title('Structure of B'); 

subplot(2,2,2); spy(Pinc); title('Structure of Pinc'); 

subplot(2,2,3); spy(Linc); title('Structure of Linc'); 

subplot(2,2,4); spy(Uinc); title('Structure of Uinc'); 


D1 = P*A - L*U; 

D2 = Pinc*B - Linc*Uinc; 

tol = 1e-10; set tolerance for saying element is zero 

for i=1:10 

for j=1:10 

if(D1(i,j)<tol) 

D1(i,j) = 0; 

end 

if(D2(i,j)<tol) 

D2(i,j) = 0; 

end 

end 

end 




figure; 

subplot(1,2,1); spy(D1); title('(P*A - L*U)'); 

subplot(1,2,2); spy(D2); title('(Pinc*B - Linc*Uinc)');


But, look at the eigenvalues of the B and of the approximate factorization. 

Bapprox = Pinc'*Linc*Uinc; 

eigs(B) eigenvalues of B matrix 

C = Bapprox\B; inv(Bapprox)*B (don't use "inv" for sparse matrices) 

eigs(C) 


clear all 

4.4. QR decomposition 

The factorization A*P = Q*R, where P is a permutation matrix, Q is a orthogonal matrix, and R 
is upper triangular is performed by invoking the command "qr". 
A = rand(6); 
[Q,R,P] = qr(A); 

Q*Q' shows Q is orthogonal 
A*P - Q*R 

figure; 

subplot(2,2,1); spy(A); title('Structure of A'); 

subplot(2,2,2); spy(P); title('Structure of P'); 

subplot(2,2,3); spy(Q); title('Structure of Q'); 

subplot(2,2,4); spy(R); title('Structure of R');


If the decomposition A=QR is desired (i.e. with P=1), the 
command is : 
[Q,R] = qr(A); 


figure; 

subplot(2,2,1); spy(A); title('Structure of A'); 

subplot(2,2,2); spy(Q); title('Structure of Q'); 

subplot(2,2,3); spy(R); title('Structure of R'); 


A - Q*R 


clear all 


4.5. Cholesky decomposition 

If A is a Hermetian matrix (i.e. A=A') then we know that all eigenvalues are real. If in 
addition, all the eigenvalues are greater than zero, then x'*A*x > 0 for all vectors x and we 
say that A is positive-definite. In this case, it is possible to perform a Cholesky decomposition, 
i.e. A = R'*R, where R is upper triangular. This is equivalent to writing A = L*L', where L is 
lower triangular. 

First, we use the following positive-definite matrix. 
Ndim=10; 

Afull=zeros(Ndim,Ndim); 

for i=1:Ndim sum over interior points 

Afull(i,i) = 2; 

if(i>1) 




Afull(i,i-1) = -1; 

end 

if(i<Ndim) 

Afull(i,i+1) = -1; 

end 

end 


Rfull = chol(Afull); 

D = Afull - Rfull'*Rfull; eig(D) 


figure; 

subplot(1,2,1); spy(Afull); title('Structure of Afull'); 

subplot(1,2,2); spy(Rfull); title('Structure of Rfull'); 


For sparse matrices, we can perform an incomplete Cholesky decomposition that gives an 
approximate factorization with no loss of sparsity that can be used as a preconditioner. In this 
particular case, with a highly structured matrix, the incomplete factorization is the same as 
the complete one. 
Asparse = sparse(Afull); 

Rsparse = cholinc(Asparse,'0'); 

D2 = Asparse - Rsparse'*Rsparse; eig(D2)


figure; 

subplot(1,2,1); spy(Asparse); title('Structure of Asparse'); 

subplot(1,2,2); spy(Rsparse); title('Structure of Rsparse'); 


clear all 


4.6. Singular value decomposition 

Eigenvalues and eigenvectors are only defined for square matrices. The generalization of the 
concept of eigenvalues to non-square matrices is often useful. A singular value decomposition 
(SVD) of the (m x n) matrix A is defined as A = U*D*V', where D is a (m x n) diagonal matrix 
containing the singular values, U is a (m x m) matrix containing the right eigenvectors and V' 
is the adjoint (transpose and conjugate) of the (n x n) matrix of left eigenvectors. 

In MATLAB, a singular value decomposition is peformed using "svd" 
A = [1 2 3 4; 11 12 13 14; 21 22 23 24]; 

[U,D,V] = svd(A); 

D, U, V 

U*D*V' show that decomposition works 


clear all
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Chapter 5. File input/output

5.1. Saving/reading binary files and making calls to the operating system


When using MATLAB, either when running a m-file or performing calculations interactively, 
there is a master memory structure that MATLAB uses to keep track of the values of all of the 
variables. This memory space can be written in a binary format to a file for storing the results 
of your calculations for later use. This is often useful when you have to interrupt a MATLAB 
session. The following commands demonstrate how to use this storage option to make binary 
.mat files. 

First, let us define some variables that we want to save. 
num_pts =10; 

Afull=zeros(num_pts,num_pts); 

Afull(1,1) = 1; 

Afull(num_pts,num_pts) = 1; 

for i=2:(num_pts-1) sum over interior points 

Afull(i,i) = 2; 

Afull(i,i-1) = -1; 

Afull(i,i+1) = -1; 

end 

b = linspace(0,1,num_pts)'; 

x = Afull\b; 


whos; display contents of memory 

The "save" command saves the data in the memory space to the named binary file. 
save mem_store1.mat; 

clear all; 

whos; no variables are stored in memory 


ls *.mat display all .mat files in directory 


The "load" command loads the data stored in the named binary file into memory. 

load mem_store1.mat; 

whos; we see that the data has been loaded again 


If we want to get rid of this file, we can use the "delete" command. 

delete mem_store1.mat; 
ls *.mat 

In the commands above, I have used path names to specify the directory. We can view our 

current default directory using the command "pwd". 

pwd displays the current directory 


We can then change to another directory using the "cd" command. 

cd .. move up one directory 

pwd 

ls list files in directory 

cd MATLAB_tutorial; directory name may differ for you 

pwd; ls 




We can also use the "save" command to save only selected variables to a binary file. 
save mem_store2.mat Afull; 

clear all 
whos 

load mem_store2.mat 
whos 

delete mem_store2.mat 

clear all 

5.2. Input/output of data to/from an ASCII file 

First, let use define some variables that we want to save. 
num_pts =10;


Afull=zeros(num_pts,num_pts); 

Afull(1,1) = 1; 

Afull(num_pts,num_pts) = 1; 

for i=2:(num_pts-1) sum over interior points 

Afull(i,i) = 2; 

Afull(i,i-1) = -1; 

Afull(i,i+1) = -1; 

end 


b = linspace(0,1,num_pts)'; 

x = Afull\b; 


whos; display contents of memory 

Now, let us write out the contents of Afull into a file that we can read. 

One option is to use the "save" command with the option -ascii, that writes to a file using the 
ASCII format. 
save store1.dat Afull -ascii; 
type store1.dat view contents of file 

We can also load a file in this manner. The contents of the ASCII file filename.dat are stored in 
the MATLAB variable filename. This is a good way to import data from experiments or other 
programs into MATLAB. 
load store1.dat; 

If we add the option -double, the data is printed out with double the amount of digits for 
higher precision. 
delete store1.dat; 

save store1.dat Afull -ascii -double; 

type store1.dat 


We can use this command with multiple variables, but we see that no spaces are added. 
delete store1.dat; 
save store1.dat Afull b x -ascii; 
type store1.dat view contents of file 
delete store1.dat get rid of file 



MATLAB also allows more complex formatted file input/output of data using commands that 
are similar to those in C. 

First, we list all of the files in the directory. 
ls 

Next, we see create the output file and assign a label to it 

with the "fopen" command that has the syntax 

FID = fopen(FILENAME,PERMISSION) 

where PERMISSION is usually one of : 

'r' = read only 

'w' = write (create if needed) 

'a' = append (create if needed) 

'r+' = read and write (do not create) 

'w+' = create for read and write 

'a+' = read and append (create if needed) 

FID_out = fopen('test_io.dat','w'); 
ls 

Now, we print the b vector to the output file as a column vector using the "fprintf" command. 
In the FORMAT string '\n' signifies a carriage return, and 10.5f specifies a floating point 
decimal output with 5 numbers after the decimal point and a total field width of 10. 
for i=1:length(b) 
fprintf(FID_out,'10.5f \n',b(i)); 
end 

We now close the file and show the results. 
fclose(FID_out); 

disp('Contents of test_io.dat : '); 

type test_io.dat; 


MATLAB's "fprintf" can also be loaded to avoid the need of 
using a for loop 
FID_out = fopen('test_io.dat','a'); 
fprintf(FID_out,'\n'); 
fprintf(FID_out,'10.5f \n',x); 
fclose(FID_out); 

disp('Contents of test_io.dat : '); 
type test_io.dat; 

We can also use "fprintf" to print out a matrix. 
C = [1 2 3; 4 5 6; 7 8 9; 10 11 12]; 

FID_out = fopen('test_io.dat','a'); 

fprintf(FID_out,'\n'); 

for i = 1:size(C,1) 

fprintf(FID_out,'5.0f 5.0f 5.0f \n',C(i,:)); 

end 

fclose(FID_out); 


disp('Contents of test_io.dat : '); 

type test_io.dat; 


We can read in the data from the formatted file using 
"fscanf", which works similarly to "fprintf". 



First, we open the file for read-only. 
FID_in = fopen('test_io.dat'); 

We now read the b vector into the variable b_new. First, we allocate space for the vector, and 
then we read in the values one by one. 
b_new = linspace(0,0,num_pts)'; 

for i=1:num_pts 

b_new(i) = fscanf(FID_in,'f',1); 

end 

b_new 


Now read in x to x_new, using the overloading possible in MATLAB. 
x_new = linspace(0,0,num_pts)'; 
x_new = fscanf(FID_in,'f',num_pts); 
x_new 

Finally, we read in the matrix C to C_new. 
C_new = zeros(4,3); 

for i=1:size(C,1) 

for j=1:size(C,2) 

C_new(i,j) = fscanf(FID_in,'f',1); 

end 

end 

C_new 


fclose(FID_in); 


clear all
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Chapter 6. Writing and calling functions 

In this chapter we discuss how to structure a program with multiple source code files. First, an 
explanation of how code files work in MATLAB is presented. In compiled languages such as 
FORTRAN, C, or C++, code can be stored in one or more source files that are linked together 
to form a single executable at the time of compilation. MATLAB, being an interpreted 
language, deals with multiple source files in a more open-ended manner. MATLAB code is 
organized into ASCII files carrying the extension .m (also known as m-files). MATLAB 6 has an 
integrated word processing and debugging utility that is the preferred mode of editing m-files, 
although other ASCII editors such as vi or emacs may also be used. 
There are two different kinds of m-files. The simplest, a script file, is merely a collection of 
MATLAB commands. When the script file is executed by typing its name at the interactive 
prompt, MATLAB reads and executes the commands within the m-file just as if one were 
entering them manually. It is as if one were cutting and pasting the m-file contents into the 
MATLAB command window. The use of this type of m-file is outlined in section 6.1. 

The second kind of m-file, discussed in section 6.2, contains a single function that has the 
same name as that of the m-file. This m-file contains an independent section of code with a 
clearly defined input/output interface; that is, it can be invoked by passing to it a list of 
dummy arguments arg1, arg2, ... and it returns as output the values out1, out2, .... The first 
non-commented line of a function m-file contains the function header, which is of the form : 
function [out1,out2,...] = filename(arg1,arg2,...); 
The m-file ends with the command return, which returns the program execution to the place 
where the function was called. The function code is executed whenever, either at the 
interactive command prompt or within another m-file, it is invoked with the command : 
[outvar1,outvar2,...] = filename(var1,var2,...) 
with the mapping of input to dummy arguments : arg1 = var1, arg2 = var2, etc. Within the 
function body, output values are assigned to the variables out1, out2, etc. When return is 
encountered, the current values of out1, out2, ... are mapped to the variables outvar1, 
outvar2, ... at the point where the function was called. MATLAB allows much latitude in writing 
functions with variable length argument and output variable lists. For example, the function 
could also be invoked by the command : 
outvar1 = filename(var1,var2,...) 
in which case only a single output variable is returned, containing on exit the value of the 
function variable out1. The input and output arguments may be strings, scalar numbers, 
vectors, matrices, or more advanced data structures. 

Why use functions? As is well known from every computer science course, splitting a large 
program into multiple procedures that perform each a single well defined and commented 
task, results in programs that are easier to read, easier to modify, and that are more resistant 
to error. In MATLAB, one writes first a master file for the program, either a script file or better 
yet a function m-file that returns a single integer (that might return 1 for program success, 0 
for incomplete program execution, or a negative value to indicate a run-time error), that is the 
point of entry to the program. This program file then calls upon code in other m-files by 
invoking them as functions. But if there is no compilation process to link all of the source code 
files together, how does MATLAB know where to look for a function when it is called? 

MATLAB's program memory contains a search path list, the contents of which can be viewed 
with the command path, that stores the names of the directories it has been told contain 
function m-files. Initially, the path lists only the directories that hold the built-in MATLAB 
functions such as sin(), exp(), etc.. As demonstrated in section 6.2, one uses the command 
addpath to add to this list the name of each directory that contains a m-file for the present 
project. Then, when the MATLAB code interpreter encounters a function, say with the name 
filename, it starts at the top of the path list and works its way down searching in each 
directory for a file filename.m. When it finds it, it executes the file's code in the manner 



described above. For this reason, it is imperative that the names of the m-file and of the 
function agree; in fact it is only the filename that counts. 

6.1. Writing and running m-files 

While MATLAB can be run interactively from the command line, you can write a MATLAB 
program by composing a text file that contains the commands you want MATLAB to perform in 
the order in which they appear in the file. The standard file suffix for a text file containing a 
MATLAB program is .m. In the MATLAB command window, selecting the pull-down menu File -
> New -> M-file opens the integrated MATLAB text editor for writing a m-file. This utility is 
very similar to word processors, so the use of writing and saving m-files is not explained in 
detail here. 

As an example, use this secion as a file "MATLAB_tutorial_c6s1.m" that has only the following 
executable commands. 
file_name = 'MATLAB_tutorial_c6s1.m'; 

disp(['Starting ' file_name ]); 

j = 5; 

for i=1:5 

j = j - 1; 

disp([int2str(i) ' ' int2str(j)]); 

end 

disp(['Finished ' file_name]); 


We can run this m-file from the prompt by typing its name 
>> MATLAB_tutorial_c6s1 

If we type "whos" now, we see that the variables that are in the memory at the end of the 
program also remain in memory after the m-file is done running. This is because we have 
written the m-file as a script file where we have simply collected together several commands 
in a file, and then the code executes them one-by-one when the script is run, as if we were 
merely typing them into the interactive session window. A more common use for m-files is to 
isolate a series of commands in an independent function, as explained in the following section. 

6.2. Structured programming with functions 
Unstructured programming approach 

File unstructured.m 

In this section, let us demonstrate the use of subroutines to write structured, well-organized 
programs. We do so for a particularly simple and familiar case, the simple 1-D PDE problem 
that we encounted in section 4.1. First, in this m-file, we solve the problem with a program 
the combines all of the commands into a single file. This "unstructured" approach is fine for 
very small programs, but rapidly becomes confusion as the size of the program grows. 

num_pts = 100; # of grid points 
x = 1:num_pts; grid of x-values 

We now set the values for the matrix discretizing the PDE with Dirichlet boundary conditions. 
nzA = 3*(num_pts-2) + 2; # of non-zero elements 
A = spalloc(num_pts,num_pts,nzA); allocate memory 

set values 
A(1,1) = 1; 
A(num_pts,num_pts) = 1; 



for i=2:(num_pts-1) 

A(i,i) = 2; 

A(i,i-1) = -1; 

A(i,i+1) = -1; 

end 


Next, we set the values of the function at each boundary. 

BC1 = -10; value of f at x(1); 

BC2 = 10; value of f at x(num_pts); 


We now create the vector for the right hand side of the problem. 

b_RHS = linspace(0,0,num_pts)'; create column vector of zeros 

b_RHS(1) = BC1; 

b_RHS(num_pts) = BC2; 

b_RHS(2:(num_pts-1)) = 0.05; for interior, b_RHS is source term 


Now, we call the standard MATLAB solver. 

f = A\b_RHS; 

Then, we make a plot of the results. 
figure; plot(x,f); 

title('PDE solution from FD-CDS method (sparse matrix)'); 

xlabel('x'); ylabel('f(x)'); 


While this approach of putting all of the commands together works for this small program, it 
becomes very unwieldy for large programs. 

clear all 

Structured programming approach 

File structured.m 

NOTE: BEFORE RUNNING THIS FILE, THE OTHER M-FILES CONTAINING THE SUBROUTINES 

MUST ALREADY EXIST. 

First, we define the number of points 

num_pts = 100; 

We now create a vector containing the grid points. 
x = 1:num_pts; 

In MATLAB, each function is stored in a separate m-file of the same name. When you call the 
function at the interactive session prompt or in another script or funtcion m-file, MATLAB 
searches through a list of directories that it has been told contain functions until it finds an m-
file with the appropriate name. Then, it executes the MATLAB code contained within that m-
file. When we write m-files that contain a functions, before we can use them we have to tell 
MATLAB where they are; that is, we have to add the name of their directory to the search 
path. 

We can check the current contents of the search path with the command "path". 
path 

The command "pwd" returns the current directory. 
pwd 



We use the command "addpath" to add the directory with our subroutines to this search list. 
We can remove a directory from the path using "rmpath". 
addpath(pwd); 
path 

The following function calculates the A matrix. A function call has the following syntax : 
[out1,out2,...] = func_name(in1,in2,...), where the input arguments are the variables 
in1,in2,... and the output from the function is stored in out1,out2,... In our case, the input is 
the dimension of the matrix A, num_pts, and the output variables are A and iflag, an integer 
that tells us if the code was performed sucessfully. 
[A,iflag] = c6s2_get_A(num_pts); 

if(iflag ~= 1) then error 

disp(['c6s2_get_A returned error flag : ' int2str(iflag)]); 

end 


We also see from the code below that the existence of a local variable in the function named i 
does nothing to alter the value of i at the point of calling. 
i = 1234; 

[A,iflag] = c6s2_get_A(num_pts); 


Next, we ask the user to input the function values at the boundaries. 
BC1 = input('Input the function value at x = 1 : '); 

BC2 = input('Input the function value at x = num_pts : '); 

source = input('Input the value of the source term : '); 


We now call upon another subroutine that calculates the vector for the RHS. 
[b_RHS,iflag] = c6s2_get_b_RHS(num_pts,BC1,BC2,source); 

We now solve the system. 
f = A\b_RHS; 

Then, we make plots of the output. 
figure; plot(x,f); 

phrase1 = ['PDE solution with source = ' num2str(source)]; 

phrase1 = [phrase1 ', BC1 = ' num2str(BC1)]; 

phrase1 = [phrase1 ', BC2 = ' num2str(BC2)]; 

title(phrase1); xlabel('x'); ylabel('f(x)'); 


Then, to clean up, we clear the memory 

clear all 

File c6s2_get_A.m 

The first executable line of the m-file declares the name and input/output structure of the 
subroutine using the "function" command. 

function [A,iflag] = c6s2_get_A(Ndim); 

iflag = 0; signifies job not complete 

If Ndim < 1, then we have an error, since we can't have a matrix with a dimension less than 
1. 

if(Ndim<1) signify error 


i 



A=-1; 
iflag = -1; 
we return control to the m-file that called this subroutine without executing the rest of the 
code. 
return; 

end 


First, we declare A using sparse matrix format. 

nzA = 3*(Ndim-2) + 2; # of non-zero elements 

A = spalloc(Ndim,Ndim,nzA); allocate memory 

A(1,1) = 1; 

A(Ndim,Ndim) = 1; 

for i=2:(Ndim-1) 

A(i,i) = 2; 

A(i,i-1) = -1; 

A(i,i+1) = -1; 

end 


iflag = 1; signify job complete and successful 

return; return control to the m-file that called this routine 

File c6s2_get_b_RHS.m

function [b_RHS,iflag] = c6s2_get_b_RHS(num_pts,BC1,BC2,source); 

iflag = 0; declares job not completed 


if(num_pts < 3) not enough points 

iflag = -1; 

b_RHS = -1; 

return; 

end 


We allocate space for b_RHS and initialize to zeros. 
b_RHS = linspace(0,0,num_pts)'; 

Now, we specify the first and last components from the boundary conditions. 
b_RHS(1) = BC1; 
b_RHS(num_pts) = BC2; 

Next, we specify the interior points. 
for i=2:(num_pts-1) 
b_RHS(i) = source; 
end 

iflag=1; signifies successful completion 

return; 

6.3. Inline functions 

Sometimes, we do not want to go through the bother of writing a separate m-file to define a 

function. For these times, we can define an inline function. Let us say that we want to define 

the function 

f1(x) = 2*x + 3*x^2 




We can define this function using 
f1 = inline('2*x + 3*x^2'); 

Then, we can call this function directly 
f1(1), f1(23) 

We can also define functions using vectors and matrices as input. 
invariant2 = inline('(trace(A)*trace(A) - trace(A*A))/2'); 

A = rand(3); 

invariant2(A) 


We can check the definition of the function by typing its name 
invariant2 

While this is convenient, the execution of inline functions is rather slow. 

clear all; 

try 

invariant2 

catch 

disp('We see that inline functions are cleared also'); 

end 


6.4. Functions as function arguments 

The function, trig_func_1, listed below, 

returns the value of 

f(x) = a*sin(x) + b*cos(x) 

for given values of a, b, and x. 

The function, plot_trig_1, listed below, plots a function on the domain 0 to 2*pi. 


The following code asks the user to input values of a and b, and then uses plot_trig to plot 

trig_func_1 by 

including the function name as an argument in the list. 

disp('Plotting a*sin(x) + b*cos(x) ...'); 

a = input('Input a : '); 

b = input('Input b : '); 

func_name = 'trig_func_1'; 


make sure current direction is in the path 
addpath(pwd) 


plot_trig_1(func_name,a,b); 


clear all 


File trig_func_1.m

function f_val = trig_func_1(x,a,b); 

f_val = a*sin(x) + b*cos(x); 


return; 


File plot_trig_1.m

function iflag = plot_trig_1(func_name,a,b); 

iflag = 0; signifies no completion 




First, create an x vector from 0 to 2*pi 
num_pts = 100; 
x = linspace(0,2*pi,num_pts); 

Next, make a vector of the function values. We evaluate the argument function indirectly 
using the "feval" command. 
f = linspace(0,0,num_pts); 
for i=1:num_pts 
f(i) = feval(func_name,x(i),a,b); 
end 

Then, we make the plot. 
figure; 

plot(x,f); 

xlabel('Angle (radians)'); 

ylabel('Function value'); 


return; 
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Chapter 7. Data structures and input assertion 
7.1. User-defined data structures 

Vectors and matrices are not the only means that MATLAB offers for grouping data into a 
single entity. User defined data structures are also available that enable the programmer to 
create variable types that mix numbers, strings, and arrays. As an example, let us create a 
data structure that contains the information for a single student. 

We will store the name, status (year and department), the homework and exam grades, and 
the final class grade. 

First, we can define a NameData structure to contain the name. Here, the "." operator, used in 
the case of Structure.Field tells MATLAB to access the field named "Field" in the structure 
"Structure". 
NameData.First = 'John'; 
NameData.MI = 'J'; 
NameData.Last = 'Doe'; 

We now create a StudentData structure with a name field. 
StudentData.Name = NameData; 

We now initialize the rest of the structure. 
StudentData.Status = 'ChE grad 1'; 

StudentData.HW = 10; 

StudentData.Exam = linspace(100,100,3); 


We can now view the contents of the structure 
StudentData 
StudentData.Name 
StudentData.Exam 

We can operate on the elements of a structure. 
StudentData.Exam(3) = 0; 
StudentData.Exam 
StudentData.Name.First = 'Jane'; 
StudentData.Name 

We can also create arrays of structures 
num_students = 5; 

for i=1:num_students 

ClassData(i) = StudentData; 

end 

ClassData 

ClassData(2) 


Structures can be passed as arguments to functions in the same manner as scalars, vectors, 
and matrices. In this case, we use the function pass_or_fail listed below. 

message = pass_or_fail(ClassData(2)); 
message 

File pass_or_fail.m 



function message = pass_or_fail(StudentData) 

Exam_avg = mean(StudentData.Exam); 


if(Exam_avg >= 70) 

message = 'You pass!'; 

else 

message = 'You fail!'; 

end 


return; 


7.2. Input assertion routines 

Good programming style dictates the practice of defensive programming, that is, anticipating 
and detecting possible errors before they cause a run-time error that results in a halt to the 
program execution or a crash. This allows one to save the current data to the disk or take 
corrective action to avoid a catastrophic failure. One common source of errors can be avoided 
by having each subroutine make sure that the data that it has been fed through its argument 
list is of the approriate type, e.g. argument 1 should be a real, positive, scalar integer and 
argument 2 should be a real, non-negative column vector of length N. The following m-files 
are useful for automating this checking process, and a scalar input function is provided to 
allow the robust entry of data from the keyboard. 

assert_scalar.m 

function [iflag_assert,message] = assert_scalar( ... 

i_error,value,name,func_name, ... 

check_real,check_sign,check_int,i_error); 


This m-file contains logical checks to assert than an input value is a type of scalar number. 

This function is passed the value and name of the variable, the name of the function making 

the assertion, and four integer flags that have the following usage : 


i_error : controls what to do if test fails 

if i_error is non-zero, then use error() 

MATLAB command to stop execution, otherwise just return the appropriate negative number. 

if i_error > 1, then dump current state to dump_error.mat before calling error(). 


check_real : check to examine whether input number is real or not. See table after function 

header for set values of these case flags 

check_real = i_real (make sure that input is real) 

check_real = i_imag (make sure that input is purely imaginary) 

any other value of check_real (esp. 0) results in no check 


check_real 

i_real = 1; 

i_imag = -1; 


check_sign : check to examine sign of input value see table after function header for set 

values 

of these case flags 

check_sign = i_pos (make sure input is positive) 

check_sign = i_nonneg (make sure input is non-negative) 

check_sign = i_neg (make sure input is negative) 

check_sign = i_nonpos (make sure input is non-positive) 

check_sign = i_nonzero (make sure input is non-zero) 

check_sign = i_zero (make sure input is zero) 




any other value of check_sign (esp. 0) results in no check 


check_sign 

i_pos = 1; 

i_nonneg = 2; 

i_neg = -1; 

i_nonpos = -2; 

i_nonzero = 3; 

i_zero = -3; 


check_int : check to see if input is an integer 

if = 1, then check to make sure input is an integer 

any other value, perform no check 
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function [iflag_assert,message] = assert_scalar( ... 
i_error,value,name,func_name, ... 
check_real,check_sign,check_int); 

iflag_assert = 0; 
message = 'false'; 

First, set case values of check integer flags. 
check_real 
i_real = 1; 
i_imag = -1; 
check_sign 
i_pos = 1; 
i_nonneg = 2; 
i_neg = -1; 
i_nonpos = -2; 
i_nonzero = 3; 
i_zero = -3; 

Check to make sure input is numerical and not a string. 
if(~isnumeric(value)) 

message = [ func_name, ': ', ... 

name, ' is not numeric']; 

iflag_assert = -1; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 




Check to see if it is a scalar. 
if(max(size(value)) ~= 1) 

message = [ func_name, ': ', ... 

name, ' is not scalar']; 

iflag_assert = -2; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


Then, check to see if it is real. 
switch check_real; 


case {i_real} 

if(~isreal(value)) 

message = [ func_name, ': ', ... 

name, ' is not real']; 

iflag_assert = -3; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


case {i_imag} 

if(real(value)) 

message = [ func_name, ': ', ... 

name, ' is not imaginary']; 

iflag_assert = -3; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 

end 


Next, check sign. 
switch check_sign; 


case {i_pos}

if(value <= 0) 

message = [ func_name, ': ', ... 

name, ' is not positive']; 

iflag_assert = -4; 




if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


case {i_nonneg} 

if(value < 0) 

message = [ func_name, ': ', ... 

name, ' is not non-negative']; 

iflag_assert = -4; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


case {i_neg} 

if(value >= 0) 

message = [ func_name, ': ', ... 

name, ' is not negative']; 

iflag_assert = -4; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


case {i_nonpos} 

if(value > 0) 

message = [ func_name, ': ', ... 

name, ' is not non-positive']; 

iflag_assert = -4; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


case {i_nonzero} 

if(value == 0) 

message = [ func_name, ': ', ... 




name, ' is not non-zero']; 

iflag_assert = -4; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


case {i_zero} 

if(value ~= 0) 

message = [ func_name, ': ', ... 

name, ' is not zero']; 

iflag_assert = -4; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 

end 


Finally, check to make sure it is an integer. 
if(check_int == 1) 

if(round(value) ~= value) 

message = [ func_name, ': ', ... 

name, ' is not an integer']; 

iflag_assert = -5; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 

end 


set flag for succesful passing of all checks 

iflag_assert = 1; 
message = 'true'; 

return; 

assert_vector.m 

function [iflag_assert, message] = ... 
assert_vector( ... 
i_error,value,name,func_name,num_dim, ... 



check_real,check_sign,check_int,check_column); 


This m-file contains logical checks to assert than an input value is a vector of a given type. 

This function is passed the value and name of the variable, the name of the function making 

the 

assertion, the dimension that the vector is supposed to be, and five integer flags that have the 

following usage : 


i_error : controls what to do if test fails 

if i_error is non-zero, then use error() 

MATLAB command to stop execution, otherwise 

just return the appropriate negative number. 

if i_error > 1, create file dump_error.mat 

before calling error() 


check_real : check to examine whether input is real 

see table after function header for set 

values of these case flags 

check_real = i_real (make sure that input is real) 

check_real = i_imag (make sure that input 

is purely imaginary) 

any other value of check_real (esp. 0) 

results in no check 


check_real 

i_real = 1; 

i_imag = -1; 


check_sign : check to examine sign of input see table after function header for set 

values of these case flags 

check_sign = i_pos (make sure input is positive) 

check_sign = i_nonneg (make sure input is non-negative) 

check_sign = i_neg (make sure input is negative) 

check_sign = i_nonpos (make sure input is non-positive) 

check_sign = i_nonzero (make sure input is non-zero) 

check_sign = i_zero (make sure input is zero) 

any other value of check_sign (esp. 0) 

results in no check 


check_sign 

i_pos = 1; 

i_nonneg = 2; 

i_neg = -1; 

i_nonpos = -2; 

i_nonzero = 3; 

i_zero = -3; 


check_int : check to see if input is an integer 

if = 1, then check to make sure input is an integer 

any other value, perform no check 


check_column : check to see if input is a column or row vector 

check_column = i_column (make sure input is 

column vector) 

check_column = i_row (make sure input is row vector) 

any other value, perform no check 


check_column 

i_column = 1; 




i_row = -1; 

if the dimension num_dim is set to zero, no check as to the dimension of the vector is made. 
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function [iflag_assert,message] = ... 
assert_vector( ... 
i_error,value,name,func_name,num_dim, ... 
check_real,check_sign,check_int,check_column); 

First, set case values of check integer flags. 
check_real 
i_real = 1; 
i_imag = -1; 
check_sign 
i_pos = 1; 
i_nonneg = 2; 
i_neg = -1; 
i_nonpos = -2; 
i_nonzero = 3; 
i_zero = -3; 
check_column 
i_column = 1; 
i_row = -1; 

iflag_assert = 0; 
message = 'false'; 

Check to make sure input is numerical and not a string. 
if(~isnumeric(value)) 

message = [ func_name, ': ', ... 

name, 'is not numeric']; 

iflag_assert = -1; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


Check to see if it is a vector of the proper length. 
num_rows = size(value,1); 
num_columns = size(value,2); 
if it is a multidimensional array 
if(length(size(value)) > 2) 
message = [ func_name, ': ', ... 
name, 'has too many subscripts']; 



iflag_assert = -2; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


if both the number of rows and number of columns are not equal to 1, then value is a matrix 
instead of a vector. 
if(and((num_rows ~= 1),(num_columns ~= 1))) 

message = [ func_name, ': ', ... 

name, 'is not a vector']; 

iflag_assert = -2; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


if the dimension of the vector is incorrect 
if(num_dim ~= 0) 

if(length(value) ~= num_dim) 

message = [ func_name, ': ', ... 

name, 'is not of the proper length']; 

iflag_assert = -2; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 

end 


check to make sure that the vector is of the correct type (e.g. column) 
switch check_column; 

case {i_column} 
check to make sure that it is a column vector 
if(num_columns > 1) 

message = [ func_name, ': ', ... 

name, 'is not a column vector']; 

iflag_assert = -2; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 




else 

return; 

end 

end 


case {i_row} 

if(num_rows > 1) 

message = [ func_name, ': ', ... 

name, 'is not a row vector']; 

iflag_assert = -2; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 

end 


Then, check to see if all elements are of the proper complex type. 
switch check_real; 

case {i_real} 
if any element of value is not real 
if(any(~isreal(value))) 

message = [ func_name, ': ', ... 

name, ' is not real']; 

iflag_assert = -3; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return;

end 

end 


case {i_imag} 

if any element of value is not purely imaginary 
if(any(real(value))) 

message = [ func_name, ': ', ... 

name, ' is not imaginary']; 

iflag_assert = -3; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 

end 




Next, check sign. 
switch check_sign; 

case {i_pos} 
if any element of value is not positive 
if(any(value <= 0)) 

message = [ func_name, ': ', ... 

name, ' is not positive']; 

iflag_assert = -4; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


case {i_nonneg} 

if any element of value is negative 
if(any(value < 0)) 

message = [ func_name, ': ', ... 

name, ' is not non-negative']; 

iflag_assert = -4; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


case {i_neg} 

if any element of value is not negative 
if(any(value >= 0)) 

message = [ func_name, ': ', ... 

name, ' is not negative']; 

iflag_assert = -4; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


case {i_nonpos} 

if any element of value is positive 
if(any(value > 0)) 

message = [ func_name, ': ', ... 

name, ' is not non-positive']; 

iflag_assert = -4; 

if(i_error ~= 0) 




if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


case {i_nonzero} 

if any element of value is zero 
if(any(value == 0)) 

message = [ func_name, ': ', ... 

name, 'is not non-zero']; 

iflag_assert = -4; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


case {i_zero} 

if any element of value is non-zero 
if(any(value ~= 0)) 

message = [ func_name, ': ', ... 

name, ' is not zero']; 

iflag_assert = -4; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 

end 


Finally, check to make sure it is an integer. 
if(check_int == 1) 

if(any(round(value) ~= value)) 

message = [ func_name, ': ', ... 

name, ' is not an integer']; 

iflag_assert = -5; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 

end 




set flag for succesful passing of all checks 

iflag_assert = 1; 
message = 'true'; 

return; 

assert_matrix.m 

function [iflag_assert,message] = assert_matrix( ... 

i_error,value,name,func_name, ... 

num_rows,num_columns, ... 

check_real,check_sign,check_int); 


This m-file contains logical checks to assert than an input value is a matrix of a given type. 

This function is passed the value and name of the variable, the name of the function making 

the assertion, the dimension that the matrix is supposed to be, and four integer flags that 

have the following usage : 


i_error : controls what to do if test fails 

if i_error is non-zero, then use error() 

MATLAB command to stop execution, otherwise just return the appropriate negative number. 

if i_error > 1, create file dump_error.mat 

before calling error() 


check_real : check to examine whether input is real see table after function header for set 

values of these case flags 

check_real = i_real (make sure that input is real) 

check_real = i_imag (make sure that input is 

purely imaginary) 

any other value of check_real (esp. 0) 

results in no check 


check_real 

i_real = 1; 

i_imag = -1; 


check_sign : check to examine sign of input 

see table after function header for set 

values of these case flags 

check_sign = i_pos (make sure input is positive) 

check_sign = i_nonneg (make sure input is non-negative) 

check_sign = i_neg (make sure input is negative) 

check_sign = i_nonpos (make sure input is non-positive) 

check_sign = i_nonzero (make sure input is non-zero) 

check_sign = i_zero (make sure input is zero) 

any other value of check_sign (esp. 0) 

results in no check 


check_sign 

i_pos = 1; 

i_nonneg = 2; 

i_neg = -1; 

i_nonpos = -2; 

i_nonzero = 3; 

i_zero = -3; 


check_int : check to see if input value is an integer 




if = 1, then check to make sure input is an integer 

any other value, perform no check 


if the dimensions num_rows or num_columns 

are set to zero, no check as to that dimension of the matrix is made. 
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function [iflag_assert,message] = assert_matrix( ... 
i_error,value,name,func_name, ... 
num_rows,num_columns, ... 
check_real,check_sign,check_int); 

First, set case values of check integer flags. 
check_real 
i_real = 1; 
i_imag = -1; 
check_sign 
i_pos = 1; 
i_nonneg = 2; 
i_neg = -1; 
i_nonpos = -2; 
i_nonzero = 3; 
i_zero = -3; 

iflag_assert = 0; 
message = 'false'; 

Check to make sure input is numerical and not a string. 
if(~isnumeric(value)) 

message = [ func_name, ': ', ... 

name, ' is not numeric']; 

iflag_assert = -1; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


Check to see if it is a matrix of the proper length. 
if it is a multidimensional array 
if(length(size(value)) > 2) 

message = [ func_name, ': ', ... 

name, ' has too many subscripts']; 

iflag_assert = -2; 

if(i_error ~= 0) 

if(i_error > 1) 




save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


check that value has the proper number of rows 
if(num_rows ~= 0) 

if(size(value,1) ~= num_rows) 

message = [ func_name, ': ', ... 

name, ' has the wrong number of rows']; 

iflag_assert = -2; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 

end


check that value has the proper number of columns 
if(num_columns ~= 0) 

if(size(value,2) ~= num_columns) 

message = [ func_name, ': ', ... 

name, ' has the wrong number of columns']; 

iflag_assert = -2; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 

end 


Then, check to see if all elements are of the proper complex type. 
switch check_real; 

case {i_real} 
if any element of value is not real 
if(any(~isreal(value))) 

message = [ func_name, ': ', ... 

name, ' is not real']; 

iflag_assert = -3; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 




end 
end 

case {i_imag} 
if any element of value is not purely imaginary 
if(any(real(value))) 

message = [ func_name, ': ', ... 

name, ' is not imaginary']; 

iflag_assert = -3; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 

end 


Next, check sign. 
switch check_sign; 

case {i_pos} 
if any element of value is not positive 
if(any(value <= 0)) 

message = [ func_name, ': ', ... 

name, ' is not positive']; 

iflag_assert = -4; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


case {i_nonneg} 

if any element of value is negative 
if(any(value < 0)) 

message = [ func_name, ': ', ... 

name, ' is not non-negative']; 

iflag_assert = -4; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


case {i_neg} 

if any element of value is not negative 



if(any(value >= 0)) 

message = [ func_name, ': ', ... 

name, ' is not negative']; 

iflag_assert = -4; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


case {i_nonpos} 

if any element of value is positive 
if(any(value > 0)) 

message = [ func_name, ': ', ... 

name, ' is not non-positive']; 

iflag_assert = -4; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


case {i_nonzero} 

if any element of value is zero 
if(any(value == 0)) 

message = [ func_name, ': ', ... 

name, 'is not non-zero']; 

iflag_assert = -4; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


case {i_zero} 

if any element of value is non-zero 
if(any(value ~= 0)) 

message = [ func_name, ': ', ... 

name, ' is not zero']; 

iflag_assert = -4; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 




return; 
end 
end 
end 

Finally, check to make sure it is an integer. 
if(check_int == 1) 

if(any(round(value) ~= value)) 

message = [ func_name, ': ', ... 

name, ' is not an integer']; 

iflag_assert = -5; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message);

else 

return; 

end 

end 

end 


set flag for succesful passing of all checks 

iflag_assert = 1; 
message = 'true'; 

return; 

assert_structure.m 

function [iflag_assert,message] = assert_structure(... 

i_error,Struct,struct_name,func_name,StructType); 


This MATLAB m-file performs assertions on a data structure. It makes use of assert_scalar, 

assert_vector, and assert_matrix for the fields. 


INPUT : 

======= 

i_error controls what to do if test fails 

if i_error is non-zero, then use error() 

MATLAB command to stop execution, otherwise just return the appropriate negative number. 

if i_error > 1, then dump current state to dump_error.mat before calling error(). 

Struct This is the structure to be checked 

struct_name the name of the structure 

func_name the name of the function making the assertion 

StructType this is a structure that contains the typing data for each field. 

.num_fields is the total number of fields 

Then, for i = 1,2, ..., StructType.num_fields, we have : 

.field(i).name the name of the field 

.field(i).is_numeric if non-zero, then field is numeric 

.field(i).num_rows # of rows in field 

.field(i).num_columns # of columns in field 

.field(i).check_real value of check_real passed to assertion 

.field(i).check_sign value of check_sign passed to assertion 

.field(i).check_int value of check_int passed to assertion 




OUTPUT : 

======= 

iflag_assert an integer flag telling of outcome message a message passed that describes the 

result of making the assertion 
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function [iflag_assert,message] = assert_structure(... 
i_error,Struct,struct_name,func_name,StructType); 

iflag_assert = 0; 
message = 'false'; 

first, check to make sure Struct is a structure 
if(~isstruct(Struct)) 

iflag_assert = -1; 

message = [func_name, ': ', struct_name, ... 

' is not a structure']; 

if(i_error ~= 0) 

if(i_error > 1); 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


Now, for each field, perform the required assertion. 
for ifield = 1:StructType.num_fields 

set shortcut to current field type 
FieldType = StructType.field(ifield); 

check if it exists in Struct 
if(~isfield(Struct,FieldType.name)) 

iflag_assert = -2; 

message = [func_name, ': ', struct_name, ... 

' does not contain ', FieldType.name]; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


extract value of field 
value = getfield(Struct,FieldType.name); 



if the field is supposed to be numeric 
if(FieldType.is_numeric ~= 0) 

check to make sure field is numeric 
if(~isnumeric(value)) 

iflag_assert = -3; 

message = [func_name, ': ', ... 

struct_name, '.', FieldType.name, ... 

' is not numeric']; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 

end 


decide which assertion statement to use based on array dimension of field value 
If both num_rows and num_columns are set equal to zero, then no check of the dimension of 
this field is made. 
if(and((FieldType.num_rows == 0), ... 

(FieldType.num_columns == 0))) 


message = [func_name, ': ', ... 

struct_name,'.',FieldType.name, ... 

' is not checked for dimension']; 

if(i_error ~= 0) 

disp(message); 

end 


else, peform check of dimension to make sure it is a scalar, vector, or matrix (i.e. a two 
dimensional array). 
else 

check that is is not a multidimensional array 
if(length(size(value)) > 2) 

iflag_assert = -4; 

message = [func_name, ': ', ... 

struct_name,'.',FieldType.name, ... 

' is multidimensional array']; 

if(i_error ~= 0) 

if(i_error > 1) 

save dump_error.mat; 

end 

error(message); 

else 

return; 

end 


else if scalar 
elseif(and((FieldType.num_rows == 1), ... 
(FieldType.num_columns == 1))) 
assert_scalar(i_error,value, ... 
[struct_name,'.',FieldType.name], ... 



func_name,FieldType.check_real, ... 
FieldType.check_sign,FieldType.check_int); 

else if a column vector 
elseif (and((FieldType.num_rows > 1), ... 

(FieldType.num_columns == 1))) 

dim = FieldType.num_rows; 

check_column = 1; 

assert_vector(i_error,value, ... 

[struct_name,'.',FieldType.name], ... 

func_name,dim,FieldType.check_real, ... 

FieldType.check_sign,FieldType.check_int, ... 

check_column); 


else if a row vector 
elseif (and((FieldType.num_rows == 1), ... 
(FieldType.num_columns > 1))) 
dim = FieldType.num_columns; 
check_column = -1; 
assert_vector(i_error,value, ... 
[struct_name,'.',FieldType.name], ... 
func_name,dim,FieldType.check_real, ... 
FieldType.check_sign,FieldType.check_int, ... 
check_column); 

otherwise, a matrix 
else 

assert_matrix(i_error,value, ... 

[struct_name,'.',FieldType.name], ... 

func_name, ... 

FieldType.num_rows,FieldType.num_columns, ... 

FieldType.check_real,FieldType.check_sign, ... 

FieldType.check_int); 


end selection of assertion routine 
end if perform check of dimension 
end if (FieldType.is_numeric ~= 0) 
end for loop over fields 

set return results for succesful assertion 

iflag_assert = 1; 
message = 'true'; 

return; 

get_input_scalar.m 

function value = get_input_scalar(prompt, ... 

check_real,check_sign,check_int); 


This MATLAB m-file gets from the user an input scalar value of the appropriate type. It asks 

for input over and over again until a correctly typed input value is entered. 
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function value = get_input_scalar(prompt, ...

check_real,check_sign,check_int); 


func_name = 'get_input_scalar'; 

name = 'trial_value'; 


input_OK = 0; 


while (input_OK ~= 1) 

trial_value = input(prompt); 

[iflag_assert,message] = ... 

assert_scalar(0,trial_value, ... 

name,func_name, ... 

check_real,check_sign,check_int); 

if(iflag_assert == 1) 

input_OK = 1; 

value = trial_value; 

else 

disp(message); 

end 

end 


return;
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Chapter 8. MATLAB compiler 

The previous chapters have discussed programming within the MATLAB environment. It has 
been noted that MATLAB is an interpreted language, meaning that each command is converted 
to machine-level instructions one-by-one during execution. While this allows one to program in 
both interactive and batch mode, the extra overhead required to convert the commands at 
run-time is not desired. Also, any programs written in MATLAB can only be run on computers 
that have a copy of MATLAB, so portability is limited. MATLAB includes an optional compiler to 
circumvent these problems by converting m-files to C or C++ code, and optionally linking this 
code with its mathematics and graphics libraries to produce a stand-alone executable that may 
be run, without the interpretation overhead, on any machine with a compatible operating 
system platform. In this section, we demonstrate the MATLAB compiler to produce a stand-
alone executable from the simple example of section 6.4. Note that the program containing 
the main program has been rewritten from the previous script file version since the MATLAB 
compiler only works with function m-files. The first file, a script file called make_file.m, is 
executed from the interactive prompt to perform the compilation; alternatively, the command 
mcc ... can be entered manually. 

make_file.m 

This MATLAB script m-file calls the compiler to convert the MATLAB source code files for 

make_plot_trig to C, link the object files with the MATLAB graphics library, and then produce a 

stand-alone executable. 
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mcc -B sgl ... 
make_plot_trig ... 
plot_trig_1 ... 
trig_func_1 ... 
get_input_scalar ... 
assert_scalar 

make_plot_trig.m (main program file) 

make_plot_trig.m 


This MATLAB m-file makes a plot of the general function 

f(x) = a*sin(x) + b*cos(x) 

for user-selected values of a and b. 
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function iflag_main = make_plot_trig(); 

iflag_main = 0; signifies no completion 



disp('RUNNING make_plot_trig ...'); 

disp(' '); 

disp('This program produces a plot in [0,2*pi]'); 

disp('of the function : '); 

disp('f(x) = a*sin(x) + b*cos(x)'); 

disp('for user-input values of the real scalars a and b'); 

disp(' '); 


The following code asks the user to input values of a and b, and then uses plot_trig to plot 
trig_func_1 by including the function name as an argument in the list. 

prompt = 'Input a : '; 

check_real=1; check_sign=0; check_int=0; 

a = get_input_scalar(prompt, ... 

check_real,check_sign,check_int); 


prompt = 'Input b : '; 

check_real=1; check_sign=0; check_int=0; 

b = get_input_scalar(prompt, ... 

check_real,check_sign,check_int); 


We now call the routine that produces the plot. 
func_name = 'trig_func_1'; 
plot_trig_1(func_name,a,b); 

We now require the user to strike a key before exiting the program. 
pause 

iflag_main = 1; 

return; 

plot_trig_1.m 

function iflag = plot_trig_1(func_name,a,b); 

iflag = 0; signifies no completion 

First, create an x vector from 0 to 2*pi 
num_pts = 100; 
x = linspace(0,2*pi,num_pts); 

Next, make a vector of the function values. We evaluate the argument function indirectly 
using the "feval" command. 
f = linspace(0,0,num_pts); 
for i=1:num_pts 
f(i) = feval(func_name,x(i),a,b); 
end 

Then, we make the plot. 
figure; 

plot(x,f); 

xlabel('Angle (radians)'); 

ylabel('Function value'); 




return; 

trig_func_1.m 

function f_val = trig_func_1(x,a,b); 
f_val = a*sin(x) + b*cos(x); 

return; 
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