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Chapter 1 

Linear Algebra Review
 

1.1 Introduction 

Dynamic systems are systems that evolve with time. Our models for them will comprise 

coupled sets of ordinary di�erential equations (ode's). We will study how the internal variables 

and outputs of such systems respond to their inputs and initial conditions, how their internal 

behavior can be inferred from input/output (I/O) measurements, how the inputs can be 

controlled to produce desired behavior, and so on. Most of our attention will be focused on 

linear models (and within this class, on time invariant models, i.e. on LTI models), for reasons 

that include the following : 

�	 linear models describe small perturbations from nominal operation, and most control 

design is aimed at regulating such perturbations� 

�	 linear models are far more tractable than general nonlinear models, so systematic and 

detailed control design approaches can be developed� 

�	 engineered systems are often made up of modules that are designed to operate in essen-
tially linear fashion, with any nonlinearities introduced in carefully selected locations 

and forms. 

To describe the interactions of coupled variables in linear models, the tools of linear 

algebra are essential. In the �rst part of this course (4 or 5 lectures), we shall come up to 

speed with the \Ax � y" or linear equations part of linear algebra, by studying a variety of 

least squares problems. This will also serve to introduce ideas related to dynamic systems | 

e.g., recursive processing of I/O measurements from a �nite-impulse-response (FIR) discrete-
time (DT) LTI system, to produce estimates of its impulse response coe�cients. 

Later parts of the course will treat in considerable detail the representation, struc-
ture, and behavior of multi-input, multi-output (MIMO) LTI systems. The \Av � �v" 


 



or eigenvalue{eigenvector part of linear algebra enters heavily here, and we shall devote con-
siderable time to it. Along the way, and particularly towards the end of the course, we shall 

thread all of this together by examining approaches to control design, issues of robustness, 

etc., for MIMO LTI systems. 

What you learn in this course will form a valuable, and even essential, foundation for 

further work in systems, control, estimation, identi�cation, signal processing, and communi-
cation. 

We now present a checklist of important notions from linear algebra for you to review, 

using your favorite linear algebra text. Some of the ideas (e.g. partitioned matrices) may be 

new. 

1.2 Vector Spaces 

Review the de�nition of a vector space: vectors, �eld of scalars, vector addition (which 

must be associative and commutative), scalar multiplication (with its own associativity and 

distributivity properties), the existence of a zero vector 0 such that x + 0 � x for every vector 

x, and the normalization conditions 0x � 0, 1x � x. Use the de�nition to understand that 

the �rst four examples below are vector spaces, while the �fth and sixth are not: 

�	 Rn and Cn . 

�	 Real continuous functions f(t) on the real line (8t), with obvious de�nitions of vector 

addition (add the functions pointwise, f(t) + g(t)) and scalar multiplication (scale the 

function by a constant, af(t)). 

�	 The set of m � n matrices. 

�	 The set of solutions y(t) of the LTI ode y(1)(t) + 3y(t) � 0. 

�	 The set of points [ x1 

x2 

x3 

] in R3 satisfying x21 

+ x22 

+ x23 

� 1, i.e. \vectors" from 

the origin to the unit sphere. 

�	 The set of solutions y(t) of the LTI ode y(1)(t) + 3y(t) � sin t. 

A subspace of a vector space is a subset of vectors that itself forms a vector space. To 

verify that a set is a subspace, all we need to check is that the subset is closed under vector 

addition and under scalar multiplication� try proving this. Give examples of subspaces of the 

vector space examples above. 

�	 Show that the range of any real n �m matrix and the nullspace of any real m �n matrix 

are subspaces of Rn . 

�	 Show that the set of all linear combinations of a given set of vectors forms a subspace 

(called the subspace generated by these vectors, also called their linear span). 



�	 Show that the intersection of two subspaces of a vector space is itself a subspace. 

�	 Show that the union of two subspaces is in general not a subspace. Also determine 

under what condition the union of subspaces will be a subspace. 

�	 Show that the (Minkowski or) direct sum of subspaces, which by de�nition comprises 

vectors that can be written as the sum of vectors drawn from each of the subspaces, is 

a subspace. 

Get in the habit of working up small (in R2 or R3, for instance) concrete examples for yourself, 

as you tackle problems such as the above. This will help you develop a feel for what is being 

stated | perhaps suggesting a strategy for a proof of a claim, or suggesting a counterexample 

to disprove a claim. 

Review what it means for a set of vectors to be (linearly) dependent or (linearly) in-

dependent. A space is n-dimensional if every set of more than n vectors is dependent, but 

there is some set of n vectors that is independent� any such set of n independent vectors is 

referred to as a basis for the space. 

�	 Show that any vector in an n-dimensional space can be written as a unique linear 

combination of the vectors in a basis set� we therefore say that any basis set spans the 

space. 

�	 Show that a basis for a subspace can always be augmented to form a basis for the entire 

space. 

If a space has a set of n independent vectors for every nonnegative n, then the space is 

called in�nite dimensional. 

�	 Show that the set of functions f(t) � tn;1 � n � 1� 2� 3� � � � forms a basis for an in�nite 

dimensional space. (One route to proving this uses a key property of Vandermonde 

matrices, which you may have encountered somewhere.) 

Norms 

The \lengths" of vectors are measured by introducing the idea of a norm. A norm for a vector 

space V over the �eld of real numbers R or complex numbers C is de�ned to be a function that 

maps vectors x to nonnegative real numbers kxk, and that satis�es the following properties: 

1. Positivity: kxk � 0 for x 6� 0 

2. Homogeneity: kaxk � jaj kxk � scalar a. 

3. Triangle inequality: kx + yk � kxk + kyk � 8x� y 2 V: 



� 1 

� Verify that the usual Euclidean norm on Rn or Cn (namely 

p
x0x with 

0 denoting the 

complex conjugate of the transpose) satis�es these conditions. 

�	 A complex matrix Q is termed Hermitian if Q0 � Q� if Q is real, then this condition 

simply states that Q is symmetric. Verify that x0Qx is always real, if Q is Hermitian. 

A matrix is termed positive de�nite if x0Qx is real and positive for x � 0. 6 Verify that p
x0Qx constitutes a norm if Q is Hermitian and positive de�nite. P �	 Verify that in Rn both kxk1 

� 

n jxij and kxk1 

� maxi 

jxij constitute norms. These1 

are referred to as the 1-norm and 1-norm respectively, while the examples of norms 

mentioned earlier are all instances of (weighted or unweighted) 2-norms. Describe the 

sets of vectors that have unit norm in each of these cases. 

�	 The space of continuous fucntions on the interval [0� 1] clearly forms a vector space. 

One possible norm de�ned on this space is the 1-norm de�ned as: 

kfk1 

� sup jf(t)j: 

t2[0�1] 

This measures the peak value of the function in the interval [0� 1]. Another norm is the 

2-norm de�ned as: �Z 1 2 

kfk2 

� jf(t)j2dt : 

0 

Verify that these measures satisfy the three properties of the norm. 

Inner Product 

The vector spaces that are most useful in practice are those on which one can de�ne a notion 

of inner product. An inner product is a function of two vectors, usually denoted by � x� y � 

where x and y are vectors, with the following properties: 

1. Symmetry: � x� y � � � y� x �0 . 

2. Linearity: � x� ay + bz � � a � x� y � + b � x� z � for all scalars a and b. 

3. Positivity: � x� x � positive for x 6� 0. 

�	 Verify that 

p
� x� x � de�nes a norm. 

�	 Verify that x0Qy constitutes an inner product if Q is Hermitian and positive de�nite. 

The case of Q � I corresponds to the usual Euclidean inner product. 

�	 Verify that Z 1 

x(t)y(t)dt 

0 

de�nes an inner product on the space of continuous functions. In this case, the norm 

generated from this inner product is the same as the 2-norm de�ned earlier. 



�	 Cauchy-Schwartz Inequality Verify that for any x and y in an inner product space 

j � x� y � j � kxkkyk 

with equality if and only if x � �y for some scalar �. (Hint: Expand � x+�y� x+�y �). 

Two vectors x, y are said to be orthogonal if � x� y �� 0� two sets of vectors X and Y 

are called orthogonal if every vector in one is orthogonal to every vector in the other. The 

orthogonal complement of a set of vectors X is the set of vectors orthogonal to X , and is 

denoted by X 

� . 

�	 Show that the orthogonal complement of any set is a subspace. 

1.3 The Projection Theorem 

Consider the following minimization problem: 

min ky ; mk 

m2M 

where the norm is de�ned through an inner product. The projection theorem (suggested by 

the �gure below), states that the optimal solution m̂ is characterized as follows: 

(y ; m̂) � M: 

To verify this theorem, assume the converse. Then there exists an m0, km0k � 1, such 

m� m0 

�� � 6 m + �m0) 2 M achieves a smaller value to that � y ; ^ � 0. We now argue that ( ^ 

the above minimization problem. In particular, 

ky ; m̂	 ; �m0k2	 � ky ; m̂ k2; � y ; m� �m^ 0 

� ; � �m0� y ; m̂ � +j�j2km0k2 

� ky ; m̂ k2 ; j�j2 ; j�j2 + j�j2 

� ky ; m̂k2 ; j�j2 

This conradicts the optimality of m̂. 

�	 Given a subspace S, show that any vector x can be uniquely written as x � xS 

+ xS� 

, 

where xS 

2 S and xS� 

2 S� . 
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1.4 Matrices 

Our usual notion of a matrix is that of a rectangular array of scalars. The de�nitions of matrix 

addition, multiplication, etc., are aimed at compactly representing and analyzing systems of 

equations of the form 

a11x1 

+ � � � + a1nxn 

� y1 

. � � � 

.. 

am1x1 

+ � � � + amnxn 

� ym 

This system of equations can be written as Ax � y if we de�ne 101010 

a11 

� � � a1n 

x1 

y1 

A �


B@


CA


� x �
B@


CA


� y �
B@


CA


. .
 .
 .
 

.
.
. .
� � �
.
 .
 .
 

xn 

.


ym 


 
 
 
 
 
 

am1 

� � � amn 

The rules of matrix addition, matrix multiplication, and scalar multiplication of a matrix 

remain unchanged if the entries of the matrices we deal with are themselves (conformably 

dimensioned) matrices rather than scalars. A matrix with matrix entries is referred to as a 

block matrix or a partitioned matrix. 

For example, the aij, xj, and yi 

in respectively A, x, and y above can be matrices, and 

P 

the equation Ax � y will still hold, as long as the dimensions of the various submatrices are 

conformable with the expressions aijxj 

� yi 

for i � 1� � � � �m and j � 1� � � � � n. What this 

requires is that the number of rows in aij 

should equal the number of rows in yi, the number 

of columns in aij 

should equal the number of rows in xj , and the number of columns in the 

xj 

and yi 

should be the same. 

� Verify that 
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In addition to these simple rules for matrix addition, matrix multiplication, and scalar 

multiplication of partitioned matrices, there is a simple | and simply veri�ed | rule for 

(complex conjugate) transposition of a partitioned matrix: if [A]ij 

� aij , then [A0]ij 

� a0 

ji, 

i.e., the (i� j)-th block element of A0 is the transpose of the (j� i)-th block element of A. 

For more involved matrix operations, one has to proceed with caution. For instance, the 

determinant of the square block-matrix �
 !
 

A � 

A1 

A3 

A2 

A4 

is clearly not A1A4 

; A3A2 

unless all the blocks are actually scalar! We shall lead you to 

the correct expression (in the case where A1 

is square and invertible) in a future Homework. 

Matrices as Linear Transformations 

T is a transformation or mapping from X to Y , two vector spaces, if it associates to each 

x 2 X a unique element y 2 Y . This transformation is linear if it satis�es 

T (�x + �y) � �T (x) + �T (y): 

� Verify that an n � m matrix A is a linear transformation from Rm to Rn . 

Does every linear transformation have a matrix representation� Assume that both X and Y 

Pare �nite dimensional spaces with respective bases fx1� : : : xmg and fy1� : : : y ng. Every x 2 X 

m very x is represented uniquely in can be uniquely expressed as: x � Equivalently, i�1 

aixi. e 

terms of an element a 2 Rm PSimilarly every element y 2 Y 

of an element b 2 Rn . Now: T (xj) � 

n
i�1 

bijyi 

and hence 

is uniquely represented in terms .


m n mXXX
T (x) � ajT (xj) � yi( ajbij) 

j�1 i�1 j�1 

A matrix representation is then given by B � (bij). It is evident that a matrix representation 

is not unique and depends on the basis choice. 


 



1.5 Linear Systems of Equations 

Suppose that we have the following system of real or complex linear equations: 

Am�n n�1 � y 

m�1 x 

When does this system have a solution x for given A and y� 

9 a solution x () y 2 R(A) () R([A y]) � R(A) 

We now analyze some possible cases: 

(1) If n � m, then det(A) 6 y, and x is the unique solution. � 0 ) x � A;1

(2) If m � n, then there are more equations than unknowns, i.e. the system is \overcon-
strained". If A and/or y re�ect actual experimental data, then it is quite likely that the 

n-component vector y does not lie in R(A), since this subspace is only n-dimensional 

(if A has full column rank) or less, but lives in an m-dimensional space. The system 

will then be inconsistent. This is the sort of situation encountered in estimation or 

identi�cation problems, where x is a parameter vector of low dimension compared to 

the dimension of the measurements that are available. We then look for a choice of x 

that comes closest to achieving consistency, according to some error criterion. We shall 

say quite a bit more about this shortly. 

(3) If m � n, then there are fewer equations than unknowns, and the system is \undercon-
strained". If the system has a particular solution xp 

(and when rank(A) � m, there is 

guaranteed to be a solution for any y) then there exist an in�nite number of solutions. 

More speci�cally, x is a solution i� (if and only if) 

x � xp 

+ xh 

� Axp 

� y � Axh 

� 0 i:e: xh 

2 N (A) 

Since the nullspace N (A) has dimension at least n ; m, there are at least this many 

degrees of freedom in the solution. This is the sort of situation that occurs in many 

control problems, where the control objectives do not uniquely constrain or determine 

the control. We then typically search among the available solutions for ones that are 

optimal according to some criterion. 


 



Exercises


Exercise 1.1 Partitioned Matrices 

Suppose � � 

A � 

A1 

0 

A2 

A4 

with A1 

and A4 

square. 

(a) Write the determinant det A in terms of det A1 

and det A4. (Hint: Write A as the product � � � � 

I 0 A1 

A2 

0 A4 

0 I 

and use the fact that the determinant of the product of two square matrices is the product of 

the individual determinants | the individual determinants are easy to evaluate in this case.) 

(b)	 Assume for this part that A1 

and A4 

are nonsingular (i.e., square and invertible). Now �nd A;1 . 

(Hint: Write AB � I and partition B and I commensurably with the partitioning of A.) 

Exercise 1.2 Partitioned Matrices 

Suppose � � 

A1 

A2A � 

A3 

A4 

where the Ai 

are matrices of conformable dimension. 

(a) What can A be premultiplied by to get the matrix � � 

A3 

A4 � 

A1 

A2 

(b) Assume that A1 

is nonsingular. What can A be premultiplied by to get the matrix � � 

A1 

A2 

0 C 

where C � A4 

; A3A
;1A2 

�1 

(c)	 Suppose A is a square matrix. Use the result in (b) | and the fact mentioned in the hint to 

Problem 1(a) | to obtain an expression for det(A) in terms of determinants involving only the 

submatrices A1, A2, A3, A4. 

Exercise 1.3 Matrix Identities 

Prove the following very useful matrix identities. In proving identities such as these, see if you 

can obtain proofs that make as few assumptions as possible beyond those implied by the problem 

statement. For example, in (1) and (2) below, neither A nor B need be square, and in (3) neither B 

nor D need be square | so avoid assuming that any of these matrices is (square and) invertible!. 


 



(a) det(I ; AB) � det(I ; BA), if A is p � q and B is q � p. (Hint: Evaluate the determinants of � �
 � �


I A I ;A I ;A I A 

� 

B I 0 I 0 I B I 

to obtain the desired result). One common situation in which the above result is useful is when 

p � q� why is this so� 

(b) Show that (I ; AB);1A � A(I ; BA);1 . 

(c)	 Show that (A + BCD);1 � A;1 ; A;1B(C;1 + DA;1B);1DA;1 . (Hint: Multiply the right side 

by A + BCD and cleverly gather terms.) This is perhaps the most used of matrix identities, and 

is known by various names | the matrix inversion lemma, the ABCD lemma (!), Woodbury's 

formula, etc. It is rediscovered from time to time in di�erent guises. Its noteworthy feature is 

that, if A;1 is known, then the inverse of a modi�cation of A is expressed as a modi�cation of 

A;1 that may be simple to compute, e.g. when C is of small dimensions. Show, for instance, 

that evaluation of (I ; abT );1, where a and b are column vectors, only requires inversion of a 

scalar quantity. 

Exercise 1.4 Range and Rank 

This is a practice problem in linear algebra (except that you have perhaps only seen such results 

stated for the case of real matrices and vectors, rather than complex ones | the extensions are routine). 

Assume that A 2 Cm�n (i.e., A is a complex m � n matrix) and B 2 Cn�p. We shall use the 

symbols R(A) and N (A) to respectively denote the range space and null space (or kernel) of the matrix 

A. Following the Matlab convention, we use the symbol A0 to denote the transpose of the complex 

conjugate of the matrix A� R�(A) denotes the subspace orthogonal to the subspace R(A), i.e. the set 

of vectors x such that x0y � 0 � 8y 2 R(A), etc. 

(a) Show that R�(A) � N (A0) and N 

�(A) � R(A0). 

(b)	 Show that 

rank(A) + rank(B) ; n � rank(AB) � minfrank(A)� rank(B)g 

This result is referred to as Sylvester's inequality. 

Exercise 1.5 Vandermonde Matrix 

A matrix with the following structure is referred to as a Vandermonde matrix: 

1 �1 

�2 

1 

� � � �n;1 

1 

1 �2 

�2 

2 

� � � �n;1 

2 

. . . . . . 

. . 

. . � � � 

. . 

1 �n 

�2 

n 

� � � �n;1 

n 

�
�
�
�


1
0
 CCCA


BBB@




This matrix is clearly singular if the �i 

are not all distinct. Show the converse, namely that if all n of 

the �i 

are distinct, then the matrix is nonsingular. One way to do this | although not the easiest! 

| is to show by induction that the determinant of the Vandermonde matrix is 

i�j�nY 

(�j 

; �i) 

i�1 � j�i 

Look for an easier argument �rst. 

Exercise 1.6 Matrix Derivatives 

(a)	 Suppose A(t) and B(t) are matrices whose entries are di�erentiable functions of t, and assume the 

product A(t)B(t) is well-de�ned. Show that 

d 

� � dA(t) dB(t)
A(t)B(t) � B(t) + A(t)

dt	 dt dt 

where the derivative of a matrix is, by de�nition, the matrix of derivatives | i.e., to obtain the 

derivative of a matrix, simply replace each entry of the matrix by its derivative. (Note: The 

ordering of the matrices in the above result is important!). 

(b)	 Use the result of (a) to evaluate the derivative of the inverse of a matrix A(t), i.e. evaluate the 

derivative of A;1(t). 

Exercise 1.7 Suppose T is a linear transformation from X to itself. Verify that any two matrix 

representations, A and B, of T are related by a nonsingular transformation� i.e., A � R;1BR for some 

R. Show that as R varies over all nonsingular matrices, we get all possible representations. 

Exercise 1.8 Let X be the vector space of polynomials of order less than or equal to M . 

(a) Show that the set B � f1� x� : : : xM g is a basis for this vector space. 

(b) Consider the mapping T from X to X de�ned as: 

f(x) � Tg(x) � g(x)
dx 

1. Show that T is linear. 

2. Derive a matrix representation for T in terms of the basis B. 

3. What are the eigenvalues of T . 

4. Compute one eigenvector associated with one of the eighenvalues. 

d 
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Chapter 2 

Least Squares Estimation
 

2.1 Introduction 

If the criterion used to measure the error e � y ; Ax in the case of inconsistent system of 

equations is the sum of squared magnitudes of the error components, i.e. e0e, or equivalently 

the square root of this, which is the usual Euclidean norm or 2-norm kek2, then the problem 

is called a least squares problem. Formally it can be written as 

min ky ; Axk2: (2.1) 

x 

The x that minimizes this criterion is called the least square error estimate, or more simply, 

the least squares estimate. The choice of this criterion and the solution of the problem go 

back to Legendre (1805) and Gauss (around the same time). 

Example 2.1 Suppose we make some measurements yi 

of an unknown function 

f(t) at discrete points ti� i � 1� : : : � N : 

yi 

� f(ti) � i � 1� : : : � N: 

We want to �nd the function g(t) in the space � of polynomials of order m ; 1 � 

N ; 1 that best approximates f(t) at the measured points ti, where ( )
m;1X 

� � g(t) � �it
i� �i 

real 

i�0 

For any g(t) 2 �, we will have yi 

� g(ti) + ei 

for i � 1� : : : � N . Writing this in 



matrix form for the available data, we have 32 

m;11 t1 

t1
2 � � � t1 

2
 3
 

y1 

3232 

�0 

e1 664


775


64


75


64


75


+
 

64


75


.
 .
 

. .
. .
. .


.
 

�m;1 {z
X
x 

N 

.
 .
�


.
 .
 .
 .


eN 


 
 
 
 
 


 

t2 tm;1 

N N� � �
1 tNyN |
 }
 |
 }
 |
 {z
e
}
|
 {z }
 

A

{z
y 

The problem is to �nd �0� : : : � �m;1 

such that e 

0 e � e2 

i 

is minimized.
 

i;1
 

2.2 Computing the Estimate 

The solution, x̂, of Equation 2.1 is characterized by: 

(y ; Ax̂) � R(A): 

All elements in a basis of R(A) must be orthogonal to (y ; Ax̂). Equivalently this is true for 

the set of columns of A, [a1� : : : � an]. Thus 

(y ; Ax̂) � R(A) , ai 

0 (y ; Ax̂) � 0 for i � 1� : : : � n 

, A0(y ; Ax̂) � 0 

, A0Ax̂ � A0y 

This system of m equations in the m unknowns of interest is referred to as the normal 

equations. We can solve for the unique x̂ i� A0A is invertible. Conditions for this will be 

derived shortly. In the sequel, we will present the generalization of the above ideas for in�nite 

dimensional vector spaces. 

2.3 Preliminary: The Gram Product 

Given the array of nA 

vectors A � [a1 

j � � � j anA 

] and the array of nB 

vectors B � [b1 

j � � � j bnB 

] 

from a given inner product space, let � A�B � denote the nA 

� nB 

matrix whose (i� j)-th 

element is � ai� bj 

�. We shall refer to this object as the Gram product (but note that this 

terminology is not standard!). 

If the vector space under consideration is Rm or Cm, then both A and B are matrices 

with m rows, but our de�nition of � A�B � can actually handle more general A, B. In 

fact, the vector space can be in�nite dimensional, as long as we are only examining �nite 

collections of vectors from this space. For instance, we could use the same notation to treat 

�nite collections of vectors chosen from the in�nite-dimensional vector space L2 of square 



R 1integrable functions, i.e. functions a(t) for which ;1 

a2(t) dt � 1. The inner product in L2 R 1is � a(t)� b(t) �� ;1 

a�(t)b(t) dt. (The space L2 is an example of an in�nite dimensional 

Hilbert space, and most of what we know for �nite dimensional spaces | which are also Hilbert 

spaces! | has natural generalizations to in�nite dimensional Hilbert spaces. Many of these 

generalizations involve introducing notions of topology and measure, so we shall not venture 

too far there. It is worth also mentioning here another important in�nite dimensional Hilbert 

space that is central to the probabilistic treatment of least squares estimation: the space 

of zero-mean random variables, with the expected value E(ab) serving as the inner product 

� a� b �.) 

For the usual Euclidean inner product in an m-dimensional space, where � ai� bj 

�� 

a0i 

bj , we simply have � A�B � � A0B. For the inner product de�ned by � ai� bj 

� � a0 

i 

S bj 

for a positive de�nite, Hermitian matrix S, we have �A�B � � A0SB. 

�	 Verify that the symmetry and linearity of the inner product imply the same for the 

Gram product, so � AF�BG + CH � � F 

0 � A�B � G + F 

0 � A�C � H, for any 

constant matrices F , G, H (a constant matrix is a matrix of scalars), with A, B, C 

denoting arrays whose columns are vectors. 

2.4 The Least Squares Estimation Problem 

The problem of interest is to �nd the least square error (LSE) estimate of the parameter vector 

x that arises in the linear model y � Ax, where A is an array of n vectors, A � [a1 

� � � � � an]. 

De�ning the error e by 

e � y ; Ax 

what we want to determine is 

xb � arg min kek � arg min ky ; Axk � y� A given 

x x 

(where \arg minx" should be read as \the value of the argument x that minimizes"). To state 

this yet another way, note that as x is varied, Ax ranges over the subspace R(A), so we are 

looking for the point 

yb � Axb 

in R(A) that comes closest to y, as measured by whatever norm we are using. 

Rather than restricting the norm in the above expression to be the Euclidean 2-norm 

used in Lecture 1, we shall now actually permit it to be any norm induced by an inner product, 

so kek � 

p
� e� e �. This will allow us to solve the so-called weighted least squares problem 

in a �nite dimensional space with no additional work, because error criteria of the form 

e0Se for positive de�nite Hermitian S are thereby included. Also, our problem formulation 

then applies to in�nite dimensional spaces that have an inner product de�ned on them, with 

the restriction that our model Ax be con�ned to a �nite dimensional subspace. This actually 

covers the cases of most interest to us� treatment of the more general case involves introducing 

further topological notions (closed subspaces, etc.), and we avoid doing this. 



We shall also assume that the vectors ai 

� i � 1� : : : � n in A are independent. This 

assumption is satis�ed by any reasonably parametrized model, for otherwise there would be 

an in�nite number of choices of x that attained any achievable value of the error y ; Ax. If 

the vectors in A are discovered to be dependent, then a re-parametrization of the model is 

needed to yield a well-parametrized model with independent vectors in the new A. (A subtler 

problem | and one that we shall say something more about in the context of ill-conditioning 

and the singular value decomposition | is that the vectors in A can be nearly dependent, 

causing practical di�culties in numerical estimation of the parameters.) 

Gram Matrix Lemma 

An important route to verifying the independence of the vectors that make up the columns of 

A is a lemma that we shall refer to as the Gram Matrix Lemma. This states that the vectors 

in A are independent i� the associated Gram matrix (or Gramian) � A�A �� [� ai� aj 

�] 

is invertible� all norms are equivalent, as far as this result is concerned | one can pick any 

norm. As noted above, for the case of the usual Euclidean inner product, �A�A� � A0A. For 

an inner product of the form � ai� aj 

� � a0 

iSaj, where S is Hermitian and positive de�nite, 

we have �A�A�� A0SA. The lemma applies to the in�nite dimensional setting as well (e.g. 

L2), provided we are only considering the independence of a �nite subset of vectors. 

Proof: If the vectors in A are dependent, there is some nonzero vector � such that A� � P P 

j 

aj�j 

� 0. But then j 

� ai� aj 

� �j 

� 0, by the linearity of the inner product� in 

matrix form, we can write �A�A� � � 0 | so �A�A� is not invertible. 

Conversely, if � A�A � is not invertible, then � A�A � � � 0 for some nonzero �. But P P 

then �0 � A�A � � � 0, so by the linearity of inner products � �iai 

� aj�j 

� � 0,P 

i.e. the norm of the vector aj�j 

� A� is zero, so the vectors in A are dependent. 

2.5 The Projection Theorem and the Least Squares Estimate 

The solution to our least squares problem is now given by the Projection Theorem, also referred 

to as the Orthogonality Principle, which states that 

eb � (y ; Axb) � R(A) 

from which - | as we shall see | xb can be determined. In words, the theorem/\principle" 

states that the point yb � Axb in the subspace R(A) that comes closest to y is characterized 

by the fact that the associated error eb � y ; yb is orthogonal to R(A), i.e., orthogonal to the 

space spanned by the vectors in A. This principle was presented and proved in the previous 

chapter. We repeat the proof here in the context of the above problem. 

Proof: We �rst show that y has a unique decomposition of the form y � y1+y2, where y1 

2 R(A) 

and y2 

2 R�(A). We can write any y1 

2 R(A) in the form y1 

� A� for some vector �. 



If we want (y ; y1) 2 R�(A), we must see if there is an � that satis�es 

� ai� (y ; A�) � � 0 � i � 1� : : : � n 

or, using our Gram product notation, 

�A� (y ; A�)� � 0 

Rearranging this equation and using the linearity of the Gram product, we get 

�A�A� � � �A� y � 

which is in the form of the normal equations that we encountered in Lecture 1. Under 

our assumption that the vectors making up the columns of A are independent, the Gram 

matrix lemma shows that �A�A� is invertible, so the unique solution of the preceding 

equation is 

� � �A�A�;1�A� y � 

We now have the decomposition that we sought. 

To show that the preceding decomposition is unique, let y � y1a 

+ y2a 

be another such 

decomposition, with y1a 

2 R(A) and y2a 

2 R�(A). Then 

y1 

; y1a 

� y2 

; y2a 

and the left side is in R(A) while the right side is in its orthogonal complement. It is 

easy to show that the only vector common to a subspace and its orthogonal complement 

is the zero vector, so y1 

;y1a 

� 0 and y2 

;y2a 

� 0, i.e., the decomposition of y is unique. 

To proceed, decompose the error e � y ; Ax similarly (and uniquely) into the sum of 

e1 

2 R(A) and e2 

2 R�(A). Note that 

kek2 � ke1k2 + ke2k2 

Now we can rewrite e � y ; Ax as 

e1 

+ e2 

� y1 

+ y2 

; Ax 

or 

e2 

; y2 

� y1 

; e1 

; Ax 

Since the right side of the above equation lies in R(A) and the left side lies in R�(A), 

each side separately must equal 0 | again because this is the only vector common to 

a subspace and its orthogonal complement. We thus have e2 

� y2, and the choice of x 

can do nothing to a�ect e2. On the other hand, e1 

� y1 

; Ax � A(� ; x), and the best 

we can do as far as minimizing kek2 is to make e1 

� 0 by choosing x � �, so xb � �, i.e., 



xb � �A�A�;1 �A� y � 

This solves the least squares estimation problem that we have posed. 

The above result, though rather abstractly developed, is immediately applicable to many 

concrete cases of interest. 

�	 Specializing to the case of Rm or Cm, and choosing x to minimize the usual Euclidean 

norm, 

mX 0kek2 � e e � jeij2 

i�1 

we have
 

xb � (A0A);1A0 y
 

Note that if the columns of A form a mutually orthogonal set (i.e. an orthogonal basis 

for R(A)), then A0A is diagonal, and its inversion is trivial. 

�	 If instead we choose to minimize e0Se for some positive de�nite Hermitian S (�6 I), we 

have a weighted least squares problem, with solution given by 

xb � (A0SA);1A0Sy 

For instance, with a diagonal S, the criterion that we are trying to minimize becomes 

mX 

siijeij2 

i�1 

where the sii 

are all positive. We can thereby preferentially weight those equations in 

our linear system for which we want a smaller error in the �nal solution� a larger value 

of sii 

will encourage a smaller ei. 

Such weighting is important in any practical situation, where di�erent measurements yi 

may have been subjected to di�erent levels of noise or uncertainty. One might expect 

that sii 

should be inversely proportional to the noise intensity on the ith equation. In 

fact, a probabilistic derivation, assuming zero-mean noise on each equation in the system 

but noise that is uncorrelated across equations, shows that sii 

should vary inversely with 

the variance of ei. 

A full matrix S rather than a diagonal one would make sense if the errors were correlated 

across measurements. A probabilistic treatment shows that the proper weighting matrix 

is S � (E[ee0]);1, the inverse of the covariance matrix of e. In the deterministic setting, 

one has far less guidance on picking a good S. 



�	 The boxed result also allows us to immediately write down the choice of coe�cients xi 

that minimizes the integral Z
 

[ y(t) ; a1(t)x1 

; a2(t)x2 

; � � � ; an(t)xn 

]2 dt 

for speci�ed functions y(t) and ai(t). If, for instance, y(t) is of �nite extent (or �nite 

\support") T , and the ai(t) are sinusoids whose frequencies are integral multiples of 

2��T , then the formulas that we obtain for the xi 

are just the familiar Fourier series 

expressions. A simpli�cation in this example is that the vectors in A are orthogonal, so 

�A�A� is diagonal. 

2.6 Recursive Least Squares (optional) 

What if the data is coming in sequentially� Do we have to recompute everything each time 

a new data point comes in, or can we write our new, updated estimate in terms of our old 

estimate� 

kX 

Consider the model 

yi 

� Aix + ei 

� i � 0� 1� : : : � (2.2) 

where yi 

2 Cm�1 , Ai 

2 Cm�n , x 2 Cn�1, and ei 

2 Cm�1 . The vector ek 

represents the 

mismatch between the measurement yk 

and the model for it, Akx, where Ak 

is known and x 

is the vector of parameters to be estimated. At each time k, we wish to �nd �
 �!
kX 

(yi 

; Aix)
0 

iSi(yi 

; Aix)	

0 eiSieibxk 

� arg min 

i�1 i�1 

where Si 

2 Cm�m is a positive de�nite Hermitian matrix of weights, so that we can vary the 

importance of the ei's and components of the ei's in determining xbk. 

To compute xbk+1, let: 

� arg min � (2.3)


x x 

323232 

y0	

A0 

e0 666664


y1 

:
 

:
 

777775


� Ak+1 

� 

666664


A1 

:
 

:
 

777775


�
 ek+1 

� 

666664


e1 

yk+1 

� �

:
 

:
 


 
 
 
 
 
 

yk+1	

Ak+1 

ek+1 

and 

Sk+1 

� diag ( S0 

� S1 

� : : : � Sk+1) 

where Si 

is the weighting matrix for ei. 

Our problem is then equivalent to 

!


777775




min(e0 

k+1Sk+1ek+1) 

subject to: yk+1 

� Ak+1xk+1 

+ ek+1 

The solution can thus be written as 

(Ak+1Sk+1Ak+1)xbk+1 

� Ak+1Sk+1yk+1 

or in summation form as � !
k+1 k+1X X 

A0 

iSiAi 

xbk+1 

� A0 

iSiyi 

i�0 i�0 

De�ning 

k+1X 

Qk+1 

� Ai 

0 SiAi: 

i�0 

we can write a recursion for Qk+1 

as follows: 

Qk+1 

� Qk 

+ A0 

k+1Sk+1Ak+1: 

Rearranging the summation form equation for xbk+1, we get h�P � i 

� Q;1 k bk 

+ A0xbk+1 k+1 

i�0 

A0 

iSiAi 

x k+1Sk+1yk+1 h i 

� Q;1 Qkxbk 

+ A0 

k+1Sk+1yk+1k+1 

This clearly displays the new estimate as a weighted combination of the old estimate and the 

new data, so we have the desired recursion. Another useful form of this result is obtained by 

substituting from the recursion for Qk+1 

above to get 

A0 xbk+1 

� xbk 

; Q;1 

; 

k+1Sk+1Ak+1xbk 

; Ak
0 

+1Sk+1yk+1 

� 

�k+1 

which �nally reduces to 

xbk+1 

� xbk 

+ Q;1 Ak
0 

+1Sk+1 

(yk+1 

; Ak+1xbk) | 

k+1 {z } | {z }
Kalman Filter Gain 

innovations 

The quantity Q;1 A0 Sk+1 

is called the Kalman gain, and yk+1 

; Ak+1xbk 

is called the k+1 

k+1

innovations, since it compares the di�erence between a data update and the prediction given 

the last estimate. 

Unfortunately, as one acquires more and more data, i.e. as k grows large, the Kalman gain 

goes to zero. One data point cannot make much headway against the mass of previous data 

which has `hardened' the estimate. If we leave this estimator as is|without modi�cation|the 

estimator `goes to sleep' after a while, and thus doesn't adapt well to parameter changes. The 

homework investigates the concept of a `fading memory' so that the estimator doesn't go to 

sleep. 

0 0 



An Implementation Issue 

Another concept which is important in the implementation of the RLS algorithm is the com-
putation of Q;1 If the dimension of Qk 

is very large, computation of its inverse can be k+1. 

computationally expensive, so one would like to have a recursion for Q;1 

k+1.
 

This recursion is easy to obtain. Applying the handy matrix identity
 � � 

(A + BCD);1 � A;1 ; A;1B DA;1B + C;1 

;1 

DA 

;1 

to the recursion for Qk+1 

yields � � 

:Q;1 � Q;1 ; Q;1A0 Ak+1Q
;1A0 

k+1 

+ S;1 

;1 

k+1 k k k+1 k k+1 

Ak+1Qk
;1 

Upon de�ning 

Pk+1 

� Q;1 �k+1 

this becomes � � 

S;1 

;1 

:Pk+1 

� Pk 

; PkA
0 

k+1 k+1 

+ Ak+1PkA
0 

k+1 

Ak+1Pk 

which is called the (discrete-time) Riccati equation. 

Interpretation 

We have xbk 

and yk+1 

available for computing our updated estimate. Interpreting xbk 

as a 

measurement, we see our model becomes " # " # " # 

xbk 

I ek� x + : 

yk+1 

Ak+1 

ek+1 

The criterion, then, by which we choose xbk+1 

is thus 

xbk+1 

� argmin 

;
ek 

0 Qkek 

+ e0 

k+1Sk+1ek+1 

� 

: 

In this context, one interprets Qk 

as the weighting factor for the previous estimate. 



Exercises 

Exercise 2.1 Least Squares Fit of an Ellipse 

Suppose a particular object is modeled as moving in an elliptical orbit centered at the origin. 

Its nominal trajectory is described in rectangular coordinates (r� s) by the constraint equation x1r
2 + 

x2s
2 + x3rs � 1, where x1, x2, and x3 

are unknown parameters that specify the orbit. We have 

available the following noisy measurements of the object's coordinates (r� s) at ten di�erent points on 

its orbit: 

(0.6728, 0.0589) (0.3380, 0.4093) (0.2510, 0.3559) (-0.0684, 0.5449) 

(-0.4329, 0.3657) (-0.6921, 0.0252) (-0.3681, -0.2020) (0.0019, -0.3769) 

(0.0825, -0.3508) (0.5294, -0.2918) 

The ten measurements are believed to be equally reliable. For your convenience, these ten pairs of 

measured (r� s) values have been stored in column vectors named r and s that you can access through 

the 6.241 locker on Athena. 

* After add 6.241, and once in the directory in which you are running 

Matlab, you can copy the data using cp /mit/6.241/Public/fall95/hw1rs.mat hw1rs.mat. Then, 

in Matlab, type load hw1rs to load the desired data� type who to con�rm that the vectors r and s are 

indeed available. 

Using the assumed constraint equation, we can arrange the given information in the form of the 

linear system of (approximate) equations Ax � b, where A is a known 10�3 matrix, b is a known 10�1 

Tvector, and x � ( x1� x2� x3 

) . This system of 10 equations in 3 unknowns is inconsistent. We wish to 

�nd the solution x that minimizes the Euclidean norm (or length) of the error Ax ; b. Compare the 

solutions obtained by using the following four Matlab invocations, each of which in principle gives the 

desired least-square-error solution: 

(a) x � Anb 

(b) x � pinv(  A) � b 

(c) x � inv(  A0 � A) � A0 � b 

(d) [q� r] � qr(A), followed by implementation of the approach described in Exercise 3.1. 

For more information on these commands, try help slash, help qr, help pinv, help inv, etc. 

[Incidentally, the prime, 

0, in Matlab takes the transpose of the complex conjugate of a matrix� if you 

want the ordinary transpose of a complex matrix C, you have to write C:  

0 or transp(C).] 

You should include in your solutions a plot the ellipse that corresponds to your estimate of x. 

If you create the following function �le in your Matlab directory, with the name ellipse.m, you can 

obtain the polar coordinates theta, rho of n points on the ellipse speci�ed by the parameter vector x. 

To do this, enter [theta,rho]�ellipse(x,n)� at the Matlab prompt. You can then plot the ellipse 

by using the polar(theta,rho) command. 

function [theta,rho]�ellipse(x,n) 

% [theta,rho]�ellipse(x,n) 

% 

% The vector x � [x(1),x(2),x(3)]', de�nes an ellipse centered at the origin 

% via the equation x(1)*r^ 2 + x(2)*s^ 2 +x(3)*r*s � 1. 

% This routine generates the polar coordinates of points on the ellipse, 

% to send to a plot command. It does this by solving for the radial 

% distance in n equally spaced angular directions. 

% Use polar(theta,rho) to actually plot the ellipse. 

* Athena is MIT's UNIX-based computing environment. OCW does not provide access to it. 



theta � 0:(2*pi/n):(2*pi)�
 

a � x(1)*cos(theta).^ 2 + x(2)*sin(theta).^ 2 + x(3)*(cos(theta).*sin(theta))�
 

rho � ones(size(a))./sqrt(a)�
 

Exercise 2.2 Approximation by a Polynomial 

Let f(t) � 0:5e0:8t , t 2 [0� 2]. 

(a)	 Suppose 16 exact measurements of f(t) are available to you, taken at the times ti 

listed in the 

array T below: 

T � [2 � 10;3� 0:136� 0:268� 0:402� 0:536� 0:668� 0:802� 0:936� 

1:068� 1:202� 1:336� 1:468� 1:602� 1:736� 1:868� 2:000] 

Use Matlab to generate these measurements: 

yi 

� f(ti) i � 1� : : : � 16 ti 

2 T 

Now determine the coe�cients of the least square error polynomial approximation of the mea-
surements, for 

1. a polynomial of degree 15, p15(t)� 

2. a polynomial of degree 2, p2(t). 

Compare the quality of the two approximations by plotting y(ti), p15(ti) and p2(ti) for all ti 

in T . To see how well we are approximating the function on the whole interval, also plot f(t), 

p15(t) and p2(t) on the interval [0� 2]. (Pick a very �ne grid for the interval, e.g. t�[0:1000]'/500.) 

Report your observations and comments. 

(b) Now suppose that your measurements are a�ected by some noise. Generate the measurements 

using
 

yi 

� f(ti) + e(ti) i � 1� : : : � 16 ti 

2 T
 

where the vector of noise values can be generated in the following way: 

randn(0seed0� 0)� 

e � randn(size(T ))� 

Again determine the coe�cients of the least square error polynomial approximation of the mea-
surements for 

1. a polynomial of degree 15, p15(t)� 

2. a polynomial of degree 2, p2(t). 

Compare the two approximations as in part (a). Report your observations and comments. 

Explain any surprising results. 



(c)	 So far we have obtained polynomial approximations of f(t) � t 2 [0� 2] � by approximating the 

measurements at ti 

2 T . We are now interested in minimizing the square error of the polynomial 

approximation over the whole interval [0� 2]: Z 2 

min kf(t) ; pn(t)k2 � min jf(t) ; pn(t)j2 dt2 

0 

where pn(t) is some polynomial of degree n. Find the polynomial p2(t) of degree 2 that solves 

the above problem. Are the optimal p2(t) in this case and the optimal p2(t) of parts (a) and (b) 

very di�erent from each other� Elaborate. 

Exercise 2.3 Combining Estimates 

Suppose y1 

� C1x + e1 

and y2 

� C2x + e2, where x is an n-vector, and C1, C2 

have full column 

rank.	 Let x̂  1 

denote the value of x that minimizes eT 

1 

S1e1, and x̂  2 

denote the value that minimizes 

eT2 

S2e2, where S1 

and S2 

are positive de�nite matrices. Show that the value x̂ of x that minimizes 

eT 

1 

S1e1 

+ eT 

2 

S2e2 

can be written entirely in terms of x̂1, x̂  2, and the n � n matrices Q1 

� C1 

T S1C1 

and 

Q2 

� C2 

T S2C2. What is the signi�cance of this result� 

Exercise 2.4 Exponentially Windowed Estimates 

Suppose we observe the scalar measurements 

yi 

� cix + ei 

� i � 1� 2� : : : 

where ci 

and x are possibly vectors (row- and column-vectors respectively). 

(a)	 Show (by reducing this to a problem that we already know how to solve | don't start from 

scratch!) that the value x̂k 

of x that minimizes the criterion 

kX 

fk;i e2i 

� some	 �xed f� 0 � f � 1 

i�1 

is given by � 

k �;1� 

k �X X 

x̂ k 

� fk;i cTi 

ci 

fk;i cTi 

yi 

i�1 i�1 

The so-called fade or forgetting factor f allows us to preferentially weight the more recent mea-
surements by picking 0 � f � 1, so that old data is discounted at an exponential rate. We 

then say that the data has been subjected to exponential fading or forgetting or weighting or 

windowing or tapering or ... . This is usually desirable, in order to keep the �lter adaptive to 

changes that may occur in x. Otherwise the �lter becomes progressively less attentive to new 

data and falls asleep, with its gain approaching 0. 



(b)	 Now show that 

x̂ k 

� x̂ k;1 

+ Q;k 

1 cTk 

(yk 

; ckx̂  k;1 

) 

where


Qk 

� fQk;1 

+ cTk 

ck� Q0 

� 0


The vector gk 

� Q;k 

1 cTk 

is termed the gain of the estimator. 

(c)	 If x and ci 

are scalars, and ci 

is a constant c, determine gk 

as a function of k. What is the 

steady-state gain g1� Does g1 

increase or decrease as f increases | and why do you expect 

this� 

Exercise 2.5 Suppose our model for some waveform y(t) is y(t) � � sin (!t), where � is a scalar, 

and suppose we have measurements y(t1)� : : : � y(tp). Because of modeling errors and the presence of 

measurement noise, we will generally not �nd any choice of model parameters that allows us to pre-
cisely account for all p measurements. 

(a) If ! is known, �nd the value of � that minimizes 

pX 

[y(ti) ; � sin(!ti)]
2 

i�1 

(b) Determine this value of � if ! � 2 and if the measured values of y(t) are: 

y(1) � +2:31 y(2) � ;2:01 y(3) � ;1:33 y(4) � +3:23 

y(5) � ;1:28 y(6) � ;1:66 y(7) � +3:28 y(8) � ;0:88 

(I generated this data using the equation y(t) � 3 sin(2t) + e(t) evaluated at the integer values 

t � 1� : : : � 8, and with e(t) for each t being a random number uniformly distributed in the interval 

- 0.5 to +0.5.) 

(c)	 Suppose that � and ! are unknown, and that we wish to determine the values of these two variables 

that minimize the above criterion. Assume you are given initial estimates �0 

and !0 

for the 

minimizing values of these variables. Using the Gauss-Newton algorithm for this nonlinear least 

squares problem, i.e. applying LLSE to the problem obtained by linearizing about the initial 

estimates, determine explicitly the estimates �1 

and !1 

obtained after one iteration of this 

algorithm. Use the following notation to help you write out the solution in a condensed form: X X	 X 

2 2 a � sin2(!0ti) � b � ti 

cos (!0ti) � c � ti[sin(w0ti)][cos(w0ti)] 

(d)	 What values do you get for �1 

and !1 

with the data given in (b) above if the initial guesses 

are �0 

� 3:2 and !0 

� 1:8 � Continue the iterative estimation a few more steps. Repeat the 

procedure when the initial guesses are �0 

� 3:5 and !0 

� 2:5, verifying that the algorithm does 

not converge. 



(e)	 Since only ! enters the model nonlinearly, we might think of a decomposed algorithm, in which � 

is estimated using linear least squares and ! is estimated via nonlinear least squares. Suppose, 

for example, that our initial estimate of ! is !0 

� 1:8. Now obtain an estimate �1 

of � using the 

linear least squares method that you used in (b). Then obtain an (improved�) estimate !1 

of !, 

using one iteration of a Gauss-Newton algorithm (similar to what is needed in (c), except that 

now you are only trying to estimate !). Next obtain the estimate �2 

via linear least squares, 

and so on. Compare your results with what you obtain via this decomposed procedure when 

your initial estimate is !0 

� 2:5 instead of 1.8. 

Exercise 2.6 Comparing Di�erent Estimators 

This problem asks you to compare the behavior of di�erent parameter estimation algorithms by 

�tting a model of the type y(t) � a sin(2�t) + b cos(4�t) to noisy data taken at values of t that are .02 

apart in the interval (0,2]. 

First synthesize the data on which you will test the algorithms. Even though your estimation 

algorithms will assume that a and b are constant, we are interested in seeing how they track parameter 

changes as well. Accordingly, let a � 2, b � 2 for the �rst 50 points, and a � 1, b � 3 for the next 50 

points. To get (approximately) normally distributed random variables, we use the function randn to 

produce variables with mean 0 and variance 1. 

An elegant way to generate the data in Matlab, exploiting Matlab's facility with vectors, is to 

de�ne the vectors t1 � 0:02 : 0:02 : 1:0 and t2 � 1:02 : 0:02 : 2:0, then set 

y1 � 2 � sin(2 � pi � t1) + 2 � cos(4 � pi � t1) + s � randn(size(t1)) 

and 

y2 � sin(2 � pi � t2) + 3 � cos(4 � pi � t2) + s � randn(size(t2)) 

where s determines the standard deviation of the noise. Pick s � 1 for this problem. Finally, set 

y � [y1� y2]. No loops, no counters, no fuss!! 

Now estimate a and b from y using the following algorithms. Assume prior estimates â0 

� 3 

and b̂0 

� 1, weighted equally with the measurements (so all weights can be taken as 1 without loss of 

generality). Plot your results to aid comparison. 

(i) Recursive least squares. 

(ii) Recursive least squares with exponentially fading memory, as in Problem 3. Use f � :96. 

(iii) The algorithm in (ii), but with Qk 

of Problem 3 replaced by qk 

� (1�n)�trace(Qk), where 

n is the number of parameters, so n � 2 in this case. (Recall that the trace of a matrix is the sum of 

its diagonal elements. Note that qk 

itself satis�es a recursion, which you should write down.) 

(iv) An algorithm of the form 

:04 T x̂ k 

� ^ xk;1 

+ ck 

(yk 

; ckx̂ k;1)Tckck 

where ck 

� [sin(2�t)� cos(4�t)] evaluated at the kth sampling instant, so t � :02k. 

Exercise 2.7 Recursive Estimation of a State Vector 

This course will soon begin to consider state-space models of the form 

x` 

� Ax`;1	 

(2.4) 



where x` 

is an n-vector denoting the state at time ` of our model of some system, and A is a known 

n � n matrix. For example, suppose the system of interest is a rotating machine, with angular position 

d` 

and angular velocity !` 

at time t � `T , where T is some �xed sampling interval. If we believed the 

machine to be rotating at constant speed, we would be led to the model � � � �� � 

d` 

1 T d`;1� 

!` 

0 1 !`;1 

Assume A to be nonsingular throughout this problem. 

For the rotating machine example above, it is often of interest to obtain least-square-error esti-
mates of the position and (constant) velocity, using noisy measurements of the angular position dj 

at 

the sampling instants. More generally, it is of interest to obtain a least-square-error estimate of the 

state vector xi 

in the model (2.4) from noisy p-component measurements yj 

that are related to xj 

by 

a linear equation of the form 

yj 

� Cxj 

+ ej 

� j � 1� : : : � i 

where C is a p � n matrix. We shall also assume that a prior estimate x̂0 

of x0 

is available: 

x̂  0 

� x0 

+ e0 

Let x̂iji 

denote the value of xi 

that minimizes 

iX 

kejk2 

j�0 

This is the estimate of xi 

given the prior estimate and measurements up to time i, or the \�ltered 

estimate" of xi. Similarly, let x̂iji;1 

denote the value of xi 

that minimizes 

i;1X 

kejk2 

j�0 

This is the least-square-error estimate of xi 

given the prior estimate and measurements up to time
 

i ; 1, and is termed the \one-step prediction" of xi.
 

a) Set up the linear system of equations whose least square error solution would be x̂ 
iji. Similarly,


set up the linear system of equations whose least square error solution would be x̂iji;1 

.


b) Show that ^ xiji;1 

� Ax̂ 
i;1ji;1.


c) Determine a recursion that expresses ^ xiji 

in terms of x̂i
 ;1ji;1 

and yi. This is the prototype of what


is known as the Kalman �lter. A more elaborate version of the Kalman �lter would include additive


noise driving the state-space model, and other embellishments, all in a stochastic context (rather than


the deterministic one given here).


Exercise 2.8 Let x̂ denote the value of x that minimizes ky ; Axk2, where A has full column rank.


Let x denote the value of x that minimizes this same criterion, but now subject to the constraint that


z � Dx, where D has full row rank. Show that
� �;1 

x � x̂+ (AT A);1DT D(AT A);1DT (z ; Dx̂) 

(Hint: One approach to solving this is to use our recursive least squares formulation, but modi�ed for 

the limiting case where one of the measurement sets | namely z � Dx in this case | is known to 

have no error. You may have to use some of the matrix identities from the previous chapter). 
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Chapter 3 

Least Squares Solution of y �� A� x � 

3.1 Introduction 

We turn to a problem that is dual to the overconstrained estimation problems considered so 

far. Let A denote an array of m vectors, A � [a1j � � � jam], where the ai 

are vectors from any 

space on which an inner product is de�ned. The space is allowed to be in�nite dimensional, 

e.g. the space L2 of square integrable functions mentioned in Chapter 2 . We are interested 

in the vector x, of minimum length, that satisfy the equation 

y ��A� x� (1a) 

where we have used the Gram product notation introduced in Chapter 2. 

Example 3.1 Let y[0] denote the output at time 0 of a noncausal FIR �lter whose 

input is the sequence x[k], with 

NX 

y[0] � hix[;i]: 

i�;N 

Describe the set of input values that yield y[0] � 0� repeat for y[0] � 7. The 

solution of minimum energy (or RMS value) is the one that minimizes 

PN
i�;N 

x2[i]. 

3.2 Constructing all Solutions 

When the ai's are drawn from ordinary (real or complex) Euclidean n-space, with the usual 

(unweighted) inner product, A is an n � m matrix of full column rank, and the equation (1a) 

is simply 

y � A0 x � (1b) 



where A0 has full row rank. Since the m rows of A0 in (1b) are independent, this matrix has m 

independent columns as well. It follows that the system (1b), which can be read as expressing 

y in terms of a linear combination of the columns of A0 (with weights given by the components 

of x) has solutions x for any y. 

If A0 were square and therefore (under our rank assumption) invertible, (1b) would have 

a unique solution, obtained simply by premultiplying (1b) by the inverse of A0 . The closest we 

come to having an invertible matrix in the non-square case is by invoking the Gram matrix 

lemma, which tells us that A0A is invertible under our rank assumption. This fact, and 

inspection of (1b), allow us to explicitly write down one particular solution of (1b), which we 

denote by �x: 

x� � A (A0 A);1 y (2a) 

Simple substitution of this expression in (1b) veri�es that it is indeed a solution. We shall 

shortly see that this solution actually has minimum length (norm) among all solutions of (1b). 

For the more general equation in (1a), we can establish the existence of a solution by 

demonstrating that the appropriate generalization of the expression in (2a) does indeed satisfy 

(1a). For this, pick 

x� � A �A� A�;1 y (2b) 

It is easy to see that this satis�es (1a), if we use the fact that �A� A� ���A� A� � for any 

array � of scalars� in our case � is the m � 1 array �A� A�;1 y. 

Any other x is a solution of (1a) i� it di�ers from the particular solution above (or any 

other particular solution) by a solution of the homogeneous equation � A� x �� 0� the same 

statement can be made for solutions of (1b). The proof is easy, and presented below for (1b), 

with x denoting any solution, xp 

denoting a particular solution, and xh 

denoting a solution 

of the homogeneous equation: 

y � A0 xp 

� A0 x ) A0 (x ; xp) � 0 ) x � xp 

+ xh| {z }
xh 

Conversely, 

y � A0 xp 

� A0 xh 

� 0 ) y � A0 |(xp 

+ {z xh}) ) x � xp 

+ xh: 

x 

Equations of the form (1a), (1b) commonly arise in situations where x represents a vector 

of control inputs and y represents a vector of objectives or targets. The problem is then to 

use some appropriate criterion and/or constraints to narrow down the set of controls. 

Example 3.2 Let m � 1, so that A0 is a single nonzero row, which we shall denote 

by a0 . If y � 0, the set of solutions corresponds to vectors x that are orthogonal 

to the vector a, i.e. to vectors in the orthogonal complement of a, namely in the 

subspace Ra�(a). Use this to costruct all solutions to Example 3.1. 



There are several di�erent criteria and constraints that may reasonably be used to select 

among the di�erent possible solutions. For example, in some problems it may be natural to 

restrict the components xi 

of x to be nonnegative, and to ask for the control that minimizes P 

sixi, where si 

represents the cost of control component xi. This is the prototypical form 

of what is termed the linear programming problem. (You should geometrically characterize 

the solution to this problem for the case given in the above example.) The general linear 

programming problem arises in a host of applications. 

We shall focus on the problem of determining the solution x of (1a) for which kxk2 �� 

x� x � is minimized� in the case of (1b), we are looking to minimize x0x. For the situation 

depicted in the above example, the optimum x is immediately seen to be the solution vector 

that is aligned with a. It can be found by projecting any particular solution of (1b) onto the 

space spanned by the vector a. (This fact is related to the Cauchy-Schwartz inequality: For 

x of a speci�ed length, the inner product � a� x � is maximized by aligning x with a, and for 

speci�ed � a� x � the length of x is minimized by again aligning x with a.) The generalization 

to m � 1 and to the broader setting of (1a) is direct, and is presented next. You should note 

the similarity to the proof of the orthogonality principle. 

3.3 Least Squares Solution 

Let x be a particular solution of (1a). Denote by xA 

its unique projection onto the range of 

A (i.e. onto the space spanned by the vectors ai) and let xA� 

denote the projection onto the 

space orthogonal to this. Following the same development as in the proof of the orthogonality 

principle in Lecture 2, we �nd 

xA 

� A �A� A�;1�A� x� (3a) 

with xA� 

� x ; xA. Now (1a) allows us to make the substitution y ��A� x� in (3a), so 

xA 

� A �A� A�;1 y (3b) 

which is exactly the expression we had for the solution x� that we determined earlier by 

inspection, see (2b). 

Now note from (3b) that xA 

is the same for all solutions x, because it is determined 

entirely by A and y. Hence it is only xA� 

that is varied by varying x. The orthogonality of 

xA 

and xA� 

allows us to write 

� x� x � � � xA� xA 

� + � xA� 

� xA� 

� 

so the best we can do as far as minimizing � x� x � is concerned is to make xA� 

� 0. In other 

words, the optimum solution is x � xA 

� x�. 

Example 3.3 For the FIR �lter mentioned in Example 3.1, and considering all in-PNput sequences x[k] that result in y[0] � 7, �nd the sequence for which i�;N 

x2[i] 

is minimized. (Work out this example for yourself!) 



Example 3.4 Consider a unit mass moving in a straight line under the action of 

a force x(t), with position at time t given by p(t). Assume p(0) � 0, p_(0) � 0, and 

suppose we wish to have p(T ) � y (with no constraint on p_(T )). Then Z T 

y � p(T ) � (T ; t)x(t) dt �� a(t)� x(t) � (4) 

0 

This is a typical underconstrained problem, with many choices of x(t) for 0 � t � T 

that will result in p(T ) � y. Let us �nd the solution x(t) for which Z T 

x 

2(t) dt � � x(t)� x(t) � (5) 

0 

is minimized. Evaluating the expression in (2a), we �nd 

x�(t) � (T ; t)y�(T 

3�3) (6) 

How does your solution change if there is the additional constraint that the mass 

should be brought to rest at time T , so that p_(T ) � 0� 

We leave you to consider how weighted norms can be minimized. 



Exercises 

Exercise 3.1 Least Square Error Solution We begin with a mini-tutorial on orthogonal and unitary 

matrices. An orthogonal matrix may be de�ned as a square real matrix whose columns are of unit 

length and mutually orthogonal to each other | i.e., its columns form an orthonormal set. It follows 

quite easily (as you should try and verify for yourself) that: 

�	 the inverse of an orthogonal matrix is just its transpose� 

�	 the rows of an orthogonal matrix form an orthonormal set as well� 

�	 the usual Euclidean inner product of two real vectors v and w, namely the scalar v 

0w, equals 

the inner product of Uv and Uw, if U is an orthogonal matrix | and therefore the length of v, 

namely 

p
v 

0v, equals that of Uv. 

A unitary matrix is similarly de�ned, except that its entries are allowed to be complex | so its inverse 

is the complex conjugate of its transpose. A fact about orthogonal matrices that turns out to be 

important in several numerical algorithms is the following: Given a real m � n matrix A of full column 

rank, it is possible (in many ways) to �nd an orthogonal matrix U such that � � 

R 

U	 A � 

0 

where R is a nonsingular, upper-triangular matrix. (If A is complex, then we can �nd a unitary matrix 

U that leads to the same equation.) To see how to compute U in Matlab, read the comments obtained 

by typing help qr� the matrix Q that is referred to in the comments is just U 0 . 

We now turn to the problem of interest. Given a real m � n matrix A of full column rank, and 

a real m-vector y, we wish to approximately satisfy the equation y � Ax. Speci�cally, let us choose 

the vector x to minimize ky ; Axk2 � (y ; Ax)0(y ; Ax), the squared Euclidean length of the \error" 

y ; Ax. By invoking the above results on orthogonal matrices, show that (in the notation introduced 

earlier) the minimizing x is 

x̂ � R;1 y1 

where y1 

denotes the vector formed from the �rst n components of Uy. (In practice, we would not 

bother to �nd R;1 explicitly. Instead, taking advantage of the upper-triangular structure of R, we 

would solve the system of equations Rx̂ � y1 

by back substitution, starting from the last equation.) 

The above way of solving a least-squares problem (proposed by Householder in 1958, but some-
times referred to as Golub's algorithm) is numerically preferable in most cases to solving the \normal 

equations" in the form ^ � (x A0A);1A0y, and is essentially what Matlab does when you write ^ x � Any. 

An (oversimpli�ed!) explanation of the trouble with the normal equation solution is that it implic-
itly evaluates the product (R0R);1R0, whereas the Householder/Golub method recognizes that this 

product simply equals R;1, and thereby avoids unnecessary and error prone steps. 

Exercise 3.2 Suppose the input sequence fujg and the output sequence fyjg of a particular system 

are related by 

nX 

yk 

� hiuk;i 

i�1 



where all quantities are scalar. 

(i) Assume we want to have yn 

equal to some speci�ed number y�. Determine u0� : : : � un;1 

so as to 

achieve this while minimizing u20 

+ : : : + u2 

n;1. 

(ii) Suppose now that we are willing to relax our objective of exactly attaining yn 

� y�. This leads us 

to the following modi�ed problem. Determine u0� : : : � un;1 

so as to minimize 

r(y� ; yn)
2 + u20 

+ : : : + u2 

n;1 

where r is a positive weighting parameter. 

(a) Solve the modi�ed problem. 

(b)	 What do you expect the answer to be in the limiting cases of r � 0 and r � 1� Show that your 

answer in (a) indeed gives you these expected limiting results. 

Exercise 3.3 Return to the problem considered in Example 3.4. Suppose that, in addition to re-
quiring p(T ) � y for a speci�ed y, we also want p_(T ) � 0. In other words, we want to bring the mass 

to rest at the position y at time T . Of all the force functions x(t) that can accomplish this, determine R T
the one that minimizes � x(t)� x(t) �� 

0 

x2(t) dt. 

Exercise 3.4 (a) Given y � A0x, with A0 of full row rank, �nd the solution vector x for which 

0x Wx is minimum, where W � L0L and L is nonsingular (i.e. where W is Hermitian and posi-
tive de�nite). 

(b)	 A speci�ed current I0 

is to be sent through the �xed voltage source V0 

in the �gure. Find what 

values v1, v2, v3 

and v4 

must take so that the total power dissipation in the resistors is minimized. 
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Chapter 4 

Matrix Norms and Singular Value 

Decomposition 

4.1 Introduction 

In this lecture, we introduce the notion of a norm for matrices. The singular value decom-

position or SVD of a matrix is then presented. The SVD exposes the 2-norm of a matrix, 

but its value to us goes much further: it enables the solution of a class of matrix perturbation 

problems that form the basis for the stability robustness concepts introduced later� it solves 

the so-called total least squares problem, which is a generalization of the least squares estima-
tion problem considered earlier� and it allows us to clarify the notion of conditioning, in the 

context of matrix inversion. These applications of the SVD are presented at greater length in 

the next lecture. 

Example 4.1 To provide some immediate motivation for the study and applica-
tion of matrix norms, we begin with an example that clearly brings out the issue 

of matrix conditioning with respect to inversion. The question of interest is how 

sensitive the inverse of a matrix is to perturbations of the matrix. 

Consider inverting the matrix � � 

100 100 

A � (4.1)
100:2 100
 

A quick calculation shows that
 � � 

A;1 � 

;5 5 

(4.2)
5:01 ;5
 

Now suppose we invert the perturbed matrix
 � � 

100 100 

A +�A � (4.3)
100:1 100 



The result now is � � 

(A +�A);1 � A;1 + �(A;1) � 

;10 10 

(4.4)
10:01 ;10 

Here �A denotes the perturbation in A and �(A;1) denotes the resulting per-
turbation in A;1 . Evidently a 0.1% change in one entry of A has resulted in a 

100% change in the entries of A;1 . If we want to solve the problem Ax � b where 

b � [1 ; 1]T , then x � A;1b � [;10 10:01]T , while after perturbation of A we 

get x +�x � (A +�A);1b � [;20 20:01]T . Again, we see a 100% change in the 

entries of the solution with only a 0.1% change in the starting data. 

The situation seen in the above example is much worse than what can ever arise in the 

scalar case. If a is a scalar, then d(a;1)�(a;1) � ;da�a, so the fractional change in the 

inverse of a has the same maginitude as the fractional change in a itself. What is seen in the 

above example, therefore, is a purely matrix phenomenon. It would seem to be related to 

the fact that A is nearly singular | in the sense that its columns are nearly dependent, its 

determinant is much smaller than its largest element, and so on. In what follows (see next 

lecture), we shall develop a sound way to measure nearness to singularity, and show how this 

measure relates to sensitivity under inversion. 

Before understanding such sensitivity to perturbations in more detail, we need ways to 

measure the \magnitudes" of vectors and matrices. We have already introduced the notion 

of vector norms in Lecture 1, so we now turn to the de�nition of matrix norms. 

4.2 Matrix Norms 

An m � n complex matrix may be viewed as an operator on the (�nite dimensional) normed 

vector space C 

n: 

Am�n : ( C 

n� k � k2 

) ;! ( C 

m� k � k2 

)	 (4.5) 

where the norm here is taken to be the standard Euclidean norm. De�ne the induced 2-norm 

of A as follows: 

4 

kAxk2kAk2 

�	 sup (4.6) 

x6 kxk2�0 

� max kAxk2 

:	 (4.7) 

kxk �1
2 

The term \induced" refers to the fact that the de�nition of a norm for vectors such as Ax and 

x is what enables the above de�nition of a matrix norm. From this de�nition, it follows that 

the induced norm measures the amount of \ampli�cation" the matrix A provides to vectors 

on the unit sphere in C 

n, i.e. it measures the \gain" of the matrix. 

Rather than measuring the vectors x and Ax using the 2-norm, we could use any p-norm, 

the interesting cases being p � 1� 2� 1. Our notation for this is 

kAk p 

� max kAxk p 

:	 (4.8) 

kxk �1 p 



An important question to consider is whether or not the induced norm is actually a norm, 

in the sense de�ned for vectors in Lecture 1. Recall the three conditions that de�ne a norm: 

1. kxk � 0, and kxk � 0 () x � 0� 

2. k�xk � j�j kxk� 

3. kx + yk � kxk + kyk . 

Now let us verify that kAk p 

is a norm on C 

m�n | using the preceding de�nition: 

1. kAk � 0 since kAxk � 0 for any x. Futhermore, kAk � 0 () A � 0, since kAk is p p p p 

calculated from the maximum of kAxk p 

evaluated on the unit sphere. 

2. k�Akp 

� j�j kAkp 

follows from k�ykp 

� j�j kykp 

(for any y). 

3. The triangle inequality holds since:
 

kA + Bk p 

� max k(A + B)xk p
kxk �1 p � � 

� max kAxk + kBxk 

kxk �1 

p p 

p 

� kAk + kBk : p p 

Induced norms have two additional properties that are very important: 

1. kAxk � kAk kxk , which is a direct consequence of the de�nition of an induced norm� p p p

2. For Am�n , Bn�r , 

kABk � kAk kBk (4.9)p p p 

which is called the submultiplicative property. This also follows directly from the de�ni-
tion: 

kABxk � kAk kBxk p p p 

� kAk kBk kxk for any x: p p p 

Dividing by kxk p 

:
 

kABxk
 p � kAk kBk � kxk 

p p 

p 

from which the result follows. 

Before we turn to a more detailed study of ideas surrounding the induced 2-norm, which 

will be the focus of this lecture and the next, we make some remarks about the other induced 

norms of practical interest, namely the induced 1-norm and induced 1-norm. We shall also 



say something about an important matrix norm that is not an induced norm, namely the 

Frobenius norm. 

It is a fairly simple exercise to prove that 

mX 

kAk1 

� max jaij j (max of absolute column sums of A) � (4.10)
1�j�n 

i�1 

and 

nX 

kAk1 

� max jaijj (max of absolute row sums of A) : (4.11)
1�i�m 

j�1 

(Note that these de�nitions reduce to the familiar ones for the 1-norm and 1-norm of column 

vectors in the case n � 1.) 

The proof for the induced 1-norm involves two stages, namely: 

1. Prove that the quantity in Equation (4.11) provides an upper bound �: 

kAxk1 

� �kxk1 

8x � 

2. Show that this bound is achievable for some x � x̂: 

kAx̂k1 

� �kx̂k1 

for some x̂ : 

In order to show how these steps can be implemented, we give the details for the 1-norm 

case. Let x 2 C 

n and consider 

nX 

kAxk1 

� max j aijxjj
1�i�m 

j�1 

nX 

� max jaijjjxj j
1�i�m 

j�1 0 1 

nX 

� 

@ max jaij jA max jxjj
1�i�m 1�j�n 

j�1 0 1 

nX 

� 

@ max jaij jA kxk1 

1�i�m 

j�1 

The above inequalities show that an upper bound � is given by 

nX 

max kAxk1 

� � � max jaijj: 

kxk1�1 

1�i�m 

j�1 



Now in order to show that this upper bound is achieved by some vector x̂, let 

�i be an index P
n 

j�1 

ja�at which the expression of � achieves a maximum, that is � � ij  

j. De�ne the vector ^ x 

as 32 66664


sgn(a�i1) 

sgn(a�i2) 

. . . 

77775


x̂ � :



 

sgn(a�in) 

Clearly kx̂k1 

� 1 and 

n 

kAx̂k1 

� ja�ijj � �: 

X 

j�1 

The proof for the 1-norm proceeds in exactly the same way, and is left to the reader. 

There are matrix norms | i.e. functions that satisfy the three de�ning conditions stated 

earlier | that are not induced norms. The most important example of this for us is the 

Frobenius norm: 10 

n mX
 X
4 2kAkF 

� 

@
 jaijj 

A
 

j�1 i�1 

1 

2 

(4.12)


2� 

;
 

trace(A0A) 

� 1 

(verify)	 (4.13) 

In other words, the Frobenius norm is de�ned as the root sum of squares of the entries, i.e. 

the usual Euclidean 2-norm of the matrix when it is regarded simply as a vector in C 

mn . 

Although it can be shown that it is not an induced matrix norm, the Frobenius norm still has 

the submultiplicative property that was noted for induced norms. Yet other matrix norms 

may be de�ned (some of them without the submultiplicative property), but the ones above 

are the only ones of interest to us. 

4.3 Singular Value Decomposition 

Before we discuss the singular value decomposition of matrices, we begin with some matrix 

facts and de�nitions. 

Some Matrix Facts: 

�	 A matrix U 2 C 

n�n is unitary if U 0U � UU 0 � I. Here, as in Matlab, the superscript 

denotes the (entry-by-entry) complex conjugate of the transpose, which is also called 

the Hermitian transpose or conjugate transpose. 

�	 A matrix U 2 R
n�n is orthogonal if UT U � UUT � I, where the superscript 

T denotes 

the transpose. 

�	 Property: If U is unitary, then kUxk2 

� kxk2. 

0 



�	 If S � S0 (i.e. S equals its Hermitian transpose, in which case we say S is Hermitian), 

then there exists a unitary matrix such that U 0SU � [diagonal matrix].1 

�	 For any matrix A, both A0A and AA0 are Hermitian, and thus can always be diagonalized 

by unitary matrices. 

�	 For any matrix A, the eigenvalues of A0A and AA0 are always real and non-negative 

(proved easily by contradiction). 

Theorem 4.1 (Singular Value Decomposition, or SVD) Given any matrix A 2 C 

m�n , 

A can be written as 

m�m m�n n�n 

A � U � 

V 

0 �	 (4.14) 

where U 0U � I, V 

0V � I, 32 

�1 

. . . 0 

�r 

6666664


7777775


� �
 �	 (4.15) 


 

0 0


are arranged in order of descending magnitude, i.e.,
 

�1 

� �2 

� � � � � �r 

� 0 : 

p

Proof: We will prove this theorem for the case rank(A) � m� the general case involves very 

little more than what is required for this case. The matrix AA0 is Hermitian, and it can 

therefore be diagonalized by a unitary matrix U 2 C 

m�m, so that 

U�1U
0 � AA0: 

Note that �1 

� diag(�1� �2� : : : � �m) has real positive diagonal entries �i 

due to the fact that 

2 0 2 C 

m�nAA0 is positive de�nite. We can write �1 

� �2
1 

� diag(�1
2� �2

2� : : : � �m). De�ne V1 

by V1 

0 � �;1
 

1U 0A. V1 

0 has orthonormal rows as can be seen from the following calculation: 

;1
V1 

0V1 

� �1 

U 0AA0U�;1
1 � I. Choose the matrix V2 

0 in such a way that "
 #
 

V 

0 

V 

0 � 

1 

V 

0 

2 

is in C 

n�n and unitary. De�ne the m � n matrix � � [�1j0]. This implies that 

�V 

0 � �1V1 

0 � U 0A: 

In other words we have A � U�V 

0 . 

1 One cannot always diagonalize an arbitrary matrix|cf the Jordan form. 

ith nonzero eigenvalue of A0A.
and �i 

� The �i 

are termed the singular values of A, and 



Example 4.2 For the matrix A given at the beginning of this lecture, the SVD 

| computed easily in Matlab by writing [u� s� v] � svd(A) | is �
 �� �� 

:7068 :7075 200:1 0 :7075 :7068 

�


Observations: 

A � 

:7075 : ; 7068 0 0:1 ;:7068 :7075 

(4.16) 

i) 

AA0 � U�V 

0V �T U 0 

2 6666664 

U��T U 0�
 3


�1
2 

. . . 0 

7777775


U 0� U
 �2 

r 

� (4.17)



 


 

0 0 

which tells us U diagonalizes AA0� 

ii) 

A0A � V �T U 0U�V 

0 

2 6666664 

V �T �V 

0�
 3


�1
2 

. . . 0 

7777775


V 

0� V
 �2 

r 

� (4.18)
 

0 0 

which tells us V diagonalizes A0A� 

iii) If U and V are expressed in terms of their columns, i.e., ih
U � u1 

u2 

� � � um 

and ih
V � v1 

v2 

� � � vn 

� 

then Xr 

A � �iuivi 

0 � (4.19) 

i�1 



which is another way to write the SVD. The ui 

are termed the left singular vectors of 

A, and the vi 

are its right singular vectors. From this we see that we can alternately 

interpret Ax as 

r 

Ax � �i 

ui 

vi
0 x � (4.20) 

X ;| {z �} 


 

i�1 

projection

which is a weighted sum of the ui, where the weights are the products of the singular 

values and the projections of x onto the vi. P
 

Observation (iii) tells us that Ra(A) � span fu1� : : : urg (because Ax � i
r 

�1 

ciui 

| 

where the ci 

are scalar weights). Since the columns of U are independent, dim Ra(A) � r � rank (A),  

and fu1� : : : urg constitute a basis for the range space of A. The null space of A is given by 

spanfvr+1� : : : � vng. To see this: 

U�V 

0 x � 0 () �V 

0 x � 0 2
 3
 

�1v1
0 x 

() 46 


 

.

.. 57 


 

� 0 

x�rvr 

0 

() vi 

0 x � 0 � i � 1� : : : � r 

() x 2 spanfvr+1� : : : � vng: 

Example 4.3 One application of singular value decomposition is to the solution 

of a system of algebraic equations. Suppose A is an m � n complex matrix and b 

is a vector in C 

m . Assume that the rank of A is equal to k, with k � m. We are 

looking for a solution of the linear system Ax � b. By applying the singular value 

decomposition procedure to A, we get 

A �
 U�2V 

0 3
 

�1 

0 

� U
 

64
 

75
 

V 

0 

0 0 

where �1 

is a k � k non-singular diagonal matrix. We will express the unitary


matrices U and V columnwise as
 h i 

U � u1 

u2 

: : : um h i 

V � v1 

v2 

: : : vn 

: 

A necessary and su�cient condition for the solvability of this system of equations


is that ui 

0 b � 0 for all i satisfying k � i � m. Otherwise, the system of equations


is inconsistent. This condition means that the vector b must be orthogonal to the




last m ; k columns of U . Therefore the system of linear equations can be written 

as 2
 3
 

�1 

0 7564 
 

V 

0 x � U 0b

 

0 0 2
 3
 2
 3
 u0 

1b 

u0 

1
 

b 

�
 

6666666664


7777777775


.
. .
 

u0 bk 

0


.
. . 

V 

0 x �


66666664


77777775


2
 3
 

�1 

0 

u0 

2b 

.
 .
 .
 

. . 


 .
 

7564 
 

0 0


:



 


 

0 
 
 

bum 0


Using the above equation and the invertibility of �1, we can rewrite the system of 

equations as
 2
 0 

3
 2
 1 3


u0 

1bv1 �1
66664


77775


x � 

6664


0 7775


1 0 

2bv u2 �2 .
.
.


: : :
 


 


 
 

0 

1
 u0 bvk �k 

k

By using the fact that 2
 3
 0v1
 66664


h77775 

0v
2
. . . 

i


v1 

v2 

: : : vk 

� I� 


 
 

0vk
 

we obtain a solution of the form 

kX 

u 

�ii�1 

1
 0 

ib vi:x � 

From the observations that were made earlier, we know that the vectors vk+1� vk+2� : : : � vn 

span the kernel of A, and therefore a general solution of the system of linear equa-
tions is given by 

kX 

x � (u 

nX 

vi 

+ �ivi� 

1
 0 b)i�ii�1 i�k+1 

where the coe�cients �i, with i in the interval k+1 � i � n, are arbitrary complex 

numbers. 



4.4	 Relationship to Matrix Norms 

The singular value decomposition can be used to compute the induced 2-norm of a matrix A. 

Theorem 4.2 

4 

kAxk2kAk2 

�	 sup 

x 6 kxk2�0 

� �1 

(4.21) 

� �max(A) � 

which tells us that the maximum ampli�cation is given by the maximum singular value. 

Proof: 

kAxk2 

kU�V 

0xk2sup � sup 

x�06	 	 

kxk2 

x6�0	

kxk2 

k�V 

0xk2� sup 

x 6 kxk2�0 

k�yk2� sup 

y�0 

kV yk26 �P	

�1 

r 

2 

2 

i�1 

�i 

2jyij
� sup �P 

� 1 

y 6 r jyij2�0	 

2 

i�1 

� �1 

: 

For y � [1 0 � � � 0]T , k�yk2 

� �1, and the supremum is attained. (Notice that this correponds 

to x � v1. Hence, Av1 

� �1u1.) 

Another application of the singular value decomposition is in computing the minimal 

ampli�cation a full rank matrix exerts on elements with 2-norm equal to 1. 

Theorem 4.3 Given A 2 C 

m�n, suppose rank(A) � n. Then 

min kAxk2 

� �n(A) :	 (4.22) 

kxk �1
2 

Note that if rank(A) � n, then there is an x such that the minimum is zero (rewrite A in
 

terms of its SVD to see this).
 

Proof: For any kxk2 

� 1,
 

kAxk2	 

� kU�V 

0 xk2 

� k�V 

0 xk2 

(invariant under multiplication by unitary matrices) 

� k�yk2 



2x2 

v 

v 

A A v 
A v2 

1 

2 
1 

Figure 4.1: Graphical depiction of the mapping involving A2�2 . Note that Av1 

� �1u1 

and 

that Av2 

� �2u2. 

for y � V 

0x.	 Now 

� ! 1 

n 2X
k�yk2 

� j�iyij2 

i�1 

� �n 

: 

Note that the minimum is achieved for y � [0 0 � � � 0 1]T � thus the proof is complete. 

The Frobenius norm can also be expressed quite simply in terms of the singular values. 

We leave you to verify that 0 11 

n m 2XX 4 kAkF 

� 

@ jaij j2A 

j�1 i�1 

1 

2� 

;
trace(A0A) 

�	 

� ! 1 

rX 

� �i 

2	 (4.23) 

i�1 

Example 4.4 Matrix Inequality 

We say A � B, two square matrices, if 

0 x 

0Ax � x Bx 6for all x � 0:
 

It follows that for any matrix A, not necessarily square,
 

kAk2 

� � $ A0A � �2I:
 

2 



Exercises 

Exercise 4.1 Verify that for any A, an m � n matrix, the following holds: 

p 

1 kAk1 

� kAk2 

� pmkAk1: 

n 

Exercise 4.2 Suppose A0 � A. Find the exact relation between the eigenvalues and singular values 

of A. Does this hold if A is not conjugate symmetric� 

Exercise 4.3 Show that if rank(A) � 1, then, kAkF 

� kAk2. 

Exercise 4.4 This problem leads you through the argument for the existence of the SVD, using an 

iterative construction. Showing that A � U�V 

0, where U and V are unitary matrices is equivalent to 

showing that U 0AV � �. 

a) Argue from the de�nition of kAk2 

that there exist unit vectors (measured in the 2-norm) x 2 C 

n 

and y 2 C 

m such that Ax � �y, where � � kAk2. 

b) We can extend both x and y above to orthonormal bases, i.e. we can �nd unitary matrices 

V1 

and U1 

whose �rst columns are x and y respectively: 

V1 

� [x V~ 

1] � U1 

� [y U~ 

1]
 

Show that one way to do this is via Householder transformations, as follows:
 

hh0 

V1 

� I ; 2 � h � x ; [1� 0� : : : � 0]0 

h0h 

and likewise for U1. 

c) Now de�ne A1 

� U1 

0 AV1. Why is kA1k2 

� kAk2� 

d) Note that � � � � 

y0Ax y0AV~ 

1 

� w0 

A1 

� � 

U~ 

1 

0 Ax U~ 

1 

0 AV~ 

1 

0 B 

What is the justi�cation for claiming that the lower left element in the above matrix is 0� 

e) Now show that � � 

kA1 

� k2 

� �2 + w 

0 w 

w 

and combine this with the fact that kA1k2 

� kAk2 

� � to deduce that w � 0, so � � 

� 0 

A1 

� 

0 B 



At the next iteration, we apply the above procedure to B, and so on. When the iterations terminate, 

we have the SVD. 

[The reason that this is only an existence proof and not an algorithm is that it begins by invoking 

the existence of x and y, but does not show how to compute them. Very good algorithms do exist for 

computing the SVD | see Golub and Van Loan's classic, Matrix Computations, Johns Hopkins Press, 

1989. The SVD is a cornerstone of numerical computations in a host of applications.] 

Exercise 4.5 Suppose the m � n matrix A is decomposed in the form � � 

A � U 

� 0 

V 

0 

0 0 

where U and V are unitary matrices, and � is an invertible r � r matrix (| the SVD could be used to 

produce such a decomposition). Then the \Moore-Penrose inverse", or pseudo-inverse of A, denoted 

by A+, can be de�ned as the n � m matrix � � 

�;1 0 

A+ � V U 0 

0 0 

(You can invoke it in Matlab with pinv(A).) 

a) Show that A+A and AA+ are symmetric, and that AA+A � A and A+AA+ � A+ . (These 

four conditions actually constitute an alternative de�nition of the pseudo-inverse.) 

b) Show that when A has full column rank then A+ � (A0A);1A0 , and that when A has full 

row rank then A+ � A0(AA0);1 . 

c) Show that, of all x that minimize ky ; Axk2 

(and there will be many, if A does not have full 

column rank), the one with smallest length kxk2 

is given by x̂ � A+y. 

Exercise 4.6 All the matrices in this problem are real. Suppose � � 

R 

A � Q 

0 

with Q being an m � m orthogonal matrix and R an n � n invertible matrix. (Recall that such a 

decomposition exists for any matrix A that has full column rank.) Also let Y be an m � p matrix of 

the form � � 

Y1Y � Q 

Y2 

where the partitioning in the expression for Y is conformable with the partitioning for A. 



(a)	 What choice X̂ of the n � p matrix X minimizes the Frobenius norm, or equivalently the squared 

Frobenius norm, of Y ; AX � In other words, �nd
 

X̂
 � argmin kY ; AXk2 

F 

Also determine the value of kY ; AX̂k2 

F 

. (Your answers should be expressed in terms of the 

matrices Q, R, Y1 

and Y2.) 

(b)	 Can your X̂ in (a) also be written as (A0A);1A0Y � Can it be written as A+Y , where A+ denotes 

the (Moore-Penrose) pseudo-inverse of A � 

(c) Now obtain an expression for the choice that minimizes 

kY ; AXk2 

F 

+ kZ ; BXk2 

F 

where Z and B are given matrices of appropriate dimensions. (Your answer can be expressed in 

terms of A, B, Y , and Z.) 

Exercise 4.7 Structured Singular Values 

Given a complex square matrix A, de�ne the structured singular value function as follows. 

1 

��(A) � 

min�2�f�max(�) j det(I ; �A) � 0g 

where � is some set of matrices. 

X of X 

a) If � � f�I : � 2 C g, show that ��(A) � �(A), where � is the spectral radius of A, de�ned 

as: �(A) � max i 

j�ij and the �i's are the eigenvalues of A. 

b) If � � f� 2 C 

n�n g, show that ��(A) � �max(A) 

c) If � � fdiag(�1� � � � � � n) j �i 

2 C g, show that 

�(A) � ��(A) � ��(D
;1AD) � �max(D

;1AD) 

where 

D 2 f	 ) j di 

� 0gdiag(d1� � � � � dn

Exercise 4.8 Consider again the structured singular value function of a complex square matrix A 

de�ned in the preceding problem. If A has more structure, it is sometimes possible to compute ��(A) 

exactly. In this problem, assume A is a rank-one matrix, so that we can write A � uv0 where u� v are 

complex vectors of dimension n. Compute ��(A) when 

(a) � � diag(�1� : : : �	 �n)� �i 

2 C . 

(b) � � diag(�1� : : : � �n)� �i 

2 R.
 

To simplify the computation, minimize the Frobenius norm of � in the de�ntion of ��(A).
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Chapter 5 

Matrix Perturbations
 

5.1 Introduction 

The following question arises frequently in matrix theory: What is the smallest possible per-
turbation of a matrix that causes it to lose rank� We discuss two cases next, with perturbations 

measured in the 2-norm, and then discuss the measurement of perturbations in the Frobenius 

norm. This provides us with a new formulation to the least squares estimation problem in 

which uncertainty is present in the matrix A as well as the vector y. This is known as total 

least squares. 

5.2 Additive Perturbation 

Theorem 5.1 Suppose A 2 C 

m�n has full column rank (� n). Then 

min fk 	�k j A + � has rank � ng � �n(A) : (5.1)	 2 

�2C 

m�n 

Proof:	 Suppose A + � has rank � n.	 6 xk2 

� 1 and Then there exists x � 0 such that k

(A + �) x � 0 : 

Since �x � ;Ax, 

k�xk2	 

� kAxk2 

� �n(A) : (5.2) 

From the properties of induced norms (see Section 3.1), we also know that 

k�k kxk � k�xk2 2 2: 



Using Equation (24.3) and the fact that kxk2 

� 1, we arrive at the following: 

k�k2	

� k�xk2 

� �n(A) (5.3) 

To complete the proof, we must show that the lower bound from Equation (5.3) can be 

achieved. Thus, we must construct a � so that A + � has rank � n and k�k2 

� �n(A)� such 

a � will be a minimizing solution. For this, choose 

� � ;�nunv 

0 

n 

where un, vn 

are the left and right singular vectors associated with the smallest singular value 

�n 

of A. Notice that k�k2 

� �n(A). This choice yields 

(A + �) vn	 

� �nun 

; �nunvn
� vn 

� �nun 

; �nun 

� 0 : 

That is, A + � has rank � n. This completes the proof. 

5.3	 Multiplicative Perturbation 

Theorem 5.2 (Small Gain) Given A 2 C 

m�n , 

1 

min fk�k2 

j I ; A� is singular g � :	 (5.4) 

�2C 

n�m �1(A) 

Proof: Suppose I ; A� is singular. Then there exists x 6� 0 such that 

(I ; A�) x � 0 

so 

kA�xk2 

� kxk2 

: (5.5) 

From the properties of induced norms (see Lecture 4 notes), 

kA�xk2 

� kAk2k�xk2 

� �1(A)k�xk2 

: 

Upon substituting the result in Equation (5.5) for kA�xk2, we �nd 

kxk2 

� �1(A)k�xk2 

: 



Dividing through by �1(A)kxk2 

yields 

k�xk2 

1 � � kxk2 

�1(A) 

which implies 

1 k�k2 

� : (5.6)
�1(A) 

To conclude the proof, we must show that this lower bound can be achieved. Thus, we 

construct a � which satis�es Equation (5.6) with equality and also causes (I ; A�) to be 

singular. For this, choose 

� � 

1 

v1u1 

0 :
 

�1(A) 

Notice that the lower bound (Equation (5.6)) is satis�ed with equality, i.e., k�k2 

� 1��1(A). 

Now choose x � u1. Then: 

(I ; A�) x � (I ; A�) u1 � � 

Av1u
0 

1� I ; u1
�1 

Av1
� u1 

; 

�1| {z }
u1 

� u1 

; u1 

(since Av1 

� �1u1) 

� 0 : 

This completes the proof. 

The theorem just proved is called the small gain theorem. The reason for this is that 

it guarantees (I ; A�) is nonsingular provided 

1 k�k2 

� : kAk2 

This condition is most often written as 

k�k2kAk2 

� 1 � (5.7) 

i.e., the product of the gains is less than one. 

Remark: We can actually obtain the additive perturbation result from multiplicative per-
turbation methods. Assume A is invertible, and � is a matrix which makes its sum with A 

singular. Since � � 

A +� � A I + A;1� � 



and A is nonsingular, then 

;
I + A;1� 

� 

must be singular. By our work with multiplicative 

perturbations, we know that the � associated with the smallest k�k2 

that makes this quantity 

singular satis�es 

1 k�k2 

� � �n(A) : 

�1(A;1) 

5.4 Perturbations Measured in the Frobenius Norm 

We will now demonstrate that, for the multiplicative and additive perturbation cases where 

we minimized the induced 2-norm, we also minimized the Frobenius norm. 

Let A 2 C 

m�n, and let rank(A) � r. 

0 1 1 

n m 2XX 4 kAkF 

� 

@ jaij j2A (5.8) 

j�1 i�1 

2� 

;
trace(A0A) 

� 1 

(5.9) � ! 1 

2rX 

� �i 

2 (the trace of a matrix is the sum of its eigenvalues) (5.10) 

i�1 

� �1(A) : (5.11) 

Therefore, 

kAkF 

� kAk2 

� (5.12) 

which is a useful inequality. 

In both the perturbation problems that we considered earlier, we found a rank-one solu-
tion, or dyad, for �: 

� � �uv0 � (5.13) 

where � 2 C , u 2 C 

m , v 2 C 

n such that kuk2 

� kvk2 

� 1. It is easy to show that the Frobenius 

norm and induced 2-norm are equal for rank one matrices of the form in Equation (5.13). It 

follows from this that the � which minimizes the induced 2-norm also minimizes the Frobenius 

norm, for the additive and multiplicative perturbation cases we have examined. In general, 

however, minimizing the induced 2-norm of a matrix does not imply the Frobenius norm is 

minimized (or vice versa.) 

Example 5.1 This example is intended to illustrate the use of the singular value 

decomposition and Frobenius norms in the solution of a minimum distance prob-
lem. Suppose we have a matrix A 2 C 

n�n, and we are interested in �nding the 

closest matrix to A of the form cW where c is a complex number and W is a 



unitary matrix. The distance is to be measured by the Frobenius norm. This 

problem can be formulated as 

min kA ; cW kF 

c2C �W 2C 

n�n 

where W 

0W � I. We can write 

kA ; cW k2 � Tr 

;	 

(A ; cW )0(A ; cW ) 

� 

F 

� Tr(A0A) ; c 

0Tr(W 

0A) ; cTr(A0W ) + jcj2Tr(W 

0W ): 

Note that Tr(W 

0W ) � Tr(I) � n. Therefore, we have 

kA ; cW k2 � kAk2 

F 

; 2Re  

;
c 

0Tr(W 

0A) 

� 

+ njcj2� (5.14)F 

and by taking 

1 

c � Tr(W 

0A) 

n 

the right hand side of Equation (5.14) will be minimized. Therefore we have that 

kA ; cW k2 � kAk2 

F 

; 

1 jTr(W 

0A)j2:F n 

Now we must minimize the right hand side with respect to W , which is equivalent 

to maximizing jTr(W 

0A)j. In order to achieve this we employ the singular value 

decomposition of A as U�V 

0, which gives 

jTr(W 

0A)j2	 � jTr(W 

0U�V 

0)j2 

� jTr(V 

0W 

0U�)j2: 

The matrix Z � V 

0W 

0U satis�es 

0ZZ 0	 � V 

0W 

0UU WV 

� I: 

Therefore, � !2n nX X 

jTr(Z�)j2 � j �iziij2 � �i 

� 

i�1 i�1 

implies that � !2 

1 

nX 

min kA ; cW k2 

F 

� kAk2 

F 

; �i 

: (5.15)
c�W	 n 

i�1 

In order to complete this example we show that the lower bound in Equation (5.15) 

can actually be achieved with a speci�c choice of W . Observe that 

Tr(W 

0U�V 

0) � Tr(W 

0UV 

0�)� 



and by letting W 

0 � V U 0 we obtain 

nX 

Tr(W 

0A) � Tr(�) � �i 

i�1 

and 

n1 

X 

c � �i: 

n 

i�1 

Putting all the pieces together, we get that �	 !2n nX 1 

X 

min kA ; cW k2 � �2 ; �2	 �F i i
c�W	 n 

i�1 i�1 

and the minimizing unitary matrix is given by � ! 

n1 

X 

cW � �i 

U	 V 

0: 

n 

i�1 

It is clear also that, in order for a matrix to be exactly represented as a complex 

multiple of a unitary matrix, all of its singular values must be equal. 

5.5	 Total Least Squares 

We have previously examined solving least squares problems of the form y � Ax + e. An 

interpretation of the problem we solved there is that we perturbed y as little as possible | 

in the least squares sense | to make the resulting equation y ; e � Ax consistent. It is 

natural to ask what happens if we allow A to be perturbed as well, in addition to perturbing 

y. This makes sense in situations where the uncertainty in our model and the noise in our 

measurements cannot or should not be attributed entirely to y, but also to A. The simplest 

least squares problem of this type is one that allows a perturbed model of the form 

y �	 (A + �) x + e : (5.16) 

The so-called total least squares estimation problem can now be stated as 0	 11 X X 

2 

. .min 

@ j�ijj2 + jeij2A � min k� . ekF	 

(5.17)
��e	 ��e 

i�j i 

� min k�̂ kF 

�	 (5.18)
��e 

where � � 

^ . 

� �	 � . 

. e : (5.19) 



Weighted versions of this problem can also be posed, but we omit these generalizations. 

Note that no constraints have been imposed on � in the above problem statement, and 

this can often limit the direct usefulness of the total least squares formulation in practical 

problems. In practice, the expected or allowed perturbations of A are often quite structured� 

however, the solution of the total least squares problem under such structural constraints is 

much harder than that of the unconstrained problem that we present the solution of next. 

Nevertheless, the total least squares formulation can provide a useful benchmark. (The same 

sorts of comments can of course be made about the conventional least squares formulation: 

it is often not the criterion that we would want to use, but its tractability compared to other 

criteria makes it a useful point of departure.) 

If we make the de�nitions 

Â � 

h 

A 

. . . ;y 

i 

� x̂ � 

" 

x 

1 

# 

(5.20) 

then the perturbed model in Equation (5.16) can be rewritten as � � 

^ ^A +� x̂ � 0 : (5.21) 

^This equation makes evident that what we seek is the � with minimal Frobenius norm that 

^ ^ ^satis�es Equation (5.21)|the smallest � that makes A + � singular. 

Let us suppose that A has full column rank (n), and that it has more rows than columns 

(which is normally the case, since in least squares estimation we typically have many more 

^measurements than parameters to estimate). In addition, let us assume that A has rank 

(n + 1), which is also generally true. From what we've learned about additive perturbations, 

^we now see that a minimal (in a Frobenius sense) � that satis�es Equation (5.21) is 

^ 

0� � ;�n+1un+1vn+1 

� (5.22) 

^where the �n+1, un+1 

and vn+1 

are derived from the SVD of A (i.e. �n+1 

is the smallest 

^ ^ ^singular value of A, etc.). Given that we now know A and �, choosing x̂ � vn+1, and 

rescaling x̂, we have " # � � 

^ ^ 

x 

A +� � 0 � 

1 

which gives us x, the total least squares solution. This solution is due to Golub and Van Loan 

(see their classic text on Matrix Computations, Second Edition, Johns Hopkins University 

Press, 1989). 

5.6 Conditioning of Matrix Inversion 

We are now in a position to address some of the issues that came up in Example 1 of Lecture 

4, regarding the sensitivity of the inverse A;1 and of the solution x � A;1b to perturbations 



in A (and/or b, for that matter). We �rst consider the case where A is invertible, and examine 

the sensitivity of A;1 . Taking di�erentials in the de�ning equation A;1A � I, we �nd 

d(A;1) A + A;1 dA � 0 � (5.23) 

where the order of the terms in each half of the sum is important, of course. (Rather than 

working with di�erentials, we could equivalently work with perturbations of the form A + �P , 

etc., where � is vanishingly small, but this really amounts to the same thing.) Rearranging 

the preceding expression, we �nd 

d(A;1) � ;A;1 dA A;1 (5.24) 

Taking norms, the result is 

kd(A;1)k � kA;1k2kdAk (5.25) 

or equivalently 

kd(A;1)k � kAkkA;1kkdAk 

(5.26)kA;1k kAk 

This derivation holds for any submultiplicative norm. The product kAkkA;1k is termed the 

condition number of A with respect to inversion (or simply the condition number of A) and 

denoted by K(A): 

K(A) � kAkkA;1k (5.27) 

When we wish to specify which norm is being used, a subscript is attached to K(A). Our 

earlier results on the SVD show, for example, that 

K2(A) � �max��min 

(5.28) 

The condition number in this 2-norm tells us how slender the ellipsoid Ax for kxk2 

� 1 is | 

see Figure 5.1. In what follows, we shall focus on the 2-norm condition number (but will omit 

the subscript unless essential). 

Some properties of the 2-norm condition number (all of which are easy to show, and 

some of which extend to the condition number in other norms) are 

� K(A) � 1� 

� K(A) � K(A;1)� 

� K(AB) � K(A)K(B)� 

� Given U 0U � I, K(UA) � K(A). 

The importance of (5.26) is that the bound can actually be attained for some choice of the 

perturbation dA and of the matrix norm, so the situation can get as bad as the bound allows: 

the fractional change in the inverse can be K(A) times as large as the fractional change 

in the original. In the case of 2-norms, a particular perturbation that attains the bound 



σ σ 
2 1(A) (A) 

Figure 5.1: Depiction of how A (a real 2 � 2 matrix) maps the unit circle. The major axis of 

the ellipse corresponds to the largest singular value, the minor axis to the smallest. 

can be derived from the � of Theorem 5.1, by simply replacing ;�n 

in � by a di�erential 

perturbation: 

dA � ;d� unv 

0 (5.29)n 

We have established that a large condition number corresponds to a matrix whose inverse 

is very sensitive to relatively small perturbations in the matrix. Such a matrix is termed ill 

conditioned or poorly conditioned with respect to inversion. A perfectly conditioned matrix 

is one whose condition number takes the minimum possible value, namely 1. 

A high condition number also indicates that a matrix is close to losing rank, in the 

following sense: There is a perturbation � of small norm (� �min) relative to kAk (� �max) 

such that A + � has lower rank than A. This follows from our additive perturbation result 

in Theorem 5.1. This interpretation extends to non-square matrices as well. We shall term 

the ratio in (5.28) the condition number of A even when A is non-square, and think of it as 

a measure of nearness to a rank loss. 

Turning now to the sensitivity of the solution x � A;1b of a linear system of equations 

in the form Ax � b, we can proceed similarly. Taking di�erentials, we �nd that 

dx � ;A;1 dA A;1b + A;1 db � ;A;1 dA x + A;1b (5.30) 

Taking norms then yields 

kdxk � kA;1kkdAkkxk + kA;1kkdbk (5.31) 

Dividing both sides of this by kxk, and using the fact that kxk � (kbk�kAk), we get 

kdxk 

�kdAk kdbk� 

� K(A) + (5.32)kxk kAk kbk 

We can come close to attaining this bound if, for example, b happens to be nearly collinear 

with the column of U in the SVD of A that is associated with �min, and if appropriate 

perturbations occur. Once again, therefore, the fractional change in the answer can be close 

to K(A) times as large as the fractional changes in the given matrices. 



Example 5.2 For the matrix A given in Example 1 of Lecture 4, the SVD is � � � �� �� � 

100 100 :7068 :7075 200:1 0 :7075 :7068 

A � � 

100:2 100 :7075 : ; 7068 0 0:1 ;:7068 :7075 

(5.33) 

The condition number of A is seen to be 2001, which accounts for the 1000-fold 

magni�cation of error in the inverse for the perturbation we used in that example. 

The perturbation � of smallest 2-norm that causes A + � to become singular is � �� �� � 

:7068 :7075 0 0 :7075 :7068 

� � 

:7075 : ; 7068 0 ;0:1 ;:7068 :7075 

whose norm is 0.1. Carrying out the multiplication gives � � 

:05 ;:05 

� � ;:05 :05 

With b � [1 ;1]T , we saw large sensitivity of the solution x to perturbations in A. 

Note that this b is indeed nearly collinear with the second column of U . If, on the 

other hand, we had b � [1 1], which is more closely aligned with the �rst column 

of U , then the solution would have been hardly a�ected by the perturbation in A 

| a claim that we leave you to verify. 

Thus K(A) serves as a bound on the magni�cation factor that relates fractional changes 

in A or b to fractional changes in our solution x. 

Conditioning of Least Squares Estimation 

Our objective in the least-square-error estimation problem was to �nd the value xb of x that 

minimizes ky ; Axk22, under the assumption that A has full column rank. A detailed analysis 

of the conditioning of this case is beyond our scope (see Matrix Computations by Golub and 

Van Loan, cited above, for a detailed treatment). We shall make do here with a statement of 

the main result in the case that the fractional residual is much less than 1, i.e. 

ky ; Axbk2 � 1 (5.34)kyk2 

This low-residual case is certainly of interest in practice, assuming that one is �tting a rea-
sonably good model to the data. In this case, it can be shown that the fractional change 

kdxbk2�kxbk2 

in the solution xb can approach K(A) times the sum of the fractional changes in 

A and y, where K(A) � �max(A)��min(A). In the light of our earlier results for the case of 

invertible A, this result is perhaps not surprising. 

Given this result, it is easy to explain why solving the normal equations 

(A0A)xb � A0 y 



to determine xb is numerically unattractive (in the low-residual case). The numerical inversion 

of A0A is governed by the condition number of A0A, and this is the square of the condition 

number of A: 

K(A0A) � K2(A) 

You should con�rm this using the SVD of A. The process of directly solving the normal 

equations will thus introduce errors that are not intrinsic to the least-square-error problem, 

because this problem is governed by the condition number K(A), according to the result 

quoted above. Fortunately, there are other algorithms for computing xb that are governed 

by the condition number K(A) rather than the square of this (and Matlab uses one such 

algorithm to compute xb when you invoke its least squares solution command). 



Exercises 

Exercise 5.1 Suppose the complex m � n matrix A is perturbed to the matrix A + E. 

(a)	 Show that 

j �max(A + E) ; �max(A) j � �max(E) 

Also �nd an E that results in the inequality being achieved with equality.
 

(Hint: To show the inequality, write (A + E) � A + E and A � (A + E) ; E, take the 2-norm
 

on both sides of each equation, and use the triangle inequality.)
 

It turns out that the result in (a) actually applies to all the singular values of A and A + E, not 

just the largest one. Part (b) below is one version of the result for the smallest singular value. 

(b)	 Suppose A has less than full column rank, i.e. has rank� n, but A + E has full column rank. 

Show (following a procedure similar to part (a) | but looking at min k(A + E)xk2 

rather than 

the norm of A + E, etc.) that 

�min(A + E) � �max(E) 

Again �nd an E that results in the inequality being achieved with equality. 

[The result in (b), and some extensions of it, give rise to the following sound (and widely used) 

procedure for estimating the rank of some underlying matrix A, given only the matrix A + E 

and knowledge of kEk2: Compute the SVD of A + E, then declare the \numerical rank" of A to 

be the number of singular values of A + E that are larger than the threshold kEk2. The given 

information is consistent with having an A of this rank.] 

(c)	 Verify the above results using your own examples in MATLAB. You might also �nd it interesting 

to verify numerically that for large m, n, the norm of the matrix E � s � randn(m� n) | which 

is a matrix whose entries are independent, zero-mean, Gaussian, with standard deviation s | 

is close to s � (
p
m + 

p
n). So if A is perturbed by such a matrix, then a reasonable value to use 

as a threshold when determining the numerical rank of A is this number. 

Exercise 5.2 Let A and E be m � n matrices. Show that 

min kA ; Ek2 

� �r+1(A): 

rank E�r 

To prove this, notice that the rank constraint on E can be interpreted as follows: If v1� : : : � vr+1 

are 

linearly independent vectors, then there exists a nonzero vector z, expressed as a linear combination 

of such vectors, that belongs to the nullspace of E. Proceed as follows: 

1. Select the vi's from the SVD of A. 

2. Select a candidate element z with kzk2 

� 1. 

3. Show that k(A ; E)zk2 

� �r+1. This implies that kA ; Ek2 

� �r+1. 

4. Construct an E that achieves the above bound. 



Exercise 5.3 Consider the real, square system of equations Ax � (U�V 

T )x � y, where U and V 

are orthogonal matrices, with ���� 

1 0	 1 

� � � y � U 

0 10;6 10;6 

All norms in this problem are taken to be 2-norms. 

(a) What is the norm of the exact solution x � 

(b)	 Suppose y is perturbed to y + �y, and that correspondingly the solution changes from x in (a) to 

x + �x. Find a perturbation �y, with k�yk � 10;6, such that 

k�xk k�yk � �(A)kxk kyk
 

where �(A) is the condition number of A.
 

(c)	 Suppose instead of perturbing y we perturb A, changing it to A + �A, with the solution corre-
spondingly changing from x to x + �x (for some �x that is di�erent than in part (b) ). Find a 

perturbation �A, with k�Ak � 10;7, such that 

k�xk k�Ak � �(A)kxk kAk 

Exercise 5.4 Positive De�nite Matrices 

A matrix A is positive semi-de�nite if x0Ax � 0 for all x 6� 0. We say Y is the square root of a 

Hermitian positive semi-de�nite matrix if Y 

0Y � A. Show that Y always exists and can be constructed 

from the SVD of A. 

Exercise 5.5 Let A and B have compatible dimensions. Show that if 

kAxk2 

� kBxk2 

for all x� 

then there exists a matrix Y with kY k2 

� 1 such that 

A � Y B: 

Assume B has full rank to simplicity. 

Exercise 5.6 (a) Suppose ����


�
 

X 


 A 

���� 

� 

� �: 


 

Show that there exists a matrix Y with kY k2 

� 1 such that 

X � Y (�2I ; A0A) 

1 

2 



(b) Suppose 

k( X A )k � �: 

1 

Show that there exists a matrix Z with kZk � 1 such that X � (�2I ; AA�) 

2 Z. 

Exercise 5.7 Matrix Dilation 

The problems above can help us prove the following important result: 

�0 

:� min 

X 

����


����


�
 

� max k( C A )k � 

����


B
 

A
 

���� 

�
 �
 

:
 

�
�
 �
 

X B
 

C A
 


 
 
 

This is known as the matrix dilation theorem. Notice that the left hand side is always greater 

than or equal to the right hand side irrespective of the choice of X . Below, we outline the steps 

necessary to prove that this lower bound is tight. Matrix dilations play an important role in systems 

theory particularly in model reduction problems. 

1. Let �1 

be de�ned as ����


����


�
 �
 �
 �
 

B



 A
 

�1 

� max k( C A )k � :


Show that: 

�0 

� �1: 

2. Use the previous exercise to show that there exists two matrices Y and Z with norms less than 

or equal to one such that 

1 1 

B � Y (�1
2I ; A�A) 

2 � C � (�1
2I ; AA�) 

2 Z:  

~3. De�ne a candidate solution to be X � ;Y A�Z. Show by direct substitution that ����


���� 

�
 


 
 

����


����


�


� 

�


�Z Y (�1
2I ; A�A) 

1 

�1
2I ; AA�)�
 

�


X~ B


C A
 

;Y A 

2 

�
 1 

C � (


2 Z A
 

�


����


����


�
 �� �
 ;A� (�1
2I ; A�A) 

1 

C � (�1
2I ; AA�) 

Y 0


2 Z 0 

1

0 I
 0 I


2 A
 

4. Show that ����


�
 

X~ B 


 C A 

���� 

� 

� �1: 


 

This implies that �0 

� �1 

which proves the assertion. 

Exercise 5.8 Prove or disprove (through a counter example) the following singular values inequali-
ties. 

1. �min(A + B) � �min(A) + �min(B) for any A and B. 

2. �min(A + E) � �max(E) whenever A does not have column rank, and E is any matrix. 



3. If �max(A) � 1, then 

1 

�max(I ; A);1 � 

1 ; �max(A) 

4. �i(I + A) � �i(A) + 1. 



MIT OpenCourseWare
http://ocw.mit.edu 

6.241J / 16.338J Dynamic Systems and Control 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


Lectures on Dynamic Systems and
 

Control
 

Mohammed Dahleh Munther A. Dahleh George Verghese


Department of Electrical Engineering and Computer Science


Massachuasetts Institute of Technology1


1�c



Chapter 6 

Dynamic Models


6.1 Introduction: Signals, Systems and Models 

A system may be thought of as something that imposes constraints on | or enforces re-
lationships among | a set of variables. This \system as constraints" point of view is very 

general and powerful. Rather more restricted, but still very useful and common, is the view 

of a system as a mapping from a set of input variables to a set of output variables� a mapping 

is evidently a very particular form of constraint. 

A (behavioral) model lists the variables of interest (the \manifest" variables) and the 

constraints that they must satisfy. Any combination of variables that satis�es the constraints 

is possible or allowed, and is termed a behavior of the model. 

To facilitate the speci�cation of the constraints, one may introduce auxiliary (\latent") 

variables. One might then distinguish among the manifest behavior, latent behavior, and full 

behavior (manifest as well as latent). 

For a dynamic model, the \variables" referred to above are actually signals that evolve as a 

function of time (and/or a function of other independent variables, e.g. space). We �rst need 

to specify a time axis T (discrete, continuous, in�nite, semi-in�nite . . . ) and a signal space 

W , i.e. the space of values the signals live in at each time instant. A dynamic model for a 

set of signals fwi(t)g is then completed by listing the constraints that the wi(t) must satisfy. 

Any combination w(t) � [ w1(t)� � � � � w`(t) ] of signals that satis�es the constraints is a 

behavior of the model, w(t) 2 B , where B denotes the behavior. 

We now present some examples of dynamic models, to highlight various possible model 

representations. 

Example 6.1 (Circuit) 



+ 

-

-+ 2w (t) 

w (t)1 

8 �� �:


Suppose the signals (variables) of interest | the manifest signals | in the above 

circuit diagram are w1(t), w2(t) and w3(t) for t � 0, so the signal space W is R
3 

and the time axis T is R
+ (i.e. the interval [0� 1]). Picking all other component 

voltages and currents as latent signals, we can write the constraints that de�ne 

the model as: 

2 Kirchho�'s voltage law (KVL) equations


2 Kirchho�'s current law (KCL) equations



 4 de�ning equations for the components 

Any set of manifest and latent signals that simultaneously satis�es (or solves) the 

preceding constraint equations constitutes a behavior, and the behavior B of the 

model is the space of all such solutions. 

The same behavior may equivalently be described by a model written entirely in 

terms of the manifest variables, by eliminating all the other variables in the above 

equations to obtain 

w1
0 � + Cw_1 

; w2 

(6.1)
R 

0 � ;w3 

+ Lw_ 2 

+ w1 

(6.2) 

Still further reduction to a single second-order di�erential equation is possible, by 

taking the derivative of one of these equations and eliminating one variable. 

Example 6.2 (Mass-Spring System) 

An object of mass M moves on a horizontal frictionless slide, and is attached to 

one end of it by a linear spring with spring constant k. A horizontal force u(t) 

is applied to the mass. Assume that the variable z measures the change in the 

spring length from its natural length. From Newton's law we obtain the model 

Mz� � ;kz + u: 

Example 6.3 (Inverted Pendulum) 



M 

kzz u 
M 

k 
u Free Body Diagram 

Figure 6.1: Mass Spring System. 

A cart of mass M slides on a horizontal frictionless track, and is pulled by a 

horizontal force u(t). On the cart an inverted pendulum of mass m is attached 

via a frictionless hinge, as shown in Figure 28.1. The pendulum's center of mass 

is located at a distance l from its two ends, and the pendulum's moment of inertia 

about its center of mass is denoted by I. The point of support of the pendulum 

is a distance s(t) from some reference point. The angle �(t) is the angle that the 

pendulum makes with respect to the vertical axis. The vertical force exerted by 

the cart on the base of the pendulum is denoted by P , and the horizontal force by 

N . What we wish to model are the constraints governing the (manifest) signals 

u(t), s(t) and �(t). 

First let us write the equations of motion that result from the free-body diagram 

of the cart. The vertical forces P , R and Mg balance out. For the horizontal 

forces we have the following equation: 

Ms� � u ; N: (6.3) 

From the free-body diagram of the pendulum, the balance of forces in the hori-
zontal direction gives the equation 

d2 

m (s + l sin(�)) � N� or 

dt2 � � 

m s� ; l sin(�)(�_)2 + l cos(�)�� � N� (6.4) 

and the balance of forces in the vertical direction gives the equation 

d2 

m (l cos(�)) � P ; mg� or 

dt2 � � 

m ;l cos(�)(�_)2 ; l sin(�)�� � P ; mg: (6.5) 

From equations (28.16) and (28.17) we can eliminate the force N to obtain � � 

_(M + m)s�+ m l cos(�)�� ; l sin(�)(�)2 � u: (6.6) 

By balancing the moments around the center of mass, we get the equation 

I��� P l sin(�) ; Nl cos(�): (6.7) 



s(t) 

theta 

l 

u(t) 

u 

P 

N 

P 

N 

mg 

s+ l sin(theta) 

Mg R 

Figure 6.2: Inverted Pendulum 

Substituting (28.17) and (28.18) into (28.19) gives us �	 � 

I�� � l mg ; ml cos(�)(�_)2 ; ml sin(�)�� sin(�) �	 � 

; l ms� ; ml sin(�)(�_)2 + ml cos(�)�� cos(�): 

Simplifying the above expression gives us the equation 

(I + ml2)�� � mgl sin(�) ; mls�cos(�): (6.8) 

The equations that comprise our model for the system are (28.20) and (28.21). 

We can have a further simpli�cation of the system of equations by removing the 

term �� from equation (28.20), and the term �s from equation (28.21). De�ne the 

constants 

M �	 M + m 

I + ml2 

L � : 

ml 



Substituting �� from (28.21) into (28.20), we get � � 

_1 ; 

ml 

cos(�)2 s�+ 

ml 

g sin(�) cos(�) ; 

ml 

sin(�)(�)2 �
1 

u: (6.9)ML ML M M 

Similarly we can substitute �s from (28.20) into (28.21) to get � � 

1 ; 

ml 

cos(�)2 ��; 

g 

sin(�) + 

ml 

sin(�) cos(�)(�_)2 � ; 

1 

cos(�)u: (6.10)ML L ML ML 

Example 6.4 (Predator-Prey Model) 

While the previous examples are physically based, there are many examples of 

dynamic models that are hypothesized on the basis of a behavioral pattern. For 

a classical illustration, consider an island populated primarily by goats and foxes. 

Goats survive on the island's vegetation while foxes survive by eating goats. 

To build a model of the population growth of these two interacting animals, de�ne: 

N1(t) � number of goats at time t (6.11) 

N2(t) � number of foxes at time t (6.12) 

where t refers to (discrete) time measured in multiples of months. Volterra pro-
posed the following model: 

N1(t + 1) � aN1(t) ; bN1(t)N2(t) (6.13) 

N2(t + 1) � cN2(t) + dN1(t)N2(t) (6.14) 

The constants a� b� c� and d are all positive, with a � 1, c � 1. If there were no 

goats on the island, N1(0) � 0, then | according to this model | the foxes' pop-
ulation would decrease geometrically (i.e. as a discrete-time exponential). If there 

were no foxes on the island, then the goat population would grow geometrically 

(presumably there is an unlimited supply of vegetation, water and space). On 

the other hand, if both species existed on the island, then the frequency of their 

encounters, which is modeled as being proportional to the product N1N2, deter-
mines at what rate goats are eaten and foxes are well-fed. Among the questions 

that might now be asked are: What sorts of qualitative behavioral characteristics 

are associated with such a model, and what predictions follow from this behav-
ior� What choices of the parameters a� b� c� d best match the behavior observed in 

practice� 

Example 6.5 (Smearing in an Imaging System) 

Consider a model that describes the relationship between a two-dimensional ob-
ject and its image on a planar �lm in a camera. Due to limited aperture, lens 

imperfections and focusing errors, the image of a unit point source at the origin 



in the object, represented by the unit impulse �(x� y) in the object plane, will be 

smeared. The intensity of the light at the image may be modeled by some func-
tion h(x� y)� x� y 2 R, for example h(x� y) � e;a(x2 +y2 ). An object u(x� y) can be 

viewed as the superposition of individual points distributed spatially, i.e., Z Z 1 

u(x� y) � �(x ; �� y ; �) u(�� �)d� d� : 

;1 

Assuming that the e�ect of the lens is linear and translation invariant, the image 

of such an object is given by the following intensity function: Z Z 1 

m(x� y) � h(x ; �� y ; �) u(�� d�)d� d� 

;1 

We can view u as the input to this system, m as the output. 

6.2 System Representations 

There are two general representations of a dynamic model that we shall be interested in, 

namely behavioral and input-output description. 

6.2.1 Behavioral Models 

This a very general representation, which we have actually taken as the basis for our initial 

de�nition of a dynamic model. In this representation, the system is described as a collection 

of constraints on designated signals, wi. Any combination w(t) � [ w1(t)� � � � � w`(t) ] of 

signals that satis�es the constraints is a behavior of the model, w(t) 2 B , where B denotes 

the behavior. An example of such a representation is Example 6.1. 

Linearity 

We call a model linear if its behavior constitutes a vector space, i.e. if superposition applies: 

wa(t)� wb(t) 2 B �) �wa(t) + � wb(t) 2 B (6.15) 

where � and � are arbitrary scalars. Example 6.1 is evidently linear. 

Time-Invariance 

We call a model time-invariant (or translation-invariant, or shift-invariant) if every possible 

time shift of a behavior | in which each of the signals is shifted by the same amount | yields 

a behavior: 

w(t) 2 B �) �� 

w(t) � w(t ; �) 2 B � (6.16) 

for all valid � , i.e. � for which T ; � � T, with �� 

denoting the � -shift operator. Example 6.1 

is evidently time-invariant. 



Memoryless Models 

A model is memoryless if the constraints that describe the associated signals w( � ) are purely 

algebraic, i.e., they only involve constraints on w(t0) for each t0 

2 T (and so do not involve 

derivatives, integrals, etc.). More interesting to us are non-memoryless, or dynamic systems, 

where the constraints involve signal values at di�erent times. 

6.2.2 Input-Output Models 

For this class of models, the system is modeled as a mapping from a set of input signals u(t) 

to a set of output signals, y(t). We may represent this map as 

y(t) � (S u) (t) (6.17) 

(i.e., the result of operating on the entire signal u( � ) with the mapping S yields the signal 

y( � ), and the particular value of the output at some time t is then denoted as above). The 

above mapping clearly also constitutes a constraint relating u(t) and y(t)� this fact could be 

emphasized by trivially rewriting the equation in the form 

y(t) ; (S u) (t) � 0 : (6.18) 

The de�nitions of linearity, time-invariance and memorylessness from the behavioral case 

therefore specialize easily to mappings. An example of a system representation in the form of 

a mapping is Example 6.5. 

Linearity and Time-Invariance 

From the behavioral point of view, the signals of interest are given by w(t) � [u(t) y(t)]. It 

then follows from the preceding discussion of behavioral models that the model is linear if 

and only if � � 

S (�ua 

+ �ub) (t) � �ya(t) + �yb(t) � �(S ua)(t) + �(S ub)(t) (6.19) 

and the model is time-invariant if and only if � � 

S �� 

u (t) � (�� 

y)(t) � y(t ; �) (6.20) 

where �� 

is again the � -shift operator (so time-invariance of a mapping corresponds to requir-
ing mapping to commute with the shift operator). 

Memoryless Models 

Again specializing the behavioral de�nition, we see that a mapping is memoryless if and 

only if y(t0) only depends on u(t0), for every t0 

2 T: � � 

y(t0) � (S u) (t0) � f u(t0) : (6.21) 



Causality 

We say the mapping is causal if the output does not depend on future values of the input. 

To describe causality conveniently in mathematical form, de�ne the truncation operator PT 

on a signal by the condition ( 

u(t) for t � T 

(PT 

u) (t) � : (6.22)
0 for t � T 

Thus, if u is a record of a function over all time, then (PT 

u) is a record of u up to time T , 

trivially extended by 0. Then the system S is said to be causal if 

PT 

SPT 

� PT 

S : (6.23) 

In other words, the output up to time T depends only on the input up to time T . 

Example 6.6 Example 6.5 shows a system represented as an input-output map. 

It is evident that the model is linear, translation-invariant, and not memoryless 

(unless h(x� y) � �(x� y)). 

Notes 

For much more on the behavioral approach to modeling and analysis of dynamic systems, see 

J. C. Willems, \Paradigms and Puzzles in the Theory of Dynamic Systems," IEEE 

Transactions on Automatic Control, Vol. 36, pp. 259{294, March 1991. 



Exercises 

Exercise 6.1 Suppose the output y(t) of a system is related to the input u(t) via the following 

relation: Z 1 

y(t) � e;(t;s)u(s)ds: 

0 

Verify that the model is linear, time-varying, non-causal, and not memoryless. 

Exercise 6.2 Suppose the input-output relation of a system is given by ( 

u(t) if ju(t)j � 1 

y(t) � u(t) 

: 

if ju(t)j � 1ju(t)j 

This input-output relation represents a saturation element. Is this map nonlinear� Is it memoryless� 

Exercise 6.3 Consider a system modeled as a map from u(t) to y(t), and assume you know that 

when � 

1 for 1 � t � 2 

u(t) � � 

0 otherwise 

the corresponding output is 8 � 

et;1 ; et;2 for t � 1


y(t) � 
2 ; e1;t ; et;2 for 1 � t � 2 :
: 

e2;t ; e1;t for t � 2


In addition, the system takes the zero input to the zero output. Is the system causal� Is it memoryless� 

A particular mapping that is consistent with the above experiment is described by Z 1 

y(t) � e;jt;sju(s)ds: (6.24) 

;1 

Is the model linear� Is it time-invariant� 

Exercise 6.4 For each of the following maps, determine whether the model is (a) linear, (b) time-
invariant, (c) causal, (d) memoryless. 

(i) Z t 

y(t) � (t ; s)3 u(s)ds 

0 

(ii) Z t 

y(t) � 1 + (t ; s)3 u(s)ds 

0 

(iii)
 

y(t) � u 

3(t)
 

(iv) Z t 

y(t) � e;ts u(s)ds 

0 
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Chapter 7 

State-Space Models
 

7.1 Introduction 

A central question in dealing with a causal discrete-time (DT) system with input u, output 

y, is the following: 

Given the input at some time n, i.e. given u[n], how much information do we need about 

past inputs, i.e. about u[k] for k � n, in order to determine the present output, namely y[n] � 

The same question can be asked for continuous-time (CT) systems. This question addresses 

the issue of memory in the system. Why is this a central question� Some reasons: 

�	 The answer gives us an idea of the complexity, or number of degrees of freedom, asso-
ciated with the dynamic behavior of the system. The more information we need about 

past inputs in order to determine the present output, the richer the variety of possible 

output behaviors. 

�	 In a control application, the answer to the above question suggests the required degree 

of complexity of the controller, because the controller has to remember enough about 

the past to determine the e�ects of present control actions on the response of the system. 

�	 For a computer algorithm that acts causally on a data stream, the answer to the above 

question suggests how much memory will be needed to run the algorithm. 

We now describe the general structure of state-space models, for which the preceding question 

has an immediate and transparent answer. 



7.2 General Description 

For a causal system with m inputs uj(t) and p outputs yi(t) (hence m + p manifest variables), 

an nth-order state-space description is one that introduces n latent variables x`(t) called state 

variables in order to obtain a particular form for the constraints that de�ne the model. Letting 323232 

u1(t) y1(t) x1(t) 

u(t) �
64


75


� y(t) �
64


75


� x(t) �
64


75


�


.
 .
 

.
 .
 

.
 .
 .
 .
 .



 
 
 
 
 
 

um(t) yp(t) xn(t) 

an nth-order state-space description takes the form 

x_ (t) � f (x(t)� u(t)� t) (state evolution equations) (7.1) 

y(t) � g (x(t)� u(t)� t) (instantaneous output equations) : (7.2) 

To save writing the same equations over for both continuous and discrete time, we interpret 

dx(t) + x_ (t) � � t 2 R or R
dt 

for CT systems, and 

x_ (t) � x(t + 1) � t 2 Z or Z
+ 

for DT systems. We will only consider �nite-order (or �nite-dimensional, or lumped) state-
space models, although there is also a rather well developed (but much more subtle and 

technical) theory of in�nite-order (or in�nite-dimensional, or distributed) state-space models. 

DT Models 

The key feature of a state-space description is the following property, which we shall refer to 

as the state property. Given the present state vector (or \state") and present input at time 

t, we can compute: (i) the present output, using (7.2)� and (ii) the next state using (7.1). It 

is easy to see that this puts us in a position to do the same thing at time t + 1, and therefore 

to continue the process over any time interval. Extending this argument, we can make the 

following claim: 

State Property of DT state-Space Models 

Given the initial state x(t0)
 

and input u(t) for t0 

� t � tf
 

(with t0 

and tf 

arbitrary),
 

we can compute the output y(t) for t0 

� t � tf
 

and the state x(t) for t0 

� t � tf 

.
 



Thus, the state at any time t0 

summarizes everything about the past that is relevant to the 

future. Keeping in mind this fact | that the state variables are the memory variables (or, in 

more physical situations, the energy storage variables) of a system | often guides us quickly 

to good choices of state variables in any given context. 

CT Models 

The same state property turns out to hold in the CT case, at least for f( : ) that are well 

behaved enough for the state evolution equations to have a unique solution for all inputs of 

interest and over the entire time axis | these will typically be the only sorts of CT systems 

of interest to us. A demonstration of this claim, and an elucidation of the precise conditions 

under which it holds, would require an excursion into the theory of di�erential equations 

beyond what is appropriate for this course. We can make this result plausible, however, by 

considering the Taylor series approximation � � 

dx(t) 

x(t0 

+ �) � x(t0) + � (7.3)
dt t�t0 

� x(t0) + f (x(t0)� u(t0)� t0) � (7.4) 

where the second equation results from applying the state evolution equation (7.1). This 

suggests that we can approximately compute x(t0 

+ �), given x(t0) and u(t0)� the error in the 

approximation is of order �2, and can therefore be made smaller by making � smaller. For 

su�ciently well behaved f( � ), we can similarly step forwards from t0 

+ � to t0 

+2�, and so on, 

eventually arriving at the �nal time tf 

, taking on the order of �;1 steps in the process. The 

accumulated error at time tf 

is then of order �;1:�2 � �, and can be made arbitrarily small 

by making � su�ciently small. Also note that, once the state at any time is determined and 

the input at that time is known, then the output at that time is immediately given by (7.2), 

even in the CT case. 

The simple-minded Taylor series approximation in (7.4) corresponds to the crudest of 

numerical schemes | the \forward Euler" method | for integrating a system of equations of 

the form (7.1). Far more sophisticated schemes exist (e.g. Runge-Kutta methods, Adams-Gear 

schemes for \sti�" systems that exhibit widely di�ering time scales, etc.), but the forward 

Euler scheme su�ces to make plausible the fact that the state property highlighted above 

applies to CT systems as well as DT ones. 

Example 7.1 RC Circuit 

This example demonstrates a �ne point in the de�nition of a state for CT systems. 

Consider an RC circuit in series with a voltage source u. Using KVL, we get the 

following equation describing the system: 

;u + vR 

+ RCv_C 

� 0: 

It is clear that vC 

de�nes a state for the system as we described before. Does vR 

de�ne a state� If vR(t0) is given, and the input u(t)� t0 

� t � tf 

is known, then 



f (x(t)� u(t)� t) � f (x(t)� u(t)) (7.5) 

g (x(t)� u(t)� t) � g (x(t)� u(t)) (7.6) 

then the model is time-invariant (in the sense de�ned earlier, for behavioral models). This 

corresponds to requiring time-invariance of the functions that specify how the state variables 

and inputs are combined to determine the state evolution and outputs. The results of exper-
iments on a time-invariant system depend only on the inputs and initial state, not on when 

the experiments are performed. 

If, on the other hand, the functions f( : ) and g( : ) in the state-space description are 

linear functions of the state variables and inputs, i.e. if 

f (x(t)� u(t)� t) � A(t)x(t) + B(t)u(t) (7.7) 

g (x(t)� u(t)� t) � C(t)x(t) + D(t)u(t) (7.8) 

then the model is linear, again in the behavioral sense. The case of a linear and periodically 

varying (LPV) model is often of interest� when A(t) � A(t + T ), B(t) � B(t + T ), C(t) � 

C(t + T ), and D(t) � D(t + T ) for all t, the model is LPV with period T . 

Of even more importance to us is the case of a model that is linear and time-invariant 

(LTI). For an LTI model, the state-space description simpli�es to 

f (x(t)� u(t)� t) � Ax(t) + Bu(t) (7.9) 

g (x(t)� u(t)� t) � Cx(t) + Du(t) : (7.10) 

We will primarily study LTI models in this course. Note that LTI state-space models are 

sometimes designated as (A� B� C� D) or "  

A B 

#
�

C D
 

 

as these four matrices completely specify the state-space model. 

one can compute vC 

(t0) and using the state property vC 

(tf 

) can be computed 

from which vR(tf 

) can be computed. This says that vR(t) de�nes a state which 

contradicts our intuition since it is not an energy storage component. 

There is an easy �x of this problem if we assume that all inputs are piece-wise 

continuous functions. In that case we de�ne the state property as the ability 

to compute future values of the state from the initial value x(t0) and the input 

u(t)� t0 

� t � tf 

. Notice the strict inequality. We leave it to you to verify that 

this de�nition rules out vR 

as a state variable. 

Linearity and Time-Invariance 

If in the state-space description (7.1), (7.2), we have 



System Type 

x_ (t) � tx2(t) NLTV 

x_ (t) � x2(t) NLTI 

x_ (t) � tx(t) LTV 

x_ (t) � (cos t)x(t) LPV 

x_ (t) � x(t) LTI 

Table 7.1: Some examples of linear, nonlinear, time-varying, periodically-varying, and time-
invariant state-space descriptions. 

Some examples of the various classes of systems listed above are given in Table 7.1. More 

elaborate examples follow. 

One might think that the state-space formulation is restrictive since it only involves 

�rst-order derivatives. However, by appropriately choosing the state variables, higher-order 

dynamics can be described. The examples in this section and on homework will make this 

clear. 

Example 7.2 (Mass-Spring System) 

For the mass-spring system in Example 6.2, we derived the following system rep-
resentation: 

Mz� � ;kz + u: 

To put this in state space form, choose position and velocity as state variables: 

x1 

� z 

x2 

� z_: (7.11) 

Therefore, 

x_ 1 

� z_ � x2 

k 1 k 1 

x_ 2 

� ; z + u � ; x1 

+ u : 

M M M M 

The input is the force u and let the output be the position of the mass. The 

resulting state space description of this system is " # " # 

x_ 1 

x2� k
M 

1x ;
 x1 

+ M u2_ 

y � x1 

: 



The above example suggests something that is true in general for mechanical systems: the 

natural state variables are the position and velocity variables (associated with potential energy 

and kinetic energy respectively). 

Example 7.3 (Nonlinear Circuit) 

L R 

x 

C C 

i = n(x 

2 1 

13 + 

-

x 

+ 

-

x 12 

)
+ 

-

v 

Figure 7.1: Nonlinear circuit. 

We wish to put the relationships describing the above circuit's behavior in state-
space form, taking the voltage v as an input, and choosing as output variables 

the voltage across the nonlinear element and the current through the inductor. 

The constituent relationship for the nonlinear admittance in the circuit diagram 

is inonlin 

� N (vnonlin), where N ( : ) denotes some nonlinear function. 

Let us try taking as our state variables the capacitor voltages and inductor cur-
rent, because these variables represent the energy storage mechanisms in the cir-
cuit. The corresponding state-space description will express the rates of change 

of these variables in terms of the instantaneous values of these variables and the 

instantaneous value of the input voltage v. It is natural, therefore, to look for 

expressions for C1x_ 1 

(the current through C1), for C2x_ 2 

(the current through C2), 

and for Lx_ 3 

(the voltage across L). 

Applying KCL to the node where R, C1, and the nonlinear device meet, we get 

C1x_ 1 

�
(x2 

; x1) ;N (x1)
R 

Applying KCL to the node where R, C2 

and L meet, we �nd 

C2x_ 2 

� x3 

; 

(x2 

; x1) 

R 

Finally, KVL applied to a loop containing L yields 

Lx_ 3 

� v ; x2 

Now we can combine these three equations to obtain a state-space description of 

this system: 2
 3
 2
 � 3
 3
2
;
1 

C2 

1 

x2 

;x1 NR �(x1) 

x3 

; 

x2 

;x1 

1 1;

;
 0
x_ 1 C1 ;
64


75


�
 

64


75


64


0



 

(7.12)
+
x_ 2 R
 
 
 
 

x x2 

v3 LL
_ 

75



" # 

y � 

x1 : (7.13)
x3 

Observe that the output variables are described by an instantaneous output equa-
tion of the form (7.2). This state-space description is time-invariant but nonlinear. 

This makes sense, because the circuit does contain a nonlinear element! 

Example 7.4 (Discretization) 

Assume we have a continuous-time system described in state-space form by 

dx(t) 

� Ax(t) + Bu(t)� 

dt 

y(t) � Cx(t) + Du(t): 

Let us now sample this system with a period of T , and approximate the derivative 

as a forward di�erence: 

1 

(x ((k + 1)T ) ; x (kT ))  �  Ax (kT ) + Bu (kT ) � k 2 Z: (7.14)
T 

It is convenient to change our notation, writing x[k] � x(kT ), and similarly for u 

and y. Our sampled equation can thereby be rewritten as 

x[k + 1] � (I + TA) x[k] + T Bu[k] 

^ ^� Ax[k] + Bu[k] � 

y[k] � Cx[k] + Du[k] : (7.15) 

which is in standard state-space form. 

In many modern applications, control systems are implemented digitally. For that purpose, 

the control engineer must be able to analyze both discrete-time as well as continuous-time 

systems. In this example a crude sampling method was used to obtain a discrete-time model 

from a continuous-time one. We will discuss more re�ned discretization methods later on in 

this book. 

It is also important to point out that there are physical phenomena that directly require or 

suggest discrete-time models� not all discrete-time models that one encounters in applications 

are discretizations of continuous-time ones. 

7.3 Linearization 

Much of our attention in this course will be focused on linear models. Linear models frequently 

arise as descriptions of small perturbations away from a nominal solution of the system. 

Consider, for example, the continuous-time (CT) state-space model 

x_ (t) � f(x(t)� u(t)� t)
 

y(t) � g(x(t)� u(t)� t) (7.16)
 



where x(t) is the n-dimensional state-vector at time t, u(t) is the m-dimensional vector of 

inputs, and y(t) is the p-dimensional vector of outputs. Suppose xo(t), uo(t) and yo(t) con-
stitute a nominal solution of the system, i.e. a collection of CT signals that jointly satisfy 

the equations in (7.16). Now let the control and initial condition be perturbed from their 

nominal values to u(t) � uo(t)+ �u(t) and x(0) � xo(0) + �x(0) respectively, and let the state 

trajectory accordingly be perturbed to x(t) � xo(t) + �x(t). Substituting these new values 

into (7.16) and performing a (multivariable) Taylor series expansion to �rst-order terms, we 

�nd � � � � 

@f @f 

�x_(t) � �x(t) + �u(t)
@x @u �
 �
 

o �
 �
 

o 

@g @g 

�y(t) � �x(t) + �u(t) (7.17)
@x o 

@u o 

where the n�n matrix [@f�@x]o 

denotes the Jacobian of f(:� :� :) with respect to x, i.e. a matrix 

whose ij-th entry is the partial derivative of the ith component of f(:� :� :) with respect to the 

jth component of x, and where the other Jacobian matrices in (7.17) are similarly de�ned. 

The subscript o 

indicates that the Jacobians are evaluated along the nominal trajectory, i.e. 

at x(t) � xo(t) and u(t) � uo(t). The linearized model (7.17) is evidently linear, of the form 

_�x(t) � A(t) �x(t) + B(t) �u(t)
 

�y(t) � C(t) �x(t) + D(t) �u(t): (7.18)
 

When the original nonlinear model is time-invariant, the linearized model will also be time-
invariant if the nominal solution is constant (i.e. if the nominal solution corresponds to 

a constant equilibrium)� however, the linearized model may be time varying if the nominal 

solution is time varying (even if the original nonlinear model is time-invariant), and will be 

periodic | i.e., have periodically varying coe�cients | if the nominal solution is periodic (as 

happens when the nominal solution corresponds to operation in some cyclic or periodic steady 

state). 

The same development can be carried out for discrete-time (DT) systems, but we focus 

in this lecture on the CT case. 

Example 7.5 (Linearizing a Nonlinear Circuit Model) 

Consider linearizing the state-space model we obtained for the nonlinear circuit in 

Example 7.3. We ended up there with a nonlinear model of the form 2
 

x_ 1 

3
 2
 

C1 

; ;R 

;
 N (x�1) 

� 3 2 

0 

3
1 

x2 

;x1 6 7 6 1 

7 6 7 4 

x_ 2 

5
 

�
 4
 

x3 

; 

x2 

;x1 5
 

+ 4
 

0 5
 

: (7.19)C2 

R 

1 1 x_ ; v3 L 

x2 L 

For the linearization, all that happens is each xj 

is replaced by �xj , and N (x1) is 

replaced by [dN (x1)�dx1]o 

�x1, resulting in a linear state-space model of the form 

�x_ (t) � A �x(t) + B �v(t) (7.20) 



_ _ 

with ih0 101
1 1 dN 1 0 0


;
 ;
RC1 

C1 

dx1 

RC1oB@


CA


� B �
 

B@


CA


1 1 1A �

0
 (7.21)
;



 
 
 
 

RC2 

RC2 

C2 1 

L 

10
 0
L 

Example 7.6 (Linearizing the Inverted Pendulum) 

Recall from Example 6.3 the equations that describe the dynamics of the inverted 

pendulum. Those equations are nonlinear due to the presence of the terms sin(�), 

cos(�), and (�)2 . We can linearize these equations around � � 0 and � � 0, by 

_assuming that �(t) and �(t) remain small. Recall that for small �


1


sin(�) � � ; �3 

6 

cos(�) � 1 ; 

1 

�2� 

2 

and using the linear parts of these relations the linearized system of equations 

takes the form �
 �
 

ml ml g 1 

1 ; s�+ � � u� 

ML M L M �
 �
 

1 ; 

ml 

�� ; 

g
� � ; 

1 

u : 

ML L ML 

Using as state vector 2
 3
 

s 

x � 

6664


s_ 

�


7775


�



 
 

_� 

the following state-space model can be easily obtained: 0
1
0


x1 

10 

0 1 0 0 

101 

0
x1 

i 

BBB@
h
 

y � 1 0 0 0 x� 

where the constant � is given by 

1 

� � 

�
 � : 

1 ; 

ml 

ML 

BBB@


CCCA


BBB@ 

CCCA 

CCCA


+
 

BBB@


CCCA


� 

M 

0
 

;� 

ml 

ML 

d 0
0 0

x2 

g 
x2 

x3 

�
 u 

0 0 0 1
dt 

x3
 
 
 
 
 

� 

LM0 0 � 

g 0L 

;
x4 

x4 



Exercises 

Exercise 7.1 Consider the nonlinear di�erence equation 

y(k + n) � F [y(k + n ; 1)� : : : � y(k)� u(k + n ; 1)� : : : � u(k)� k] 

where n is a �xed integer, and k is the time index. 

(a) Find a state-space representation of order 2n ; 1 for this di�erence equation. 

(b)	 Find an nth-order state-space representation in LTI case (what is the form of F in this case�), 

using z-transforms for guidance (natural state variables are the coe�cients of the initial-condition 

terms in the z-transformed version of the di�erence equation | try a third-order di�erence 

equation | remind of forward shift theorem from z-transforms). This part will guide the solution 

of (c). 

(c)	 Find an nth-order state-space representation for the nonlinear system in (a) for the case where 

F [ : ] has the special form 

nX 

F [ : ] � fi[y(k + n ; i)� u(k + n ; i)] 

i�1 

(Hint: Note that the di�erence equation in part (b) has this form� use your de�nition of state 

variables in (b) to guide your choice here.) 

Exercise 7.2 Consider a causal continuous-time system with input-output representation y(t) � 

h � u(t), where � denotes convolution and h(t) is the impulse response of the system: 

h(t) � 2e;t ; ce;2t for t � 0 

Here c denotes a constant. 

(a)	 Suppose c � 2. Use only the input-output representation of the system to show that the variables 

x1(t) � y(t) and x2(t) � y_(t) qualify as state variables of the system at time t. 

(b)	 Compute the transfer function of the system, and use it to describe what may be special about 

the case c � 2. 

Exercise 7.3 The input u(t) and output y(t) of a system are related by the equation 

dy(t)	 du(t)
+ a0(t)y(t) � b0(t)u(t) + b1(t)

dt	 dt 

Find a linear, time varying state-space representation of this system. 



Exercise 7.4 Given the periodically varying system x(k + 1) � A(k)x(k) + B(k)u(k) of period N , 

with A(k + N) � A(k) and B(k + N) � B(k), de�ne the sampled state z[k] and the associated extended 

input vector v[k] by 0
 1
CCA


u(kN) 

u(kN + 1) 

.



 . 

BB@


z[k] � x(kN) � v[k] � 


 

.


u(kN + N ; 1)


Now show that z[k + 1] � Fz[k] + Gv[k] for constant matrices F and G (i.e. matrices independent of 

k) by determining F and G explicitly. 

Exercise 7.5 Let the state space representations of two given systems be 

xi(k + 1) � Aixi(k) + Biui(k) � yi(k) � Cixi(k) � i � 1� 2 

Determine a state-space representation in the form 

x(k + 1) � Ax(k) + Bu(k) 

y(k) � Cx(k) 

for the new system obtained when systems 1 and 2 are interconnected (a) in series, (b) in parallel, and 

in a feedback loop. Assume the size of the inputs and outputs of the two systems are consistent for 

each of the above con�guration to make sense. 

Exercise 7.6 Consider a pendulum comprising a mass m at the end of a light but rigid rod of length 

r. The angle of the pendulum from its equilibrium position is denoted by �. Suppose a torque u(t) 

can be applied about the axis of support of the pendulum (e.g. suppose the pendulum is attached to 

the axis of an electric motor, with the current through the motor being converted to torque). A simple 

model for this system takes the form 

mr 

2��(t) + f�_(t) + mgr sin �(t) � u(t) 

where the term f�_ represents a frictional torque, with f being a positive coe�cient, and g is the 

acceleration due to gravity. 

(a) Find a state-space representation for this model. Is your state-space model linear� time invariant� 

(b)	 What nominal input uo(t) corresponds to the nominal motion �o(t) � �t for all t, where � is 

some �xed constant� 

(c)	 Linearize your state-space model in (a) around the nominal solution in (b). Is the resulting model 

linear� Is it time invariant or periodically varying� 



Exercise 7.7 Consider the horizontal motion of a particle of unit mass sliding under the in�uence 

of gravity on a frictionless wire. It can be shown that, if the wire is bent so that its height h is given 

by h(x) � V�(x), then a state-space model for the motion is given by 

x_ � z 

d 

z_ � ; V�(x)� 

dx 

Suppose V�(x) � x4 ; �x2 . 

(a) Verify that the above model has (z� x) � (0� 0) as equilibrium point for any � in the interval � 

r � 

� ;1 � � � 1, and it also has (z� x) � 0� � as equilibrium points when � is in the interval 

2
 

0 � � � 1.
 

(b) Derive the linearized system at each of these equilibrium points. 
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Chapter 8 

Simulation/Realization
 

8.1 Introduction 

Given an nth-order state-space description of the form 

x_ (t) � f (x(t)� u(t)� t) (state evolution equations) (8.1) 

y(t) � g (x(t)� u(t)� t) (instantaneous output equations) : (8.2) 

(which may be CT or DT, depending on how we interpret the symbol x_ ), how do we simulate 

the model, i.e., how do we implement it or realize it in hardware or software� In the DT 

case, where x_ (t) � x(t + 1), this is easy if we have available: (i) storage registers that can be 

updated at each time step (or \clock cycle") | these will store the state variables� and (ii) 

a means of evaluating the functions f( � ) and g( � ) that appear in the state-space description 

| in the linear case, all that we need for this are multipliers and adders. A straightforward 

realization is then obtained as shown in the �gure below. The storage registers are labeled 

D for (one-step) delay, because the output of the block represents the data currently stored 

in the register while the input of such a block represents the data waiting to be read into the 

register at the next clock pulse. In the CT case, where x_ (t) � dx(t)�dt, the only di�erence is 

that the delay elements are replaced by integrators. The outputs of the integrators are then 

the state variables. 

8.2 Realization from I/O Representations 

In this section, we will describe how a state space realization can be obtained for a causal 

input-output dynamic system described in terms of convolution. 

8.2.1 Convolution with an Exponential 

Consider a causal DT LTI system with impulse response h[n] (which is 0 for n � 0): 



u[t] 

- x[t + 1] - x[t] - y[t]-f(:� :) D g(:� :) 

6 6 

Figure 8.1: Simulation Diagram 

nX 

y[n] � h[n ; k]u[k] 

;1 � 

n;1 �X 

� h[n ; k]u[k] + h[0]u[n] (8.3) 

;1 

The �rst term above, namely 

n;1X 

x[n] � h[n ; k]u[k] (8.4) 

;1 

represents the e�ect of the past on the present. This expression shows that, in general (i.e. 

if h[n] has no special form), the number x[n] has to be recomputed from scratch for each n. 

When we move from n to n + 1, none of the past input, i.e. u[k] for k � n, can be discarded, 

because all of the past will again be needed to compute x[n + 1]. In other words, the memory 

of the system is in�nite. 

Now look at an instance where special structure in h[n] makes the situation much better. 

Suppose 

h[n] � �n for n � 0, and 0 otherwise (8.5) 

Then 

n;1X 

x[n] � �n;k u[k] (8.6) 

;1 

and 

nX 

x[n + 1] � �n+1;k u[k] 

;1 � 

n;1 �X 

� � �n;k u[k] + �u[n] 

;1 

� �x[n] + �u[n] (8.7) 



- -

(You will �nd it instructive to graphically represent the convolutions that are involved here, in 

order to understand more visually why the relationship (8.7) holds.) Gathering (8.3) and (8.6) 

with (8.7), we obtain a pair of equations that together constitute a state-space description for 

this system: 

x[n + 1] � �x[n] + �u[n] (8.8) 

y[n] � x[n] + u[n] (8.9) 

To realize this model in hardware, or to simulate it, we can use a delay-adder-gain system 

that is obtained as follows. We start with a delay element, whose output will be x[n] when its 

input is x[n +1]. Now the state evolution equation tells us how to combine the present output 

of the delay element, x[n], with the present input to the system, u[n], in order to obtain the 

present input to the delay element, x[n + 1]. This leads to the following block diagram, in 

which we have used the output equation to determine how to obtain y[n] from the present 

state and input of the system: 

u[n] 

- m - - y[n] 

6 

x[n] x[n + 1]
� � 

� D 

8.2.2 Convolution with a Sum of Exponentials 

Consider a more complicated causal impulse response than the previous example, namely 

h[n] � �0�[n] + ( �1�1 

n + �2�
n 

2 

+ � � � + �L�
n
L 

) (8.10) 

with the �i 

being constants. The following block diagram shows that this system can be 

considered as being obtained through the parallel interconnection of causal subsystems that 

are as simple as the one treated earlier, plus a direct feedthrough of the input through the 

gain �0 

(each block is labeled with its impulse response, with causality implying that these 

responses are 0 for n � 0): 

�0�[n] 

B 

B
 

u[n] 

B y[n]
 

- - �1�
n - - BBNi -
1 

���
� 


 � 

� 

- �L�
n
L 

- � 

...




Motivated by the above structure and the treatment of the earlier, let us de�ne a state 

variable for each of the L subsystems: 

n;1 

xi[n] � �ni 

;k u[k] � i � 1� 2� : : : � L (8.11) 

With this, we immediately obtain the following state-evolution equations for the subsystems: 

xi[n + 1] � �ixi[n] + �iu[n] � i � 1� 2� : : : � L (8.12) 

Also, after a little algebra, we directly �nd 

X 

;1 

LX 

y[n] � �1x1[n] + �2x2[n] + � � � + �LxL[n] + ( �i) u[n] (8.13) 

0 

We have thus arrived at an Lth-order state-space description of the given system. To write 

the above state-space description in matrix form, de�ne the state vector at time n to be 0
 1
 

x1[n] 

x[n] � 

BBBB@


x2[n] 

. . 

CCCCA


(8.14)



 . 
 

xL[n] 

Also de�ne the diagonal matrix A, column vector b, and row vector c as follows: 1010 

�1 

0 0 � � � 0 0 �1 

A �


BBBB@
�


0 �2 

0 � � � 0 0 

. . . . 

. .
 . . . . . .
 . . . 

. . .
 

CCCCA


� b � 

BBBB@


�2 

.
 .
 .
 

CCCCA


(8.15)



 
 
 

0 0 0 � � � 0 �L 

�L 

c 


 

� �1 

�2 

� � � � � � � � � �L 

�
 

(8.16)


Then our state-space model takes the desired matrix form, as you can easily verify: 

x[n + 1] � Ax[n] + bu[n] (8.17) 

y[n] � cx[n] + du[n] (8.18) 

where 

LX 

d � �i 

(8.19) 

0 



8.3 Realization from an LTI Di�erential/Di�erence equation 

In this section, we describe how a realization can be obtained from a di�erence or a di�erential 

equation. We begin with an example. 

Example 8.1 (State-Space Models for an LTI Di�erence Equation) 

Let us examine some ways of representing the following input-output di�erence 

equation in state-space form: 

y[n] + a1y[n ; 1] + a2y[n ; 2] � b1u[n ; 1] + b2u[n ; 2] (8.20) 

For a �rst attempt, consider using as state vector the quantity 10 

y[n ; 1] 

y[n ; 2] 


 u[n ; 1] 

x[n] � 

BBB@


CCCA


(8.21)



 

u[n ; 2] 

The corresponding 4th-order state-space model would take the form 010 10
 1
0
1
BBB@
y[n] ;a1 

;a2 

b1 

b2 

� 

y[n ; 1] 0
BBB@


CCCA


BBB@
0 

CCCA 

CCCA


+
 

BBB@


CCCA


y[n ; 1] 1 0 0 0
 y[n ; 2] 

u[n ; 2] 

0
 

1
 

x[n + 1] � u[n]
u[n] 0 0 0 0
 u[n ; 1]
 
 
 
 
 
 

u[n ; 1] 0 0 1 0
 0
 1 CCCA


BBB@


y[n ; 1] 

y[n ; 2] 


 u[n ; 1] 

u[n ; 2] 

�� 

y[n] � ;a1 

;a2 

b1 

b2 

+
 ( 0 ) u[n](8.22) 

If we are somewhat more careful about our choice of state variables, it is possible 

to get more economical models. For a 3rd-order model, suppose we pick as state 

vector 10 

y[n]B@


CA


x[n] � y[n ; 1] (8.23)



 
 

u[n ; 1] 

The corresponding 3rd-order state-space model takes the form 010 10
 1
0
1


y[n + 1] ;a1 

;a2 

b2 

1 0 0
 

0 0 0
 

y[n] b1 B@


CA


�
 

B@


B@ 

CA 

CA


+
 

B@


CA


x[n + 1] � y[n] y[n ; 1] 0
 u[n]

 
 
 
 
 
 

u[n] 1
1 CA 

u[n ; 1] 0
 

y[n]�
 �
 

y[n] � 1 0 0
B@


y[n ; 1] + ( 0 ) u[n] (8.24)

 

u[n ; 1] 



A still more clever/devious choice of state variables yields a 2nd-order state-space 

model. For this, pick � ! 

y[n]
x[n] � (8.25);a2y[n ; 1] + b2u[n ; 1] 

The corresponding 2nd-order state-space model takes the form � ! � !� ! � ! 

y[n + 1] 

� 

;a1 

1 y[n]
+ 

b1 u[n];a2y[n] + b2u[n] ;a2 

0 ;a2y[n ; 1] + b2u[n ; 1] b2 � ! � � y[n]
y[n] � 1 0 + ( 0 ) u[n] (8.26);a2y[n ; 1] + b2u[n ; 1] 

It turns out to be impossible in general to get a state-space description of order 

lower than 2 in this case. This should not be surprising, in view of the fact that we 

started with a 2nd-order di�erence equation, which we know (from earlier courses!) 

requires two initial conditions in order to solve forwards in time. Notice how, in 

each of the above cases, we have incorporated the information contained in the 

original di�erence equation that we started with. 

This example was built around a second-order di�erence equation, but has natural 

generalizations to the nth-order case, and natural parallels in the case of CT 

di�erential equations. 

Next, we will present two realizations of an nth-Order LTI di�erential equation. While 

realizations are not unique, these two have certain nice properties that will be discussed in 

the future. 

8.3.1 Observability Canonical Form 

Suppose we are given the LTI di�erential equation 

y(n) + an;1y(n;1) + � � � + a0y � b0u + b1u_ + � � � + bn;1u(n;1)� 

which can be rearranged as 

y(n) � ( bn;1u(n;1) ; bn;1y(n;1)) + ( bn;2u(n;2) ; an;2y(n;2)) + � � � + (b0u ; a0y): 

Integrated n times, this becomes Z Z Z Z Z 

y � (bn;1u ; an;1y) + (bn;2u ; an;2y) + � � � + � � � (b0u ; a0y): (8.27) 

n 

The block diagram given in Figure 8.2 then follows directly from (8.27). This particular 

realization is called the observability canonical form realization | \canonical" in the sense of 



u 

� 

b0 

��
 

Z
� x_ n-+��


6 

;a0 

6 

� 

b1 

��
 

Z
� xn- + 

x_ n;1-��


6 

;a1 

6 

. . . 

� 

bn;2 

��
 

Z
� xn;1 

x_ . . . - ++ 2 -�� 

6 

;an;2 

6 

. . . 

� 

bn;1 

��  
� x2- x_ 1 -+�� 

6 

Z
 

x1 

y-

;an;1 

6 

Figure 8.2: Observability Canonical Form 

\simple" (but there is actually a strict mathematical de�nition as well), and \observability" 

for reasons that will emerge later in the course. 

We can now read the state equations directly from Figure 8.2, once we recognize that 

the natural state variables are the outputs of the integrators: 

x_ 1 

� ;an;1x1 

+ x2 

+ bn;1u 

x_ 2 

� ;an;2x1 

+ x3 

+ bn;2u 

. . . 

x_ n 

� ;a0x1 

+ b0u 

y � x1: 

If this is written in our usual matrix form, we would have 2
 3
32 66666664


bn;1 

bn;2 

.
 .
 .
 

.
 .



 . 

77777775


;an;1 

1 0 � � � 0 

;an;2 

0 1 � � � 06666664


7777775


. .
A �
 � b �.
 .
. .


1



 
 


 

;a0 

0 � � � 0 b0 ih 

c � 1 0 � � � 0 : 

The matrix A is said to be in companion form, a term used to refer to any one of four matrices 

whose pattern of 0's and 1's is, or resembles, the pattern seen above. The characteristic 

polynomial of such a matrix can be directly read o� from the remaining coe�cients, as we shall 



see when we talk about these polynomials, so this matrix is a \companion" to its characteristic 

polynomial. 

8.3.2 Reachability Canonical Form 

There is a \dual" realization to the one presented in the previous section for the LTI di�erential 

equation 

y(n) + an;1y(n;1) + � � � + a0y � c0u + c1u_ + � � � + cn;1u(n;1): (8.28) 

First, consider a special case of this, namely the di�erential equation 

w(n) + an;1w(n;1) + � � � + a0w � u (8.29) 

To obtain an nth-order state-space realization of the system in 8.29, de�ne 3
2
3
2


wx1 

�
 

6666666664


7777777775


x � 

666666664


777777775


w_ 

w� 

.
.
.


dn;2 w 


 dtn;2 

x2 

x3 

.
.
.



 xn;1 

:
 


 


 

dn;1 wxn dtn;1 

Then it is easy to verify that the following state-space description represents the given model: 2
3
2
 32
 3
2
3


x1 

0 1 0 0 : : : 0 x1 

0 

d 

dt 

666666664


777777775


666666664


666666664


777777775


x2 

x3 

.
 .
 .
 

xn;1 

777777775


+
 

666666664


0 0 1 0 : : : 0
 

0 0 0 1 : : : 0
 

. .
. .
. .


0 0 0 : : : 0 1
 

0


0


x2 

x3 

.
 .
 .
 

xn;1 

�
 u.
.
.


0



 
 
 
 
 
 

;a0(t) ;a1(t) 2 666666664


;a2(t) : : : ;an;2(t) ;an;1(t) xn 

1
xn 3
 

x1 777777775


x2


x3


i
h 

w � 

(The matrix A here is again in one of the companion forms� the two remaining companion 

forms are the transposes of the one here and the transpose of the one in the previous section.) 

Suppose now that we want to realize another special case, namely the di�erential equation 

r(n) + an;1r(n;1) + � � � + a0r � u_ (8.30) 

1 0 0 0 : : : 0
 :
. . . 

xn;1 

xn 

777777775




which is the same equation as (8.29), except that the RHS is u_ rather than u. By linearity, the 

response of (8.30) will r � w_ (t), and this response can be obtained from the above realization 

by simply taking the output to be x2 

rather than x1, since x2 

� w_ � r. 

Superposing special cases of the preceding form, we see that if we have the di�erential 

equation (8.28), with an RHS of 

c0u + c1u_ + � � � + cn;1u(n;1) 

then the above realization su�ces, provided we take the output to be 

y � c0x1 

+ c1x2 

+ � � � + cn;1xn:	 (8.31) 

i.e., we just change the output equation to have h	 i 

c � c0 

c1 

c2 

� � � cn;1 

:	 (8.32) 

A block diagram of the �nal realization is shown below in 8.3. This is called the reachability 

or controllability canonical form. 

��  

- -y�� 

6 

..........................� 

cn;1 

c1 

c0 

+��  Z 

6 Z Z 

6 Z 

6 

u xn_ x1_-
�� 

��	� 6BMB
I+@ 

+	 @ 

� � � � 

+	 B+ 

@ 

;an;1 

;an;2 

;a1 

;a0
B @
B @
B 

-
 - xn 

xn;1- - x2_ -
 

x2 

x1... 

Figure 8.3: Reachability Canonical Form 

Finally, for the obvious DT di�erence equation that is analogous to the CT di�erential 

equation that we used in this example, the same scheme will work, with derivatives replaced 

by di�erences. 



Exercises 

Exercise 8.1 Suppose we wish to realize a two-input di�erential equation of the form 

y(n) + an;1y
(n;1) + � � � + a0y � b01u1 

+ b11u_ 1 

+ � � � + bn;1�1u
(
1 

n;1) 

+ b02u2 

+ b12u_ 2 

+ � � � + bn;1�2u2
(n;1) 

Show how you would modify the observability canonical realization to accomplish this, still using only 

n integrators. 

Exercise 8.2 How would reachability canonical realization be modi�ed if the linear di�erential equa-
tion that we started with was time varying rather than time invariant� 

Exercise 8.3 Show how to modify the reachability canonical realization| but still using only n 

integrators | to obtain a realization of a two-output system of the form 

y1
(n) 

+ an;1y1
(n;1) 

+ � � � + a0y1 

� c10u + c11u_ + � � � + c1�n;1u
(n;1) � 

y2
(n) 

+ an;1y2
(n;1) 

+ � � � + a0y2 

� c20u + c21u_ + � � � + c2�n;1u
(n;1): 

Exercise 8.4 Consider the two-input two-output system: 

y_1 

� y1 

+ �u1 

+ u2 

� 

y_2 

� y2 

+ u1 

+ u2 

(a) Find a realization with the minimum number of states when � 6� 1. 

(b) Find a realization with the minimum number of states when � � 1. 
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Chapter 10 

Discrete-Time Linear State-Space 

Models 

10.1 Introduction 

In the previous chapters we showed how dynamic models arise, and studied some special 

characteristics that they may possess. We focused on state-space models and their properties, 

presenting several examples. In this chapter we will continue the study of state-space models, 

concentrating on solutions and properties of DT linear state-space models, both time-varying 

and time-invariant. 

10.2 Time-Varying Linear Models 

A general nth-order discrete-time linear state-space description takes the following form: 

x(k + 1) � A(k)x(k) + B(k)u(k) 

y(k) � C(k)x(k) + D(k)u(k) � (10.1) 

where x(k) 2 R
n . Given the initial condition x(0) and the input sequence u(k), we would like 

to �nd the state sequence or state trajectory x(k) as well as the output sequence y(k). 

Undriven Response 

First let us consider the undriven response, that is the response when u(k) � 0 for all k 2 Z. 

The state evolution equation then reduces to 

x(k + 1) � A(k)x(k) : (10.2) 



The response can be derived directly from (10.2) by simply iterating forward: 

x(1) � A(0)x(0)


x(2) � A(1)x(1)


� A(1)A(0)x(0) 

x(k) � A(k ; 1)A(k ; 2) : : : A(1)A(0)x(0) (10.3) 

Motivated by (10.3), we de�ne the state transition matrix, which relates the state of the 

undriven system at time k to the state at an earlier time `: 

x(k) � �(k� `)x(`) k � ` :	 (10.4) 

The form of the matrix follows directly from (10.3): (
�(k� `) �	

A(k ; 1)A(k ; 2) � � � A(`) � k � ` � 0 

: (10.5)
I � k � ` 

If A(k ;1), A(k ;2),. . . , A(`) are all invertible, then one could use the state transition matrix 

to obtain x(k) from x(`) even when k � `, but we shall typically assume k � ` when writing 

�(k� `). 

The following properties of the discrete-time state transition matrix are worth highlight-
ing: 

�(k� k) � I 

x(k) � �(k� 0)x(0) 

�(k + 1� `) � A(k)�(k� `): (10.6) 

Example 10.1 (A Su�cient Condition for Asymptotic Stability) 

The linear system (10.1) is termed asymptotically stable if, with u(k) � 0, and for 

all x(0), we have x(n) ! 0 (by which we mean kx(n)k ! 0) as n ! 1. Since 

u(k) � 0, we are in e�ect dealing with (10.2). 

Suppose 

kA(k)k � � � 1 (10.7) 

for all k, where the norm is any submultiplicative norm and � is a constant (inde-
pendent of k) that is less than 1. Then 

k�(n� 0)k � �n 

and hence
 

kx(n)k � �nkx(0)k
 

so x(n) ! 0 as n ! 1, no matter what x(0) is. Hence (10.7) constitutes a 

su�cient condition (though a weak one, as we'll see) for asymptotic stability of 

(10.1). 



Example 10.2 (\Lifting" a Periodic Model to an LTI Model) 

Consider an undriven linear, periodically varying (LPV) model in state-space form. 

This is a system of the form (10.2) for which there is a smallest positive integer 

N such that A(k + N) � A(k) for all k� thus N is the period of the system. (If 

N � 1, the system is actually LTI, so the cases of interest here are really those 

with N � 2.) Now focus on the state vector x(mN) for integer m, i.e., the state 

of the LPV system sampled regularly once every period. Evidently ih 

x(mN + N) � A(N ; 1)A(N ; 2) � � � A(0) x(mN) 

� �(N� 0) x(mN) (10.8) 

The sampled state thus admits an LTI state-space model. The process of con-
structing this sampled model for an LPV system is referred to as lifting. 

Driven Response 

Now let us consider the driven system, i.e., u(k) 6 Referring back to � 0 for at least some k. 

(10.1), we have 

x(1) � A(0)x(0) + B(0)u(0)


x(2) � A(1)x(1) + B(1)u(1)


� A(1)A(0)x(0) + A(1)B(0)u(0) + B(1)u(1) (10.9) 

which leads to 

k 1;X
x(k) � �(k� 0)x(0) + �(k� ` + 1)B(`)u(`) 

`�0 

� �(k� 0)x(0) + ;(k� 0)U(k� 0) � (10.10) 

where 10 

ih 

;(k� 0) � �(k� 1)B(0) j �(k� 2)B(1) j � � � j B(k ; 1) � U(k� 0) � 

BBBB@


u(0) 

u(1) 

. . . 

CCCCA


(10.11)
 


 
 

u(k ; 1) 

What (10.10) shows is that the solution of the system over k steps has the same form as 

the solution over one step, which is given in the �rst equation of (10.1). Also note that the 

system response is divided into two terms: one depends only on the initial state x(0) and the 

other depends only on the input. These terms are respectively called the natural or unforced 

or zero-input response, and the zero-state response. Note also that the zero-state response 

has a form that is reminiscent of a convolution sum� this form is sometimes referred to as a 

superposition sum. 



If (10.10) had been simply claimed as a solution, without any sort of derivation, then its 

validity could be veri�ed by substituting it back into the system equations: 

kX 

x(k + 1) � �(k + 1� 0)x(0) + �(k + 1� ` + 1)B(`)u(`) 

`�0 

k;1X 

� �(k + 1� 0)x(0) + �(k + 1� ` + 1)B(`)u(`) + B(k)u(k) 

`�0 " #
k;1X 

� A(k) �(k� 0)x(0) + �(k� ` + 1)B(`)u(`) + B(k)u(k) 

`�0 

� A(k)x(k) + B(k)u(k) : (10.12) 

Clearly, (10.12) satis�es the system equations (10.1). It remains to be veri�ed that the pro-
posed solution matches the initial state at k � 0. We have 

x(0) � �(0� 0)x(0) � x(0) � (10.13) 

which completes the check. 

If Y(k� 0) is de�ned similarly to U(k� 0), then following the sort of derivation that led to 

(10.10), we can establish that 

Y(k� 0) � �(k� 0)x(0) +�(k� 0)U(k� 0) (10.14) 

for appropriately de�ned matrices �(k� 0) and �(k� 0). We leave you to work out the details. 

Once again, (10.14) for the output over k steps has the same form as the expression for the 

output at a single step, which is given in the second equation of (10.1). 

10.3 Linear Time-Invariant Models 

In the case of a time-invariant linear discrete-time system, the solutions can be simpli�ed 

considerably. We �rst examine a direct time-domain solution, then compare this with a 

transform-domain solution, and �nally return to the time domain, but in modal coordinates. 

Direct Time-Domain Solution 

For a linear time-invariant system, observe that )
A(k) � A 

for all k � 0� (10.15)
B(k) � B 

where A and B are now constant matrices. Thus 

�(k� `) � A(k ; 1) : : : A(`) � Ak;` � k � ` (10.16) 



so that, substituting this back into (10.10), we are left with 

k;1 

x(k) � Ak x(0) + Ak;`;1Bu(`) 

X 

`�0 10 

u(0) 

u(1) 

. . 

ih 

� Ak x(0) + Ak;1B j Ak;2B j � � � j B 

BBBB@


CCCCA


(10.17)
 


 . 
 

u(k ; 1) 

Note that the zero-state response in this case exactly corresponds to a convolution sum. 

Similar expressions can be worked out for the outputs, by simplifying (10.14)� we leave the 

details to you. 

Transform-Domain Solution 

We know from earlier experience with dynamic linear time-invariant systems that the use of 

appropriate transform methods can reduce the solution of such a system to the solution of 

algebraic equations. This expectation does indeed hold up here. First recall the de�nition of 

the one-sided Z-transform : 

De�nition 10.1 The one-sided Z-transform, F (z), of the sequence f(k) is given by 

1X
F (z) � z;kf(k) 

k�0 

for all z such that the result of the summation is well de�ned, denoted by the Region of 

Convergence (ROC). 

The sequence f(k) can be a vector or matrix sequence, in which case F (z) is respectively a 

vector or matrix as well. 

It is easy to show that the transform of a sum of two sequences is the sum of the individual 

transforms. Also, scaling a sequence by a constant simply scales the transform by the same 

constant. The following shift property of the one-sided transform is critical, and not hard to 

Z
establish. Suppose that f(k) �! F (z). Then 

1. 

g(k) � 

(
 

f(k ; 1) � k � 1
�) G(z) � z;1F (z): 

0 � k � 0 

2. 

g(k) � f(k + 1) �) G(z) � z [F (z) ; f(0)] : 



Convolution is an important operation that can be de�ned on two sequences f(k), g(k) as 

kX 

f � g(k) � g(k ; m)f(m)� 

m�0 

whenever the dimensions of f and g are compatible so that the products are de�ned. The Z 

transform of a convolutions of two sequences satisfy 

1X 

Z(f � g) � z;kf � g(k) 

k�0 �	 ! X1 kX 

� z;k f(k ; m)g(m) 

k�0 

m�0 

1	 1X X 

� z;kf(k ; m)g(m) 

m�0 k�m 

1	 1X X 

�	 z;(k+m)f(k)g(m) 

m�0 k�0 � !1 1X X 

�	 z;m z;kf(k) g(m) 

m�0 k�0 

�	 F (z)G(z): 

Now, given the state-space model (10.1), we can take transforms on both sides of the 

equations there. Using the transform properties just described, we get 

zX(z) ; zx(0) � AX(z) + BU(z) (10.18) 

Y (z) � CX(z) + DU(z): (10.19) 

This is solved to yield 

X(z) � z(zI ; A);1 x(0) + (zI ; A);1BU(z)h	 i 

Y (z) � zC(zI ; A);1 x(0) + C(zI ; A);1B + D U(z) (10.20) | {z }
Transfer Function 

To correlate the transform-domain solutions in the above expressions with the time-
domain expressions in (10.10) and (10.14), it is helpful to note that 

(zI ; A);1 � z;1I + z;2A + z;3A2 + � � �	 (10.21) 

as may be veri�ed by multiplying both sides by (zI ; A). The region of convergence for the 

series on the right is all values of z outside of some su�ciently large circle in the complex 

plane. What this series establishes, on comparison with the de�nition of the Z-transform, is 


 



that the inverse transform of z(zI ; A);1 is the matrix sequence whose value at time k is Ak 

for k � 0� the sequence is 0 for time instants k � 0. That is we can write � � Z
I� A� A2� A3� A4� : : : �! z(zI ; A);1 � � 

3 

Z
0� I� A� A2� A � : : : �! (zI ; A);1: 

Also since the inverse transform of a product such as (zI ; A);1BU(z) is the convolution of 

the sequences whose transforms are (zI ; A);1B and U(z) respectively, we get � � 

3 

Z 

x(0)� Ax(0)� A2 x(0)� A x(0)� : : : �! z(zI ; A);1 x(0) � � 

3 

Z
0� B� AB� A2B�A B� : : : � (u(0)� u(1)� u(2)� u(3)� : : :) �! (zI ; A);1BU(z): 

Putting the above two pieces together, the parallel between the time-domain expressions and 

the transform-domain expressions in (10.20) should be clear. 


 



Exercises 

Exercise 10.1 (a) Give an example of a nonzero matrix whose eigenvalues are all 0. 

(b)	 Show that Ak � 0 for some �nite positive power k if and only if all eigenvalues of A equal 0. Such 

a matrix is termed nilpotent. Argue that An � 0 for a nilpotent matrix of size n. 

(c)	 If the sizes of the Jordan blocks of the nilpotent matrix A are n1 

� n2 

� : : : � nq, what is the 

smallest value of k for which Ak � 0� 

(d)	 For an arbitrary square matrix A, what is the smallest value of k for which the range of Ak+1 

equals that of Ak� (Hint: Your answer can be stated in terms of the sizes of particular Jordan 

blocks of A.) 

Exercise 10.2 Consider the periodically varying system in Problem 7.4. Find the general form of 

the solution. 

Exercise 10.3 Gambler's Ruin 

Consider gambling against a bank of capital A1 

in the following way: a coin is �iped, if the 

outcome is heads, the bank pays one dollar to the player, and if the outcome is tails, the player payes 

one dollar to the bank. Suppose the probability of a head is equal to p, the capital of the player is A2, 

and the game continues until one party looses all of their capital. Calculate the probability of breaking 

the bank. 
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Chapter 11 

Continuous-Time Linear 

State-Space Models 

11.1 Introduction 

In this chapter, we focus on the solution of CT state-space models. The development here 

follow the previous chapter. 

11.2 The Time-Varying Case 

Consider the nth-order continuous-time linear state-space description 

x_ (t) � A(t)x(t) + B(t)u(t)
 

y(t) � C(t)x(t) + D(t)u(t) : (11.1)
 

We shall always assume that the coe�cient matrices in the above model are su�ciently well 

behaved for there to exist a unique solution to the state-space model for any speci�ed initial 

condition x(t0) and any integrable input u(t). For instance, if these coe�cient matrices are 

piecewise continuous, with a �nite number of discontinuities in any �nite interval, then the 

desired existence and uniqueness properties hold. 

We can describe the solution of (11.1) in terms of a matrix function �(t� �) that has the 

following two properties: 

_�(t� �) � A(t)�(t� �) � (11.2) 

�(�� �) � I : (11.3) 

This matrix function is referred to as the state transition matrix, and under our assumption 

on the nature of A(t) it turns out that the state transition matrix exists and is unique. 


 



_ _

We will show that, given x(t0) and u(t), Z
 t 

x(t) � �(t� t0)x(t0) + �(t� �)B(�)u(�)d� : (11.4) 

t0 

Observe again that, as in the DT case, the terms corresponding to the zero-input and zero-
state responses are evident in (11.4). In order to verify (11.4), we di�erentiate it with respect 

to t: Z
 t 

x_ (t) � �(t� t0)x(t0) + �(t� �)B(�)u(�)d� + �(t� t)B(t)u(t) : (11.5) 

t0 

Using (11.2) and (11.3), Z
 t 

x_ (t) � A(t)�(t� t0)x(t0) + A(t)�(t� �)B(�)u(�)d� + B(t)u(t) : (11.6) 

t0 

Now, since the integral is taken with respect to � , A(t) can be factored out: �
 Z
 

�
t 

x_ (t) � A(t) �(t� t0)x(t0) + �(t� �)B(�)u(�)d� + B(t)u(t) � (11.7) 

t0 

� A(t)x(t) + B(t)u(t) � (11.8) 

so the expression in (11.4) does indeed satisfy the state evolution equation. To verify that it 

also matches the speci�ed initial condition, note that 

x(t0) � �(t0� t0)x(t0) � x(t0): (11.9) 

We have now shown that the matrix function �(t� �) satisfying (11.2) and (11.3) yields the 

solution to the continuous-time system equation (11.1). 

Exercise: Show that �(t� �) must be nonsingular. (Hint: Invoke our claim about uniqueness 

of solutions.) 

The question that remains is how to �nd the state transition matrix. For a general linear 

time-varying system, there is no analytical expression that expresses �(t� �) analytically as 

a function of A(t). Instead, we are essentially limited to numerical solution of the equation 

(11.2) with the boundary condition (11.3). This equation may be solved one column at a 

time, as follows. We numerically compute the respective solutions xi(t) of the homogeneous 

equation 

x_ (t) � A(t)x(t) (11.10) 

for each of the n initial conditions below: 3232 

1 0 

2
 3
 

0


x 

1(t0) � 

666666664


0
 

0
 

777777775


x 

2(t0) � 

666666664


1
 

0
 

777777775


6666664


7777775


0


0
� : : : �
 x 

n(t0) � �
 :
0
 0
 . ..
 .



 . 


 .
 .
.
 .



 
 
 
 

1 

0 0




Then h i 

�(t� t0) � x1(t) : : : xn(t) : (11.11) 

In summary, knowing n solutions of the homogeneous system for n independent initial 

conditions, we are able to construct the general solution of this linear time varying system. 

The underlying reason this construction works is that solutions of a linear system may be 

superposed, and our system is of order n. 

Example 11.1 A Special Case 

Consider the following time-varying system " # " # " # 

d x1(t) �(t) �(t) x1(t)� � 

dt 

x2(t) ;�(t) �(t) x2(t) 

where �(t) and �(t) are continuous functions of t. It turns out that the special 

structure of the matrix A(t) here permits an analytical solution. Speci�cally, verify 

that the state transition matrix of the system is " R R R R # 

exp( 

t �(�)d�) cos( 

t �(�)d�) exp( 

t �(�)d�) sin( 

t �(�)d�)
0�(t� t0) � 

tR t 

Rt0 

t 

Rtt 

0 Rtt 

0 

; exp( t0 

�(�)d�) sin( t0 

�(�)d�) exp( �(�)d�) cos( �(�)d�)t0 

t0 

The secret to solving the above system | or equivalently, to obtaining its state 

transition matrix | is to transform it to polar co-ordinates via the de�nitions 

r 

2(t) � (x1)
2(t) + (x2)

2(t)� � 

�(t) � tan;1 

x2 

: 

x1 

We leave you to deduce now that 

d 

r 

2 � 2�r2 

dt 

d 

� � ;� : 

dt 

The solution of this system of equations is then given by � Z 

�t 

r 

2(t) � exp 2 �(�)d� r 

2(t0) 

t0 

and Z t 

�(t) � �(t0) ; �(�)d� 

t0 



Further Properties of the State Transition Matrix 

The �rst property that we present involves the composition of the state transition matrix 

evaluated over di�erent intervals. Suppose that at an arbitrary time t0 

the state vector is 

x(t0) � x0, with x0 

being an arbitrary vector. In the absence of an input the state vector 

at time t is given by x(t) � �(t� t0)x0. At any other time t1, the state vector is given by 

x(t1) � �(t1� t0)x0. We can also write 

x(t) � �(t� t1)x(t1) � �(t� t1)�(t1� t0)x0 

� �(t� t0)x0: 

Since x0 

is arbitrary, it follows that 

�(t� t1)�(t1� t0) � �(t� t0) 

for any t0 

and t1. (Note that since the state transition matrix in CT is alway invertible, 

there is no restriction that t1 

lie between t0 

and t | unlike in the DT case, where the state 

transition matrix may not be invertible). 

Another property of interest (but one whose derivation can be safely skipped on a �rst 

reading) involves the determinant of the state transition matrix. We will now show that �Z t 

� 

det(�(t� t0)) � exp trace[A(�)]d� � (11.12) 

t0 

a result known as the Jacobi-Liouville formula. Before we derive this important formula, we 

need the following fact from matrix theory. For an n � n matrix M and a real parameter �, 

we have 

det(I + �M) � 1 + � trace (M) + O(�2) � 

where O(�2) denotes the terms of order greater than or equal to �2 . In order to verify this 

fact, let U be a similarity transformation that brings M to an upper triangular matrix T , so 

M � U;1TU . Such a U can always be found, in many ways. (One way, for a diagonalizable 

matrix, is to pick U to be the modal matrix of M , in which case T is actually diagonal� there 

is a natural extension of this approach in the non-diagonalizable case.) Then the eigenvalues 

f�ig of M and T are identical, because similarity transformations do not change eigenvalues, 

and these numbers are precisely the diagonal elements of T . Hence 

det(I + �M) � det(I + �T ) 

� �n
i�1 

(1 + ��i) 

� 1 + � trace (M) + O(�2): 

Returning to the proof of (11.12), �rst observe that 

d 

�(t + �� t0) � �(t� t0) + � �(t� t0) + O(�2)
dt 

� �(t� t0) + �A(t)�(t� t0) + O(�2): 



The derivative of the determinant of �(t� t0) is given by 

d 1 

det[�(t� t0)] � lim (det[�(t + �� t0)] ; det[�(t� t0)])
dt 

�!0 � 

1� � 

� lim det[�(t� t0) + �A(t)�(t� t0)] ; det[�(t� t0)]
�!0 � 

1 

� det(�(t� t0)) lim (d  et[  I + �A(t)] ; 1)
�!0 � 

� trace [A(t)] det[�(t� t0)]: 

Integrating the above equation yields the desired result, (11.12). 

11.3 The LTI Case 

For linear time-invariant systems in continuous time, it is possible to give an explicit formula 

for the state transition matrix, �(t� �). In this case A(t) � A, a constant matrix. Let us 

de�ne the matrix exponential of A by an in�nite series of the same form that is (or may 

be) used to de�ne the scalar exponential: 

e(t;t0 

)A � I + (t ; t0)A + 

1
(t ; t0)

2A2 + : : : 

2! 

1X 1 

� (t ; t0)
kAk: (11.13)

k! 

k�0 

It turns out that this series is as nicely behaved as in the scalar case: it converges absolutely 

for all A 2 R
n�n and for all t 2 R, and it can be di�erentiated or integrated term by term. 

There exist methods for computing it, although the task is fraught with numerical di�culties. 

With the above de�nition, it is easy to verify that the matrix exponential satis�es the 

de�ning conditions (11.2) and (11.3) for the state transition matrix. The solution of (11.1) in 

the LTI case is therefore given by Z t 

x(t) � e(t;t0 

)A x(t0) + e 

A(t;�)Bu(�)d�: (11.14) 

t0 

After determining x(t), the system output can be obtained by 

y(t) � Cx(t) + Du(t): (11.15) 


 



Transform-Domain Solution of LTI Models 

We can now parallel our transform-domain treatment of the DT case, except that now we use 

the one-sided Laplace transform instead of the Z-transform : 

De�nition 11.1 The one-sided Laplace transform, F (s), of the signal f(t) is given by Z 1 

F (s) � e;stf(t) dt 

t�0; 

for all s where the integral is de�ned, denoted by the region of convergence (R.O.C.). 

The various properties of the Laplace transform follow. The shift property of Z transforms 

that we used in the DT case is replaced by the following di�erentiation property: Suppose 

L
that f(t) �! F (s). Then 

df(t) 

g(t) � �) G(s) � sF (s) ; f(0;)
dt 

Now, given the state-space model (11.1) in the LTI case, we can take transforms on both 

sides of the equations there. Using the transform property just described, we get 

sX(s) ; x(0;) � AX(s) + BU(s) (11.16) 

Y (s) � CX(s) + DU(s): (11.17) 

This is solved to yield 

X(s) � (sI ; A);1 x(0;) + (sI ; A);1BU(s)h	 i 

Y (s) � C(sI ; A);1 x(0;) + C(sI ; A);1B + D U(s) (11.18) | {z }
Transfer Function 

which is very similar to the DT case. 

An important fact that emerges on comparing (11.18) with its time-domain version 

(11.14) is that	 � � 

L e 

At � (sI ; A);1: 

Therefore one way to compute the state transition matrix (a good way for small examples!) 

is by evaluating the entry-by-entry inverse transform of (sI ; A);1 . 

Example 11.2 Find the state transition matrix associated with the (non-diagonalizable!) 

matrix " # 

1 2 

A � : 

0 1 


 



Using the above formula, 

L 

� 

e 

At 

� 

� (sI ; A);1 � 

" 

s ; 

0
1 

s 

;
; 

2
1 

#;1 

" # 

1	 2 

�	

s;1 (s;1)2 

: 

0 

1 

s;1 

By taking the inverse Laplace transform of the above matrix we get " # 

At �	

et 2tet 

e	 : 

0 et 



Exercises 

Exercise 11.1 Companion Matrices 

(a)	 The following two matrices and their transposes are said to be companion matrices of the poly-
nomial q(z) � zn + qn;1z

n;1 + : : : + q0. Determine the characteristic polynomials of these four 

matrices, and hence explain the origin of the name. (Hint: First �nd explanations for why all 

four matrices must have the same characteristic polynomial, then determine the characteristic 

polynomial of any one of them.) 0
 ;qn;1 

1 0 : : : 0 101 

0 1 0 : : : 0
BBBB@


;qn;2 

0 1 : : : 0 

. . . . 

.
. . . . .
. . . 

. .


CCCCA


A2 

� 

BBBB@


0 0 1 : : : 0 

. . . . 

. . . . . .
 . . . 

. .
 

0 0 0 : : : 1
 

CCCCA


A1 

� 


 

0 0	 : : : 1 


 
 
 ;q1 

;q0 

0 0 : : : 0 

;q0 

;q1 

;q2 

: : : ;qn;1 

(b)	 Show that the matrix A2 

above has only one (right) eigenvector for each distinct eigenvalue �i, 

and that this eigenvector is of the form [1 �i 

�2 

i 

: : : �ni 

;1]T . 

(c) If 10 

0 1 0
 

A �
 

@
 0 0 1 

A
 

6 5 ;2 

what are Ak and eAt� (Your answers may be left as a product of three | or fewer | matrices� 

do not bother to multiply them out.) 

Exercise 11.2 Suppose you are given the state-space equation 

x_ (t) � Ax(t) + Bu(t) 

with an input u(t) that is piecewise constant over intervals of length T : 

u(t) � u[k] � kT � t � (k + 1)T 

(a) Show that the sampled state x[k] � x(kT ) is governed by a sampled-data state-space model of the 

form
 

x[k + 1] � Fx[k] + Gu[k]
 

for constant matrices F and G (i.e. matrices that do not depend on t or k), and determine these 

matrices in terms of A and B. (Hint: The result will involve the matrix exponential, eAt.) How 

are the eigenvalues and eigenvectors of F related to those of A� 


 



(b) Compute F and G in the above discrete-time sampled-data model when � � � � 

0 1 0 

A �	 � B � ;!2 0 10 

(c)	 Suppose we implement a state feedback control law of the form u[k] � Hx[k], where H is a gain 

matrix. What choice of H will cause the state of the resulting closed-loop system, x[k + 1] � 

(F + GH)x[k], to go to 0 in at most two steps, from any initial condition (H is then said to 

produce \deadbeat" behavior)� To simplify the notation for your calculations, denote cos !0T 

by c and sin !0T by s. Assume now that !0T � ��6 , and check your result by substituting in 

your computed H and seeing if it does what you intended. 

(d) For !0T � ��6 and !0 

� 1, your matrices from (b) should work out to be 

F �	 

� 
p
3�2 p1�2 

� � 

1 ; (
p
3�2) 

� 

� G � ;1�2 3�2	 1�2 

Use Matlab to compute and plot the response of each of the state variables from k � 0 to k � 10, 

assuming x[0] � [4 � 0]T and with the following choices for u[k]: 

� (i) the open-loop system, with u[k] � 0� 

� (ii) the closed-loop system with u[k] � Hx[k], where H is the feedback gain you computed 

in (c), with !0 

� 1� also plot u[k] in this case. 

(e)	 Now suppose the controller is computer-based. The above control law u[k] � Hx[k] is imple-
mentable if the time taken to compute Hx[k] is negligible compared to T . Often, however, it 

takes a considerable fraction of the sampling interval to do this computation, so the control that 

is applied to the system at time k is forced to use the state measurement at the previous instant. 

Suppose therefore that u[k] � Hx[k ; 1]. Find a state-space model for the closed-loop system 

in this case, written in terms of F , G, and H . (Hint: The computer-based controller now has 

memory!) What are the eigenvalues of the closed-loop system now, with H as in (c)� Again use 

Matlab to plot the response of the system to the same initial condition as in (d), and compare 

with the results in (d)(ii). Is there another choice of H that could yield deadbeat behavior� If 

so, �nd it� if not, suggest how to modify the control law to obtain deadbeat behavior. 

Exercise 11.3 Given the matrix � � 

A � 

� 

;! 

! 

� 

� 

show that 

exp 

� 

t 

� 

� 

;! 

! 

� 

�� 

� 

� 

e�t 

;e� 

cos(!t) 

t sin(!t) 

e�t 

e�t 

sin(! 

cos(! 

t) 

t) 

� 

Exercise 11.4 Suppose A and B are constant square matrices. Show that � � �� � � 

A 0 etA 0 

exp t � : 

0 B 0 etB 



Exercise 11.5 Suppose A and B are constant square matrices. Show that the solution of the 

following system of di�erential equations, 

x_ (t) � e;tABe 

tA x(t) � 

is given by 

x(t) � e;tA e(t;t0 

)(A+B)e 

t0 

A x(t0) : 

Exercise 11.6 Suppose A is a constant square matrix, and f(t) is a continuous scalar function of t. 

Show that the state transition matrix for the system 

x_ (t) � f(t)Ax(t) 

is given by � Z t 

� 

�(t� t0) � exp ( f(�)d�)A : 

t0 

Exercise 11.7 (Floquet Theory). Consider the system 

x_ (t) � A(t)x(t) 

where A(t) is a periodic matrix with period T , so A(t + T ) � A(t). We want to study the state 

transition matrix �(t� t0) associated with this periodically time-varying system. 

1. First let us start with the state transition matrix �(t� 0), which satis�es
 

_
� � A(t)� 

�(0� 0) � I: 

De�ne the matrix �(t� 0) � �(t + T�	 0) and show that � satis�es
 

_
�(t� 0) � A(t)�(t� 0) 

�(0� 0) � �(T� 0): 

2. Show that this implies that �(t + T� 0) � �(t� 0)�(T� 0). 

3. Using Jacobi-Liouville formula, show that �(T� 0) is invertible and therefore can be written as 

�(T� 0) � eTR . 

4. De�ne 

P (t);1 � �(t� 0)e;tR� 

and show that P (t);1 , and consequently P (t), are periodic with period T . Also show that 

P (T ) � I . This means that 

�(t� 0) � P (t);1 e 

tR: 

5. Show that �(0� t0) � �;1(t0� 0). Using the fact that �(t� t0) � �(t� 0)�(0� t0), show that 

�(t� t0) � P (t);1 e(t;t0 

)RP (t0): 

What is the signi�cance of this result� 
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Chapter 12 

Modal Decomposition of 

State-Space Models 

12.1 Introduction 

The solutions obtained in previous chapters, whether in time domain or transform domain, 

can be further decomposed to give a geometric understanding of the solution. The modal 

decomposition expresses the state equation as a linear combination of the various modes of 

the system and shows precisely how the initial conditions as well as the inputs impact these 

modes. 

12.2 The Transfer Function Matrix 

It is evident from (10.20) that the transfer function matrix for the system, which relates the 

input transform to the output transform when the initial condition is zero, is given by 

H(z) � C(zI ; A);1B + D: (12.1) 

For a multi-input, multi-output (MIMO) system with m inputs and p outputs, this results in 

a p�m matrix of rational functions of z. In order to get an idea of the nature of these rational 

functions, we express the matrix inverse as the adjoint matrix divided by the determinant, as 

follows: 

1 

H(z) � 

det(zI ; A) 

C [adj(zI ; A)]  B + D: 

nThe determinant det(zI ; A) in the denominator is an nth-order monic (i.e. coe�cient of z 

is 1) polynomial in z, known as the characteristic polynomial of A and denoted by a(z). The 


 



entries of the adjoint matrix (the cofactors) are computed from minors of (zI ; A), which are 

polynomials of degree less than n. Hence the entries of the matrices 

(zI ; A);1 � 

det(zI 

1 

; A)
adj(zI ; A) 

and 

1 

H(z) ; D � 

det(zI ; A) 

Cadj(zI ; A)B 

are strictly proper, i.e. have numerator degree strictly less than their denominator degree. 

With the D term added in, H(z) b ecomes proper that is all entries have numerator degree 

less than or equal to the degree of the denominator. For jzj % 1, H(z) ! D. 

The polynomial a(z) forms the denominators of all the entries of (zI ; A);1 and H(z), 

except that in some, or even all, of the entries there may be cancellations of common factors 

that occur between a(z) and the respective numerators. We shall have a lot more to say later 

about these cancellations and their relation to the concepts of reachability (or controllability) 

and observability. To compute the inverse transform of (zI ; A);1 (which is the sequence 

Ak;1) and the inverse transform of H(z) (which is a matrix sequence whose components are 

the zero-state unit sample responses from each input to each output), we need to �nd the 

inverse transform of rationals whose denominator is a(z) (apart from any cancellations). The 

roots of a(z) | also termed the characteristic roots or natural frequencies of the system, thus 

play a critical role in determining the nature of the solution. A fuller picture will emerge as 

we proceed. 

Multivariable Poles and Zeros 

You are familiar with the de�nitions of poles, zeros, and their multiplicities for the scalar 

transfer functions associated with single-input, single-output (SISO) LTI systems. For the 

case of the p � m transfer function matrix H(z) that describes the zero-state input/output 

behavior of an m-input, p-output LTI system, the de�nitions of poles and zeros are more 

subtle. We include some preliminary discussion here, but will leave further elaboration for 

later in the course. 

It is clear what we would want our eventual de�nitions of MIMO poles and zeros to 

specialize to in the case where H(z) is nonzero only in its diagonal positions, because this 

corresponds to completely decoupled scalar transfer functions. For this diagonal case, we 

would evidently like to say that the poles of H(z) are the poles of the individual diagonal 

entries of H(z), and similarly for the zeros. For example, given � � 

z + 2 z 

H(z) � diagonal � 

(z + 0:5)2 (z + 2)(z + 0:5) 

we would say that H(z) has poles of multiplicity 2 and 1 at z � ;0:5, and a pole of multiplicity 

1 at z � ;2� and that it has zeros of multiplicity 1 at ;2, at z � 0, and at z � 1. Note that 


 



in the MIMO case we can have poles and zeros at the same frequency (e.g. those at ;2 in 

the above example), without any cancellation! Also note that a pole or zero is not necessarily 

characterized by a single multiplicity� we may instead have a set of multiplicity indices (e.g. 

as needed to describe the pole at ;0:5 in the above example). The diagonal case makes clear 

that we do not want to de�ne a pole or zero location of H(z) in the general case to be a 

frequency where all entries of H(z) respectively have poles or zeros. 

For a variety of reasons, the appropriate de�nition of a pole location is as follows: 

�	 Pole Location: H(z) has a pole at a frequency p0 

if some entry of H(z) has a pole at 

z � p0. 

The full de�nition (which we will present later in the course) also shows us how to determine 

the set of multiplicities associated with each pole frequency. Similarly, it turns out that the 

appropriate de�nition of a zero location is as follows: 

�	 Zero Location: H(z) has a zero at a frequency �0 

if the rank of H(z) drops at z � �0. 

Again, the full de�nition also permits us to determine the set of multiplicities associated with 

each zero frequency. The determination of whether or not the rank of H(z) drops at some 

value of z is complicated by the fact that H(z) may also have a pole at that value of z� 

however, all of this can be sorted out very nicely. 

12.3 Similarity Transformations 

Suppose we have characterized a given dynamic system via a particular state-space represen-
tation, say with state variables x1� x2� � � � � xn. The evolution of the system then corresponds 

to a trajectory of points in the state space, described by the succession of values taken by the 

state variables. In other words, the state variables may be seen as constituting the coordinates 

in terms of which we have chosen to describe the motion in the state space. 

We are free, of course, to choose alternative coordinate bases | i.e., alternative state 

variables | to describe the evolution of the system. This evolution is not changed by the 

choice of coordinates� only the description of the evolution changes its form. For instance, in 

the LTI circuit example in the previous chapter, we could have used iL 

;vC 

and iL 

+vC 

instead 

of iL 

and vC 

. The information in one set is identical with that in the other, and the existence 

of a state-space description with one set implies the existence of a state-space description with 

the other, as we now show more concretely and more generally. The �exibility to choose an 

appropriate coordinate system can be very valuable, and we will �nd ourselves invoking such 

coordinate changes very often. 

Given that we have a state vector x, suppose we de�ne a constant invertible linear 

mapping from x to r, as follows: 

r � T 

;1 x � x � T r:	 (12.2) 

Since T is invertible, this maps each trajectory x(k) to a unique trajectory r(k), and vice versa. 

We refer to such a transformation as a similarity transformation. The matrix T embodies 


 



the details of the transformation from x coordinates to r coordinates | it is easy to see from 

(12.2) that the columns of T are the representations of the standard unit vectors of r in the 

coordinate system of x, which is all that is needed to completely de�ne the new coordinate 

system. 

Substituting for x(k) in the standard (LTI version of the) state-space model (10.1), we 

have � � 

T r(k + 1) � A T r(k) + Bu(k) (12.3) � � 

y(k) � C T r(k) + Du(k): (12.4) 

or 

r(k + 1) � (T 

;1AT ) r(k) + (T 

;1B) u(k) (12.5) 

� Ab r(k) + Bb u(k) (12.6) 

y(k) � (CT ) r(k) + Du(k) (12.7) 

� Cb r(k) + Du(k) (12.8) 

We now have a new representation of the system dynamics� it is said to be similar to the 

original representation. It is critical to understand, however, that the dynamic properties of 

the model are not at all a�ected by this coordinate change in the state space. In particular, 

the mapping from u(k) to y(k), i.e. the input/output map, is unchanged by a similarity 

transformation. 

12.4 Solution in Modal Coordinates 

The proper choice of a similarity transformation may yield a new system model that will be 

more suitable for analytical purposes. One such transformation brings the system to what are 

known as modal coordinates. We shall describe this transformation now for the case where 

the matrix A in the state-space model can be diagonalized, in a sense to be de�ned below� we 

leave the general case for later. 

Modal coordinates are built around the eigenvectors of A. To get a sense for why the 

eigenvectors may be involved in obtaining a simple choice of coordinates for studying the 

dynamics of the system, let us examine the possibility of �nding a solution of the form 

x(k) � �kv � v 6� 0 (12.9) 

for the undriven LTI system 

x(k + 1) � Ax(k) (12.10) 

Substituting (12.9) in (12.10), we �nd the requisite condition to be that 

(�I ; A) v � 0 (12.11) 



i.e., that � be an eigenvalue of A, and v an associated eigenvector. Note from (12.11) that 

multiplying any eigenvector by a nonzero scalar again yields an eigenvector, so eigenvectors 

are only de�ned up to a nonzero scaling� any convenient scaling or normalization can be used. 

In other words, (12.9) is a solution of the undriven system i� � is one of the n roots �i 

of the 

characteristic polynomial 

a(z) � det(zI ; A) � z 

n + an;1z 

n;1 + � � � + a0 

(12.12) 

and v is a corresponding eigenvector vi. A solution of the form x(k) � �i
kvi 

is referred to as a 

mode of the system, in this case the ith mode. The corresponding �i 

is the ith modal frequency 

or natural frequency, and vi 

is the corresponding modal shape. Note that we can excite just 

the ith mode by ensuring that the initial condition is x(0) � �0 

i 

vi 

� vi. The ensuing motion 

is then con�ned to the direction of vi, with a scaling by �i 

at each step. 

It can be shown fairly easily that eigenvectors associated with distinct eigenvalues are 

(linearly) independent, i.e. none of them can be written as a weighted linear combination of 

the remaining ones. Thus, if the n eigenvalues of A are distinct, then the n corresponding 

eigenvectors vi 

are independent, and can actually form a basis for the state-space. Distinct 

eigenvalues are not necessary, however, to ensure that there exists a selection of n independent 

eigenvectors. In any case, we shall restrict ourselves for now to the case where | because of 

distinct eigenvalues or otherwise | the matrix A has n independent eigenvectors. Such an 

A is termed diagonalizable (for a reason that will b ecome evident shortly), or non-defective. 

There do exist matrices that are not diagonalizable, as we shall see when we examine the 

Jordan form in detail later in this course. 

Because (12.10) is linear, a weighted linear combination of modal solutions will satisfy 

it too, so 

nX 

x(k) � �ivi�
k
i 

(12.13) 

i�1 

will be a solution of (12.10) for arbitrary weights �i, with initial condition 

nX 

x(0) � �ivi 

(12.14) 

i�1 

Since the n eigenvectors vi 

are independent under our assumption of diagonalizable A, the 

right side of (12.14) can be made equal to any desired x(0) by proper choice of the coe�cients 

�i, and these coe�cients are unique. Hence specifying the initial condition of the undriven 

system (12.10) speci�es the �i 

via (12.14) and thus, via (12.13), speci�es the response of the 

undriven system. We refer to the expression in (12.13) as the modal decomposition of the 

undriven response. Note that the contribution to the modal decomposition from a conjugate 

pair of eigenvalues � and �� will be a real term of the form �v�k + ��v���k . 

From ( 12.14), it follows that � � V 

;1x(0), where � is a vector with components �i. Let 

W � V 

;1, and wi 

0 be the ith row of W , then 

nX 

x(k) � �ki 

viwi
0 x(0) (12.15) 

i�1 


 



It easy to see that wi 

is a left eigenvector corresponding to the eigenvalue �i. The above 

modal decomposition of the undriven system is the same as obtaining the diadic form of Ak . 

The contribution of x(0) to the ith mode is captured in the term wi
0x(0). 

Before proceeding to examine the full response of a linear time-invariant model in modal 

terms, it is worth noting that the preceding results already allow us to obtain a precise 

condition for asymptotic stability of the system, at least in the case of diagonalizable A (it 

turns out that the condition below is the right one even for the general case). Recalling the 

de�nition in Example 10.1, we see immediately from the modal decomposition that the LTI 

system (12.10) is asymptotically stable i� j�ij � 1 for all 1 � i � n, i.e. i� all the natural 

frequencies of the system are within the unit circle. Since it is certainly possible to have this 

condition hold even when kAk is arbitrarily greater than 1, we see that the su�cient condition 

given in Example 1 is indeed rather weak, at least for the time-invariant case. 

Let us turn now to the LTI version of the full system in (10.1). Rather than approach-
ing its modal solution in the same style as was done for the undriven case, we shall (for a 

di�erent point of view) approach it via a similarity transformation to modal coordinates, i.e., 

to coordinates de�ned by the eigenvectors fvig of the system. Consider using the similarity 

transformation 

x(k) � V r(k) (12.16) 

where the ith column of the n � n matrix V is the ith eigenvector, vi: �� 

V � v1 

v2 

� � � vn 

(12.17) 

We refer to V as the modal matrix. Under our assumption of diagonalizable A, the eigenvec-
tors are independent, so V is guaranteed to be invertible, and (12.16) therefore does indeed 

constitute a similarity transformation. We refer to this similarity transformation as a modal 

transformation, and the variables ri(k) de�ned through (12.16) are termed modal variables or 

modal coordinates. What makes this transformation interesting and useful is the fact that the 

state evolution matrix A now transforms to a diagonal matrix �: 32 

V 

;1AV � diagonal f�1� � � � � �ng � 

66664


�1 

0 � � � 0 

0 �2 

� � � 0 

. . . 

. . . . . 

77775


� � (12.18)
 


 . . 

. . 
 

0 0 � � � �n 

The easiest way to verify this is to establish the equivalent condition that AV � V �, which 

in turn is simply the equation (12.11), written for i � 1� � � � � n and stacked up in matrix form. 

The reason for calling A \diagonalizable" when it has a full set of independent eigenvectors 

is now apparent. 

Under this modal transformation, the undriven system is transformed into n decoupled, 

scalar equations: 

ri(k + 1) � �iri(k) (12.19) 


 



for i � 1� 2� : : : � n. Each of these is trivial to solve: we have ri(k) � �i
k ri(0). Combining this 

with (12.16) yields (12.13) again, but with the additional insight that 

�i 

� ri(0) (12.20) 

Applying the modal transformation (12.16) to the full system, it is easy to see that the 

transformed system takes the following form, which is once again decoupled into n parallel 

scalar subsystems: 

ri(k + 1) � �iri(k) + �iu(k) � i � 1� 2� : : : � n (12.21) 

y(k) � �1r1(k) + � � � + �nrn(k) + Du(k) (12.22) 

where the �i 

and �i 

are de�ned via 2
 3
 

�1 

V 

;1B �

66664


�2 

. . . 

77775


ih 

� CV � �1 

�2 

� � � �n 

(12.23) 


 
 

�n 

The scalar equations above can be solved explicitly by elementary methods (compare also 

with the expression in (22.2): 

}|}
0 {z

ZSR 

where \ZIR" denotes the zero-input response, and \ZSR" the zero-state response. From the 

ri(k) � 

k 1;X 

�ki 

ri(0) + �ki 

;`;1 |
 {z
ZIR 

�i 

u(`) (12.24) 

preceding expression, one can obtain an expression for y(k). Also, substituting (12.24) in 

(12.16), we can derive a corresponding modal representation for the original state vector x(k). 

We leave you to write out these details. 

Finally, the same concepts hold for CT systems. We leave the details as an exercise. 

Example 12.1 

Consider the following system: #"#"#"#" 

x_1 

0 1 x1 

1 

� + u (12.25)
x_2 

8 ;2 x2 

1 

We will consider the modal decomposition of this system for the zero input re-
sponse. The eigenvalues of A are -4 and 2 and the associated eigenvectors are 

[ 1 ;4 ]0 and [ 1 2 ]0: The modal matrix is constructed from the eigenvectors 

above: � ! 

1 1 

V � ;4 2 

(12.26) 



Its inverse is given by "
 #
 

W � V 

;1 �
1 2 ;1 

: 

6 4 1 

It follows that: #"#" 

W AV � � � 

�1 

0 

0 

�2 

� 

;4 

0 

0 

2 

: 

Now let's de�ne r in modal coordinate as 

x(t) � Tr ! r(t) � T 

;1 x(t):
 

Then in terms of r, the original system can be transformed into the following:
 #"#"#" 

r_1 � 

;4 0 r1 :	 (12.27)
r_2 

0 2 r2 

The response of the system for a given initial state and zero input can now be 

expressed as: 

"#x(t) � V r(t) � V e�(t;t0 

)Wx(t0)"
 #"# 

�	

1 1 e;4(t;t0 

) 0 

1 2 ;1 

x(t0): ;4 2 0 e2(t;t0 

) 6 4 1 

For instance, if the initial vector is chosen in the direction of the �rst eigenvector, 

i.e., x(t0) � v1 

� [ 1 ;4 ]0 then the response is given by: "
 #
 

x(t) � 

1 

e;4(t;t0 

): ;4 

Example 12.2 Inverted Pendulum 

Consider the linearized model of the inverted pendulum in Example 7.6 with the 

parameters given by: m � 1, M � 10, l � 1, and g � 9:8. The eigenvalues 

of the matrix A are 0, 0, 3:1424, and ;3:1424. In this case, the eigenvalue at 

0 is repeated, and hence the matrix A may not be diagonalizable. However, we 

can still construct the Jordan form of A by �nding the generalized eigenvectors 

corresponding to 0, and the eigenvectors corresponding to the other eigenvalues. 

The Jordan form of A, � � T 

;1AT and the corresponding transformation T are 

given by: 3232 

0 1 0 0 0:0909 0
 ;0:0145 0:0145


� �


6664


0 0 0 0
 

0 0	 3:1424 0
 

7775


� T �
 

6664


0 0:0909 ;0:0455 ;0:0455
 

0 0 0:1591 ;0:1591
 

7775

 
 
 
 

0 0 0 ;3:1424 0 0 0:5000 0:5000




We can still get quite a bit of insight from this decomposition. Consider the 

zero input response, and let x(0) � v1 

� [1 0 0 0 ]0 . This is an eigenvector 

corresponding to the zero eigenvalue, and corresponds to a �xed distance s, zero 

velocity, zero angular position, and zero angular velocity. In that case, the system 

remains in the same position and the response is equal to x(0) for all future time. 

Now, let x(0) � v2 

� [0 1 0 0 ]0, which corresponds to a non-zero velocity 

and zero position, angle and angular velocity. This is not an eigenvector but rather 

a generalized eigenvector, i.e., it satis�es Av2 

� v1. We can easily calculate the 

response to be x(t) � [t 1 0 0] implying that the cart will drift with constant 

velocity but will remain in the upright position. Notice that the response lies in 

the linear span of v1 

and v2. 

The case where x(0) � v3 

corresponds to the eigenvalue � � 3:1424. In this 

case, the cart is moving to the left while the pendulum is tilted to the right with 

clockwise angular velocity. Thus, the pendulum tilts more to the right, which 

corresponds to unstable behavior. The case where x(0) � v4 

corresponds to the 

eigenvalue � � ;3:1424. The cart again is moving to the left with clockwise 

angular velocity, but the pendulum is tilted to the left. With an appropriate 

combination of these variables (given by the eigenvector v4) the response of the 

system converges to the upright equilibrium position at the origin. 


 



Exercises 

Exercise 12.1 Use the expression in (12.1) to �nd the transfer functions of the DT versions of the 

controller canonical form and the observer canonical form de�ned in Chapter 8. Verify that the transfer 

functions are consistent with what you would compute from the input-output di�erence equation on 

which the canonical forms are based. 

Exercise 12.2 Let v and w0 be the right and left eigenvectors associated with some non-repeated 

eigenvalue � of a matrix A, with the normalization w0v � 1.	 Suppose A is perturbed in�nitesimally to 

A + dA, so that � is perturbed to � + d�, v to v + dv, and w0 to w0 + dw0 . Show that d� � w0(dA)v. 
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Chapter 13 

Internal (Lyapunov) Stability
 

13.1 Introduction 

We have already seen some examples of both stable and unstable systems. The objective of 

this chapter is to formalize the notion of internal stability for general nonlinear state-space 

models. Apart from de�ning the various notions of stability, we de�ne an entity known as a 

Lyapunov function and relate it to these various stability notions. 

13.2 Notions of Stability 

For a general undriven system 

x_ (t) � f(x(t)� 0� t) (CT ) (13.1) 

x(k + 1) � f(x(k)� 0� k) (DT )� (13.2) 

we say that a point x is an equilibrium point from time t0 

for the CT system above if f(x� 0� t) � 

0� 8t � t0, and is an equilibrium point from time k0 

for the DT system above if f(x� 0� k) � 

x�� 8k � k0. If the system is started in the state � x at time t0 

or k0, it will remain there for all 

time. Nonlinear systems can have multiple equilibrium points (or equilibria). (Another class 

of special solutions for nonlinear systems are periodic solutions, but we shall just focus on 

equilibria here.) We would like to characterize the stability of the equilibria in some fashion. 

For example, does the state tend to return to the equilibrium point after a small perturbation 

away from it� Does it remain close to the equilibrium point in some sense� Does it diverge� 

The most fruitful notion of stability for an equilibrium point of a nonlinear system is 

given by the de�nition below. We shall assume that the equilibrium point of interest is at 

the origin, since if x 6� 0, a simple translation can always be applied to obtain an equivalent 

system with the equilibrium at 0. 



De�nition 13.1 A system is called asymptotically stable around its equilibrium point at the 

origin if it satis�es the following two conditions: 

1. Given any � � 0� 9�1 

� 0 such that if kx(t0)k � �1, then kx(t)k � �� 8 t � t0: 

2. 9�2 

� 0 such that if kx(t0)k � �2, then x(t) ! 0 as t !1. 

The �rst condition requires that the state trajectory can be con�ned to an arbitrarily 

small \ball" centered at the equilibrium point and of radius �, when released from an arbitrary 

initial condition in a ball of su�ciently small (but positive) radius �1. This is called stability in 

the sense of Lyapunov (i.s.L.). It is possible to have stability in the sense of Lyapunov without 

having asymptotic stability, in which case we refer to the equilibrium point as marginally 

stable. Nonlinear systems also exist that satisfy the second requirement without being stable 

i.s.L., as the following example shows. An equilibrium point that is not stable i.s.L. is termed 

unstable. 

Example 13.1 (Unstable Equilibrium Point That Attracts All Trajectories) 

Consider the second-order system with state variables x1 

and x2 

whose dynamics 

are most easily described in polar coordinates via the equations 

r_ � r(1 ; r) 

_� � sin2(��2) (13.3) q
where the radius r is given by r � x21 

+ x22 

and the angle � by 0 � � � 

arctan (x2�x1) � 2�. (You might try obtaining a state-space description directly 

involving x1 

and x2.) It is easy to see that there are precisely two equilibrium 

points: one at the origin, and the other at r � 1, � � 0. We leave you to verify 

with rough calculations (or computer simulation from various initial conditions) 

that the trajectories of the system have the form shown in the �gure below. 

Evidently all trajectories (except the trivial one that starts and stays at the origin) 

end up at r � 1, � � 0. However, this equilibrium point is not stable i.s.L., 

because these trajectories cannot be con�ned to an arbitrarily small ball around 

the equilibrium point when they are released from arbitrary points with any ball 

(no matter how small) around this equilibrium. 



unit circle 

x 

y 

Figure 13.1: System Trajectories 

13.3 Stability of Linear Systems 

We may apply the preceding de�nitions to the LTI case by considering a system with a 

diagonalizable A matrix (in our standard notation) and u � 0. The unique equilibrium point 

is at x � 0, provided A has no eigenvalue at 0 (respectively 1) in the CT (respectively DT) 

case. (Otherwise every point in the entire eigenspace corresponding to this eigenvalue is an 

equilibrium.) Now 

x_ (t) � e 

At x(0) 

2
 �1 

t 

3
 

e 

V
64 
 . 

75


.
�
 Wx(0) (CT ) (13.4).



 

�nte 

x(k) � Ak x(0) 

2
 3
 

�k 

1 

V
64 
 . 

75


.
�
 Wx(0) (DT ) (13.5).



 

�k 

n 

Hence, it is clear that in continuous time a system with a diagonalizable A is asymptotically 

stable i� 

Re(�i) � 0� i 2 f1� : : : � ng� (13.6) 

while in discrete time the requirement is that 

j�ij � 1 i 2 f1� : : : � ng� (13.7) 

Note that if Re(�i) � 0 (CT) or j�ij � 1 (DT), the system is not asymptotically stable, but 

is marginally stable. 


 



Exercise: For the nondiagonalizable case, use your understanding of the Jordan form to show 

that the conditions for asymptotic stability are the same as in the diagonalizable case. For 

marginal stability, we require in the CT case that Re(�i) � 0, with equality holding for at 

least one eigenvalue� furthermore, every eigenvalue whose real part equals 0 should have its 

geometric multiplicity equal to its algebraic multiplicity, i.e., all its associated Jordan blocks 

should be of size 1. (Verify that the presence of Jordan blocks of size greater than one for 

these imaginary-axis eigenvalues would lead to the state variables growing polynomially with 

time.) A similar condition holds for marginal stability in the DT case. 

Stability of Linear Time-Varying Systems 

Recall that the general unforced solution to a linear time-varying system is 

x(t) � �(t� t0)x(t0)� 

where �(t� �) is the state transition matrix. It follows that the system is 

1. stable i.s.L. at x � 0 if sup k�(t� t0)k � m(t0) � 1. 

t 

2. asymptotically stable at x � 0 if lim k�(t� t0)k ! 0� 8t0. 

t!1 

These conditions follow directly from De�nition 13.1. 

13.4 Lyapunov's Direct Method 

General Idea 

Consider the continuous-time system 

x_ (t) � f(x(t)) (13.8) 

with an equilibrium point at x � 0. This is a time-invariant (or \autonomous") system, since f 

does not depend explicitly on t. The stability analysis of the equilibrium point in such a system 

is a di�cult task in general. This is due to the fact that we cannot write a simple formula 

relating the trajectory to the initial state. The idea behind Lyapunov's \direct" method is to 

establish properties of the equilibrium point (or, more generally, of the nonlinear system) by 

studying how certain carefully selected scalar functions of the state evolve as the system state 

evolves. (The term \direct" is to contrast this approach with Lyapunov's \indirect" method, 

which attempts to establish properties of the equilibrium point by studying the behavior of 

the linearized system at that point. We shall study this next Chapter.) 

Consider, for instance, a continuous scalar function V (x) that is 0 at the origin and 

positive elsewhere in some ball enclosing the origin, i.e. V (0) � 0 and V (x) � 0 for x 6� 0 in 

_this ball. Such a V (x) may be thought of as an \energy" function. Let V (x) denote the time 

derivative of V (x) along any trajectory of the system, i.e. its rate of change as x(t) varies 



according to (13.8). If this derivative is negative throughout the region (except at the origin), 

then this implies that the energy is strictly decreasing over time. In this case, because the 

energy is lower bounded by 0, the energy must go to 0, which implies that all trajectories 

converge to the zero state. We will formalize this idea in the following sections. 

Lyapunov Functions 

De�nition 13.2 Let V be a continuous map from R
n to R. We call V (x) a locally positive 

de�nite (lpd) function around x � 0 if 

1. V (0) � 0. 

2. V (x) � 0� 0 � kxk � r for some r. 

Similarly, the function is called locally positive semide�nite (lpsd) if the strict inequality on 

the function in the second condition is replaced by V (x) � 0. The function V (x) is locally 

negative de�nite (lnd) if ;V (x) is lpd, and locally negative semide�nite (lnsd) if ;V (x) is 

lpsd. What may be useful in forming a mental picture of an lpd function V (x) is to think of 

it as having \contours" of constant V that form (at least in a small region around the origin) 

a nested set of closed surfaces surrounding the origin. The situation for n � 2 is illustrated 

in Figure 13.2. 

V(x)=c 1 

V(x)=c 2 

V(x)=c 3 

Figure 13.2: Level lines for a Lyapunov function, where c1 

� c2 

� c3. 

Throughout our treatment of the CT case, we shall restrict ourselves to V (x) that have 

continuous �rst partial derivatives. (Di�erentiability will not be needed in the DT case | 

continuity will su�ce there.) We shall denote the derivative of such a V with respect to time 

_along a trajectory of the system (13.8) by V (x(t)). This derivative is given by 

dV (x) dV (x) _V (x(t)) � x_ � f(x)
dx dx 

where 

dV
dx 

(x) is a row vector | the gradient vector or Jacobian of V with respect to x | 

containing the component-wise partial derivatives @
@
x
V 

i 

. 



_De�nition 13.3 Let V be an lpd function (a \candidate Lyapunov function"), and let V be 

_its derivative along trajectories of system (13.8). If V is lnsd, then V is called a Lyapunov 

function of the system (13.8). 

Lyapunov Theorem for Local Stability 

Theorem 13.1 If there exists a Lyapunov function of system (13.8), then x � 0 is a stable 

_equilibrium point in the sense of Lyapunov. If in addition V (x) � 0, 0 � kxk � r1 

for some 

_r1, i.e. if V is lnd, then x � 0 is an asymptotically stable equilibrium point. 

Proof: First, we prove stability in the sense of Lyapunov. Suppose � � 0 is given. We need 

to �nd a � � 0 such that for all kx(0)k � �, it follows that kx(t)k � �� 8t � 0. The Figure 

19.6 illustrates the constructions of the proof for the case n � 2. Let �1 

� min(�� r). De�ne 

r δ 

ε1 

Figure 13.3: Illustration of the neighborhoods used in the proof 

m � min V (x): 

kxk��1 

Since V (x) is continuous, the above m is well de�ned and positive. Choose � satisfying 

0 � � � �1 

such that for all kxk � �, V (x) � m. Such a choice is always possible, again 

because of the continuity of V (x). Now, consider any x(0) such that kx(0)k � �, V (x(0)) � m, 

_and let x(t) be the resulting trajectory. V (x(t)) is non-increasing (i.e. V (x(t)) � 0) which 

results in V (x(t)) � m. We will show that this implies that kx(t)k � �1. Suppose there 

exists t1 

such that kx(t1)k � �1, then by continuity we must have that at an earlier time t2, 

kx(t2)k � �1, and minkxk��1 

kV (x)k � m � V (x(t2)), which is a contradiction. Thus stability 

in the sense of Lyapunov holds. 



_To prove asymptotic stability when V is lnd, we need to show that as t !1, V (x(t)) ! 

0� then, by continuity of V , kx(t)k ! 0. Since V (x(t)) is strictly decreasing, and V (x(t)) � 0 

we know that V (x(t)) ! c, with c � 0. We want to show that c is in fact zero. We can argue 

by contradiction and suppose that c � 0. Let the set S be de�ned as 

S � fx 2 R
njV (x) � cg � 

and let B� 

be a ball inside S of radius �, 

B� 

� fx 2 Sjkxk � �g : 

Suppose x(t) is a trajectory of the system that starts at x(0), we know that V (x(t)) is 

decreasing monotonically to c and V (x(t)) � c for all t. Therefore, x(t) 2� B�� recall that 

B� 

� S which is de�ned as all the elements in R
n for which V (x) � c. In the �rst part of 

the proof, we have established that if kx(0)k � � then kx(t)k � �. We can de�ne the largest 

derivative of V (x) as 

_;� � max V (x): 

��kxk�� 

_Clearly ;� � 0 since V (x) is lnd. Observe that, Z t 

_V (x(t) � V (x(0)) + V (x(�))d� 

0 

� V (x(0)) ; �t� 

which implies that V (x(t)) will be negative which will result in a contradiction establishing 

the fact that c must be zero. 

Example 13.2 Consider the dynamical system which is governed by the di�er-
ential equation 

x_ � ;g(x) 

where g(x) has the form given in Figure 13.4. Clearly the origin is an equilibrium 

point. If we de�ne a function Z x 

V (x) � g(y)dy 

0 

then it is clear that V (x) is locally positive de�nite (lpd) and 

_V (x) � ;g(x)2 

which is locally negative de�nite (lnd). This implies that x � 0 is an asymptotically 

stable equilibrium point. 



1-1 

g(x) 

x 

Figure 13.4: Graphical Description of g(x) 

Lyapunov Theorem for Global Asymptotic Stability 

The region in the state space for which our earlier results hold is determined by the region 

over which V (x) serves as a Lyapunov function. It is of special interest to determine the 

\basin of attraction" of an asymptotically stable equilibrium point, i.e. the set of initial 

conditions whose subsequent trajectories end up at this equilibrium point. An equilibrium 

point is globally asymptotically stable (or asymptotically stable \in the large") if its basin of 

attraction is the entire state space. 

If a function V (x) is positive de�nite on the entire state space, and has the additional 

_property that jV (x)j % 1 as kxk % 1, and if its derivative V is negative de�nite on the 

entire state space, then the equilibrium point at the origin is globally asymptotically stable. 

We omit the proof of this result. Other versions of such results can be stated, but are also 

omitted. 

Example 13.3 

Consider the nth-order system 

x_ � ;C(x) 

with the property that C(0) � 0 and x0C(x) � 0 if x � 0. 6 Convince yourself that 

the unique equilibrium point of the system is at 0. Now consider the candidate 

Lyapunov function 

V (x) � x 

0 x 

which satis�es all the desired properties, including jV (x)j % 1 as kxk % 1. 

Evaluating its derivative along trajectories, we get 

_ 

0 � 0 V (x) � 2x x_ � ;2x 

0C(x) � 0 for x 6
Hence, the system is globally asymptotically stable. 



Example 13.4 Consider the following dynamical system 

x_ 1 

� ;x1 

+ 4	x2 

x_ 2 

� ;x1 

; x32: 

The only equlibrium point for this system is the origin x � 0. To investigate the 

stability of the origin let us propose a quadratic Lyapunov function V � x21 

+ ax22, 

where a is a positive constant to be determined. It is clear that V is positive 

de�nite on the entire state space R
2 . In addition, V is radially unbounded, that 

is it satis�es jV (x)j % 1 as kxk % 1. The derivative of V along the trajectories 

of the system is given by " # h i 

_V � 2x1 

2ax2 

;x1 

+ 4x
3
2 

;x1 

; x2 

� ;2x 

2 + (8 ; 2a)x1x2 

; 2ax42:1 

If we choose a � 4 then we can eliminate the cross term x1x2, and the derivative 

of V becomes 

V_ � ;2x21 

; 8x42� 

which is clearly a negative de�nite function on the entire state space. Therefore 

we conclude that x � 0 is a globally asymptotically stable equilibrium point. 

Example 13.5 A highly studied example in the area of dynamical systems and 

chaos is the famous Lorenz system, which is a nonlinear system that evolves in R
3 

whose equations are given by 

x_ � �(y ; x) 

y_ � rx ; y ; xz 

z_ � xy ; bz� 

where �, r and b are positive constants. This system of equations provides an 

approximate model of a horizontal �uid layer that is heated from below. The 

warmer �uid from the bottom rises and thus causes convection currents. This 

approximates what happens in the atmosphere. Under intense heating this model 

exhibits complex dynamical behaviour. However, in this example we would like to 

analyze the stability of the origin under the condition r � 1, which is known not to 

lead to complex behaviour. Le us de�ne V � �1x
2 +�2y

2 +�3z
2, where �1, �2, and 

�3 

are positive constants to be determined. It is clear that V is positive de�nite 

on R
3 and is radially unbounded. The derivative of V along the trajectories of the 

system is given by 2 3 h i 

�(y ; x)6 7 _V � 2�1x	 2�2y 2�3z 4
 

rx ; y ; xz 5
 

xy ; bz 



�	 ;2�1�x2 ; 2�2y 

2 ; 2�3bz
2 

+xy(2�1� + 2r�2) + (2�3 

; 2�2)xyz: 

If we c hoose �2 

� �3 

� 1 and �1 

� � 

1 then the V_ becomes �	 � 

V_ � ;2 x 

2 + y 

2 + 2bz2 ; (1 + r)xy "� �2 

� � # 

� ;2 x ; 

1
(1 + r)y + 1 ; (

1 + r 

)2 y 

2 + bz2 : 

2	 2 

_Since 0 � r � 1 it follows that 0 � 

1+r � 1 and therefore V is negative de�nite on 2 

the entire state space R
3 . This implies that the origin is globally asymptotically 

stable. 

Example 13.6 (Pendulum) 

The dynamic equation of a pendulum comprising a mass M at the end of a rigid 

but massless rod of length R is 

MR��+ Mg sin � � 0 

where � is the angle made with the downward direction, and g is the acceleration 

_due to gravity. To put the system in state-space form, let x1 

� �, and x2 

� �� 

then 

x_1 

� x2 

x_2 

� ; 

g 

sin x1
R 

Take as a candidate Lyapunov function the total energy in the system. Then 

V (x) � 

1 

MR2 x2
2 + MgR(1 ; cos x1) � kinetic + potential 

2 " # 

_	

dV 2 

x2V � 

dx 

f(x) � [MgR sin x1 

MR x2] ; 

g sin x1R 

�	 0 

Hence, V is a Lyapunov function and the system is stable i.s.L. We cannot conclude 

asymptotic stability with this analysis.
 

Consider now adding a damping torque proportional to the velocity, so that the
 

state-space description becomes
 

x_1 

� x2 

x_2 

� ;Dx2 

; 

g 

sin x1
R 



_ 
_ 

With this change, but the same V as before, we �nd
 

V_ � ;DMR2 x 

2
2 

� 0:
 

From this we can conclude stability i.s.L. We still cannot directly conclude asymp-
totic stability. Notice however that V � 0 ) � � 0. Under this condition, 

�� � ;(g�R) sin �: Hence, �� 6� 0 if � 6� k� for integer k, i.e. if the pendulum is not 

vertically down or vertically up. This implies that, unless we are at the bottom or 

top with zero velocity, we shall have �� � 0 when 6 V_ � 0, so �_ will not remain at 

0, and hence the Lyapunov function will begin to decrease again. The only place 

the system can end up, therefore, is with zero velocity, hanging vertically down or 

standing vertically up, i.e. at one of the two equilibria. The formal proof of this 

result in the general case (\LaSalle's invariant set theorem") is beyond the scope 

of this course. 

The conclusion of local asymptotic stability can also be obtained directly through 

an alternative choice of Lyapunov function. Consider the Lyapunov function can-
didate 

V (x) � 

1 

x22 

+ 

1
(x1 

+ x2)
2 + 2(1 ; cos x1): 

2 2
 

It follows that
 

V_ � ;(x22 


 + x1 

sin x1) � ;; (�_ 

2 + � sin �) � 0: 

Also, �_ 

2 + � sin � � 0 ) �_ 

2 � 0� � sin � � 0 ) � � 0� � 

_ � 0: Hence, V_ is strictly 

negative in a small neighborhood around 0. This proves asymptotic stability. 

Discrete-Time Systems 

Essentially identical results hold for the system 

x(k + 1) � f(x(k)) (13.9) 

provided we interpret V_ as 

4 _V (x) � V (f(x)) ; V (x) � 

i.e.	 as 

V (next state) ; V (present state) 

Example 13.7 (DT System) 

Consider the system
 

x2(k)
 

x1(k + 1) � 21 + x2(k) 

x1(k) 

x2(k + 1) � 

1 + x22(k) 



which has its only equilibrium at the origin. If we choose the quadratic Lyapunov 

function 

V (x) � x 

2
1 + x 

2
2 

we �nd � � 

1 _V (x(k)) � V (x(k))
[1 + x22(k)]

2 

; 1 � 0


from which we can conclude that the equilibrium point is stable i.s.L. In fact, 

examining the above relations more carefully (in the same style as we did for the 

pendulum with damping), it is possible to conclude that the equilibrium point is 

actually globally asymptotically stable. 

Notes 

The system in Example 2 is taken from the eminently readable text by F. Verhulst, Nonlinear 

Di�erential Equations and Dynamical Systems, Springer-Verlag, 1990. 



Exercises 

Exercise 13.1 Consider the horizontal motion of a particle of unit mass sliding under the in�uence 

of gravity on a frictionless wire. It can be shown that, if the wire is bent so that its height h is given 

by h(x) � V�(x), then a state-space model for the motion is given by 

x_ � z 

d 

z_ � ; V�(x)� 

dx 

Suppose V�(x) � x4 ; �x2 . 

(a) Verify that the above model has (z� x) � (0r 

� 0) as equilibrium point for any � in the interval � � 

� ;1 � � � 1, and it also has (z� x) � 0� � as equilibrium points when � is in the interval 

2
 

0 � � � 1.
 

(b)	 Verify that the linearized model about any of the equilibrium points is neither asymptotically 

stable nor unstable for any � in the interval ;1 � � � 1. 

Exercise 13.2 Consider the dynamic system described below: 

y�+ a1y_ + a2y + cy 

2 � u + u�_ 

where y is the output and u is the input. 

(a) Obtain a state-space realization of dimension 2 that describes the above system. 

(b) If a1 

� 3� a2 

� 2� c � 2, show that the system is asymptotically stable at the origin. 

(c)	 Find a region (a disc of non-zero radius) around the origin such that every trajectory, with an 

initial state starting in this region, converges to zero as t approaches in�nity. This is known as 

a region of attraction. 

Exercise 13.3 Consider the system 

dP (x) 

x_ (t) � ; 

dx 

where P (x) has continuous �rst partial derivatives. The function P (x) is referred to as the potential 

function of the system, and the system is said to be a gradient system. Let � be an isolated localx 

minimum of P (x), i.e. P (x�) � P (x) for 0 � kx ; x�k � r, some r. 

(a) Show that �x is an equilibrium point of the gradient system. 



(b) Use the candidate Lyapunov function 

V (x) � P (x) ; P (x�) 

to try and establish that �x is an asymptotically stable equilibrium point. 

Exercise 13.4 The objective of this problem is to analyze the convergence of the gradient algorithm 

for �nding a local minimum of a function. Let f : R
n ! R and assume that x� is a local minimum� i.e., 

f(x�) � f(x) for all x close enough but not equal to x� . Assume that f is continuously di�erentiable. 

Let gT : R ! R
n be the gradient of f : 

T 

@g @g g � ( @x 

: : : @xn 

) : 

1 

It follows from elementary Calculus that g(x�) � 0. 

If one has a good estimate of x�, then it is argued that the solution to the dynamic system: 

x_ � ;g(x)	 (13.10) 

with x(0) close to x� will give x(t) such that 

lim x(t) � x 

�: 

t!1 

(a)	 Use Lyapunov stability analysis methods to give a precise statement and a proof of the above 

argument. 

(b) System 13.10 is usually solved numerically by the discrete-time system 

x(k +	 1) � x(k) ; �(xk)g(xk)� (13.11) 

where �(xk) is some function from R
n ! R. In certain situations, � can be chosen as a constant 

function, but this choice is not always good. Use Lyapunov stability analysis methods for 

discrete-time systems to give a possible choice for �(xk) so that 

lim x(k + 1) � x 

�: 

k!1 

(c) Analyze directly the gradient algorithm for the function 

1 

f(x) � x 

T Qx� Q Symmetric, Positive De�nite: 

2 

Show directly that system 13.10 converges to zero (� x�). Also, show that � in system 13.11 

can be chosen as a real constant, and give tight bounds on this choice. 

Exercise 13.5 (a) Show that any (possibly complex) square matrix M can be written uniquely as 

the sum of a Hermitian matrix H and a skew-Hermitian matrix S, i.e. H 0 � H and S0 � ;S. 

(Hint: Work with combinations of M and M 0.) Note that if M is real, then this decomposition 

expresses the matrix as the sum of a symmetric and skew-symmetric matrix. 



(b)	 With M , H , and S as above, show that the real part of the quadratic form x0Mx equals x0Hx, 

and the imaginary part of x0Mx equals x0Sx. (It follows that if M and x are real, then x0Mx � 

x0Hx.) 

(c)	 Let V (x) � x0Mx for real M and x. Using the standard de�nition of dV (x)�dx as a Jacobian 

matrix | actually just a row vector in this case | whose jth entry is @V (x)�@xj 

, show that 

dV (x) 

� 2x 

0H 

dx 

where H is the symmetric part of M , as de�ned in part (a). 

(d)	 Show that a Hermitian matrix always has real eigenvalues, and that the eigenvectors associated 

with distinct eigenvalues are orthogonal to each other. 

Exercise 13.6 Consider the (real) continuous-time LTI system x_ (t) � Ax(t). 

(a) Suppose the (continuous-time) Lyapunov equation 

PA + A0P � ;I	 (3:1) 

has a symmetric, positive de�nite solution P . Note that (3.1) can be written as a linear system 

of equations in the entries of P , so solving it is in principle straightforward� good numerical 

algorithms exist. 

Show that the function V (x) � x0Px serves as a Lyapunov function, and use it to deduce the 

global asymptotic stability of the equilibrium point of the LTI system above, i.e. to deduce that 

the eigenvalues of A are in the open left-half plane. (The result of Exercise 13.5 will be helpful 

_in computing V (x).) 

What part (a) shows is that the existence of a symmetric, positive de�nite solution of (3.1) is 

su�cient to conclude that the given LTI system is asymptotically stable. The existence of such 

a solution turns out to also be necessary, as we show in what follows. [Instead of ;I on the 

right side of (3.1), we could have had ;Q for any positive de�nite matrix Q. It would still be 

true that the system is asymptotically stable if and only if the solution P is symmetric, positive 

de�nite. We leave you to modify the arguments here to handle this case.] 

(b) Suppose the LTI system above is asymptotically stable. Now de�ne Z 1 

A0 t AtP � R(t)dt � R(t) � e e	 (3:2) 

0 

The reason the integral exists is that the system is asymptotically stable | explain this in more 

detail! Show that P is symmetric and positive de�nite, and that it is the unique solution of the 

Lyapunov equation (3.1). You will �nd it helpful to note that Z 1 dR(t)
R(1) ; R(0) � dt 

dt0 



The results of this problem show that one can decide whether a matrix A has all its eigenvalues 

in the open left-half plane without solving for all its eigenvalues. We only need to test for the 

positive de�niteness of the solution of the linear system of equations (3.1). This can be simpler. 

Exercise 13.7 This problem uses Lyapunov's direct method to justify a key claim of his indirect 

method: if the linearized model at an equilibrium point is asymptotically stable, then this equilibrium 

point of the nonlinear system is asymptotically stable. (We shall actually only consider an equilibrium 

point at the origin, but the approach can be applied to any equilibrium point, after an appropriate 

change of variables.) 

Consider the time-invariant continuous-time nonlinear system given by 

x_ (t) � Ax(t) + h(x(t))	 (4:1) 

where A has all its eigenvalues in the open left-half plane, and h(:) represents \higher-order terms", in 

the sense that kh(x)k�kxk ! 0 as kxk ! 0. 

(a)	 Show that the origin is an equilibrium point of the system (4.1), and that the linearized model at 

the origin is just x_ (t) � Ax(t). 

(b) Let P be the positive de�nite solution of the Lyapunov equation in (3.1). Show that V (x) � x0Px 

quali�es as a candidate Lyapunov function for testing the stability of the equilibrium point at 

_the origin in the system (4.1). Determine an expression for V (x), the rate of change of V (x) 

along trajectories of (4.1) 

0(c)	 Using the fact that x x � kxk2, and that kPh(x)k � kP kkh(x)k, how small a value (in terms of 

kP k) of the ratio kh(x)k�kxk will allow you to conclude that V_ (x(t)) � 0 for x(t) � 0� 6 Now 

argue that you can indeed limit kh(x)k�kxk to this small a value by choosing a small enough 

_ � 0. By neighborhood of the equilibrium. In this neighborhood, therefore, V (x(t)) � 0 for x(t) 6
Lyapunov's direct method, this implies asymptotic stability of the equilibrium point. 

Exercise 13.8 For the discrete-time LTI system x(k + 1) � Ax(k), let V (x) � x0Px, where P is a 

symmetric, positive de�nite matrix. What condition will guarantee that V (x) is a Lyapunov function 

for this system� What condition involving A and P will guarantee asymptotic stability of the system� 

(Express your answers in terms of the positive semide�niteness and de�niteness of a matrix.) 
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Chapter 14 

Internal Stability for LTI Systems
 

14.1 Introduction 

Constructing a Lyapunov function for an arbitrary nonlinear system is not a trivial exercise. 

The complication arises from the fact that we cannot restrict the class of functions to search 

from in order to prove stability. The situation is di�erent for LTI systems. In this chapter, 

we address the question of constructing Lyapunov functions for linear systems and then we 

present and verify Lyapunov indirect method for proving stability of a nonlinear system. 

14.2 Quadratic Lyapunov Functions for LTI Systems 

Consider the continuous-time system 

x_ (t) � Ax(t) : (14.1) 

We have already established that the system (14.1) is asymptotically stable if and only if all 

the eigenvalues of A are in the open left half plane. In this section we will show that this result 

can be inferred from Lyapunov theory. Moreover, it will be shown that quadratic Lyapunov 

functions su�ce. A consequence of this is that stability can be assessed by methods that 

may be computationally simpler than eigenanalysis. More importantly, quadratic Lyapunov 

functions and the associated mathematics turn up in a variety of other problems, so they are 

worth mastering in the context of stability evaluation. 

Quadratic Positive-De�nite Functions 

Consider the function 

V (x) � x 

T Px� x 2 R
n 



where P is a symmetric matrix. This is the general form of a quadratic function in R
n . It is 

su�cient to consider symmetric matrices� if P is not symmetric, we can de�ne P1 

� 

1
2 

(P +P 

T ). 

It follows immediately that xT Px � xT P1x (verify, using the fact that xT Px is a scalar). 

Proposition 14.1 V (x) is a positive de�nite function if and only if all the eigenvalues of P
 

are positive.
 

Proof: Since P is symmetric, it can be diagonalized by an orthogonal matrix, i.e.,
 

P � UT DU with UT U � I and D diagonal. 

Then, if y � Ux X 

V (x) � x 

T UT DUx � y 

T Dy � �ijyij2: 

i 

Thus, 

V (x) � 0 8x � 0 6 , �i 

� 0� 8i: 

De�nition 14.1 A matrix P that satis�es 

x 

T Px � 0 8x 6 (14.2)� 0 

is called positive de�nite. When P is symmetric (which is usually the case of interest, for 

the reason mentioned above), we will denote its positive de�niteness by P � 0. If xT Px � 

0 8x � 0, then 6 P is positive semi-de�nite, which we denote in the symmetric case by P � 0. 

For a symmetric positive de�nite matrix, it follows that 

�min(P )kxk2 � V (x) � �max(P )kxk2: 

This inequality follows directly from the proof of Proposition 14.1. 

It is also evident from the above discussion that the singular values and eigenvalues of 

any positive de�nite matrix coincide. 

Exercise: Show that P � 0 if and only if P � GT G where G is nonsingular. The matrix 

1 

G is called a square root of P and is denoted by P 

2 . Show that H is another square root 

of P if and only if G � WH for some orthogonal matrix W . Can you see how to construct 

a symmetric square root� (You may �nd it helpful to begin with the eigen-decomposition 

P � UT DU , where U is orthogonal and D is diagonal.) 


 



Quadratic Lyapunov Functions for CT LTI Systems 

Consider de�ning a Lyapunov function candidate of the form 

V (x) � x 

T Px� P � 0, (14.3) 

for the system (14.1). Then 

V_ (x) � x_ 

T Px + x 

T Px_ 

� x 

T AT Px + x 

T P Ax 

� x 

T (AT P + PA)x 

� ;x 

T Qx � 

where we have introduced the notation Q � ;(AT P + PA)� note that Q is symmetric. Now 

invoking the Lyapunov stability results from Lecture 5, we see that V is a Lyapunov function 

if Q � 0, in which case the equilibrium point at the origin of the system (14.1) is stable i.s.L. 

If Q � 0, then the equilibrium point at the origin is globally asymptotically stable. In this 

latter case, the origin must be the only equilibrium point of the system, so we typically say 

the system (rather than just the equilibrium point) is asymptotically stable. 

The preceding relationships show that in order to �nd a quadratic Lyapunov function 

for the system (14.1), we can pick Q � 0 and then try to solve the equation 

AT P + PA � ;Q (14.4) 

for P . This equation is referred to as a Lyapunov equation, and is a linear system of equations 

in the entries of P . If it has a solution, then it has a symmetric solution (show this!), so 

we only consider symmetric solutions. If it has a positive de�nite solution P � 0, then we 

evidently have a Lyapunov function xT Px that will allow us to prove the asymptotic stability 

of the system (14.1). The interesting thing about LTI systems is that the converse also holds: 

If the system is asymptotically stable, then the Lyapunov equation (14.4) has positive de�nite 

solution P � 0 (which, as we shall show, is unique). This result is stated and proved in the 

following theorem. 

Theorem 14.1 Given the dynamic system (14.1) and any Q � 0, there exists a positive 

de�nite solution P of the Lyapunov equation 

AT P + PA � ;Q 

if and only if all the eigenvalues of A are in the open left half plane (OLHP). The solution P 

in this case is unique. 

Proof: If P � 0 is a solution of (14.4), then V (x) � xT Px is a Lyapunov function of 

_ � 0. Hence, system (14.1) is (globally) asymptotically system (14.1) with V (x) � 0 for any x 6

stable and thus the eigenvalues of A are in the OLHP.




To prove the converse, suppose A has all eigenvalues in the OLHP, and Q � 0 is given. 

De�ne the symmetric matrix P by Z 1 

P � e 

tAT 

QetA dt : (14.5) 

0 

This integral is well de�ned because the integrand decays exponentially to the origin, since 

the eigenvalues of A are in the OLHP. Now Z 1 

Z 1 

AT P + PA � AT e 

tAT 

QetAdt + e 

tAT 

QetAAdt 

0 0Z 1 d 

h i 

� e 

tAT 

QetA dt 

0 

dt 

� ;Q 

so P satis�es the Lyapunov equation. 

To prove that P is positive de�nite, note that Z 1 

x 

T Px � x 

T e 

tAT 

QetAxdt Z0 

1 

1 

� kQ 2 e 

tA xk2dt � 0 

0 

and 

T 

1 

x Px � 0 ) Q 2 e 

tA x � 0 ) x � 0 � 

1 

where Q 2 denotes a square root of Q. Hence P is positive de�nite. 

To prove that the P de�ned in (14.5) is the unique solution to (14.4) when A has all 

eigenvalues in the OLHP, suppose that P2 

is another solution. Then 

P2 

� ; 

Z
Z0 

1 

dt

d 

h 

e 

tAT 

P2e 

tA 

i 

dt (verify this identity) 

1 

� � 

� ; e 

tAT 

AT P2 

+ P2A e 

tAdt Z 1 

0 

� e 

tAT 

QetAdt � P 

0 

This completes the proof of the theorem. 

A variety of generalizations of this theorem are known. 

Quadratic Lyapunov Functions for DT LTI Systems 

Consider the system � � 

x(t + 1) � Ax(t) � f x(t) (14.6) 

If 

V (x) � x 

T P x� 



then 

_ 4 TV (x) � V (f(x)) ; V (x) � x 

T AT P Ax ; x Px: 

Thus the resulting Lyapunov equation to study is 

AT PA ; P � ;Q : (14.7) 

The following theorem is analogous to what we proved in the CT case, and we leave its proof 

as an exercise. 

Theorem 14.2 Given the dynamic system (14.6) and any Q � 0, there exists a positive 

de�nite solution P of the Lyapunov equation 

AT PA + P � ;Q 

if and only if all the eigenvalues of A have magnitude less than 1 (i.e. are in the open unit 

disc). The solution P in this case is unique. 

Example 14.1 Di�erential Inclusion 

In many situations, the evolution of a dynamic system can be uncertain. One way 

of modeling this uncertainty is by di�erential (di�erence) inclusion which can be 

described as follows: 

x_ (t) � fAx(t) j A � Ag 

where A is a set of matrices. Consider the case where A is a �nite set of matrices 

and their convex combinations: 

m mX X 

A � fA � �iAi 

j �i 

� 1g
i�1 i�1 

One way to guarantee the stability of this system is to �nd one Lyapunov function 

for all systems de�ned by A. If we look for a quadratic Lyapunov function, then 

it su�ces to �nd a P that satis�es: 

Ai
T P + PAi 

� ;Q� i � 1� 2� : : : m 

for some positive de�nite Q. Then V (x) � xT Px satis�es V_ (x) � ;xT Qx (verify) 

showing that the system is asymptotically stable. 

Example 14.2 Set of Bounded Norm 

In this problem, we are interested in studying the stability of linear time-invariant 

systems of the form x_ (t) � (A + �)x(t) where � is a real matrix perturbation 

with bounded norm. In particular, we are interested in calculating a good bound 

on the size of the smallest perturbation that will destabilize a stable matrix A. 



This problem can be cast as a di�erntial inclusion problem as in the previous 

example with


A � fA +� k k�k � �� � is a real matrixg


Since A is stable, we can calculate a quadratic Lyapunov function with a matrix 

P satisfying AT P + PA � ;Q and Q is positive de�nite. Applying the same 

Lyapunov function to the perturbed system we get: � � 

V_ (x) � x 

T AT P + PA +�T P + P � x 

It is evident that all perturbations satisfying 

�T P + P � � Q 

will result in a stable system. This can be guaranteed if 

2�max(P )�max(�) � �min(Q) 

This provides a bound on the perturbation although it is potentially conservative. 

Example 14.3 Bounded Perturbation 

Casting the perturbation in the previous example in terms of di�erential inclusion 

introduces a degree of conservatism in that the value � takes can change as a 

function of time. Consider the system: 

x_ (t) � (A + �)x(t) 

where A is a known �xed stable matrix and � is an unknown �xed real perturba-
tion matrix. The stability margin of this system is de�ned as 

�(A) � min fk�k j A + � is unstable g: 

�2Rn�n 

We desire to compute a good lower bound on �(A). The previous example gave 

one such bound. 

First, it is easy to argue that the minimizing solution �o 

of the above problem 

results in A + �0 

having eigenvalues at the imaginary axis (either at the origin, 

or in two complex conjugate locations). This is a consequence of the fact that 

the eigenvalues of A + p�0 

will move continuously in the complex plane as the 

parameter p varies from 0 to 1. The intersection with the imaginary axis will 

happen at p � 1� if not, a perturbation of smaller size can be found. 

We can get a lower bound on � by dropping the condition that � is a real matrix, 

and allowing complex matrices (is it clear why this gives a lower bound�). We can 

show: 

min fk�k j A + � is unstable g � min �min(A ; j!I): 

�2Cn�n !2R 



To verify this, notice that if the minimizing solution has an eigenvalue at the 

imaginary axis, then j!0I;A;�0 

should be singular while we know that j!0 

;A is 

not. The smallest possible perturbation that achieves this has size �min(A;j!0I). 

We can then choose !0 

that gives the smallest possible size. In the exercises, we 

further improve this bound. 

14.3	 Lyapunov's Indirect Method: Analyzing the Lineariza-
tion 

Suppose the system 

x_ � f(x) (14.8) 

has an equilibrium point at x � 0 (an equilibrium at any other location can be dealt with 

by a preliminary change of variables to move that equilibrium to the origin). Assume we can 

write 

f(x) � Ax + h(x) 

where kh(x)k 

lim � 0 

kxk!0 
kxk 

i.e. h(x) denotes terms that are higher order than linear, and A is the Jacobian matrix 

associated with the linearization of (14.8) about the equilibrium point. The linearized system 

is thus given by 

x_ � Ax :	 (14.9) 

We might expect that if (14.9) is asymptotically stable, then in a small neighborhood around 

the equilibrium point, the system (14.8) behaves like (14.9) and will be stable. This is made 

precise in the following theorem. 

Theorem 14.3 If the system (14.9) is asymptotically stable, then the equilibrium point of 

system (14.8) at the origin is (locally) asymptotically stable. 

Proof: If system (14.9) is asymptotically stable, then for any Q � 0, there exists P � 0 such 

that 

AT P + PA � ;Q 

and V (x) � xT Px is a Lyapunov function for system (14.9). Consider V (x) as a Lyapunov 

function candidate for system (14.8). Then 

_V (x) � x 

T (AT P + PA)x + 2x 

T Ph(x) 

� ;�min(Q)kxk2 + 2kxk � kh(x)k � �max(P )�	 � 

� ; �min(Q) ; 2�max(P ) 

kh(x)k � kxk2 

kxk 



From the assumption on h, for every � � 0, there exists r � 0 such that 

kh(x)k � �kxk � 8 kxk � r: 

_This implies that V is strictly negative for all kxk � r, where r is chosen for 

�min(Q)
� � : 

2�max(P ) 

This concludes the proof. 

Notice that asymptotic stability of the equilibrium point of the system (14.8) can be 

concluded from the asymptotic stability of the linearized system (14.9) only when the eigen-
values of A have negative real parts. It can also be shown that if there is any eigenvalue of A 

in the right half plane, i.e. if the linearization is exponentially unstable, then the equilibrium 

point of the nonlinear system is unstable. The above theorem is inconclusive if there are 

eigenvalues on the imaginary axis, but none in the right half plane. The higher-order terms of 

the nonlinear model can in this case play a decisive role in determining stability� for instance, 

if the linearization is polynomially (rather than exponentially) unstable, due to the presence 

of one or more Jordan blocks of size greater than 1 for eigenvalues on the imaginary axis (and 

the absence of eigenvalues in the right half plane), then the higher-order terms can still cause 

the equilibrium point to be stable. 

It turns out that stronger versions of the preceding theorem hold if A has no eigenvalues 

on the imaginary axis: not only the stability properties of the equilibrium point, but also the 

local behavior of (14.8) can be related to the behavior of (14.9). We will not discuss these 

results further here. 

Similar results hold for discrete-time systems. 

Example 14.4 

The equations of motion for a pendulum with friction are 

x_1 

� x2 

x_2 

� ;x2 

; sin x1 

The two equilibrium points of the system are at (0� 0) and (�� 0). The linearized 

system at the origin is given by 

x_1 

� x2 

x_2 

� ;x1 

; x2 

or " #
 

0 1
 

x_ � x � Ax : ;1 ;1 



This A has all its eigenvalues in the OLHP. Hence the equilibrium point at the 

origin is asymptotically stable. Note, however, that if there were no damping, then 

the linearized system would be " # 

0 1 

x_ � x ;1 0 

and the resulting matrix A has eigenvalues on the imaginary axis. No conclusions 

can be drawn from this situation using Lyapunov linearization methods. Lya-
punov's direct method, by contrast, allowed us to conclude stability even in the 

case of zero damping, and also permitted some detailed global conclusions in the 

case with damping. 

The linearization around the equilibrium point at (�� 0) is 

z_1 

� z2 

z_2 

� +z1 

; z2 

where z1 

� x1 

; � and z2 

� x2, so these variables denote the (small) deviations of 

x1 

and x2 

from their respective equilibrium values. Hence " # 

0 1 

A � x � Ax � 

1 ;1 

which has one eigenvalues in the RHP, indicating that this equilibrium point is 

unstable. 



Exercises 

Exercise 14.1 Bounded Perturbation Recall Example 14.3. In this problem we want to improve 

the lower bound on �(A). 

(a)	 To improve the lower bound, we use the information that if � is real, then poles appear in complex 

conjugate pair. De�ne �
 �
 

A wI 

Aw 

� : ;wI A 

Show that 

�(A) � min �min[Aw]: 

w2R 

(b)	 If you think harder about your proof above, you will be able to further improve the lower bound. 

In fact, it follows that 

�(A) � min �2n;1[Aw] 

w2R 

where �2n;1 

is the next to last singular value. Show this result. 

Exercise 14.2 Consider the LTI unforced system given below: 10 

0 1 0 0 : : : 0
 

0 0 1 0 : : : 0
 

. . . . . .
 . . . . . .


BB@


CCA


xx � Ax �_ 


 . . . . . . 

;aN;1 

;aN;2 

: : : : : : : : : ;a0 

(a)	 Under what conditions is this system asymptotically stable� 

Assume the system above is asymptotically stable. Now, consider the perturbed system 

x_ � Ax +�x�
 

where � is given by
 10 

0 0 0 0 : : : 0
 

0 0 0 0 : : : 0
 

. . . . . .



 . . . . . . 

� �
 

BB@


CCA


�
 �i 

2 R: 


 . . . . . . 

;�N;1 

;�N;2 

: : : : : : : : : ;�0 

(b)	 Argue that the perturbation with the smallest Frobenius norm that destabilizes the system (makes 

the system not asymptotically stable) will result in A + � having an eigenvalue at the imaginary 

axis. 

(c)	 Derive an exact expression for the smallest Frobenius norm of � necessary to destabilize the above 

system (i.e., x_ � (A+�)x is not asymptotically stable). Give an expression for the perturbation 

� that attains the minimum. 

(d) Evaluate your answer in part 3 for the case N � 2, and a0 

� a1. 



Exercise 14.3 Periodic Controllers 

(a)	 Show that the periodically varying system in Exercise 7.4 is asymptotically stable if and only if 

all the eigenvalues of the matrix [AN;1:::A0] have magnitude less than 1. 

(b) (i) Given the system ���� 

0 1 0 

x(k +	 1) � x(k) + u(k) � y(k) � ( 1 1 ) x(k)
1 ;1 1 

write down a linear state-space representation of the closed-loop system obtained by implement-
ing the linear output feedback control u(k) � g(k)y(k). 

(ii) It turns out that there is no constant gain g(k) � g for which the above system is asymp-
totically stable. (Optional: Show this.) However, consider the periodically varying system 

obtained by making the gain take the value ;1 for even k and the value 3 for odd k. Show that 

any nonzero initial condition in the resulting system will be brought to the origin in at most 4 

steps. (The moral of this is that periodically varying output feedback can do more than constant 

output feedback.) 

Exercise 14.4 Delay Systems 

The material we covered in class has focused on �nite-dimensional systems, i.e., systems that 

have state-space descriptions with a �nite number of state variables. One class of systems that does 

not belong to the class of �nite-dimensional systems is continuous-time systems with delays. 

Consider the following forced continuous-time system: 

y(t) + a1y(t ; 1) + a2y(t ; 2) + : : : + aN 

y(t ; N) � u(t) t � N� t 2 R: 

This is known as a delay system with commensurate delays (multiple of the same delay unit). We 

assume that u(t) � 0 for all t � N . 

(a)	 Show that we can compute the solution y(t)� t � N , if y(t) is completely known in the interval 

[0,N). Explain why this system cannot have a �nite-dimensional state space description. 

(b)	 To compute the solution y(t) given the initial values (denote those by the function f(t)� t 2 [0� N), 

which we will call the initial function) and the input u, it is useful to think of every non-negative 

real number as t � � + k with � 2 [0� 1) and k being a non-negative integer. Show that for every 

�xed � , the solution evaluated at � + k (y(� + k)) can be computed using discrete-time methods 

and can be expressed in terms of the matrix 10 

A �
 

BB@


0 1 0 0 : : : 0
 

0 0 1 0 : : : 0
 

. . . . . .



 . . . . . . 

CCA

 . . . . . . 

;aN 

;aN;1 

: : : : : : : : : ;a1 

and the initial vector 

T( f(�) f(� + 1) : : : f(� + N ; 1) ) : 

Write down the general solution for y(t). 



(c) Compute the solution for N � 2, f(t) � 1 for t 2 [0� 2), and u(t) � e;(t;2) for t � 2. 

(d)	 This system is asymptotically stable if for every � � 0, there exists a � � 0 such that for all initial 

functions with jf(t)j � �� t 2 [0� N), and u � 0, it follows that jy(t)j � �, and limt!1 

y(t) � 0. 

Give a necessary and su�cient condition for the asymptotic stability of this system. Explain 

your answer. 

(e)	 Give a necessary and su�cient condition for the above system to be BIBO stable (1-stable). 

Verify your answer. 

Exercise 14.5 Local Stabilization 

(a)	 One method for stabilizing a nonlinear system is to linearize it around an equilibrium point and 

then stabilize the resulting linear system. More formally, consider a nonlinear time-invariant 

system 

x_ � f(x� u) 

~ ~and its linearization around an equilibrium point (x� u) 

�_x � A�x + B�u: 

As usual, �x � x ; x~ and �u � u ; u~. Suppose that the feedback �u � K�x asymptotically 

stabilizes the linearized system. 

1. What can you say about the eigenvalues of the matrix A + BK.
 

2. Show that x_ � f(x� Kx) is (locally) asymptotically stable around x~
. 

(b) Consider the dynamic system S1 

governed by the following di�erential equation: 

y�+ y_ 

4 + y_ 

2 u + y 

3 � 0 

where u is the input. 

1. Write down a state space representation for the system S1 

and �nd its unique equilibrium 

point x� . 

2. Now try to apply the above method to the system S1 

at the equilibrium point x� and 

u� � 0. Does the linearized system provide information about the stability of S1. Explain 

why the method fails. 

(c)	 To �nd a stabilizing controller for S1, we need to follow approaches that are not based on local 

linearization. One approach is to pick a positive de�nite function of the states and then construct 

the control such that this function becomes a Lyapunov function. This can be a very frustrating 

exercise. A trick that is commonly used is to �nd an input as a function of the states so that 

the resulting system belongs to a class of systems that are known to be stable (e.g. a nonlinear 

circuit or a mechanical system that are known to be stable). Use this idea to �nd an input u as 

function of the states such that S1 

is stable. 



Exercise 14.6 For the system 

x_ (t) � sin[x(t) + y(t)] 

y_(t) � e 

x(t) ; 1 

determine all equilibrium points, and using Lyapunov's indirect method (i.e. linearization), classify 

each equilibrium point as asymptotically stable or unstable. 

Exercise 14.7 For each of the following parts, all of them optional, use Lyapunov's indirect method 

to determine, if possible, whether the origin is an asymptotically stable or unstable equilibrium point. 

(a) 

x_1 

� ;x1 

+ x 

2 

2 

x_2 

� ;x2(x1 

+ 1) 

(b) 

x_ 1 

� x31 

+ x2 

x_ 2 

� x1 

; x2 

(c) 

x_1 

� ;x1 

+ x2 

x_2 

� ;x2 

+ x 

2 

1 

(d) 

x1(k + 1) � 2x1(k) + x2(k)
2 

x2(k + 1) � x1(k) + x2(k) 

(e) 

x1(k + 1) � 1 ; e 

x1 

(k)x2 

(k) 

x2(k + 1) � x1(k) + 2x2(k) 

Exercise 14.8 For each of the nonlinear systems below, construct a linearization for the equilibrium 

point at the origin, assess the stability of the linearization, and decide (using the results of Lyapunov's 

indirect method) whether you can infer something about the stability of the equilibrium of the nonlin-
ear system at the origin. Then use Lyapunov's direct method prove that the origin is actually stable 

in each case� if you can make further arguments to actually deduce asymptotic stability or even global 

asymptotic stability, do so. [Hints: In part (a), �nd a suitable Lyapunov (energy) function by inter-
preting the model as the dynamic equation for a mass attached to a nonlinear (cubic) spring. In parts 

(b) and (c), try a simple quadratic Lyapunov function of the form px2 + qy2, then choose p and q 

appropriately. In part (d), use the indicated Lyapunov function.] 



(a) 

x_ � y 

y_ � ;x 

3 

(b) 

x_ � ;x 

3 ; y 

2 

y_ � xy ; y 

3 

(c) 

x2(k) 

x1(k + 1) � 21 + x2(k) 

x1(k) 

x2(k + 1) � 21 + x2(k) 

(d) 

x_ � y(1 ; x) 

y_ � ;x(1 ; y) 

V (x� y) � ;x ; ln(1 ; x) ; y ; ln(1 ; y) 
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Chapter 15 

External Input-Output Stability
 

15.1 Introduction 

In this lecture, we introduce the notion of external, or input-output, stability for systems. 

There are many connections between this notion of stability and that of Lyapunov stability 

which we discussed in the previous two chapters. We will only make the connection in the LTI 

case. In addition, we will point out the fact that the notion of input-output stability depends 

in a non-trivial fashion on the way we measure the inputs and the outputs. 

15.2 Signal Measures 

The signals of interest to us are de�ned as maps from a time set into R
n . A continuous-time 

signal is a map from R ! R
n, and a discrete-time signal is a map from Z ! R

n . If n � 1 we 

have a scalar signal, otherwise we have a vector-valued signal. It is helpful, in understanding 

the various signal measures de�ned below, to visualize a discrete-time signal w(k) as just 

a vector of in�nite (or, if our signal is de�ned only for non-negative time, then a vector of 

semi-in�nite) length or dimension, concretely representing it as the array 0
 1
 

. 0
 1
 

. . 

w(0) 

w(1) 

CCCCCA


BBBBB@


w(0) B@


CA


w(1) : (15.1)
or 


 
 

. .

 
 .
. . . 

Three of the most commonly used DT signal measures are then natural generalizations of 

the �nite-dimensional vector norms (1-, 2- and 1-norms) that we have already encountered 

in earlier chapters, generalized to such in�nite-dimensional vectors. We shall examine these 

three measures, and a fourth that is related to the 2-norm, but is not quite a norm. We shall 

also de�ne CT signal measures that are natural counterparts of the DT measures. 



The signal measures that we study below are: 

1. peak magnitude (or 1-norm)� 

2. energy (whose square root is the 2-norm)� 

3. power (or mean energy, whose square root is the \rms" or root-mean-square value)� 

4. \action" (or 1-norm). 

Peak Magnitude: The 1-Norm 

The 1-norm kwk1 

of a signal is its peak magnitude, evaluated over all signal components 

and all times : 

4 kwk1 

� max magnitude of w 

4 

� sup max jwi(k)j � sup kw(k)k1 

(for DT systems) (15.2) 

k i k 

4 

� sup max jwi(t)j � sup kw(t)k1 

(for CT systems) � (15.3) 

t i t 

where wi(k) indicates the i-th component of the signal vector w(k). Note that kw(k)k1 

denotes the 1-norm of the signal value at time k, i.e. the familiar 1 norm of an n-vector, 

namely the maximum magnitude among its components. On the other hand, the notation 

kwk1 

denotes the 1-norm of the entire signal. The \sup" denotes the supremum or least 

upper bound, the value that is approached arbitrarily closely but never (i.e., at any �nite 

time) exceeded. We use \sup" instead of \max" because over an in�nite time set the signal 

magnitude may not have a maximum, i.e. a peak value that is actually attained | consider, 

for instance, the simple case of the signal 

1 

1 ; 

1 + jkj 

� 

which does not attain its supremum value of 1 for any �nite k. 

Note that the DT de�nition is the natural generalization of the standard 1-norm for 

�nite-dimensional vectors to the case of our in�nite vector in (15.1), while the CT de�nition is 

the natural counterpart of the DT de�nition. This pattern is typical for all the signal norms 

we deal with, and we shall not comment on it explicitly again. 

Example 15.1 Some bounded signals: 

(a) For w(t) � 1, t 2 R� t � 0:
 

kwk1 

� 1.
 

(b) For w(t) � at� t 2 Z:
 

kwk1 

� 1 if jaj 6� 1 and kwk1 

� 1 otherwise.
 



The space of all signals with �nite 1-norm are generally denoted by ` 1 

and L1 

for DT and CT signals respectively. For vector-valued signals, the size of the 

vector may be explicitly added to the symbol, e.g., `n These form normed-vector 1.


spaces.


Energy and the 2-Norm 

The 2-norm of a signal is the square root of its \energy", which is in turn de�ned as the sum 

(in DT) or integral (in CT) of the squares of all components over the entire time set: 

4 kwk2 

� square-root of energy in w " # 1 " # 1 

k � 1 �Z 

� 1 

2 24 

X 

T 

X 

� w (k)w(k) � kw(k)k22 

(for DT systems) (15.4) 

k �Z 

4 

2 2 

� w 

T (t)w(t) dt � kw(t)k22 

dt (for CT systems) : (15.5) 

t 

Example 15.2 Some examples: 

(a) For w(t) � e;at and time set t � 0, with a � 0:
 

kwk2 

� 

p1 � 1
 

2a 

(b) For w(t) � 1 and time set t � 0:
 

kwk2 

� 1
 

(c) For w(t) � cos !ot and time set t � 0:
 

kwk2 

� 1.
 

These examples suggest that bounded-energy signals go to zero as time progresses. For 

discrete-time signals, this expectation holds up: if kwk2 

� 1, then kw(k)k ;! 0 as k ;! 1. 

However, for continuous-time signals, the property of having bounded energy does not imply 

that kw(t)k ;! 0 as t ;! 1, unless additional assumptions are made. This is because 

continuous-time bounded energy signals can still have arbitrarily large excursions in ampli-
tude, provided these excursions occur over su�ciently narrow intervals of time that the integral 

of the square remains �nite | consider, for instance, a CT signal that is zero everywhere, 

except for a triangular pulse of height k and base 1�k4 centered at every nonzero integer value 

k. If the continuous-time signal w(t) is di�erentiable and both w and its derivative w_ have 

bounded energy (which is not the case for the preceding triangular-pulse example), then it is 

true that kw(t)k ;! 0 as t ;! 1. The reader may wish to verify this fact. 

It is not hard to show that DT or CT signals with �nite 2-norms form a vector space. 

On the vector space ` 2 

(respectively L2) of DT (respectively CT) signals with �nite 2-norm, 

one can de�ne a natural inner product as follows, between signals x and y : " # X4 hx � yi � x 

T (k)y(k) (for DT systems) (15.6) 

k 



�Z 

� 

4 T� x (t)y(t) dt (for CT systems) : (15.7) 

(The 2-norm is then just the square root of the inner product of a signal with itself.) These 

particular in�nite-dimensional inner-product vector spaces are of great importance in appli-
cations, and are the prime examples of what are known as Hilbert spaces. 

Power and RMS Value 

Another signal measure of interest is the \power" or mean energy of the signal. One also often 

deals with the square root of the power, which is commonly termed the \root-mean-square" 

(or \rms") value. For a signal w for which the following limits exist, we de�ne the power by 2 3 

N;1 4 

1 

X
Pw 

� lim 

4 w 

T (k)w(k)5 (for discrete ; time systems) (15.8)
N!1 2N 

k�;(N;1)" #Z L4 

1 

� lim w 

T (t)w(t)dt (for continuous ; time systems) : (15.9)
L!1 2L ;L 

(The above de�nitions assume that the time set is the entire time axis, but the necessary 

modi�cations for other choices of time set should be obvious.) We shall use the symbol �w 

to denote the rms value, namely 

p
Pw. The reason that �w 

is not a norm, according to the 

technical de�nition of a norm, is that �w 

� 0 does not imply that w � 0. 

Example 15.3 Some �nite-power signals: 

(a) For w(t) � 1 :
 

�w 

� 1
 

(b) For w(t) such that kwk2 

� 1:
 

�w 

� 0
 

(c) For w(t) � cos !0t (with t 2 R or t 2 Z):
 

�w 

� 

p1 .
 

2 

Example c) points out an important di�erence between bounded power and bounded energy 

signals: unlike bounded energy signals, if �w 

� 1, the signal doesn't necessarily decay to 

zero. 

As a �nal comment on the de�nition of the power of a signal, we elaborate on the hint 

in the preamble to our de�nition that the limit required by the de�nition may not exist for 

certain signals. The limit of a sequence or function (in our case, the sequence or function is the 

set of �nite-interval rms values, considered over intervals of increasing length) may not exist 

even if the sequence or function stays bounded, as when it oscillates between two di�erent 

�nite values. The following signal is an example of a CT signal that is bounded but does not 

have a well-de�ned power, because the required limit does not exist: ( 

1 if t 2 [22k� 22k+1], for k � 0� 1� 2� : : : 

w(t) � 

0 otherwise 



Also note that the desired limit may exist, but not be �nite. For instance, the limit of a 

sequence is +1 if the values of the sequence remain above any chosen �nite positive number 

for su�ciently large values of the index. 

Action: The 1-Norm 

The 1-norm of a signal is also sometimes termed the \action" of the signal, which is in turn 

de�ned as the sum (in DT) or integral (in CT) of the 1-norm of the signal value at each time, 

taken over the entire time set: 

4 kwk1 

� action of w " # X4 

� kw(k)k1 

(for discrete ; time systems) (15.10) 

k�Z 

� 

4 

� kw(t)k1 

dt (for continuous ; time systems) : (15.11) 

Recall that kw(k)k for the n-vector w(k) denotes the sum of magnitudes of its components. 

The space of all signals with �nite 1-norm are generally denoted by ` 1 

and L1 

for DT 

and CT signals respectively. These form normed-vector spaces. 

We leave you to construct examples that show familiar signals of �nite and in�nite 1-
norm. 

Relationships Among Signal Measures 

a) If w is a discrete-time sequence, then 

kwk2 

� 1 �) kwk1 

� 1 (15.12) 

but 

kwk2 

� 1 (6 � kwk1 

� 1 (15.13) 

b) If w is a continuous-time signal, then 

kwk2 

� 1 �6 ) kwk1 

� 1: (15.14) 

and 

kwk2 

� 1 6(� kwk1 

� 1: (15.15) 

c) If kwk1 

� 1, then (when �w 

exists) 

�w 

� kwk1 



Item a) is true because of the relationship between energy and magnitude for discrete-time 

signals. Since the energy of a DT signal is the sum of squared magnitudes, if the energy is 

bounded, then the magnitude must be bounded. However, the converse is not true |take for 

example, the signal w(k) � 1. As item b) indicates, though, bounded energy implies nothing 

about the boundedness of magnitude for continuous time signals. 

(Many more relationships of the above form can be stated.) 

15.3 Input-Output Stability 

At this point, it is important to make a connection between the stability of a system and its 

input-output behavior. The most important notion is that of ` p-stability (p-stability). 

De�nition 15.1 A system with input signal u and output signal y that is obtained from u 

through the action of an arbitrary operator H, so y � H(u), is ` p-stable or p-stable (p � 

1� 2� 1) if there exists a �nite C 2 R such that 

kykp 

� Ckukp 

(15.16) 

for every input u. 

A p-stable system is therefore characterized by the requirement that every input of �nite 

p-norm gives rise to an output of �nite p-norm. For the case p � 1, this notion is known 

as Bounded-Input Bounded-Output (BIBO) stability. We will see that BIBO stability is 

equivalent to p-stability for �nite-dimensional LTI state-space systems, but not necessarily in 

other cases. 

Example 15.4 The system described by one integrator: 

y_ � u 

is not BIBO stable. A step input is mapped to a ramp which is unbounded. It is 

not hard to see that this system is not p-stable for any p. 

15.3.1 BIBO Stability of LTI Systems 

A continuous-time LTI system may be characterized by its impulse response matrix, H( � ), 

whose (i� j)th entry hij( � ) is the impulse response from the jth input to the ith output. In 

other words the input-output relation is given by Z 

y(t) � H(t ; �)u(�)d� : 

Theorem 15.1 A CT LTI system with m inputs, p outputs, and impulse response matrix 

H(t) is BIBO stable if and only if 

mXZ 

max jhij(t)j dt � 1: 

1�i�p 

j�1 



Proof: The proof of su�ciency involves a straightforward computation of bounds. If u is an 

input signal that satis�es kuk1 

� 1, i.e. a bounded signal, then we have Z 

y(t) � H(t ; �)u(�)d�� 

and �	 �
 �Z m	

� � X	 � 

max jyi(t)j � max 

� hij(t ; �)uj(�) d� �
 �	 �
1�i�p i �
	 �
j�1 2	 3 Z X 

� 

4
max jhij(t ; �)j d�5
 max sup juj(t)j: 

i	 j tj 

It follows that 2	 3 XZ 

kyk1 

� sup max jyi(t)j � 

4
max jhij(t)jdt5
 kuk1 

� 1: 

t i i 

j 

In order to prove the converse of the theorem, we show that if the above integral is 

in�nite then there exists a bounded input that will be mapped to an unbounded output. Let 

us consider the case when p � m � 1, for notational simplicity (in the general case, we can 

still narrow the focus to a single entry of the impulse response matrix). Denote the impulse 

response by h(t) for this scalar case. If the integral Z
 

jh(t)j dt 

is unbounded then given any (large) M there exists an interval of length 2T such that Z T 

jh(t)j dt � M: 

;T 

Now by taking the input uM 

(t) as (
 

uM 

(t) �	

sgn(h(;t)) ;T � t � T
� 

0 jtj � T 

we obtain an output yM 

(t) that satis�es Z T 

sup jyM 

(t)j � yM 

(0) � h(0 ; �)uM 

(�) d� 

t ;T Z T 

� jh(0 ; �)j d� 

;T 

� M: 



In other words, for any M � 0, we can have an input whose maximum magnitude is 1 and 

whose corresponding output is larger than M . Therefore, there is no �nite constant C such 

that the inequality (24.3) holds. 

Further re�ection on the proof of Theorem 15.1 reveals that the constant kHk1 

de�ned by 

XZ 

kHk1 

� max jhij(t)jdt 

i 

j 

is the smallest constant C that satis�es the inequalty (24.3) when p � 1. This number is 

called the ` 1-norm of H(t). In the scalar case, this number is just the ` 1;norm of h( � ), 

regarded as a signal. 

The discrete-time case is quite similar to continuous-time where we start with a pulse 

response matrix, H( � ), whose (i� j)th entry hij( � ) is the pulse response from the jth input to 

the ith output. The input-output relation is given by X 

y(t) � H(t ; �)u(�) : 

� 

Theorem 15.2 A DT LTI system with m inputs, p outputs, and pulse response matrix H(t) 

is BIBO stable if and only if 

mXX 

max jhij(t)j � 1: 

1�i�p 

j�1 

t 

In addition, the constant kHk1 

de�ned by XX 

kHk1 

� max jhij 

(t)j
i 

j t 

is the smallest constant C that satis�es the inequalty (24.3) when p � 1. We leave the proof 

of these facts to the reader. 

Application to �nite-dimensional State-Space Models 

Now consider the application to the following causal CT LTI system in state-space form (and 

hence of �nite order) : 

x_ � Ax + Bu (15.17) 

y � Cx + Du (15.18) 

The impulse response of this system is given by 

H(t) � CeAtB + D�(t) for t � 0 



which has Laplace transform 

H(s) � C(sI ; A);1B + D 

The system (15.18) is BIBO stable if and only if the poles of H(s) are in the open left half 

plane. (We leave the proof to you.) This is in turn guaranteed if the system is asymptotically 

stable, i.e. if A has all its eigenvalues in the open left half plane. 

Example 15.5 BIBO Stability Doesn't Imply Asymptotic Stability 

It is possible that a system be BIBO stable and not asymptotically stable. Consider 

the system � � � � 

0 1 0 

x_ � x + u 

1 0 1 

y � ( 1 ;1 ) x 

This system is not stable since A has an eigenvalue at 1. Nevertheless, thanks 

to a pole-zero cancellation, the only pole that H(s) has is at ;1, so the system 

is BIBO stable. We shall have much more to say about such cancellations in the 

context of reachability, observability, and minimality (the example here turns out 

to be unobservable). 

Marginal stability of an LTI system, i.e., stability in the sense of Lyapunov but without 

asymptotic stability, is not su�cient to guarantee BIBO stability. For instance, consider a 

simple integrator, whose transfer function is 1�s. 

Time-Varying and Nonlinear Systems 

Although there are results connecting Lyapunov stability with I/O stability for general time-
varying and nonlinear systems, they are not as powerful as the linear time-invariant case. In 

particular, systems may be I/O stable with respect to one norm and not stable with respect 

to another. Below are some examples illustrating these facts. 

Example 15.6 A Time-Varying System 

Consider the time-varying DT system given by:


y(t) � H(u)(t) � u(0):
 

H is obviously 1-stable with gain less than 1. However, it is not 2-stable.
 

Example 15.7 A Nonlinear System 

Consider the nonlinear system given by: 

x_ � ;x + e 

xu� y � x: 

The unforced system is linear and is asymptotically stable. On the other hand the 

system is not I/O stable. To see this, consider the input u(t) � 1. Since ex � x, 

x_ is always strictly positive, indicating that x is strictly increasing. Hence, for a 

bounded input, the output is not bounded. 



15.3.2 p-Stability of LTI Systems (optional) 

In this section we will continue our analysis of the p-stability of systems described through 

input-output relations. Let us start with the continuous-time case, and restrict ourselves to 

single-input single-output. The input u(t) is related to the output y(t) by Z 

y(t) � h(t ; �)u(�)d� 

where h(t) is the impulse response. The following theorem shows that the constant C in 24.3 

is always bounded above by khk1. 

Theorem 15.3 If khk1 

� 1 and kukp 

� 1 then kykp 

� 1 and furthermore 

kykp 

� khk1kukp 

: 

Proof: In Theorem 15.1 we have already established this result for p � 1. In what follows 

p � 1� 2. The output y(t) satis�es �Z 1 

� p 

�Z 1 

�p� � jy(t)jp � j(h � u)(t)jp � 

� 

;1 

h(t ; �)u(�) d� � � 

;1 

jh(t ; �)j ju(�)j d�� � 

therefore, Z 1 

Z 1 

�Z 1 

�p 

kh � ukp � 

;1 

j(h � u)(t)jp dt � 

;1 ;1 

jh(t ; �)j ju(�)j d� dt : p 

Next we analyze the inner integral 

Z 1 

Z 1 

jh(t ; �)j ju(�)j d� � jh(t ; �)j1�q jh(t ; �)j1�p ju(�)j d� 

;1 ;1�Z 1 

�1�q 

�Z 1 

�1�p 

� 

;1 

jh(t ; �)j d� 

;1 

jh(t ; �)j ju(�)jp d� 

where the last inequality follows from Minkowski's inequalities, and 

1 

p 

+ 

1 

q 

� 1. Hence, 

Z 1 

�Z 1 

�p�q 

�Z 1 

� 

kh � ukp � 

;1 ;1 

jh(t ; �)j d� 

;1 

jh(t ; �)j ju(�)jp d� dtp Z 1 

�Z 1 

� 

� 

;1 

(khk1)p�q 

;1 

jh(t ; �)j ju(�)jp d� dt Z 1 

Z 1 

� khkp�q jh(t ; �)j ju(�)jp d� dt 1 ;1 ;1Z 1 

�Z 1 

� 

� khkp�q ju(�)jp jh(t ; �)j dt d�1 ;1 ;1Z 1 

� khkp�q+1 ju(�)jp d�1 ;1 

� khk1 

p kukpp 



Therefore 

kh � ukp 

� khk1 

kukp 

: 

Recall that when p � 1, khk1 

was the smallest constant for which the inequality kykp 

� 

Ckukp 

for all u. This is not the case for p � 2, and we will see later that a smaller constant 

can be found. We will elaborate on these issues when we discuss systems' norms later on in 

the course. The discrete-time case follows in exactly the same fashion. 

Example 15.8 For a �nite-dimensional state-space model, a system H is p-stable 

if and only if all the poles of of H(s) are in the LHP. This coincides with BIBO 

stability. 



Exercises 

Exercise 15.1 Non-causal Systems In this chapter, we only focused on causal operators, although 

the results derived were more general. As an example, consider a particular CT LTI system with a 

bi-lateral Laplace transform: 

s+ 2 

G(s) �	 : 

(s; 2)(s+ 1) 

(a) Check the p-stability and causality of the system in the following cases: 

(i) the ROC (Region of Convergence) is R1 

� fs 2 C j Re(s) � ;1g where Re(s) denotes the 

real part of s� 

(ii)the ROC is R2 

� fs 2 C j ; 1 � Re(s) � 2g� 

(iii) the ROC is R3 

� fs 2 C j Re(s) � 2g. 

(b)	 In the cases where the system is not p-stable for p � 2 and p � 1, �nd a bounded input that 

makes the output unbounded, i.e., �nd an input u 2 Lp 

that produces an output y 62 Lp, for 

p � 2� 1. 

Exercise 15.2 In nonlinear systems, p-stability may be satis�ed in only a local region around zero. 

In that case, a system will be locally p-stable if: 

kGukp 

� Ckukp� for all u with kukp 

� � 

Consider the system: 

x_ � Ax+ Bu 

z � Cx+ Du 

y � g(y) 

Where g is a continuous function on [;T� T ]. Which of the following systems is p-stable, locally 

p-stable or unstable for p � 1: 

(a) g(x) � cos x. 

(b) g(x) � sin x. 

(c) g(x) � Sat(x) where	 � 

Sat(x) � 

x jxj � 1 

1 jxj � 1 
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Chapter 17 

Interconnected Systems and 

Feedback: Well-Posedness, 

Stability, and Performance 

17.1 Introduction 

Feedback control is a powerful approach to obtaining systems that are stable and that meet 

performance speci�cations, despite system disturbances and model uncertainties. To under-
stand the fundamentals of feedback design, we will study system interconnections and some 

associated notions such as well-posedness and external stability. Unless otherwise noted, our 

standing assumption for the rest of the course | and a natural assumption in the control 

setting | will be that all our models for physical systems have outputs that depend causally 

on their inputs. 

17.2 System Interconnections 

Interconnections are very common in control systems. The system or process that is to be 

controlled | commonly referred to as the plant | may itself be the result of interconnecting 

various sorts of subsystems in series, in parallel, and in feedback. In addition, the plant is 

interfaced with sensors, actuators and the control system. Our model for the overall system 

represents all of these components in some idealized or nominal form, and will also include 

components introduced to represent uncertainties in, or neglected aspects of the nominal 

description. 

We will start with the simplest feedback inteconnection of a plant with a controller, 

where the outputs from the plant are fed into a controller whose own outputs are in turn fed 



back as inputs to the plant. A diagram of this prototype feedback control con�guration is 

shown in Figure 17.1. 

r u	 y-+	

l - P 

-

6 

f 

�K 

Figure 17.1: Block diagram of the prototype feedback control con�guration. 

The plant P and controller K could in general be nonlinear, time-varying, and in�nite-
dimensional, but we shall restrict attention almost entirely to interconnections of �nite-

order LTI components, whether described in state-space form or simply via their input-
output transfer functions. Recall that the transfer functions of such �nite-order state-space 

models are proper rationals, and are in fact strictly proper if there is no direct feedthrough 

from input to output. We shall use the notation of CT systems in the development that 

follows, although everything applies equally to DT systems. 

The plant and controller should evidently have compatible input/output dimensions� if 

not, then they cannot be tied together in a feedback loop. For example, if P (s) is the p � m 

transfer function matrix of the (nominal LTI model of the) plant in Figure 17.1, then the 

transfer function K(s) of the (LTI) controller should be an m � p matrix. 

All sorts of other feedback con�gurations exist� two alternatives can be found in Fig-
ures 17.2 and 17.3. For our purposes in this chapter, the di�erences among these various 

con�gurations are not important. 

r -+i 

e - u	 -yK(s) P (s) ;6 

Figure 17.2: A (\servo") feedback con�guration where the tracking error between the com-
mand r and output y is directly applied to the controller. 

Our discussion for now will focus on the arrangement shown in Figure 17.4, which is an 

elaboration of Figure 17.1 that represents some additional signals of interest. Interpretations 

for the various (vector) signals depicted in the preceding �gures are normally as follows: 

�	 u | control inputs to plant 



r - i 

u - y
K2(s) 

-+ P (s)
 

-

6
 

f 

K1(s) 

� 

Figure 17.3: A two-parameter-compensator feedback scheme. 

d 

-+lu - P (s) 

-+
�l 

-
r 

6 

y 

� �l� 

f
K(s) 

q 

+ n 

Figure 17.4: Including plant disturbances d and measurement noise n. 

� y | measured outputs of plant 

� d | plant disturbances, represented as acting at the output 

� n | noise in the output measurements used by the feedback controller 

� r | reference or command inputs 

� e | tracking error r ; y. 

� f | output of feedback compensator 

Transfer Functions 

We now show how to obtain the transfer functions of the mappings relating the various signals 

found in Figure 17.4� the transform argument, s, is omitted for notational simplicity. We also 

depart temporarily from our convention of denoting transforms by capitals, and mark the 

transforms of all signals by lower case, saving upper case for transfer function matrices (i.e. 

transforms of impulse responses)� this distinction will help the eye make its way through the 

expressions below, and should cause no confusion if it is kept in mind that all quantities below 

are transforms. To begin by relating the plant output to the various input signals, we can 



write 

y � Pu + d 

� P [r + K(y + n)] + d 

(I ; PK)y � Pr + PKn + d 

y � (I ; PK);1Pr + (I ; PK);1PKn + (I ; PK);1d 

Similarly, the control input to the plant can be written as 

u � r + K(y + n) 

� r + K(Pu + d + n) 

(I ; KP )u � r + Kn + Kd 

u � (I ; KP );1 r + (I ; KP );1Kn + (I ; KP );1Kd 

The map u ;! f (with the feedback loop open and r � 0, n � 0, d � 0) is given by 

L � KP , and is called the loop transfer function. 

The map d ;! y (with n � 0, r � 0) is given by So 

� (I ; PK);1 and is called the 

output sensitivity function. 

The map n ;! y (with d � 0, r � 0) is given by T � (I ; PK);1PK and is called the 

complementary sensitivity function. 

The map r ;! u (with d � 0, n � 0) is given by Si 

� (I ; KP );1 and is called the 

input sensitivity function. 

The map r ;! y (d � 0, n � 0) is given by (I ; PK);1P is called the system response 

function . 

The map d ;! u (with n � 0, r � 0) is given by (I ; KP );1K. 

Note that the transfer function (I ; KP );1K can also be written as K(I ; PK);1 , as 

may be proved by rearranging the following identity: 

(I ; KP )K � K(I ; PK) � 

Similarly the transfer function (I ; PK);1P can be written as P (I ; KP );1 . 

Note also that the output sensitivity and input sensitivity functions are di�erent, because, 

except for the case when P and K are both single-input, single-output (SISO), we have 

(I ; KP );1 6 :� (I ; PK);1



17.3 Well-Posedness 

We will restrict attention to the feedback structure in Figure 17.5. Our assumption is that 

H1 

and H2 

have some underlying state-space descriptions with inputs u1, u2 

and outputs y1, 

y2, so their transfer functions H1(s) and H2(s) are proper, i.e. H1(1), H2(1) are �nite. It 

is possible (and in fact typical for models of physical systems, since their response falls o� to 

zero as one goes higher in frequency) that the transfer function is in fact strictly proper. 

-+lu1 - H1(s)
 

y1 

r1
 6 

� 

H2(s) 

� +l� 

r2y2 

u2 

Figure 17.5: Feedback Interconnection. 

The closed-loop system in Figure 17.5 can now be described in state-space form by 

writing down state-space descriptions for H1(s) (with input u1 

and output y1) and H2(s) (with 

input u2 

and output y2), and combining them according to the interconnection constraints 

represented in Figure 17.5. Suppose our state-space models for H1 

and H2 

are " # " # 

A1 

B1 

A2 

B2H1 

� � H2 

� 

C1 

D1 

C2 

D2 

with respective state vectors, inputs, and outputs (x1� u1� y1) and (x2� u2� y2), so 

x_ 1 

� A1x1 

+ B1u1 

y1 

� C1x1 

+ D1u1 

x_ 2 

� A2x2 

+ B2u2 

y2 

� C2x2 

+ D2u2 

: (17.1) 

Note that D1 

� H1(1) and D2 

� H2(1). The interconnection constraints are embodied in 

the following set of equations: 

u1 

� r1 

+ y2 

� r1 

+ C2x2 

+ D2u2 

u2 

� r2 

+ y1 

� r2 

+ C1x1 

+ D1u1� 

which can be rewritten compactly as " # " # " # " # " # " # 

;
I
D1 

;
I
D2 

u
u
1

2 

� 

C
0 

1 

C
0 

2 

x
x
1

2 

+ 

I 

0 I 

0 r
r
1

2 

: (17.2) 



We shall label the interconnected system well-posed if the internal signals of the feed-
back loop, namely u1 

and u2, are uniquely de�ned for every choice of the system state variables 

x1, x2 

and external inputs r1, r2. (Note that the other internal signals, y1 

and y2, will be 

uniquely de�ned under these conditions if and only if u1 

and u2 

are, so we just focus on the 

latter pair.) It is evident from (17.2) that the condition for this is the invertibility of the 

matrix " # 

I 

;D1 

;D2 

I 

: (17.3) 

This matrix is invertible if and only if 

I ; D1D2 

or equivalently I ; D2D1 

is invertible. (17.4) 

This result follows from the fact that if X, Y , W , and Z are matrices of compatible dimensions, 

and X is invertible then " # 

det 

X Y 

� det(X) det(W ; ZX;1Y ) (17.5)
Z W 

A su�cient condition for (17.4) to hold is that either H1 

or H2 

(or both) be strictly proper� 

that is, either D1 

� 0 or D2 

� 0. 

The signi�cance of well-posedness is that once we have solved (17.2) to determine u1 

and u2 

in terms of x1, x2, r1 

and r2, we can eliminate u1 

and u2 

from (17.1) and arrive at a 

state-space description of the closed-loop system, with state vector � ! 

x1 x � 

x2 

We leave you to write down this description explicitly. Without well-posedness, u1 

and u2 

would not be well-de�ned for arbitrary x1, x2, r1 

and r2, which would in turn mean that there 

could not be a well-de�ned state-space representation of the closed-loop system. 

The condition in (17.4) is equivalent to requiring that � �;1 

� �;1 

I ; H1(s)H2(s) or equivalently I ; H2(s)H1(s) exists and is proper. (17.6) 

Example 17.1 Consider a discrete-time system with H1(z) � 1 and H2(z) � 1 ; 

z;1 in (the DT version of) Figure 17.5. In this case (1;H1(1)H2(1)) � 1;1 � 0, 

and thus the system is ill-posed. Note that the transfer function from r1 

to y1 

for this system is 

(1 ; H1H2)
;1H1 

� (1 ; 1 + z;1);1 � z 

which is not proper | it actually corresponds to the noncausal input-output re-
lation 

y1(k) � r1(k + 1) � 

which cannot be modeled by a state-space description. 



Example 17.2 Again consider Figure 17.4, with H1(s) � 

s+1 s+2and H2(s) � s+1 

. s+2 

The expression (1 ; H1(1)H2(1)) � 0, which implies that the interconnection is 

ill-posed. In this case notice that, 

(1 ; H1(s)H2(s))	 � 1 ; 1 

� 0 8 s 2 C ! 

Since the inverse of (1 ; H1H2) does not exist, the transfer functions relating 

external signals to internal signals cannot be written down. 

17.4 External Stability 

The inputs in Figure 17.5 are related to the signals y1, and y2 

as follows: 

y1 

� H1(y2 

+ r1) 

y2 

� H2(y1 

+ r2)� 

which can be written as " # " # " # " # 

I ;H1 

y1 � 

H1 

0 r1	 (17.7);H2 

I y2 

0 H2 

r2 

We assume that the interconnection in Figure 17.5 is well-posed. Let the map T (H1�H2) be 

de�ned as follows: � ! � ! 

y1 

r1� T (H1�H2) : 

y2	 

r2 

From the relations 17.7 the form of the map T (H1�H2) is given by "	 # 

(I ; H1H2)
;1H1 

(I ; H1H2)
;1H1H2T (H1�H2) � 

(I ; H2H1)
;1H2H1 

(I ; H2H1)
;1H2 

We term the interconnected system externally p-stable if the map T (H1�H2) is p-
stable. In our �nite-order LTI case, what this requires is precisely that the poles of all the 

entries of the rational matrix "	 # 

(I ; H1H2)
;1H1 

(I ; H1H2)
;1H1H2T (H1�H2) � 

(I ; H2H1)
;1H2H1 

(I ; H2H1)
;1H2 

be in the open left half of the complex plane. 

External stability guarantees that bounded inputs r1, and r2 

will produce bounded re-
sponses y1, y2, u1, and u2. External stability is guaranteed by asymptotic stability (or inter-
nal stability) of the state-space description obtained through the process described in our 

discussion of well-posedness. However, as noted in earlier chapters, it is possible to have exter-
nal stability of the interconnection without asymptotic stability of the state-space description 



(because of hidden unstable modes in the system | an issue that will be discussed much more 

in later chapters). On the other hand, external stability is stronger than input/output stabil-
ity of the mapping (I ; H1H2)

;1H1 

between r1 

and y1, because this mapping only involves a 

subset of the exposed or external variables of the interconnection. 

Example 17.3 Assume we have the con�guration in Figure 17.5, with H1 

� 

s;1 

s+1 

and H2 

� ;s;
1
1 

. The transfer function relating r1 

to y1 

is � � 

H1 

s ; 1 1 

;1 

� 1 + 

1 ; H1H2 

s + 1 s + 1 � �� � 

s ; 1 s + 1 

� 

s + 1 s + 2 

s ; 1 

� : 

s + 2 

Since the only pole of this transfer function is at s � ;2, the input/output relation 

between r1 

and y1 

is stable. However, consider the transfer function from r2 

to 

u1, which is � ! 

H2 

1 1 

� 

1 ; H1H2 

s ; 1 1 + 

1 

s+1 

s + 1 

� : 

(s ; 1)(s + 2) 

This transfer function is unstable, which implies that the closed-loop system is 

externally unstable. 

17.5 A More General Description 

There are at least two reasons for going to a more general system description than those shown 

up to now. First, our assessment of the performance of the system may involve variables that 

are not among the measured/fed-back output signals of the plant. Second, the disturbances 

a�ecting the system may enter in more general ways than indicated previously. We do still 

want our system representation to separate out the controller portions of the system (the 

K's or K1, K2 

of the earlier �gures), as these are the portions that we will be designing. In 

this section we will introduce a general plant description that organizes the di�erent types of 

inputs and outputs, and their interaction with a controller. A block diagram for a general 

plant description is shown in Figure 17.6. 

The di�erent signals in Figure 17.6 can be classi�ed as follows. 

� Inputs: 

1. Control input vector u, which contains the actuator signals driving the plant and 

generated by a controller. 



- -

w - -z 

G 

u	 y 

Figure 17.6: General plant description. 

2. Exogeneous input vector w, which contains all other external signals, such as ref-
erences and disturbances. 

�	 Outputs: 

1. Measured output	 vector y, which contains the signals that are available to the 

controller. These are based on the outputs of the sensor devices, and form the 

input to the controller. 

2. Regulated output vector	 z, which contains the signals that are important for the 

speci�c application. The regulated outputs usually include the actuator signals, 

the tracking error signals, and the state variables that must be manipulated. 

Let the transfer function matrix " # 

Gzw 

Gzu G �	 � 

Gyw 

Gyu 

have the state-space realization 

x_ � Ax + B1w + B2u 

z � C1x + D11w + D12u 

y � C2x + D21w + D22u 

Example 17.4 Consider the unity feedback system in Figure 17.7, where P is a 

SISO plant, K is a scalar controller, y0 is the output, u is the control input, v is 

a reference signal, and d is an external disturbance that is \shaped" by the �lter 

H before it is injected into the measured output. The controller is driven by the 

di�erence e � v ; y0 (the \tracking error"). The signals v and d can be taken to 

constitute the exogeneous input, so " # 

v 

w � : 

d 

In such a con�guration we typically want to keep the tracking error e small, and 

to put a cost on the control action. We can therefore take the regulated output z 

to be " # 

e 

z � : 

u 



d 

� 

H 

v -+h 

e - K
u - P 

-+
�h 

y0 

-
; 6 

Figure 17.7: Example of a unity feedback system. 

The input to the controller is e, therefore we set the measured output y to be 

equal to e. With these choices, the generalized plant transfer function G, which 

relates z and y to w and u, can be obtained from " # " # " # 

;Pu ; Hd + v ;P 1 ;H 

z � � u + w 

u 1 0 0 h i 

y � ;Pu + 1 ;H w: 

1 1Let us suppose that P � s;1 

and H � s+1 

. Then a state-space realization of G 

is easily obtained: " # " # " # " # " # 

d x1 

1 0 x1 

0 0 1 

� + w + u 

dt 

x2 

0 ;1 x2 

0 1 0 " # " # " # " # 

;1 ;1 x1 

1 0 0 

z � + w + u 

0 0 x2 

0 0 1 " # h i h i x1 y � ;1 ;1 + 1 0 w + 0u : 

x2 

If we close the loop, the general plant/controller structure takes the form shown in 

Figure 17.8. 

The plant transfer matrix G is a 2 � 2 block matrix mapping the inputs w� u to the 

outputs z� y, where the part of the plant that interacts directly with the controller is just 

Gyu. The map (or transfer function) of interest in performance speci�cations is the map from 

w to z, denoted by �, and easily seen to be given by the following expression: 

� � Gzw 

+ Gzu(I ; KGyu)
;1KGyw 

(17.8) 



- -
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G-
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�K 

Figure 17.8: A general feedback con�guration. 

In this new settup we would like to determine under what conditions the closed-loop 

system in Figure 17.9 is well-posed and externally stable. For these purposes we inject 

signals r and v as shown in Figure 17.9, which is similar to what we did in the previous 

sections. Note that by de�ning the signals � ! � ! 

w 0 

r1 

� r2 

� 

r v � ! � ! 

z 0 

y1 

� y2 

� 

y f 

this structure is equivalent to the structure in Figure 17.5. This is illustrated in Figure 17.10, 

with " # 

H1 

� 

Gzw 

Gyw 

Gzu 

Gyu 

H2 

� 

" 

0 

I 

# h
 

K 0 I 

" i
 

� 

0 

0 

0 

K 

# 

This interconnection is well-posed if and only if � �	 !� !!
 

Gzw(1) Gzu(1) 0 0 

I ; 

Gyw(1) Gyu(1) 0 K(1) 

is invertible. This is the same as requiring that 

(I ; K(s)Gyu(s))
;1 or equivalently (I ; Gyu(s)K(s));1 exists and is proper 

The inputs in Figure 17.9 are related to the signals z, u and y as follows: 2	 32 3 2 32 3 

I ;Gzu 

0 z Gzw 

0 0 w 6	 76 7 6 76 7 4
	

0 I ;K
 54 

u 5
 

�
 4
 

0 I K 54 

r 5
 

(17.9) 

0 ;Gyu 

I y Gyw 

0 0 v 
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w z 

Gr u y 

- g -
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f q v 
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� �g� 

Figure 17.9: A more general feedback con�guration. 

Let the map T (P� K) be de�ned as follows: 1010 

z w B@


u 

CA


r 

CA

 
 

� T (P� K)
 

B@

 
 

y v 

The interconnected system is externally p-stable if the map from r1� r2 

to y1� y2 

is p-stable, 

see Figure 17.10. This is equivalent to requiring that the map T (P� K) is p-stable. 

17.6 Obtaining Stability and Performance: A Preview 

In the lectures ahead we will be concerned with developing analysis and synthesis tools for 

studying stability and performance in the presence of plant uncertainty and system distur-
bances. 

Stabilization 

Stabilization is the �rst requirement in control design | without stability, one has nothing! 

There are two relevant notions of stability: 

(a) nominal stability (stability in the absence of modeling errors), and 

(b) robust stability (stability in the presence of some modeling errors). 

In the previous sections, we have shown that stability analysis of an interconnected feedback 

system requires checking the stability of the closed-loop operator, T (P� K). In the case where 
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h i � h�� 
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Figure 17.10: A more general feedback con�guration. 

modeling errors are present, such a check has to be done for every possible perturbation of the 

system. E�cient methods for performing this check for speci�ed classes of modeling errors 

are necessary. 

Meeting Performance Speci�cations 

Performance speci�cations (once stability has been ensured) include disturbance rejection, 

command following (i.e., tracking), and noise rejection. Again, we consider two notions of 

performance: 

(a) nominal performance (performance in the absence of modeling errors), and 

(b) robust performance (performance in the presence of modeling errors). 

Many of the performance speci�cations that one may want to impose on a feedback 

system can be classi�ed under the following two types of speci�cations: 

1. Disturbance Rejection. This corresponds to minimizing the e�ect of the exogenous 

inputs w on the regulated variables z in the general 2-input 2-output description, when the 

exogenous inputs are only partially known. To address this problem, it is necessary to provide 

a model for the exogenous variables. One possibility is to assume that w has �nite energy but 

is otherwise unknown. If we desire to minimize the energy in the z produced by this w, we 

can pose the performance task as involving the minimization of 

k�wk2 

sup 

w 6 kwk2�0 

where � is the map relating w to z. This is just the square root of the energy-energy gain, 

and is measured by the H1-norm of �. 



Alternatively, if w is assumed to have �nite peak magnitude, and we are interesed in the 

peak magnitude of the regulated output z, then the measure of performance is given by the 

peak-peak gain of the system, which is measured by the ` 1�L1-norm of �. Other alternatives 

such as power-power ampli�cation can be considered. 

A rather di�erent approach, and one that is quite powerful in the linear setting, is to 

model w as a stochastic process (e.g, white noise process). By measuring the variance of z, 

we obtain a peformance measure on �. 

2. Fixed-Input Speci�cations. These speci�cations are based on a speci�c command or 

nominal trajectory. One can, for instance, specify a template in the time-domain within which 

the output is required to remain for a given class of inputs. Familiar speci�cations such as 

overshoot, undershoot, and settling time for a step input fall in this category. 

Finally, conditions for checking whether a system meets a given performance measure in 

the presence of prescribed modeling errors have to be developed. These topics will be revisited 

later on in this course. 



Exercises 

Exercise 17.1 Let P (s) � e;2s ; 1 be connected in a unity feedback con�guration. Is this system 

well-posed� 

Exercise 17.2 Assume that P� 

and K in the diagram are given by: � s ;� 

� � s+1 0 

� 

s+1 s+1 

s(s+5)P�(s) � 1 1 

� � 2 R� K(s) � s+1 s+1 

: 

(s+1) s+1 

; s(s+5) s+5 

u yw1 - m - P� 

-
+ 6 ; 

+� w2� m� 

K + 

1. Is the closed loop system stable for all � � 0� 

2. Is the closed loop system stable for � � 0� 

Exercise 17.3 Consider the standard servo loop, with 

1 

P (s) � � K(s) � k 

10s + 1 

but with no measurement noise. Find the least positive gain such that the following are all true: 

�	 The feedback system is internally stable. 

�	 With no disturbance at the plant output (d(t) � 0), and with a unit step on the command signal 

r(t), the error e(t) � r(t) ; y(t) settles to je(1)j � 0:1. 

� Show that the L2 

to L1 

induced norm of a SISO system is given by H2 

norm of the system. 

� With zero command (r(t) � 0), kyk1 

� 0:1 for all d(t) such kdk2 

� 1. [ADD NEW Problem] 

Exercise 17.4 Parametrization of Stabilizing Controllers 

Consider the diagram shown below where P is a given stable plant. We will show a simple way 

of parametrizing all stabilizing controllers for this plant. The plant as well as the controllers are �nite 

dimensional. 



- - - -

- -

w1 - m 

u	 - P	 

y -
+ 6 ; 

�+
� m� 

w2 

K	 + 

1. Show that the feedback controller 

K � Q(I ; PQ);1 � (I ; QP );1Q


for any stable rational Q is a stabilizing controller for the closed loop system.


2. Show that every stabilizing controller is given by K � Q(I ; PQ);1 for some stable Q. (Hint: 

Express Q in terms of P and K). 

3. Suppose P is SISO, w1 

is a step, and w2 

� 0. What conditions does Q have to satisfy for the 

steady state value of u to be zero. Is it always possible to satisfy this condition� 

Exercise 17.5 Consider the block diagram shown in the �gure below. 

�� 

r y 

�� 

Q(s) P (s) 

6; 

�����+
P0(s) 

;
����

2 1 

(a) Suppose P (s) � , P0(s) � and Q � 2. Calculate the transfer function from r to y. 

s ; 1 s ; 1 

(b) Is the above system internally stable� 

(c)	 Now suppose that P (s) � P0(s) � H(s) for some H(s). Under what conditions on H(s) is the 

system internally stable for any stable (but otherwise arbitrary) Q(s)� 



Exercise 17.6 Consider the system shown in the �gure below. 

�� 

r - - -
y
-�� 

K(s) P (s) 

6; 

The plant transfer function is known to be given by: 32 6
P ( ) � 4s 

s ; 1 

1 

s + 1 


 s + 1 

75

 

0 

s + 2 

A control engineer designed the controller K(s) such that the closed-loop transfer function from r to 

y is: 32 64


1 

0 

s + 4 


 1 

75


H(s) �

 

0 

s + 4 

(a) Compute K(s). 

(b) Compute the poles and zeros (with associated input zero directions) of P (s) and K(s). 

(c) Are there pole/zero cancellations between P (s) and K(s) � 

(d) Is the system internally stable� Verify your answer. 

Exercise 17.7 An engineer wanted to estimate the peak-to-peak gain of a closed loop system h (the 

input-output map). The controller was designed so that the system tracks a step input in the steady 

state. The designer simulated the step response of the system and computed the amount of overshoot 

(e1) and undershoot (e2) of the response. He/She immediately concluded that 

khk1 

� 1 + 2e1 

+ 2e2: 

Is this a correct conclusion� Verify. 
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Chapter 18 

Performance of Feedback Systems
 

18.1 Introduction 

It is now time to turn to issues of performance. As noted in earlier chapters, performance 

speci�cations typically involve the closed-loop relations between the exogenous inputs w and 

the regulated outputs z. These relationships are typically captured through the use of the 

signal and system norms. The analysis of a given controlled system usually involves evaluating 

the appropriate norms. The synthesis of a controller is a harder problem, as it involves picking 

a feedback compensator K for which the closed-loop performance speci�cations are attained. 

We begin our discussions with the single-input, single-output (SISO) case, and then 

move on to study multi-input, multi-output (MIMO) extensions. Much of what we present 

for the SISO case actually echoes what is done in \classical feedback control", although our 

perspective is somewhat more modern (or neo-classical or post-modern or ...!). 

18.2 SISO Loop Shaping 

The Classical Viewpoint 

The standard \servo" or tracking con�guration of classical feedback control is shown in Fig-
ure 18.1. In this arrangement, the controller K is fed by an error signal e, which is the 

di�erence between a reference r and the measured output y of the plant P . The measurement 

is perhaps corrupted by noise n. The output of the controller is the input u to the plant. In 

addition, external disturbances may drive the plant, and are represented here via the signal 

d added in at the output of the plant. In a typical classical control design, the compensator 

K would be picked as the lowest-order system that ensures the following: 

1. the closed-loop system is stable� 



d 

- -
��
 

- e -+ 

r �� 

K(j!) 

;6 

u - P (j!) 

��
� 

+�� 

y 

��� 

�+��n 

Figure 18.1: Standard feedback con�guration with noise, disturbance, and reference inputs. 

2. the loop gain P (j!)K(j!) has large magnitude at frequencies (low frequencies, typi-
cally) where the power of the plant disturbance d or reference input r is concentrated� 

3. the loop gain has small magnitude at frequencies (high frequencies, typically) where the 

power of the measurement noise n is concentrated. 

The need for the �rst requirement is clear. The origins of the second and third requirements 

will be explained below. In order to simultaneously attain all three objectives, it is most 

convenient to have a criterion for closed-loop stability that is stated in terms of the (open-
loop) loop gain, and this is provided by the Nyquist stability criterion. 

The reasons for the second and third requirements above lie in the sensitivities of the 

closed-loop system to plant disturbances, reference signals, and measurement noise. Let S 

denote the transfer function that maps a disturbance d to the output y in the closed-loop 

system. This S is termed the (output) sensitivity function, and for the arrangement in 

Figure 18.1 it is given by 

S � (1 + PK);1 : (18.1) 

Speaking informally for the moment, if jP (j!)K(j!)j is large at frequencies where (in some 

sense) the power of d is concentrated, then jS(j!)j will be small there, so the e�ect of the 

disturbance on the output will be attenuated. Since plant disturbances are typically con-
centrated around the low end of the frequency spectrum, one would want jP (j!)K(j!)j to 

be large at low frequencies. Thus, disturbance rejection is a key motivation behind classical 

control's low-frequency speci�cation on the loop gain. 

Note that (in the SISO case) S is also the transfer function from r to e. If we want 

y to track r with good accuracy, then we want a small response of the error signal e to 

the driving signal r. This again leads us to ask for jS(j!)j to be small | or equivalently 

for jP (j!)K(j!)j to be large | at frequencies where the power of the reference signal r is 

concentrated. Fortunately, in many (if not most) control applications, the reference signal 

is slowly varying, so this requirement again reduces to asking for jP (j!)K(j!)j to be large 

at low frequencies. Thus, tracking accuracy is another motivatoin behind classical control's 

low-frequency speci�cation on the loop gain. 



In contrast, the motivation behind classical control's high frequency speci�cation is noise 

rejection. Let T denote the transfer function that maps the noise input n to the output y. 

Given the arrangement in Figure 18.1, 

T � P K(1 + P K);1 : (18.2) 

This T is termed the complementary sensitivity function, because 

T + S � 1 : (18.3) 

Note that T is also the transfer function from r to y. If jP (j!)K(j!)j is small at frequencies 

where the power in n is concentrated, then jT (j!)j will be small there, so the e�ect of the noise 

on the output will be attenuated. Measurement noise tends to occur at higher frequencies, so 

to minimize its e�ects on the output, we typically specify that jP (j!)K(j!)j be small at high 

frequencies. This constraint fortunately does not con�ict with the low-frequency constraints 

imposed above by typical d and r. Also, the constraint is well matched to the inevitable fact 

that the gain of physical systems will eventually fall o� with frequency. 

The picture of the control design task that emerges from the above discussion is the 

following: Given the plant P , one typically needs to pick the compensator K so as to obtain a 

loop gain magnitude jP (j!)K(j!)j that is large at low frequencies, \rolls o�" to low values at 

high frequencies, and varies in such a way that the Nyquist stability criterion is satis�ed. [For 

the special case of open-loop stable plants and compensators, the stability condition can be 

stated in alternative forms that are easy to check using Bode plots rather than Nyquist plots, 

and this can be more convenient. The standard rule of thumb focuses on the roll-o� around the 

crossover frequency !c, de�ned as the frequency where the loop gain magnitude is unity� this 

frequency is a crude measure of closed-loop bandwidth. The speci�cation is that the roll-o� of 

the loop gain magnitude around !c 

should be no steeper than ;20dB/decade. Furthermore, 

!c 

should be picked below frequencies where the loop gain is signi�cantly a�ected by any 

right-half-plane zeros of the loop transfer function PK� this provides an initial indication that 

right-half-plane zeros can limit the attainable closed-loop performance.] 

A Modern Viewpoint 

The challenge now is to translate the above classical control design approach into something 

more precise and systematic, and more likely to have a natural MIMO extension. The following 

example points the way, and makes free use of the signal and system norms that we de�ned 

in Lectures 11 and 12. 

Example 18.1 (SISO Disturbance Rejection and Weighted Sensitivity) 

We have already seen that the expression relating y to d in the SISO feedback 

con�guration depicted in Figure 18.1 is 

y � (1 + PK);1d : (18.4) 



e - -dW 

Pe 

� 1 

or kek2 

� 1 

�lter response (mag
.....................log jW j S 

S 

S -
S 

S log ! 

S 

Figure 18.2: Representing the plant disturbance d as the output of a shaping �lter W whose 

input e is an arbitrary bounded energy or bounded power signal, or possibly white noise. 

Typically, d has frequency content concentrated in the low-frequency range. In 

order to get the requisite frequency characteristic, one might model d as the output 

of a shaping �lter with transfer function W , as shown in Figure 18.2, with the input 

e of the �lter being an arbitrary bounded energy or bounded power disturbance 

(or, in the stochastic setting, white noise). Thus e has no spectral \coloring", and 

all the coloring of d is embodied in the frequency response of W . 

For the rest of this example, let us focus on the bounded energy or bounded power 

models for e. Suppose our goal now is to choose K to minimize the e�ect of the 

disturbance d on the output y. From Lectures 11 and 12, and given our model 

for d, we know that this is equivalent to minimizing the H1-gain of the transfer 

function from e to y, because in the case of a bounded power e this gain is the 

attainable or \tight" bound on the ratio of rms values at the output and input, 

�y � k(1  +  P (j!)K(j!));1W (j!)k1 

� 

�e 

while in the case of a bounded energy e we again have the tight bound 

kyk2 � k(1  +  P (j!)K(j!));1W (j!)k1 

: kek2 

In terms of the sensitivity function, 

S(j!) � (1 + P (j!)K(j!));1 � 

the task is to pick K to minimize the H1 

norm kS(j!)W (j!)k1. 

If 

kS(j!)W (j!)k1 

� � � (18.5) 
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Figure 18.3: Graphical interpretation of the sensitivity function being bounded by a scaled 

reciprocal of the weighting �lter frequency response. 

then 

jS(j!)j jW (j!)j � � � 8! : (18.6) 

This implies that 

1 jS(j!)j � � jW (j!)j 

� (18.7) 

which tells us that the sensitivity function is bounded by a scaled reciprocal of the 

weighting �lter. A graphical representation of this bound is shown in Figure 18.3. 

From Figure 18.3 we can see that the value � and the �lter W (j!) give us a clear 

picture of the constraint on the sensitivity function. This allows one to more sys-
tematically design a controller, since we directly get the closed loop characteristics. 

Note also that with the Q-parametrization of K, the sensitivity function S is a�ne 

in Q, and this form is much easier to work with than the fractional form that S 

takes as a function of K. 

The major bene�t of the formulation in the above example is that a MIMO version of it 

is quite immediate, as we see in the next section. 

18.3 MIMO Loop Shaping 

Let us now revisit the above example in the MIMO setting. The example will require the 

following facts about singular values, so we ask you to con�rm these facts for yourself before 

proceeding: 



1. �max(AB) � �max(A)�max(B), and 

1 

2. If �max(CD) � 1 then �max(C) � assuming D is invertible.
 

�min(D)
 

The �rst statement follows from the fact that �max 

is the induced 2-norm, and therefore 

submultiplicative. To prove the second, apply the �rst with A � CD and B � D;1.) 

Example 18.2 (MIMO Disturbance Rejection and Weighted Sensitivity) 

The set-up and formulation for the MIMO case are the same as in the SISO 

example, with the obvious replacements of SISO subsystems by MIMO subsystems. 

One again arrives at the equation (18.5). However, the inference from this equation 

in the MIMO case is no longer (18.6) and (18.7), but rather h i 1 

�max 

(I + P (j!)K(j!));1 � � : 

�min 

[W (j!)] 

This leads us to the singular value plot shown in Figure 18.4, which is the natural 

extension of the plot we had in the SISO example. 

log 
1 

ω 
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max 

[ I + P ( j ω ) Κ ( j ω ) ] 
-1 

(W)σ 
min 

Figure 18.4: Singular value plot for a MIMO system. 

With the insight provided by the above example, we can formulate a variety of MIMO 

performance problems in terms of appropriate weighting operators. Alternatively, having seen 

what sorts of modi�cations of the SISO statements are needed for the MIMO case, we can 

actually describe various MIMO control tasks in a language that is closer to that of classical 

SISO control, and this is what we do in the rest of this lecture. We shall return to the explicit 

use of weighting functions in later lectures. 



Typical Closed-Loop Perfomance Constraints 

Typically in control systems the disturbances d have frequency content that is concentrated 

in the low-frequency range. Therefore, in order to attenuate the e�ects of disturbances on 

the output, we require that �max(S(j!)) be small in the range of frequencies where the 

disturbances are active, say 0 � ! � !sy. On the other hand, typically the noise input n has 

frequency content that is concentrated in the high-frequency range. Therefore, in order to 

attenuate the e�ect of n on the output we require that �max(T (j!)) be small over a frequency 

range of the form ! � !ty. The controller K should also enable the closed-loop system to track 

reference inputs r that are typically concentrated in the low frequency range, for example in 

the interval 0 � ! � !r. This objective requires that T (j!) � I for all ! in the interval 

0 � ! � !r. This requirement can be restated as 

�max(T (j!)) � 1 

�min(T (j!)) � 1� 

in the frequency range 0 � ! � !r. 

The control signals must also generally be kept as small as possible in the presence of 

both disturbances d and measurement noise n. It is easy to see that 

u � (I + KP );1Kr ; (I + KP );1K(d + n) : 

Therefore, in order to keep the control signal small, we must make sure that � � 

�max 

(I + K(j!)P (j!));1 K(j!) 

remains small in the frequency range where disturbances and/or measurement errors are 

e�ective. We can summarize these design requirements in the following table: 

Design Requirement Closed-Loop Condition Frequency Range 

Sensitivity to Disturbances �max 

;
(I + P (j!)K(j!));1 

� � 0 Low frequency 

0 � ! � !sy 

Noise Propagation 

Attenuation �max 

;
(I + P (j!)K(j!));1 P (j!)K(j!) 

� � 0 High Frequency 

! � !ty 

Tracking of Reference 

Signals �max 

;
(I + P (j!)K(j!));1 P (j!)K(j!) 

� � 1 Low frequency 

�min 

;
(I + P (j!)K(j!));1P (j!)K(j!) 

� � 1 0 � ! � !r 

Low Con trol Energy �max 

;
(I + K(j!)P (j!));1 K(j!) 

� � 0 Frequencies where 

d and n are 

dominant 

Translation to Open-Loop Constraints 

Now let us relate the closed-loop requirements that are summarized in the preceding table 

to open-loop conditions, i.e., conditions on the singular values of the loop gain operator 



PK. The �rst design requirement is that �max 

;
(I + PK);1

� 

be small in the frequency range 

0 � ! � !sy. The relation � � 1 

�max 

(I + P (j!)K(j!));1 � 

�min(I + P (j!)K(j!)) 

implies that if �min(P (j!)K(j!)) �� 1 then � � 

�max 

(I + P (j!)K(j!));1 � 

1 

: (18.8)
�min(P (j!)K(j!)) 

Therefore, if �min(P (j!)K(j!)) �� 1 for all ! in the interval [0� !sy], then �max 

;
(I + P (j!)K(j!));1 

� 

will be small in that interval. 

For noise attenuation, consider � � 

�max 

(T (j!)) � �max 

I ; (I + P (j!)K(j!));1 �� � � 

� �max 

I + (P (j!)K(j!));1 

;1 

1 

� : 

�min 

(I + (P (j!)K(j!));1 ) 

Therefore, for the frequency range ! � !ty 

we require that � ;min 

;
I + (P (j!)K(j!));1 

� 

be � 

as large as possible. This can be guaranteed if we make �min 

(P (j!)K(j!));1 as large as 

possible or equivalently by making �max 

(P (j!)K(j!)) as small as possible. 

The tracking objective can be achieved if we ensure that � � 

�max 

(I + P (j!)K(j!));1 P (j!)K(j!) � 1 � � 

�min 

(I + P (j!)K(j!));1 P (j!)K(j!) � 1 

over the frequency interval [0� !r]. Since 

I ; (I + P (j!)K(j!));1 � (I + P (j!)K(j!));1 P (j!)K(j!) 

the tracking objective can be achieved if we require (I + P (j!)K(j!));1 to be close to zero 

on the frequency range [0� !r], that is �max 

;
(I + P (j!)K(j!));1

� 

to be small in that interval. 

Equivalently, we may require �min 

(I + P (j!)K(j!)) to be as large as possible on the interval 

[0� !r]. This can be ensured if we require that �min 

(P (j!)K(j!)) be as large as possible over 

the frequency range [0� !r]. 

The constraint of small control energy leads to the condition that �max 

;
(I + K(j!))P (j!));1 K(j!) 

� 

be made as small as possible. However, we have � � � � 

�max 

(I + K(j!)P (j!));1K(j!) � �max 

(I + K(j!)P (j!));1 �max(K(j!)) 

�max(K(j!))
� : (18.9)

�min 

(I + K(j!)P (j!)) 



Note that 

�min 

(I + K(j!)P (j!))	 � �max 

(I + K(j!)P (j!)) 

� 1 + �max(P (j!))�max(K(j!)) 

so 

�max(K(j!))	 �max(K(j!))� 

�min 

(I + K(j!)P (j!)) 1 + �max(P (j!))�max(K(j!)) 

1 

�	 :1 + �max(P (j!))�max(K(j!)) 

Therefore, we can minimize the right hand side of equation 18.9 only if we make 

1 

+ �max(P (j!))
�max(K(j!)) 

large in the ranges of frequencies where d and/or n are dominant. For example, if �max(P (j!)) 

is small at a certain set of frequencies of interest then necessarily �max(K(j!)) must also be 

small on that set. Clearly this condition is not necessary or su�cient to make �	 � 

�max 

(I + K(j!)P (j!));1 K(j!) 

;	 � 

small. It only applies to the upper bound of �max 

(I + K(j!)P (j!));1 K(j!) , which is given 

by 

�max(K(j!)) 

�min 

(I + K(j!)P (j!)) 

and it is only necessary for the upper bound to be small. 

The following table summarizes our discussion above on open-loop requirements 

Design Requirement Open-Loop Condition Frequency Range 

Sensitivity to Disturbances �min 

(P (j!)K(j! )) large Low frequency 

0 � ! � !sy 

�max 

(P (j!)K(j! )) small Noise Propagation Attenuation High Frequency 

! � !ty 

Tracking of Reference Signals �min 

(P (j!)K(j! )) large Low frequency 

0 � ! � !r 

Low Con trol Energy �max 

(K(j! )) small Frequencies where 

�max 

(P (j! )) is 

not large enough 

Figure 18.6 illustrates the open-loop conditions that we have formulated. Note that in 

this plot the minimum passband open-loop gain is bounded by �min 

[P (j!)K(j!)], and the 

maximum stopband open loop gain bounded by �max 

[P (j!)K(j!)]. 
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Figure 18.5: Singular value bounds for the open loop gain, P (j!)K(j!). 

18.4 Algebraic Constraints 

In general we would like to design feedback controllers to attenuate both noise and distur-
bances at the output. We have examined SISO and MIMO conditions that guarantee rejection 

of low frequency disturbances as well as similar conditions for the rejection of high frequency 

noise. However, one might wonder if we can 

1. minimize the in�uence of either noise or disturbances over all frequencies, and/or 

2. minimize the in�uence of both noise and disturbances at the same frequency. 

Let us begin this discussion by recalling the following: 

� S � (I + PK);1 is the transfer function mapping disturbances to the output� 

� T � PK(I + PK);1 is the transfer function mapping noise to the output. 

As we mentioned earlier, in a control design it is usually desirable to make both S and T small. 

However, because of algebraic constraints, both goals are not simultaneously achievable at the 

same frequency. These constraints are as follows. 

General Limitations 

S + T � I for all complex (Laplace domain) frequencies s. This is easily veri�ed, since 

S + T � (I + PK);1 + PK(I + PK );1 

� (I + PK) (I + PK);1 

� I : 



This result implies that if �max 

[S(j!)] is small in some frequency range, �max 

[T (j!)] � 1. 

The converse is also true. 

Fortunately, we rarely need to make both of these functions small in the same frequency 

region. 

Limitations Due to RHP Zeros and Poles 

Before we discuss these limitations, we quote the following fact from complex analysis: 

Let H(s) be a stable, causal, linear time-invariant continuous-time system. The 

maximum modulus principle implies that 

�max 

[H(s)] � sup �max 

[H(j!)] � kHk1 

8 s 2 RHP : 

! 

In other words, a stable function, which is analytic in the RHP, achieves its maximum value 

over the RHP when evaluated on the imaginary axis. 

Using this result, we can arrive at relationships between poles and zeros of the plant P 

located in the RHP and limitations on performance (e.g., disturbance and noise rejection). 

SISO Systems: Disturbance Rejection 

Consider the stable sensitivity function S � (1  + PK);1 for any stabilizing controller, K� 

then, 

S(zi) � (1 +  P (zi)K(zi))
;1 � 1 for all RHP zeros zi 

of P 

S(pi) � (1 +  P (pi)K(pi))
;1 � 0 for all RHP poles pi 

of P : 

Since the H1 

norm bounds the gain of a system over all frequencies, 

1 � jS(zi)j � kSk1 

: 

This means that we cannot uniformly attenuate disturbances over the entire frequency range 

if there are zeros in the RHP. 

SISO Systems: Noise Rejection 

Since the transfer function relating a noise input to the output is T � PK(1 + PK);1 , an 

argument for T similar to S can be made, but with the roles of poles and zeros interchanged. 

In this case, RHP poles of the plant restrict us from uniformly attenuating noise over the 

entire frequency range. 



MIMO Systems: Disturbance Rejection 

Suppose P has a transmission zero at z~ 2 RHP with left input zero direction �� . Then 

��P (z~)K(z~) � 0, and thus 

��(I + P (z~)K(z~));1 � �� : 

Stated equivalently, 

��S(z~) � �� : (18.10) 

Also, taking the conjugate transpose of both sides, 

S�(z~)� � � : (18.11) 

We then multiply the expressions in (18.10) and (18.11), obtaining 

��S(z~)S�(z~)� � ��� � 

which can be alternately written as 

��S(z~)S�(z~)� 

� 1 : (18.12)
��� 

Applying the maximum modulus principle (i.e., maxs2RHP 

�max[S(s)] occurs on the imaginary 

axis) and observing that the left hand side of (18.12) is less than or equal to �2 [S(z~)], we max 

conclude that 

kSk2 � 

��S(z~)S�(z~)� 

� 1 :1 ��� 

Thus, the conclusion regarding disturbance rejection for MIMO systems is the same as the 

conclusion we reached for SISO systems. Namely, RHP zeros make disturbance attenuation 

over all frequencies impossible. 

18.5 Analytic Constraints: The \Waterbed E�ect" 

One performance limitation of LTI SISO Feedback systems (these systems have rational sensi-
tivity transfer functions), is known as the waterbed e�ect. Loosely speaking, when one designs 

a controller to \push" the sensitivity function in a particular direction, another part of the 

sensitivity function necessarily \pulls" back in the opposite direction. This e�ect is due to a 

property of analytic functions f(s) as stated by Cauchy's theroem. In words, this theorem 

says that the line integral of an analytic function around any simple closed contour C in a 

region R is zero, i.e., Z 

f(s)ds � 0: 

C 

for every contour C in R. 



A proof of this theorem will not be shown here but can be found in standard complex analysis 

textbooks. One consequence of this theorem is the following integral constraint (known as 

Bode's Integral) on the rational sensitivity transfer function S(jw): Z 1 X 

lnjS(jwjdw � �Re(pi)� 

0 i P 

where i 

�Re(pi)� is the sum over the unstable open-loop poles (poles of P (jw)K(jw)). This 

result holds for all closed-loop systems as long as the product PK has relative degree two. 

The result implies that making S(jw) small at almost all frequencies (a common performance 

objective) is impossible since the integrated value of lnjS(jw)j over all frequencies must be 

constant. This constant is zero for open-loop stable systems (PK stable) and positive oth-
erwise. Therefore, lowering the sensitivity function in one range of frequencies, increases 

the same function in another range-hence the name \waterbed e�ect." Figure 18.5 below 

illustrates this phenomenon. 

Figure 18.6: Water-bed E�ect 

Constraints on Singular Value Plots 

From what we have seen already, it is clear that singular value plots over all frequencies are 

the MIMO system analogs of Bode plots. The following fact establishes some simple bounds 

involving singular values of S and T : 

Fact 18.5.1 If S � (I + PK);1 and T � (I + PK);1PK then the following hold 

j1 ; �max(S)j � �max(T ) � 1 + �max(S) 

and 

j1 ; �max(T )j � �max(S) � 1 + �max(T ): 

Proof: Since S + T � I then clearly 

�max(T ) � �max(I ; S) � �max(I) + �max(S)� 



and therefore �max(T ) � 1 + �max(S). For any element x 2 C 

n with kxk2 

� 1 we have 

x ; Sx � Tx 

jkxk2 

; kSxk2j � kx ; Sxk2 

� kTxk2 

j1 ; kSxk2j � �max(T ) 

j1 ; �max(S)j � �max(T ): 

Combining this relation with �max(T ) � 1 + �max(S), we obtain 

j1 ; �max(S)j � �max(T ) � 1 + �max(S): 

The other relation follows in exactly the same manner. 



Exercises 

Exercise 18.1 Suppose a discrete-time plant is given by �
 !
 

1;2z 

;1 

P � 

1;:5z;1 

1;z 

;1 

1;:5z;1 

Does there exist a controller that uniformly attenuates the input sensitivity function (I + KP );1, i.e., 

k(I + KP );1k1 

� 1. Explain. 

Exercise 18.2 Let a plant be given by �
	 s;1 ;5 

�
 

s+1G(s) � s+2 s;1 

: 

(s+1)2 s+1 

We are interested in verifying whether or not there exists a controller K such that the output 

sensitivity S � (I + PK);1 satis�es kSk1 

� 1 (i.e., the maximum singular value is strictly less than 

1 for all frequencies). If this is possible, we would like to �nd such a controller. 

1. One engineer argued as follows:	 Since the transfer functions from u1 

to y1 

and u2 

to y2 

have 

nonminimum-phase zeros, then the sensitivity cannot be uniformly attenuated. Do you accept 

this argument. If so, explain her/his rationale, and if not explain why not. 

2. Another engineer suggested that the controller can invert the plant and add a scaling factor, so 

that the sensitivity is uniformly less than 1. Again discuss this option and argue for it or against 

it. 

Exercise 18.3 Consider the following MIMO plant P (s) whose state-space description is 3232 ;1:5 1 0 1 

2 ;3 2 0 

0 :5 ;2 1 

775


1 0


x_ (t) � 

664


x(t) +


664


0 0
 

1 1
 

775


u(t) 


 
 
 
 

1 ;1:5 0 ;5 0 1:8 �� 

y(t) �	 

0 2:4 ;3:1 1 

x(t)
1 6 ;:5 ;2:8 

(a)	 Use Matlab to compute the poles and the zeros of the plant, as well as the associated input zero 

directions. (The transmission zeros should turn out to be around ;:544 � j2:43.) 

(b)	 Plot the singular values of P (j!) for ! 2 [;10;2� 102] rad/sec. Relate the shapes of the singular 

values to the pole and zero frequencies of P (s). 



(c)	 Compute kP k1 

using the Hamiltonian matrix and \gamma iteration", and compare the result to 

part b). 

(d)	 Consider the standard MIMO servo feedback loop with a compensator of transfer matrix K(s) 

preceding P (s) in the forward loop. The input to the compensator is the error signal e(t) � 

r(t);y(t), where r(t) is an external reference signal. Design K(s) to have the following properties: 

(i) K(s) should be strictly proper, second-order (i.e. a minimal realization of it is second-order), 

with no transmission zeros, and with poles that exactly cancel the transmission zeros of P (s) | 

so P (s)K(s) does not have these zeros. 

(ii) lims!0 

P (s)K(s) � 40I
 

Also obtain a state-space description of K(s).
 

(e)	 Plot the singular values of the open-loop frequency response P (j!)K(j!), the sensitivity func-
tion S(j!), and the closed-loop frequency response (or complementary sensitivity function) 

T (j!) � I ; S(j!). 

(f)	 Predict the steady-state value of the output vector y(t) when the reference input to the closed-loop 

system (which is assumed initially at rest) is the step � � 

7 

r(t) � � t � 0	 (18.13);3 

and verify by computing (with Matlab!) the transient response for the above step input. By 

carefully examining the transients of the control input and output signals, discuss the implica-
tions of having oscillatory poles in the compensator that cancel the plant transmissions zeros. 

(g)	 Predict the steady-state maximum and minimum value of the tracking error e(t) when the com-
mand input vector comprises unit sinusoids at a frequency of ! � 1 rad/sec. Repeat for ! � 2:5 

rad/sec. 
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Chapter 19 

Robust Stability in SISO Systems
 

19.1 Introduction 

There are many reasons to use feedback control. As we have seen earlier, with the help of an 

appropriately designed feedback controller we can reduce the e�ect of noise and disturbances, 

and we can improve the tracking of command signals. Another very important use for feedback 

control is the reduction of the e�ects of plant uncertainty. The mathematical models that we 

use to describe the plant dynamics are almost never perfect. A feedback controller can be 

designed so as to maintain stability of the closed-loop and an acceptable level of performance 

in the presence of uncertainties in the plant description, i.e., so as to achieve robust stability 

and robust performance respectively. 

For the study of robust stability and robust performance, we assume that the dynamics 

of the actual plant are represented by a transfer function that belongs to some uncertainty 

set �. We begin by giving mathematical descriptions of two possible uncertainty sets. Many 

other descriptions exist, and may be treated by methods similar to those we present for these 

particular types of uncertainty sets. 

19.2 Additive Representation of Uncertainty 

It is commonly the case that the nominal plant model is quite accurate for low frequencies 

but deteriorates in the high-frequency range, because of parasitics, nonlinearities and/or time-
varying e�ects that become signi�cant at higher frequencies. These high-frequency e�ects may 

have been left unmodeled because the e�ort required for system identi�cation was not justi�ed 

by the level of performance that was being sought, or they may be well-understood e�ects that 

were omitted from the nominal model because they were awkward and unwieldy to carry along 

during control design. This problem, namely the deterioration of nominal models at higher 

frequencies, is mitigated to some extent by the fact that almost all physical systems have 


 



strictly proper transfer functions, so that the system gain begins to roll o� at high frequency. 

In the above situation, with a nominal plant model given by the proper transfer function 

P0(s), the actual plant represented by P (s), and the di�erence P (s) ; P0(s) assumed to be 

stable, we may be able to characterize the model uncertainty via a bound of the form 

jP (j!) ; P0(j!)j � ` a(!) (19.1) 

where (
` a(!) � 

\Small" � j!j � !c : (19.2)
\Bounded" � j!j � !c 

This says that the response of the actual plant lies in a \band" of uncertainty around that of 

the nominal plant. Notice that no phase information about the modeling error is incorporated 

into this description. For this reason, it may lead to conservative results. 

The preceding description suggests the following simple additive characterization of the 

uncertainty set: 

�a 

� fP (s) j P (s) � P0(s) + W (s)�(s)g (19.3) 

where � is an arbitrary stable transfer function satisfying the norm condition 

k�k1 

� sup j�(j!)j � 1� (19.4) 

! 

and the stable proper rational weighting term W (s) is used to represent any information we 

have on how the accuracy of the nominal plant model varies as a function of frequency. Figure 

19.1 shows the additive representation of uncertainty in the context of a standard servo loop, 

with K denoting the compensator. 

When the modeling uncertainty increases with frequency, it makes sense to use a weight-
ing function W (j!) that looks like a high-pass �lter: small magnitude at low frequencies, 

increasing but bounded at higher frequencies. 

- -� W 

� � 

� 

r 

-+l -. K 

- P0 

- l - y+ 

; 6 

Figure 19.1: Representation of the actual plant in a servo loop via an additive perturbation 

of the nominal plant. 

Caution: The above formulation of an additive model perturbation should not be interpreted 

as saying that the actual or perturbed plant is the parallel combination of the nominal system 

P0(s) and a system with transfer function W (s)�(s). Rather, the actual plant should be 

considered as being a minimal realization of the transfer function P (s), which happens to be 

written in the additive form P0(s) + W (s)�(s). 

Some features of the above uncertainty set are worth noting: 



�	 The unstable poles of all plants in the set are precisely those of the nominal model. Thus, 

our modeling and identi�cation e�orts are assumed to be careful enough to accurately 

capture the unstable poles of the system. 

�	 The set includes models of arbitrarily large order. Thus, if the uncertainties of major 

concern to us were parametric uncertainties, i.e. uncertainties in the values of the 

parameters of a particular (e.g. state-space) model, then the above uncertainty set 

would greatly overestimate the set of plants of interest to us. 

The control design methods that we shall develop will produce controllers that are guar-
anteed to work for every member of the plant uncertainty set. Stated slightly di�erently, 

our methods will treat the system as though every model in the uncertainty set is a possible 

representation of the plant. To the extent that not all members of the set are possible plant 

models, our methods will be conservative. 

Suppose we have a set of possible plants � such that the true plant is a member of that 

set. We can try to embed this set in an additive perturbation structure. First let P0 

2 � be 

a certain nominal plant in �. For any other plant P 2 � we write, 

P (j!) � P0(j!) + W (j!)�(j!): 

The weight jW (j!)j satis�es 

jW (j!)j � jW (j!)�(j!)j � jP (j!) ; P0(j!)j 

jW (j!)j � max jP (j!) ; P0(j!)j � ` a(j!): 

P 2� 

With the knowledge of the lower bound ` a(j!), we �nd a stable system W (s) such that 

jW (j!)j � ` a(j!) 

19.3 Multiplicative Representation of Uncertainty 

Another simple means of representing uncertainty that has some nice analytical properties is 

the multiplicative perturbation, which can be written in the form 

�m 

� fP j P � P0(1 + W �)� k�k1 

� 1g:	 (19.5) 

W and � are stable. As with the additive representation, models of arbitrarily large order 

-- � W 

� � 

� 

-. +m - P0 

-

Figure 19.2: Representation of uncertainty as multiplicative perturbation at the plant input. 



are included in the above sets. 

The caution mentioned in connection with the additive perturbation bears repeating 

here: the above multiplicative characterizations should not be interpreted as saying that the 

actual plant is the cascade combination of the nominal system P0 

and a system 1 + W �. 

Rather, the actual plant should be considered as being a minimal realization of the transfer 

function P (s), which happens to be written in the multiplicative form. 

Any unstable poles of P are poles of the nominal plant, but not necessarily the other 

way, because unstable poles of P0 

may be cancelled by zeros of I + W �. In other words, 

the actual plant is allowed to have fewer unstable poles than the nominal plant, but all its 

unstable poles are con�ned to the same locations as in the nominal model. In view of the 

caution in the previous paragraph, such cancellations do not correspond to unstable hidden 

modes, and are therefore not of concern. 

As in the case of additive perturbations, suppose we have a set of possible plants � such 

that the true plant is a member of that set. We can try to embed this set in a multiplicative 

perturbation structure. First let P0 

2 � a certain nominal plant in �. For any other plant 

P 2 � we have, 

P (j!) � P0(j!)(1 + W (j!)�(j!)): 

The weight jW (j!)j satis�es ����


����


P (j!) ; P0(j!)jW (j!)j � ���� 

jW (j!)�(j!) 

P (j!) ; P0(j!) 

j �
 

P0(j!)

 
 ����


jW (j!)j � � ` m(j!):max 

P 2� P0(j!)

 
 

With the knowledge of the envelope ` m(j!), we �nd a stable system W (s) such that jW (j!)j � 

` m(j!) 

Example 19.1 Uncertain Gain 

Suppose we have a plant P � kP�(s) with an uncertain gain k that lies in the 

interval k1 

� k � k2. We can write k � �(1 + �x) such that 

k1 

� �(1 ; �) 

k2 

� �(1 + �): 

Therefore � � 

k1 

+k2 , � � 

k2 

;k1 , and we can express the set of plants as 2 k2 

+k1 ���� 

� � P (s)jP (s) � 

k1 

+ k2 

P�(s) 1 + 

k2 

; k1 

x � ;1 � x � 1 : 

2 k2 

+ k1 

We can embed this � in a multiplicative structure by enlarging the uncertain 

elements x which are real numbers to complex �(j!) representing dynamic per-
turbations. This results in the following set ���� 

��m 

� P (s)jP (s) � 

k1 

+ k2 

P (s) 1 + 

k2 

; k1 

� � k�k1 

� 1 : 

2 k2 

+ k1 



Note that in this representation P0 

� 

k1 

+k2 P�, and W � 

k2 

;k1 .2 k2 

+k1 

Example 19.2 Uncertain Delay 

Suppose we have a plant P � e;ks P0(s) with an uncertain delay 0 � k � k1. We 

want to represent this family of plants in a multiplicative perturbation structure. 

The weight W (s) should satisfy �����


�����


e;j!kP0(j!) ; P0(j!) 

P0(j!)
jW (j!)j � max 

0�k�k1 


 
 

� max je;j!k ; 1j
0�k�k1 

j1 ; e;j! k1 j ! � 

� 

k1 

0

(
�


! � 

� 

k1 

� ` m(!): 

A stable weight that satis�es the above relation can be taken as


2�k1s


W (s) � � : 

�k1s + 1 

where � � 1. The reader should verify that this weight will work by ploting 

jW (j!)j and ` m(!), and showing that ` m(!) is below the curve jW (j!)j for all !. 

19.4 The Nyquist Criterion 

Before we analyze the stability of feedback loops where the plant is uncertain, we will review 

the Nyquist criterion. Consider the feedback structure in Figure 19.3. The transfer function 

- h - L 

-
;6 

Figure 19.3: Unity Feedback Confuguration. 

L is called the open-loop transfer function. The condition for the stability of the system 

in 19.3 is assured if the zeros of 1 + L are all in the left half of the complex plane. The 

agrument principle from complex analysis gives a criterion to calculate the di�erence between 

the number of zeros and the number of poles of an analytic function in a certain domain, D 

in the complex plane. Suppose the domain is as shown in Figure 19.4, and the boundary of 

D, denoted by �D, is oriented clockwise. We call this oriented boundary of D the Nyquist 

contour. 



R 

Nyquist Domain 

Figure 19.4: Nyquist Domain. 

As the radius of the semicircle in Figure 19.4 goes to in�nty the domain covers the right 

half of the complex plane. The image of �D under L is called a Nyquist plot, see Figure 19.5. 

Note that if L has poles at the j! axis then we indent the Nyquist contour to avoid these 

poles, as shown in Figure 19.4. De�ne 

�ol 

� Open ; loop poles � Number of poles of L in D � Number of poles of 1 + L in D 

�cl 

� Closed ; loop poles � Number of zeros of 1 + L in D: 

From the argument principle it follows that 

�cl;�ol 

� The number of clockwise encirclements that the Nyquist Plot makes of the point ;1: 

Using this characterization of the di�erence of the number of the closed-loop poles and the 

open-loop poles we arrive at the following theorem for the stability of Figure 19.3 

Theorem 19.1 The closed-loop system in Figure 19.3 is stable if and only if the Nyquist plot 

� does not pass through the origin, 

� makes �ol 

counter-clockwise encirclements of ;1. 

19.5 Robust Stability 

In this section we will show how we can analyze the stability of a feedback system when the 

plant is uncertain and is known to belong to a set of the form that we described earlier. We 

will start with the case of additive pertubations. Consider the unity feedback con�guration 

in Figure 19.1. The open-loop transfer function is L(s) � (P0(s) + W (s)�(s))K(s), and the 



-1 

Nyquist Plot 

Figure 19.5: Nyquist Plot. 

nominal open-loop transfer function is L0(s) � P0(s)K(s). The nominal feedback system 

with the nominal open-loop transfer function L0 

is stable, and we want to know whether the 

feeback system remains stable for all �(s) satisfying j�(j!)j � 1 for all ! 2 R. We will 

assume that the nominal open-loop system is stable. This causes no loss of generality and the 

result holds in the general case. From the Nyquist criterion, we have that the Nyquist plot of 

L0 

does not encircle the point ;1. For the perturbed system, we have that 

1 + L(j!) � 1 + P (j!)K(j!) 

� 1 + (P0(j!) + W (j!)�(j!))K(j!) 

� 1 + L0(j!) + W (j!)�(j!)K(j!) 

From the Figure 19.6, it is clear that L(�!) will not encircle the point ;1 if the following 

condition is satis�ed, 

jW (j!)K(j!)j � j1 + L0(j!)j� 

which can be written as ����


W (j!)K(j!) 


 1 + L0(j!) 

����


� 1: (19.6)



 

A Small Gain Argument 

Next we will present a di�erent derivation of the above result that does not rely on the 

Nyquist criterion, and will be the basis for the multivariable generalizations of the robust 

stability results. Since the nominal feedback system is stable, the zeros of 1 + L0(s) are all in 

the left half of the complex plane. Therefore, by the continuity of zeros, the perturbed system 



1+L0 

W K 

-1 

Figure 19.6: Nyquist Plot Illustrating Robust Stability. 

will be stable if and only if 

����

j1 + (P0(j!) + W (j!)�(j!))K(j!)j � 0 

for all ! 2 R, k�k1 

� 1. By rearranging the terms, the perturbed system is stable if and 

1 

only if ����


W (j!)K(j!)
min �(j!) � 0
 for all ! 2 R+


1 + P0(j!)K(j!)j�(j!)j�1 


 

The following lemma will help us to transform this condition to the one given earlier. 

Lemma 19.1 The following are equivalent 

1. ����


����


W (j!)K(j!)
min 1
 �(j!) � 0
 for all ! 2 R+


1 + P0(j!)K(j!)j�(j!)j�1 


 
 

2.
 ����


W (j!)K(j!) 


 1 + P0(j!)K(j!) 

����


1 ;
 � 0
 for all ! 2 R 


 

Proof. First we show that 2) implies 1), which is a consequence of the following inequalities ����


W (j!)K(j!) 

����


����


W (j!)K(j!) 

����


1 +



 1 + P0(j!)K(j!) 

�(j!) 


 

� 1 ; 

� 1 ;
 

����



 1 + P0(j!)K(j!) 

�(j!) 


 

W (j!)K(j!) 


 1 + P0(j!)K(j!) 

����


:
 


 



For the converse suppose 2) is violated, that is there exists !0 

such that ����


W (j!0)K(j!0) 


 1 + P0(j!0)K(j!0) 

����


� 1:



 

Write 

W (j!0)K(j!0) j��� ae
1 + P0(j!0)K(j!0) 

and let �(� j!0) � 

1 e;j�;j� Clearly, j 

�. �(j!0)j � 1 and a 

W (j!0)K(j!0) �1 + �(j!0) � 0: 

1 + P0(j!0)K(j!0) 

Now select a real rational perturbation 

��(s) as 

� 1 s ; � 

�(s) � � � 

a s + � 

such that � j!0 

;� � e;j�;j�.!0 

+� 

��
r - -+�� 

K ;6 

-
� W 

��� y 

-��+ P0 

Figure 19.7: Representation of the actual plant in a servo loop via a multiplicative perturba-
tion of the nominal plant. 

A similar set of results can be obtained for the case of multiplicative perturbations. In 

particular, a robust stability of the con�guration in Figure 19.7 can be guaranteed if the 

system is stable for the nominal plant P0 

and ����


W (j!)P0(j!)K(j!) 


 1 + P0(j!)K(j!) 

����


� 1: for all ! 2 R: (19.7) 


 

Example 19.3 Stabilizing a Beam 

We are interested in deriving a controller that stabilizes the beam in Figure 19.8 

and tracks a step input (with good properties). The rigid body model from torque 

input to the tip de�ection is given by 

6:28 

P0(s) � 

s2 



Position Sensor 

�� z �� 

DC Motor 

Felxible Beam Mass 

Figure 19.8: Flexible Beam. 

Consider the controller 

500(s + 10) 

K0(s) � 

s + 100 

The loop gain is given by 

3140(s + 10) 

P0(s)K0(s) � 

s2(s + 100) 

and is shown in Figure 19.9. The closed loop poles are located at -49.0, -28.6, 

-22.4, and the nominal Sensitivity function is given by 

1 s2(s + 100) 

S0(s) � � 

1 + P0(s)K0(s) s3 + 100s2 + 3140s + 31400 

and is shown in Figure 19.10. It is evident from this that the system has good 

disturbance rejection and tracking properties. The closed loop step response is 

show in Figure 19.11 

While this controller seems to be an excellent design, it turns out that it performs 

quite poorly in practice. The bandwidth of this controller (which was never con-
strained) is large enough to excite the �exible modes of the beam, which were not 

taken into account in the model. A more complicated model of the beam is given 

by 

6:28 12:56 

P1(s) � 

2 

+ 

s s2 + 0:707s + 28 | {z } | {z }
nominal plant �exible mode 

If K0 

is connected to this plant, then the closed loop poles are -1.24, 0.29, 0.06, 

-0.06, which implies instability. 

Instead of using the new model to redesign the controller, we would like to use 

the nominal model P0, and account for the �exible modes as unmodeled dynamics 

with a certain frequency concentration. There are several advantages in this. For 
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Figure 19.9: Open-loop Bode Plot 

one, the design is based on a simpler nominal model and hence may result in a 

simpler controller. This approach also allows us to acomodate additional �exible 

modes without increasing the complexity of the description. And �nally, it enables 

us to tradeo� performance for robustness. 

Consider the set of plants: 

� � fP � P0(1 + �)� j�(j!)j � `(!)� � is stab leg 

where �����


!2 

�����


`(!) � 2


28 ; !2 + 0:707j! 
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Figure 19.10: Nominal Sensitivity 

This set includes the model P1. The stability Robustness Condition is given by: 

1 jT (j!)j � 

`(!) 

Where T is the nominal closed loop map with any controller K. First, consider 

the stability analysis of the initial controller K0(s). Figure 19.12 shows both 

the frequency response for jT0(j!)j and [`(!)];1 . It is evident that the Stability 

robustness condition is violated since 

1 jT0(j!)j �6 � 3 � ! � 70 rad/sec 

`(!) 
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Figure 19.11: Step Response 
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Figure 19.12: jT0(j!)j and [`(!)];1 

Let's try a new design with a di�erent controller 

(5 � 10;4)(s + 0:01)
K1(s) � 

s + 0:1 

The new loop-gain is 

(3:14 � 10;3)(s + 0:01)
P0(s)K1(s) � 

s2(s + 0:1) 

which is shown in the Figure 19.13 We �rst check the robustness condition with 

the new controller. T1 

is given by 

P0(s)K1(s)
T1(s) � 

1 + P0(s)K1(s) 

Figure 19.14 depicts both jT1(j!)j and [`(!)];1 . It is clear that the condition 

is satis�ed. Figure 19.15 shows the new nominal step response of the system. 

Observe that the response is much slower than the one derived by the controller 

K0. This is essentially due to the limited bandwidth of the new controller, which 

was necessary to prevent instability. 



Exercises 

Exercise 19.1 Suppose P (s) � 

a
s 

is connected with a controller K(s) in a unity feedback con�gu-
ration. Does there exists a K such that the system is stable for both a � 1 and a � ;1. 

Exercise 19.2 For P (s) and K(s) given by 

1 1 

P (s) � � 

(s + 2)(s + a) 

K(s) � � 

s 

�nd the range of a such that the closed loop system with P and K is stable. 

Exercise 19.3 Let P be given by: 

P (s) � (1 + W (s)�(s))P0 

� 

where 

1 2 

P0(s) � � W (s) � � 

s ; 1 s + 10 

and � is arbitrary stable with k�k1 

� 2. Find a controller K(s) � k (constant) gain such that the 

system is stable. Compute all possible such gains. 

Exercise 19.4 Find the stability robustness condition for the set of plant described by: 

P0
P � f � k�k1 

� 1g: 

1 +�WP0 

Assume WP0 

is strictly proper for well posedness. 

Exercise 19.5 Suppose 

1 

P (s) � and K(s) � 10� 

s ; a 

are connected in standard feedback con�guration. While it is easy in this case to compute the exact 

stability margin as a changes, in general, such problems are hard to solve when there are many 

parameters. One approach is to embed the problem in a robust stabilization problem with unmodeled 

dynamics and derive the appropriate stability robustness condition. Clearly, the later provides a 

conservative bound on a for which the system remains stable. 

(a) Find the exact range of a for which the system is stable. 

(b) Assume the nominal plant is P0 

� 

1 

s 

. Show that P belongs to the set of plants: 

P0
� � fP � � k�k1 

� 1g
1 + W �P0 

and W � ;a. 



(c)	 Derive a condition on the closed loop system that guarantees the stability of the set �. How does 

this condition constrain a� Is this di�erent than part (a)� 

1(d) Repeat with nominal plant P0 

� s+100 

. 

Exercise 19.6 Let a model be given by the stable plant: 

1 

P0(z) �	 � 1 �� a0 

� 0: 

z;1 ; (1 + a0) 

Consider the class of plants given by: � � 

1 

� � (z) � ; (1 + b)
j ; 2a0 

� b � 2a0 

: 

z;1 

1. Can the set � be embedded in a set of additive or multiplicative norm bounded perturbations, 

with nominal plant P0� Show how or explain your answer. 

2. If your answer to the previous part is NO, show that the class � can be embedded in some other 

larger set characterized by norm-bounded perturbations. Give a su�cient condition for stability 

using the small gain theorem. 

3. Improve your earlier condition so that it captures the fact that the unknown is a real parameter. 

(The condition does not have to be necessary, but should still take into consideration the phase 

information!). 

Exercise 19.7 Consider Exercise 17.4. Suppose that due to implementation problems (e.g. quanti-
zation e�ects), the actual controller can be modeled as: 

Ka 

� (I ; KW �);1K 

where W is a �xed stable �lter, and � is a stable perturbation of H1-norm less than 1, but otherwise 

arbitrary. Provide a non-conservative condition for the stability robustness of the closed loop system. 

Use the parametrization of K in terms of Q to express your condition as a function of P and Q. 



100
 

−100 

0

G
a
in

 d
B

−200 
−2 −1	 0 1 2 3


10 10	 10 10 10 10
 
Frequency (rad/sec)
 

−2 −1	 0 1 2 3

10 10	 10 10 10 10
 

Frequency (rad/sec)
 

Figure 19.13: Loop Gain P0K1 
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Figure 19.14: jT1(j!)j and [`(!)];1 . 
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Figure 19.15: New Nominal Closed-loop Step Response 
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Chapter 20 

Stability Robustness
 

20.1 Introduction 

Last chapter showed how the Nyquist stability criterion provides conditions for the stability 

robustness of a SISO system. It is possible to provide an extension of those conditions by gen-
eralizing the Nyquist criterion for MIMO systems. This, however, turns out to be unnecessary 

and a direct derivation is possible through the small gain theorem, which will be presented in 

this chapter. 

20.2 Additive Representation of Uncertainty 

It is commonly the case that the nominal plant model is quite accurate for low frequencies 

but deteriorates in the high-frequency range, because of parasitics, nonlinearities and/or time-
varying e�ects that become signi�cant at higher frequencies. These high-frequency e�ects may 

have been left unmodeled because the e�ort required for system identi�cation was not justi�ed 

by the level of performance that was being sought, or they may be well-understood e�ects that 

were omitted from the nominal model because they were awkward and unwieldy to carry along 

during control design. This problem, namely the deterioration of nominal models at higher 

frequencies, is mitigated to some extent by the fact that almost all physical systems have 

strictly proper transfer functions, so that the system gain begins to roll o� at high frequency. 

In the above situation, with a nominal plant model given by the proper rational matrix 

P0(s), the actual plant represented by P (s), and the di�erence P (s) ; P0(s) assumed to be 

stable, we may be able to characterize the model uncertainty via a bound of the form 

�max 

[P (j!) ; P0(j!)] � ` a(!) (20.1) 

where (
` a(!) � 

\Small" � j!j � !c (20.2)
\Bounded" � j!j � !c 



This says that the response of the actual plant lies in a \band" of uncertainty around that of 

the nominal plant. Notice that no phase information about the modeling error is incorporated 

into this description. For this reason, it may lead to conservative results. 

The preceding description suggests the following simple additive characterization of the 

uncertainty set: 

� � fP (s) j P (s) � P0(s) + W (s)�(s)g (20.3) 

where � is an arbitrary stable transfer matrix satisfying the norm condition 

k�k1 

� sup �max(�(j!)) � 1	 (20.4) 

! 

and the stable proper rational (matrix or scalar) weighting term W (s) is used to represent 

any information we have on how the accuracy of the nominal plant model varies as a function 

of frequency. Figure 20.1 shows the additive representation of uncertainty in the context of a 

standard servo loop, with K denoting the compensator. 

When the modeling uncertainty increases with frequency, it makes sense to use a weight-
ing function W (j!) that looks like a high-pass �lter: small magnitude at low frequencies, 

increasing but bounded at higher frequencies. In the case of a matrix weight, a variation 

on the use of the additive term W � is to use a term of the form W1�W2� we leave you to 

examine how the analysis in this lecture will change if such a two-sided weighting is used. 

- -� W 

� � 

r 

l+ 

- -. K 

- P0 

l+ 

-
� 

- y 

; 6 

Figure 20.1: Representation of the actual plant in a servo loop via an additive perturbation 

of the nominal plant. 

Caution: The above formulation of an additive model perturbation should not be interpreted 

as saying that the actual or perturbed plant is the parallel combination of the nominal system 

P0(s) and a system with transfer matrix W (s)�(s). Rather, the actual plant should be 

considered as being a minimal realization of the transfer function P (s), which happens to be 

written in the additive form P0(s) + W (s)�(s). 

Some features of the above uncertainty set are worth noting: 

�	 The unstable poles of all plants in the set are precisely those of the nominal model. Thus, 

our modeling and identi�cation e�orts are assumed to be careful enough to accurately 

capture the unstable poles of the system. 

�	 The set includes models of arbitrarily large order. Thus, if the uncertainties of major 

concern to us were parametric uncertainties, i.e. uncertainties in the values of the 



parameters of a particular (e.g. state-space) model, then the above uncertainty set 

would greatly overestimate the set of plants of interest to us. 

The control design methods that we shall develop will produce controllers that are guar-
anteed to work for every member of the plant uncertainty set. Stated slightly di�erently, 

our methods will treat the system as though every model in the uncertainty set is a possible 

representation of the plant. To the extent that not all members of the set are possible plant 

models, our methods will be conservative. 

20.3 Multiplicative Representation of Uncertainty 

Another simple means of representing uncertainty that has some nice analytical properties is 

the multiplicative perturbation, which can be written in the form 

� � fP j P � P0(I + W �)� k�k1 

� 1g: (20.5) 

-- � W 

� � 

� 

-. +m - P0 

-

Figure 20.2: Representation of uncertainty as multiplicative perturbation at the plant input. 

An alternative to this input-side representation of the uncertainty is the following output-
side representation: 

� � fP j P � (I + W �)P0� k�k1 

� 1g: (20.6) 

In both the multiplicative cases above, W and � are stable. As with the additive represen-
tation, models of arbitrarily large order are included in the above sets. Still other variations 

may be imagined� in the case of matrix weights, for instance, the term W � can be replaced 

by W1�W2. 

The caution mentioned in connection with the additive perturbation bears repeating 

here: the above multiplicative characterizations should not be interpreted as saying that the 

actual plant is the cascade combination of the nominal system P0 

and a system I + W �. 

Rather, the actual plant should be considered as being a minimal realization of the transfer 

function P (s), which happens to be written in the multiplicative form. 

Any unstable poles of P are poles of the nominal plant, but not necessarily the other 

way, because unstable poles of P0 

may be cancelled by zeros of I + W �. In other words, 

the actual plant is allowed to have fewer unstable poles than the nominal plant, but all its 

unstable poles are con�ned to the same locations as in the nominal model. In view of the 

caution in the previous paragraph, such cancellations do not correspond to unstable hidden 

modes, and are therefore not of concern. 



20.4 More General Representation of Uncertainty 

Consider a nominal interconnected system obtained by interconnecting various (reachable and 

observable) nominal subsystems. In general, our representation of the uncertainty regarding 

any nominal subsystem model such as P0 

involves taking the signal � at the input or output 

of the nominal subsystem, feeding it through an \uncertainty block" with transfer function 

W � or W1�W2, where each factor is stable and k�k1 

� 1, and then adding the output 

� of this uncertainty block to either the input or output of the nominal subsystem. The 

one additive and two multiplicative representations described earlier are special cases of this 

construction, but the construction actually yields a total of three additional possibilities with 

a given uncertainty block. Speci�cally, if the uncertainty block is W �, we get the following 

additional feedback representations of uncertainty: 

� P � P0(I ; W �P0)
;1� 

� P � P0(I ; W �);1� 

� P � (I ; W �);1P0. 

A useful feature of the three uncertainty representations itemized above is that the unstable 

poles of the actual plant P are not constrained to be (a subset of) those of the nominal plant 

P0. 

Note that in all six representations of the perturbed or actual system, the signals � and 

� become internal to the actual subsystem model. This is because it is the combination of 

P0 

with the uncertainty model that constitutes the representation of the actual model P , and 

the actual model is only accessed at its (overall) input and output. 

In summary, then, perturbations of the above form can be used to represent many types of 

uncertainty, for example: high-frequency unmodeled dynamics, unmodeled delays, unmodeled 

sensor and/or actuator dynamics, small nonlinearities, parametric variations. 

20.5 A Linear Fractional Description 

We start with a given a nominal plant model P0, and a feedback controller K that stabilizes 

P0. The robust stability question is then: under what conditions will the controller stabilize 

all P 2 �� More generally, we assume we have an interconnected system that is nominally 

internally stable, by which we mean that the transfer function from an input added in at 

any subsystem input to the output observed at any subsystem output is always stable in 

the nominal system. The robust stability question is then: under what conditions will the 

interconnected system remain internally stable for all possible perturbed models. 

If the plant uncertainty is speci�ed (additively, multiplicatively, or using a feedback 

representation) via an uncertainty block of the form W �, where W and � are stable, then 

the actual (closed-loop) system can be mapped into the very simple feedback con�guration 



�� 

� � 

-

G 

w - z -

Figure 20.3: Standard model for uncertainty. 

shown in Figure 20.3. (The generalization to an uncertainty block of the form W1�W2 

is 

trivial, and omitted here to avoid additional notation.) 

As in the previous subsection, the signals � and � respectively denote the input and output 

of the uncertainty block. The input w is added in at some arbitrary accessible point of the 

interconnected system, and z denotes an output taken from an arbitrary accessible point. An 

accessible point in our terminology is simply some subsystem input or output in the actual 

or perturbed system� the input � and output � of the uncertainty block would not qualify as 

accessible points. 

If we remove the perturbation block � in Fig. 20.3, we are left with the nominal closed-
loop system, which is stable by hypothesis (since the compensator K has been chosen to 

stabilize the nominal plant and is lumped in G). Stability of the nominal system implies that 

the transfer functions relating the outputs � and z of the nominal system to the inputs � and 

w are all stable. Thus, in the transfer function representation � ! � ! � ! 

�(s) M(s) N(s) �(s)
� (20.7)

Z(s) J(s) L(s) W (s) 

each of the transfer matrices M , N , J , and L is stable. 

Now incorporating the constraint imposed by the perturbation, namely 

� � (�) � (20.8) 

and solving for the transfer function relating z to w in the perturbed system, we obtain 

Gwz(s) � L + J�(I ; M�);1N: (20.9) 

Note that M is the transfer function \seen" by the perturbation �, from the input � that 

it imposes on the rest of the system, to the output � that it measures from the rest of the 

system. Recalling that w and z denoted arbitrary inputs and outputs at the accessible points 

of the actual closed-loop system, we see that internal stability of the actual (i.e. perturbed) 

closed-loop system requires the above transfer function be stable for all allowed �. 



20.6 The Small-Gain Theorem 

Since every term in Gwz 

other than (I ;M�);1 is known to be stable, we shall have stability of 

Gwz, and hence guaranteed stability of the actual closed-loop system, if (I ; M�);1 is stable 

for all allowed �. In what follows, we will arrive at a condition | the small-gain condition 

| that guarantees the stability of (I ; M�);1 . It can also be shown (see Appendix) that if 

this condition is violated, then there is a stable � with k�k1 

� 1 such that (I ; M�);1 and 

�(I ; M�);1 are unstable, and Gwz 

is unstable for some choice of z and w. 

Theorem 20.1 (\Unstructured" Small-Gain Theorem) De�ne the set of stable pertur-
4 

bation matrices 

6 � � f� j k�k1 

� 1g. If M is stable, then (I ; M�);1 and �(I ; M�);1 

are stable for each � in 

6 � if and only if kMk1 

� 1. 

Proof. The proof of necessity (see Appendix) is by construction of an allowed � that causes 

(I ;M�);1 and �(I ;M�);1 to be unstable if kMk1 

� 1, and ensures that Gwz 

is unstable. 

For here, we focus on the proof of su�ciency. We need to show that if kMk1 

� 1 then 

(I ; M�);1 has no poles in the closed right half-plane for any � 2 

6 �, or equivalently that 

I ; M� has no zeros there. For arbitrary x 6� 0 and any s+ 

in the closed right half-plane 

(CRHP), and using the fact that both M and � are well-de�ned throughout the CRHP, we 

can deduce that 

k[I ; M(s+)�(s+)]xk2 

� kxk2 

; kM(s+)�(s+)xk2 

� kxk2 

; �max[M(s+)�(s+)]k xk2 

� kxk2 

; kMk1 

k�k1kxk2 

� 0 (20.10) 

The �rst inequality above is a simple application of the triangle inequality. The third inequal-
ity above results from the Maximum Modulus Theorem of complex analysis, which says that 

the largest magnitude of a complex function over a region of the complex plane is found on the 

boundary of the region, if the function is analytic inside and on the boundary of the region. 

In our case, both q0M 0Mq and q0�0�q are stable, and therefore analytic, in the CRHP, for 

unit vectors q� hence their largest values over the CRHP are found on the imaginary axis. 

The �nal inequality in the above set is a consequence of the hypotheses of the theorem, and 

establishes that I ; M� is nonsingular | and therefore has no zeros | in the CRHP. 

20.7 Stability Robustness Analysis 

Next, we present a few examples to illustrate the use of the small-gain theorem in stability 

robustness analysis. 

Example 20.1 (Additive Perturbation) 



For the con�guration in Figure 20.1, it is easily seen that 

M � ;K(I + P0K);1W � ;(I + KP0)
;1KW 

Example 20.2 (Multiplicative Perturbation) 

A multiplicative perturbation of the form of Figure 20.2 can be inserted into the 

closed-loop system at either the plant input or output. The procedure is then 

identical to Example 20.1, except that M becomes a di�erent function. Again it 

is easily veri�ed that for a multiplicative perturbation at the plant input, 

M � ;(I + KP0)
;1KP0W� (20.11) 

while a perturbation at the output yields 

M � ;(I + P0K);1P0KW: (20.12) 

What the above examples show is that stability robustness requires ensuring the weighted 

versions of certain familiar transfer functions have H1 

norms that are less than 1. For 

instance, with a multiplicative perturbation at the output as in the last example, what we 

require for stability robustness is kTW k1 

� 1, where T is the complementary sensitivity 

function associated with the nominal closed-loop system. This condition evidently has the 

same �avor as the conditions we discussed earlier in connection with nominal performance of 

the closed-loop system. 

The small-gain theorem fails to take advantage of any special structure that there might 

be in the uncertainty set 

6 �, and can therefore be very conservative. As examples of the kinds 

of situations that arise, consider the following two examples. 

Example 20.3 

Suppose we have a system that is best represented by the model of Figure 20.4.


When this system is reduced to the standard form, � will have a block-diagonal


Wa 

- �a 

�b 

� Wb 

66 � � 

- +m - K 

-. +m - P0 

-+m -
; 6 

Figure 20.4: Plant with multiple uncertainties. 

structure, since the two perturbations enter at di�erent points in the system: " # 

�a 

0 

� � (20.13)
0 �b 



Thus, there is some added information about the plant uncertainty that can-
not be captured by the unstructured small-gain theorem, and in general, even if 

kMk1 

� 1 for the M that corresponds to the � above, there may be no admissible 

perturbation that will result in unstable (I ; M�);1 . 

Example 20.4 

Suppose that in addition to norm bounds on the uncertainty, we know that the 

phase of the perturbation remains in the sector [;30�� 30�]. Again, even if kMk1 

� 

1 for the M that corresponds to the � for this system, there may be no admissible 

perturbation that will result in unstable (I ; M�);1 . 

In both of the preceding two examples, the unstructured small-gain theorem gives con-
servative results. 

Relating Stability Robustness to the (SISO) Nyquist Criterion 

Suppose we have a SISO nominal plant with a multiplicative perturbation, and a nominally 

stabilizing controller K. Then P � P0(1 + W �), and the compensated open-loop transfer 

function is 

PK � P0K + P0KW �: (20.14) 

Since P0, K, and W are known and j�j � 1 with arbitrary phase, we may deduce from (20.14) 

that the \real" Nyquist plot at any given frequency !0 

is contained in a region delimited by 

a circle centered at P0(j!0)K(j!0), with radius jP0KW (j!0)j. This is illustrated in Figure 

20.5(a). Clearly, if the circle of uncertainty ever includes ;1, there is the possibility that the 

\real" Nyquist plot has an extra encirclement, and hence is unstable. We may relate this 

to the robust stability problem as follows. From Example 20.2, the SISO system is robustly 

stable by the small gain theorem if ����


P0K 


 1 + P0K 

W
 

����


� 1�
 8 !:
 (20.15)



 

Equivalently, 

jP0KW j � j1 + P0Kj: (20.16) 

The right-hand side of (20.16) is the magnitude of a translation of the Nyquist plot of the 

nominal loop transfer function. In Figure 20.5(b), because of the translation, encirclement 

of zero will destabilize the system. Clearly, this cannot happen if (20.16) is satis�ed. This 

makes the relationship of robust stability to the SISO Nyquist criterion clear. 

Performance as Stability Robustness 

Suppose that, for some plant model P , we wish to design a feedback controller that not only 

stabilizes the plant (�rst order of priority!), but also provides some performance bene�ts, such 

as improved output regulation in the presence of disturbances. Given that something is known 
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Figure 20.5: Relation of Nyquist criterion and robust stability. 

about the frequency spectrum of such disturbances, the system model might look like Figure 

20.6, where k�k2 

� 1, and the modeling �lter W can be constructed to capture frequency 

characteristics of the disturbance. Calculating the transfer function of this loop from � to 

y, we have that y � (I + PK);1W�. We assume that the performance speci�cation will be 

met if k(I + PK);1W k1 

� 1, which does not restrict the problem, since W can always be 

scaled to re�ect the actual magnitude of the disturbance or performance speci�cation. This 

formulation looks analogous to a robust stability problem, and indeed, it can be veri�ed that 

the small-gain theorem applied to the system of Figure 20.7 captures the identical constraint 

on the system transfer function. By mapping this system into the standard form of Figure 

20.3, we �nd that M � (I + PK);1W , which is exactly the M that is needed if the small-gain 

condition is to yield the desired condition. 

Finally, plant uncertainty has to be brought into the picture simultaneously with the 
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Figure 20.6: Plant with disturbance. 
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Figure 20.7: Mapping performance speci�cations into a stability problem. 

performance constraints. This is necessary to formulate the performance robustness problem. 

l
6; 

It should be evident that this will lead to situations with block-diagonal �, as was obtained 

in the context of the last example in the previous subsection. The treatment of this case will 

require the notion of structured singular values, as we shall see in the next lecture. 

Appendix 

Necessity of the small gain condition for robust stability can be proved by showing that if 

�max[M(j!0)] � 1 for some !0, we can construct a � of norm less than one, such that the 

resulting closed-loop map Gzv 

is unstable. This is done as follows. Take the singular value 

decomposition of M(j!0), 
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0: (20.17)
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Since �max[M(j!0)] � 1, �1 

� 1. Then �(j!0) can be constructed as: 32 66664


1��1 

0 77775


�(j!0) � V U 0 (20.18)
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Clearly, �max�(j!0) � 1. We then have 3232 
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which is singular. Only one problem remains, which is that �(s) must be legitimate as the 

transfer function of a stable system, evaluating to the proper value at s � j!0, and having 

its maximum singular value over all ! bounded below 1. The value of the destabilizing 

perturbation at !0 

is given by 

1 0�0(j!0) � v1u1�max(M(j!0)) 

Write the vectors v1 

and u1 

0 as 32 �ja1jej� 1 

�ja2jej� 2 

. . . 

77775


v1 

� 

66664


ih 0 

1 

� �jb1jej�1 �jb2jej�2 � � � �jbnjej�n�
 u � (20.20)
 


 
 

�janjej� n 

where �i 

and �i 

belong to the interval [0� �). Note that we used � in the representation of 

the vectors v1 

and u1 

0 so that we can restrict the angles �i 

and �i 

to the interval [0� �). Now 

we can choose the nonnegative constants �1� �2� � � � � �n 

and �1� �2� � � � � �n 

such that the 

phase of the function 

s;�i at s � j!0 

is �i, and the phase of the function 

s;�i at s � j!0 

is s+�i 

s+�i 

�i. Now the destabilizing �(s) is given by 

�(s) � 

1 

g(s)hT (s) (20.21)
�max(M(j!0)) 

where 32 666664
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Exercises 

Exercise 20.1 Consider a plant described by the transfer function matrix � � 1 

� 

P�(s) � 

s;1 s;1 

2s;1 1 

s(s;1) s;1 

where � is a real but uncertain parameter, con�ned to the range [0:5 � 1:5]. We wish to design a 

feedback compensator K(s) for robust stability of a standard servo loop around the plant. 

(a)	 We would like to �nd a value of �, say �~
 , and a scalar, stable, proper rational W (s) such that the 

set of possible plants P�(s) is contained within the \uncertainty set"
 

P�~ 

(s)[I + W (s)�(s)] 

where �(s) ranges over the set of stable, proper rational matrices with k�k1 

� 1. Try and �nd 

(no assurances that this is possible!) a suitable �~ and W (s), perhaps by keeping in mind that 

what we really want to do is guarantee 

�maxfP�~;	 

1(j!)[P�(j!) ; P�~ 

(j!)]g � jW (j!)j 

What speci�c choice of �(s) yields the plant P1(s) (i.e. the plant with � � 1) � 

(b) Repeat part (a), but now working with the uncertainty set 

P�~ 

(s)[I + W1(s)�(s)W2 

(s)] 

where W1(s) and W2(s) are column and row vectors respectively, and �(s) is scalar. Plot the 

upper bound on 

�maxfP�;	 

1(j!)[P�(j!) ; P�~ 

(j!)]g~

that you obtain in this case. 

(c)	 For each of the cases above, write down a su�cient condition for robust stability of the closed-loop 

system, stated in terms of a norm condition involving the nominal complementary sensitivity 

function T � (I + KP�~ 

);1KP�~ 

and W | or, in part (b), W1 

and W2. 

Exercise 20.2 It turns out that the small gain theorem holds for nonlinear systems as well. Con-
sider a feedback con�guration with a stable system M in the forward loop and a stable, unknown 

perturbation in the feedback loop. Assume that the con�guration is well-posed. Verify that the closed 

loop system is stable if kMkk�k � 1. Here the norm is the gain of the system over any p-norm. (This 

result is also true for both DT and CT systems� the same proof holds). 

Exercise 20.3 The design of a controller should take into consideration quantization e�ects. Let us 

assume that the only variable in the closed loop which is subject to quantization is the output of the 

plant. Two very simple schemes are proposed: 



-
 P0 

K 

�
 Q
 

�
 

Figure 20.8: Quantization in the Closed Loop. 

-
 P0 

� f�K
 

6 

n 

Figure 20.9: Quantization Modeled as Bounded Noise. 

1. Assume that the output is passed through a quantization operator Q de�ned as: 

Q(x) � ab jxj csgn(x)� a � 0 

:5 + a 

where brc denotes the largest integer smaller than r. The output of this operator feeds into 

the controller as in Figure 20.8. Derive a su�cient condition that guarantees stability in the 

presence of Q. 

2. Assume that the input of the controller is corrupted with an unknown but bounded signal, with 

a small bound as in Figure 20.9. Argue that the controller should be designed so that it does 

not amplify this disturbance at its input. 

Compare the two schemes, i.e., do they yield the same result� Is there a di�erence� 
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Chapter 21 

Robust Performance and 

Introduction to the Structured 

Singular Value Function 

21.1 Introduction 

As discussed in Lecture 20, a process is better described in terms of a set of plants centered around a 

nominal model. The robust stabilization problem is concerned with �nding non conservative conditions 

on the stable nominal closed loop system that guarantee the stability of all possible closed loop systems. 

An equally important problem is the robust performance problem which is concerned with �nding non 

conservative conditions on the nominal closed loop system that guarnatee that the performance is met 

for all possible closed loop systems. 

21.2 Robust Disturbance Rejection 

We will focus our discussion on one prototype problem, namely, the robust disturbance rejection 

problem shown in Figure 21.1. This motivates the following problem: 

Robust Disturbance Rejection Problem (RP) 

Find conditions on the nominal closed-loop system (Po�K) such that 

1. K robustly stabilizes all P 2 �, where � � fP j P � (I +�1W1)Po� k�k � 1g:1 

2. k(I + PK);1W2k1 

� 1 for all P 2 �. 

From Lecture 20, a performance objective in terms of the H1-norm of some closed loop map 

between some exogenous input w, to a regulated variable z, is mathematically equivalent to a robust 

stabilization problem with a perturbation block mapping the regulated output z to the exogenous input 

w. Obviously, the new perturbed system is stable if and only if kTzwk1 

� 1, which is the performance 
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Figure 21.1: Uncertain Plant with Disturbance 

objective. Notice that if the performance objective consists of several closed loop maps, then several 

perturbation blocks can be introduced in exactly the same fashion. 

Proceeding for RP, we can \wrap" a frequency-weighted perturbation from the output to the 

input of interest, which results in the model of Figure 21.2. Next, we can re-arrange the system into the 

- W1 

z1- �1 

w1 

w2 �2 

�z2 W2 

� 

� � 

m 

;6 

+m
 -
 -
P0 

m


6;


�
K 

Figure 21.2: Robust Performance Model 

m+ + 

M -� feedback form (a nominal stable M in feedback with the perturbation �) as in Figure 21.3. In 

this case, however, there are multiple inputs and outputs to consider. We use the following procedure 

to generate M and �: 

1. De�ne wi� zi 

to be the output and input, respectively, of the perturbation �i. 

2. For a total of m perturbations, compute the matrix transfer function M as the map from 

+m
 -
 -
 -
Po 


 

3232 

w1 

z1 64


75


to z �
64


75


.
 .
 

.
 .
w � :
 (21.1)
.
 .



 
 
 
 

wm 

zm 

In other words, all the � blocks are removed, and the transfer functions \seen" by the blocks 

from each input wj 

to each output zi 

are calculated and used as the (i� j)th element of M . 

3. The perturbation matrix � will have the structure 32 

� �
 

64


�1 

. .



 . 

75

 

�m 

�
 k�ik1 

� 1: (21.2)


For a SISO system, each �i(j!) is a scalar, so that � becomes a diagonal matrix with complex 

entries. In the MIMO case, � is block-diagonal. 



Example 21.1 (Robust Disturbance Rejection) 

Applying the robust performance procedure to Figure 21.2 yields: 2	 3 ;W1(I + P0K);1P0K ;W1(I + P0K);1P0K 

M � 

4 5 : (21.3) 

W2(I + P0K);1 W2(I + P0K);1 

The transfer functions on the diagonal are identical to those in the single-block robust 

stability and disturbance-rejection problems, respectively, while the o�-diagonal terms 

account for the interaction between the two constraints. Having found the appropriate M 

and �, we have thereby reduced the robust performance problem to a stability problem 

for the system of Figure 21.3. 

-- +	 

l - M 

6 

� ! 

�1 � 

�m 

Figure 21.3: M -� Feedback Form 

A su�cient condition for robust stability is given by the small gain theorem, namely, 

�max[M(jw)]�max[�(jw)] � � � 1� for all w: 

Since � is norm bounded by one, this condition translates to kMk1 

� �. This condition, however, is 

far from necessary since � has a block diagonal structure. 

21.3 The Structured Singular Value 

For an unstructured perturbation, the supremum of the maximum singular value of M (i.e. kMk1) 

provides a clean and numerically tractable method for evaluating robust stability. Recall that, for the 

standard M -� loop, the system fails to be robustly stable if there exists an admissible � such that 

(I ; M�) is singular. What distinguishes the current situation from the unstructured case is that 

we have placed constraints on the set 

6 �. Given this more limited set of admissible perturbations, we 

desire a measure of robust stability similar to kMk1. This can be derived from the structured singular 

value �(M). 

De�nition 21.1 The structured singular value of a complex matrix M with respect to a class of 

perturbations 

6 � is given by 

4	 

1 

�(M) �	 � � 2 

6 �: (21.4)
inff�max(�) j det(I ; M�) � 0g 

If det(I ; M�) 6 6 �, then �(M) � 0. � 0 for all � 2 



Theorem 21.1 The M -� System is stable for all � 2 

6 � with k�k1 

� 1 if and only if 

sup �(M(j!)) � 1: 

! 

Proof: Immediate, from the de�nition. Clearly, if � � 1, then the norm of the smallest allowable 

destabilizing perturbation � must by de�nition be greater than 1. 

21.4 Properties of the Structured Singular Value 

It is important to note that � is a function that depends on the perturbation class 

6 � (sometimes, this 

function is denoted by � 6 � 

to indicate this dependence). The following are useful properties of such a 

fucntion. 

1.	 �(M) � 0. 

2. If	 

6 � � f�I j � 2 C g, then �(M) � �(M), the spectral radius of M (which is equal to the


magnitude of the eigenvalue of M with maximum magnitude).


3. If	 

6 � � f� j � is an arbitrary complex matrixg then � � �max(M), from which sup! 

� �


kMk1.


Property 2 shows that the spectral radius function is a particular � function with respect to 

a perturbation class consisting of matrices of the form of scaled identity. Property 3 shows that 

the maximum singular value function is a particular � function with respect to a perturbation class 

consisting of arbitrary norm bounded perturbations (no structural constraints). 

4. If 

6 � � fdiag(�1� : : : � �n) j �i 

complexg, then �(M) � �(D;1MD) for any D � diag(d1� : : : � dn)� jdij � 

0. The set of such scales is denoted D. 

This can be seen by noting that det(I ; AB) � det(I ; BA), so that det(I ; D;1MD�) � det(I ;
MD�D;1) � det(I ; M�). The last equality arises since the diagonal matrices � and D commute. 

5. If 

6 � � diag(�1� : : : � �n)� �i 

complex, then �(M) � �(M) � �max(M). 

This property follows from the following observation: If 

6 �1 

� 

6 �2, then �1 

� �2. It is clear that the 

class of perturbations consisting of scaled identity matrices is a subset of 

6 � which is a subset of the 

class of all unstructured perturbations. 

6. From 4 and 5 we have that �(M) � �(D;1MD) � infD2D 

�max(D
;1MD). 

21.5 Computation of � 

In general, there is no closed-form method for computing �. Upper and lower bounds may be computed 

and re�ned, however. In these notes we will only be concerned with computing the upper bound. If 

6 � � diag(�1� : : : � �n), then the upper bound on � is something that is easy to calculate. Furthermore, 

property 6 above suggests that by in�mizing �max(D
;1MD) over all possible diagonal scaling matrices, 

we obtain a better approximation of �. This turns out to be a convex optimization problem at each 



frequency, so that by in�mizing over D at each frequency, the tightest upper bound over the set of D 

may be found for �. 

We may then ask when (if ever) this bound is tight. In other words, when is it truly a least upper 

bound. The answer is that for three or fewer �'s, the bound is tight. The proof of this is involved, 

and is beyond the scope of this class. Unfortunately, for four or more perturbations, the bound is not 

tight, and there is no known method for computing � exactly for more than three perturbations. 

21.6 Robust Disturbance Rejection (SISO) 

As shown earlier, the disturbance rejection requirement could be converted to a robust stability problem 

with two blocks of uncertainty, as in Figure 21.2, where �1 

and �2 

are SISO stable systems. Hence 

6 � is the set of 2 � 2 diagonal complex matrices (which result from evaluating � at each frequency). 

Now, since this is a two-block problem, it should be possible to �nd � by in�mizing �max(D
;1MD). 

We have D � diag(d1� d2), so that 8 �������


9 �������


2
 3
 ; 

W1 

P0 

K (j!) ; 

d2 

W1 

K (j!)1+P0 

K d1 

1+P0 

K
 4
 5
�(M(j!)) � inf 

d1 

�d2 

�0 

�max 

� (21.5)
������:


�������


} 

d1 

W2 

P0 (j!) 

W2 (j!)d2 

1+P0 

K 1+P0 

K{z
A(�) 

ying the upper left diagonal, and the nominal

|
with the \pure" robust stability requirement 

performance requirement on the lower right. Setting � � d2�d1 

and �xing !, and taking the de�nition 

of A(�) from (21.5), we have 

�(M(j!)) � inf f�1�2 (A�(�)A(�))g: (21.6)max
j�j�0 

Now, for nominal performance, we require that 
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����


W2 � 1:(j!) (21.7)
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For robust stability, we nee ����


����


W1P0K � 1:(j!) (21.8)



 1 + P0K 

For robust performance, the necessary and su�cient condition is 

�(M(j!)) � 1: (21.9) 

A bit of algebra yields ����


����


����


(j!) 

����


2 2
W1K W2 

1 + P0K 

�max(A
�A) � j�j2 (j!) (21.10)
+


1 + P0K
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(j!) 

����


2 2
W1KP 1
 

+ j�j2 

W2P0 

1 + P0K 

0 

(j!) (21.11)
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from which we have ����


���


���
 (j!) 

����


�2
W1P0K W2

inf �max(A
�A) � (j!) :
 (21.12)
+
 

1 + P0K 1 + P0K� 
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Figure 21.4: Robust Performance/Nyquist Criterion 

This minimum occurs at 

j�j2 � 

jW2P0j 

(21.13)jW1Kj 

which is not equal to 1 in general, so that sup! 

� � kMk1. In other words, � is a less conservative 

measure than k�k1 

in this case. 

Once again, there is a graphical interpretation of the SISO robust disturbance rejection problem, 

in terms of the Nyquist criterion. From (21.12), we have 

�(M(j!)) � 1 () 

����


W1P0K 

1 + P0K 

(j!) 

����


+
 

����


W2 

1 + P0K 

(j!) 

����


� 1: (21.14)



 
 
 
 

Letting L(j!) represent the nominal loop gain P0K(j!), this can be rewritten as: 

jW1L(j!)j + jW2j � j1 + L(j!)j: (21.15) 

Graphically, we can represent this at each frequency ! as a circle centered at ;1 of radius jW2j, and 

a second circle centered at L(j!) of radius jW1L(j!)j. Robust performance will be achieved as long 

as the two circles never intersect. 

Loop-shaping Revisited 

Loop-shaping is a well-established method of control design that concentrates on the frequency-domain 

characteristics of the open-loop transfer function L � P0K. Based primarily on design experience, 

there are certain characteristics of the loop transfer function that translate into desirable control 

performance. Other open-loop characteristics are known by experience to result in undesirable or 

unpredictable behavior. This method di�ers from �-synthesis and H1 

methods, which concentrate 

on optimizing the characteristics of the closed-loop transfer function. Since, presumably, a controller 

with good behavior designed by loop-shaping should be similar in some way to a controller designed 

by more recent methods, it is of interest to look for parallels in the heuristic rules of loop-shaping and 

the more methodical methods of �-synthesis and H1. 



Identifying the sensitivity and complementary sensitivity functions from (21.14), we can write 

the RP requirement as 

jW1(j!)T (j!)j + jW2(j!)S(j!)j � 1: (21.16) 

Model uncertainty typically increases with frequency, so it is important that the complementary sensi-
tivity function decreases with increasing frequency. For disturbance rejection, which is typically most 

critical over a low frequency range, we require that S(j!) remain small. The weighting functions W1 

and W2 

are designed to re�ect this, and so might take on the form of Figure 21.5. Normally, at low 

W W2 1 

Figure 21.5: Typical Weighting Functions 

frequency, L(j!) �� 1 and at high frequency, L(j!) �� 1. Now, 

L 1 

T0 

� � S0 

� (21.17)
1 + L 1 + L 

so that at low frequency, T0 

� 1 and S0 

� 1�L. Thus we can approximate the RP requirement at the 

low end as: 

jW1j +
 

����


W2 

1
 

L


����

 
 

� 1 �) jLj � 

1


jW2j
; jW1j 

(21.18)


At high frequency, the approximation is T0 

� L and S0 

� 1, which leads to: 

jW1Lj + jW2j � 1� �) jLj � 

1 ; jW2j 

: (21.19)jW1j 

These constraints are summarized in Figure 21.6, which also notes another design rule, which is that 

the 0 dB crossing should occur at a slope no more negative than -40 dB per decade. If W1 

and W2 

do not overlap signi�cantly in frequency, then the upper and lower bounds reduce to jW2j and 1�jW1j, 

respectively. 

Example 21.2 (Loop Shaping) 

Assume P0 

is minimum phase stable with relative degree 1. Designing a controller by 

shaping the loop gain L � P0K is not a�ected by P0� just the relative degree is needed. 



L(j )ω 

0 dB 

@ -40 dB/decade max 

1 - | W | 

2 

1 

| W |1 

2 

| W | 

1 - | W | 

Figure 21.6: Typical Loop-shaping Problem 

Suppose the multiplicative uncertainty is described by 

s + 1 

W1 

� � 

20(0:01s + 1) 

i.e., the multiplicative perturbations of the plant are upper bounded by W1(j!) at each 

frequency. 

The objective is to track sinusoidal signals at the reference input in the frequency range 

[0� 1] rad�s. We would like to make the tracking error small� however, we do not know yet 

by how much. Let W2(j!) have the following frequency response � 

a 0 � ! � 1 jW2(j!)j � 

0 otherwise 

Note that this may not correspond to a stable W2(s)� however, this does not a�ect the 

resulting loop shape. We are going to exhibit the design by trial and error. Let 

b 

L(s) � : 

cs + 1 

At high frequency, ! � 20, 

1 ; jW2j 1 

L � � ! � 20: jW1j jW1j 

If we pick c � 1, then the largest value for b such that the above is satis�ed is b � 20. 

Hence 

20 

L(s) � : 

s + 1 

At low frequency, ! � 1, 

jLj � 

jW2j 

� 

a
: 

1 ; jW1j 1 ; jW1j 



Since jL(j!)j is decreasing and jW1(j!)j is increasing in the range [0� 1], the largest a can 

be solved for: 

a
jL(j1)j �
1 ; jW1(j1)j 

�


which implies that a � 13 :15. Checking the RP condition


jW2S(j!)j + jW1T (j!)j � 0:92 8! 

which implies RP is achieved and the tracking error is smaller than 1�13:15 in the range 

[0� 1]. If a better performance is desired, a possibly more complicated L needs to be used. 

The discussion in this chapter has focused on perturbations that are arbitrary dynamic systems. 

This alowed us to think of any class of structured perurbations as sets of arbitrary (structured) matrices 

at each frequency point. These matrices correspond to evaluating the dynamic system at a given 

frequency. 

In practical applications, some perturbations may be static and not dynamic. These arise in 

problems with real parameter uncertainties. We can still proceed as before and transform such problems 

to the general M -� diagram. In this case, � will have a combination of both static and dynamic 

perturbations. � for such a class can be de�ned as before, and it will provide a necessary and su�cient 

condition for robust stability. 

The main issue here is computing a good upper bound for �. Of course, we can always embed 

this class of perturbations in a larger class containing dynamic perturbations and use D-scaling to 

obtain an upper bound. This, however, gives conservative conditions. Computing non-conservative 

upper bounds of � for such perturbations remains an active area of research. 

21.7 Rank-One � 

Although we do not have methods for computing � exactly, there is one particular situation where this 

is possible. This situation occurs if M has rank 1, i.e. 

M � ab� 

where a� b 2 C 

n . Then it follows that � with respect to 

6 � containing complex diagonal perturbations 

is given by 

1 

� inf f�max(�) j det(I ; M�) � 0g: 

�(M) �26 � 

However, 

det(I ; M�) � det(I ; ab��) 

0 BBB@ 

det(I ; b��a)�
 2
 31 

b�1a1 6664


b� 

2a2 

. . 


 .


b� 

nan


CCCA 

7775 

� det I ; [�1 

� � � �n]


2
 3
 

b�1a1 

� 1 ; [�1 

� � � �n] 

6664


b� 

2a2 

. . 

7775


�



 . 

b� 

nan 


 



- -

and �max(�) � maxi 

j�ij. Hence, 

1
 

8 ����


j�ij 

���������


9 ����


2
 3


b� 

1a1 

b� 

2a2 

.
 .


6664


7775



 
 

[�1 

� � � �n� inf ]
 � 1 :
 ����


max ���:


�(M)
 

i�1 

�:::��n 


 . 

b� 

nan 


 


 

Optimizing the RHS, it follows that (verify) 


 


 

Xn 

i�1 

jb� 

iaij 

1 1
 

� 

Pn 

$ �(M) � 

iaij 

:


b��(M)
 ji�1 

Notice that the SISO robust disturbance rejection problem is a rank-one problem. This follows since 2
 3
 

1 

M � 

4
 

;W1K 5 [ 

P0 

]: 

1 + P0K 1 + P0KW2 

Then ����


W1P0K 

1 + P0K 

(j!) 

����


+
 

����


W2 

1 + P0K 

(j!) 

����


�(M(j!)) � 


 
 
 
 

which is the condition we derived before. 

Coprime Factor Perturbations 

Consider the class of SISO systems ����


�
 �
 

N(s) 

2W2� k�ik � 1� �
 N � N0 

+�1W1� D � D0 

+� 

D(s) 


 

where the nominal plant is N0�D0 

with the property that both N0 

and D0 

are stable with no common 

zeros in the RHP. Assume that K stabilizes N0�D0. This block diagram is shown in Figure 21.7. 

- W1 

z1- �1 

w1 

w2 �2 

� 

z2 W2 

� 

� � m
m
m
+
 

+
 +
 

; 6 

�K 

Figure 21.7: Coprime Factor Perturbation Model 
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The closed loop block diagram can be mapped to the M -� diagram where 2
 3
5


; 

W1 

K ; 

W1 

K 

D0 

+N0 

K D0 

+N0 

K 4
M �


� 

2
 4
 

D 

W2 

0 

+N0 

K 

; 

W1 

K 

D0 

+N0 

K 

D 

W2 

0 

+N0 

K 

W2 

D0 

+N0 

K 3
 5 [1
 1]: 

Hence, M has rank 1 and 

�(M(j!)) � 

����


W1K 

D0 

+ N0K 

����


+
 

����


����


W2 

D0 

+ N0K 

:
 


 
 
 
 

Robust Hurwitz Stability of Polynomials with Complex Perturbations 

Another application of the structured singular value with rank one matrices is the robust stabil-�ity of a family of polynomials with complex perturbations of the coe�cients. In this case let � ��T 

�n;1 

�n;2 

: : : �0 

and consider the polynomial family 

P (s� �) � s 

n + (an;1 

+ �n;1�n;1)s 

n;1 + : : : + (a0 

+ �0�0)� 

where ai, �i, and �i 

2 C and j�ij � 1. We want to obtain a condition that is both necessary and 

su�cient for the Hurwitz stability of the entire family of polynomials P (s� �). We can write the 

polynomials in this family as 

; 

P (s� 0) + P~(s� �)P (s� �) � 

�


(21.20)
�
 �
;


�n;1�n;1s 

n;1 + : : :


n;1n + �0�0 

� (21.21)+ an;1s + : : : + a0 

+s 

which can also be rewritten as 2
 32 

�n;1 

0 0 : : : 0 �n;1s
n;1 

3
666664


0 �n;2 

0 : : : 0 

. . .
 . . .
 . 

. .
 

�1 

0 

666664 

777775 

�n;2s
n;2 

.
 .
 .
 

�1s 

777775


�� 

P (s� �) � P (s� 0) + 
1 1 : : : 1 :



 
 

0 0 : : : 0 �0 

�0 

We assume that the center polynomial P (s� 0) is Hurwitz stable. This implies that the stability of the 

entire family P (s� �) is equivalent to the condition that 

1


�� 

1 + 
1 1 : : : 1
 

P (j!� 0) 

2666664


32 3
 

�n;1 

0 0 : : : 0 �n;1(j! )n;1 

0 �n;2 

0 : : : 0 

. . .
 . . .
 . 

. .
 

�1 

0 

666664 

777775 

�n;2(j! )n;2 

.
 .
 .
 

�1(j!) 

777775


6� 0 


 
 

0 0 : : : 0 �0 

�0 



1 

for all ! 2 R and j�ij � 1. This is equivalent to the condition that 

�n;1(j! )n;1
3
2
0 CCCCCA

entire family 

�(M(j!)) � 1


for all ! 2 R, where 

BBBBB@


666664


777775


�� 

det 6

 

3
2
666664


.
 . . 

�1(j!) 

�0 

� 

777775 

1 1 : : : 1 :
 

�n;2(j! )n;2 

�
 � 0 

for all ! 2 R and � 2 

6 � with k�k1 

� 1. Now using the concept of the structured singular value we 

arrive at the following condition which is both necessary and su�cient for the Hurwitz stability of the 

1
 .
I +
 
1 1 : : : 1


. .P (j!� 0) 

�1(j!)
 
 
 

�0 

�n;1(j! )n;1 

�n;2(j! )n;2 �
1


M(j!) � 

P (j!� 0) 

Clearly this is a rank one matrix and by our previous discussion the structured singular value can be 

computed analytically resulting in the following test 

Xn 

jP (j!� 0)j 

i�1 

for all ! 2 R. 

1
 j�n;ijj!jn;i � 1




Exercises 

Exercise 21.1 In decentralized control, the plant is assumed to be diagonal and controllers are de-
signed independently for each diagonal element. If however, the real process is not completely decou-
pled, the interactions between these separate subsystems can drive the system to instability. 

Consider the 2 � 2 plant � � 

P11 

P12P (s) � : 

P21 

P22 

Assume that P12 

and P21 

are stable and relatively small in comparison to the diagonal elements, and 

only a bound on their frequency response is available. Suppose a controller K � diag(K1�K2) is 

designed to stabilize the system P0 

� diag(P11� P22). 

1. Set-up the problem as a stability robustness problem, i.e., put the problem in the M ; � form. 

2. Derive a non-conservative condition (necessary and su�cient) that guarantees the stability ro-
bustness of the above system. Assume the o�-diagonal elements are perturbed independently. 

Reduce the result to the simplest form (an answer like �(M) � 1 is not acceptable� this problem 

has an exact solution which is computable). 

3. How does your answer change if the o�-diagonal elements are perturbed simultaneously with the 

same �. 

Exercise 21.2 Consider the rank 1 � problem. Suppose 

6 �, contains only real perturbations. Com-
pute the exact expression of �(M). 

Exercise 21.3 Consider the set of plants characterized by the following sets of numerators and de-
nominators of the transfer function: 

N(s) � N0(s) + N�(s)�� D(s) � D0(s) + D�(s)� 

Where both N0 

and D0 

are polynomials in s, � 2 R
n, and N�� D� 

are polynomial row vectors. The 

set of all plants is then given by: 

N(s)
� � f 

D(s) 

j � 2 R
n� j�ij � �g 

Let K be a con troller that stabilizes 

N0 . Compute the exact stability margin� i.e., compute the largest D0 

� such that the system is stable. 
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Chapter 22 

Reachability of DT LTI Systems
 

22.1 Introduction 

We now begin a series of lectures to address the question of synthesizing feedback controllers. This 

objective requires a detailed understanding of how inputs impact the states of a given system, a notion 

we term reachability. Also, this objective requires a detailed understanding of the information the 

output provides about the rest of the states of the dynamic system, a notion we term observability. 

These notions together de�ne the minimal set of conditions under which a stabilizing feedback controller 

exists. 

22.2 The Reachability Problem 

In previous lectures we have examined solutions of state-space models, the stability of undriven models, 

some properties of interconnections, and input-output stability. We now turn to a more detailed 

examination of how inputs a�ect states, for the nth-order DT system 

x(i + 1) � Ax(i) + Bu(i) : (22.1) 

(The discussion of reachability in the DT case is generally simpler than in the CT case that we will 

consider next Chapter, but some structural subtleties that are hidden in the CT case become more 

apparent in the DT case. For the most part, however, DT results parallel CT results quite closely.) 

Recall that 

k 1;X
x(k) � Ak x(0) + Ak;i;1 Bu(i) 

i�0 10 ih 

� Ak x(0) + Ak;1B j Ak;2B j � � � j B 

BBB@


u(0) 

u(1) CCCA


. . 


 . 

u(k ; 1) 


 

� Ak x(0) + Rk 

Uk 

(22.2) 



where the de�nition of Rk 

and Uk 

should be clear from the equation that precedes them. Now consider 

whether and how we may choose the input sequence u(i), i 2 [0� k; 1], so as to move the system from 

x(0) � 0 to a desired target state x(k) � d at a given time k. If there is such an input, we say that 

the state d is reachable in k steps. It is evident from (22.2) that | assuming there are no constraints 

placed on the input | the set R k 

of states reachable from the origin in k steps, or the k-reachable set, 

is precisely the range of Rk, i.e. 

R k 

� Ra(Rk) (22.3) 

The k-reachable set is therefore a subspace, and may be referred to as the k-reachable subspace. We 

call the matrix Rk 

the k-step reachability matrix. 

Theorem 22.1 

For k � n � `, 

Ra(Rk) � Ra(Rn) � Ra(R`) (22.4) 

so the set of states reachable from the origin in some (�nite) number of steps by appropriate choice of 

control is precisely the subspace of states reachable in n steps. 

Proof. 

The fact that Ra(Rk) � Ra(Rn) for k � n follows trivially from the fact that the columns of Rk 

are in-
cluded among those of Rn. To show that Ra(Rn) � Ra(R`) for ` � n, note from the Cayley-Hamilton 

theorem that Ai for i � n can be written as a linear combination of An;1� � � � � A� I , so all the columns 

of R` 

for ` � n are linear combinations of the columns of Rn. Thus (22.4) is proved, and the rest of 

the statement of the theorem follows directly. 

In view of Theorem 22.1, the subspace of states reachable in n steps, i.e. Ra(Rn), is referred 

to as the reachable subspace, and will be denoted simply by R � any reachable target state, i.e. any 

state in R , is reachable in n steps (or less). The system is termed a reachable system if all of R
n is 

reachable, i.e. if rank(Rn) � n. The matrix h i 

Rn 

� An;1B j An;2B j � � � j B � (22.5) 

is termed the reachability matrix (often written with its block entries ordered oppositely to the order 

that we have used here, but this is not signi�cant). 

Example 22.1 Consider the single-input system � � � � � � � � 

x1(k + 1) 1 0 x1(k) 1 

� + u(k): 

x2(k + 1) 0 1 x2(k) 1 

The reachable subspace is evidently (from symmetry) the line x1 

� x2. This system is 

not reachable. 

The following alternative characterization of R k 

is useful, particularly because its CT version 

will play an important role in our development of the CT reachability story. Let us �rst de�ne the 

k-step reachability Gramian Pk 

by 

k;1X 

Pk 

� RkRk
T � AiBBT (AT )i (22.6) 

i�0 

This matrix is therefore symmetric and positive semi-de�nite. We then have the following result. 



Lemma 22.1 

Ra(Pk) � Ra(Rk) � R k 

: (22.7) 

Proof. 

It is easy to see that Ra(Pk) � Ra(Rk). For the reverse inclusion, we can equivalently show that 

Ra�(Pk) � Ra�(Rk) 

For this, note that 

q 

T Pk 

� 0 �) q 

T Pkq � 0 

() hRk
T q� Rk

T qi � 0 

() q 

T Rk 

� 0 

so any vector in Ra�(Pk) is also in Ra�(Rk).
 

Thus the reachable subspace can equivalently be computed as Ra(P`) for any ` � n. If the system is
 

stable, then P1 

:� P is well de�ned, and is easily shown to satisfy the Lyapunov equation
 

APAT ; P � ;BBT (22.8) 

We leave you to show that (22.8) has a (unique) positive de�nite (and hence full rank) solution P if 

and only if the system (A�B) is reachable. 

Reachability from an Arbitrary Initial State 

Note from (22.2) that getting from a nonzero starting state x(0) � s to a target state x(k) � d requires 

us to �nd a Uk 

for which 

d; Ak s � Rk 

Uk 

(22.9) 

For arbitrary d, s, the requisite condition is the same as that for reachability from the origin. Thus we 

can get from an arbitrary initial state to an arbitrary �nal state if and only if the system is reachable 

(from the origin)� and we can make the transition in n steps or less, when the transition is possible. 

Controllability versus Reachability 

Now consider what is called the controllability problem, namely that of bringing an arbitrary initial 

state x(0) to the origin in a �nite number of steps. From (22.2) we see that this requires solving 

;Ak x(0) � Rk 

Uk 

(22.10) 

If A is invertible and x(0) is arbitrary, then the left side of (22.10) is arbitrary, so the condition for 

controllability of x(0) to the origin in a �nite number of steps is precisely that rank(Rk) � n for some 

k, i.e. just the reachability condition that rank(Rn) � n. 

If, on the other hand, A is singular (i.e. has eigenvalues at 0), then the left side of (22.10) will 

be con�ned to a subspace of the state space, even when x(0) is unrestricted. The range of Ak for 

a singular A may decrease initially, but Ra(Ak) � Ra(An) for k � n (since by stage n the Jordan 

blocks associated with the zero eigenvalues of A are all guaranteed to have been \zeroed out" in An). 

Meanwhile, as we have seen, the range of Rk 

may increase initially, but Ra(Rk) � Ra(Rn) for k � n. 



It follows from these facts and (22.10) that an arbitrary initial state is controllable to 0 in �nite time, 

i.e.	 the system is controllable, i� 

Ra  (An) � Ra  (Rn) (22.11) 

For invertible A, we recover our earlier condition. (The distinction between reachability and controlla-
bility is not seen in the CT case, because the state transition matrix there is eAt rather than Ak, and 

is always invertible.) 

22.3 Modal Aspects 

The following result begins to make the connection of reachability with modal structure. 

Corollary 22.1 

The reachable subspace R is A-invariant, i.e. x 2 R �) Ax 2 R . We write this as AR � R 

Proof. 

We �rst show 

Ra  (ARn) � Ra  (Rn) (22.12) 

For this, note that	 � � 

An;1B � � � ABARn 

� 
AnB 

The last n ; 1 blocks are present in Rn, while the Cayley-Hamilton theorem allows us to write AnB 

as a linear combination of blocks in Rn. This establishes (22.12). It follows that x � Rn� �) Ax � 

ARn� � Rn� 2 R . 

Some feel for how this result connects to modal structure may be obtained by considering what 

happens if the subspace R is one-dimensional. If v (6� 0) is a basis vector for R , then Corollary 22.1 

states that 

Av � �v (22.13) 

for some �, i.e. R is the space spanned by an eigenvector of A. More generally, it is true that any 

A-invariant subspace is the span of some eigenvectors and generalized eigenvectors of A. (It turns out 

that R is the smallest A-invariant subspace that contains Ra  (B), but we shall not pursue this fact. ) 

Standard Form for Unreachable Systems 

If a system of the form (22.1) is unreachable, it is convenient to choose coordinates that highlight this 

fact. Speci�cally, we shall show how to change coordinates (using a similarity transformation) from 

x � Tz to � � 

z � T 

;1 x � 

z1 

z2 

where z1 

is an r-vector and z2 

is an (n ; r)-vector, with r denoting the dimension of the reachable 

subspace, r � dim R . In these new coordinates, the system (22.1) will take the form � � � � � � � � 

z1(k + 1) 

A1
�	


A12 

z1(k) + 

B1 u(k) (22.14)
z2(k + 1) 0 A2 

z2(k) 0 

with the reachable subspace being the subspace with z2 

� 0. We shall refer to a system in the form 

(22.14) as being in the standard form for an unreachable system. 



The matrix T is constructed as follows. Let T1 

n�r be a matrix whose columns form a basis for 

the reachable subspace, i.e. 

Ra(T1) � Ra(Rn) � 

and let T2 

n�(n;r) 

be a matrix whose columns are independent of each other and of those in T1. Then 

choose 

T � [ T1 

j T2 

] : 

This matrix is invertible, since its columns are independent by construction. We now claim that � � 

A [ T1 

j T2 

] � TA� � [ T1 

j T2 

] 

Ar
1 

�r A12 (22.15)
0 A2 2 3 

Br�m 

1 

B � TB� � [ T1 

j T2 

] 

4 ;;; 

5 : 

0 

Our reasoning is as follows. Since the reachable subspace is A-invariant, the columns of AT1 

must 

remain in Ra(T1), which forces the 0 block in the indicated position in A�. Similarly, the presence of 

the zero block in B� is a consequence of the fact that the columns of B are in the reachable subspace. 

The above standard form is not uniquely de�ned, but it can be shown (we leave you to show it!) 

that any two such standard forms are related by a block upper triangular similarity transformation. 

As a result, A1 

and A2 

are unique up to similarity transformations (so, in particular, their Jordan 

forms are uniquely determined). 

From (22.14) it is evident that if z2(0) � 0 then the motion of z1(k) is described by the rth-order 

reachable state-space model 

z1(k + 1) � A1z1(k) + B1u(k): (22.16) 

This is also called the reachable subsystem of (22.1) or (22.14). The eigenvalues of A1, which we may 

refer to as the reachable eigenvalues, govern the ZIR in the reachable subspace. Also, the behavior of 

z2(k) is described by the undriven state-space model 

z2(k + 1) � A2z2(k) (22.17) 

and is governed by the eigenvalues of A2, which we m ay call the unreachable eigenvalues. 

There is no loss of generality in assuming a given unreachable system has been put in the standard 

form for unreachable systems� proofs of statements about unreachable systems are often much more 

transparent if done in these coordinates. 

Modal Reachability Tests 

An immediate application of the standard form is to prove the following modal test for (un)reachability. 

Theorem 22.2 

The system (22.1) is unreachable if and only if wT B � 0 for some left eigenvector wT of A. We say 

that the corresponding eigenvalue � is an unreachable eigenvalue. 

Proof. 

If wT B � 0 and wT A � �wT with wT � 0, then 6 wT AB � �wT B � 0 and similarly wT AkB � 0, so 

wT Rn 

� 0, i.e. the system is unreachable. 



Conversely, if the system is unreachable, transform it to the standard form (22.14). Now let w2 

T 

denote a left eigenvector of A2, with eigenvalue �. Then wT � [ 
0 w2 

T ] is a left eigenvector of the 

transformed A matrix, namely A�, and is orthogonal to the (columns of the) transformed B, namely B�. 

An alternative form of this test appears in the following result. 

Corollary 22.2 

The system (22.1) is unreachable if and only if [ 
zI ; A B ] loses rank for some z � �. This � is 

then an unreachable eigenvalue. 

Proof. 

The matrix [ 
zI ; A B ] has less than full rank at z � � i� wT [ 

sI ; A B ] � 0 for some wT 6� 0. 

But this is equivalent to having a left eigenvector of A being orthogonal to (the columns of) B. 

Example 22.2 

Consider the system � � � � 

3 0 1 

x(k + 1) � x(k) + u(k)
0 3 1 | {z } | {z }
A B 

T TLeft eigenvectors of A associated with its eigenvalue at � � 3 are w1 

� [ 
1 0 ] and w�[ 0 1 ], 

neither of which is orthogonal to B. However, wT � [ 
1 ;1 ] is also a left eigenvector associated 0 

with � � 3, and is orthogonal to B. This example drives home the fact that the modal unreachability 

test only asks for some left eigenvector to be orthogonal to B. 

Jordan Chain Interpretation 

Recall that the system (22.1) may be thought of as having a collection of \Jordan chains" at its 

core. Reachability, which we �rst introduced in terms of reaching target states, turns out to also 

describe our ability to independently \excite" or drive the Jordan chains. This is the implication of 

the reachable subspace being an A-invariant subspace, and is the reason why the preceding modal tests 

for reachability exist. 

The critical thing for reachability is to be able to excite the beginning of each chain� this excitation 

can then propagate down the chain. An additional condition is needed if several chains have the same 

eigenvalue� in this case, we need to be able to independently excite the beginning of each of these 

chains. (Example 22.2 illustrates that reachability is lost otherwise� with just a single input, we are 

unable to excite the two identical chains independently.) With distinct eigenvalues, we do not need to 

impose this independence condition� the distinctness of the eigenvalues permits independent motions. 

Some additional insight is obtained by considering the distinct eigenvalue case in more detail. 

In this case, A in (22.1) is diagonalizable, and A � V �W , where the columns of V are the right 

eigenvectors of A and the rows of W are the left eigenvectors of A. For x(0) � 0 we have 

nX 

x(k) � v`w`
T Bg`(k) (22.18) 

`�1 

where 

k;1X 

g`(k) � �k;i;1 u(i) (22.19)` 

i�0 



If wj
T B � 0 for some j, then (22.18) shows that x(k) is con�ned to the span of fv`g`�6 j � i.e. the system 

is not reachable. For example, suppose we have a second-order system (n � 2), and suppose w1 

T B � 0. 

Then if x(0) � 0, the response to any input must lie along v2. This means that v2 

spans the reachable 

space, and that any state which has a component along v1 

is not reachable. 



Exercises 

Exercise 22.1 Suppose you are given the single-input, nth-order system x(k + 1) � Ax(k) + bu(k), 

and assume the control u at every time step is con�ned to lie in the interval [0� 1]. Assume also that an 

eigenvalue of A, say �1, is real and nonnegative. Show that the set of states reachable from the origin 

is con�ned to one side of a hyperplane through the origin in Rn . (Hint: An eigenvector associated 

with �1 

will help you make the argument.) 

[A hyperplane through the origin is an (n ; 1)-dimensional subspace de�ned as the set of vectors 

x in Rn for which a0x � 0, where a is some �xed nonzero vector in Rn . Evidently a is normal to the 

hyperplane. The two \sides" of the hyperplane, or the two \half-spaces" de�ned by it, are the sets of 

0 0x for which a x � 0 and a x � 0.] 

Exercise 22.2 Given the system ���� 

a b d 

x(k + 1) � x(k) + u(k)
0 c e 

where a� b� c� d� e are scalars, deduce precisely what condition these coe�cients satisfy when the 

system is not reachable. Draw a block diagram corresponding to the above system and use it to 

interpret the following special cases in which reachability is lost: (a) e � 0� (b) b � 0 and d � 0� (c) 

b � 0 and c � a. 

Exercise 22.3 (a) Given m-input system x(k + 1) � Ax(k) + Bu(k), where A is the Jordan-form 

matrix 0
 1


2 1 0 0 0
 

A �
 

BBB@


0 2 0 0 0
 

0 0 2 0 0
 

CCCA

 

0 0 0 3 1
 

0 0 0 0 3
 


 

obtain conditions that are necessary and su�cent for the system to be reachable. (Hint: Your 

conditions should involve the rows bi 

of B. Some form of the modal reachability test will | not 

surprisingly! | lead to the simplest solution.) 

(b) Generalize this reachability result to the case where A is a general n � n Jordan-form matrix. 

(c)	 Given the single-input, reachable system x(k + 1) � Ax(k) + bu(k), show that there can be only 

one Jordan block associated with each distinct eigenvalue of A. 

Exercise 22.4 Given the n-dimensional reachable system x(k + 1) � Ax(k) + Bu(k), suppose that 

u(k) is generated according to the nonlinear feedback scheme shown in the �gure, where u(k) � 

w(k) + f(x(k)), with f(:) being an arbitrary but known function, and w(k) being the new control 

input for the closed-loop system. 



Show that w(k) can always be chosen to take the system state from the origin to any speci�ed target 

state in no more than n steps. You will thereby have proved that reachability is preserved under (even 

nonlinear) state feedback. 

w + u	- l - System 

x 

6+ 

f(�) 

� 

xk+1 

� Axk 

+ B(wk 

+ f(xk)) 

Exercise 22.5 Consider the following linear SISO System, �: 

x(k + 1) � A(k)x(k) + B(k)u(k) 

y(k) � C(k)x(k) + D(k)u(k) 

where A(k) � A(k + N) 8k � 0, similarly for B(k)� C(k), and D(k). 

(a)	 Show that � is N -Periodic, i.e., for zero initial conditions, show that if y is the output response 

for some input u, then y(k ; N) is the output response for u(k ; N). Assume for simplicity that 

u(k) � 0 for k � 0. 

We want to get a di�erent representation of this system that is easier to work with. To achieve 

this, we will group together every N successive inputs starting from k � 0. We will also do the 

same for the output. To be more precise, we will de�ne a mapping L, called a lifting, such that 

L : (u(0)� u(1)� u(2)� : : : � u(k)� : : :) ! u~ 

where 00 1
 0
 1
 0
 1
 1
 u(0) u(N) u(kN) 

u~ � 

BB@ 

BB@ 

u(1) 

.
.


CCA


�
 

BB@


u(N + 1) 

.
 .
 

CCA


� : : : �
 

BB@


u(kN + 1) 

.
 .
 

CCA


CCA: : :
 


 
 

�
 :



 
 
 
 

.


u(N ; 1) 

.
 

u(2N ; 1) 

.


u((k + 1)N ; 1) 

Similarly, L : y ! y~. 

~(b)	 Show that the system mapping u~ to y~ is linear time invariant. We will denote this by �, the 

lifted system. What are the dimensions of the inputs and outputs. (In other words, by lifting 

the inputs and outputs, we got rid of the periodicity of the system and obtained a Multi-Input 

Multi-Output System). 



(c)	 Give a state-space description of the lifted system. (Hint: Choose as a state variable ~x(k) � x(kN), 

i.e., samples of the original state vector. Justify this choice). 

~(d)	 Show that the reachable subspace of the lifted system � is included in the reachable subspace of 

the periodic system �. Show that the converse is true if the periodic system is reachable in T 

steps with T � rN (a multiple of the period). 

~(e)	 Is it true that reachability of the periodic system � implies reachability of the lifted system �. 

Prove or show a counter example. 
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Chapter 24 

Observability
 

24.1 Introduction 

Observability is a notion that plays a major role in �ltering and reconstruction of states from inputs 

and outputs. Together with reachability, observability is central to the understanding of feedback 

control systems. 

24.2 Observability 

It turns out it is more natural to think in terms of \unobservability" as re�ected in the following 

de�nition. 

De�nition 24.1 A state q of a �nite dimensional dynamic system is said to be unobservable over [0� T ) 

if, with x(0) � q and for every u(t) over [0� T ), we get the same y(t) as we would with x(0) � 0, i.e. 

an unobservable initial condition cannot be distinguished from the zero initial condition. The dynamic 

system is called unobservable if it has an unobservable state, and otherwise it is called observable. 

The initial state x(0) can be uniquely determined from input/output measurements i� the system 

is observable (prove this). This can be taken as an alternate de�nition of observability. 

24.3 Discrete-Time Analysis 

We begin with the system description in state space: 

x(k + 1) � Ax(k) + Bu(k) 

y(k) � Cx(k) + Du(k) (24.1) 


 



Suppose we are given u(t) and y(t) for 0 � t � T . We can expand (24.1) as follows: 3232 

y(0) C 6664


7775


�
 

6664


7775


x(0) 

y(1) 

.
 .
 

CA
 

. . .
 .



 
 
 
 

y(T T ;1; 1) CA

 32 

D 0 0 � � � 0 u(0) 

2
 3
6664


6664 

7775 

7775


CB D 0 � � � 0 

. . .
 . . .
 

u(1) 

.
 .
 

(24.2)
+


. . .
 .



 
 

CAT ;2B CAT ;3B 0 � � � D u(T ; 1) 

Now the second term on the right | the forced response | is known, so we can subtract it from the 

vector of measured outputs to get 2
 3
 

C 

y � 

6664


7775


CA


. . 

x(0) � OT 

x(0)� (24.3)



 . 


 

CAT ;1 

where we have made the obvious de�nitions for y and the T -step observability matrix OT 

. The issue 

of observability over T steps then boils down to our ability to determine x(0) uniquely from knowledge 

of y. Equation (24.3) shows that we only need to check observability for u � 0� the e�ect of a nonzero 

input is just to change what y is, but in either case y is a known vector. The following result is an 

immediate consequence of (24.3). 

Theorem 24.1 The set of states that is unobservable over T steps is precisely N (OT 

), and is therefore 

a subspace. 

Notice also that 

N (Ok) � N (Ok+1) (24.4) 

N (On) � N (On+`) � ` � 1 (24.5) 

Equations (24.4) and (24.5) lead to the following theorem. 

Theorem 24.2 If x(0) � � is unobservable over n steps, then it is unobservable over any number of 

steps. Equivalently, the system is observable if and only if rank(On) � n. 

Proof: The proofs of all of these results parallel the proofs of similar results in reachability, and are 

left to the reader to complete. 

Note that in the context of reachability, it was the set of reachable states that formed a subspace, 

whereas now it is the set of unobservable states that forms a subspace. We denote this subspace by 

O (C�A) or simply O . It is evident that 

O (C�A) � R 

� 

(A0� C 0) 

where R (A0� C 0) is the reachable subspace that would be associated with the system 

d(k + 1) � A0d(k) + C 0 e(k) 



(whose state vector is d and input is e). Reachability and unobservability are said to be dual concepts, 

on account of the preceding connections. 

Example 24.1 (Harmonic Oscillator) 

Suppose the position and velocity of a particle that is oscillating harmonically at a fre-
quency of ! are sampled with a sampling period of � seconds. A state-space description 

of the sampled state vector is given by: �
 �
 

cos(!�) 

1 

x(k + 1) � 

! 

sin(!�) 

x(k)� ;! sin(!�) cos(!�) 

where x1 

is the position of the particle, and x2 

is the velocity. Suppose the measured 

output is x1, i.e. �
 �
 

y(k) � Cx(k) � 
1 0 x(k):
 

The subspace of initial conditions that is unobservable over 1 time step is just the nullspace
 

of C: ��  ��
 �
 �
 0 N (C) � N 
1 0 � span : 

1 

The subspace unobservable over 2 time steps is � � 

1 0 N 

cos(!�) ! 

1 sin !� 8 ��  �� � 0�� 

span if !� � N�� N 2 Z 

1 

�
 ��:
 � if !� �6 N� 

This simply says that if the sampling interval is an integer multiple of one-half the os-
cillation period, the system will not be observable. Note that an unobservable system 

with N � 1 corresponds to sampling at exactly the Nyquist rate� the system is always 

observable at sampling frequencies higher than the Nyquist rate. 

24.3.1 Modal Interpretation of Unobservability 

We start with the time-domain representation of the output for u(k) � 0. If A is diagonalizable, this 

yields 

y(k) � CAk x(0) (24.6) 

nX
� C �ki 

viwi
T x(0) 

i�1 

nX 

� Cvi[wi
T x(0)]�i

k : (24.7) 

i�1 

Suppose there exists an eigenvector vi 

�� 1 � i� � n, such that Cvi� � 0. Is there an initial state such 

that y(k) � 0 � 8 k � 0� If we choose x(0) � vi� , then, referring to (24.7), we see that 

T T � i�wi 

x(0) � wi 

vi� � 0� for i 6 : 

But when i � i� in (24.7), Cvi� � 0. Hence y(k) � 0� 8 k � 0. 



24.3.2 The Observability Gramian 

We begin by de�ning the k-step observability Gramian as 

Qk 

� Ok
T Ok 

k;1 

� (Ai)T CT CA : 

i 

The unobservable space over k steps is evidently the nullspace of Qk. The system is observable if and 

only if rank(Qn) � n. If the system is stable, then we can de�ne the observability Gramian as 

X 

i�0 

1X 

Q � lim Qk 

� (Ai)T CT CA : 

i 

k!1 

i�1 

Q satis�es a Lyapunov equation that is quite similar to the reachability gramian, i.e., 

AT QA ;Q � ;CT C:  

24.4 Continuous-Time Analysis 

As with reachability, the discussion of observability for continuous-time systems is algebraically very 

similar to the discussion for discrete-time systems. We begin with a theorem. 

Theorem 24.3 For continuous-time systems, the following conditions are equivalent: 

1. x(0) is unobservable in time T . 

2. x(0) is unobservable in any time. 2
 3
 

C 

3. Onx(0) � 

6664


CA


. . 

7775


x(0) � 0: 


 . 


 

CAn;1 

Proof: 1) �) 2): 

If � is unobservable in time T , then for x(0) � �, if u(t) � 0 then y(t) � 0� 0 � t � T . It follows 

that 

0 � CeAt�� 0 � t � T 

From this, it follows that 

CeA0� � C� � 0 

d 

CeAt� 

dt 

���� 

����


t�0 

. . . 

� CA� � 0


dk 

CeAt� � CAk� � 0: 

dtk 


 

t�0 



Now, since the power series representation is valid 8 t � 0, this implies that 

CeAt� � 0� 8 t � 0: 

Hence the result. 

2) �) 1): 

This is immediate. 

2) () 3): This follows from the Taylor series argument, since by Cayley-Hamilton, 2 

C C 

32 3 7775


N 

6664


7775


� N 

6664


CA
 

.
 .
 

CA
 

.
 .
 

8 k � 0: 

.
 .



 
 
 
 

CAn;1 CAn+k 

24.4.1 The Observability Gramian 

De�ne Z t 

Qt 

� (e 

A� )T CT CeA� d�: 

0 

The system is then observable if and only if rank(Qt) � n� 8 t � 0. If A is stable, then we may 

de�ne the observability Gramian as Z 1 

Q � (e 

A� )T CT CeA� d�: 

0 

Once again, Q satis�es a Lyapunov equation: 

AT Q + QA � ;CT C:  

24.5 Further Results 

In view of duality, we can use our reachability results to immediately derive various conclusions, tests, 

standard and canonical forms, etc., for observable and unobservable systems. We shall simply list the 

main results: 

Fact 1: The unobservable subspace is A-invariant (and is in fact the largest A-invariant subspace 

contained in the nullspace of C). 

Fact 2: An unobservable pair (C�  A  ) can be taken by a similarity transformation to the form �
 �
 

A ! 

A1 

0 

A12 

A2 

(24.8) �
 �

 

C ! 
0 C2 

(24.9) 



where (C2� A2) is observable. The unobservable subspace of the system associated with (24.8), (24.9)�
 �
 � 

is given by states of the form . The eigenvalues of A1 

are the unobservable eigenvalues of the 

0 

system, while those of A2 

are the observable eigenvalues. 

Fact 3: The system is unobservable i� Cv � 0 for some right eigenvector v of A, associated with an 

eigenvalue �� or equivalently i� �
 �
 

sI ; A 

(24.10)
C 

drops rank for some s � �. This � is an unobservable eigenvalue of the system. 

Fact 4: The dual of the problem of controllability to the origin is referred to as constructability of 

the �nal state, i.e. instead of trying to uniquely determine the initial state x(0) from input/output 

measurements over an interval, we wish to determine the �nal state. In CT, the condition for this 

reduces to the observability condition, but in DT it turns out that x(k) (for k � n) can be determined 

from u(i)� y(i) over [0� k ; 1] i� 

N (On) � N (An): (24.11) 

We leave you to prove this. Note that for invertible A we recover the observability condition. 

Fact 5: Any single-output (SO) observable nth-order system is similarity transformable to an observ-
ability canonical form (dual to the reachability/controllability canonical form presented last lecture) 

or to an observer canonical form (dual to the controller canonical form of last lecture). 

24.5.1 Standard Form for Unobservable Systems 

Given an arbitrary system, we can construct a rectangular matrix T o
n�r , whose columns span the 

nullspace of the observability matrix On. We may then construct T 

0 by selecting (n ; r) linearly 

independent vectors, such that �
 �
 

rank(T 

n�n) � rank 
To 

T 

0 � n: 

Since T is invertible, we can perform a similarity transform to generate an equivalent system, where 

we have: �
 �
 ����
AT � A To 

T 

0 � TA � 
To 

T 

0 

A1 

A2 

0 A3 

(24.12)


���� 

CT � C To 

T 

0 � C � 0 C1 

(24.13) 

The presence of the zero blocks in the transformed system and output matrices follows from an argu-
ment similar to that used for the reachable canonical form coupled with the fact the the unobservable 

space is also A-invariant. It follows from (24.12) and (24.13) that 3232 

CT 

0 C1 

On 

� 

6664


7775


�
 

6664


7775


CAT
 

.
 .
 

0 C1A3 

. .
 . .
 

:
 


 . 
. .



 
 
 

CAn;1T 0 C1A
n
3 

;1 

Now since the transformed system is equivalent to the original one, 

rank(On) � rank(On): 



Theorem 24.4 (Modal Test) A continuous-time system is observable if and only if � � 

�I ; A 

rank � n� 8 � 2 C 

C 

Proof: The proof follows from the observable canonical form. 



Exercises 

Exercise 24.1 (a) Given the observable nth-order DT system x(k + 1) � Ax(k) + Bu(k), y(k) � 

Cx(k) + Du(k), show that we can uniquely determine the initial condition x(0) from output 

measurements alone, i.e. without knowledge of the inputs u(i), if D � 0, CB � 0, CAB � 

0� : : : � CAn;2B � 0. 

(b)	 (Optional) Prove that the su�cient condition in (a) is also necessary in the case where the output 

y is scalar. 

(c)	 Verify in the case of a single-input, single-output (SISO) system that the condition in (a) corre-
sponds to the transfer function of the system having no (�nite) zeros, only poles. 

Exercise 24.2 Consider the system x(k +1) � Ax(k), y(k) � Cx(k), and suppose that A and C have 

the following form: 0
 

A11 

A12 

0 : : : 0
1


A �


BBBB@


A21 

A22 

A23 

: : : 0 

. . . . . . . . . . . . . . . 

Ak;1�1 

Ak;1�2 

Ak;1�3 

: : : Ak;1�k 

CCCCA

 

Ak1 

Ak2 

Ak3 

: : : Akk  

C � ( C1 

0 0 : : : 0 ) 

with the Ai;1�i 

and C1 

all having full column rank, and with the Aii 

all square. 

(a)	 Show that the system is observable. (Hint: Show �rst that if P and Q have full column rank, 

then PQ has full column rank.) 

(b) What can you say about the system if Ak;1�k, instead of having full column rank, is actually 0� 

[The results of this problem form the basis for one of the best numerical methods for checking 

observability (or, using a dual set of results and computations, for checking reachability). The 

point is that orthogonal (and therefore numerically well behaved) similarity transformations can 

be used to bring a (C�A  ) pair to the structured form above.] 

Exercise 24.3 (a) Consider the CT single-output nth-order observable system x_ (t) � Ax(t) � y(t) � 

cx(t), where c is an n-component vector. Suppose we observe only samples of the output, taken 

at times t � kT for integer k and some �xed T . Write down a DT state-space model that 

describes the evolution of these output samples. 



(b)	 Find a necessary and su�cient condition, stated in terms of the eigenvalues of A, for your DT 

model in (a) to be observable. (Hint: First show that there is no loss of generality in taking A 

to be in Jordan form.) 

Exercise 24.4 Consider an observable single output LTI system. Find the smallest perturbation of 

the C row vector, k�k2, so that the system becomes unobservable. 

Exercise 24.5 Consider a SISO, stable, discrete-time system with a state-space description given by 

(A� B� C� 0), both reachable and observable. The dimension of the state vector is equal to n. We are 

interested in studying the e�ects of past inputs on future outputs in a precise fashion. It turns out 

that this information is quite valuable in model reduction problems, but we will not look into that 

here. Recall that the energy of a signal u is given by 

1X 

2 2kuk2 

� (u 

T u) 

1 1 

� (	 u(t)2) 

t�;1 

(Don't be afraid to transpose in�nite vectors or matrices). 

The precise quantity that we would like to compute is: 

1 ;1X X 

� � maxf y(t)2 j u(t)2 � 1� u(k) � 0 8k � 0g
u 

t�0 

t�;1 

In words, we want to �nd the maximal achievable energy of the output after t � 0 which is the response 

to an input starting at ;1 and ending at ;1, i.e., the has the following form 

T 

u � ( : : : u(;N) u(;N + 1) : : : u(;1) 0 : : : ) 

with energy less than or equal to one. 

(a)	 Find an expression for x(0) in terms of the above input. Does the value x(;1) enter your 

expression. Explain. 

(b)	 Can any � 2 R
n be achieved by some choice of an input of the above form� If so, �nd an expression 

of the minimum energy input, umin 

that achieves the value x(0) � �. Compute the square of 

the energy of umin. Write this expression in terms of the Reachability Gramian, and denote it 

by �1(�). 

(c)	 If some input umin 

results in x(0) � �, write an expression of the output for t � 0. Compute the 

square of the energy of the output (for t � 0) as a function of �. Write this in an expression 

involving the Observability Gramian and denote it by �2(�). 

(d	 ) Argue that � is given by 

� � maxf�2(�) j �1(�) � 1g
� 

. 



(e) Prove that 

� � �maxfQPg 

where P and Q are the reachability and observability gramians of the system, and �max 

denotes 

the maximum eigenvalue of a matrix.
 

(Hint: Use the fact that any symmetric positive semi-de�nite matrix can be written as MT M .
 

Also you may need the fact that �max(M
T GM) � �max(GMMT )).
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Chapter 25 

Minimal State-Space Realization
 

25.1 Introduction 

Our goal in this lecture and a couple that follow is to further explore the \structural" signi�cance 

of the assumptions of reachability and observability, and to understand their role in connecting the 

input/output (or transfer function) description of a system to its internal (or state-space) description. 

The development will be phrased in the language of DT systems, but the results hold unchanged (apart 

from some details of interpretation) for the CT case. 

25.2 The Kalman Decomposition 

In earlier lectures we presented two types of standard forms, one that depended on a separation of 

the state space into the reachable subspace and its complement, and another that separated the state 

space into the unobservable subspace and its complement. The question naturally arises as to whether 

these two standard forms can somehow be combined. The Kalman decomposition does exactly that. 

Suppose (A�B�C�D) are the matrices that specify the given nth-order LTI state-space model, 

and suppose we construct a transformation matrix � � 

T � 
Tro 

Tro 

Tro 

Tro  

(25.1) 

where the submatrices are de�ned as follows: 

1. The columns of Tro form a basis for R \O , the subspace that is both reachable and unobservable 

(verify that the intersection of two subspaces is a subspace)� � � 

2. Tro complements Tro in the reachable subspace, so that Ra  
Tro 

Tro 

� R � � � 

3. Tro complements Tro in the unobservable subspace, so that Ra  
Tro 

Tro 

� O � � � 

4. Tro  

complements 
Tro 

Tro 

Tro 

to span R
n, so that T is invertible. 

Of course, any of these matrices may turn out to be of dimension 0, e.g. when the system is both 

reachable and observable, the matrix Tro is n � n, and all the other submatrices disappear. We now 



perform a similarity transformation using T , thereby carrying out the mapping ;
 �
 

T 

;1AT� T 

;1 A�Bb� C 

b
 b � D):
(A� B� C� D) ;! B� CT� D � (


The system (A�b Bb� Cb
 � D) is said to be in Kalman decomposed form. This is a standard form that has 

a very illuminating structure, which we will now deduce based on the form of the T matrix and the 

following additional constraints: 

AR � R (25.2) 

AO � O (25.3) 

b 

Ra  (B) � R (25.4) 

O � Null(C): (25.5) 

Equations (25.2) and (25.3) simply restate the fact that the reachable and unobservable subspaces are bA,
AT � TA

A-invariant. To determine the form of we begin by writing 

which can be expanded into 32 664


A11 

A12 

A13 

A14


A21 

A22 

A23 

A24


A31 

A32 

A33 

A34


A41 

A42 

A43 

A44


775


���� 

A T
 � 
TTro 

ro 

Tro 

Tro  

Tro 
ro 

Tro 

Tro  

: (25.6)


From (25.2) and (25.3), we ha ve that the range of ATro remains in Ra  (Tro), the space that is both 

reachable and unobservable. From (25.6), 2
 3
 

A11 �� 

ATr �
 
T
o Tro 
ro 

Tro 

Tro  

664


A21 


 A31 

775


�
 


 

b 

A41 

so we must have A21, A31 

and A41 

� 0. Similarly, from (25.2) we deduce that A32 

and A42 

must be 

zero. From (25.3), it follows that A23 

and A43 

are zero. By applying all of these conditions (and with 

a notational change in the subscripts), we arrive at the �nal form of A : 32 

Aro 

A12 

A13 

A14 

0 Aro 

0 A24
664


775


b

b

A � 

0 0 0 Aro 

Proceeding with the same line of logic, and noting conditions (25.4) and (25.5), we have 

and, from CT � C

: (25.7)



 0 0 Aro 

A34 


 

3
2


Bro 

B�� 664


775


B � TBb �


roTro 

Tro 

Tro 

Tro  

� (25.8)
 

0
 

0
 

,
 ���� 

C
 
T
 T � 0 C 0 C : (25.9)Tro 
ro 

Tro ro 
ro ro 



In the resulting Kalman-decomposed form ( A�b Bb� Cb� D), the subsystem (Aro� Bro� Cro� D) is both 

reachable and observable (prove this!). Similarly, the reachable subsystem is �� � � �	 � 

Aro 

A12 

Bro 

� � 

� � 
0 Cro 

� D 

0 Aro 

Bro 

with its unobservable portion already displayed in standard form, and the observable subsystem is �� � � �	 � 

Aro 

A24 

Bro 

� � 

� � Cro 

Cro 

� D 

0 Aro 

0 

with its reachable portion already displayed in standard form. The Figure 25.1 constitutes a represen-
tation of the system (A�b Bb� Cb� D): 

- �ro 

-	 - -y 

�ro	 6u 

�ro 

�ro 

Figure 25.1: Kalman Decomposition of a State Space Model. 

As can be shown quite easily, the Kalman decomposition is unique up to a similarity transforma-
tion that has the same block structure as Ab. (To show this for yourself, �rst prove that the columns 

of full-column-rank matrices P , Q are bases for the same space i� P � QM for some invertible matrix 

M .) It follows that: 

�	 the matrices Aro� Aro� Aro� Aro 

are uniquely de�ned up to a similarity transformation | their 

eigenvalues (and indeed their Jordan structure) are thus uniquely de�ned, and may be classi�ed 

as ro�  ro�  ro� ro respectively� 	

�	 the ro subsystem (as also the reachable subsystem and the observable subsystem) is uniquely 

de�ned up to similarity. 



It is clear from the Kalman decomposition and the associated �gure above that the input/output 

behavior of the system for zero initial conditions is determined entirely by the ro part of the system. 

Also, the output behavior for arbitrary input and initial conditions is determined by the observable 

part of the system. 

25.3 State-Space Realizations of Transfer Functions 

Given a DT LTI state-space model (A� B� C� D), we have seen that its transfer function is simply 

H(z) � C(zI ; A);1B + D: 

(For a CT system (A� B� C� D), we obtain the same expression for the transfer function, except that z 

is replaced by s.) For a MIMO system with m inputs and p outputs, this results in a p � m matrix 

of rational functions of z (or s, in CT). Recall that H(z) is in general proper (i.e., all entries have 

numerator degree less than or equal to the degree of the denominator), and for jzj ! 1, we have 

H(z) ! D (so the transfer function is strictly proper if D � 0). 

Now consider the converse problem. Given a transfer function, can one always �nd a state-space 

representation� This is called the realization problem. 

De�nition 25.1 (A� B� C� D) is called a realization of the transfer function H(z) if 

H(z) � C(zI ; A);1B + D: 

To phrase the above problem in the time domain, expand H(z) as 

H(z) � H0 

+ z;1H1 

+ z;2H2 

+ : : : (25.10) 

In the SISO DT case, we know that H0� H1� H2� : : : constitute the output response at time 0� 1� 2� : : : 

to a unit sample at time 0 applied to the input of the system when it is at rest (x(0) � 0), i.e. the 

sequence fHkg is the unit-sample response or \impulse" response of the system. In the MIMO case, 

the interpretation is similar, except that now the ijth entry of Hk 

is the value at time k of the zero-state 

response at the ith output to a unit impulse at the jth input. (The Hk 

are also referred to as Markov 

parameters.) For the state-space model (A� B� C� D), it is straightforward to see that 

H0 

� D�


Hk 

� CAk;1B� k � 1 (25.11)


This can be veri�ed directly in the time domain, or by expanding (zI ; A);1 in (25.3) as 

(zI ; A);1 � z;1I + z;2A + z;3A2 + � � � (25.12) 

(an expansion that is valid for jzj greater than the spectral radius of A) and then equating the coe�-
cients of z;k with those in the expression (25.10). The realization problem, i.e. the problem of �nding 

(A� B� C� D) such that (25.3) holds, can now be rephrased equivalently as that of �nding a state-space 

model (A� B� C� D) such that the relations in (25.11) hold. 

It is evident that state-space realizations are not unique. For instance, given one realization, we 

can obtain an in�nite number of realizations through similarity transformations. (You should verify 



algebraically that this is indeed the case.) However, the Kalman decomposition makes clear that there 

are still other possible realizations. Speci�cally, you should verify that 

� C( 

� Cro(zI ; Aro)
;1Bro 

+ D (25.13) 

i.e. only the ro part of a system contributes to its transfer function, so if a given realization is not 

ro, then its ro subsystem (or any similarity transformation of it) constitutes an alternative realization 

of H(z). Going in the other direction, one can obtain a new realization from a given one by adding 

unreachable and/or unobservable dynamics. Thus, di�erent realizations of H(z) can di�er in their 

b

orders. A minimal realization is one of least possible order. 

25.4 Minimal Realizations 

SISO Systems 

To get some feel for how realizations relate to transfer functions, consider a SISO system in controller 

canonical form: 

eA � 

; Ab);1Bb + DH(z) I
z 

3232 

1
;a1 

: : : : : : ;an 

16664


7775


6664


7775


0
eb � 


 
 

�
 .
.
 .
 .
.
 .
 (25.14)



 

1 0 0
�� ec � 

(You should draw yourself a block diagram of this, using delays, adders, gains.) Now verify that its 

transfer function is 

c1z
n;1 + � � � + cn

H(z) � + d (25.15) 

zn + a1zn;1 + � � � + an 

We can argue quite easily that there is a realization of order � n for this H(z) i� the numerator and 

denominator polynomials, c(z) � c1z
n;1 + � � � + cn 

and a(z) � zn + a1z
n;1 + � � � + an 

respectively, 

have a common factor that cancels out. (If there is such a factor, we can get a controller canonical 

form realization of order � n, by inspection. Conversely, if there is a realization of order � n, then 

its transfer function will have denominator degree � n, which implies that c(z), a(z) above have a 

common factor.) 

Now, a common factor (z ; �) between c(z) and a(z) exists i� 2
 3
 

�n;1 

c1 

: : : cn 

� d: 

6664


. . .
 


 � 

1 

7775


�� 

c1 

: : : cn 

� 0 (25.16)


jfor some � that is a root of a(z) � zI
 , i.e. for some � that is an eigenvalue of Verifying 

eee; Aj A. 

that the column vector in the preceding equation is the corresponding eigenvector of A, 

from the modal test for observability that the condition in this equation is precisely equivalent to 

unobservability of the controller-form realization. We are now in a position to prove the following 

result: 

we recognize 



Theorem 25.1 A state-space realization of a SISO transfer function H(z) is minimal i� it is reach-
able and observable. 

Proof. 

If the realization is not ro, then the ro part of its Kalman decomposition will yield a lower-order 

realization, which means the original realization was not minimal. 

Conversely, if the realization is reachable and observable, it can be transformed to controller 

canonical form, and the denominator jzI ; Aj of H(z) will have no cancellations with the numerator, 

so the realization will be minimal. 

MIMO Systems 

e 

The preceding theorem also holds for the MIMO case, as we shall demonstrate now. Our proof of the 

MIMO result will use a di�erent route than what was used in the SISO case, because a proof analogous 

to the SISO one would rely on machinery | such as matrix fraction descriptions of rational matrices 

| which we shall not be developing for the MIMO case in this course. There is nevertheless some 

value in seeing the SISO arguments above, because they provide additional insight into what is going 

on. 

Theorem 25.2 A realization is minimal i� it is reachable and observable. 

Proof. If a realization is not reachable or not observable, we can use the Kalman decomposition to 

extract its ro part, and thereby obtain a realization of smaller order. 

For the converse, suppose (A� B� C� D) is a reachable, observable realization of order n, but is 

not minimal. Then there is a minimal realization (A�� B�� C�� D�) of order n� � n (and necessarily 

reachable and observable, from the �rst part of our proof). Now 2
 3
 

C 

� 

6664 . . 


 . 

CAn;1 

7775


CA
 � �
 

n;1BB AB : : : A
OnRn 

2 66664


3


H1 

H2 

� � � Hn 

H2 

,, 

..

. 77775


� O� R� (25.17)n n� 

The reachability and observability of (A� B� C� D) ensures that rank(OnRn) � n (as can be veri�ed 

using Sylvester's inequality) while rank(On 

� Rn 

� ) � rank(On 

� 

� 

Rn 

� 

� 

) � n�, but then (25.17) is impossible. 

Hence there is no realization of order less than n if there is a reachable and observable one of order n. 

The following theorem shows that minimal realizations are tightly connected� in fact there is in 

e�ect only one minimal realization of a given H(z), up to a similarity transformation (or change of 

coordinates) ! 

Theorem 25.3 All minimal realizations of a given transfer function are similar to each other. 

,
. . . , 
. . . , 

Hn 

� � � � � � H2n;1 



~ C~� D~) are two minimal realizations of order n. Then D � D~Proof. Suppose (A� B� C� D) and (A� B~� 

~A~k ~and CAkB � C B� k � 0, so 

OnRn 

� O~ 

nR~ 

n: (25.18) 

Also 

~ ~ ~OnARn 

� OnARn 

(25.19) 

Let us introduce the notation M+ to denote the (\Moore-Penrose") pseudo-inverse of a matrix M . If M 

has full column rank, then M+ � (M 0M);1M 0, while if M has full row rank, then M+ � M 0(MM 

0);1 

(and in the general case the pseudo-inverse can be explicitly written in terms of the SVD of M , but 

we shall not need this case for the proof). It is then easy to verify from (25.18) that 

~ ~RnRn 

+ � On 

+On 

� T (25.20) 

and that 

T 

;1 � O~ 

n 

+On 

� R~ 

nRn 

+ (25.21) 

(You should note how the reachability and observability of the minimal realizations are invoked to 

make the necessary arguments.) It is then easy to check, using (25.18) and (25.19) that 

~ ~ ~AT � TA� B � TB� C � CT (25.22) 

i.e. the realizations are similar. 

All of the above results carry over to the CT case. The only modi�cation is in the interpretation 

of the Markov parameters� a CT interpretation can be found in terms of moments of the impulse 

response, but is not particularly interesting. 

We have seen how to obtain realizations of SISO transfer functions, by building on canonical 

forms. The situation is more involved for MIMO transfer functions. One brute-force realization 

approach would be to simply realize all of the SISO elements hij 

(s) of H(s), and then connect them 

to form the outputs. 

Example 25.1 (We use a CT system in this example to make the point that all the pre-
ceding development carries over unchanged to the CT case.) The 2 � 2 transfer function � �1 1 

H(s) � 

s;1
1 

can be immediately realized in state-space form by construct-
0 s;1 

ing (minimal) realizations of the individual entries of H(s) and interconnecting them as 

needed: 



�� 

Z �� 

u1 - x1 - x1 - -+
_

+ 

y1�� ��


6 6 

�1 

u2 

� 

Z��


_
+ 

x2 - x2 - y2��


6 

�1 

The corresponding state-space model is � � � � � � � � 

A � 

1 

0 

0 

1 

B � 

1 

0 

0 

1 

C � 

1 

0 

0 

1 

D � 

0 

0 

1 

0 

and this is easily veri�ed to be reachable and observable, hence minimal. However, the 

component-wise realization procedure is not guaranteed to produce a minimal realization. 

For instance, with � �
1 1H(s) � s;1 s;1 

� 

combining component-wise realizations into an overall realization would lead to a second-
order realization, but there is a (minimal) realization of order 1 (which you should �nd!). 

Exercise 25.4 guides you through a general procedure for the construction of a minimal realization 

if the minimal order is known, using the Markov parameters computed from the transfer function. 

Following, we describe another approach (\Gilbert's method") that is based on the residues at the 

poles of the transfer matrix. 

Gilbert's Realization 

Suppose we have a proper matrix transfer function H(z), and we factor out the polynomial d(z) that 

is the least common denominator of all the entries of H(z) (i.e. the least common multiple of the 

denominators of all the entries). If d(z) has no repeated roots, then it is possible to construct a 

minimal realization via Gilbert's method. (There is a generalization for repeated poles, but we omit 

it.) First apply a partial fraction expansion to each of the elements of H(z) and collect residues for 

each distinct pole. Denoting the q roots of d(z) by �1� � � � � �q, we can write the transfer function matrix 

in the following form: 

qX 1 

H(z) � D + Ri 

z ; �ii�1 

where Ri 

is also p � m and D � H(1). Let us denote the rank of Ri 

by ri� it will turn out that ri 

is 

the minimum number of poles with location �i 

required to realize H(z). Since the rank of Ri 

is ri, this 



matrix can be decomposed as the product of two matrices with full column and row rank, respectively, 

each with rank ri: 

Ri 

� Ci
p�ri Bi

ri 

�m� rank(Ri) � ri 

It is now easy to verify that H(z) � C(zI ; A);1B + D, where 32 

�1 

. . 0. 

�1 |
 {z }
 

r1 

.
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 .


�q 
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A �
 

66666666666666664
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�q 


 |
 {z
rq 

Cq 

}


�


C �

C1 

C2 

�
 � � � �
 D :


This realization is easily veri�ed to be reachable and observable, hence minimal. 



Exercises
 

Exercise 25.1 Find a state-space description of the circuit below, in the form x_ (t) � Ax(t) + Bi(t), 

with output equation v(t) � Cx(t) + Di(t), choosing iL 

and vC 

as state variables, and with R1, R2, L 

and C all equal to 1. 

(a)	 Is the system controllable� Is it observable� What is its transfer function� (Evaluate the trans-
fer function using the state-space description, and make sure that all common factors between 

numerator and denominator are cancelled. Then check your answer by direct impedance calcu-
lations with the circuit.) 

(b)	 What are the eigenvalues and the left and right eigenvectors of A� Is A diagonalizable� Also 

verify that your eigenvectors are consistent with your conclusions regarding controllability and 

observability in (a). 

(c)	 By carefully interpreting the results of (a) and (b), or by explicitly computing the Kalman de-
composition, determine how many eigenvalues of A are in each of the following categories: 

(i) co: controllable and observable� 

(ii) co�: controllable and unobservable� 

(iii) c�o�: uncontrollable and unobservable� 

(iv) co� : uncontrollable and observable. 

(d)	 Only one of the following equations (for some appropriate choice of the parameters) precisely 

represents the set of voltage waveforms v(t) that are possible for this circuit, assuming arbitrary 

initial conditions. Determine which one, and specify the coe�cients, stating your reasoning. 

(i) v(t) � �i(t)� 

(ii) [dv(t)�dt] + �v(t) � [di(t)�dt] + �i(t)� 

(iii) [d2v(t)�dt2] + �[dv(t)�dt] + �v(t) � [d2i(t)�dt2] + �[di(t)�dt] + �i(t). 

Exercise 25.2 (a) Find a third-order state-space realization in controller canonical form for the 

transfer function H1(s) � (s + f)�(s + 4)3, where f is a parameter. (To do this, assume the \A" 

and \b" of the state-space model are in controller form, then �nd what \c" and \d" need to be 

to make the transfer function come out right.) For what values of f does your model lose (i) 

observability� (ii) controllability� 



Similarly, �nd a �rst-order controller canonical form realization of the transfer function H2(s) � 

1�(s ; 2). 

(b)	 Now suppose the realizations in (a) are connected in cascade, with the output of the �rst system 

used as the input to the second. The input to the �rst system then becomes the overall system 

input, and the output of the second system becomes the overall system output: 

u ;! H1(s) ;! H2(s) ;! y 

Write down a fourth-order state-space description of the cascade. Is the cascaded system asymp-
totically stable� | and does your answer depend on f� 

Now determine for what values of f the cascaded system loses (i) observability, (ii) controllability. 

Interpret your results in terms of pole-zero cancellations between H1(s) and H2(s). Is there a 

value of f for which the cascaded system is bounded-input/bounded-output (BIBO) stable but 

not asymptotically stable. 

Exercise 25.3 Suppose a least one eigenvalue of the n�n matrix A is at 0, and that this eigenvalue is 

reachable with input vector b and observable with output vector c. Show that A + bgc, for any nonzero 

g, has no eigenvalues at 0. 

Exercise 25.4 You are given the Markov parameters fHig associated with a particular p� m transfer 

matrix H(z) � H0 

+ z;1H1 

+ z;2H2 

+ � � �, and you are told that all minimal realizations of H(z) are 

of a given order n. This problem aims at �nding a minimal realization from the Markov parameters. 

Let x(k +1) � Ax(k)+Bu(k) � y(k) � Cx(k)+Du(k) denote some speci�c, but unkown, minimal 

realization of H(z), with Bn 

and Cn 

denoting its reachability and observability matrices respectively. 

(For notational convenience, we shall drop the subscript n in what follows.) We shall construct a 

realization of H(z) that will be shown to be similar to this minimal realization, and therefore itself 

minimal. The following two matrices (with \block-Hankel" structure) will be needed for this problem: 10 

H1 

H2 

� � � Hn


H2 

H3 

� � � Hn+1



 � � � � � � � � � � � � 

BB@


CCA


K1 

� 


 

Hn 

Hn+1 

� � � H2n;1 

H2 

H3 

� � � Hn+1


H3 

H4 

� � � Hn+2


10 BB@


CCA


K2 

� � � � � � � � � � � � � 


 

Hn+1 

Hn+2 

� � � H2n 



(a) Show that K1 

� CB and K2 

� CAB. 

[(b)] Show that K1 

has rank n. 

[(c)] We can decompose K1 

(for example using its SVD) into a product LR, where the left 

factor L has full column rank (� n, from (b)), and the right factor has full row rank (� n also). 

Show that B � T1R and C � LT2 

for some nonsingular matrices T1 

and T2, and prove that 

T2 

� T1 

;1 . 

(d)	 De�ne C1 

to be the matrix formed from the �rst p rows of L, and show that C1 

� CT1. Similarly, 

de�ne B1 

to be the matrix formed from the �rst m columns of R, and show that B1 

� T1 

;1B. 

(e)	 De�ne A1 

� L+K2R
+ , where the superscript + denotes the pseudo-inverse of the associated 

matrix, and show that A1 

� T1 

;1AT1. 

The desired minimal realization is now (A1� B1� C1� D1), where D1 

� H0. 

Exercise 25.5 (a) Obtain a minimal realization of the system: 2 s 1 

3 

(s;1)2 (s;1) 

H(s) � 

4 5: 

;6 1 

(s;1)(s+3) (s+3) 

Explicitly verify its minimality. 

(b)	 Compute the poles (including multiplicities) of this transfer function using the minimal realization 

you obtained. 



Exercise 25.6 The two-input, two-output system below is obtained by interconnecting four SISO 

subsystems as shown. (Note, incidentally, that none of the SISO transfer functions has any zeros.) 

The scalar gain � is real and nonzero, but can be either positive or negative. 

+�� y1(s)u1(s) - 1 - -��s 

6+

- 1 

s + 1 

- � 

s ; 1 

�+��u2(s) - 1 - -y2(s) 

s + 2 +�� 

(a)	 Assemble minimal state-space realizations of the SISO subsystems into an overall state-space 

description of the two-input, two-output system. Determine whether the resulting system is 

reachable and observable, and also �nd its natural frequencies. 

(b)	 Determine the transfer function matrix G(s) that relates the two outputs to the two inputs. How 

do the poles of G(s) relate to the natural frequencies that you found in (a)� 

(c)	 Compute the number and locations of the MIMO transmission zeros as a function of �, by �nding 

expressions for the frequencies at which G(s) loses rank. Are there any allowed (i.e. nonzero) 

values of � that yield transmission zeros at the same locations as poles� 

(d)	 Now set � � +1. Determine the transmission zero location s � � and the corresponding input 

direction u0 

from the null space of the matrix G(�). Now obtain the analytical solution to the 

state equations for arbitrary values of the initial state at time 0, as well as the corresponding 

analytical expressions for the two outputs y1(t) and y2(t), when the system is driven by the 

speci�c input u(t) � u0e
�t for t � 0. (Note that the expressions for the outputs do not contain 

the zero-frequency term e�t � it has been \absorbed" by the system.) Also determine what initial 

state would yield both y1(t) � y2(t) � 0 for all t � 0, with this particular input. 
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Chapter 26 

Balanced Realization
 

26.1 Introduction 

One popular approach for obtaining a minimal realization is known as Balanced Realization. In this 

approach, a new state-space description is obtained so that the reachability and observability gramians 

are diagonalized. This de�nes a new set of invariant parameters known as Hankel singular values. This 

approach plays a major role in model reduction which will be highlighted in this chapter. 

26.2 Balanced Realization 

Let us start with a system G with minimal realization � � 

A B 

G � : 

C D 

As we have seen in an earlier lecture, the controllability gramian P , and the observability gramian Q 

are obtained as solutions to the following Lyapunov equations 

AP + PA0 + BB 

0 � 0 

A0Q + QA + C 0C � 0: 

P and Q are symmetric and since the realization is minimal they are also positive de�nite. The 

eigenvalues of the product of the controllability and observability gramians play an important role 

in system theory and control. We de�ne the Hankel singular values, �i, as the square roots of the 

eigenvalues of PQ 

4 

�i 

� (�i(PQ)) 

We would like to obtain coordinate transformation, T , that results in a realization for which the con-
trollability and observability gramians are equal and diagonal. The diagonal entries of the transformed 

controllability and observability gramians will be the Hankel singular values. With the coordinate 

transformation T the new system realization is given by � � � � 

T 

;1AT T 

;1B Â  B̂ 

G � � � 

CT D Ĉ  D 

1 

2 : 



and the Lyapunov equations in the new coordinates are given by 

Â(T;1PT 0
;1
) + (T;1PT 0

;1
)Â0 + B̂B̂0 � 0 

Â0	 (T 0QT ) + (T 0QT )Â+ Ĉ 0Ĉ � 0: 

Therefore the controllability and observability gramian in the new coordinate system are given by 

P̂ � T;1PT 0
;1 

Q̂ � T 0QT: 

We are looking for a transformation T such that 10 

�1 

�2
^ ^P � Q � � � 

BBB@


CCCA


:
. . 


 . 


 

�n 

We have the relation 

(T;1PT;1
0 

)(T 0QT ) � �2� 

T;1PQT � �2: (26.1) 

Since Q � Q0 and is positive de�nite, we can factor it as Q � R0R, where R is an invertible matrix. 

;1P 2We can write equation 26.1 as T R0RT  � � , which is equivalent to 	

(RT );1RPR0(RT ) � � 

2: (26.2) 

Equation 26.2 means that RPR0 is similar to �2 and is positive de�nite. Therefore, there exists an 

orthogonal transformation U , U 0U � I , such that 

RPR0 � U�2U 0: (26.3)	 

1 

By setting (RT );1U� 

2 � I , we arrive at a de�nition for T and T;1 as 

2T � R;1U� 

1 

;1 �; 

1 

T � 

2 U 0R:  

With this transformation it follows that 

^ 2 U 0R 0U�; 

1 

P � (�; 

1 

)P (R 2 ) 

2 U 0 �2U 0 

2 )� (�; 

1 

)(U )(U�; 

1 

� �� 

and 

1 1 

Q̂ � (R;1U� 

2 )0R0R(R;1U� 

2 ) 

1 1 

� (� 

2 U 0)(R0
;1
R0RR;1)(U� 

2 ) 

� �: 



26.3 Model Reduction by Balanced Truncation 

Suppose we start with a system � � 

A B 

G � � 

C D 

where A is asymptotically stable. Suppose T is the transformation that converts the above realization 

to a balanced realization, with � �
^ ^A B 

G � ^ � 

C D 

^ ^and P � Q � � � diag(�1� �2� : : : � �n). In many applications it may be bene�cial to only consider 

the subsystem of G that corresponds to the Hankel singular values that are larger than a certain small 

constant. For that reason, suppose we partition � as � � 

�1 

0 

� � 

0 �2 

where �2 

contains the small Hankel singular values. We can partition the realization of G accordingly 

as 2 

Â11 

Â12 

^G � 

4 A21 

Â22 

Ĉ1 

Ĉ2 

Recall that the following Lyapunov equations hold 

3
B̂1 

B̂2 

5 : 

D 

Â� + �Â0 + B̂B̂0 � 0 

Â0�+�Â+ Ĉ 0Ĉ � 0� 

which can be expanded as � � � � � � 

Â  

11�1 

Â  

12�2 

�1Â
0 �1Â

0 B̂ 

1B̂
0 B̂ 

1B̂
0 

+ 

11 21 + 

1 2 � 0� 

Â  

21�1 

Â  

22�2 

�2Â
0 

12 

�2Â
0 

22 

B̂ 

2B̂ 

1 

0 B̂ 

2B̂ 

2 

0 

� � � � � � 

Â0 Â0 ^ ^ Ĉ 0 Ĉ  Ĉ 0 ^ 

11�1 21�2 

�1A11 

�1A12 1 1 1C2+ + � 0: 

Â0 

12�1 

Â0 

22�2 

�2Â  

21 

�2Â  

22 

Ĉ  

2 

0 Ĉ  

1 

Ĉ2
0 Ĉ  

2 

From the above two matrix equations we get the following set of equations 

Â  

11�1 

+�1Â
0 ^ ^ � 0 (26.4)11 

+ B1B1 

0 

^ ^ 

21 

+ B̂ 

1B̂ 

2 

0A12�2 

+�1A
0 � 0 (26.5) 

Â  

22�2 

+�2Â
0 ^ ^ � 0 (26.6)22 

+ B2B2 

0 

Â11
0 �1 

+�1Â  

11 

+ Ĉ  

1 

0 Ĉ  

1 

� 0 (26.7) 



Â0 

21�2 

+�1Â12 

+ Ĉ1 

0 Ĉ2 

� 0 (26.8) 

Â0 

22�2 

+�2Â22 

+ Ĉ2 

0 Ĉ2 

� 0: (26.9)

 

From this decomposition we can extract two subsystems � 

^
G1 

� 

A 

^
11 


 

C1 

� � �


^ ^ ^

 
B1 

A22 

B2� G2 

� ^ : 

D C2 

D
 

Theorem 26.1 G is an asymptotically stable system. If �1 

and �2 

do not have any common diagonal 

elements then G1 

and G2 

are asymptotically stable. 

Proof: Let us show that the subsystem � �


^ ^

A11 

B1G1 

� ^
 

C1 

D
 

^is asymptotically stable. Since A11 

satis�es the Lyapunov equation 

Â11�1 

+�1Â
0 

11 

+ B̂1B̂1 

0 � 0 
 
 

^then it immediately follows that all the eigenvalues of A11 

must be in the closed left half of the complex 

plane� that is, Re�i(Â11) � 0. In order to show asymptotic stability we must show that Â11 

has no 
 

purely imaginary eigenvalues. 

^ ^Suppose j! is an eigenvalue of A11, and let v be an eigenvector associated with j!� (
 11 

;j!I)vA � 

^0. Assume that the Kernel of ( A11 

; j!I) is one-dimensional. The general case where there may b e 

several independent eigenvectors associated with j! can be handled by a slight modi�cation of the 

present argument.
 

Equation 26.7 can be written as
 

(Â  

11 

; j!I)0�1 

+�1(A11 

; j!I)
 + Ĉ1 

0 Ĉ1 

� 0 
 
 

By multiplying the above equation by v on the right and v0 on the left we get 

v 

0(Â  

11 

; j!I)0�1v + v 

0�1(A11 

; j!I)v + v 

0Ĉ1 

0 Ĉ1v � 0 

which implies that (Ĉ  

1v)
0(Ĉ1v) � 0, and this in turn implies that 

Ĉ1v � 0 : (26.10)
 

Again from equation 26.7 we get 

(Â  

11 

; j!I)0�1v +�1(A11 

; j!I)v + Ĉ1 

0 Ĉ  

1v � 0
�
 

which implies that 

(Â  

11 

; j!I)0�1v � 0
: (26.11)
 

Now we multiply equation 26.4 from the right by �1v and from the left by v0�1 

to get 

v 

0�1(Â11 

; j!I)�2
1v + v 

0�2
1(A11 

; j!I)0�1v + v 

0�1B1B1
0 �1v � 0:
 



This implies that v0�1B1)(B1
0 �1v) � 0, and B1

0 �1v � 0. By multiplying equation 26.4 on the right by 

�1v we get 

(Â  

11 

; j!I)�1
2 v +�1(A11 

; j!I)0�1v + B̂ 

1B̂ 

1
0 �1v � 0 

and hence 

(Â  

11 

; j!I)�2
1v � 0: (26.12) 

Since that the kernel of (Â  

11 

; j!I) is one dimensional, and both v and �2
1v are eigenvectors, it follows 

that �2
1v � �̂2v, where ^ � is one of the diagonal elements in �1

2 . 

Now multiply equation 26.5 on the left by v0�1 

and equation 26.8 by v0 on the left we get 

v 

0�1Â  

12�2 

+ v 

0�2
1Â

0 

21 

� 0 (26.13) 

and 

0 ^ ^v A0 0�1A12 

� 0: (26.14)21�2 

+ v 

�From equations 26.13 and 26.14 we get that 

0 ^ 

0 ^ ;v A0 + �̂2v A0 � 0�21�
2
2 21 

which can be written as � � 

(v 

0Â0 ;�2 + ^ �2I � 0:21) 2 

Since by assumption �2
2 

and �2
1 

have no common eigenvalues, then �̂2I and �2 

have no common 

eignevalues, and hence A21v � 0. We have 

(Â  

11 

; j!I)v � 0 

Â21v � 0� 

which can be written as � � � � � �
^ ^A11 

A12 

v v 

^ ^ 

� j! : 

A21 

A22 

0 0 

^This statement implies that j! is an eigenvalue of A, which contradicts the assumption of the theorem 

stating that G is asymptotically stable. 
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Chapter 27 

Poles and Zeros of MIMO Systems
 

27.1 Introduction 

You are familiar with the de�nitions of poles, zeros, and their multiplicities for the scalar transfer 

functions associated with SISO LTI systems. Also recall the interpretation (stated here for the CT 

case, but the analogous statement holds in the DT case) of a pole frequency p0 

as being a \generated 

frequency" of the system, in the sense that an exponential of the form cep0 

t for t � 0 (and for 

some nonzero constant c) is present in the output even when the input for t � 0 comprises a sum of 

exponentials that does not contain a term with this frequency. Similarly, the frequency �0 

of a zero 

may be interpreted as an \absorbed frequency", in the sense that even when the input comprises a 

sum of exponentials that contains a term of the form ce�0 

t for t � 0, the output does not contain a 

component at this frequency. 

For the case of the p�m transfer function matrix H(s) that describes the zero-state input/output 

behavior of an m-input, p-output LTI (CT) system, the de�nitions of poles and zeros are more subtle. 

We would still like them to respectively have the interpretations of generated and absorbed frequencies, 

in some sense, but that still leaves us with many choices. We begin by discussing the case of diagonal 

transfer function matrices. (We continue to use the notation of CT systems in what follows, but the 

DT story is identical.) 

27.2 Poles and Zeros for Diagonal H(s) 

It is clear what we would want our eventual de�nitions of poles and zeros for multi-input, multi-output 

(MIMO) systems to specialize to in the case where H(s) is nonzero only in its diagonal positions, 

because this corresponds to completely decoupled scalar transfer functions. For this diagonal case, we 

would evidently like to say that the poles of H(s) are the poles of the individual diagonal entries of 

H(s), and similarly for the zeros. 

Example 27.1 Given the 3 � 3 transfer matrix � � 

s + 2 s 

H(s) � diagonal � � 0 

(s + 3)2 (s + 2)(s + 3) 



we would say that H(s) has poles at ;3 of multiplicity 2 and 1 respectively, and a pole at 

;2 of multiplicity 1� and that it has zeros at ;2, at 0, and at 1, all with multiplicity 1. 

Note from the above example that in the MIMO case we can have poles and zeros at the same 

frequency (e.g. those at ;2 in the example), without any cancellation! Also note that a pole or zero is 

not necessarily characterized by a single multiplicity� we may instead have a set of multiplicity indices 

(e.g. as needed to describe the pole at ;3 in the above example). The diagonal case makes clear 

that we do not want to de�ne a pole or zero location of H(s) in the general case to be a frequency 

where all entries of H(s) respectively have poles or zeros. The particular H(s) that we have shown in 

the example has a normal rank (i.e. for most values of s) of 2, and this rank drops at precisely the 

locations of the zeros of the individual entries. 

27.3 MIMO Poles 

We might consider de�ning a pole location as follows: 

�	 (Pole Location) H(s) has a pole at a frequency p0 

if some entry of H(s) has a pole at s � p0. 

This choice would still have the signi�cance of a generated frequency, for an appropriately chosen input 

and output. The above de�nition is indeed the one that is picked. The full de�nition also shows us 

how to determine the set of multiplicities associated with each pole frequency. For completeness | 

but not because we expect you to understand the motivation for it, or to remember and use it | we 

state the prescription here: 

�	 (Pole Multiplicities) Determine the largest multiplicity �1(p0) with which the pole p0 

occurs 

among the 1 � 1 minors of H(s), then the largest multiplicity �2(p0) of the pole p0 

among the 

2 � 2 minors of H(s), and so on. Stop at minors of size k � k if k is the �rst size for which 

�k(p0) � �k+1(p0) (this k will actually depend on p0, so we should really write k(p0), but we 

omit the argument in the interest of keeping the notation streamlined), or if all minors of larger 

size vanish. The set of multiplicities associated with the pole at p0 

is now given by the set of 

numbers �1(p0) � �2(p0) ; �1(p0) � � � � � �k(p0) ; �k;1(p0). 

(Caution: For all the computations with minors described above and later in these notes, any common 

factors between the expressions obtained for the numerator and denominator of a minor must �rst be 

cancelled out, of course.) You should verify that you get the expected values for pole multiplicities 

when you apply this de�nition to the preceding example of a diagonal H(s). 

Determining Poles from a State-Space Realization 

Given this de�nition of poles (and their multiplicities) for MIMO transfer functions, what can be 

said about the relation of the poles of H(s) to properties of a realization (A� B� C� D) of this transfer 

function� What is clear is that the poles of 

H(s) � C(sI ; A);1B + D 

must be contained among the eigenvalues of A, because the denominator terms in the entries of 

H(s) are all a(s) � det(sI ; A), apart from possible cancellations between a(s) and the entries of 



C(adj[sI ; A])B. In fact, the poles of H(s) must be contained among the reachable and observable 

eigenvalues of A, as only the reachable and observable part of the realization contributes to the transfer 

function. What can be shown, although this is more than we are equipped to do in this course, is that 

the poles of H(s) are precisely equal | in location and multiplicity | to the reachable and observable 

eigenvalues of A. In fact, the multiplicity indices associated with a pole of H(s) are precisely the sizes 

of the Jordan blocks associated with the corresponding eigenvalue of A. 

You can verify from the preceding facts that: 

�	 the characteristic polynomial of a minimal realization of H(s) | which we may refer to 

as the pole polynomial | equals the least common multiple of the denominators of all possible 

minors (of all sizes) in H(s). 

Example 27.2 Consider the 2 � 2 transfer function � �1 1 

H1(s) � 

s+3 : 

0 

1 

s+3 

Its only polar frequency is at ;3. The largest multiplicity of this pole in the 1 � 1 minors 

is 1, and its largest multiplicity in the 2 � 2 minor (there is only one minor of this size) 

is 2. Hence the multiplicities of the pole at ;3 are 1 and 2 ; 1 � 1. The characteristic
 

polynomial of a minimal realization of H1(s) is (s + 3)2 .
 

Now consider the transfer function
 � �1 1 

H2(s) � 

s+3 s+3 :1 1 

s+3 s+3 

Its only polar frequency is again at ;3. The largest multiplicity of this pole in the 1 � 1 

minors is 1, and its 2 � 2 minor vanishes. Hence the pole at ;3 has a multiplicity of just 

1, and the characteristic polynomial of a minimal realization of H2(s) is simply (s + 3). 

You should verify that the above results are consistent with the minimal realizations 

produced by Gilbert's method. Suppose h	 i 

1 1H3(s) � (s;1)(s+3)2 (s;1)2 (s+3) 

: 

Verify that this transfer matrix has a pole at 1 of multiplicity 2, and a pole at ;3 of 

multiplicity 2. The characteristic polynomial of a minimal realization of H3(s) is thus 

(s ; 1)2(s + 3)2 . 

27.4 MIMO Zeros 

We have already established, with guidance from the diagonal case, that a zero should not be de�ned 

as a frequency where all entries of H(s) have zeros. It is also not satisfying in the general MIMO case 

(although it is correct in the diagonal case) to de�ne a zero location as a frequency where some entry 

of H(s) has a zero. Among the objections to this de�nition are the following: 



(i) although such a frequency can be hidden from a particular output even when it is present in a 

particular input (since it is \absorbed" by the corresponding entry of H(s)), this frequency will 

in general not be hidden from all outputs, and is therefore not really \absorbed" in a MIMO 

sense� 

(ii)	 we will not in general have the desirable feature that the zeros of an invertible H(s) will be poles 

of H;1(s). 

A m	uch more satisfactory de�nition of a zero is the following: 

�	 (Zero Location) H(s) has a zero at a frequency �0 

if it drops rank at s � �0. 

This particular de�nition corresponds to what is termed a transmission zero, and is the only de�nition 

of interest to us in this course. Consider, for example, the case of an H(s) of full column rank (as a 

rational matrix | i.e. there is no rational vector u(s) � 0 such that 6 H(s)u(s) � 0), and assume it 

is �nite at s � �0, i.e. has no poles at �0. Then H(s) drops rank at s � �0 

i� H(�0)u0 

� 0 for some 

u0 

6� 0. 

As we have seen, however, a MIMO transfer function can have poles and zeros at the same 

frequency, so a more general characterization of rank loss is needed to enable us to detect a drop in 

rank even at frequencies where some entries of H(s) have poles. This is provided by the following test, 

which is restricted to the case of full-column-rank H(s), but an obvious transposition will handle the 

case where H(s) has full row rank, and somewhat less obvious extensions will handle the general case: 

�	 (Zero Location | re�ned) A rational matrix H(s) of full column rank has a zero at s � �0 

if 

there is a rational vector u(s) such that u(�0) is �nite and nonzero, and lims!�0 

[H(s)u(s)] � 0. 

Example 27.3 Consider � � 

1 

1 

H(s) � 

s;3 � 

0 1 

It is clear that H(s) has a pole at s � 3, but it may not be immediately obvious that it 

also has a zero at s � 3. Observe that for s approaching 3, the second column of H(s) 

approaches alignment with the �rst column, so the rank of H(s) approaches 1, i.e. there 

is a rank drop at s � 3. To con�rm this, pick � � 

u(s) � 

;1 

s ; 3 

and verify that lims!3 

H(s)u(s) � 0 even though u(3) is (�nite and) nonzero. 

As suggested earlier, one of the nice features of our de�nition of zeros is that, for an 

invertible H(s), they become poles of the inverse. In this example, � � 

H;1(s) � 

1 ; s;
1
3 

0 1 

which evidently has a pole s � 3. 

There is also a prescription for establishing the multiplicities of the zeros, and again we state it 

for completeness, but not with the expectation that you learn to work with it: 



�	 (Zero Multiplicities) Determine the largest multiplicity with which �0 

occurs as a pole among 

the 1 � 1 minors or, if it doesn't appear as a pole, then determine the smallest multiplicity with 

which it occurs as a zero of every 1 � 1 minor� denote this by �1(�0). Continue similarly with 

the 2 � 2 minors, and so on, stopping with minors of size r equal to the rank of H(s) (beyond 

which size all minors vanish). Let ` denote the �rst size for which �`(�0) � �`;1(�0) (this ` 

will actually depend on �0, so we should denote it by `(�0), but we omit the argument to keep 

the notation simple). Then the set of multiplicities associated with the zero at �0 

is given by 

�`;1(�0) ; �`(�0) � �`(�0) ; �`+1(�0) � � � � � �r;1(�0) ; �r(�0). 

Given these de�nitions of the poles and zeros (and their multiplicities) for MIMO transfer func-
tions, it can be shown that for an invertible H(s) the total number of poles (summed over all frequen-
cies, including in�nity, and with multiplicities accounted for) equals the total number of zeros (again 

summed over all frequencies, including in�nity, and with multiplicities accounted for). However, for 

non-invertible square H(s) and for non-square H(s), there will be more poles than zeros | an inter-
esting di�erence from the scalar case. In fact, if the coe�cients of the rationals in H(s) are picked 

\randomly", then a square H(s) will typically (or \generically") be invertible and will have zeros, 

while a non-square H(s) will typically not have zeros. (Of course, the coe�cient values in our idealized 

models of systems are not picked randomly, so the non-generic cases are of interest too.) 

Determining Zeros from a Minimal Realization 

What can be said about the relation of the zeros of H(s) to properties of a minimal realization 

(A� B� C� D) of this transfer function� (The non-minimal parts of a realization do not contribute to the 

transfer matrix, and therefore play no role in determining poles and transmission zeros.) The answer 

is provided by the following nice result (which we shall demonstrate immediately below, but only for 

those zero locations that are not also pole locations, because the general proof requires tools beyond 

those developed here): 

�	 (Finite Zeros from a Minimal State-Space Model) Given a minimal state-space realization 

(A� B� C� D) of H(s), the �nite zeros of H(s), in both location and multiplicity, are the same as 

the �nite zeros of the system matrix � � 

sI ; A ;B
: 

C D 

(The �nite zeros of the system matrix are de�ned as before, namely as the �nite values of s for 

which the matrix drops rank.) 

Thus, the locations of the �nite zeros of H(s) are the values of s for which the system matrix of 

a minimal realization drops rank. Note that the system matrix has no �nite poles to confound our 

determination of which values of s correspond to rank loss. (If the realization is not minimal, then the 

system matrix has additional zeros, corresponding to the unobservable and/or unreachable eigenvalues 

of the realization. These zeros, along with the transmission zeros, comprise what are referred to as the 

invariant zeros of the system.) 

To demonstrate the above result for the special case where pole and zero locations do not coincide, 

we begin with the identity �	 �� � � � 

I 0 sI ; A ;B sI ; A ;B 

;C(sI ; A);1 I C D 

�
0 H(s) 

: (27.1) 

Several facts can be deduced from this identity, including the following: 



�	 If �0 

is not an eigenvalue of A and thus not a pole of H(s), the �rst matrix in the above identity 

is well-de�ned and invertible at s � �0, so the other two matrices in the identity must have the 

same rank at s � �0. Therefore, since �0I ; A is invertible, it follows in this case that H(s) drops 

rank at s � �0 

i� the system matrix drops rank at s � �0. This is the result we were aiming to 

demonstrate. 

�	 The above identity also shows that the rank of H(s) as a rational matrix (where this rank may 

be de�ned as the size of the largest non-vanishing minor of H(s), and is also the rank that H(s) 

has for most values of s) is n less than the rank of the system matrix, where n is the order of 

the realization (A� B� C� D). It follows that H(s) has full column (respectively, row) rank as a 

rational matrix i� the system matrix has full column (row) rank as a rational (or polynomial) 

matrix. 

�	 For square H(s), we can take determinants on both sides of the above identity, and thereby 

conclude that


det (system matrix) � det(sI ; A) det H(s)


Thus, if det H(s) is a non-zero rational, then the zeros of H(s) are precisely the roots of the 

polynomial det(sI ; A) det H(s). For this reason, the product of the pole polynomial of H(s) 

and of det H(s) | in the case where det H(s) 6� 0 | may be referred to as the zero polynomial 

of H(s). 

The problem of �nding the values of s where a matrix of the form sE ; A drops rank, with 

E possibly singular or even non-square, is referred to as a generalized eigenvalue problem, and the 

corresponding values of s are referred to as generalized eigenvalues. The problem of computing the 

transmission zeros of a system using the system matrix of an associated minimal realization is evidently 

of this type. Good numerical routines (e.g. the \qz" algorithm in Matlab) exist for solving the 

generalized eigenvalue problem. 

Exercise Suppose � � 

1 

1 

H(s) � 

s;3 

0 1 

Find a minimal realization of this transfer function, and use the associated system matrix to establish 

that H(s) has a single pole and a single zero at s � 3. 

Zero Directions 

Now let us consider in more detail the particular but important case where H(s), and therefore the 

system matrix of a minimal realization of it, have full column rank as rational matrices. For this case, 

rank loss in the system matrix at s � �0 

corresponds to having � �� � � � � � � � 

�0I ; A ;B x0 �
0 

�
x0 6 0	 

(27.2)� 

C D u0 

0 u0 

0 

The observability of the realization ensures (by the modal observability test) that u0 

6� 0 in the above 

equation, and the assumption that the system matrix | or equivalently H(s) | has full column-rank 

as a rational matrix ensures that x0 

6 The vector x0� 0. in this equation is referred to as the state 

zero direction associated with �0, and u0 

is the input zero direction. The dynamical signi�cance of the 

state and input zero directions is given by the following result: 



6

�	 (Dynamical Interpretation of Zero Location and Zero Directions) Suppose �0 

is a zero 

location of H(s) and x0, u0 

are associated state and input zero directions computed from the 

system matrix of a minimal realization of H(s). Then, with initial condition x(0) � x0 

� 0 

and input u(t) � u0e
�0 

t 6� 0 for t � 0, the state response of the system (A� B� C� D) is x(t) � 

x0e
�0 

t � 0 and the output response is identically 0, i.e. 6 y(t) � 0, for t � 0. 

The proof of the above statement is by simple veri�cation. Thus note that x(t) � x0e
�0 

t and u(t) � 

u0e
�0 

t satisfy the state equation x_ (t) � Ax(t) + Bu(t), in view of the top row of (27.2). Therefore the 

(unique) state trajectory obtained by choosing x0 

as the initial condition x(0) and choosing the input 

as u(t) � u0e
�0 

t is precisely x(t) � x0e
�0 

t . The corresponding output is y(t) � Cx(t) + Du(t), and the 

bottom row of (27.2) shows that this expression evaluates to 0. 

The above result shows that a MIMO zero still has an interpretation as an absorbed frequency. 

The components of the input zero direction vector u0 

specify the proportions in which the exponential 

e�0 

t should be present at the corresponding inputs of the system to ensure | when the initial condition 

is picked to be the state zero direction vector x0 

| that this exponential appears in none of the outputs. 

For the case where �0 

is not a pole of H(s), we can use (27.1) to deduce that H(�0)u0 

� 0 . 

One can similarly develop \duals" of the preceding results to focus on the loss of row rank 

rather than column rank, invoking left zero directions rather than the right zero directions that we 

have introduced above, but we omit the details and summarize the results in Table 27.1. Also, there 

are natural (but notationally cumbersome) generalizations of the above construction to expose the 

dynamical signi�cance of having a zero with multiplicities larger than 1. 

Example 27.4 A transfer function matrix is given by � � s;1 2 

s;2 s+1H(s) � s 0 

: 

s+1 

The reader should be able to verify that there is a pole at ;1 with multiplicity 2, and a 

pole at 2 with multiplicity 1. The normal rank of H(s) is 2. At 1, H(1) has rank 1 

which implies that the system has a zero at 1. This transfer function matrix also loses 

rank at s � 0. The third zero (note that since the transfer function matrix is square there 

is an equal number of poles and zeros) must be at the location of the pole s � 2. To see 

this, we de�ne � � 

u(s) � 

;2(s ; 2) 

: 

(s + 1)(s ; 1)
 

It is clear that u(2) is �nite and
 � � � � 

0 0 

lim H(s)u(s) � lim ;2s(s;2) 

� � 

s!2 s!2	 

0 

s+1 

which con�rms that H(s) has a zero at 2. 

Another way of determining the �nite zeros is to obtain a realization and analyze the 

system's matrix. Using Gilbert's realization, we get 

2 3 2 32 3 2 3 

x1 

2 0 0 x1 

1 0
d 4 x2 

5 � 

4 0 ;1 0 

54 x2 

5 + 

4 1 0 

5 u 

dt x3 

0 0 ;1 x3 

0 1 2 3 � � x1 

� � 

y �	

1 0 2 4 x2 

5 + 

1 0 

u 

0 ;1 0 1 0 

x3 



The system matrix is 32 

s ; 2 0 0 ;1 0 

0 s + 1 0 ;1 0�� 66664


sI ; A ;B 

�

0 0 s + 1 0 ;1 �


C D



 1 0 2 1 0 


 

0 ;1 0 1 0 

and its determinant is �� 

det 

sI ; A ;B 

� 2s(s ; 2)� 

C D 

from which it is clear that the �nite zeros are 0 and 2. 
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H(s) is p � m H(s) is p � m Comments 

full column rank transfer matrix� � 

full row rank transfer matrix� � 

H(s) � 

A 

C 

B 

D 

minimal H(s) � 

A 

C 

B 

D 

minimal 

�0 

is a zero of H(s) if �0 

is a zero of H(s) if characterizes 

rank H(�0) � m rank H(�0) � p zeros that 

Equivalently there exists u0 

Equivalently there exists u0 

are di�erent 

such that H(�0)u0 

� 0 such that u0 

T H(�0) � 0 from poles 

�0 

is a zero of H(s) if �0 

is a zero of H(s) if characterizes 

there exists u(s) such that there exists u(s) such that all zeros 

u(�0) is �nite and u(�0) is �nite and 

lims!�0 

H(s)u(s) � 0 lims!�0 

u(s)T H(s) � 0 

�0 

is a zero of H(s) if �0 

is a zero of H(s) if characterizes � � � � 

rank 

�0I ; A ;B 

� n + m rank 

�0I ; A ;B 

� n + p �nite zeros 

C D C D 

�0 

is a zero of � 

H(s�) if � � 

�0 

is a zero of � 

H(s�) if � � 

characterizes 

x0 

0 x0 

0 

there exists �6 such that there exists 6� such that � 

u0 �� �0 � � � 

u0 

0 � 

�0I ; A ;B x0 

0 

; 

T T 

� �0I ; A ;B 

; � 

� 
x0 

u0 

� 
0 0 �nite zeros 

C D u0 

0 C D 

�0 

is a zero of H(s) if �0 

is a zero of H(s) if characterizes 

there exists x0 

6� 0, u0 

6� 0 there exists x0 

6� 0, u0 

6� 0 �nite zeros 

such that if x(0) � x0 

and u(t) � e�0 

tu0 

such that if x(0) � x0 

and u(t) � e�0 

tu0 

the solution of _x � Ax + Bu the solution of _x � AT x + CT u 

y � Cx + Du satis�es y � BT x + DT u satis�es 

y(t) � 0 y(t) � 0 

Table 27.1: Duality between right and left zeros 
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Chapter 28 

Stabilization: State Feedback
 

28.1 Introduction: Stabilization 

One reason feedback control systems are designed is to stabilize systems that may be unstable. Al-
though our earlier results show that a reachable but unstable system can have its state controlled by 

appropriate choice of control input, these results were obtained under some critical assumptions: 

�	 the control must be unrestricted (as our reachability results assumed the control could be chosen 

freely)� 

�	 the system must be accurately described (i.e. we must have an accurate model of it)� 

�	 the initial state must be accurately known. 

The trouble with unstable systems is that they are unforgiving when assumptions such as the above do 

not hold. Even if the �rst assumption above is assumed to hold, there will undoubtedly be modeling 

errors, such as improperly modeled dynamics or incompletely modeled disturbances (thus violating 

the second assumption). And even if we assume that the dynamics are accurately modeled, the initial 

state of the system is unlikely to be known precisely (violating the third assumption). It is thus clear 

that we need ongoing feedback of information about the state of the system, in order to have a hope 

of stabilizing an unstable system. Feedback can also improve the performance of a stable system (or, 

if the feedback is badly chosen, it can degrade the performance and possibly cause instability!). We 

shall come to understand these issues better over the remaining lectures. 

How, then, can we design feedback controllers that stabilize a given system (or plant | the word 

used to describe the system that we are interested in controlling) � To answer this, we have to address 

the issues of what kind of feedback variables are available for our controller. There are, in general, two 

types of feedback: 

�	 state feedback 

�	 output feedback. 

With state feedback, all of the state variables (e.g., x) of a system are available for use by the controller, 

whereas with output feedback, a set of output variables (e.g., y � Cx+Du) related to the state variables 



are available. The state feedback problem is easier than the output feedback one, and richer in the 

sense that we can do more with control. 

In the remainder of this chapter, we examine eigenvalue placement by state feedback. All our 

discussion here will be for the case of a known LTI plant. The issue of uncertainty and unmodeled 

dynamics should be dealt with as discussed in previous chapters� namely, by imposing a norm constraint 

on an appropriate closed loop transfer function. Our development in this lecture will use the notation 

of CT systems | but there is no essential di�erence for the DT case. 

28.2 State Feedback 

In the case of state feedback, we measure all of the state variables. Thus the plant speci�cation is 

(A� B� I� 0) | we omit the direct-feedthrough matrix, D, for simplicity, because including it would 

introduce only notational complications, without changing any conclusions. Our plant speci�cation 

implies that the output equation is simply y � x. (In many applications, direct measurement of all 

system state variables is either impossible or impractical. We address the important topic of output 

feedback a little later in this lecture.) 

For now, let us examine state feedback in further detail. Let our control, u, be speci�ed by 

u � Fx + v, where F is a constant matrix, and v is an external input. This corresponds to LTI state 

feedback. Combining this control law with the state-space description for our nth-order plant, namely, 

�x � Ax + Bu (28.1) 

y � x � (28.2) 

we �nd that the closed-loop dynamics are described by 

�x � (A + BF )x + Bv �	 (28.3) 

where we adopt the notation � 

x_ for CT systems 

�x �	 : (28.4)
x(k + 1) for DT systems 

As is apparent from (28.3), the closed-loop system is stable if and only if the eigenvalues of 

A + BF are all in the stable region. In other words, F stabilizes this system if and only if � 

�(A + BF ) �	 

Open left half of the complex plane in continuous ; time 

� (28.5)
open unit disc in discrete ; time 

where �(A + BF	 ) is the spectrum (set of eigenvalues) of (A + BF ). 

A key question is: \Can F be chosen so that the eigenvalues of (A + BF ) are placed at arbitrary 

desired locations�" The answer is provided by the following theorem. 

Theorem 28.1 (Eigenvalue Placement) There exists a matrix F such that 

nY 

det (�I ; [A + B	 F ]) � (� ; �i)	 (28.6) 

i�1 

for any arbitrary self-conjugate set of complex numbers �1� : : : � �n 

2 C if and only if (A� B) is reachable. 



Proof. To prove that reachability is necessary, suppose that �i 

2 �(A) is an unreachable mode. Let 

wi
T be the left eigenvector of A associated with �i. It follows from the modal reachability test that 

wi
T A � �iwi

T and wi
T B � 0. Therefore, 

wi
T (A + BF ) � wi

T A + (wi
T B)F 

� wi
T A + 0 

� �iwi
T : (28.7) 

Equation (28.7) implies that �i 

is an eigenvalue of (A + BF ) for any F . Thus, if �i 

is an unreachable 

mode of the plant, then there exists no state feedback matrix F that can move it. 

We shall prove su�ciency for the single-input (B � b) case only. (The easiest proof for the multi-
input case is, as in the single-input case below, based on a canonical form for reachable multi-input 

systems, which we have not examined in any detail, and this is why we omit the multi-input proof.) 

Since (A� b) is reachable, there exists a similarity transformation x � Tz such that T 

;1AT and T 

;1b 

have the controller canonical form 32 ;�1 

;�2 

� � � ;�n 

1 0 � � � 0 

. . 

~A � T 

;1AT � 

6664


7775


(28.8)
 


 . 


 

1 0 3
2


1
 

0
 

. . 

6664


7775


~b � T 

;1b � : (28.9)



 . 


 

0 

Recall that the coe�cients �i 

in the matrix A~ de�ne the characteristic polynomial of A~ and A: 

�(�) � �n + �1�
n;1 + � � � + �n 

(28.10) 

Let Yn
(� ; �i) � �n + �d 

1 

�n;1 + � � � + �d � �d(�) : (28.11)n 

i�1 

~ ~If u � Fz with F being the row vector �� 

F~ � f~ 

1 

� � � f~ 

n 

then 32 ;�1 

+ f~ 

1 

;�2 

+ f~ 

2 

� � � ;�n 

+ f~ 

n 

1 0 � � � 0 

. . 

6664


7775


A~ + ~bF~ � : (28.12)


.



 

1 0 

~It is evident that we simply have to choose fi 

� ;�di 

+ �i 

for i � 1� : : : � n to get the desired closed-loop 

characteristic polynomial �d(�). 

We have thus been able to place the eigenvalues in the desired locations. Now, using the similarity 

transformation and F~, we must �nd F so that A + bF has the same eigenvalues. Since u � F~ z and 



~T 

;1 ~ x � Tz, u � F x. Thus we should de�ne F � FT 

;1 . (Verify that A + bF has the same eigenvalues 

as A~ + ~bF~.) This completes the proof. 

The calculation that was described above of a feedback matrix that places the poles of A + bF at 

the roots a speci�ed polynomial �d(s) can be succinctly represented in a simple formula. The matrix 

A and A~ have the same characteristic polynomial, �(�), which implies that A~ satis�es 

(A~)n � ;�1A~n;1 ; �2A~
n;2 ; : : : ; �nI: 

Based on the above relation the desired characteristic polynomial satis�es 

�d(A~) � A~n + �d1 

A~n;1 + �d2 

A~n;2 + : : : + �dnI� 

� (�1 

d ; �1)A~
n;1 + (�2 

d ; �2)A~
n;2 + : : : + (�d ; �n)I: n 

We de�ne the unit vectors eTi 

, i � 1� 2� : : : � n as ih 

T ith positionei 

� 0 0 : : : 0 1 0 : : : 0 

: 

Due to the special structure of the matrix A~ the reader should be able to check that 

e 

T �d(A~) � (�d 

1 

; �1)e 

T A~n;1 + (�d 

2 

; �2)e 

T A~n;2 + : : : + (�d ; �n)e 

T In n n n n 

� (�d 

1 

; �1)e
T 

1 

+ (�d 

2 

; �2)e
T 

2 

+ : : : + (�d ; �n)e
T 

n n 

� ;F~ : 

Recall that the transformation T that transforms a system into reachable form is given by T � 

fRn 

fRn 

;1 

Rn 

where �� 

fRn 

� 
b Ab : : : An;1b � 

Rn 

�� 

~b A~~b A~n;1~b�
 :
: : :


The matrix has the following form 32 

1 � � : : : 

0 1 � : : : 

6664


7775


fRn 

where � denotes entries that can be di�erent from zero. The feedback matrix F is related to F~ via the 

relation F � F~T 

;1 which implies that 

F � F~T 

;1 

� ;e 

T �d(A~)T 

;1 

n 

� ;e 

T �d(T 

;1AT )T 

;1 

n 

� ;e 

T T 

;1�d(A)TT 

;1 

n 

�
 � (28.13)
. . . . . . . 

. . 

0 0 : : : 1 

Rn 

;1�d(A):;e 

T 

n 

fRn 

T 

�


TNote that from Equation 28.13 we h � e , w hich results in the following formula, which iave e sn n 

fRn 

commonly called Ackermann's formula 

F � ;e 

T Rn 

;1�d(A): (28.14)n 

Some comments are in order: 



1. If (A� B) is not reachable, then the reachable modes, and only these, can be changed by state 

feedback. 

2. The pair (A� B) is said to be stabilizable if its unreachable modes are all stable, because in this 

case, and only in this case, F can be selected to change the location of all unstable modes to 

stable locations. 

3. Despite what the theorem says we can do, there are good practical reasons why one might temper 

the application of the theorem. Trying to make the closed-loop dynamics very fast generally 

requires large F , and hence large control e�ort | but in practice there are limits to how much 

control can be exercised. Furthermore, unmodeled dynamics could lead to instability if we got 

too ambitious with our feedback. 

The so-called linear-quadratic regulator or LQR formulation of the controller problem for linear 

systems uses an integral-square (i.e. quadratic) cost criterion to pose a compromise between the 

desire to bring the state to zero and the desire to limit control e�ort. In the LTI case, and with 

the integral extending over an in�nite time interval, the optimal control turns out to be precisely 

an LTI state feedback. The solution of the LQR problem for this case enables computation of the 

optimal feedback gain matrix F 

� (most commonly through the solution of an algebraic Riccati 

equation). You are led through some exploration of this on the homework. See also the article 

on \Linear Quadratic Regulator Control" by Lublin and Athans in The Control Handbook, W.S. 

Levine (Ed.), CRC Press, 1996. 

4. State feedback cannot change reachability, but it can a�ect observability | either destroying it 

or creating it. 

5. State feedback can change the poles of an LTI system, but does not a�ect the zeros (unless the 

feedback happens to induce unobservability, in which case what has occurred is that a pole has 

been shifted to exactly cancel a zero). Note that, if the open-loop and closed-loop descriptions 

are minimal, then their transmission zeros are precisely the values of s where their respective 

system matrices drop rank. These system matrices are related by a nonsingular transformation: � � � � � � 

sI ; (A + BF ) ;B 

� 

sI ; A ;B I 0 

(28.15)
C 0 C 0 F I 

Hence the closed-loop and open-loop zeros are identical. (We omit a more detailed discussion of 

what happens in the nonminimal case.) 

Example 28.1 Inverted Pendulum 

A cart of mass M slides on a frictionless surface. The cart is pulled by a force u(t). On the 

cart a pendulum of mass m is attached via a frictionless hinge, as shown in Figure 28.1. 

The pendulum's center of mass is located at a distance l from either end. The moment 

of inertia of the pendulum about its center of mass is denoted by I . The position of the 

center of mass of the cart is at a distance s(t) from a reference point. The angle �(t) is 

the angle that the pendulum makes with respect to the vertical axis which is assumed to 

increase clockwise. 

First let us write the equations of motion that result from the free-body diagram of the 

cart. The vertical forces P , R and Mg balance out. For the horizontal forces we have the 

following equation 

Ms�� u ; N: (28.16) 



s(t) 

theta 

l 

u(t) 

u 

P 

N 

P 

N 

mg 

s+ l sin(theta) 

Mg R 

Figure 28.1: Inverted Pendulum 

From the free-body diagram of the pendulum, the balance of forces in the horizontal 

direction gives the equation 

d2 

m (s + l sin(�)) � N� � 

dt2 � �d _m s_ + l cos(�)� � N� 

dt� � 

m s� ; l sin(�)(�_)2 + l cos(�)�� � N� (28.17) 

and the balance of forces in the vertical direction gives the equation 

d2 

m (l cos(�)) � P ; mg� 

dt2 � �d _m ;l sin(�)� � P ; mg� 

dt� � 

m ;l cos(�)(�_)2 ; l sin(�)�� � P ; mg: (28.18) 

Finally by balancing the moments around the center of mass we get the equation 

I�� � P l sin(�) ; Nl cos(�): (28.19) 



_ _ 

From equations 28.16, 28.17 we can eliminate the force N to obtain �	 � 

_(M + m)s�+ m l cos(�)�� ; l sin(�)(�)2 � u: (28.20) 

Substituting equations 28.17, 28.18 into equation 28.19 gives us �	 � 

I�� � l mg ; ml cos(�)(�_)2 ; ml sin(�)�� sin(�) �
	 � 

; l ms� ; ml sin(�)(�_)2 + ml cos(�)�� cos(�): 

Simplifying the above expression gives us the equation 

(I + ml2)��� mgl sin(�) ; mls�cos(�):	 (28.21) 

The equations that describe the system are 28.20 and 28.21. We can have a further 

simpli�cation of the system of equations by removing the term �� from equation 28.20, and 

the term �s from equation 28.21. De�ne the constants 

Mt 

�	 M + m 

I + ml2 

L � : 

ml 

Substituting �� from equation 28.21 into equation 28.20 we get � � 

_1 ;	 

ml	 

cos(�)2 s�+ 

ml 

g sin(�) cos(�) ; 

ml 

sin(�)(�)2 �
1 

u: (28.22)
MtL MtL	 Mt 

Mt 

Similarly we can substitute �s from equation 28.20 into equation 28.21 to get � � 

1 ;	 

ml	 

cos(�)2 �� ; 

g 

sin(�) + 

ml 

sin(�) cos(�)(�_)2 � ; 

1 

cos(�)u: (28.23)
MtL L MtL	 MtL 

_ .These are nonlinear equations due to the presence of the terms sin(�), cos(�), and (�)2 

We can linearize these equations around � � 0 and � � 0, by assuming that �(t) and �(t) 

remain small. Recall that for small � 

1 

sin(�) � � ; �3 

6 

1 

cos(�) � 1 ; �2� 

2 

and using these relations we can linearize the equations 28.22 and 28.23. The linearized 

system of equations take the form �
 �
 

ml ml g 1 

1 ; s�+ � � u� 

MtL MtL L Mt�
 �
 

1 ; 

ml 

�� ; 

g
� � ; 

1 

u: 

MtL L MtL 

Choose the following state variables 2
 3
 

s 

x � 

664
 �
s_ 

775
 

� 

_� 



to write a state space model for the invert ed pendulum. Using these state variables the 

following state space model can be easily obtained 0
1
0
 10
 101 

x1 

0 1 0 0 x1 

0 

� 


 

y � 1 0 0 x� 

where the constant � is given by 

1 

� � 

�
 � : 

� 

ml1 ; Mt 

L 

_Intuitively it is clear that the equilibrim point [s � constant� s_ � 0� � � 0� � � 0] is an 

unstable equilibrim point. To verify this we compute the eigenvalues of the matrix A by 

solving the equation det(�I ; A) � 0. The eigenvalues are 

BB@
�

BB@


CCA


;� 

ml 

Mt 

L 

BB@ 

CCA 

CCA


BB@


CCA


d 0
0 0
 gx2 

x2 Mt�
 +
 u 

0
0 0 0 1
dt 

x3 

x3
 
 
 
 
 

�0 0 � 

g 0L
;x4 

x4 LMt 

�
 �
pp
Therefore we have two eigenvalues at the j! axis and one eigenvalue in the open right half 

of the complex plane, which indicates instability. 

Now let us consider the case where M � 2kg, m � :1kg, l � :5m, I � :025kgm2, and of 

course g � 9:8m�s2 . Assume that we can directly measure the state variables, s, s_, � and 

_�. We want to design a feedback control law u � F x̂+ r to stabilize this system. In order 

to do that we will choose a feeback matrix F to place the poles of the closed-loop system 

�g �g0 0
 ; 
:


L L 

�� 

at f;1� ;1� ;3� ;3g. Using Ackermann's formula 

F � ; 
0 0 0 1 Rn 

;1�d(A) 

where �d(�) � (� + 1)(� + 1)(� + 3)(� + 3) which is the ploynomial whose roots are 

the desired new pole locations, and Rn 

is the reachability matrix. In speci�c using the 

parameters of the problem we have 32 

0 0:4878 0 0:1166
 

;1 

2 3
 

9:0 24:0 ;7:7 ;1:9 

;24:9 ;7:7664


664


775


775


�� 

F � ; 
0 0 0 1 

0:4878 0 0:1166 0
 0 9:0


0 ;0:4878 0 ;4:8971 

0 0 

0 0 330:6 104:3



 
 
 
 

;0:4878 ;4:8971 0 0 1047:2 330:6
 �
 �
 

� 1:8827 5:0204 67:5627 21:4204 

The closed-loop system is given by 232 32
 323 

x1 

0 1:0 0 0 x1 

0 664


x2 

x3 

775


�
 

664


0:9184 2:449 32:7184 10:449
 

0 0 0 1:0
 

664 

775 

x2 

x3 

775


+
 

664


775


d 

dt 

0:4878
 

0
 

r 


 
 
 
 
 
 

x4 

;0:9184 ;2:4490 ;22:9184 ;10:4490 x4 

;0:4878 

In Figure 28.2 we show the time trajectories of the closed-loop linearized system when the 

reference input r(t) is identically zero and the intial angular displacement of the pendulum 
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Figure 28.2: Plot of the State Variables of the Closed-Loop Linearized System with r � 0 and 

_the Initial Condition s � 0, s_ � 0, � � 1:0, and � � 0 



is 1:0 radians. In this simulation the initial conditions on all the other state variables are 

zero. 

We can also look at the performance of this controller if it is applied to the nonlinear 

system. In this case we should simulate the dynamics of the following nonlinear system 

of equations 2
 3
 2
 3
 2
 3
 

x2 

0x1 

1 1
 

Mt 

�(x3 

) 

0
 

mlg 1 sin(x3) cos(x3) + 

ml 1
 sin(x3)(x4 

)2 

�(x3 

) Mt 

�(x3 

)d 

dt 

664


x2
 

x3
 

775


�


664


775


+
 

664


775


; Mt 

L u 

x4
 


 
 
 
 
 
 

g 1 ml 1 1 

cos(x3 

)x4
 L �(x3 

) 

sin(x3) ; Mt 

L �(x3 

) 

sin(x3) cos(x3)(x4 

)2 ; Mt 

L �(x3 

)2
 3
 

x1
 664


x2
 


 x3
 

775


+ r� 

�� 

� 1:8827 5:0204 67:5627 21:4204
u 


 

x4
 

where �(x3 

) is de�ned as �� 

�(x3 

) � 1 ; 

ml 

cos(x3)
2 : 

MtL 

In Figure 28.3 we show the time trajectories of the nonlinear closed-loop system when the 

reference input r(t) is identically zero and the intial angular displacement of the pendulum 

is 1:0 radians. In this simulation the initial conditions on all the other state variables are 

zero. 
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Figure 28.3: Plot of the State Variables of the Nonlinear Closed-Loop System with r � 0 and 

_the Initial Condition s � 0, s_ � 0, � � 1:0, and � � 0 



Exercises 

Exercise 28.1 Let (A� B� C� 0) be a reachable and observable LTI state-space description of a discrete-
time or continuous-time system. Let its input u be related to its output y by the following output 

feedback law: 

u � Fy + r 

for some constant matrix F , where r is a new external input to the closed-loop system that results 

from the output feedback. 

(a) Write down the state-space description of the system mapping r to y. 

(b) Is the new system reachable� Prove reachability, or show a counterexample. 

(c) Is the new system observable� Prove observability, or show a counterexample. 

Exercise 28.2 (Discrete Time \Linear-Quadratic" or LQ Control) 

Given the linear system xi+1 

� Axi 

+ Bui 

and a speci�ed initial condition x0, we wish to �nd the 

sequence of controls u0� u1� : : : � uN 

that minimizes the quadratic criterion 

NX 

J0�N 

(x0� u0� : : : � uN 

) � (xTi+1Qxi+1 

+ uTi 

Ru  i) 

0 

Here Q is positive semi-de�nite (and hence of the form Q � V 

T V for some matrix V ) and R is positive 

de�nite (and hence of the form R � W 

T W for some nonsingular matrix W ). The rationale for this 

criterion is that it permits us, through proper choice of Q and R, to trade o� our desire for small 

state excursions against our desire to use low control e�ort (with state excursions and control e�ort 

measured in a sum-of-squares sense). This problem will demonstrate that the optimal control sequence 

for this criterion has the form of a time-varying linear state feedback. 

� 

0� : : : � u
� 

N 

, let the resulting state sequence be 

, and let the resulting value of J0�N 

(x0� u0� : : : � uN 

) be denoted by L 

Let the optimal control sequence be denoted by u 

�denoted by x1 

� : : : � 

� � (x0).xN+1 0�N 

(a) Argue that u� 

k 

�
N 

is also the the sequence of controls uk� : : : � uN 

that minimizes Jk�N  

(x� 

k � uk� : : : � uN 

),� : : : �
 u 

0 � k � N . [This observation, in its general form, is termed the principle of optimality, and 

underlies the powerful optimization framework of dynamic programming.] 

(b) Show that 

NX 

Jk�N  

(xk � uk� : : : � uN 

) � ke`k2 

k 

where e` 

� Cx` 

+ Du` 

and � � � �


V A V B


C � � D � 

0 W 

332




(c) Let 0	 1 0 1 

uk 

ek 

Uk�N  

� 

@ ... 

A � Ek�N  

� 

@ ... 

A 

uN 

eN 

Show that Ek�N  

� Ck�N  

xk + DkN 

Uk�N  

for appropriate matrices Ck�N  

and Dk�N  

, and show that 

Dk�N  

has full column rank. 

(d)	 Note from (b) that Jk�N  

(xk� uk� : : : � uN ) � kEk�N  

k2 . Use this and the results of (a), (c) to show 

that 

Uk�  

� 

N � ;(Dk�
T
N 

Dk�N  

);1Dk�
T
N 

Ck�N  

x� 

k 

and hence that u� 

k � Fk
�x� 

k for some state feedback gain matrix Fk 

�, 0 � k � N . The optimal 

	 

control sequence thus has the form of a time-varying linear state feedback. 

(e)	 Assuming the optimal control problem has a solution for N � 1, argue that in this \in�nite-
horizon" case the optimal control is given by uk 

� � F 

�xk 

� for a constant state feedback gain 

matrix F 

� . 

Exercise 28.3 (Continuous-Time LQ Control) 

Consider the controllable and observable system x_ (t) � Ax(t) + Bu(t), y(t) � Cx(t). It can be 

shown that the control which minimizes Z 1 

J � [ y 

0(t)y(t) + u 

0(t)Ru  (t) ] dt 

0 

with R positive de�nite, is of the form u(t) � F 

�x(t), where 

F 

� � ;R;1B0P (2:1) 

and where P is the unique, symmetric, positive de�nite solution of the following equation (called the 

algebraic Riccati equation or ARE): 

PA + A0P + Q ; P BR;1B0P � 0 � Q � C 0C (2:2) 

The control is guaranteed to be stabilizing. The signi�cance of P is that the minimum value of J is 

given by x0(0)Px(0). 

In the case where u and y are scalar, so R is also a scalar which we denote by r, the optimum 

closed-loop eigenvalues, i.e. the eigenvalues of A + BF 

�, can be shown to be the left-half-plane roots 

of the so-called root square characteristic polynomial 

a(s)a(;s) + p(s)r;1 p(;s) 

where a(s) � det(sI ; A) and p(s)�a(s) is the transfer function from u to y. 

Now consider the particular case where � � � � 

A � 

0 

9 

1 

0 

� B � 

0 

1 

C � ( 1 0 ) 

This could represent a magnetic suspension scheme with actuating current u and position y (or a 

simpli�ed model of an inverted pendulum). 



(a) Show that the system is unstable. 

(b) Find the transfer function from u to y. 

(c)	 Using the root square characteristic polynomial for this problem, approximately determine in 

terms of r the optimum closed-loop eigenvalues, assuming r � 1. 

(d)	 Determine the optimum closed-loop eigenvalues for r !1, and �nd the F 

� that gives this set of 

eigenvalues. 

(e)	 Verify the result in (d) by computing the optimal gain F 

� via the formulas in (2.1) and (2.2). (In 

order to get a meaningful solution of the ARE, you should not set r;1 � 0, but still use the fact 

that r � 1.) 

Exercise 28.4 (Eigenstructure Assignment) Let (A� B� I� 0) be an m-input, reachable, nth-order 

LTI system. Let the input be given by the LTI state feedback 

u � Fx 

Suppose we desire the new, closed-loop eigenvalues to be �i, with associated eigenvectors pi. We have 

seen that the �i 

can be placed arbitrarily by choice of F (subject only to the requirement that they 

be at self-conjugate locations, i.e. for each complex value we also select its conjugate). Assume in this 

problem that none of the �i's are eigenvalues of A. 

(a) Show that the eigenvector pi 

associated with �i 

must lie in the m-dimensional subspace Ra[(�iI ; 

A);1B], i.e.,
 

pi 

� (�iI ; A);1Bqi
 

for some qi 

. 

(b) Show that if p1� : : : � pn 

are a set of attainable, linearly independent, closed-loop eigenvectors, then 

F � [q1� : : : � qn] [p1� : : : � pn]
;1
 

where qi� : : : � qn 

are as de�ned in (a).
 

(c)	 Verify that specifying the closed-loop eigenvalues and eigenvectors, subject to the restrictions in 

(a), involves specifying exactly nm numbers, which matches the number of free parameters in 

F . 
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Chapter 29 

Observers, Model-based Controllers
 

29.1 Introduction 

In here we deal with the general case where only a subset of the states, or linear combinations of them, 

are obtained from measurements and are available to our controller. Such a situation is referred to as 

the output feedback problem. The output is of the form 

y � Cx + Du : (29.1) 

We shall examine a class of output feedback controllers constructed in two stages: 

1. building an observer | a dynamic system that is driven by the inputs and the outputs of the 

plant, and produces an estimate of its state variables� 

2. using the estimated state instead of the actual state in a state feedback scheme. 

The resulting controller is termed an observer-based controller or (for reasons that will become clear) 

a model-based controller. A diagram of the structure of such a controller is given in Figure 29.1. 

29.2 Observers 

An observer comprises a real-time simulation of the system or plant, driven by the same input as the 

plant, and by a correction term derived from the di�erence between the actual output of the plant and 

the predicted output derived from the observer. Denoting the state vector of the observer by x̂, we 

have the following state-space description of the observer: 

�x̂ � Ax̂+ Bu ; L(y ; ŷ) � (29.2) 

where L, the observer gain, is some matrix that will be speci�ed later, and ^ y � Cx̂+ Du is an estimate 

of the plant output. The term \model-based" for controllers based on an observer refers to the fact 

that the observer uses a model of the plant as its core. 



u 

�


� � 

x̂ observer �
F L û estimate y � Cx 

of x 

Z}Z
Z 

controller 

Figure 29.1: Structure of an observer-based, or model-based controller, where L denotes the 

observer gain and F the state feedback gain. 

De�ne the error vector as x~ � x ; x̂. Given this de�nition, the dynamics of the error are 

determined by the following error model: 

�x~	 � �x ; �x̂ 

� Ax + Bu ; Ax̂; Bu + L(y ; ŷ) 

� A(x ; x̂) + L(Cx ; Cx̂) 

� (A + LC)x~ : (29.3) 

In general, x~(0) 6	� 0, so we select an L which makes x~(t), the solution to (29.3), approach zero for 

large t. As we can see, x~(t) ! 0 as t ! 1 for any x~(0) if and only if (A + LC) is stable. Note that 

if x~(t) ! 0 as t ! 1 then x̂(t) ! x(t) as t ! 1. That is, the state estimates eventually converge 

to their actual values. A key point is that the estimation error does not depend on what the control 

inputs are. 

It should be clear that results on the stability of (A + LC) can be obtained by taking the duals 

of the results on eigenvalue placement for (A + BF ). What we are exploiting here is the fact that the 

eigenvalues of (A + LC) are the same as those of (A0 + C 0L0). Speci�cally we have the following result: 

Theorem 29.1 There exists a matrix L such that 

nY 

det (�I ; [A + LC]) � (� ; �i)	 (29.4) 

i�1 

for any arbitrary self-conjugate set of complex numbers �1� : : : � �n 

2 C if and only if (C�A  ) is observ-
able. 

In the case of a single-output system� i.e c is a row vector, one can obtain a formula that is dual 

to the feedback matrix formula for pole-assignment. Suppose we want to �nd the matrix L such that 

A + Lc has the characteristic polynomial �d(�) then the following formula will give the desired result 

L � ;�d(A)O;1 

n 

en 



where On 

is the observability matrix de�ned as 2
 3
 

C 

On 

� 

6664


CA


.
.


7775


:

 


 . 


 

CAn;1 

The above formula is the dual of Ackermann's formula which was obtained earlier. 

Some remarks are in order: 

1. If (C�A) is not observable, then the unobservable modes, and only these, are forced to remain 

as modes of the error model, no matter how L is chosen. 

2. The pair (C�A) is said to be detectable if its unobservable modes are all stable, because in this 

case, and only in this case, L can be selected to change the location of all unstable modes of the 

error model to stable locations. 

3. Despite what the theorem says we can do, there are good practical reasons for being cautious in 

applying the theorem. Trying to make the error dynamics very fast generally requires large L, 

but this can accentuate the e�ects of any noise in the measurement of y. If y � Cx+ �, where � 

is a noise signal, then the error dynamics will be driven by a term L�, as you can easily verify. 

Furthermore, unmodeled dynamics are more likely to cause problems if we use excessively large 

gains. 

The Kalman �lter, in the special form that applies to the problem we are considering here, is 

simply an optimal observer. The Kalman �lter formulation models the measurement noise � as 

a white Gaussian process, and includes a white Gaussian plant noise term that drives the state 

equation of the plant. It then asks for the minimum error variance estimate of the state vector of 

the plant. The optimal solution is precisely an observer, with the gain L� chosen in a particular 

way (usually through the solution of an algebraic Riccati equation). The measurement noise 

causes us to not try for very fast error dynamics, while the plant noise acts as our incentive 

for maintaining a good estimate (because the plant noise continually drives the state away from 

where we want it to be). 

4. Since we are directly observing p linear combinations of the state vector via y � Cx, it might 

seem that we could attempt to estimate just n ; p other (independent) linear combinations of 

the state vector, in order to reconstruct the full state. One might think that this could be done 

with an observer of order n ; p rather than the n that our full-order observer takes. These 

expectations are indeed ful�lled in what is known as the Luenberger/Gopinath reduced-order 

observer. We leave exploration of associated details to some of the homework problems. With 

noisy measurements, the full-order observer (or Kalman �lter) is to be preferred, as it provides 

some �ltering action, whereas the reduced-order observer directly presents the un�ltered noise 

in certain directions of the ^ space.x 

29.3 Model-Based Controllers 

Figure 29.2 shows the model-based controller in action, with the observer's state estimate being fed 

back through the (previously chosen) state feedback gain F . 

Note that, for this model-based controller, the order of the plant and controller are the same. 

The number of state variables for the closed-loop system is thus double that of the open-loop plant, 



��
 

r u- + 

- -�� 

P y
6+ 

� 

û x̂ observer � �F L 

Figure 29.2: Closed-loop system using the model-based output feedback controller. 

since the state variables of both the plant, x, and of the estimator, x̂ | or some equivalent set of 

variables | are required to describe the dynamics of the system. The state equation for the plant is 

�x � Ax + Bu � 

which becomes 

�x � Ax + B (r + F x̂) 

� Ax + BF x̂+ Br 

by substituting F x̂+r for the control u and expanding. To eliminate ^ x so that this equation is solely in 

terms of the state variables x and x~, we make the substitution ^ x � x ; x~ (since x~ � x ; x̂), producing 

the result 

�x � Ax + BF (x ; x~) + Br 

� (A + BF )x ; BF x ~ + Br : 

Coupling this with �x ~ � (A + LC)x~, which is the state equation for the estimator (derived in 29.3), 

we get the composite system's state description: � � � �� � � � 

�x 

� 

A + BF ;BF x 

+ 

B 

r : (29.5)
�x ~ 0 A + LC x~ 0 

Since the composite system matrix is block upper triangular, the closed-loop eigenvalues are given by 

�(A+BF )[ �(A+LC), where, as indicated earlier, the notation �(A) represents the set of eigenvalues 

of A. This fact is referred to as the separation theorem, and indicates that the plant stabilization and 

estimator design can be tackled separately. 

In the stochastic setting, with both plant noise and measurement noise, one can pose the so-called 

LQG problem (where the initials stand for linear system, quadratic criteria, Gaussian noise). The 

solution turns out to again be a model-based compensator, with a closed-loop system that is again 

governed by a separation result: the optimal F 

� can be chosen according to an LQR formulation, 

ignoring noise, and the optimal L� can be determined as a Kalman �lter gain, ignoring the speci�cs 

of the control that will be applied. For a summary of the equations that govern a model-based 

compensator designed this way, see the article on \H2 

(LQG) and H1 

Control" by Lublin, Grocott 

and Athans in The Control Handbook referred to earlier (speci�cally look at Theorem 1 there). 



A comment about the e�ect of modeling errors: If there are di�erences between the parameter 

matrices A, B, C of the plant and those assumed in the observer, these will cause the entries in the 

2n�2n matrix above to deviate from the values shown there. However, for small enough deviations, the 

stability of the closed-loop system will not be destroyed, because eigenvalues are continuous functions 

of the entries of a matrix. The situation can be much worse, however, if (as is invariably the case) 

there are uncertainities in the order of the model. The �eld of robust control is driven by this issue, 

and we shall discuss it more later. 

Example 29.1 Inverted Pendulum with Output Feedback 

In the previous section we discussed the inverted pendulum problem. In that example a 

state feedback controller was given that stabilizes the pendulum around the equilibrium 

point of the vertical position. We will continue with this example by designing an observer-
based stabilizing controller. Recall that the nonlinear system's equationsa are given by 23232

x1 

x2 

0 

1 1mlg 1 sin(x3) cos(x3) + 

ml 1 sin(x3)(x4 
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_where x1 

� s, x2 

� s_, x3 

� �, and x4 

� �. The function �(x3) is given by �� 

ml 

�(x3 

) � 1 ; cos(x3)
2 : 

MtL 

The linearized system was also obtained in the previous example and was shown to have 

the following description 0
1
0
 10
 101 

x1 

0 1 0 0 x1 

0 

�;� 

ml 

Mt 

L 

� 

BB@
�
 

y � 1 0 0 x: 

In order to design an observer-based controller we need to compute the observer gain L 

to place the eignevalues of A + LC at stable locations. Suppose we choose to place the 

eigenvalues at f;4� ;4� ;4� ;4g then by Ackermann's formula the observer gain will be 

given by 2
 3
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Figure 29.3: Plot of the state variables and the observer variables of the closed-Loop linearized 

_system with r � 0 and the initial condition s � 0, s_ � 0, � � :2, � � 0, x̂1 

� 0, x̂2 

� 0, and 

x̂3 

� 0, x̂4 

� 0. The solid lines represent the state variables and the dashed lines represent 

the observer variables 

where in the above expression we have �d(�) � (� + 4)4 . The closed loop system is 

simulated as shown in Figure 29.3. Note that the feedback matrix F is the same as was 

obtained in the �rst example in this chapter. It is clear that the estimates ^ x1, x̂  2, ^ x3 

and 

x̂  4 

converge to the state variables x1, x2, x3 

and x4. The initial angle of the pendulum is 

chosen to be :2 radians and the initial condition for the observer variables as well as the 

other state variables are chosen to be zero, and . 

The observer-based controller is applied to the nonlinear model and the simulation is given 

in Figure 29.4. 
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Figure 29.4: Plot of the state variables and the observer variables of the closed-Loop nonlinear 

_system with r � 0 and the initial condition s � 0, s_ � 0, � � :2, � � 0, x̂1 

� 0, x̂2 

� 0, and 

x̂3 

� 0, x̂4 

� 0. The solid lines represent the state variables and the dashed lines represent 

the observer variables 



Exercises 

Exercise 29.1 Consider the mass-spring system shown in the �gure below. 

-
x1(t) 

-
x2(t) 

w(t) 

-
u(t) 

- m1 

.........
.........
.....

J �J  

J�  J...............
........ m2 

k 

Let x1(t) denote the position of mass m1, x2(t) the position of mass m2, x3(t) the velocity of mass 

m1, x4(t) the velocity of mass m2, u(t) the applied force acting on mass m1, and w(t) a disturbance 

force acting on mass m2, k is the spring constant. There is no damping in the system. 

The equations of motion are as follows: 

x_1(t) � x3(t)
 

x_2(t) � x4(t)
 

x_3(t) � 

x_4(t) � 

;(k�m1)x1(t) + (k�m1)x2(t) + (1�m1)u(t)
 

(k�m2)x1(t) ; (k�m2)x2(t) + (1�m2)w(t)
 

The output is simply the position of mass m2, so 

y(t) � x2(t) 

Assume the following values for the parameters: 

m1 

� m2 

� 1� k � 1 

(a)	 Determine the natural frequencies of the system, the zeros of the transfer function from u to y, 

and the zeros of the transfer function from w to y. 

(b)	 Design an observed-based compensator that uses a feedback control of the form u(t) � F x̂(t)+r(t), 

where x̂(t) is the state-estimate provided by an observer. Choose F such that the poles of the 

transfer function from r to y are all at ;1. Design your observer such that the natural frequencies 

governing observer error decay are all at ;5. 

(c)	 Determine the closed-loop transfer function from the disturbance w to the output y and obtain 

its Bode magnitude plot. Comment on the disturbance rejection properties of your design. 

(d)	 Plot the transient response of the two position variables and of the control when x2(0) � 1 and 

all the other state variables, including the compensator state variables, are initially zero. 



(e)	 Plot the transient response of the two position variables and of the control when the system is 

initially at rest and the disturbance w(t) is a unit step at time t � 0. 

Exercise 29.2 Reduced Order Observer 

The model-based observer that we discussed in class always has dimension equal to the dimension of 

the plant. Since the output measures part of the states (or linear combinations), it seems natural that 

only a subset of the states need to be estimated through the observer. This problem shows how one 

can derive a reduced order observer. 

Consider the following dynamic system with states x1 

2 R
r� x2 

2 R
p: � � � �� � � � 

x_1 

A11 

A12 

x1 

B1�	 + u� 

x_2 

A21 

A22 

x2 

B2 

and 

y � x2: 

Since x2 

is completely available, the reduced order observer should provide estimates only for x1, and 

its dimension is equal to r, the dimension of x1. Thus � � 

x̂  1 x̂ � : 

x2 

One may start with the following potential observer: 

_x̂ 1 

� A11x̂ 1 

+ A12y + B1u + L(y ; ŷ) 

Since ŷ � Cx̂ � x2 

(since x2 

is known exactly), the correction term in the above equation is equal to 

zero (L(y ; ŷ) � 0). This indicates that this proceedure may not work. 

Suppose instead, that we de�ne a new variable z � x1 

; Lx2, where L is an r � p matrix that we will 

choose later. Then if we can derive an estimate for z, denoted by ẑ, we immediately have an estimate 

for x1, namely, x̂1 

� ẑ + Lx2. 

(a)	 Express z_ in terms of z� y� and u. Show that the state matrix (matrix multiplying z) is given by 

A11 

; LA21. 

(b)	 To be able to place the poles of A11 

; LA21 

in the left half plane, the pair (A11� A21) should be 

observable (i.e., a system with dynamic matrix A11 

and output matrix A21 

should be observable). 

Show that this is the case if and only if the original system is observable. 

(c) Suggest an observer for z. Verify that your choice is good. 

(d)	 Suppose a constant state feedback matrix F has been found such that A + BF is stable. Since 

not all the states are availabe, the control law can be implemented as: 

u � F x̂ � F1x̂ 1 

+ F2x2 

where F � ( F1 

F2 

) is decomposed conformally with x1 

and x2. Where do the closed loop 

poles lie� Justify your answer. 



Exercise 29.3 (Observers and Observer-Based Compensators) The optimal control in Prob-
lem 28.3 cannot be implemented when x is not available to us. We now examine, in the context of the 

(magnetic suspension) example in that problem, the design of an observer to produce an estimate x̂, 

and the design of an observer-based compensator that uses this estimate instead of x. Assume for this 

problem that the output measurement available to the observer is the same variable y that is penalized 

in the quadratic criterion. [In general, the penalized \output" in the quadratic criterion need not be 

the same as the measured output used for the observer.] 

(a)	 Design a full-order observer for the original open-loop system, to obtain an estimate x̂(t) of x(t), 

knowing only u and y. The eigenvalues that govern error decay are both to be placed at ;6. 

(b)	 Suppose we now use the control u(t) � F 

�x̂(t)+v(t), where F 

� is the same as in (d), (e) of Problem 

2, and v(t) is some new external control. Show that the transfer matrix of the compensator, 

whose input vector is ( u y )
0 

and whose output is the scalar f � F 

�x̂, is given by 

1 ; 

(s + 6)2 

[ 6(s + 15) 486(s + 3) ] 

Also determine the transfer function from v to y. 

(c)	 As an alternative to the compensator based on the full-order observer, design a reduced-order 

observer | see Problem 1(c) | and place the eigenvalue that governs error decay at ;6. Show 

that the transfer matrix in (b) is now replaced by 

1 ; [6 54(s + 3)] 

(s + 6	) 

and determine the transfer function from v to y. 

Exercise 29.4 Motivated by what we have done with observer-based compensators designed via state-
space methods, we now look for a direct transform-domain approach. Our starting point will be a given 

open-loop transfer function for the plant, p(s)�a(s), with a(s) being a polynomial of degree n that has 

no factors in common with p(s). Let us look for a compensator with the structure of the one in Problem 

0
3(b), with input vector ( u y ) , output f that constitutes the feedback signal, and transfer matrix 

1 ; [ q(s) r(s) ] 

w(s) 

where w(s) is a monic polynomial (i.e. the coe�cient of the highest power of s equals 1) of degree n, 

while q(s) and r(s) have degrees n ; 1 or less. With this compensator, the input to the plant is given 

by u � f + v, where v is some new external control signal. 

(a)	 Find an n-th order realization of the above compensator. (Hint: Use the familiar SISO observer 

canonical form, modi�ed for 2 inputs.) (You will not need to use this realization for any of the 

remaining parts of this problem | the intent of this part is just to convince you that an n-th 

order realization of the compensator exists.) 



(b) Show that the transfer function from v to y is 

p(s)w(s) 

g(s) � 

[w(s)	 + q(s)]a(s) + r(s)p(s) 

and argue that the characteristic polynomial of the system must be 

[w(s) + q(s)]a(s) + r(s)p(s) 

It turns out that, since a(s) and p(s) are coprime, we can choose [w(s) + q(s)] and r(s) to 

make the characteristic polynomial equal to any monic polynomial of degree 2n. The following 

strategy for picking this polynomial mimics what is done in the design of an observer-based 

compensator using state-space methods: pick w(s) to have roots at desirable locations in the 

left-half-plane (these will correspond to observer error decay modes)� then pick q(s) and r(s) so 

that the characteristic polynomial above equals �(s)w(s), where �(s) is a polynomial of degree 

n that also has roots at desirable positions in the left-half- plane. With these choices, we see 

that 

g(s) � [p(s)w(s)]�[�(s)w(s)] � p(s)��(s) 

This compensator has thus shifted the poles of the closed-loop system from the roots of a(s) to 

those of �(s), and the roots of w(s) correspond to hidden modes. 

(c)	 Design a compensator via the above route for a plant of transfer function 1�(s2 ; 9), to obtain an 

overall transfer function of 1�(s + 3)2 , with two hidden modes at ;6. Compare with the result 

in Problem 3(b). 

(d)	 The above development corresponds to designing a compensator based on a full-order observer. 

A compensator based on a reduced-order observer | see Problem 1(c) | is easily obtained as 

well, by simply making w(s) a monic polynomial of degree n ; 1 rather than n and making any 

other changes that follow from this. After noting what the requisite changes would be, design a 

compensator for a plant of transfer function 1�(s2 ; 9), to obtain an overall transfer function of 

1�(s + 3)2 , with one hidden mode at ;6. Compare with the result in Problem 3(c). 

Exercise 29.5 Consider a plant described by the transfer function matrix � 1 1 

� 

s;1 s;1P (s) � 2s;1 1 

s(s;1) 

(a)	 Design a model-based (i.e. observer-based) controller such that the closed loop system has all 

eigenvalues at s � ;1. 

(b) Suppose that P11(s) is perturbed to 

1+� 

s;1 

. For the controller you designed, give the range of � for 

which the system remains stable. Discuss your answer. 

s;1 



Exercise 29.6 Assume we are given the controllable and observable system x_ (t) � Ax(t) + Bu(t), 

z(t) � Cx(t), with transfer matrix P (s). The available measurement is y(t) � z(t) + d(t), where d(t) 

is a disturbance signal. An observer for the system comprises a duplicate of the plant model, driven 

by the same input u(t), but also by a correction term e(t) � y(t) ; Cx̂(t) acting through an observer 

gain L, which is chosen to obtain stable error dynamics. 

For an observer-based stabilizing compensator, suppose we pick u(t) � F x̂(t)+ r(t)+ v(t), where 

x̂(t) is the estimate produced by an observer, F is the gain we would have used to stabilize the system 

under perfect state feedback, r(t) is some external input, and v(t) is the output of a stable �nite 

dimensional LTI system whose input is e(t) and whose (proper, rational) transfer function matrix is 

Q(s). (The case of Q(s) � 0 constitutes the \core" observer-based stabilizing compensator that we 

have discussed in detail in class.) A block diagram for the resulting system is given below. 

(a)	 Show that this system is stable for any stable �nite-dimensional system Q. [Hint: The transfer 

function from v to e is equal to zero regardless of what r and d are!] 

(b)	 Obtain a state-space description of the overall system, and show that its eigenvalues are the union 

of the eigenvalues of A + BF , the eigenvalues of A + LC, and the poles of Q(s).) 

(c)	 What is the transfer function matrix K(s) of the overall feedback compensator connecting y to 

u� Express it in the form K(s) � [W (s) ; Q(s)M(s)];1[J(s) ; Q(s)N(s)], where the matrices 

W� M� J� N are also stable, proper rationals. 

It turns out that, as we let Q(s) vary over all proper, stable, rational matrices, the matrix K(s) 

ranges precisely over the set of proper rational transfer matrices of feedback compensators that stabilize 

the closed-loop system. This is therefore referred to as the \Q-parametrization" of stabilizing feedback 

compensators. 

d 

+ 

�+ 

�� �� r - u - - y-�� 

P (s)
+�� 

6+ 

� ��
�+ � ��� 

F Observer 

6 

+ 

�+ ;��
v ŷ -�� 

�Q(s) 
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Chapter 30 

Minimality and Stability of 

Interconnected Systems 

30.1 Introduction: Relating I/O and State-Space Properties 

We have already seen in Chapter 25 that a minimal realization of a transfer matrix H(s) is uniquely 

de�ned by H(s), up to a similarity transformation. We therefore expect properties of a minimal 

realization to be tightly associated with properties of the transfer matrix. This expectation is re�ected 

in some of the results described in Chapter 27. 

Speci�cally, we claimed in Chapter 27 that the poles of H(s) are precisely given | in both location 

and multiplicity | by the eigenvalues and associated Jordan structure of the matrix A in a minimal 

realization (A� B� C� D) of H(s) � C(sI ; A);1B + D� this structure is in turn equivalent to the zero 

structure of the matrix (sI ; A), although we did not draw attention to this fact in Chapter 27. The 

general proof of the preceding result is beyond the scope of the tools that we have available, but it is 

not hard to prove in the special case of an H(s) that is amenable to the Gilbert realization procedure of 

Chapter 25, as we show below. Before turning to this demonstration, we note the following important 

implication of the result: 

�	 For a minimal system, BIBO stability is equivalent to asymptotic stability� the state-space model 

is asymptotically stable if and only if H(s) has no unstable (i.e. right half plane) poles. 

For the Gilbert realization to work, each entry of H(s) is required to have poles of multiplicity 

1 only. For such an H(s), using the notation of Chapter 25 and the de�nitions of poles and their 

multiplicities from Chapter 27, it is quite straightforward to argue that H(s) has ri 

poles located at 

�i, each of multiplicity 1. The A matrix of the corresponding Gilbert realization that we constructed 

(and hence the A matrix of any other minimal realization of this transfer function) evidently has ri 

Jordan blocks of size 1 associated with the eigenvalue at �i. Also, the matrix (sI ; A) for the Gilbert 

realization evidently has ri 

zeros of multiplicity 1 at �i. 

Similarly, as noted in Chapter 27, the zeros of H(s) are given | in both location and multiplicity 

| by the generalized eigenvalues and associated \Jordan-Kronecker" structure of the matrix pair (E � A) 

associated with the system matrix sE ;A of a minimal realization of H(s), or equivalently by the zero 



- -

structure of the system matrix. We shall not attempt to prove anything on zeros beyond what has 

already been shown in Chapter 27. 

30.2 Loss of Minimality in Interconnections 

In this section we shall examine the conditions under which minimality is lost when minimal subsystems 

are interconnected in various con�gurations, such as the series connection in Fig. 30.1 below. The 

standard convention in interpreting such �gures, where the individual subsystem blocks are labeled 

with their transfer functions, is to assume that each subsystem block contains a minimal realization, 

i.e. a reachable and observable realization, of the indicated transfer function. This is a reasonable 

convention, since the transfer function is inadequate to describe any unreachable and/or unobservable 

parts of the system� if such parts existed and were important to the problem, they would have to be 

described in some appropriate way. 

We will denote the minimal realization of Hi(s) by (Ai� Bi� Ci� Di), and denote its associated 

input, state and output vectors by ui� xi� yi 

respectively. When it simpli�es some of the algebra, we 

shall feel free to assume that Di 

� 0, as the presence of a direct feedthrough from input to output 

adds no essential di�culty and introduces no signi�cant features in the problems that we consider, 

but often makes the algebra cumbersome. Note that our assumption of minimality on the subsystems 

ensures that the eigenvalues of Ai 

are precisely the poles of Hi(s), both in location and in multiplicity. 

Series Connection 

Consider subsystems with transfer matrices H1(s) and H2(s) connected in series (or \cascaded") as 

shown in Fig. 30.1. The transfer function of the cascaded system is evidently H(s) � H2(s)H1(s) (the 

u � u1 

y1 

� u2 - y2 

� y
H1(s) H2(s) 

Figure 30.1: Two subsystems in series. 

factors must be written in that order unless the subsystems are SISO!). The natural state vector for 

the cascaded system comprises x1 

and x2, and the corresponding state-space description of the cascade 

is easily seen to be given (when Di 

� 0) by the matrices � � � � 

A1 

0 B1 

; � 

A � � B � � C � 0 C2 

� D � 0 : (30.1)
B2C1 

A2 

0 

The structure of A shows that its eigenvalues, which are the natural frequencies of the cascade, are 

the eigenvalues of A1 

and A2 

taken together, i.e. the natural frequencies of the individual subsystems 

taken together. 

The question of interest to us now is whether the cascaded system is minimal, i.e., is (A� B� C) a 

minimal realization of H(s) � It should be clear at this point that the cascade is minimal if and only 

if the number of poles of H(s) is the sum of the number of poles in H1(s) and H2(s) (multiplicities 



included). Otherwise the number of poles in H(s) | and hence the number of state variables in a 

minimal realization of H(s) | ends up being less than the number of state variables (and modes) in 

the cascaded system, signaling a loss of reachability and/or observability. 

In the case of SISO subsystems, this condition for minimality can evidently be restated as re-
quiring that no pole of H1(s), respectively H2(s), be canceled by a zero of H2(s), respectively H1(s). 

Furthermore, it is a straightforward exercise (which we leave you to carry out, using the controller or 

observer canonical forms for the subsystem realizations, the state-space description in (30.1) for the 

cascade, and the modal tests for reachability and observability) to show very explicitly that 

� the cascade is unreachable if and only if a pole of H2(s) is canceled by a zero of H1(s)� 

� the cascade is unobservable if and only if a pole of H1(s) is canceled by a zero of H2(s). 

(The demonstration of these results is worth working out in detail, and will make clear why we invested 

time in discussing canonical forms and modal tests.) These conditions make intuitive sense, in that 

the �rst kind of cancellation blocks access of the input to a system mode that is generated in the 

second subsystem, and the second kind of cancellation blocks access to the output for a system mode 

generated in the �rst subsystem. 

Essentially the same interpretations in terms of pole-zero cancellations hold in the MIMO case, 

subject to certain rank conditions on the matrices. We shall content ourselves with demonstrating how 

the loss of observability is related to a pole of H1(s) being cancelled by a zero of H2(s). For this, note 

from the modal test and the structure of the model in (30.1) that observability of the cascade is lost 

i�, for some �, 0 1 

�I ; A1 

0 

� � � � @ ;B2C1 

�I ; A2 

A 

v1 � 0 �
v1 6 0 �� (30.2) 

0 C2 

v2 

v2 

Now we must have v1 

6� 0, otherwise (30.2) shows (by the modal test) that the assumed observability 

of the second subsystem is contradicted. Hence v1 

is an eigenvector of the �rst subsystem. Also 

C1v1 

� 0, otherwise (again by the modal test!) the observability of the �rst subsystem is contradicted. 6
Now rewriting the bottom two rows of (30.2), we get � �� � 

�I ; A2 

;B2 

v2 � 0 : (30.3)
C2 

0 C1v1 

Thus the cascade is unobservable i� (30.3) holds for some eigenvalue and eigenvector pair (�� v1) of 

the �rst subsystem. From Chapter 27 we know that this equation is equivalent, in the case where 

H2(s) has full column rank, to the second subsystem having a transmission zero at �, with input zero 

direction C1v1 

and state zero direction v2(6� 0). [If H2(s) does not have full column rank, then the 

loss of observability may be due to a mode of the �rst subsystem \hiding" in the nullspace of H2(s), 

rather than due to its being blocked by a transmission zero. Some exploration with diagonal H1(s) 

and H2(s) will show you what sorts of things can happen.] 

Parallel Connection 

A parallel connection of two subsystems is shown in Fig. 30.2. The transfer function of this system is 

H(s) � H1(s)+H2(s). The natural state vector for the parallel system again comprises x1 

and x2, and 

the corresponding state-space description of the combination is easily seen to be given by the matrices � � � � 

A1 

0 B1 

; � 

A � � B � � C � 
C1 

C2 

� D � D1 

+ D2 

: (30.4)
0 A2 

B2 



--

--

u1 y1H1(s) 

u -	 f 

y-

u2 y2H2(s) 

Figure 30.2: Two subsystems in parallel. 

The structure of A shows that its eigenvalues, which are the natural frequencies of the parallel sys-
tem, are the eigenvalues of A1 

and A2 

taken together, i.e. the natural frequencies of the individual 

subsystems taken together (just as in the case of cascaded subsystems). 

It is easy in this case to state and prove the precise conditions under which reachability or 

observability is lost. We treat the case of observability below, and leave you to provide the dual 

statement and proof for reachability. 

� Claim: The parallel combination loses observability if and only if: 

(i)	 A1 

and A2 

have a common eigenvalue, and 

(ii)	 some choice of associated right eigenvectors v1 

and v2 

satis�es C1v1 

+C2v2 

� 0 (this second 

condition is always satis�ed in the single-output case if the �rst condition is satis�ed). 

Proof: By the modal test, the parallel system is unobservable i� there is an eigenvector � � 

v1 v � 6� 0 

v2 

associated with some eigenvalue � of A (so Av � �v, v 6 � 0. � 0) such that Cv � C1v1 

+ C2v2 

If both v1 

6 6 and A2,� 0 and v2 

� 0, then we can conclude that � is an eigenvalue of both A1 

and the claim would be proved. To show v1 

� 0, note that 6 v1 

� 0 would imply C2v2 

� 0 

which, together with the fact that A2v2 

� �v2, would contradict the assumed observability of 

the second subsystem. Similarly, we must have v2 

6� 0. 

� 0 and C2v2 

6� 0 are scalars means In the single-output case, the fact that the quantities C1v1 

6 
that we can always scale the eigenvectors so as to obtain C1v1 

+ C2v2 

� 0. Hence all that 

is needed to induce unobservability in the single-output case is for the subsystems to have a 

common eigenvalue. 

Feedback Connection 

A feedback connection of two systems is shown in Fig. 30.3 We leave you to show that this feedback 

con�guration is reachable from u if and only if the cascade con�guration in Fig. 30.1 is reachable. 

(Hint: Feeding back the output of the cascade con�guration does not a�ect whether it is reachable 

or not.) Similarly, argue that the feedback con�guration in Fig. 30.3 is observable if and only if the 

cascade con�guration in Fig 30.4 is observable. 



u y- l 

u-1 

y1 -+ H1(s) 

6 

y2 

u2
�H2(s) 

Figure 30.3: Two subsystems in a feedback con�guration. 

u � u2 - y2 

� u1 - y1 

� y -H2(s) H1(s) 

Figure 30.4: A cascade con�guration whose observability properties are equivalent to those of 

the feedback system in Fig. 20.3. 

A state-space description of the feedback con�guration (with Di 

� 0) is easily seen to be given 

by � � � � 

A1 

B1C2 

B1 

; � 

A � � B � � C � 0 C2 

: (30.5)
B2C1 

A2 

0 

The eigenvalues of A are not evident by inspection, unlike in the case of the cascade and parallel 

connections, because feedback can shift eigenvalues from their open-loop locations. The characteristic 

polynomial of A, namely a(s) � det(sI ; A), whose roots are the natural frequencies of the system, is 

easily shown (using various identities from Homework 1) to be � � 

a(s) � a1(s)a2(s) det I ; H1(s)H2(s) : (30.6) 

If there is a pole-zero cancellation between H1(s) and H2(s), then this pole is una�ected by the 

feedback, and remains a natural frequency of the closed-loop system. 

30.3 Stability of Interconnected Systems 

The composite state-space description of an interconnected system is obtained by combining state-
space realizations of the individual subsystems, using as state variables the union of the subsystem 

state variables. If a subsystem is speci�ed by its transfer function, then we are obliged to use a 

minimal realization of this transfer function in constructing the composite description. Examples of 

such composite descriptions have already been seen in (30.1), (30.4) and (30.5). The interconnected 



system is said to be well-posed precisely when its composite state-space description can be obtained 

(see Chapter 17). 

Once a state-space description (A� B� C� D) of the interconnected system has been obtained, it is 

in principle straightforward to determine its natural frequencies and assess its asymptotic stability by 

examining the eigenvalues of A. However, if each subsystem has been speci�ed via its transfer function, 

one might well ask if there is a way to determine the natural frequencies and evaluate stability using 

transfer function computations alone, without bothering to construct minimal realizations of each 

subsystem in order to obtain a composite realization of the interconnection. 

A �rst thought might be to look at the poles of the transfer function between some input and 

output in the interconnected system. However, we know (and have again con�rmed in the preceding 

section) that the poles of the transfer function between some input u and some output y will fail to 

show all the natural frequencies of the system if (and only if) some mode of the system is unreach-
able and/or unobservable with that input/output pair. Furthermore, the method we prescribe for 

determining natural frequencies through transfer function computations alone should be able to �nd 

natural frequencies even when no external inputs and outputs have been designated, because natural 

frequencies are well de�ned even when the system has no inputs or outputs. 

In view of the above problem with \hidden" modes, a second thought might be to not limit 

ourselves to prespeci�ed inputs and outputs of the interconnection. Instead, we could evaluate the 

transfer functions from input signals added in at all subsystem entries, to output signals taken at all 

subsystem outputs. This turns out to be the right idea, and we develop it in detail for the case of two 

subsystems interconnected in feedback. 

Suppose we are given the feedback con�guration in Fig. 30.5, and are asked to determine its 

natural frequencies. The �rst step is to add in inputs at each subsystem, as in Fig. 30.6. 

u1 

y1-
6 

H1(s) 

� �H2(s) 

y2 

u2 

Figure 30.5: A feedback interconnection, with no prespeci�ed external inputs or outputs. 

Then examine the (four) transfer functions from �1 

and �2 

to y1 

and y2, or equivalently the 

transfer matrix oH(s) that relates � � � � 

�1 

y1to 

�2 

y2 

(in Chapter 17, H (s) � T (H1� H2)(s)). Instead of looking at the response at y1 

and y2, we could 

alternatively compute the response at u1 

and u2, or at u1 

and y1, or at u2 

and y1, because the 

response at y1 

and y2 

can be determined from these other responses, knowing �1 

and �2. The choice 

is determined by convenience. 

Letting (Ai� Bi� Ci) denote minimal realizations of Hi(s) as before (and assuming for simplicity 

that the direct feedthrough term Di 

is zero), we now have the following theorem, which provides the 



- lu1 - y1 

+ H1(s)
 

�1
 6


�
� l�H2(s) + 

�2y2 

u2 

Figure 30.6: The same feedback interconnection, but with inputs added in at each subsystem. 

basis for what we were seeking, namely a transfer function based approach to determining the natural 

frequencies of the interconnection. 

Theorem 30.1 The composite state-space description � � � � � � 

A1 

B1C2 

B1 

0 C1 

0 

A � � Bd 

� � Cd 

� (30.7)
B2C1 

A2 

0 B2 

0 C2 

for the system in Fig. 30.6 is a minimal realization of the transfer function H (s) from the external 

subsystem inputs �1 

and �2 

to the subsystem outputs y1 

and y2, so its natural frequencies, i.e. the 

eigenvalues of A, are precisely the poles of H (s). 

Proof. By inspection, a minimal (or equivalently, reachable and observable) realization of � � 

H1(s) 0 

H(s) � � 

0 H2(s) 

which is the transfer matrix from u1, u2 

to y1, y2, is given by � � � � � � 

A1 

0 B1 

0 C1 

0 

Ad 

� � Bd 

� � Cd 

� : 

0 A2 

0 B2 

0 C2 

Now output feedback around this realization will not destroy its reachability or observability, so � � 

0 I 

Ad 

+ Bd 

Cd 

� Bd 

� Cd 

(30.8)
I 0 

is a minimal realization of the system obtained by implementing the output feedback speci�ed by the 

feedback gain matrix � � 

0 I 

: 

I 0 

It is easy to check that the resulting system is precisely the one in Fig. 30.6, and the realization in 

(30.8) is precisely the composite description in (30.7), since � � � � 

0 I A1 

B1C2Ad 

+ Bd 

Cd 

� � A : 

I 0 B2C1 

A2 



Now, for a minimal realization, the poles of the transfer function are equal to the natural frequencies 

of the system, so the poles of H (s) are precisely the eigenvalues of A. 

Note that this same A matrix is obtained in the composite state-space descriptions of the systems in 

Fig. 30.3, Fig. 30.5 and Fig. 30.6, because these systems only di�er in their speci�cations of inputs 

and outputs. For all these systems, we can determine the natural frequencies by determining the poles 

of H (s), and we can assess the asymptotic stability of these systems (i.e. the asymptotic stability of 

their composite realizations) by checking that the poles of H (s) are all in the left half plane, i.e. by 

checking BIBO stability from �1� �2 

to y1� y2. (We leave you to construct examples that show the need 

to check all four of the transfer function entries in H (s), because a natural frequency can hide from 

any three of them | the fourth one is needed to �ush such a natural frequency out.) 

The same argument we used for the special feedback con�guration above actually works for any 

well-posed interconnected system. We leave you to fashion a proof. Also, it should go without saying 

that everything we have done here in continuous-time holds for discrete-time systems too. You may 

�nd it pro�table to revisit some of the examples of Chapter 17 with the new perspectives gained from 

this chapter. 

1. Assume we have the con�guration in Figure 17.4, with P � 

s;1 and K � ; 

1 . The transfer s+1 s;1 

function relating r to y is � �;1
P s ; 1 1 

� 1 + 

1 ; PK s + 1 s + 1 � �� � 

s ; 1 s + 1 

� 

s + 1 s + 2 

s ; 1 

� : 

s + 2 

Since the only pole of this transfer function is at s � ;2, the input/output relation between r 

and y is stable. However, consider the transfer function from d to u, which is � ! 

K 1 1 

� 

1 ; PK s ; 1 1 + 

1 

s+1 

s + 1 

�	 : 

(s ; 1)(s + 2) 

This transfer function is unstable, which implies that the closed-loop system is externally un-
stable. 

2. We leave you to show that the interconnected system in Figure 17.4 is externally stable if and 

only if the matrix	 � �


(I ; PK);1P (I ; PK);1


;1 ;1	

(30.9)
(I ; KP ) ;(I ; PK) K 

has all its poles in the open left half plane. 



MIT OpenCourseWare
http://ocw.mit.edu 

6.241J / 16.338J Dynamic Systems and Control 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22
	Chapter 24
	Chapter 25
	Chapter 26
	Chapter 27
	Chapter 28
	Chapter 29
	Chapter 30

